Reduced Renal Methylarginine Metabolism Protects against Progressive Kidney Damage
Caplin, Ben; Boruc, Olga; Bruce-Cobbold, Claire; Cutillas, Pedro; Dormann, Dirk; Faull, Peter; Grossman, Rebecca C.; Khadayate, Sanjay; Mas, Valeria R.; Nitsch, Dorothea D.; Wang, Zhen; Norman, Jill T.; Wilcox, Christopher S.; Wheeler, David C.; Leiper, James
2015-01-01
Nitric oxide (NO) production is diminished in many patients with cardiovascular and renal disease. Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of NO synthesis, and elevated plasma levels of ADMA are associated with poor outcomes. Dimethylarginine dimethylaminohydrolase-1 (DDAH1) is a methylarginine-metabolizing enzyme that reduces ADMA levels. We reported previously that a DDAH1 gene variant associated with increased renal DDAH1 mRNA transcription and lower plasma ADMA levels, but counterintuitively, a steeper rate of renal function decline. Here, we test the hypothesis that reduced renal-specific ADMA metabolism protects against progressive renal damage. Renal DDAH1 is expressed predominately within the proximal tubule. A novel proximal tubule–specific Ddah1 knockout (Ddah1PT−/−) mouse demonstrated tubular cell accumulation of ADMA and lower NO concentrations, but unaltered plasma ADMA concentrations. Ddah1PT−/− mice were protected from reduced kidney tissue mass, collagen deposition, and profibrotic cytokine expression in two independent renal injury models: folate nephropathy and unilateral ureteric obstruction. Furthermore, a study of two independent kidney transplant cohorts revealed higher levels of human renal allograft methylarginine-metabolizing enzyme gene expression associated with steeper function decline. We also report an association among DDAH1 expression, NO activity, and uromodulin expression supported by data from both animal and human studies, raising the possibility that kidney DDAH1 expression exacerbates renal injury through uromodulin-related mechanisms. Together, these data demonstrate that reduced renal tubular ADMA metabolism protects against progressive kidney function decline. Thus, circulating ADMA may be an imprecise marker of renal methylarginine metabolism, and therapeutic ADMA reduction may even be deleterious to kidney function. PMID:25855779
Reduced Renal Methylarginine Metabolism Protects against Progressive Kidney Damage.
Tomlinson, James A P; Caplin, Ben; Boruc, Olga; Bruce-Cobbold, Claire; Cutillas, Pedro; Dormann, Dirk; Faull, Peter; Grossman, Rebecca C; Khadayate, Sanjay; Mas, Valeria R; Nitsch, Dorothea D; Wang, Zhen; Norman, Jill T; Wilcox, Christopher S; Wheeler, David C; Leiper, James
2015-12-01
Nitric oxide (NO) production is diminished in many patients with cardiovascular and renal disease. Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of NO synthesis, and elevated plasma levels of ADMA are associated with poor outcomes. Dimethylarginine dimethylaminohydrolase-1 (DDAH1) is a methylarginine-metabolizing enzyme that reduces ADMA levels. We reported previously that a DDAH1 gene variant associated with increased renal DDAH1 mRNA transcription and lower plasma ADMA levels, but counterintuitively, a steeper rate of renal function decline. Here, we test the hypothesis that reduced renal-specific ADMA metabolism protects against progressive renal damage. Renal DDAH1 is expressed predominately within the proximal tubule. A novel proximal tubule-specific Ddah1 knockout (Ddah1(PT-/-)) mouse demonstrated tubular cell accumulation of ADMA and lower NO concentrations, but unaltered plasma ADMA concentrations. Ddah1(PT-/-) mice were protected from reduced kidney tissue mass, collagen deposition, and profibrotic cytokine expression in two independent renal injury models: folate nephropathy and unilateral ureteric obstruction. Furthermore, a study of two independent kidney transplant cohorts revealed higher levels of human renal allograft methylarginine-metabolizing enzyme gene expression associated with steeper function decline. We also report an association among DDAH1 expression, NO activity, and uromodulin expression supported by data from both animal and human studies, raising the possibility that kidney DDAH1 expression exacerbates renal injury through uromodulin-related mechanisms. Together, these data demonstrate that reduced renal tubular ADMA metabolism protects against progressive kidney function decline. Thus, circulating ADMA may be an imprecise marker of renal methylarginine metabolism, and therapeutic ADMA reduction may even be deleterious to kidney function. Copyright © 2015 by the American Society of Nephrology.
The role of the renal specialist nurse in prevention of renal failure.
Hurst, J
2002-01-01
This article will investigate the care required for those with reduced renal function before renal replacement therapy (RRT) commences. Renal nurses are often involved with the technical, monitoring and evaluative aspects of RRT for those with end stage renal failure. However, many patients may experience reduced renal function many years before reaching the stage of needing RRT. Renal nurses are already involved in the preparation of patients for RRT, but are not presently exercising their specialist skills in the period before this time by contributing to the prevention of end stage renal failure (ESRF). Screening programmes carried out in various parts of the world demonstrate that many members of the population have undetected renal insufficiency, and may benefit from intervention from the nephrology team to prevent further renal dysfunction. It is for this group of patients that this article will consider the potential for the renal nurse to expand their scope of practice.
Reid, Ryan; Ezekowitz, Justin A.; Brown, Paul M.; McAlister, Finlay A.; Rowe, Brian H.; Braam, Branko
2015-01-01
Background Worsening and improving renal function during acute heart failure have been associated with adverse outcomes but few studies have considered the admission level of renal function upon which these changes are superimposed. Objectives The objective of this study was to evaluate definitions that incorporate both admission renal function and change in renal function. Methods 696 patients with acute heart failure with calculable eGFR were classified by admission renal function (Reduced [R, eGFR<45 ml/min] or Preserved [P, eGFR≥45 ml/min]) and change over hospital admission (worsening [WRF]: eGFR ≥20% decline; stable [SRF]; and improving [IRF]: eGFR ≥20% increase). The primary outcome was all-cause mortality. The prevalence of Pres and Red renal function was 47.8% and 52.2%. The frequency of R-WRF, R-SRF, and R-IRF was 11.4%, 28.7%, and 12.1%, respectively; the incidence of P-WRF, P-SRF, and P-IRF was 5.7%, 35.3%, and 6.8%, respectively. Survival was shorter for patients with R-WRF compared to R-IRF (median survival times 13.9 months (95%CI 7.7–24.9) and 32.5 months (95%CI 18.8–56.1), respectively), resulting in an acceleration factor of 2.3 (p = 0.016). Thus, an increase compared with a decrease in renal function was associated with greater than two times longer survival among patients with Reduced renal function. PMID:26380982
Nephron Deficiency and Predisposition to Renal Injury in a Novel One-Kidney Genetic Model
Wang, Xuexiang; Johnson, Ashley C.; Williams, Jan M.; White, Tiffani; Chade, Alejandro R.; Zhang, Jie; Liu, Ruisheng; Roman, Richard J.; Lee, Jonathan W.; Kyle, Patrick B.; Solberg-Woods, Leah
2015-01-01
Some studies have reported up to 40% of patients born with a single kidney develop hypertension, proteinuria, and in some cases renal failure. The increased susceptibility to renal injury may be due, in part, to reduced nephron numbers. Notably, children who undergo nephrectomy or adults who serve as kidney donors exhibit little difference in renal function compared with persons who have two kidneys. However, the difference in risk between being born with a single kidney versus being born with two kidneys and then undergoing nephrectomy are unclear. Animal models used previously to investigate this question are not ideal because they require invasive methods to model congenital solitary kidney. In this study, we describe a new genetic animal model, the heterogeneous stock-derived model of unilateral renal agenesis (HSRA) rat, which demonstrates 50%–75% spontaneous incidence of a single kidney. The HSRA model is characterized by reduced nephron number (more than would be expected by loss of one kidney), early kidney/glomerular hypertrophy, and progressive renal injury, which culminates in reduced renal function. Long-term studies of temporal relationships among BP, renal hemodynamics, and renal function demonstrate that spontaneous single-kidney HSRA rats are more likely than uninephrectomized normal littermates to exhibit renal impairment because of the combination of reduced nephron numbers and prolonged exposure to renal compensatory mechanisms (i.e., hyperfiltration). Future studies with this novel animal model may provide additional insight into the genetic contributions to kidney development and agenesis and the factors influencing susceptibility to renal injury in individuals with congenital solitary kidney. PMID:25349207
Nephron Deficiency and Predisposition to Renal Injury in a Novel One-Kidney Genetic Model.
Wang, Xuexiang; Johnson, Ashley C; Williams, Jan M; White, Tiffani; Chade, Alejandro R; Zhang, Jie; Liu, Ruisheng; Roman, Richard J; Lee, Jonathan W; Kyle, Patrick B; Solberg-Woods, Leah; Garrett, Michael R
2015-07-01
Some studies have reported up to 40% of patients born with a single kidney develop hypertension, proteinuria, and in some cases renal failure. The increased susceptibility to renal injury may be due, in part, to reduced nephron numbers. Notably, children who undergo nephrectomy or adults who serve as kidney donors exhibit little difference in renal function compared with persons who have two kidneys. However, the difference in risk between being born with a single kidney versus being born with two kidneys and then undergoing nephrectomy are unclear. Animal models used previously to investigate this question are not ideal because they require invasive methods to model congenital solitary kidney. In this study, we describe a new genetic animal model, the heterogeneous stock-derived model of unilateral renal agenesis (HSRA) rat, which demonstrates 50%-75% spontaneous incidence of a single kidney. The HSRA model is characterized by reduced nephron number (more than would be expected by loss of one kidney), early kidney/glomerular hypertrophy, and progressive renal injury, which culminates in reduced renal function. Long-term studies of temporal relationships among BP, renal hemodynamics, and renal function demonstrate that spontaneous single-kidney HSRA rats are more likely than uninephrectomized normal littermates to exhibit renal impairment because of the combination of reduced nephron numbers and prolonged exposure to renal compensatory mechanisms (i.e., hyperfiltration). Future studies with this novel animal model may provide additional insight into the genetic contributions to kidney development and agenesis and the factors influencing susceptibility to renal injury in individuals with congenital solitary kidney. Copyright © 2015 by the American Society of Nephrology.
Sag, Alan Alper; Inal, Ibrahim; Okcuoglu, John; Rossignol, Patrick; Ortiz, Alberto; Afsar, Baris; Sos, Thomas A; Kanbay, Mehmet
2016-04-01
After three neutral trials in which renal artery stenting failed to improve renal function or reduce cardiovascular and renal events, the controversy surrounding diagnosis and treatment of atherosclerotic renal artery stenosis and renovascular hypertension has led to paradigm shifts in the diagnostic algorithm. Noninvasive determination of earlier events (cortex hypoxia and renal artery hemodynamic changes) will supersede late sequelae (calcific stenosis, renal cortical thinning). Therefore, this review proposes the concept of renal penumbra in defining at-risk ischemic renal parenchyma. The complex field of functional renal magnetic resonance imaging will be reviewed succinctly in a clinician-directed fashion. Copyright © 2016 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.
The rebirth of interest in renal tubular function.
Lowenstein, Jerome; Grantham, Jared J
2016-06-01
The measurement of glomerular filtration rate by the clearance of inulin or creatinine has evolved over the past 50 years into an estimated value based solely on plasma creatinine concentration. We have examined some of the misconceptions and misunderstandings of the classification of renal disease and its course, which have followed this evolution. Furthermore, renal plasma flow and tubular function, which in the past were estimated by the clearance of the exogenous aryl amine, para-aminohippurate, are no longer measured. Over the past decade, studies in experimental animals with reduced nephron mass and in patients with reduced renal function have identified small gut-derived, protein-bound uremic retention solutes ("uremic toxins") that are poorly filtered but are secreted into the lumen by organic anion transporters (OATs) in the proximal renal tubule. These are not effectively removed by conventional hemodialysis or peritoneal dialysis. Residual renal function, urine produced in patients with advanced renal failure or undergoing dialysis treatment, may represent, at least in part, secretion of fluid and uremic toxins, such as indoxyl sulfate, mediated by proximal tubule OATs and might serve as a useful survival function. In light of this new evidence of the physiological role of proximal tubule OATs, we suggest that measurement of renal tubular function and renal plasma flow may be of considerable value in understanding and managing chronic kidney disease. Data obtained in normal subjects indicate that renal plasma flow and renal tubular function might be measured by the clearance of the endogenous aryl amine, hippurate. Copyright © 2016 the American Physiological Society.
