Sample records for reduced primary root

  1. Root Bending Is Antagonistically Affected by Hypoxia and ERF-Mediated Transcription via Auxin Signaling1[OPEN

    PubMed Central

    Eysholdt-Derzsó, Emese

    2017-01-01

    When plants encounter soil water logging or flooding, roots are the first organs to be confronted with reduced gas diffusion resulting in limited oxygen supply. Since roots do not generate photosynthetic oxygen, they are rapidly faced with oxygen shortage rendering roots particularly prone to damage. While metabolic adaptations to low oxygen conditions, which ensure basic energy supply, have been well characterized, adaptation of root growth and development have received less attention. In this study, we show that hypoxic conditions cause the primary root to grow sidewise in a low oxygen environment, possibly to escape soil patches with reduced oxygen availability. This growth behavior is reversible in that gravitropic growth resumes when seedlings are returned to normoxic conditions. Hypoxic root bending is inhibited by the group VII ethylene response factor (ERFVII) RAP2.12, as rap2.12-1 seedlings show exaggerated primary root bending. Furthermore, overexpression of the ERFVII member HRE2 inhibits root bending, suggesting that primary root growth direction at hypoxic conditions is antagonistically regulated by hypoxia and hypoxia-activated ERFVIIs. Root bending is preceded by the establishment of an auxin gradient across the root tip as quantified with DII-VENUS and is synergistically enhanced by hypoxia and the auxin transport inhibitor naphthylphthalamic acid. The protein abundance of the auxin efflux carrier PIN2 is reduced at hypoxic conditions, a response that is suppressed by RAP2.12 overexpression, suggesting antagonistic control of auxin flux by hypoxia and ERFVII. Taken together, we show that hypoxia triggers an escape response of the primary root that is controlled by ERFVII activity and mediated by auxin signaling in the root tip. PMID:28698356

  2. Ammonium Inhibits Primary Root Growth by Reducing the Length of Meristem and Elongation Zone and Decreasing Elemental Expansion Rate in the Root Apex in Arabidopsis thaliana

    PubMed Central

    Gao, Kun; Chen, Fanjun; Yuan, Lixing; Mi, Guohua

    2013-01-01

    The inhibitory effect of ammonium on primary root growth has been well documented; however the underlying physiological and molecular mechanisms are still controversial. To avoid ammonium toxicity to shoot growth, we used a vertical two-layer split plate system, in which the upper layer contained nitrate and the lower layer contained ammonium. In this way, nitrogen status was maintained and only the apical part of the root system was exposed to ammonium. Using a kinematic approach, we show here that 1 mM ammonium reduces primary root growth, decreasing both elemental expansion and cell production. Ammonium inhibits the length of elongation zone and the maximum elemental expansion rate. Ammonium also decreases the apparent length of the meristem as well as the number of dividing cells without affecting cell division rate. Moreover, ammonium reduces the number of root cap cells but appears to affect neither the status of root stem cell niche nor the distal auxin maximum at the quiescent center. Ammonium also inhibits root gravitropism and concomitantly down-regulates the expression of two pivotal auxin transporters, AUX1 and PIN2. Insofar as ammonium inhibits root growth rate in AUX1 and PIN2 loss-of-function mutants almost as strongly as in wild type, we conclude that ammonium inhibits root growth and gravitropism by largely distinct pathways. PMID:23577185

  3. Ecophysiology of wetland plant roots: A modelling comparison of aeration in relation to species distribution

    USGS Publications Warehouse

    Sorrell, B.K.; Mendelssohn, I.A.; McKee, K.L.; Woods, R.A.

    2000-01-01

    This study examined the potential for inter-specific differences in root aeration to determine wetland plant distribution in nature. We compared aeration in species that differ in the type of sediment and depth of water they colonize. Differences in root anatomy, structure and physiology were applied to aeration models that predicted the maximum possible aerobic lengths and development of anoxic zones in primary adventitious roots. Differences in anatomy and metabolism that provided higher axial fluxes of oxygen allowed deeper root growth in species that favour more reducing sediments and deeper water. Modelling identified factors that affected growth in anoxic soils through their effects on aeration. These included lateral root formation, which occurred at the expense of extension of the primary root because of the additional respiratory demand they imposed, reducing oxygen fluxes to the tip and stele, and the development of stelar anoxia. However, changes in sediment oxygen demand had little detectable effect on aeration in the primary roots due to their low wall permeability and high surface impedance, but appeared to reduce internal oxygen availability by accelerating loss from laterals. The development of pressurized convective gas flow in shoots and rhizomes was also found to be important in assisting root aeration, as it maintained higher basal oxygen concentrations at the rhizome-root junctions in species growing into deep water. (C) 2000 Annals of Botany Company.

  4. Molecular identification and quantification of bacteria from endodontic infections using real-time polymerase chain reaction.

    PubMed

    Blome, B; Braun, A; Sobarzo, V; Jepsen, S

    2008-10-01

    It was the aim of the present study to evaluate root canal samples for the presence and numbers of specific species as well as for total bacterial load in teeth with chronic apical periodontitis using quantitative real-time polymerase chain reaction (PCR). Forty adult patients with one radiographically documented periapical lesion were included. Twenty teeth presented with primary infections and 20 with secondary infections, requiring retreatment. After removal of necrotic pulp tissue or root canal filling, a first bacterial sample was obtained. Following chemo-mechanical root canal preparation a second sample was taken and a third sample was obtained after 14 days of intracanal dressing with calcium hydroxide. Analysis by real-time PCR enabled the quantification of total bacterial counts and of nine selected species. Root canals with primary infections harbored significantly more bacteria (by total bacterial count) than teeth with secondary infections (P < 0.05). Mean total bacterial count in the retreatment group was 2.1 x 10(6) and was significantly reduced following root canal preparation (3.6 x 10(4)) and intracanal dressing (1.4 x 10(5)). Corresponding values for primary infections were: 4.6 x 10(7), 3.6 x 10(4), and 6.9 x 10(4). The numbers of the selected bacteria and their detection frequency were also significantly reduced. Root canals with primary infections contained a higher bacterial load. Chemo-mechanical root canal preparation reduced bacterial counts by at least 95%.

  5. Comparative Analysis of Protaper and Waveone Systems to Reduce Enterococcus Faecalis from Root Canal System in Primary Molars--An in Vitro Study.

    PubMed

    Pinheiro, Sérgio Luiz; Pessoa, Carolina; da Silva, Josianne Neres; Gonçalves, Rafael Orro; Duarte, Danilo Antonio; da Silveira Bueno, Carlos Eduardo

    2016-01-01

    To assess, in vitro, the ability of the ProTaper(™) and WaveOne(™) systems to reduce Enterococcus faecalis contamination in primary molars. Sixty roots of primary molars were contaminated with E. faecalis. Roots were randomly allocated to one of four groups (n=20): ProTaper(™), WaveOne(™), control A, or control B. The files used were S1 and S2/F1 and F2 (ProTaper(™) system) and 25.08 (WaveOne(™) system). In control group A, the root canal was left uninstrumented, whereas in control group B, the root canal was irrigated with NaCl 0.9%. E. faecalis was sampled from the root canal system before and after instrumentation and the Wilcoxon test and Mann-Whitney U were used. There were no differences in E. faecalis counts between pre-instrumentation counts in the ProTaper™ and WaveOne(™) (p>0.05). The ProTaper(™) system led to an 89.36% reduction in E. faecalis burden, versus 78.10% with the WaveOne(™) system (p>0.05). Instrumentation time was shorter with WaveOne(™) (p<0.0001). The ProTaper(™) and WaveOne™ systems were equally effective in reducing Enterococcus faecalis in primary molars. The WaveOne(™) system was associated with shorter instrumentation time.

  6. Root rot in sugar beet piles at harvest

    USDA-ARS?s Scientific Manuscript database

    Sugar beet root rots are not only a concern because of reduced yields, but can also be associated with losses in storage. Our primary sugar beet root rot disease problem in the Amalgamated production area is Rhizoctonia root rot. However, this rot frequently only penetrates a short distance past t...

  7. Phosphorus and magnesium interactively modulate the elongation and directional growth of primary roots in Arabidopsis thaliana (L.) Heynh

    PubMed Central

    Niu, Yaofang; Jin, Gulei; Li, Xin; Tang, Caixian; Zhang, Yongsong; Liang, Yongchao; Yu, Jingquan

    2015-01-01

    A balanced supply of essential nutrients is an important factor influencing root architecture in many plants, yet data related to the interactive effects of two nutrients on root growth are limited. Here, we investigated the interactive effect between phosphorus (P) and magnesium (Mg) on root growth of Arabidopsis grown in pH-buffered agar medium at different P and Mg levels. The results showed that elongation and deviation of primary roots were directly correlated with the amount of P added to the medium but could be modified by the Mg level, which was related to the root meristem activity and stem-cell division. High P enhanced while low P decreased the tip-focused fluorescence signal of auxin biosynthesis, transport, and redistribution during elongation of primary roots; these effects were greater under low Mg than under high Mg. The altered root growth in response to P and Mg supply was correlated with AUX1, PIN2, and PIN3 mRNA abundance and expression and the accumulation of the protein. Application of either auxin influx inhibitor or efflux inhibitor inhibited the elongation and increased the deviation angle of primary roots, and decreased auxin level in root tips. Furthermore, the auxin-transport mutants aux1-22 and eir1-1 displayed reduced root growth and increased the deviation angle. Our data suggest a profound effect of the combined supply of P and Mg on the development of root morphology in Arabidopsis through auxin signals that modulate the elongation and directional growth of primary root and the expression of root differentiation and development genes. PMID:25922494

  8. 4,4,4-trifluoro-3-(indole-3-)butyric acid promotes root elongation in Lactuca sativa independent of ethylene synthesis and pH

    NASA Technical Reports Server (NTRS)

    Zhang, Nenggang; Hasenstein, Karl H.

    2002-01-01

    We studied the mode of action of 4,4,4-trifluoro-3- (indole-3-) butyric acid (TFIBA), a recently described root growth stimulator, on primary root growth of Lactuca sativa L. seedlings. TFIBA (100 micromoles) promoted elongation of primary roots by 40% in 72 h but inhibited hypocotyl growth by 35%. TFIBA induced root growth was independent of pH. TFIBA did not affect ethylene production, but reduced the inhibitory effect of ethylene on root elongation. TFIBA promoted root growth even in the presence of the ethylene biosynthesis inhibitor L-alpha-(2-aminoethoxyvinyl)glycine. TFIBA and the ethylene-binding inhibitor silver thiosulphate (STS) had a similar effect on root elongation. The results indicate that TFIBA-stimulated root elongation was neither pH-dependent nor related to inhibition of ethylene synthesis, but was possibly related to ethylene action.

  9. Measurements of water uptake of maize roots: insights for traits that influence water transport from the soil

    NASA Astrophysics Data System (ADS)

    Ahmed, Mutez A.; Zarebanadkouki, Mohsen; Kroener, Eva; Carminati, Andrea

    2015-04-01

    Water availability is a primary constraint to the global crop production. Although maize (Zea mays L.) is one of the most important crops worldwide, there is limited information on the function of different root segments and types in extracting water from soils. Aim of this study was to investigate the location of water uptake in maize roots. We used neutron radiography to: 1) image the spatial distribution of maize roots in soil and 2) trace the transport of injected deuterated water (D2O) in soil and roots. Maize plants were grown in aluminum containers (40×38×1 cm) filled with sandy soil. The soil was partitioned into different compartments using 1-cm-thick layers of coarse sand. When the plants were two weeks-old we injected D2O into selected soil compartments. The experiments were performed during the day (transpiring plants) and night (non transpiring plants). The transport of D2O into roots was simulated using a convection-diffusion numerical model of D2O transport into roots. By fitting the observed D2O transport we quantified the diffusion coefficient and the water uptake of the different root segments. The maize root architecture consisted of a primary root, 4-5 seminal roots and many lateral roots connected to the primary and seminal roots. Laterals emerged from the proximal 15 cm of the primary and seminal roots. Both during day and night measurements, D2O entered more quickly into lateral roots than into primary and seminal roots. The quick transport of D2O into laterals was caused by the small radius of lateral roots. The diffusion coefficient of lateral roots (4.68×10-7cm2s-1)was similar to that of the distal segments of seminal roots (4.72×10-7cm2s-1) and higher than of the proximal segments (1.42×10-7cm2s-1). Water uptake of lateral roots (1.64×10-5cms-1)was much higher than that of the distal segments of seminal roots (1.18×10-12cms-1). Water uptake of the proximal seminal segments was negligible. We conclude that the function of lateral roots is to absorb water from the soil, while the function of the primary and seminal roots is to axially transport water to the shoot. Breeding for lateral roots with high radial conductivity and seminal roots with large xylem vessels diameter would be beneficial in agroecosystems where water is available. In contrast, in arid and semi-arid areas seminal roots with a smaller xylem vessel diameter combined with deep branching of laterals would reduce transpiration rate and at the same time allow the uptake of water stored in the subsoil (Richards and Passioura 1989). Reference Richards RA, Passioura JB. (1989) A breeding program to reduce the diameter of the major xylem vessel in the seminal roots of wheat and its effect on grain yield in rain-fed environments. Australian Journal of Agricultural Research 40, 943-950.

  10. Copper regulates primary root elongation through PIN1-mediated auxin redistribution.

    PubMed

    Yuan, Hong-Mei; Xu, Heng-Hao; Liu, Wen-Cheng; Lu, Ying-Tang

    2013-05-01

    The heavy metal copper (Cu) is an essential microelement required for normal plant growth and development, but it inhibits primary root growth when in excess. The mechanism underlying how excess Cu functions in this process remains to be further elucidated. Here, we report that a higher concentration of CuSO4 inhibited primary root elongation of Arabidopsis seedlings by affecting both the elongation and meristem zones. In the meristem zone, meristematic cell division potential was reduced by excess Cu. Further experiments showed that Cu can modulate auxin distribution, resulting in higher auxin activities in both the elongation and meristem zones of Cu-treated roots based on DR5::GUS expression patterns. This Cu-mediated auxin redistribution was shown to be responsible for Cu-mediated inhibition of primary root elongation. Additional genetic and physiological data demonstrated that it was PINFORMED1 (PIN1), but not PIN2 or AUXIN1 (AUX1), that regulated this process. However, Cu-induced hydrogen peroxide accumulation did not contribute to Cu-induced auxin redistribution for inhibition of root elongation. When the possible role of ethylene in this process was analyzed, Cu had a similar impact on the root elongation of both the wild type and the ein2-1 mutant, implying that Cu-mediated inhibition of primary root elongation was not due to the ethylene signaling pathway.

  11. Characterization of low phosphorus insensitive Mutants Reveals a Crosstalk between Low Phosphorus-Induced Determinate Root Development and the Activation of Genes Involved in the Adaptation of Arabidopsis to Phosphorus Deficiency1

    PubMed Central

    Sánchez-Calderón, Lenin; López-Bucio, José; Chacón-López, Alejandra; Gutiérrez-Ortega, Abel; Hernández-Abreu, Esmeralda; Herrera-Estrella, Luis

    2006-01-01

    Low phosphorus (P) availability is one of the most limiting factors for plant productivity in many natural and agricultural ecosystems. Plants display a wide range of adaptive responses to cope with low P stress, which generally serve to enhance P availability in the soil and to increase its uptake by roots. In Arabidopsis (Arabidopsis thaliana), primary root growth inhibition and increased lateral root formation have been reported to occur in response to P limitation. To gain knowledge of the genetic mechanisms that regulate root architectural responses to P availability, we designed a screen for identifying Arabidopsis mutants that fail to arrest primary root growth when grown under low P conditions. Eleven low phosphorus insensitive (lpi) mutants that define at least four different complementation groups involved in primary root growth responses to P availability were identified. The lpi mutants do not show the typical determinate developmental program induced by P stress in the primary root. Other root developmental aspects of the low P rescue system, including increased root hair elongation and anthocyanin accumulation, remained unaltered in lpi mutants. In addition to the insensitivity of primary root growth inhibition, when subjected to P deprivation, lpi mutants show a reduced induction in the expression of several genes involved in the P starvation rescue system (PHOSPHATE TRANSPORTER 1 and 2, PURPLE ACID PHOSPHATASE 1, ACID PHOSPHATASE 5, and INDUCED BY PHOSPHATE STARVATION 1). Our results provide genetic support for the role of P as an important signal for postembryonic root development and root meristem maintenance and show a crosstalk in developmental and biochemical responses to P deprivation. PMID:16443695

  12. Ethylene Inhibits Root Elongation during Alkaline Stress through AUXIN1 and Associated Changes in Auxin Accumulation1

    PubMed Central

    Li, Juan; Xu, Heng-Hao; Liu, Wen-Cheng; Zhang, Xiao-Wei

    2015-01-01

    Soil alkalinity causes major reductions in yield and quality of crops worldwide. The plant root is the first organ sensing soil alkalinity, which results in shorter primary roots. However, the mechanism underlying alkaline stress-mediated inhibition of root elongation remains to be further elucidated. Here, we report that alkaline conditions inhibit primary root elongation of Arabidopsis (Arabidopsis thaliana) seedlings by reducing cell division potential in the meristem zones and that ethylene signaling affects this process. The ethylene perception antagonist silver (Ag+) alleviated the inhibition of root elongation by alkaline stress. Moreover, the ethylene signaling mutants ethylene response1-3 (etr1-3), ethylene insensitive2 (ein2), and ein3-1 showed less reduction in root length under alkaline conditions, indicating a reduced sensitivity to alkalinity. Ethylene biosynthesis also was found to play a role in alkaline stress-mediated root inhibition; the ethylene overproducer1-1 mutant, which overproduces ethylene because of increased stability of 1-AMINOCYCLOPROPANE-1-CARBOXYLIC ACID SYNTHASE5, was hypersensitive to alkaline stress. In addition, the ethylene biosynthesis inhibitor cobalt (Co2+) suppressed alkaline stress-mediated inhibition of root elongation. We further found that alkaline stress caused an increase in auxin levels by promoting expression of auxin biosynthesis-related genes, but the increase in auxin levels was reduced in the roots of the etr1-3 and ein3-1 mutants and in Ag+/Co2+-treated wild-type plants. Additional genetic and physiological data showed that AUXIN1 (AUX1) was involved in alkaline stress-mediated inhibition of root elongation. Taken together, our results reveal that ethylene modulates alkaline stress-mediated inhibition of root growth by increasing auxin accumulation by stimulating the expression of AUX1 and auxin biosynthesis-related genes. PMID:26109425

  13. L-Cysteine inhibits root elongation through auxin/PLETHORA and SCR/SHR pathway in Arabidopsis thaliana.

    PubMed

    Wang, Zhen; Mao, Jie-Li; Zhao, Ying-Jun; Li, Chuan-You; Xiang, Cheng-Bin

    2015-02-01

    L-Cysteine plays a prominent role in sulfur metabolism of plants. However, its role in root development is largely unknown. Here, we report that L-cysteine reduces primary root growth in a dosage-dependent manner. Elevating cellular L-cysteine level by exposing Arabidopsis thaliana seedlings to high L-cysteine, buthionine sulphoximine, or O-acetylserine leads to altered auxin maximum in root tips, the expression of quiescent center cell marker as well as the decrease of the auxin carriers PIN1, PIN2, PIN3, and PIN7 of primary roots. We also show that high L-cysteine significantly reduces the protein level of two sets of stem cell specific transcription factors PLETHORA1/2 and SCR/SHR. However, L-cysteine does not downregulate the transcript level of PINs, PLTs, or SCR/SHR, suggesting that an uncharacterized post-transcriptional mechanism may regulate the accumulation of PIN, PLT, and SCR/SHR proteins and auxin transport in the root tips. These results suggest that endogenous L-cysteine level acts to maintain root stem cell niche by regulating basal- and auxin-induced expression of PLT1/2 and SCR/SHR. L-Cysteine may serve as a link between sulfate assimilation and auxin in regulating root growth. © 2014 Institute of Botany, Chinese Academy of Sciences.

  14. Jatropha curcas L. Root Structure and Growth in Diverse Soils

    PubMed Central

    Valdés-Rodríguez, Ofelia Andrea; Sánchez-Sánchez, Odilón; Pérez-Vázquez, Arturo; Caplan, Joshua S.; Danjon, Frédéric

    2013-01-01

    Unlike most biofuel species, Jatropha curcas has promise for use in marginal lands, but it may serve an additional role by stabilizing soils. We evaluated the growth and structural responsiveness of young J. curcas plants to diverse soil conditions. Soils included a sand, a sandy-loam, and a clay-loam from eastern Mexico. Growth and structural parameters were analyzed for shoots and roots, although the focus was the plasticity of the primary root system architecture (the taproot and four lateral roots). The sandy soil reduced the growth of both shoot and root systems significantly more than sandy-loam or clay-loam soils; there was particularly high plasticity in root and shoot thickness, as well as shoot length. However, the architecture of the primary root system did not vary with soil type; the departure of the primary root system from an index of perfect symmetry was 14 ± 5% (mean ± standard deviation). Although J. curcas developed more extensively in the sandy-loam and clay-loam soils than in sandy soil, it maintained a consistent root to shoot ratio and root system architecture across all types of soil. This strong genetic determination would make the species useful for soil stabilization purposes, even while being cultivated primarily for seed oil. PMID:23844412

  15. Jatropha curcas L. root structure and growth in diverse soils.

    PubMed

    Valdés-Rodríguez, Ofelia Andrea; Sánchez-Sánchez, Odilón; Pérez-Vázquez, Arturo; Caplan, Joshua S; Danjon, Frédéric

    2013-01-01

    Unlike most biofuel species, Jatropha curcas has promise for use in marginal lands, but it may serve an additional role by stabilizing soils. We evaluated the growth and structural responsiveness of young J. curcas plants to diverse soil conditions. Soils included a sand, a sandy-loam, and a clay-loam from eastern Mexico. Growth and structural parameters were analyzed for shoots and roots, although the focus was the plasticity of the primary root system architecture (the taproot and four lateral roots). The sandy soil reduced the growth of both shoot and root systems significantly more than sandy-loam or clay-loam soils; there was particularly high plasticity in root and shoot thickness, as well as shoot length. However, the architecture of the primary root system did not vary with soil type; the departure of the primary root system from an index of perfect symmetry was 14 ± 5% (mean ± standard deviation). Although J. curcas developed more extensively in the sandy-loam and clay-loam soils than in sandy soil, it maintained a consistent root to shoot ratio and root system architecture across all types of soil. This strong genetic determination would make the species useful for soil stabilization purposes, even while being cultivated primarily for seed oil.

  16. Observations on the Use of Seprafilm® on the Brachial Plexus in 249 Operations for Neurogenic Thoracic Outlet Syndrome

    PubMed Central

    Hammond, Sharon L.; Rao, Neal M.

    2007-01-01

    Purpose Seprafilm® was initially used successfully as a membrane to reduce abdominal adhesions. Subsequently it was tried in a number of other areas to reduce postoperative scarring. Seprafilm® was employed in this study to see if it would reduce postoperative scarring after supraclavicular thoracic outlet decompression for neurogenic thoracic outlet syndrome (NTOS). Material and methods There were 249 operations for primary NTOS (185) and recurrent NTOS (64). Seprafilm® was applied to the nerve roots at the end of each procedure. Diagnosis was established by careful history and extensive physical exam consisting of several provocative maneuvers. Scalene muscle block confirmed the diagnosis. Results Success rates for primary operations, 1–2 years postoperation were 74% for scalenectomy without first rib resection and 70% for scalenectomy with first rib resection. For reoperations, success rate for scalenectomy and neurolysis after transaxillary rib resection was 78% whereas success rate for neurolysis after supraclavicular scalenectomy was 68%. Seprafilm® did not significantly improve overall results compared to our results 15 years ago, although in reoperations there was a trend toward improvement with Seprafilm®. Observations in 10 reoperations after use of Seprafilm® revealed that there were fewer adhesions between fat pad and nerve roots, making it much easier to find the nerve roots. Recurrence was because of scar formation around individual nerve roots. Conclusion Seprafilm® made reoperations easier by reducing scarring between scalene fat pad and brachial plexus. However, it did not prevent scar tissue forming around the individual nerve roots nor did it significantly lower the failure rate for primary operations. The trend supported the use of Seprafilm® in reoperations. PMID:18780049

  17. Effect of a muscle relaxant, chlorphenesin carbamate, on the spinal neurons of rats.

    PubMed

    Kurachi, M; Aihara, H

    1984-09-01

    The effects of chlorphenesin carbamate (CPC) and mephenesin on spinal neurons were investigated in spinal rats. CPC (50 mg/kg i.v.) inhibited the mono-(MSR) and poly-synaptic reflex (PSR), the latter being more susceptible than the former to CPC depression. Mephenesin also inhibited MSR and PSR, though the effects were short in duration. CPC had no effect on the dorsal root potential evoked by the stimulation of the dorsal root, while mephenesin reduced the dorsal root-dorsal root reflex. The excitability of motoneuron was reduced by the administration of CPC or mephenesin. The excitability of primary afferent terminal was unchanged by CPC, while it was inhibited by mephenesin. Neither CPC nor mephenesin influenced the field potential evoked by the dorsal root stimulation. Both CPC and mephenesin had no effect on the synaptic recovery. These results suggest that both CPC and mephenesin inhibit the firing of motoneurons by stabilizing the neuronal membrane, while mephenesin additionally suppresses the dorsal root reflex and the excitability of the primary afferent terminal. These inhibitory actions of CPC on spinal activities may contribute, at least partly, to its muscle relaxing action.

  18. Tomato root growth, gravitropism, and lateral development: correlation with auxin transport

    NASA Technical Reports Server (NTRS)

    Muday, G. K.; Haworth, P.

    1994-01-01

    Tomato (Lycopersicon esculentum, Mill.) roots were analyzed during growth on agar plates. Growth of these roots was inhibited by the auxin transport inhibitors naphthylphthalamic acid (NPA) and semicarbazone derivative I (SCB-1). The effect of auxin transport inhibitors on root gravitropism was analyzed by measurement of the angle of gravitropic curvature after the roots were reoriented 90 degrees from the vertical. NPA and SCB-1 abolished both the response of these roots to gravity and the formation of lateral roots, with SCB-1 being the more effective at inhibition. Auxins also inhibited root growth. Both auxins tested has a slight effect on the gravity response, but this effect is probably indirect, since auxins reduced the growth rate. Auxins also stimulated lateral root growth at concentration where primary root growth was inhibited. When roots were treated with both IAA and NPA simultaneously, a cumulative inhibition of root growth was found. When both compounds were applied together, analysis of gravitropism and lateral root formation indicated that the dominant effect was exerted by auxin transport inhibitors. Together, these data suggest a model for the role of auxin transport in controlling both primary and lateral root growth.

  19. Respiration rate in maize roots is related to concentration of reduced nitrogen and proliferation of lateral roots

    NASA Technical Reports Server (NTRS)

    Granato, T. C.; Raper, C. D. Jr; Wilkerson, G. G.; Raper CD, J. r. (Principal Investigator)

    1989-01-01

    The relationship between specific rate of respiration (respiration rate per unit root dry weight) and concentration of reduced nitrogen was examined for maize (Zea mays L.) roots. Plants with 2 primary nodal root axes were grown for 8 days in a split-root hydroponic system in which NO3- was supplied to both axes at 1.0 mol m-3, to one axis at 1.0 mol m-3 and the other axis at 0.0 mol m-3, or to both axes at 0.0 mol m-3. Respiration rates and root characteristics were measured at 2-day intervals. Specific rate of respiration was positively correlated in a nonlinear relationship with concentration of reduced nitrogen. The lowest specific rates of respiration occurred when neither axis received exogenous NO3- and the concentration of reduced nitrogen in the axes was less than 9 mg g-1. The greatest rates occurred in axes that were actively absorbing NO3- and contained more than 35 mg g-1 of reduced nitrogen. At 23 mg g-1 of reduced nitrogen, below which initiation of lateral branches was decreased by 30-50%, specific rate of respiration was 17% greater for roots actively absorbing NO3- than for roots not absorbing NO3-. Increases in specific rate of respiration associated with concentrations of reduced nitrogen greater than 23 mg g-1 were concluded to be attributable primarily to proliferation of lateral branches.

  20. Absorption of nickel, chromium, and iron by the root surface of primary molars covered with stainless steel crowns.

    PubMed

    Keinan, David; Mass, Eliyahu; Zilberman, Uri

    2010-01-01

    Objective. The purpose of this study was to analyze the absorption of metal ions released from stainless steel crowns by root surface of primary molars. Study Design. Laboratory research: The study included 34 primary molars, exfoliated or extracted during routine dental treatment. 17 molars were covered with stainless-steel crowns for more than two years and compared to 17 intact primary molars. Chemical content of the mesial or distal root surface, 1 mm apically to the crown or the cemento-enamel junction (CEJ), was analyzed. An energy dispersive X-ray spectrometer (EDS) was used for chemical analysis. Results. Higher amounts of nickel, chromium, and iron (5-6 times) were found in the cementum of molars covered with stainless-steel crowns compared to intact molars. The differences between groups were highly significant (P < .001). Significance. Stainless-steel crowns release nickel, chromium, and iron in oral environment, and the ions are absorbed by the primary molars roots. The additional burden of allergenic metals should be reduced if possible.

  1. The Nitrate Transporter MtNPF6.8 (MtNRT1.3) Transports Abscisic Acid and Mediates Nitrate Regulation of Primary Root Growth in Medicago truncatula1[W

    PubMed Central

    Pellizzaro, Anthoni; Clochard, Thibault; Cukier, Caroline; Bourdin, Céline; Juchaux, Marjorie; Montrichard, Françoise; Thany, Steeve; Raymond, Valérie; Planchet, Elisabeth; Morère-Le Paven, Marie-Christine

    2014-01-01

    Elongation of the primary root during postgermination of Medicago truncatula seedlings is a multigenic trait that is responsive to exogenous nitrate. A quantitative genetic approach suggested the involvement of the nitrate transporter MtNPF6.8 (for Medicago truncatula NITRATE TRANSPORTER1/PEPTIDE TRANSPORTER Family6.8) in the inhibition of primary root elongation by high exogenous nitrate. In this study, the inhibitory effect of nitrate on primary root elongation, via inhibition of elongation of root cortical cells, was abolished in npf6.8 knockdown lines. Accordingly, we propose that MtNPF6.8 mediates nitrate inhibitory effects on primary root growth in M. truncatula. pMtNPF6.8:GUS promoter-reporter gene fusion in Agrobacterium rhizogenes-generated transgenic roots showed the expression of MtNPF6.8 in the pericycle region of primary roots and lateral roots, and in lateral root primordia and tips. MtNPF6.8 expression was insensitive to auxin and was stimulated by abscisic acid (ABA), which restored the inhibitory effect of nitrate in npf6.8 knockdown lines. It is then proposed that ABA acts downstream of MtNPF6.8 in this nitrate signaling pathway. Furthermore, MtNPF6.8 was shown to transport ABA in Xenopus spp. oocytes, suggesting an additional role of MtNPF6.8 in ABA root-to-shoot translocation. 15NO3−-influx experiments showed that only the inducible component of the low-affinity transport system was affected in npf6.8 knockdown lines. This indicates that MtNPF6.8 is a major contributor to the inducible component of the low-affinity transport system. The short-term induction by nitrate of the expression of Nitrate Reductase1 (NR1) and NR2 (genes that encode two nitrate reductase isoforms) was greatly reduced in the npf6.8 knockdown lines, supporting a role of MtNPF6.8 in the primary nitrate response in M. truncatula. PMID:25367858

  2. Ethylene Inhibits Root Elongation during Alkaline Stress through AUXIN1 and Associated Changes in Auxin Accumulation.

    PubMed

    Li, Juan; Xu, Heng-Hao; Liu, Wen-Cheng; Zhang, Xiao-Wei; Lu, Ying-Tang

    2015-08-01

    Soil alkalinity causes major reductions in yield and quality of crops worldwide. The plant root is the first organ sensing soil alkalinity, which results in shorter primary roots. However, the mechanism underlying alkaline stress-mediated inhibition of root elongation remains to be further elucidated. Here, we report that alkaline conditions inhibit primary root elongation of Arabidopsis (Arabidopsis thaliana) seedlings by reducing cell division potential in the meristem zones and that ethylene signaling affects this process. The ethylene perception antagonist silver (Ag(+)) alleviated the inhibition of root elongation by alkaline stress. Moreover, the ethylene signaling mutants ethylene response1-3 (etr1-3), ethylene insensitive2 (ein2), and ein3-1 showed less reduction in root length under alkaline conditions, indicating a reduced sensitivity to alkalinity. Ethylene biosynthesis also was found to play a role in alkaline stress-mediated root inhibition; the ethylene overproducer1-1 mutant, which overproduces ethylene because of increased stability of 1-AMINOCYCLOPROPANE-1-CARBOXYLIC ACID SYNTHASE5, was hypersensitive to alkaline stress. In addition, the ethylene biosynthesis inhibitor cobalt (Co(2+)) suppressed alkaline stress-mediated inhibition of root elongation. We further found that alkaline stress caused an increase in auxin levels by promoting expression of auxin biosynthesis-related genes, but the increase in auxin levels was reduced in the roots of the etr1-3 and ein3-1 mutants and in Ag(+)/Co(2+)-treated wild-type plants. Additional genetic and physiological data showed that AUXIN1 (AUX1) was involved in alkaline stress-mediated inhibition of root elongation. Taken together, our results reveal that ethylene modulates alkaline stress-mediated inhibition of root growth by increasing auxin accumulation by stimulating the expression of AUX1 and auxin biosynthesis-related genes. © 2015 American Society of Plant Biologists. All Rights Reserved.

  3. Effects of cations on hormone transport in primary roots of Zea mays

    NASA Technical Reports Server (NTRS)

    Hasenstein, K. H.; Evans, M. L.

    1988-01-01

    We examined the influence of aluminum and calcium (and certain other cations) on hormone transport in corn roots. When aluminum was applied unilaterally to the caps of 15 mm apical root sections the roots curved strongly away from the aluminum. When aluminum was applied unilaterally to the cap and 3H-indole-3-acetic acid was applied to the basal cut surface twice as much radioactivity (assumed to be IAA) accumulated on the concave side of the curved root as on the convex side. Auxin transport in the apical region of intact roots was preferentially basipetal, with a polarity (basipetal transport divided by acropetal transport) of 6.3. In decapped 5 mm apical root segments, auxin transport was acropetally polar (polarity = 0.63). Application of aluminum to the root cap strongly promoted acropetal transport of auxin reducing polarity from 6.3 to 2.1. Application of calcium to the root cap enhanced basipetal movement of auxin, increasing polarity from 6.3 to 7.6. Application of the calcium chelator, ethylene-glycol-bis-(beta-aminoethylether)-N,N,N',N'-tetraacetic acid, greatly decreased basipetal auxin movement, reducing polarity from 6.3 to 3.7. Transport of label after application of tritiated abscisic acid showed no polarity and was not affected by calcium or aluminum. The results indicate that the root cap is particularly important in maintaining basipetal polarity of auxin transport in primary roots of corn. The induction of root curvature by unilateral application of aluminum or calcium to root caps is likely to result from localized effects of these ions on auxin transport. The findings are discussed relative to the possible role of calcium redistribution in the gravitropic curvature of roots and the possibility of calmodulin involvement in the action of calcium and aluminum on auxin transport.

  4. Graviresponsiveness of surgically altered primary roots of Zea mays

    NASA Technical Reports Server (NTRS)

    Maimon, E.; Moore, R.

    1991-01-01

    We examined the gravitropic responses of surgically altered primary roots of Zea mays to determine the route by which gravitropic inhibitors move from the root tip to the elongating zone. Horizontally oriented roots, from which a 1-mm-wide girdle of epidermis plus 2-10 layers of cortex were removed from the apex of the elongating zone, curve downward. However, curvature occurred only apical to the girdle. Filling the girdle with mucilage-like material transmits curvature beyond the girdle. Vertically oriented roots with a half-girdle' (i.e. the epidermis and 2-10 layers of the cortex removed from half of the circumference of the apex of the elongating zone) curve away from the girdle. Inserting the half-girdle at the base of the elongating zone induces curvature towards the girdle. Filling the half-circumference girdles with mucilage-like material reduced curvature significantly. Stripping the epidermis and outer 2-5 layers of cortex from the terminal 1.5 cm of one side of a primary root induces curvature towards the cut, irrespective of the root's orientation to gravity. This effect is not due to desiccation since treated roots submerged in water also curved towards their cut surface. Coating a root's cut surface with a mucilage-like substance minimizes curvature. These results suggest that the outer cell-layers of the root, especially the epidermis, play an important role in root gravicurvature, and the gravitropic signals emanating from the root tip can move apoplastically through mucilage.

  5. Grasses suppress shoot-borne roots to conserve water during drought

    PubMed Central

    Sebastian, Jose; Yee, Muh-Ching; Goudinho Viana, Willian; Rellán-Álvarez, Rubén; Feldman, Max; Priest, Henry D.; Trontin, Charlotte; Lee, Tak; Jiang, Hui; Mockler, Todd C.

    2016-01-01

    Many important crops are members of the Poaceae family, which develop root systems characterized by a high degree of root initiation from the belowground basal nodes of the shoot, termed the crown. Although this postembryonic shoot-borne root system represents the major conduit for water uptake, little is known about the effect of water availability on its development. Here we demonstrate that in the model C4 grass Setaria viridis, the crown locally senses water availability and suppresses postemergence crown root growth under a water deficit. This response was observed in field and growth room environments and in all grass species tested. Luminescence-based imaging of root systems grown in soil-like media revealed a shift in root growth from crown-derived to primary root-derived branches, suggesting that primary root-dominated architecture can be induced in S. viridis under certain stress conditions. Crown roots of Zea mays and Setaria italica, domesticated relatives of teosinte and S. viridis, respectively, show reduced sensitivity to water deficit, suggesting that this response might have been influenced by human selection. Enhanced water status of maize mutants lacking crown roots suggests that under a water deficit, stronger suppression of crown roots actually may benefit crop productivity. PMID:27422554

  6. Comparison of Two Base Materials Regarding Their Effect on Root Canal Treatment Success in Primary Molars with Furcation Lesions

    PubMed Central

    Sonmez, Hayriye; Sari, Saziye

    2016-01-01

    Introduction. The aim of this study was to compare MTA with another base material, IRM, which is generally used on pulpal floor after root canal treatment, regarding their effect on the success of root canal treatment of primary teeth with furcation lesions. Materials and Methods. Fifty primary teeth with furcation lesions were divided into 2 groups. Following root canal treatment, the pulpal floor was coated with MTA in the experimental group and with IRM in the control group. Teeth were followed up considering clinical (pain, pathological mobility, tenderness to percussion and palpation, and any soft tissue pathology and sinus tract) and radiographical (pathological root resorption, reduced size or healing of existing lesion, and absence of new lesions at the interradicular or periapical area) criteria for 18 months. For the statistical analysis, Fisher's exact test and Pearson's chi-square tests were used and a p value of <0.05 was considered to be statistically significant. Results. Although there were no statistically significant differences between two groups in terms of treatment success, lesions healed significantly faster in the MTA group. Conclusion. In primary teeth with furcation lesions, usage of MTA on the pulpal floor following root canal treatment can be a better alternative since it induced faster healing. PMID:27957486

  7. Comparison of Two Base Materials Regarding Their Effect on Root Canal Treatment Success in Primary Molars with Furcation Lesions.

    PubMed

    Arikan, Volkan; Sonmez, Hayriye; Sari, Saziye

    2016-01-01

    Introduction. The aim of this study was to compare MTA with another base material, IRM, which is generally used on pulpal floor after root canal treatment, regarding their effect on the success of root canal treatment of primary teeth with furcation lesions. Materials and Methods. Fifty primary teeth with furcation lesions were divided into 2 groups. Following root canal treatment, the pulpal floor was coated with MTA in the experimental group and with IRM in the control group. Teeth were followed up considering clinical (pain, pathological mobility, tenderness to percussion and palpation, and any soft tissue pathology and sinus tract) and radiographical (pathological root resorption, reduced size or healing of existing lesion, and absence of new lesions at the interradicular or periapical area) criteria for 18 months. For the statistical analysis, Fisher's exact test and Pearson's chi-square tests were used and a p value of <0.05 was considered to be statistically significant. Results. Although there were no statistically significant differences between two groups in terms of treatment success, lesions healed significantly faster in the MTA group. Conclusion. In primary teeth with furcation lesions, usage of MTA on the pulpal floor following root canal treatment can be a better alternative since it induced faster healing.

  8. 2,4-diacetylphloroglucinol alters plant root development.

    PubMed

    Brazelton, Jessica N; Pfeufer, Emily E; Sweat, Teresa A; Gardener, Brian B McSpadden; Coenen, Catharina

    2008-10-01

    Pseudomonas fluorescens isolates containing the phlD gene can protect crops from root pathogens, at least in part through production of the antibiotic 2,4-diacetylphloroglucinol (DAPG). However, the action mechanisms of DAPG are not fully understood, and effects of this antibiotic on host root systems have not been characterized in detail. DAPG inhibited primary root growth and stimulated lateral root production in tomato seedlings. Roots of the auxin-resistant diageotropica mutant of tomato demonstrated reduced DAPG sensitivity with regards to inhibition of primary root growth and induction of root branching. Additionally, applications of exogenous DAPG, at concentrations previously found in the rhizosphere of plants inoculated with DAPG-producing pseudomonads, inhibited the activation of an auxin-inducible GH3 promoter::luciferase reporter gene construct in transgenic tobacco hypocotyls. In this model system, supernatants of 17 phlD+ P. fluorescens isolates had inhibitory effects on luciferase activity similar to synthetic DAPG. In addition, a phlD() mutant strain, unable to produce DAPG, demonstrated delayed inhibitory effects compared with the parent wild-type strain. These results indicate that DAPG can alter crop root architecture by interacting with an auxin-dependent signaling pathway.

  9. Roothairless5, which functions in maize (Zea mays L.) root hair initiation and elongation encodes a monocot-specific NADPH oxidase.

    PubMed

    Nestler, Josefine; Liu, Sanzhen; Wen, Tsui-Jung; Paschold, Anja; Marcon, Caroline; Tang, Ho Man; Li, Delin; Li, Li; Meeley, Robert B; Sakai, Hajime; Bruce, Wesley; Schnable, Patrick S; Hochholdinger, Frank

    2014-09-01

    Root hairs are instrumental for nutrient uptake in monocot cereals. The maize (Zea mays L.) roothairless5 (rth5) mutant displays defects in root hair initiation and elongation manifested by a reduced density and length of root hairs. Map-based cloning revealed that the rth5 gene encodes a monocot-specific NADPH oxidase. RNA-Seq, in situ hybridization and qRT-PCR experiments demonstrated that the rth5 gene displays preferential expression in root hairs but also accumulates to low levels in other tissues. Immunolocalization detected RTH5 proteins in the epidermis of the elongation and differentiation zone of primary roots. Because superoxide and hydrogen peroxide levels are reduced in the tips of growing rth5 mutant root hairs as compared with wild-type, and Reactive oxygen species (ROS) is known to be involved in tip growth, we hypothesize that the RTH5 protein is responsible for establishing the high levels of ROS in the tips of growing root hairs required for elongation. Consistent with this hypothesis, a comparative RNA-Seq analysis of 6-day-old rth5 versus wild-type primary roots revealed significant over-representation of only two gene ontology (GO) classes related to the biological functions (i.e. oxidation/reduction and carbohydrate metabolism) among 893 differentially expressed genes (FDR <5%). Within these two classes the subgroups 'response to oxidative stress' and 'cellulose biosynthesis' were most prominently represented. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  10. Low Light Availability Alters Root Exudation and Reduces Putative Beneficial Microorganisms in Seagrass Roots

    PubMed Central

    Martin, Belinda C.; Gleeson, Deirdre; Statton, John; Siebers, Andre R.; Grierson, Pauline; Ryan, Megan H.; Kendrick, Gary A.

    2018-01-01

    Seagrass roots host a diverse microbiome that is critical for plant growth and health. Composition of microbial communities can be regulated in part by root exudates, but the specifics of these interactions in seagrass rhizospheres are still largely unknown. As light availability controls primary productivity, reduced light may impact root exudation and consequently the composition of the root microbiome. Hence, we analyzed the influence of light availability on root exudation and community structure of the root microbiome of three co-occurring seagrass species, Halophila ovalis, Halodule uninervis and Cymodocea serrulata. Plants were grown under four light treatments in mesocosms for 2 weeks; control (100% surface irradiance (SI), medium (40% SI), low (20% SI) and fluctuating light (10 days 20% and 4 days 100%). 16S rDNA amplicon sequencing revealed that microbial diversity, composition and predicted function were strongly influenced by the presence of seagrass roots, such that root microbiomes were unique to each seagrass species. Reduced light availability altered seagrass root exudation, as characterized using fluorescence spectroscopy, and altered the composition of seagrass root microbiomes with a reduction in abundance of potentially beneficial microorganisms. Overall, this study highlights the potential for above-ground light reduction to invoke a cascade of changes from alterations in root exudation to a reduction in putative beneficial microorganisms and, ultimately, confirms the importance of the seagrass root environment – a critical, but often overlooked space. PMID:29375529

  11. Bacterial profile in primary teeth with necrotic pulp and periapical lesions.

    PubMed

    da Silva, Léa Assed Bezerra; Nelson-Filho, Paulo; Faria, Gisele; de Souza-Gugelmin, Maria Cristina Monteiro; Ito, Izabel Yoko

    2006-01-01

    The objective of this study was to evaluate the bacterial profile in root canals of human primary teeth with necrotic pulp and periapical lesions using bacterial culture. A total of 20 primary teeth with necrotic pulp and radiographically visible radiolucent areas in the region of the bone furcation and/or the periapical region were selected. After crown access, 4 sterile absorbent paper points were introduced sequentially into the root canal for collection of material. After 30 s, the paper points were removed and placed in a test tube containing reduced transport fluid (RTF) and were sent for microbiological evaluation. Anaerobic microorganisms were found in 100% of the samples, black-pigmented bacilli in 30%, aerobic microorganisms in 60%, streptococci in 85%, gram-negative aerobic rods in 15% and staphylococci were not quantified. Mutans streptococci were found in 6 root canals (30%), 5 canals with Streptococcus mutans and 1 canal with Streptococcus mutans and Streptococcus sobrinus. It was concluded that in root canals of human primary teeth with necrotic pulp and periapical lesions, the infection is polymicrobial with predominance of anaerobic microorganisms.

  12. [Effects nutrients on the seedlings root hair development and root growth of Poncirus trifoliata under hydroponics condition].

    PubMed

    Cao, Xiu; Xia, Ren-Xue; Zhang, De-Jian; Shu, Bo

    2013-06-01

    Ahydroponics experiment was conducted to study the effects of nutrients (N, P, K, Ca, Mg, Fe, and Mn) deficiency on the length of primary root, the number of lateral roots, and the root hair density, length, and diameter on the primary root and lateral roots of Poncirus trifoliata seedlings. Under the deficiency of each test nutrient, root hair could generate, but was mainly concentrated on the root base and fewer on the root tip. The root hair density on lateral roots was significantly larger than that on primary root, but the root hair length was in adverse. The deficiency of each test nutrient had greater effects on the growth and development of root hairs, with the root hair density on primary root varied from 55.0 to 174.3 mm(-2). As compared with the control, Ca deficiency induced the significant increase of root hair density and length on primary root, P deficiency promoted the root hair density and length on the base and middle part of primary root and on the lateral roots significantly, Fe deficiency increased the root hair density but decreased the root hair length on the tip of primary root significantly, K deficiency significantly decreased the root hair density, length, and diameter on primary root and lateral roots, whereas Mg deficiency increased the root hair length of primary root significantly. In all treatments of nutrient deficiency, the primary root had the similar growth rate, but, with the exceptions of N and Mg deficiency, the lateral roots exhibited shedding and regeneration.

  13. Armillaria root disease in the western USA

    Treesearch

    John Hanna; Sara Ashiglar; Anna Case; Mary Lou Fairweather; Chris Hoffman; Mee-Sook Kim; Helen Maffei; Robert Mathiasen; Geral McDonald; Erik Nelson; Amy Ross-Davis; John Shaw; Ned Klopfenstein

    2012-01-01

    Armillaria species display diverse ecological behaviors from beneficial saprobe to virulent pathogen. Armillaria solidipes, a causal agent of Armillaria root disease (ARD), is a virulent primary pathogen with a broad host range. ARD is responsible for reduced forest productivity as a result of direct tree mortality and non-lethal cryptic infections that impact growth....

  14. Overexpression of Arabidopsis Plasmodesmata Germin-Like Proteins Disrupts Root Growth and Development[C][W

    PubMed Central

    Ham, Byung-Kook; Li, Gang; Kang, Byung-Ho; Zeng, Fanchang; Lucas, William J.

    2012-01-01

    In plants, a population of non-cell-autonomous proteins (NCAPs), including numerous transcription factors, move cell to cell through plasmodesmata (PD). In many cases, the intercellular trafficking of these NCAPs is regulated by their interaction with specific PD components. To gain further insight into the functions of this NCAP pathway, coimmunoprecipitation experiments were performed on a tobacco (Nicotiana tabacum) plasmodesmal-enriched cell wall protein preparation using as bait the NCAP, pumpkin (Cucurbita maxima) PHLOEM PROTEIN16 (Cm-PP16). A Cm-PP16 interaction partner, Nt-PLASMODESMAL GERMIN-LIKE PROTEIN1 (Nt-PDGLP1) was identified and shown to be a PD-located component. Arabidopsis thaliana putative orthologs, PDGLP1 and PDGLP2, were identified; expression studies indicated that, postgermination, these proteins were preferentially expressed in the root system. The PDGLP1 signal peptide was shown to function in localization to the PD by a novel mechanism involving the endoplasmic reticulum-Golgi secretory pathway. Overexpression of various tagged versions altered root meristem function, leading to reduced primary root but enhanced lateral root growth. This effect on root growth was corrected with an inability of these chimeric proteins to form stable PD-localized complexes. PDGLP1 and PDGLP2 appear to be involved in regulating primary root growth by controlling phloem-mediated allocation of resources between the primary and lateral root meristems. PMID:22960910

  15. Overexpression of Arabidopsis plasmodesmata germin-like proteins disrupts root growth and development.

    PubMed

    Ham, Byung-Kook; Li, Gang; Kang, Byung-Ho; Zeng, Fanchang; Lucas, William J

    2012-09-01

    In plants, a population of non-cell-autonomous proteins (NCAPs), including numerous transcription factors, move cell to cell through plasmodesmata (PD). In many cases, the intercellular trafficking of these NCAPs is regulated by their interaction with specific PD components. To gain further insight into the functions of this NCAP pathway, coimmunoprecipitation experiments were performed on a tobacco (Nicotiana tabacum) plasmodesmal-enriched cell wall protein preparation using as bait the NCAP, pumpkin (Cucurbita maxima) PHLOEM PROTEIN16 (Cm-PP16). A Cm-PP16 interaction partner, Nt-PLASMODESMAL GERMIN-LIKE PROTEIN1 (Nt-PDGLP1) was identified and shown to be a PD-located component. Arabidopsis thaliana putative orthologs, PDGLP1 and PDGLP2, were identified; expression studies indicated that, postgermination, these proteins were preferentially expressed in the root system. The PDGLP1 signal peptide was shown to function in localization to the PD by a novel mechanism involving the endoplasmic reticulum-Golgi secretory pathway. Overexpression of various tagged versions altered root meristem function, leading to reduced primary root but enhanced lateral root growth. This effect on root growth was corrected with an inability of these chimeric proteins to form stable PD-localized complexes. PDGLP1 and PDGLP2 appear to be involved in regulating primary root growth by controlling phloem-mediated allocation of resources between the primary and lateral root meristems.

  16. Dissecting the Role of CHITINASE-LIKE1 in Nitrate-Dependent Changes in Root Architecture1[C][W

    PubMed Central

    Hermans, Christian; Porco, Silvana; Vandenbussche, Filip; Gille, Sascha; De Pessemier, Jérôme; Van Der Straeten, Dominique; Verbruggen, Nathalie; Bush, Daniel R.

    2011-01-01

    The root phenotype of an Arabidopsis (Arabidopsis thaliana) mutant of CHITINASE-LIKE1 (CTL1), called arm (for anion-related root morphology), was previously shown to be conditional on growth on high nitrate, chloride, or sucrose. Mutants grown under restrictive conditions displayed inhibition of primary root growth, radial swelling, proliferation of lateral roots, and increased root hair density. We found here that the spatial pattern of CTL1 expression was mainly in the root and root tips during seedling development and that the protein localized to the cell wall. Fourier-transform infrared microspectroscopy of mutant root tissues indicated differences in spectra assigned to linkages in cellulose and pectin. Indeed, root cell wall polymer composition analysis revealed that the arm mutant contained less crystalline cellulose and reduced methylesterification of pectins. We also explored the implication of growth regulators on the phenotype of the mutant response to the nitrate supply. Exogenous abscisic acid application inhibited more drastically primary root growth in the arm mutant but failed to repress lateral branching compared with the wild type. Cytokinin levels were higher in the arm root, but there were no changes in mitotic activity, suggesting that cytokinin is not directly involved in the mutant phenotype. Ethylene production was higher in arm but inversely proportional to the nitrate concentration in the medium. Interestingly, eto2 and eto3 ethylene overproduction mutants mimicked some of the conditional root characteristics of the arm mutant on high nitrate. Our data suggest that ethylene may be involved in the arm mutant phenotype, albeit indirectly, rather than functioning as a primary signal. PMID:21949212

  17. Primary decomposition of zero-dimensional ideals over finite fields

    NASA Astrophysics Data System (ADS)

    Gao, Shuhong; Wan, Daqing; Wang, Mingsheng

    2009-03-01

    A new algorithm is presented for computing primary decomposition of zero-dimensional ideals over finite fields. Like Berlekamp's algorithm for univariate polynomials, the new method is based on the invariant subspace of the Frobenius map acting on the quotient algebra. The dimension of the invariant subspace equals the number of primary components, and a basis of the invariant subspace yields a complete decomposition. Unlike previous approaches for decomposing multivariate polynomial systems, the new method does not need primality testing nor any generic projection, instead it reduces the general decomposition problem directly to root finding of univariate polynomials over the ground field. Also, it is shown how Groebner basis structure can be used to get partial primary decomposition without any root finding.

  18. Etiology and Epidemiological Conditions Promoting Fusarium Root Rot in Sweetpotato.

    PubMed

    Scruggs, A C; Quesada-Ocampo, L M

    2016-08-01

    Sweetpotato production in the United States is limited by several postharvest diseases, and one of the most common is Fusarium root rot. Although Fusarium solani is believed to be the primary causal agent of disease, numerous other Fusarium spp. have been reported to infect sweetpotato. However, the diversity of Fusarium spp. infecting sweetpotato in North Carolina is unknown. In addition, the lack of labeled and effective fungicides for control of Fusarium root rot in sweetpotato creates the need for integrated strategies to control disease. Nonetheless, epidemiological factors that promote Fusarium root rot in sweetpotato remain unexplored. A survey of Fusarium spp. infecting sweetpotato in North Carolina identified six species contributing to disease, with F. solani as the primary causal agent. The effects of storage temperature (13, 18, 23, 29, and 35°C), relative humidity (80, 90, and 100%), and initial inoculum level (3-, 5-, and 7-mm-diameter mycelia plug) were examined for progression of Fusarium root rot caused by F. solani and F. proliferatum on 'Covington' sweetpotato. Fusarium root rot was significantly reduced (P < 0.05) at lower temperatures (13°C), low relative humidity levels (80%), and low initial inoculum levels for both pathogens. Sporulation of F. proliferatum was also reduced under the same conditions. Qualitative mycotoxin analysis of roots infected with one of five Fusarium spp. revealed the production of fumonisin B1 by F. proliferatum when infecting sweetpotato. This study is a step toward characterizing the etiology and epidemiology of Fusarium root rot in sweetpotato, which allows for improved disease management recommendations to limit postharvest losses to this disease.

  19. Salt modulates gravity signaling pathway to regulate growth direction of primary roots in Arabidopsis.

    PubMed

    Sun, Feifei; Zhang, Wensheng; Hu, Haizhou; Li, Bao; Wang, Youning; Zhao, Yankun; Li, Kexue; Liu, Mengyu; Li, Xia

    2008-01-01

    Plant root architecture is highly plastic during development and can adapt to many environmental stresses. The proper distribution of roots within the soil under various conditions such as salinity, water deficit, and nutrient deficiency greatly affects plant survival. Salinity profoundly affects the root system architecture of Arabidopsis (Arabidopsis thaliana). However, despite the inhibitory effects of salinity on root length and the number of roots, very little is known concerning influence of salinity on root growth direction and the underlying mechanisms. Here we show that salt modulates root growth direction by reducing the gravity response. Exposure to salt stress causes rapid degradation of amyloplasts in root columella cells of Arabidopsis. The altered root growth direction in response to salt was found to be correlated with PIN-FORMED2 (PIN2) messenger RNA abundance and expression and localization of the protein. Furthermore, responsiveness to gravity of salt overly sensitive (sos) mutants is substantially reduced, indicating that salt-induced altered gravitropism of root growth is mediated by ion disequilibrium. Mutation of SOS genes also leads to reduced amyloplast degradation in root tip columella cells and the defects in PIN2 gene expression in response to salt stress. These results indicate that the SOS pathway may mediate the decrease of PIN2 messenger RNA in salinity-induced modification of gravitropic response in Arabidopsis roots. Our findings provide new insights into the development of a root system necessary for plant adaptation to high salinity and implicate an important role of the SOS signaling pathway in this process.

  20. Apical control, gravitropic signaling, and the growth of lateral roots in Arabidopsis

    NASA Astrophysics Data System (ADS)

    Mullen, Jack L.; Wolverton, Chris; Hangarter, Roger P.

    Most research on gravity responses in plants has focused on primary roots and shoots, which typically grow in a vertical orientation. However, the patterns of lateral organ growth, which generally have large effects on overall plant architecture, are such that the organs are typically not vertical. In lateral roots of Arabidopsis, growth is initially in a nearly horizontal orientation but changes to a near-vertical orientation as the lateral root develops. Although the non-vertical lateral roots are gravitropically competent, following gravitropic reorientation of seedlings, the lateral roots on the upper flank of the primary root have different growth patterns from those on the lower side of the primary root. The differences are in part dependent on reorientation of the primary root, suggesting that gravitropic signaling from the primary root also contributes to the control of lateral root growth. The hormone auxin appears to play a role in this signaling between the primary and lateral roots, as auxin transport inhibitors applied to the primary root affect lateral root growth. Also, lateral roots of pin3 mutants, which are impaired in polar auxin transport, have altered lateral root orientations. However, other signals from the primary root tip also play an important role in regulating lateral root growth.

  1. Geoperception in primary and lateral roots of Phaseolus vulgaris (Fabaceae). III. A model to explain the differential georesponsiveness of primary and lateral roots

    NASA Technical Reports Server (NTRS)

    Ransom, J. S.; Moore, R.

    1985-01-01

    Half-tipped primary and lateral roots of Phaseolus vulgaris bend toward the side of the root on which the intact half tip remains. Therefore, tips of lateral and primary roots produce growth effectors capable of inducing gravicurvature. The asymmetrical placement of a tip of a lateral root onto a detipped primary root results in the root bending toward the side of the root onto which the tip was placed. That is, the lesser graviresponsiveness of lateral roots as compared with primary roots is not due to the inability of their caps to produce growth inhibitors. The more pronounced graviresponsiveness of primary roots is positively correlated with the presence of columella tissues that are 3.8 times longer, 1.7 times wider, and 10.5 times more voluminous than the columellas of lateral roots. We propose that the lack of graviresponsiveness exhibited by lateral roots is due to the fact that they (i) produce smaller amounts of the inhibitor than primary (i.e., strongly graviresponsive) roots and (ii) are unable to redistribute the inhibitor so as to be able to create a concentration gradient sufficient to induce a pronounced gravitropic response.

  2. Characterization of the growth and auxin physiology of roots of the tomato mutant, diageotropica

    NASA Technical Reports Server (NTRS)

    Muday, G. K.; Lomax, T. L.; Rayle, D. L.

    1995-01-01

    Roots of the tomato (Lycopersicon esculentum, Mill.) mutant (diageotropica (dgt) exhibit an altered phenotype. These roots are agravitropic and lack lateral roots. Relative to wild-type (VFN8) roots, dgt roots are less sensitive to growth inhibition by exogenously applied IAA and auxin transport inhibitors (phytotropins), and the roots exhibit a reduction in maximal growth inhibition in response to ethylene. However, IAA transport through roots, binding of the phytotropin, tritiated naphthylphthalamic acid ([3H]NPA), to root microsomal membranes, NPA-sensitive IAA uptake by root segments, and uptake of [3H]NPA into root segments are all similar in mutant and wild-type roots. We speculate that the reduced sensitivity of dgt root growth to auxin-transport inhibitors and ethylene is an indirect result of the reduction in sensitivity to auxin in this single gene, recessive mutant. We conclude that dgt roots, like dgt shoots, exhibit abnormalities indicating they have a defect associated with or affecting a primary site of auxin perception or action.

  3. Redirection of metabolite biosynthesis from hydroxybenzoates to volatile terpenoids in green hairy roots of Daucus carota.

    PubMed

    Mukherjee, Chiranjit; Samanta, Tanmoy; Mitra, Adinpunya

    2016-02-01

    A metabolic shift in green hairy root cultures of carrot from phenylpropanoid/benzenoid biosynthesis toward volatile isoprenoids was observed when compared with the metabolite profile of normal hairy root cultures. Hairy roots cultures of Daucus carota turned green under continuous illumination, while the content of the major phenolic compound p-hydroxybenzoic acid (p-HBA) was reduced to half as compared to normal hairy roots cultured in darkness. p-Hydroxybenzaldehyde dehydrogenase (HBD) activity was suppressed in the green hairy roots. However, comparative volatile analysis of 14-day-old green hairy roots revealed higher monoterpene and sesquiterpene contents than found in normal hairy roots. Methyl salicylate content was higher in normal hairy roots than in green ones. Application of clomazone, an inhibitor of 1-deoxy-D-xylulose 5-phosphate synthase (DXS), reduced the amount of total monoterpenes and sesquiterpenes in green hairy roots compared to normal hairy roots. However, methyl salicylate content was enhanced in both green and normal hairy roots treated with clomazone as compared to their respective controls. Because methyl-erythritol 4-phosphate (MEP) and phenylpropanoid pathways, respectively, contribute to the formation of monoterpenes and phenolic acids biosynthesis, the activities of enzymes regulating those pathways were measured in terms of their in vitro activities, in both green and normal hairy root cultures. These key enzymes were 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR), an early regulatory enzyme of the MEP pathway, pyruvate kinase (PK), an enzyme of primary metabolism related to the MEP pathway, shikimate dehydrogenase (SKDH) which is involved in biosynthesis of aromatic amino acids, and phenylalanine ammonia-lyase (PAL) that catalyzes the first step of phenylpropanoid biosynthesis. Activities of DXR and PK were higher in green hairy roots as compared to normal ones, whereas the opposite trend was observed for SKDH and PAL activities. Gene expression analysis of DXR and PAL showed trends similar to those for the respective enzyme activities. Based on these observations, we suggest a possible redirection of metabolites from the primary metabolism toward isoprenoid biosynthesis, limiting the phenolic biosynthetic pathway in green hairy roots grown under continuous light.

  4. Comparison of the Antimicrobial Efficacy of the EndoVac System and Conventional Needle Irrigation in Primary Molar Root Canals.

    PubMed

    Buldur, Burak; Kapdan, Arife

    The purpose of this study was to compare the antimicrobial efficacy of the EndoVac system and conventional needle irrigation to eliminate E faecalis in primary molar root canals. 60 extracted human primary second molar roots were instrumented up to an apical size .04/35 and randomly divided into two groups; Group 1: conventional needle (n=30) and Group 2: EndoVac (n=30), and four subgroups (two experimental subgroups; (a) 2.5% sodium hypochlorite (NaOCl) + ethylenediaminetetraacetic acid (EDTA) (n=20), (b) ozonated water (OW) + EDTA (n=20), and control groups (c) 5.25% NaOCl (n=10) and (d) saline (n=10). All roots were sterilized and then inoculated with E.faecalis. Before and after final irrigation procedures, root canals were sampled and the grown colony forming units (CFUs) were counted. Data were analyzed by Kruskall-Wallis and Mann-Whitney U tests using a 0.05 significance level. The EndoVac reduced more bacteria than the conventional needle did but it was not statistically significant (p>0.05). NaOCl alone or followed by EDTA totally eliminated bacteria. OW + EDTA showed higher reduction of bacteria but could not totally eliminate bacterias. In the context of bacterial elimination, the EndoVac was not significantly better than the conventional needle. Although, there were fewer CFU/mg when using EndoVac, there was not any statistically significant superiority to conventional needle irrigation. An OW+EDTA regimen showed antibacterial effect in the primary molar root canals but it was significantly less effective than NaOCl+EDTA.

  5. An Auxin Transport Independent Pathway Is Involved in Phosphate Stress-Induced Root Architectural Alterations in Arabidopsis. Identification of BIG as a Mediator of Auxin in Pericycle Cell Activation1

    PubMed Central

    López-Bucio, José; Hernández-Abreu, Esmeralda; Sánchez-Calderón, Lenin; Pérez-Torres, Anahí; Rampey, Rebekah A.; Bartel, Bonnie; Herrera-Estrella, Luis

    2005-01-01

    Arabidopsis (Arabidopsis thaliana) plants display a number of root developmental responses to low phosphate availability, including primary root growth inhibition, greater formation of lateral roots, and increased root hair elongation. To gain insight into the regulatory mechanisms by which phosphorus (P) availability alters postembryonic root development, we performed a mutant screen to identify genetic determinants involved in the response to P deprivation. Three low phosphate-resistant root lines (lpr1-1 to lpr1-3) were isolated because of their reduced lateral root formation in low P conditions. Genetic and molecular analyses revealed that all lpr1 mutants were allelic to BIG, which is required for normal auxin transport in Arabidopsis. Detailed characterization of lateral root primordia (LRP) development in wild-type and lpr1 mutants revealed that BIG is required for pericycle cell activation to form LRP in both high (1 mm) and low (1 μm) P conditions, but not for the low P-induced alterations in primary root growth, lateral root emergence, and root hair elongation. Exogenously supplied auxin restored normal lateral root formation in lpr1 mutants in the two P treatments. Treatment of wild-type Arabidopsis seedlings with brefeldin A, a fungal metabolite that blocks auxin transport, phenocopies the root developmental alterations observed in lpr1 mutants in both high and low P conditions, suggesting that BIG participates in vesicular targeting of auxin transporters. Taken together, our results show that auxin transport and BIG function have fundamental roles in pericycle cell activation to form LRP and promote root hair elongation. The mechanism that activates root system architectural alterations in response to P deprivation, however, seems to be independent of auxin transport and BIG. PMID:15681664

  6. TIME FOR COFFEE controls root meristem size by changes in auxin accumulation in Arabidopsis

    PubMed Central

    Lu, Ying-Tang

    2014-01-01

    Roots play important roles in plant survival and productivity as they not only anchor the plants in the soil but are also the primary organ for the uptake of nutrients from the outside. The growth and development of roots depend on the specification and maintenance of the root meristem. Here, we report a previously unknown role of TIME FOR COFFEE (TIC) in controlling root meristem size in Arabidopsis. The results showed that loss of function of TIC reduced root meristem length and cell number by decreasing the competence of meristematic cells to divide. This was due to the repressed expression of PIN genes for decreased acropetal auxin transport in tic-2, leading to low auxin accumulation in the roots responsible for reduced root meristem, which was verified by exogenous application of indole-3-acetic acid. Downregulated expression of PLETHORA1 (PLT1) and PLT2, key transcription factors in mediating the patterning of the root stem cell niche, was also assayed in tic-2. Similar results were obtained with tic-2 and wild-type plants at either dawn or dusk. We also suggested that the MYC2-mediated jasmonic acid signalling pathway may not be involved in the regulation of TIC in controlling the root meristem. Taken together, these results suggest that TIC functions in an auxin–PLTs loop for maintenance of post-embryonic root meristem. PMID:24277277

  7. Determinate primary root growth as an adaptation to aridity in Cactaceae: towards an understanding of the evolution and genetic control of the trait

    PubMed Central

    Shishkova, Svetlana; Las Peñas, María Laura; Napsucialy-Mendivil, Selene; Matvienko, Marta; Kozik, Alex; Montiel, Jesús; Patiño, Anallely; Dubrovsky, Joseph G.

    2013-01-01

    Background and Aims Species of Cactaceae are well adapted to arid habitats. Determinate growth of the primary root, which involves early and complete root apical meristem (RAM) exhaustion and differentiation of cells at the root tip, has been reported for some Cactoideae species as a root adaptation to aridity. In this study, the primary root growth patterns of Cactaceae taxa from diverse habitats are classified as being determinate or indeterminate, and the molecular mechanisms underlying RAM maintenance in Cactaceae are explored. Genes that were induced in the primary root of Stenocereus gummosus before RAM exhaustion are identified. Methods Primary root growth was analysed in Cactaceae seedlings cultivated in vertically oriented Petri dishes. Differentially expressed transcripts were identified after reverse northern blots of clones from a suppression subtractive hybridization cDNA library. Key Results All species analysed from six tribes of the Cactoideae subfamily that inhabit arid and semi-arid regions exhibited determinate primary root growth. However, species from the Hylocereeae tribe, which inhabit mesic regions, exhibited mostly indeterminate primary root growth. Preliminary results suggest that seedlings of members of the Opuntioideae subfamily have mostly determinate primary root growth, whereas those of the Maihuenioideae and Pereskioideae subfamilies have mostly indeterminate primary root growth. Seven selected transcripts encoding homologues of heat stress transcription factor B4, histone deacetylase, fibrillarin, phosphoethanolamine methyltransferase, cytochrome P450 and gibberellin-regulated protein were upregulated in S. gummosus root tips during the initial growth phase. Conclusions Primary root growth in Cactoideae species matches their environment. The data imply that determinate growth of the primary root became fixed after separation of the Cactiodeae/Opuntioideae and Maihuenioideae/Pereskioideae lineages, and that the genetic regulation of RAM maintenance and its loss in Cactaceae is orchestrated by genes involved in the regulation of gene expression, signalling, and redox and hormonal responses. PMID:23666887

  8. Determinate primary root growth as an adaptation to aridity in Cactaceae: towards an understanding of the evolution and genetic control of the trait.

    PubMed

    Shishkova, Svetlana; Las Peñas, María Laura; Napsucialy-Mendivil, Selene; Matvienko, Marta; Kozik, Alex; Montiel, Jesús; Patiño, Anallely; Dubrovsky, Joseph G

    2013-07-01

    Species of Cactaceae are well adapted to arid habitats. Determinate growth of the primary root, which involves early and complete root apical meristem (RAM) exhaustion and differentiation of cells at the root tip, has been reported for some Cactoideae species as a root adaptation to aridity. In this study, the primary root growth patterns of Cactaceae taxa from diverse habitats are classified as being determinate or indeterminate, and the molecular mechanisms underlying RAM maintenance in Cactaceae are explored. Genes that were induced in the primary root of Stenocereus gummosus before RAM exhaustion are identified. Primary root growth was analysed in Cactaceae seedlings cultivated in vertically oriented Petri dishes. Differentially expressed transcripts were identified after reverse northern blots of clones from a suppression subtractive hybridization cDNA library. All species analysed from six tribes of the Cactoideae subfamily that inhabit arid and semi-arid regions exhibited determinate primary root growth. However, species from the Hylocereeae tribe, which inhabit mesic regions, exhibited mostly indeterminate primary root growth. Preliminary results suggest that seedlings of members of the Opuntioideae subfamily have mostly determinate primary root growth, whereas those of the Maihuenioideae and Pereskioideae subfamilies have mostly indeterminate primary root growth. Seven selected transcripts encoding homologues of heat stress transcription factor B4, histone deacetylase, fibrillarin, phosphoethanolamine methyltransferase, cytochrome P450 and gibberellin-regulated protein were upregulated in S. gummosus root tips during the initial growth phase. Primary root growth in Cactoideae species matches their environment. The data imply that determinate growth of the primary root became fixed after separation of the Cactiodeae/Opuntioideae and Maihuenioideae/Pereskioideae lineages, and that the genetic regulation of RAM maintenance and its loss in Cactaceae is orchestrated by genes involved in the regulation of gene expression, signalling, and redox and hormonal responses.

  9. The key players of the primary root growth and development also function in lateral roots in Arabidopsis.

    PubMed

    Tian, Huiyu; Jia, Yuebin; Niu, Tiantian; Yu, Qianqian; Ding, Zhaojun

    2014-05-01

    The core regulators which are required for primary root growth and development also function in lateral root development or lateral root stem cell niche maintenance. The primary root systems and the lateral root systems are the two important root systems which are vital to the survival of plants. Though the molecular mechanism of the growth and development of both the primary root systems and the lateral root systems have been extensively studied individually in Arabidopsis, there are not so much evidence to show that if both root systems share common regulatory mechanisms. AP2 family transcription factors such as PLT1 (PLETHORA1) and PLT2, GRAS family transcription factors such as SCR (SCARECROW) and SHR (SHORT ROOT) and WUSCHEL-RELATED HOMEOBOX transcription factor WOX5 have been extensively studied and found to be essential for primary root growth and development. In this study, through the expression pattern analysis and mutant examinations, we found that these core regulators also function in lateral root development or lateral root stem cell niche maintenance.

  10. Microbiological assessment of root canals following use of rotary and manual instruments in primary molars.

    PubMed

    Subramaniam, Priya; Tabrez, T A; Babu, K L Girish

    2013-01-01

    To assess the microflora of root canals in primary molars following use of rotary NiTi files and conventional hand NiTi and stainless steel files. This randomized clinical trial consisted of a total of 60 first and second primary molars requiring root canal treatment, who were selected from children aged 5-9 years. Based on type of root canal instrumentation, the teeth were randomly assigned to three groups of twenty teeth each; Group A: Rotary NiTi files, Group B: Hand NiTi files and Group C: Hand stainless steel files. Following administration of local anesthesia, isolation with rubber dam was carried out. For the purpose of instrumentation and sampling, the palatal canal of maxillary molars and the distal canal of mandibular molars were selected. Prior to sampling, the orifices of other canals in these teeth were sealed, so as to prevent any contamination. Instrumentation was carried out in each group using respective instruments along with intermittent saline irrigation. Root canal samples were obtained both before and after instrumentation, using sterile absorbent paper points and transferred to a sterile vial with transport fluid. Serial dilutions were prepared and cultured on suitable agar media. Both aerobic and anaerobic microbial counts were made. Data obtained was subjected to statistical analysis using Wilcoxon signed rank test and one-way Analysis of variance. In all three groups, there was a significant reduction in both aerobic and anaerobic mean microbial count following root canal instrumentation. (p < 0.001). Rotary NiTi files were as efficient as conventional hand instruments in significantly reducing the root canal microflora.

  11. Effects of zinc oxide-eugenol and calcium hydroxide/ iodoform on delaying root resorption in primary molars without successors.

    PubMed

    Lin, Bichen; Zhao, Yuming; Yang, Jie; Wang, Wenjun; Ge, Li-hong

    2014-01-01

    The purpose of this study was to compare the effects of zinc oxide-eugenol (ZOE) and calcium hydroxide/iodoform paste (Vitapex), as root canal filling materials in pulpectomy, on delaying the root resorption of primary molars without permanent successors. Animal models without permanent successors were surgically established in beagle dogs. Root resorption was observed via periapical radiographs. The onset of root resorption of primary mandibular molars without successors occurred later (p<0.05) than physiologic resorption. ZOE pulpectomy clearly delayed the root resorption of primary molars without permanent successors (p<0.05), whereas resorption of primary molars with Vitapex pulpectomy started at almost the same time as physiologic resorption. Compared with Vitapex, ZOE was a more effective root canal filling material in delaying the root resorption of primary molars.

  12. Regulation of Hormonal Control, Cell Reprogramming, and Patterning during De Novo Root Organogenesis1[OPEN

    PubMed Central

    Bustillo-Avendaño, Estefano; Ibáñez, Sergio; Sanz, Oscar; Sousa Barros, Jessica Aline; Gude, Inmaculada; Perianez-Rodriguez, Juan; Micol, José Luis; Del Pozo, Juan Carlos

    2018-01-01

    Body regeneration through formation of new organs is a major question in developmental biology. We investigated de novo root formation using whole leaves of Arabidopsis (Arabidopsis thaliana). Our results show that local cytokinin biosynthesis and auxin biosynthesis in the leaf blade followed by auxin long-distance transport to the petiole leads to proliferation of J0121-marked xylem-associated tissues and others through signaling of INDOLE-3-ACETIC ACID INDUCIBLE28 (IAA28), CRANE (IAA18), WOODEN LEG, and ARABIDOPSIS RESPONSE REGULATORS1 (ARR1), ARR10, and ARR12. Vasculature proliferation also involves the cell cycle regulator KIP-RELATED PROTEIN2 and ABERRANT LATERAL ROOT FORMATION4, resulting in a mass of cells with rooting competence that resembles callus formation. Endogenous callus formation precedes specification of postembryonic root founder cells, from which roots are initiated through the activity of SHORT-ROOT, PLETHORA1 (PLT1), and PLT2. Primordia initiation is blocked in shr plt1 plt2 mutant. Stem cell regulators SCHIZORIZA, JACKDAW, BLUEJAY, and SCARECROW also participate in root initiation and are required to pattern the new organ, as mutants show disorganized and reduced number of layers and tissue initials resulting in reduced rooting. Our work provides an organ regeneration model through de novo root formation, stating key stages and the primary pathways involved. PMID:29233938

  13. Regulation of Hormonal Control, Cell Reprogramming, and Patterning during De Novo Root Organogenesis.

    PubMed

    Bustillo-Avendaño, Estefano; Ibáñez, Sergio; Sanz, Oscar; Sousa Barros, Jessica Aline; Gude, Inmaculada; Perianez-Rodriguez, Juan; Micol, José Luis; Del Pozo, Juan Carlos; Moreno-Risueno, Miguel Angel; Pérez-Pérez, José Manuel

    2018-02-01

    Body regeneration through formation of new organs is a major question in developmental biology. We investigated de novo root formation using whole leaves of Arabidopsis ( Arabidopsis thaliana ). Our results show that local cytokinin biosynthesis and auxin biosynthesis in the leaf blade followed by auxin long-distance transport to the petiole leads to proliferation of J0121-marked xylem-associated tissues and others through signaling of INDOLE-3-ACETIC ACID INDUCIBLE28 (IAA28), CRANE (IAA18), WOODEN LEG, and ARABIDOPSIS RESPONSE REGULATORS1 (ARR1), ARR10, and ARR12. Vasculature proliferation also involves the cell cycle regulator KIP-RELATED PROTEIN2 and ABERRANT LATERAL ROOT FORMATION4, resulting in a mass of cells with rooting competence that resembles callus formation. Endogenous callus formation precedes specification of postembryonic root founder cells, from which roots are initiated through the activity of SHORT-ROOT, PLETHORA1 (PLT1), and PLT2. Primordia initiation is blocked in shr plt1 plt2 mutant. Stem cell regulators SCHIZORIZA, JACKDAW, BLUEJAY, and SCARECROW also participate in root initiation and are required to pattern the new organ, as mutants show disorganized and reduced number of layers and tissue initials resulting in reduced rooting. Our work provides an organ regeneration model through de novo root formation, stating key stages and the primary pathways involved. © 2018 American Society of Plant Biologists. All Rights Reserved.

  14. Computed Tomographic Evaluation of K3 Rotary and Stainless Steel K File Instrumentation in Primary Teeth

    PubMed Central

    Kavitha, Swaminathan; Thomas, Eapen; Anadhan, Vasanthakumari; Vijayakumar, Rajendran

    2016-01-01

    Introduction The intention of root canal preparation is to reduce infected content and create a root canal shape allowing for a well condensed root filling. Therefore, it is not necessary to remove excessive dentine for successful root canal preparation and concern must be taken not to over instrument as perforations can occur in the thin dentinal walls of primary molars. Aim This study was done to evaluate the time preparation, the risk of lateral perforation and dentine removal of the stainless steel K file and K3 rotary instrumentation in primary teeth. Materials and Methods Seventy-five primary molars were selected and divided into three groups. Using spiral computed tomography the teeth were scanned before instrumentation. Teeth were prepared using a stainless steel K file for manual technique. All the canals were prepared up to file size 35. In K3 rotary files (.02 taper) instrumentation was done up to 35 size file. In K3 rotary files (.04 taper) the instrumentation was done up to 25 size file and simultaneously the instrumentation time was recorded. The instrumented teeth were once again scanned and the images were compared with the images of the uninstrumented canals. Statistical Analysis Data was statistically analysed using Kruskal Wallis One-way ANOVA, Mann-Whitney U-Test and Pearson’s Chi-square Test. Results K3 rotary files (.02 taper) removed a significantly less amount of dentine, required less instrumentation time than a stainless steel K file. Conclusion K3 files (.02 taper) generated less dentine removal than the stainless steel K file and K3 files (.04 taper). K3 rotary files (.02 taper) were more effective for root canal instrumentation in primary teeth. PMID:26894166

  15. Comparison of Antimicrobial Efficacy of Diode Laser, Triphala, and Sodium Hypochlorite in Primary Root Canals: A Randomized Controlled Trial

    PubMed Central

    Asokan, Sharath; John, Baby; Priya, Geetha; Kumar, S

    2017-01-01

    Aim To evaluate the antimicrobial efficacy of diode laser, triphala, and sodium hypochlorite (NaOCl) against Enterococc-cus faecalis contaminated primary root canals. Materials and methods Forty-nine single-rooted human primary teeth were reduced up to cemento-enamel junction and biomechanically prepared. After sterilization, five teeth were selected as negative controls and remaining teeth were inoculated with E. faecalis. The teeth were then randomly divided into four groups. The first group was irradiated with diode laser, the second group was irrigated with sodium hypochlorite, and the third group with triphala solution. The fourth group served as the positive control. The antimicrobial efficacy was tested by collecting transfer fluid saline from the canals and counting the colony forming units (CFUs) of viable E. faecalis on agar plates. The Mann-Whitney test was used to analyze the results, using Statistical Package for the Social Sciences software version 19. Results The results showed that mean bacterial CFU were 8.00 ± 7.87 for laser, 58.60 ± 16.63 for triphala, and 69.80 ± 19.57 for NaOCl. Laser group showed significant reduction in the colony count compared to the other groups. Triphala group showed better antibacterial activity than NaOCl, but the difference was not statistically significant. Conclusion Laser was most effective against E. faecalis and triphala can be used as an alternative disinfectant to NaOCl in primary root canals. How to cite this article Thomas S, Asokan S, John B, Priya G, Kumar S. Comparison of Antimicrobial Efficacy of Diode Laser, Triphala, and Sodium Hypochlorite in Primary Root Canals: A Randomized Controlled Trial. Int J Clin Pediatr Dent 2017;10(1):14-17. PMID:28377648

  16. Computed Tomographic Morphometry of the Internal Anatomy of Mandibular Second Primary Molars.

    PubMed

    Kurthukoti, Ameet J; Sharma, Pranjal; Swamy, Dinesh Francis; Shashidara, R; Swamy, Elaine Barretto

    2015-01-01

    Need for the study: The most important procedure for a successful endodontic treatment is the cleaning and shaping of the canal system. Understanding the internal anatomy of teeth provides valuable information to the clinician that would help him achieve higher clinical success during endodontic therapy. To evaluate by computed tomography-the internal anatomy of mandibular second primary molars with respect to the number of canals, cross-sectional shape of canals, cross-sectional area of canals and the root dentin thickness. A total of 31 mandibular second primary molars were subjected to computed-tomographic evaluation in the transverse plane, after mounting them in a prefabricated template. The images, thus, obtained were analyzed using De-winter Bio-wizard® software. All the samples demonstrated two canals in the mesial root, while majority of the samples (65.48%) demonstrated two canals in the distal root. The cross-sectional images of the mesial canals demonstrated a round shape, while the distal canals demonstrated an irregular shape. The root dentin thickness was highly reduced on the distal aspect of mesial and mesial aspect of distal canals. The mandibular second primary molars demonstrated wide variation and complexities in their internal anatomy. A thorough understanding of the complexity of the root canal system is essential for understanding the principles and problems of shaping and cleaning, determining the apical limits and dimensions of canal preparations, and for performing successful endodontic procedures. How to cite this article: Kurthukoti AJ, Sharma P, Swamy DF, Shashidara R, Swamy EB. Computed Tomographic Morphometry of the Internal Anatomy of Mandibular Second Primary Molars. Int J Clin Pediatr Dent 2015;8(3):202-207.

  17. Computed Tomographic Morphometry of the Internal Anatomy of Mandibular Second Primary Molars

    PubMed Central

    Sharma, Pranjal; Swamy, Dinesh Francis; Shashidara, R; Swamy, Elaine Barretto

    2015-01-01

    ABSTRACT Need for the study: The most important procedure for a successful endodontic treatment is the cleaning and shaping of the canal system. Understanding the internal anatomy of teeth provides valuable information to the clinician that would help him achieve higher clinical success during endodontic therapy. Aims: To evaluate by computed tomography—the internal anatomy of mandibular second primary molars with respect to the number of canals, cross-sectional shape of canals, cross-sectional area of canals and the root dentin thickness. Materials and methods: A total of 31 mandibular second primary molars were subjected to computed-tomographic evaluation in the transverse plane, after mounting them in a prefabricated template. The images, thus, obtained were analyzed using De-winter Bio-wizard® software. Results: All the samples demonstrated two canals in the mesial root, while majority of the samples (65.48%) demonstrated two canals in the distal root. The cross-sectional images of the mesial canals demonstrated a round shape, while the distal canals demonstrated an irregular shape. The root dentin thickness was highly reduced on the distal aspect of mesial and mesial aspect of distal canals. Conclusion: The mandibular second primary molars demonstrated wide variation and complexities in their internal anatomy. A thorough understanding of the complexity of the root canal system is essential for understanding the principles and problems of shaping and cleaning, determining the apical limits and dimensions of canal preparations, and for performing successful endodontic procedures. How to cite this article: Kurthukoti AJ, Sharma P, Swamy DF, Shashidara R, Swamy EB. Computed Tomographic Morphometry of the Internal Anatomy of Mandibular Second Primary Molars. Int J Clin Pediatr Dent 2015;8(3):202-207. PMID:26628855

  18. Defective secretion of mucilage is the cellular basis for agravitropism in primary roots of Zea mays cv. Ageotropic

    NASA Technical Reports Server (NTRS)

    Miller, I.; Moore, R.

    1990-01-01

    Root caps of primary, secondary, and seminal roots of Z. mays cv. Kys secrete large amounts of mucilage and are in close contact with the root all along the root apex. These roots are strongly graviresponsive. Secondary and seminal roots of Z. mays cv. Ageotropic are also strongly graviresponsive. Similarly, their caps secrete mucilage and closely appress the root all along the root apex. However, primary roots of Z. mays cv. Ageotropic are non-responsive to gravity. Their caps secrete negligible amounts of mucilage and contact the root only at the extreme apex of the root along the calyptrogen. These roots become graviresponsive when their tips are coated with mucilage or mucilage-like materials. Peripheral cells of root caps of roots of Z. mays cv. Kys contain many dictyosomes associated with vesicles that migrate to and fuse with the plasmalemma. Root-cap cells of secondary and seminal (i.e. graviresponsive) roots of Z. mays cv. Ageotropic are similar to those of primary roots of Z. mays cv. Kys. However, root-cap cells of primary (i.e. non-graviresponsive) roots of Z. mays cv. Ageotropic have distended dictyosomal cisternae filled with an electron-dense, granular material. Large vesicles full of this material populate the cells and apparently do not fuse with the plasmalemma. Taken together, these results suggest that non-graviresponsiveness of primary roots of Z. mays cv. Ageotropic results from the lack of apoplastic continuity between the root and the periphery of the root cap. This is a result of negligible secretion of mucilage by cells along the edge of the root cap which, in turn, appears to be due to the malfunctioning of dictyosomes in these cells.

  19. Reduced expression of the SHORT-ROOT gene increases the rates of growth and development in hybrid poplar and Arabidopsis.