Hughes, Kim; Flynn, Tanya; de Zoysa, Janak; Dalbeth, Nicola; Merriman, Tony R
2014-02-01
Increased serum urate predicts chronic kidney disease independent of other risk factors. The use of xanthine oxidase inhibitors coincides with improved renal function. Whether this is due to reduced serum urate or reduced production of oxidants by xanthine oxidase or another physiological mechanism remains unresolved. Here we applied Mendelian randomization, a statistical genetics approach allowing disentangling of cause and effect in the presence of potential confounding, to determine whether lowering of serum urate by genetic modulation of renal excretion benefits renal function using data from 7979 patients of the Atherosclerosis Risk in Communities and Framingham Heart studies. Mendelian randomization by the two-stage least squares method was done with serum urate as the exposure, a uric acid transporter genetic risk score as instrumental variable, and estimated glomerular filtration rate and serum creatinine as the outcomes. Increased genetic risk score was associated with significantly improved renal function in men but not in women. Analysis of individual genetic variants showed the effect size associated with serum urate did not correlate with that associated with renal function in the Mendelian randomization model. This is consistent with the possibility that the physiological action of these genetic variants in raising serum urate correlates directly with improved renal function. Further studies are required to understand the mechanism of the potential renal function protection mediated by xanthine oxidase inhibitors.
Sanders, Marijke W; Fazzi, Gregorio E; Janssen, Ger M J; Blanco, Carlos E; De Mey, Jo G R
2005-07-01
A suboptimal fetal environment increases the risk to develop cardiovascular disease in the adult. We reported previously that intrauterine stress in response to reduced uteroplacental blood flow in the pregnant rat limits fetal growth and compromises renal development, leading to an altered renal function in the adult offspring. Here we tested the hypothesis that high dietary sodium intake in rats with impaired renal development attributable to intrauterine stress, results in increased blood pressure, altered renal function, and organ damage. In rats, intrauterine stress was induced by bilateral ligation of the uterine arteries at day 17 of pregnancy. At the age of 12 weeks, the offspring was given high-sodium drinking water (2% sodium chloride). At the age of 16 weeks, rats were instrumented for monitoring of blood pressure and renal function. After intrauterine stress, litter size and birth weight were reduced, whereas hematocrit at birth was increased. Renal blood flow, glomerular filtration rate, and the glomerular filtration fraction were increased significantly after intrauterine stress. High sodium intake did not change renal function and blood pressure in control animals. However, during high sodium intake in intrauterine stress offspring, renal blood flow, glomerular filtration rate, and the filtration fraction were decreased, and blood pressure was increased. In addition, these animals developed severe albuminuria, an important sign of renal dysfunction. Thus, a suboptimal fetal microenvironment, which impairs renal development, results in sodium-dependent hypertension and albuminuria.
Vlassara, Helen; Torreggiani, Massimo; Post, James B; Zheng, Feng; Uribarri, Jaime; Striker, Gary E
2009-12-01
Oxidant stress (OS) and inflammation increase in normal aging and in chronic kidney disease (CKD), as observed in human and animal studies. In cross-sectional studies of the US population, these changes are associated with a decrease in renal function, which is exhibited by a significant proportion of the population. However, since many normal adults have intact renal function, and longitudinal studies show that some persons maintain normal renal function with age, the link between OS, inflammation, and renal decline is not clear. In aging mice, greater oxidant intake is associated with increased age-related CKD and mortality, which suggests that interventions that reduce OS and inflammation may be beneficial for older individuals. Both OS and inflammation can be readily lowered in normal subjects and patients with CKD stage 3-4 by a simple dietary modification that lowers intake and results in reduced serum and tissue levels of advanced glycation end products. Diabetic patients, including those with microalbuminuria, have a decreased ability to metabolize and excrete oxidants prior to observable changes in serum creatinine. Thus, OS and inflammation may occur in the diabetic kidney at an early time. We review the evidence that oxidants in the diet directly lead to increased serum levels of OS and inflammatory mediators in normal aging and in CKD. We also discuss a simple dietary intervention that helps reduce OS and inflammation, an important and achievable therapeutic goal for patients with CKD and aging individuals with reduced renal function.
Bhongsatiern, Jiraganya; Stockmann, Chris; Yu, Tian; Constance, Jonathan E; Moorthy, Ganesh; Spigarelli, Michael G; Desai, Pankaj B; Sherwin, Catherine M T
2016-05-01
Growth and maturational changes have been identified as significant covariates in describing variability in clearance of renally excreted drugs such as vancomycin. Because of immaturity of clearance mechanisms, quantification of renal function in neonates is of importance. Several serum creatinine (SCr)-based renal function descriptors have been developed in adults and children, but none are selectively derived for neonates. This review summarizes development of the neonatal kidney and discusses assessment of the renal function regarding estimation of glomerular filtration rate using renal function descriptors. Furthermore, identification of the renal function descriptors that best describe the variability of vancomycin clearance was performed in a sample study of a septic neonatal cohort. Population pharmacokinetic models were developed applying a combination of age-weight, renal function descriptors, or SCr alone. In addition to age and weight, SCr or renal function descriptors significantly reduced variability of vancomycin clearance. The population pharmacokinetic models with Léger and modified Schwartz formulas were selected as the optimal final models, although the other renal function descriptors and SCr provided reasonably good fit to the data, suggesting further evaluation of the final models using external data sets and cross validation. The present study supports incorporation of renal function descriptors in the estimation of vancomycin clearance in neonates. © 2015, The American College of Clinical Pharmacology.
Jinnouchi, Hideaki; Nozaki, Kazunari; Watase, Hirotaka; Omiya, Hirohisa; Sakai, Soichi; Samukawa, Yoshishige
2016-03-01
We investigated the impact of reduced renal function on 24-h glucose variability in Japanese patients with type 2 diabetes mellitus (T2DM) treated with luseogliflozin. In this double-blind, placebo-controlled, crossover study, 37 Japanese patients with T2DM [glycated hemoglobin (HbA1c) 7.0-10.0%] and estimated glomerular filtration rate (eGFR) ≥45 mL/min/1.73 m(2) were randomized into two groups in which patients first received luseogliflozin then placebo, or vice versa, for 7 days each. Twenty-four-hour glucose variability was measured on day 7 in each period and was compared among patients divided into three groups according to their baseline eGFR (mL/min/1.73 m(2)): normal (≥90; n = 13; normal group), normal-to-mildly reduced renal function (≥75 to <90; n = 12; normal-mild group), and mild-to-moderately reduced renal function (<75; n = 9; mild-moderate group). The mean [95% confidence interval (CI)] placebo-subtracted 24-h cumulative urinary glucose excretion (g) was 82.1 (72.7, 91.5), 82.5 (73.4, 91.5), and 62.2 (51.2, 73.3); the placebo-subtracted 24-h mean glucose concentration (mg/dL) was -24.39 (-32.53, -16.26), -28.28 (-39.35, -17.22), and -11.53 (-23.93, 0.86); and the placebo-subtracted peak postprandial glucose (mg/dL) was -26.9 (-46.9, -6.9), -38.1 (-59.6, -16.6), and 1.5 (-25.5, 28.4) in the normal, normal-mild, and mild-moderate groups, respectively. The mean lowest glucose concentrations (placebo vs. luseogliflozin, mg/dL) decreased to similar levels in the normal (115.4 vs. 93.4), normal-mild (121.0 vs. 97.9), and mild-moderate (104.0 vs. 91.1) groups. This post hoc subanalysis revealed that although mild-to-moderately reduced renal function attenuated the glucose-lowering effects of luseogliflozin on peak postprandial glucose, it did not attenuate the effects of luseogliflozin on fasting glucose. These findings may explain the smaller increase in urinary glucose excretion in these patients relative to patients with normal renal function or normal-to-moderately reduced renal function. Further studies may be needed to examine these findings in large populations of patients with T2DM and reduced renal function. JapicCTI-142548. Taisho Pharmaceutical Co., Ltd.
Utility of Cystatin C to monitor renal function in Duchenne muscular dystrophy
Viollet, Laurence; Gailey, Susan; Thornton, David J.; Friedman, Neil R.; Flanigan, Kevin M.; Mahan, John D.; Mendell, Jerry R.
2009-01-01
Introduction: Creatinine as a marker of renal function has limited value in Duchenne muscular dystrophy (DMD) because of reduced muscle mass. Alternative methods of assessing renal function are sorely needed. Cystatin C, a nonglycosylated protein unaffected by muscle mass, is potentially an ideal biomarker of nephrotoxicity for this population but requires validation. Methods: 75 subjects were recruited: 35 DMD (mean age 10.8 ± 5.4 years, corticosteroids n = 19, ambulatory n = 26), 29 healthy controls, 10 with renal disease, and one DMD with renal failure. Results: Cystatin C levels in DMD were normal irrespective of age, ambulation or corticosteroid treatment. Serum cystatin C was 0.67 ± 0.11 mg/L compared to normal controls 0.69 ± 0.09. mg/L. In these same individuals serum creatinine was severely reduced (0.27 ± 0.12 mg/dL) versus normals (0.75 ± 0.15 mg/dL, p < 0.01). In one DMD subject in renal failure, cystatin C was elevated. Discussion: This study demonstrates the potential value of cystatin C as a biomarker for monitoring renal function in DMD. Its applicability extends to other neuromuscular diseases. PMID:19623638
Reinnervation following catheter-based radio-frequency renal denervation.
Booth, Lindsea C; Nishi, Erika E; Yao, Song T; Ramchandra, Rohit; Lambert, Gavin W; Schlaich, Markus P; May, Clive N
2015-04-20
What is the topic of this review? Does catheter-based renal denervation effectively denervate the afferent and efferent renal nerves and does reinnervation occur? What advances does it highlight? Following catheter-based renal denervation, the afferent and efferent responses to electrical stimulation were abolished, renal sympathetic nerve activity was absent, and levels of renal noradrenaline and immunohistochemistry for tyrosine hydroxylase and calcitonin gene-related peptide were significantly reduced. By 11 months after renal denervation, both the functional responses and anatomical markers of afferent and efferent renal nerves had returned to normal, indicating reinnervation. Renal denervation reduces blood pressure in animals with experimental hypertension and, recently, catheter-based renal denervation was shown to cause a prolonged decrease in blood pressure in patients with resistant hypertension. The randomized, sham-controlled Symplicity HTN-3 trial failed to meet its primary efficacy end-point, but there is evidence that renal denervation was incomplete in many patients. Currently, there is little information regarding the effectiveness of catheter-based renal denervation and the extent of reinnervation. We assessed the effectiveness of renal nerve denervation with the Symplicity Flex catheter and the functional and anatomical reinnervation at 5.5 and 11 months postdenervation. In anaesthetized, non-denervated sheep, there was a high level of renal sympathetic nerve activity, and electrical stimulation of the renal nerve increased blood pressure and reduced heart rate (afferent response) and caused renal vasoconstriction and reduced renal blood flow (efferent response). Immediately after renal denervation, renal sympathetic nerve activity and the responses to electrical stimulation were absent, indicating effective denervation. By 11 months after denervation, renal sympathetic nerve activity was present and the responses to electrical stimulation were normal, indicating reinnervation. Anatomical measures of renal innervation by sympathetic efferent nerves (tissue noradrenaline and tyrosine hydroxylase) and afferent sensory nerves (calcitonin gene-related peptide) demonstrated large decreases at 1 week postdenervation, but normal levels at 11 months postdenervation. In summary, catheter-based renal denervation is effective, but reinnervation occurs. Studies of central and renal changes postdenervation are required to understand the causes of the prolonged hypotensive response to catheter-based renal denervation in human hypertension. © 2015 The Authors. Experimental Physiology © 2015 The Physiological Society.
Ferry, N; Geoffroy, J; Pozet, N; Cuisinaud, G; Benzoni, D; Zech, P Y; Sassard, J
1988-01-01
1. The kinetics of a single oral dose (300 mg) of cicletanine a new antihypertensive drug with diuretic properties, and its effects on the urinary excretion of electrolytes and of the major stable metabolites of prostacyclin and thromboxane A2 were studied in patients with normal renal function (n = 6), mild (n = 9) and severe (n = 10) renal insufficiency. 2. In normotensive subjects with normal renal function, cicletanine was rapidly and regularly absorbed, its apparent elimination half-life established around 7 h, and both its renal clearance (0.4 ml min-1) and its cumulative renal excretion (0.85% of the administered dose), were low. Mild renal insufficiency did not significantly alter these parameters, while severe renal impairment reduced the renal clearance and the cumulative urinary excretion of cicletanine and increased its apparent elimination half-life (31 h). However the area under the plasma curve was not changed due to reduced plasma concentrations in these patients. 3. Cicletanine induced a rapid and marked (four fold as a mean) increase in the urinary excretion of water, sodium and potassium which lasted for 6 to 10 h, in subjects with normal renal function. Renal insufficiency did not alter the slope of the calculated plasma concentration-effects curves but reduced the maximum effect observed for water, sodium and potassium. 4. A single oral dose of cicletanine did not change the urinary excretion of 6-keto-prostaglandin F1 alpha and thromboxane B2 in the three groups of patients studied, the basal values of which being found to be closely related to the creatinine clearance.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3358898
Does renal ageing affect survival?
Razzaque, M Shawkat
2007-10-01
The effects of ageing on progressive deterioration of renal function, both in human and experimental animals, are described elsewhere, but the effect of renal damage on overall survival and longevity is not yet clearly established. The wild-type animals of various genetic backgrounds, fed with regular diet, overtime develop severe age-associated nephropathy, that include but not limited to inflammatory cell infiltration, glomerulosclerosis, and tubulointerstitial fibrosis. Such renal damage significantly reduces their survival. Reducing renal damage, either by caloric restriction or by suppressing growth hormone (GH)/insulin-like growth factor-1 (IGF-1) activity could significantly enhance the longevity of these animals. Available survival studies using experimental animals clearly suggest that kidney pathology is one of the important non-neoplastic lesions that could affect overall survival, and that restoration of renal function by preventing kidney damage could significantly extend longevity. Careful long-term studies are needed to determine the human relevance of these experimental studies.
Stevens, R Brian; Lane, James T; Boerner, Brian P; Miles, Clifford D; Rigley, Theodore H; Sandoz, John P; Nielsen, Kathleen J; Skorupa, Jill Y; Skorupa, Anna J; Kaplan, Bruce; Wrenshall, Lucile E
2012-01-01
Rabbit anti-thymocyte globulin (rATG) induction reduces reperfusion injury and improves renal function in kidney recipients by means of properties unrelated to T-cell lysis. Here, we analyze intensive rATG induction (single dose, rATG(S) , vs. divided dose, rATG(D) ) for improved renal function and protection against hyperglycemia. Patients without diabetes (n = 98 of 180) in a prospective randomized trial of intensive rATG induction were followed for six months for the major secondary composite end point of impaired glucose regulation (hyperglycemia and new-onset diabetes after transplantation, NODAT). Prospectively collected data included fasting blood glucose and HbA(1c). Serum Mg(++) was routinely collected and retrospectively analyzed. Induction with rATG(S) produced less impaired glucose regulation (p = 0.05), delayed NODAT development (p = 0.02), less hyperglycemia (p = 0.02), better renal function (p = 0.04), and less hypomagnesemia (p = 0.02), a factor associated with a lower incidence of NODAT. Generalized linear modeling confirmed that rATG(S) protects against a synergistic interaction between tacrolimus and sirolimus that otherwise increased hypomagnesemia (p = 0.008) and hyperglycemia (p = 0.03). rATG(S) initiated before renal reperfusion improved early renal function and reduced impaired glucose regulation, an injury by diabetogenic maintenance agents (tacrolimus and sirolimus). © 2011 John Wiley & Sons A/S.
Fricke, Lisa; Petroff, David; Desch, Steffen; Lurz, Philipp; Reinhardt, Sebastian; Sonnabend, Melanie; Classen, Joseph; Baum, Petra
2017-01-01
Renal denervation is an interventional approach aiming to reduce high blood pressure. Its efficacy is subject of controversial debate. We analyzed autonomic function in patients undergoing renal denervation to identify responders. A total of 21 patients with treatment-resistant hypertension scheduled for renal denervation were included. Heart rate variability, pupillary function and sympathetic skin response were examined prior to intervention. Before and 1 or 3 months after intervention, 24-h ambulatory blood pressure readings were taken. Patients were stratified according to sympathetic nervous system function. Sympathetic activity was reduced in 12 participants (group 1) and normal or enhanced in nine patients (group 2). The mean of daytime systolic blood pressure decreased in groups 1 and 2 from 168 to 157 mmHg (95% confidence interval for difference, 1-21 mmHg, p = 0.035) and from 166 to 145 mmHg (8-34 mmHg, p = 0.005), respectively. In a linear model, blood pressure reduction was 11.3 mmHg (0.3-22 mmHg) greater in group 2 than in group 1 (p = 0.045). Patients with preexisting reduced activity of the sympathetic nervous system benefited less from renal denervation.
Mousavi, Ghafour
2015-08-01
To evaluate the effect of Black cumin (Nigella sativa Linn.) pre-treatment on renal ischemia/reperfusion (I/R) induced injury in the rats. A total of 40 male Wistar rats were randomly allocated into five equal groups including Sham, I/R model and three I/R+ Black cumin (0.5, 1 and 2%)-treated groups. I/R groups' kidneys were subjected to 60 min of global ischemia at 37°C followed by 24 h of reperfusion. At the end of reperfusion period, the rats were euthanized. Superoxide dismutase, catalase and glutathione peroxidase activities as well as reduced glutathione and renal malondialdehyde contents were determined in renal tissues. Kidney function tests and histopathological examination were also performed. High serum creatinine, blood urea nitrogen and uric acid as well as malondialhehyde (MDA) levels, and low antioxidant enzyme activities were observed in I/R rats compared to the sham rats. Pre-treatment with Black cumin for three weeks prior to IR operation improved renal function and reduced I/R induced renal inflammation and oxidative injury. These biochemical observations were supported by histopathological test of kidney sections. Black cumin significantly prevented renal ischemia/reperfusion induced functional and histological injuries.
Concealed renal failure and adverse drug reactions in older patients with type 2 diabetes mellitus.
Corsonello, Andrea; Pedone, Claudio; Corica, Francesco; Mazzei, Bruno; Di Iorio, Angelo; Carbonin, Pierugo; Incalzi, Raffaele Antonelli
2005-09-01
In elderly patients serum creatinine may be normal despite decreased glomerular filtration rate (GFR). The aim of this study was to evaluate the prevalence of this "concealed" renal failure, i.e., renal failure with normal serum creatinine levels, in elderly diabetic patients, and to verify whether it is a risk factor for adverse drug reactions (ADR) to hydrosoluble drugs. We used data on 2257 hospitalized patients with type 2 diabetes mellitus enrolled in the Gruppo Italiano di Farmacovigilanza nell'Anziano study. On the basis of serum creatinine and calculated GFR, patients were grouped as follows: normal renal function (normal serum creatinine levels and normal GFR), concealed (normal serum creatinine levels and reduced GFR), or overt (increased creatinine levels and reduced GFR) renal failure. GFR was calculated using the Modification of Diet in Renal Disease (MDRD) equation. The outcome of the study was the incidence of ADR to hydrosoluble drugs during the hospital stay. The relationship between renal function and ADR was evaluated using Cox regression analysis including potential confounders. Concealed renal failure was observed in 363 (16.1%) of patients studied. Patients with concealed or overt renal failure were older, had more frequently cognitive impairment and polypharmacy, and had lower serum albumin levels than did those with normal renal function. Both concealed (hazard ratio = 1.90; 95% confidence interval, 1.04-3.48; p =.036) and overt (hazard ratio = 2.23; 95% confidence interval, 1.40-3.55; p =.001) renal failure were significantly associated with ADR to hydrosoluble drugs. The use of more than four drugs also qualified as an independent risk factor for ADRs to hydrosoluble drugs during hospital stay. Older diabetic patients should be systematically screened to ascertain the presence of concealed renal failure in an attempt to optimize the pharmacological treatment and reduce the risk of ADRs.
Stevanovic, Ana; Schaefer, Patrick; Coburn, Mark; Rossaint, Rolf; Stoppe, Christian; Boor, Peter; Pfister, David; Heidenreich, Axel; Christ, Hildegard; Hellmich, Martin; Fahlenkamp, Astrid V
2017-01-01
Perioperative preservation of renal function has a significant impact on morbidity and mortality in kidney surgery. Nephroprotective effects of the anesthetic xenon on ischemia-reperfusion injury were found in several experimental studies. We aimed to explore whether xenon anesthesia can reduce renal damage in humans undergoing partial nephrectomy and to gather pilot data of possible nephroprotection in these patients. A prospective randomized, single-blinded, controlled study. Single-center, University Hospital of Aachen, Germany between July 2013-October 2015. Forty-six patients with regular renal function undergoing partial nephrectomy. Patients were randomly assigned to receive xenon- (n = 23) or isoflurane (n = 23) anesthesia. Primary outcome was the maximum postoperative glomerular filtration rate (GFR) decline within seven days after surgery. Secondary outcomes included intraoperative and tumor-related data, assessment of further kidney injury markers, adverse events and optional determination of renal function after 3-6 months. Unexpected radical nephrectomy was performed in 5 patients, thus they were excluded from the per-protocol analysis, but included in the intention-to-treat analysis. The maximum postoperative GFR decline was attenuated by 45% in the xenon-group (10.9 ml min-1 1.73 cm-2 versus 19.7 ml min-1 1.73 cm-2 in the isoflurane group), but without significance (P = 0.084). Occurrence of adverse events was reduced (P = 0.003) in the xenon group. Renal function was similar among the groups after 3-6 months. Xenon anesthesia was feasible and safe in patients undergoing partial nephrectomy with regard to postoperative renal function. We found no significant effect on early renal function but less adverse events in the xenon group. Larger randomized controlled studies in more heterogeneous collectives are required, to confirm or refute the possible clinical benefit on renal function by xenon. ClinicalTrials.gov NCT01839084 and EudraCT 2012-005698-30.
Ishikawa, Ken; Calzavacca, Paolo; Bellomo, Rinaldo; Bailey, Michael; May, Clive N
2012-08-01
Nitric oxide plays an important role in the control of renal blood flow and renal function. In sepsis, increased levels of inducible nitric oxide synthase produce excessive nitric oxide, which may contribute to the development of acute kidney injury. We, therefore, examined the effects of intrarenal infusion of selective inducible nitric oxide synthase inhibitors in a large animal model of hyperdynamic sepsis in which acute kidney injury occurs in the presence of increased renal blood flow. Prospective crossover randomized controlled interventional studies. University-affiliated research institute. Twelve unilaterally nephrectomized Merino ewes. Infusion of a selective (1400W) and a partially selective inducible nitric oxide synthase inhibitor (aminoguanidine) into the renal artery for 2 hrs after the induction of sepsis, and comparison with a nonselective inhibitor (Nω-nitro-L-arginine methyl ester). In sheep with nonhypotensive hyperdynamic sepsis, creatinine clearance halved (32 to 16 mL/min, ratio [95% confidence interval] 0.51 [0.28-0.92]) despite increased renal blood flow (241 to 343 mL/min, difference [95% confidence interval] 102 [78-126]). Infusion of 1400W did not change renal blood flow, urine output, or creatinine clearance, whereas infusion of Nω-nitro-L-arginine methyl ester and a high dose of aminoguanidine normalized renal blood flow, but did not alter creatinine clearance. In hyperdynamic sepsis, intrarenal infusion of a highly selective inducible nitric oxide synthase inhibitor did not reduce the elevated renal blood flow or improve renal function. In contrast, renal blood flow was reduced by infusion of a nonselective NOS inhibitor or a high dose of a partially selective inducible nitric oxide synthase inhibitor. The renal vasodilatation in septic acute kidney injury may be due to nitric oxide derived from the endothelial and neural isoforms of nitric oxide synthase, but their blockade did not restore renal function.