    PubMed

    Wang, Jiehua; Andersson-Gunnerås, Sara; Gaboreanu, Ioana; Hertzberg, Magnus; Tucker, Matthew R; Zheng, Bo; Leśniewska, Joanna; Mellerowicz, Ewa J; Laux, Thomas; Sandberg, Göran; Jones, Brian

    2011-01-01

    SHORT-ROOT (SHR) is a well characterized regulator of cell division and cell fate determination in the Arabidopsis primary root. However, much less is known about the functions of SHR in the aerial parts of the plant. In this work, we cloned SHR gene from Populus trichocarpa (PtSHR1) as an AtSHR ortholog and down-regulated its expression in hybrid poplar (Populus tremula×P. tremuloides Michx-clone T89) in order to determine its physiological functions in shoot development. Sharing a 90% similarity to AtSHR at amino acid level, PtSHR1 was able to complement the Arabidopsis shr mutant. Down regulation of PtSHR1 led to a strong enhancement of primary (height) and secondary (girth) growth rates in the transgenic poplars. A similar approach in Arabidopsis showed a comparable accelerated growth and development phenotype. Our results suggest that the response to SHR could be dose-dependent and that a partial down-regulation of SHR could lead to enhanced meristem activity and a coordinated acceleration of plant growth in woody species. Therefore, SHR functions in plant growth and development as a regulator of cell division and meristem activity not only in the roots but also in the shoots. Reducing SHR expression in transgenic poplar was shown to lead to significant increases in primary and secondary growth rates. Given the current interest in bioenergy crops, SHR has a broader role as a key regulator of whole plant growth and development and SHR suppression has considerable potential for accelerating biomass accumulation in a variety of species.

  20. Elevated levels of N-lauroylethanolamine, an endogenous constituent of desiccated seeds, disrupt normal root development in Arabidopsis thaliana seedlings

    NASA Technical Reports Server (NTRS)

    Blancaflor, Elison B.; Hou, Guichuan; Chapman, Kent D.

    2003-01-01

    N-Acylethanolamines (NAEs) are prevalent in desiccated seeds of various plant species, and their levels decline substantially during seed imbibition and germination. Here, seeds of Arabidopsis thaliana (L.) Heynh. were germinated in, and seedlings maintained on, micromolar concentrations of N-lauroylethanolamine (NAE 12:0). NAE 12:0 inhibited root elongation, increased radial swelling of root tips, and reduced root hair numbers in a highly selective and concentration-dependent manner. These effects were reversible when seedlings were transferred to NAE-free medium. Older seedlings (14 days old) acclimated to exogenous NAE by increased formation of lateral roots, and generally, these lateral roots did not exhibit the severe symptoms observed in primary roots. Cells of NAE-treated primary roots were swollen and irregular in shape, and in many cases showed evidence, at the light- and electron-microscope levels, of improper cell wall formation. Microtubule arrangement was disrupted in severely distorted cells close to the root tip, and endoplasmic reticulum (ER)-localized green fluorescent protein (mGFP5-ER) was more abundant, aggregated and distributed differently in NAE-treated root cells, suggesting disruption of proper cell division, endomembrane organization and vesicle trafficking. These results suggest that NAE 12:0 likely influences normal cell expansion in roots by interfering with intracellular membrane trafficking to and/or from the cell surface. The rapid metabolism of NAEs during seed imbibition/germination may be a mechanism to remove this endogenous class of lipid mediators to allow for synchronized membrane reorganization associated with cell expansion.

  1. Transcriptomic and anatomical complexity of primary, seminal, and crown roots highlight root type-specific functional diversity in maize (Zea mays L.)

    PubMed Central

    Tai, Huanhuan; Lu, Xin; Opitz, Nina; Marcon, Caroline; Paschold, Anja; Lithio, Andrew; Nettleton, Dan; Hochholdinger, Frank

    2016-01-01

    Maize develops a complex root system composed of embryonic and post-embryonic roots. Spatio-temporal differences in the formation of these root types imply specific functions during maize development. A comparative transcriptomic study of embryonic primary and seminal, and post-embryonic crown roots of the maize inbred line B73 by RNA sequencing along with anatomical studies were conducted early in development. Seminal roots displayed unique anatomical features, whereas the organization of primary and crown roots was similar. For instance, seminal roots displayed fewer cortical cell files and their stele contained more meta-xylem vessels. Global expression profiling revealed diverse patterns of gene activity across all root types and highlighted the unique transcriptome of seminal roots. While functions in cell remodeling and cell wall formation were prominent in primary and crown roots, stress-related genes and transcriptional regulators were over-represented in seminal roots, suggesting functional specialization of the different root types. Dynamic expression of lignin biosynthesis genes and histochemical staining suggested diversification of cell wall lignification among the three root types. Our findings highlight a cost-efficient anatomical structure and a unique expression profile of seminal roots of the maize inbred line B73 different from primary and crown roots. PMID:26628518

  2. The Basic Helix-Loop-Helix Transcription Factor MYC2 Directly Represses PLETHORA Expression during Jasmonate-Mediated Modulation of the Root Stem Cell Niche in Arabidopsis[W][OA

    PubMed Central

    Chen, Qian; Sun, Jiaqiang; Zhai, Qingzhe; Zhou, Wenkun; Qi, Linlin; Xu, Li; Wang, Bao; Chen, Rong; Jiang, Hongling; Qi, Jing; Li, Xugang; Palme, Klaus; Li, Chuanyou

    2011-01-01

    The root stem cell niche, which in the Arabidopsis thaliana root meristem is an area of four mitotically inactive quiescent cells (QCs) and the surrounding mitotically active stem cells, is critical for root development and growth. We report here that during jasmonate-induced inhibition of primary root growth, jasmonate reduces root meristem activity and leads to irregular QC division and columella stem cell differentiation. Consistently, jasmonate reduces the expression levels of the AP2-domain transcription factors PLETHORA1 (PLT1) and PLT2, which form a developmentally instructive protein gradient and mediate auxin-induced regulation of stem cell niche maintenance. Not surprisingly, the effects of jasmonate on root stem cell niche maintenance and PLT expression require the functioning of MYC2/JASMONATE INSENSITIVE1, a basic helix-loop-helix transcription factor that involves versatile aspects of jasmonate-regulated gene expression. Gel shift and chromatin immunoprecipitation experiments reveal that MYC2 directly binds the promoters of PLT1 and PLT2 and represses their expression. We propose that MYC2-mediated repression of PLT expression integrates jasmonate action into the auxin pathway in regulating root meristem activity and stem cell niche maintenance. This study illustrates a molecular framework for jasmonate-induced inhibition of root growth through interaction with the growth regulator auxin. PMID:21954460

  3. Gravitropism in lateral roots of Arabidopsis pgm-1 mutants is indistinguishable from that of wild-type

    PubMed Central

    Bai, Hanwen

    2011-01-01

    The majority of understanding of root gravity responses comes from the study of primary roots, even though lateral roots make a far greater contribution to root system architecture. The focus of this report is the analysis of gravitropic responses in lateral roots of wild-type background and pgm-1 mutants. Despite the significant reduction in gravitropic response of primary roots of pgm-1 mutants, the lateral roots of this mutant demonstrate wild-type rates of gravitropism, suggesting a significant difference in gravity signal transduction between primary and lateral roots. PMID:21921698

  4. Gravitropism in lateral roots of Arabidopsis pgm-1 mutants is indistinguishable from that of wild-type.

    PubMed

    Bai, Hanwen; Wolverton, Chris

    2011-10-01

    The majority of understanding of root gravity responses comes from the study of primary roots, even though lateral roots make a far greater contribution to root system architecture. The focus of this report is the analysis of gravitropic responses in lateral roots of wild-type background and pgm-1 mutants. Despite the significant reduction in gravitropic response of primary roots of pgm-1 mutants, the lateral roots of this mutant demonstrate wild-type rates of gravitropism, suggesting a significant difference in gravity signal transduction between primary and lateral roots.

  5. Transcriptomic and anatomical complexity of primary, seminal, and crown roots highlight root type-specific functional diversity in maize (Zea mays L.).

    PubMed

    Tai, Huanhuan; Lu, Xin; Opitz, Nina; Marcon, Caroline; Paschold, Anja; Lithio, Andrew; Nettleton, Dan; Hochholdinger, Frank

    2016-02-01

    Maize develops a complex root system composed of embryonic and post-embryonic roots. Spatio-temporal differences in the formation of these root types imply specific functions during maize development. A comparative transcriptomic study of embryonic primary and seminal, and post-embryonic crown roots of the maize inbred line B73 by RNA sequencing along with anatomical studies were conducted early in development. Seminal roots displayed unique anatomical features, whereas the organization of primary and crown roots was similar. For instance, seminal roots displayed fewer cortical cell files and their stele contained more meta-xylem vessels. Global expression profiling revealed diverse patterns of gene activity across all root types and highlighted the unique transcriptome of seminal roots. While functions in cell remodeling and cell wall formation were prominent in primary and crown roots, stress-related genes and transcriptional regulators were over-represented in seminal roots, suggesting functional specialization of the different root types. Dynamic expression of lignin biosynthesis genes and histochemical staining suggested diversification of cell wall lignification among the three root types. Our findings highlight a cost-efficient anatomical structure and a unique expression profile of seminal roots of the maize inbred line B73 different from primary and crown roots. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  6. Comparative assessment of the polypeptide profiles from lateral and primary roots of Phaseolus vulgaris L

    NASA Technical Reports Server (NTRS)

    Westberg, J.; Odom, W. R.; Guikema, J. A.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    In Phaseolus vulgaris, primary roots show gravitational sensitivity soon after emerging from the seed. In contrast, lateral roots are agravitropic during early development, and become gravitropic after several cm growth. Primary and lateral root tissues were examined by polyacrylamide gel electrophoresis, coupled with western blotting techniques, to compare proteins which may contribute to the acquisition of gravitational sensitivity. Root tips and zones of cell elongation were compared for each root type, using immunological probes for calmodulin, alpha-actin, alpha-tubulin, and proteins of the plastid envelope. Lateral roots contained qualitatively less calmodulin, and showed a slightly different pattern of actin-related epitope proteins, than did primary root tissues, suggesting that polypeptide differences may contribute to the gravitational sensitivity which these root types express.

  7. Hormonal regulation of gravitropic bending

    NASA Astrophysics Data System (ADS)

    Hu, X.; Cui, D.; Xu, X.; Hu, L.; Cai, W.

    Gravitropic bending is an important subject in the research of plant Recent data support the basics of the Cholodny-Went hypothesis indicating that differential growth in gravitropism is due to redistribution of auxin to the lower sides of gravistimulated roots but little is known regarding the molecular details of such effects So we carried a series of work surround the signals induced by auxin end center We found the endogenous signaling molecules nitric oxide NO and cGMP mediate responses to gravistimulation in primary roots of soybean Glycine max Horizontal orientation of soybean roots caused the accumulation of both NO and cGMP in the primary root tip Fluorescence confocal microcopy revealed that the accumulation of NO was asymmetric with NO concentrating in the lower side of the root Auxin induced NO accumulation in root protoplasts and asymmetric NO accumulation in root tips Gravistimulation NO and auxin also induced the accumulation of cGMP a response inhibited by removal of NO or by inhibitors of guanylyl cyclase compounds that also reduced gravitropic bending Asymmetric NO accumulation and gravitropic bending were both inhibited by an auxin transport inhibitor and the inhibition of bending was overcome by treatment with NO or 8-bromo-cGMP a cell-permeable analog of cGMP These data indicate that auxin-induced NO and cGMP mediate gravitropic curvature in soybean roots From Hu et al Plant Physiol 2005 137 663-670 The asymmetric distribution of auxin plays a fundamental role in plant gravitropic bending

  8. Soil Penetration by Earthworms and Plant Roots—Mechanical Energetics of Bioturbation of Compacted Soils

    PubMed Central

    2015-01-01

    We quantify mechanical processes common to soil penetration by earthworms and growing plant roots, including the energetic requirements for soil plastic displacement. The basic mechanical model considers cavity expansion into a plastic wet soil involving wedging by root tips or earthworms via cone-like penetration followed by cavity expansion due to pressurized earthworm hydroskeleton or root radial growth. The mechanical stresses and resulting soil strains determine the mechanical energy required for bioturbation under different soil hydro-mechanical conditions for a realistic range of root/earthworm geometries. Modeling results suggest that higher soil water content and reduced clay content reduce the strain energy required for soil penetration. The critical earthworm or root pressure increases with increased diameter of root or earthworm, however, results are insensitive to the cone apex (shape of the tip). The invested mechanical energy per unit length increase with increasing earthworm and plant root diameters, whereas mechanical energy per unit of displaced soil volume decreases with larger diameters. The study provides a quantitative framework for estimating energy requirements for soil penetration work done by earthworms and plant roots, and delineates intrinsic and external mechanical limits for bioturbation processes. Estimated energy requirements for earthworm biopore networks are linked to consumption of soil organic matter and suggest that earthworm populations are likely to consume a significant fraction of ecosystem net primary production to sustain their subterranean activities. PMID:26087130

  9. Response of millet and sorghum to a varying water supply around the primary and nodal roots

    PubMed Central

    Rostamza, M.; Richards, R. A.; Watt, M.

    2013-01-01

    Background and Aims Cereals have two root systems. The primary system originates from the embryo when the seed germinates and can support the plant until it produces grain. The nodal system can emerge from stem nodes throughout the plant's life; its value for yield is unclear and depends on the environment. The aim of this study was to test the role of nodal roots of sorghum and millet in plant growth in response to variation in soil moisture. Sorghum and millet were chosen as both are adapted to dry conditions. Methods Sorghum and millet were grown in a split-pot system that allowed the primary and nodal roots to be watered separately. Key Results When primary and nodal roots were watered (12 % soil water content; SWC), millet nodal roots were seven times longer than those of sorghum and six times longer than millet plants in dry treatments, mainly from an 8-fold increase in branch root length. When soil was allowed to dry in both compartments, millet nodal roots responded and grew 20 % longer branch roots than in the well-watered control. Sorghum nodal roots were unchanged. When only primary roots received water, nodal roots of both species emerged and elongated into extremely dry soil (0·6–1·5 % SWC), possibly with phloem-delivered water from the primary roots in the moist inner pot. Nodal roots were thick, short, branchless and vertical, indicating a tropism that was more pronounced in millet. Total nodal root length increased in both species when the dry soil was covered with plastic, suggesting that stubble retention or leaf mulching could facilitate nodal roots reaching deeper moist layers in dry climates. Greater nodal root length in millet than in sorghum was associated with increased shoot biomass, water uptake and water use efficiency (shoot mass per water). Millet had a more plastic response than sorghum to moisture around the nodal roots due to (1) faster growth and progression through ontogeny for earlier nodal root branch length and (2) partitioning to nodal root length from primary roots, independent of shoot size. Conclusions Nodal and primary roots have distinct responses to soil moisture that depend on species. They can be selected independently in a breeding programme to shape root architecture. A rapid rate of plant development and enhanced responsiveness to local moisture may be traits that favour nodal roots and water use efficiency at no cost to shoot growth. PMID:23749473

  10. Response of millet and sorghum to a varying water supply around the primary and nodal roots.

    PubMed

    Rostamza, M; Richards, R A; Watt, M

    2013-07-01

    Cereals have two root systems. The primary system originates from the embryo when the seed germinates and can support the plant until it produces grain. The nodal system can emerge from stem nodes throughout the plant's life; its value for yield is unclear and depends on the environment. The aim of this study was to test the role of nodal roots of sorghum and millet in plant growth in response to variation in soil moisture. Sorghum and millet were chosen as both are adapted to dry conditions. Sorghum and millet were grown in a split-pot system that allowed the primary and nodal roots to be watered separately. When primary and nodal roots were watered (12 % soil water content; SWC), millet nodal roots were seven times longer than those of sorghum and six times longer than millet plants in dry treatments, mainly from an 8-fold increase in branch root length. When soil was allowed to dry in both compartments, millet nodal roots responded and grew 20 % longer branch roots than in the well-watered control. Sorghum nodal roots were unchanged. When only primary roots received water, nodal roots of both species emerged and elongated into extremely dry soil (0.6-1.5 % SWC), possibly with phloem-delivered water from the primary roots in the moist inner pot. Nodal roots were thick, short, branchless and vertical, indicating a tropism that was more pronounced in millet. Total nodal root length increased in both species when the dry soil was covered with plastic, suggesting that stubble retention or leaf mulching could facilitate nodal roots reaching deeper moist layers in dry climates. Greater nodal root length in millet than in sorghum was associated with increased shoot biomass, water uptake and water use efficiency (shoot mass per water). Millet had a more plastic response than sorghum to moisture around the nodal roots due to (1) faster growth and progression through ontogeny for earlier nodal root branch length and (2) partitioning to nodal root length from primary roots, independent of shoot size. Nodal and primary roots have distinct responses to soil moisture that depend on species. They can be selected independently in a breeding programme to shape root architecture. A rapid rate of plant development and enhanced responsiveness to local moisture may be traits that favour nodal roots and water use efficiency at no cost to shoot growth.

  11. Ex vivo accuracy of an apex locator using digital signal processing in primary teeth.

    PubMed

    Leonardo, Mário Roberto; da Silva, Lea Assed Bezerra; Nelson-Filho, Paulo; da Silva, Raquel Assed Bezerra; Lucisano, Marília Pacífico

    2009-01-01

    The purpose of this study was to evaluate ex vivo the accuracy an electronic apex locator during root canal length determination in primary molars. One calibrated examiner determined the root canal length in 15 primary molars (total=34 root canals) with different stages of root resorption. Root canal length was measured both visually with the placement of a K-file 1 mm short of the apical foramen or the apical resorption bevel, and electronically using an electronic apex locator (Digital Signal Processing). Data were analyzed statistically using the intraclass correlation (ICC) test. Comparing the actual and electronic root canal length measurements in the primary teeth showed a high correlation (ICC=0.95). The Digital Signal Processing apex locator is useful and accurate for apex foramen location during root canal length measurement in primary molars.

  12. A morphometric analysis of cellular differentiation in caps of primary and lateral roots of Helianthus annuus

    NASA Technical Reports Server (NTRS)

    Moore, R.

    1985-01-01

    In order to determine if patterns of cell differentiation are similar in primary and lateral roots, I performed a morphometric analysis of the ultrastructure of calyptrogen, columella, and peripheral cells in primary and lateral roots of Helianthus annuus. Each cell type is characterized by a unique ultrastructure, and the ultrastructural changes characteristic of cellular differentiation in root caps are organelle specific. No major structural differences exist in the structures of the composite cell types, or in patterns of cell differentiation in caps of primary vs. lateral roots.

  13. Transcriptome analysis reveals the effects of sugar metabolism and auxin and cytokinin signaling pathways on root growth and development of grafted apple.

    PubMed

    Li, Guofang; Ma, Juanjuan; Tan, Ming; Mao, Jiangping; An, Na; Sha, Guangli; Zhang, Dong; Zhao, Caiping; Han, Mingyu

    2016-02-29

    The root architecture of grafted apple (Malus spp.) is affected by various characteristics of the scions. To provide information on the molecular mechanisms underlying this influence, we examined root transcriptomes of M. robusta rootstock grafted with scions of wild-type (WT) apple (M. spectabilis) and a more-branching (MB) mutant at the branching stage. The growth rate of rootstock grafted MB was repressed significantly, especially the primary root length and diameter, and root weight. Biological function categories of differentially expressed genes were significantly enriched in processes associated with hormone signal transduction and intracellular activity, with processes related to the cell cycle especially down-regulated. Roots of rootstock grafted with MB scions displayed elevated auxin and cytokinin contents and reduced expression of MrPIN1, MrARF, MrAHP, most MrCRE1 genes, and cell growth-related genes MrGH3, MrSAUR and MrTCH4. Although auxin accumulation and transcription of MrPIN3, MrALF1 and MrALF4 tended to induce lateral root formation in MB-grafted rootstock, the number of lateral roots was not significantly changed. Sucrose, fructose and glucose contents were not decreased in MB-grafted roots compared with those bearing WT scions, but glycolysis and tricarboxylic acid cycle metabolic activities were repressed. Root resistance and nitrogen metabolism were reduced in MB-grafted roots as well. Our findings suggest that root growth and development of rootstock are mainly influenced by sugar metabolism and auxin and cytokinin signaling pathways. This study provides a basis that the characteristics of scions are related to root growth and development, resistance and activity of rootstocks.

  14. [Colonization of Porphyromonas endodontalis in primary and secondary endodontic infections].

    PubMed

    Hong, Li; Hai, Ji; Yan-Yan, He; Shenghui, Yang; Benxiang, Hou

    2015-02-01

    This study aims to assess and compare the prevalence of Porphyromonas endodontalis (P. endodontalis) in root canals associated with primary and secondary endodontic infections by using 16s rDNA PCR and real-time fluorescence quantitative polymerase chain reaction (RTFQ-PCR). A total of 120 adult patients with one radiographically documented periapical lesion were included. Sixty teeth presented with primary endodontic infections and 60 with secondary endodontic infections requiring retreatment. P. endodontalis was identified by using 16s rDNA PCR techniques. The positive DNA expression of P. endodontalis in two types of infected root canals were quantitatively compared by using SYBR GREEN I RTFQ-PCR. The prevalence of P. endodontalis in the root canals with primary endodontic infections was significantly higher than that in root canals with secondary endodontic infections (P = 0.001). However, RTFQ-PCR results showed no significant difference in DNA expression quantities between the primary and secondary endodontic infections root canals (P = 0.303). P. endodontalis is more highly associated with root canals having primary endodontic infections, although P. endodontalis colonize in both root canals with primary and secondary chronic apical periodontitis.

  15. Plant root and shoot dynamics during subsurface obstacle interaction

    NASA Astrophysics Data System (ADS)

    Conn, Nathaniel; Aguilar, Jeffrey; Benfey, Philip; Goldman, Daniel

    As roots grow, they must navigate complex underground environments to anchor and retrieve water and nutrients. From gravity sensing at the root tip to pressure sensing along the tip and elongation zone, the complex mechanosensory feedback system of the root allows it to bend towards greater depths and avoid obstacles of high impedance by asymmetrically suppressing cell elongation. Here we investigate the mechanical and physiological responses of roots to rigid obstacles. We grow Maize, Zea mays, plants in quasi-2D glass containers (22cm x 17cm x 1.4cm) filled with photoelastic gel and observe that, regardless of obstacle interaction, smaller roots branch off the primary root when the upward growing shoot (which contains the first leaf) reaches an average length of 40 mm, coinciding with when the first leaf emerges. However, prior to branching, contacts with obstacles result in reduced root growth rates. The growth rate of the root relative to the shoot is sensitive to the angle of the obstacle surface, whereby the relative root growth is greatest for horizontally oriented surfaces. We posit that root growth is prioritized when horizontal obstacles are encountered to ensure anchoring and access to nutrients during later stages of development. NSF Physics of Living Systems.

  16. The activation of OsEIL1 on YUC8 transcription and auxin biosynthesis is required for ethylene-inhibited root elongation in rice early seedling development

    PubMed Central

    Wang, Juan; Wei, Pengcheng; Huang, Rongfeng

    2017-01-01

    Rice is an important monocotyledonous crop worldwide; it differs from the dicotyledonous plant Arabidopsis in many aspects. In Arabidopsis, ethylene and auxin act synergistically to regulate root growth and development. However, their interaction in rice is still unclear. Here, we report that the transcriptional activation of OsEIL1 on the expression of YUC8/REIN7 and indole-3-pyruvic acid (IPA)-dependent auxin biosynthesis is required for ethylene-inhibited root elongation. Using an inhibitor of YUC activity, which regulates auxin biosynthesis via the conversion of IPA to indole-3-acetic acid (IAA), we showed that ethylene-inhibited primary root elongation is dependent on YUC-based auxin biosynthesis. By screening phenotypes of seedling primary root from mutagenesis libraries following ethylene treatment, we identified a rice ethylene-insensitive mutant, rein7-1, in which YUC8/REIN7 is truncated at its C-terminus. Mutation in YUC8/REIN7 reduced auxin biosynthesis in rice, while YUC8/REIN7 overexpression enhanced ethylene sensitivity in the roots. Moreover, YUC8/REIN7 catalyzed the conversion of IPA to IAA, truncated version at C-terminal end of the YUC8/REIN7 resulted in significant reduction of enzymatic activity, indicating that YUC8/REIN7 is required for IPA-dependent auxin biosynthesis and ethylene-inhibited root elongation in rice early seedlings. Further investigations indicated that ethylene induced YUC8/REIN7 expression and promoted auxin accumulation in roots. Addition of low concentrations of IAA rescued the ethylene response in the rein7-1, strongly demonstrating that ethylene-inhibited root elongation depends on IPA-dependent auxin biosynthesis. Genetic studies revealed that YUC8/REIN7-mediated auxin biosynthesis functioned downstream of OsEIL1, which directly activated the expression of YUC8/REIN7. Thus, our findings reveal a model of interaction between ethylene and auxin in rice seedling primary root elongation, enhancing our understanding of ethylene signaling in rice. PMID:28829777

  17. 7 CFR 201.56-8 - Flax family, Linaceae.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...: Flax. (a) General description. (1) Germination habit: Epigeal dicot. (Due to the mucilaginous nature of... development within the test period. (4) Root system: A primary root, with secondary roots usually developing... markedly shortened, curled, or thickened. (4) Root: (i) None. (ii) Weak, stubby, or missing primary root...

  18. 7 CFR 201.56-8 - Flax family, Linaceae.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...: Flax. (a) General description. (1) Germination habit: Epigeal dicot. (Due to the mucilaginous nature of... development within the test period. (4) Root system: A primary root, with secondary roots usually developing... markedly shortened, curled, or thickened. (4) Root: (i) None. (ii) Weak, stubby, or missing primary root...

  19. Participation of satellite glial cells of the dorsal root ganglia in acute nociception.

    PubMed

    Lemes, Júlia Borges Paes; de Campos Lima, Tais; Santos, Débora Oliveira; Neves, Amanda Ferreira; de Oliveira, Fernando Silva; Parada, Carlos Almicar; da Cruz Lotufo, Celina Monteiro

    2018-05-29

    At dorsal root ganglia, neurons and satellite glial cells (SGC) can communicate through ATP release and P2X7 receptor activation. SGCs are also interconnected by gap junctions and have been previously implicated in modulating inflammatory and chronic pain.We now present evidence that SGCs are also involved in processing acute nociception in rat dorsal root ganglia. Using primary dorsal root ganglia cultures we observed that calcium transients induced in neurons by capsaicin administration were followed by satellite glial cells activation. Only satellite glial cells response was reduced by administration of the P2X7 receptor antagonist A740003. In vivo, acute nociception induced by intraplantar injection of capsaicin in rats was inhibited by A740003 or by the gap junction blocker carbenoxolone administered at the dorsal root ganglia (L5 level). Both drugs also reduced the second phase of the formalin test. These results suggest that communication between neurons and satellite glial cells is not only involved in inflammatory or pathological pain, but also in the transmission of the nociceptive signal, possibly in situations involving C-fiber activation. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Root developmental adaptation to phosphate starvation: better safe than sorry.

    PubMed

    Péret, Benjamin; Clément, Mathilde; Nussaume, Laurent; Desnos, Thierry

    2011-08-01

    Phosphorus is a crucial component of major organic molecules such as nucleic acids, ATP and membrane phospholipids. It is present in soils in the form of inorganic phosphate (Pi), which has low availability and poor mobility. To cope with Pi limitations, plants have evolved complex adaptive responses that include morphological and physiological modifications. This review describes how the model plant Arabidopsis thaliana adapts its root system architecture to phosphate deficiency through inhibition of primary root growth, increase in lateral root formation and growth and production of root hairs, which all promote topsoil foraging. A better understanding of plant adaptation to low phosphate will open the way to increased phosphorus use efficiency by crops. Such an improvement is needed in order to adjust how we manage limited phosphorus stocks and to reduce the disastrous environmental effects of phosphate fertilizers overuse. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Characterization of Pearl Millet Root Architecture and Anatomy Reveals Three Types of Lateral Roots

    PubMed Central

    Passot, Sixtine; Gnacko, Fatoumata; Moukouanga, Daniel; Lucas, Mikaël; Guyomarc’h, Soazig; Ortega, Beatriz Moreno; Atkinson, Jonathan A.; Belko, Marème N.; Bennett, Malcolm J.; Gantet, Pascal; Wells, Darren M.; Guédon, Yann; Vigouroux, Yves; Verdeil, Jean-Luc; Muller, Bertrand; Laplaze, Laurent

    2016-01-01

    Pearl millet plays an important role for food security in arid regions of Africa and India. Nevertheless, it is considered an orphan crop as it lags far behind other cereals in terms of genetic improvement efforts. Breeding pearl millet varieties with improved root traits promises to deliver benefits in water and nutrient acquisition. Here, we characterize early pearl millet root system development using several different root phenotyping approaches that include rhizotrons and microCT. We report that early stage pearl millet root system development is characterized by a fast growing primary root that quickly colonizes deeper soil horizons. We also describe root anatomical studies that revealed three distinct types of lateral roots that form on both primary roots and crown roots. Finally, we detected significant variation for two root architectural traits, primary root lenght and lateral root density, in pearl millet inbred lines. This study provides the basis for subsequent genetic experiments to identify loci associated with interesting early root development traits in this important cereal. PMID:27379124

  2. Assessment of the primary stability of root analog zirconia implants designed using cone beam computed tomography software by means of the Periotest® device: An ex vivo study. A preliminary report.

    PubMed

    Matys, Jacek; Świder, Katarzyna; Flieger, Rafał; Dominiak, Marzena

    2017-08-01

    The implant primary stability is a fundamental prerequisite for a success of osseointegration process which determines the prosthetic reconstruction time. The aim of the present study was to assess the quality and precision of modern conical bone computer tomography (CBCT) software in preparing root analog zirconia implants (RAZIs) by measuring its primary stability by means of the Periotest device. Thirteen pig jaws with proper erupted first premolar (P1) teeth were used in the study. The CBCT examination was conducted in the area of the P1 tooth in each mandible. The 3-dimensional (3D) view of each tooth was designed from CBCT scan. The created 3D images were used to prepare root analog zirconia implants milled from a medical-grade zirconia block by means of laboratory milling. The RAZIs and titanium implants were placed into an alveolar socket after the tooth had been removed. The primary stability of the teeth before their extraction (G1), RAZIs (G2) and titanium implants (G3) were checked by Periotest devices. The mean results in PTV were: 15.9, 3.35, 12.7 for G1, G2 and G3 group, respectively. RAZIs during immediate loading achieved a significantly higher primary stability (lower Periotest value) as compared to the teeth and implants. The modern CBCT device allows us to design a precise image of an extracted tooth for the purpose of manufacturing a root analog implant. The additional feature of the surgical protocol using RAZI is the possibility of avoiding the augmentation procedure, which reduces the whole cost of the treatment.

  3. 7 CFR 201.56-3 - Mustard family, Brassicaceae (Cruciferae).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) Germination habit: Epigeal dicot. (2) Food reserves: Cotyledons which expand and become thin, leaf-like and...) Root system: A long primary root. (b) Abnormal seedling description. (1) Cotyledons: (i) Decayed at... thickened. (iii) Watery. (4) Root: (i) Weak, stubby, or missing primary root. (Secondary roots will not...

  4. 7 CFR 201.56-3 - Mustard family, Brassicaceae (Cruciferae).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) Germination habit: Epigeal dicot. (2) Food reserves: Cotyledons which expand and become thin, leaf-like and...) Root system: A long primary root. (b) Abnormal seedling description. (1) Cotyledons: (i) Decayed at... thickened. (iii) Watery. (4) Root: (i) Weak, stubby, or missing primary root. (Secondary roots will not...

  5. Measurements of water uptake of maize roots: the key function of lateral roots

    NASA Astrophysics Data System (ADS)

    Ahmed, M. A.; Zarebanadkouki, M.; Kroener, E.; Kaestner, A.; Carminati, A.

    2014-12-01

    Maize (Zea mays L.) is one of the most important crop worldwide. Despite its importance, there is limited information on the function of different root segments and root types of maize in extracting water from soils. Therefore, the aim of this study was to investigate locations of root water uptake in maize. We used neutron radiography to: 1) image the spatial distribution of maize roots in soil and 2) trace the transport of injected deuterated water (D2O) in soil and roots. Maizes were grown in aluminum containers (40×38×1 cm) filled with a sandy soil. When the plants were 16 days old, we injected D2O into selected soil regions containing primary, seminal and lateral roots. The experiments were performed during the day (transpiring plants) and night (not transpiring plants). The transport of D2O into roots was simulated using a new convection-diffusion numerical model of D2O transport into roots. By fitting the observed D2O transport we quantified the diffusional permeability and the water uptake of the different root segments. The maize root architecture consisted of a primary root, 4-5 seminal roots and many lateral roots connected to the primary and seminal roots. Laterals emerged from the proximal 15 cm of the primary and seminal roots. Water uptake occurred primarily in lateral roots. Lateral roots had the highest diffusional permeability (9.4×10-7), which was around six times higher that the diffusional permeability of the old seminal segments (1.4×10-7), and two times higher than the diffusional permeability of the young seminal segments (4.7×10-7). The radial flow of D2O into the lateral (6.7×10-5 ) was much higher than in the young seminal roots (1.1×10-12). The radial flow of D2O into the old seminal was negligible. We concluded that the function of the primary and seminal roots was to collect water from the lateral roots and transport it to the shoot. A maize root system with lateral roots branching from deep primary and seminal roots would be efficient in extracting water from the subsoil and better tolerate periods of water shortage. However, in this case the xylem axial resistance could be the limiting factor for the uptake of water.

  6. Mycorrhiza reduces adverse effects of dark septate endophytes (DSE) on growth of conifers.

    PubMed

    Reininger, Vanessa; Sieber, Thomas N

    2012-01-01

    Mycorrhizal roots are frequently colonized by fungi of the Phialocephala fortinii s.l.-Acephala applanata species complex (PAC). These ascomycetes are common and widespread colonizers of tree roots. Some PAC strains reduce growth increments of their hosts but are beneficial in protecting roots against pathogens. Nothing is known about the effects of PAC on mycorrhizal fungi and the PAC-mycorrhiza association on plant growth, even though these two fungal groups occur closely together in natural habitats. We expect reduced colonization rates and reduced negative effects of PAC on host plants if roots are co-colonized by an ectomycorrhizal fungus (ECM). Depending on the temperature regime interactions among the partners in this tripartite ECM-PAC-plant system might also change. To test our hypotheses, effects of four PAC genotypes (two pathogenic and two non-pathogenic on the Norway spruce), mycorrhization by Laccaria bicolor (strain S238N) and two temperature regimes (19°C and 25°C) on the biomass of the Douglas-fir (Pseudotsuga menziesii) and Norway spruce (Picea abies) seedlings were studied. Mycorrhization compensated the adverse effects of PAC on the growth of the Norway spruce at both temperatures. The growth of the Douglas-fir was not influenced either by PAC or mycorrhization at 19°C, but at 25°C mycorrhization had a similar protective effect as in the Norway spruce. The compensatory effects probably rely on the reduction of the PAC-colonization density by mycorrhizae. Temperature and the PAC strain only had a differential effect on the biomass of the Norway spruce but not on the Douglas-fir. Higher temperature reduced mycorrhization of both hosts. We conclude that ectomycorrhizae form physical and/or physiological barriers against PAC leading to reduced PAC-colonization of the roots. Additionally, our results indicate that global warming could cause a general decrease of mycorrhization making primary roots more accessible to other symbionts and pathogens.

  7. A study of root canal morphology of human primary incisors and molars using cone beam computerized tomography: an in vitro study.

    PubMed

    Gaurav, Vivek; Srivastava, Nikhil; Rana, Vivek; Adlakha, Vivek Kumar

    2013-01-01

    Variations in morphology of root canals in primary teeth usually leads to complications during and after endodontic therapy. To improve the success in endodontics, a thorough knowledge of the root canal morphology is essential. The aim of this study was to assess the variation in number and morphology of the root canals of primary incisors and molars and to study the applicability of cone beam computerized tomography (CBCT) in assessing the same. A total of 60 primary molars and incisors with full root length were collected and various parameters such as the number of roots, number of canals, diameter of root canal at cementoenamel junction and middle-third, length and angulations of roots of primary molars and incisors were studied using CBCT. The observations were put to descriptive statistics to find out the frequency, mean, standard deviation and range for all four subgroups. Further, unpaired t-test was used to compare these parameters between subgroups and analysis of variance test was implemented to evaluate the parameters within the subgroups. The CBCT showed the presence of bifurcation of root canal at middle third in 13% of mandibular incisors while 20% of mandibular molars had two canals in distal root. The diameter of distobuccal root canal of maxillary molars and mesiolingual canal of mandibular molars was found to be minimum. CBCT is a relatively new and effective technology, which provides an auxiliary imaging modality to supplement conventional radiography for assessing the variation in root canal morphology of primary teeth.

  8. Large Cellular Inclusions Accumulate in Arabidopsis Roots Exposed to Low-Sulfur Conditions1[OPEN

    PubMed Central

    Popov, Vladimir A.; Mathur, Jaideep; Benfey, Philip N.

    2015-01-01

    Sulfur is vital for primary and secondary metabolism in plant roots. To understand the molecular and morphogenetic changes associated with loss of this key macronutrient, we grew Arabidopsis (Arabidopsis thaliana) seedlings in low-sulfur conditions. These conditions induced a cascade of cellular events that converged to produce a profound intracellular phenotype defined by large cytoplasmic inclusions. The inclusions, termed low-sulfur Pox, show cell type- and developmental zone-specific localization. Transcriptome analysis suggested that low sulfur causes dysfunction of the glutathione/ascorbate cycle, which reduces flavonoids. Genetic and biochemical evidence indicated that low-sulfur Pox are the result of peroxidase-catalyzed oxidation of quercetin in roots grown under sulfur-depleted conditions. PMID:26099270

  9. Transcriptomics insights into the genetic regulation of root apical meristem exhaustion and determinate primary root growth in Pachycereus pringlei (Cactaceae).

    PubMed

    Rodriguez-Alonso, Gustavo; Matvienko, Marta; López-Valle, Mayra L; Lázaro-Mixteco, Pedro E; Napsucialy-Mendivil, Selene; Dubrovsky, Joseph G; Shishkova, Svetlana

    2018-06-04

    Many Cactaceae species exhibit determinate growth of the primary root as a consequence of root apical meristem (RAM) exhaustion. The genetic regulation of this growth pattern is unknown. Here, we de novo assembled and annotated the root apex transcriptome of the Pachycereus pringlei primary root at three developmental stages, with active or exhausted RAM. The assembled transcriptome is robust and comprehensive, and was used to infer a transcriptional regulatory network of the primary root apex. Putative orthologues of Arabidopsis regulators of RAM maintenance, as well as putative lineage-specific transcripts were identified. The transcriptome revealed putative orthologues of most proteins involved in housekeeping processes, hormone signalling, and metabolic pathways. Our results suggest that specific transcriptional programs operate in the root apex at specific developmental time points. Moreover, the transcriptional state of the P. pringlei root apex as the RAM becomes exhausted is comparable to the transcriptional state of cells from the meristematic, elongation, and differentiation zones of Arabidopsis roots along the root axis. We suggest that the transcriptional program underlying the drought stress response is induced during Cactaceae root development, and that lineage-specific transcripts could contribute to RAM exhaustion in Cactaceae.

  10. Abscisic acid is not necessary for gravitropism in primary roots of Zea mays

    NASA Technical Reports Server (NTRS)

    Moore, R.

    1990-01-01

    Primary roots of Zea mays L. cv. Tx 5855 treated with fluridone are strongly graviresponsive, but have undetectable levels of abscisic acid (ABA). Primary roots of the carotenoid-deficient w-3, vp-5, and vp-7 mutants of Z. mays are also graviresponsive despite having undetectable amounts of ABA. Graviresponsive roots of untreated and wild-type seedlings contain 286 to 317 ng ABA g-1 f. wt, respectively. These results indicate that ABA is not necessary for root gravicurvature.

  11. RootGraph: a graphic optimization tool for automated image analysis of plant roots

    PubMed Central

    Cai, Jinhai; Zeng, Zhanghui; Connor, Jason N.; Huang, Chun Yuan; Melino, Vanessa; Kumar, Pankaj; Miklavcic, Stanley J.

    2015-01-01

    This paper outlines a numerical scheme for accurate, detailed, and high-throughput image analysis of plant roots. In contrast to existing root image analysis tools that focus on root system-average traits, a novel, fully automated and robust approach for the detailed characterization of root traits, based on a graph optimization process is presented. The scheme, firstly, distinguishes primary roots from lateral roots and, secondly, quantifies a broad spectrum of root traits for each identified primary and lateral root. Thirdly, it associates lateral roots and their properties with the specific primary root from which the laterals emerge. The performance of this approach was evaluated through comparisons with other automated and semi-automated software solutions as well as against results based on manual measurements. The comparisons and subsequent application of the algorithm to an array of experimental data demonstrate that this method outperforms existing methods in terms of accuracy, robustness, and the ability to process root images under high-throughput conditions. PMID:26224880

  12. Impact of axial root growth angles on nitrogen acquisition in maize depends on environmental conditions.

    PubMed

    Dathe, A; Postma, J A; Postma-Blaauw, M B; Lynch, J P

    2016-09-01

    Crops with reduced requirement for nitrogen (N) fertilizer would have substantial benefits in developed nations, while improving food security in developing nations. This study employs the functional structural plant model SimRoot to test the hypothesis that variation in the growth angles of axial roots of maize (Zea mays L.) is an important determinant of N capture. Six phenotypes contrasting in axial root growth angles were modelled for 42 d at seven soil nitrate levels from 10 to 250 kg ha(-1) in a sand and a silt loam, and five precipitation regimes ranging from 0·5× to 1·5× of an ambient rainfall pattern. Model results were compared with soil N measurements of field sites with silt loam and loamy sand textures. For optimal nitrate uptake, root foraging must coincide with nitrate availability in the soil profile, which depends on soil type and precipitation regime. The benefit of specific root architectures for efficient N uptake increases with decreasing soil N content, while the effect of soil type increases with increasing soil N level. Extreme root architectures are beneficial under extreme environmental conditions. Extremely shallow root systems perform well under reduced precipitation, but perform poorly with ambient and greater precipitation. Dimorphic phenotypes with normal or shallow seminal and very steep nodal roots performed well in all scenarios, and consistently outperformed the steep phenotypes. Nitrate uptake increased under reduced leaching conditions in the silt loam and with low precipitation. Results support the hypothesis that root growth angles are primary determinants of N acquisition in maize. With decreasing soil N status, optimal angles resulted in 15-50 % greater N acquisition over 42 d. Optimal root phenotypes for N capture varied with soil and precipitation regimes, suggesting that genetic selection for root phenotypes could be tailored to specific environments. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Antisense expression of an Arabidopsis ran binding protein renders transgenic roots hypersensitive to auxin and alters auxin-induced root growth and development by arresting mitotic progress

    NASA Technical Reports Server (NTRS)

    Kim, S. H.; Arnold, D.; Lloyd, A.; Roux, S. J.

    2001-01-01

    We cloned a cDNA encoding an Arabidopsis Ran binding protein, AtRanBP1c, and generated transgenic Arabidopsis expressing the antisense strand of the AtRanBP1c gene to understand the in vivo functions of the Ran/RanBP signal pathway. The transgenic plants showed enhanced primary root growth but suppressed growth of lateral roots. Auxin significantly increased lateral root initiation and inhibited primary root growth in the transformants at 10 pM, several orders of magnitude lower than required to induce these responses in wild-type roots. This induction was followed by a blockage of mitosis in both newly emerged lateral roots and in the primary root, ultimately resulting in the selective death of cells in the tips of both lateral and primary roots. Given the established role of Ran binding proteins in the transport of proteins into the nucleus, these findings are consistent with a model in which AtRanBP1c plays a key role in the nuclear delivery of proteins that suppress auxin action and that regulate mitotic progress in root tips.

  14. Regeneration of roots from callus reveals stability of the developmental program for determinate root growth in Sonoran Desert Cactaceae.

    PubMed

    Shishkova, Svetlana; García-Mendoza, Edith; Castillo-Díaz, Vicente; Moreno, Norma E; Arellano, Jesús; Dubrovsky, Joseph G

    2007-05-01

    In some Sonoran Desert Cactaceae the primary root has a determinate root growth: the cells of the root apical meristem undergo only a few cell division cycles and then differentiate. The determinate growth of primary roots in Cactaceae was found in plants cultivated under various growth conditions, and could not be reverted by any treatment tested. The mechanisms involved in root meristem maintenance and determinate root growth in plants remain poorly understood. In this study, we have shown that roots regenerated from the callus of two Cactaceae species, Stenocereus gummosus and Ferocactus peninsulae, have a determinate growth pattern, similar to that of the primary root. To demonstrate this, a protocol for root regeneration from callus was established. The determinate growth pattern of roots regenerated from callus suggests that the program of root development is very stable in these species. These findings will permit future analysis of the role of certain Cactaceae genes in the determinate pattern of root growth via the regeneration of transgenic roots from transformed calli.

  15. The effect of spaceflight on the gravity-sensing auxin gradient of roots: GFP reporter gene microscopy on orbit

    PubMed Central

    Ferl, Robert J; Paul, Anna-Lisa

    2016-01-01

    Our primary aim was to determine whether gravity has a direct role in establishing the auxin-mediated gravity-sensing system in primary roots. Major plant architectures have long been thought to be guided by gravity, including the directional growth of the primary root via auxin gradients that are then disturbed when roots deviate from the vertical as a gravity sensor. However, experiments on the International Space Station (ISS) now allow physical clarity with regard to any assumptions regarding the role of gravity in establishing fundamental root auxin distributions. We examined the spaceflight green fluorescent protein (GFP)-reporter gene expression in roots of transgenic lines of Arabidopsis thaliana: pDR5r::GFP, pTAA1::TAA1–GFP, pSCR::SCR–GFP to monitor auxin and pARR5::GFP to monitor cytokinin. Plants on the ISS were imaged live with the Light Microscopy Module (LMM), and compared with control plants imaged on the ground. Preserved spaceflight and ground control plants were examined post flight with confocal microscopy. Plants on orbit, growing in the absence of any physical reference to the terrestrial gravity vector, displayed typically “vertical” distribution of auxin in the primary root. This confirms that the establishment of the auxin-gradient system, the primary guide for gravity signaling in the root, is gravity independent. The cytokinin distribution in the root tip differs between spaceflight and the ground controls, suggesting spaceflight-induced features of root growth may be cytokinin related. The distribution of auxin in the gravity-sensing portion of the root is not dependent on gravity. Spaceflight appears benign to auxin and its role in the development of the primary root tip, whereas spaceflight may influence cytokinin-associated processes. PMID:28725721

  16. Proliferation of maize (Zea mays L.) roots in response to localized supply of nitrate

    NASA Technical Reports Server (NTRS)

    Granato, T. C.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1989-01-01

    Maize (Zea mays L.) plants with two primary nodal root axes were grown for 8 d in flowing nutrient culture with each axis independently supplied with NO3-. Dry matter accumulation by roots was similar whether 1.0 mol m-3 NO3- was supplied to one or both axes. When NO3- was supplied to only one axis, however, accumulation of dry matter within the root system was significantly greater in the axis supplied with NO3-. The increased dry matter accumulation by the +N-treated axis was attributable entirely to increased density and growth of lateral branches and not to a difference in growth of the primary axis. Proliferation of lateral branches for the +N axis was associated with the capacity for in situ reduction and utilization of a portion of the absorbed NO3-, especially in the apical region where lateral primordia are initiated. Although reduced nitrogen was translocated to the -N axis, concentrations in the -N axis remained significantly lower than in the +N axis. The concentration of reduced nitrogen, as well as in vitro NO3- reductase activity, was greater in apical than in more basal regions of the +N axis. The enhanced proliferation of lateral branches in the +N axis was accompanied by an increase in total respiration rate of the axis. Part of the increased respiration was attributable to increased mass of roots. The specific respiration rate (micromoles CO2 evolved per hour per gram root dry weight) was also greater for the +N than for the -N axis. If respiration rate is taken as representative of sink demand, stimulation of initiation and growth of laterals by in situ utilization of a localized exogenous supply of NO3- establishes an increased sink demand through enhanced metabolic activity and the increased partitioning of assimilates to the +N axis responds to the difference in sink demand between +N and -N axes.

  17. [Mechanism of effects of soil microbes on cuttings rooting of Huperzia serrata].

    PubMed

    Li, Na; Chen, Jun; Zhu, Da-Yuan

    2007-12-01

    To study the effects of soil microbes of habitats on the cuttings rooting of Huperzia serrata and its mechanism. The cuttings of H. serrata were planted on the primary habitat soil and on the soil autoclaved, rooting rates were examined respectively. Changes of contents of phenolic compounds (catechin, quercetin, chlorogenic acid, ferulic acid) and indoleacetic acid (IAA) , and changes of activities of polyphenoloxidase (PPO) and peroxydase (POD) during the cuttings rooting were determined. Soil microbes of primary habitat could increase the rooting rate and the number of roots, could increase contents of catechin, chlorogenic acid, ferulic acid and IAA during rooting, and could affect activities of PPO and POD. During the rooting higher contents of catechin, chlorogenic, ferulic acid and IAA caused by soil microbes of primary habitat are important factor for rooting rate.

  18. CEP genes regulate root and shoot development in response to environmental cues and are specific to seed plants.

    PubMed

    Delay, Christina; Imin, Nijat; Djordjevic, Michael A

    2013-12-01

    The manifestation of repetitive developmental programmes during plant growth can be adjusted in response to various environmental cues. During root development, this means being able to precisely control root growth and lateral root development. Small signalling peptides have been found to play roles in many aspects of root development. One member of the CEP (C-TERMINALLY ENCODED PEPTIDE) gene family has been shown to arrest root growth. Here we report that CEP genes are widespread among seed plants but are not present in land plants that lack true branching roots or root vasculature. We have identified 10 additional CEP genes in Arabidopsis. Expression analysis revealed that CEP genes are regulated by environmental cues such as nitrogen limitation, increased salt levels, increased osmotic strength, and increased CO2 levels in both roots and shoots. Analysis of synthetic CEP variants showed that both peptide sequence and modifications of key amino acids affect CEP biological activity. Analysis of several CEP over-expression lines revealed distinct roles for CEP genes in root and shoot development. A cep3 knockout mutant showed increased root and shoot growth under a range of abiotic stress, nutrient, and light conditions. We demonstrate that CEPs are negative regulators of root development, slowing primary root growth and reducing lateral root formation. We propose that CEPs are negative regulators that mediate environmental influences on plant development.

  19. Mitogen activated protein kinase 6 and MAP kinase phosphatase 1 are involved in the response of Arabidopsis roots to L-glutamate.

    PubMed

    López-Bucio, Jesús Salvador; Raya-González, Javier; Ravelo-Ortega, Gustavo; Ruiz-Herrera, León Francisco; Ramos-Vega, Maricela; León, Patricia; López-Bucio, José; Guevara-García, Ángel Arturo

    2018-03-01

    The function and components of L-glutamate signaling pathways in plants have just begun to be elucidated. Here, using a combination of genetic and biochemical strategies, we demonstrated that a MAPK module is involved in the control of root developmental responses to this amino acid. Root system architecture plays an essential role in plant adaptation to biotic and abiotic factors via adjusting signal transduction and gene expression. L-Glutamate (L-Glu), an amino acid with neurotransmitter functions in animals, inhibits root growth, but the underlying genetic mechanisms are poorly understood. Through a combination of genetic analysis, in-gel kinase assays, detailed cell elongation and division measurements and confocal analysis of expression of auxin, quiescent center and stem cell niche related genes, the critical roles of L-Glu in primary root growth acting through the mitogen-activated protein kinase 6 (MPK6) and the dual specificity serine-threonine-tyrosine phosphatase MKP1 could be revealed. In-gel phosphorylation assays revealed a rapid and dose-dependent induction of MPK6 and MPK3 activities in wild-type Arabidopsis seedlings in response to L-Glu. Mutations in MPK6 or MKP1 reduced or increased root cell division and elongation in response to L-Glu, possibly modulating auxin transport and/or response, but in a PLETHORA1 and 2 independent manner. Our data highlight MPK6 and MKP1 as components of an L-Glu pathway linking the auxin response, and cell division for primary root growth.

  20. Temperature sensing by primary roots of maize

    NASA Technical Reports Server (NTRS)

    Poff, K. L.

    1990-01-01

    Zea mays L. seedlings, grown on agar plates at 26 degrees C, reoriented the original vertical direction of their primary root when exposed to a thermal gradient applied perpendicular to the gravity vector. The magnitude and direction of curvature can not be explained simply by either a temperature or a humidity effect on root elongation. It is concluded that primary roots of maize sense temperature gradients in addition to sensing the gravitational force.

  1. Root biomass, turnover and net primary productivity of a coffee agroforestry system in Costa Rica: effects of soil depth, shade trees, distance to row and coffee age

    PubMed Central

    Defrenet, Elsa; Roupsard, Olivier; Van den Meersche, Karel; Charbonnier, Fabien; Pastor Pérez-Molina, Junior; Khac, Emmanuelle; Prieto, Iván; Stokes, Alexia; Roumet, Catherine; Rapidel, Bruno; de Melo Virginio Filho, Elias; Vargas, Victor J.; Robelo, Diego; Barquero, Alejandra; Jourdan, Christophe

    2016-01-01

    Background and Aims In Costa Rica, coffee (Coffea arabica) plants are often grown in agroforests. However, it is not known if shade-inducing trees reduce coffee plant biomass through root competition, and hence alter overall net primary productivity (NPP). We estimated biomass and NPP at the stand level, taking into account deep roots and the position of plants with regard to trees. Methods Stem growth and root biomass, turnover and decomposition were measured in mixed coffee/tree (Erythrina poeppigiana) plantations. Growth ring width and number at the stem base were estimated along with stem basal area on a range of plant sizes. Root biomass and fine root density were measured in trenches to a depth of 4 m. To take into account the below-ground heterogeneity of the agroforestry system, fine root turnover was measured by sequential soil coring (to a depth of 30 cm) over 1 year and at different locations (in full sun or under trees and in rows/inter-rows). Allometric relationships were used to calculate NPP of perennial components, which was then scaled up to the stand level. Key Results Annual ring width at the stem base increased up to 2·5 mm yr−1 with plant age (over a 44-year period). Nearly all (92 %) coffee root biomass was located in the top 1·5 m, and only 8 % from 1·5 m to a depth of 4 m. Perennial woody root biomass was 16 t ha−1 and NPP of perennial roots was 1·3 t ha−1 yr−1. Fine root biomass (0–30 cm) was two-fold higher in the row compared with between rows. Fine root biomass was 2·29 t ha−1 (12 % of total root biomass) and NPP of fine roots was 2·96 t ha−1 yr−1 (69 % of total root NPP). Fine root turnover was 1·3 yr−1 and lifespan was 0·8 years. Conclusions Coffee root systems comprised 49 % of the total plant biomass; such a high ratio is possibly a consequence of shoot pruning. There was no significant effect of trees on coffee fine root biomass, suggesting that coffee root systems are very competitive in the topsoil. PMID:27551026

  2. Dry borax applicator operator's manual.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karsky, Richard, J.

    1999-01-01

    Annosum root rot affects conifers throughout the Northern Hemisphere, infecting their roots and eventually killing the trees. The fungus Heterobasidion annosum causes annosum root rot. The fungus colonizes readily on freshly cut stumps. Partially cut stands have a high risk of infestation because the fungus can colonize on each of the stumps and potentially infect the neighboring trees. Wind and rain carry the annosum spores. Spores that land on freshly cut stumps grow down the stump's root system where they can infect living trees through root grafts or root contacts. Once annosum becomes established, it can remain active for manymore » years in the Southern United States and for several decades in the north. About 7% of the trees that become infected die. When thinning, stumps can be treated successfully using a competing fungus, Phlebia gigantea, and with ''Tim-Bor'' in liquid formulations. These liquid products are no longer approved in the United States. Only the dry powder form is registered and approved by the EPA. Stumps can be treated with a dry formula of borax, (Sporax), significantly reducing one of the primary routes by which Heterobasidion annosum infects a stand of trees. Sporax is used by the USDA Forest Service to control annosum root rot. Sporax is now applied by hand, but once the felled trees are skidded it becomes very hard to locate the stumps. A stump applicator will reduce error, labor costs, and hazards to workers.« less

  3. Overexpression of OsRAA1 Causes Pleiotropic Phenotypes in Transgenic Rice Plants, including Altered Leaf, Flower, and Root Development and Root Response to Gravity1

    PubMed Central

    Ge, Lei; Chen, Hui; Jiang, Jia-Fu; Zhao, Yuan; Xu, Ming-Li; Xu, Yun-Yuan; Tan, Ke-hui; Xu, Zhi-Hong; Chong, Kang

    2004-01-01

    There are very few root genes that have been described in rice as a monocotyledonous model plant so far. Here, the OsRAA1 (Oryza sativa Root Architecture Associated 1) gene has been characterized molecularly. OsRAA1 encodes a 12.0-kD protein that has 58% homology to the AtFPF1 (Flowering Promoting Factor 1) in Arabidopsis, which has not been reported as modulating root development yet. Data of in situ hybridization and OsRAA1∷GUS transgenic plant showed that OsRAA1 expressed specifically in the apical meristem, the elongation zone of root tip, steles of the branch zone, and the young lateral root. Constitutive expression of OsRAA1 under the control of maize (Zea mays) ubiquitin promoter resulted in phenotypes of reduced growth of primary root, increased number of adventitious roots and helix primary root, and delayed gravitropic response of roots in seedlings of rice (Oryza sativa), which are similar to the phenotypes of the wild-type plant treated with auxin. With overexpression of OsRAA1, initiation and growth of adventitious root were more sensitive to treatment of auxin than those of the control plants, while their responses to 9-hydroxyfluorene-9-carboxylic acid in both transgenic line and wild type showed similar results. OsRAA1 constitutive expression also caused longer leaves and sterile florets at the last stage of plant development. Analysis of northern blot and GUS activity staining of OsRAA1∷GUS transgenic plants demonstrated that the OsRAA1 expression was induced by auxin. At the same time, overexpression of OsRAA1 also caused endogenous indole-3-acetic acid to increase. These data suggested that OsRAA1 as a new gene functions in the development of rice root systems, which are mediated by auxin. A positive feedback regulation mechanism of OsRAA1 to indole-3-acetic acid metabolism may be involved in rice root development in nature. PMID:15247372

  4. Exogenous hydrogen peroxide reversibly inhibits root gravitropism and induces horizontal curvature of primary root during grass pea germination.

    PubMed

    Jiang, Jinglong; Su, Miao; Wang, Liyan; Jiao, Chengjin; Sun, Zhengxi; Cheng, Wei; Li, Fengmin; Wang, Chongying

    2012-04-01

    During germination in distilled water (dH(2)O) on a horizontally positioned Petri dish, emerging primary roots of grass pea (Lathyrus sativus L.) grew perpendicular to the bottom of the Petri dish, due to gravitropism. However, when germinated in exogenous hydrogen peroxide (H(2)O(2)), the primary roots grew parallel to the bottom of the Petri dish and asymmetrically, forming a horizontal curvature. Time-course experiments showed that the effect was strongest when H(2)O(2) was applied prior to the emergence of the primary root. H(2)O(2) failed to induce root curvature when applied post-germination. Dosage studies revealed that the frequency of primary root curvature was significantly enhanced with increased H(2)O(2) concentrations. This curvature could be directly counteracted by dimethylthiourea (DMTU), a scavenger of H(2)O(2), but not by diphenylene iodonium (DPI) and pyridine, inhibitors of H(2)O(2) production. Exogenous H(2)O(2) treatment caused both an increase in the activities of H(2)O(2)-scavenging enzymes [including ascorbate peroxidase (APX: EC 1.11.1.11), catalase (CAT: EC 1.11.1.6) and peroxidase (POD: EC 1.11.1.7)] and a reduction in endogenous H(2)O(2) levels and root vitality. Although grass pea seeds absorbed exogenous H(2)O(2) during seed germination, DAB staining of paraffin sections revealed that exogenous H(2)O(2) only entered the root epidermis and not inner tissues. These data indicated that exogenously applied H(2)O(2) could lead to a reversible loss of the root gravitropic response and a horizontal curvature in primary roots during radicle emergence of the seedling. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  5. Shoot phytochrome B modulates reactive oxygen species homeostasis in roots via abscisic acid signaling in Arabidopsis.

    PubMed

    Ha, Jun-Ho; Kim, Ju-Heon; Kim, Sang-Gyu; Sim, Hee-Jung; Lee, Gisuk; Halitschke, Rayko; Baldwin, Ian T; Kim, Jeong-Il; Park, Chung-Mo

    2018-06-01

    Underground roots normally reside in darkness. However, they are often exposed to ambient light that penetrates through cracks in the soil layers which can occur due to wind, heavy rain or temperature extremes. In response to light exposure, roots produce reactive oxygen species (ROS) which promote root growth. It is known that ROS-induced growth promotion facilitates rapid escape of the roots from non-natural light. Meanwhile, long-term exposure of the roots to light elicits a ROS burst, which causes oxidative damage to cellular components, necessitating that cellular levels of ROS should be tightly regulated in the roots. Here we demonstrate that the red/far-red light photoreceptor phytochrome B (phyB) stimulates the biosynthesis of abscisic acid (ABA) in the shoots, and notably the shoot-derived ABA signals induce a peroxidase-mediated ROS detoxification reaction in the roots. Accordingly, while ROS accumulate in the roots of the phyb mutant that exhibits reduced primary root growth in the light, such an accumulation of ROS did not occur in the dark-grown phyb roots that exhibited normal growth. These observations indicate that mobile shoot-to-root ABA signaling links shoot phyB-mediated light perception with root ROS homeostasis to help roots adapt to unfavorable light exposure. We propose that ABA-mediated shoot-to-root phyB signaling contributes to the synchronization of shoot and root growth for optimal propagation and performance in plants. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.

  6. Getting to the root of plant biology: impact of the Arabidopsis genome sequence on root research

    PubMed Central

    Benfey, Philip N.; Bennett, Malcolm; Schiefelbein, John

    2010-01-01

    Summary Prior to the availability of the genome sequence, the root of Arabidopsis had attracted a small but ardent group of researchers drawn to its accessibility and developmental simplicity. Roots are easily observed when grown on the surface of nutrient agar media, facilitating analysis of responses to stimuli such as gravity and touch. Developmental biologists were attracted to the simple radial organization of primary root tissues, which form a series of concentric cylinders around the central vascular tissue. Equally attractive was the mode of propagation, with stem cells at the tip giving rise to progeny that were confined to cell files. These properties of root development reduced the normal four-dimensional problem of development (three spatial dimensions and time) to a two-dimensional problem, with cell type on the radial axis and developmental time along the longitudinal axis. The availability of the complete Arabidopsis genome sequence has dramatically accelerated traditional genetic research on root biology, and has also enabled entirely new experimental strategies to be applied. Here we review examples of the ways in which availability of the Arabidopsis genome sequence has enhanced progress in understanding root biology. PMID:20409273

  7. Arabidopsis WPP-Domain Proteins Are Developmentally Associated with the Nuclear Envelope and Promote Cell DivisionW⃞

    PubMed Central

    Patel, Shalaka; Rose, Annkatrin; Meulia, Tea; Dixit, Ram; Cyr, Richard J.; Meier, Iris

    2004-01-01

    The nuclear envelope (NE) acts as a selective barrier to macromolecule trafficking between the nucleus and the cytoplasm and undergoes a complex reorganization during mitosis. Different eukaryotic kingdoms show specializations in NE function and composition. In contrast with vertebrates, the protein composition of the NE and the function of NE proteins are barely understood in plants. MFP1 attachment factor 1 (MAF1) is a plant-specific NE-associated protein first identified in tomato (Lycopersicon esculentum). Here, we demonstrate that two Arabidopsis thaliana MAF1 homologs, WPP1 and WPP2, are associated with the NE specifically in undifferentiated cells of the root tip. Reentry into cell cycle after callus induction from differentiated root segments reprograms their NE association. Based on green fluorescent protein fusions and immunogold labeling data, the proteins are associated with the outer NE and the nuclear pores in interphase cells and with the immature cell plate during cytokinesis. RNA interference–based suppression of the Arabidopsis WPP family causes shorter primary roots, a reduced number of lateral roots, and reduced mitotic activity of the root meristem. Together, these data demonstrate the existence of regulated NE targeting in plants and identify a class of plant-specific NE proteins involved in mitotic activity. PMID:15548735

  8. Effects of ethylene on the kinetics of curvature and auxin redistribution in gravistimulated roots of Zea mays

    NASA Technical Reports Server (NTRS)

    Lee, J. S.; Evans, M. L.

    1990-01-01

    We tested the involvement of ethylene in maize (Zea mays L.) root gravitropism by measuring the kinetics of curvature and lateral auxin movement in roots treated with ethylene, inhibitors of ethylene synthesis, or inhibitors of ethylene action. In the presence of ethylene the latent period of gravitropic curvature appeared to be increased somewhat. However, ethylene-treated roots continued to curve after control roots had reached their final angle of curvature. Consequently, maximum curvature in the presence of ethylene was much greater in ethylene-treated roots than in controls. Inhibitors of ethylene biosynthesis or action had effects on the kinetics of curvature opposite to that of ethylene, i.e. the latent period appeared to be shortened somewhat while total curvature was reduced relative to that of controls. Label from applied 3H-indole-3-acetic acid was preferentially transported toward the lower side of stimulated roots. In parallel with effects on curvature, ethylene treatment delayed the development of gravity-induced asymmetric auxin movement across the root but extended its duration once initiated. The auxin transport inhibitor, 1-N-naphthylphthalamic acid reduced both gravitropic curvature and the effect of ethylene on curvature. Since neither ethylene nor inhibitors of ethylene biosynthesis or action prevented curvature, we conclude that ethylene does not mediate the primary differential growth response causing curvature. Because ethylene affects curvature and auxin transport in parallel, we suggest that ethylene modifies curvature by affecting gravity-induced lateral transport of auxin, perhaps by interfering with adaptation of the auxin transport system to the gravistimulus.

  9. Root Doctors as Providers of Primary Care

    PubMed Central

    Stitt, Van J.

    1983-01-01

    Physicians in primary care recognize that as many as 65 percent of the patients seen in their offices are there for psychological reasons. In any southern town with a moderate population of blacks, there are at least two “root doctors.” These root doctors have mastered the power of autosuggestion and are treating these patients with various forms of medication and psychological counseling. This paper updates the practicing physician on root doctors who practice primary care. PMID:6887277

  10. Role for apyrases in polar auxin transport in Arabidopsis.

    PubMed

    Liu, Xing; Wu, Jian; Clark, Greg; Lundy, Stacey; Lim, Minhui; Arnold, David; Chan, Jing; Tang, Wenqiang; Muday, Gloria K; Gardner, Gary; Roux, Stanley J

    2012-12-01

    Recent evidence indicates that extracellular nucleotides regulate plant growth. Exogenous ATP has been shown to block auxin transport and gravitropic growth in primary roots of Arabidopsis (Arabidopsis thaliana). Cells limit the concentration of extracellular ATP in part through the activity of ectoapyrases (ectonucleoside triphosphate diphosphohydrolases), and two nearly identical Arabidopsis apyrases, APY1 and APY2, appear to share this function. These findings, plus the fact that suppression of APY1 and APY2 blocks growth in Arabidopsis, suggested that the expression of these apyrases could influence auxin transport. This report tests that hypothesis. The polar movement of [(3)H]indole-3-acetic acid in both hypocotyl sections and primary roots of Arabidopsis seedlings was measured. In both tissues, polar auxin transport was significantly reduced in apy2 null mutants when they were induced by estradiol to suppress the expression of APY1 by RNA interference. In the hypocotyl assays, the basal halves of APY-suppressed hypocotyls contained considerably lower free indole-3-acetic acid levels when compared with wild-type plants, and disrupted auxin transport in the APY-suppressed roots was reflected by their significant morphological abnormalities. When a green fluorescent protein fluorescence signal encoded by a DR5:green fluorescent protein construct was measured in primary roots whose apyrase expression was suppressed either genetically or chemically, the roots showed no signal asymmetry following gravistimulation, and both their growth and gravitropic curvature were inhibited. Chemicals that suppress apyrase activity also inhibit gravitropic curvature and, to a lesser extent, growth. Taken together, these results indicate that a critical step connecting apyrase suppression to growth suppression is the inhibition of polar auxin transport.

  11. Aberrant temporal growth pattern and morphology of root and shoot caused by a defective circadian clock in Arabidopsis thaliana.

    PubMed

    Ruts, Tom; Matsubara, Shizue; Wiese-Klinkenberg, Anika; Walter, Achim

    2012-10-01

    Circadian clocks synchronized with the environment allow plants to anticipate recurring daily changes and give a fitness advantage. Here, we mapped the dynamic growth phenotype of leaves and roots in two lines of Arabidopsis thaliana with a disrupted circadian clock: the CCA1 over-expressing line (CCA1ox) and the prr9 prr7 prr5 (prr975) mutant. We demonstrate leaf growth defects due to a disrupted circadian clock over a 24 h time scale. Both lines showed enhanced leaf growth compared with the wild-type during the diurnal period, suggesting increased partitioning of photosynthates for leaf growth. Nocturnal leaf growth was reduced and growth inhibition occurred by dawn, which may be explained by ineffective starch degradation in the leaves of the mutants. However, this growth inhibition was not caused by starch exhaustion. Overall, these results are consistent with the notion that the defective clock affects carbon and energy allocation, thereby reducing growth capacity during the night. Furthermore, rosette morphology and size as well as root architecture were strikingly altered by the defective clock control. Separate analysis of the primary root and lateral roots revealed strong suppression of lateral root formation in both CCA1ox and prr975, accompanied by unusual changes in lateral root growth direction under light-dark cycles and increased lateral extension of the root system. We conclude that growth of the whole plant is severely affected by improper clock regulation in A. thaliana, resulting not only in altered timing and capacity for growth but also aberrant development of shoot and root architecture. © 2012 Forschungszentrum Jülich. The Plant Journal © 2012 Blackwell Publishing Ltd.

  12. Effectiveness of Rotary Endodontic Instruments on Smear Layer Removal in Root Canals of Primary Teeth: A Scanning Electron Microscopy Study.

    PubMed

    Subramaniam, Priya; Girish Babu, K L; Tabrez, T A

    2016-01-01

    The present SEM study was undertaken to evaluate the effect of root canal instrumentation using both manual and rotary files in the root canals of primary anterior teeth. Thirty freshly extracted primary maxillary incisors were divided into 3 groups of 10 teeth each. In Group I, root canals were instrumented with rotary NiTi files; in Group II, the root canals were instrumented using manual NiTi K files and; in Group III, manual instrumentation was done with stainless steel K files. Longitudinal sections were prepared and processed for observation under SEM at the coronal, middle and apical thirds. Scoring of smear layer was done according to Hulsmann and the data obtained was subjected to statistical analysis. Rotary files cleaned the coronal and middle thirds of root canals more effectively. Statistically there was no significant difference between the groups. Lowest score of 2.6 in the apical third of root canals was seen with hand NiTi files. Rotary instrumentation was as effective as manual instrumentation in removal of smear layer in the root canals of primary anterior teeth.

  13. Mean Annual Temperature Drives Microbial Nitrogen Cycling and Fine Root Nutrient Foraging Across a Tropical Montane Wet Forest Elevation Gradient

    NASA Astrophysics Data System (ADS)

    Pierre, S.; Litton, C. L. M.; Giardina, C. P.; Sparks, J. P.; Groffman, P. M.; Hewson, I.; Fahey, T. J.

    2017-12-01

    Mean annual temperature (MAT) is positively correlated with rates of primary production and carbon (C) turnover in forests globally, but the underlying biotic drivers of these relationships remain poorly resolved. We hypothesized that (1) MAT increases nitrifier abundance and thereby nitrate (NO-) bioavailability in soils and (2) increased NO- bioavailability reduces fine root nitrogen (N) demand. We used an ecologically well-constrained natural elevation gradient (13˚C -18˚C) in a tropical wet motane forest on the Island of Hawaii to study to role of MAT in situ. Our previous work showed that MAT drives increased soil NO- bioavailability in situ (r²=0.79, P=0.003), and indicated that the abundance of ammonia oxidizing archaea is strongly and positively correlated with MAT in situ (r²=0.34, P<0.001; Pierre et. al. 2017). Using fertilized fine root ingrowth cores (+N, +P, +N+P, control) across the same MAT gradient, we found that increasing MAT and bulk soil NO- bioavailability produced a significant negative fine root response to the +N+P treatment (P=0.023), and no response to other fertilization treatments. Increasing MAT and soil NO- bioavailability led to increased percent arbuscular mycorrhizal (AM) colonization of fine roots (r²=0.43, P=0.004), but no treatment effect on AM colonization was observed. Our results suggest that N and P generally co-limit fine root foraging across the gradient, while higher MAT and bulk soil NO- bioavailability interact to reduce fine root foraging effort. Further, higher MAT and greater N fertility in soils may reduce the C limitation of AM fungal colonization. We conclude that MAT drives N-rich conditions, which allow for lower N foraging effort, but greater C investment in P acquisition through AM fine root colonization.

  14. Nitrate-Regulated Glutaredoxins Control Arabidopsis Primary Root Growth1[OPEN

    PubMed Central

    Walters, Laura A.; Cooper, Andrew M.; Olvera, Jocelyn G.; Rosas, Miguel A.; Rasmusson, Allan G.

    2016-01-01

    Nitrogen is an essential soil nutrient for plants, and lack of nitrogen commonly limits plant growth. Soil nitrogen is typically available to plants in two inorganic forms: nitrate and ammonium. To better understand how nitrate and ammonium differentially affect plant metabolism and development, we performed transcriptional profiling of the shoots of ammonium-supplied and nitrate-supplied Arabidopsis (Arabidopsis thaliana) plants. Seven genes encoding class III glutaredoxins were found to be strongly and specifically induced by nitrate. RNA silencing of four of these glutaredoxin genes (AtGRXS3/4/5/8) resulted in plants with increased primary root length (approximately 25% longer than the wild type) and decreased sensitivity to nitrate-mediated inhibition of primary root growth. Increased primary root growth is also a well-characterized phenotype of many cytokinin-deficient plant lines. We determined that nitrate induction of glutaredoxin gene expression was dependent upon cytokinin signaling and that cytokinins could activate glutaredoxin gene expression independent of plant nitrate status. In addition, crosses between “long-root” cytokinin-deficient plants and “long-root” glutaredoxin-silenced plants generated hybrids that displayed no further increase in primary root length (i.e. epistasis). Collectively, these findings suggest that AtGRXS3/4/5/8 operate downstream of cytokinins in a signal transduction pathway that negatively regulates plant primary root growth in response to nitrate. This pathway could allow Arabidopsis to actively discriminate between different nitrogen sources in the soil, with the preferred nitrogen source, nitrate, acting to suppress primary root growth (vertical dimension) in concert with its well-characterized stimulatory effect on lateral root growth (horizontal dimension). PMID:26662603

  15. Growth and graviresponsiveness of primary roots of Zea mays seedlings deficient in abscisic acid and gibberellic acid

    NASA Technical Reports Server (NTRS)

    Moore, R.; Dickey, K.

    1985-01-01

    The objective of this research was to determine if gibberellic acid (GA) and/or abscisic acid (ABA) are necessary for graviresponsiveness by primary roots of Zea mays. To accomplish this objective we measured the growth and graviresponsiveness of primary roots of seedlings in which the synthesis of ABA and GA was inhibited collectively and individually by genetic and chemical means. Roots of seedlings treated with Fluridone (an inhibitor of ABA biosynthesis) and Ancymidol (an inhibitor of GA biosynthesis) were characterized by slower growth rates but not significantly different gravicultures as compared to untreated controls. Gravicurvatures of primary roots of d-5 mutants (having undetectable levels of GA) and vp-9 mutants (having undectable levels of ABA) were not significantly different from those of wild-type seedlings. Roots of seedlings in which the biosynthesis of ABA and GA was collectively inhibited were characterized by gravicurvatures not significantly different for those of controls. These results (1) indicate that drastic reductions in the amount of ABA and GA in Z. mays seedlings do not significantly alter root graviresponsiveness, (2) suggest that neither ABA nor GA is necessary for root gravicurvature, and (3) indicate that root gravicurvature is not necessarily proportional to root elongation.

  16. Genetic variants associated with the root system architecture of oilseed rape (Brassica napus L.) under contrasting phosphate supply.

    PubMed

    Wang, Xiaohua; Chen, Yanling; Thomas, Catherine L; Ding, Guangda; Xu, Ping; Shi, Dexu; Grandke, Fabian; Jin, Kemo; Cai, Hongmei; Xu, Fangsen; Yi, Bin; Broadley, Martin R; Shi, Lei

    2017-08-01

    Breeding crops with ideal root system architecture for efficient absorption of phosphorus is an important strategy to reduce the use of phosphate fertilizers. To investigate genetic variants leading to changes in root system architecture, 405 oilseed rape cultivars were genotyped with a 60K Brassica Infinium SNP array in low and high P environments. A total of 285 single-nucleotide polymorphisms were associated with root system architecture traits at varying phosphorus levels. Nine single-nucleotide polymorphisms corroborate a previous linkage analysis of root system architecture quantitative trait loci in the BnaTNDH population. One peak single-nucleotide polymorphism region on A3 was associated with all root system architecture traits and co-localized with a quantitative trait locus for primary root length at low phosphorus. Two more single-nucleotide polymorphism peaks on A5 for root dry weight at low phosphorus were detected in both growth systems and co-localized with a quantitative trait locus for the same trait. The candidate genes identified on A3 form a haplotype 'BnA3Hap', that will be important for understanding the phosphorus/root system interaction and for the incorporation into Brassica napus breeding programs. © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  17. Three Arabidopsis Fatty Acyl-Coenzyme A Reductases, FAR1, FAR4, and FAR5, Generate Primary Fatty Alcohols Associated with Suberin Deposition1[C][W][OA

    PubMed Central

    Domergue, Frédéric; Vishwanath, Sollapura J.; Joubès, Jérôme; Ono, Jasmine; Lee, Jennifer A.; Bourdon, Matthieu; Alhattab, Reem; Lowe, Christine; Pascal, Stéphanie; Lessire, René; Rowland, Owen

    2010-01-01

    Suberin is a protective hydrophobic barrier consisting of phenolics, glycerol, and a variety of fatty acid derivatives, including C18:0-C22:0 primary fatty alcohols. An eight-member gene family encoding alcohol-forming fatty acyl-coenzyme A reductases (FARs) has been identified in Arabidopsis (Arabidopsis thaliana). Promoter-driven expression of the β-glucuronidase reporter gene indicated that three of these genes, FAR1(At5g22500), FAR4(At3g44540), and FAR5(At3g44550), are expressed in root endodermal cells. The three genes were transcriptionally induced by wounding and salt stress. These patterns of gene expression coincide with known sites of suberin deposition. We then characterized a set of mutants with T-DNA insertions in FAR1, FAR4, or FAR5 and found that the suberin compositions of roots and seed coats were modified in each far mutant. Specifically, C18:0-OH was reduced in far5-1, C20:0-OH was reduced in far4-1, and C22:0-OH was reduced in far1-1. We also analyzed the composition of polymer-bound lipids of leaves before and after wounding and found that the basal levels of C18:0-C22:0 primary alcohols in wild-type leaves were increased by wounding. In contrast, C18:0-OH and C22:0-OH were not increased by wounding in far5-1 and far1-1 mutants, respectively. Heterologous expression of FAR1, FAR4, and FAR5 in yeast confirmed that they are indeed active alcohol-forming FARs with distinct, but overlapping, chain length specificities ranging from C18:0 to C24:0. Altogether, these results indicate that Arabidopsis FAR1, FAR4, and FAR5 generate the fatty alcohols found in root, seed coat, and wound-induced leaf tissue. PMID:20571114

  18. A scalable multi-process model of root nitrogen uptake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, Anthony P.

    This article is a Commentary on McMurtrie & Näsholm et al., 218: 119–130. Roots are represented in Terrestrial Ecosystem Models (TEMs) in much less detail than their equivalent above-ground resource acquisition organs – leaves. Often roots in TEMs are simply resource sinks, and below-ground resource acquisition is commonly simulated without any relationship to root dynamics at all, though there are exceptions (e.g. Zaehle & Friend, 2010). The representation of roots as carbon (C) and nitrogen (N) sinks without complementary source functions can lead to strange sensitivities in a model. For example, reducing root lifespans in the Community Land Model (versionmore » 4.5) increases plant production as N cycles more rapidly through the ecosystem without loss of plant function (D. M. Ricciuto, unpublished). The primary reasons for the poorer representation of roots compared with leaves in TEMs are three-fold: (1) data are much harder won, especially in the field; (2) no simple mechanistic models of root function are available; and (3) scaling root function from an individual root to a root system lags behind methods of scaling leaf function to a canopy. Here in this issue of New Phytologist, McMurtrie & Näsholm (pp. 119–130) develop a relatively simple model for root N uptake that mechanistically accounts for processes of N supply (mineralization and transport by diffusion and mass flow) and N demand (root uptake and microbial immobilization).« less

  19. A scalable multi-process model of root nitrogen uptake

    DOE PAGES

    Walker, Anthony P.

    2018-02-28

    This article is a Commentary on McMurtrie & Näsholm et al., 218: 119–130. Roots are represented in Terrestrial Ecosystem Models (TEMs) in much less detail than their equivalent above-ground resource acquisition organs – leaves. Often roots in TEMs are simply resource sinks, and below-ground resource acquisition is commonly simulated without any relationship to root dynamics at all, though there are exceptions (e.g. Zaehle & Friend, 2010). The representation of roots as carbon (C) and nitrogen (N) sinks without complementary source functions can lead to strange sensitivities in a model. For example, reducing root lifespans in the Community Land Model (versionmore » 4.5) increases plant production as N cycles more rapidly through the ecosystem without loss of plant function (D. M. Ricciuto, unpublished). The primary reasons for the poorer representation of roots compared with leaves in TEMs are three-fold: (1) data are much harder won, especially in the field; (2) no simple mechanistic models of root function are available; and (3) scaling root function from an individual root to a root system lags behind methods of scaling leaf function to a canopy. Here in this issue of New Phytologist, McMurtrie & Näsholm (pp. 119–130) develop a relatively simple model for root N uptake that mechanistically accounts for processes of N supply (mineralization and transport by diffusion and mass flow) and N demand (root uptake and microbial immobilization).« less

  20. Mechanical Failure of Fine Root Cortical Cells Initiates Plant Hydraulic Decline during Drought.

    PubMed

    Cuneo, Italo F; Knipfer, Thorsten; Brodersen, Craig R; McElrone, Andrew J

    2016-11-01

    Root systems perform the crucial task of absorbing water from the soil to meet the demands of a transpiring canopy. Roots are thought to operate like electrical fuses, which break when carrying an excessive load under conditions of drought stress. Yet the exact site and sequence of this dysfunction in roots remain elusive. Using in vivo x-ray computed microtomography, we found that drought-induced mechanical failure (i.e. lacunae formation) in fine root cortical cells is the initial and primary driver of reduced fine root hydraulic conductivity (Lp r ) under mild to moderate drought stress. Cortical lacunae started forming under mild drought stress (-0.6 MPa Ψ stem ), coincided with a dramatic reduction in Lp r , and preceded root shrinkage or significant xylem embolism. Only under increased drought stress was embolism formation observed in the root xylem, and it appeared first in the fine roots (50% loss of hydraulic conductivity [P 50 ] reached at -1.8 MPa) and then in older, coarse roots (P 50 = -3.5 MPa). These results suggest that cortical cells in fine roots function like hydraulic fuses that decouple plants from drying soil, thus preserving the hydraulic integrity of the plant's vascular system under early stages of drought stress. Cortical lacunae formation led to permanent structural damage of the root cortex and nonrecoverable Lp r , pointing to a role in fine root mortality and turnover under drought stress. © 2016 American Society of Plant Biologists. All Rights Reserved.

  1. Genetic analysis of the gravitropic set-point angle in lateral roots of Arabidopsis

    NASA Technical Reports Server (NTRS)

    Mullen, J. L.; Hangarter, R. P.; Kiss, J. Z. (Principal Investigator)

    2003-01-01

    Research on gravity responses in plants has mostly focused on primary roots and shoots, which typically orient to a vertical orientation. However, the distribution of lateral organs and their characteristically non-vertical growth orientation are critical for the determination of plant form. For example, in Arabidopsis, when lateral roots emerge from the primary root, they grow at a nearly horizontal orientation. As they elongate, the roots slowly curve until they eventually reach a vertical orientation. The regulation of this lateral root orientation is an important component affecting overall root system architecture. We found that this change in orientation is not simply due to the onset of gravitropic competence, as non-vertical lateral roots are capable of both positive and negative gravitropism. Thus, the horizontal growth of new lateral roots appears to be determined by what is called the gravitropic set-point angle (GSA). This developmental control of the GSA of lateral roots in Arabidopsis provides a useful system for investigating the components involved in regulating gravitropic responses. Using this system, we have identified several Arabidopsis mutants that have altered lateral root orientations but maintain normal primary root orientation. c2003 COSPAR. Published by Elsevier Ltd. All rights reserved.

  2. Root canal morphology of primary molars: a micro-computed tomography study.

    PubMed

    Fumes, A C; Sousa-Neto, M D; Leoni, G B; Versiani, M A; da Silva, L A B; da Silva, R A B; Consolaro, A

    2014-10-01

    This was to investigate the root canal morphology of primary molar teeth using micro-computed tomography. Primary maxillary (n = 20) and mandibular (n = 20) molars were scanned at a resolution of 16.7 μm and analysed regarding the number, location, volume, area, structured model index (SMI), area, roundness, diameters, and length of canals, as well as the thickness of dentine in the apical third. Data were statistically compared by using paired-sample t test, independent sample t test, and one-way analysis of variance with significance level set as 5%. Overall, no statistical differences were found between the canals with respect to length, SMI, dentine thickness, area, roundness, and diameter (p > 0.05). A double canal system was observed in the mesial and mesio-buccal roots of the mandibular and maxillary molars, respectively. The thickness in the internal aspect of the roots was lower than in the external aspect. Cross-sectional evaluation of the roots in the apical third showed flat-shaped canals in the mandibular molars and ribbon- and oval-shaped canals in the maxillary molars. External and internal anatomy of the primary first molars closely resemble the primary second molars. The reported data may help clinicians to obtain a thorough understanding of the morphological variations of root canals in primary molars to overcome problems related to shaping and cleaning procedures, allowing appropriate management strategies for root canal treatment.

  3. Characterizing pathways by which gravitropic effectors could move from the root cap to the root of primary roots of Zea mays

    NASA Technical Reports Server (NTRS)

    Moore, R.; McClelen, C. E.

    1989-01-01

    Plasmodesmata linking the root cap and root in primary roots Zea mays are restricted to approx. 400 protodermal cells bordering approx. 110000 microns2 of the calyptrogen of the root cap. This area is less than 10% of the cross-sectional area of the root-tip at the cap junction. Therefore, gravitropic effectors moving from the root cap to the root can move symplastically only through a relatively small area in the centre of the root. Decapped roots are non-responsive to gravity. However, decapped roots whose caps are replaced immediately after decapping are strongly graviresponsive. Thus, gravicurvature occurs only when the root cap contacts the root, and symplastic continuity between the cap and root is not required for gravicurvature. Completely removing mucilage from the root tip renders the root non-responsive to gravity. Taken together, these data suggest that gravitropic effectors move apoplastically through mucilage from the cap to the root.

  4. In vitro cultured primary roots derived from stem segments of cassava (Manihot esculenta) can behave like storage organs.

    PubMed

    Medina, Ricardo D; Faloci, Mirta M; Gonzalez, Ana M; Mroginski, Luis A

    2007-03-01

    Cassava (Manihot esculenta) has three adventitious root types: primary and secondary fibrous roots, and storage roots. Different adventitious root types can also regenerate from in vitro cultured segments. The aim of this study was to investigate aspects of in vitro production of storage roots. Morphological and anatomical analyses were performed to identify and differentiate each root type. Twenty-nine clones were assayed to determine the effect of genotype on the capacity to form storage roots in vitro. The effects of cytokinins and auxins on the formation of storage roots in vitro were also examined. Primary roots formed in vitro and in vivo had similar tissue kinds; however, storage roots formed in vitro exhibited physiological specialization for storing starch. The only consistent diagnostic feature between secondary fibrous and storage roots was their functional differentiation. Anatomical analysis of the storage roots formed in vitro showed that radial expansion as a consequence of massive proliferation and enlargement of parenchymatous cells occurred in the middle cortex, but not from cambial activity as in roots formed in vivo. Cortical expansion could be related to dilatation growth favoured by hormone treatments. Starch deposition of storage roots formed in vitro was confined to cortical tissue and occurred earlier than in storage roots formed in vivo. Auxin and cytokinin supplementation were absolutely required for in vitro storage root regeneration; these roots were not able to develop secondary growth, but formed a tissue competent for starch storing. MS medium with 5 % sucrose plus 0.54 microM 1-naphthaleneacetic acid and 0.44 microM 6-benzylaminopurine was one of the most effective in stimulating the storage root formation. Genotypes differed significantly in their capacity to produce storage roots in vitro. Storage root formation was considerably affected by the segment's primary position and strongly influenced by hormone treatments. The storage root formation system reported here is a first approach to develop a tuberization model, and additional efforts are required to improve it. Although it was not possible to achieve root secondary growth, after this work it will be feasible to advance in some aspects of in vitro cassava tuberization.