Schragenheim, Joseph; Bellner, Lars; Cao, Jian; Singh, Shailendra P; Bamshad, David; McClung, John A; Maayan, Omri; Meissner, Aliza; Grant, Ilana; Stier, Charles T; Abraham, Nader G
2018-05-19
We have previously reported that epoxyeicosatrienoic acid (EET) has multiple beneficial effects on renal and adipose tissue function, in addition to its vasodilatory action; it increases insulin sensitivity and inhibits inflammation. In an examination of the signaling mechanisms by which EET reduces renal and peri-renal fat function, we hypothesized that EET ameliorates obesity-induced renal dysfunction by improving sodium excretion, reducing the sodium-chloride cotransporter NCC, lowering blood pressure, and enhancing mitochondrial and thermogenic gene levels in PGC-1α dependent mice. EET-agonist treatment normalized glucose metabolism, renal ENaC and NCC protein expression, urinary sodium excretion and blood pressure in obese (db/db) mice. A marked improvement in mitochondrial integrity, thermogenic genes, and PGC-1α-HO-1-adiponectin signaling occurred. Knockout of PGC-1α in EET-treated mice resulted in a reversal of these beneficial effects including a decrease in sodium excretion, elevation of blood pressure and an increase in the pro-inflammatory adipokine nephroblastoma overexpressed gene (NOV). In the elucidation of the effects of EET on peri-renal adipose tissue, EET increased adiponectin, mitochondrial integrity, thermogenic genes and decreased NOV, i.e. "Browning' peri-renal adipose phenotype that occurs under high fat diets. Taken together, these data demonstrate a critical role of an EET agonist in the restoration of healthy adipose tissue with reduced release of inflammatory molecules, such as AngII and NOV, thereby preventing their detrimental impact on sodium absorption and NCC levels and the development of obesity-induced renal dysfunction. Copyright © 2018. Published by Elsevier Inc.
Costache, Irina Iuliana; Costea, Claudia Florida; Fotea, Vasile; Rusu, Victor Laurian; Aursulesei, Viviana; Al Namat, Razan; Costache, Dan Alexandru; Dumitrescu, Nicoleta; Buzdugă, Cătălin Mihai; Dumitrescu, Gabriela Florenţa; Sava, Anca; Bogdănici, Camelia Margareta
2018-01-01
Resistant hypertension is defined by the inability to maintain within normal limits the blood pressure values of an individual, while he is under treatment with maximal tolerated doses of three antihypertensive agents. One of the most common types of resistant hypertension is renovascular hypertension (RVH), which is caused by the narrowing of the renal arteries, in the context of existing atherosclerotic plaques at that level. We are presenting the case of a hypertensive 56-year-old man admitted in the Clinic of Cardiology for a sudden rise of his blood pressure values, despite undergoing the scheduled treatment. The abdominal bruit discovered at the clinical examination and the hypokalemia, together with the mild impairment of the renal function raised the suspicion of an existing stenosis of the main renal blood vessels. Simple grey scale kidney ultrasound, Doppler ultrasound of the renal arteries, abdominal computed tomography and magnetic resonance angiography of the renal arteries, along with invasive renal angiography demonstrated a smaller right kidney, adrenal incidentalomas, reduced vascular diameter of renal arteries due to atheromatous lesions, thrombosis of the infrarenal segment of the abdominal aorta, and reduced vascular hemodynamics in the same territories. After the renal arteries revascularization and with minimal antihypertensive treatment, the patient had a favorable outcome, with normalization of blood pressure and renal function. Atherosclerotic disease causing renal artery stenosis is essential to be taken into consideration in the etiopathogenesis of resistant hypertension especially because RVH is a potentially curable disease.
Association between pulmonary function and renal function: findings from China and Australia.
Yu, Dahai; Chen, Tao; Cai, Yamei; Zhao, Zhanzheng; Simmons, David
2017-05-01
The relationship between obstructive lung function and impaired renal function is unclear. This study investigated the dose-response relationship between obstructive lung function and impaired renal function. Two independent cross-sectional studies with representative sampling were applied. 1454 adults from rural Victoria, Australia (1298 with normal renal function, 156 with impaired renal function) and 5824 adults from Nanjing, China (4313 with normal renal function, 1511 with impaired renal function). Pulmonary function measurements included forced expiratory volume in one second (FEV1) and forced vital capacity (FVC). Estimated glomerular filtration rate (eGFR), and impaired renal function marked by eGFR <60 mL/min/1.73m 2 were used as outcome. eGFR increased linearly with FEV1 in Chinese participants and with FVC in Australians. A non-linear relationship with peaked eGFR was found for FEV1 at 2.65 L among Australians and for FVC at 2.78 L among Chinese participants, respectively. A non-linear relationship with peaked eGFR was found for the predicted percentage value of forced expiratory volume in 1 s (PFEV1) at 81-82% and for the predicted percentage value of forced vital capacity (PFVC) at 83-84% among both Chinese and Australian participants, respectively. The non-linear dose-response relationships between lung capacity measurements (both for FEV1 and FVC) and risk of impaired renal function were consistently identified in both Chinese and Australian participants. An increased risk of impaired renal function was found below 3.05 L both for FEV1 and FVC, respectively. The non-linear relationship between PFEV and PVC and the risk of impaired renal function were consistently identified in both Chinese and Australian participants. An increased risk of impaired renal function was found below 76-77% for PFEV1 and 79-80% for PFVC, respectively. In both Australian and Chinese populations, the risk of impaired renal function increased both with FEV1 and FVC below 3.05 L, with PFEV1 below 76-77% or with PFVC below 79-80%, respectively. Obstructive lung function was associated with increased risk of reduced renal function. The screen for impaired renal function in patients with obstructive lung disease might be useful to ensure there was no impaired renal function before the commencement of potentially nephrotoxic medication where indicated (eg diuretics).
Inhibition of WISE preserves renal allograft function.
Qian, Xueming; Yuan, Xiaodong; Vonderfecht, Steven; Ge, Xupeng; Lee, Jae; Jurisch, Anke; Zhang, Li; You, Andrew; Fitzpatrick, Vincent D; Williams, Alexia; Valente, Eliane G; Pretorius, Jim; Stevens, Jennitte L; Tipton, Barbara; Winters, Aaron G; Graham, Kevin; Harriss, Lindsey; Baker, Daniel M; Damore, Michael; Salimi-Moosavi, Hossein; Gao, Yongming; Elkhal, Abdallah; Paszty, Chris; Simonet, W Scott; Richards, William G; Tullius, Stefan G
2013-01-01
Wnt-modulator in surface ectoderm (WISE) is a secreted modulator of Wnt signaling expressed in the adult kidney. Activation of Wnt signaling has been observed in renal transplants developing interstitial fibrosis and tubular atrophy; however, whether WISE contributes to chronic changes is not well understood. Here, we found moderate to high expression of WISE mRNA in a rat model of renal transplantation and in kidneys from normal rats. Treatment with a neutralizing antibody against WISE improved proteinuria and graft function, which correlated with higher levels of β-catenin protein in kidney allografts. In addition, treatment with the anti-WISE antibody reduced infiltration of CD68(+) macrophages and CD8(+) T cells, attenuated glomerular and interstitial injury, and decreased biomarkers of renal injury. This treatment reduced expression of genes involved in immune responses and in fibrogenic pathways. In summary, WISE contributes to renal dysfunction by promoting tubular atrophy and interstitial fibrosis.
Bergner, R; Siegrist, B; Gretz, N; Pohlmeyer-Esch, G; Kränzlin, B
2015-09-01
A previous animal study compared the nephrotoxic effect of ibandronate (IBN) and zoledronate (ZOL), but interpretation of these study results was limited because of the model of minimal nephrotoxic dosage with a dosage ratio of 1:3. The present study investigated the nephrotoxicity of ibandronate and zoledronate in a 1.5:1 dose ratio, as used in clinical practice and compared the nephrotoxicity in rats with normal and with mildly to moderately impaired renal function. We compared rats with normal renal function (SHAM) and with impaired renal function after unilateral nephrectomy (UNX), treated either with ibandronate 1.5mg/kg, zoledronate 1mg/kg or placebo once (1×) or nine (9×) times. Renal function and markers of tubular toxicity were measured over a 27 week period. After last bisphosphonate treatment the rats were sacrificed and kidneys examined histologically. All bisphosphonate treated animals showed a significant tubular toxicity, which was temporary except in the ZOL-UNX-9×-group. Also the renal function was only transiently reduced except in the ZOL-UNX-9×-group. Histologically, bisphosphonate treatment led to cortical tubuloepithelial degeneration/necrosis and medullary tubuloepithelial swelling which were slightly more pronounced in ibandronate treated animals, when compared to zoledronate treated animals, especially with impaired renal function. In contrast to the previous study we found a similar nephrotoxicity of ibandronate and zoledronate in rats with normal renal function. In rats with impaired renal function the peak of toxicity had not even been fully reached until end of experiment in the zoledronate treated animals. The peak of toxicity seems to be more severe and delayed in rats with impaired renal function compared with rats with normal renal function. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mita, Yukiko; Ishihara, Kengo; Fukuchi, Yoshiko; Fukuya, Yoko; Yasumoto, Kyoden
2005-01-01
To study the preventive effect of supplemented chromium picolinate (CrPic) on the development of diabetic nephropathy in mice, we analyzed the effects of CrPic supplementation on renal function and concentrations of serum glucose and tissue chromium (Cr). In experiment 1, male KK-Ay obese diabetic mice were fed either a control diet (control) or a diet supplemented with 2 mg/kg diet (Cr2) or 10 mg/kg diet (Cr10) of Cr for 12 wk. Cr10 significantly ameliorated hyperglycemia after a glucose load, creatinine clearance rates, and urinary microalbumin levels (p<0.05). In experiment 2, the Cr10 diet was fed to male KK-Ay obese diabetic mice and C57BL nondiabetic mice for 4 wk. The CrPic diet reduced urinary albumin excretion in the diabetic mice (p<0.05). Inductively coupled plasma-mass spectrometry analysis revealed that the renal Cr content and the recovery of renal Cr concentration after Cr supplementation were significantly lower in the diabetic mice than in the nondiabetic mice (p<0.01). These observations suggest that Cr supplementation of type 2 diabetic mice reduces the symptoms of hyperglycemia and improves the renal function by recovering renal Cr concentration.
Scholze, Alexandra; Rinder, Christiane; Beige, Joachim; Riezler, Reiner; Zidek, Walter; Tepel, Martin
2004-01-27
Increased oxidative stress, elevated plasma homocysteine concentration, increased pulse pressure, and impaired endothelial function constitute risk factors for increased mortality in patients with end-stage renal failure. We investigated the metabolic and hemodynamic effects of intravenous administration of acetylcysteine, a thiol-containing antioxidant, during a hemodialysis session in a prospective, randomized, placebo-controlled crossover study in 20 patients with end-stage renal failure. Under control conditions, a hemodialysis session reduced plasma homocysteine concentration to 58+/-22% predialysis (mean+/-SD), whereas in the presence of acetylcysteine, the plasma homocysteine concentration was significantly more reduced to 12+/-7% predialysis (P<0.01). The reduction of plasma homocysteine concentration was significantly correlated with a reduction of pulse pressure. A 10% decrease in plasma homocysteine concentration was associated with a decrease of pulse pressure by 2.5 mm Hg. Analysis of the second derivative of photoplethysmogram waveform showed changes of arterial wave reflectance during hemodialysis in the presence of acetylcysteine, indicating improved endothelial function. Acetylcysteine-dependent increase of homocysteine removal during a hemodialysis session improves plasma homocysteine concentration, pulse pressure, and endothelial function in patients with end-stage renal failure.
The Effect of Patient and Surgical Characteristics on Renal Function After Partial Nephrectomy.