  5. Root biomass, turnover and net primary productivity of a coffee agroforestry system in Costa Rica: effects of soil depth, shade trees, distance to row and coffee age.

    PubMed

    Defrenet, Elsa; Roupsard, Olivier; Van den Meersche, Karel; Charbonnier, Fabien; Pastor Pérez-Molina, Junior; Khac, Emmanuelle; Prieto, Iván; Stokes, Alexia; Roumet, Catherine; Rapidel, Bruno; de Melo Virginio Filho, Elias; Vargas, Victor J; Robelo, Diego; Barquero, Alejandra; Jourdan, Christophe

    2016-08-21

    In Costa Rica, coffee (Coffea arabica) plants are often grown in agroforests. However, it is not known if shade-inducing trees reduce coffee plant biomass through root competition, and hence alter overall net primary productivity (NPP). We estimated biomass and NPP at the stand level, taking into account deep roots and the position of plants with regard to trees. Stem growth and root biomass, turnover and decomposition were measured in mixed coffee/tree (Erythrina poeppigiana) plantations. Growth ring width and number at the stem base were estimated along with stem basal area on a range of plant sizes. Root biomass and fine root density were measured in trenches to a depth of 4 m. To take into account the below-ground heterogeneity of the agroforestry system, fine root turnover was measured by sequential soil coring (to a depth of 30 cm) over 1 year and at different locations (in full sun or under trees and in rows/inter-rows). Allometric relationships were used to calculate NPP of perennial components, which was then scaled up to the stand level. Annual ring width at the stem base increased up to 2·5 mm yr -1 with plant age (over a 44-year period). Nearly all (92 %) coffee root biomass was located in the top 1·5 m, and only 8 % from 1·5 m to a depth of 4 m. Perennial woody root biomass was 16 t ha -1 and NPP of perennial roots was 1·3 t ha -1 yr -1 Fine root biomass (0-30 cm) was two-fold higher in the row compared with between rows. Fine root biomass was 2·29 t ha -1 (12 % of total root biomass) and NPP of fine roots was 2·96 t ha -1 yr -1 (69 % of total root NPP). Fine root turnover was 1·3 yr -1 and lifespan was 0·8 years. Coffee root systems comprised 49 % of the total plant biomass; such a high ratio is possibly a consequence of shoot pruning. There was no significant effect of trees on coffee fine root biomass, suggesting that coffee root systems are very competitive in the topsoil. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Brassinolide Increases Potato Root Growth In Vitro in a Dose-Dependent Way and Alleviates Salinity Stress

    PubMed Central

    Xia, Shitou; Su, Yi; Wang, Huiqun; Luo, Weigui; Su, Shengying

    2016-01-01

    Brassinosteroids (BRs) are steroidal phytohormones that regulate various physiological processes, such as root development and stress tolerance. In the present study, we showed that brassinolide (BL) affects potato root in vitro growth in a dose-dependent manner. Low BL concentrations (0.1 and 0.01 μg/L) promoted root elongation and lateral root development, whereas high BL concentrations (1–100 μg/L) inhibited root elongation. There was a significant (P < 0.05) positive correlation between root activity and BL concentrations within a range from 0.01 to 100 μg/L, with the peak activity of 8.238 mg TTC·g−1 FW·h−1 at a BL concentration of 100 μg/L. Furthermore, plants treated with 50 μg/L BL showed enhanced salt stress tolerance through in vitro growth. Under this scenario, BL treatment enhanced the proline content and antioxidant enzymes' (superoxide dismutase, peroxidase, and catalase) activity and reduced malondialdehyde content in potato shoots. Application of BL maintain K+ and Na+ homeostasis by improving tissue K+/Na+ ratio. Therefore, we suggested that the effects of BL on root development from stem fragments explants as well as on primary root development are dose-dependent and that BL application alleviates salt stress on potato by improving root activity, root/shoot ratio, and antioxidative capacity in shoots and maintaining K+/Na+ homeostasis in potato shoots and roots. PMID:27803931

  7. The Effects of High Steady State Auxin Levels on Root Cell Elongation in Brachypodium[OPEN

    PubMed Central

    Pacheco-Villalobos, David; Tamaki, Takayuki; Gujas, Bojan; Jaspert, Nina; Oecking, Claudia; Bulone, Vincent; Hardtke, Christian S.

    2016-01-01

    The long-standing Acid Growth Theory of plant cell elongation posits that auxin promotes cell elongation by stimulating cell wall acidification and thus expansin action. To date, the paucity of pertinent genetic materials has precluded thorough analysis of the importance of this concept in roots. The recent isolation of mutants of the model grass species Brachypodium distachyon with dramatically enhanced root cell elongation due to increased cellular auxin levels has allowed us to address this question. We found that the primary transcriptomic effect associated with elevated steady state auxin concentration in elongating root cells is upregulation of cell wall remodeling factors, notably expansins, while plant hormone signaling pathways maintain remarkable homeostasis. These changes are specifically accompanied by reduced cell wall arabinogalactan complexity but not by increased proton excretion. On the contrary, we observed a tendency for decreased rather than increased proton extrusion from root elongation zones with higher cellular auxin levels. Moreover, similar to Brachypodium, root cell elongation is, in general, robustly buffered against external pH fluctuation in Arabidopsis thaliana. However, forced acidification through artificial proton pump activation inhibits root cell elongation. Thus, the interplay between auxin, proton pump activation, and expansin action may be more flexible in roots than in shoots. PMID:27169463

  8. Determination of zinc oxide nanoparticles toxicity in root growth in wheat (Triticum aestivum L.) seedlings.

    PubMed

    Prakash, Meppaloor G; Chung, Ill Min

    2016-09-01

    The effect of zinc oxide nanoparticles (ZnONPs) was studied in wheat (Triticum aestivum L.) seedlings under in vitro exposure conditions. To avoid precipitation of nanoparticles, the seedlings were grown in half strength semisolid Murashige and Skoog medium containing 0, 50, 100, 200, 400 and 500 mg L(-1) of ZnONPs. Analysis of zinc (Zn) content showed significant increase in roots. In vivo detection using fluorescent probe Zynpyr-1 indicated accumulation of Zn in primary and lateral root tips. All concentrations of ZnONPs significantly reduced root growth. However, significant decrease in shoot growth was observed only after exposure to 400 and 500 mg L(-1) of ZnONPs. The reactive oxygen species and lipid peroxidation levels significantly increased in roots. Significant increase in cell-wall bound peroxidase activity was observed after exposure to 500 mg L(-1) of ZnONPs. Histochemical staining with phloroglucinol-HCl showed lignification of root cells upon exposure to 500 mg L(-1) of ZnONPs. Treatment with propidium iodide indicated loss of cell viability in root tips of wheat seedlings. These results suggest that redox imbalances, lignification and cell death has resulted in reduction of root growth in wheat seedlings exposed to ZnONPs nanoparticles.

  9. A smart rotary technique versus conventional pulpectomy for primary teeth: A randomized controlled clinical study

    PubMed Central

    Mokhtari, Negar; Shirazi, Alireza-Sarraf

    2017-01-01

    Background Techniques with adequate accuracy of working length determination along with shorter duration of treatment in pulpectomy procedure seems to be essential in pediatric dentistry. The aim of the present study was to evaluate the accuracy of root canal length measurement with Root ZX II apex locator and rotary system in pulpectomy of primary teeth. Material and Methods In this randomized control clinical trial complete pulpectomy was performed on 80 mandibular primary molars in 80, 4-6-year-old children. The study population was randomly divided into case and control groups. In control group conventional pulpectomy was performed and in the case group working length was determined by electronic apex locator Root ZXII and instrumented with Mtwo rotary files. Statistical evaluation was performed using Mann-Whitney and Chi-Square tests (P<0.05). Results There were no significant differences between electronic apex locator Root ZXII and conventional method in accuracy of root canal length determination. However significantly less time was needed for instrumenting with rotary files (P=0.000). Conclusions Considering the comparable results in accuracy of root canal length determination and the considerably shorter instrumentation time in Root ZXII apex locator and rotary system, it may be suggested for pulpectomy in primary molar teeth. Key words:Rotary technique, conventional technique, pulpectomy, primary teeth. PMID:29302280

  10. A smart rotary technique versus conventional pulpectomy for primary teeth: A randomized controlled clinical study.

    PubMed

    Mokhtari, Negar; Shirazi, Alireza-Sarraf; Ebrahimi, Masoumeh

    2017-11-01

    Techniques with adequate accuracy of working length determination along with shorter duration of treatment in pulpectomy procedure seems to be essential in pediatric dentistry. The aim of the present study was to evaluate the accuracy of root canal length measurement with Root ZX II apex locator and rotary system in pulpectomy of primary teeth. In this randomized control clinical trial complete pulpectomy was performed on 80 mandibular primary molars in 80, 4-6-year-old children. The study population was randomly divided into case and control groups. In control group conventional pulpectomy was performed and in the case group working length was determined by electronic apex locator Root ZXII and instrumented with Mtwo rotary files. Statistical evaluation was performed using Mann-Whitney and Chi-Square tests ( P <0.05). There were no significant differences between electronic apex locator Root ZXII and conventional method in accuracy of root canal length determination. However significantly less time was needed for instrumenting with rotary files ( P =0.000). Considering the comparable results in accuracy of root canal length determination and the considerably shorter instrumentation time in Root ZXII apex locator and rotary system, it may be suggested for pulpectomy in primary molar teeth. Key words: Rotary technique, conventional technique, pulpectomy, primary teeth.

  11. Trichoderma-Induced Acidification Is an Early Trigger for Changes in Arabidopsis Root Growth and Determines Fungal Phytostimulation

    PubMed Central

    Pelagio-Flores, Ramón; Esparza-Reynoso, Saraí; Garnica-Vergara, Amira; López-Bucio, José; Herrera-Estrella, Alfredo

    2017-01-01

    Trichoderma spp. are common rhizosphere inhabitants widely used as biological control agents and their role as plant growth promoting fungi has been established. Although soil pH influences several fungal and plant functional traits such as growth and nutrition, little is known about its influence in rhizospheric or mutualistic interactions. The role of pH in the Trichoderma–Arabidopsis interaction was studied by determining primary root growth and lateral root formation, root meristem status and cell viability, quiescent center (QC) integrity, and auxin inducible gene expression. Primary root growth phenotypes in wild type seedlings and STOP1 mutants allowed identification of a putative root pH sensing pathway likely operating in plant–fungus recognition. Acidification by Trichoderma induced auxin redistribution within Arabidopsis columella root cap cells, causing root tip bending and growth inhibition. Root growth stoppage correlated with decreased cell division and with the loss of QC integrity and cell viability, which were reversed by buffering the medium. In addition, stop1, an Arabidopsis mutant sensitive to low pH, was oversensitive to T. atroviride primary root growth repression, providing genetic evidence that a pH root sensing mechanism reprograms root architecture during the interaction. Our results indicate that root sensing of pH mediates the interaction of Trichoderma with plants. PMID:28567051

  12. Exogenous nitrate induces root branching and inhibits primary root growth in Capsicum chinense Jacq.

    PubMed

    Celis-Arámburo, Teresita de Jesús; Carrillo-Pech, Mildred; Castro-Concha, Lizbeth A; Miranda-Ham, María de Lourdes; Martínez-Estévez, Manuel; Echevarría-Machado, Ileana

    2011-12-01

    The effects of nitrate (NO₃⁻) on the root system are complex and depend on several factors, such as the concentration available to the plant, endogenous nitrogen status and the sensitivity of the species. Though these effects have been widely documented on Arabidopsis and cereals, no reports are available in the Capsicum genus. In this paper, we have determined the effect of an exogenous in vitro application of this nutrient on root growth in habanero pepper (Capsicum chinense Jacq.). Exposure to NO₃⁻ inhibited primary root growth in both, dose- and time-dependent manners. The highest inhibition was attained with 0.1 mM NO₃⁻ between the fourth and fifth days of treatment. Inhibition of primary root growth was observed by exposing the root to both homogeneous and heterogeneous conditions of the nutrient; in contrast, ammonium was not able to induce similar changes. NO₃⁻-induced inhibition of primary root growth was reversed by treating the roots with IAA or NPA, a polar auxin transport inhibitor. Heterogeneous NO₃⁻ application stimulated the formation and elongation of lateral roots in the segment where the nutrient was present, and this response was influenced by exogenous phytohormones. These results demonstrate that habanero pepper responds to NO₃⁻ in a similar fashion to other species with certain particular differences. Therefore, studies in this model could help to elucidate the mechanisms by which roots respond to NO₃⁻ in fluctuating soil environments. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  13. Graviresponsiveness and the Development of Columella Tissue in Primary and Lateral Roots of Ricinus communis1

    PubMed Central

    Moore, Randy; Pasieniuk, John

    1984-01-01

    Half-tipped primary and lateral roots of Ricinus communis cv Hale bend toward the side of the root on which the intact half-tip remains. Therefore, the minimal graviresponsiveness of lateral roots is not due to the inability of their caps to produce growth effectors (presumably inhibitors). The columella tissues of primary (i.e. graviresponsive) roots are (a) 4.30 times longer, (b) 2.95 times wider, (c) 37.4 times more voluminous, and (d) composed of 17.2 times more cells than those of lateral roots. The onset of positive gravitropism by lateral roots is positively correlated with a (a) 2.99-fold increase in length, (b) 2.63-fold increase in width, and (c) 20.7-fold increase in volume of their columella tissues. We propose that the minimal graviresponsiveness of lateral roots is due to the small size of their columella tissues, which results in their caps being unable to (a) establish a concentration gradient of the effector sufficient to induce gravicurvature and (b) produce as much of the effector as caps of graviresponsive roots. Images Fig. 1 PMID:11540818

  14. Inducing gravitropic curvature of primary roots of Zea mays cv Ageotropic

    NASA Technical Reports Server (NTRS)

    Moore, R.; Evans, M. L.; Fondren, W. M.

    1990-01-01

    Primary roots of the mutant 'Ageotropic' cultivar of Zea mays are nonresponsive to gravity. Their root caps secrete little or no mucilage and touch the root only at the extreme apex. A gap separates the cap and root at the periphery of the cap. Applying mucilage from normal roots or substances with a consistency similar to that of mucilage to tips of mutant roots causes these roots to become strongly graviresponsive. Gravicurvature stops when these substances are removed. Caps of some mutants secrete small amounts of mucilage and are graviresponsive. These results indicate that (a) the lack of graviresponsiveness in the mutant results from disrupting the transport pathway between the cap and root, (b) movement of the growth-modifying signal from the cap to the root occurs via an apoplastic pathway, and (c) mucilage is necessary for normal communication between the root cap and root in Zea mays cv Ageotropic.

  15. SHOEBOX Modulates Root Meristem Size in Rice through Dose-Dependent Effects of Gibberellins on Cell Elongation and Proliferation

    PubMed Central

    Li, Jintao; Zhao, Yu; Chu, Huangwei; Wang, Likai; Fu, Yanru; Liu, Ping; Upadhyaya, Narayana; Chen, Chunli; Mou, Tongmin; Feng, Yuqi; Kumar, Prakash; Xu, Jian

    2015-01-01

    Little is known about how the size of meristem cells is regulated and whether it participates in the control of meristem size in plants. Here, we report our findings on shoebox (shb), a mild gibberellin (GA) deficient rice mutant that has a short root meristem size. Quantitative analysis of cortical cell length and number indicates that shb has shorter, rather than fewer, cells in the root meristem until around the fifth day after sowing, from which the number of cortical cells is also reduced. These defects can be either corrected by exogenous application of bioactive GA or induced in wild-type roots by a dose-dependent inhibitory effect of paclobutrazol on GA biosynthesis, suggesting that GA deficiency is the primary cause of shb mutant phenotypes. SHB encodes an AP2/ERF transcription factor that directly activates transcription of the GA biosynthesis gene KS1. Thus, root meristem size in rice is modulated by SHB-mediated GA biosynthesis that regulates the elongation and proliferation of meristem cells in a developmental stage-specific manner. PMID:26275148

  16. SHOEBOX Modulates Root Meristem Size in Rice through Dose-Dependent Effects of Gibberellins on Cell Elongation and Proliferation.

    PubMed

    Li, Jintao; Zhao, Yu; Chu, Huangwei; Wang, Likai; Fu, Yanru; Liu, Ping; Upadhyaya, Narayana; Chen, Chunli; Mou, Tongmin; Feng, Yuqi; Kumar, Prakash; Xu, Jian

    2015-08-01

    Little is known about how the size of meristem cells is regulated and whether it participates in the control of meristem size in plants. Here, we report our findings on shoebox (shb), a mild gibberellin (GA) deficient rice mutant that has a short root meristem size. Quantitative analysis of cortical cell length and number indicates that shb has shorter, rather than fewer, cells in the root meristem until around the fifth day after sowing, from which the number of cortical cells is also reduced. These defects can be either corrected by exogenous application of bioactive GA or induced in wild-type roots by a dose-dependent inhibitory effect of paclobutrazol on GA biosynthesis, suggesting that GA deficiency is the primary cause of shb mutant phenotypes. SHB encodes an AP2/ERF transcription factor that directly activates transcription of the GA biosynthesis gene KS1. Thus, root meristem size in rice is modulated by SHB-mediated GA biosynthesis that regulates the elongation and proliferation of meristem cells in a developmental stage-specific manner.

  17. DNA immunization against experimental genital herpes simplex virus infection.

    PubMed

    Bourne, N; Stanberry, L R; Bernstein, D I; Lew, D

    1996-04-01

    A nucleic acid vaccine, expressing the gene encoding herpes simplex virus (HSV) type 2 glycoprotein D (gD2) under control of the cytomegalovirus immediate-early gene promoter, was used to immunize guinea pigs against genital HSV-2 infection. The vaccine elicited humoral immune responses comparable to those seen after HSV-2 infection. Immunized animals exhibited protection from primary genital HSV-2 disease with little or no development of vesicular skin lesions and significantly reduced HSV-2 replication in the genital tract. After recovery from primary infection, immunized guinea pigs experienced significantly fewer recurrences and had significantly less HSV-2 genomic DNA detected in the sacral dorsal root ganglia compared with control animals. Thus, immunization reduced the burden of latent infection resulting from intravaginal HSV-2 challenge, and a nucleic acid vaccine expressing the HSV-2 gD2 antigen protected guinea pigs against genital herpes, limiting primary infection and reducing the magnitude of latent infection and the frequency of recurrent disease.

  18. Touch modulates gravity sensing to regulate the growth of primary roots of Arabidopsis thaliana

    NASA Technical Reports Server (NTRS)

    Massa, Gioia D.; Gilroy, Simon

    2003-01-01

    Plants must sense and respond to diverse stimuli to optimize the architecture of their root system for water and nutrient scavenging and anchorage. We have therefore analyzed how information from two of these stimuli, touch and gravity, are integrated to direct root growth. In Arabidopsis thaliana, touch stimulation provided by a glass barrier placed across the direction of growth caused the root to form a step-like growth habit with bends forming in the central and later the distal elongation zones. This response led to the main root axis growing parallel to, but not touching the obstacle, whilst the root cap maintained contact with the barrier. Removal of the graviperceptive columella cells of the root cap using laser ablation reduced the bending response of the distal elongation zone. Similarly, although the roots of the gravisensing impaired pgm1-1 mutant grew along the barrier at the same average angle as wild-type, this angle became more variable with time. These observations imply a constant gravitropic re-setting of the root tip response to touch stimulation from the barrier. In wild-type plants, transient touch stimulation of root cap cells, but not other regions of the root, inhibited both subsequent gravitropic growth and amyloplast sedimentation in the columella. Taken together, these results suggest that the cells of the root cap sense touch stimuli and their subsequent signaling acts on the columella cells to modulate their graviresponse. This interaction of touch and gravity signaling would then direct root growth to avoid obstacles in the soil while generally maintaining downward growth.

  19. Leaf endophytic fungus interacts with precipitation to alter belowground microbial communities in primary successional dunes

    PubMed Central

    Bell-Dereske, Lukas; Takacs-Vesbach, Cristina; Kivlin, Stephanie N.; Emery, Sarah M.; Rudgers, Jennifer A.

    2017-01-01

    Abstract Understanding interactions between above- and belowground components of ecosystems is an important next step in community ecology. These interactions may be fundamental to predicting ecological responses to global change because indirect effects occurring through altered species interactions can outweigh or interact with the direct effects of environmental drivers. In a multiyear field experiment (2010–2015), we tested how experimental addition of a mutualistic leaf endophyte (Epichloë amarillans) associated with American beachgrass (Ammophila breviligulata) interacted with an altered precipitation regime (±30%) to affect the belowground microbial community. Epichloë addition increased host root biomass at the plot scale, but reduced the length of extraradical arbuscular mycorrhizal (AM) fungal hyphae in the soil. Under ambient precipitation alone, the addition of Epichloë increased root biomass per aboveground tiller and reduced the diversity of AM fungi in A. breviligulata roots. Furthermore, with Epichloë added, the diversity of root-associated bacteria declined with higher soil moisture, whereas in its absence, bacterial diversity increased with higher soil moisture. Thus, the aboveground fungal mutualist not only altered the abundance and composition of belowground microbial communities but also affected how belowground communities responded to climate, suggesting that aboveground microbes have potential for cascading influences on community dynamics and ecosystem processes that occur belowground. PMID:28334408

  20. In vitro Cultured Primary Roots Derived from Stem Segments of Cassava (Manihot esculenta) Can Behave Like Storage Organs

    PubMed Central

    Medina, Ricardo D.; Faloci, Mirta M.; Gonzalez, Ana M.; Mroginski, Luis A.

    2007-01-01

    Background and Aims Cassava (Manihot esculenta) has three adventitious root types: primary and secondary fibrous roots, and storage roots. Different adventitious root types can also regenerate from in vitro cultured segments. The aim of this study was to investigate aspects of in vitro production of storage roots. Methods Morphological and anatomical analyses were performed to identify and differentiate each root type. Twenty-nine clones were assayed to determine the effect of genotype on the capacity to form storage roots in vitro. The effects of cytokinins and auxins on the formation of storage roots in vitro were also examined. Key Results Primary roots formed in vitro and in vivo had similar tissue kinds; however, storage roots formed in vitro exhibited physiological specialization for storing starch. The only consistent diagnostic feature between secondary fibrous and storage roots was their functional differentiation. Anatomical analysis of the storage roots formed in vitro showed that radial expansion as a consequence of massive proliferation and enlargement of parenchymatous cells occurred in the middle cortex, but not from cambial activity as in roots formed in vivo. Cortical expansion could be related to dilatation growth favoured by hormone treatments. Starch deposition of storage roots formed in vitro was confined to cortical tissue and occurred earlier than in storage roots formed in vivo. Auxin and cytokinin supplementation were absolutely required for in vitro storage root regeneration; these roots were not able to develop secondary growth, but formed a tissue competent for starch storing. MS medium with 5 % sucrose plus 0·54 μm 1-naphthaleneacetic acid and 0·44 μm 6-benzylaminopurine was one of the most effective in stimulating the storage root formation. Genotypes differed significantly in their capacity to produce storage roots in vitro. Storage root formation was considerably affected by the segment's primary position and strongly influenced by hormone treatments. Conclusions The storage root formation system reported here is a first approach to develop a tuberization model, and additional efforts are required to improve it. Although it was not possible to achieve root secondary growth, after this work it will be feasible to advance in some aspects of in vitro cassava tuberization. PMID:17267513

  1. Local Transcriptional Control of YUCCA Regulates Auxin Promoted Root-Growth Inhibition in Response to Aluminium Stress in Arabidopsis.

    PubMed

    Liu, Guangchao; Gao, Shan; Tian, Huiyu; Wu, Wenwen; Robert, Hélène S; Ding, Zhaojun

    2016-10-01

    Auxin is necessary for the inhibition of root growth induced by aluminium (Al) stress, however the molecular mechanism controlling this is largely unknown. Here, we report that YUCCA (YUC), which encodes flavin monooxygenase-like proteins, regulates local auxin biosynthesis in the root apex transition zone (TZ) in response to Al stress. Al stress up-regulates YUC3/5/7/8/9 in the root-apex TZ, which we show results in the accumulation of auxin in the root-apex TZ and root-growth inhibition during the Al stress response. These Al-dependent changes in the regulation of YUCs in the root-apex TZ and YUC-regulated root growth inhibition are dependent on ethylene signalling. Increasing or disruption of ethylene signalling caused either enhanced or reduced up-regulation, respectively, of YUCs in root-apex TZ in response to Al stress. In addition, ethylene enhanced root growth inhibition under Al stress was strongly alleviated in yuc mutants or by co-treatment with yucasin, an inhibitor of YUC activity, suggesting a downstream role of YUCs in this process. Moreover, ethylene-insensitive 3 (EIN3) is involved into the direct regulation of YUC9 transcription in this process. Furthermore, we demonstrated that PHYTOCHROME INTERACTING FACTOR4 (PIF4) functions as a transcriptional activator for YUC5/8/9. PIF4 promotes Al-inhibited primary root growth by regulating the local expression of YUCs and auxin signal in the root-apex TZ. The Al-induced expression of PIF4 in root TZ acts downstream of ethylene signalling. Taken together, our results highlight a regulatory cascade for YUCs-regulated local auxin biosynthesis in the root-apex TZ mediating root growth inhibition in response to Al stress.

  2. Automorphosis of higher plants on a 3-D clinostat

    NASA Astrophysics Data System (ADS)

    Hoson, T.; Kamisaka, S.; Yamashita, M.; Masuda, Y.

    On a three-dimensional (3-D) clinostat, various plant organs developed statocytes capable of responding to the gravity vector. The graviresponse of primary roots of garden cress and maize grown on the clinostat was the same as the control roots, whereas that of maize coleoptiles was reduced. When maize seedlings were grown in the presence of 10^-4 M gibberellic acid and kinetin, the graviresponse of both roots and shoots was suppressed. The corresponding suppression of amyloplast development was observed in the clinostatted and the hormone-treated seedlings. Maize roots and shoots showed spontaneous curvatures in different portions on the 3-D clinostat. The hormone treatment did not significantly influence such an automorphic curvature. When the root cap was removed, maize roots did not curve gravitropically. However, the removal suppressed the automorphic curvatures only slightly. On the other hand, the removal of coleoptile tip did not influence its graviresponse, whereas the spontaneous curvature of decapitated coleoptiles on the clinostat was strongly suppressed. Also, cytochalasin B differently affected the gravitropic and the automorphic curvatures of maize roots and shoots. From these results it is concluded that the graviperception and the early processes of signal transmission are unnecessary for automorphoses under simulated microgravity conditions. Moreover, the results support the view that the amyloplasts act as statoliths probably via an interaction with microfilaments.

  3. Nitric oxide-cytokinin interplay influences selenite sensitivity in Arabidopsis.

    PubMed

    Lehotai, Nóra; Feigl, Gábor; Koós, Ágnes; Molnár, Árpád; Ördög, Attila; Pető, Andrea; Erdei, László; Kolbert, Zsuzsanna

    2016-10-01

    Selenite oppositely modifies cytokinin and nitric oxide metabolism in Arabidopsis organs. A mutually negative interplay between the molecules exists in selenite-exposed roots; and their overproduction causes selenite insensitivity. Selenium-induced phytotoxicity is accompanied by developmental alterations such as primary root (PR) shortening. Growth changes are provoked by the modulation of hormone status and signalling. Cytokinin (CK) cooperates with the nitric oxide (NO) in many aspects of plant development; however, their interaction under abiotic stress has not been examined. Selenite inhibited the growth of Arabidopsis seedlings and reduced root meristem size through cell division arrest. The CK-dependent pARR5::GUS activity revealed the intensification of CK signalling in the PR tip, which may be partly responsible for the root meristem shortening. The selenite-induced alterations in the in situ expressions of cytokinin oxidases (AtCKX4::GUS, AtCKX5::GUS) are associated with selenite-triggered changes of CK signalling. In wild-type (WT) and NO-deficient nia1nia2 root, selenite led to the diminution of NO content, but CK overproducer ipt-161 and -deficient 35S:CKX2 roots did not show NO decrease. Exogenous NO (S-nitroso-N-acetyl-DL-penicillamine, SNAP) reduced the pARR5::GFP and pTCS::GFP expressions. Roots of the 35S:CKX and cyr1 plants suffered more severe selenite-triggered viability loss than the WT, while in ipt-161 and gsnor1-3 no obvious viability decrease was observed. Exogenous NO ameliorated viability loss, but benzyladenine intensified it. Based on the results, selenite impacts development by oppositely modifying CK signalling and NO level. In the root system, CK signalling intensifies which possibly contributes to the nitrate reductase-independent NO diminution. A mutually negative CK-NO interplay exists in selenite-exposed roots; however, overproduction of both molecules worsens selenite sensing. Hereby, we suggest novel regulatory interplay and role for NO and CK in abiotic stress signalling.

  4. Influence of electrical fields and asymmetric application of mucilage on curvature of primary roots of Zea mays

    NASA Technical Reports Server (NTRS)

    Marcum, H.; Moore, R.

    1990-01-01

    Primary roots of Zea mays cv. Yellow Dent growing in an electric field curve towards the anode. Roots treated with EDTA and growing in electric field do not curve. When root cap mucilage is applied asymmetrically to tips of vertically-oriented roots, the roots curve toward the mucilage. Roots treated with EDTA curve toward the side receiving mucilage and toward blocks containing 10 mM CaCl2, but not toward "empty" agar blocks or the cut surfaces of severed root tips. These results suggest that 1) free calcium (Ca) is necessary for root electrotropism, 2) mucilage contains effector(s) that induce gravitropiclike curvature, and 3) mucilage can replace gravitropic effectors chelated by EDTA. These results are consistent with the hypothesis that the downward movement of gravitropic effectors to the lower sides of tips of horizontally-oriented roots occurs at least partially in the apoplast.

  5. Growth of the Maize Primary Root at Low Water Potentials 1

    PubMed Central

    Sharp, Robert E.; Hsiao, Theodore C.; Silk, Wendy Kuhn

    1990-01-01

    Primary roots of maize (Zea mays L. cv WF9 × Mo17) seedlings growing in vermiculite at various water potentials exhibited substantial osmotic adjustment in the growing region. We have assessed quantitatively whether the osmotic adjustment was attributable to increased net solute deposition rates or to slower rates of water deposition associated with reduced volume expansion. Spatial distributions of total osmotica, soluble carbohydrates, potassium, and water were combined with published growth velocity distributions to calculate deposition rate profiles using the continuity equation. Low water potentials had no effect on the rate of total osmoticum deposition per unit length close to the apex, and caused decreased deposition rates in basal regions. However, rates of water deposition decreased more than osmoticum deposition. Consequently, osmoticum deposition rates per unit water volume were increased near the apex and osmotic potentials were lower throughout the growing region. Because the stressed roots were thinner, osmotic adjustment occurred without osmoticum accumulation per unit length. The effects of low water potential on hexose deposition were similar to those for total osmotica, and hexose made a major contribution to the osmotic adjustment in middle and basal regions. In contrast, potassium deposition decreased at low water potentials in close parallel with water deposition, and increases in potassium concentration were small. The results show that growth of the maize primary root at low water potentials involves a complex pattern of morphogenic and metabolic events. Although osmotic adjustment is largely the result of a greater inhibition of volume expansion and water deposition than solute deposition, the contrasting behavior of hexose and potassium deposition indicates that the adjustment is a highly regulated process. PMID:16667622

  6. Comparison between rotary and manual instrumentation in primary teeth.

    PubMed

    Crespo, S; Cortes, O; Garcia, C; Perez, L

    2008-01-01

    The aim of this study was to compare the efficiency in both, preparation time and root canal shape, when using the Nickel Titanium (Ni-Ti) rotary and K-Files hand instrumentation on root canal preparation of single rooted primary teeth. Sixty single rooted primary teeth were selected and divided into two equal groups: Group (I) 30 teeth instrumented with manual K-files and group (II) 30 teeth instrumented with Ni-Ti rotary files (ProFile 0.04). Instrumentation times were calculated and root canal impressions were taken with light bodied silicone in order to evaluate the shape. The data was analyzed with SPSS program using the t-test and the Chi-square test to compare their means. The preparation time with group (I) K-files was significantly higher than in group (II) rotary files (ProFile 0.04), with a p= .005. The ProFile system showed a significantly more favorable canal taper when compared to the K-files system (P= .002). The use of rotary files in primary teeth has several advantages when compared with manual K files: the efficiency in both, preparation time and root canal shape. 1. A decreased working time, that helps maintain patient cooperation by diminishing the potential for tiredness. 2. The shape of the root canal is more conical, favoring a higher quality of the root canal filling, and increasing clinical success.

  7. Lean Methodology Reduces Inappropriate Use of Antipsychotics for Agitation at a Psychiatric Hospital.

    PubMed

    Goga, Joshana K; Depaolo, Antonio; Khushalani, Sunil; Walters, J Ken; Roca, Robert; Zisselman, Marc; Borleis, Christopher

    2017-01-01

    To Evaluate the Effects of Applying Lean Methodology-Improving Quality Increasing Efficiency by Eliminating Waste and Reducing Costs-An Approach To Decrease the Prescribing Frequency of Antipsychotics for The Indication of Agitation. Historically Controlled Study. Bheppard Pratt Health System is the Largest Private Provider of Psychiatric Care in Maryland With a Total Bed Capacity of 300. There Were 4 337 Patient Days From November 1 2012 to October 31 2013 on the Dementia Unit. All Patients Admitted on the Dementia Unit Were 65 Years of Age and Older with a Primary Diagnosis of Dementia. our Multidisciplinary Team Used Lean Methodology to Identify the Root Causes and Interventions Necessary to Reduce Inappropriate Antipsychotic Use. The Primary Outcome Was Rate of Inappropriately Indicating Agitation as the Rationale When Prescribing Antipsychotic Medications. There Was a 90% (P < 0.001) Reduction in Rate Of Antipsychotic Prescribing with an Indication of Agitation. The Lean Methodology Interventions Led To A 90% (P < 0.001) Reduction in the Rate of Antipsychotic Prescribing with an Indication of Agitation and a 10% Rate Reduction in Overall Antipsychotic Prescribing. Key Words: Agitation Alzheimer's Antipsychotics Behavioral and Psychological Symptoms of Dementia Centers For Medicare & Medicaid Services Dementia Root-cause Analysis. BPSD = Behavioral and Psychological Symptoms of Dementia CATIE-AD = Clinical Antipsychotic Trials of Intervention Effectiveness in Alzheimer's Disease EMR = Electronic Medical Records GAO = Government Accountability Office GNCIS = Geriatric Neuropsychiatric Clinical Indicator Scale.

  8. Computer-based video digitizer analysis of surface extension in maize roots: kinetics of growth rate changes during gravitropism

    NASA Technical Reports Server (NTRS)

    Ishikawa, H.; Hasenstein, K. H.; Evans, M. L.

    1991-01-01

    We used a video digitizer system to measure surface extension and curvature in gravistimulated primary roots of maize (Zea mays L.). Downward curvature began about 25 +/- 7 min after gravistimulation and resulted from a combination of enhanced growth along the upper surface and reduced growth along the lower surface relative to growth in vertically oriented controls. The roots curved at a rate of 1.4 +/- 0.5 degrees min-1 but the pattern of curvature varied somewhat. In about 35% of the samples the roots curved steadily downward and the rate of curvature slowed as the root neared 90 degrees. A final angle of about 90 degrees was reached 110 +/- 35 min after the start of gravistimulation. In about 65% of the samples there was a period of backward curvature (partial reversal of curvature) during the response. In some cases (about 15% of those showing a period of reverse bending) this period of backward curvature occurred before the root reached 90 degrees. Following transient backward curvature, downward curvature resumed and the root approached a final angle of about 90 degrees. In about 65% of the roots showing a period of reverse curvature, the roots curved steadily past the vertical, reaching maximum curvature about 205 +/- 65 min after gravistimulation. The direction of curvature then reversed back toward the vertical. After one or two oscillations about the vertical the roots obtained a vertical orientation and the distribution of growth within the root tip became the same as that prior to gravistimulation. The period of transient backward curvature coincided with and was evidently caused by enhancement of growth along the concave and inhibition of growth along the convex side of the curve, a pattern opposite to that prevailing in the earlier stages of downward curvature. There were periods during the gravitropic response when the normally unimodal growth-rate distribution within the elongation zone became bimodal with two peaks of rapid elongation separated by a region of reduced elongation rate. This occurred at different times on the convex and concave sides of the graviresponding root. During the period of steady downward curvature the elongation zone along the convex side extended farther toward the tip than in the vertical control. During the period of reduced rate of curvature, the zone of elongation extended farther toward the tip along the concave side of the root. The data show that the gravitropic response pattern varies with time and involves changes in localized elongation rates as well as changes in the length and position of the elongation zone. Models of root gravitropic curvature based on simple unimodal inhibition of growth along the lower side cannot account for these complex growth patterns.

  9. Effect of phorbol derivatives and staurosporine on gravitropic response of primary root of maize

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mulkey, T.J.; Kim, S.Y.; Lee, J.S.

    1991-05-01

    Time-lapse videography and computer-based, video image digitization were used to examine the effects of phorbol derivatives (phorbol 12-myristate 13-acetate, TPA; phorbol 12-myristate 13-acetate 4-O-methyl ether, mTPA) and staurosporine on the kinetics of gravicurvature of primary roots of maize (Zea mays L., Pioneer 3343 and Golden Cross Bantam). Pretreatment of roots with TPA (3 hr, 1 {mu}M) decreases the time lag prior to induction of positive gravicurvature in horizontally-oriented roots by > 60%. The rate of curvature is not significantly different than the rate observed in control roots. Wrongway curvature which is observed in 30-40% of control roots is not observedmore » in TPA-pretreated roots. Oscillatory movements observed in control roots after completion of gravitropic reorientation is completely dampened in TPA-pretreated roots. Pretreatment of roots with mTPA(3hr,1{mu}M), the inactive analog of TPA, does not significantly alter the kinetics of gravicurvature of primary roots of maize. Staurosporine (10{sup {minus}8}M), a microbial alkaloid which has been reported to have antifungal activity and to inhibit phospholipid/Ca{sup ++} dependent protein kinase, completely inhibits TPA-induced alteration of the kinetics of gravitropism. DAG (1-oleoyl-2-acetyl-rac-glycerol), a synthetic diglyceride activator of protein kinase C, exhibits similar activity to TPA. TPA-induced alterations in tissue response to auxin are presented.« less

  10. Root-type-specific plasticity in response to localized high nitrate supply in maize (Zea mays)

    PubMed Central

    Yu, Peng; Hochholdinger, Frank; Li, Chunjian

    2015-01-01

    Background and Aims Shoot-borne roots contribute to most of the nutrient uptake throughout the life cycle of maize (Zea mays). Compared with numerous studies with embryonic roots, detailed information on the phenotypic plasticity of shoot-borne roots in response to a heterogeneous nitrogen supply is scarce. The present study therefore provides a comprehensive profile of fine-scale plastic responses of distinct root types to localized high nitrate supply. Methods Seedlings of the maize inbred line B73 were grown in split-root systems. The anatomy and morphological plasticity of the primary root and the roots initiated from the 2nd, 5th and 7th shoot nodes, and their lateral roots, were studied in response to local high nitrate supply to one side of the root system. Key Results In contrast to the insensitivity of axial roots, local high nitrate supply increased the length of 1st-order lateral roots on the primary root and the three whorls of shoot-borne roots at different growth stages, and increased the density of 1st-order lateral roots on the 7th shoot-borne root after silking. The length and density of 2nd-order lateral roots on the three whorls of shoot-borne roots displayed a more flexible response to local high nitrate than 1st-order lateral roots. Root diameter and number, and total area and diameter of metaxylem vessels increased from the primary root to early and then later developed shoot-borne roots, which showed a positive relationship with shoot growth and N accumulation. Conclusions Maize axial roots and lateral roots responded differently to local high nitrate, and this was related to their function. The extent of morphological plasticity of lateral roots in response to local high nitrate depended on the initiation time of the shoot-borne roots on which the lateral roots developed. Morphological plasticity was higher on 2nd-order than on 1st-order lateral roots. The results suggest that higher order lateral root branching might be a potential target for genetic improvement in future maize breeding. PMID:26346717

  11. Leaf Abscission Induced by Ethylene in Water-Stressed Intact Seedlings of Cleopatra Mandarin Requires Previous Abscisic Acid Accumulation in Roots.

    PubMed Central

    Gomez-Cadenas, A.; Tadeo, F. R.; Talon, M.; Primo-Millo, E.

    1996-01-01

    The involvement of abscisic acid (ABA) in the process of leaf abscission induced by 1-aminocyclopropane-1-carboxylic acid (ACC) transported from roots to shoots in Cleopatra mandarin (Citrus reshni Hort. ex Tan.) seedlings grown under water stress was studied using norflurazon (NF). Water stress induced both ABA (24-fold) and ACC (16-fold) accumulation in roots and arrested xylem flow. Leaf bulk ABA also increased (8-fold), although leaf abscission did not occur. Shortly after rehydration, root ABA and ACC returned to their prestress levels, whereas sharp and transitory increases of ACC (17-fold) and ethylene (10-fold) in leaves and high percentages of abscission (up to 47%) were observed. NF suppressed the ABA and ACC accumulation induced by water stress in roots and the sharp increases of ACC and ethylene observed after rewatering in leaves. NF also reduced leaf abscission (7-10%). These results indicate that water stress induces root ABA accumulation and that this is required for the process of leaf abscission to occur. It was also shown that exogenous ABA increases ACC levels in roots but not in leaves. Collectively, the data suggest that ABA, the primary sensitive signal to water stress, modulates the levels of ethylene, which is the hormonal activator of leaf abscission. This assumption implies that root ACC levels are correlated with root ABA amounts in a dependent way, which eventually links water status to an adequate, protective response such as leaf abscission. PMID:12226398

  12. Phototropism and gravitropism in lateral roots of Arabidopsis

    NASA Technical Reports Server (NTRS)

    Kiss, John Z.; Miller, Kelley M.; Ogden, Lisa A.; Roth, Kelly K.

    2002-01-01

    Gravitropism and, to a lesser extent, phototropism have been characterized in primary roots, but little is known about structural/functional aspects of these tropisms in lateral roots. Therefore, in this study, we report on tropistic responses in lateral roots of Arabidopsis thaliana. Lateral roots initially are plagiogravitropic, but when they reach a length of approximately 10 mm, these roots grow downward and exhibit positive orthogravitropism. Light and electron microscopic studies demonstrate a correlation between positive gravitropism and development of columella cells with large, sedimented amyloplasts in wild-type plants. Lateral roots display negative phototropism in response to white and blue light and positive phototropism in response to red light. As is the case with primary roots, the photoresponse is weak relative to the graviresponse, but phototropism is readily apparent in starchless mutant plants, which are impaired in gravitropism. To our knowledge, this is the first report of phototropism of lateral roots in any plant species.

  13. Phototropism and gravitropism in lateral roots of Arabidopsis.

    PubMed

    Kiss, John Z; Miller, Kelley M; Ogden, Lisa A; Roth, Kelly K

    2002-01-01

    Gravitropism and, to a lesser extent, phototropism have been characterized in primary roots, but little is known about structural/functional aspects of these tropisms in lateral roots. Therefore, in this study, we report on tropistic responses in lateral roots of Arabidopsis thaliana. Lateral roots initially are plagiogravitropic, but when they reach a length of approximately 10 mm, these roots grow downward and exhibit positive orthogravitropism. Light and electron microscopic studies demonstrate a correlation between positive gravitropism and development of columella cells with large, sedimented amyloplasts in wild-type plants. Lateral roots display negative phototropism in response to white and blue light and positive phototropism in response to red light. As is the case with primary roots, the photoresponse is weak relative to the graviresponse, but phototropism is readily apparent in starchless mutant plants, which are impaired in gravitropism. To our knowledge, this is the first report of phototropism of lateral roots in any plant species.

  14. Ammonium affects cell viability to inhibit root growth in Arabidopsis * #

    PubMed Central

    Qin, Cheng; Yi, Ke-ke; Wu, Ping

    2011-01-01

    Ammonium (NH4 +) is an important form of nitrogen nutrient for most plants, yet is also a stressor for many of them. However, the primary events of NH4 + toxicity at the cellular level are still unclear. Here, we showed that NH4 + toxicity can induce the root cell death in a temporal pattern which primarily occurs in the cells of root maturation and elongation zones, and then spreads to the cells in the meristem and root cap. The results from the NH4 +-hypersensitive mutant hsn1 further confirmed our findings. Taken together, NH4 + toxicity inhibits primary root growth by inhibiting cell elongation and division and inducing root cell death. PMID:21634041

  15. Effect of the gamma knife treatment on the trigeminal nerve root in Chinese patients with primary trigeminal neuralgia.

    PubMed

    Song, Zhi-Xiu; Qian, Wei; Wu, Yu-Quan; Sun, Fang-Jie; Fei, Jun; Huang, Run-Sheng; Fang, Jing-Yu; Wu, Cai-Zhen; An, You-Ming; Wang, Daxin; Yang, Jun

    2014-01-01

    To understand the mechanism of the gamma knife treating the trigeminal neuralgia. Using the MASEP-SRRS type gamma knife treatment system, 140 Chinese patients with trigeminal neuralgia (NT) were treated in our hospital from 2002 to 2010, in which the pain relief rate reached 95% and recurrence rate was 3% only. We investigated the effect of the gamma knife treatment on the trigeminal nerve root in 20 Chinese patients with primary trigeminal neuralgia by the magnetic resonance imager (MRI) observation. 1) The cross-sectional area of trigeminal nerve root became smaller and MRI signals were lower in the treatment side than those in the non-treatment side after the gamma knife treatment of primary trigeminal neuralgia; 2) in the treatment side, the cross-sectional area of the trigeminal nerve root decreased significantly after the gamma knife treatment; 3) there was good correlation between the clinical improvement and the MRI findings; and 4) the straight distance between the trigeminal nerve root and the brainstem did not change after the gamma knife treatment. The pain relief induced the gamma knife radiosurgery might be related with the atrophy of the trigeminal nerve root in Chinese patients with primary trigeminal neuralgia.

  16. Root growth, secondary root formation and root gravitropism in carotenoid-deficient seedlings of Zea mays L

    NASA Technical Reports Server (NTRS)

    Ng, Y. K.; Moore, R.

    1985-01-01

    The effect of ABA on root growth, secondary-root formation and root gravitropism in seedlings of Zea mays was investigated by using Fluridone-treated seedlings and a viviparous mutant, both of which lack carotenoids and ABA. Primary roots of seedlings grown in the presence of Fluridone grew significantly slower than those of control (i.e. untreated) roots. Elongation of Fluridone-treated roots was inhibited significantly by the exogenous application of 1 mM ABA. Exogenous application of 1 micromole and 1 nmole ABA had either no effect or only a slight stimulatory effect on root elongation, depending on the method of application. The absence of ABA in Fluridone-treated plants was not an important factor in secondary-root formation in seedlings less than 9-10 d old. However, ABA may suppress secondary-root formation in older seedlings, since 11-d-old control seedlings had significantly fewer secondary roots than Fluridone-treated seedlings. Roots of Fluridone-treated and control seedlings were graviresponsive. Similar data were obtained for vp-9 mutants of Z. mays, which are phenotypically identical to Fluridone-treated seedlings. These results indicate that ABA is necessary for neither secondary-root formation nor for positive gravitropism by primary roots.

  17. Modeling the Hydraulics of Root Growth in Three Dimensions with Phloem Water Sources1[C][OA

    PubMed Central

    Wiegers, Brandy S.; Cheer, Angela Y.; Silk, Wendy K.

    2009-01-01

    Primary growth is characterized by cell expansion facilitated by water uptake generating hydrostatic (turgor) pressure to inflate the cell, stretching the rigid cell walls. The multiple source theory of root growth hypothesizes that root growth involves transport of water both from the soil surrounding the growth zone and from the mature tissue higher in the root via phloem and protophloem. Here, protophloem water sources are used as boundary conditions in a classical, three-dimensional model of growth-sustaining water potentials in primary roots. The model predicts small radial gradients in water potential, with a significant longitudinal gradient. The results improve the agreement of theory with empirical studies for water potential in the primary growth zone of roots of maize (Zea mays). A sensitivity analysis quantifies the functional importance of apical phloem differentiation in permitting growth and reveals that the presence of phloem water sources makes the growth-sustaining water relations of the root relatively insensitive to changes in root radius and hydraulic conductivity. Adaptation to drought and other environmental stresses is predicted to involve more apical differentiation of phloem and/or higher phloem delivery rates to the growth zone. PMID:19542299

  18. Modeling the hydraulics of root growth in three dimensions with phloem water sources.

    PubMed

    Wiegers, Brandy S; Cheer, Angela Y; Silk, Wendy K

    2009-08-01

    Primary growth is characterized by cell expansion facilitated by water uptake generating hydrostatic (turgor) pressure to inflate the cell, stretching the rigid cell walls. The multiple source theory of root growth hypothesizes that root growth involves transport of water both from the soil surrounding the growth zone and from the mature tissue higher in the root via phloem and protophloem. Here, protophloem water sources are used as boundary conditions in a classical, three-dimensional model of growth-sustaining water potentials in primary roots. The model predicts small radial gradients in water potential, with a significant longitudinal gradient. The results improve the agreement of theory with empirical studies for water potential in the primary growth zone of roots of maize (Zea mays). A sensitivity analysis quantifies the functional importance of apical phloem differentiation in permitting growth and reveals that the presence of phloem water sources makes the growth-sustaining water relations of the root relatively insensitive to changes in root radius and hydraulic conductivity. Adaptation to drought and other environmental stresses is predicted to involve more apical differentiation of phloem and/or higher phloem delivery rates to the growth zone.

  19. Thermotropism by primary roots of maize

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fortin, M.-C.; Poff, K.L.

    1990-05-01

    Sensing in the roots of higher plants has long been recognized to be restricted mainly to gravitropism and thigmotropism. However, root responses to temperature gradients have not been extensively studied. We have designed experiments under controlled conditions to test if and how root direction of maize can be altered by thermal gradients perpendicular to the gravity vector. Primary roots of maize grown on agar plates exhibit positive thermotropism (curvature toward the warmer temperature) when exposed to gradients of 0.5 to 4.2{degree}C cm{sup {minus}1}. The extent of thermotropism depends on the temperature gradient and the temperature at which the root ismore » placed within the gradient. The curvature cannot be accounted for by differential growth as a direct effect of temperature on each side of the root.« less

  20. Effects of abscisic acid and xanthoxin on elongation and gravitropism in primary roots of Zea mays

    NASA Technical Reports Server (NTRS)

    Lee, J. S.; Hasenstein, K. H.; Mulkey, T. J.; Yang, R. L.; Evans, M. L.

    1990-01-01

    We examined the involvement of abscisic acid (ABA) and xanthoxin (Xan) in maize root gravitropism by (1) testing the ability of ABA to allow positive gravitropism in dark-grown seedlings of the maize cultivar LG11, a cultivar known to require light for positive gravitropism of the primary root, (2) comparing curvature in roots in which half of the cap had been excised and replaced with agar containing either ABA or indole-3-acetic acid (IAA), (3) measuring gravitropism in roots of seedlings submerged in oxygenated solutions of ABA or IAA and (4) testing the effect of Xan on root elongation. Using a variety of methods of applying ABA to the root, we found that ABA did not cause horizontally-oriented primary roots of dark-grown seedlings to become positively gravitropic. Replacing half of the root cap of vertically oriented roots with an agar block containing ABA had little or no effect on curvature relative to that of controls in which the half cap was replaced by a plain agar block. Replacement of the removed half cap with IAA either canceled or reversed the curvature displayed by controls. When light-grown seedlings were submerged in ABA they responded strongly to gravistimulation while those in IAA did not. Xan (up to 0.1 mM) did not affect root elongation. The results indicate that ABA is not a likely mediator of root gravitropism and that the putative ABA precursor, Xan, lacks the appropriate growth-inhibiting properties to serve as a mediator of root gravitropism.

  1. Gravity-induced changes in intracellular potentials in elongating cortical cells of mung bean roots

    NASA Technical Reports Server (NTRS)

    Ishikawa, H.; Evans, M. L.

    1990-01-01

    Gravity-induced changes in intracellular potentials in primary roots of 2-day-old mung bean (Vigna mungo L. cv. black matpe) seedlings were investigated using glass microelectrodes held by 3-dimensional hydraulic micro-drives. The electrodes were inserted into outer cortical cells within the elongation zone. Intracellular potentials, angle of root orientation with respect to gravity, and position within the root of the impaled cortical cell were measured simultaneously. Gravistimulation caused intracellular potential changes in cortical cells of the elongation zone. When the roots were oriented vertically, the intracellular potentials of the outer cortical cells (2 mm behind the root apex) were approximately - 115 mV. When the roots were placed horizontally cortical cells on the upper side hyperpolarized to - 154 mV within 30 s while cortical cells on the lower side depolarized to about - 62 mV. This electrical asymmetry did not occur in cells of the maturation zone. Because attempts to insert the electrode into cells of the root cap were unsuccessful, these cells were not measured. The hyperpolarization of cortical cells on the upper side was greatly reduced upon application of N,N'-dicyclohexylcarbodiimide (DCCD), an inhibitor of respiratory energy coupling. When stimulated roots were returned to the vertical, the degree of hyperpolarization of cortical cells on the previous upper side decreased within 30 s and approached that of cortical cells in non-stimulated roots. This cycle of hyperpolarization/loss of hyperpolarization was repeatable at least ten times by alternately turning the root from the vertical to the horizontal and back again. The very short (<30 s) lag period of these electrical changes indicates that they may result from stimulus-perception and transduction within the elongation zone rather than from transmission of a signal from the root cap.

  2. Metabolic profiling of Angelica acutiloba roots utilizing gas chromatography-time-of-flight-mass spectrometry for quality assessment based on cultivation area and cultivar via multivariate pattern recognition.

    PubMed

    Tianniam, Sukanda; Tarachiwin, Lucksanaporn; Bamba, Takeshi; Kobayashi, Akio; Fukusaki, Eiichiro

    2008-06-01

    Gas chromatography time-of-flight mass spectrometry was applied to elucidate the profiling of primary metabolites and to evaluate the differences between quality differences in Angelica acutiloba (or Yamato-toki) roots through the utilization of multivariate pattern recognition-principal component analysis (PCA). Twenty-two metabolites consisting of sugars, amino and organic acids were identified. PCA analysis successfully discriminated the good, the moderate and the bad quality Yamato-toki roots in accordance to their cultivation areas. The results signified two reducing sugars, fructose and glucose being the most accumulated in the bad quality, whereas higher quantity of phosphoric acid, proline, malic acid and citric acid were found in the good and the moderate quality toki roots. PCA was also effective in discriminating samples derive from different cultivars. Yamato-toki roots with the moderate quality were compared by means of PCA, and the results illustrated good discrimination which was influenced most by malic acid. Overall, this study demonstrated that metabolomics technique is accurate and efficient in determining the quality differences in Yamato-toki roots, and has a potential to be a superior and suitable method to assess the quality of this medicinal plant.

  3. Boron reduces aluminum-induced growth inhibition, oxidative damage and alterations in the cell wall components in the roots of trifoliate orange.

    PubMed

    Riaz, Muhammad; Yan, Lei; Wu, Xiuwen; Hussain, Saddam; Aziz, Omar; Imran, Muhammad; Rana, Muhammad Shoaib; Jiang, Cuncang

    2018-05-30

    Aluminum (Al) toxicity is a major restriction for crops production on acidic soils. The primary symptom of aluminum toxicity is visible in the roots of plants. Recently, several studies reported the alleviation of Al toxicity by the application of Boron (B), however, the information how B alleviates Al toxicity is not well understood. Thus, we investigated the ameliorative response of B on Al-induced growth inhibition, oxidative damages, and variations in the cell wall components in trifoliate orange roots. The results indicated that plants under Al stress experienced a substantial decrement in root length and overall plant growth. The supply of B improved the root elongation by eliminating oxidative stress, membrane peroxidation, membrane leakage, and cell death produced under Al toxicity. Moreover, accumulation of Al on the cell wall and alteration in the cell wall components might be one of the causes resulting in the quick inhibition of root elongation under B-starvation circumstances by providing susceptible negative charges on pectin matrix for binding of Al. The results provide a useful understanding of the insight into mechanisms of B-induced mitigation of Al toxicity especially in the trifoliate orange that might be helpful in the production of crops on acidic soils. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Clinical Evaluation of Quality of Obturation and Instrumentation Time using Two Modified Rotary File Systems with Manual Instrumentation in Primary Teeth.

    PubMed

    Govindaraju, Lavanya; Jeevanandan, Ganesh; Subramanian, Emg

    2017-09-01

    Pulp therapy in primary teeth has been performed using various instrumentation techniques. However, the conventional instrumentation technique used for root canal preparation in primary teeth is hand instrumentation. Various Nickel-Titanium (Ni-Ti) instruments are available to perform efficient root canal preparation in primary teeth. These Ni-Ti instruments has been designed to aid in better root canal preparation in permanent teeth but are rarely used in primary teeth. It is necessary to assess the feasibility of using these adult rotary files with a modified sequence in primary teeth. To compare the quality of obturation and instrumentation time during root canal preparation using hand files and modified rotary file systems in primary molars. Forty-five primary mandibular molars were randomly assigned to three experimental groups (n=15). Group I was instrumented using k-hand files, Group II with S2 ProTaper universal file and Group III with 0.25 tip 4% taper K3 rotary file. Standardized digital radiographs were taken before and after root canal instrumentation. Root canal preparation time was also recorded. Statistical analysis of the obtained data was done using SPSS Software version 17.0. An intergroup comparison of the instrumentation time and the quality of obturation was done using ANOVA and Chi-square test with the level of significance set at 0.05. No significant differences were noted with regard to the quality of obturation (p=0.791). However, a statistically significant difference was noted in the instrumentation time between the three groups (p<0.05). ProTaper rotary system had significantly lesser instrumentation time when compared to that of K3 rotary system and hand file system. The hand files, S2 ProTaper Universal and K3 0.25 tip 4% taper files systems performed similarly with respect to the quality of obturation. There was a significant difference in instrumentation time with manual instrumentation compared to the modified rotary file systems in primary teeth.

  5. Understanding the development of roots exposed to contaminants and the potential of plant-associated bacteria for optimization of growth

    PubMed Central

    Remans, Tony; Thijs, Sofie; Truyens, Sascha; Weyens, Nele; Schellingen, Kerim; Keunen, Els; Gielen, Heidi; Cuypers, Ann; Vangronsveld, Jaco

    2012-01-01

    Background and Scope Plant responses to the toxic effects of soil contaminants, such as excess metals or organic substances, have been studied mainly at physiological, biochemical and molecular levels, but the influence on root system architecture has received little attention. Nevertheless, the precise position, morphology and extent of roots can influence contaminant uptake. Here, data are discussed that aim to increase the molecular and ecological understanding of the influence of contaminants on root system architecture. Furthermore, the potential of plant-associated bacteria to influence root growth by their growth-promoting and stress-relieving capacities is explored. Methods Root growth parameters of Arabidopsis thaliana seedlings grown in vertical agar plates are quantified. Mutants are used in a reverse genetics approach to identify molecular components underlying quantitative changes in root architecture after exposure to excess cadmium, copper or zinc. Plant-associated bacteria are isolated from contaminated environments, genotypically and phenotypically characterized, and used to test plant root growth improvement in the presence of contaminants. Key Results The molecular determinants of primary root growth inhibition and effects on lateral root density by cadmium were identified. A vertical split-root system revealed local effects of cadmium and copper on root development. However, systemic effects of zinc exposure on root growth reduced both the avoidance of contaminated areas and colonization of non-contaminated areas. The potential for growth promotion and contaminant degradation of plant-associated bacteria was demonstrated by improved root growth of inoculated plants exposed to 2,4-di-nitro-toluene (DNT) or cadmium. Conclusions Knowledge concerning the specific influence of different contaminants on root system architecture and the molecular mechanisms by which this is achieved can be combined with the exploitation of plant-associated bacteria to influence root development and increase plant stress tolerance, which should lead to more optimal root systems for application in phytoremediation or safer biomass production. PMID:22634257

  6. Understanding the development of roots exposed to contaminants and the potential of plant-associated bacteria for optimization of growth.

    PubMed

    Remans, Tony; Thijs, Sofie; Truyens, Sascha; Weyens, Nele; Schellingen, Kerim; Keunen, Els; Gielen, Heidi; Cuypers, Ann; Vangronsveld, Jaco

    2012-07-01

    Plant responses to the toxic effects of soil contaminants, such as excess metals or organic substances, have been studied mainly at physiological, biochemical and molecular levels, but the influence on root system architecture has received little attention. Nevertheless, the precise position, morphology and extent of roots can influence contaminant uptake. Here, data are discussed that aim to increase the molecular and ecological understanding of the influence of contaminants on root system architecture. Furthermore, the potential of plant-associated bacteria to influence root growth by their growth-promoting and stress-relieving capacities is explored. Root growth parameters of Arabidopsis thaliana seedlings grown in vertical agar plates are quantified. Mutants are used in a reverse genetics approach to identify molecular components underlying quantitative changes in root architecture after exposure to excess cadmium, copper or zinc. Plant-associated bacteria are isolated from contaminated environments, genotypically and phenotypically characterized, and used to test plant root growth improvement in the presence of contaminants. The molecular determinants of primary root growth inhibition and effects on lateral root density by cadmium were identified. A vertical split-root system revealed local effects of cadmium and copper on root development. However, systemic effects of zinc exposure on root growth reduced both the avoidance of contaminated areas and colonization of non-contaminated areas. The potential for growth promotion and contaminant degradation of plant-associated bacteria was demonstrated by improved root growth of inoculated plants exposed to 2,4-di-nitro-toluene (DNT) or cadmium. Knowledge concerning the specific influence of different contaminants on root system architecture and the molecular mechanisms by which this is achieved can be combined with the exploitation of plant-associated bacteria to influence root development and increase plant stress tolerance, which should lead to more optimal root systems for application in phytoremediation or safer biomass production.

  7. Comparative Analysis of Arabidopsis Ecotypes Reveals a Role for Brassinosteroids in Root Hydrotropism1[OPEN

    PubMed Central

    Wang, Meng; Yuan, Wei; Ren, Yan; Li, Ying; Zhang, Na; Kronzucker, Herbert J.

    2018-01-01

    Plant roots respond to soil moisture gradients and remodel their growth orientation toward water through hydrotropism, a process vital for acclimation to a changing soil environment. Mechanisms underlying the root hydrotropic response, however, remain poorly understood. Here, we examined hydrotropism in 31 Arabidopsis (Arabidopsis thaliana) ecotypes collected from different parts of the world and grown along moisture gradients in a specially designed soil-simulation system. Comparative transcriptome profiling and physiological analyses were carried out on three selected ecotypes, Wassilewskija (Ws), Columbia (Col-0) (strongly hydrotropic), Col-0 (moderately hydrotropic), and C24 (weakly hydrotropic), and in mutant lines with altered root hydrotropic responses. We show that H+ efflux, Ca2+ influx, redox homeostasis, epigenetic regulation, and phytohormone signaling may contribute to root hydrotropism. Among phytohormones, the role of brassinosteroids (BRs) was examined further. In the presence of an inhibitor of BR biosynthesis, the strong hydrotropic response observed in Ws was reduced. The root H+ efflux and primary root elongation also were inhibited when compared with C24, an ecotype that showed a weak hydrotropic response. The BR-insensitive mutant bri1-5 displayed higher rates of root growth inhibition and root curvature on moisture gradients in vertical or oblique orientation when compared with wild-type Ws. We also demonstrate that BRI1 (a BR receptor) interacts with AHA2 (a plasma membrane H+-ATPase) and that their expression patterns are highly coordinated. This synergistic action may contribute to the strong hydrotropism observed in Ws. Our results suggest that BR-associated H+ efflux is critical in the hydrotropic response of Arabidopsis roots. PMID:29439211

  8. On the resilience of nitrogen assimilation by intact roots under starvation, as revealed by isotopic and metabolomic techniques.

    PubMed

    Bathellier, Camille; Tcherkez, Guillaume; Mauve, Caroline; Bligny, Richard; Gout, Elizabeth; Ghashghaie, Jaleh

    2009-09-01

    The response of root metabolism to variations in carbon source availability is critical for whole-plant nitrogen (N) assimilation and growth. However, the effect of changes in the carbohydrate input to intact roots is currently not well understood and, for example, both smaller and larger values of root:shoot ratios or root N uptake have been observed so far under elevated CO(2). In addition, previous studies on sugar starvation mainly focused on senescent or excised organs while an increasing body of data suggests that intact roots may behave differently with, for example, little protein remobilization. Here, we investigated the carbon and nitrogen primary metabolism in intact roots of French bean (Phaseolus vulgaris L.) plants maintained under continuous darkness for 4 days. We combined natural isotopic (15)N/(14)N measurements, metabolomic and (13)C-labeling data and show that intact roots continued nitrate assimilation to glutamate for at least 3 days while the respiration rate decreased. The activity of the tricarboxylic acid cycle diminished so that glutamate synthesis was sustained by the anaplerotic phosphoenolpyruvate carboxylase fixation. Presumably, the pentose phosphate pathway contributed to provide reducing power for nitrate reduction. All the biosynthetic metabolic fluxes were nevertheless down-regulated and, consequently, the concentration of all amino acids decreased. This is the case of asparagine, strongly suggesting that, as opposed to excised root tips, protein remobilization in intact roots remained very low for 3 days in spite of the restriction of respiratory substrates. Copyright (c) 2009 John Wiley & Sons, Ltd.

  9. Testicular cell population dynamics following palmitine hydroxide treatment in male dogs.

    PubMed

    Gupta, R S; Dixit, V P

    1989-04-01

    Palmitine hydroxide isolated from the roots of Berberis chitria administered orally to dogs 30 mg/kg per day for 60 days brings about a consistent impairment of primary and secondary spermatocytes and elongated spermatids (Stages IV-VIII). The primary and secondary spermatocytes were reduced by 60 and 68%, respectively, and the elongated spermatids were decreased by 58%. The number of spermatogonia and Sertoli cells remained unaltered. The production of immature and mature Leydig cells decreased by 66% and 27%, respectively. Protein, sialic acid and glycogen content and acid phosphatase activity of testes and epididymides were lowered to varying extents. Testicular cholesterol was elevated significantly. Weights of the testes and epididymides were significantly reduced. The antispermatogenic action of palmitine hydroxide may be mediated by disturbances in Leydig cell function.

  10. Iron and protein biofortification of cassava: lessons learned.

    PubMed

    Leyva-Guerrero, Elisa; Narayanan, Narayanan N; Ihemere, Uzoma; Sayre, Richard T

    2012-04-01

    Over two hundred and fifty million Africans rely on the starchy root crop cassava (Manihot esculenta) as their primary source of calories. Cassava roots, however, have the lowest protein:energy ratio of all the world's major staple crops. Furthermore, a typical cassava-based diet provides less than 10-20% of the required amounts of iron, zinc, vitamin A and vitamin E. The BioCassava Plus program employed modern biotechnologies to improve the health of Africans through development and delivery of novel cassava germplasm with increased nutrient levels. Here we describe the development of molecular strategies and their outcomes to meet minimum daily allowances for protein and iron in cassava based diets. We demonstrate that cyanogens play a central role in cassava nitrogen metabolism and that strategies employed to increase root protein levels result in reduced cyanogen levels in roots. We also demonstrate that enhancing root iron uptake has an impact on the expression of genes that regulate iron homeostasis in multiple tissues. These observations demonstrate the complex metabolic interactions involved in enhancing targeted nutrient levels in plants and identify potential new strategies for further enhancing nutrient levels in cassava. Published by Elsevier Ltd.

  11. Suberin-Associated Fatty Alcohols in Arabidopsis: Distributions in Roots and Contributions to Seed Coat Barrier Properties1[W

    PubMed Central

    Vishwanath, Sollapura J.; Kosma, Dylan K.; Pulsifer, Ian P.; Scandola, Sabine; Pascal, Stéphanie; Joubès, Jérôme; Dittrich-Domergue, Franziska; Lessire, René; Rowland, Owen; Domergue, Frédéric

    2013-01-01

    Suberin is found in a variety of tissues, such as root endoderms and periderms, storage tuber periderms, tree cork layer, and seed coats. It acts as a hydrophobic barrier to control the movement of water, gases, and solutes as well as an antimicrobial barrier. Suberin consists of polymerized phenolics, glycerol, and a variety of fatty acid derivatives, including primary fatty alcohols. We have conducted an in-depth analysis of the distribution of the C18:0 to C22:0 fatty alcohols in Arabidopsis (Arabidopsis thaliana) roots and found that only 20% are part of the root suberin polymer, together representing about 5% of its aliphatic monomer composition, while the remaining 80% are found in the nonpolymeric (soluble) fraction. Down-regulation of Arabidopsis FATTY ACYL REDUCTASE1 (FAR1), FAR4, and FAR5, which collectively produce the fatty alcohols found in suberin, reduced their levels by 70% to 80% in (1) the polymeric and nonpolymeric fractions from roots of tissue culture-grown plants, (2) the suberin-associated root waxes from 7-week-old soil-grown plants, and (3) the seed coat suberin polymer. By contrast, the other main monomers of suberin were not altered, indicating that reduced levels of fatty alcohols did not influence the suberin polymerization process. Nevertheless, the 75% reduction in total fatty alcohol and diol loads in the seed coat resulted in increased permeability to tetrazolium salts and a higher sensitivity to abscisic acid. These results suggest that fatty alcohols and diols play an important role in determining the functional properties of the seed coat suberin barrier. PMID:24019425

  12. Root Cortical Aerenchyma Enhances Nitrogen Acquisition from Low-Nitrogen Soils in Maize1[W][OPEN

    PubMed Central

    Saengwilai, Patompong; Nord, Eric A.; Chimungu, Joseph G.; Brown, Kathleen M.; Lynch, Jonathan Paul

    2014-01-01

    Suboptimal nitrogen (N) availability is a primary constraint for crop production in developing nations, while in rich nations, intensive N fertilization carries substantial environmental and economic costs. Therefore, understanding root phenes that enhance N acquisition is of considerable importance. Structural-functional modeling predicts that root cortical aerenchyma (RCA) could improve N acquisition in maize (Zea mays). We evaluated the utility of RCA for N acquisition by physiological comparison of maize recombinant inbred lines contrasting in RCA grown under suboptimal and adequate N availability in greenhouse mesocosms and in the field in the United States and South Africa. N stress increased RCA formation by 200% in mesocosms and by 90% to 100% in the field. RCA formation substantially reduced root respiration and root N content. Under low-N conditions, RCA formation increased rooting depth by 15% to 31%, increased leaf N content by 28% to 81%, increased leaf chlorophyll content by 22%, increased leaf CO2 assimilation by 22%, increased vegetative biomass by 31% to 66%, and increased grain yield by 58%. Our results are consistent with the hypothesis that RCA improves plant growth under N-limiting conditions by decreasing root metabolic costs, thereby enhancing soil exploration and N acquisition in deep soil strata. Although potential fitness tradeoffs of RCA formation are poorly understood, increased RCA formation appears be a promising breeding target for enhancing crop N acquisition. PMID:24891611

  13. Effect of 95% Ethanol as a Final Irrigant before Root Canal Obturation in Primary Teeth: An in vitro Study.

    PubMed

    Thiruvenkadam, G; Asokan, Sharath; John, Baby; Priya, Pr Geetha

    2016-01-01

    Successful obturation in the primary teeth demands complete dryness of the root canal system. The purpose of this study was to determine the effect of 95% ethanol as the final irrigant before root canal obturation in primary teeth. A total of 20 extracted primary mandibular canines were biomechanically prepared and pre-obturated volume of each tooth was assessed using spiral computed tomography (CT). The specimens were divided into two groups (n = 10): group 1, Metapex group; group 2, zinc oxide eugenol group. Each group was further divided randomly into two subgroups (n = 5): subgroup 1, canals were dried with 95% ethanol; subgroup 2, canals were blot dried with paper points with the last one appearing dry. All canals were obturated and the postobturated volume of each tooth was measured. The percentage of obturated volume (POV) was calculated using the formula: (postobturated volume/preobturated volume) × 100. The POV between the groups was statistically analyzed using Mann-Whitney test and Wilcoxon Signed rank test appropriately. Root canals that were dried with ethanol showed better obturation than using paper points alone and the difference was statistically significant in both group 1 (p < 0.001) and group 2 (p < 0.002). Drying of the root canal system with 95% ethanol can result in better obturation in the primary teeth. How to cite this article: Thiruvenkadam G, Asokan S, John B, Geetha Priya PR. Effect of 95% Ethanol as a Final Irrigant before Root Canal Obturation in Primary Teeth: An in vitro Study. Int J Clin Pediatr Dent 2016;9(1):21-24.

  14. Rotary Mtwo system versus manual K-file instruments: efficacy in preparing primary and permanent molar root canals.

    PubMed

    Azar, Mohammad-Reza; Mokhtare, Maziar

    2011-01-01

    To compare the cleaning ability and preparation time of rotary instruments (Mtwo) and conventional manual instruments (K-file) in preparing primary and permanent molar root canals. Access cavities were prepared in 70 primary and 70 permanent teeth and India ink was injected into 120 canals of selected molars. The teeth were randomly divided into two main subgroups (n=20) and three control groups (n=10). In each of these main subgroups, either the manual instrument (K-file) or the rotary system (Mtwo) was used to prepare root canals. After cleaning the canals and clearing the teeth, dye removal was evaluated with the help of a stereomicroscope. In addition, the time needed for root canal preparation was recorded by a chronometer. Statistical analyses were done using the Kruskal-Wallis, Mann-Whitney and t tests. With regard to the cleaning ability of root canals, there were no significant differences between the K-file and Mtwo rotary system in primary and permanent teeth in the apical, middle or coronal third of the canals. Moreover, there were no significant differences between primary and permanent teeth prepared with K-files and rotary instruments. In all the groups, shorter times were recorded with the rotary technique. The working time was shorter in primary than in permanent teeth. The Mtwo rotary system showed acceptable cleaning ability in both primary and permanent teeth, and achieved results similar to those of K-files in less time.

  15. Use Root Cause Analysis Teaching Strategy to Train Primary Pre-Service Science Teachers

    ERIC Educational Resources Information Center

    Lu, Chow-chin; Tsai, Chun-wei; Hong, Jon-chao

    2008-01-01

    This study examined the Root Cause Analysis (RCA) teaching strategy on pre-service primary science teachers and instinct pre-service teachers to apply RCA teaching strategy to science curriculums. RCA Teaching Strategy is to coordinates 5 Why Method and Fishbone Diagram. The participants included 18 pre-service primary science teachers and the…

  16. Root-type-specific plasticity in response to localized high nitrate supply in maize (Zea mays).

    PubMed

    Yu, Peng; Hochholdinger, Frank; Li, Chunjian

    2015-10-01

    Shoot-borne roots contribute to most of the nutrient uptake throughout the life cycle of maize (Zea mays). Compared with numerous studies with embryonic roots, detailed information on the phenotypic plasticity of shoot-borne roots in response to a heterogeneous nitrogen supply is scarce. The present study therefore provides a comprehensive profile of fine-scale plastic responses of distinct root types to localized high nitrate supply. Seedlings of the maize inbred line B73 were grown in split-root systems. The anatomy and morphological plasticity of the primary root and the roots initiated from the 2nd, 5th and 7th shoot nodes, and their lateral roots, were studied in response to local high nitrate supply to one side of the root system. In contrast to the insensitivity of axial roots, local high nitrate supply increased the length of 1st-order lateral roots on the primary root and the three whorls of shoot-borne roots at different growth stages, and increased the density of 1st-order lateral roots on the 7th shoot-borne root after silking. The length and density of 2nd-order lateral roots on the three whorls of shoot-borne roots displayed a more flexible response to local high nitrate than 1st-order lateral roots. Root diameter and number, and total area and diameter of metaxylem vessels increased from the primary root to early and then later developed shoot-borne roots, which showed a positive relationship with shoot growth and N accumulation. Maize axial roots and lateral roots responded differently to local high nitrate, and this was related to their function. The extent of morphological plasticity of lateral roots in response to local high nitrate depended on the initiation time of the shoot-borne roots on which the lateral roots developed. Morphological plasticity was higher on 2nd-order than on 1st-order lateral roots. The results suggest that higher order lateral root branching might be a potential target for genetic improvement in future maize breeding. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Progranulin contributes to endogenous mechanisms of pain defense after nerve injury in mice.

    PubMed

    Lim, Hee-Young; Albuquerque, Boris; Häussler, Annett; Myrczek, Thekla; Ding, Aihao; Tegeder, Irmgard

    2012-04-01

    Progranulin haploinsufficiency is associated with frontotemporal dementia in humans. Deficiency of progranulin led to exaggerated inflammation and premature aging in mice. The role of progranulin in adaptations to nerve injury and neuropathic pain are still unknown. Here we found that progranulin is up-regulated after injury of the sciatic nerve in the mouse ipsilateral dorsal root ganglia and spinal cord, most prominently in the microglia surrounding injured motor neurons. Progranulin knockdown by continuous intrathecal spinal delivery of small interfering RNA after sciatic nerve injury intensified neuropathic pain-like behaviour and delayed the recovery of motor functions. Compared to wild-type mice, progranulin-deficient mice developed more intense nociceptive hypersensitivity after nerve injury. The differences escalated with aging. Knockdown of progranulin reduced the survival of dissociated primary neurons and neurite outgrowth, whereas addition of recombinant progranulin rescued primary dorsal root ganglia neurons from cell death induced by nerve growth factor withdrawal. Thus, up-regulation of progranulin after neuronal injury may reduce neuropathic pain and help motor function recovery, at least in part, by promoting survival of injured neurons and supporting regrowth. A deficiency in this mechanism may increase the risk for injury-associated chronic pain. © 2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  18. Abscisic acid accumulation modulates auxin transport in the root tip to enhance proton secretion for maintaining root growth under moderate water stress.

    PubMed

    Xu, Weifeng; Jia, Liguo; Shi, Weiming; Liang, Jiansheng; Zhou, Feng; Li, Qianfeng; Zhang, Jianhua

    2013-01-01

    Maintenance of root growth is essential for plant adaptation to soil drying. Here, we tested the hypothesis that auxin transport is involved in mediating ABA's modulation by activating proton secretion in the root tip to maintain root growth under moderate water stress. Rice and Arabidopsis plants were raised under a hydroponic system and subjected to moderate water stress (-0.47 MPa) with polyethylene glycol (PEG). ABA accumulation, auxin transport and plasma membrane H(+)-ATPase activity at the root tip were monitored in addition to the primary root elongation and root hair density. We found that moderate water stress increases ABA accumulation and auxin transport in the root apex. Additionally, ABA modulation is involved in the regulation of auxin transport in the root tip. The transported auxin activates the plasma membrane H(+)-ATPase to release more protons along the root tip in its adaption to moderate water stress. The proton secretion in the root tip is essential in maintaining or promoting primary root elongation and root hair development under moderate water stress. These results suggest that ABA accumulation modulates auxin transport in the root tip, which enhances proton secretion for maintaining root growth under moderate water stress. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  19. Short-Term Boron Deprivation Inhibits Endocytosis of Cell Wall Pectins in Meristematic Cells of Maize and Wheat Root Apices1

    PubMed Central

    Yu, Qin; Hlavacka, Andrej; Matoh, Toru; Volkmann, Dieter; Menzel, Diedrik; Goldbach, Heiner E.; Baluška, František

    2002-01-01

    By using immunofluorescence microscopy, we observed rapidly altered distribution patterns of cell wall pectins in meristematic cells of maize (Zea mays) and wheat (Triticum aestivum) root apices. This response was shown for homogalacturonan pectins characterized by a low level (up to 40%) of methylesterification and for rhamnogalacturonan II pectins cross-linked by a borate diol diester. Under boron deprivation, abundance of these pectins rapidly increased in cell walls, whereas their internalization was inhibited, as evidenced by a reduced and even blocked accumulation of these cell wall pectins within brefeldin A-induced compartments. In contrast, root cells of species sensitive to the boron deprivation, like zucchini (Cucurbita pepo) and alfalfa (Medicago sativa), do not internalize cell wall pectins into brefeldin A compartments and do not show accumulation of pectins in their cell walls under boron deprivation. For maize and wheat root apices, we favor an apoplastic target for the primary action of boron deprivation, which signals deeper into the cell via endocytosis-mediated pectin signaling along putative cell wall-plasma membrane-cytoskeleton continuum. PMID:12226520

  20. Comparison of the EndoVac system and conventional needle irrigation on removal of the smear layer in primary molar root canals.

    PubMed

    Buldur, B; Kapdan, A

    2017-09-01

    This study aimed to compare the EndoVac system and conventional needle irrigation in removing smear layer (SR) from primary molar root canals. Fifty extracted human primary second molar roots were instrumented up to an apical size of 0.04/35 and randomly divided into two main groups; Group 1: EndoVac system (n = 25) and Group 2: Conventional needle irrigation (n = 25) and three subgroups (a) NaOCl + ethylenediaminetetraacetic acid (EDTA) (n = 20) (b) ozonated water (OW) + EDTA (n = 20) and (c) saline (control, n = 10). After a standardized final irrigation protocol performed for all teeth, scanning electron microscope images were taken at ×1000 magnification for each thirds of each root canal. Data were analyzed by the weighted kappa, Kruskal-Wallis, and Wilcoxon signed rank tests. EndoVac was more effective than conventional needle in the removal of SR from the apical third of the root canal system (P < 0.05). The OW + EDTA regimen provided similar SR removal compared with NaOCl + EDTA. EndoVac has better performance than conventional needle irrigation in the removal of the SR in the apical thirds of the primary molar root canals. As a final irrigation regimen, the OW + EDTA regimen is as effective as the NaOCl + EDTA regimen.

  1. Comparison of the cleaning capacity of Mtwo and Pro Taper rotary systems and manual instruments in primary teeth

    PubMed Central

    Azar, Mohammad Reza; Safi, Laya; Nikaein, Afshin

    2012-01-01

    Background: Root canal cleaning is an important step in endodontic therapy. In order to develop better techniques, a new generation of endodontic instruments has been designed. The aim of this study was to compare the effectiveness of manual K-files (Mani Co, Tokyo, Japan) and two rotary systems–Mtwo (Dentsply-Maillefer, Ballaigues, Switzerland) and ProTaper (VDW, Munich, Germany)–for root canal preparation in primary molars. Materials and Methods: India ink was injected to 160 mesiobuccal and distal root canals of mandibular primary molars. The teeth were randomly divided into three experimental groups and one control group. In each experimental group, either manual instruments (K-files) or rotary instruments (Mtwo or ProTaper) were used to prepare root canals. After cleaning the canals and clearing the teeth, ink removal was evaluated with a stereomicroscope. Statistical analysis was done with Kruskal–Wallis and Friedman tests. Results: There were no significant differences in cleaning efficiency between manual and rotary instruments. Only ProTaper files performed significantly better in the coronal and middle thirds than in the apical third of the root canal. Conclusion: Manual K-files and the Mtwo and ProTaper rotary systems showed equally acceptable cleaning ability in primary molar root canals. PMID:22623929

  2. ABNORMAL INFLORESCENCE MERISTEM1 Functions in Salicylic Acid Biosynthesis to Maintain Proper Reactive Oxygen Species Levels for Root Meristem Activity in Rice

    PubMed Central

    Zhao, Hongyu; Ruan, Wenyuan; Deng, Minjuan; Wang, Fang; Peng, Jinrong; Luo, Jie; Chen, Zhixiang

    2017-01-01

    Root meristem activity determines root growth and root architecture and consequently affects water and nutrient uptake in plants. However, our knowledge about the regulation of root meristem activity in crop plants is very limited. Here, we report the isolation and characterization of a short root mutant in rice (Oryza sativa) with reduced root meristem activity. This root growth defect is caused by a mutation in ABNORMAL INFLORESCENCE MERISTEM1 (AIM1), which encodes a 3-hydroxyacyl-CoA dehydrogenase, an enzyme involved in β-oxidation. The reduced root meristem activity of aim1 results from reduced salicylic acid (SA) levels and can be rescued by SA application. Furthermore, reduced SA levels are associated with reduced levels of reactive oxygen species (ROS) in aim1, likely due to increased expression of redox and ROS-scavenging-related genes, whose increased expression is (at least in part) caused by reduced expression of the SA-inducible transcriptional repressors WRKY62 and WRKY76. Like SA, ROS application substantially increased root length and root meristem activity in aim1. These results suggest that AIM1 is required for root growth in rice due to its critical role in SA biosynthesis: SA maintains root meristem activity through promoting ROS accumulation by inducing the activity of WRKY transcriptional repressors, which repress the expression of redox and ROS-scavenging genes. PMID:28298519

  3. Catechol, a major component of smoke, influences primary root growth and root hair elongation through reactive oxygen species-mediated redox signaling.

    PubMed

    Wang, Ming; Schoettner, Matthias; Xu, Shuqing; Paetz, Christian; Wilde, Julia; Baldwin, Ian T; Groten, Karin

    2017-03-01

    Nicotiana attenuata germinates from long-lived seedbanks in native soils after fires. Although smoke signals have been known to break seed dormancy, whether they also affect seedling establishment and root development remains unclear. In order to test this, seedlings were treated with smoke solutions. Seedlings responded in a dose-dependent manner with significantly increased primary root lengths, due mainly to longitudinal cell elongation, increased numbers of lateral roots and impaired root hair development. Bioassay-driven fractionations and NMR were used to identify catechol as the main active compound for the smoke-induced root phenotype. The transcriptome analysis revealed that mainly genes related to auxin biosynthesis and redox homeostasis were altered after catechol treatment. However, histochemical analyses of reactive oxygen species (ROS) and the inability of auxin applications to rescue the phenotype clearly indicated that highly localized changes in the root's redox-status, rather than in levels of auxin, are the primary effector. Moreover, H 2 O 2 application rescued the phenotype in a dose-dependent manner. Chemical cues in smoke not only initiate seed germination, but also influence seedling root growth; understanding how these cues work provides new insights into the molecular mechanisms by which plants adapt to post-fire environments. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  4. Periodontal and endodontic infectious/inflammatory profile in primary periodontal lesions with secondary endodontic involvement after a calcium hydroxide-based intracanal medication.

    PubMed

    Duque, Thais M; Prado, Maira; Herrera, Daniel R; Gomes, Brenda P F A

    2018-03-23

    The aim of the present study was to investigate the effects of a calcium hydroxide-based intracanal medication (ICM) on periodontal and endodontic infectious/inflammatory contents and on periodontal clinical parameters in teeth with primary periodontal lesion and secondary endodontic involvement. Ten patients with abnormal pulp test results and deep probing depth derived from primary periodontal disease with secondary endodontic involvement were included. Samples were collected from root canals (RC) and periodontal pockets (PP) in order to investigate the microbiological status, levels of endotoxin (LPS), cytokines, and matrix metalloproteinases (MMP), before and after ICM. PCR was used for microbiological assessment. The kinetic-chromogenic LAL assay was used for LPS quantification. Quantikine ELISA kits were used for measurement of IL-1 α, IL-1 β, TNF-α, PGE 2 , MMP-2, MMP-3, MMP-8, MMP-9, and MMP-13 levels. The statistical analyses were made using the Friedman and Wilcoxon tests (p < 0.05). T test was used to compare data on periodontal characteristics. ICM did not reduce the number of microorganisms in PP and RC, except for Fusobacterium nucleatum in RC. There was a significant reduction in LPS, MMPs, IL-1 β, and TNF-α levels in PP after ICM. In RC, LPS, MMP13, PGE 2 , and IL-1β levels remained unaltered (p > 0.05); however, the levels of the other MMPs and cytokines were reduced (p < 0.05). After 1 year of the root canal treatment, tooth mobility was significantly reduced (p ≤ 0.05). The use of a calcium hydroxide-based ICM showed positive effects for periodontal treatment prognosis, as it reduced LPS, cytokine, and MMP levels in periodontal pockets. Patients presenting deep probing depth and undergoing periodontal treatment for at least 6 months, with no positive response to periodontal therapy, might benefit with the endodontic treatment.

  5. Higher Ammonium Transamination Capacity Can Alleviate Glutamate Inhibition on Winter Wheat (Triticum aestivum L.) Root Growth under High Ammonium Stress

    PubMed Central

    Liu, Yang; Tian, Zhongwei; Muhammad, Abid; Zhang, Yixuan; Jiang, Dong; Cao, Weixing; Dai, Tingbo

    2016-01-01

    Most of the studies about NH4+ stress mechanism simply address the effects of free NH4+, failing to recognize the changed nitrogen assimilation products. The objective of this study was to elucidate the effects of glutamate on root growth under high ammonium (NH4+) conditions in winter wheat (Triticum aestivum L.). Hydroponic experiments were conducted using two wheat cultivars, AK58 (NH4+-sensitive) and Xumai25 (NH4+-tolerant) with either 5 mM NH4+ nitrogen (AN) as stress treatment or 5 mM nitrate (NO3-) nitrogen as control. To evaluate the effects of NH4+-assimilation products on plant growth, 1 μM L-methionine sulfoximine (MSO) (an inhibitor of glutamine synthetase (GS)) and 1 mM glutamates (a primary N assimilation product) were added to the solutions, respectively. The AN significantly reduced plant biomass, total root length, surface area and root volume in both cultivars, but less effect was observed in Xumai25. The inhibition effects were alleviated by the application of MSO but strengthened by the application of glutamate. The AN increased the activities of GS, glutamate dehydrogenase (GDH) in both cultivars, resulting in higher glutamate contents. However, its contents were decreased by the application of MSO. Compared to AK58, Xumai25 showed lower glutamate contents due to its higher activities of glutamic-oxaloacetic transaminase (GOT) and glutamic-pyruvic transaminase (GPT). With the indole-3-acetic acid (IAA) contents decreasing in roots, the ratio of shoot to root in IAA was increased, and further increased by the application of glutamate, and reduced by the application of MSO, but the ratio was lower in Xumai25. Meanwhile, the total soluble sugar contents and its root to shoot ratio also showed similar trends. These results indicate that the NH4+-tolerant cultivar has a greater transamination ability to prevent glutamate over-accumulation to maintain higher IAA transport ability, and consequently promoted soluble sugar transport to roots, further maintaining root growth. PMID:27512992

  6. Uncertainty Due to Unsteady Fluid/Structure Interaction for the Ares I Vehicle Traversing the Transonic Regime

    NASA Technical Reports Server (NTRS)

    Bartels, Robert E.

    2012-01-01

    Rapid reduced-order numerical models are being investigated as candidates to simulate the dynamics of a flexible launch vehicle during atmospheric ascent. There has also been the extension of these new approaches to include gust response. These methods are used to perform aeroelastic and gust response analyses at isolated Mach numbers. Such models require a method to time march through a succession of ascent Mach numbers. An approach is presented for interpolating reduced-order models of the unsteady aerodynamics at successive Mach numbers. The transonic Mach number range is considered here since launch vehicles can suffer the highest dynamic loads through this range. Realistic simulations of the flexible vehicle behavior as it traverses this Mach number range are presented. The response of the vehicle due to gusts is computed. Uncertainties in root mean square and maximum bending moment and crew module accelerations are presented due to assumed probability distributions in design parameters, ascent flight conditions, gusts. The primary focus is on the uncertainty introduced by modeling fidelity. It is found that an unsteady reduced order model produces larger excursions in the root mean square loading and accelerations than does a quasi-steady reduced order model.

  7. ARABIDOPSIS HOMOLOG of TRITHORAX1 (ATX1) is required for cell production, patterning, and morphogenesis in root development

    PubMed Central

    Napsucialy-Mendivil, Selene; Alvarez-Venegas, Raúl; Shishkova, Svetlana; Dubrovsky, Joseph G.

    2014-01-01

    ARABIDOPSIS HOMOLOG of TRITHORAX1 (ATX1/SDG27), a known regulator of flower development, encodes a H3K4histone methyltransferase that maintains a number of genes in an active state. In this study, the role of ATX1 in root development was evaluated. The loss-of-function mutant atx1-1 was impaired in primary root growth. The data suggest that ATX1 controls root growth by regulating cell cycle duration, cell production, and the transition from cell proliferation in the root apical meristem (RAM) to cell elongation. In atx1-1, the quiescent centre (QC) cells were irregular in shape and more expanded than those of the wild type. This feature, together with the atypical distribution of T-divisions, the presence of oblique divisions, and the abnormal cell patterning in the RAM, suggests a lack of coordination between cell division and cell growth in the mutant. The expression domain of QC-specific markers was expanded both in the primary RAM and in the developing lateral root primordia of atx1-1 plants. These abnormalities were independent of auxin-response gradients. ATX1 was also found to be required for lateral root initiation, morphogenesis, and emergence. The time from lateral root initiation to emergence was significantly extended in the atx1-1 mutant. Overall, these data suggest that ATX1 is involved in the timing of root development, stem cell niche maintenance, and cell patterning during primary and lateral root development. Thus, ATX1 emerges as an important player in root system architecture. PMID:25205583

  8. Selecting Populus with different adventitious root types for environmental benefits, fiber, and energy

    Treesearch

    Ronald S., Jr. Zalesny; Jill A. Zalesny

    2009-01-01

    Primary roots from seeds, sucker roots in aspens, and adventitious roots (ARs) in poplars and their hybrids are prevalent within the genus Populus. Two AR types develop on hardwood cuttings: (i) lateral roots from either preformed or induced primordia along the length of the cutting and (ii) basal roots from callus at the base of the cutting in...

  9. Morphological and Physiological Responses of Cotton (Gossypium hirsutum L.) Plants to Salinity

    PubMed Central

    Zhang, Lei; Ma, Huijuan; Chen, Tingting; Pen, Jun; Yu, Shuxun; Zhao, Xinhua

    2014-01-01

    Salinization usually plays a primary role in soil degradation, which consequently reduces agricultural productivity. In this study, the effects of salinity on growth parameters, ion, chlorophyll, and proline content, photosynthesis, antioxidant enzyme activities, and lipid peroxidation of two cotton cultivars, [CCRI-79 (salt tolerant) and Simian 3 (salt sensitive)], were evaluated. Salinity was investigated at 0 mM, 80 mM, 160 mM, and 240 mM NaCl for 7 days. Salinity induced morphological and physiological changes, including a reduction in the dry weight of leaves and roots, root length, root volume, average root diameter, chlorophyll and proline contents, net photosynthesis and stomatal conductance. In addition, salinity caused ion imbalance in plants as shown by higher Na+ and Cl− contents and lower K+, Ca2+, and Mg2+ concentrations. Ion imbalance was more pronounced in CCRI-79 than in Simian3. In the leaves and roots of the salt-tolerant cultivar CCRI-79, increasing levels of salinity increased the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), and glutathione reductase (GR), but reduced catalase (CAT) activity. The activities of SOD, CAT, APX, and GR in the leaves and roots of CCRI-79 were higher than those in Simian 3. CAT and APX showed the greatest H2O2 scavenging activity in both leaves and roots. Moreover, CAT and APX activities in conjunction with SOD seem to play an essential protective role in the scavenging process. These results indicate that CCRI-79 has a more effective protection mechanism and mitigated oxidative stress and lipid peroxidation by maintaining higher antioxidant activities than those in Simian 3. Overall, the chlorophyll a, chlorophyll b, and Chl (a+b) contents, net photosynthetic rate and stomatal conductance, SOD, CAT, APX, and GR activities showed the most significant variation between the two cotton cultivars. PMID:25391141

  10. How grow-and-switch gravitropism generates root coiling and root waving growth responses in Medicago truncatula.

    PubMed

    Tan, Tzer Han; Silverberg, Jesse L; Floss, Daniela S; Harrison, Maria J; Henley, Christopher L; Cohen, Itai

    2015-10-20

    Experimental studies show that plant root morphologies can vary widely from straight gravity-aligned primary roots to fractal-like root architectures. However, the opaqueness of soil makes it difficult to observe how environmental factors modulate these patterns. Here, we combine a transparent hydrogel growth medium with a custom built 3D laser scanner to directly image the morphology of Medicago truncatula primary roots. In our experiments, root growth is obstructed by an inclined plane in the growth medium. As the tilt of this rigid barrier is varied, we find Medicago transitions between randomly directed root coiling, sinusoidal root waving, and normal gravity-aligned morphologies. Although these root phenotypes appear morphologically distinct, our analysis demonstrates the divisions are less well defined, and instead, can be viewed as a 2D biased random walk that seeks the path of steepest decent along the inclined plane. Features of this growth response are remarkably similar to the widely known run-and-tumble chemotactic behavior of Escherichia coli bacteria, where biased random walks are used as optimal strategies for nutrient uptake.

  11. Regulation of Growth Response to Water Stress in the Soybean Primary Root. I. Proteomic Analysis Reveals Region-Specific Regulation of Phenylpropanoid Metabolism and Control of Free Iron in the Elongation Zone.

    USDA-ARS?s Scientific Manuscript database

    In water-stressed soybean primary roots, elongation was maintained at well-watered rates in the apical 4 mm (region 1) but was progressively inhibited in the 4-8 mm region (region 2), which exhibits maximum elongation in well-watered roots. These responses are similar to previous results for the mai...

  12. The antimicrobial effectiveness of 25% propolis extract in root canal irrigation of primary teeth.

    PubMed

    Verma, Manjesh Kumar; Pandey, Ramesh Kumar; Khanna, Richa; Agarwal, Jyotsna

    2014-01-01

    The choice of irrigating solution used in root canals of primary teeth is complicated by their complex morphology and paucity of associated literature. Propolis is a natural product that has gained interest in this context due to its antibacterial effectiveness against several endodontic pathogens. The present study was undertaken to assess the potential of water-soluble 25% propolis extract against microorganisms present in root canals of primary teeth during endodontic procedures. The child patients in the age group of 4-7 years with radiographic evidence of carious pulp exposure were included in the study. Definitive selection was done after gaining access into the pulp chamber and root canals of the selected teeth. The clinical and radiographic evidence of pathosis was ruled out for inclusion in the study. The selected teeth were divided into two groups randomly. In Group A 0.9% isotonic saline and in Group B 25% extract water-soluble propolis were used as irrigating solution, respectively. The bacterial samples were collected both pre- and post-irrigation and were transferred for microbial assay. STAISTISTICAL ANALYSIS: Wilcoxon matched signed rank test was used to compare the pre-and post-irrigation bacterial counts. Mann-Whitney test was used to compare the mean change (pre-post) in bacterial colony counts of groups in the study. Antimicrobial effectiveness of 25% water-soluble extract of propolis in the root canals of primary teeth was confirmed in the present study. The reduction in the mean bacterial colony counts of all the isolated bacteria was noticed higher in Group B than Group A. The results of the present study have confirmed that the antibacterial effectiveness of water-soluble extract of propolis in the root canals of primary teeth in vivo. Considering the low toxicity concerns and antibacterial effectiveness, water-soluble extract of 25% propolis can be advocated as a root canal irrigant in endodontic treatment of primary teeth.

  13. The effects of plant nutritional strategy on soil microbial denitrification activity through rhizosphere primary metabolites.

    PubMed

    Guyonnet, Julien P; Vautrin, Florian; Meiffren, Guillaume; Labois, Clément; Cantarel, Amélie A M; Michalet, Serge; Comte, Gilles; Haichar, Feth El Zahar

    2017-04-01

    The aim of this study was to determine (i) whether plant nutritional strategy affects the composition of primary metabolites exuded into the rhizosphere and (ii) the impact of exuded metabolites on denitrification activity in soil. We answered this question by analysing primary metabolite content extracted from the root-adhering soil (RAS) and the roots of three grasses representing different nutrient management strategies: conservative (Festuca paniculata), intermediate (Bromus erectus) and exploitative (Dactylis glomerata). We also investigated the impact of primary metabolites on soil microbial denitrification enzyme activity without carbon addition, comparing for each plant RAS and bulk soils. Our data show that plant nutritional strategy impacts on primary metabolite composition of root extracts or RAS. Further we show, for the first time, that RAS-extracted primary metabolites are probably better indicators to explain plant nutrient strategy than root-extracted ones. In addition, our results show that some primary metabolites present in the RAS were well correlated with soil microbial denitrification activity with positive relationships found between denitrification and the presence of some organic acids and negative ones with the presence of xylose. We demonstrated that the analysis of primary metabolites extracted from the RAS is probably more pertinent to evaluate the impact of plant on soil microbial community functioning. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. SIZ1 Regulation of Phosphate Starvation-Induced Root Architecture Remodeling Involves the Control of Auxin Accumulation1[C][W][OA

    PubMed Central

    Miura, Kenji; Lee, Jiyoung; Gong, Qingqiu; Ma, Shisong; Jin, Jing Bo; Yoo, Chan Yul; Miura, Tomoko; Sato, Aiko; Bohnert, Hans J.; Hasegawa, Paul M.

    2011-01-01

    Phosphate (Pi) limitation causes plants to modulate the architecture of their root systems to facilitate the acquisition of Pi. Previously, we reported that the Arabidopsis (Arabidopsis thaliana) SUMO E3 ligase SIZ1 regulates root architecture remodeling in response to Pi limitation; namely, the siz1 mutations cause the inhibition of primary root (PR) elongation and the promotion of lateral root (LR) formation. Here, we present evidence that SIZ1 is involved in the negative regulation of auxin patterning to modulate root system architecture in response to Pi starvation. The siz1 mutations caused greater PR growth inhibition and LR development of seedlings in response to Pi limitation. Similar root phenotypes occurred if Pi-deficient wild-type seedlings were supplemented with auxin. N-1-Naphthylphthalamic acid, an inhibitor of auxin efflux activity, reduced the Pi starvation-induced LR root formation of siz1 seedlings to a level equivalent to that seen in the wild type. Monitoring of the auxin-responsive reporter DR5::uidA indicated that auxin accumulates in PR tips at early stages of the Pi starvation response. Subsequently, DR5::uidA expression was observed in the LR primordia, which was associated with LR elongation. The time-sequential patterning of DR5::uidA expression occurred earlier in the roots of siz1 as compared with the wild type. In addition, microarray analysis revealed that several other auxin-responsive genes, including genes involved in cell wall loosening and biosynthesis, were up-regulated in siz1 relative to wild-type seedlings in response to Pi starvation. Together, these results suggest that SIZ1 negatively regulates Pi starvation-induced root architecture remodeling through the control of auxin patterning. PMID:21156857

  15. ABNORMAL INFLORESCENCE MERISTEM1 Functions in Salicylic Acid Biosynthesis to Maintain Proper Reactive Oxygen Species Levels for Root Meristem Activity in Rice.

    PubMed

    Xu, Lei; Zhao, Hongyu; Ruan, Wenyuan; Deng, Minjuan; Wang, Fang; Peng, Jinrong; Luo, Jie; Chen, Zhixiang; Yi, Keke

    2017-03-01

    Root meristem activity determines root growth and root architecture and consequently affects water and nutrient uptake in plants. However, our knowledge about the regulation of root meristem activity in crop plants is very limited. Here, we report the isolation and characterization of a short root mutant in rice ( Oryza sativa ) with reduced root meristem activity. This root growth defect is caused by a mutation in ABNORMAL INFLORESCENCE MERISTEM1 ( AIM1 ), which encodes a 3-hydroxyacyl-CoA dehydrogenase, an enzyme involved in β-oxidation. The reduced root meristem activity of aim1 results from reduced salicylic acid (SA) levels and can be rescued by SA application. Furthermore, reduced SA levels are associated with reduced levels of reactive oxygen species (ROS) in aim1 , likely due to increased expression of redox and ROS-scavenging-related genes, whose increased expression is (at least in part) caused by reduced expression of the SA-inducible transcriptional repressors WRKY62 and WRKY76. Like SA, ROS application substantially increased root length and root meristem activity in aim1 These results suggest that AIM1 is required for root growth in rice due to its critical role in SA biosynthesis: SA maintains root meristem activity through promoting ROS accumulation by inducing the activity of WRKY transcriptional repressors, which repress the expression of redox and ROS-scavenging genes. © 2017 American Society of Plant Biologists. All rights reserved.

  16. Microbial profile of root canals of primary teeth with pulp necrosis and periradicular lesion.

    PubMed

    Triches, Thaisa Cezária; de Figueiredo, Luciene Cristina; Feres, Magda; de Freitas, Sérgio Fernando Torres; Zimmermann, Gláucia Santos; Cordeiro, Mabel Mariela Rodríguez

    2014-01-01

    The purpose of this study was to assess the microbial content of root canals of human primary teeth with pulp necrosis and periradicular lesion. Microbial samples were collected from 24 canals of children treated at a pediatric dentistry clinic. Microbiological identification was performed using checker-board DNA-DNA hybridization for 40 different bacteria. Data were analyzed per canal based on the mean count and frequency of each bacterial species. Detectable levels of bacterial species were observed for 35 probes (88%). The most frequent bacteria were Fusobacterium nucleatum sp. nucleatum, Fusobacterium periodonticum, Prevotella melaninogenica, Prevotella nigrescens, and Prevotella intermedia. Facultative species were identified in 20 root canals (83%), anaerobic species were identified in 24 root canals (100%), and aerobic species in 18 root canals (75%). Black-pigmented bacilli were found in 23 samples (96%). The number of different bacterial species detected per canal ranged from five to 33. Endodontic infection in primary teeth with pulp necrosis and periradicular lesion is multimicrobial, including aerobic, facultative, and anaerobic micro-organisms.

  17. 7 CFR 201.56-11 - Knotweed family, Polygonaceae.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) Germination habit: Epigeal dicot. (2) Food reserves: Cotyledons, starchy endosperm. (3) Shoot system: The... development within the test period. (4) Root system: A primary root, with secondary roots developing within... conducting tissue. (ii) Malformed, such as markedly shortened, curled, or thickened. (iii) Watery. (4) Root...

  18. 7 CFR 201.56-11 - Knotweed family, Polygonaceae.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) Germination habit: Epigeal dicot. (2) Food reserves: Cotyledons, starchy endosperm. (3) Shoot system: The... development within the test period. (4) Root system: A primary root, with secondary roots developing within... conducting tissue. (ii) Malformed, such as markedly shortened, curled, or thickened. (iii) Watery. (4) Root...

  19. Graviresponsiveness and abscisic-acid content of roots of carotenoid-deficient mutants of Zea mays L

    NASA Technical Reports Server (NTRS)

    Moore, R.; Smith, J. D.

    1985-01-01

    The abscisic-acid (ABA) content of roots of the carotenoid-deficient w-3, vp-5, and vp-7 mutants of Z. mays was analyzed using gas chromatography-mass spectrometry with an analysis sensitivity of 6 ng ABA g-1 fresh weight (FW). Roots of normal seedlings of the same lines were characterized by the following amounts of ABA (as ng ABA g-1 FW, +/- standard deviation): w-3, 279 +/- 43; vp-5, 237 +/- 26; vp-7, 338 +/- 61. We did not detect any ABA in roots of any of the mutants. Thus, the lack of carotenoids in these mutants correlated positively with the apparent absence of ABA. Primary roots of normal and mutant seedlings were positively gravitropic, with no significant differences in the curvatures of roots of normal as compared with mutant seedlings. These results indicate that ABA 1) is synthesized in maize roots via the carotenoid pathway, and 2) is not necessary for positive gravitropism by primary roots of Z. mays.

  20. Clinical Evaluation of Quality of Obturation and Instrumentation Time using Two Modified Rotary File Systems with Manual Instrumentation in Primary Teeth

    PubMed Central

    Govindaraju, Lavanya; Subramanian, EMG

    2017-01-01

    Introduction Pulp therapy in primary teeth has been performed using various instrumentation techniques. However, the conventional instrumentation technique used for root canal preparation in primary teeth is hand instrumentation. Various Nickel-Titanium (Ni-Ti) instruments are available to perform efficient root canal preparation in primary teeth. These Ni-Ti instruments has been designed to aid in better root canal preparation in permanent teeth but are rarely used in primary teeth. It is necessary to assess the feasibility of using these adult rotary files with a modified sequence in primary teeth. Aim To compare the quality of obturation and instrumentation time during root canal preparation using hand files and modified rotary file systems in primary molars. Materials and Methods Forty-five primary mandibular molars were randomly assigned to three experimental groups (n=15). Group I was instrumented using k-hand files, Group II with S2 ProTaper universal file and Group III with 0.25 tip 4% taper K3 rotary file. Standardized digital radiographs were taken before and after root canal instrumentation. Root canal preparation time was also recorded. Statistical analysis of the obtained data was done using SPSS Software version 17.0. An intergroup comparison of the instrumentation time and the quality of obturation was done using ANOVA and Chi-square test with the level of significance set at 0.05. Results No significant differences were noted with regard to the quality of obturation (p=0.791). However, a statistically significant difference was noted in the instrumentation time between the three groups (p<0.05). ProTaper rotary system had significantly lesser instrumentation time when compared to that of K3 rotary system and hand file system. Conclusion The hand files, S2 ProTaper Universal and K3 0.25 tip 4% taper files systems performed similarly with respect to the quality of obturation. There was a significant difference in instrumentation time with manual instrumentation compared to the modified rotary file systems in primary teeth. PMID:29207834

  1. QTL meta-analysis of root traits in Brassica napus under contrasting phosphorus supply in two growth systems

    PubMed Central

    Zhang, Ying; Thomas, Catherine L.; Xiang, Jinxia; Long, Yan; Wang, Xiaohua; Zou, Jun; Luo, Ziliang; Ding, Guangda; Cai, Hongmei; Graham, Neil S.; Hammond, John P.; King, Graham J.; White, Philip J.; Xu, Fangsen; Broadley, Martin R.; Shi, Lei; Meng, Jinling

    2016-01-01

    A high-density SNP-based genetic linkage map was constructed and integrated with a previous map in the Tapidor x Ningyou7 (TNDH) Brassica napus population, giving a new map with a total of 2041 molecular markers and an average marker density which increased from 0.39 to 0.97 (0.82 SNP bin) per cM. Root and shoot traits were screened under low and ‘normal’ phosphate (Pi) supply using a ‘pouch and wick’ system, and had been screened previously in an agar based system. The P-efficient parent Ningyou7 had a shorter primary root length (PRL), greater lateral root density (LRD) and a greater shoot biomass than the P-inefficient parent Tapidor under both treatments and growth systems. Quantitative trait loci (QTL) analysis identified a total of 131 QTL, and QTL meta-analysis found four integrated QTL across the growth systems. Integration reduced the confidence interval by ~41%. QTL for root and shoot biomass were co-located on chromosome A3 and for lateral root emergence were co-located on chromosomes A4/C4 and C8/C9. There was a major QTL for LRD on chromosome C9 explaining ~18% of the phenotypic variation. QTL underlying an increased LRD may be a useful breeding target for P uptake efficiency in Brassica. PMID:27624881

  2. A Simple Chamber for Long-term Confocal Imaging of Root and Hypocotyl Development.

    PubMed

    Kirchhelle, Charlotte; Moore, Ian

    2017-05-17

    Several aspects of plant development, such as lateral root morphogenesis, occur on time spans of several days. To study underlying cellular and subcellular processes, high resolution time-lapse microscopy strategies that preserve physiological conditions are required. Plant tissues must have adequate nutrient and water supply with sustained gaseous exchange but, when submerged and immobilized under a coverslip, they are particularly susceptible to anoxia. One strategy that has been successfully employed is the use of a perfusion system to maintain a constant supply of oxygen and nutrients. However, such arrangements can be complicated, cumbersome, and require specialized equipment. Presented here is an alternative strategy for a simple imaging system using perfluorodecalin as an immersion medium. This system is easy to set up, requires minimal equipment, and is easily mounted on a microscope stage, allowing several imaging chambers to be set up and imaged in parallel. In this system, lateral root growth rates are indistinguishable from growth rates under standard conditions on agar plates for the first two days, and lateral root growth continues at reduced rates for at least another day. Plant tissues are supplied with nutrients via an agar slab that can be used also to administer a range of pharmacological compounds. The system was established to monitor lateral root development but is readily adaptable to image other plant organs such as hypocotyls and primary roots.

  3. Electrotropism of maize roots. Role of the root cap and relationship to gravitropism

    NASA Technical Reports Server (NTRS)

    Ishikawa, H.; Evans, M. L.

    1990-01-01

    We examined the kinetics of electrotropic curvature in solutions of low electrolyte concentration using primary roots of maize (Zea mays L., variety Merit). When submerged in oxygenated solution across which an electric field was applied, the roots curved rapidly and strongly toward the positive electrode (anode). The strength of the electrotropic response increased and the latent period decreased with increasing field strength. At a field strength of 7.5 volts per centimeter the latent period was 6.6 minutes and curvature reached 60 degrees in about 1 hour. For electric fields greater than 10 volts per centimeter the latent period was less than 1 minute. There was no response to electric fields less than 2.8 volts per centimeter. Both electrotropism and growth were inhibited when indoleacetic acid (10 micromolar) was included in the medium. The auxin transport inhibitor pyrenoylbenzoic acid strongly inhibited electrotropism without inhibiting growth. Electrotropism was enhanced by treatments that interfere with gravitropism, e.g. decapping the roots or pretreating them with ethyleneglycol-bis-[beta-ethylether]-N,N,N',N' -tetraacetic acid. Similarly, roots of agravitropic pea (Pisum sativum, variety Ageotropum) seedlings were more responsive to electrotropic stimulation than roots of normal (variety Alaska) seedlings. The data indicate that the early steps of gravitropism and electrotropism occur by independent mechanisms. However, the motor mechanisms of the two responses may have features in common since auxin and auxin transport inhibitors reduced both gravitropism and electrotropism.

  4. A heterogeneous boron distribution in soil influences the poplar root system architecture development

    NASA Astrophysics Data System (ADS)

    Rees, R.; Robinson, B. H.; Hartmann, S.; Lehmann, E.; Schulin, R.

    2009-04-01

    Poplars are well suited for the phytomanagement of boron (B)-contaminated sites, due to their high transpiration rate and tolerance to elevated soil B concentrations. However, the uptake and the fate of B in poplar stands are not well understood. This information is crucial to improve the design of phytomanagement systems, where the primary role of poplars is to reduce B leaching by reducing the water flux through the contaminated material. Like other trace elements, B occurs heterogeneously in soils. Concentrations can differ up to an order of magnitude within centimetres. These gradients affect plant root growth and thus via preferential flow along the roots water and mass transport in soils to ground and surface waters. Generally there are three possible reactions of plant roots to patches with elevated trace element concentrations in soils: indifference, avoidance, or foraging. While avoidance or indifference might seem to be the most obvious strategies, foraging cannot be excluded a priori, because of the high demand of poplars for B compared to other tree species. We aimed to determine the rooting strategies of poplars in soils where B is either homo- or heterogeneously distributed. We planted 5 cm cuttings of Populus tremula var. Birmensdorf clones in aluminum (Al) containers with internal dimensions of 64 x 67 x 1.2 cm. The soil used was subsoil from northern Switzerland with a naturally low B and organic C concentration. We setup two treatments and a control with three replicates each. We spiked a bigger and a smaller portion of the soil with the same amount of B(OH)3-salt, in order to obtain soil concentrations of 7.5 mg B kg-1 and 20 mg B kg-1. We filled the containers with (a) un-spiked soil, (b) the 7.5 mg B kg-1 soil and (c) heterogeneously. The heterogeneous treatment consisted of one third 20 mg B kg-1 soil and two thirds control soil. We grew the poplars in a small greenhouse over 2 months and from then on in a climate chamber for another 3 months. We irrigated the poplars with modified Hoagland's solution that contained no B. We imaged the roots in the soil every 3rd week using neutron radiography (NR) at the Paul-Scherrer Institute. Living roots can be visualised in soil by NR because of their higher water content compared to the surrounding soil. At the end of the growing period, the Al containers were opened and the soil surface was scanned by a standard office scanner. The soil in the containers was divided into nine equal portions representing different depths and spiked or un-spiked regions in soil profile. We separated roots and soil as well as the aerial parts (stems and leaves). We obtained data on root morphological parameters like root length and root density by evaluating scans of the washed root samples with an image evaluation software. All soil and plant samples were dried, weighed and analyzed for B and mineral nutrients using ICP-OES. Plant vitality parameters like water use, growth and number of living leaves did not show any reaction to the treatments. The oldest poplar leaves from poplars in the B-spiked treatments showed signs of light to serious necrosis. From the neutron radiographs it was apparent that poplar roots reached the walls of the Al- containers during the experiment. Primary roots grew at first strongly in lengths in horizontal as well as in vertical direction and only after this lateral root growth was visible. Although the filling and packing of the containers was done with great care to establish an ideally homogeneous soil profile settlement occurred in some containers resulting in gaps in the profile. However, roots growth did not seem to be deranged since roots simply crossed these gaps and continued growth in the adjacent soil patch. The complete results will be available at the time of the conference.

  5. Pulpal status of human primary teeth with physiological root resorption.

    PubMed

    Monteiro, Joana; Day, Peter; Duggal, Monty; Morgan, Claire; Rodd, Helen

    2009-01-01

    The overall aim of this study was to determine whether any changes occur in the pulpal structure of human primary teeth in association with physiological root resorption. The experimental material comprised 64 sound primary molars, obtained from children requiring routine dental extractions under general anaesthesia. Pulp sections were processed for indirect immunofluorescence using combinations of: (i) protein gene product 9.5 (a general neuronal marker); (ii) leucocyte common antigen CD45 (a general immune cell marker); and (iii) Ulex europaeus I lectin (a marker of vascular endothelium). Image analysis was then used to determine the percentage area of staining for each label within both the pulp horn and mid-coronal region. Following measurement of the greatest degree of root resorption in each sample, teeth were subdivided into three groups: those with physiological resorption involving less than one-third, one-third to two-thirds, and more than two-thirds of their root length. Wide variation was evident between different tooth samples with some resorbed teeth showing marked changes in pulpal histology. Decreased innervation density, increased immune cell accumulation, and increased vascularity were evident in some teeth with advanced root resorption. Analysis of pooled data, however, did not reveal any significant differences in mean percentage area of staining for any of these variables according to the three root resorption subgroups (P > 0.05, analysis of variance on transformed data). This investigation has revealed some changes in pulpal status of human primary teeth with physiological root resorption. These were not, however, as profound as one may have anticipated. It is therefore speculated that teeth could retain the potential for sensation, healing, and repair until advanced stages of root resorption.

  6. Correlation between calmodulin activity and gravitropic sensitivity in primary roots of maize

    NASA Technical Reports Server (NTRS)

    Stinemetz, C. L.; Kuzmanoff, K. M.; Evans, M. L.; Jarrett, H. W.

    1987-01-01

    Recent evidence indicates a role for calcium and calmodulin in the gravitropic response of primary roots of maize (Zea mays, L.). We examined this possibility by testing the relationship between calmodulin activity and gravitropic sensitivity in roots of the maize cultivars Merit and B73 x Missouri 17. Roots of the Merit cultivar require light to the gravitropically competent. The gravitropic response of the Missouri cultivar is independent of light. The occurrence of calmodulin in primary roots of these maize cultivars was tested by affinity gel chromatography followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis with bovine brain calmodulin as standard. The distribution of calmodulin activity was measured using both the phosphodiesterase and NAD kinase assays for calmodulin. These assays were performed on whole tissue segments, crude extracts, and purified extracts. In light-grown seedlings of the Merit cultivar or in either dark- or light-grown seedlings of the Missouri cultivar, calmodulin activity per millimeter of root tissue was about 4-fold higher in the apical millimeter than in the subtending 3 millimeters. Calmodulin activity was very low in the apical millimeter of roots of dark-grown (gravitropically nonresponsive) seedlings of the Merit cultivar. Upon illumination, the calmodulin activity in the apical millimeter increased to a level comparable to that of light-grown seedlings and the roots became gravitropically competent. The time course of the development of gravitropic sensitivity following illumination paralleled the time course of the increase in calmodulin activity in the apical millimeter of the root. The results are consistent with the suggestion that calmodulin plays an important role in the gravitropic response of roots.

  7. Knocking down mitochondrial iron transporter (MIT) reprograms primary and secondary metabolism in rice plants

    PubMed Central

    Vigani, Gianpiero; Bashir, Khurram; Ishimaru, Yasuhiro; Lehmann, Martin; Casiraghi, Fabio Marco; Nakanishi, Hiromi; Seki, Motoaki; Geigenberger, Peter; Zocchi, Graziano; Nishizawa, Naoko K.

    2016-01-01

    Iron (Fe) is an essential micronutrient for plant growth and development, and its reduced bioavailability strongly impairs mitochondrial functionality. In this work, the metabolic adjustment in the rice (Oryza sativa) mitochondrial Fe transporter knockdown mutant (mit-2) was analysed. Biochemical characterization of purified mitochondria from rice roots showed alteration in the respiratory chain of mit-2 compared with wild-type (WT) plants. In particular, proteins belonging to the type II alternative NAD(P)H dehydrogenases accumulated strongly in mit-2 plants, indicating that alternative pathways were activated to keep the respiratory chain working. Additionally, large-scale changes in the transcriptome and metabolome were observed in mit-2 rice plants. In particular, a strong alteration (up-/down-regulation) in the expression of genes encoding enzymes of both primary and secondary metabolism was found in mutant plants. This was reflected by changes in the metabolic profiles in both roots and shoots of mit-2 plants. Significant alterations in the levels of amino acids belonging to the aspartic acid-related pathways (aspartic acid, lysine, and threonine in roots, and aspartic acid and ornithine in shoots) were found that are strictly connected to the Krebs cycle. Furthermore, some metabolites (e.g. pyruvic acid, fumaric acid, ornithine, and oligosaccharides of the raffinose family) accumulated only in the shoot of mit-2 plants, indicating possible hypoxic responses. These findings suggest that the induction of local Fe deficiency in the mitochondrial compartment of mit-2 plants differentially affects the transcript as well as the metabolic profiles in root and shoot tissues. PMID:26685186

  8. Grassland establishment under varying resource availability: a test of positive and negative feedback.

    PubMed

    Baer, Sara G; Blair, John M

    2008-07-01

    The traditional logic of carbon (C) and nitrogen (N) interactions in ecosystems predicts further increases or decreases in productivity (positive feedback) in response to high and low fertility in the soil, respectively; but the potential for development of feedback in ecosystems recovering from disturbance is less well understood. Furthermore, this logic has been challenged in grassland ecosystems where frequent fires or grazing may reduce the contribution of aboveground litter inputs to soil organic matter pools and nutrient supply for plant growth, relative to forest ecosystems. Further, if increases in plant productivity increase soil C content more than soil N content, negative feedback may result from increased microbial demand for N making less available for plant growth. We used a field experiment to test for feedback in an establishing grassland by comparing aboveground net primary productivity (ANPP) and belowground pools and fluxes of C and N in soil with enriched, ambient, and reduced N availability. For eight years annual N enrichment increased ANPP, root N, and root tissue quality, but root C:N ratios remained well above the threshold for net mineralization of N. There was no evidence that N enrichment increased root biomass, soil C or N accrual rates, or storage of C in total, microbial, or mineralizable pools within this time frame. However, the net nitrogen mineralization potential (NMP) rate was greater following eight years of N enrichment, and we attributed this to N saturation of the microbial biomass. Grassland developing under experimentally imposed N limitation through C addition to the soil exhibited ANPP, root biomass and quality, and net NMP rate similar to the ambient soil. Similarity in productivity and roots in the reduced and ambient N treatments was attributed to the potentially high nitrogen-use efficiency (NUE) of the dominant C4 grasses, and increasing cover of legumes over time in the C-amended soil. Thus, in a developing ecosystem, positive feedback between soil N supply and plant productivity may promote enhanced long-term N availability and override progressive N limitation as C accrues in plant and soil pools. However, experimentally imposed reduction in N availability did not feed back to reduce ANPP, possibly due to shifts in NUE and functional group composition.

  9. Arbuscular Mycorrhizal Symbiosis with Arundo donax Decreases Root Respiration and Increases Both Photosynthesis and Plant Biomass Accumulation.

    PubMed

    Romero-Munar, Antònia; Del-Saz, Néstor Fernández; Ribas-Carbó, Miquel; Flexas, Jaume; Baraza, Elena; Florez-Sarasa, Igor; Fernie, Alisdair Robert; Gulías, Javier

    2017-07-01

    The effect of arbuscular mycorrhiza (AM) symbiosis on plant growth is associated with the balance between costs and benefits. A feedback regulation loop has been described in which the higher carbohydrate cost to plants for AM symbiosis is compensated by increases in their photosynthetic rates. Nevertheless, plant carbon balance depends both on photosynthetic carbon uptake and respiratory carbon consumption. The hypothesis behind this research was that the role of respiration in plant growth under AM symbiosis may be as important as that of photosynthesis. This hypothesis was tested in Arundo donax L. plantlets inoculated with Rhizophagus irregularis and Funneliformis mosseae. We tested the effects of AM inoculation on both photosynthetic capacity and in vivo leaf and root respiration. Additionally, analyses of the primary metabolism and ion content were performed in both leaves and roots. AM inoculation increased photosynthesis through increased CO 2 diffusion and electron transport in the chloroplast. Moreover, respiration decreased only in AM roots via the cytochrome oxidase pathway (COP) as measured by the oxygen isotope technique. This decline in the COP can be related to the reduced respiratory metabolism and substrates (sugars and tricarboxylic acid cycle intermediates) observed in roots. © 2017 John Wiley & Sons Ltd.

  10. The action of chlorphenesin carbamate on the frog spinal cord.

    PubMed

    Aihara, H; Kurachi, M; Nakane, S; Sasajima, M; Ohzeki, M

    1980-02-01

    Studies were carried out to elucidate the mechanism of action of chlorphenesin carbamate (CPC) and to compare the effect of the drug with that of mephenesin on the isolated bullfrog spinal cord. Ventral and dorsal root potentials were recorded by means of the sucrose-gap method. CPC caused marked hyperpolarizations and depressed spontaneous activities in both of the primary afferent terminals (PAT) and motoneurons (MN). These hyperpolarizations were observed even in high-Mg2+ and Ca2+-free Ringer's solution, suggesting that CPC has direct actions on PAT and MN. Various reflex potentials (dorsal and ventral root potentials elicited by stimulating dorsal and ventral root, respectively) tended to be depressed by CPC as well as by mephenesin. Excitatory amino acids (L-aspartic acid and L-glutamic acid) caused marked depolarizations in PAT and MN, and increased the firing rate in MN. CPC did not modify the depolarization but abolished the motoneuron firing induced by these amino acids. However, mephenesin reduced both the depolarization and the motoneuron firing. The dorsal and ventral root potentials evoked by tetanic stimulation (40 Hz) of the dorsal root were depressed by the drugs. These results indicate that CPC has an apparent depressing action on the spinal neuron, and this action may be ascribed to the slight hyperpolarization and/or the prolongation of refractory period.

  11. SDG2-Mediated H3K4 Methylation Is Required for Proper Arabidopsis Root Growth and Development

    PubMed Central

    Yao, Xiaozhen; Feng, Haiyang; Yu, Yu; Dong, Aiwu; Shen, Wen-Hui

    2013-01-01

    Trithorax group (TrxG) proteins are evolutionarily conserved in eukaryotes and play critical roles in transcriptional activation via deposition of histone H3 lysine 4 trimethylation (H3K4me3) in chromatin. Several Arabidopsis TrxG members have been characterized, and among them SET DOMAIN GROUP 2 (SDG2) has been shown to be necessary for global genome-wide H3K4me3 deposition. Although pleiotropic phenotypes have been uncovered in the sdg2 mutants, SDG2 function in the regulation of stem cell activity has remained largely unclear. Here, we investigate the sdg2 mutant root phenotype and demonstrate that SDG2 is required for primary root stem cell niche (SCN) maintenance as well as for lateral root SCN establishment. Loss of SDG2 results in drastically reduced H3K4me3 levels in root SCN and differentiated cells and causes the loss of auxin gradient maximum in the root quiescent centre. Elevated DNA damage is detected in the sdg2 mutant, suggesting that impaired genome integrity may also have challenged the stem cell activity. Genetic interaction analysis reveals that SDG2 and CHROMATIN ASSEMBLY FACTOR-1 act synergistically in root SCN and genome integrity maintenance but not in telomere length maintenance. We conclude that SDG2-mediated H3K4me3 plays a distinctive role in the regulation of chromatin structure and genome integrity, which are key features in pluripotency of stem cells and crucial for root growth and development. PMID:23483879

  12. The Arabidopsis WRINKLED1 transcription factor affects auxin homeostasis in roots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kong, Que; Ma, Wei; Yang, Haibing

    WRINKLED1 (WRI1) is a key transcriptional regulator of fatty acid biosynthesis genes in diverse oil-containing tissues. Loss of function of Arabidopsis WRI1 leads to a reduction in the expression of genes for fatty acid biosynthesis and glycolysis, and concomitant strong reduction of seed oil content. The wri1-1 loss-of-function mutant shows reduced primary root growth and decreased acidification of the growth medium. The content of a conjugated form of the plant growth hormone auxin, indole-3-acetic acid (IAA)-Asp, was higher in wri1-1 plants compared with the wild-type. GH3.3, a gene encoding an enzyme involved in auxin degradation, displayed higher expression in themore » wri1-1 mutant. EMSAs demonstrated that AtWRI1 bound to the promoter of GH3.3. Specific AtWRI1-binding motifs were identified in the promoter of GH3.3. In addition, wri1-1 displayed decreased auxin transport. Expression of some PIN genes, which encode IAA carrier proteins, was reduced in wri1-1 plants as well. Correspondingly, AtWRI1 bound to the promoter regions of some PIN genes. It is well known that auxin exerts its maximum effects at a specific, optimal concentration in roots requiring a finely balanced auxin homeostasis. This process appears to be disrupted when the expression of WRI1 and in turn a subset of its target genes are misregulated, highlighting a role for WRI1 in root auxin homeostasis.« less

  13. A Putative Role for the Tomato Genes DUMPY and CURL-3 in Brassinosteroid Biosynthesis and Response1

    PubMed Central

    Koka, Chala V.; Cerny, R. Eric; Gardner, Randy G.; Noguchi, Takahiro; Fujioka, Shozo; Takatsuto, Suguru; Yoshida, Shigeo; Clouse, Steven D.

    2000-01-01

    The dumpy (dpy) mutant of tomato (Lycopersicon esculentum Mill.) exhibits short stature, reduced axillary branching, and altered leaf morphology. Application of brassinolide and castasterone rescued the dpy phenotype, as did C-23-hydroxylated, 6-deoxo intermediates of brassinolide biosynthesis. The brassinolide precursors campesterol, campestanol, and 6-deoxocathasterone failed to rescue, suggesting that dpy may be affected in the conversion of 6-deoxocathasterone to 6-deoxoteasterone, similar to the Arabidopsis constitutive photomorphogenesis and dwarfism (cpd) mutant. Measurements of endogenous brassinosteroid levels by gas chromatography-mass spectrometry were consistent with this hypothesis. To examine brassinosteroid-regulated gene expression in dpy, we performed cDNA subtractive hybridization and isolated a novel xyloglucan endotransglycosylase that is regulated by brassinosteroid treatment. The curl-3 (cu-3) mutant (Lycopersicon pimpinellifolium [Jusl.] Mill.) shows extreme dwarfism, altered leaf morphology, de-etiolation, and reduced fertility, all strikingly similar to the Arabidopsis mutant brassinosteroid insensitive 1 (bri1). Primary root elongation of wild-type L. pimpinellifolium seedlings was strongly inhibited by brassinosteroid application, while cu-3 mutant roots were able to elongate at the same brassinosteroid concentration. Moreover, cu-3 mutants retained sensitivity to indole-3-acetic acid, cytokinins, gibberellin, and abscisic acid while showing hypersensitivity to 2,4-dichlorophenoxyacetic acid in the root elongation assay. The cu-3 root response to hormones, coupled with its bri1-like phenotype, suggests that cu-3 may also be brassinosteroid insensitive. PMID:10631252

  14. The Arabidopsis WRINKLED1 transcription factor affects auxin homeostasis in roots

    DOE PAGES

    Kong, Que; Ma, Wei; Yang, Haibing; ...

    2017-08-26

    WRINKLED1 (WRI1) is a key transcriptional regulator of fatty acid biosynthesis genes in diverse oil-containing tissues. Loss of function of Arabidopsis WRI1 leads to a reduction in the expression of genes for fatty acid biosynthesis and glycolysis, and concomitant strong reduction of seed oil content. The wri1-1 loss-of-function mutant shows reduced primary root growth and decreased acidification of the growth medium. The content of a conjugated form of the plant growth hormone auxin, indole-3-acetic acid (IAA)-Asp, was higher in wri1-1 plants compared with the wild-type. GH3.3, a gene encoding an enzyme involved in auxin degradation, displayed higher expression in themore » wri1-1 mutant. EMSAs demonstrated that AtWRI1 bound to the promoter of GH3.3. Specific AtWRI1-binding motifs were identified in the promoter of GH3.3. In addition, wri1-1 displayed decreased auxin transport. Expression of some PIN genes, which encode IAA carrier proteins, was reduced in wri1-1 plants as well. Correspondingly, AtWRI1 bound to the promoter regions of some PIN genes. It is well known that auxin exerts its maximum effects at a specific, optimal concentration in roots requiring a finely balanced auxin homeostasis. This process appears to be disrupted when the expression of WRI1 and in turn a subset of its target genes are misregulated, highlighting a role for WRI1 in root auxin homeostasis.« less

  15. Impacts of simulated climate change and fungal symbionts on survival and growth of a foundation species in sand dunes.

    PubMed

    Emery, Sarah M; Rudgers, Jennifer A

    2013-12-01

    For many ecosystems, one of the primary avenues of climate impact may be through changes to foundation species, which create habitats and sustain ecosystem services. For plants, microbial symbionts can often act as mutualists under abiotic stress and may mediate foundational plant responses to climate change. We manipulated the presence of endophytes in Ammophila breviligulata, a foundational sand dune species, to evaluate their potential to influence plant responses to climate change. We simulated projected climate change scenarios for temperature and precipitation using a growth chamber experiment. A 5 °C increase in temperature relative to current climate in northern Michigan reduced A. breviligulata survival by 45 %. Root biomass of A. breviligulata, which is critical to dune stabilization, was also strongly reduced by temperature. Plants inoculated with the endophyte had 14 % higher survival than endophyte-free plants. Contrary to our prediction, endophyte symbiosis did not alter the magnitude or direction of the effects of climate manipulations on A. breviligulata survival. However, in the absence of the endophyte, an increase in temperature increased the number of sand grains bound by roots by 80 %, while in symbiotic plants sand adherence did not significantly respond to temperature. Thus, plant-endophyte symbiosis actually negated the benefits in ecosystem function gained under a warmer climate. This study suggests that heat stress related to climate change in the Great Lakes may compromise the ability of A. breviligulata to stabilize dune ecosystems and reduce carbon storage and organic matter build-up in these early-successional systems due to reduced plant survival and root growth.

  16. Aspen Root Sucker Formation and Apical Dominance

    Treesearch

    Robert E. Farmer

    1962-01-01

    Root suckering is the primary mode of regeneration in the aspens, Populus tremuloides Michx. and P. grandidentata Michx. When stems of these species are cut, numerous suckers originating in the root pericycle are formed on their extensive lateral root systems. During their first season of growth, suckers ordinarily reach a height...

  17. 7 CFR 201.56-9 - Mallow family, Malvaceae.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... seed: Cotton, kenaf, and okra. (a) General description. (1) Germination habit: Epigeal dicot. (2) Food... develop on the hypocotyl in cotton. (4) Root system: A primary root, with secondary roots usually developing within the test period. Areas of yellowish pigmentation may develop on the root in cotton. (b...

  18. 7 CFR 201.56-9 - Mallow family, Malvaceae.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... seed: Cotton, kenaf, and okra. (a) General description. (1) Germination habit: Epigeal dicot. (2) Food... develop on the hypocotyl in cotton. (4) Root system: A primary root, with secondary roots usually developing within the test period. Areas of yellowish pigmentation may develop on the root in cotton. (b...

  19. Root production method system

    Treesearch

    Wayne Lovelace

    2002-01-01

    The RPM system (Root Production Method) is a multistep production system of container tree production that places primary emphasis on the root system because the root system ultimately determines the tree's survival and performance in its outplanted environment. This particular container production system has been developed to facilitate volume production, in a...

  20. Incorporation of a dynamic root distribution into CLM4.5: Evaluation of carbon and water fluxes over the Amazon

    NASA Astrophysics Data System (ADS)

    Wang, Yuanyuan; Xie, Zhenghui; Jia, Binghao

    2016-09-01

    Roots are responsible for the uptake of water and nutrients by plants and have the plasticity to dynamically respond to different environmental conditions. However, most land surface models currently prescribe rooting profiles as a function only of vegetation type, with no consideration of the surroundings. In this study, a dynamic rooting scheme, which describes root growth as a compromise between water and nitrogen availability, was incorporated into CLM4.5 with carbon-nitrogen (CN) interactions (CLM4.5-CN) to investigate the effects of a dynamic root distribution on eco-hydrological modeling. Two paired numerical simulations were conducted for the Tapajos National Forest km83 (BRSa3) site and the Amazon, one using CLM4.5-CN without the dynamic rooting scheme and the other including the proposed scheme. Simulations for the BRSa3 site showed that inclusion of the dynamic rooting scheme increased the amplitudes and peak values of diurnal gross primary production (GPP) and latent heat flux (LE) for the dry season, and improved the carbon (C) and water cycle modeling by reducing the RMSE of GPP by 0.4 g C m-2 d-1, net ecosystem exchange by 1.96 g C m-2 d-1, LE by 5.0 W m-2, and soil moisture by 0.03 m3 m-3, at the seasonal scale, compared with eddy flux measurements, while having little impact during the wet season. For the Amazon, regional analysis also revealed that vegetation responses (including GPP and LE) to seasonal drought and the severe drought of 2005 were better captured with the dynamic rooting scheme incorporated.

  1. Genotypic variation in biomass allocation in response to field drought has a greater affect on yield than gas exchange or phenology.

    PubMed

    Edwards, Christine E; Ewers, Brent E; Weinig, Cynthia

    2016-08-24

    Plant performance in agricultural and natural settings varies with moisture availability, and understanding the range of potential drought responses and the underlying genetic architecture is important for understanding how plants will respond to both natural and artificial selection in various water regimes. Here, we raised genotypes of Brassica rapa under well-watered and drought treatments in the field. Our primary goal was to understand the genetic architecture and yield effects of different drought-escape and dehydration-avoidance strategies. Drought treatments reduced soil moisture by 62 % of field capacity. Drought decreased biomass accumulation and fruit production by as much as 48 %, whereas instantaneous water-use efficiency and root:shoot ratio increased. Genotypes differed in the mean value of all traits and in the sensitivity of biomass accumulation, root:shoot ratio, and fruit production to drought. Bivariate correlations involving gas-exchange and phenology were largely constant across environments, whereas those involving root:shoot varied across treatments. Although root:shoot was typically unrelated to gas-exchange or yield under well-watered conditions, genotypes with low to moderate increases in root:shoot allocation in response to drought survived the growing season, maintained maximum photosynthesis levels, and produced more fruit than genotypes with the greatest root allocation under drought. QTL for gas-exchange and yield components (total biomass or fruit production) had common effects across environments while those for root:shoot were often environment-specific. Increases in root allocation beyond those needed to survive and maintain favorable water relations came at the cost of fruit production. The environment-specific effects of root:shoot ratio on yield and the differential expression of QTL for this trait across water regimes have important implications for efforts to improve crops for drought resistance.

  2. Identification and functional analysis of the HvD14 gene involved in strigolactone signaling in Hordeum vulgare.

    PubMed

    Marzec, Marek; Gruszka, Damian; Tylec, Piotr; Szarejko, Iwona

    2016-11-01

    In this study, the barley HvD14 gene encoding α/β hydrolase, which is involved in strigolactone (SL) signaling, was identified. Bioinformatics analysis revealed that the identified gene is an orthologue of the D14, AtD14 and PhDAD2 genes that have been described in rice, Arabidopsis thaliana and petunia, respectively. Using TILLING strategy, an hvd14.d mutant that carried the G725A transition, located in the second exon, was identified. This mutation led to the substitution of a highly conserved glycine-193 to glutamic acid in the conserved fragment of the α/β hydrolase domain of the HvD14 protein. The plants that carry the hvd14.d allele were semi-dwarf and produced a higher number of tillers in comparison to the wild-type (WT) parent cultivar. Additionally, the root architecture of mutant plants was affected: the total length of the seminal roots was significantly reduced, and the density of the lateral roots was higher than in the WT. Plants with the hvd14.d allele were insensitive to treatment with GR24, which is the synthetic analogue of SL. Analysis of the indole-3-acetic acid (IAA) concentration in the lateral buds showed no differences between the WT and mutant plants. By contrast, the WT seedlings treated with GR24 developed a lower number of tillers, longer primary roots with a reduced number of lateral roots and had an increased concentration of IAA in lateral buds. This paper describes the first barley SL mutant and shows the potential functions of SLs in barley growth and development. © 2016 Scandinavian Plant Physiology Society.

  3. Reduced Lateral Root Branching Density Improves Drought Tolerance in Maize1[OPEN

    PubMed Central

    Zhan, Ai; Schneider, Hannah

    2015-01-01

    An emerging paradigm is that root traits that reduce the metabolic costs of soil exploration improve the acquisition of limiting soil resources. Here, we test the hypothesis that reduced lateral root branching density will improve drought tolerance in maize (Zea mays) by reducing the metabolic costs of soil exploration, permitting greater axial root elongation, greater rooting depth, and thereby greater water acquisition from drying soil. Maize recombinant inbred lines with contrasting lateral root number and length (few but long [FL] and many but short [MS]) were grown under water stress in greenhouse mesocosms, in field rainout shelters, and in a second field environment with natural drought. Under water stress in mesocosms, lines with the FL phenotype had substantially less lateral root respiration per unit of axial root length, deeper rooting, greater leaf relative water content, greater stomatal conductance, and 50% greater shoot biomass than lines with the MS phenotype. Under water stress in the two field sites, lines with the FL phenotype had deeper rooting, much lighter stem water isotopic signature, signifying deeper water capture, 51% to 67% greater shoot biomass at flowering, and 144% greater yield than lines with the MS phenotype. These results entirely support the hypothesis that reduced lateral root branching density improves drought tolerance. The FL lateral root phenotype merits consideration as a selection target to improve the drought tolerance of maize and possibly other cereal crops. PMID:26077764

  4. In vitro Hypolipidemic and Antioxidant Effects of Leaf and Root Extracts of Taraxacum Officinale

    PubMed Central

    García-Carrasco, Belén; Fernandez-Dacosta, Raquel; Dávalos, Alberto; Ordovás, José M.; Rodriguez-Casado, Arantxa

    2015-01-01

    Adipose tissue dysfunction constitutes a primary defect in obesity and might link this disease to severe chronic health problems. We aimed to evaluate the antioxidant activity of three extracts from Taraxacum officinale (dandelion) as well as their effects on mature 3T3-L1 adipocytes concerning intracellular lipid accumulation and cytotoxicity, this would give indications regarding therapeutic interest of dandelion as potential anti-obesity candidate. Antioxidant activities of extracts from dandelion roots and leaves were evaluated in vitro using 1,1-diphenyl-2-picrylhyorazyl (DPPH) and Ferric Reducing Antioxidant Power (FRAP) methods at the concentration range used in cellular assays (300–600 µg/mL). The influence of the extracts on mature 3T3-L1 adipocyte viability was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Lipid content was determined by Oil-red-O staining. The extracts showed effective antioxidant activity correlating with total flavonoid and polyphenol contents. However, the functionality level was weakly associated with the antioxidant activity. Further, our data demonstrated that mature 3T3-L1 adipocytes reduced in size and number when incubated with the extracts, which suggests a significant increase in lipolysis activity. Particularly, leaf extract and crude powdered root of dandelion reduced triglyceride accumulation in mature 3T3-L1 adipocytes to a greater extent that the extract from the root. Our study shows anti-lipogenic effects of dandelion extracts on adipocytes as well as radical scavenging and reducing activity. Importantly, along with previous results indicating that cell populations cultivated in the presence of the dandelion extracts decrease in 3T3-L1 adipogenesis capacity, these results suggests that these extracts might represent a treatment option for obesity-related diseases by affecting different processes during the adipocyte life cycle. PMID:29083390

  5. Cytochemical localization of calcium in cap cells of primary roots of Zea mays L

    NASA Technical Reports Server (NTRS)

    Moore, R.

    1985-01-01

    The cellular distribution of Ca in caps of primary roots of Zea mays was examined during the onset and early stages of gravicurvature to determine its possible role in root gravitropism. Staining becomes associated with the portion of the cell wall adjacent to the distal end of the cell after five minutes, and persists throughout the onset of gravicurvature. The outermost peripheral cells of roots oriented horizontally and vertically secrete Ca through plasmodesmata-like channels in their cell walls. Data suggest that Ca is not transported laterally through the columella tissue,but rather that the movement of Ca to the lower side of caps of horizontally-oriented roots is at least partially through and/or on the mucilage of the cap, and via an electrochemical gradient. An important role in root gravitropism is indicated for Ca secretion by peripheral cells.

  6. Assays for root hydrotropism and response to water stress.

    PubMed

    Eapen, Delfeena; Martínez, Jesús J; Cassab, Gladys I

    2015-01-01

    Roots of most terrestrial plants show hydrotropic curvature when exposed to a moisture gradient. Though this root response is difficult to visualize in the soil habitat, there are reports of hydrotropism as an inherent response of primary roots of different plant species, such as Arabidopsis thaliana, Pisum sativum, and Zea mays L., from in vitro system studies. Many plant species use hydrotropism as a mechanism of avoidance to water stress. The actively growing root tip has the ability to change its direction towards greater water availability by differential growth in the elongation zone. The study of this tropic response has been challenged by the interaction of gravitropism, thigmotropism and possibly phototropism. It is hard to visualize hydrotropic curvature in vitro unless all other stimuli are neutralized by the presence of a moisture gradient. In this chapter, we describe methods for preparation of two assay systems used to visualize hydrotropic curvature in the primary roots of Arabidopsis and one moisture gradient system used for maize root seedlings.

  7. A note on subtrees rooted along the primary path of a binary tree

    USGS Publications Warehouse

    Troutman, B.M.; Karlinger, M.R.

    1993-01-01

    Let Fn denote the set of rooted binary plane trees with n external nodes, for given T???Fn let ui(T) be the altitude i node along the primary path of T, and let ??i(T) denote the number of external nodes in the induced subtree rooted at ui(T). We set ??i(T) = 0 if i is greater than the length of the primary path of T. We prove limn?????? ???i???x/n En{??i}/???i

  8. Persistent pain after spinal cord injury is maintained by primary afferent activity.

    PubMed

    Yang, Qing; Wu, Zizhen; Hadden, Julia K; Odem, Max A; Zuo, Yan; Crook, Robyn J; Frost, Jeffrey A; Walters, Edgar T

    2014-08-06

    Chronic pain caused by insults to the CNS (central neuropathic pain) is widely assumed to be maintained exclusively by central mechanisms. However, chronic hyperexcitablility occurs in primary nociceptors after spinal cord injury (SCI), suggesting that SCI pain also depends upon continuing activity of peripheral sensory neurons. The present study in rats (Rattus norvegicus) found persistent upregulation after SCI of protein, but not mRNA, for a voltage-gated Na(+) channel, Nav1.8, that is expressed almost exclusively in primary afferent neurons. Selectively knocking down Nav1.8 after SCI suppressed spontaneous activity in dissociated dorsal root ganglion neurons, reversed hypersensitivity of hindlimb withdrawal reflexes, and reduced ongoing pain assessed by a conditioned place preference test. These results show that activity in primary afferent neurons contributes to ongoing SCI pain. Copyright © 2014 the authors 0270-6474/14/3410765-05$15.00/0.

  9. Touch and gravitropic set-point angle interact to modulate gravitropic growth in roots

    NASA Technical Reports Server (NTRS)

    Massa, G. D.; Gilroy, S.

    2003-01-01

    Plant roots must sense and respond to a variety of environmental stimuli as they grow through the soil. Touch and gravity represent two of the mechanical signals that roots must integrate to elicit the appropriate root growth patterns and root system architecture. Obstacles such as rocks will impede the general downwardly directed gravitropic growth of the root system and so these soil features must be sensed and this information processed for an appropriate alteration in gravitropic growth to allow the root to avoid the obstruction. We show that primary and lateral roots of Arabidopsis do appear to sense and respond to mechanical barriers placed in their path of growth in a qualitatively similar fashion. Both types of roots exhibited a differential growth response upon contacting the obstacle that directed the main axis of elongation parallel to the barrier. This growth habit was maintained until the obstacle was circumvented, at which point normal gravitropic growth was resumed. Thus, the gravitational set-point angle of the primary and lateral roots prior to encountering the barrier were 95 degrees and 136 degrees respectively and after growing off the end of the obstacle identical set-point angles were reinstated. However, whilst tracking across the barrier, quantitative differences in response were observed between these two classes of roots. The root tip of the primary root maintained an angle of 136 degrees to the horizontal as it traversed the barrier whereas the lateral roots adopted an angle of 154 degrees. Thus, this root tip angle appeared dependent on the gravitropic set-point angle of the root type with the difference in tracking angle quantitatively reflecting differences in initial set-point angle. Concave and convex barriers were also used to analyze the response of the root to tracking along a continuously varying surface. The roots maintained the a fairly fixed angle to gravity on the curved surface implying a constant resetting of this tip angle/tracking response as the curve of the surface changed. We propose that the interaction of touch and gravity sensing/response systems combine to strictly control the tropic growth of the root. Such signal integration is likely a critical part of growth control in the stimulus-rich environment of the soil. c2003 COSPAR. Published by Elsevier Ltd. All rights reserved.

  10. Partially arrested root formation in a permanent maxillary central incisor subsequent to trauma to the primary dentition.

    PubMed

    Nagatani, S; Mathieu, G P

    1994-02-01

    When the primary dentition sustains a traumatic insult, the development of the succedaneous teeth can be disturbed leading to a number of malformations. In this case report, the patient presented with a history of prior trauma to his primary maxillary incisors which resulted in partially arrested root formation for a permanent incisor. The considerations in formulating a treatment plan which included orthodontics are discussed.

  11. The Arabidopsis bZIP11 transcription factor links low-energy signalling to auxin-mediated control of primary root growth

    PubMed Central

    Weiste, Christoph; Pedrotti, Lorenzo; Muralidhara, Prathibha; Ljung, Karin; Dröge-Laser, Wolfgang

    2017-01-01

    Plants have to tightly control their energy homeostasis to ensure survival and fitness under constantly changing environmental conditions. Thus, it is stringently required that energy-consuming stress-adaptation and growth-related processes are dynamically tuned according to the prevailing energy availability. The evolutionary conserved SUCROSE NON-FERMENTING1 RELATED KINASES1 (SnRK1) and the downstream group C/S1 basic leucine zipper (bZIP) transcription factors (TFs) are well-characterised central players in plants’ low-energy management. Nevertheless, mechanistic insights into plant growth control under energy deprived conditions remains largely elusive. In this work, we disclose the novel function of the low-energy activated group S1 bZIP11-related TFs as regulators of auxin-mediated primary root growth. Whereas transgenic gain-of-function approaches of these bZIPs interfere with the activity of the root apical meristem and result in root growth repression, root growth of loss-of-function plants show a pronounced insensitivity to low-energy conditions. Based on ensuing molecular and biochemical analyses, we propose a mechanistic model, in which bZIP11-related TFs gain control over the root meristem by directly activating IAA3/SHY2 transcription. IAA3/SHY2 is a pivotal negative regulator of root growth, which has been demonstrated to efficiently repress transcription of major auxin transport facilitators of the PIN-FORMED (PIN) gene family, thereby restricting polar auxin transport to the root tip and in consequence auxin-driven primary root growth. Taken together, our results disclose the central low-energy activated SnRK1-C/S1-bZIP signalling module as gateway to integrate information on the plant’s energy status into root meristem control, thereby balancing plant growth and cellular energy resources. PMID:28158182

  12. The Arabidopsis bZIP11 transcription factor links low-energy signalling to auxin-mediated control of primary root growth.

    PubMed

    Weiste, Christoph; Pedrotti, Lorenzo; Selvanayagam, Jebasingh; Muralidhara, Prathibha; Fröschel, Christian; Novák, Ondřej; Ljung, Karin; Hanson, Johannes; Dröge-Laser, Wolfgang

    2017-02-01

    Plants have to tightly control their energy homeostasis to ensure survival and fitness under constantly changing environmental conditions. Thus, it is stringently required that energy-consuming stress-adaptation and growth-related processes are dynamically tuned according to the prevailing energy availability. The evolutionary conserved SUCROSE NON-FERMENTING1 RELATED KINASES1 (SnRK1) and the downstream group C/S1 basic leucine zipper (bZIP) transcription factors (TFs) are well-characterised central players in plants' low-energy management. Nevertheless, mechanistic insights into plant growth control under energy deprived conditions remains largely elusive. In this work, we disclose the novel function of the low-energy activated group S1 bZIP11-related TFs as regulators of auxin-mediated primary root growth. Whereas transgenic gain-of-function approaches of these bZIPs interfere with the activity of the root apical meristem and result in root growth repression, root growth of loss-of-function plants show a pronounced insensitivity to low-energy conditions. Based on ensuing molecular and biochemical analyses, we propose a mechanistic model, in which bZIP11-related TFs gain control over the root meristem by directly activating IAA3/SHY2 transcription. IAA3/SHY2 is a pivotal negative regulator of root growth, which has been demonstrated to efficiently repress transcription of major auxin transport facilitators of the PIN-FORMED (PIN) gene family, thereby restricting polar auxin transport to the root tip and in consequence auxin-driven primary root growth. Taken together, our results disclose the central low-energy activated SnRK1-C/S1-bZIP signalling module as gateway to integrate information on the plant's energy status into root meristem control, thereby balancing plant growth and cellular energy resources.

  13. Reciprocating vs Rotary Instrumentation in Pediatric Endodontics: Cone Beam Computed Tomographic Analysis of Deciduous Root Canals using Two Single-file Systems.

    PubMed

    Prabhakar, Attiguppe R; Yavagal, Chandrashekar; Dixit, Kratika; Naik, Saraswathi V

    2016-01-01

    Primary root canals are considered to be most challenging due to their complex anatomy. "Wave one" and "one shape" are single-file systems with reciprocating and rotary motion respectively. The aim of this study was to evaluate and compare dentin thickness, centering ability, canal transportation, and instrumentation time of wave one and one shape files in primary root canals using a cone beam computed tomographic (CBCT) analysis. This is an experimental, in vitro study comparing the two groups. A total of 24 extracted human primary teeth with minimum 7 mm root length were included in the study. Cone beam computed tomographic images were taken before and after the instrumentation for each group. Dentin thickness, centering ability, canal transportation, and instrumentation times were evaluated for each group. A significant difference was found in instrumentation time and canal transportation measures between the two groups. Wave one showed less canal transportation as compared with one shape, and the mean instrumentation time of wave one was significantly less than one shape. Reciprocating single-file systems was found to be faster with much less procedural errors and can hence be recommended for shaping the root canals of primary teeth. How to cite this article: Prabhakar AR, Yavagal C, Dixit K, Naik SV. Reciprocating vs Rotary Instrumentation in Pediatric Endodontics: Cone Beam Computed Tomographic Analysis of Deciduous Root Canals using Two Single-File Systems. Int J Clin Pediatr Dent 2016;9(1):45-49.

  14. Molecular characterization of the microbial flora residing at the apical portion of infected root canals of human teeth.

    PubMed

    Chugal, Nadia; Wang, Jen-Kuei; Wang, Renke; He, Xuesong; Kang, Mo; Li, Jiyao; Zhou, Xuedong; Shi, Wenyuan; Lux, Renate

    2011-10-01

    This study investigated the bacterial communities residing in the apical portion of human teeth with apical periodontitis in primary and secondary infections by using a culture-independent molecular biology approach. Root canal samples from the apical root segments of extracted teeth were collected from 18 teeth with necrotic pulp and 8 teeth with previous endodontic treatment. Samples were processed for amplification via polymerase chain reaction and separated with denaturing gradient gel electrophoresis. Selected bands were excised from the gel and sequenced for identification. Comparable to previous studies of entire root canals, the apical bacterial communities in primary infections were significantly more diverse than in secondary infections (P = .0003). Interpatient and intrapatient comparisons exhibited similar variations in profiles. Different roots of the same teeth with secondary infections displayed low similarity in bacterial composition, whereas an equivalent sample collected from primary infection contained almost identical populations. Sequencing revealed a high prevalence of Fusobacteria, Actinomyces species, and oral Anaeroglobus geminatus in both types of infection. Many secondary infections contained Burkholderiales or Pseudomonas species, both of which represent opportunistic environmental pathogens. Certain microorganisms exhibit similar prevalence in primary and secondary infection, indicating that they are likely not eradicated during endodontic treatment. The presence of Burkholderiales and Pseudomonas species underscores the problem of environmental contamination. Treatment appears to affect the various root canals of multirooted teeth differently, resulting in local changes of the microbiota. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  15. Effects of water deficit on radicle apex elongation and solute accumulation in Zea mays L.

    PubMed

    Velázquez-Márquez, S; Conde-Martínez, V; Trejo, C; Delgado-Alvarado, A; Carballo, A; Suárez, R; Mascorro, J O; Trujillo, A R

    2015-11-01

    In this study, we examined the effects of water deficit on the elongation of radicles of maize seedlings and on the accumulation of solutes in the radicle apices of two maize varieties: VS-22 (tolerant) and AMCCG-2 (susceptible). Sections of radicle corresponding to the first 2 mm of the primary roots were marked with black ink, and the seedlings were allowed to grow for 24, 48, and 72 h in polyvinyl chloride (PVC) tubes filled with vermiculite at three different water potentials (Ψ(w), -0.03, -1.0, and -1.5 MPa). The radicle elongation, sugar accumulation, and proline accumulation were determined after each of the growth periods specified above. The Ψ(w) of the substrate affected the dynamics of primary root elongation in both varieties. In particular, the lowest Ψ(w) (-1.5 MPa) inhibited root development by 72% and 90% for the VS-22 and AMCCG-2 varieties, respectively. The osmotic potential (Ψ(o)) was reduced substantially in both varieties to maintain root turgor; however, VS-22 had a higher root turgor (0.67 MPa) than AMCCG-2 (0.2 MPa). These results suggest that both varieties possess a capacity for osmotic adjustment. Sugar began to accumulate within the first 24 h of radicle apex growth. The sugar concentration was higher in VS-22 root apices compared to AMCCG-2, and the amount of sugar accumulation increased with a decrease in Ψ(w). Significant amounts of trehalose accumulated in VS-22 and AMCCG-2 (29.8 μmol/g fresh weight [FW] and 5.24 μmol/g FW, respectively). Starch accumulation in the root apices of these two maize varieties also differed significantly, with a lower level in VS-22. In both varieties, the proline concentration also increased as a consequence of the water deficit. At 72 h, the proline concentration in VS-22 (16.2 μmol/g FW) was almost 3 times greater than that in AMCCG-2 (5.19 μmol/g FW). Trehalose also showed a 3-fold increase in the tolerant variety. Accumulation of these solutes in the root growth zone may indicate an osmotic adjustment (OA) to maintain turgor pressure. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  16. Characterization of thermotropism in primary roots of maize: dependence on temperature and temperature gradient, and interaction with gravitropism

    NASA Technical Reports Server (NTRS)

    Poff, K. L.

    1991-01-01

    Thermotropism in primary roots of Zea mays L. was studied with respect to gradient strength (degrees C cm-1), temperature of exposure within a gradient, pre-treatment temperature, and gravitropic stimulation. The magnitude of the response decreased with gradient strength. Maximum thermotropism was independent of gradient strength and pre-treatment temperature. The range of temperature for positive and negative thermotropism did not change with pre-treatment temperature. However, the exact range of temperatures for positive and negative thermotropism varied with gradient strengths. In general, temperatures of exposure lower than 25 degrees C resulted in positive tropic responses while temperatures of exposure of 39 degrees C or more resulted in negative tropic responses. Thermotropism was shown to modify and reverse the normal gravitropic curvature of a horizontal root when thermal gradients were applied opposite the 1 g vector. It is concluded that root thermotropism is a consequence of thermal sensing and that the curvature of the primary root results from the interaction of the thermal and gravitational sensing systems.

  17. EFFECTS OF OZONE ON ROOT PROCESSES

    EPA Science Inventory

    Ozone alters root growth and root processes by first reducing photosynthesis and altering foliar metabolic pathways. The alteration in foliar metabolism is reflected in lowered carbohydrate levels in the roots. This can reduce key metabolic processes such as mineral uptake and sy...

  18. Karaya root saponin exerts a hypocholesterolemic response in rats fed a high-cholesterol diet.

    PubMed

    Afrose, Sadia; Hossain, Md S; Maki, Takaaki; Tsujii, Hirotada

    2009-05-01

    Different sources of saponins are known to have hypocholesterolemic activity with varying degrees of efficacy. We hypothesize that karaya root saponin would efficiently reduce cholesterol. The aim of this study is to examine the comparative hypocholesterolemic effect of karaya root saponin in rats fed a high-cholesterol diet. Sixty male Wister-Imamichi rats were divided into 5 groups of 12 rats each constituting of the following: control group, soybean saponin-supplemented group, karaya root saponin-supplemented group, quillaja saponin-supplemented group, and tea saponin-supplemented group. Compared with the control diet, both the karaya root- and quillaja saponin-supplemented diets significantly reduced (P < .05) serum cholesterol and atherogenic index. Karaya root saponin significantly increased the serum high-density lipoprotein cholesterol, high-density lipoprotein cholesterol/cholesterol ratio, and fecal cholesterol concentrations (P < .05). The triacylglycerol concentration was significantly reduced only in the quillaja saponin-supplemented rats (P < .05). All the tea, soybean, karaya root, and quillaja saponins significantly reduced low-density lipoprotein cholesterol, and the greatest reduction was observed with karaya root saponin. Highest fecal bile acid concentration was found with quillaja saponin, whereas highest liver bile acid concentration was observed with karaya root saponin-supplemented rats (P < .05). These results collectively suggest that karaya root saponin can efficiently reduce serum cholesterol concentration in rats.

  19. Drought-Up-Regulated TaNAC69-1 is a Transcriptional Repressor of TaSHY2 and TaIAA7, and Enhances Root Length and Biomass in Wheat.

    PubMed

    Chen, Dandan; Richardson, Terese; Chai, Shoucheng; Lynne McIntyre, C; Rae, Anne L; Xue, Gang-Ping

    2016-10-01

    A well-known physiological adaptation process of plants encountering drying soil is to achieve water balance by reducing shoot growth and maintaining or promoting root elongation, but little is known about the molecular basis of this process. This study investigated the role of a drought-up-regulated Triticum aestivum NAC69-1 (TaNAC69-1) in the modulation of root growth in wheat. TaNAC69-1 was predominantly expressed in wheat roots at the early vegetative stage. Overexpression of TaNAC69-1 in wheat roots using OsRSP3 (essentially root-specific) and OsPIP2;3 (root-predominant) promoters resulted in enhanced primary seminal root length and a marked increase in maturity root biomass. Competitive growth analysis under water-limited conditions showed that OsRSP3 promoter-driven TaNAC69-1 transgenic lines produced 32% and 35% more above-ground biomass and grains than wild-type plants, respectively. TaNAC69-1 overexpression in the roots down-regulated the expression of TaSHY2 and TaIAA7, which are from the auxin/IAA (Aux/IAA) transcriptional repressor gene family and are the homologs of negative root growth regulators SHY2/IAA3 and IAA7 in Arabidopsis. The expression of TaSHY2 and TaIAA7 in roots was down-regulated by drought stress and up-regulated by cytokinin treatment, which inhibited root growth. DNA binding and transient expression analyses revealed that TaNAC69-1 bound to the promoters of TaSHY2 and TaIAA7, acted as a transcriptional repressor and repressed the expression of reporter genes driven by the TaSHY2 or TaIAA7 promoter. These data suggest that TaNAC69-1 is a transcriptional repressor of TaSHY2 and TaIAA7 homologous to Arabidopsis negative root growth regulators and is likely to be involved in promoting root elongation in drying soil. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. Effect of nitrate on nodule and root growth of soybean (Glycine max (L.) Merr.).

    PubMed

    Saito, Akinori; Tanabata, Sayuri; Tanabata, Takanari; Tajima, Seiya; Ueno, Manabu; Ishikawa, Shinji; Ohtake, Norikuni; Sueyoshi, Kuni; Ohyama, Takuji

    2014-03-13

    The application of combined nitrogen, especially nitrate, to soybean plants is known to strongly inhibit nodule formation, growth and nitrogen fixation. In the present study, we measured the effects of supplying 5 mM nitrate on the growth of nodules, primary root, and lateral roots under light at 28 °C or dark at 18 °C conditions. Photographs of the nodulated roots were periodically taken by a digital camera at 1-h intervals, and the size of the nodules was measured with newly developed computer software. Nodule growth was depressed approximately 7 h after the addition of nitrate under light conditions. The nodule growth rate under dark conditions was almost half that under light conditions, and nodule growth was further suppressed by the addition of 5 mM nitrate. Similar results were observed for the extending growth rate of the primary root as those for nodule growth supplied with 5 mM nitrate under light/dark conditions. In contrast, the growth of lateral roots was promoted by the addition of 5 mM nitrate. The 2D-PAGE profiles of nodule protein showed similar patterns between the 0 and 5 mM nitrate treatments, which suggested that metabolic integrity may be maintained with the 5 mM nitrate treatment. Further studies are required to confirm whether light or temperature condition may give the primary effect on the growth of nodules and roots.

  1. Morphometric analysis of epidermal differentiation in primary roots of Zea mays

    NASA Technical Reports Server (NTRS)

    Moore, R.; Smith, H. S.

    1990-01-01

    Epidermal differentiation in primary roots of Zea mays was divided into six cell types based on cellular shape and cytoplasmic appearance. These six cell types are: 1) apical protoderm, located at the tip of the root pole and characterized by periclinally flattened cells; 2) cuboidal protoderm, located approximately 230 microns from the root pole and characterized by cuboidal cells; 3) tabular epidermis, located approximately 450 microns from the root pole and characterized by anticlinally flattened cells; 4) cuboidal epidermis, located approximately 900 microns from the root pole and characterized by cuboidal cells having numerous small vacuoles; 5) vacuolate cuboidal epidermis, located approximately 1,500 microns from the root pole and characterized by cuboidal cells containing several large vacuoles; and 6) columnar epidermis, located approximately 2,200 microns from the root pole (i.e., at the beginning of the zone of elongation) and characterized by elongated cells. We also used stereology to quantify the cellular changes associated with epidermal differentiation. The quiescent center and the apical protoderm have significantly different ultrastructures. The relative volume of dictyosomes increases dramatically during the early stages of epidermal differentiation. This increase correlates inversely with the amount of coverage provided by the root cap and mucilage.

  2. Mapping the functional roles of cap cells in the response of Arabidopsis primary roots to gravity

    NASA Technical Reports Server (NTRS)

    Blancaflor, E. B.; Fasano, J. M.; Gilroy, S.; Evans, M. L. (Principal Investigator)

    1998-01-01

    The cap is widely accepted to be the site of gravity sensing in roots because removal of the cap abolishes root curvature. Circumstantial evidence favors the columella cells as the gravisensory cells because amyloplasts (and often other cellular components) are polarized with respect to the gravity vector. However, there has been no functional confirmation of their role. To address this problem, we used laser ablation to remove defined cells in the cap of Arabidopsis primary roots and quantified the response of the roots to gravity using three parameters: time course of curvature, presentation time, and deviation from vertical growth. Ablation of the peripheral cap cells and tip cells did not alter root curvature. Ablation of the innermost columella cells caused the strongest inhibitory effect on root curvature without affecting growth rates. Many of these roots deviated significantly from vertical growth and had a presentation time 6-fold longer than the controls. Among the two inner columella stories, the central cells of story 2 contributed the most to root gravitropism. These cells also exhibited the largest amyloplast sedimentation velocities. Therefore, these results are consistent with the starch-statolith sedimentation hypothesis for gravity sensing.

  3. A new phenotyping pipeline reveals three types of lateral roots and a random branching pattern in two cereals.

    PubMed

    Passot, Sixtine; Moreno-Ortega, Beatriz; Moukouanga, Daniel; Balsera, Crispulo; Guyomarc'h, Soazig; Lucas, Mikael; Lobet, Guillaume; Laplaze, Laurent; Muller, Bertrand; Guédon, Yann

    2018-05-11

    Recent progress in root phenotyping has focused mainly on increasing throughput for genetic studies while identifying root developmental patterns has been comparatively underexplored. We introduce a new phenotyping pipeline for producing high-quality spatio-temporal root system development data and identifying developmental patterns within these data. The SmartRoot image analysis system and temporal and spatial statistical models were applied to two cereals, pearl millet (Pennisetum glaucum) and maize (Zea mays). Semi-Markov switching linear models were used to cluster lateral roots based on their growth rate profiles. These models revealed three types of lateral roots with similar characteristics in both species. The first type corresponds to fast and accelerating roots, the second to rapidly arrested roots, and the third to an intermediate type where roots cease elongation after a few days. These types of lateral roots were retrieved in different proportions in a maize mutant affected in auxin signaling, while the first most vigorous type was absent in maize plants exposed to severe shading. Moreover, the classification of growth rate profiles was mirrored by a ranking of anatomical traits in pearl millet. Potential dependencies in the succession of lateral root types along the primary root were then analyzed using variable-order Markov chains. The lateral root type was not influenced by the shootward neighbor root type or by the distance from this root. This random branching pattern of primary roots was remarkably conserved, despite the high variability of root systems in both species. Our phenotyping pipeline opens the door to exploring the genetic variability of lateral root developmental patterns. {copyright, serif} 2018 American Society of Plant Biologists. All rights reserved.

  4. A novel morphological response of maize (Zea mays) adult roots to heterogeneous nitrate supply revealed by a split-root experiment.

    PubMed

    Yu, Peng; Li, Xuexian; Yuan, Lixing; Li, Chunjian

    2014-01-01

    Approximately 35-55% of total nitrogen (N) in maize plants is taken up by the root at the reproductive stage. Little is known about how the root of an adult plant responds to heterogeneous nutrient supply. In this study, root morphological and physiological adaptations to nitrate-rich and nitrate-poor patches and corresponding gene expression of ZmNrt2.1 and ZmNrt2.2 of maize seedlings and adult plants were characterized. Local high nitrate (LoHN) supply increased both lateral root length (LRL) and density of the treated nodal roots of adult maize plants, but only increased LRL of the treated primary roots of seedlings. LoHN also increased plant total N acquisition but not N influx rate of the treated roots, when expressed as per unit of root length. Furthermore, LoHN markedly increased specific root length (m g(-1)) of the treated roots but significantly inhibited the growth of the lateral roots outside of the nitrate-rich patches, suggesting a systemic carbon saving strategy within a whole root system. Surprisingly, local low nitrate (LoLN) supply stimulated nodal root growth of adult plants although LoLN inhibited growth of primary roots of seedlings. LoLN inhibited the N influx rate of the treated roots and did not change plant total N content. The gene expression of ZmNrt2.1 and ZmNrt2.2 of the treated roots of seedlings and adult plants was inhibited by LoHN but enhanced by LoLN. In conclusion, maize adult roots responded to nitrate-rich and nitrate-poor patches by adaptive morphological alterations and displayed carbon saving strategies in response to heterogeneous nitrate supply. © 2013 Scandinavian Plant Physiology Society.

  5. Overexpression of the protein phosphatase 2A regulatory subunit a gene ZmPP2AA1 improves low phosphate tolerance by remodeling the root system architecture of maize

    PubMed Central

    Wang, Jiemin; Pei, Laming; Jin, Zhe; Zhang, Kewei; Zhang, Juren

    2017-01-01

    Phosphate (Pi) limitation is a constraint for plant growth and development in many natural and agricultural ecosystems. In this study, a gene encoding Zea mays L. protein phosphatase 2A regulatory subunit A, designated ZmPP2AA1, was induced in roots by low Pi availability. The function of the ZmPP2AA1 gene in maize was analyzed using overexpression and RNA interference. ZmPP2AA1 modulated root gravitropism, negatively regulated primary root (PR) growth, and stimulated the development of lateral roots (LRs). A detailed characterization of the root system architecture (RSA) in response to different Pi concentrations with or without indole-3-acetic acid and 1-N-naphthylphthalamic acid revealed that auxin was involved in the RSA response to low Pi availability. Overexpression of ZmPP2AA1 enhanced tolerance to Pi starvation in transgenic maize in hydroponic and soil pot experiments. An increased dry weight (DW), root-to-shoot ratio, and total P content and concentration, along with a delayed and reduced accumulation of anthocyanin in overexpressing transgenic maize plants coincided with their highly branched root system and increased Pi uptake capability under low Pi conditions. Inflorescence development of the ZmPP2AA1 overexpressing line was less affected by low Pi stress, resulting in higher grain yield per plant under Pi deprivation. These data reveal the biological function of ZmPP2AA1, provide insights into a linkage between auxin and low Pi responses, and drive new strategies for the efficient utilization of Pi by maize. PMID:28448624

  6. Polar transport of 45Ca2+ across the elongation zone of gravistimulated roots

    NASA Technical Reports Server (NTRS)

    Lee, J. S.; Evans, M. L.

    1985-01-01

    The movement of calcium across the elongation zone of gravistimulated primary roots of maize (Zea mays L.) was measured using 45Ca2+. Radioactive calcium was applied to one side of the elongation zone about 4 mm back from the root tip and the distribution of radioactivity across the root in the region of application was determined using scintillation spectrometry. The movement of 45Ca2+ across the elongation zone was non-polar in vertically oriented roots. In gravistimulated roots the movement of label was polarized with about twice as much label moving from top to bottom as from bottom to top. A variety of treatments which interfere with gravitropism was found to eliminate the polar movement of 45Ca2+ across the elongation zone. In maize cultivars which require light for gravitropic competency, dark grown roots exhibited neither gravitropism nor polar movement of 45Ca2+ across the elongation zone. Upon illumination the roots developed but gravitropic competency and gravity-induced polar movement of 45Ca2+ across the elongation zone. Similarly, roots of light-grown seedlings lost both gravitropic competency and 45Ca2+ transport polarity upon transfer to the dark. The results indicate a close correlation between calcium movement and gravitropism in primary roots in maize.

  7. ROOTing Out Meaning: More Morphemic Analysis for Primary Pupils

    ERIC Educational Resources Information Center

    Mountain, Lee

    2005-01-01

    In an elementary-school professional development program, a group of primary teachers and a university consultant reviewed the research on morphemic analysis and then explored ways to give pupils in grades 1, 2, and 3 an early start on using prefixes, suffixes, and roots to construct word meaning. The teachers examined some middle-grade strategies…

  8. Genetic variability of oxalate oxidase activity and elongation in water-stressed primary roots of diverse maize and rice lines

    USDA-ARS?s Scientific Manuscript database

    Previous work on maize primary roots under water stress showed that cell elongation is maintained in the apical region of the growth zone but progressively inhibited further from the apex. In association with these responses, several proteins related to reactive oxygen species (ROS) production, part...