Winer, Andrew G; Zabor, Emily C; Vacchio, Michael J; Hakimi, A Ari; Russo, Paul; Coleman, Jonathan A; Jaimes, Edgar A
2018-06-01
The purpose of the study was to identify patient and disease characteristics that have an adverse effect on renal function after partial nephrectomy. We conducted a retrospective review of 387 patients who underwent partial nephrectomy for renal tumors between 2006 and 2014. A line plot with a locally weighted scatterplot smoothing was generated to visually assess renal function over time. Univariable and multivariable longitudinal regression analyses incorporated a random intercept and slope to evaluate the association between patient and disease characteristics with renal function after surgery. Median age was 60 years and most patients were male (255 patients [65.9%]) and white (343 patients [88.6%]). In univariable analysis, advanced age at surgery, larger tumor size, male sex, longer ischemia time, history of smoking, and hypertension were significantly associated with lower preoperative estimated glomerular filtration rate (eGFR). In multivariable analysis, independent predictors of reduced renal function after surgery included advanced age, lower preoperative eGFR, and longer ischemia time. Length of time from surgery was strongly associated with improvement in renal function among all patients. Independent predictors of postoperative decline in renal function include advanced age, lower preoperative eGFR, and longer ischemia time. A substantial number of subjects had recovery in renal function over time after surgery, which continued past the 12-month mark. These findings suggest that patients who undergo partial nephrectomy can experience long-term improvement in renal function. This improvement is most pronounced among younger patients with higher preoperative eGFR. Copyright © 2017 Elsevier Inc. All rights reserved.
75 FR 57474 - Cardiovascular and Renal Drugs Advisory Committee; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-21
...] Cardiovascular and Renal Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS...: Cardiovascular and Renal Drugs Advisory Committee. General Function of the Committee: To provide advice and... analyses of the TREAT (Trial to Reduce Cardiovascular Events with Aranesp Therapy) study of ARANESP...
78 FR 76308 - Cardiovascular and Renal Drugs Advisory Committee; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-17
...] Cardiovascular and Renal Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS...: Cardiovascular and Renal Drugs Advisory Committee. General Function of the Committee: To provide advice and..., Inc., for the proposed indication to reduce the risk of thrombotic cardiovascular events in patients...
77 FR 21982 - Cardiovascular and Renal Drugs Advisory Committee; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-12
...] Cardiovascular and Renal Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS...: Cardiovascular and Renal Drugs Advisory Committee. General Function of the Committee: To provide advice and...., to reduce the risk of thrombotic cardiovascular events in patients with acute coronary syndrome (ACS...
Renal function preservation with the mTOR inhibitor, Everolimus, after lung transplant.
Schneer, Sonia; Kramer, Mordechai R; Fox, Benjamin; Rusanov, Viktoria; Fruchter, Oren; Rosengarten, Dror; Bakal, Ilana; Medalion, Benjamin; Raviv, Yael
2014-06-01
Chronic kidney disease (CKD) is a common complication of calcineurin inhibitors (CNIs) in solid organ transplantation. Previous data suggest that the use of everolimus as an immunosuppressant drug leads to improvement in renal function. The aim of our study was to establish the effect of everolimus in combination with lower doses of CNIs on renal function among lung transplant recipients. Data regarding renal function and pulmonary function were collected from 41 lung transplanted patients in whom treatment was converted to a combination of everolimus with lower doses of CNIs. Patients transferred to everolimus and low dose CNIs showed an improvement in renal function. Patients who continued treatment with everolimus showed improvement in renal function, as opposed to patients who discontinued the treatment. Subjects without proteinuria at baseline showed a better improvement compared with subjects with proteinuria. The incidence of graft rejection did not increase. We concluded that a protocol that includes everolimus and lower doses of CNIs is effective for preserving renal function in lung transplant recipients with CKD. We also believe that an early implementation of everolimus, before proteinuria occurs or creatinine clearance is reduced, could lead to better outcomes. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
GPER Mediates Functional Endothelial Aging in Renal Arteries.
Meyer, Matthias R; Rosemann, Thomas; Barton, Matthias; Prossnitz, Eric R
2017-01-01
Aging is associated with impaired renal artery function, which is partly characterized by arterial stiffening and a reduced vasodilatory capacity due to excessive generation of reactive oxygen species by NADPH oxidases (Nox). The abundance and activity of Nox depends on basal activity of the heptahelical transmembrane receptor GPER; however, whether GPER contributes to age-dependent functional changes in renal arteries is unknown. This study investigated the effect of aging and Nox activity on renal artery tone in wild-type and GPER-deficient (Gper-/-) mice (4 and 24 months old). In wild-type mice, aging markedly impaired endothelium-dependent, nitric oxide (NO)-mediated relaxations to acetylcholine, which were largely preserved in renal arteries of aged Gper-/- mice. The Nox inhibitor gp91ds-tat abolished this difference by greatly enhancing relaxations in wild-type mice, while having no effect in Gper-/- mice. Contractions to angiotensin II and phenylephrine in wild-type mice were partly sensitive to gp91ds-tat but unaffected by aging. Again, deletion of GPER abolished effects of Nox inhibition on contractile responses. In conclusion, basal activity of GPER is required for the age-dependent impairment of endothelium-dependent, NO-mediated relaxation in the renal artery. Restoration of relaxation by a Nox inhibitor in aged wild-type but not Gper-/- mice strongly supports a role for Nox-derived reactive oxygen species as the underlying cause. Pharmacological blockers of GPER signaling may thus be suitable to inhibit functional endothelial aging of renal arteries by reducing Nox-derived oxidative stress and, possibly, the associated age-dependent deterioration of kidney function. © 2017 S. Karger AG, Basel.
Neural regulation of the kidney function in rats with cisplatin induced renal failure
Goulding, Niamh E.; Johns, Edward J.
2015-01-01
Aim: Chronic kidney disease (CKD) is often associated with a disturbed cardiovascular homeostasis. This investigation explored the role of the renal innervation in mediating deranged baroreflex control of renal sympathetic nerve activity (RSNA) and renal excretory function in cisplatin-induced renal failure. Methods: Rats were either intact or bilaterally renally denervated 4 days prior to receiving cisplatin (5 mg/kg i.p.) and entered a chronic metabolic study for 8 days. At day 8, other groups of rats were prepared for acute measurement of RSNA or renal function with either intact or denervated kidneys. Results: Following the cisplatin challenge, creatinine clearance was 50% lower while fractional sodium excretion and renal cortical and medullary TGF-β1 concentrations were 3–4 fold higher in both intact and renally denervated rats compared to control rats. In cisplatin-treated rats, the maximal gain of the high-pressure baroreflex curve was only 20% that of control rats, but following renal denervation not different from that of renally denervated control rats. Volume expansion reduced RSNA by 50% in control and in cisplatin-treated rats but only following bilateral renal denervation. The volume expansion mediated natriuresis/diuresis was absent in the cisplatin-treated rats but was normalized following renal denervation. Conclusions: Cisplatin-induced renal injury impaired renal function and caused a sympatho-excitation with blunting of high and low pressure baroreflex regulation of RSNA, which was dependent on the renal innervation. It is suggested that in man with CKD there is a dysregulation of the neural control of the kidney mediated by its sensory innervation. PMID:26175693
From anatomy to function: diagnosis of atherosclerotic renal artery stenosis.
Odudu, Aghogho; Vassallo, Diana; Kalra, Philip A
2015-12-01
Atherosclerotic renal artery stenosis (ARAS) affects 7% of the over 65 s and will be increasingly common with an ageing population. ARAS obstructs normal renal perfusion with adverse renal and cardiovascular consequences. Drug therapy is directed at reducing atherosclerotic risk. Two recent major trials of revascularization for ARAS showed that clinical outcomes were not improved beyond those offered by optimal drug therapy in most patients. This reflects experimental data showing that restoration of blood flow alone may not attenuate a cascade of tissue injury. A shift from anatomic to functional imaging of ARAS coupled to novel therapies might improve clinical outcomes in selected patients. This review outlines the case for separately assessing hemodynamic significance of arterial stenosis and functional reserve of renal parenchymal tissue. The authors consider current and emerging diagnostic techniques for ARAS and their potential to allow individualized and functionally directed treatments.
Huang, Qingsong; Niu, Zhiguo; Tan, Jing; Yang, Jun; Liu, Yun; Ma, Haijun; Lee, Vincent W.S.; Sun, Shuming; Song, Xiangfeng; Guo, Minghao; Wang, Yiping
2015-01-01
IL-25 is an important immune regulator that can promote Th2 immune response-dependent immunity, inflammation, and tissue repair in asthma, intestinal infection, and autoimmune diseases. In this study, we examined the effects of IL-25 in renal ischemic/reperfusion injury (IRI). Treating IRI mice with IL-25 significantly improved renal function and reduced renal injury. Furthermore, IL-25 treatment increased the levels of IL-4, IL-5, and IL-13 in serum and kidney and promoted induction of alternatively activated (M2) macrophages in kidney. Notably, IL-25 treatment also increased the frequency of type 2 innate lymphoid cells (ILC2s) and multipotent progenitor type 2 (MPPtype2) cells in kidney. IL-25–responsive ILC2 and MPPtype2 cells produced greater amounts of Th2 cytokines that associated with the induction of M2 macrophages and suppression of classically activated (M1) macrophages in vitro. Finally, adoptive transfer of ILC2s or MPPtype2 cells not only reduced renal functional and histologic injury in IRI mice but also induced M2 macrophages in kidney. In conclusion, our data identify a mechanism whereby IL-25-elicited ILC2 and MPPtype2 cells regulate macrophage phenotype in kidney and prevent renal IRI. PMID:25556172
Physical Exercise and Patients with Chronic Renal Failure: A Meta-Analysis.
Qiu, Zhenzhen; Zheng, Kai; Zhang, Haoxiang; Feng, Ji; Wang, Lizhi; Zhou, Hao
2017-01-01
Chronic renal failure is a severe clinical problem which has some significant socioeconomic impact worldwide and hemodialysis is an important way to maintain patients' health state, but it seems difficult to get better in short time. Considering these, the aim in our research is to update and evaluate the effects of exercise on the health of patients with chronic renal failure. The databases were used to search for the relevant studies in English or Chinese. And the association between physical exercise and health state of patients with chronic renal failure has been investigated. Random-effect model was used to compare the physical function and capacity in exercise and control groups. Exercise is helpful in ameliorating the situation of blood pressure in patients with renal failure and significantly reduces VO 2 in patients with renal failure. The results of subgroup analyses show that, in the age >50, physical activity can significantly reduce blood pressure in patients with renal failure. The activity program containing warm-up, strength, and aerobic exercises has benefits in blood pressure among sick people and improves their maximal oxygen consumption level. These can help patients in physical function and aerobic capacity and may give them further benefits.