  9. Knocking down mitochondrial iron transporter (MIT) reprograms primary and secondary metabolism in rice plants.

    PubMed

    Vigani, Gianpiero; Bashir, Khurram; Ishimaru, Yasuhiro; Lehmann, Martin; Casiraghi, Fabio Marco; Nakanishi, Hiromi; Seki, Motoaki; Geigenberger, Peter; Zocchi, Graziano; Nishizawa, Naoko K

    2016-03-01

    Iron (Fe) is an essential micronutrient for plant growth and development, and its reduced bioavailability strongly impairs mitochondrial functionality. In this work, the metabolic adjustment in the rice (Oryza sativa) mitochondrial Fe transporter knockdown mutant (mit-2) was analysed. Biochemical characterization of purified mitochondria from rice roots showed alteration in the respiratory chain of mit-2 compared with wild-type (WT) plants. In particular, proteins belonging to the type II alternative NAD(P)H dehydrogenases accumulated strongly in mit-2 plants, indicating that alternative pathways were activated to keep the respiratory chain working. Additionally, large-scale changes in the transcriptome and metabolome were observed in mit-2 rice plants. In particular, a strong alteration (up-/down-regulation) in the expression of genes encoding enzymes of both primary and secondary metabolism was found in mutant plants. This was reflected by changes in the metabolic profiles in both roots and shoots of mit-2 plants. Significant alterations in the levels of amino acids belonging to the aspartic acid-related pathways (aspartic acid, lysine, and threonine in roots, and aspartic acid and ornithine in shoots) were found that are strictly connected to the Krebs cycle. Furthermore, some metabolites (e.g. pyruvic acid, fumaric acid, ornithine, and oligosaccharides of the raffinose family) accumulated only in the shoot of mit-2 plants, indicating possible hypoxic responses. These findings suggest that the induction of local Fe deficiency in the mitochondrial compartment of mit-2 plants differentially affects the transcript as well as the metabolic profiles in root and shoot tissues. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  10. Significance of Plant Root Microorganisms in Reclaiming Water in CELSS

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.; Greene, Catherine; Wignarajah, Kanapathipillai; Kliss, Mark H. (Technical Monitor)

    1996-01-01

    Since many microorganisms demonstrate the ability to quickly break down complex mixtures of waste and environmental contaminants, examining their potential use for water recycling in a closed environment is appealing. Water contributes approximately 90 percent of the life sustaining provisions in a human space habitat. Nearly half of the daily water requirements will be used for personal hygiene and dish washing. The primary contaminants of the used "gray" water will be the cleansing agents or soaps used to carry out these functions. Reclaiming water from the gray water waste streams is one goal of the NASA program, Controlled Ecological Life Support Systems (CELSS). The microorganisms of plane roots are well documented to be of a beneficial effect to promote plant growth. Most plants exhibit a range of bacteria and fungi which can be highly plant-specific. In our investigations with lettuce grown in hydroponic culture, we identified a microflora of normal rhizosphere. When the roots were exposed to an anionic surfactant, the species diversity changed, based on morphological characteristics, with the numbers of species being reduced from 7 to 2 after 48 hours of exposure. In addition, the species that became dominant in the presence of the anionic surfactant also demonstrated a dramatic increase in population density which corresponded to the degradation of the surfactant in the root zone. The potential for using these or other rhizosphere bacteria as a primary or secondary waste processor is promising, but a number of issues still warrant investigation; these include but are not limited to: (1) the full identification of the microbes, (2) the classes of surfactants the microbes will degrade, (3) the environmental conditions required for optimal processing efficiency and (4) the ability of transferring the microbes to a non-living solid matrix such as a bioreactor.

  11. Salt Stress Reduces Root Meristem Size by Nitric Oxide-Mediated Modulation of Auxin Accumulation and Signaling in Arabidopsis1[OPEN

    PubMed Central

    Liu, Wen; Li, Rong-Jun; Han, Tong-Tong; Cai, Wei; Fu, Zheng-Wei

    2015-01-01

    The development of the plant root system is highly plastic, which allows the plant to adapt to various environmental stresses. Salt stress inhibits root elongation by reducing the size of the root meristem. However, the mechanism underlying this process remains unclear. In this study, we explored whether and how auxin and nitric oxide (NO) are involved in salt-mediated inhibition of root meristem growth in Arabidopsis (Arabidopsis thaliana) using physiological, pharmacological, and genetic approaches. We found that salt stress significantly reduced root meristem size by down-regulating the expression of PINFORMED (PIN) genes, thereby reducing auxin levels. In addition, salt stress promoted AUXIN RESISTANT3 (AXR3)/INDOLE-3-ACETIC ACID17 (IAA17) stabilization, which repressed auxin signaling during this process. Furthermore, salt stress stimulated NO accumulation, whereas blocking NO production with the inhibitor Nω-nitro-l-arginine-methylester compromised the salt-mediated reduction of root meristem size, PIN down-regulation, and stabilization of AXR3/IAA17, indicating that NO is involved in salt-mediated inhibition of root meristem growth. Taken together, these findings suggest that salt stress inhibits root meristem growth by repressing PIN expression (thereby reducing auxin levels) and stabilizing IAA17 (thereby repressing auxin signaling) via increasing NO levels. PMID:25818700

  12. Identification of QTLs for root characteristics in maize grown in hydroponics and analysis of their overlap with QTLs for grain yield in the field at two water regimes.

    PubMed

    Tuberosa, Roberto; Sanguineti, Maria Corinna; Landi, Pierangelo; Giuliani, Marcella Michela; Salvi, Silvio; Conti, Sergio

    2002-01-01

    We investigated the overlap among quantitative trait loci (QTLs) in maize for seminal root traits measured in hydroponics with QTLs for grain yield under well-watered (GY-WW) and water-stressed (GY-WS) field conditions as well as for a drought tolerance index (DTI) computed as GY-WS/GY-WW. In hydroponics, 11, 7, 9, and 10 QTLs were identified for primary root length (R1L), primary root diameter (R1D), primary root weight (R1W), and for the weight of the adventitious seminal roots (R2W), respectively. In the field, 7, 8, and 9 QTLs were identified for GY-WW, GY-WS, and DTI, respectively. Despite the weak correlation of root traits in hydroponics with GY-WW, GY-WS, and DTI, a noticeable overlap between the corresponding QTLs was observed. QTLs for R2W most frequently and consistently overlapped with QTLs for GY-WW, GY-WS, and/or DTI. At four QTL regions, an increase in R2W was positively associated with GY-WW, GY-WS, and/or DTI. A 10 cM interval on chromosome 1 between PGAMCTA205 and php20644 showed the strongest effect on R1L, R1D, R2W, GY-WW, GY-WS, and DTI. These results indicate the feasibility of using hydroponics in maize to identify QTL regions controlling root traits at an early growth stage and also influencing GY in the field. A comparative analysis of the QTL regions herein identified with those described in previous studies investigating root traits in different maize populations revealed a number of QTLs in common.

  13. Root mass, net primary production and turnover in aspen, jack pine and black spruce forests in Saskatchewan and Manitoba, Canada.

    PubMed

    Steele, Sarah J.; Gower, Stith T.; Vogel, Jason G.; Norman, John M.

    1997-01-01

    Root biomass, net primary production and turnover were studied in aspen, jack pine and black spruce forests in two contrasting climates. The climate of the Southern Study Area (SSA) near Prince Albert, Saskatchewan is warmer and drier in the summer and milder in the winter than the Northern Study Area (NSA) near Thompson, Manitoba, Canada. Ingrowth soil cores and minirhizotrons were used to quantify fine root net primary production (NPPFR). Average daily fine root growth (m m(-2) day(-1)) was positively correlated with soil temperature at 10-cm depth (r(2) = 0.83-0.93) for all three species, with black spruce showing the strongest temperature effect. At both study areas, fine root biomass (measured from soil cores) and fine root length (measured from minirhizotrons) were less for jack pine than for the other two species. Except for the aspen stands, estimates of NPPFR from minirhizotrons were significantly greater than estimates from ingrowth cores. The core method underestimated NPPFR because it does not account for simultaneous fine root growth and mortality. Minirhizotron NPPFR estimates ranged from 59 g m(-2) year(-1) for aspen stands at SSA to 235 g m(-2) year(-1) for black spruce at NSA. The ratio of NPPFR to total detritus production (aboveground litterfall + NPPFR) was greater for evergreen forests than for deciduous forests, suggesting that carbon allocation patterns differ between boreal evergreen and deciduous forests. In all stands, NPPFR consistently exceeded annual fine root turnover and the differences were larger for stands in the NSA than for stands in the SSA, whereas the difference between study areas was only significant for black spruce. The imbalance between NPPFR and fine root turnover is sufficient to explain the net accumulation of carbon in boreal forest soils.

  14. Root cortical senescence decreases root respiration, nutrient content and radial water and nutrient transport in barley.

    PubMed

    Schneider, Hannah M; Wojciechowski, Tobias; Postma, Johannes A; Brown, Kathleen M; Lücke, Andreas; Zeisler, Viktoria; Schreiber, Lukas; Lynch, Jonathan P

    2017-08-01

    The functional implications of root cortical senescence (RCS) are poorly understood. We tested the hypotheses that RCS in barley (1) reduces the respiration and nutrient content of root tissue; (2) decreases radial water and nutrient transport; and (3) is accompanied by increased suberization to protect the stele. Genetic variation for RCS exists between modern germplasm and landraces. Nitrogen and phosphorus deficiency increased the rate of RCS. Maximal RCS, defined as the disappearance of the entire root cortex, reduced root nitrogen content by 66%, phosphorus content by 63% and respiration by 87% compared with root segments with no RCS. Roots with maximal RCS had 90, 92 and 84% less radial water, nitrate and phosphorus transport, respectively, compared with segments with no RCS. The onset of RCS coincided with 30% greater aliphatic suberin in the endodermis. These results support the hypothesis that RCS reduces root carbon and nutrient costs and may therefore have adaptive significance for soil resource acquisition. By reducing root respiration and nutrient content, RCS could permit greater root growth, soil resource acquisition and resource allocation to other plant processes. RCS merits investigation as a trait for improving the performance of barley, wheat, triticale and rye under edaphic stress. © 2017 John Wiley & Sons Ltd.

  15. Gravity response mechanisms of lateral organs and the control of plant architecture in Arabidopsis

    NASA Astrophysics Data System (ADS)

    Mullen, J.; Hangarter, R.

    Most research on gravity responses in plants has focused on primary roots and shoots, which typically grow in a vertical orientation. However, the patterns of lateral organ formation and their growth orientation, which typically are not vertical, govern plant architecture. For example, in Arabidopsis, when lateral roots emerge from the primary root, they grow at a nearly horizontal orientation. As they elongate, the roots slowly curve until they eventually reach a vertical orientation. The regulation of this lateral root orientation is an important component affecting the overall root system architecture. We have found that this change in orientation is not simply due to the onset of gravitropic competence, as non-vertical lateral roots are capable of both positive and negative gravitropism. Thus, the horizontal growth of the new lateral roots is determined by what is called the gravitropic set-point angle (GSA). In Arabidopsis shoots, rosette leaves and inflorescence branches also display GSA-dependent developmental changes in their orientation. The developmental control of the GSA of lateral organs in Arabidopsis provides us with a useful system for investigating the components involved in regulating directionality of tropistic responses. We have identified several Arabidopsis mutants that have either altered lateral root orientations, altered orientation of lateral organs in the shoot, or both, but maintain normal primary organ orientation. The mgsa ({m}odified {g}ravitropic {s}et-point {a}ngle) mutants with both altered lateral root and shoot orientation show that there are common components in the regulation of growth orientation in the different organs. Rosette leaves and lateral roots also have in common a regulation of positioning by red light. Further molecular and physiological analyses of the GSA mutants will provide insight into the basis of GSA regulation and, thus, a better understanding of how gravity controls plant architecture. [This work was supported by the National Aeronautics and Space Administration through grant no. NCC 2-1200.

  16. Systemic vulnerabilities to suicide among veterans from the Iraq and Afghanistan Conflicts: review of case reports from a National Veterans Affairs Database.

    PubMed

    Mills, Peter D; Huber, Samuel J; Vince Watts, Bradley; Bagian, James P

    2011-02-01

    While suicide among recently returned veterans is of great concern, it is a relatively rare occurrence within individual hospitals and clinics. Root cause analysis (RCA) generates a detailed case report that can be used to identify system-based vulnerabilities following an adverse event. Review of a national database of RCA reports may identify common vulnerabilities and assist in the development of more robust prevention strategies. Our objective was to identify and compare common themes among reports of suicide among veterans of Operations Iraqi Freedom and Enduring Freedom (OIF/OEF) in the Veterans Affairs system. Common themes among root causes of suicide as identified in RCA reports were collected and compared as the primary outcome--systematic vulnerabilities. Actions recommended within the reports were coded as the secondary outcome--prevention strategies. Fifty-one RCA reports of OIF/OEF suicides were identified by our search. Coding generated 16 common categories among 132 root causes, and 13 categories among 108 recommended actions. Assessment of suicidal risk, coordination of care, timely access to care, and communication among providers were the most common root causes. Actions identified by RCA teams to reduce suicide included improving referral processes, staff education in suicide assessment, and follow-up with suicidal veterans. Review of multiple RCA reports can identify organizational vulnerabilities detected at the local level that may be applicable system wide. Attention to improving suicide assessment, coordination of care, and timely access may have the largest impact on reducing suicide among OIF/OEF veterans. © 2011 The American Association of Suicidology.

  17. γ-Aminobutyric acid transaminase deficiency impairs central carbon metabolism and leads to cell wall defects during salt stress in Arabidopsis roots.

    PubMed

    Renault, Hugues; El Amrani, Abdelhak; Berger, Adeline; Mouille, Grégory; Soubigou-Taconnat, Ludivine; Bouchereau, Alain; Deleu, Carole

    2013-05-01

    Environmental constraints challenge cell homeostasis and thus require a tight regulation of metabolic activity. We have previously reported that the γ-aminobutyric acid (GABA) metabolism is crucial for Arabidopsis salt tolerance as revealed by the NaCl hypersensitivity of the GABA transaminase (GABA-T, At3g22200) gaba-t/pop2-1 mutant. In this study, we demonstrate that GABA-T deficiency during salt stress causes root and hypocotyl developmental defects and alterations of cell wall composition. A comparative genome-wide transcriptional analysis revealed that expression levels of genes involved in carbon metabolism, particularly sucrose and starch catabolism, were found to increase upon the loss of GABA-T function under salt stress conditions. Consistent with the altered mutant cell wall composition, a number of cell wall-related genes were also found differentially expressed. A targeted quantitative analysis of primary metabolites revealed that glutamate (GABA precursor) accumulated while succinate (the final product of GABA metabolism) significantly decreased in mutant roots after 1 d of NaCl treatment. Furthermore, sugar concentration was twofold reduced in gaba-t/pop2-1 mutant roots compared with wild type. Together, our results provide strong evidence that GABA metabolism is a major route for succinate production in roots and identify GABA as a major player of central carbon adjustment during salt stress. © 2012 Blackwell Publishing Ltd.

  18. Comparison of cleaning Efficacy and Instrumentation Time between Rotary and Manual Instrumentation Techniques in Primary Teeth: An in vitro Study.

    PubMed

    Katge, Farhin; Chimata, Vamsi Krishna; Poojari, Manohar; Shetty, Shilpa; Rusawat, Bhavesh

    2016-01-01

    The aim of this study was to compare the cleaning efficacy and instrumentation time between manual Hedstrom files (H-files) and rotary Mtwo files in primary molar root canals. A total of 90 primary root canals were selected using standardized radiographs. The canals were injected with India ink with 30 gauge insulin syringe and divided into three groups. Group I-30 root canals instrumented with H-files, group II-30 root canals instrumented with Mtwo files, and group III-control group in which no canal instrumentation was done. The teeth were cleared in various solutions and then observed under a stereomicroscope. No significant difference was seen in cleaning efficacy between H-files and Mtwo files in coronal, middle, and apical thirds of the root canal. The instrumentation time recorded for H-files (3.41 ± 0.38 minutes) was significantly less than that of Mtwo files (4.81 ± 0.52). Although there was no significant difference in cleaning capacity, further studies should be carried out using the single file systems. How to cite this article: Katge F, Chimata VK, Poojari M, Shetty S, Rusawat B. Comparison of cleaning Efficacy and Instrumentation Time between Rotary and Manual Instrumentation Techniques in Primary Teeth: An in vitro Study. Int J Clin Pediatr Dent 2016;9(2):124-127.

  19. Application of 17% EDTA Enhances Diffusion of (45)Ca-labeled OH(-) and Ca(2+) in Primary Tooth Root Canal.

    PubMed

    Ximenes, Marcos; Cavalcanti Taguchi, Carolina Mayumi; Triches, Thaisa Cezaria; Sartori, Neimar; Pereira Dias, Luis Alberto; de Araujo, Elaine Bortoleti; Cardoso, Mariane

    2016-01-01

    Proper cleaning of the root canal is key to the success of endodontic treatment as it allows more effective diffusion of medication throughout the dentinal tubules. The aim of this in vitro study was to investigate the efficacy of 17% ethylenediaminetetraacetic acid (EDTA) in enhancing diffusion of hydroxyl (OH(-)) and calcium ions (Ca(2+)) throughout the root canal in primary teeth. The canals of 25 primary tooth roots were cleaned with endodontic files and 1% sodium hypochlorite. Three groups (G) were then established: GI, in which final irrigation was performed with 1% sodium hypochlorite; GII, in which 17% EDTA was used; and GIII, in which no irrigation was performed. The roots canals in GI and GII were filled with a calcium hydroxide-based paste labeled with the radioisotope calcium-45. Diffusion of OH(-) was detected with pH strips and Ca(2+) analyzed by measuring radioactivity in counts per min. Group II differed statistically from the other groups in diffusion of OH(-) at 24 hr (p<0.05), but no significant difference among groups was found at the day 7 evaluation; GII also differed statistically from the other groups in diffusion of Ca(2+) at 24 hr (p<0.05). These results suggest that application of 17% EDTA in primary tooth enhances diffusion of OH(-) and Ca(2+).

  20. The "Small Change" of Soldiering? Peace Operations as Preparation for Future Wars

    DTIC Science & Technology

    1998-06-05

    Haitian police force ( primary responsibility for this mission lay with non -military agencies), 194 secure election sites, introduce order to the prison...Army’s primary mission. This view is rooted in a paradigm of readiness that assumed its present form during General William E. DePuy’s tenure at U.S...other form of peacetime training. A view nevertheless persists that peace operations detract from the Army’s primary mission. This view is rooted

  1. Polyphenols in the woody roots of Norway spruce and European beech reduce TTC.

    PubMed

    Richter, Anika K; Frossard, Emmanuel; Brunner, Ivano

    2007-01-01

    A common method to determine the vitality of fine root tissue is the measurement of respiratory activity with triphenyltetrazolium chloride (TTC). The colorless TTC is reduced to the red-colored triphenyl formazan (TF) as a result of the dehydrogenase activity of the mitochondrial respiratory chain. However, measurements with woody fine roots of adult Norway spruce and European beech trees showed that dead control roots had a high potential to react with TTC. High reactivity was found in boiled fine roots and the bark of coarse roots, but not in the boiled wood of coarse roots. By sequential extraction of dried and ground adult Norway spruce fine roots, reactivity with TTC was reduced by about 75% (water extraction), 93% (water/methanol extraction) and 94% (water/acetone extraction). The water extract reacted with TTC in the same way as polyphenols such as lignin, catechin and epicatechin. Boiling did not affect the extent to which fine roots of adult trees reduced TTC, whereas it greatly reduced TTC reduction by seedling roots. Application of the TTC test to roots of spruce seedlings subjected to increasing drought showed a progressive decrease in TTC reduction. The decrease in TTC reduction was paralleled by a reduction in O(2) consumption, thus supporting the conclusion that for roots with a low polyphenol content the TTC test provides a valid assessment of tissue vitality. Our results suggest, however, that the TTC test should not be applied to the fine roots of adult trees because of their high content of polyphenolic compounds whose reaction with TTC masks changes in TTC reduction due to changes in the respiratory capacity of the tissue.

  2. Reciprocating vs Rotary Instrumentation in Pediatric Endodontics: Cone Beam Computed Tomographic Analysis of Deciduous Root Canals using Two Single-file Systems

    PubMed Central

    Prabhakar, Attiguppe R; Yavagal, Chandrashekar; Naik, Saraswathi V

    2016-01-01

    ABSTRACT Background: Primary root canals are considered to be most challenging due to their complex anatomy. "Wave one" and "one shape" are single-file systems with reciprocating and rotary motion respectively. The aim of this study was to evaluate and compare dentin thickness, centering ability, canal transportation, and instrumentation time of wave one and one shape files in primary root canals using a cone beam computed tomographic (CBCT) analysis. Study design: This is an experimental, in vitro study comparing the two groups. Materials and methods: A total of 24 extracted human primary teeth with minimum 7 mm root length were included in the study. Cone beam computed tomographic images were taken before and after the instrumentation for each group. Dentin thickness, centering ability, canal transportation, and instrumentation times were evaluated for each group. Results: A significant difference was found in instrumentation time and canal transportation measures between the two groups. Wave one showed less canal transportation as compared with one shape, and the mean instrumentation time of wave one was significantly less than one shape. Conclusion: Reciprocating single-file systems was found to be faster with much less procedural errors and can hence be recommended for shaping the root canals of primary teeth. How to cite this article: Prabhakar AR, Yavagal C, Dixit K, Naik SV. Reciprocating vs Rotary Instrumentation in Pediatric Endodontics: Cone Beam Computed Tomographic Analysis of Deciduous Root Canals using Two Single-File Systems. Int J Clin Pediatr Dent 2016;9(1):45-49. PMID:27274155

  3. 7 CFR 201.56-10 - Spurge family, Euphorbiaceae.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... dicot. (2) Food reserves: Cotyledons, which are thin and leaf-like; endosperm (fleshy food-storage... the cotyledons, endosperm, and epicotyl above the soil surface. (4) Root system: A primary root, with secondary roots usually developing within the test period. (b) Abnormal seedling description. (1) Cotyledons...

  4. 7 CFR 201.56-10 - Spurge family, Euphorbiaceae.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... dicot. (2) Food reserves: Cotyledons, which are thin and leaf-like; endosperm (fleshy food-storage... the cotyledons, endosperm, and epicotyl above the soil surface. (4) Root system: A primary root, with secondary roots usually developing within the test period. (b) Abnormal seedling description. (1) Cotyledons...

  5. The Dynamics of Sediment Oxygenation in Marsh Rhizospheres

    NASA Astrophysics Data System (ADS)

    Koop-Jakobsen, K.

    2014-12-01

    Many marsh grasses are capable of internal oxygen transport from aboveground sources to belowground roots and rhizomes, where oxygen may leak across the rhizodermis and oxygenate the surrounding sediment. In the field, the extent of sediment oxygenation in marshes was assessed in the rhizosphere of the marsh grass; Spartina anglica, inserting 70 optical fiber oxygen sensors into the rhizosphere. Two locations with S. anglica growing in different sediment types were investigated. No oxygen was detected in the rhizospheres indicating that belowground sediment oxygenation in S. anglica has a limited effect on the bulk anoxic sediment and is restricted to sediment in the immediate vicinity of the roots. In the laboratory, the presence of 1.5mm wide and 16mm long oxic root zones was demonstrated around root tips of S. anglica growing in permeable sandy sediment using planar optodes recording 2D-images of the oxygen distribution. Oxic root zones in S. anglica growing in tidal flat deposits were significantly smaller. The size of oxic roots zones was highly dynamic and affected by tidal inundations as well as light availability. Atmospheric air was the primary oxygen source for belowground sediment oxygenation, whereas photosynthetic oxygen production only played a minor role for the size of the oxic root zones during air-exposure of the aboveground biomass. During tidal inundations (1.5 h) completely submerging the aboveground biomass cutting off access to atmospheric oxygen, the size of oxic root zones were reduced significantly in the light and oxic root zones were completely eliminated in darkness. Sediment oxygenation in the rhizospheres of marsh grasses is of significant importance for marshes ability to retain inorganic nitrogen before it reaches the coastal waters. The presence of oxic roots zones promotes coupled nitrification-denitrification at depth in the sediment, which can account for more than 80% of the total denitrification in marshes.

  6. Demonstration of osmotically dependent promotion of aerenchyma formation at different levels in the primary roots of rice using a ‘sandwich’ method and X-ray computed tomography

    PubMed Central

    Karahara, Ichirou; Umemura, Konomi; Soga, Yuumi; Akai, Yuki; Bando, Tadafumi; Ito, Yuko; Tamaoki, Daisuke; Uesugi, Kentaro; Abe, Jun; Yamauchi, Daisuke; Mineyuki, Yoshinobu

    2012-01-01

    Background and Aims The effect of environmental factors on the regulation of aerenchyma formation in rice roots has been discussed for a long time, because aerenchyma is constitutively formed under aerated conditions. To elucidate this problem, a unique method has been developed that enables sensitive detection of differences in the development of aerenchyma under two different environmental conditions. The method is tested to determine whether aerenchyma development in rice roots is affected by osmotic stress. Methods To examine aerenchyma formation both with and without mannitol treatment in the same root, germinating rice (Oryza sativa) caryopses were sandwiched between two agar slabs, one of which contained 270 mm of mannitol. The roots were grown touching both slabs and were thereby exposed unilaterally to osmotic stress. As a non-invasive approach, refraction contrast X-ray computed tomography (CT) using a third-generation synchrotron facility, SPring-8 (Super photon ring 8 GeV, Japan Synchrotron Radiation Research Institute), was used to visualize the three-dimensional (3-D) intact structure of aerenchyma and its formation in situ in rice roots. The effects of unilateral mannitol treatment on the development of aerenchyma were quantitatively examined using conventional light microscopy. Key Results Structural continuity of aerenchyma was clearly visualized in 3-D in the primary root of rice and in situ using X-ray CT. Light microscopy and X-ray CT showed that the development of aerenchyma was promoted on the mannitol-treated side of the root. Detailed light microscopic analysis of cross-sections cut along the root axis from the tip to the basal region demonstrated that aerenchyma developed significantly closer to the root tip on the mannitol-treated side of the root. Conclusions Continuity of the aerenchyma along the rice root axis was morphologically demonstrated using X-ray CT. By using this ‘sandwich’ method it was shown that mannitol promoted aerenchyma formation in the primary roots of rice. PMID:22499856

  7. The organization of the actin cytoskeleton in vertical and graviresponding primary roots of maize

    NASA Technical Reports Server (NTRS)

    Blancaflor, E. B.; Hasenstein, K. H.

    1997-01-01

    To determine whether actin microfilament (MF) organization is correlated with differential elongation, primary roots of Zea mays cv Merit maintained vertically or reoriented horizontally for 15 to 120 min were stained with rhodamine phalloidin and examined with a confocal microscope. Root curvature was measured with a computer-controlled video digitizer. In vertical roots bundles of MFs in the elongation and maturation zone were oriented parallel to the longitudinal axis of cells. MFs in the vascular parenchyma cells were more abundant than in the cortex and epidermis. Epidermal and proendodermal cells in the meristematic region contained transverse cortical MFs. The organization of MFs of graviresponding roots was similar to that of vertical roots. Application of cytochalasin B or cytochalasin D resulted in extensive disruption of MFs in the cortex and epidermis, but only partially affected MFs in the stele. Despite the cytochalasin B-induced depolymerization of MFs, gravicurvature exceeded that of controls. In contrast, the auxin transport inhibitor N-1 naphthylphthalamic acid suppressed root curvature but had no observable effect on the integrity of the MFs. The data indicate that MFs may not be involved in the graviresponse of maize roots.

  8. Physiological and growth responses of Centaurea maculosa (Asteraceae) to root herbivory under varying levels of interspecific plant competition and soil nitrogen availability.

    PubMed

    Steinger, Thomas; Müller-Schärer, Heinz

    1992-08-01

    Centaurea maculosa seedlings were grown in pots to study the effects of root herbivory by Agapeta zoegana L. (Lep.: Cochylidae) and Cyphocleonus achates Fahr. (Col.: Curculionidae), grass competition and nitrogen shortage (each present or absent), using a full factorial design. The aims of the study were to analyse the impact of root herbivory on plant growth, resource allocation and physiological processes, and to test if these plant responses to herbivory were influenced by plant competition and nitrogen availability. The two root herbivores differed markedly in their impact on plant growth. While feeding by the moth A. zoegana in the root cortex had no effect on shoot and root mass, feeding by the weevil C. achates in the central vascular tissue greatly reduced shoot mass, but not root mass, leading to a reduced shoot/root ratio. The absence of significant effects of the two herbivores on root biomass, despite considerable consumption, indicates that compensatory root growth occurred. Competition with grass affected plant growth more than herbivory and nutrient status, resulting in reduced shoot and root growth, and number of leaves. Nitrogen shortage did not affect plant growth directly but greatly influenced the compensatory capacity of Centaurea maculosa to root herbivory. Under high nitrogen conditions, shoot biomass of plants infested by the weevil was reduced by 30% compared with uninfested plants. However, under poor nitrogen conditions a 63% reduction was observed compared with corresponding controls. Root herbivory was the most important stress factor affecting plant physiology. Besides a relative increase in biomass allocation to the roots, infested plants also showed a significant increase in nitrogen concentration in the roots and a concomitant reduction in leaf nitrogen concentration, reflecting a redirection of the nitrogen to the stronger sink. The level of fructans was greatly reduced in the roots after herbivore feeding. This is thought to be a consequence of their mobilisation to support compensatory root growth. A preliminary model linking the effects of these root herbivores to the physiological processes of C. maculosa is presented.

  9. A scanner system for high-resolution quantification of variation in root growth dynamics of Brassica rapa genotypes.

    PubMed

    Adu, Michael O; Chatot, Antoine; Wiesel, Lea; Bennett, Malcolm J; Broadley, Martin R; White, Philip J; Dupuy, Lionel X

    2014-05-01

    The potential exists to breed for root system architectures that optimize resource acquisition. However, this requires the ability to screen root system development quantitatively, with high resolution, in as natural an environment as possible, with high throughput. This paper describes the construction of a low-cost, high-resolution root phenotyping platform, requiring no sophisticated equipment and adaptable to most laboratory and glasshouse environments, and its application to quantify environmental and temporal variation in root traits between genotypes of Brassica rapa L. Plants were supplied with a complete nutrient solution through the wick of a germination paper. Images of root systems were acquired without manual intervention, over extended periods, using multiple scanners controlled by customized software. Mixed-effects models were used to describe the sources of variation in root traits contributing to root system architecture estimated from digital images. It was calculated that between one and 43 replicates would be required to detect a significant difference (95% CI 50% difference between traits). Broad-sense heritability was highest for shoot biomass traits (>0.60), intermediate (0.25-0.60) for the length and diameter of primary roots and lateral root branching density on the primary root, and lower (<0.25) for other root traits. Models demonstrate that root traits show temporal variations of various types. The phenotyping platform described here can be used to quantify environmental and temporal variation in traits contributing to root system architecture in B. rapa and can be extended to screen the large populations required for breeding for efficient resource acquisition.

  10. Engineering cyanogen synthesis and turnover in cassava (Manihot esculenta).

    PubMed

    Siritunga, Dimuth; Sayre, Richard

    2004-11-01

    Cassava is the major root crop for a quarter billion subsistence farmers in sub-Saharan Africa. It is valued for its ability to grow in adverse environments and the food security it provides. Cassava contains potentially toxic levels of cyanogenic glycosides (linamarin) which protect the plant from herbivory and theft. The cyanogens, including linamarin and its deglycosylated product, acetone cyanohydrin, can be efficiently removed from the root by various processing procedures. Short-cuts in processing, which may occur during famines, can result in only partial removal of cyanogens. Residual cyanogens in cassava foods may cause neurological disorders or paralysis, particularly in nutritionally compromised individuals. To address this problem and to further understand the function of cyanogenic glycosides in cassava, we have generated transgenic cassava in which cyanogenic glycoside synthesis has been selectively inhibited in leaves and roots by antisense expression of CYP79D1/D2 gene fragments. The CYP79D1/D2 genes encode two highly similar cytochrome P450s that catalyze the first-dedicated step in cyanogenic glycoside synthesis. Transgenic plants in which the expression of these genes was selectively inhibited in leaves had substantially reduced (60- 94% reduction) linamarin leaf levels. Surprisingly, these plants also had a greater than a 99% reduction in root linamarin content. In contrast, transgenic plants in which the CYP79D1/D2 transcripts were reduced to non-detectable levels in roots had normal root linamarin levels. These results demonstrate that linamarin synthesized in leaves is transported to the roots and accounts for nearly all of the root linamarin content. Importantly, transgenic plants having reduced leaf and root linamarin content were unable to grow in the absence of reduced nitrogen (NH3) . Cassava roots have previously been demonstrated to have an active cyanide assimilation pathway leading to the synthesis of amino acids. We propose that cyanide derived from linamarin is a major source of reduced nitrogen for cassava root protein synthesis. Disruption of linamarin transport from leaves in CYP79D1/D2 anti-sense plants prevents the growth of cassava roots in the absence of an alternate source of reduced nitrogen. An alternative strategy for reducing cyanogen toxicity in cassava foods is to accelerate cyanogenesis and cyanide volatilization during food processing. To achieve this objective, we have expressed the leaf-specific enzyme hydroxynitrile lyase (HNL) in roots. HNL catalyzes the breakdown of acetone cyanohydrin to cyanide. Expression of HNL in roots accelerated cyanogenesis by more than three-fold substantially reducing the accumulation of acetone cyanohydrin during processing relative to wild-type roots.

  11. Effect of Oryzalin and 1,1-Dimethylpiperidinium Chloride on Cotton and Tomato Roots Infected with the Root-knot Nematode, Meloidogyne incognita

    PubMed Central

    Orum, T. V.; Bartels, P. G.; McClure, M. A.

    1979-01-01

    Oryzalin (3,5-dinitro-N4,N4-dipropyl-sulfanilamide) and BAS 083 (l,l-dimethylpiperdinium chloride) reduced root-knot infection in tomato roots when respectively applied as a soil drench at 20 ppm and 10,000 ppm. Oryzalin reduced knot counts with various intervals between treatment and inoculation. BAS 083 reduced knot counts only when applied before inoculation. Oryzalin was shown not to be a contact nematicide, and BAS 083 was only a weak one. Neither compound reduced penetration by infective larvae. Postinfection reduction in knot counts by Oryzalin and BAS 083 resulted, in part, from activation of natural defense mechanisms of the host. Giant-cell development in cotton roots inoculated with nematodes was inhibited by Oryzalin. Lateral root development was inhibited by BAS 083. PMID:19305533

  12. The effect of ethylene on root growth of Zea mays seedlings

    NASA Technical Reports Server (NTRS)

    Whalen, M. C.; Feldman, L. J.

    1988-01-01

    The control of primary root growth in Zea mays cv. Merit by ethylene was examined. At applied concentrations of ethylene equal to or greater than 0.1 microliter L-1, root elongation during 24 h was inhibited. The half-maximal response occurred at 0.6 microliter L-1 and the response saturated at 6 microliters L-1. Inhibition of elongation took place within 20 min. However, after ethylene was removed, elongation recovered to control values within 15 min. Root elongation was also inhibited by green light. The inhibition caused by a 24-h exposure to ethylene was restricted to the elongating region just behind the apex, with inhibition of cortical cell elongation being the primary contributor to the effect. Based on use of 2,5-norbornadiene, a gaseous competitive inhibitor of ethylene, it was concluded that endogenous ethylene normally inhibits root elongation.

  13. Oak Forest Responses to Episodic-Seasonal-Drought, Chronic Multi-year Precipitation Change and Acute Drought Manipulations in a Region With Deep Soils and High Precipitation

    NASA Astrophysics Data System (ADS)

    Hanson, Paul J.; Wullschleger, Stan D.; Todd, Donald E.; Auge, Robert M.; Froberg, Mats; Johnson, Dale W.

    2010-05-01

    Implications of episodic-seasonal drought (extremely dry late summers), chronic multi-year precipitation manipulations (±33 percent over 12 years) and acute drought (-100 percent over 3 years) were evaluated for the response of vegetation and biogeochemical cycles for an upland-oak forest. The Quercus-Acer forest is located in eastern Tennessee on deep acidic soils with mean annual temperatures of 14.2 °C and abundant precipitation (1352 mm y-1). The multi-year observations and chronic manipulations were conducted from 1993 through 2005 using understory throughfall collection troughs and redistribution gutters and pipes. Acute manipulations of dominant canopy trees (Quercus prinus; Liriodendron tulipifera) were conducted from 2003 through 2005 using full understory tents. Regional and severe late-summer droughts were produced reduced stand water use and photosynthetic carbon gain as expected. Likewise, seedlings and saplings exhibited reduced survival and cumulative growth reductions. Conversely, multi-year chronic increases or decreases in precipitation and associated soil water deficits did not reduce large tree basal area growth for the tree species present. The resilience of canopy trees to chronic-change was the result of a disconnect between carbon allocation to tree growth (an early-season phenomenon) and late-season drought occurrence. Acute precipitation exclusion from the largest canopy trees also produced limited physiological responses and minimal cumulative growth reductions. Lateral root water sources were removed through trenching and could not explain the lack of response to extreme soil drying. Therefore, deep rooting the primary mechanism for large-tree resilience to severe drought. Extensive trench-based assessments of rooting depth suggested that ‘deep' water supplies were being obtained from limited numbers of deep fine roots. Observations of carbon stocks in organic horizons demonstrated accumulation with precipitation reductions and drying, but no change in mineral soil carbon pools attributable to changing precipitation. Measured changes in nitrogen and other element pools suggested that long term immobilization of elements with chronic drying would lead to reduced growth, but that deep rooting access to the key base cations would moderate such effects by providing a source of minerals to be cycled in near surface soils. Cumulative changes in canopy foliar production were evident over time showing sustained or even increased production with chronic drying. This unexpected response is hypothesized to result from the retention of nutrients in highly-rooted surface horizons made available for plant uptake during spring mineralization.

  14. 7 CFR 201.56-4 - Cucurbit family, (Cucurbitaceae).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., squash, and watermelon. (a) General description. (1) Germination habit: Epigeal dicot. (2) Food reserves... does not show any development within the test period. (4) Root system: A long primary root with numerous secondary roots. (b) Abnormal seedling description. (1) Cotyledons: (i) Less than half of the...

  15. 7 CFR 201.56-4 - Cucurbit family, (Cucurbitaceae).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., squash, and watermelon. (a) General description. (1) Germination habit: Epigeal dicot. (2) Food reserves... does not show any development within the test period. (4) Root system: A long primary root with numerous secondary roots. (b) Abnormal seedling description. (1) Cotyledons: (i) Less than half of the...

  16. Rooting traits of peanut genotypes with different yield response to terminal drought

    USDA-ARS?s Scientific Manuscript database

    Drought at pod filling and maturity stages can severely reduce yield of peanut. Better root systems can reduce yield loss from drought. The goal of this study was to investigate the responses to terminal drought of peanut genotypes for root dry weight and root length density. A field experiment was ...

  17. Effect of photodynamic therapy (PDT) on Enterococcus faecalis biofilm in experimental primary and secondary endodontic infections.

    PubMed

    Tennert, Christian; Feldmann, Katharina; Haamann, Edwina; Al-Ahmad, Ali; Follo, Marie; Wrbas, Karl-Thomas; Hellwig, Elmar; Altenburger, Markus J

    2014-11-04

    To determine the antibacterial effect of photodynamic Therapy on Enterococcus faecalis (E. faecalis) biofilms in experimentally infected human root canals in primary infections and endodontic retreatments. One hundred and sixty single-rooted extracted teeth with one root canal were prepared using ProTaper instruments. Seventy specimens were left without root canal filling and autoclaved. The root canals of another 70 specimens were filled with Thermafil and AH Plus and the root canal fillings were removed after 24 hours using ProTaper D files and plasma sterilized. The specimens were infected with a clinical isolate of E. faecalis for 72 hours. Samples were taken using sterile paper points to determine the presence of E. faecalis in the root canals. The specimens were randomly divided into groups according to their treatment with 20 teeth each and a control. In the PDT group the teeth were treated using PDT, consisting of the photosensitizer toluidine blue and the PDT light source at 635 nm. In the NaOCl (sodium hypochlorite) group the root canals were rinsed with 10 mL of 3% NaOCl. In the NaOCl-PDT group the root canals were rinsed with 10 mL of 3% of sodium hypochlorite and then treated with PDT. Samples were taken after treatments using sterile paper points. Additionally, remaining root canal filling material was recovered from the root canal walls. Survival fractions of the samples were calculated by counting colony-forming units. A one-way analysis of variance (ANOVA) was applied to the data to assess the effect of different treatment techniques. Antimicrobial treatment of root canals caused a significant reduction of bacterial load in all groups. NaOCl irrigation eliminated E. faecalis most effectively. PDT alone was less effective compared to NaOCl irrigation and the combination of NaOCl irrigation and PDT. CFU levels recovered from the filling material after NaOCl irrigation of the root canals were 10fold higher compared to PDT and the combination of NaOCl irrigation and PDT. Photodynamic therapy killed E. faecalis in experimental primary endodontic infections and retreated human root canals. PDT is an effective supplement in root canal disinfection, especially in endodontic retreatments.

  18. DRI-Grass: A New Experimental Platform for Addressing Grassland Ecosystem Responses to Future Precipitation Scenarios in South-East Australia

    PubMed Central

    Power, Sally A.; Barnett, Kirk L.; Ochoa-Hueso, Raul; Facey, Sarah L.; Gibson-Forty, Eleanor V. J.; Hartley, Susan E.; Nielsen, Uffe N.; Tissue, David T.; Johnson, Scott N.

    2016-01-01

    Climate models predict shifts in the amount, frequency and seasonality of rainfall. Given close links between grassland productivity and rainfall, such changes are likely to have profound effects on the functioning of grassland ecosystems and modify species interactions. Here, we introduce a unique, new experimental platform – DRI-Grass (Drought and Root Herbivore Interactions in a Grassland) – that exposes a south-eastern Australian grassland to five rainfall regimes [Ambient (AMB), increased amount (IA, +50%), reduced amount (RA, -50%), reduced frequency (RF, single rainfall event every 21 days, with total amount unchanged) and summer drought (SD, 12–14 weeks without water, December–March)], and contrasting levels of root herbivory. Incorporation of a belowground herbivore (root-feeding scarabs) addition treatment allows novel investigation of ecological responses to the twin stresses of altered rainfall and root herbivory. We quantified effects of permanently installed rain shelters on microclimate by comparison with outside plots, identifying small shelter effects on air temperature (-0.19°C day, +0.26°C night), soil water content (SWC; -8%) and photosynthetically active radiation (PAR; -16%). Shelters were associated with modest increases in net primary productivity (NPP), particularly during the cool season. Rainfall treatments generated substantial differences in SWC, with the exception of IA; the latter is likely due to a combination of higher transpiration rates associated with greater plant biomass in IA and the low water-holding capacity of the well-drained, sandy soil. Growing season NPP was strongly reduced by SD, but did not respond to the other rainfall treatments. Addition of root herbivores did not affect plant biomass and there were no interactions between herbivory and rainfall treatments in the 1st year of study. Root herbivory did, however, induce foliar silicon-based defenses in Cynodon dactylon and Eragrostis curvula. Rapid recovery of NPP following resumption of watering in SD plots indicates high functional resilience at the site, and may reflect adaptation of the vegetation to historically high variability in rainfall, both within- and between years. DRI-Grass provides a unique platform for understanding how ecological interactions will be affected by changing rainfall regimes and, specifically, how belowground herbivory modifies grassland resistance and resilience to climate extremes. PMID:27703458

  19. Spatial and temporal patterns of root distribution in developing stands of four woody crop species grown with drip irrigation and fertilization

    Treesearch

    Mark Coleman

    2007-01-01

    In forest trees, roots mediate such significant carbon fluxes as primary production and soil C02 efflux. Despite the central role of roots in these critical processes, information on root distribution during stand establishment is limited, yet must be described to accurately predict how various forest types, which are growing with a range of...

  20. Irrigation in endodontic treatment.

    PubMed

    Basrani, Bettina

    2011-01-01

    The primary endodontic treatment goal is to optimize root canal disinfection and to prevent reinfection. Successful root canal therapy relies on the combination of proper instrumentation, irrigation, and obturation of the root canal system. In this review of the literature, various irrigants and the interactions between irrigants are discussed and new delivery systems are introduced.

  1. 7 CFR 201.56-12 - Miscellaneous plant families.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) Germination habit: Epigeal dicot. (2) Food reserves: Cotyledons; endosperm may or may not be present... surface. The epicotyl usually does not show any development within the test period. (4) Root system: A primary root; secondary roots may or may not develop within the test period, depending on the kind. (b...

  2. 7 CFR 201.56-1 - Goosefoot family, Chenopodiaceae, and Carpetweed family, Aizoaceae.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) General description. (1) Germination habit: Epigeal dicot. (2) Food reserves: Leaf-like cotyledons and... epicotyl usually does not show any development within the test period. (4) Root system: A primary root; secondary roots may develop within the test period. (5) Seedling: Frequent counts should be made on...

  3. 7 CFR 201.56-12 - Miscellaneous plant families.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) Germination habit: Epigeal dicot. (2) Food reserves: Cotyledons; endosperm may or may not be present... surface. The epicotyl usually does not show any development within the test period. (4) Root system: A primary root; secondary roots may or may not develop within the test period, depending on the kind. (b...

  4. 7 CFR 201.56-1 - Goosefoot family, Chenopodiaceae, and Carpetweed family, Aizoaceae.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) General description. (1) Germination habit: Epigeal dicot. (2) Food reserves: Leaf-like cotyledons and... epicotyl usually does not show any development within the test period. (4) Root system: A primary root; secondary roots may develop within the test period. (5) Seedling: Frequent counts should be made on...

  5. Investigation of leading-edge flap performance on delta and double-delta wings at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Covell, Peter F.; Wood, Richard M.; Miller, David S.

    1987-01-01

    An investigation of the aerodynamic performance of leading-edge flaps on three clipped delta and three clipped double-delta wing planforms with aspect ratios of 1.75, 2.11, and 2.50 was conducted in the Langley Unitary Plan Wind Tunnel at Mach numbers of 1.60, 1.90, and 2.16. A primary set of fullspan leading-edge flaps with similar root and tip chords were investigated on each wing, and several alternate flap planforms were investigated on the aspect-ratio-1.75 wings. All leading-edge flap geometries were effective in reducing the drag at lifting conditions over the range of wing aspect ratios and Mach numbers tested. Application of a primary flap resulted in better flap performance with the double-delta planform than with the delta planform. The primary flap geometry generally yielded better performance than the alternate flap geometries tested. Trim drag due to flap-induced pitching moments was found to reduce the leading-edge flap performance more for the delta planform than for the double-delta planform. Flow-visualization techniques showed that leading-edge flap deflection reduces crossflow shock-induced separation effects. Finally, it was found that modified linear theory consistently predicts only the effects of leading-edge flap deflection as related to pitching moment and lift trends.

  6. Biocompatibility of root-end filling materials: recent update

    PubMed Central

    Gupta, Saurabh Kumar; Newaskar, Vilas

    2013-01-01

    The purpose of a root-end filling is to establish a seal between the root canal space and the periradicular tissues. As root-end filling materials come into contact with periradicular tissues, knowledge of the tissue response is crucial. Almost every available dental restorative material has been suggested as the root-end material of choice at a certain point in the past. This literature review on root-end filling materials will evaluate and comparatively analyse the biocompatibility and tissue response to these products, with primary focus on newly introduced materials. PMID:24010077

  7. The integration of GC-MS and LC-MS to assay the metabolomics profiling in Panax ginseng and Panax quinquefolius reveals a tissue- and species-specific connectivity of primary metabolites and ginsenosides accumulation.

    PubMed

    Liu, Jia; Liu, Yang; Wang, Yu; Abozeid, Ann; Zu, Yuan-Gang; Tang, Zhong-Hua

    2017-02-20

    The traditional medicine Ginseng mainly including Panax ginseng and Panax quinquefolius is the most widely consumed herbal product in the world. Despite the extensive investigation of biosynthetic pathway of the active compounds ginsenosides, our current understanding of the metabolic interlink between ginsenosides synthesis and primary metabolism at the whole-plant level. In this study, the tissue-specific profiling of primary and the secondary metabolites in two different species of ginseng were investigated by gas chromatography- and liquid chromatography coupled to mass spectrometry. A complex continuous coordination of primary- and secondary-metabolic network was modulated by tissues and species factors during growth. The results showed that altogether 149 primary compounds and 10 ginsenosides were identified from main roots, lateral roots, stems, petioles and leaves in P. ginseng and P. quinquefolius. The partial least squares-discriminate analysis (PLS-DA) revealed obvious compounds distinction among tissue-specific districts relative to species. To survey the dedication of carbon and nitrogen metabolism in different tissues to the accumulation of ginsenosides, we inspected the tissue-specific metabolic changes. Our study testified that the ginsenosides content was dependent on main roots and lateral roots energy metabolism, whereas independent of leaves and petiole photosynthesis during ginsenosides accumulation. When tow species were compared, the results indicated that high rates of C assimilation to C accumulation are closely associated with ginsenosides accumulation in P. ginseng main roots and P. quinquefolius lateral roots, respectively. Taken together, our results suggest that tissue-specific metabolites profiling dynamically changed in process of ginsenosides biosynthesis, which may offer a new train of thoughts to the mechanisms of the ginsenosides biosynthesis at the metabolite level. Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved.

  8. Hemifacial Spasm and Neurovascular Compression

    PubMed Central

    Lu, Alex Y.; Yeung, Jacky T.; Gerrard, Jason L.; Michaelides, Elias M.; Sekula, Raymond F.; Bulsara, Ketan R.

    2014-01-01

    Hemifacial spasm (HFS) is characterized by involuntary unilateral contractions of the muscles innervated by the ipsilateral facial nerve, usually starting around the eyes before progressing inferiorly to the cheek, mouth, and neck. Its prevalence is 9.8 per 100,000 persons with an average age of onset of 44 years. The accepted pathophysiology of HFS suggests that it is a disease process of the nerve root entry zone of the facial nerve. HFS can be divided into two types: primary and secondary. Primary HFS is triggered by vascular compression whereas secondary HFS comprises all other causes of facial nerve damage. Clinical examination and imaging modalities such as electromyography (EMG) and magnetic resonance imaging (MRI) are useful to differentiate HFS from other facial movement disorders and for intraoperative planning. The standard medical management for HFS is botulinum neurotoxin (BoNT) injections, which provides low-risk but limited symptomatic relief. The only curative treatment for HFS is microvascular decompression (MVD), a surgical intervention that provides lasting symptomatic relief by reducing compression of the facial nerve root. With a low rate of complications such as hearing loss, MVD remains the treatment of choice for HFS patients as intraoperative technique and monitoring continue to improve. PMID:25405219

  9. Gastric Electrical Stimulation Decreases Gastric Distension-Induced Central Nociception Response through Direct Action on Primary Afferents

    PubMed Central

    Ouelaa, Wassila; Ghouzali, Ibtissem; Langlois, Ludovic; Fetissov, Serguei; Déchelotte, Pierre; Ducrotté, Philippe; Leroi, Anne Marie; Gourcerol, Guillaume

    2012-01-01

    Background & Aims Gastric electrical stimulation (GES) is an effective therapy to treat patients with chronic dyspepsia refractory to medical management. However, its mechanisms of action remain poorly understood. Methods Gastric pain was induced by performing gastric distension (GD) in anesthetized rats. Pain response was monitored by measuring the pseudo-affective reflex (e.g., blood pressure variation), while neuronal activation was determined using c-fos immunochemistry in the central nervous system. Involvement of primary afferents was assessed by measuring phosphorylation of ERK1/2 in dorsal root ganglia. Results GES decreased blood pressure variation induced by GD, and prevented GD-induced neuronal activation in the dorsal horn of the spinal cord (T9–T10), the nucleus of the solitary tract and in CRF neurons of the hypothalamic paraventricular nucleus. This effect remained unaltered within the spinal cord when sectioning the medulla at the T5 level. Furthermore, GES prevented GD-induced phosphorylation of ERK1/2 in dorsal root ganglia. Conclusions GES decreases GD-induced pain and/or discomfort likely through a direct modulation of gastric spinal afferents reducing central processing of visceral nociception. PMID:23284611

  10. Auxin transport and response requirements for root hydrotropism differ between plant species.

    PubMed

    Nakajima, Yusuke; Nara, Yoshitaka; Kobayashi, Akie; Sugita, Tomoki; Miyazawa, Yutaka; Fujii, Nobuharu; Takahashi, Hideyuki

    2017-06-15

    The direction of auxin transport changes in gravistimulated roots, causing auxin accumulation in the lower side of horizontally reoriented roots. This study found that auxin was similarly involved in hydrotropism and gravitropism in rice and pea roots, but hydrotropism in Lotus japonicus roots was independent of both auxin transport and response. Application of either auxin transport inhibitors or an auxin response inhibitor decreased both hydrotropism and gravitropism in rice roots, and reduced hydrotropism in pea roots. However, Lotus roots treated with these inhibitors showed reduced gravitropism but an unaltered or an enhanced hydrotropic response. Inhibiting auxin biosynthesis substantially reduced both tropisms in rice and Lotus roots. Removing the final 0.2 mm (including the root cap) from the root tip inhibited gravitropism but not hydrotropism in rice seedling roots. These results suggested that modes of auxin involvement in hydrotropism differed between plant species. In rice roots, although auxin transport and responses were required for both gravitropism and hydrotropism, the root cap was involved in the auxin regulation of gravitropism but not hydrotropism. Hydrotropism in Lotus roots, however, may be regulated by a novel mechanism that is independent of both auxin transport and the TIR1/AFBs auxin response pathway. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. Antimicrobial Activity of Photodynamic Therapy Against Enterococcus faecalis Before and After Reciprocating Instrumentation in Permanent Molars.

    PubMed

    Pinheiro, Sérgio Luiz; Azenha, Giuliana Rodrigues; Democh, Yasmin Marialva; Nunes, Daniela Camila; Provasi, Silvia; Fontanetti, Giovana Masiero; Duarte, Danilo Antônio; Fontana, Carlos Eduardo; da Silveira Bueno, Carlos Eduardo

    2016-12-01

    The present study sought to evaluate the antimicrobial activity against Enterococcus faecalis of photodynamic therapy applied before and after reciprocating instrumentation of permanent molars. Apical extrusion of debris can cause flare-ups due to introduction of bacteria into the periapical tissues. Eighteen mesial roots from permanent mandibular molars were selected. The crowns were removed to obtain a standard root length of 15 mm. The included mesial roots had an angulation of 10°-40° and canals with independent foramina. The orifice of each mesiolingual canal was sealed with light-curing resin, and the working length was established visually, 1 mm short of the apical foramen. The roots were rendered impermeable and sterilized, and the mesiobuccal canals were contaminated with a standard strain of E. faecalis for 21 days. Specimens were randomly divided into three groups (n = 6): G1, photodynamic therapy performed before instrumentation and irrigation with 0.9% NaCl (saline) solution; G2, photodynamic therapy performed after instrumentation and irrigation with 0.9% NaCl; and G3 (control), instrumentation and irrigation with 2.5% NaOCl (sodium hypochlorite) solution. Canals were shaped with a WaveOne primary file (25.08) and irrigated with 0.9% NaCl. E. faecalis samples were collected before and after each procedure, and the results were analyzed using descriptive statistics and the Kruskal-Wallis and Wilcoxon tests. Significant reductions in E. faecalis were observed when photodynamic therapy was performed before and after instrumentation of the root canal system (p < 0.05). Reciprocating instrumentation significantly reduced E. faecalis colonies in experimentally contaminated root canal systems (p < 0.05). Photodynamic therapy was effective in removing E. faecalis from the root canal system, whether performed before or after reciprocating instrumentation.

  12. Evaluation of the Self-Adjusting File system (SAF) for the instrumentation of primary molar root canals: a micro-computed tomographic study.

    PubMed

    Kaya, E; Elbay, M; Yiğit, D

    2017-06-01

    The Self-Adjusting File (SAF) system has been recommended for use in permanent teeth since it offers more conservative and effective root-canal preparation when compared to traditional rotary systems. However, no study had evaluated the usage of SAF in primary teeth. The aim of this study was to evaluate and compare the use of SAF, K file (manual instrumentation) and Profile (traditional rotary instrumentation) systems for primary-tooth root-canal preparation in terms of instrumentation time and amounts of dentin removed using micro-computed tomography (μCT) technology. Study Design: The study was conducted with 60 human primary mandibular second molar teeth divided into 3 groups according to instrumentation technique: Group I: SAF (n=20); Group II: K file (n=20); Group III; Profile (n=20). Teeth were embedded in acrylic blocks and scanned with a μCT scanner prior to instrumentation. All distal root canals were prepared up to size 30 for K file,.04/30 for Profile and 2 mm thickness, size 25 for SAF; instrumentation time was recorded for each tooth, and a second μCT scan was performed after instrumentation was complete. Amounts of dentin removed were measured using the three-dimensional images by calculating the difference in root-canal volume before and after preparation. Data was statistically analysed using the Kolmogorov-Smirnov and Kruskal-Wallis tests. Manual instrumentation (K file) resulted in significantly more dentin removal when compared to rotary instrumentation (Profile and SAF), while the SAF system generated significantly less dentin removal than both manual instrumentation (K file) and traditional rotary instrumentation (Profile) (p<.05). Instrumentation time was significantly greater with manual instrumentation when compared to rotary instrumentation (p<.05), whereas instrumentation time did not differ significantly between the Profile and SAF systems. Within the experimental conditions of the present study, the SAF seems as a useful system for root-canal instrumentation in primary molars because it removed less dentin than other systems, which is especially important for the relatively thin-walled canals of primary teeth, and because it involves less clinical time, which is particularly important in the treatment of paediatric patients.

  13. Genetic and chemical reductions in protein phosphatase activity alter auxin transport, gravity response, and lateral root growth

    NASA Technical Reports Server (NTRS)

    Rashotte, A. M.; DeLong, A.; Muday, G. K.; Brown, C. S. (Principal Investigator)

    2001-01-01

    Auxin transport is required for important growth and developmental processes in plants, including gravity response and lateral root growth. Several lines of evidence suggest that reversible protein phosphorylation regulates auxin transport. Arabidopsis rcn1 mutant seedlings exhibit reduced protein phosphatase 2A activity and defects in differential cell elongation. Here we report that reduced phosphatase activity alters auxin transport and dependent physiological processes in the seedling root. Root basipetal transport was increased in rcn1 or phosphatase inhibitor-treated seedlings but showed normal sensitivity to the auxin transport inhibitor naphthylphthalamic acid (NPA). Phosphatase inhibition reduced root gravity response and delayed the establishment of differential auxin-induced gene expression across a gravity-stimulated root tip. An NPA treatment that reduced basipetal transport in rcn1 and cantharidin-treated wild-type plants also restored a normal gravity response and asymmetric auxin-induced gene expression, indicating that increased basipetal auxin transport impedes gravitropism. Increased auxin transport in rcn1 or phosphatase inhibitor-treated seedlings did not require the AGR1/EIR1/PIN2/WAV6 or AUX1 gene products. In contrast to basipetal transport, root acropetal transport was normal in phosphatase-inhibited seedlings in the absence of NPA, although it showed reduced NPA sensitivity. Lateral root growth also exhibited reduced NPA sensitivity in rcn1 seedlings, consistent with acropetal transport controlling lateral root growth. These results support the role of protein phosphorylation in regulating auxin transport and suggest that the acropetal and basipetal auxin transport streams are differentially regulated.

  14. Inactivation of Plasma Membrane–Localized CDPK-RELATED KINASE5 Decelerates PIN2 Exocytosis and Root Gravitropic Response in Arabidopsis[C][W

    PubMed Central

    Rigó, Gábor; Ayaydin, Ferhan; Tietz, Olaf; Zsigmond, Laura; Kovács, Hajnalka; Páy, Anikó; Salchert, Klaus; Darula, Zsuzsanna; Medzihradszky, Katalin F.; Szabados, László; Palme, Klaus; Koncz, Csaba; Cséplő, Ágnes

    2013-01-01

    CRK5 is a member of the Arabidopsis thaliana Ca2+/calmodulin-dependent kinase-related kinase family. Here, we show that inactivation of CRK5 inhibits primary root elongation and delays gravitropic bending of shoots and roots. Reduced activity of the auxin-induced DR5–green fluorescent protein reporter suggests that auxin is depleted from crk5 root tips. However, no tip collapse is observed and the transcription of genes for auxin biosynthesis, AUXIN TRANSPORTER/AUXIN TRANSPORTER-LIKE PROTEIN (AUX/LAX) auxin influx, and PIN-FORMED (PIN) efflux carriers is unaffected by the crk5 mutation. Whereas AUX1, PIN1, PIN3, PIN4, and PIN7 display normal localization, PIN2 is depleted from apical membranes of epidermal cells and shows basal to apical relocalization in the cortex of the crk5 root transition zone. This, together with an increase in the number of crk5 lateral root primordia, suggests facilitated auxin efflux through the cortex toward the elongation zone. CRK5 is a plasma membrane–associated kinase that forms U-shaped patterns facing outer lateral walls of epidermis and cortex cells. Brefeldin inhibition of exocytosis stimulates CRK5 internalization into brefeldin bodies. CRK5 phosphorylates the hydrophilic loop of PIN2 in vitro, and PIN2 shows accelerated accumulation in brefeldin bodies in the crk5 mutant. Delayed gravitropic response of the crk5 mutant thus likely reflects defective phosphorylation of PIN2 and deceleration of its brefeldin-sensitive membrane recycling. PMID:23673979

  15. Acclimation of the crucifer Eutrema salsugineum to phosphate limitation is associated with constitutively high expression of phosphate-starvation genes.

    PubMed

    Velasco, Vera Marjorie Elauria; Mansbridge, John; Bremner, Samantha; Carruthers, Kimberley; Summers, Peter S; Sung, Wilson W L; Champigny, Marc J; Weretilnyk, Elizabeth A

    2016-08-01

    Eutrema salsugineum, a halophytic relative of Arabidopsis thaliana, was subjected to varying phosphate (Pi) treatments. Arabidopsis seedlings grown on 0.05 mm Pi displayed shortened primary roots, higher lateral root density and reduced shoot biomass allocation relative to those on 0.5 mm Pi, whereas Eutrema seedlings showed no difference in lateral root density and shoot biomass allocation. While a low Fe concentration mitigated the Pi deficiency response for Arabidopsis, Eutrema root architecture was unaltered, but adding NaCl increased Eutrema lateral root density almost 2-fold. Eutrema and Arabidopsis plants grown on soil without added Pi for 4 weeks had low shoot and root Pi content. Pi-deprived, soil-grown Arabidopsis plants were stunted with senescing older leaves, whereas Eutrema plants were visually indistinguishable from 2.5 mm Pi-supplemented plants. Genes associated with Pi starvation were analysed by RT-qPCR. EsIPS2, EsPHT1;4 and EsPAP17 showed up-regulated expression in Pi-deprived Eutrema plants, while EsPHR1, EsWRKY75 and EsRNS1 showed no induction. Absolute quantification of transcripts indicated that PHR1, WRKY75 and RNS1 were expressed at higher levels in Eutrema plants relative to those in Arabidopsis regardless of external Pi. The low phenotypic plasticity Eutrema displays to Pi supply is consistent with adaptation to chronic Pi deprivation in its extreme natural habitat. © 2016 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.

  16. Ecosystem carbon partitioning: aboveground net primary productivity correlates with the root carbon input in different land use types of Southern Alps

    NASA Astrophysics Data System (ADS)

    Rodeghiero, Mirco; Martinez, Cristina; Gianelle, Damiano; Camin, Federica; Zanotelli, Damiano; Magnani, Federico

    2013-04-01

    Terrestrial plant carbon partitioning to above- and below-ground compartments can be better understood by integrating studies on biomass allocation and estimates of root carbon input based on the use of stable isotopes. These experiments are essential to model ecosystem's metabolism and predict the effects of global change on carbon cycling. Using in-growth soil cores in conjunction with the 13C natural abundance method we quantified net plant-derived root carbon input into the soil, which has been pointed out as the main unaccounted NPP (net primary productivity) component. Four land use types located in the Trentino Region (northern Italy) and representing a range of aboveground net primary productivity (ANPP) values (155-868 gC m-2 y-1) were investigated: conifer forest, apple orchard, vineyard and grassland. Cores, filled with soil of a known C4 isotopic signature were inserted at 18 sampling points for each site and left in place for twelve months. After extraction, cores were analysed for %C and d13C, which were used to calculate the proportion of new plant-derived root C input by applying a mass balance equation. The GPP (gross primary productivity) of each ecosystem was determined by the eddy covariance technique whereas ANPP was quantified with a repeated inventory approach. We found a strong and significant relationship (R2 = 0.93; p=0.03) between ANPP and the fraction of GPP transferred to the soil as root C input across the investigated sites. This percentage varied between 10 and 25% of GPP with the grassland having the lowest value and the apple orchard the highest. Mechanistic ecosystem carbon balance models could benefit from this general relationship since ANPP is routinely and easily measured at many sites. This result also suggests that by quantifying site-specific ANPP, root carbon input can be reliably estimated, as opposed to using arbitrary root/shoot ratios which may under- or over-estimate C partitioning.

  17. Root Cortical Senescence Improves Growth under Suboptimal Availability of N, P, and K1[OPEN

    PubMed Central

    Schneider, Hannah M.

    2017-01-01

    Root cortical senescence (RCS) in Triticeae reduces nutrient uptake, nutrient content, respiration, and radial hydraulic conductance of root tissue. We used the functional-structural model SimRoot to evaluate the functional implications of RCS in barley (Hordeum vulgare) under suboptimal nitrate, phosphorus, and potassium availability. The utility of RCS was evaluated using sensitivity analyses in contrasting nutrient regimes. At flowering (80 d), RCS increased simulated plant growth by up to 52%, 73%, and 41% in nitrate-, phosphorus-, and potassium-limiting conditions, respectively. Plants with RCS had reduced nutrient requirement of root tissue for optimal plant growth, reduced total cumulative cortical respiration, and increased total carbon reserves. Nutrient reallocation during RCS had a greater effect on simulated plant growth than reduced respiration or nutrient uptake. Under low nutrient availability, RCS had greater benefit in plants with fewer tillers. RCS had greater benefit in phenotypes with fewer lateral roots at low nitrate availability, but the opposite was true in low phosphorus or potassium availability. Additionally, RCS was quantified in field-grown barley in different nitrogen regimes. Field and virtual soil coring simulation results demonstrated that living cortical volume per root length (an indicator of RCS) decreased with depth in younger plants, while roots of older plants had very little living cortical volume per root length. RCS may be an adaptive trait for nutrient acquisition by reallocating nutrients from senescing tissue and secondarily by reducing root respiration. These simulated results suggest that RCS merits investigation as a breeding target for enhanced soil resource acquisition and edaphic stress tolerance. PMID:28667049

  18. A shift from arbuscular mycorrhizal to dark septate endophytic colonization in Deschampsia flexuosa roots occurs along primary successional gradient.

    PubMed

    Huusko, K; Ruotsalainen, A L; Markkola, A M

    2017-02-01

    Soil fungal community and dominant mycorrhizal types are known to shift along with plant community changes during primary succession. However, it is not well understood how and why root fungal symbionts and colonization types vary within the plant host when the host species is able to thrive both at young and at old successional stages with different light and nutrient resource availability. We asked (i) how root fungal colonization of Deschampsia flexuosa (Poaceae) by arbuscular mycorrhizal (AM) fungi and dark septate endophytes (DSE) changes along a postglacial primary successional land uplift gradient. As neighboring vegetation may play a role in root fungal colonization, we also asked (ii) whether removal of the dominant neighbor, Empetrum nigrum ssp. hermaphroditum (Ericaceae), affects root fungal colonization of Deschampsia. We also studied whether (iii) foliar carbon (C) and nitrogen (N) concentration of Deschampsia is related to successional changes along a land uplift gradient. AM colonization decreased (-50 %), DSE colonization increased (+200 %), and foliar C declined in Deschampsia along with increasing successional age, whereas foliar N was not affected. Empetrum removal did not affect AM colonization but increased DSE sclerotial colonization especially at older successional stages. The observed decrease in foliar C coincides with an increase in canopy closure along with increasing successional age. We suggest that the shift from an AM-dominated to a DSE-dominated root fungal community in Deschampsia along a land uplift successional gradient may be related to different nutritional benefits gained through these root fungal groups.

  19. Global expression pattern comparison between low phosphorus insensitive 4 and WT Arabidopsis reveals an important role of reactive oxygen species and jasmonic acid in the root tip response to phosphate starvation

    PubMed Central

    Chacón-López, Alejandra; Ibarra-Laclette, Enrique; Sánchez-Calderón, Lenin; Gutiérrez-Alanís, Dolores

    2011-01-01

    Plants are exposed to several biotic and abiotic stresses. A common environmental stress that plants have to face both in natural and agricultural ecosystems that impacts both its growth and development is low phosphate (Pi) availability. There has been an important progress in the knowledge of the molecular mechanisms by which plants cope with Pi deficiency. However, the mechanisms that mediate alterations in the architecture of the Arabidopsis root system responses to Pi starvation are still largely unknown. One of the most conspicuous developmental effects of low Pi on the Arabidopsis root system is the inhibition of primary root growth that is accompanied by loss of root meristematic activity. To identify signalling pathways potentially involved in the Arabidpsis root meristem response to Pi-deprivation, here we report the global gene expression analysis of the root tip of wild type and low phosphorus insensitive4 (lpi4) mutant grown under Pi limiting conditions. Differential gene expression analysis and physiological experiments show that changes in the redox status, probably mediated by jasmonic acid and ethylene, play an important role in the primary root meristem exhaustion process triggered by Pi-starvation. PMID:21368582

  20. Morphological plasticity of ectomycorrhizal short roots in Betula sp and Picea abies forests across climate and forest succession gradients: its role in changing environments

    PubMed Central

    Ostonen, Ivika; Rosenvald, Katrin; Helmisaari, Heljä-Sisko; Godbold, Douglas; Parts, Kaarin; Uri, Veiko; Lõhmus, Krista

    2013-01-01

    Morphological plasticity of ectomycorrhizal (EcM) short roots (known also as first and second order roots with primary development) allows trees to adjust their water and nutrient uptake to local environmental conditions. The morphological traits (MTs) of short-living EcM roots, such as specific root length (SRL) and area, root tip frequency per mass unit (RTF), root tissue density, as well as mean diameter, length, and mass of the root tips, are good indicators of acclimation. We investigated the role of EcM root morphological plasticity across the climate gradient (48–68°N) in Norway spruce (Picea abies (L.) Karst) and (53–66°N) birch (Betula pendula Roth., B. pubescens Ehrh.) forests, as well as in primary and secondary successional birch forests assuming higher plasticity of a respective root trait to reflect higher relevance of that characteristic in acclimation process. We hypothesized that although the morphological plasticity of EcM roots is subject to the abiotic and biotic environmental conditions in the changing climate; the tools to achieve the appropriate morphological acclimation are tree species-specific. Long-term (1994–2010) measurements of EcM roots morphology strongly imply that tree species have different acclimation-indicative root traits in response to changing environments. Birch EcM roots acclimated along latitude by changing mostly SRL [plasticity index (PI) = 0.60], while spruce EcM roots became adjusted by modifying RTF (PI = 0.68). Silver birch as a pioneer species must have a broader tolerance to environmental conditions across various environments; however, the mean PI of all MTs did not differ between early-successional birch and late-successional spruce. The differences between species in SRL, and RTF, diameter, and length decreased southward, toward temperate forests with more favorable growth conditions. EcM root traits reflected root-rhizosphere succession across forest succession stages. PMID:24032035

  1. Morphological plasticity of ectomycorrhizal short roots in Betula sp and Picea abies forests across climate and forest succession gradients: its role in changing environments.

    PubMed

    Ostonen, Ivika; Rosenvald, Katrin; Helmisaari, Heljä-Sisko; Godbold, Douglas; Parts, Kaarin; Uri, Veiko; Lõhmus, Krista

    2013-01-01

    Morphological plasticity of ectomycorrhizal (EcM) short roots (known also as first and second order roots with primary development) allows trees to adjust their water and nutrient uptake to local environmental conditions. The morphological traits (MTs) of short-living EcM roots, such as specific root length (SRL) and area, root tip frequency per mass unit (RTF), root tissue density, as well as mean diameter, length, and mass of the root tips, are good indicators of acclimation. We investigated the role of EcM root morphological plasticity across the climate gradient (48-68°N) in Norway spruce (Picea abies (L.) Karst) and (53-66°N) birch (Betula pendula Roth., B. pubescens Ehrh.) forests, as well as in primary and secondary successional birch forests assuming higher plasticity of a respective root trait to reflect higher relevance of that characteristic in acclimation process. We hypothesized that although the morphological plasticity of EcM roots is subject to the abiotic and biotic environmental conditions in the changing climate; the tools to achieve the appropriate morphological acclimation are tree species-specific. Long-term (1994-2010) measurements of EcM roots morphology strongly imply that tree species have different acclimation-indicative root traits in response to changing environments. Birch EcM roots acclimated along latitude by changing mostly SRL [plasticity index (PI) = 0.60], while spruce EcM roots became adjusted by modifying RTF (PI = 0.68). Silver birch as a pioneer species must have a broader tolerance to environmental conditions across various environments; however, the mean PI of all MTs did not differ between early-successional birch and late-successional spruce. The differences between species in SRL, and RTF, diameter, and length decreased southward, toward temperate forests with more favorable growth conditions. EcM root traits reflected root-rhizosphere succession across forest succession stages.

  2. RcRR1, a Rosa canina type-A response regulator gene, is involved in cytokinin-modulated rhizoid organogenesis.

    PubMed

    Gao, Bin; Fan, Lusheng; Li, Xingxing; Yang, Huifang; Liu, Fengluan; Wang, Ling; Xi, Lin; Ma, Nan; Zhao, Liangjun

    2013-01-01

    In vitro, a new protocol of plant regeneration in rose was achieved via protocorm-like bodies (PLBs) induced from the root-like organs named rhizoids that developed from leaf explants. The development of rhizoids is a critical stage for efficient regeneration, which is triggered by exogenous auxin. However, the role of cytokinin in the control of organogenesis in rose is as yet uncharacterized. The aim of this study was to elucidate the molecular mechanism of cytokinin-modulated rhizoid formation in Rosa canina. Here, we found that cytokinin is a key regulator in the formation of rhizoids. Treatment with cytokinin reduced callus activity and significantly inhibited rhizoid formation in Rosa canina. We further isolated the full-length cDNA of a type-A response regulator gene of cytokinin signaling, RcRR1, from which the deduced amino acid sequence contained the conserved DDK motif. Gene expression analysis revealed that RcRR1 was differentially expressed during rhizoid formation and its expression level was rapidly up-regulated by cytokinin. In addition, the functionality of RcRR1 was tested in Arabidopsis. RcRR1 was found to be localized to the nucleus in GFP-RcRR1 transgenic plants and overexpression of RcRR1 resulted in increased primary root length and lateral root density. More importantly, RcRR1 overexpression transgenic plants also showed reduced sensitivity to cytokinin during root growth; auxin distribution and the expression of auxin efflux carriers PIN genes were altered in RcRR1 overexpression plants. Taken together, these results demonstrate that RcRR1 is a functional type-A response regulator which is involved in cytokinin-regulated rhizoid formation in Rosa canina.

  3. RcRR1, a Rosa canina Type-A Response Regulator Gene, Is Involved in Cytokinin-Modulated Rhizoid Organogenesis

    PubMed Central

    Li, Xingxing; Yang, Huifang; Liu, Fengluan; Wang, Ling; Xi, Lin; Ma, Nan; Zhao, Liangjun

    2013-01-01

    In vitro, a new protocol of plant regeneration in rose was achieved via protocorm-like bodies (PLBs) induced from the root-like organs named rhizoids that developed from leaf explants. The development of rhizoids is a critical stage for efficient regeneration, which is triggered by exogenous auxin. However, the role of cytokinin in the control of organogenesis in rose is as yet uncharacterized. The aim of this study was to elucidate the molecular mechanism of cytokinin-modulated rhizoid formation in Rosa canina. Here, we found that cytokinin is a key regulator in the formation of rhizoids. Treatment with cytokinin reduced callus activity and significantly inhibited rhizoid formation in Rosa canina. We further isolated the full-length cDNA of a type-A response regulator gene of cytokinin signaling, RcRR1, from which the deduced amino acid sequence contained the conserved DDK motif. Gene expression analysis revealed that RcRR1 was differentially expressed during rhizoid formation and its expression level was rapidly up-regulated by cytokinin. In addition, the functionality of RcRR1 was tested in Arabidopsis. RcRR1 was found to be localized to the nucleus in GFP-RcRR1 transgenic plants and overexpression of RcRR1 resulted in increased primary root length and lateral root density. More importantly, RcRR1 overexpression transgenic plants also showed reduced sensitivity to cytokinin during root growth; auxin distribution and the expression of auxin efflux carriers PIN genes were altered in RcRR1 overexpression plants. Taken together, these results demonstrate that RcRR1 is a functional type-A response regulator which is involved in cytokinin-regulated rhizoid formation in Rosa canina. PMID:24009713

  4. On the use of antibiotics to reduce rhizoplane microbial populations in root physiology and ecology investigations

    NASA Technical Reports Server (NTRS)

    Smart, D. R.; Ferro, A.; Ritchie, K.; Bugbee, B. G.

    1995-01-01

    No straightforward method exists for separating the proportion of ion exchange and respiration due to rhizoplane microbial organisms from that of root ion exchange and respiration. We examined several antibiotics that might be used for the temporary elimination of rhizoplane bacteria from hydroponically grown wheat roots (Triticum aestivum cv. Veery 10). Each antibiotic was tested for herbicidal activity and plate counts were used to enumerate bacteria and evaluate antibiotic kinetics. Only lactam antibiotics (penicillins and cephalosporins) did not reduce wheat growth rates. Aminoglycosides, the pyrimidine trimethoprim, colistin and rifampicin reduced growth rates substantially. Antibiotics acted slowly, with maximum reductions in rhizoplane bacteria occurring after more than 48 h of exposure. Combinations of nonphytotoxic antibiotics reduced platable rhizoplane bacteria by as much as 98%; however, this was generally a reduction from about 10(9) to 10(6) colony forming units per gram of dry root mass, so that many viable bacteria remained on root surfaces. We present evidence which suggests that insufficient bacterial biomass exists on root surfaces of nonstressed plants grown under well-aerated conditions to quantitatively interfere with root nitrogen absorption measurements.

  5. Improved Root Normal Size Distributions for Liquid Atomization

    DTIC Science & Technology

    2015-11-01

    Jackson, Primary Breakup of Round Aerated- Liquid Jets in Supersonic Crossflows, Atomization and Sprays, 16(6), 657-672, 2006 H. C. Simmons, The...Breakup in Liquid - Gas Mixing Layers, Atomization and Sprays, 1, 421-440, 1991 P.-K. Wu, L.-K. Tseng, and G. M. Faeth, Primary Breakup in Gas / Liquid ...Improved Root Normal Size Distributions for Liquid Atomization Distribution Statement A. Approved for public release; distribution is unlimited

  6. Primary succession of Bistorta vivipara (L.) Delabre (Polygonaceae) root-associated fungi mirrors plant succession in two glacial chronosequences.

    PubMed

    Davey, Marie; Blaalid, Rakel; Vik, Unni; Carlsen, Tor; Kauserud, Håvard; Eidesen, Pernille B

    2015-08-01

    Glacier chronosequences are important sites for primary succession studies and have yielded well-defined primary succession models for plants that identify environmental resistance as an important determinant of the successional trajectory. Whether plant-associated fungal communities follow those same successional trajectories and also respond to environmental resistance is an open question. In this study, 454 amplicon pyrosequencing was used to compare the root-associated fungal communities of the ectomycorrhizal (ECM) herb Bistorta vivipara along two primary succession gradients with different environmental resistance (alpine versus arctic) and different successional trajectories in the vascular plant communities (directional replacement versus directional non-replacement). At both sites, the root-associated fungal communities were dominated by ECM basidiomycetes and community composition shifted with increasing time since deglaciation. However, the fungal community's successional trajectory mirrored the pattern observed in the surrounding plant community at both sites: the alpine site displayed a directional-replacement successional trajectory, and the arctic site displayed a directional-non-replacement successional trajectory. This suggests that, like in plant communities, environmental resistance is key in determining succession patterns in root-associated fungi. The need for further replicated study, including in other host species, is emphasized. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  7. Influences of Root Hydraulic Redistribution on N2O Emissions at AmeriFlux Sites

    NASA Astrophysics Data System (ADS)

    Fu, Congsheng; Lee, Xuhui; Griffis, Timothy J.; Wang, Guiling; Wei, Zhongwang

    2018-05-01

    It has long been suspected that root hydraulic redistribution (HR) affects the carbon and nitrogen cycles. Nitrous oxide (N2O) is an important greenhouse gas and is the primary stratospheric ozone-depleting substance. To our knowledge, the influences of HR on N2O emissions have not been investigated. Here we use the HR schemes of Ryel et al. and Amenu and Kumar incorporated into CLM4.5 to examine N2O emissions at five AmeriFlux sites. The results show that HR reduced N2O emissions by 28-92% in the four natural ecosystems experiencing a dry season, whereas it had a very limited effect on the Corn Belt site that has strong emissions but with no distinct dry season. We hypothesize that N2O emissions in ecosystems with a distinct dry season are likely overestimated by CENTURY-based Earth system models.

  8. Effect of endodontic irrigation with 1% sodium hypochlorite and 17% EDTA on primary teeth: a scanning electron microscope analysis.

    PubMed

    Ximenes, Marcos; Triches, Thaisa C; Beltrame, Ana Paula C A; Hilgert, Leandro A; Cardoso, Mariane

    2013-01-01

    This study evaluated the efficacy of 2 final irrigation solutions for removal of the smear layer (SL) from root canals of primary teeth, using scanning electron microscope (SEM) analysis. Thirty primary molars were selected and a single operator instrumented the canals. The initial irrigation was done with a 1% sodium hypochlorite (NaOCl) solution. After the preparation, the roots were randomly divided into 3 groups for final irrigation: Group 1, 1% NaOCl (n = 10); Group 2, 17% EDTA + 1% NaOCl (n = 10); and Group 3, 17% EDTA + saline solution (n = 10). The roots were prepared for SEM analysis (magnification 1000X). The photomicrographs were independently analyzed by 2 investigators with SEM experience, attributing scores to each root third in terms of SL removal. Kruskal-Wallis and Mann-Whitney tests revealed that there was no statistical difference between the groups (P = 0.489). However, a statistical difference was found (P < 0.05) in a comparison of root thirds, with the apical third having the worst results. Comparing the thirds within the same group, all canals showed statistical differences between the cervical and apical thirds (P < 0.05). The authors determined that no substance or association of substances were able to completely remove SL.

  9. Characteristics of a root hair-less line of Arabidopsis thaliana under physiological stresses.

    PubMed

    Tanaka, Natsuki; Kato, Mariko; Tomioka, Rie; Kurata, Rie; Fukao, Yoichiro; Aoyama, Takashi; Maeshima, Masayoshi

    2014-04-01

    The plasma membrane-associated Ca(2+)-binding protein-2 of Arabidopsis thaliana is involved in the growth of root hair tips. Several transgenic lines that overexpress the 23 residue N-terminal domain of this protein under the control of the root hair-specific EXPANSIN A7 promoter lack root hairs completely. The role of root hairs under normal and stress conditions was examined in one of these root hair-less lines (NR23). Compared with the wild type, NR23 showed a 47% reduction in water absorption, decreased drought tolerance, and a lower ability to adapt to heat. Growth of NR23 was suppressed in media deficient in phosphorus, iron, calcium, zinc, copper, or potassium. Also, the content of an individual mineral in NR23 grown in normal medium, or in medium lacking a specific mineral, was relatively low. In wild-type plants, the primary and lateral roots produce numerous root hairs that become elongated under phosphate-deficient conditions; NR23 did not produce root hairs. Although several isoforms of the plasma membrane phosphate transporters including PHT1;1-PHT1;6 were markedly induced after growth in phosphate-deficient medium, the levels induced in NR23 were less than half those observed in the wild type. In phosphate-deficient medium, the amounts of acid phosphatase, malate, and citrate secreted from NR23 roots were 38, 9, and 16% of the levels secreted from wild-type roots. The present results suggest that root hairs play significant roles in the absorption of water and several minerals, secretion of acid phosphatase(s) and organic acids, and in penetration of the primary roots into gels.

  10. IN SITU RT-PCR WITH A SULFATE-REDUCING BACTERIUM ISOLATED FROM SEAGRASS ROOTS

    EPA Science Inventory

    Bacteria considered to be obligate anaerobes internally colonize roots of the submerged macrophyte Halodule wrightii. A sulfate reducing bacterium, Summer lac 1, was isolated on lactate from H. wrightii roots. The isolate has physiological characteristics typical of Desulfovibri...

  11. Influence of four nematodes on root and shoot growth parameters in grape.

    PubMed

    Anwar, S A; Van Gundy, S D

    1989-04-01

    Two grape cultivars, susceptible French Colombard and tolerant Rubired, and four nematodes, Meloidogyne incognita, Pratylenchus vulnus, Tylenchulus semipenetrans, and Xiphinema index, were used to quantify the equilibrium between root (R) and shoot (S) growth. Root and shoot growth of French Colombard was retarded by M. incognita, P. vulnus, and X. index but not by T. semipenetrans. Although the root growth of Rubired was limited by all the nematodes, the shoot growth was limited only by X. index. The R:S ratios of Rubired were higher than those of French Colombard. The reduced R:S ratios of Rubired were primarily an expression of reduction in root systems without an equal reduction in shoot growth, whereas in French Colombard the reduced R:S ratios were due to a reduction in both shoot growth and root growth and to a greater reduction in root growth than shoot growth. All nematodes reproduced equally well on both cultivars. Both foliage and root growth of French Colombard were significantly reduced by M. incognita and P. vulnus. Nematodes reduced the shoot length by reducing the internode length. Accumulative R:S ratios in inoculated plants were significantly smaller than those in controls in all nematode treatments but not at individual harvest dates. Bud break was delayed by X. index and was initiated earlier by P. vulnus and M. incognita. All buds in nematode treatments were less vigorous than in controls.

  12. Root rots

    Treesearch

    Kathryn Robbins; Philip M. Wargo

    1989-01-01

    Root rots of central hardwoods are diseases caused by fungi that infect and decay woody roots and sometimes also invade the butt portion of the tree. By killing and decaying roots, root rotting fungi reduce growth, decrease tree vigor, and cause windthrow and death. The most common root diseases of central hardwoods are Armillaria root rot, lnonotus root rot, and...

  13. Inhibition of auxin movement from the shoot into the root inhibits lateral root development in Arabidopsis

    NASA Technical Reports Server (NTRS)

    Reed, R. C.; Brady, S. R.; Muday, G. K.

    1998-01-01

    In roots two distinct polar movements of auxin have been reported that may control different developmental and growth events. To test the hypothesis that auxin derived from the shoot and transported toward the root controls lateral root development, the two polarities of auxin transport were uncoupled in Arabidopsis. Local application of the auxin-transport inhibitor naphthylphthalamic acid (NPA) at the root-shoot junction decreased the number and density of lateral roots and reduced the free indoleacetic acid (IAA) levels in the root and [3H]IAA transport into the root. Application of NPA to the basal half of or at several positions along the root only reduced lateral root density in regions that were in contact with NPA or in regions apical to the site of application. Lateral root development was restored by application of IAA apical to NPA application. Lateral root development in Arabidopsis roots was also inhibited by excision of the shoot or dark growth and this inhibition was reversible by IAA. Together, these results are consistent with auxin transport from the shoot into the root controlling lateral root development.

  14. The Maize (Zea mays L.) AUXIN/INDOLE-3-ACETIC ACID Gene Family: Phylogeny, Synteny, and Unique Root-Type and Tissue-Specific Expression Patterns during Development

    PubMed Central

    Ludwig, Yvonne; Zhang, Yanxiang; Hochholdinger, Frank

    2013-01-01

    The plant hormone auxin plays a key role in the coordination of many aspects of growth and development. AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) genes encode instable primary auxin responsive regulators of plant development that display a protein structure with four characteristic domains. In the present study, a comprehensive analysis of the 34 members of the maize Aux/IAA gene family was performed. Phylogenetic reconstructions revealed two classes of Aux/IAA proteins that can be distinguished by alterations in their domain III. Seven pairs of paralogous maize Aux/IAA proteins were discovered. Comprehensive root-type and tissue-specific expression profiling revealed unique expression patterns of the diverse members of the gene family. Remarkably, five of seven pairs of paralogous genes displayed highly correlated expression patterns in roots. All but one (ZmIAA23) tested maize Aux/IAA genes were auxin inducible, displaying two types of auxin induction within three hours of treatment. Moreover, 51 of 55 (93%) differential Aux/IAA expression patterns between different root-types followed the expression tendency: crown roots > seminal roots > primary roots > lateral roots. This pattern might imply root-type-specific regulation of Aux/IAA transcript abundance. In summary, the detailed analysis of the maize Aux/IAA gene family provides novel insights in the evolution and developmental regulation and thus the function of these genes in different root-types and tissues. PMID:24223858

  15. The maize (Zea mays L.) AUXIN/INDOLE-3-ACETIC ACID gene family: phylogeny, synteny, and unique root-type and tissue-specific expression patterns during development.

    PubMed

    Ludwig, Yvonne; Zhang, Yanxiang; Hochholdinger, Frank

    2013-01-01

    The plant hormone auxin plays a key role in the coordination of many aspects of growth and development. AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) genes encode instable primary auxin responsive regulators of plant development that display a protein structure with four characteristic domains. In the present study, a comprehensive analysis of the 34 members of the maize Aux/IAA gene family was performed. Phylogenetic reconstructions revealed two classes of Aux/IAA proteins that can be distinguished by alterations in their domain III. Seven pairs of paralogous maize Aux/IAA proteins were discovered. Comprehensive root-type and tissue-specific expression profiling revealed unique expression patterns of the diverse members of the gene family. Remarkably, five of seven pairs of paralogous genes displayed highly correlated expression patterns in roots. All but one (ZmIAA23) tested maize Aux/IAA genes were auxin inducible, displaying two types of auxin induction within three hours of treatment. Moreover, 51 of 55 (93%) differential Aux/IAA expression patterns between different root-types followed the expression tendency: crown roots > seminal roots > primary roots > lateral roots. This pattern might imply root-type-specific regulation of Aux/IAA transcript abundance. In summary, the detailed analysis of the maize Aux/IAA gene family provides novel insights in the evolution and developmental regulation and thus the function of these genes in different root-types and tissues.

  16. Collection of gravitropic effectors from mucilage of electrotropically-stimulated roots of Zea mays L

    NASA Technical Reports Server (NTRS)

    Fondren, W. M.; Moore, R.

    1987-01-01

    We placed agar blocks adjacent to tips of electrotropically stimulated primary roots of Zea mays. Blocks placed adjacent to the anode-side of the roots for 3 h induced significant curvature when subsequently placed asymmetrically on tips of vertically-oriented roots. Curvature was always toward the side of the root unto which the agar block was placed. Agar blocks not contacting roots and blocks placed adjacent to the cathode-side of electrotropically stimulated roots did not induce significant curvature when placed asymmetrically on tips of vertically-oriented roots. Atomic absorption spectrophotometry indicated that blocks adjacent to the anode-side of electrotropically-stimulated roots contained significantly more calcium than (1) blocks not contacting roots, and (2) blocks contacting the cathode-side of roots. These results demonstrate the presence of a gradient of endogenous Ca in mucilage of electrotropically-stimulated roots (i.e. roots undergoing gravitropic-like curvature).

  17. Nitric oxide plays a role in stem cell niche homeostasis through its interaction with auxin.

    PubMed

    Sanz, Luis; Fernández-Marcos, María; Modrego, Abelardo; Lewis, Daniel R; Muday, Gloria K; Pollmann, Stephan; Dueñas, Montserrat; Santos-Buelga, Celestino; Lorenzo, Oscar

    2014-12-01

    Nitric oxide (NO) is a unique reactive nitrogen molecule with an array of signaling functions that modulates plant developmental processes and stress responses. To explore the mechanisms by which NO modulates root development, we used a pharmacological approach and NO-deficient mutants to unravel the role of NO in establishing auxin distribution patterns necessary for stem cell niche homeostasis. Using the NO synthase inhibitor and Arabidopsis (Arabidopsis thaliana) NO biosynthesis mutants (nitric oxide-associated1 [noa1], nitrate reductase1 [nia1] and nia2, and nia1 nia2 noa1), we show that depletion of NO in noa1 reduces primary root elongation and increases flavonol accumulation consistent with elevated reactive oxygen species levels. The elevated flavonols are required for the growth effect, because the transparent testa4 mutation reverses the noa1 mutant root elongation phenotype. In addition, noa1 and nia1 nia2 noa1 NO-deficient mutant roots display small root meristems with abnormal divisions. Concomitantly, auxin biosynthesis, transport, and signaling are perturbed. We further show that NO accumulates in cortex/endodermis stem cells and their precursor cells. In endodermal and cortical cells, the noa1 mutant acts synergistically to the effect of the wuschel-related homeobox5 mutation on the proximal meristem, suggesting that NO could play an important role in regulating stem cell decisions, which has been reported in animals. © 2014 American Society of Plant Biologists. All Rights Reserved.

  18. Biological effects due to weak magnetic field on plants

    NASA Astrophysics Data System (ADS)

    Belyavskaya, N. A.

    2004-01-01

    Throughout the evolution process, Earth's magnetic field (MF, about 50 μT) was a natural component of the environment for living organisms. Biological objects, flying on planned long-term interplanetary missions, would experience much weaker magnetic fields, since galactic MF is known to be 0.1-1 nT. However, the role of weak magnetic fields and their influence on functioning of biological organisms are still insufficiently understood, and is actively studied. Numerous experiments with seedlings of different plant species placed in weak magnetic field have shown that the growth of their primary roots is inhibited during early germination stages in comparison with control. The proliferative activity and cell reproduction in meristem of plant roots are reduced in weak magnetic field. Cell reproductive cycle slows down due to the expansion of G 1 phase in many plant species (and of G 2 phase in flax and lentil roots), while other phases of cell cycle remain relatively stabile. In plant cells exposed to weak magnetic field, the functional activity of genome at early pre-replicate period is shown to decrease. Weak magnetic field causes intensification of protein synthesis and disintegration in plant roots. At ultrastructural level, changes in distribution of condensed chromatin and nucleolus compactization in nuclei, noticeable accumulation of lipid bodies, development of a lytic compartment (vacuoles, cytosegresomes and paramural bodies), and reduction of phytoferritin in plastids in meristem cells were observed in pea roots exposed to weak magnetic field. Mitochondria were found to be very sensitive to weak magnetic field: their size and relative volume in cells increase, matrix becomes electron-transparent, and cristae reduce. Cytochemical studies indicate that cells of plant roots exposed to weak magnetic field show Ca 2+ over-saturation in all organelles and in cytoplasm unlike the control ones. The data presented suggest that prolonged exposures of plants to weak magnetic field may cause different biological effects at the cellular, tissue and organ levels. They may be functionally related to systems that regulate plant metabolism including the intracellular Ca 2+ homeostasis. However, our understanding of very complex fundamental mechanisms and sites of interactions between weak magnetic fields and biological systems is still incomplete and still deserve strong research efforts.

  19. Transcriptional regulation of PIN genes by FOUR LIPS and MYB88 during Arabidopsis root gravitropism.

    PubMed

    Wang, Hong-Zhe; Yang, Ke-Zhen; Zou, Jun-Jie; Zhu, Ling-Ling; Xie, Zi Dian; Morita, Miyo Terao; Tasaka, Masao; Friml, Jiří; Grotewold, Erich; Beeckman, Tom; Vanneste, Steffen; Sack, Fred; Le, Jie

    2015-11-18

    PIN proteins are auxin export carriers that direct intercellular auxin flow and in turn regulate many aspects of plant growth and development including responses to environmental changes. The Arabidopsis R2R3-MYB transcription factor FOUR LIPS (FLP) and its paralogue MYB88 regulate terminal divisions during stomatal development, as well as female reproductive development and stress responses. Here we show that FLP and MYB88 act redundantly but differentially in regulating the transcription of PIN3 and PIN7 in gravity-sensing cells of primary and lateral roots. On the one hand, FLP is involved in responses to gravity stimulation in primary roots, whereas on the other, FLP and MYB88 function complementarily in establishing the gravitropic set-point angles of lateral roots. Our results support a model in which FLP and MYB88 expression specifically determines the temporal-spatial patterns of PIN3 and PIN7 transcription that are closely associated with their preferential functions during root responses to gravity.

  20. Nitric Oxide Is Associated with Long-Term Zinc Tolerance in Solanum nigrum1[W

    PubMed Central

    Xu, Jin; Yin, Hengxia; Li, Yulong; Liu, Xiaojing

    2010-01-01

    Nitric oxide (NO) has been identified as a signal molecule that interplays with reactive oxygen species in response to heavy metal stresses. Roles of NO in regulating cadmium toxicity and iron deficiency have been proposed; however, the function of NO in zinc (Zn) tolerance in plants remains unclear. Here, we investigated NO accumulation and its role in plant Zn tolerance. Zn-induced NO production promoted an increase in reactive oxygen species accumulation in Solanum nigrum roots by modulating the expression and activity of antioxidative enzymes. Subsequently, programmed cell death (PCD) was observed in primary root tips. Inhibiting NO accumulation by 2-phenyl-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide (a specific NO scavenger) or NG-nitro-l-arginine-methyl ester (a NO synthase inhibitor) prevented the increase of superoxide radical and hydrogen peroxide as well as the subsequent cell death in the root tips, supporting the role of NO in Zn-induced PCD in the root tips. Zn-induced NO production affected the length of primary roots, the number of lateral roots, and root hair growth and thereby modulated root system architecture and activity. Investigation of metal contents in Zn-treated roots suggests that NO is required for metal (especially iron) uptake and homeostasis in plants exposed to excess Zn. Taken together, our results indicate that NO production and the subsequent PCD in root tips exposed to excess Zn are favorable for the S. nigrum seedling response to long-term Zn toxicity by modulating root system architecture and subsequent adaptation to Zn stress. PMID:20855519

  1. Influence of Root Exudates and Soil on Attachment of Pasteuria penetrans to Meloidogyne arenaria

    PubMed Central

    Liu, Chang; Ji, Pingsheng; Mekete, Tesfamariam; Joseph, Soumi

    2017-01-01

    The bacterium Pasteuria penetrans is a parasite of root-knot nematodes (Meloidogyne spp.). Endospores of P. penetrans attach to the cuticle of second-stage juveniles (J2) and subsequently sterilize infected females. When encumbered by large numbers of spores, juveniles are less mobile and their ability to infect roots is reduced. This study looked at different factors that influence spore attachment of P. penetrans to the root-knot nematode Meloidogyne arenaria. Pretreatment of J2 with root exudates of eggplant (Solanum melongena cv. Black beauty) reduced spore attachment compared with pretreatment with phosphate-buffered saline (PBS), suggesting that the nematode surface coat was altered or the spore recognition domains on the nematode surface were blocked. Spore attachment was equally reduced following exposure to root exudates from both host and nonhost plants for M. arenaria, indicating a common signal that affects spore attachment. Although phytohormones have been shown to influence the lipophilicity of the nematode surface coat, auxins and kinetins did not affect spore attachment compared with PBS. Root exudates reduced spore attachment more in sterilized soil than in natural soil. Sterilization may have eliminated microbes that consume root exudates, or altered the chemical components of the soil solution or root exudates. Root exudates caused a greater decrease in spore attachment in loamy sand than in a sandy loam soil. The sandy loam had higher clay content than the loamy sand, which may have resulted in more adsorption of compounds in the root exudates that affect spore attachment. The components of the root exudates could have also been modified by soil type. The results of this study demonstrate that root exudates can decrease the attachment of P. penetrans endospores to root-knot nematodes, indicating that when these nematodes enter the root zone their susceptibility to spore attachment may decrease. PMID:29062153

  2. Influence of Root Exudates and Soil on Attachment of Pasteuria penetrans to Meloidogyne arenaria.

    PubMed

    Liu, Chang; Timper, Patricia; Ji, Pingsheng; Mekete, Tesfamariam; Joseph, Soumi

    2017-09-01

    The bacterium Pasteuria penetrans is a parasite of root-knot nematodes ( Meloidogyne spp.). Endospores of P. penetrans attach to the cuticle of second-stage juveniles (J2) and subsequently sterilize infected females. When encumbered by large numbers of spores, juveniles are less mobile and their ability to infect roots is reduced. This study looked at different factors that influence spore attachment of P. penetrans to the root-knot nematode Meloidogyne arenaria . Pretreatment of J2 with root exudates of eggplant ( Solanum melongena cv. Black beauty) reduced spore attachment compared with pretreatment with phosphate-buffered saline (PBS), suggesting that the nematode surface coat was altered or the spore recognition domains on the nematode surface were blocked. Spore attachment was equally reduced following exposure to root exudates from both host and nonhost plants for M. arenaria , indicating a common signal that affects spore attachment. Although phytohormones have been shown to influence the lipophilicity of the nematode surface coat, auxins and kinetins did not affect spore attachment compared with PBS. Root exudates reduced spore attachment more in sterilized soil than in natural soil. Sterilization may have eliminated microbes that consume root exudates, or altered the chemical components of the soil solution or root exudates. Root exudates caused a greater decrease in spore attachment in loamy sand than in a sandy loam soil. The sandy loam had higher clay content than the loamy sand, which may have resulted in more adsorption of compounds in the root exudates that affect spore attachment. The components of the root exudates could have also been modified by soil type. The results of this study demonstrate that root exudates can decrease the attachment of P. penetrans endospores to root-knot nematodes, indicating that when these nematodes enter the root zone their susceptibility to spore attachment may decrease.

  3. ASSESSING THE EFFECTS OF GLOBAL CLIMATE CHANGE ON THE PRODUCTION AND MORTALITY OF DOUGLAS FIR FINE ROOTS USING MINIRHIZOTRONS

    EPA Science Inventory

    Fine roots (roots 2 mm in diameter) are one of the principal absorptive surfaces for water and nutrients in terrestrial plants. As such they are vital for plant growth and survival, while their turnover serves as a primary mechanism for carbon addition to soil. Little is known...

  4. Maize ZmALMT2 is a root anion transporter that mediates constitutive root malate efflux

    USDA-ARS?s Scientific Manuscript database

    Aluminum (Al) toxicity is a primary limitation to crop productivity on acid soils throughout the plant. Root efflux of organic acid anions constitutes a mechanism by which plants cope with toxic aluminum (Al) ions on acid soils. In this study, we have characterized ZmALMT2 (a member of aluminum-acti...

  5. Synergy between root hydrotropic response and root biomass in maize (Zea mays L.) enhances drought avoidance.

    PubMed

    Eapen, Delfeena; Martínez-Guadarrama, Jesús; Hernández-Bruno, Oralia; Flores, Leonardo; Nieto-Sotelo, Jorge; Cassab, Gladys I

    2017-12-01

    Roots of higher plants change their growth direction in response to moisture, avoiding drought and gaining maximum advantage for development. This response is termed hydrotropism. There have been few studies of root hydrotropism in grasses, particularly in maize. Our goal was to test whether an enhanced hydrotropic response of maize roots correlates with a better adaptation to drought and partial/lateral irrigation in field studies. We developed a laboratory bioassay for testing hydrotropic response in primary roots of 47 maize elite DTMA (Drought Tolerant Maize for Africa) hybrids. After phenotyping these hybrids in the laboratory, selected lines were tested in the field. Three robust and three weak hybrids were evaluated employing three irrigation procedures: normal irrigation, partial lateral irrigation and drought. Hybrids with a robust hydrotropic response showed growth and developmental patterns, under drought and partial lateral irrigation, that differed from weak hydrotropic responders. A correlation between root crown biomass and grain yield in hybrids with robust hydrotropic response was detected. Hybrids with robust hydrotropic response showed earlier female flowering whereas several root system traits, such as projected root area, median width, maximum width, skeleton width, skeleton nodes, average tip diameter, rooting depth skeleton, thinner aboveground crown roots, as well as stem diameter, were considerably higher than in weak hydrotropic responders in the three irrigation procedures utilized. These results demonstrate the benefit of intensive phenotyping of hydrotropism in primary roots since maize plants that display a robust hydrotropic response grew better under drought and partial lateral irrigation, indicating that a selection for robust hydrotropism might be a promising breeding strategy to improve drought avoidance in maize. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Mutant alleles of Arabidopsis RADIALLY SWOLLEN 4 and 7 reduce growth anisotropy without altering the transverse orientation of cortical microtubules or cellulose microfibrils.

    PubMed

    Wiedemeier, Allison M D; Judy-March, Jan E; Hocart, Charles H; Wasteneys, Geoffrey O; Williamson, Richard E; Baskin, Tobias I

    2002-10-01

    The anisotropic growth of plant cells depends on cell walls having anisotropic mechanical properties, which are hypothesized to arise from aligned cellulose microfibrils. To test this hypothesis and to identify genes involved in controlling plant shape, we isolated mutants in Arabidopsis thaliana in which the degree of anisotropic expansion of the root is reduced. We report here the characterization of mutants at two new loci, RADIALLY SWOLLEN 4 (RSW4) and RSW7. The radial swelling phenotype is temperature sensitive, being moderate (rsw7) or negligible (rsw4) at the permissive temperature, 19 degrees C, and pronounced at the restrictive temperature, 30 degrees C. After transfer to 30 degrees C, the primary root's elongation rate decreases and diameter increases, with all tissues swelling radially. Swelling is accompanied by ectopic cell production but swelling is not reduced when the extra cell production is eliminated chemically. A double mutant was generated, whose roots swell constitutively and more than either parent. Based on analytical determination of acid-insoluble glucose, the amount of cellulose was normal in rsw4 and slightly elevated in rsw7. The orientation of cortical microtubules was examined with immunofluorescence in whole mounts and in semi-thin plastic sections, and the orientation of microfibrils was examined with field-emission scanning electron microscopy and quantitative polarized-light microscopy. In the swollen regions of both mutants, cortical microtubules and cellulose microfibrils are neither depleted nor disoriented. Thus, oriented microtubules and microfibrils themselves are insufficient to limit radial expansion; to build a wall with high mechanical anisotropy, additional factors are required, supplied in part by RSW4 and RSW7.

  7. Rotary endodontics in primary teeth – A review

    PubMed Central

    George, Sageena; Anandaraj, S.; Issac, Jyoti S.; John, Sheen A.; Harris, Anoop

    2015-01-01

    Endodontic treatment in primary teeth can be challenging and time consuming, especially during canal preparation, which is considered one of the most important steps in root canal therapy. The conventional instrumentation technique for primary teeth remains the “gold-standard” over hand instrumentation, which makes procedures much more time consuming and adversely affects both clinicians and patients. Recently nickel–titanium (Ni–Ti) rotary files have been developed for use in pediatric endodontics. Using rotary instruments for primary tooth pulpectomies is cost effective and results in fills that are consistently uniform and predictable. This article reviews the use of nickel–titanium rotary files as root canal instrumentation in primary teeth. The pulpectomy technique is described here according to different authors and the advantages and disadvantages of using rotary files are discussed. PMID:26792964

  8. Rotary endodontics in primary teeth - A review.

    PubMed

    George, Sageena; Anandaraj, S; Issac, Jyoti S; John, Sheen A; Harris, Anoop

    2016-01-01

    Endodontic treatment in primary teeth can be challenging and time consuming, especially during canal preparation, which is considered one of the most important steps in root canal therapy. The conventional instrumentation technique for primary teeth remains the "gold-standard" over hand instrumentation, which makes procedures much more time consuming and adversely affects both clinicians and patients. Recently nickel-titanium (Ni-Ti) rotary files have been developed for use in pediatric endodontics. Using rotary instruments for primary tooth pulpectomies is cost effective and results in fills that are consistently uniform and predictable. This article reviews the use of nickel-titanium rotary files as root canal instrumentation in primary teeth. The pulpectomy technique is described here according to different authors and the advantages and disadvantages of using rotary files are discussed.

  9. Nitrate Controls Root Development through Posttranscriptional Regulation of the NRT1.1/NPF6.3 Transporter/Sensor1

    PubMed Central

    Perrine-Walker, Francine; Rochette, Juliette; Martinière, Alexandre; Bach, Lien; Gojon, Alain

    2016-01-01

    Plants are able to modulate root growth and development to optimize their nitrogen nutrition. In Arabidopsis (Arabidopsis thaliana), the adaptive root response to nitrate (NO3−) depends on the NRT1.1/NPF6.3 transporter/sensor. NRT1.1 represses emergence of lateral root primordia (LRPs) at low concentration or absence of NO3− through its auxin transport activity that lowers auxin accumulation in LR. However, these functional data strongly contrast with the known transcriptional regulation of NRT1.1, which is markedly repressed in LRPs in the absence of NO3−. To explain this discrepancy, we investigated in detail the spatiotemporal expression pattern of the NRT1.1 protein during LRP development and combined local transcript analysis with the use of transgenic lines expressing tagged NRT1.1 proteins. Our results show that although NO3− stimulates NRT1.1 transcription and probably mRNA stability both in primary root tissues and in LRPs, it acts differentially on protein accumulation, depending on the tissues considered with stimulation in cortex and epidermis of the primary root and a strong repression in LRPs and to a lower extent at the primary root tip. This demonstrates that NRT1.1 is strongly regulated at the posttranscriptional level by tissue-specific mechanisms. These mechanisms are crucial for controlling the large palette of adaptive responses to NO3− mediated by NRT1.1 as they ensure that the protein is present in the proper tissue under the specific conditions where it plays a signaling role in this particular tissue. PMID:27543115

  10. Root canal irrigants

    PubMed Central

    Kandaswamy, Deivanayagam; Venkateshbabu, Nagendrababu

    2010-01-01

    Successful root canal therapy relies on the combination of proper instrumentation, irrigation, and obturation of the root canal. Of these three essential steps of root canal therapy, irrigation of the root canal is the most important determinant in the healing of the periapical tissues. The primary endodontic treatment goal must thus be to optimize root canal disinfection and to prevent reinfection. In this review of the literature, various irrigants and the interactions between irrigants are discussed. We performed a Medline search for English-language papers published untill July 2010. The keywords used were ‘root canal irrigants’ and ‘endodontic irrigants.’ The reference lists of each article were manually checked for additional articles of relevance. PMID:21217955

  11. Nickel-tolerant ectomycorrhizal Pisolithus albus ultramafic ecotype isolated from nickel mines in New Caledonia strongly enhance growth of the host plant Eucalyptus globulus at toxic nickel concentrations.

    PubMed

    Jourand, Philippe; Ducousso, Marc; Reid, Robert; Majorel, Clarisse; Richert, Clément; Riss, Jennifer; Lebrun, Michel

    2010-10-01

    Ectomycorrhizal (ECM) Pisolithus albus (Cooke & Massee), belonging to the ultramafic ecotype isolated in nickel-rich serpentine soils from New Caledonia (a tropical hotspot of biodiversity) and showing in vitro adaptive nickel tolerance, were inoculated to Eucalyptus globulus Labill used as a Myrtaceae plant-host model to study ectomycorrhizal symbiosis. Plants were then exposed to a nickel (Ni) dose-response experiment with increased Ni treatments up to 60 mg kg( - )(1) soil as extractable Ni content in serpentine soils. Results showed that plants inoculated with ultramafic ECM P. albus were able to tolerate high and toxic concentrations of Ni (up to 60 μg g( - )(1)) while uninoculated controls were not. At the highest Ni concentration tested, root growth was more than 20-fold higher and shoot growth more than 30-fold higher in ECM plants compared with control plants. The improved growth in ECM plants was associated with a 2.4-fold reduction in root Ni concentration but a massive 60-fold reduction in transfer of Ni from root to shoots. In vitro, P. albus strains could withstand high Ni concentrations but accumulated very little Ni in its tissue. The lower Ni uptake by mycorrhizal plants could not be explained by increased release of metal-complexing chelates since these were 5- to 12-fold lower in mycorrhizal plants at high Ni concentrations. It is proposed that the fungal sheath covering the plant roots acts as an effective barrier to limit transfer of Ni from soil into the root tissue. The degree of tolerance conferred by the ultramafic P. albus isolates to growth of the host tree species is considerably greater than previously reported for other ECM. The primary mechanisms underlying this improved growth were identified as reduced Ni uptake into the roots and markedly reduced transfer from root to shoot in mycorrhizal plants. The fact that these positive responses were observed at Ni concentrations commonly observed in serpentinic soils suggests that ultramafic ecotypes of P. albus could play an important role in the adaptation of tree species to soils containing high concentrations of heavy metals and aid in strategies for ecological restoration.

  12. Rooting traits of peanut genotypes with different yield responses to terminal drought

    USDA-ARS?s Scientific Manuscript database

    Drought at pod filling can severely reduce yield of peanut. Better root systems can reduce yield loss from drought. However, the relationship of root characters with yield under terminal drought is not well understood. The objective of this study was to investigate the responses of peanut genotyp...

  13. Effects of Crown Scorch on Longleaf Pine Fine Roots

    Treesearch

    Mary Anne Sword; James D. Haywood

    1999-01-01

    Photosynthate production is reduced by foliage loss. Thus, scorch-induced decreases in the leaf area of longleaf pine (Pinus palustris Mill.) may reduce photosynthate allocation to roots. In this investigation the root carbohydrate concentrations and dynamics of longleaf pine after two intensities of prescribed burning were monitored. In...

  14. Reducing Strength Prevailing at Root Surface of Plants Promotes Reduction of Ag+ and Generation of Ag0/Ag2O Nanoparticles Exogenously in Aqueous Phase

    PubMed Central

    Pardha-Saradhi, Peddisetty; Yamal, Gupta; Peddisetty, Tanuj; Sharmila, Peddisetty; Nagar, Shilpi; Singh, Jyoti; Nagarajan, Rajamani; Rao, Kottapalli S.

    2014-01-01

    Potential of root system of plants from wide range of families to effectively reduce membrane impermeable ferricyanide to ferrocyanide and blue coloured 2,6-dichlorophenol indophenol (DCPIP) to colourless DCPIPH2 both under non-sterile and sterile conditions, revealed prevalence of immense reducing strength at root surface. As generation of silver nanoparticles (NPs) from Ag+ involves reduction, present investigations were carried to evaluate if reducing strength prevailing at surface of root system can be exploited for reduction of Ag+ and exogenous generation of silver-NPs. Root system of intact plants of 16 species from 11 diverse families of angiosperms turned clear colorless AgNO3 solutions, turbid brown. Absorption spectra of these turbid brown solutions showed silver-NPs specific surface plasmon resonance peak. Transmission electron microscope coupled with energy dispersive X-ray confirmed the presence of distinct NPs in the range of 5–50 nm containing Ag. Selected area electron diffraction and powder X-ray diffraction patterns of the silver NPs showed Bragg reflections, characteristic of crystalline face-centered cubic structure of Ag0 and cubic structure of Ag2O. Root system of intact plants raised under sterile conditions also generated Ag0/Ag2O-NPs under strict sterile conditions in a manner similar to that recorded under non-sterile conditions. This revealed the inbuilt potential of root system to generate Ag0/Ag2O-NPs independent of any microorganism. Roots of intact plants reduced triphenyltetrazolium to triphenylformazon and impermeable ferricyanide to ferrocyanide, suggesting involvement of plasma membrane bound dehydrogenases in reduction of Ag+ and formation of Ag0/Ag2O-NPs. Root enzyme extract reduced triphenyltetrazolium to triphenylformazon and Ag+ to Ag0 in presence of NADH, clearly establishing potential of dehydrogenases to reduce Ag+ to Ag0, which generate Ag0/Ag2O-NPs. Findings presented in this manuscript put forth a novel, simple, economically viable and green protocol for synthesis of silver-NPs under ambient conditions in aqueous phase, using root system of intact plants. PMID:25184239

  15. Abscisic Acid Accumulation Maintains Maize Primary Root Elongation at Low Water Potentials by Restricting Ethylene Production1

    PubMed Central

    Spollen, William G.; LeNoble, Mary E.; Samuels, Timmy D.; Bernstein, Nirit; Sharp, Robert E.

    2000-01-01

    Previous work showed that primary root elongation in maize (Zea mays L.) seedlings at low water potentials (ψw) requires the accumulation of abscisic acid (ABA) (R.E. Sharp, Y. Wu, G.S. Voetberg, I.N. Saab, M.E. LeNoble [1994] J Exp Bot 45: 1743–1751). The objective of the present study was to determine whether the inhibition of elongation in ABA-deficient roots is attributable to ethylene. At a ψw of −1.6 MPa, inhibition of root elongation in dark-grown seedlings treated with fluridone to impose ABA deficiency was largely prevented with two inhibitors of ethylene synthesis (aminooxyacetic acid and aminoethoxyvinylglycine) and one inhibitor of ethylene action (silver thiosulfate). The fluridone treatment caused an increase in the rate of ethylene evolution from intact seedlings. This effect was completely prevented with aminooxyacetic acid and also when ABA was supplied at a concentration that restored the ABA content of the root elongation zone and the root elongation rate. Consistent results were obtained when ABA deficiency was imposed using the vp5 mutant. Both fluridone-treated and vp5 roots exhibited additional morphological symptoms of excess ethylene. The results demonstrate that an important role of ABA accumulation in the maintenance of root elongation at low ψw is to restrict ethylene production. PMID:10712561

  16. Vestibular deepening by periosteal fenestration and its use as a periosteal pedicle flap for root coverage

    PubMed Central

    Rajpal, Jaisika; Gupta, Krishna K.; Srivastava, Ruchi; Arora, Aakash

    2013-01-01

    Gingival recession along with reduced width of attached gingiva and inadequate vestibular depth is a very common finding. Multiple techniques have been developed to obtain predictable root coverage and to increase the width of attached gingiva. Usually, the width of gingiva is first increased and then the second surgery is caried out for root coverage. The newer methods of root coverage are needed, not only to reconstruct the lost periodontal tissues but also to increase predictability, reduce the number of surgical sites, reduce the number of surgeries and improve patient comfort. Hence, this paper describes a single stage technique for increasing the width of attached gingiva and root coverage by using the periosteal pedicle flap. PMID:23869140

  17. Rha1, a new mutant of Arabidopsis disturbed in root slanting, gravitropism and auxin physiology.

    PubMed

    Fortunati, Alessio; Piconese, Silvia; Tassone, Paola; Ferrari, Simone; Migliaccio, Fernando

    2008-11-01

    A new Arabidopsis mutant is characterized (rha1) that shows, in the roots, reduced right-handed slanting, reduced gravitropism and resistance to 2,4-D, TIBA, NPA and ethylene. It also shows reduced length in the shoot and root, reduced number of lateral roots and shorter siliques. The gene was cloned through TAIL-PCR and resulted in a HSF. Because none of the known gravitropic and auxinic mutants result from damage in a HSF, rha1 seems to belong to a new class of this group of mutants. Quantitative PCR analysis showed that the expression of the gene is increased by heat and cold shock, and by presence of 2,4-D in the media. Study of the expression through the GUS reporter gene revealed increased expression in clinostated and gravistimulated plants, but only in adult tissues, and not in the apical meristems of shoots and roots.

  18. Rha1, a new mutant of Arabidopsis disturbed in root slanting, gravitropism and auxin physiology

    PubMed Central

    Fortunati, Alessio; Piconese, Silvia; Tassone, Paola; Ferrari, Simone

    2008-01-01

    A new Arabidopsis mutant is characterized (rha1) that shows, in the roots, reduced right-handed slanting, reduced gravitropism and resistance to 2,4-D, TIBA, NPA and ethylene. It also shows reduced length in the shoot and root, reduced number of lateral roots and shorter siliques. The gene was cloned through TAIL-PCR and resulted in a HSF. Because none of the known gravitropic and auxinic mutants result from damage in a HSF, rha1 seems to belong to a new class of this group of mutants. Quantitative PCR analysis showed that the expression of the gene is increased by heat and cold shock, and by presence of 2,4-D in the media. Study of the expression through the GUS reporter gene revealed increased expression in clinostated and gravistimulated plants, but only in adult tissues, and not in the apical meristems of shoots and roots. PMID:19704429

  19. N,N-dimethyl hexadecylamine and related amines regulate root morphogenesis via jasmonic acid signaling in Arabidopsis thaliana.

    PubMed

    Raya-González, Javier; Velázquez-Becerra, Crisanto; Barrera-Ortiz, Salvador; López-Bucio, José; Valencia-Cantero, Eduardo

    2017-05-01

    Plant growth-promoting rhizobacteria are natural inhabitants of roots, colonize diverse monocot and dicot species, and affect several functional traits such as root architecture, adaptation to adverse environments, and protect plants from pathogens. N,N-dimethyl-hexadecylamine (C16-DMA) is a rhizobacterial amino lipid that modulates the postembryonic development of several plants, likely as part of volatile blends. In this work, we evaluated the bioactivity of C16-DMA and other related N,N-dimethyl-amines with varied length and found that inhibition of primary root growth was related to the length of the acyl chain. C16-DMA inhibited primary root growth affecting cell division and elongation, while promoting lateral root formation and root hair growth and density in Arabidopsis thaliana (Arabidopsis) wild-type (WT) seedlings. Interestingly, C16-DMA induced the expression of the jasmonic acid (JA)-responsive gene marker pLOX2:uidA, while JA-related mutants jar1, coi1-1, and myc2 affected on JA biosynthesis and perception, respectively, are compromised in C16-DMA responses. Comparison of auxin-regulated gene expression, root architectural changes in WT, and auxin-related mutants aux1-7, tir1/afb2/afb3, and arf7-1/arf19-1 to C16-DMA shows that the C16-DMA effects occur independently of auxin signaling. Together, these results reveal a novel class of aminolipids modulating root organogenesis via crosstalk with the JA signaling pathway.

  20. Continued root maturation despite persistent apical periodontitis of immature permanent teeth after failed regenerative endodontic therapy.

    PubMed

    Lin, Louis M; Kim, Sahng G; Martin, Gabriela; Kahler, Bill

    2018-01-16

    Three immature permanent teeth with pulp necrosis and apical periodontitis were treated with regenerative endodontic therapy (RET), which included root canal disinfection with sodium hypochlorite irrigation, intra-canal medication with calcium hydroxide paste, 17% EDTA rinse, induction of periapical bleeding into the canal, collagen matrix and MTA coronal seal, and composite resin restoration of access cavities. After different periods of follow-up, it was observed that continued root maturation, especially apical closure occurred despite persistent apical periodontitis of immature permanent teeth after failed RET. This finding is of interest as the secondary goal of further root maturation occurred despite failure of the primary goal of elimination of clinical symptom/sign and periapical inflammation. The possible biological mechanisms that could allow for further root maturation to occur in spite of persistent root canal infection of immature permanent teeth are discussed. Based on these observations, the biology of wound healing of immature permanent teeth after injury is not fully understood and should be further investigated. This case report demonstrates that whilst further root maturation is considered a successful outcome for teeth treated with RET, the primary objective must be the resolution of the signs and symptoms of apical periodontitis. © 2018 Australian Society of Endodontology Inc.

  1. The transformation of southern agriculture and the migration of blacks and whites, 1930-1940.

    PubMed

    Fligstein, N

    1983-01-01

    The causes of the migration of both blacks and whites from the U.S. South between 1930 and 1940 are examined. The author challenges the hypothesis that the root cause of this migration was the mechanization of agriculture and suggests that the primary cause was the crisis in cotton farming that occurred during the depression of the 1930s. "Large farm owners secured aid from the federal government in the form of agricultural subsidy payments. In response to this program, they reduced their cotton acreage, bought tractors, and displaced their tenants. This transformation drastically reduced the need for tenant labor and brought about the large-scale migrations. Regression analyses of relevant data confirm this interpretation." excerpt

  2. Developing biogeochemical tracers of apatite weathering by ectomycorrhizal fungi

    NASA Astrophysics Data System (ADS)

    Vadeboncoeur, M. A.; Bryce, J. G.; Hobbie, E. A.; Meana-Prado, M. F.; Blichert-Toft, J.

    2012-12-01

    Chronic acid deposition has depleted calcium (Ca) from many New England forest soils, and intensive harvesting may reduce phosphorus (P) available to future rotations. Thin glacial till soils contain trace amounts of apatite, a primary calcium phosphate mineral, which may be an important long-term source of both P and Ca to ecosystems. The extent to which ECM fungi enhance the weathering rate of primary minerals in soil which contain growth-limiting nutrients remains poorly quantified, in part due to biogeochemical tracers which are subsequently masked by within-plant fractionation. Rare earth elements (REEs) and Pb isotope ratios show some potential for revealing differences in soil apatite weathering rates across forest stands and silvicultural treatments. To test the utility of these tracers, we grew birch seedlings semi-hydroponically under controlled P-limited conditions, supplemented with mesh bags containing granite chips. Our experimental design included nonmycorrhizal (NM) as well as ectomycorrhizal cultures (Cortinarius or Leccinum). Resulting mycorrhizal roots and leachates of granite chips were analyzed for these tracers. REE concentrations in roots were greatly elevated in treatments with granite relative to those without granite, demonstrating uptake of apatite weathering products. Roots with different mycorrhizal fungi accumulated similar concentrations of REEs and were generally elevated compared to the NM cultures. Ammonium chloride leaches of granite chips grown in contact with mycorrhizal hyphae show elevated REE concentrations and significantly radiogenic Pb isotope signatures relative to bulk rock, also supporting enhanced apatite dissolution. Our results in culture are consistent with data from field-collected sporocarps from hardwood stands in the Bartlett Experimental Forest in New Hampshire, in which Cortinarius sporocarp Pb isotope ratios were more radiogenic than those of other ectomycorrhizal sporocarps. Taken together, the experimental and field results imply that the coupled approach of REE and Pb isotopic values afford a means to quantify the degree to which primary mineral weathering inputs are contributing to ecosystem nutrient budgets and potentially the role of different types of ECM fungi in the weathering process.

  3. A CAM- and starch-deficient mutant of the facultative CAM species Mesembryanthemum crystallinum reconciles sink demands by repartitioning carbon during acclimation to salinity

    PubMed Central

    Haider, Muhammad Sajjad; Barnes, Jeremy D.; Cushman, John C.; Borland, Anne M.

    2012-01-01

    In the halophytic species Mesembryanthemum crystallinum, the induction of crassulacean acid metabolism (CAM) by salinity requires a substantial investment of resources in storage carbohydrates to provide substrate for nocturnal CO2 uptake. Acclimation to salinity also requires the synthesis and accumulation of cyclitols as compatible solutes, maintenance of root respiration, and nitrate assimilation. This study assessed the hierarchy and coordination of sinks for carbohydrate in leaves and roots during acclimation to salinity in M. crystallinum. By comparing wild type and a CAM-/starch-deficient mutant of this species, it was sought to determine if other metabolic sinks could compensate for a curtailment in CAM and enable acclimation to salinity. Under salinity, CAM deficiency reduced 24 h photosynthetic carbon gain by >50%. Cyclitols were accumulated to comparable levels in leaves and roots of both the wild type and mutant, but represented only 5% of 24 h carbon balance. Dark respiration of leaves and roots was a stronger sink for carbohydrate in the mutant compared with the wild type and implied higher maintenance costs for the metabolic processes underpinning acclimation to salinity when CAM was curtailed. CAM required the nocturnal mobilization of >70% of primary carbohydrate in the wild type and >85% of carbohydrate in the mutant. The substantial allocation of carbohydrate to CAM limited the export of sugars to roots, and the root:shoot ratio declined under salinity. The data suggest a key role for the vacuole in regulating the supply and demand for carbohydrate over the day/night cycle in the starch-/CAM-deficient mutant. PMID:22219316

  4. HPS4/SABRE regulates plant responses to phosphate starvation through antagonistic interaction with ethylene signalling

    PubMed Central

    Yu, Hailan; Luo, Nan; Sun, Lichao; Liu, Dong

    2012-01-01

    The phytohormone ethylene plays important roles in regulating plant responses to phosphate (Pi) starvation. To date, however, no molecular components have been identified that interact with ethylene signalling in regulating such responses. In this work, an Arabidopsis mutant, hps4, was characterized that exhibits enhanced responses to Pi starvation, including increased inhibition of primary root growth, enhanced expression of Pi starvation-induced genes, and overproduction of root-associated acid phosphatases. Molecular cloning indicated that hps4 is a new allele of SABRE, which was previously identified as an important regulator of cell expansion in Arabidopsis. HPS4/SABRE antagonistically interacts with ethylene signalling to regulate plant responses to Pi starvation. Furthermore, it is shown that Pi-starved hps4 mutants accumulate more auxin in their root tips than the wild type, which may explain the increased inhibition of their primary root growth when grown under Pi deficiency. PMID:22615140

  5. Effect of customization of master gutta-percha cone on apical control of root filling using different techniques: an ex vivo study.

    PubMed

    van Zyl, S P; Gulabivala, K; Ng, Y-L

    2005-09-01

    (i) To compare the prevalence of extrusion of root filling material when placed using different root filling techniques, with or without customization of the master gutta-percha (GP) cone; and (ii) to investigate the effects of some factors influencing root filling extrusion and presence of voids. A total of 180 roots were selected, prepared and randomly allocated to three groups. Five general dental practitioners performed the root fillings; each filled one group of roots (n = 60) using each of three techniques; 'cold lateral compaction' (n = 20), 'warm vertical compaction' (n = 20) and 'continuous-wave' (n = 20) techniques. For each obturation technique, the master GP cone was customized using chloroform in 10 samples. Two groups of the roots were recycled to allow all five operators to fulfill their remit. Two observers, blind to operator and obturation technique, examined the radiographs (master apical file, post-obturation) to determine the presence of root filling extrusion and voids within the apical 5 mm, independently. Root filling extrusion was also confirmed by direct inspection of the root apex after obturation. The data were analysed using logistic regression models. A total of 300 root fillings were performed; nine were excluded from the analysis. Most of the root fillings (80%, n = 233) were placed within 0.5 mm of the working length; only 20% (n = 58) were placed >0.5 mm beyond the working length. The odds of prevalence of extrusion (>0.5 mm) were significantly reduced by about 50% when cold lateral compaction or customization of GP were used. One operator produced 2.5 times more extruded root fillings than others. Curvature & length of root canal, apical size of prepared canal, as well as operator's preferred obturation technique had no significant influence on the prevalence of extrusion. Customization of GP was the sole factor to significantly reduce the prevalence of voids within the apical 5 mm of working length. Root filling extrusion was significantly influenced by 'operator' and was reduced by cold lateral compaction and customization of the master cone. Customization of master cone was the only factor that reduced voids apically.

  6. Forest root diseases across the United States

    Treesearch

    I. Blakey Lockman; Holly S. J. Kearns

    2016-01-01

    The increasing importance and impacts of root diseases on the forested ecosystems across the United States are documented in this report. Root diseases have long-term impacts on the ecosystems where they reside due to their persistence onsite. As a group of agents, they are a primary contributor to overall risk of growth loss and mortality of trees in the lower 48...

  7. Constituent and induced tannin accumulations in roots of loblolly pines

    Treesearch

    Charles H. Walkinshaw

    1999-01-01

    Loblolly pine (Pinus taeda L [L.]) has become the most important source of wood fiber in the Southern United States. This tree is an excellent competitor and recovers well from a variety of adverse conditions. The author presents a histological study of tannin in pine roots to measure tannin abundance as a primary trait to evaluate root health at the...

  8. Estimating root biomass and distribution after fire in a Great Basin woodland using cores and pits

    Treesearch

    Benjamin M. Rau; Dale W. Johnson; Jeanne C. Chambers; Robert R. Blank; Annmarie Lucchesi

    2009-01-01

    Quantifying root biomass is critical to an estimation and understanding of ecosystem net primary production, biomass partitioning, and belowground competition. We compared 2 methods for determining root biomass: a new soil-coring technique and traditional excavation of quantitative pits. We conducted the study in an existing Joint Fire Sciences demonstration area in...

  9. Microsurgical removal of epidermal and cortical cells: evidence that the gravitropic signal moves through the outer cell layers in primary roots of maize

    NASA Technical Reports Server (NTRS)

    Yang, R. L.; Evans, M. L.; Moore, R.

    1990-01-01

    There is general agreement that during root gravitropism some sort of growth-modifying signal moves from the cap to the elongation zone and that this signal ultimately induces the curvature that leads to reorientation of the root. However, there is disagreement regarding both the nature of the signal and the pathway of its movement from the root cap to the elongation zone. We examined the pathway of movement by testing gravitropism in primary roots of maize (Zea mays L.) from which narrow (0.5 mm) rings of epidermal and cortical tissue were surgically removed from various positions within the elongation zone. When roots were girdled in the apical part of the elongation zone gravitropic curvature occurred apical to the girdle but not basal to the girdle. Filling the girdle with agar allowed curvature basal to the girdle to occur. Shallow girdles, in which only two or three cell layers (epidermis plus one or two cortical cell layers) were removed, prevented or greatly delayed gravitropic curvature basal to the girdle. The results indicate that the gravitropic signal moves basipetally through the outermost cell layers, perhaps through the epidermis itself.

  10. Reduced gravitropic sensitivity in roots of a starch-deficient mutant of Nicotiana sylvestris

    NASA Technical Reports Server (NTRS)

    Kiss, J. Z.; Sack, F. D.

    1989-01-01

    Gravitropism was studied in seedlings of Nicotiana sylvestris Speg. et Comes wild-type (WT) and mutant NS 458 which has a defective plastid phosphoglucomutase (EC 2.7.5.1.). Starch was greatly reduced in NS 458 compared to the WT, but small amounts of starch were detected in rootcap columella cells in NS 458 by light and electron microscopy. The roots of WT are more sensitive to gravity than mutant NS 458 roots since: (1) in mutant roots, curvature was reduced and delayed in the time course of curvature; (2) curvature of mutant roots was 24-56% that of WT roots over the range of induction periods tested; (3) in intermittent-stimulation experiments, curvature of mutant roots was 37% or less than that of WT roots in all treatments tested. The perception time, determined by intermittent-stimulation experiments, was < or = 5 s for WT roots and 30-60 s for mutant roots. The growth rates for WT and NS 458 roots were essentially equal. These results and our previous results with WT and starchless mutant Arabidopsis roots (Kiss et al. 1989, Planta 177, 198-206) support the conclusions that a full complement of starch is necessary for full gravitropic sensitivity and that amyloplasts function in gravity perception. Since a presumed relatively small increase in plastid buoyant mass (N. sylvestris mutant versus Arabidopsis mutant) significantly improves the orientation of the N. sylvestris mutant roots, we suggest that plastids are the likeliest candidates to be triggering gravity perception in roots of both mutants.

  11. Influence of two types of organic matter on interaction of CeO2 nanoparticles with plants in hydroponic culture.

    PubMed

    Schwabe, Franziska; Schulin, Rainer; Limbach, Ludwig K; Stark, Wendelin; Bürge, Diane; Nowack, Bernd

    2013-04-01

    An important aspect in risk assessment of nanoparticles (NPs) is to understand their environmental interactions. We used hydroponic plant cultures to study nanoparticle-plant-root interaction and translocation and exposed wheat and pumpkin to suspensions of uncoated CeO2-NP for 8d (primary particle size 17-100 nm, 100 mg L(-1)) in the absence and presence of fulvic acid (FA) and gum arabic (GA) as representatives of different types of natural organic matter. The behavior of CeO2-NPs in the hydroponic solution was monitored regarding agglomeration, sedimentation, particle size distribution, surface charge, amounts of root association, and translocation into shoots. NP-dispersions were stable over 8d in the presence of FA or GA, but with growing plants, changes in pH, particle agglomeration rate, and hydrodynamic diameter were observed. None of the plants exhibited reduced growth or any toxic response during the experiment. We found that CeO2-NPs translocated into pumpkin shoots, whereas this did not occur in wheat plants. The presence of FA and GA affected the amount of CeO2 associated with roots (pure>FA>GA) but did not affect the translocation factor. Additionally, we could confirm via TEM and SEM that CeO2-NPs adhered strongly to root surfaces of both plant species. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. The mitochondrial gene orfH79 plays a critical role in impairing both male gametophyte development and root growth in CMS-Honglian rice.

    PubMed

    Peng, Xiaojue; Wang, Kun; Hu, Chaofeng; Zhu, Youlin; Wang, Ting; Yang, Jing; Tong, Jiping; Li, Shaoqing; Zhu, Yingguo

    2010-06-24

    Cytoplasmic male sterility (CMS) has often been associated with abnormal mitochondrial open reading frames. The mitochondrial gene orfH79 is a candidate gene for causing the CMS trait in CMS-Honglian (CMS-HL) rice. However, whether the orfH79 expression can actually induce CMS in rice remains unclear. Western blot analysis revealed that the ORFH79 protein is mainly present in mitochondria of CMS-HL rice and is absent in the fertile line. To investigate the function of ORFH79 protein in mitochondria, this gene was fused to a mitochondrial transit peptide sequence and used to transform wild type rice, where its expression induced the gametophytic male sterile phenotype. In addition, excessive accumulation of reactive oxygen species (ROS) in the microspore, a reduced ATP/ADP ratio, decreased mitochondrial membrane potential and a lower respiration rate in the transgenic plants were found to be similar to those in CMS-HL rice. Moreover, retarded growth of primary and lateral roots accompanied by abnormal accumulation of ROS in the root tip was observed in both transgenic rice and CMS-HL rice (YTA). These results suggest that the expression of orfH79 in mitochondria impairs mitochondrial function, which affects the development of both male gametophytes and the roots of CMS-HL rice.

  13. Fine root dynamics along an elevational gradient in tropical Amazonian and Andean forests

    NASA Astrophysics Data System (ADS)

    Girardin, C. A. J.; Aragão, L. E. O. C.; Malhi, Y.; Huaraca Huasco, W.; Metcalfe, D. B.; Durand, L.; Mamani, M.; Silva-Espejo, J. E.; Whittaker, R. J.

    2013-01-01

    The key role of tropical forest belowground carbon stocks and fluxes is well recognised as one of the main components of the terrestrial ecosystem carbon cycle. This study presents the first detailed investigation of spatial and temporal patterns of fine root stocks and fluxes in tropical forests along an elevational gradient, ranging from the Peruvian Andes (3020 m) to lowland Amazonia (194 m), with mean annual temperatures of 11.8°C to 26.4 °C and annual rainfall values of 1900 to 1560 mm yr-1, respectively. Specifically, we analyse abiotic parameters controlling fine root dynamics, fine root growth characteristics, and seasonality of net primary productivity along the elevation gradient. Root and soil carbon stocks were measured by means of soil cores, and fine root productivity was recorded using rhizotron chambers and ingrowth cores. We find that mean annual fine root below ground net primary productivity in the montane forests (0-30 cm depth) ranged between 4.27±0.56 Mg C ha-1 yr-1 (1855 m) and 1.72±0.87 Mg C ha-1 yr-1 (3020 m). These values include a correction for finest roots (<0.6 mm diameter), which we suspect are under sampled, resulting in an underestimation of fine roots by up to 31% in current ingrowth core counting methods. We investigate the spatial and seasonal variation of fine root dynamics using soil depth profiles and an analysis of seasonal amplitude along the elevation gradient. We report a stronger seasonality of NPPFineRoot within the cloud immersion zone, most likely synchronised to seasonality of solar radiation. Finally, we provide the first insights into root growth characteristics along a tropical elevation transect: fine root area and fine root length increase significantly in the montane cloud forest. These insights into belowground carbon dynamics of tropical lowland and montane forests have significant implications for our understanding of the global tropical forest carbon cycle.

  14. Lateral root development in the maize (Zea mays) lateral rootless1 mutant

    PubMed Central

    Husakova, Eva; Hochholdinger, Frank; Soukup, Ales

    2013-01-01

    Background and Aims The maize lrt1 (lateral rootless1) mutant is impaired in its development of lateral roots during early post-embryonic development. The aim of this study was to characterize, in detail, the influences that the mutation exerts on lateral root initiation and the subsequent developments, as well as to describe the behaviour of the entire plant under variable environmental conditions. Methods Mutant lrt1 plants were cultivated under different conditions of hydroponics, and in between sheets of moist paper. Cleared whole mounts and anatomical sections were used in combination with both selected staining procedures and histochemical tests to follow root development. Root surface permeability tests and the biochemical quantification of lignin were performed to complement the structural data. Key Results The data presented suggest a redefinition of lrt1 function in lateral roots as a promoter of later development; however, neither the complete absence of lateral roots nor the frequency of their initiation is linked to lrt1 function. The developmental effects of lrt1 are under strong environmental influences. Mutant primordia are affected in structure, growth and emergence; and the majority of primordia terminate their growth during this last step, or shortly thereafter. The lateral roots are impaired in the maintenance of the root apical meristem. The primary root shows disturbances in the organization of both epidermal and subepidermal layers. The lrt1-related cell-wall modifications include: lignification in peripheral layers, the deposition of polyphenolic substances and a higher activity of peroxidase. Conclusions The present study provides novel insights into the function of the lrt1 gene in root system development. The lrt1 gene participates in the spatial distribution of initiation, but not in its frequency. Later, the development of lateral roots is strongly affected. The effect of the lrt1 mutation is not as obvious in the primary root, with no influences observed on the root apical meristem structure and maintenance; however, development of the epidermis and cortex are impaired. PMID:23456690

  15. Lateral root development in the maize (Zea mays) lateral rootless1 mutant.

    PubMed

    Husakova, Eva; Hochholdinger, Frank; Soukup, Ales

    2013-07-01

    The maize lrt1 (lateral rootless1) mutant is impaired in its development of lateral roots during early post-embryonic development. The aim of this study was to characterize, in detail, the influences that the mutation exerts on lateral root initiation and the subsequent developments, as well as to describe the behaviour of the entire plant under variable environmental conditions. Mutant lrt1 plants were cultivated under different conditions of hydroponics, and in between sheets of moist paper. Cleared whole mounts and anatomical sections were used in combination with both selected staining procedures and histochemical tests to follow root development. Root surface permeability tests and the biochemical quantification of lignin were performed to complement the structural data. The data presented suggest a redefinition of lrt1 function in lateral roots as a promoter of later development; however, neither the complete absence of lateral roots nor the frequency of their initiation is linked to lrt1 function. The developmental effects of lrt1 are under strong environmental influences. Mutant primordia are affected in structure, growth and emergence; and the majority of primordia terminate their growth during this last step, or shortly thereafter. The lateral roots are impaired in the maintenance of the root apical meristem. The primary root shows disturbances in the organization of both epidermal and subepidermal layers. The lrt1-related cell-wall modifications include: lignification in peripheral layers, the deposition of polyphenolic substances and a higher activity of peroxidase. The present study provides novel insights into the function of the lrt1 gene in root system development. The lrt1 gene participates in the spatial distribution of initiation, but not in its frequency. Later, the development of lateral roots is strongly affected. The effect of the lrt1 mutation is not as obvious in the primary root, with no influences observed on the root apical meristem structure and maintenance; however, development of the epidermis and cortex are impaired.

  16. Carbonyl sulfide produced by abiotic thermal and photodegradation of soil organic matter from wheat field substrate

    NASA Astrophysics Data System (ADS)

    Whelan, Mary E.; Rhew, Robert C.

    2015-01-01

    Carbonyl sulfide (COS) is a reduced sulfur gas that is taken up irreversibly in plant leaves proportionally with CO2, allowing its potential use as a tracer for gross primary production. Recently, wheat field soil at the Southern Great Plains Atmospheric Radiation Measurement site in Lamont, Oklahoma, was found to be a measureable source of COS to the atmosphere. To understand the mechanism of COS production, soil and root samples were collected from the site and incubated in the laboratory over a range of temperatures (15-34°C) and light conditions (light and dark). Samples exhibited mostly COS net uptake from the atmosphere in dark and cool (<22-25°C) trials. COS emission was observed during dark incubations at high temperatures (>25°C), consistent with field observations, and at a lower temperature (19°C) when a full spectrum lamp (max wavelength 600 nm) was applied. Sterilized soil and root samples yielded only COS production that increased with temperature, supporting the hypothesis that (a) COS production in these samples is abiotic, (b) production is directly influenced by temperature and light, and (c) some COS consumption in soil and root samples is biotic.

  17. Perception of neighboring plants by rhizomes and roots: morphological manifestations of a clonal plant

    USGS Publications Warehouse

    Huber-Sannwald, Elisabeth; Pyke, David A.; Caldwell, M.M.

    1997-01-01

    A previous study showed that clonal morphology of the rhizomatous grass Elymus lanceolatus ssp. lanceolatus (Scibner & J.G. Smith Gould) was influenced more by neighbouring root systems than by the local distribution of nutrients. In this study we determine whether individual rhizomes or roots of E. lanceolatus perceive neighbouring root systems and how this is manifested in morphological responses of E. lanceolatus clones. Elymus lanceolatus was grown in the same bin with Pseudoroegneria spicata (Pursh) A. Love or Agropyron desertorum (Fisch. ex Link) Schult. plants. Elymus lanceolatus was separated from its neighbours by different barriers. The barriers allowed either only E. lanceolatus roots; only a single E. lanceolatus primary rhizome; or both roots and rhizomes to contact the neighbour root system. When only a single E. lanceolatus primary rhizome with potentially developing branching rhizomes made contact with the neighbour, the clonal structure of E. lanceolatus was modified more with P. spicata as the neighbour than with A. desertorum. With root contact of E. lanceolatus alone there was a similar effect with the neighbouring plants, but there was a more marked inhibitory effect on E. lanceolatus clonal growth with P. spicata than with A. desertorum, compared with the treatment with only a single rhizome in contact with the neighbour. Root resource competition in the unconstrained treatment (roots and rhizomes) between neighbouring plant and E. lanceolatus was more apparent with A. desertorum than with P. spicata. This study is one of the first to document that rhizome and root contact of a clonal plant with its neighbours may induce different clonal responses depending on the species of neighbour.

  18. Convergence of the effect of root hydraulic functioning and root hydraulic redistribution on ecosystem water and carbon balance across divergent forest ecosystems

    NASA Astrophysics Data System (ADS)

    domec, J.; King, J. S.; Ogée, J.; Noormets, A.; Warren, J.; Meinzer, F. C.; Sun, G.; Jordan-Meille, L.; Martineau, E.; Brooks, R. J.; Laclau, J.; Battie Laclau, P.; McNulty, S.

    2012-12-01

    INVITED ABSTRACT: Deep root water uptake and hydraulic redistribution (HR) play a major role in forest ecosystems during drought, but little is known about the impact of climate change on root-zone processes influencing HR and its consequences on water and carbon fluxes. Using data from two old growth sites in the western USA, two mature sites in the eastern USA, one site in southern Brazil, and simulations with the process-based model MuSICA, our objectives were to show that HR can 1) mitigate the effects of soil drying on root functioning, and 2) have important implications for carbon uptake and net ecosystem exchange (NEE). In a dry, old-growth ponderosa pine (USA) and a eucalyptus stand (Brazil) both characterized by deep sandy soils, HR limited the decline in root hydraulic conductivity and increased dry season tree transpiration (T) by up to 30%, which impacted NEE through major increases in gross primary productivity (GPP). The presence of deep-rooted trees did not necessarily imply high rates of HR unless soil texture allowed large water potential gradients to occur, as was the case in the wet old-growth Douglas-fir/mixed conifer stand. At the Duke mixed hardwood forest characterized by a shallow clay-loam soil, modeled HR was low but not negligible, representing annually up to 10% of T, and maintaining root conductance high. At this site, in the absence of HR, it was predicted that annual GPP would have been diminished by 7-19%. At the coastal loblolly pine plantation, characterized by deep organic soil, HR limited the decline in shallow root conductivity by more than 50% and increased dry season T by up to 40%, which increased net carbon gain by the ecosystem by about 400 gC m-2 yr-1, demonstrating the significance of HR in maintaining the stomatal conductance and assimilation capacity of the whole ecosystem. Under future climate conditions (elevated atmospheric [CO2] and temperature), HR is predicted to be reduced by up to 50%; reducing the resilience of trees to droughts. Under future conditions, T is predicted to stay the same at the Duke mixed hardwood forest, but to decline slightly at the coastal loblolly pine plantation and slightly increase at the old-growth ponderosa pine stand and the eucalyptus plantation. As a consequence, water use efficiency in all sites was predicted to improve dramatically under future climate conditions. Our simulations also showed that the negative effect of drier nights on HR would be greater under future climate conditions. Assuming no increase in stomatal control with increasing drier nights, increased vapor pressure deficit at night under future conditions was sufficient to drive significant nighttime T at all sites , which reduced HR, because the plant and the atmosphere became a sink for hydraulically redistributed water . We concluded that the predicted reductions in HR under future climate conditions are expected to play an important regulatory role in land-atmosphere interactions by affecting whole ecosystem carbon and water balance. We suggest that root distribution should be treated dynamically in response to climate change and that HR and its interactions with rooting depth and soil texture should be implemented in soil-vegetation-atmosphere transfer models.

  19. Postharvest respiration rate and sucrose concentration of Rhizoctonia-infected sugar beet roots

    USDA-ARS?s Scientific Manuscript database

    Rhizoctonia crown and root rot (RCRR), caused by Rhizoctonia solani AG 2-2, is a common root disease on sugar beet that reduces yield and sucrose during the growing season and causes further losses by increasing respiration and reducing sucrose content during storage. The industry needs to identify...

  20. Exaggerated root respiration accounts for growth retardation in a starchless mutant of Arabidopsis thaliana.

    PubMed

    Brauner, Katrin; Hörmiller, Imke; Nägele, Thomas; Heyer, Arnd G

    2014-07-01

    The knock-out mutation of plastidial phosphoglucomutase (pgm) causes a starchless phenotype in Arabidopsis thaliana, and results in a severe growth reduction of plants cultivated under diurnal conditions. It has been speculated that high soluble sugar levels accumulating during the light phase in leaf mesophyll might cause a reduction of photosynthetic activity or that shortage of reduced carbon during the night is the reason for the slow biomass gain of pgm. Separate simultaneous measurements of leaf net photosynthesis and root respiration demonstrate that photosynthetic activity per unit fresh weight is not reduced in pgm, whereas root respiration is strongly elevated. Comparison with a mutant defective in the dominating vacuolar invertase (AtβFruct4) revealed that high sucrose concentration in the cytosol, but not in the vacuole, of leaf cells is responsible for elevated assimilate transport to the root. Increased sugar supply to the root, as observed in pgm mutants, forces substantial respiratory losses. Because root respiration accounts for 80% of total plant respiration under long-day conditions, this gives rise to retarded biomass formation. In contrast, reduced vacuolar invertase activity leads to reduced net photosynthesis in the shoot and lowered root respiration, and affords an increased root/shoot ratio. The results demonstrate that roots have very limited capacity for carbon storage but exert rigid control of supply for their maintenance metabolism. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  1. Differentially abundant proteins associated with heterosis in the primary roots of popcorn.

    PubMed

    Rockenbach, Mathias F; Corrêa, Caio C G; Heringer, Angelo S; Freitas, Ismael L J; Santa-Catarina, Claudete; do Amaral-Júnior, Antônio T; Silveira, Vanildo

    2018-01-01

    Although heterosis has significantly contributed to increases in worldwide crop production, the molecular mechanisms regulating this phenomenon are still unknown. In the present study, we used a comparative proteomic approach to explore hybrid vigor via the proteome of both the popcorn L54 ♀ and P8 ♂ genotypes and the resultant UENF/UEM01 hybrid cross. To analyze the differentially abundant proteins involved in heterosis, we used the primary roots of these genotypes to analyze growth parameters and extract proteins. The results of the growth parameter analysis showed that the mid- and best-parent heterosis were positive for root length and root dry matter but negative for root fresh matter, seedling fresh matter, and protein content. The comparative proteomic analysis identified 1343 proteins in the primary roots of hybrid UENF/UEM01 and its parental lines; 220 proteins were differentially regulated in terms of protein abundance. The mass spectrometry proteomic data are available via ProteomeXchange with identifier "PXD009436". A total of 62 regulated proteins were classified as nonadditive, of which 53.2% were classified as high parent abundance (+), 17.8% as above-high parent abundance (+ +), 16.1% as below-low parent abundance (- -), and 12.9% as low parent abundance (-). A total of 22 biological processes were associated with nonadditive proteins; processes involving translation, ribosome biogenesis, and energy-related metabolism represented 45.2% of the nonadditive proteins. Our results suggest that heterosis in the popcorn hybrid UENF/UEM01 at an early stage of plant development is associated with an up-regulation of proteins related to synthesis and energy metabolism.

  2. Root Canal Cleaning Efficacy of Rotary and Hand Files Instrumentation in Primary Molars

    PubMed Central

    Nazari Moghaddam, Kiumars; Mehran, Majid; Farajian Zadeh, Hamideh

    2009-01-01

    INTRODUCTION: Pulpectomy of primary teeth is commonly carried out with hand files and broaches; a tricky and time consuming procedure. The purpose of this in vitro study was to compare the cleaning efficacy and time taken for instrumentation of deciduous molars using hand K-files and Flex Master rotary system. MATERIALS AND METHODS: In this study, 68 canals of 23 extracted primary molars with at least two third intact roots and 7-12 mm length were selected. After preparing an access cavity, K-file size #15 was introduced into the root canal and India ink was injected with an insulin syringe. Sixty samples were randomly divided in to experimental groups in group I (n=30), root canals were prepared with hand K-files; in group II (n=30), rotary Flex Master files were used for instrumentation, and in group III 8 remained samples were considered as negative controls. After clearing and root sectioning, the removal of India ink from cervical, middle, and apical thirds was scored. Data was analyzed using student's T-test and Mann-Whitney U test. RESULTS: There was no significant difference between experimental groups cleaning efficacy at the cervical, middle and apical root canal thirds. Only the coronal third scored higher in the hand instrumented group (P<0.001). Instrumentation with Flex Master rotary files was significantly less time consuming (P<0.001). CONCLUSION: Although there was no difference in cleanliness efficacy at the apical and middle thirds, the coronal third was more effectively cleaned with hand files. Predictably, time efficiency was a significant advantage with rotary technique. PMID:23940486

  3. New bacterial composition in primary and persistent/secondary endodontic infections with respect to clinical and radiographic findings.

    PubMed

    Tennert, Christian; Fuhrmann, Maximilian; Wittmer, Annette; Karygianni, Lamprini; Altenburger, Markus J; Pelz, Klaus; Hellwig, Elmar; Al-Ahmad, Ali

    2014-05-01

    The aim of the present study was to analyze the microbiota of primary and secondary/persistent endodontic infections of patients undergoing endodontic treatment with respect to clinical and radiographic findings. Samples from the root canals of 21 German patients were taken using 3 sequential sterile paper points. In the case of a root canal filling, gutta-percha was removed with sterile files, and samples were taken using sterile paper points. The samples were plated, and microorganisms were then isolated and identified morphologically by biochemical analysis and sequencing the 16S rRNA genes of isolated microorganisms. In 12 of 21 root canals, 33 different species could be isolated. Six (50%) of the cases with isolated microorganisms were primary, and 6 (50%) cases were endodontic infections associated with root-filled teeth. Twelve of the isolated species were facultative anaerobic and 21 obligate anaerobic. Monomicrobial infections were found for Enterococcus faecalis and Actinomyces viscosus. E. faecalis was most frequently isolated in secondary endodontic infections (33%). Moraxella osloensis was isolated from a secondary endodontic infection that had an insufficient root canal filling accompanied by a mild sensation of pain. A new bacterial composition compromising Atopobium rimae, Anaerococcus prevotii, Pseudoramibacter alactolyticus, Dialister invisus, and Fusobacterium nucleatum was recovered from teeth with chronic apical abscesses. New bacterial combinations were found and correlated to clinical and radiographic findings, particularly to chronic apical abscesses. M. osloensis was detected in root canals for the second time and only in German patients. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  4. [Study of association between Parvimonas micra and pulp dominant pathogens in the infected root canals with chronic periradicular periodontitis].

    PubMed

    Ji, Hai; Li, Hong; He, Yanyan; Hou, Benxiang

    2014-08-01

    To study the prevalence of Parvimonas micra (Pm) and the associations between Pm and pulp dominant pathogens in order to reflect the colonization of Pm in the infected root canals with chronic periradicular periodontitis. A total of 120 teeth diagnosed as chronic periradicular periodontitis from 104 patients were included into the study. The teeth were allocated into untreated (primary infectious) and root-canal- treated (secondary infectious) groups with 60 in either group. Samples were collected from the root canals using sterile files and paper points, and subsequent extraction of bacterial DNA was undertaken. The Pm 16S rDNA level was evaluated using 16S rDNA PCR. The prevalence of Pm in chronic periradicular periodontitis was determined accordingly. Then, the associations of Pm and Enterococcus faecalis (Ef), Porphyromonas endodontalis (Pe) as well as Porphyromonas gingivalis (Pg) were analysed. Pm was detected in 40% (24/60) of the samples from the primary infectious group, 5% (3/60) from the secondary infectious group. The prevalences of Pm from the two groups were different significantly (χ² = 21.06, P < 0.05). Significant correlations (untreated group OR = 5.98, root-canal-treated group OR = 33.50) between Pm and Pe were identified in both groups, while the correlations between Pm and Pg as well as Ef were not of significance, respectively. A significantly higher relevance ratio of Pm was estimated in the primary infectious group than the secondary infectious one. Pm and Pe were correlated significantly in the infected root canals, suggesting a symbiotic relation between these two bacteria.

  5. Inhibition of polar calcium movement and gravitropism in roots treated with auxin-transport inhibitors

    NASA Technical Reports Server (NTRS)

    Lee, J. S.; Mulkey, T. J.; Evans, M. L.

    1984-01-01

    Primary roots of maize (Zea mays L.) and pea (Pisum sativum L.) exhibit strong positive gravitropism. In both species, gravistimulation induces polar movement of calcium across the root tip from the upper side to the lower side. Roots of onion (Allium cepa L.) are not responsive to gravity and gravistimulation induces little or no polar movement of calcium across the root tip. Treatment of maize or pea roots with inhibitors of auxin transport (morphactin, naphthylphthalamic acid, 2,3,5-triiodobenzoic acid) prevents both gravitropism and gravity-induced polar movement of calcium across the root tip. The results indicate that calcium movement and auxin movement are closely linked in roots and that gravity-induced redistribution of calcium across the root cap may play an important role in the development of gravitropic curvature.

  6. Effects of midas® on nematodes in commercial floriculture production in Florida.

    PubMed

    Kokalis-Burelle, Nancy; Rosskopf, Erin N; Albano, Joseph P; Holzinger, John

    2010-03-01

    Cut flower producers currently have limited options for nematode control. Four field trials were conducted in 2006 and 2007 to evaluate Midas® (iodomethane:chloropicrin 50:50) for control of root-knot nematodes (Meloidogyne arenaria) on Celosia argentea var. cristata in a commercial floriculture production field in southeastern Florida. Midas (224 kg/ha) was compared to methyl bromide:chloropicrin (98:2, 224 kg/ha), and an untreated control. Treatments were evaluated for effects on Meloidogyne arenaria J2 and free-living nematodes in soil through each season, and roots at the end of each season. Plant growth and root disease were also assessed. Population levels of nematodes isolated from soil were highly variable in all trials early in the season, and generally rebounded by harvest, sometimes to higher levels in fumigant treatments than in the untreated control. Although population levels of nematodes in soil were not significantly reduced during the growing season, nematodes in roots and galling at the end of the season were consistently reduced with both methyl bromide and Midas compared to the untreated control. Symptoms of phytotoxicity were observed in Midas treatments during the first year and were attributed to Fe toxicity. Fertilization was adjusted during the second year to investigate potential fumigant/fertilizer interactions. Interactions occurred at the end of the fourth trial between methyl bromide and fertilizers with respect to root-knot nematode J2 isolated from roots and galling. Fewer J2 were isolated from roots treated with a higher level of Fe (3.05%) in the form of Fe sucrate, and galling was reduced in methyl bromide treated plots treated with this fertilizer compared to Fe EDTA. Reduced galling was also seen with Midas in Fe sucrate fertilized plots compared to Fe EDTA. This research demonstrates the difficulty of reducing high root-knot nematode population levels in soil in subtropical conditions in production fields that have been repeatedly fumigated. Although soil population density may remain stable, root population density and disease can be reduced.

  7. Effect of reciprocating file motion on microcrack formation in root canals: an SEM study.

    PubMed

    Ashwinkumar, V; Krithikadatta, J; Surendran, S; Velmurugan, N

    2014-07-01

    To compare dentinal microcrack formation whilst using Ni-Ti hand K-files, ProTaper hand and rotary files and the WaveOne reciprocating file. One hundred and fifty mandibular first molars were selected. Thirty teeth were left unprepared and served as controls, and the remaining 120 teeth were divided into four groups. Ni-Ti hand K-files, ProTaper hand files, ProTaper rotary files and WaveOne Primary reciprocating files were used to prepare the mesial canals. Roots were then sectioned 3, 6 and 9 mm from the apex, and the cut surface was observed under scanning electron microscope (SEM) and checked for the presence of dentinal microcracks. The control and Ni-Ti hand K-files groups were not associated with microcracks. In roots prepared with ProTaper hand files, ProTaper rotary files and WaveOne Primary reciprocating files, dentinal microcracks were present. There was a significant difference between control/Ni-Ti hand K-files group and ProTaper hand files/ProTaper rotary files/WaveOne Primary reciprocating file group (P < 0.001) with ProTaper rotary files producing the most microcracks. No significant difference was observed between teeth prepared with ProTaper hand files and WaveOne Primary reciprocating files. ProTaper rotary files were associated with significantly more microcracks than ProTaper hand files and WaveOne Primary reciprocating files. Ni-Ti hand K-files did not produce microcracks at any levels inside the root canals. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  8. A Rare Case of Apical Root Resorption during Orthodontic Treatment of Patient with Multiple Aplasia.

    PubMed

    Agrawal, Chintan M; Mahida, Khyati; Agrawal, Charu C; Bothra, Jitendrakumar; Mashru, Ketan

    2015-07-01

    External apical root resorption is an adverse effect of orthodontic treatment. It reduces the length of root and breaks the integrity of teeth and dental arch. Orthodontics is the only dental specialty that clinically uses the inflammatory process to correct the mal-aligned teeth. Hence, it is necessary to know the risk factors of root resorption and do everything to reduce the rate of root resorption. Hence, all predisposing factors which are systemic as well as local should be considered before treatment begins. This case report describes the incidence of root resorption following orthodontic treatment and the teeth affected in the patient with multiple aplasia.

  9. Marking cell lineages in living tissues.

    PubMed

    Kurup, Smita; Runions, John; Köhler, Uwe; Laplaze, Laurent; Hodge, Sarah; Haseloff, Jim

    2005-05-01

    We have generated a novel genetic system to visualize cell lineages in living tissues at high resolution. Heat shock was used to trigger the excision of a specific transposon and activation of a fluorescent marker gene. A histone-YFP marker was used to allow identification of cell lineages and easy counting of cells. Constitutive expression of a green fluorescent membrane protein was used to provide a precise outline of all surrounding cells. Marked lineages can be induced from specific cells within the organism by targeted laser irradiation, and the fate of the marked cells can be followed non-invasively. We have used the system to map cell lineages originating from the initials of primary and lateral roots in Arabidopsis. The lineage marking technique enabled us to measure the differential contribution of primary root pericycle cell files to developing lateral root primordia. The majority of cells in an emerging lateral root primordium derive from the central file of pericycle founder cells while off-centre founder cells contribute only a minor proliferation of tissue near the base of the root. The system shows great promise for the detailed study of cell division during morphogenesis.

  10. Characterization and Scaling of Black Carbon Aerosol Concentration with City Population Based on In-Situ Measurements and Analysis

    NASA Astrophysics Data System (ADS)

    Paredes-Miranda, G.; Arnott, W. P.; Moosmuller, H.

    2010-12-01

    The global trend toward urbanization and the resulting increase in city population has directed attention toward air pollution in megacities. A closely related question of importance for urban planning and attainment of air quality standards is how pollutant concentrations scale with city population. In this study, we use measurements of light absorption and light scattering coefficients as proxies for primary (i.e., black carbon; BC) and total (i.e., particulate matter; PM) pollutant concentration, to start addressing the following questions: What patterns and generalizations are emerging from our expanding data sets on urban air pollution? How does the per-capita air pollution vary with economic, geographic, and meteorological conditions of an urban area? Does air pollution provide an upper limit on city size? Diurnal analysis of black carbon concentration measurements in suburban Mexico City, Mexico, Las Vegas, NV, USA, and Reno, NV, USA for similar seasons suggests that commonly emitted primary air pollutant concentrations scale approximately as the square root of the urban population N, consistent with a simple 2-d box model. The measured absorption coefficient Babs is approximately proportional to the BC concentration (primary pollution) and thus scales with the square root of population (N). Since secondary pollutants form through photochemical reactions involving primary pollutants, they scale also with square root of N. Therefore the scattering coefficient Bsca, a proxy for PM concentration is also expected to scale with square root of N. Here we present light absorption and scattering measurements and data on meteorological conditions and compare the population scaling of these pollutant measurements with predictions from the simple 2-d box model. We find that these basin cities are connected by the square root of N dependence. Data from other cities will be discussed as time permits.

  11. Application of bacteria from non-cultivated plants to promote growth, alter root architecture and alleviate salt stress of cotton.

    PubMed

    Irizarry, I; White, J F

    2017-04-01

    Cotton seeds are frequently treated with acid to remove fibres and reduce seed-transmitted diseases. This process also eliminates beneficial bacteria on the seed surface. The goal of this research was to seek and apply beneficial bacteria to acid delinted cotton seeds to evaluate their growth-promoting and salt stress alleviating effects in seedlings. Bacteria were isolated from non-cultivated plants in the Malvaceae. Seeds were collected from Portia tree (Thespesia populnea) and wild cotton (Gossypium hirsutum) from coastal and arid areas of Puerto Rico. Bacillus amyloliquefaciens, Curtobacterium oceanosedimentum and Pseudomonas oryzihabitans were inoculated onto acid delinted cotton seeds. Bacteria increased cotton seed germination and length of emerging seedling radicles. Cotton seeds were inoculated with B. amyloliquefaciens to evaluate growth and root architecture of non-stressed and salt stressed seedlings. Inoculating cotton seeds with B. amyloliquefaciens led to a greater percentage of seedlings with expanded cotyledons after 8 days, enhanced primary and lateral root growth, and altered root architecture. Similar results were obtained when okra seeds were inoculated with B. amyloliquefaciens. The data supported the hypothesis that non-cultivated plants in the Malvaceae growing in stressful environments possess bacteria that promote growth, alter root architecture and alleviate salt stress of cotton and okra seedlings. This study demonstrated the effects of applying beneficial bacteria on acid delinted cotton seeds. Inoculating seeds with salt stress alleviating bacteria could improve the growth of crop seedlings that are vulnerable to soil salinization. © 2017 The Society for Applied Microbiology.

  12. Aluminum stress signaling in plants

    PubMed Central

    Baluska, Frantisek; Matsumoto, Hideaki

    2009-01-01

    Aluminum (Al) toxicity is a major constraint for crop production in acidic soil worldwide. When the soil pH is lower than 5, Al3+ is released to the soil and enters into root tip cell ceases root development of plant. In acid soil with high mineral content, Al is the major cause of phytotoxicity. The target of Al toxicity is the root tip, in which Al exposure causes inhibition of cell elongation and cell division, leading to root stunting accompanied by reduced water and nutrient uptake. A variety of genes have been identified that are induced or repressed upon Al exposure. At tissue level, the distal part of the transition zone is the most sensitive to Al. At cellular and molecular level, many cell components are implicated in the Al toxicity including DNA in nucleus, numerous cytoplastic compounds, mitochondria, the plasma membrane and the cell wall. Although it is difficult to distinguish the primary targets from the secondary effects so far, understanding of the target sites of the Al toxicity is helpful for elucidating the mechanisms by which Al exerts its deleterious effects on root growth. To develop high tolerance against Al stress is the major goal of plant sciences. This review examines our current understanding of the Al signaling with the physiological, genetic and molecular approaches to improve the crop performance under the Al toxicity. New discoveries will open up new avenues of molecular/physiological inquiry that should greatly advance our understanding of Al tolerance mechanisms. Additionally, these breakthroughs will provide new molecular resources for improving the crop Al tolerance via molecular-assisted breeding and biotechnology. PMID:19820334

  13. Effect of Sugar Maple Root Exudate on Seedlings of Northern Conifer Species

    Treesearch

    Carl H. Tubbs

    1976-01-01

    It has been shows that a root exudate of sugar maple reduces the growth of yellow birch. A laboratory test indicated that the growth of northern conifers is also reduced in sugar maple root exudate. Allelopathy may play an important role in survival of species on sites where sugar maple is abundant.

  14. Evaluation of instrumentation systems in reducing E. faecalis from root canals: TF adaptive and ProTaper next versus single file systems.

    PubMed

    Karataş, Ertuğrul; Gültekin, Esra; Arslan, Hakan; Kirici, Damla Özsu; Alsancak, Meltem; Topçu, Meltem Çolak

    2015-03-01

    To compare the effect of the TF Adaptive, ProTaper Next, OneShape, WaveOne, Reciproc, (SAF) on the reduction of E. faecalis in experimentally infected root canals. 70 human mandibular incisor teeth with straight roots and single root canals were selected for this experiment and the root canals of the selected teeth were infected with E. faecalis. After contamination, all the root canals were randomly divided into 7 groups: control, ProTaper Next, TF Adaptive, SAF, WaveOne, Reciproc, and OneShape. After the irrigation procedures, samples were taken from root canals with paper points and incubated in blood agar plates. The colonies grown on the blood agar were counted and interpreted as colony forming units per milliliter. Analysis of results showed that all instrumentation systems were more effective in reducing the number of bacteria than the control (P<.001). The ProTaper Next, TF Adaptive, WaveOne, Reciproc, and OneShape systems were significantly more effective than the SAF system in reducing E. faecalis within the root canals (P<.001). All instrumentation systems used in this study provided a significant reduction in bacterial populations.

  15. Assessment of grass root effects on soil piping in sandy soils using the pinhole test

    NASA Astrophysics Data System (ADS)

    Bernatek-Jakiel, Anita; Vannoppen, Wouter; Poesen, Jean

    2017-10-01

    Soil piping is an important land degradation process that occurs in a wide range of environments. Despite an increasing number of studies on this type of subsurface erosion, the impact of vegetation on piping erosion is still unclear. It can be hypothesized that vegetation, and in particular plant roots, may reduce piping susceptibility of soils because roots of vegetation also control concentrated flow erosion rates or shallow mass movements. Therefore, this paper aims to assess the impact of grass roots on piping erosion susceptibility of a sandy soil. The pinhole test was used as it provides quantitative data on pipeflow discharge, sediment concentration and sediment discharge. Tests were conducted at different hydraulic heads (i.e., 50 mm, 180 mm, 380 mm and 1020 mm). Results showed that the hydraulic head was positively correlated with pipeflow discharge, sediment concentration and sediment discharge, while the presence of grass roots (expressed as root density) was negatively correlated with these pipeflow characteristics. Smaller sediment concentrations and sediment discharges were observed in root-permeated samples compared to root-free samples. When root density exceeds 0.5 kg m- 3, piping erosion rates decreased by 50% compared to root-free soil samples. Moreover, if grass roots are present, the positive correlation between hydraulic head and both sediment discharge and sediment concentration is less pronounced, demonstrating that grass roots become more effective in reducing piping erosion rates at larger hydraulic heads. Overall, this study demonstrates that grass roots are quite efficient in reducing piping erosion rates in sandy soils, even at high hydraulic head (> 1 m). As such, grass roots may therefore be used to efficiently control piping erosion rates in topsoils.

  16. Reduced Root Cortical Cell File Number Improves Drought Tolerance in Maize1[C][W][OPEN

    PubMed Central

    Chimungu, Joseph G.; Brown, Kathleen M.

    2014-01-01

    We tested the hypothesis that reduced root cortical cell file number (CCFN) would improve drought tolerance in maize (Zea mays) by reducing the metabolic costs of soil exploration. Maize genotypes with contrasting CCFN were grown under well-watered and water-stressed conditions in greenhouse mesocosms and in the field in the United States and Malawi. CCFN ranged from six to 19 among maize genotypes. In mesocosms, reduced CCFN was correlated with 57% reduction of root respiration per unit of root length. Under water stress in the mesocosms, genotypes with reduced CCFN had between 15% and 60% deeper rooting, 78% greater stomatal conductance, 36% greater leaf CO2 assimilation, and between 52% to 139% greater shoot biomass than genotypes with many cell files. Under water stress in the field, genotypes with reduced CCFN had between 33% and 40% deeper rooting, 28% lighter stem water oxygen isotope enrichment (δ18O) signature signifying deeper water capture, between 10% and 35% greater leaf relative water content, between 35% and 70% greater shoot biomass at flowering, and between 33% and 114% greater yield than genotypes with many cell files. These results support the hypothesis that reduced CCFN improves drought tolerance by reducing the metabolic costs of soil exploration, enabling deeper soil exploration, greater water acquisition, and improved growth and yield under water stress. The large genetic variation for CCFN in maize germplasm suggests that CCFN merits attention as a breeding target to improve the drought tolerance of maize and possibly other cereal crops. PMID:25355868

  17. Nitric oxide mediates strigolactone signaling in auxin and ethylene-sensitive lateral root formation in sunflower seedlings

    PubMed Central

    Bharti, Niharika; Bhatla, Satish C

    2015-01-01

    Strigolactones (SLs) play significant role in shaping root architecture whereby auxin-SL crosstalk has been observed in SL-mediated responses of primary root elongation, lateral root formation and adventitious root (AR) initiation. Whereas GR24 (a synthetic strigolactone) inhibits LR and AR formation, the effect of SL biosynthesis inhibitor (fluridone) is just the opposite (root proliferation). Naphthylphthalamic acid (NPA) leads to LR proliferation but completely inhibits AR development. The diffusive distribution of PIN1 in the provascular cells in the differentiating zone of the roots in response to GR24, fluridone or NPA treatments further indicates the involvement of localized auxin accumulation in LR development responses. Inhibition of LR formation by GR24 treatment coincides with inhibition of ACC synthase activity. Profuse LR development by fluridone and NPA treatments correlates with enhanced [Ca2+]cyt in the apical region and differentiating zones of LR, indicating a critical role of [Ca2+] in LR development in response to the coordinated action of auxins, ethylene and SLs. Significant enhancement of carotenoid cleavage dioxygenase (CCD) activity (enzyme responsible for SL biosynthesis) in tissue homogenates in presence of cPTIO (NO scavenger) indicates the role of endogenous NO as a negative modulator of CCD activity. Differences in the spatial distribution of NO in the primary and lateral roots further highlight the involvement of NO in SL-modulated root morphogenesis in sunflower seedlings. Present work provides new report on the negative modulation of SL biosynthesis through modulation of CCD activity by endogenous nitric oxide during SL-modulated LR development. PMID:26076049

  18. Nitric oxide mediates strigolactone signaling in auxin and ethylene-sensitive lateral root formation in sunflower seedlings.

    PubMed

    Bharti, Niharika; Bhatla, Satish C

    2015-01-01

    Strigolactones (SLs) play significant role in shaping root architecture whereby auxin-SL crosstalk has been observed in SL-mediated responses of primary root elongation, lateral root formation and adventitious root (AR) initiation. Whereas GR24 (a synthetic strigolactone) inhibits LR and AR formation, the effect of SL biosynthesis inhibitor (fluridone) is just the opposite (root proliferation). Naphthylphthalamic acid (NPA) leads to LR proliferation but completely inhibits AR development. The diffusive distribution of PIN1 in the provascular cells in the differentiating zone of the roots in response to GR24, fluridone or NPA treatments further indicates the involvement of localized auxin accumulation in LR development responses. Inhibition of LR formation by GR24 treatment coincides with inhibition of ACC synthase activity. Profuse LR development by fluridone and NPA treatments correlates with enhanced [Ca(2+)]cyt in the apical region and differentiating zones of LR, indicating a critical role of [Ca(2+)] in LR development in response to the coordinated action of auxins, ethylene and SLs. Significant enhancement of carotenoid cleavage dioxygenase (CCD) activity (enzyme responsible for SL biosynthesis) in tissue homogenates in presence of cPTIO (NO scavenger) indicates the role of endogenous NO as a negative modulator of CCD activity. Differences in the spatial distribution of NO in the primary and lateral roots further highlight the involvement of NO in SL-modulated root morphogenesis in sunflower seedlings. Present work provides new report on the negative modulation of SL biosynthesis through modulation of CCD activity by endogenous nitric oxide during SL-modulated LR development.

  19. Insurance-related disparities in primary care quality among U.S. Type 2 diabetes patients.

    PubMed

    Lee, De-Chih; Liang, Hailun; Shi, Leiyu

    2016-08-02

    This study explored insurance-related disparities in primary care quality among Americans with type 2 diabetes. Data came from the household component of the 2012 Medical Expenditure Panel Survey (MEPS). Analysis focused on adult subjects with type 2 diabetes. Logistic regressions were performed to investigate the associations between insurance status and primary care attributes related to first contact, longitudinality, comprehensiveness, and coordination, while controlling for confounding factors. Preliminary findings revealed differences among three insurance groups in the first contact domain of primary care quality. After controlling for confounding factors, these differences were no longer apparent, with all insurance groups reporting similar primary care quality according to the four domains of interest in the study. There were significant differences in socioeconomic status among different insurance groups. This study reveals equitable primary care quality for diabetes patients despite their health insurance status. In addition to insurance-related differences, the other socioeconomic stratification factors are assumed to be the root cause of disparities in care. This research emphasizes the crucial role that primary care plays in the accessibility and quality of care for chronically ill patients. Policy makers should continue their commitment to reduce gaps in insurance coverage and improve access as well as quality of diabetic care.