Physical Exercise and Patients with Chronic Renal Failure: A Meta-Analysis
Qiu, Zhenzhen; Zheng, Kai; Zhang, Haoxiang; Feng, Ji; Wang, Lizhi
2017-01-01
Chronic renal failure is a severe clinical problem which has some significant socioeconomic impact worldwide and hemodialysis is an important way to maintain patients' health state, but it seems difficult to get better in short time. Considering these, the aim in our research is to update and evaluate the effects of exercise on the health of patients with chronic renal failure. The databases were used to search for the relevant studies in English or Chinese. And the association between physical exercise and health state of patients with chronic renal failure has been investigated. Random-effect model was used to compare the physical function and capacity in exercise and control groups. Exercise is helpful in ameliorating the situation of blood pressure in patients with renal failure and significantly reduces VO2 in patients with renal failure. The results of subgroup analyses show that, in the age >50, physical activity can significantly reduce blood pressure in patients with renal failure. The activity program containing warm-up, strength, and aerobic exercises has benefits in blood pressure among sick people and improves their maximal oxygen consumption level. These can help patients in physical function and aerobic capacity and may give them further benefits. PMID:28316986
Residual Renal Function in Children Treated with Chronic Peritoneal Dialysis
Roszkowska-Blaim, Maria
2013-01-01
Residual renal function (RRF) in patients with end-stage renal disease (ESRD) receiving renal replacement therapy is defined as the ability of native kidneys to eliminate water and uremic toxins. Preserved RRF improves survival and quality of life in adult ESRD patients treated with peritoneal dialysis. In children, RRF was shown not only to help preserve adequacy of renal replacement therapy but also to accelerate growth rate, improve nutrition and blood pressure control, reduce the risk of adverse myocardial changes, facilitate treatment of anemia and calcium-phosphorus balance abnormalities, and result in reduced serum and dialysate fluid levels of advanced glycation end-products. Factors contributing to RRF loss in children treated with peritoneal dialysis include the underlying renal disease such as hemolytic-uremic syndrome and hereditary nephropathy, small urine volume, severe proteinuria at the initiation of renal replacement therapy, and hypertension. Several approaches can be suggested to decrease the rate of RRF loss in pediatric patients treated with chronic peritoneal dialysis: potentially nephrotoxic drugs (e.g., aminoglycosides), episodes of hypotension, and uncontrolled hypertension should be avoided, urinary tract infections should be treated promptly, and loop diuretics may be used to increase salt and water excretion. PMID:24376376
Nagayama, Yasunori; Tanoue, Shota; Tsuji, Akinori; Urata, Joji; Furusawa, Mitsuhiro; Oda, Seitaro; Nakaura, Takeshi; Utsunomiya, Daisuke; Yoshida, Eri; Yoshida, Morikatsu; Kidoh, Masafumi; Tateishi, Machiko; Yamashita, Yasuyuki
2018-05-01
To evaluate the image quality, radiation dose, and renal safety of contrast medium (CM)-reduced abdominal-pelvic CT combining 80-kVp and sinogram-affirmed iterative reconstruction (SAFIRE) in patients with renal dysfunction for oncological assessment. We included 45 patients with renal dysfunction (estimated glomerular filtration rate <45 ml per min per 1.73 m 2 ) who underwent reduced-CM abdominal-pelvic CT (360 mgI kg -1 , 80-kVp, SAFIRE) for oncological assessment. Another 45 patients without renal dysfunction (estimated glomerular filtration rate >60 ml per lmin per 1.73 m 2 ) who underwent standard oncological abdominal-pelvic CT (600 mgI kg -1 , 120-kVp, filtered-back projection) were included as controls. CT attenuation, image noise, and contrast-to-noise ratio (CNR) were compared. Two observers performed subjective image analysis on a 4-point scale. Size-specific dose estimate and renal function 1-3 months after CT were measured. The size-specific dose estimate and iodine load of 80-kVp protocol were 32 and 41%,, respectively, lower than of 120-kVp protocol (p < 0.01). CT attenuation and contrast-to-noise ratio of parenchymal organs and vessels in 80-kVp images were significantly better than those of 120-kVp images (p < 0.05). There were no significant differences in quantitative or qualitative image noise or subjective overall quality (p > 0.05). No significant kidney injury associated with CM administration was observed. 80-kVp abdominal-pelvic CT with SAFIRE yields diagnostic image quality in oncology patients with renal dysfunction under substantially reduced iodine and radiation dose without renal safety concerns. Advances in knowledge: Using 80-kVp and SAFIRE allows for 40% iodine load and 32% radiation dose reduction for abdominal-pelvic CT without compromising image quality and renal function in oncology patients at risk of contrast-induced nephropathy.
Vascular and renal function in experimental thyroid disorders.
Vargas, Félix; Moreno, Juan Manuel; Rodríguez-Gómez, Isabel; Wangensteen, Rosemary; Osuna, Antonio; Alvarez-Guerra, Miriam; García-Estañ, Joaquín
2006-02-01
This review focuses on the effects of thyroid hormones in vascular and renal systems. Special emphasis is given to the mechanisms by which thyroid hormones affect the regulation of body fluids, vascular resistance and, ultimately, blood pressure. Vascular function is markedly affected by thyroid hormones that produce changes in vascular reactivity and endothelial function in hyper- and hypothyroidism. The hypothyroid state is accompanied by a marked decrease in sensitivity to vasoconstrictors, especially to sympathetic agonists, alteration that may play a role in the reduced blood pressure of hypothyroid rats, as well as in the preventive effects of hypothyroidism on experimental hypertension. Moreover, in hypothyroid rats, the endothelium-dependent and nitric oxide donors vasodilation is reduced. Conversely, the vessels from hyperthyroid rats showed an increased endothelium-dependent responsiveness that may be secondary to the shear-stress induced by the hyperdynamic circulation, and that may contribute to the reduced vascular resistance characteristic of this disease. Thyroid hormones also have important effects in the kidney, affecting renal growth, renal haemodynamics, and salt and water metabolism. In hyperthyroidism, there is a resetting of the pressure-natriuresis relationship related to hyperactivity of the renin-angiotensin system, which contributes to the arterial hypertension associated with this endocrine disease. Moreover, thyroid hormones affect the development and/or maintenance of various forms of arterial hypertension. This review also describes recent advances in our understanding of thyroid hormone action on nitric oxide and oxidative stress in the regulation of cardiovascular and renal function and in the long-term control of blood pressure.
Renoprotective effects of hepatocyte growth factor in the stenotic kidney
Stewart, Nicholas
2013-01-01
Renal microvascular (MV) damage and loss contribute to the progression of renal injury in renal artery stenosis (RAS). Hepatocyte growth factor (HGF) is a powerful angiogenic and antifibrotic cytokine that we showed to be decreased in the stenotic kidney. We hypothesized that renal HGF therapy will improve renal function mainly by protecting the renal microcirculation. Unilateral RAS was induced in 15 pigs. Six weeks later, single-kidney RBF and GFR were quantified in vivo using multidetector computed tomography (CT). Then, intrarenal rh-HGF or vehicle was randomly administered into the stenotic kidney (RAS, n = 8; RAS+HGF, n = 7). Pigs were observed for 4 additional weeks before CT studies were repeated. Renal MV density was quantified by 3D micro-CT ex vivo and histology, and expression of angiogenic and inflammatory factors, apoptosis, and fibrosis was determined. HGF therapy improved RBF and GFR compared with vehicle-treated pigs. This was accompanied by improved renal expression of angiogenic cytokines (VEGF, p-Akt) and tissue-healing promoters (SDF-1, CXCR4, MMP-9), reduced MV remodeling, apoptosis, and fibrosis, and attenuated renal inflammation. However, HGF therapy did not improve renal MV density, which was similarly reduced in RAS and RAS+HGF compared with controls. Using a clinically relevant animal model of RAS, we showed novel therapeutic effects of a targeted renal intervention. Our results show distinct actions on the existing renal microcirculation and promising renoprotective effects of HGF therapy in RAS. Furthermore, these effects imply plasticity of the stenotic kidney to recuperate its function and underscore the importance of MV integrity in the progression of renal injury in RAS. PMID:23269649
A Literature Review of Renal Surgical Anatomy and Surgical Strategies for Partial Nephrectomy
Klatte, Tobias; Ficarra, Vincenzo; Gratzke, Christian; Kaouk, Jihad; Kutikov, Alexander; Macchi, Veronica; Mottrie, Alexandre; Porpiglia, Francesco; Porter, James; Rogers, Craig G.; Russo, Paul; Thompson, R. Houston; Uzzo, Robert G.; Wood, Christopher G.; Gill, Inderbir S.
2016-01-01
Context A detailed understanding of renal surgical anatomy is necessary to optimize preoperative planning and operative technique and provide a basis for improved outcomes. Objective To evaluate the literature regarding pertinent surgical anatomy of the kidney and related structures, nephrometry scoring systems, and current surgical strategies for partial nephrectomy (PN). Evidence acquisition A literature review was conducted. Evidence synthesis Surgical renal anatomy fundamentally impacts PN surgery. The renal artery divides into anterior and posterior divisions, from which approximately five segmental terminal arteries originate. The renal veins are not terminal. Variations in the vascular and lymphatic channels are common; thus, concurrent lymphadenectomy is not routinely indicated during PN for cT1 renal masses in the setting of clinically negative lymph nodes. Renal-protocol contrast-enhanced computed tomography or magnetic resonance imaging is used for standard imaging. Anatomy-based nephrometry scoring systems allow standardized academic reporting of tumor characteristics and predict PN outcomes (complications, remnant function, possibly histology). Anatomy-based novel surgical approaches may reduce ischemic time during PN; these include early unclamping, segmental clamping, tumor-specific clamping (zero ischemia), and unclamped PN. Cancer cure after PN relies on complete resection, which can be achieved by thin margins. Post-PN renal function is impacted by kidney quality, remnant quantity, and ischemia type and duration. Conclusions Surgical renal anatomy underpins imaging, nephrometry scoring systems, and vascular control techniques that reduce global renal ischemia and may impact post-PN function. A contemporary ideal PN excises the tumor with a thin negative margin, delicately secures the tumor bed to maximize vascularized remnant parenchyma, and minimizes global ischemia to the renal remnant with minimal complications. Patient summary In this report we review renal surgical anatomy. Renal mass imaging allows detailed delineation of the anatomy and vasculature and permits nephrometry scoring, and thus precise, patient-specific surgical planning. Novel off-clamp techniques have been developed that may lead to improved outcomes. PMID:25911061
A Literature Review of Renal Surgical Anatomy and Surgical Strategies for Partial Nephrectomy.
Klatte, Tobias; Ficarra, Vincenzo; Gratzke, Christian; Kaouk, Jihad; Kutikov, Alexander; Macchi, Veronica; Mottrie, Alexandre; Porpiglia, Francesco; Porter, James; Rogers, Craig G; Russo, Paul; Thompson, R Houston; Uzzo, Robert G; Wood, Christopher G; Gill, Inderbir S
2015-12-01
A detailed understanding of renal surgical anatomy is necessary to optimize preoperative planning and operative technique and provide a basis for improved outcomes. To evaluate the literature regarding pertinent surgical anatomy of the kidney and related structures, nephrometry scoring systems, and current surgical strategies for partial nephrectomy (PN). A literature review was conducted. Surgical renal anatomy fundamentally impacts PN surgery. The renal artery divides into anterior and posterior divisions, from which approximately five segmental terminal arteries originate. The renal veins are not terminal. Variations in the vascular and lymphatic channels are common; thus, concurrent lymphadenectomy is not routinely indicated during PN for cT1 renal masses in the setting of clinically negative lymph nodes. Renal-protocol contrast-enhanced computed tomography or magnetic resonance imaging is used for standard imaging. Anatomy-based nephrometry scoring systems allow standardized academic reporting of tumor characteristics and predict PN outcomes (complications, remnant function, possibly histology). Anatomy-based novel surgical approaches may reduce ischemic time during PN; these include early unclamping, segmental clamping, tumor-specific clamping (zero ischemia), and unclamped PN. Cancer cure after PN relies on complete resection, which can be achieved by thin margins. Post-PN renal function is impacted by kidney quality, remnant quantity, and ischemia type and duration. Surgical renal anatomy underpins imaging, nephrometry scoring systems, and vascular control techniques that reduce global renal ischemia and may impact post-PN function. A contemporary ideal PN excises the tumor with a thin negative margin, delicately secures the tumor bed to maximize vascularized remnant parenchyma, and minimizes global ischemia to the renal remnant with minimal complications. In this report we review renal surgical anatomy. Renal mass imaging allows detailed delineation of the anatomy and vasculature and permits nephrometry scoring, and thus precise, patient-specific surgical planning. Novel off-clamp techniques have been developed that may lead to improved outcomes. Copyright © 2015 European Association of Urology. Published by Elsevier B.V. All rights reserved.
Fluid and electrolyte disturbances in cirrhosis.
Papper, S
1976-01-01
Glomerular filtration rate and renal plasma flow may be normal, reduced or increased in cirrhosis. The mechanism of departures from normal is not known. Other renal functional changes in cirrhosis include avid sodium reabsorption, impaired concentrating and diluting abilities, and partial renal tubular acidosis. Fluid and electrolyte disorders are common. Sodium retention with edema and ascites should generally be treated conservatively because they tend to disappear as the liver heals and because forced diuresis has hazards. The indications for diuretics are (1) incipient or overt atelectasis; (2) abdominal distress; and (3) possibility of skin breakdown. Hyponatremia is common and its mechanism and treatment must be assessed in each patient. Hypokalemia occurs and requires treatment. Respiratory alkalosis and renal tubular acidosis seldom need therapy. The hepatorenal syndrome is defined as functional renal failure in the absence of other known causes of renal functional impairment. The prognosis is terrible and therapy is unsatisfactory. The best approach is not to equate the occurrence of renal failure in cirrhosis with the hepatorenal syndrome. Rather the physician should first explore all treatable causes of renal failure, eg, dehydration, obstruction, infection, heart failure, potassium depletion, and others.