  20. Flavonols Mediate Root Phototropism and Growth through Regulation of Proliferation-to-Differentiation Transition.

    PubMed

    Silva-Navas, Javier; Moreno-Risueno, Miguel A; Manzano, Concepción; Téllez-Robledo, Bárbara; Navarro-Neila, Sara; Carrasco, Víctor; Pollmann, Stephan; Gallego, F Javier; Del Pozo, Juan C

    2016-06-01

    Roots normally grow in darkness, but they may be exposed to light. After perceiving light, roots bend to escape from light (root light avoidance) and reduce their growth. How root light avoidance responses are regulated is not well understood. Here, we show that illumination induces the accumulation of flavonols in Arabidopsis thaliana roots. During root illumination, flavonols rapidly accumulate at the side closer to light in the transition zone. This accumulation promotes asymmetrical cell elongation and causes differential growth between the two sides, leading to root bending. Furthermore, roots illuminated for a long period of time accumulate high levels of flavonols. This high flavonol content decreases both auxin signaling and PLETHORA gradient as well as superoxide radical content, resulting in reduction of cell proliferation. In addition, cytokinin and hydrogen peroxide, which promote root differentiation, induce flavonol accumulation in the root transition zone. As an outcome of prolonged light exposure and flavonol accumulation, root growth is reduced and a different root developmental zonation is established. Finally, we observed that these differentiation-related pathways are required for root light avoidance. We propose that flavonols function as positional signals, integrating hormonal and reactive oxygen species pathways to regulate root growth direction and rate in response to light. © 2016 American Society of Plant Biologists. All rights reserved.

  1. Flavonols Mediate Root Phototropism and Growth through Regulation of Proliferation-to-Differentiation Transition

    PubMed Central

    Silva-Navas, Javier; Moreno-Risueno, Miguel A.; Manzano, Concepción; Téllez-Robledo, Bárbara; Navarro-Neila, Sara; Carrasco, Víctor; Pollmann, Stephan

    2016-01-01

    Roots normally grow in darkness, but they may be exposed to light. After perceiving light, roots bend to escape from light (root light avoidance) and reduce their growth. How root light avoidance responses are regulated is not well understood. Here, we show that illumination induces the accumulation of flavonols in Arabidopsis thaliana roots. During root illumination, flavonols rapidly accumulate at the side closer to light in the transition zone. This accumulation promotes asymmetrical cell elongation and causes differential growth between the two sides, leading to root bending. Furthermore, roots illuminated for a long period of time accumulate high levels of flavonols. This high flavonol content decreases both auxin signaling and PLETHORA gradient as well as superoxide radical content, resulting in reduction of cell proliferation. In addition, cytokinin and hydrogen peroxide, which promote root differentiation, induce flavonol accumulation in the root transition zone. As an outcome of prolonged light exposure and flavonol accumulation, root growth is reduced and a different root developmental zonation is established. Finally, we observed that these differentiation-related pathways are required for root light avoidance. We propose that flavonols function as positional signals, integrating hormonal and reactive oxygen species pathways to regulate root growth direction and rate in response to light. PMID:26628743

  2. Presidential Primaries of 1976: Where? When? What? Why? Grass Roots Guides on Democracy and Practical Politics.

    ERIC Educational Resources Information Center

    Eisenstein, James

    The purpose of this guide is to describe primary election changes, clarify some of the questions people ask about primaries, and help readers understand the primaries' role in choosing the president in 1976. Primaries in 1976 differ in three important respects; the number of states that hold primaries has increased substantially, the rules used to…

  3. Huanglongbing impairs the rhizosphere-to-rhizoplane enrichment process of the citrus root-associated microbiome.

    PubMed

    Zhang, Yunzeng; Xu, Jin; Riera, Nadia; Jin, Tao; Li, Jinyun; Wang, Nian

    2017-08-10

    Roots are the primary site for plant-microbe interactions. Among the three root-associated layers (i.e., rhizosphere, rhizoplane, and endorhiza), the rhizoplane is a key component serving a critical gating role that controls microbial entry into plant roots. The microbial communities colonizing the three layers are believed to be gradually enriched from the bulk soil inoculum. However, it is unknown how this enrichment process, particularly the rhizosphere to rhizoplane step, is affected by biotic stresses, such as disease. In this study, we address this question using the citrus root-associated microbiome as a model. We identified the rhizosphere-to-rhizoplane-enriched taxonomic and functional properties of the citrus root-associated microbiome and determined how they were affected by Huanglongbing (HLB), a severe systemic disease caused by Candidatus Liberibacter asiaticus, using metagenomic and metatranscriptomic approaches. Multiple rhizoplane-enriched genera were identified, with Bradyrhizobium and Burkholderia being the most dominant. Plant-derived carbon sources are an important driving force for the enrichment process. The enrichment of functional attributes, such as motility, chemotaxis, secretion systems, and lipopolysaccharide (LPS) synthesis, demonstrated more active microbe-plant interactions on the rhizoplane than the rhizosphere. We observed that HLB impaired the rhizosphere-to-rhizoplane enrichment process of the citrus root-associated microbiome in three ways: (1) by decreasing the relative abundance of most rhizoplane-enriched genera; (2) by reducing the relative abundance and/or expression activity of the functional attributes involved in microbe-plant interactions; and (3) by recruiting more functional features involved in autotrophic life cycle adaptation, such as carbon fixation and nitrogen nitrification in the HLB rhizoplane microbiome. Finally, our data showed that inoculation of Burkholderia strains isolated from the healthy citrus root-associated microbiome could trigger the expression of genes involved in induced systemic resistance in inoculated plants. HLB causes decreased relative abundance and/or expression activity of rhizoplane-enriched taxonomic and functional properties, collectively resulting in impaired plant host-microbiome interactions. Manipulation of the citrus root-associated microbiome, for instance, by inoculating citrus roots with beneficial Burkholderia strains, has potential to promote plant health. Our results provide novel insights for understanding the contributions of the community enrichment process of the root-associated microbiome to the plant hosts.

  4. In vitro root induction of faba bean (Vicia faba L.).

    PubMed

    Ismail, Roba M; Elazab, Heba E M; Hussein, Gihan M H; Metry, Emad A

    2011-01-01

    A major challenge for regeneration of faba bean (Vicia faba L.) plants is the difficulty of in vitro root induction. In the present study, in vitro rooting and its architecture have been studied. Adventitious root formation was successfully induced from regenerated faba bean shoots of four Egyptian cultivars, i.e., Giza 461, Giza 40, Giza 834 and Giza 716 on hormone free MS medium supplemented with 5 mg/l silver nitrate. Among the four cultivars, Giza 461 and Giza 40 were recorded as the highest root formation response (75 % and 65) followed by cultivars Giza716 and Giza843 (20%, and 10%). Anatomical study proved that the produced roots are initiated as the adventitious lateral root (LR) with tri-arch xylem strands as compared with the penta-arch of the primary roots of the intact faba bean seedling. The obtained results overcome the root induction problem in faba bean.

  5. Early Arabidopsis root hair growth stimulation by pathogenic strains of Pseudomonas syringae.

    PubMed

    Pecenková, Tamara; Janda, Martin; Ortmannová, Jitka; Hajná, Vladimíra; Stehlíková, Zuzana; Žárský, Viktor

    2017-09-01

    Selected beneficial Pseudomonas spp. strains have the ability to influence root architecture in Arabidopsis thaliana by inhibiting primary root elongation and promoting lateral root and root hair formation. A crucial role for auxin in this long-term (1week), long-distance plant-microbe interaction has been demonstrated. Arabidopsis seedlings were cultivated in vitro on vertical plates and inoculated with pathogenic strains Pseudomonas syringae pv. maculicola (Psm) and P. syringae pv. tomato DC3000 (Pst), as well as Agrobacterium tumefaciens (Atu) and Escherichia coli (Eco). Root hair lengths were measured after 24 and 48h of direct exposure to each bacterial strain. Several Arabidopsis mutants with impaired responses to pathogens, impaired ethylene perception and defects in the exocyst vesicle tethering complex that is involved in secretion were also analysed. Arabidopsis seedling roots infected with Psm or Pst responded similarly to when infected with plant growth-promoting rhizobacteria; root hair growth was stimulated and primary root growth was inhibited. Other plant- and soil-adapted bacteria induced similar root hair responses. The most compromised root hair growth stimulation response was found for the knockout mutants exo70A1 and ein2. The single immune pathways dependent on salicylic acid, jasmonic acid and PAD4 are not directly involved in root hair growth stimulation; however, in the mutual cross-talk with ethylene, they indirectly modify the extent of the stimulation of root hair growth. The Flg22 peptide does not initiate root hair stimulation as intact bacteria do, but pretreatment with Flg22 prior to Psm inoculation abolished root hair growth stimulation in an FLS2 receptor kinase-dependent manner. These early response phenomena are not associated with changes in auxin levels, as monitored with the pDR5::GUS auxin reporter. Early stimulation of root hair growth is an effect of an unidentified component of living plant pathogenic bacteria. The root hair growth response is triggered in the range of hours after bacterial contact with roots and can be modulated by FLS2 signalling. Bacterial stimulation of root hair growth requires functional ethylene signalling and an efficient exocyst-dependent secretory machinery. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please email: journals.permissions@oup.com

  6. Apical extrusion of debris in primary molar root canals using mechanical and manual systems.

    PubMed

    Buldur, B; Hascizmeci, C; Aksoy, S; Nur Aydin, M; Guvendi, O N

    2018-03-01

    Apical extrusion of debris in primary root canal treatment has not been well elucidated. The purpose of this study is to compare the amount of apically extruded debris during the preparation of primary molar root canals using ProTaper, ProTaper Next, Self-adjusting File (SAF) and hand files. One hundred sixty extracted primary mandibular molar teeth were assigned to 2 groups: Group 1: Resorbed (n=80) and Group 2: Non-resorbed (n=80) and randomly to four subgroups (n=20 teeth for each subgroup) according to the instruments used, ProTaper, ProTaper Next, SAF, and hand file. The apically extruded debris was collected and dried in preweighed Eppendof tubes. The dry weight was calculated by subtracting the preoperative weight from the postoperative weight. Data were analysed statistically using the ANOVA and the Bonferroni post hoc t-test. The amount of apically extruded debris was significantly less for the non-resorbed group compared to the resorbed group (P<0.05). Regardless of the resorption groups, ProTaper Next and SAF extruded significantly less debris than did the ProTaper and hand files (P<0.05), while no statistically significant difference was found between ProTaper Next and SAF (P>0.05). All instruments caused apically extruded debris in primary teeth.

  7. Factors affecting induction and development of in vitro rooting in apple rootstocks.

    PubMed

    Sharma, T; Modgil, M; Thakur, M

    2007-09-01

    Shoots of apple rootstocks raised in vitro were transferred to various rooting media to study the effect of different factors on root initiation and development. Various concentrations of indole-3-butyric acid (IBA) initiated rooting but maximum rooting percentage was found with 2.0 and 2.5 mg l(-1) of IBA in M7 and with 1.0 mg l(-1) of IBA in MM106. The drawback was that the roots were thick, short and with profuse callus. The presence of activated charcoal (AC) in the rooting medium improved the rooting quality but reduced the rooting percentage in both the rootstocks. In high auxin dip of 70, 80 and 90 mg l(-1) IBA for 2, 2 and 1 hr showed 75-85 per cent rooting in M7, but lacked reproducibility of the results. Whereas in MM106, 66 - 70 % rooting was achieved with 70 mg l(-1) of IBA dip for 3 h. Root induction in shoots in IBA containing liquid medium (LM) in dark for few days and root elongation in IBA--free medium in light proved most effective. On the other hand, continuous light treatment showed reduced rooting. Reduction of MS salts and sucrose in root elongation medium showed decreased rooting. Plantlets from two--stage rooting procedure showed more rapid growth and satisfactory survival during hardening of plants and on transfer to field.

  8. The decomposition of fine and coarse roots: their global patterns and controlling factors

    PubMed Central

    Zhang, Xinyue; Wang, Wei

    2015-01-01

    Fine root decomposition represents a large carbon (C) cost to plants, and serves as a potential soil C source, as well as a substantial proportion of net primary productivity. Coarse roots differ markedly from fine roots in morphology, nutrient concentrations, functions, and decomposition mechanisms. Still poorly understood is whether a consistent global pattern exists between the decomposition of fine (<2 mm root diameter) and coarse (≥2 mm) roots. A comprehensive terrestrial root decomposition dataset, including 530 observations from 71 sampling sites, was thus used to compare global patterns of decomposition of fine and coarse roots. Fine roots decomposed significantly faster than coarse roots in middle latitude areas, but their decomposition in low latitude regions was not significantly different from that of coarse roots. Coarse root decomposition showed more dependence on climate, especially mean annual temperature (MAT), than did fine roots. Initial litter lignin content was the most important predictor of fine root decomposition, while lignin to nitrogen ratios, MAT, and mean annual precipitation were the most important predictors of coarse root decomposition. Our study emphasizes the necessity of separating fine roots and coarse roots when predicting the response of belowground C release to future climate changes. PMID:25942391

  9. Cyanogen Metabolism in Cassava Roots: Impact on Protein Synthesis and Root Development.

    PubMed

    Zidenga, Tawanda; Siritunga, Dimuth; Sayre, Richard T

    2017-01-01

    Cassava ( Manihot esculenta Crantz), a staple crop for millions of sub-Saharan Africans, contains high levels of cyanogenic glycosides which protect it against herbivory. However, cyanogens have also been proposed to play a role in nitrogen transport from leaves to roots. Consistent with this hypothesis, analyses of the distribution and activities of enzymes involved in cyanide metabolism provides evidence for cyanide assimilation, derived from linamarin, into amino acids in cassava roots. Both β-cyanoalanine synthase (CAS) and nitrilase (NIT), two enzymes involved in cyanide assimilation to produce asparagine, were observed to have higher activities in roots compared to leaves, consistent with their proposed role in reduced nitrogen assimilation. In addition, rhodanese activity was not detected in cassava roots, indicating that this competing means for cyanide metabolism was not a factor in cyanide detoxification. In contrast, leaves had sufficient rhodanese activity to compete with cyanide assimilation into amino acids. Using transgenic low cyanogen plants, it was shown that reducing root cyanogen levels is associated with elevated root nitrate reductase activity, presumably to compensate for the loss of reduced nitrogen from cyanogens. Finally, we overexpressed Arabidopsis CAS and NIT4 genes in cassava roots to study the feasibility of enhancing root cyanide assimilation into protein. Optimal overexpression of CAS and NIT4 resulted in up to a 50% increase in root total amino acids and a 9% increase in root protein accumulation. However, plant growth and morphology was altered in plants overexpressing these enzymes, demonstrating a complex interaction between cyanide metabolism and hormonal regulation of plant growth.

  10. Cyanogen Metabolism in Cassava Roots: Impact on Protein Synthesis and Root Development

    PubMed Central

    Zidenga, Tawanda; Siritunga, Dimuth; Sayre, Richard T.

    2017-01-01

    Cassava (Manihot esculenta Crantz), a staple crop for millions of sub-Saharan Africans, contains high levels of cyanogenic glycosides which protect it against herbivory. However, cyanogens have also been proposed to play a role in nitrogen transport from leaves to roots. Consistent with this hypothesis, analyses of the distribution and activities of enzymes involved in cyanide metabolism provides evidence for cyanide assimilation, derived from linamarin, into amino acids in cassava roots. Both β-cyanoalanine synthase (CAS) and nitrilase (NIT), two enzymes involved in cyanide assimilation to produce asparagine, were observed to have higher activities in roots compared to leaves, consistent with their proposed role in reduced nitrogen assimilation. In addition, rhodanese activity was not detected in cassava roots, indicating that this competing means for cyanide metabolism was not a factor in cyanide detoxification. In contrast, leaves had sufficient rhodanese activity to compete with cyanide assimilation into amino acids. Using transgenic low cyanogen plants, it was shown that reducing root cyanogen levels is associated with elevated root nitrate reductase activity, presumably to compensate for the loss of reduced nitrogen from cyanogens. Finally, we overexpressed Arabidopsis CAS and NIT4 genes in cassava roots to study the feasibility of enhancing root cyanide assimilation into protein. Optimal overexpression of CAS and NIT4 resulted in up to a 50% increase in root total amino acids and a 9% increase in root protein accumulation. However, plant growth and morphology was altered in plants overexpressing these enzymes, demonstrating a complex interaction between cyanide metabolism and hormonal regulation of plant growth. PMID:28286506

  11. Can we manipulate root system architecture to control soil erosion?

    NASA Astrophysics Data System (ADS)

    Ola, A.; Dodd, I. C.; Quinton, J. N.

    2015-09-01

    Soil erosion is a major threat to soil functioning. The use of vegetation to control erosion has long been a topic for research. Much of this research has focused on the above-ground properties of plants, demonstrating the important role that canopy structure and cover plays in the reduction of water erosion processes. Less attention has been paid to plant roots. Plant roots are a crucial yet under-researched factor for reducing water erosion through their ability to alter soil properties, such as aggregate stability, hydraulic function and shear strength. However, there have been few attempts to specifically manipulate plant root system properties to reduce soil erosion. Therefore, this review aims to explore the effects that plant roots have on soil erosion and hydrological processes, and how plant root architecture might be manipulated to enhance its erosion control properties. We demonstrate the importance of root system architecture for the control of soil erosion. We also show that some plant species respond to nutrient-enriched patches by increasing lateral root proliferation. The erosional response to root proliferation will depend upon its location: at the soil surface dense mats of roots may reduce soil erodibility but block soil pores thereby limiting infiltration, enhancing runoff. Additionally, in nutrient-deprived regions, root hair development may be stimulated and larger amounts of root exudates released, thereby improving aggregate stability and decreasing erodibility. Utilizing nutrient placement at specific depths may represent a potentially new, easily implemented, management strategy on nutrient-poor agricultural land or constructed slopes to control erosion, and further research in this area is needed.

  12. Frequency, microbial interactions, and antimicrobial susceptibility of Fusobacterium nucleatum and Fusobacterium necrophorum isolated from primary endodontic infections.

    PubMed

    Jacinto, Rogério C; Montagner, Francisco; Signoretti, Fernanda G C; Almeida, Geovania C; Gomes, Brenda P F A

    2008-12-01

    This study assessed the prevalence and microbial interactions of Fusobacterium nucleatum and Fusobacterium necrophorum in primary endodontic infections from a Brazilian population and their antimicrobial susceptibility to some antibiotics by the E-test. One hundred ten samples from infected teeth with periapical pathologies were analyzed by culture methods. Five hundred eighty individual strains were isolated; 81.4% were strict anaerobes. F. nucleatum was found in 38 root canals and was associated with Porphyromonas gingivalis, Prevotella spp., and Eubacterium spp. F. necrophorum was found in 20 root canals and was associated with Peptostreptococcus prevotii. The simultaneous presence of F. nucleatum and F. necrophorum was not related to endodontic symptoms (p > 0.05). They were 100% susceptible to amoxicillin, amoxicillin/clavulanate, and cephaclor. Fusobacterium spp. is frequently isolated from primary-infected root canals of teeth with periapical pathologies. Amoxicillin is a useful antibiotic against F. nucleatum and F. necrophorum in endodontic infections and has been prescribed as the first choice in Brazil.

  13. Growth of radish and marigold following repeated exposure to nitrogen dioxide, sulfur dioxide, and ozone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reinert, R.A.; Sanders, J.S.

    Radish and marigold plants were exposed to 0.3 ppm of nitrogen dioxide (NO/sub 2/), sulfur dioxide (SO/sub 2/), and/or ozone (O/sub 3/) nine times during a 3-wk period. No interactions among NO/sub 2/, SO/sub 2/, and O/sub 3/ were detected in measurement of radish foliage and root dry weight. Treatments containing O/sub 3/ reduced radish foliage and root (hypocotyl) dry weight 356 and 531 mg/plant, respectively. Interactions among NO/sub 2/, SO/sub 2/, and O/sub 3/ occurred in shoots and roots of marigold. SO/sub 2/ alone reduced marigold shoot and root dry weight, but this effect was reversed in the presencemore » of O/sub 3/. The suppressive effect of SO/sub 2/ on root weight was also reversed by NO/sub 3/. Treatments containing SO/sub 2/ reduced dry flower weight 0.17 g/plant, but effects of the pollutant interactions observed in shoots and roots were not present.« less

  14. Root type matters: measurements of water uptake by seminal, crown and lateral roots of maize

    NASA Astrophysics Data System (ADS)

    Ahmed, Mutez Ali; Zarebanadkouki, Mohsen; Kaestner, Anders; Carminati, Andrea

    2016-04-01

    Roots play a key role in water acquisition and are a significant component of plant adaptation to different environmental conditions. Although maize (Zea mays L.) is one of the most important crops worldwide, there is limited information on the function of different root segments and types in extracting water from soils. Aim of this study was to investigate the location of root water uptake in mature maize. We used neutron radiography to image the spatial distribution of maize roots and trace the transport of injected deuterated water (D2O) in soil and roots. Maize plants were grown in aluminum containers filled with a sandy soil that was kept homogeneously wet throughout the experiment. When the plants were five weeks-old, we injected D2O into selected soil regions. The transport of D2O was simulated using a diffusion-convection numerical model. By fitting the observed D2O transport we quantified the diffusion coefficient and the water uptake of the different root segments. The model was initially developed and tested with two weeks-old maize (Ahmed et. al. 2015), for which we found that water was mainly taken up by lateral roots and the water uptake of the seminal roots was negligible. Here, we used this method to measure root water uptake in a mature maize root system. The root architecture of five weeks-old maize consisted of primary and seminal roots with long laterals and crown (nodal) roots that emerged from the above ground part of the plant two weeks after planting. The crown roots were thicker than the seminal roots and had fewer and shorter laterals. Surprisingly, we found that the water was mainly taken up by the crown roots and their laterals, while the lateral roots of seminal roots, which were the main location of water uptake of younger plants, stopped to take up water. Interestingly, we also found that in contrast to the seminal roots, the crown roots were able to take up water also from their distal segments. We conclude that for the two weeks-old maize the function of lateral roots is to absorb water from the soil, while the function of the primary and seminal roots is to axially transport water to the shoot. For the five weeks-old maize, water was mainly taken up by the crown roots and their associated laterals. The ability of crown roots to uptake water from the distal segments can help maize to extract water from deep soil layers and better tolerate drought. Reference Ahmed MA, Zarebanadkouki M, Kaestner A, Carminati A (2015) Measurements of water uptake of maize roots: the key function of lateral roots. Plant and Soil 1-19. doi: 10.1007/s11104-015-2639-6

  15. Antibacterial Effect of Diode Laser in Pulpectomy of Primary Teeth.

    PubMed

    Bahrololoomi, Zahra; Fekrazad, Reza; Zamaninejad, Shiva

    2017-01-01

    Introduction: Laser irradiation has been suggested as an adjunct to traditional methods of canal preparation but few studies are available on the antibacterial effect of diode laser in pulpectomy of primary teeth. The purpose of the present study is to investigate the antibacterial effect of diode laser in pulpectomy of primary teeth, in addition to define the optimal and harmless diode lasing conditions in the root canal. Methods: A total of 125 single rooted primary teeth were selected. After traditional canal cleaning, they were divided in 2 groups. Sixty-five specimens after culturing of Enterococcus faecalis into the canals, were divided in 3 groups: (1) traditional canal cleaning with 0.5% NaOCl irrigation, (2) method of group 1+ 1.5 W diode laser (980 nm, pulse), (3) without treatment (5 specimens). Then the specimens were cultured and after colony counting under light microscope, were statistically analyzed by Kruskal-Wallis and Mann-Whitney tests. For 60 specimens, temperature rise of apical and cervical parts of the external root surface were measured using 2 thermocouple type K, when radiating a 1.5 W diode laser into the canal. Results: In the first experiment, the diode laser group showed tmost reduction in bacterial count. And in the second experiment, the mean temperature rise of external root surface was less than the threshold of periodontal ligament (PDL) damage. Conclusion: Diode laser with a power output of 1.5 W, is effective in reduction of E. faecalis bacterial count without damaging periodontal structures.

  16. Differentially abundant proteins associated with heterosis in the primary roots of popcorn

    PubMed Central

    Heringer, Angelo S.; Freitas, Ismael L. J.; Santa-Catarina, Claudete; do Amaral-Júnior, Antônio T.

    2018-01-01

    Although heterosis has significantly contributed to increases in worldwide crop production, the molecular mechanisms regulating this phenomenon are still unknown. In the present study, we used a comparative proteomic approach to explore hybrid vigor via the proteome of both the popcorn L54 ♀ and P8 ♂ genotypes and the resultant UENF/UEM01 hybrid cross. To analyze the differentially abundant proteins involved in heterosis, we used the primary roots of these genotypes to analyze growth parameters and extract proteins. The results of the growth parameter analysis showed that the mid- and best-parent heterosis were positive for root length and root dry matter but negative for root fresh matter, seedling fresh matter, and protein content. The comparative proteomic analysis identified 1343 proteins in the primary roots of hybrid UENF/UEM01 and its parental lines; 220 proteins were differentially regulated in terms of protein abundance. The mass spectrometry proteomic data are available via ProteomeXchange with identifier “PXD009436”. A total of 62 regulated proteins were classified as nonadditive, of which 53.2% were classified as high parent abundance (+), 17.8% as above-high parent abundance (+ +), 16.1% as below-low parent abundance (− −), and 12.9% as low parent abundance (-). A total of 22 biological processes were associated with nonadditive proteins; processes involving translation, ribosome biogenesis, and energy-related metabolism represented 45.2% of the nonadditive proteins. Our results suggest that heterosis in the popcorn hybrid UENF/UEM01 at an early stage of plant development is associated with an up-regulation of proteins related to synthesis and energy metabolism. PMID:29758068

  17. The Aux/IAA gene rum1 involved in seminal and lateral root formation controls vascular patterning in maize (Zea mays L.) primary roots.

    PubMed

    Zhang, Yanxiang; Paschold, Anja; Marcon, Caroline; Liu, Sanzhen; Tai, Huanhuan; Nestler, Josefine; Yeh, Cheng-Ting; Opitz, Nina; Lanz, Christa; Schnable, Patrick S; Hochholdinger, Frank

    2014-09-01

    The maize (Zea mays L.) Aux/IAA protein RUM1 (ROOTLESS WITH UNDETECTABLE MERISTEMS 1) controls seminal and lateral root initiation. To identify RUM1-dependent gene expression patterns, RNA-Seq of the differentiation zone of primary roots of rum1 mutants and the wild type was performed in four biological replicates. In total, 2 801 high-confidence maize genes displayed differential gene expression with Fc ≥2 and FDR ≤1%. The auxin signalling-related genes rum1, like-auxin1 (lax1), lax2, (nam ataf cuc 1 nac1), the plethora genes plt1 (plethora 1), bbm1 (baby boom 1), and hscf1 (heat shock complementing factor 1) and the auxin response factors arf8 and arf37 were down-regulated in the mutant rum1. All of these genes except nac1 were auxin-inducible. The maize arf8 and arf37 genes are orthologues of Arabidopsis MP/ARF5 (MONOPTEROS/ARF5), which controls the differentiation of vascular cells. Histological analyses of mutant rum1 roots revealed defects in xylem organization and the differentiation of pith cells around the xylem. Moreover, histochemical staining of enlarged pith cells surrounding late metaxylem elements demonstrated that their thickened cell walls displayed excessive lignin deposition. In line with this phenotype, rum1-dependent mis-expression of several lignin biosynthesis genes was observed. In summary, RNA-Seq of RUM1-dependent gene expression in maize primary roots, in combination with histological and histochemical analyses, revealed the specific regulation of auxin signal transduction components by RUM1 and novel functions of RUM1 in vascular development. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  18. Decursinol and decursin protect primary cultured rat cortical cells from glutamate-induced neurotoxicity.

    PubMed

    Kang, So Young; Kim, Young Choong

    2007-06-01

    We previously reported six neuroprotective decursinol derivatives, coumarins from Angelica gigas (Umbelliferae) roots. To elucidate the action patterns of decursinol derivatives, we investigated the neuroprotective effects of decursinol and decursin, which showed highly significant activity and were major constituents of A. gigas, using primary cultures of rat cortical cells in-vitro. At concentrations of 0.1-10.0 microM, both decursinol and decursin exerted a significant neuroprotective activity pretreatment and throughout treatment. In addition, decursin had a neuroprotective impact in the post-treatment paradigm implying that decursin might possess different action mechanisms from that of decursinol in the protection of neurons against glutamate injury. Both decursinol and decursin effectively reduced the glutamate-induced increased intracellular calcium ([Ca(2+)](i)) in cortical cells, suggesting that these two coumarins may exert neuroprotection by reducing calcium influx by overactivation of glutamate receptors. This suggestion was supported by the result that decursinol and decursin protected neurons against kainic acid (KA)-induced neurotoxicity better than against that induced by N-methyl-D-aspartate (NMDA). Moreover, both decursinol and decursin significantly prevented glutamate-induced decreases in glutathione, a cellular antioxidant, and glutathione peroxidase activity. In addition, both compounds efficiently reduced the overproduction of cellular peroxide in glutamate-injured cortical cells. These results suggested that both decursinol and decursin protected primary cultured rat cortical cells against glutamate-induced oxidative stress by both reducing calcium influx and acting on the cellular antioxidative defence system. Moreover, decursin is considered to probably have a different action mechanism from that of decursinol in protecting cortical cells against glutamate injury.

  19. Influence of calcium hydroxide on the post-treatment pain in Endodontics: A systematic review

    PubMed Central

    Anjaneyulu, K.; Nivedhitha, Malli Sureshbabu

    2014-01-01

    Introduction: Pain of endodontic origin has been a major concern to the patients and the clinicians for many years. Post-operative pain is associated with inflammation in the periradicular tissues caused by irritants egressing from root canal during treatment. It has been suggested that calcium hydroxide intra-canal medicament has pain-preventive properties because of its anti-microbial or tissue altering effects. Some dispute this and reasoned that calcium hydroxide may initiate or increase pain by inducing or increasing inflammation. Objective: To evaluate the effectiveness of calcium hydroxide in reducing the post-treatment pain when used as an intra-canal medicament Materials and Methods: The following databases were searched: PubMed CENTRAL (until July 2013), MEDLINE, and Cochrane Database of Systematic Reviews. Bibliographies of clinical studies and reviews identified in the electronic search were analyzed for studies published outside the electronically searched journals. The primary outcome measure was to evaluate the post-treatment pain reduction when calcium hydroxide is used as an intra-canal medicament in patients undergoing root canal therapy. Results: The reviews found some clinical evidence that calcium hydroxide is not very effective in reducing post-treatment pain when it is used alone, but its effectiveness can be increased when used in combination with other medicaments like chlorhexidine and camphorated monochlorophenol (CMCP). Conclusion: Even though calcium hydroxide is one of the most widely used intra-canal medicament due to its anti-microbial properties, there is no clear evidence of its effect on the post-treatment pain after the chemo-mechanical root canal preparation. PMID:24944439

  20. Root cause analysis to support infection control in healthcare premises.

    PubMed

    Venier, A-G

    2015-04-01

    Infection control teams (ICTs) seek to prevent healthcare-associated infections (HCAIs). They undertake surveillance and prevention, promote safety and quality of care, and evaluate and manage risk. Root cause analysis (RCA) can support this work but is not widely used by ICTs. This paper describes how ICTs can use RCA to enhance their day-to-day work. Many different tools and methods exist for RCA. Its primary aim is to identify the factors that have led to HCAI, but RCA can also be used for near-misses. A team effort and multidisciplinary work are usually required. Published accounts and personal experience in the field indicate that an ICT that correctly uses RCA implements more effective prevention measures, improves practice and collaborative working, enhances teamwork, and reduces the risk of HCAI. RCA should be promoted among ICTs because it adds value to their work and helps to develop a hospital culture that anticipates and pre-empts problems. Copyright © 2014 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  1. Overexpression of Brassica rapa SHI-RELATED SEQUENCE genes suppresses growth and development in Arabidopsis thaliana.

    PubMed

    Hong, Joon Ki; Kim, Jin A; Kim, Jung Sun; Lee, Soo In; Koo, Bon Sung; Lee, Yeon-Hee

    2012-08-01

    S HI-R ELATED SEQUENCE (SRS) genes are plant-specific transcription factors containing a zinc-binding RING finger motif, which play a critical role in plant growth and development. We have characterized six SRS genes in Brassica rapa. Overexpression of the SRSs BrSTY1, BrSRS7, and BrLRP1 induced dwarf and compact plants, and significantly decreased primary root elongation and lateral root formation. Additionally, the transgenic plants had upward-curled leaves of narrow widths and with short petioles, and had shorter siliques and low fertility. In stems, hypocotyls, and styles, epidermal cell lengths were also significantly reduced in transgenic plants. RT-PCR analysis of transgenic plants revealed that BrSTY1, BrSRS7, and BrLRP1 regulate expression of several gibberellin (GA)- and auxin-related genes involved in morphogenesis in shoot apical regions. We conclude that BrSTY1, BrSRS7, and BrLRP1 regulate plant growth and development by regulating expression of GA- and auxin-related genes.

  2. Design and manufacture of customized dental implants by using reverse engineering and selective laser melting technology.

    PubMed

    Chen, Jianyu; Zhang, Zhiguang; Chen, Xianshuai; Zhang, Chunyu; Zhang, Gong; Xu, Zhewu

    2014-11-01

    Recently a new therapeutic concept of patient-specific implant dentistry has been advanced based on computer-aided design/computer-aided manufacturing technology. However, a comprehensive study of the design and 3-dimensional (3D) printing of the customized implants, their mechanical properties, and their biomechanical behavior is lacking. The purpose of this study was to evaluate the mechanical and biomechanical performance of a novel custom-made dental implant fabricated by the selective laser melting technique with simulation and in vitro experimental studies. Two types of customized implants were designed by using reverse engineering: a root-analog implant and a root-analog threaded implant. The titanium implants were printed layer by layer with the selective laser melting technique. The relative density, surface roughness, tensile properties, bend strength, and dimensional accuracy of the specimens were evaluated. Nonlinear and linear finite element analysis and experimental studies were used to investigate the stress distribution, micromotion, and primary stability of the implants. Selective laser melting 3D printing technology was able to reproduce the customized implant designs and produce high density and strength and adequate dimensional accuracy. Better stress distribution and lower maximum micromotions were observed for the root-analog threaded implant model than for the root-analog implant model. In the experimental tests, the implant stability quotient and pull-out strength of the 2 types of implants indicated that better primary stability can be obtained with a root-analog threaded implant design. Selective laser melting proved to be an efficient means of printing fully dense customized implants with high strength and sufficient dimensional accuracy. Adding the threaded characteristic to the customized root-analog threaded implant design maintained the approximate geometry of the natural root and exhibited better stress distribution and primary stability. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  3. Analysis of radiological parameters associated with decreased fractional anisotropy values on diffusion tensor imaging in patients with lumbar spinal stenosis.

    PubMed

    Wang, Xiandi; Wang, Hongli; Sun, Chi; Zhou, Shuyi; Meng, Tao; Lv, Feizhou; Ma, Xiaosheng; Xia, Xinlei; Jiang, Jianyuan

    2018-04-26

    Previous studies have indicated that decreased fractional anisotropy (FA) values on diffusion tensor imaging (DTI) are well correlated with the symptoms of nerve root compression. The aim of our study is to determine primary radiological parameters associated with decreased FA values in patients with lumbar spinal stenosis involving single L5 nerve root. Patients confirmed with single L5 nerve root compression by transforaminal nerve root blocks were included in this study. FA values of L5 nerve roots on both symptomatic and asymptomatic side were obtained. Conventional radiological parameters, such as disc height, degenerative scoliosis, dural sac cross-sectional area (DSCSA), foraminal height (FH), hypertrophic facet joint degeneration (HFJD), sagittal rotation (SR), sedimentation sign, sagittal translation and traction spur were measured. Correlation and regression analyses were performed between the radiological parameters and FA values of the symptomatic L5 nerve roots. A predictive regression equation was established. Twenty-one patients were included in this study. FA values were significantly lower at the symptomatic side comparing to the asymptomatic side (0.263 ± 0.069 vs. 0.334 ± 0.080, P = 0.038). DSCSA, FH, HFJD, and SR were significantly correlated with the decreased FA values, with r = 0.518, 0.443, 0.472 and - 0.910, respectively (P < 0.05). DSCSA and SR were found to be the primary radiological parameters related to the decreased FA values, and the regression equation is FA = - 0.012 × SR + 0.002 × DSCSA. DSCSA and SR were primary contributors to decreased FA values in LSS patients involving single L5 nerve root, indicating that central canal decompression and segmental stability should be the first considerations in preoperative planning of these patients. These slides can be retrieved under Electronic Supplementary Material.

  4. Comparative evaluation of endodontic pressure syringe, insulin syringe, jiffy tube, and local anesthetic syringe in obturation of primary teeth: An in vitro study.

    PubMed

    Hiremath, Mallayya C; Srivastava, Pooja

    2016-01-01

    The purpose of this in vitro study was to compare four methods of root canal obturation in primary teeth using conventional radiography. A total of 96 root canals of primary molars were prepared and obturated with zinc oxide eugenol. Obturation methods compared were endodontic pressure syringe, insulin syringe, jiffy tube, and local anesthetic syringe. The root canal obturations were evaluated by conventional radiography for the length of obturation and presence of voids. The obtained data were analyzed using Chi-square test. The results showed significant differences between the four groups for the length of obturation (P < 0.05). The endodontic pressure syringe showed the best results (98.5% optimal fillings) and jiffy tube showed the poor results (37.5% optimal fillings) for the length of obturation. The insulin syringe (79.2% optimal fillings) and local anesthetic syringe (66.7% optimal fillings) showed acceptable results for the length of root canal obturation. However, minor voids were present in all the four techniques used. Endodontic pressure syringe produced the best results in terms of length of obturation and controlling paste extrusion from the apical foramen. However, insulin syringe and local anesthetic syringe can be used as effective alternative methods.

  5. Allelochemical stress causes inhibition of growth and oxidative damage in Lycopersicon esculentum Mill.

    PubMed

    Lara-Nuñez, Aurora; Romero-Romero, Teresa; Ventura, José Luis; Blancas, Vania; Anaya, Ana Luisa; Cruz-Ortega, Rocio

    2006-11-01

    The aim of this study was to analyse the effect of allelochemical stress on Lycopersicon esculentum growth. Our results showed that allelochemical stress caused by Sicyos deppei aqueous leachate inhibited root growth but not germination, and produced an imbalance in the oxidative status of cells in both ungerminated seeds and in primary roots. We observed changes in activity of catalase (CAT), ascorbate peroxidase (APX), superoxide dismutase (SOD), glutathione reductase (GR) and the plasma membrane NADPH oxidase, as well as in the levels of H(2)O(2) and O(2) (*-) in seeds at 12 and 24 h, and in primary roots at 48 and 72 h of treatment, which could account for the oxidative imbalance. There were changes in levels of expression of the mentioned enzymes, but without a correlation with their respective activities. Higher levels of membrane lipid peroxidation were observed in primary roots at 48 and 72 h of treatment. No effect on the expression of metacaspase and the PR1 was observed as indicators of cell death or induction of plant defence. This paper contributes to the understanding of plant-plant interactions through the phytotoxic allelochemicals released in an aqueous leachate of the weed S. deppei, which cause a negative effect on other plants.

  6. Initiation and elongation of lateral roots in Lactuca sativa

    NASA Technical Reports Server (NTRS)

    Zhang, N.; Hasenstein, K. H.

    1999-01-01

    Lactuca sativa cv. Baijianye seedlings do not normally produce lateral roots, but removal of the root tip or application of auxin, especially indole-butyric acid, triggered the formation of lateral roots. Primordia initiated within 9 h and were fully developed after 24 h by activating the pericycle cells opposite the xylem pole. The pericycle cells divided asymmetrically into short and long cells. The short cells divided further to form primordia. The effect of root tip removal and auxin application was reversed by 6-benzylaminopurine at concentrations >10(-8) M. The cytokinin oxidase inhibitor N1-(2chloro4pyridyl)-N2-phenylurea also suppressed auxin-induced lateral rooting. The elongation of primary roots was promoted by L-alpha-(2-aminoethoxyvinyl) glycine and silver ions, but only the latter enhanced elongation of lateral roots. The data indicate that the induction of lateral roots is controlled by basipetally moving cytokinin and acropetally moving auxin. Lateral roots appear to not produce ethylene.

  7. Boosted Regeneration and Reduced Denervated Muscle Atrophy by NeuroHeal in a Pre-clinical Model of Lumbar Root Avulsion with Delayed Reimplantation.

    PubMed

    Romeo-Guitart, David; Forés, Joaquim; Navarro, Xavier; Casas, Caty

    2017-09-20

    The "gold standard" treatment of patients with spinal root injuries consists of delayed surgical reconnection of nerves. The sooner, the better, but problems such as injury-induced motor neuronal death and muscle atrophy due to long-term denervation mean that normal movement is not restored. Herein we describe a preclinical model of root avulsion with delayed reimplantation of lumbar roots that was used to establish a new adjuvant pharmacological treatment. Chronic treatment (up to 6 months) with NeuroHeal, a new combination drug therapy identified using a systems biology approach, exerted long-lasting neuroprotection, reduced gliosis and matrix proteoglycan content, accelerated nerve regeneration by activating the AKT pathway, promoted the formation of functional neuromuscular junctions, and reduced denervation-induced muscular atrophy. Thus, NeuroHeal is a promising treatment for spinal nerve root injuries and axonal regeneration after trauma.

  8. Abscisic acid regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin.

    PubMed

    Rowe, James H; Topping, Jennifer F; Liu, Junli; Lindsey, Keith

    2016-07-01

    Understanding the mechanisms regulating root development under drought conditions is an important question for plant biology and world agriculture. We examine the effect of osmotic stress on abscisic acid (ABA), cytokinin and ethylene responses and how they mediate auxin transport, distribution and root growth through effects on PIN proteins. We integrate experimental data to construct hormonal crosstalk networks to formulate a systems view of root growth regulation by multiple hormones. Experimental analysis shows: that ABA-dependent and ABA-independent stress responses increase under osmotic stress, but cytokinin responses are only slightly reduced; inhibition of root growth under osmotic stress does not require ethylene signalling, but auxin can rescue root growth and meristem size; osmotic stress modulates auxin transporter levels and localization, reducing root auxin concentrations; PIN1 levels are reduced under stress in an ABA-dependent manner, overriding ethylene effects; and the interplay among ABA, ethylene, cytokinin and auxin is tissue-specific, as evidenced by differential responses of PIN1 and PIN2 to osmotic stress. Combining experimental analysis with network construction reveals that ABA regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  9. Activation of KCNQ Channels Suppresses Spontaneous Activity in Dorsal Root Ganglion Neurons and Reduces Chronic Pain after Spinal Cord Injury

    PubMed Central

    Wu, Zizhen; Li, Lin; Xie, Fuhua; Du, Junhui; Zuo, Yan; Frost, Jeffrey A.; Carlton, Susan M.; Walters, Edgar T.

    2017-01-01

    Abstract A majority of people who have sustained spinal cord injury (SCI) experience chronic pain after injury, and this pain is highly resistant to available treatments. Contusive SCI in rats at T10 results in hyperexcitability of primary sensory neurons, which contributes to chronic pain. KCNQ channels are widely expressed in nociceptive dorsal root ganglion (DRG) neurons, are important for controlling their excitability, and their activation has proven effective in reducing pain in peripheral nerve injury and inflammation models. The possibility that activators of KCNQ channels could be useful for treating SCI-induced chronic pain is strongly supported by the following findings. First, SCI, unlike peripheral nerve injury, failed to decrease the functional or biochemical expression of KCNQ channels in DRG as revealed by electrophysiology, real-time quantitative polymerase chain reaction, and Western blot; therefore, these channels remain available for pharmacological targeting of SCI pain. Second, treatment with retigabine, a specific KCNQ channel opener, profoundly decreased spontaneous activity in primary sensory neurons of SCI animals both in vitro and in vivo without changing the peripheral mechanical threshold. Third, retigabine reversed SCI-induced reflex hypersensitivity, adding to our previous demonstration that retigabine supports the conditioning of place preference after SCI (an operant measure of spontaneous pain). In contrast to SCI animals, naïve animals showed no effects of retigabine on reflex sensitivity or conditioned place preference by pairing with retigabine, indicating that a dose that blocks chronic pain-related behavior has no effect on normal pain sensitivity or motivational state. These results encourage the further exploration of U.S. Food and Drug Administration–approved KCNQ activators for treating SCI pain, as well as efforts to develop a new generation of KCNQ activators that lack central side effects. PMID:28073317

  10. Activation of KCNQ Channels Suppresses Spontaneous Activity in Dorsal Root Ganglion Neurons and Reduces Chronic Pain after Spinal Cord Injury.

    PubMed

    Wu, Zizhen; Li, Lin; Xie, Fuhua; Du, Junhui; Zuo, Yan; Frost, Jeffrey A; Carlton, Susan M; Walters, Edgar T; Yang, Qing

    2017-03-15

    A majority of people who have sustained spinal cord injury (SCI) experience chronic pain after injury, and this pain is highly resistant to available treatments. Contusive SCI in rats at T10 results in hyperexcitability of primary sensory neurons, which contributes to chronic pain. KCNQ channels are widely expressed in nociceptive dorsal root ganglion (DRG) neurons, are important for controlling their excitability, and their activation has proven effective in reducing pain in peripheral nerve injury and inflammation models. The possibility that activators of KCNQ channels could be useful for treating SCI-induced chronic pain is strongly supported by the following findings. First, SCI, unlike peripheral nerve injury, failed to decrease the functional or biochemical expression of KCNQ channels in DRG as revealed by electrophysiology, real-time quantitative polymerase chain reaction, and Western blot; therefore, these channels remain available for pharmacological targeting of SCI pain. Second, treatment with retigabine, a specific KCNQ channel opener, profoundly decreased spontaneous activity in primary sensory neurons of SCI animals both in vitro and in vivo without changing the peripheral mechanical threshold. Third, retigabine reversed SCI-induced reflex hypersensitivity, adding to our previous demonstration that retigabine supports the conditioning of place preference after SCI (an operant measure of spontaneous pain). In contrast to SCI animals, naïve animals showed no effects of retigabine on reflex sensitivity or conditioned place preference by pairing with retigabine, indicating that a dose that blocks chronic pain-related behavior has no effect on normal pain sensitivity or motivational state. These results encourage the further exploration of U.S. Food and Drug Administration-approved KCNQ activators for treating SCI pain, as well as efforts to develop a new generation of KCNQ activators that lack central side effects.

  11. Root disease can rival fire and harvest in reducing forest carbon storage

    Treesearch

    Sean P. Healey; Crystal L. Raymond; I. Blakey Lockman; Alexander J. Hernandez; Chris Garrard; Chengquan Huang

    2016-01-01

    Root diseases are known to suppress forest regeneration and reduce growth rates, and they may become more common as susceptible tree species become maladapted in parts of their historic ranges due to climate change. However, current ecosystem models do not track the effects of root disease on net productivity, and there has been little research on how the dynamics of...

  12. Reduced rates of controlled-release fertilizer lower potential nitrogen leaching from a Wisconsin bare-root tree nursery

    Treesearch

    Ryosuke Fujinuma; Nick J. Balster; Hyung-Kyung. Lee

    2011-01-01

    Controlled-release fertilizer (CRF) typically increases nitrogen (N) fertilizer uptake and lowers N lost from the rooting zone via leaching. However, questions remain as to whether lower rates of CRF could further increase this efficiency, especially in sandy bare-root nurseries in Wisconsin. We hypothesized that: 1) a reduced CRF application at 60 percent of the...

  13. Comparative effects of auxin and abscisic acid on growth, hydrogen ion efflux and gravitropism in primary roots of maize

    NASA Technical Reports Server (NTRS)

    Evans, M. L.; Mulkey, T. J.

    1984-01-01

    In order to test the idea that auxin action on root growth may be mediated by H(+) movement, the correlation of auxin action on growth and H(+) movement in roots was examined along with changes in H(+) efflux patterns associated with the asymmetric growth which occurs during gravitropism. The effects of indoleacetic acid (IAA) and abscisic acid (AbA) on growth, H(+) secretion, and gravitropism in roots were compared. Results show a close correlation existent between H(+) efflux and growth in maize roots. In intact roots there is strong H(+) efflux from the elongation zone. Growth-promoting concentrations of IAA stimulate H(+) efflux. During gravitropism the H(+) efflux from the elongation zone becomes asymmetric; the evidence indicates that auxin redistribution contributes to the development of acid efflux asymmetry. That AbA stimulates root growth is reflected in its ability to stimulate H(+) efflux from apical root segments.

  14. Calcium ion dependency of ethylene production in segments of primary roots of Zea mays

    NASA Technical Reports Server (NTRS)

    Hasenstein, K. H.; Evans, M. L.

    1986-01-01

    We investigated the effect of Ca2+ on ethylene production in 2-cm long apical segments from primary roots of corn (Zea mays L., B73 x Missouri 17) seedlings. The seedlings were raised under different conditions of Ca2+ availability. Low-Ca and high-Ca seedlings were raised by soaking the grains and watering the seedlings with distilled water or 10 mM CaCl2, respectively. Segments from high-Ca roots produced more than twice as much ethylene as segments from low-Ca roots. Indoleacetic acid (IAA; 1 micromole) enhanced ethylene production in segments from both low-Ca and high-Ca roots but auxin-induced promotion of ethylene production was consistently higher in segments from high-Ca roots. Addition of 1-aminocyclopropane-1-carboxylic acid (ACC) to root segments from low-Ca seedlings doubled total ethylene production and the rate of production remained fairly constant during a 24 h period of monitoring. In segments from high-Ca seedlings ACC also increased total ethylene production but most of the ethylene was produced within the first 6 h. The data suggest that Ca2+ enhances the conversion of ACC to ethylene. The terminal 2 mm of the root tip were found to be especially important to ethylene biosynthesis by apical segments and, experiments using 45Ca2+ as tracer indicated that the apical 2 mm of the root is the region of strongest Ca2+ accumulation. Other cations such as Mn2+, Mg2+, and K+ could largely substitute for Ca2+. The significance of these findings is discussed with respect to recent evidence for gravity-induced Ca2+ redistribution and its relationship to the establishment of asymmetric growth during gravitropic curvature.

  15. [Influences of arbuscular mycorrhizal fungus and phosphorus level on the lateral root formation of tomato seedlings].

    PubMed

    Jiang, Xia; Chen, Wei-li; Xu, Chun-xiang; Zhu, Hong-hui; Yao, Qing

    2015-04-01

    To explore the influences of arbuscular mycorrhizal fungi (AMF) and P level on plant root system architecture, tomato seedlings were inoculated with AMF strain Rhizophagus irregularis BGC JX04B under two P levels, and the influences of AMF and P level on lateral root (LR) formation of tomato seedlings were studied. Results indicated that the promoting effect of AMF on plant biomass was not evident, but significantly decreased the root to shoot ratio of plants. AMF significantly increased the primary root length but decreased the 1st order LR length and interacted with the mycorrhizal colonization period. AMF significantly lowered the 2nd-3rd order LR number and the ratio of 2nd order LR number to 1st order LR number, but did not significantly affect the 1st-2nd order LR density. High P level (50 mg x kg(-1) P) significantly promoted the plant growth and decreased the root to shoot ratio of plants. It had no significant effect on the primary root length and the 1st order root length, but significantly enhanced the 1st-3rd order LR number and the ratio of 2nd order LR number to P order LR number, increased the 1st-2nd order LR density. It suggested that AMF and P level did not share a common mechanism to influence the LR formation of tomato plants. The influence of high P level may depend on its promoting effects on nutrient uptake and plant growth, while the influence of AMF is more complex. Furthermore, the interaction between AMF and mycorrhizal colonization period implies the possible involvement of carbohydrate distribution (sugar signaling) in the regulation of root system architecture by AMF.

  16. Nine Years of Irrigation Cause Vegetation and Fine Root Shifts in a Water-Limited Pine Forest

    PubMed Central

    Herzog, Claude; Steffen, Jan; Graf Pannatier, Elisabeth; Hajdas, Irka; Brunner, Ivano

    2014-01-01

    Scots pines (Pinus sylvestris L.) in the inner-Alpine dry valleys of Switzerland have suffered from increased mortality during the past decades, which has been caused by longer and more frequent dry periods. In addition, a proceeding replacement of Scots pines by pubescent oaks (Quercus pubescens Willd.) has been observed. In 2003, an irrigation experiment was performed to track changes by reducing drought pressure on the natural pine forest. After nine years of irrigation, we observed major adaptations in the vegetation and shifts in Scots pine fine root abundance and structure. Irrigation permitted new plant species to assemble and promote canopy closure with a subsequent loss of herb and moss coverage. Fine root dry weight increased under irrigation and fine roots had a tendency to elongate. Structural composition of fine roots remained unaffected by irrigation, expressing preserved proportions of cellulose, lignin and phenolic substances. A shift to a more negative δ13C signal in the fine root C indicates an increased photosynthetic activity in irrigated pine trees. Using radiocarbon (14C) measurement, a reduced mean age of the fine roots in irrigated plots was revealed. The reason for this is either an increase in newly produced fine roots, supported by the increase in fine root biomass, or a reduced lifespan of fine roots which corresponds to an enhanced turnover rate. Overall, the responses belowground to irrigation are less conspicuous than the more rapid adaptations aboveground. Lagged and conservative adaptations of tree roots with decadal lifespans are challenging to detect, hence demanding for long-term surveys. Investigations concerning fine root turnover rate and degradation processes under a changing climate are crucial for a complete understanding of C cycling. PMID:24802642

  17. LAZY Genes Mediate the Effects of Gravity on Auxin Gradients and Plant Architecture1[OPEN

    PubMed Central

    2017-01-01

    A rice (Oryza sativa) mutant led to the discovery of a plant-specific LAZY1 protein that controls the orientation of shoots. Arabidopsis (Arabidopsis thaliana) possesses six LAZY genes having spatially distinct expression patterns. Branch angle phenotypes previously associated with single LAZY genes were here studied in roots and shoots of single and higher-order atlazy mutants. The results identify the major contributors to root and shoot branch angles and gravitropic behavior of seedling hypocotyls and primary roots. AtLAZY1 is the principal determinant of inflorescence branch angle. The weeping inflorescence phenotype of atlazy1,2,4 mutants may be due at least in part to a reversal in the gravitropism mechanism. AtLAZY2 and AtLAZY4 determined lateral root branch angle. Lateral roots of the atlazy2,4 double mutant emerged slightly upward, approximately 10° greater than perpendicular to the primary root axis, and they were agravitropic. Etiolated hypocotyls of the quadruple atlazy1,2,3,4 mutant were essentially agravitropic, but their phototropic response was robust. In light-grown seedlings, the root of the atlazy2,3,4 mutant was also agravitropic but when adapted to dim red light it displayed a reversed gravitropic response. A reversed auxin gradient across the root visualized by a fluorescent signaling reporter explained the reversed, upward bending response. We propose that AtLAZY proteins control plant architecture by coupling gravity sensing to the formation of auxin gradients that override a LAZY-independent mechanism that creates an opposing gravity-induced auxin gradient. PMID:28821594

  18. Integrated Metabolomics and Transcriptomics Reveal Enhanced Specialized Metabolism in Medicago truncatula Root Border Cells1[OPEN

    PubMed Central

    Watson, Bonnie S.; Bedair, Mohamed F.; Urbanczyk-Wochniak, Ewa; Huhman, David V.; Yang, Dong Sik; Allen, Stacy N.; Li, Wensheng; Tang, Yuhong; Sumner, Lloyd W.

    2015-01-01

    Integrated metabolomics and transcriptomics of Medicago truncatula seedling border cells and root tips revealed substantial metabolic differences between these distinct and spatially segregated root regions. Large differential increases in oxylipin-pathway lipoxygenases and auxin-responsive transcript levels in border cells corresponded to differences in phytohormone and volatile levels compared with adjacent root tips. Morphological examinations of border cells revealed the presence of significant starch deposits that serve as critical energy and carbon reserves, as documented through increased β-amylase transcript levels and associated starch hydrolysis metabolites. A substantial proportion of primary metabolism transcripts were decreased in border cells, while many flavonoid- and triterpenoid-related metabolite and transcript levels were increased dramatically. The cumulative data provide compounding evidence that primary and secondary metabolism are differentially programmed in border cells relative to root tips. Metabolic resources normally destined for growth and development are redirected toward elevated accumulation of specialized metabolites in border cells, resulting in constitutively elevated defense and signaling compounds needed to protect the delicate root cap and signal motile rhizobia required for symbiotic nitrogen fixation. Elevated levels of 7,4′-dihydroxyflavone were further increased in border cells of roots exposed to cotton root rot (Phymatotrichopsis omnivora), and the value of 7,4′-dihydroxyflavone as an antimicrobial compound was demonstrated using in vitro growth inhibition assays. The cumulative and pathway-specific data provide key insights into the metabolic programming of border cells that strongly implicate a more prominent mechanistic role for border cells in plant-microbe signaling, defense, and interactions than envisioned previously. PMID:25667316

  19. AtrbohD and AtrbohF negatively regulate lateral root development by changing the localized accumulation of superoxide in primary roots of Arabidopsis.

    PubMed

    Li, Ning; Sun, Lirong; Zhang, Liyue; Song, Yalin; Hu, Panpan; Li, Cui; Hao, Fu Shun

    2015-03-01

    NADPH oxidase AtrbohD an d AtrbohF negatively modulate lateral root development by changing the peroxidase activity and increasing the local generation of superoxide in primary roots of Arabidopsis in an auxin-independent manner. NADPH oxidase subunits AtrbohD and AtrbohF play pivotal roles in regulating growth, development and stress responses in Arabidopsis. However, whether they modulate lateral root (LR) formation has not yet been addressed, and the detailed mechanisms underlying the process remain unanswered. Here, we show that two null double mutants atrbohD1/F1 and atrbohD2/F2, in which both AtrbohD and AtrbohF genes are disrupted, had remarkably higher LR density than wild-type (WT), or the single mutant atrbohD1 and atrbohF1. Compared to WT, the double mutants exhibited early emerged LRs and enhanced density of lateral root primordia (LRP). Unexpectedly, the production of superoxide (O2 (-)), but not hydrogen peroxide, in the mature area of the primary root containing LRs significantly increased in the double mutants relative to that in WT. Further experiments revealed that the local accumulation of O2 (-) led to the enhancement of LR density in the double mutants. Moreover, the deficiency of AtrbohD and AtrbohF caused a marked increase in peroxidase activity in the mature root zone, which contributed to the localized accumulation of O2 (-) and the elevated LR density in the double mutants. Furthermore, the double mutants were not sensitive to exogenous auxin naphthalene acetic acid or auxin transport inhibitor 1-N-naphthylphthalamic acid in terms of LR formation. The auxin response of LRP in vivo in atrbohD1/F1 was also similar to that in WT. Taken together, these results suggest that AtrbohD and AtrbohF negatively modulate LR development by controlling the local generation of superoxide in an auxin-independent manner. These findings provide new insights into the mechanisms of NADPH oxidase-mediated regulation of LR branching in Arabidopsis.

  20. Biological effects due to weak magnetic fields on plants

    NASA Astrophysics Data System (ADS)

    Belyavskaya, N.

    In the evolution process, living organisms have experienced the action of the Earth's magnetic field (MF) that is a natural component of our environment. It is known that a galactic MF induction does not exceed 0.1 nT, since investigations of weak magnetic field (WMF) effects on biological systems have attracted attention of biologists due to planning long-term space flights to other planets where the magnetizing force is near 10-5 Oe. However, the role of WMF and its influence on organisms' functioning are still insufficiently investigated. A large number of experiments with seedlings of different plant species placed in WMF has found that the growth of their primary roots is inhibited during the early terms of germination in comparison with control. The proliferation activity and cell reproduction are reduced in meristem of plant roots under WMF application. The prolongation of total cell reproductive cycle is registered due to the expansion of G phase in1 different plant species as well as of G phase in flax and lentil roots along with2 relative stability of time parameters of other phases of cell cycle. In plant cells exposed to WMF, the decrease in functional activity of genome at early prereplicate period is shown. WMF causes the intensification in the processes of proteins' synthesis and break-up in plant roots. Qualitative and quantitative changes in protein spectrum in growing and differentiated cells of plant roots exposed to WMF are revealed. At ultrastructural level, there are observed such ultrastructural peculiarities as changes in distribution of condensed chromatin and nucleolus compactization in nuclei, noticeable accumulation of lipid bodies, development of a lytic compartment (vacuoles, cytosegresomes and paramural bodies), and reduction of phytoferritin in plastids in meristem cells of pea roots exposed to WMF. Mitochondria are the most sensitive organelle to WMF application: their size and relative volume in cells increase, matrix is electron-transparent, and cristae reduce. Cytochemical studies indicate that cells of plant roots exposed to WMF show the Ca2 + oversaturation both in all organelles and in a hyaloplasm of the cells unlike the control ones. The data presented suggest that prolonged plant exposures to WMF may cause different biological effects at the cellular, tissue and organ level. They may be functionally related to systems that regulate plant metabolism including the intracellular Ca 2 + homeostasis. The understanding of the fundamental mechanisms and sites of interactions between WMF and biological systems are complex and still deserve strong efforts, particular addressed to basic principles of coupling between field energy and biomolecules.

  1. Fine-Root Production in an Amazon Rain Forest: Deep Roots are an Important Component of Net Primary Productivity

    NASA Astrophysics Data System (ADS)

    Norby, R.; Cordeiro, A. L.; Oblitas, E.; Valverde-Barrantes, O.; Quesada, C. A.

    2017-12-01

    Fine-root production is a significant component of net primary production (NPP), but it is the most difficult of the major components to measure. Data on fine-root production are especially sparse from tropical forests, and therefore the estimates of tropical forest NPP may not be accurate. Many estimates of fine-root production are based on observations in the top 15 or 30 cm of soil, with the implicit assumption that this approach will capture most of the root distribution. We measured fine-root production in a 30-m tall, old-growth, terra firme rain forest near Manaus, Brazil, which is the site for a free-air CO2 enrichment (FACE) experiment. Ten minirhizotrons were installed at a 45 degree angle to a depth of 1.1 meters; the tubes were installed 2 years before any measurements were made to allow the root systems to recover from disturbance. Images were collected biweekly, and measurements of root length per area of minirhizotron window were scaled up to grams of root per unit land area. Scaling up minirhizotron measurments is problematic, but our estimate of fine-root standing crop in the top 15 cm of soil (281 ± 37 g dry matter m-2) compares well with a direct measurement of fine roots in two nearby 15-cm soil cores (290 ± 37 g m-2). Although the largest fraction of the fine-root standing crop was in the upper soil horizons, 44% of the fine-root mass was deeper than 30 cm, and 17% was deeper than 60 cm. Annual fine-root production was 934 ± 234 g dry matter m-2 (453 ± 113 g C m-2), which was 35% of estimated NPP of the forest stand (1281 g C m-2). A previous estimate of NPP of the forest at this site was smaller (1010 g m-2), but that estimate relied on fine-root production measured elsewhere and only in the top 10 or 30 cm of soil; fine roots accounted for 21% of NPP in that analysis. Extending root observations deeper into the soil will improve estimates of the contribution of fine-root production to NPP, which will in turn improve estimates of ecosystem carbon use efficiency. Improved measurements of roots and their distribution throughout the soil profile will advance our understanding of water and nutrient acquisition by trees and provide important benchmarks for models of biogeochemical cycling in tropical ecosystems and their responses to elevated atmospheric CO2.

  2. Sugarbeet root maggot resistace from a red globe-shaped beet (PI 179180)

    USDA-ARS?s Scientific Manuscript database

    Sugarbeet root maggot (Tetanops myopaeformis) is a major insect pest of sugarbeet (Beta vulgaris) in many North American production areas. Chemical insecticides have been the primary control method. Host-plant resistance that provides consistent reliable control would provide both an economical and ...

  3. Physiological and biochemical responses of Ricinus communis seedlings to different temperatures: a metabolomics approach.

    PubMed

    Ribeiro, Paulo Roberto; Fernandez, Luzimar Gonzaga; de Castro, Renato Delmondez; Ligterink, Wilco; Hilhorst, Henk W M

    2014-08-12

    Compared with major crops, growth and development of Ricinus communis is still poorly understood. A better understanding of the biochemical and physiological aspects of germination and seedling growth is crucial for the breeding of high yielding varieties adapted to various growing environments. In this context, we analysed the effect of temperature on growth of young R. communis seedlings and we measured primary and secondary metabolites in roots and cotyledons. Three genotypes, recommended to small family farms as cash crop, were used in this study. Seedling biomass was strongly affected by the temperature, with the lowest total biomass observed at 20°C. The response in terms of biomass production for the genotype MPA11 was clearly different from the other two genotypes: genotype MPA11 produced heavier seedlings at all temperatures but the root biomass of this genotype decreased with increasing temperature, reaching the lowest value at 35°C. In contrast, root biomass of genotypes MPB01 and IAC80 was not affected by temperature, suggesting that the roots of these genotypes are less sensitive to changes in temperature. In addition, an increasing temperature decreased the root to shoot ratio, which suggests that biomass allocation between below- and above ground parts of the plants was strongly affected by the temperature. Carbohydrate contents were reduced in response to increasing temperature in both roots and cotyledons, whereas amino acids accumulated to higher contents. Our results show that a specific balance between amino acids, carbohydrates and organic acids in the cotyledons and roots seems to be an important trait for faster and more efficient growth of genotype MPA11. An increase in temperature triggers the mobilization of carbohydrates to support the preferred growth of the aerial parts, at the expense of the roots. A shift in the carbon-nitrogen metabolism towards the accumulation of nitrogen-containing compounds seems to be the main biochemical response to support growth at higher temperatures. The biochemical changes observed in response to the increasing temperature provide leads into understanding plant adaptation to harsh environmental conditions, which will be very helpful in developing strategies for R. communis crop improvement research.

  4. Ecologically Different Fungi Affect Arabidopsis Development: Contribution of Soluble and Volatile Compounds

    PubMed Central

    Casarrubia, Salvatore; Sapienza, Sara; Fritz, Héma; Daghino, Stefania; Rosenkranz, Maaria; Schnitzler, Jörg-Peter; Martin, Francis; Perotto, Silvia

    2016-01-01

    Plant growth and development can be influenced by mutualistic and non-mutualistic microorganisms. We investigated the ability of the ericoid endomycorrhizal fungus Oidiodendron maius to influence growth and development of the non-host plant Arabidopsis thaliana. Different experimental setups (non-compartmented and compartmented co-culture plates) were used to investigate the influence of both soluble and volatile fungal molecules on the plant phenotype. O. maius promoted growth of A. thaliana in all experimental setups. In addition, a peculiar clumped root phenotype, characterized by shortening of the primary root and by an increase of lateral root length and number, was observed in A. thaliana only in the non-compartmented plates, suggesting that soluble diffusible molecules are responsible for this root morphology. Fungal auxin does not seem to be involved in plant growth promotion and in the clumped root phenotype because co-cultivation with O. maius did not change auxin accumulation in plant tissues, as assessed in plants carrying the DR5::GUS reporter construct. In addition, no correlation between the amount of fungal auxin produced and the plant root phenotype was observed in an O. maius mutant unable to induce the clumped root phenotype in A. thaliana. Addition of active charcoal, a VOC absorbant, in the compartmented plates did not modify plant growth promotion, suggesting that VOCs are not involved in this phenomenon. The low VOCs emission measured for O. maius further corroborated this hypothesis. By contrast, the addition of CO2 traps in the compartmented plates drastically reduced plant growth, suggesting involvement of fungal CO2 in plant growth promotion. Other mycorrhizal fungi, as well as a saprotrophic and a pathogenic fungus, were also tested with the same experimental setups. In the non-compartmented plates, most fungi promoted A. thaliana growth and some could induce the clumped root phenotype. In the compartmented plate experiments, a general induction of plant growth was observed for most other fungi, especially those producing higher biomass, further strengthening the role of a nonspecific mechanism, such as CO2 emission. PMID:27973595

  5. Effects of adhesions of amorphous Fe and Al hydroxides on surface charge and adsorption of K+ and Cd2+ on rice roots.

    PubMed

    Liu, Zhao-Dong; Wang, Hai-Cui; Zhou, Qin; Xu, Ren-Kou

    2017-11-01

    Iron (Fe) and aluminum (Al) hydroxides in variable charge soils attached to rice roots may affect surface-charge properties and subsequently the adsorption and uptake of nutrients and toxic metals by the roots. Adhesion of amorphous Fe and Al hydroxides onto rice roots and their effects on zeta potential of roots and adsorption of potassium (K + ) and cadmium (Cd 2+ ) by roots were investigated. Rice roots adsorbed more Al hydroxide than Fe hydroxide because of the greater positive charge on Al hydroxide. Adhesion of Fe and Al hydroxides decreased the negative charge on rice roots, and a greater effect of the Al hydroxide. Consequently, adhesion of Fe and Al hydroxides reduced the K + and Cd 2+ adsorption by rice roots. The results of attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and desorption of K + and Cd 2+ from rice roots indicated that physical masking by Fe and Al hydroxides and diffuse-layer overlapping between the positively-charged hydroxides and negatively-charged roots were responsible for the reduction of negative charge on roots induced by adhesion of the hydroxides. Therefore, the interaction between Fe and Al hydroxides and rice roots reduced negative charge on roots and thus inhibited their adsorption of nutrient and toxic cations. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Proline Accumulation in Maize (Zea mays L.) Primary Roots at Low Water Potentials. II. Metabolic Source of Increased Proline Deposition in the Elongation Zone1

    PubMed Central

    Verslues, Paul E.; Sharp, Robert E.

    1999-01-01

    The proline (Pro) concentration increases greatly in the growing region of maize (Zea mays L.) primary roots at low water potentials (ψw), largely as a result of an increased net rate of Pro deposition. Labeled glutamate (Glu), ornithine (Orn), or Pro was supplied specifically to the root tip of intact seedlings in solution culture at high and low ψw to assess the relative importance of Pro synthesis, catabolism, utilization, and transport in root-tip Pro deposition. Labeling with [3H]Glu indicated that Pro synthesis from Glu did not increase substantially at low ψw and accounted for only a small fraction of the Pro deposition. Labeling with [14C]Orn showed that Pro synthesis from Orn also could not be a substantial contributor to Pro deposition. Labeling with [3H]Pro indicated that neither Pro catabolism nor utilization in the root tip was decreased at low ψw. Pro catabolism occurred at least as rapidly as Pro synthesis from Glu. There was, however, an increase in Pro uptake at low ψw, which suggests increased Pro transport. Taken together, the data indicate that increased transport of Pro to the root tip serves as the source of low-ψw-induced Pro accumulation. The possible significance of Pro catabolism in sustaining root growth at low ψw is also discussed. PMID:10198094

  7. [Partial dorsal root rhizotomy increases the anterograde transportation of neunotrophic factors in primary sensory neuron].

    PubMed

    Long, Shuang-lian; Li, Yong-mei; Yuan, Yuan; Wang, Ting-hua; Wu, Lin-yan

    2005-05-01

    To investigate whether partial dorsal root rhizotomy promotes the anterograde Five adult cats were transportation of BDNF, NT-3 and GDNF in the primary sensory neuron. Subjected to unilateral spared root rhizotomy (the DRGs of L1-L5 and L7-S2 were removed, but L6 DRG was spared) and bilateral dorsal roots of L6 were ligated at the same time. Three days after operation, dorsal roots were taken out and made into frozen sections 20 microm in thickness. The sections were stained using specific BDNF, NT-3, GDNF antibody (1:1500) by ABC method. The immunoreactive density was observed in a site near DRG and a site near spinal cord. In the control group (with spared L6 DRG), there were no marked differences in NT-3 and GDNF immunoreactivity between the site near DRG and the site near spinal cord, while BDNF immunoreactivity was more intense in the site near DRG than that in the site near spinal cord. In the operation group, the immunoreactivity of each neurotrophin in the site near DRG was stronger than that in the site near spinal cord, and the immunoreactivities of BDNF, NT-3, GDNF in the site near DRG of the operation were stronger than those of the control group respectively. The increasing of immunoreactivities of neurotrophins near DRG following partial dorsal root rhizotomy suggests that partial dorsal root rhizotomy can promote their anterograde transportation from spared DRG to the spinal cord.

  8. Cellular and molecular insight into the inhibition of primary root growth of Arabidopsis induced by peptaibols, a class of linear peptide antibiotics mainly produced by Trichoderma spp.

    PubMed

    Shi, Wei-Ling; Chen, Xiu-Lan; Wang, Li-Xia; Gong, Zhi-Ting; Li, Shuyu; Li, Chun-Long; Xie, Bin-Bin; Zhang, Wei; Shi, Mei; Li, Chuanyou; Zhang, Yu-Zhong; Song, Xiao-Yan

    2016-04-01

    Trichoderma spp. are well known biocontrol agents that produce a variety of antibiotics. Peptaibols are a class of linear peptide antibiotics mainly produced by Trichoderma Alamethicin, the most studied peptaibol, is reported as toxic to plants at certain concentrations, while the mechanisms involved are unclear. We illustrated the toxic mechanisms of peptaibols by studying the growth-inhibitory effect of Trichokonin VI (TK VI), a peptaibol from Trichoderma longibrachiatum SMF2, on Arabidopsis primary roots. TK VI inhibited root growth by suppressing cell division and cell elongation, and disrupting root stem cell niche maintenance. TK VI increased auxin content and disrupted auxin response gradients in root tips. Further, we screened the Arabidopsis TK VI-resistant mutant tkr1. tkr1 harbors a point mutation in GORK, which encodes gated outwardly rectifying K(+)channel proteins. This mutation alleviated TK VI-induced suppression of K(+)efflux in roots, thereby stabilizing the auxin gradient. The tkr1 mutant also resisted the phytotoxicity of alamethicin. Our results indicate that GORK channels play a key role in peptaibol-plant interaction and that there is an inter-relationship between GORK channels and maintenance of auxin homeostasis. The cellular and molecular insight into the peptaibol-induced inhibition of plant root growth advances our understanding of Trichoderma-plant interactions. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  9. Root development and structure in seedlings of Ginkgo biloba.

    PubMed

    Bonacorsi, Nikole K; Seago, James L

    2016-02-01

    The popular, highly recognizable, well-known gymnosperm, Ginkgo biloba, was studied to document selected developmental features, which are little known in its primary root system from root tips to cotyledonary node following seed germination. Using seedlings grown in soil, vermiculite, or a mixture, we examined sections at various distances from the root cap to capture a developmental sequence of anatomical structures by using standard brightfield, epifluorescence, and confocal microscopic techniques. The vascular cylinder is usually a diarch stele, although modified diarchy and triarchy are found. Between exarch protoxylem poles, metaxylem usually develops into a complete disc, except near the transition region, which has irregularly arranged tracheary cells. The disc of primary xylem undergoes secondary growth on its metaxylem flanks with many tracheids added radially within a few weeks. Production of fibers in secondary phloem also accompanies secondary growth. In the cortex, endodermis produces Casparian bands early in development and continues into the upper transition region. Phi cells with phi-thickenings (bands of lignified walls) of a layer of inner cortex are often evident before endodermis, and then adjoining, additional layers of cortex develop phi cells; phi cells do not occur in the upper transition region or stem. An exodermis is produced early in root development and is continuous into the transition region and cotyledonary node. Seedling root axes of Ginkgo biloba are more complex than the literature suggests, and our findings contribute to our knowledge of root structure of this ancient gymnosperm. © 2016 Botanical Society of America.

  10. Overexpression of hydroxynitrile lyase in cassava roots elevates protein and free amino acids while reducing residual cyanogen levels.

    PubMed

    Narayanan, Narayanan N; Ihemere, Uzoma; Ellery, Claire; Sayre, Richard T

    2011-01-01

    Cassava is the major source of calories for more than 250 million Sub-Saharan Africans, however, it has the lowest protein-to-energy ratio of any major staple food crop in the world. A cassava-based diet provides less than 30% of the minimum daily requirement for protein. Moreover, both leaves and roots contain potentially toxic levels of cyanogenic glucosides. The major cyanogen in cassava is linamarin which is stored in the vacuole. Upon tissue disruption linamarin is deglycosylated by the apolplastic enzyme, linamarase, producing acetone cyanohydrin. Acetone cyanohydrin can spontaneously decompose at pHs >5.0 or temperatures >35°C, or is enzymatically broken down by hydroxynitrile lyase (HNL) to produce acetone and free cyanide which is then volatilized. Unlike leaves, cassava roots have little HNL activity. The lack of HNL activity in roots is associated with the accumulation of potentially toxic levels of acetone cyanohydrin in poorly processed roots. We hypothesized that the over-expression of HNL in cassava roots under the control of a root-specific, patatin promoter would not only accelerate cyanogenesis during food processing, resulting in a safer food product, but lead to increased root protein levels since HNL is sequestered in the cell wall. Transgenic lines expressing a patatin-driven HNL gene construct exhibited a 2-20 fold increase in relative HNL mRNA levels in roots when compared with wild type resulting in a threefold increase in total root protein in 7 month old plants. After food processing, HNL overexpressing lines had substantially reduced acetone cyanohydrin and cyanide levels in roots relative to wild-type roots. Furthermore, steady state linamarin levels in intact tissues were reduced by 80% in transgenic cassava roots. These results suggest that enhanced linamarin metabolism contributed to the elevated root protein levels.

  11. Different roles of glutathione in copper and zinc chelation in Brassica napus roots.

    PubMed

    Zlobin, Ilya E; Kartashov, Alexander V; Shpakovski, George V

    2017-09-01

    We investigated the specific features of copper and zinc excess action on the roots of canola (Brassica napus L.) plants. Copper rapidly accumulated in canola root cells and reached saturation during several hours of treatment, whereas the root zinc content increased relatively slowly. Excessive copper and zinc entry inside the cell resulted in significant cell damage, as evidenced by alterations in plasmalemma permeability and decreases in cellular enzymatic activity. Zinc excess specifically damaged root hair cells, which correlated with a pronounced elevation of their labile zinc level. In vitro, we showed that reduced glutathione (GSH) readily reacted with copper ions to form complexes with blocked sulfhydryl groups. In contrast, zinc ions were ineffective as glutathione blockers, and glutathione molecules did not lose their specific chemical activity in the presence of Zn 2+ ions. The effect of copper and zinc excess on the glutathione pool in canola root cells was analysed by a combination of biochemical determination of total and oxidized glutathione contents and fluorescent staining of free reduced glutathione with monochlorobimane dye. Excess copper led to dose-dependent diminution of free reduced glutathione contents in the root cells, which could not be explained by the loss of total cellular glutathione or its oxidation. In contrast, we observed little effect of much higher intracellular zinc concentrations on the free reduced glutathione content. We concluded that GSH plays an important role in copper excess, but not zinc excess chelation, in canola root cells. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Basipetal auxin transport is required for gravitropism in roots of Arabidopsis

    NASA Technical Reports Server (NTRS)

    Rashotte, A. M.; Brady, S. R.; Reed, R. C.; Ante, S. J.; Muday, G. K.; Davies, E. (Principal Investigator)

    2000-01-01

    Auxin transport has been reported to occur in two distinct polarities, acropetally and basipetally, in two different root tissues. The goals of this study were to determine whether both polarities of indole-3-acetic acid (IAA) transport occur in roots of Arabidopsis and to determine which polarity controls the gravity response. Global application of the auxin transport inhibitor naphthylphthalamic acid (NPA) to roots blocked the gravity response, root waving, and root elongation. Immediately after the application of NPA, the root gravity response was completely blocked, as measured by an automated video digitizer. Basipetal [(3)H]IAA transport in Arabidopsis roots was inhibited by NPA, whereas the movement of [(14)C]benzoic acid was not affected. Inhibition of basipetal IAA transport by local application of NPA blocked the gravity response. Inhibition of acropetal IAA transport by application of NPA at the root-shoot junction only partially reduced the gravity response at high NPA concentrations. Excised root tips, which do not receive auxin from the shoot, exhibited a normal response to gravity. The Arabidopsis mutant eir1, which has agravitropic roots, exhibited reduced basipetal IAA transport but wild-type levels of acropetal IAA transport. These results support the hypothesis that basipetally transported IAA controls root gravitropism in Arabidopsis.

  13. Generation and multiplication of plantlets from callus derived from Haplopappus gracilus (Nutt.) Gray and their karyotype analysis

    NASA Technical Reports Server (NTRS)

    Kann, R. P.; O'Connor, S. A.; Levine, H. G.; Krikorian, A. D.

    1991-01-01

    Unopened flower heads of Haplopappus gracilis (2n = 4) provided primary explants for callus production and subsequent induction of organized growth. Callus was initiated from small (3-5 mm in length) floral buds with benzylaminopurine (BAP) (44.4 micromoles; 10 mg/l) and naphthalene acetic acid (NAA) (0.54 micromole; 0.1 mg/l). Lowering the BAP level to 4.44 micromoles (1 mg/l) but maintaining the NAA level, gave rise to organized but highly compressed shoot growing points from an otherwise undifferentiated callus mass. Shoots selected from such cultures were maintainable and could be proliferated by growing 1-1.5-cm stem tip cuttings on Murashige and Skoog basal medium (solidified with agar) containing 0.444 micromole (0.1 mg/l) BAP and 0.054 micromole (0.01 mg/l) NAA. The stem tip multiplication rates obtainable by these means permit reliable strategies for shoot multiplication or production of rooted plantlets. Prolonged subculture and maintenance of shoots on growth regulator-free medium leads to in vitro flowering and greatly reduces rooting capacity. Karyotype analysis of chromosomes from root tip cells at metaphase and chromosome measurements show that karyologically uniform plantlets (based on chromosome number and morphology) can be obtained.

  14. Molecular and structural changes induced by essential oils treatments in Vicia faba roots detected by genotoxicity testing.

    PubMed

    Sturchio, Elena; Boccia, Priscilla; Zanellato, Miriam; Meconi, Claudia; Donnarumma, Lucia; Mercurio, Giuseppe; Mecozzi, Mauro

    2016-01-01

    Over the last few years, there has been an increased interest in exploiting allelopathy in organic agriculture. The aim of this investigation was to examine the effects of essential oil mixtures in order to establish their allelopathic use in agriculture. Two mixtures of essential oils consisting respectively of tea tree oil (TTO) and clove plus rosemary (C + R) oils were tested. Phytotoxicity and genotoxicity tests on the root meristems of Vicia faba minor were performed. A phytotoxic influence was particularly relevant for C + R mixture, while genotoxicity tests revealed significant results with both C + R oil mixture and TTO. Phenotypic analysis on Vicia faba minor primary roots following C + R oil mixture treatment resulted in callose production, an early symptom attributed to lipid peroxidation. The approach described in this study, based on genotoxicity bioassays, might identify specific DNA damage induced by essential oil treatments. These tests may represent a powerful method to evaluate potential adverse effects of different mixtures of essential oils that might be useful in alternative agriculture. Future studies are focusing on the positive synergism of more complex mixtures of essential oils in order to reduce concentrations of potentially toxic components while at the same time maintaining efficacy in antimicrobial and antifungal management.

  15. Exogenous Melatonin Confers Cadmium Tolerance by Counterbalancing the Hydrogen Peroxide Homeostasis in Wheat Seedlings.

    PubMed

    Ni, Jun; Wang, Qiaojian; Shah, Faheem Afzal; Liu, Wenbo; Wang, Dongdong; Huang, Shengwei; Fu, Songling; Wu, Lifang

    2018-03-30

    Melatonin has emerged as a research highlight regarding its important role in regulating plant growth and the adaptation to the environmental stresses. In this study, we investigated how melatonin prevented the cadmium toxicity to wheat seedlings. The results demonstrated that cadmium induced the expression of melatonin biosynthesis-related genes and cause a significant increase of endogenous melatonin level. Melatonin treatment drastically alleviated the cadmium toxicity, resulting in increased plant height, biomass accumulation, and root growth. Cadmium and senescence treatment significantly increased the endogenous level of hydrogen peroxide, which was strictly counterbalanced by melatonin. Furthermore, melatonin treatment caused a significant increase of GSH (reduced glutathione) content and the GSH/GSSG (oxidized glutathione) ratio. The activities of two key antioxidant enzymes, ascorbate peroxidase (APX) and superoxide dismutase (SOD), but not catalase (CAT) and peroxidase (POD), were specifically improved by melatonin. Additionally, melatonin not only promoted the primary root growth, but also drastically enhanced the capacity of the seedling roots to degrade the exogenous hydrogen peroxide. These results suggested that melatonin played a key role in maintaining the hydrogen peroxide homeostasis, via regulation of the antioxidant systems. Conclusively, this study revealed a crucial protective role of melatonin in the regulation of cadmium resistance in wheat.

  16. Molecular Physiology of Root System Architecture in Model Grasses

    NASA Astrophysics Data System (ADS)

    Hixson, K.; Ahkami, A. H.; Anderton, C.; Veličković, D.; Myers, G. L.; Chrisler, W.; Lindenmaier, R.; Fang, Y.; Yabusaki, S.; Rosnow, J. J.; Farris, Y.; Khan, N. E.; Bernstein, H. C.; Jansson, C.

    2017-12-01

    Unraveling the molecular and physiological mechanisms involved in responses of Root System Architecture (RSA) to abiotic stresses and shifts in microbiome structure is critical to understand and engineer plant-microbe-soil interactions in the rhizosphere. In this study, accessions of Brachypodium distachyon Bd21 (C3 model grass) and Setaria viridis A10.1 (C4 model grass) were grown in phytotron chambers under current and elevated CO2 levels. Detailed growth stage-based phenotypic analysis revealed different above- and below-ground morphological and physiological responses in C3 and C4 grasses to enhanced CO2 levels. Based on our preliminary results and by screening values of total biomass, water use efficiency, root to shoot ratio, RSA parameters and net assimilation rates, we postulated a three-phase physiological mechanism, i.e. RootPlus, BiomassPlus and YieldPlus phases, for grass growth under elevated CO2 conditions. Moreover, this comprehensive set of morphological and process-based observations are currently in use to develop, test, and calibrate biophysical whole-plant models and in particular to simulate leaf-level photosynthesis at various developmental stages of C3 and C4 using the model BioCro. To further link the observed phenotypic traits at the organismal level to tissue and molecular levels, and to spatially resolve the origin and fate of key metabolites involved in primary carbohydrate metabolism in different root sections, we complement root phenotypic observations with spatial metabolomics data using mass spectrometry imaging (MSI) methods. Focusing on plant-microbe interactions in the rhizosphere, six bacterial strains with plant growth promoting features are currently in use in both gel-based and soil systems to screen root growth and development in Brachypodium. Using confocal microscopy, GFP-tagged bacterial systems are utilized to study the initiation of different root types of RSA, including primary root (PR), coleoptile node axile root (CNR) and leaf node axile root (LNR) during developmental stages of root formation. The root exudates also will be quantified and preliminary data will be used to engineer our microbial consortium to improve plant growth.

  17. Rooting and acclimatization of micropropagated marubakaido apple rootstock using Adesmia latifolia rhizobia.

    PubMed

    Muniz, Aleksander Westphal; de Sá, Enilson Luiz; Dalagnol, Gilberto Luíz; Filho, João Américo

    2013-01-01

    In vitro rooting and the acclimatization of micropropagated rootstocks of apple trees is essential for plant development in the field. The aim of this work was to assess the use of rhizobia of Adesmia latifolia to promote rooting and acclimatization in micropropagated Marubakaido apple rootstock. An experiment involving in vitro rooting and acclimatization was performed with four strains of rhizobium and two controls, one with and the other without the addition of synthetic indoleacetic acid. The inoculated treatments involved the use of sterile inoculum and inoculum containing live rhizobia. The most significant effects on the rooting rate, primary-root length, number of roots, root length, fresh-shoot biomass, and fresh-root biomass were obtained by inoculation with strain EEL16010B and with synthetic indole acetic acid. However, there was no difference in the growth of apple explants in the acclimatization experiments. Strain EEL16010B can be used to induce in vitro rooting of the Marubakaido rootstock and can replace the use of synthetic indoleacetic acid in the rooting of this cultivar.

  18. Growth of radish and marigold following repeated exposure to nitrogen dioxide, sulfur dioxide, and ozone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reinert, R.A.; Sanders, J.S.

    Radish and marigold plants were exposed to 0.3 ppM of nitrogen dioxide (NO/sub 2/), sulfur dioxide (SO/sub 2/), and /or ozone (O/sub 3/) nine times during a 3-wk period. No interactions among NO/sub 2/, SO/sub 2/, and O/sub 3/ were detected in measurement of radish foliage and root dry weight. Treatments containing O/sub 3/ reduced radish foliage and root (hypocotyl) dry weight 356 and 531 mg/plant, respectively. Interactions among NO/sub 2/, SO/sub 2/ and O/sub 3/ occurred in shoots and roots of marigold. SO/sub 2/ alone reduced marigold shoot and root dry weight, but this effect was reversed in themore » presence of O/sub 3/. The suppressive effect of SO/sub 2/ on root weight was also reversed by NO/sub 2/. Treatments containing SO/sub 2/ reduced dry flower weight 0.17 g/plant, but effects of the pollutant interactions observed in shoots and roots were not present. 8 references, 2 tables.« less

  19. An in vivo comparison of antimicrobial efficacy of sodium hypochlorite and Biopure MTAD™ against enterococcus faecalis in primary teeth: A qPCR study.