Reversal deterioration of renal function accompanied with primary hypothyrodism.
Dragović, Tamara
2012-02-01
Hypothyroidism is often accompanied with decline of kidney function, or inability to maintain electrolyte balance. These changes are usually overlooked in everyday practice. Early recognition of this association eliminates unnecessary diagnostic procedures that postpone the adequate treatment. Two patients with elevated serum creatinine levels due to primary autoimmune hypothyroidism, with complete recovery of creatinine clearance after thyroid hormone substitution therapy are presented. The first patient was a young male whose laboratory tests suggested acute renal failure, and the delicate clinical presentation of reduced thyroid function. The second patient was an elderly woman with a history of a long-term signs and symptoms attributed to ageing, including the deterioration of renal function, with consequently delayed diagnosis of hypothyroidism. Serum thyrotropin and thyroxin levels measurement should be done in all cases of renal failure with undefined renal desease, even if the typical clinical presentation of hypothyroidism is absent. Thyroid hormone assays sholud also be performed in all patients with chronic kidney disease whose kidney function is rapidly worsening.
Pharmacology of the Phosphate Binder, Lanthanum Carbonate
Damment, Stephen JP
2011-01-01
Studies were conducted to compare the phosphate-binding efficacy of lanthanum carbonate directly with other clinically used phosphate binders and to evaluate any potential adverse pharmacology. To examine the phosphate-binding efficacy, rats with normal renal function and chronic renal failure received lanthanum carbonate, aluminum hydroxide, calcium carbonate, or sevelamer hydrochloride in several experimental models. Lanthanum carbonate and aluminum hydroxide markedly increased excretion of [32P]-phosphate in feces and reduced excretion in urine in rats with normal renal function (p < 0.05), indicating good dietary phosphate-binding efficacy. In rats with chronic renal failure, lanthanum carbonate and aluminum hydroxide reduced urinary phosphate excretion to a greater degree and more rapidly than calcium carbonate, which in turn was more effective than sevelamer hydrochloride. The potential to induce adverse pharmacological effects was assessed systematically in mice, rats, and dogs with normal renal function using standard in vivo models. There was no evidence of any adverse secondary pharmacological effects of lanthanum carbonate on the central nervous, cardiovascular, respiratory, or gastrointestinal systems. These studies indicate that lanthanum carbonate is the more potent of the currently available dietary phosphate binders. No adverse secondary pharmacological actions were observed in vivo in a systematic evaluation at high doses. PMID:21332344
Effects of renal function on pharmacokinetics and pharmacodynamics of lesinurad in adult volunteers.
Gillen, Michael; Valdez, Shakti; Zhou, Dongmei; Kerr, Bradley; Lee, Caroline A; Shen, Zancong
2016-01-01
Lesinurad is a selective uric acid reabsorption inhibitor approved for the treatment of gout in combination with a xanthine oxidase inhibitor (XOI) in patients who have not achieved target serum uric acid (sUA) levels with an XOI alone. Most people with gout have chronic kidney disease. The pharmacokinetics, pharmacodynamics, and safety of lesinurad were assessed in subjects with impaired renal function. Two Phase I, multicenter, open-label, single-dose studies enrolled subjects with normal renal function (estimated creatinine clearance [eCrCl] >90 mL/min; N=12) or mild (eCrCl 60-89 mL/min; N=8), moderate (eCrCl 30-59 mL/min; N=16), or severe (eCrCl <30 mL/min; N=6) renal impairment. Subjects were given a single oral lesinurad dose of 200 mg (N=24) or 400 mg (N=18). Blood and urine samples were analyzed for plasma lesinurad concentrations and serum and urine uric acid concentrations. Safety was assessed by adverse events and laboratory data. Mild, moderate, and severe renal impairment increased lesinurad plasma area under the plasma concentration-time curve by 34%, 54%-65%, and 102%, respectively. Lesinurad plasma C max was unaffected by renal function status. Lower renal clearance and urinary excretion of lesinurad were associated with the degree of renal impairment. The sUA-lowering effect of a single dose of lesinurad was similar between mild renal impairment and normal function, reduced in moderate impairment, and greatly diminished in severe impairment. Lesinurad increased urinary urate excretion in normal function and mild renal impairment; the increase was less with moderate or severe renal impairment. Lesinurad was well tolerated by all subjects. Lesinurad exposure increased with decreasing renal function; however, the effects of lesinurad on sUA were attenuated in moderate to severe renal impairment.
Serum osteoprotegerin and renal function in the general population: the Tromsø Study.
Vik, Anders; Brodin, Ellen E; Mathiesen, Ellisiv B; Brox, Jan; Jørgensen, Lone; Njølstad, Inger; Brækkan, Sigrid K; Hansen, John-Bjarne
2017-02-01
Serum osteoprotegerin (OPG) is elevated in patients with chronic kidney disease (CKD) and increases with decreasing renal function. However, there are limited data regarding the association between OPG and renal function in the general population. The aim of the present study was to explore the relation between serum OPG and renal function in subjects recruited from the general population. We conducted a cross-sectional study with 6689 participants recruited from the general population in Tromsø, Norway. Estimated glomerular filtration rate (eGFR) was calculated using the Chronic Kidney Disease Epidemiology Collaboration equations. OPG was modelled both as a continuous and categorical variable. General linear models and linear regression with adjustment for possible confounders were used to study the association between OPG and eGFR. Analyses were stratified by the median age, as serum OPG and age displayed a significant interaction on eGFR. In participants ≤62.2 years with normal renal function (eGFR ≥90 mL/min/1.73 m 2 ) eGFR increased by 0.35 mL/min/1.73 m 2 (95% CI 0.13-0.56) per 1 standard deviation (SD) increase in serum OPG after multiple adjustment. In participants older than the median age with impaired renal function (eGFR <90 mL/min/1.73 m 2 ), eGFR decreased by 1.54 (95% CI -2.06 to -1.01) per 1 SD increase in serum OPG. OPG was associated with an increased eGFR in younger subjects with normal renal function and with a decreased eGFR in older subjects with reduced renal function. Our findings imply that the association between OPG and eGFR varies with age and renal function.
Stevens, R Brian; Foster, Kirk W; Miles, Clifford D; Kalil, Andre C; Florescu, Diana F; Sandoz, John P; Rigley, Theodore H; Malik, Tamer; Wrenshall, Lucile E
2015-01-01
The two most significant impediments to renal allograft survival are rejection and the direct nephrotoxicity of the immunosuppressant drugs required to prevent it. Calcineurin inhibitors (CNI), a mainstay of most immunosuppression regimens, are particularly nephrotoxic. Until less toxic antirejection agents become available, the only option is to optimize our use of those at hand. To determine whether intensive rabbit anti-thymocyte globulin (rATG) induction followed by CNI withdrawal would individually or combined improve graft function and reduce graft chronic histopathology-surrogates for graft and, therefore, patient survival. As previously reported, a single large rATG dose over 24 hours was well-tolerated and associated with better renal function, fewer infections, and improved patient survival. Here we report testing whether complete CNI discontinuation would improve renal function and decrease graft pathology. Between April 20, 2004 and 4-14-2009 we conducted a prospective, randomized, non-blinded renal transplantation trial of two rATG dosing protocols (single dose, 6 mg/kg vs. divided doses, 1.5 mg/kg every other day x 4; target enrollment = 180). Subsequent maintenance immunosuppression consisted of tacrolimus, a CNI, and sirolimus, a mammalian target of rapamycin inhibitor. We report here the outcome of converting patients after six months either to minimized tacrolimus/sirolimus or mycophenolate mofetil/sirolimus. Primary endpoints were graft function and chronic histopathology from protocol kidney biopsies at 12 and 24 months. CNI withdrawal (on-treatment analysis) associated with better graft function (p <0.001) and lower chronic histopathology composite scores in protocol biopsies at 12 (p = 0.003) and 24 (p = 0.013) months, without affecting patient (p = 0.81) or graft (p = 0.93) survival, or rejection rate (p = 0.17). CNI (tacrolimus) withdrawal at six months may provide a strategy for decreased nephrotoxicity and improved long-term function in steroid-free low immunological risk renal transplant patients. ClinicalTrials.gov NCT00556933.
Zhu, Liangsong; Wu, Guangyu; Huang, Jiwei; Wang, Jianfeng; Zhang, Ruiyun; Kong, Wen; Xue, Wei; Huang, Yiran; Chen, Yonghui; Zhang, Jin
2017-05-01
To compare the renal function preservation between laparoscopic radio frequency ablation assisted tumor enucleation and laparoscopic partial nephrectomy. Data were analyzed from 246 patients who underwent laparoscopic radio frequency ablation assisted tumor enucleation and laparoscopic partial nephrectomy for solitary cT1a renal cell carcinoma from January 2013 to July 2015. To reduce the intergroup difference, we used a 1:1 propensity matching analysis. The functional renal parenchyma volume preservation were measured preoperative and 12 months after surgery. The total renal function recovery and spilt GFR was compared. Multivariable logistic analysis was used for predictive factors for renal function decline. After 1:1 propensity matching, each group including 100 patients. Patients in the laparoscopic radio frequency ablation assisted tumor enucleation had a smaller decrease in estimate glomerular filtration rate at 1 day (-7.88 vs -20.01%, p < 0.001), 3 months (-2.31 vs -10.39%, p < 0.001), 6 months (-2.16 vs -7.99%, p = 0.015), 12 months (-3.26 vs -8.03%, p = 0.012) and latest test (-3.24 vs -8.02%, p = 0.040), also had better functional renal parenchyma volume preservation (89.19 vs 84.27%, p < 0.001), lower decrease of the spilt glomerular filtration rate (-9.41 vs -17.13%, p < 0.001) at 12 months. The functional renal parenchyma volume preservation, warm ischemia time and baseline renal function were the important independent factors in determining long-term functional recovery. The laparoscopic radio frequency ablation assisted tumor enucleation technology has unique advantage and potential in preserving renal parenchyma without ischemia damage compared to conventional laparoscopic partial nephrectomy, and had a better outcome, thus we recommend this technique in selected T1a patients.
Wang, K.; Blotner, S.; Magnusson, M. O.; Wilkins, J. J.; Martin, P.; Solsky, J.; Nieforth, K.; Wat, C.; Grippo, J. F.