    PubMed

    Tulsani, S G; Chikkanarasaiah, N; Bethur, S

    2014-01-01

    Biopure MTAD™, a new root canal irrigant has shown promising results against the most common resistant microorganism, E. faecalis, in permanent teeth. However, there is lack of studies comparing its antimicrobial effectiveness with NaOCl in primary teeth. The purpose of this study was to compare the in vivo antimicrobial efficacy of NaOCl 2.5% and Biopure MTAD™ against E. faecalis in primary teeth. Forty non vital single rooted primary maxillary anterior teeth of children aged 4-8 years, were irrigated either with NaOCl 2.5% (n=15), Biopure MTAD™ (n=15) and 0.9% Saline (n=10, control group). Paper point samples were collected at baseline (S1) and after chemomechanical preparation (S2) during the pulpectomy procedure. The presence of E. faecalis in S1 & S2 was evaluated using Real time Polymerase Chain Reaction. Statistical significant difference was found in the antimicrobial efficacy of NaOCl 2.5 % and BioPure MTAD™ when compared to saline (p>0.05). However, no statistical significant difference was found between the efficacies of both the irrigants. NaOCl 2.5% and BioPure MTAD™, both irrigants are equally efficient against E. faecalis in necrotic primary anterior teeth. MTAD is a promising irrigant, however clinical studies are required to establish it as ideal root canal irrigant in clinical practice.

  20. Potential involvement of drought-induced Ran GTPase CLRan1 in root growth enhancement in a xerophyte wild watermelon.

    PubMed

    Akashi, Kinya; Yoshimura, Kazuya; Kajikawa, Masataka; Hanada, Kouhei; Kosaka, Rina; Kato, Atsushi; Katoh, Akira; Nanasato, Yoshihiko; Tsujimoto, Hisashi; Yokota, Akiho

    2016-10-01

    Enhanced root growth is known as the survival strategy of plants under drought. Previous proteome analysis in drought-resistant wild watermelon has shown that Ran GTPase, an essential regulator of cell division and proliferation, was induced in the roots under drought. In this study, two cDNAs were isolated from wild watermelon, CLRan1 and CLRan2, which showed a high degree of structural similarity with those of other plant Ran GTPases. Quantitative RT-PCR and promoter-GUS assays suggested that CLRan1 was expressed mainly in the root apex and lateral root primordia, whereas CLRan2 was more broadly expressed in other part of the roots. Immunoblotting analysis confirmed that the abundance of CLRan proteins was elevated in the root apex region under drought stress. Transgenic Arabidopsis overexpressing CLRan1 showed enhanced primary root growth, and the growth was maintained under osmotic stress, indicating that CLRan1 functions as a positive factor for maintaining root growth under stress conditions.

  1. Molecular Mechanisms of Root Gravitropism.

    PubMed

    Su, Shih-Heng; Gibbs, Nicole M; Jancewicz, Amy L; Masson, Patrick H

    2017-09-11

    Plant shoots typically grow against the gravity vector to access light, whereas roots grow downward into the soil to take up water and nutrients. These gravitropic responses can be altered by developmental and environmental cues. In this review, we discuss the molecular mechanisms that govern the gravitropism of angiosperm roots, where a physical separation between sites for gravity sensing and curvature response has facilitated discovery. Gravity sensing takes place in the columella cells of the root cap, where sedimentation of starch-filled plastids (amyloplasts) triggers a pathway that results in a relocalization to the lower side of the cell of PIN proteins, which facilitate efflux of the plant hormone auxin efflux. Consequently, auxin accumulates in the lower half of the root, triggering bending of the root tip at the elongation zone. We review our understanding of the molecular mechanisms that control this process in primary roots, and discuss recent insights into the regulation of oblique growth in lateral roots and its impact on root-system architecture and soil exploration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Polymerase chain reaction detection of Propionibacterium propionicus and Actinomyces radicidentis in primary and persistent endodontic infections.

    PubMed

    Siqueira, José F; Rôças, Isabela N

    2003-08-01

    Propionibacterium propionicus and the recently described species Actinomyces radicidentis have been isolated from infections of endodontic origin; nevertheless, the possibility exists that their actual prevalence may have been underestimated by culture. The purpose of our study was to assess the occurrence of these 2 species in different types of endodontic infections by using the sensitive 16S rDNA-based nested polymerase chain reaction approach. To detect these 2 species, nested polymerase chain reaction was performed directly in samples taken from primary endodontic infections associated with asymptomatic periradicular lesions, acute apical periodontitis, or acute periradicular abscesses and in samples from patients in whom endodontic therapy had failed. DNA was extracted from the samples and initially amplified by using universal 16S rDNA primers. In the second round of amplification, the first polymerase chain reaction products were used to detect a specific 16S rDNA fragment of either P propionicus or A radicidentis. P propionicus was detected in 6/21 (29%) root canal samples from teeth with chronic periradicular lesions, in 5/10 (50%) cases diagnosed as acute apical periodontitis, and in 7/19 (37%) pus samples aspirated from acute periradicular abscesses. Overall, this species was found in 18/50 (36%) samples taken from primary endodontic infections. Of the root canal samples obtained from root-filled teeth with chronic periradicular lesions, P propionicus was detected in 7/12 (58%) cases. A radicidentis was detected in 1/21 (5%) root canal samples from teeth with chronic periradicular lesions and in 1/10 (10%) cases of acute apical periodontitis. No pus sample yielded this species. In general, A radicidentis was detected in 2/50 (4%) samples taken from primary endodontic infections and in 1/12 (8%) root canal samples taken from patients in whom endodontic treatment had failed. P propionicus was found in a relatively large number of patients with primary and persistent endodontic infections. This strengthens the assumption that this bacterial species is an endodontic pathogen associated with different forms of periradicular diseases. In contrast, A radicidentis was only occasionally detected in the patients examined. The role played by this species in endodontic infections remains to be clarified.

  3. Drought and root herbivory interact to alter the response of above-ground parasitoids to aphid infested plants and associated plant volatile signals.

    PubMed

    Tariq, Muhammad; Wright, Denis J; Bruce, Toby J A; Staley, Joanna T

    2013-01-01

    Multitrophic interactions are likely to be altered by climate change but there is little empirical evidence relating the responses of herbivores and parasitoids to abiotic factors. Here we investigated the effects of drought on an above/below-ground system comprising a generalist and a specialist aphid species (foliar herbivores), their parasitoids, and a dipteran species (root herbivore).We tested the hypotheses that: (1) high levels of drought stress and below-ground herbivory interact to reduce the performance of parasitoids developing in aphids; (2) drought stress and root herbivory change the profile of volatile organic chemicals (VOCs) emitted by the host plant; (3) parasitoids avoid ovipositing in aphids feeding on plants under drought stress and root herbivory. We examined the effect of drought, with and without root herbivory, on the olfactory response of parasitoids (preference), plant volatile emissions, parasitism success (performance), and the effect of drought on root herbivory. Under drought, percentage parasitism of aphids was reduced by about 40-55% compared with well watered plants. There was a significant interaction between drought and root herbivory on the efficacy of the two parasitoid species, drought stress partially reversing the negative effect of root herbivory on percent parasitism. In the absence of drought, root herbivory significantly reduced the performance (e.g. fecundity) of both parasitoid species developing in foliar herbivores. Plant emissions of VOCs were reduced by drought and root herbivores, and in olfactometer experiments parasitoids preferred the odour from well-watered plants compared with other treatments. The present work demonstrates that drought stress can change the outcome of interactions between herbivores feeding above- and below-ground and their parasitoids, mediated by changes in the chemical signals from plants to parasitoids. This provides a new insight into how the structure of terrestrial communities may be affected by drought.

  4. Permeability of Iris germanica’s multiseriate exodermis to water, NaCl, and ethanol

    PubMed Central

    Meyer, Chris J.; Steudle, Ernst

    2011-01-01

    The exodermis of Iris germanica roots is multiseriate. Its outermost layer matures first with typical Casparian bands and suberin lamellae. But as subsequent layers mature, the Casparian band extends into the tangential and anticlinal walls of their cells. Compared with roots in which the endodermis represents the major transport barrier, the multiseriate exodermis (MEX) was expected to reduce markedly radial water and solute transport. To test this idea, precocious maturation of the exodermis was induced with a humid air gap inside a hydroponic chamber. Hydraulic conductivity (Lppc) was measured on completely submerged roots (with an immature exodermis) and on air-gap-exposed root regions (with two mature exodermal layers) using a pressure chamber. Compared with regions of roots with no mature exodermal layers, the mature MEX reduced Lppc from 8.5×10−8 to 3.9×10−8 m s−1 MPa−1. Puncturing the MEX increased Lppc to 19×10−8 m s−1 MPa−1, indicating that this layer constituted a substantial hydraulic resistance within the root (75% of the total). Alternatively, a root pressure probe was used to produce pressure transients from which hydraulic conductivity was determined, but this device measured mainly flow through the endodermis in these wide-diameter roots. The permeability of roots to NaCl and ethanol was also reduced in the presence of two mature MEX layers. The data are discussed in terms of the validity of current root models and in terms of a potential role for I. germanica MEX during conditions of drought and salt stress. PMID:21131546

  5. Development of tuberous roots and sugar accumulation as related to invertase activity and mineral nutrition.

    PubMed

    Ricardo, C P; Sovia, D

    1974-03-01

    Sucrose storage in tuberous roots was not observed when the tissues had very high activities of acid invertase. High activities of the enzyme were always present in the roots at early stages of their development. In species where the activity of the enzyme decreased during root development, sucrose was stored. Thus, acid invertase was undetectable in mature roots of carrots (Daucus carota L.) where sucrose formed almost 80% of the dry matter. Conversely, radish (Raphanus sativus L.) and turnip (Brassica rapa L.) roots, in which the activity of the enzyme remained high until maturity, did not store appreciable amounts of sucrose (2% and 9%, respectively, of the dry matter in the mature roots), reducing sugars being the main reserve (more than 80% of the dry matter in mature turnips). The correlation between sucrose content and acid invertase activity was furthermore evident in both sucrose- and hexose-storing roots when the activity of this enzyme was affected by changes in the mineral nutrition. Deficiencies of nitrogen and sulphur reduced the activity of acid and alkaline invertases and led to increase in sucrose content and decrease in reducing sugars. However, the decline of alkaline invertase activity in tissues low in acid invertase had no clear effect on sugar content. Sodium chloride (10(-1)M) affected acid invertase and sugars in a manner similar to that of the two deficiencies, but had practically no effect on alkaline invertase. The changes in sugar content produced by the variations in mineral nutrition were small in hexose-storing roots in relation to those of sucrose-storing roots. It is possible that this result is related to the different levels of acid invertase in the two types of roots.

  6. Mechanisms for the increase in phosphorus uptake of waterlogged plants: soil phosphorus availability, root morphology and uptake kinetics.

    PubMed

    Rubio, Gerardo; Oesterheld, Martín; Alvarez, Carina R; Lavado, Raúl S

    1997-10-01

    Waterlogging frequently reduces plant biomass allocation to roots. This response may result in a variety of alterations in mineral nutrition, which range from a proportional lowering of whole-plant nutrient concentration as a result of unchanged uptake per unit of root biomass, to a maintenance of nutrient concentration by means of an increase in uptake per unit of root biomass. The first objective of this paper was to test these two alternative hypothetical responses. In a pot experiment, we evaluated how plant P concentration of Paspalum dilatatum, (a waterlogging-tolerant grass from the Flooding Pampa, Argentina) was affected by waterlogging and P supply and how this related to changes in root-shoot ratio. Under both soil P levels waterlogging reduced root-shoot ratios, but did not reduce P concentration. Thus, uptake of P per unit of root biomass increased under waterlogging. Our second objective was to test three non-exclusive hypotheses about potential mechanisms for this increase in P uptake. We hypothesized that the greater P uptake per unit of root biomass was a consequence of: (1) an increase in soil P availability induced by waterlogging; (2) a change in root morphology, and/or (3) an increase in the intrinsic uptake capacity of each unit of root biomass. To test these hypotheses we evaluated (1) changes in P availability induced by waterlogging; (2) specific root length of waterlogged and control plants, and (3) P uptake kinetics in excised roots from waterlogged and control plants. The results supported the three hypotheses. Soil P avail-ability was higher during waterlogging periods, roots of waterlogged plants showed a morphology more favorable to nutrient uptake (finer roots) and these roots showed a higher physiological capacity to absorb P. The results suggest that both soil and plant mechanisms contributed to compensate, in terms of P nutrition, for the reduction in allocation to root growth. The rapid transformation of the P uptake system is likely an advantage for plants inhabiting frequently flooded environments with low P fertility, like the Flooding Pampa. This advantage would be one of the reasons for the increased relative abundance of P. dilatatum in the community after waterlogging periods.

  7. Performance of Swashplateless Ultralight Helicopter Rotor with Trailing-edge Flaps for Primary Flight Control

    NASA Technical Reports Server (NTRS)

    Shen, Jin-Wei; Chopra, Inderjit

    2003-01-01

    The objective of present study is to evaluate the rotor performance, trailing-edge deflections and actuation requirement of a helicopter rotor with trailing-edge flap system for primary flight control. The swashplateless design is implemented by modifying a two-bladed teetering rotor of an production ultralight helicopter through the use of plain flaps on the blades, and by replacing the pitch link to fixed system control system assembly with a root spring. A comprehensive rotorcraft analysis based on UMARC is carried out to obtain the results for both the swashplateless and a conventional baseline rotor configuration. The predictions show swashplateless configuration achieve superior performance than the conventional rotor attributed from reduction of parasite drag by eliminating swashplate mechanic system. It is indicated that optimal selection of blade pitch index angle, flap location, length, and chord ratio reduces flap deflections and actuation requirements, however, has virtually no effect on rotor performance.

  8. Azadirachtin powder for control of root-knot nematodes in tomato

    USDA-ARS?s Scientific Manuscript database

    USDA ARS Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, 64 Nowelo St., Hilo, HI 96720. Root-knot nematodes cause root galling and yield reductions in many vegetable crops, including tomato. Three organic treatments to improve root growth and reduce nematode infestation were eval...

  9. Cultivar Selection for Sugar Beet Root Rot Resistance

    USDA-ARS?s Scientific Manuscript database

    Fungal and bacterial root rots in sugar beet caused by Rhizoctonia solani (Rs) and Leuconostoc mesenteroides subsp. dextranicum (Lm) can lead to root yield losses greater than 50%. To reduce the impact of these root rots on sucrose loss in the field, storage, and factories, studies were conducted t...

  10. Cultivar selection for sugarbeet root rot resistance.

    USDA-ARS?s Scientific Manuscript database

    Fungal and bacterial root rots in sugar beet caused by Rhizoctonia solani (Rs) and Leuconostoc mesenteroides subsp. dextranicum (Lm) can lead to root yield losses greater than 50%. To reduce the impact of these root rots on sucrose loss in the field, storage, and factories, studies were conducted t...

  11. Cultivar selection for bacterial root rot in sugar beet

    USDA-ARS?s Scientific Manuscript database

    Bacterial root rot of sugar beet caused by Leuconostoc mesenteroides subsp. dextranicum is a disease problem recently described in the United States, which has frequently been found in association with Rhizoctonia root rot. To reduce the impact of bacterial root rot on sucrose loss in the field, st...

  12. Extensive tissue-specific transcriptomic plasticity in maize primary roots upon water deficit.

    PubMed

    Opitz, Nina; Marcon, Caroline; Paschold, Anja; Malik, Waqas Ahmed; Lithio, Andrew; Brandt, Ronny; Piepho, Hans-Peter; Nettleton, Dan; Hochholdinger, Frank

    2016-02-01

    Water deficit is the most important environmental constraint severely limiting global crop growth and productivity. This study investigated early transcriptome changes in maize (Zea mays L.) primary root tissues in response to moderate water deficit conditions by RNA-Sequencing. Differential gene expression analyses revealed a high degree of plasticity of the water deficit response. The activity status of genes (active/inactive) was determined by a Bayesian hierarchical model. In total, 70% of expressed genes were constitutively active in all tissues. In contrast, <3% (50 genes) of water deficit-responsive genes (1915) were consistently regulated in all tissues, while >75% (1501 genes) were specifically regulated in a single root tissue. Water deficit-responsive genes were most numerous in the cortex of the mature root zone and in the elongation zone. The most prominent functional categories among differentially expressed genes in all tissues were 'transcriptional regulation' and 'hormone metabolism', indicating global reprogramming of cellular metabolism as an adaptation to water deficit. Additionally, the most significant transcriptomic changes in the root tip were associated with cell wall reorganization, leading to continued root growth despite water deficit conditions. This study provides insight into tissue-specific water deficit responses and will be a resource for future genetic analyses and breeding strategies to develop more drought-tolerant maize cultivars. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  13. Ethylene-induced inhibition of root growth requires abscisic acid function in rice (Oryza sativa L.) seedlings.

    PubMed

    Ma, Biao; Yin, Cui-Cui; He, Si-Jie; Lu, Xiang; Zhang, Wan-Ke; Lu, Tie-Gang; Chen, Shou-Yi; Zhang, Jin-Song

    2014-10-01

    Ethylene and abscisic acid (ABA) have a complicated interplay in many developmental processes. Their interaction in rice is largely unclear. Here, we characterized a rice ethylene-response mutant mhz4, which exhibited reduced ethylene-response in roots but enhanced ethylene-response in coleoptiles of etiolated seedlings. MHZ4 was identified through map-based cloning and encoded a chloroplast-localized membrane protein homologous to Arabidopsis thaliana (Arabidopsis) ABA4, which is responsible for a branch of ABA biosynthesis. MHZ4 mutation reduced ABA level, but promoted ethylene production. Ethylene induced MHZ4 expression and promoted ABA accumulation in roots. MHZ4 overexpression resulted in enhanced and reduced ethylene response in roots and coleoptiles, respectively. In root, MHZ4-dependent ABA pathway acts at or downstream of ethylene receptors and positively regulates root ethylene response. This ethylene-ABA interaction mode is different from that reported in Arabidopsis, where ethylene-mediated root inhibition is independent of ABA function. In coleoptile, MHZ4-dependent ABA pathway acts at or upstream of OsEIN2 to negatively regulate coleoptile ethylene response, possibly by affecting OsEIN2 expression. At mature stage, mhz4 mutation affects branching and adventitious root formation on stem nodes of higher positions, as well as yield-related traits. Together, our findings reveal a novel mode of interplay between ethylene and ABA in control of rice growth and development.

  14. Ethylene-Induced Inhibition of Root Growth Requires Abscisic Acid Function in Rice (Oryza sativa L.) Seedlings

    PubMed Central

    He, Si-Jie; Lu, Xiang; Zhang, Wan-Ke; Lu, Tie-Gang; Chen, Shou-Yi; Zhang, Jin-Song

    2014-01-01

    Ethylene and abscisic acid (ABA) have a complicated interplay in many developmental processes. Their interaction in rice is largely unclear. Here, we characterized a rice ethylene-response mutant mhz4, which exhibited reduced ethylene-response in roots but enhanced ethylene-response in coleoptiles of etiolated seedlings. MHZ4 was identified through map-based cloning and encoded a chloroplast-localized membrane protein homologous to Arabidopsis thaliana (Arabidopsis) ABA4, which is responsible for a branch of ABA biosynthesis. MHZ4 mutation reduced ABA level, but promoted ethylene production. Ethylene induced MHZ4 expression and promoted ABA accumulation in roots. MHZ4 overexpression resulted in enhanced and reduced ethylene response in roots and coleoptiles, respectively. In root, MHZ4-dependent ABA pathway acts at or downstream of ethylene receptors and positively regulates root ethylene response. This ethylene-ABA interaction mode is different from that reported in Arabidopsis, where ethylene-mediated root inhibition is independent of ABA function. In coleoptile, MHZ4-dependent ABA pathway acts at or upstream of OsEIN2 to negatively regulate coleoptile ethylene response, possibly by affecting OsEIN2 expression. At mature stage, mhz4 mutation affects branching and adventitious root formation on stem nodes of higher positions, as well as yield-related traits. Together, our findings reveal a novel mode of interplay between ethylene and ABA in control of rice growth and development. PMID:25330236

  15. Root Type-Specific Reprogramming of Maize Pericycle Transcriptomes by Local High Nitrate Results in Disparate Lateral Root Branching Patterns1[OPEN

    PubMed Central

    Lithio, Andrew

    2016-01-01

    The adaptability of root system architecture to unevenly distributed mineral nutrients in soil is a key determinant of plant performance. The molecular mechanisms underlying nitrate dependent plasticity of lateral root branching across the different root types of maize are only poorly understood. In this study, detailed morphological and anatomical analyses together with cell type-specific transcriptome profiling experiments combining laser capture microdissection with RNA-seq were performed to unravel the molecular signatures of lateral root formation in primary, seminal, crown, and brace roots of maize (Zea mays) upon local high nitrate stimulation. The four maize root types displayed divergent branching patterns of lateral roots upon local high nitrate stimulation. In particular, brace roots displayed an exceptional architectural plasticity compared to other root types. Transcriptome profiling revealed root type-specific transcriptomic reprogramming of pericycle cells upon local high nitrate stimulation. The alteration of the transcriptomic landscape of brace root pericycle cells in response to local high nitrate stimulation was most significant. Root type-specific transcriptome diversity in response to local high nitrate highlighted differences in the functional adaptability and systemic shoot nitrogen starvation response during development. Integration of morphological, anatomical, and transcriptomic data resulted in a framework underscoring similarity and diversity among root types grown in heterogeneous nitrate environments. PMID:26811190

  16. Redefining fine roots improves understanding of belowground contributions to terrestrial biosphere processes

    DOE PAGES

    McCormack, M. Luke; Dickie, Ian A.; Eissenstat, David M.; ...

    2015-03-10

    Fine roots acquire essential soil resources and mediate biogeochemical cycling in terrestrial ecosystems. Estimates of carbon and nutrient allocation to build and maintain these structures remain uncertain due to challenges in consistent measurement and interpretation of fine-root systems. We define fine roots as all roots less than or equal to 2 mm in diameter, yet it is now recognized that this approach fails to capture the diversity of form and function observed among fine-root orders. We demonstrate how order-based and functional classification frameworks improve our understanding of dynamic root processes in ecosystems dominated by perennial plants. In these frameworks, finemore » roots are separated into either individual root orders or functionally defined into a shorter-lived absorptive pool and a longer-lived transport fine root pool. Furthermore, using these frameworks, we estimate that fine-root production and turnover represent 22% of terrestrial net primary production globally a ca. 30% reduction from previous estimates assuming a single fine-root pool. In the future we hope to develop tools to rapidly differentiate functional fine-root classes, explicit incorporation of mycorrhizal fungi in fine-root studies, and wider adoption of a two-pool approach to model fine roots provide opportunities to better understand belowground processes in the terrestrial biosphere.« less

  17. Cytokinin-induced promotion of root meristem size in the fern Azolla supports a shoot-like origin of euphyllophyte roots.

    PubMed

    de Vries, Jan; Fischer, Angela Melanie; Roettger, Mayo; Rommel, Sophie; Schluepmann, Henriette; Bräutigam, Andrea; Carlsbecker, Annelie; Gould, Sven Bernhard

    2016-01-01

    The phytohormones cytokinin and auxin orchestrate the root meristem development in angiosperms by determining embryonic bipolarity. Ferns, having the most basal euphyllophyte root, form neither bipolar embryos nor permanent embryonic primary roots but rather an adventitious root system. This raises the questions of how auxin and cytokinin govern fern root system architecture and whether this can tell us something about the origin of that root. Using Azolla filiculoides, we characterized the influence of IAA and zeatin on adventitious fern root meristems and vasculature by Nomarski microscopy. Simultaneously, RNAseq analyses, yielding 36,091 contigs, were used to uncover how the phytohormones affect root tip gene expression. We show that auxin restricts Azolla root meristem development, while cytokinin promotes it; it is the opposite effect of what is observed in Arabidopsis. Global gene expression profiling uncovered 145 genes significantly regulated by cytokinin or auxin, including cell wall modulators, cell division regulators and lateral root formation coordinators. Our data illuminate both evolution and development of fern roots. Promotion of meristem size through cytokinin supports the idea that root meristems of euphyllophytes evolved from shoot meristems. The foundation of these roots was laid in a postembryonically branching shoot system. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  18. Novel 3D geometry and models of the lower regions of large trees for use in carbon accounting of primary forests

    PubMed Central

    Dean, Christopher; Kirkpatrick, Jamie B; Osborn, Jon; Doyle, Richard B; Fitzgerald, Nicholas B; Roxburgh, Stephen H

    2018-01-01

    Abstract There is high uncertainty in the contribution of land-use change to anthropogenic climate change, especially pertaining to below-ground carbon loss resulting from conversion of primary-to-secondary forest. Soil organic carbon (SOC) and coarse roots are concentrated close to tree trunks, a region usually unmeasured during soil carbon sampling. Soil carbon estimates and their variation with land-use change have not been correspondingly adjusted. Our aim was to deduce allometric equations that will allow improvement of SOC estimates and tree trunk carbon estimates, for primary forest stands that include large trees in rugged terrain. Terrestrial digital photography, photogrammetry and GIS software were used to produce 3D models of the buttresses, roots and humus mounds of large trees in primary forests dominated by Eucalyptus regnans in Tasmania. Models of 29, in situ eucalypts were made and analysed. 3D models of example eucalypt roots, logging debris, rainforest tree species, fallen trees, branches, root and trunk slices, and soil profiles were also derived. Measurements in 2D, from earlier work, of three buttress ‘logs’ were added to the data set. The 3D models had high spatial resolution. The modelling allowed checking and correction of field measurements. Tree anatomical detail was formulated, such as buttress shape, humus volume, root volume in the under-sampled zone and trunk hollow area. The allometric relationships developed link diameter at breast height and ground slope, to SOC and tree trunk carbon, the latter including a correction for senescence. These formulae can be applied to stand-level carbon accounting. The formulae allow the typically measured, inter-tree SOC to be corrected for not sampling near large trees. The 3D models developed are irreplaceable, being for increasingly rare, large trees, and they could be useful to other scientific endeavours. PMID:29593855

  19. Novel 3D geometry and models of the lower regions of large trees for use in carbon accounting of primary forests.

    PubMed

    Dean, Christopher; Kirkpatrick, Jamie B; Osborn, Jon; Doyle, Richard B; Fitzgerald, Nicholas B; Roxburgh, Stephen H

    2018-03-01

    There is high uncertainty in the contribution of land-use change to anthropogenic climate change, especially pertaining to below-ground carbon loss resulting from conversion of primary-to-secondary forest. Soil organic carbon (SOC) and coarse roots are concentrated close to tree trunks, a region usually unmeasured during soil carbon sampling. Soil carbon estimates and their variation with land-use change have not been correspondingly adjusted. Our aim was to deduce allometric equations that will allow improvement of SOC estimates and tree trunk carbon estimates, for primary forest stands that include large trees in rugged terrain. Terrestrial digital photography, photogrammetry and GIS software were used to produce 3D models of the buttresses, roots and humus mounds of large trees in primary forests dominated by Eucalyptus regnans in Tasmania. Models of 29, in situ eucalypts were made and analysed. 3D models of example eucalypt roots, logging debris, rainforest tree species, fallen trees, branches, root and trunk slices, and soil profiles were also derived. Measurements in 2D, from earlier work, of three buttress 'logs' were added to the data set. The 3D models had high spatial resolution. The modelling allowed checking and correction of field measurements. Tree anatomical detail was formulated, such as buttress shape, humus volume, root volume in the under-sampled zone and trunk hollow area. The allometric relationships developed link diameter at breast height and ground slope, to SOC and tree trunk carbon, the latter including a correction for senescence. These formulae can be applied to stand-level carbon accounting. The formulae allow the typically measured, inter-tree SOC to be corrected for not sampling near large trees. The 3D models developed are irreplaceable, being for increasingly rare, large trees, and they could be useful to other scientific endeavours.

  20. A tillering inhibition gene influences root–shoot carbon partitioning and pattern of water use to improve wheat productivity in rainfed environments

    PubMed Central

    Hendriks, P.W.; Kirkegaard, J.A.; Lilley, J.M.; Gregory, P.J.; Rebetzke, G.J.

    2016-01-01

    Genetic modification of shoot and root morphology has potential to improve water and nutrient uptake of wheat crops in rainfed environments. Near-isogenic lines (NILs) varying for a tillering inhibition (tin) gene and representing multiple genetic backgrounds were phenotyped in contrasting, controlled environments for shoot and root growth. Leaf area, shoot and root biomass were similar until tillering, whereupon reduced tillering in tin-containing NILs produced reductions of up to 60% in total leaf area and biomass, and increases in total root length of up to 120% and root biomass to 145%. Together, the root-to-shoot ratio increased two-fold with the tin gene. The influence of tin on shoot and root growth was greatest in the cv. Banks genetic background, particularly in the biculm-selected NIL, and was typically strongest in cooler environments. A separate de-tillering study confirmed greater root-to-shoot ratios with regular tiller removal in non-tin-containing genotypes. In validating these observations in a rainfed field study, the tin allele had a negligible effect on seedling growth but was associated with significantly (P<0.05) reduced tiller number (–37%), leaf area index (–26%), and spike number (–35%) to reduce plant biomass (–19%) at anthesis. Root biomass, root-to-shoot ratio at early stem elongation, and root depth at maturity were all increased in tin-containing NILs. Soil water use was slowed in tin-containing NILs, resulting in greater water availability, greater stomatal conductance, cooler canopy temperatures, and maintenance of green leaf area during grain-filling. Together these effects contributed to increases in harvest index and grain yield. In both the controlled and field environments, the tin gene was commonly associated with increased root length and biomass, but the significant influence of genetic background and environment suggests careful assessment of tin-containing progeny in selection for genotypic increases in root growth. PMID:26494729

  1. Laser Doppler velocimeter measurements and laser sheet imaging in an annular combustor model. M.S. Thesis, Final Report

    NASA Technical Reports Server (NTRS)

    Dwenger, Richard Dale

    1995-01-01

    An experimental study was conducted in annular combustor model to provide a better understanding of the flowfield. Combustor model configurations consisting of primary jets only, annular jets only, and a combination of annular and primary jets were investigated. The purpose of this research was to provide a better understanding of combustor flows and to provide a data base for comparison with computational models. The first part of this research used a laser Doppler velocimeter to measure mean velocity and statistically calculate root-mean-square velocity in two coordinate directions. From this data, one Reynolds shear stress component and a two-dimensional turbulent kinetic energy term was determined. Major features of the flowfield included recirculating flow, primary and annular jet interaction, and high turbulence. The most pronounced result from this data was the effect the primary jets had on the flowfield. The primary jets were seen to reduce flow asymmetries, create larger recirculation zones, and higher turbulence levels. The second part of this research used a technique called marker nephelometry to provide mean concentration values in the combustor. Results showed the flow to be very turbulent and unsteady. All configurations investigated were highly sensitive to alignment of the primary and annular jets in the model and inlet conditions. Any imbalance between primary jets or misalignment of the annular jets caused severe flow asymmetries.

  2. Enhanced lignin monomer production caused by cinnamic Acid and its hydroxylated derivatives inhibits soybean root growth.

    PubMed

    Lima, Rogério Barbosa; Salvador, Victor Hugo; dos Santos, Wanderley Dantas; Bubna, Gisele Adriana; Finger-Teixeira, Aline; Soares, Anderson Ricardo; Marchiosi, Rogério; Ferrarese, Maria de Lourdes Lucio; Ferrarese-Filho, Osvaldo

    2013-01-01

    Cinnamic acid and its hydroxylated derivatives (p-coumaric, caffeic, ferulic and sinapic acids) are known allelochemicals that affect the seed germination and root growth of many plant species. Recent studies have indicated that the reduction of root growth by these allelochemicals is associated with premature cell wall lignification. We hypothesized that an influx of these compounds into the phenylpropanoid pathway increases the lignin monomer content and reduces the root growth. To confirm this hypothesis, we evaluated the effects of cinnamic, p-coumaric, caffeic, ferulic and sinapic acids on soybean root growth, lignin and the composition of p-hydroxyphenyl (H), guaiacyl (G) and syringyl (S) monomers. To this end, three-day-old seedlings were cultivated in nutrient solution with or without allelochemical (or selective enzymatic inhibitors of the phenylpropanoid pathway) in a growth chamber for 24 h. In general, the results showed that 1) cinnamic, p-coumaric, caffeic and ferulic acids reduced root growth and increased lignin content; 2) cinnamic and p-coumaric acids increased p-hydroxyphenyl (H) monomer content, whereas p-coumaric, caffeic and ferulic acids increased guaiacyl (G) content, and sinapic acid increased sinapyl (S) content; 3) when applied in conjunction with piperonylic acid (PIP, an inhibitor of the cinnamate 4-hydroxylase, C4H), cinnamic acid reduced H, G and S contents; and 4) when applied in conjunction with 3,4-(methylenedioxy)cinnamic acid (MDCA, an inhibitor of the 4-coumarate:CoA ligase, 4CL), p-coumaric acid reduced H, G and S contents, whereas caffeic, ferulic and sinapic acids reduced G and S contents. These results confirm our hypothesis that exogenously applied allelochemicals are channeled into the phenylpropanoid pathway causing excessive production of lignin and its main monomers. By consequence, an enhanced stiffening of the cell wall restricts soybean root growth.

  3. Root induced changes of effective 1D hydraulic properties in a soil column.

    PubMed

    Scholl, P; Leitner, D; Kammerer, G; Loiskandl, W; Kaul, H-P; Bodner, G

    Roots are essential drivers of soil structure and pore formation. This study aimed at quantifying root induced changes of the pore size distribution (PSD). The focus was on the extent of clogging vs. formation of pores during active root growth. Parameters of Kosugi's lognormal PSD model were determined by inverse estimation in a column experiment with two cover crops (mustard, rye) and an unplanted control. Pore dynamics were described using a convection-dispersion like pore evolution model. Rooted treatments showed a wider range of pore radii with increasing volumes of large macropores >500 μm and micropores <2.5 μm, while fine macropores, mesopores and larger micropores decreased. The non-rooted control showed narrowing of the PSD and reduced porosity over all radius classes. The pore evolution model accurately described root induced changes, while structure degradation in the non-rooted control was not captured properly. Our study demonstrated significant short term root effects with heterogenization of the pore system as dominant process of root induced structure formation. Pore clogging is suggested as a partial cause for reduced pore volume. The important change in micro- and large macropores however indicates that multiple mechanic and biochemical processes are involved in root-pore interactions.

  4. A banana aquaporin gene, MaPIP1;1, is involved in tolerance to drought and salt stresses

    PubMed Central

    2014-01-01

    Background Aquaporin (AQP) proteins function in transporting water and other small molecules through the biological membranes, which is crucial for plants to survive in drought or salt stress conditions. However, the precise role of AQPs in drought and salt stresses is not completely understood in plants. Results In this study, we have identified a PIP1 subfamily AQP (MaPIP1;1) gene from banana and characterized it by overexpression in transgenic Arabidopsis plants. Transient expression of MaPIP1;1-GFP fusion protein indicated its localization at plasma membrane. The expression of MaPIP1;1 was induced by NaCl and water deficient treatment. Overexpression of MaPIP1;1 in Arabidopsis resulted in an increased primary root elongation, root hair numbers and survival rates compared to WT under salt or drought conditions. Physiological indices demonstrated that the increased salt tolerance conferred by MaPIP1;1 is related to reduced membrane injury and high cytosolic K+/Na+ ratio. Additionally, the improved drought tolerance conferred by MaPIP1;1 is associated with decreased membrane injury and improved osmotic adjustment. Finally, reduced expression of ABA-responsive genes in MaPIP1;1-overexpressing plants reflects their improved physiological status. Conclusions Our results demonstrated that heterologous expression of banana MaPIP1;1 in Arabidopsis confers salt and drought stress tolerances by reducing membrane injury, improving ion distribution and maintaining osmotic balance. PMID:24606771

  5. Interactions among plants, bacteria, and fungi reduce extracellular enzyme activities under long-term N fertilization.

    PubMed

    Carrara, Joseph E; Walter, Christopher A; Hawkins, Jennifer S; Peterjohn, William T; Averill, Colin; Brzostek, Edward R

    2018-06-01

    Atmospheric nitrogen (N) deposition has enhanced soil carbon (C) stocks in temperate forests. Most research has posited that these soil C gains are driven primarily by shifts in fungal community composition with elevated N leading to declines in lignin degrading Basidiomycetes. Recent research, however, suggests that plants and soil microbes are dynamically intertwined, whereby plants send C subsidies to rhizosphere microbes to enhance enzyme production and the mobilization of N. Thus, under elevated N, trees may reduce belowground C allocation leading to cascading impacts on the ability of microbes to degrade soil organic matter through a shift in microbial species and/or a change in plant-microbe interactions. The objective of this study was to determine the extent to which couplings among plant, fungal, and bacterial responses to N fertilization alter the activity of enzymes that are the primary agents of soil decomposition. We measured fungal and bacterial community composition, root-microbial interactions, and extracellular enzyme activity in the rhizosphere, bulk, and organic horizon of soils sampled from a long-term (>25 years), whole-watershed, N fertilization experiment at the Fernow Experimental Forest in West Virginia, USA. We observed significant declines in plant C investment to fine root biomass (24.7%), root morphology, and arbuscular mycorrhizal (AM) colonization (55.9%). Moreover, we found that declines in extracellular enzyme activity were significantly correlated with a shift in bacterial community composition, but not fungal community composition. This bacterial community shift was also correlated with reduced AM fungal colonization indicating that declines in plant investment belowground drive the response of bacterial community structure and function to N fertilization. Collectively, we find that enzyme activity responses to N fertilization are not solely driven by fungi, but instead reflect a whole ecosystem response, whereby declines in the strength of belowground C investment to gain N cascade through the soil environment. © 2018 John Wiley & Sons Ltd.

  6. Free-air CO2 enrichment (FACE) reduces the inhibitory effect of soil nitrate on N2 fixation of Pisum sativum.

    PubMed

    Butterly, Clayton R; Armstrong, Roger; Chen, Deli; Tang, Caixian

    2016-01-01

    Additional carbohydrate supply resulting from enhanced photosynthesis under predicted future elevated CO2 is likely to increase symbiotic nitrogen (N) fixation in legumes. This study examined the interactive effects of atmospheric CO2 and nitrate (NO3(-)) concentration on the growth, nodulation and N fixation of field pea (Pisum sativum) in a semi-arid cropping system. Field pea was grown for 15 weeks in a Vertosol containing 5, 25, 50 or 90 mg NO3(-)-N kg(-1) under either ambient CO2 (aCO2; 390 ppm) or elevated CO2 (eCO2; 550 ppm) using free-air CO2 enrichment (SoilFACE). Under aCO2, field pea biomass was significantly lower at 5 mg NO3(-)-N kg(-1) than at 90 mg NO3(-)-N kg(-1) soil. However, increasing the soil N level significantly reduced nodulation of lateral roots but not the primary root, and nodules were significantly smaller, with 85% less nodule mass in the 90 NO3(-)-N kg(-1) than in the 5 mg NO3(-)-N kg(-1) treatment, highlighting the inhibitory effects of NO3(-). Field pea grown under eCO2 had greater biomass (approx. 30%) than those grown under aCO2, and was not affected by N level. Overall, the inhibitory effects of NO3(-) on nodulation and nodule mass appeared to be reduced under eCO2 compared with aCO2, although the effects of CO2 on root growth were not significant. Elevated CO2 alleviated the inhibitory effect of soil NO3(-) on nodulation and N2 fixation and is likely to lead to greater total N content of field pea growing under future elevated CO2 environments. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. The anisotropy1 D604N Mutation in the Arabidopsis Cellulose Synthase1 Catalytic Domain Reduces Cell Wall Crystallinity and the Velocity of Cellulose Synthase Complexes1[W][OA

    PubMed Central

    Fujita, Miki; Himmelspach, Regina; Ward, Juliet; Whittington, Angela; Hasenbein, Nortrud; Liu, Christine; Truong, Thy T.; Galway, Moira E.; Mansfield, Shawn D.; Hocart, Charles H.; Wasteneys, Geoffrey O.

    2013-01-01

    Multiple cellulose synthase (CesA) subunits assemble into plasma membrane complexes responsible for cellulose production. In the Arabidopsis (Arabidopsis thaliana) model system, we identified a novel D604N missense mutation, designated anisotropy1 (any1), in the essential primary cell wall CesA1. Most previously identified CesA1 mutants show severe constitutive or conditional phenotypes such as embryo lethality or arrest of cellulose production but any1 plants are viable and produce seeds, thus permitting the study of CesA1 function. The dwarf mutants have reduced anisotropic growth of roots, aerial organs, and trichomes. Interestingly, cellulose microfibrils were disordered only in the epidermal cells of the any1 inflorescence stem, whereas they were transverse to the growth axis in other tissues of the stem and in all elongated cell types of roots and dark-grown hypocotyls. Overall cellulose content was not altered but both cell wall crystallinity and the velocity of cellulose synthase complexes were reduced in any1. We crossed any1 with the temperature-sensitive radial swelling1-1 (rsw1-1) CesA1 mutant and observed partial complementation of the any1 phenotype in the transheterozygotes at rsw1-1’s permissive temperature (21°C) and full complementation by any1 of the conditional rsw1-1 root swelling phenotype at the restrictive temperature (29°C). In rsw1-1 homozygotes at restrictive temperature, a striking dissociation of cellulose synthase complexes from the plasma membrane was accompanied by greatly diminished motility of intracellular cellulose synthase-containing compartments. Neither phenomenon was observed in the any1 rsw1-1 transheterozygotes, suggesting that the proteins encoded by the any1 allele replace those encoded by rsw1-1 at restrictive temperature. PMID:23532584

  8. The anisotropy1 D604N mutation in the Arabidopsis cellulose synthase1 catalytic domain reduces cell wall crystallinity and the velocity of cellulose synthase complexes.

    PubMed

    Fujita, Miki; Himmelspach, Regina; Ward, Juliet; Whittington, Angela; Hasenbein, Nortrud; Liu, Christine; Truong, Thy T; Galway, Moira E; Mansfield, Shawn D; Hocart, Charles H; Wasteneys, Geoffrey O

    2013-05-01

    Multiple cellulose synthase (CesA) subunits assemble into plasma membrane complexes responsible for cellulose production. In the Arabidopsis (Arabidopsis thaliana) model system, we identified a novel D604N missense mutation, designated anisotropy1 (any1), in the essential primary cell wall CesA1. Most previously identified CesA1 mutants show severe constitutive or conditional phenotypes such as embryo lethality or arrest of cellulose production but any1 plants are viable and produce seeds, thus permitting the study of CesA1 function. The dwarf mutants have reduced anisotropic growth of roots, aerial organs, and trichomes. Interestingly, cellulose microfibrils were disordered only in the epidermal cells of the any1 inflorescence stem, whereas they were transverse to the growth axis in other tissues of the stem and in all elongated cell types of roots and dark-grown hypocotyls. Overall cellulose content was not altered but both cell wall crystallinity and the velocity of cellulose synthase complexes were reduced in any1. We crossed any1 with the temperature-sensitive radial swelling1-1 (rsw1-1) CesA1 mutant and observed partial complementation of the any1 phenotype in the transheterozygotes at rsw1-1's permissive temperature (21°C) and full complementation by any1 of the conditional rsw1-1 root swelling phenotype at the restrictive temperature (29°C). In rsw1-1 homozygotes at restrictive temperature, a striking dissociation of cellulose synthase complexes from the plasma membrane was accompanied by greatly diminished motility of intracellular cellulose synthase-containing compartments. Neither phenomenon was observed in the any1 rsw1-1 transheterozygotes, suggesting that the proteins encoded by the any1 allele replace those encoded by rsw1-1 at restrictive temperature.

  9. Influence of rhizobacterial volatiles on the root system architecture and the production and allocation of biomass in the model grass Brachypodium distachyon (L.) P. Beauv.

    PubMed

    Delaplace, Pierre; Delory, Benjamin M; Baudson, Caroline; Mendaluk-Saunier de Cazenave, Magdalena; Spaepen, Stijn; Varin, Sébastien; Brostaux, Yves; du Jardin, Patrick

    2015-08-12

    Plant growth-promoting rhizobacteria are increasingly being seen as a way of complementing conventional inputs in agricultural systems. The effects on their host plants are diverse and include volatile-mediated growth enhancement. This study sought to assess the effects of bacterial volatiles on the biomass production and root system architecture of the model grass Brachypodium distachyon (L.) Beauv. An in vitro experiment allowing plant-bacteria interaction throughout the gaseous phase without any physical contact was used to screen 19 bacterial strains for their growth-promotion ability over a 10-day co-cultivation period. Five groups of bacteria were defined and characterised based on their combined influence on biomass production and root system architecture. The observed effects ranged from unchanged to greatly increased biomass production coupled with increased root length and branching. Primary root length was increased only by the volatile compounds emitted by Enterobacter cloacae JM22 and Bacillus pumilus T4. Overall, the most significant results were obtained with Bacillus subtilis GB03, which induced an 81 % increase in total biomass, as well as enhancing total root length, total secondary root length and total adventitious root length by 88.5, 201.5 and 474.5 %, respectively. This study is the first report on bacterial volatile-mediated growth promotion of a grass plant. Contrasting modulations of biomass production coupled with changes in root system architecture were observed. Most of the strains that increased total plant biomass also modulated adventitious root growth. Under our screening conditions, total biomass production was strongly correlated with the length and branching of the root system components, except for primary root length. An analysis of the emission kinetics of the bacterial volatile compounds is being undertaken and should lead to the identification of the compounds responsible for the observed growth-promotion effects. Within the context of the inherent characteristics of our in vitro system, this paper identifies the next critical experimental steps and discusses them from both a fundamental and an applied perspective.

  10. Physical properties of root cementum: part 20. Effect of fluoride on orthodontically induced root resorption with light and heavy orthodontic forces for 4 weeks: a microcomputed tomography study.

    PubMed

    Karadeniz, Ersan Ilsay; Gonzales, Carmen; Nebioglu-Dalci, Oyku; Dwarte, Dennis; Turk, Tamer; Isci, Devrim; Sahin-Saglam, Aynur M; Alkis, Huseyin; Elekdag-Turk, Selma; Darendeliler, M Ali

    2011-11-01

    The major side effect of orthodontic treatment is orthodontically induced inflammatory root resorption. Fluoride was previously shown to reduce the volume of the root resorption craters in rats. However, the effect of fluoride on orthodontically induced inflammatory root resorption in humans has not yet been investigated. The aim of this study was to investigate the effect of high and low amounts of fluoride intake from birth on orthodontically induced inflammatory root resorption under light (25 g) and heavy (225 g) force applications. Forty-eight patients who required maxillary premolar extractions as part of their orthodontic treatment were selected from 2 cities in Turkey with high and low fluoride concentrations in the public water of ≥ 2 and ≤ 0.05 ppm, respectively. The patients were randomly separated into 4 groups of 12 each: group 1, high fluoride intake and heavy force; group 2, low fluoride intake and heavy force; group 3, high fluoride intake and light force; and group 4, low fluoride intake and light force. Light or heavy buccal tipping orthodontic forces were applied on the maxillary first premolars for 28 days. At day 28, the teeth were extracted, and the samples were analyzed with microcomputed tomography. Fluoride reduced the volume of root resorption craters in all groups; however, this effect was significantly different with high force application (P = 0.015). It was also found that light forces caused less root resorption than heavy forces. There was no statistical difference in the amount of root resorption observed on root surfaces (buccal, lingual, mesial, and distal) in all groups. However, the middle third of the roots showed the least root resorption. With high fluoride intake and heavy force application, less root resorption was found in all root surfaces and root thirds. Fluoride may reduce the volume of root resorption craters. This effect is significant with heavy force applications (P <0.05). The cervical and apical thirds of the root showed significantly greater root resorption after the application of buccal tipping force for 4 weeks. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  11. Ecological role of the giant root-rat (Tachyoryctes macrocephalus) in the Afroalpine ecosystem.

    PubMed

    Šklíba, Jan; Vlasatá, Tereza; Lövy, Matěj; Hrouzková, Ema; Meheretu, Yonas; Sillero-Zubiri, Claudio; Šumbera, Radim

    2017-07-01

    Rodents with prevailing subterranean activity usually play an important role in the ecosystems of which they are a part due to the combined effect of herbivory and soil perturbation. This is the case for the giant root-rat Tachyoryctes macrocephalus endemic to the Afroalpine ecosystem of the Bale Mountains, Ethiopia. We studied the impact of root-rats on various ecosystem features within a 3.5-ha study locality dominated by Alchemilla pasture, which represents an optimal habitat for this species, in 2 periods of a year. The root-rats altered plant species composition, reducing the dominant forb, Alchemilla abyssinica, while enhancing Salvia merjame and a few other species, and reduced vegetation cover, but not the fresh plant biomass. Where burrows were abandoned by root-rats, other rodents took them over and A. abyssinica increased again. Root-rat burrowing created small-scale heterogeneity in soil compactness due to the backfilling of some unused burrow segments. Less compacted soil tended to be rich in nutrients, including carbon, nitrogen and phosphorus, which likely affected the plant growth on sites where the vegetation has been reduced as a result of root-rat foraging and burrowing. © 2016 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  12. Growth and anatomical parameters of adventitious roots formed on mung bean hypocotyls are correlated with galactoglucomannan oligosaccharides structure.

    PubMed

    Kollárová, K; Zelko, I; Henselová, M; Capek, P; Lišková, D

    2012-01-01

    The effect of galactoglucomannan oligosaccharides (GGMOs) compared with chemically modified oligosaccharides, GGMOs-g (with reduced number of D-galactose side chains) and GGMOs-r (with reduced reducing ends) on mung bean (Vigna radiata (L.) Wilczek) adventitious roots formation, elongation, and anatomical structure have been studied. All types of oligosaccharides influenced adventitious root formation in the same way: stimulation in the absence of exogenous auxin and inhibition in the presence of exogenous auxin. Both reactions are probably related with the presence/content of endogenous auxin in plant cuttings. However, the adventitious root length was inhibited by GGMOs both in the absence as well as in the presence of auxin (IBA or NAA), while GGMOs-g inhibition was significantly weaker compared with GGMOs. GGMOs-r were without significant difference on both processes, compared with GGMOs. GGMOs affected not only the adventitious root length but also their anatomy in dependence on the combination with certain type of auxin. The oligosaccharides influenced cortical cells division, which was reflected in the cortex area and in the root diameter. All processes followed were dependent on oligosaccharides chemical structure. The results suggest also that GGM-derived oligosaccharides may play an important role in adventitious roots elongation but not in their formation.

  13. Growth and Anatomical Parameters of Adventitious Roots Formed on Mung Bean Hypocotyls Are Correlated with Galactoglucomannan Oligosaccharides Structure

    PubMed Central

    Kollárová, K.; Zelko, I.; Henselová, M.; Capek, P.; Lišková, D.

    2012-01-01

    The effect of galactoglucomannan oligosaccharides (GGMOs) compared with chemically modified oligosaccharides, GGMOs-g (with reduced number of D-galactose side chains) and GGMOs-r (with reduced reducing ends) on mung bean (Vigna radiata (L.) Wilczek) adventitious roots formation, elongation, and anatomical structure have been studied. All types of oligosaccharides influenced adventitious root formation in the same way: stimulation in the absence of exogenous auxin and inhibition in the presence of exogenous auxin. Both reactions are probably related with the presence/content of endogenous auxin in plant cuttings. However, the adventitious root length was inhibited by GGMOs both in the absence as well as in the presence of auxin (IBA or NAA), while GGMOs-g inhibition was significantly weaker compared with GGMOs. GGMOs-r were without significant difference on both processes, compared with GGMOs. GGMOs affected not only the adventitious root length but also their anatomy in dependence on the combination with certain type of auxin. The oligosaccharides influenced cortical cells division, which was reflected in the cortex area and in the root diameter. All processes followed were dependent on oligosaccharides chemical structure. The results suggest also that GGM-derived oligosaccharides may play an important role in adventitious roots elongation but not in their formation. PMID:22666154

  14. Opioid-induced hyperalgesia in chronic pain patients and the mitigating effects of gabapentin.

    PubMed

    Stoicea, Nicoleta; Russell, Daric; Weidner, Greg; Durda, Michael; Joseph, Nicholas C; Yu, Jeffrey; Bergese, Sergio D

    2015-01-01

    Chronic pain patients receiving opioid drugs are at risk for opioid-induced hyperalgesia (OIH), wherein opioid pain medication leads to a paradoxical pain state. OIH involves central sensitization of primary and secondary afferent neurons in the dorsal horn and dorsal root ganglion, similar to neuropathic pain. Gabapentin, a gamma-aminobutyric acid (GABA) analog anticonvulsant used to treat neuropathic pain, has been shown in animal models to reduce fentanyl hyperalgesia without compromising analgesic effect. Chronic pain patients have also exhibited lower opioid consumption and improved pain response when given gabapentin. However, few human studies investigating gabapentin use in OIH have been performed in recent years. In this review, we discuss the potential mechanisms that underlie OIH and provide a critical overview of interventional therapeutic strategies, especially the clinically-successful drug gabapentin, which may reduce OIH.

  15. Impact of treated wastewater on growth, respiration and hydraulic conductivity of citrus root systems in light and heavy soils.

    PubMed

    Paudel, Indira; Cohen, Shabtai; Shaviv, Avi; Bar-Tal, Asher; Bernstein, Nirit; Heuer, Bruria; Ephrath, Jhonathan

    2016-06-01

    Roots interact with soil properties and irrigation water quality leading to changes in root growth, structure and function. We studied these interactions in an orchard and in lysimeters with clay and sandy loam soils. Minirhizotron imaging and manual sampling showed that root growth was three times lower in the clay relative to sandy loam soil. Treated wastewater (TWW) led to a large reduction in root growth with clay (45-55%) but not with sandy loam soil (<20%). Treated wastewater increased salt uptake, membrane leakage and proline content, and decreased root viability, carbohydrate content and osmotic potentials in the fine roots, especially in clay. These results provide evidence that TWW challenges and damages the root system. The phenology and physiology of root orders were studied in lysimeters. Soil type influenced diameter, specific root area, tissue density and cortex area similarly in all root orders, while TWW influenced these only in clay soil. Respiration rates were similar in both soils, and root hydraulic conductivity was severely reduced in clay soil. Treated wastewater increased respiration rate and reduced hydraulic conductivity of all root orders in clay but only of the lower root orders in sandy loam soil. Loss of hydraulic conductivity increased with root order in clay and clay irrigated with TWW. Respiration and hydraulic properties of all root orders were significantly affected by sodium-amended TWW in sandy loam soil. These changes in root order morphology, anatomy, physiology and hydraulic properties indicate rapid and major modifications of root systems in response to differences in soil type and water quality. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Role of adventitious roots in water relations of tamarack (Larix laricina) seedlings exposed to flooding

    PubMed Central

    2012-01-01

    Background Flooding reduces supply of oxygen to the roots affecting plant water uptake. Some flooding-tolerant tree species including tamarack (Larix laricina (Du Roi) K. Koch) produce adventitious roots in response to flooding. These roots were reported to have higher hydraulic conductivity under flooding conditions compared with non-adventitious roots. In the present study, we examined structural and functional modifications in adventitious roots of tamarack seedlings to explain their flooding tolerance. Results Seedlings were subjected to the flooding treatment for six months, which resulted in an almost complete disintegration of the existing root system and its replacement with adventitious roots. We compared gas exchange parameters and water relations of flooded plants with the plants growing in well-drained soil and examined the root structures and root water transport properties. Although flooded seedlings had lower needle chlorophyll concentrations, their stomatal conductance, net photosynthesis rates and shoot water potentials were similar to non-flooded plants, indicative of flooding tolerance. Flooded adventitious roots had higher activation energy and a higher ratio of apoplastic to cell-to-cell water flow compared with non-flooded control roots as determined with the 1-hydroxypirene 3,6,8-trisulfonic acid apoplastic tracer dye. The adventitious roots in flooded plants also exhibited retarded xylem and endodermal development and accumulated numerous starch grains in the cortex. Microscopic examination of root sections treated with the PIP1 and PIP2 antibodies revealed high immunoreactivity in the cortex of non-flooded roots, as compared with flooded roots. Conclusions Structural modifications of adventitious roots suggest increased contribution of apoplastic bypass to water flow. The reduced dependence of roots on the hypoxia-sensitive aquaporin-mediated water transport is likely among the main mechanisms allowing tamarack seedlings to maintain water balance and gas exchange under flooding conditions. PMID:22738296

  17. Role of adventitious roots in water relations of tamarack (Larix laricina) seedlings exposed to flooding.

    PubMed

    Calvo-Polanco, Mónica; Señorans, Jorge; Zwiazek, Janusz J

    2012-06-27

    Flooding reduces supply of oxygen to the roots affecting plant water uptake. Some flooding-tolerant tree species including tamarack (Larix laricina (Du Roi) K. Koch) produce adventitious roots in response to flooding. These roots were reported to have higher hydraulic conductivity under flooding conditions compared with non-adventitious roots. In the present study, we examined structural and functional modifications in adventitious roots of tamarack seedlings to explain their flooding tolerance. Seedlings were subjected to the flooding treatment for six months, which resulted in an almost complete disintegration of the existing root system and its replacement with adventitious roots. We compared gas exchange parameters and water relations of flooded plants with the plants growing in well-drained soil and examined the root structures and root water transport properties. Although flooded seedlings had lower needle chlorophyll concentrations, their stomatal conductance, net photosynthesis rates and shoot water potentials were similar to non-flooded plants, indicative of flooding tolerance. Flooded adventitious roots had higher activation energy and a higher ratio of apoplastic to cell-to-cell water flow compared with non-flooded control roots as determined with the 1-hydroxypirene 3,6,8-trisulfonic acid apoplastic tracer dye. The adventitious roots in flooded plants also exhibited retarded xylem and endodermal development and accumulated numerous starch grains in the cortex. Microscopic examination of root sections treated with the PIP1 and PIP2 antibodies revealed high immunoreactivity in the cortex of non-flooded roots, as compared with flooded roots. Structural modifications of adventitious roots suggest increased contribution of apoplastic bypass to water flow. The reduced dependence of roots on the hypoxia-sensitive aquaporin-mediated water transport is likely among the main mechanisms allowing tamarack seedlings to maintain water balance and gas exchange under flooding conditions.

  18. Alpha-tocopherol-dependent salt tolerance is more related with auxin synthesis rather than enhancement antioxidant defense in soybean roots.

    PubMed

    Sereflioglu, Seda; Dinler, Burcu Seckin; Tasci, Eda

    2017-03-01

    In this paper, we describe the alleviated effects of alpha-tocopherol (α-T) on oxidative damage and its possible role as a signal transmitter in plants during salt stress. The results show that exogenously applied α-T under salt stress increased root length and weight, but reduced hydrogen peroxide (H 2 O 2 ), superoxide anion radical (O 2 . -) and malondialdehyde (MDA) content in soybean roots. The proline content was reduced by α-T treatment. Interestingly, endogenous auxin (IAA) level was significantly increased after α-T application as compared to salt stress alone. Moreover, α-T reduced significantly superoxide dismutase (SOD) enzyme and isoenzyme activity but upregulated peroxidase (POX) 2, 3 and glutathione-s-transferase (GST) 1, 3 isoenzyme expression. However, ascorbate peroxidase (APX) enzyme activity was not affected at all. Consequently, the results show that α-T serves as a signal molecule under salinity from leaves to roots by increasing remarkably endogenous IAA levels and increasing partially antioxidant activity in roots.

  19. GPS-Based Excavation Encroachment Notification

    DOT National Transportation Integrated Search

    2011-10-31

    Excavation damage is the primary threat to the integrity of the natural gas distribution system. According to the Common Ground Alliance, the two primary root causes of excavation damage are failure to notify the one-call center and careless excavati...

  20. The auxin transporter, OsAUX1, is involved in primary root and root hair elongation and in Cd stress responses in rice (Oryza sativa L.).

    PubMed

    Yu, ChenLiang; Sun, ChenDong; Shen, Chenjia; Wang, Suikang; Liu, Fang; Liu, Yan; Chen, YunLong; Li, Chuanyou; Qian, Qian; Aryal, Bibek; Geisler, Markus; Jiang, De An; Qi, YanHua

    2015-09-01

    Auxin and cadmium (Cd) stress play critical roles during root development. There are only a few reports on the mechanisms by which Cd stress influences auxin homeostasis and affects primary root (PR) and lateral root (LR) development, and almost nothing is known about how auxin and Cd interfere with root hair (RH) development. Here, we characterize rice osaux1 mutants that have a longer PR and shorter RHs in hydroponic culture, and that are more sensitive to Cd stress compared to wild-type (Dongjin). OsAUX1 expression in root hair cells is different from that of its paralogous gene, AtAUX1, which is expressed in non-hair cells. However, OsAUX1, like AtAUX1, localizes at the plasma membrane and appears to function as an auxin tranporter. Decreased auxin distribution and contents in the osaux1 mutant result in reduction of OsCyCB1;1 expression and shortened PRs, LRs and RHs under Cd stress, but may be rescued by treatment with the membrane-permeable auxin 1-naphthalene acetic acid. Treatment with the auxin transport inhibitors 1-naphthoxyacetic acid and N-1-naphthylphthalamic acid increased the Cd sensitivity of WT rice. Cd contents in the osaux1 mutant were not altered, but reactive oxygen species-mediated damage was enhanced, further increasing the sensitivity of the osaux1 mutant to Cd stress. Taken together, our results indicate that OsAUX1 plays an important role in root development and in responses to Cd stress. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  1. Belowground impacts of perennial grass cultivation for sustainable biofuel feedstock production in the tropics

    DOE PAGES

    Sumiyoshi, Yudai; Crow, Susan E.; Litton, Creighton M.; ...

    2016-07-08

    Perennial grasses can sequester soil organic carbon (SOC) in sustainably managed biofuel systems, directly mitigating atmospheric CO 2 concentrations while simultaneously generating biomass for renewable energy. Our objective was to quantify SOC accumulation and identify the primary drivers of belowground C dynamics in a zero-tillage production system of tropical perennial C4 grasses grown for biofuel feedstock in Hawaii. Specifically, the quantity, quality, and fate of soil C inputs were determined for eight grass accessions – four varieties each of napier grass and guinea grass. Carbon fluxes (soil CO 2 efflux, aboveground net primary productivity, litterfall, total belowground carbon flux, rootmore » decay constant), C pools (SOC pool and root biomass), and C quality (root chemistry, C and nitrogen concentrations, and ratios) were measured through three harvest cycles following conversion of a fallow field to cultivated perennial grasses. A wide range of SOC accumulation occurred, with both significant species and accession effects. Aboveground biomass yield was greater, and root lignin concentration was lower for napier grass than guinea grass. Structural equation modeling revealed that root lignin concentration was the most important driver of SOC pool: varieties with low root lignin concentration, which was significantly related to rapid root decomposition, accumulated the greatest amount of SOC. Roots with low lignin concentration decomposed rapidly, but the residue and associated microbial biomass/by-products accumulated as SOC. In general, napier grass was better suited for promoting soil C sequestration in this system. Further, high-yielding varieties with low root lignin concentration provided the greatest climate change mitigation potential in a ratoon system. By understanding the factors affecting SOC accumulation and the net greenhouse gas trade-offs within a biofuel production system will aid in crop selection to meet multiple goals toward environmental and economic sustainability.« less

  2. Preliminary Investigation of Several Root Designs for Cermet Turbine Blades in Turbojet Engine III : Curved-root Design

    NASA Technical Reports Server (NTRS)

    Pinkel, Benjamin; Deutsch, George C; Morgan, William C

    1955-01-01

    Stresses om tje root fastenings of turbine blades were appreciably reduced by redesign of the root. The redesign consisted in curving the root to approximately conform to the camber of the airfoil and elimination of the blade platform. Full-scale jet-engine tests at rated speed using cermet blades of the design confirmed the improvement.

  3. Elevated CO2 plus chronic warming reduce nitrogen uptake and levels or activities of nitrogen-uptake and -assimilatory proteins in tomato roots.

    PubMed

    Jayawardena, Dileepa M; Heckathorn, Scott A; Bista, Deepesh R; Mishra, Sasmita; Boldt, Jennifer K; Krause, Charles R

    2017-03-01

    Atmospheric CO 2 enrichment is expected to often benefit plant growth, despite causing global warming and nitrogen (N) dilution in plants. Most plants primarily procure N as inorganic nitrate (NO 3 - ) or ammonium (NH 4 + ), using membrane-localized transport proteins in roots, which are key targets for improving N use. Although interactive effects of elevated CO 2 , chronic warming and N form on N relations are expected, these have not been studied. In this study, tomato (Solanum lycopersicum) plants were grown at two levels of CO 2 (400 or 700 ppm) and two temperature regimes (30 or 37°C), with NO 3 - or NH 4 + as the N source. Elevated CO 2 plus chronic warming severely inhibited plant growth, regardless of N form, while individually they had smaller effects on growth. Although %N in roots was similar among all treatments, elevated CO 2 plus warming decreased (1) N-uptake rate by roots, (2) total protein concentration in roots, indicating an inhibition of N assimilation and (3) shoot %N, indicating a potential inhibition of N translocation from roots to shoots. Under elevated CO 2 plus warming, reduced NO 3 - -uptake rate per g root was correlated with a decrease in the concentration of NO 3 - -uptake proteins per g root, reduced NH 4 + uptake was correlated with decreased activity of NH 4 + -uptake proteins and reduced N assimilation was correlated with decreased concentration of N-assimilatory proteins. These results indicate that elevated CO 2 and chronic warming can act synergistically to decrease plant N uptake and assimilation; hence, future global warming may decrease both plant growth and food quality (%N). © 2016 Scandinavian Plant Physiology Society.

  4. Hydrogen Sulfide Alleviates Aluminum Toxicity via Decreasing Apoplast and Symplast Al Contents in Rice

    PubMed Central

    Zhu, Chun Q.; Zhang, Jun H.; Sun, Li M.; Zhu, Lian F.; Abliz, Buhailiqem; Hu, Wen J.; Zhong, Chu; Bai, Zhi G.; Sajid, Hussain; Cao, Xiao C.; Jin, Qian Y.

    2018-01-01

    Hydrogen sulfide (H2S) plays a vital role in Al3+ stress resistance in plants, but the underlying mechanism is unclear. In the present study, pretreatment with 2 μM of the H2S donor NaHS significantly alleviated the inhibition of root elongation caused by Al toxicity in rice roots, which was accompanied by a decrease in Al contents in root tips under 50 μM Al3+ treatment. NaHS pretreatment decreased the negative charge in cell walls by reducing the activity of pectin methylesterase and decreasing the pectin and hemicellulose contents in rice roots. This treatment also masked Al-binding sites in the cell wall by upregulating the expression of OsSATR1 and OsSTAR2 in roots and reduced Al binding in the cell wall by stimulating the expression of the citrate acid exudation gene OsFRDL4 and increasing the secretion of citrate acid. In addition, NaHS pretreatment decreased the symplasmic Al content by downregulating the expression of OsNRAT1, and increasing the translocation of cytoplasmic Al to the vacuole via upregulating the expression of OsALS1. The increment of antioxidant enzyme [superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), and peroxidase (POD)] activity with NaHS pretreatment significantly decreased the MDA and H2O2 content in rice roots, thereby reducing the damage of Al3+ toxicity on membrane integrity in rice. H2S exhibits crosstalk with nitric oxide (NO) in response to Al toxicity, and through reducing NO content in root tips to alleviate Al toxicity. Together, this study establishes that H2S alleviates Al toxicity by decreasing the Al content in the apoplast and symplast of rice roots. PMID:29559992

  5. Hydrogen Sulfide Alleviates Aluminum Toxicity via Decreasing Apoplast and Symplast Al Contents in Rice.

    PubMed

    Zhu, Chun Q; Zhang, Jun H; Sun, Li M; Zhu, Lian F; Abliz, Buhailiqem; Hu, Wen J; Zhong, Chu; Bai, Zhi G; Sajid, Hussain; Cao, Xiao C; Jin, Qian Y

    2018-01-01

    Hydrogen sulfide (H 2 S) plays a vital role in Al 3+ stress resistance in plants, but the underlying mechanism is unclear. In the present study, pretreatment with 2 μM of the H 2 S donor NaHS significantly alleviated the inhibition of root elongation caused by Al toxicity in rice roots, which was accompanied by a decrease in Al contents in root tips under 50 μM Al 3+ treatment. NaHS pretreatment decreased the negative charge in cell walls by reducing the activity of pectin methylesterase and decreasing the pectin and hemicellulose contents in rice roots. This treatment also masked Al-binding sites in the cell wall by upregulating the expression of OsSATR1 and OsSTAR2 in roots and reduced Al binding in the cell wall by stimulating the expression of the citrate acid exudation gene OsFRDL4 and increasing the secretion of citrate acid. In addition, NaHS pretreatment decreased the symplasmic Al content by downregulating the expression of OsNRAT1 , and increasing the translocation of cytoplasmic Al to the vacuole via upregulating the expression of OsALS1 . The increment of antioxidant enzyme [superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), and peroxidase (POD)] activity with NaHS pretreatment significantly decreased the MDA and H 2 O 2 content in rice roots, thereby reducing the damage of Al 3+ toxicity on membrane integrity in rice. H 2 S exhibits crosstalk with nitric oxide (NO) in response to Al toxicity, and through reducing NO content in root tips to alleviate Al toxicity. Together, this study establishes that H 2 S alleviates Al toxicity by decreasing the Al content in the apoplast and symplast of rice roots.

  6. Root distributions of Eurotia lanata in association with two species of agropyron on disturbed soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonham, C.D.; Mack, S.E.

    1990-12-01

    Root distributions of Eurotia lanata in association with Agropyron inerme and A. smithii on soils that were mechanically disturbed were studied. Root diagrams and measurements were made for plants in competitive pairs from soils representing two depths of soil disturbance (30 cm and 1 m) and control areas. Soil disturbance was observed to reduce significantly depth of root penetration and root concentration of E. lanata. Root depth, maximum lateral spread of roots, and zone of root concentration of E. lanata plants were greatest in pure stand pairs. Eurotia lanata associated with A. inerme had the smallest root concentration. The areamore » occupied by E. lanata roots was 59% greater in pure stands than when found adjacent to A. inerme. Agropyron inerme apparently used more available soil water in the top 20 cm of soil than did the shrub and resulted in reduced root growth for E. lanata. On the other hand, the asexual reproductive strategy of A. smithii, where roots and rhizomes were distributed both vertically and laterally, enables the grass species to minimize detrimental effects of its association with E. lanata. The results have important implications for selection of species combinations to reseed disturbed soils in semiarid or arid environments. In particular, attention should be given to use of species that have differing specializations as indicated by their growth and morphology.« less

  7. Hydrotropism Interacts with Gravitropism by Degrading Amyloplasts in Seedling Roots of Arabidopsis and Radish1

    PubMed Central

    Takahashi, Nobuyuki; Yamazaki, Yutaka; Kobayashi, Akie; Higashitani, Atsushi; Takahashi, Hideyuki

    2003-01-01

    In response to a moisture gradient, roots exhibit hydrotropism to control the orientation of their growth. To exhibit hydrotropism, however, they must overcome the gravitropism that is dominant on Earth. We found that moisture gradient or water stress caused immediate degradation of the starch anchors, amyloplasts, in root columella cells of Arabidopsis and radish (Raphanus sativus). Namely, development of hydrotropic response was accompanied by a simultaneous reduction in starch content in columella cells. Rapid degradation of amyloplasts in columella cells also occurred in the water-stressed roots with sorbitol or mannitol. Both hydrotropically stimulated and water-stressed roots showed a reduced responsiveness to gravity. Roots of a starchless mutant, pgm1-1, showed an enhanced hydrotropism compared with that of the wild type. These results suggest that the reduced responsiveness to gravity is, at least in part, attributable to the degradation of amyloplasts in columella cells. Thus, the reduction in gravitropism allows the roots to exhibit hydrotropism. PMID:12805610

  8. Soil moisture causes dynamic adjustments to root reinforcement that reduce slope stability

    Treesearch

    Tristram C. Hales; Chelcy F. Miniat

    2017-01-01

    In steep soil-mantled landscapes, the initiation of shallow landslides is strongly controlled by the distribution of vegetation, whose roots reinforce the soil. The magnitude of root reinforcement depends on the number, diameter distribution, orientation and the mechanical properties of roots that cross potential failure planes. Understanding how these...

  9. Subdiaphragmatic vagotomy increases the sensitivity of lumbar Aδ primary afferent neurons along with voltage-dependent potassium channels in rats.

    PubMed

    Furuta, Sadayoshi; Watanabe, Lisa; Doi, Seira; Horiuchi, Hiroshi; Matsumoto, Kenjiro; Kuzumaki, Naoko; Suzuki, Tsutomu; Narita, Minoru

    2012-02-01

    Subdiaphragmatic vagal dysfunction causes chronic pain. To verify whether this chronic pain is accompanied by enhanced peripheral nociceptive sensitivity, we evaluated primary afferent neuronal excitability in subdiaphragmatic vagotomized (SDV) rats. SDV rats showed a decrease in the electrical stimuli-induced hind limb-flexion threshold at 250 Hz, but showed no similar effect at 5 or 2000 Hz, which indicated that lumbar primary afferent Aδ sensitivity was enhanced in SDV rats. The whole-cell patch-clamp technique also revealed the hyper-excitability of acutely dissociated medium-sized lumbar dorsal root ganglion (DRG) neurons isolated from SDV rats. The contribution of changes in voltage-dependent potassium (Kv) channels was assessed, and transient A-type K(+) (I(A) ) current density was apparently decreased. Moreover, Kv4.3 immunoreactivity in medium-sized DRG neurons was significantly reduced in SDV rats compared to sham. These results indicate that SDV causes hyper-excitability of lumbar primary Aδ afferent neurons, which may be induced along with suppressing I(A) currents via the decreased expression of Kv4.3. Thus, peripheral Aδ neuroplasticity may contribute to the chronic lower limb pain caused by SDV. Copyright © 2011 Wiley Periodicals, Inc.

  10. Equal Knowledge Is the Strong Root of Democratic Egalitarianism

    ERIC Educational Resources Information Center

    Palumbo, Anthony; Levitt, Roberta

    2011-01-01

    This article considers how to bridge the achievement gap by showing that reading methodology influenced American educational philosophy, primary-grade curricula, and American schools. It considers the impact of the romantic movement on progressive education and notes that the current academic achievement gap has two roots. The first can be traced,…

  11. Genetic and Phenotypic Analysis of Lateral Root Development in Arabidopsis thaliana.

    PubMed

    Napsucialy-Mendivil, Selene; Dubrovsky, Joseph G

    2018-01-01

    Root system formation to a great extent depends on lateral root (LR) formation. In Arabidopsis thaliana, LRs are initiated within a parent root in pericycle that is an external tissue of the stele. LR initiation takes place in a strictly acropetal pattern, whereas posterior lateral root primordium (LRP) formation is asynchronous. In this chapter, we focus on methods of genetic and phenotypic analysis of LR initiation, LRP morphogenesis, and LR emergence in Arabidopsis. We provide details on how to make cleared root preparations and how to identify the LRP stages. We also pay attention to the categorization of the LRP developmental stages and their variations and to the normalization of the number of LRs and LRPs formed, per length of the primary root, and per number of cells produced within a root. Hormonal misbalances and mutations affect LRP morphogenesis significantly, and the evaluation of LRP abnormalities is addressed as well. Finally, we deal with various molecular markers that can be used for genetic and phenotypic analyses of LR development.

  12. Uprooting an abscisic acid paradigm: Shoots are the primary source.

    PubMed

    McAdam, Scott A M; Manzi, Matías; Ross, John J; Brodribb, Timothy J; Gómez-Cadenas, Aurelio

    2016-06-02

    In the past, a conventional wisdom has been that abscisic acid (ABA) is a xylem-transported hormone that is synthesized in the roots, while acting in the shoot to close stomata in response to a decrease in plant water status. Now, however, evidence from two studies, which we have conducted independently, challenges this root-sourced ABA paradigm. We show that foliage-derived ABA has a major influence over root development and that leaves are the predominant location for ABA biosynthesis during drought stress.

  13. The clinical effect of acellular dermal matrix on gingival thickness and root coverage compared to coronally positioned flap alone.

    PubMed

    Woodyard, James G; Greenwell, Henry; Hill, Margaret; Drisko, Connie; Iasella, John M; Scheetz, James

    2004-01-01

    The primary aim of this randomized, controlled, blinded, clinical investigation was to compare the coronally positioned flap (CPF) plus an acellular dermal matrix (ADM) allograft to CPF alone to determine their effect on gingival thickness and percent root coverage. Twenty-four subjects with one Miller Class I or II buccal recession defect of > or = 3 mm were treated with a CPF plus ADM or a CPF alone. Multiple additional recession sites were treated with the same flap procedure, and all sites were studied for 6 months. Tissue thickness was measured at the sulcus base and at the mucogingival junction of all teeth, with an SDM ultrasonic gingival thickness meter. For the ADM sites, mean initial recession of 3.46 mm was reduced to 0.04 mm for defect coverage of 3.42 mm or 99% (P < 0.05). For the CPF group, mean initial recession of 3.27 mm was reduced to 1.08 mm for defect coverage of 2.19 mm or 67% (P < 0.05). The difference between ADM and CPF groups was statistically significant (P < 0.05). Marginal soft-tissue thickness was increased by 0.40 mm (P < 0.05) for the ADM group, whereas the CPF group remained essentially unchanged. Keratinized tissue was increased for the ADM group by 0.81 mm (P < 0.05), whereas the CPF group increased by 0.33 mm (P > 0.05). No additional root coverage was gained due to creeping attachment between 2 and 6 months for either group. Treatment with a CPF plus an ADM allograft significantly increased gingival thickness when compared with a CPF alone. Recession defect coverage was significantly improved with the use of ADM.

  14. Functional mechanisms of drought tolerance in subtropical maize (Zea mays L.) identified using genome-wide association mapping.

    PubMed

    Thirunavukkarasu, Nepolean; Hossain, Firoz; Arora, Kanika; Sharma, Rinku; Shiriga, Kaliyugam; Mittal, Swati; Mohan, Sweta; Namratha, Pottekatt Mohanlal; Dogga, Sreelatha; Rani, Tikka Shobha; Katragadda, Sumalini; Rathore, Abhishek; Shah, Trushar; Mohapatra, Trilochan; Gupta, Hari Shankar

    2014-12-24

    Earlier studies were focused on the genetics of temperate and tropical maize under drought. We identified genetic loci and their association with functional mechanisms in 240 accessions of subtropical maize using a high-density marker set under water stress. Out of 61 significant SNPs (11 were false-discovery-rate-corrected associations), identified across agronomic traits, models, and locations by subjecting the accessions to water stress at flowering stage, 48% were associated with drought-tolerant genes. Maize gene models revealed that SNPs mapped for agronomic traits were in fact associated with number of functional traits as follows: stomatal closure, 28; flowering, 15; root development, 5; detoxification, 4; and reduced water potential, 2. Interactions of these SNPS through the functional traits could lead to drought tolerance. The SNPs associated with ABA-dependent signalling pathways played a major role in the plant's response to stress by regulating a series of functions including flowering, root development, auxin metabolism, guard cell functions, and scavenging reactive oxygen species (ROS). ABA signalling genes regulate flowering through epigenetic changes in stress-responsive genes. ROS generated by ABA signalling are reduced by the interplay between ethylene, ABA, and detoxification signalling transductions. Integration of ABA-signalling genes with auxin-inducible genes regulates root development which in turn, maintains the water balance by regulating electrochemical gradient in plant. Several genes are directly or indirectly involved in the functioning of agronomic traits related to water stress. Genes involved in these crucial biological functions interacted significantly in order to maintain the primary as well as exclusive functions related to coping with water stress. SNPs associated with drought-tolerant genes involved in strategic biological functions will be useful to understand the mechanisms of drought tolerance in subtropical maize.

  15. Alpha-Glucan, Water Dikinase 1 Affects Starch Metabolism and Storage Root Growth in Cassava (Manihot esculenta Crantz).

    PubMed

    Zhou, Wenzhi; He, Shutao; Naconsie, Maliwan; Ma, Qiuxiang; Zeeman, Samuel C; Gruissem, Wilhelm; Zhang, Peng

    2017-08-29

    Regulation of storage root development by source strength remains largely unknown. The cassava storage root delay (srd) T-DNA mutant postpones storage root development but manifests normal foliage growth as wild-type plants. The SRD gene was identified as an orthologue of α-glucan, water dikinase 1 (GWD1), whose expression is regulated under conditions of light/dark cycles in leaves and is associated with storage root development. The GWD1-RNAi cassava plants showed both retarded plant and storage root growth, as a result of starch excess phenotypes with reduced photosynthetic capacity and decreased levels of soluble saccharides in their leaves. These leaves contained starch granules having greatly increased amylose content and type C semi-crystalline structures with increased short chains that suggested storage starch. In storage roots of GWD1-RNAi lines, maltose content was dramatically decreased and starches with much lower phosphorylation levels showed a drastically reduced β-amylolytic rate. These results suggested that GWD1 regulates transient starch morphogenesis and storage root growth by decreasing photo-assimilation partitioning from the source to the sink and by starch mobilization in root crops.

  16. Extrusion of Debris from Primary Molar Root Canals following Instrumentation with Traditional and New File Systems.

    PubMed

    Thakur, Bhagyashree; Pawar, Ajinkya M; Kfir, Anda; Neelakantan, Prasanna

    2017-11-01

    To assess the amount of debris extruded apically during instrumentation of distal canals of extracted primary molars by three instrument systems [ProTaper Universal (PTU), ProTaper NEXT (PTN), and self-adjusting file (SAF)] compared with conventional stainless steel hand K-files (HF, control). Primary mandibular molars (n = 120) with a single distal canal were selected and randomly divided into four groups (n = 30) for root canal instrumentation using group I, HF (to size 0.30/0.02 taper), group II, PTU (to size F3), group III, PTN (to size X3), and group IV, SAF. Debris extruded during instrumentation was collected in preweighed Eppendorf tubes, stored in an incubator at 70°C for 5 days and then weighed. Statistical analysis was performed by one-way analysis of variance (ANOVA), followed by Turkey's post hoc test (p = 0.05). All the groups resulted in extrusion of debris. There was statistically significant difference (p < 0.001) in the debris extrusion between the three groups: HF (0.00133 ± 0.00012), PTU (0.00109 ± 0.00005), PTN (0.00052 ± 0.00008), and SAF (0.00026 ± 0.00004). Instrumentation with SAF resulted in the least debris extrusion when used for shaping root canals of primary molar teeth. Debris extrusion in primary teeth poses an adverse effect on the stem cells and may also alter the permanent dental germ. Debris extrusion is rarely reported for primary teeth and it is important for the clinician to know which endodontic instrumentation leads to less extrusion of debris.

  17. Majewski osteodysplastic primordial dwarfism type II: clinical findings and dental management of a child patient

    PubMed Central

    Terlemez, Arslan; Altunsoy, Mustafa; Celebi, Hakki

    2015-01-01

    Majewski osteodysplastic primordial dwarfism type II (MOPD II) is an unusual autosomal recessive inherited form of primordial dwarfism, which is characterized by a small head diameter at birth, but which also progresses to severe microcephaly, progressive bony dysplasia, and characteristic facies and personality. This report presents a case of a five-year-old girl with MOPD II syndrome. The patient was referred to our clinic with the complaint of severe tooth pain at the left mandibular primary molar teeth. Clinical examination revealed that most of the primary teeth had been decayed and all primary teeth were hypoplastic. Patient’s history revealed delayed development in the primary dentition and radiographic examination showed rootless primary molar teeth and short-rooted incisors. The treatment was not possible due to the lack of root of the left mandibular primary molars; so the teeth were extracted. Thorough and timely dental evaluation is crucial for the prevention of dental problems and the maintenance of oral health in patients with MOPD II syndrome is of utmost importance. PMID:28955524

  18. Majewski osteodysplastic primordial dwarfism type II: clinical findings and dental management of a child patient.

    PubMed

    Terlemez, Arslan; Altunsoy, Mustafa; Celebi, Hakki

    2015-01-01

    Majewski osteodysplastic primordial dwarfism type II (MOPD II) is an unusual autosomal recessive inherited form of primordial dwarfism, which is characterized by a small head diameter at birth, but which also progresses to severe microcephaly, progressive bony dysplasia, and characteristic facies and personality. This report presents a case of a five-year-old girl with MOPD II syndrome. The patient was referred to our clinic with the complaint of severe tooth pain at the left mandibular primary molar teeth. Clinical examination revealed that most of the primary teeth had been decayed and all primary teeth were hypoplastic. Patient's history revealed delayed development in the primary dentition and radiographic examination showed rootless primary molar teeth and short-rooted incisors. The treatment was not possible due to the lack of root of the left mandibular primary molars; so the teeth were extracted. Thorough and timely dental evaluation is crucial for the prevention of dental problems and the maintenance of oral health in patients with MOPD II syndrome is of utmost importance.

  19. YUCCA9-Mediated Auxin Biosynthesis and Polar Auxin Transport Synergistically Regulate Regeneration of Root Systems Following Root Cutting

    PubMed Central

    Xu, Dongyang; Miao, Jiahang; Yumoto, Emi; Yokota, Takao; Asahina, Masashi; Watahiki, Masaaki

    2017-01-01

    Abstract Recovery of the root system following physical damage is an essential issue for plant survival. An injured root system is able to regenerate by increases in lateral root (LR) number and acceleration of root growth. The horticultural technique of root pruning (root cutting) is an application of this response and is a common garden technique for controlling plant growth. Although root pruning is widely used, the molecular mechanisms underlying the subsequent changes in the root system are poorly understood. In this study, root pruning was employed as a model system to study the molecular mechanisms of root system regeneration. Notably, LR defects in wild-type plants treated with inhibitors of polar auxin transport (PAT) or in the auxin signaling mutant auxin/indole-3-acetic acid19/massugu2 were recovered by root pruning. Induction of IAA19 following root pruning indicates an enhancement of auxin signaling by root pruning. Endogenous levels of IAA increased after root pruning, and YUCCA9 was identified as the primary gene responsible. PAT-related genes were induced after root pruning, and the YUCCA inhibitor yucasin suppressed root regeneration in PAT-related mutants. Therefore, we demonstrate the crucial role of YUCCA9, along with other redundant YUCCA family genes, in the enhancement of auxin biosynthesis following root pruning. This further enhances auxin transport and activates downstream auxin signaling genes, and thus increases LR number. PMID:29016906

  20. Linking agricultural practices, mycorrhizal fungi, and traits mediating plant-insect interactions.

    PubMed

    Barber, Nicholas A; Kiers, E Toby; Theis, Nina; Hazzard, Ruth V; Adler, Lynn S

    2013-10-01

    Agricultural management has profound effects on soil communities. Activities such as fertilizer inputs can modify the composition of arbuscular mycorrhizal fungi (AMF) communities, which form important symbioses with the roots of most crop plants. Intensive conventional agricultural management may select for less mutualistic AMF with reduced benefits to host plants compared to organic management, but these differences are poorly understood. AMF are generally evaluated based on their direct growth effects on plants. However, mycorrhizal colonization also may alter plant traits such as tissue nutrients, defensive chemistry, or floral traits, which mediate important plant-insect interactions like herbivory and pollination. To determine the effect of AMF from different farming practices on plant performance and traits that putatively mediate species interactions, we performed a greenhouse study by inoculating Cucumis sativus (cucumber, Cucurbitaceae) with AMF from conventional farms, organic farms, and a commercial AMF inoculum. We measured growth and a suite of plant traits hypothesized to be important predictors of herbivore resistance and pollinator attraction. Several leaf and root traits and flower production were significantly affected by AMF inoculum. Both conventional and organic AMF reduced leaf P content but increased Na content compared to control and commercial AMF. Leaf defenses were unaffected by AMF treatments, but conventional AMF increased root cucurbitacin C, the primary defensive chemical of C. sativus, compared to organic AMF. These effects may have important consequences for herbivore preference and population dynamics. AMF from both organic and conventional farms decreased flower production relative to commercial and control treatments, which may reduce pollinator attraction and plant reproduction. AMF from both farm types also reduced seed germination, but effects on plant growth were limited. Our results suggest that studies only considering AMF effects on growth may overlook changes in plant traits that have the potential to influence interactions, and hence yield, on farms. Given the effects of AMF on plant traits documented here, and the great importance of both herbivores and pollinators to wild and cultivated plants, we advocate for comprehensive assessments of mycorrhizal effects in complex community contexts, with the aim of incorporating multispecies interactions both above and below the soil surface.

Top