2013-01-01
Ribavirin (RBV) is an integral part of standard-of-care hepatitis C virus (HCV) treatments and many future regimens under investigation. The pharmacokinetics (PK), safety, and tolerability of RBV in chronically HCV-infected patients with renal impairment are not well defined and were the focus of an open-label PK study in HCV-infected patients receiving RBV plus pegylated interferon. Serial RBV plasma samples were collected over 12 h on day 1 of weeks 1 and 12 from patients with moderate renal impairment (creatinine clearance [CLCR], 30 to 50 ml/min; RBV, 600 mg daily), severe renal impairment (CLCR, <30 ml/min; RBV, 400 mg daily), end-stage renal disease (ESRD) (RBV, 200 mg daily), or normal renal function (CLCR, >80 ml/min; RBV, 800 to 1,200 mg daily). Of the 44 patients, 9 had moderately impaired renal function, 10 had severely impaired renal function, 13 had ESRD, and 12 had normal renal function. The RBV dose was reduced because of adverse events (AEs) in 71% and 53% of severe and moderate renal impairment groups, respectively. Despite this modification, patients with moderate and severe impairment had 12-hour (area under the concentration-time curve from 0 to 12 h [AUC0–12]) values 36% (38,452 ng · h/ml) and 25% (35,101 ng · h/ml) higher, respectively, than those with normal renal function (28,192 ng · h/ml). Patients with ESRD tolerated a 200-mg daily dose, and AUC0–12 was 20% lower (22,629 ng · h/ml) than in patients with normal renal function. PK modeling and simulation (M&S) indicated that doses of 200 mg or 400 mg alternating daily for patients with moderate renal impairment and 200 mg daily for patients with severe renal impairment were the most appropriate dose regimens in these patients. PMID:24080649
Ojeda, José M; Kohout, Isolda; Cuestas, Eduardo
2013-01-01
Haemolytic uremic syndrome (HUS) is the most common cause of acute renal failure and the second leading cause of chronic renal failure in children. The factors that affect incomplete renal function recovery prior to hospital admission are poorly understood. To analyse the risk factors that determine incomplete recovery of renal function prior to hospitalisation in children with HUS. A retrospective case-control study. age, sex, duration of diarrhoea, bloody stools, vomiting, fever, dehydration, previous use of antibiotics, and incomplete recovery of renal function (proteinuria, hypertension, reduced creatinine clearance, and chronic renal failure during follow-up). Patients of both sexes under 15 years of age were included. Of 36 patients, 23 were males (65.3%; 95%CI: 45.8 to 80.9), with an average age of 2.5 ± 1.4 years. Twenty-one patients required dialysis (58%; 95% CI: 40.8 to 75.8), and 13 (36.1%; 95% CI: 19.0 to 53.1) did not recover renal function. In the bivariate model, the only significant risk factor was dehydration (defined as weight loss >5%) [(OR: 5.3; 95% CI: 1.4 to 12.3; P=.0220]. In the multivariate analysis (Cox multiple regression), only dehydration was marginally significant (HR: 95.823; 95% CI: 93.175 to 109.948; P=.085). Our data suggest that dehydration prior to admission may be a factor that increases the risk of incomplete recovery of renal function during long-term follow-up in children who develop HUS D+. Consequently, in patients with diarrhoea who are at risk of HUS, dehydration should be strongly avoided during outpatient care to preserve long-term renal function. These results must be confirmed by larger prospective studies.
AGXT2 rs37369 polymorphism predicts the renal function in patients with chronic heart failure.
Hu, Xiao-Lei; Zeng, Wen-Jing; Li, Mu-Peng; Yang, Yong-Long; Kuang, Da-Bin; Li, He; Zhang, Yan-Jiao; Jiang, Chun; Peng, Li-Ming; Qi, Hong; Zhang, Ke; Chen, Xiao-Ping
2017-12-30
Patients with chronic heart failure (CHF) are often accompanied with varying degrees of renal diseases. The purpose of this study was to identify rs37369 polymorphism of AGXT2 specific to the renal function of CHF patients. A total of 1012 southern Chinese participants, including 487 CHF patients without history of renal diseases and 525 healthy volunteers, were recruited for this study. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was used to determine the genotypes of AGXT2 rs37369 polymorphism. Levels of blood urea nitrogen (BUN) and serum creatinine (SCr) were detected to indicate the renal function of the participants. BUN level was significantly higher in CHF patients without history of renal diseases compared with healthy volunteers (p=0.000). And the similar result was also obtained for SCr (p=0.000). Besides, our results indicated that the level of BUN correlated significantly with SCr in both the CHF patients without renal diseases (r=0.4533, p<0.0001) and volunteers (r=0.2489, p<0.0001). Furthermore, we found that the AGXT2 rs37369 polymorphism could significantly affect the level of BUN in CHF patients without history of renal diseases (p=0.036, AA+AG vs GG). Patients with rs37369 GG genotype showed a significantly reduced level of BUN compared to those with the AA genotype (p=0.024), and the significant difference was still observed in the smokers of CHF patients without renal diseases (p=0.023). In conclusion, we found that CHF might induce the impairment of kidney and cause deterioration of renal function. AGXT2 rs37369 polymorphism might affect the renal function of CHF patients free from renal diseases, especially in patients with cigarette smoking. Copyright © 2017. Published by Elsevier B.V.
Tributyltin chloride induces renal dysfunction by inflammation and oxidative stress in female rats.
Coutinho, João V S; Freitas-Lima, Leandro C; Freitas, Frederico F C T; Freitas, Flávia P S; Podratz, Priscila L; Magnago, Rafaella P L; Porto, Marcella L; Meyrelles, Silvana S; Vasquez, Elisardo C; Brandão, Poliane A A; Carneiro, Maria T W D; Paiva-Melo, Francisca D; Miranda-Alves, Leandro; Silva, Ian V; Gava, Agata L; Graceli, Jones B
2016-10-17
Tributyltin chloride (TBT) is an organometallic pollutant that is used as a biocide in antifouling paints. TBT induces several toxic and endocrine-disrupting effects. However, studies evaluating the effects of TBT on renal function are rare. This study demonstrates that TBT exposure is responsible for improper renal function as well as the development of abnormal morphophysiology in mammalian kidneys. Female rats were treated with TBT, and their renal morphophysiology was assessed. Morphophysiological abnormalities such as decreased glomerular filtration rate and increased proteinuria levels were observed in TBT rats. In addition, increases in inflammation, collagen deposition and α-smooth muscle actin (α-SMA) protein expression were observed in TBT kidneys. A disrupted cellular redox balance and apoptosis in kidney tissue were also observed in TBT rats. TBT rats demonstrated reduced serum estrogen levels and estrogen receptor-α (ERα) protein expression in renal cortex. Together, these data provide in vivo evidence that TBT is toxic to normal renal function and that these effects may be associated with renal histopathology complications, such as inflammation and fibrosis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Ensete superbum ameliorates renal dysfunction in experimental diabetes mellitus.
Sreekutty, M S; Mini, S
2016-01-01
Hyperglycemia mediated oxidative stress plays a key role in the pathogenesis of diabetic complications like nephropathy. In the present study, we evaluated the effect of ethanolic extract of Ensete superbum seeds (ESSE) on renal dysfunction and oxidative stress in streptozotocin-induced diabetic rats. Glucose, HbA1c, total protein, albumin, renal function markers (urea, uric acid and creatinine), and lipid peroxidation levels were evaluated. Renal enzymatic and non-enzymatic antioxidants were examined along with renal histopathological study. ESSE (400 mg/kg BW t) administration reduced glucose and HbA1c, and improved serum total protein and albumin in diabetic rats. ESSE in diabetic rats recorded decrement in renal function markers and renal lipid peroxidation products along with significant increment in enzymatic and non-enzymatic antioxidants. Renal morphological abnormalities of diabetic rats were markedly ameliorated by E. superbum. These results suggest that the antioxidant effect of E. superbum could ameliorate oxidative stress and delay/prevent the progress of diabetic nephropathy in diabetes mellitus.
Li, Wen; Wang, Li; Chu, Xiaoqian; Cui, Huantian; Bian, Yuhong
2017-04-01
At present, the main therapy for chronic renal failure (CRF) is dialysis and renal transplantation, but neither obtains satisfactory results. Human umbilical cord mesenchymal stem cells (huMSCs) are isolated from the fetal umbilical cord which has a high self-renewal and multi-directional differentiation potential. Icariin (ICA), a kidney-tonifying Chinese Medicine can enhance the multipotency of huMSCs. Therefore, this work seeks to employ the use of ICA-treated huMSCs for the treatment of chronic renal failure. Blood urea nitrogen and creatinine (Cr) analyses showed amelioration of functional parameters in ICA-treated huMSCs for the treatment of CRF rats at 3, 7, and 14 days after transplantation. ICA-treated huMSCs can obviously increase the number of cells in injured renal tissues at 3, 7, and 14 days after transplantation by optical molecular imaging system. Hematoxylin-eosin staining demonstrated that ICA-treated huMSCs reduced the levels of fibrosis in CRF rats at 14 days after transplantation. Superoxide dismutase and Malondialdehyde analyses showed that ICA-treated huMSCs reduced the oxidative damage in CRF rats. Moreover, transplantation with ICA-treated huMSCs decreased inflammatory responses, promoted the expression of growth factors, and protected injured renal tissues. Taken together, our findings suggest that ICA-treated huMSCs could improve the kidney function in CRF rats.
Takaku, Mariana; da Silva, Andre Carnevali; Iritsu, Nathalie Izumi; Vianna, Pedro Thadeu Galvao; Castiglia, Yara Marcondes Machado
2018-01-01
Parecoxib, a selective COX-2 inhibitor, is used to improve analgesia in postoperative procedures. Here we evaluated whether pretreatment with a single dose of parecoxib affects the function, cell injury, and inflammatory response of the kidney of rats subjected to acute hemorrhage. Inflammatory response was determined according to serum and renal tissue cytokine levels (IL-1 α , IL-1 β , IL-6, IL-10, and TNF- α ). Forty-four adult Wistar rats anesthetized with sevoflurane were randomized into four groups: placebo/no hemorrhage (Plc/NH); parecoxib/no hemorrhage (Pcx/NH); placebo/hemorrhage (Plc/H); and parecoxib/hemorrhage (Pcx/H). Pcx groups received a single dose of intravenous parecoxib while Plc groups received a single dose of placebo (isotonic saline). Animals in hemorrhage groups underwent bleeding of 30% of blood volume. Renal function and renal histology were then evaluated. Plc/H showed the highest serum levels of cytokines, suggesting that pretreatment with parecoxib reduced the inflammatory response in rats subjected to hemorrhage. No difference in tissue cytokine levels between groups was observed. Plc/H showed higher percentage of tubular dilation and degeneration, indicating that parecoxib inhibited tubular injury resulting from renal hypoperfusion. Our findings indicate that pretreatment with a single dose of parecoxib reduced the inflammatory response and tubular renal injury without altering renal function in rats undergoing acute hemorrhage.
Lima, Ingrid L. B.; Rodrigues, Aline F. A. C.; Bergamaschi, Cássia T.; Campos, Ruy R.; Hirata, Aparecida E.; Tufik, Sergio; Xylaras, Beatriz D. P.; Visniauskas, Bruna; Chagas, Jair R.; Gomes, Guiomar N.
2014-01-01
Changes in the maternal environment can induce fetal adaptations that result in the progression of chronic diseases in the offspring. The objective of the present study was to evaluate the effects of maternal chronic sleep restriction on blood pressure, renal function and cardiac baroreflex response on male offspring at adult age. Female 3-month-old Wistar rats were divided in two experimental groups: control (C) and chronic sleep restricted (CSR). Pregnancy was confirmed by vaginal smear. Chronic sleep restricted females were subjected to sleep restriction by the multiple platform technique for 20 h daily, between the 1st and 20th day of pregnancy. After birth, the litters were reduced to 6 rats per mother, and were designated as offspring from control (OC) and offspring from chronic sleep restricted (OCSR). Indirect blood pressure (BPi – tail cuff) was measured by plethysmography in male offspring at 3 months old. Following, the renal function and cardiac baroreflex response were analyzed. Values of BPi in OCSR were significantly higher compared to OC [OC: 127±2.6 (19); OCSR: 144±2.5 (17) mmHg]. The baroreflex sensitivity to the increase of blood pressure was reduced in OCSR [Slope: OC: −2.6±0.15 (9); OCRS: −1.6±0.13 (9)]. Hypothalamic activity of ACE2 was significantly reduced in OCSR compared to OC [OC: 97.4±15 (18); OSR: 60.2±3.6 (16) UAF/min/protein mg]. Renal function alteration was noticed by the increase in glomerular filtration rate (GFR) observed in OCSR [OC: 6.4±0.2 (10); OCSR: 7.4±0.3 (7)]. Chronic sleep restriction during pregnancy caused in the offspring hypertension, altered cardiac baroreflex response, reduced ACE-2 activity in the hypothalamus and renal alterations. Our data suggest that the reduction of sleeping time along the pregnancy is able to modify maternal homeostasis leading to functional alterations in offspring. PMID:25405471
Lima, Ingrid L B; Rodrigues, Aline F A C; Bergamaschi, Cássia T; Campos, Ruy R; Hirata, Aparecida E; Tufik, Sergio; Xylaras, Beatriz D P; Visniauskas, Bruna; Chagas, Jair R; Gomes, Guiomar N
2014-01-01
Changes in the maternal environment can induce fetal adaptations that result in the progression of chronic diseases in the offspring. The objective of the present study was to evaluate the effects of maternal chronic sleep restriction on blood pressure, renal function and cardiac baroreflex response on male offspring at adult age. Female 3-month-old Wistar rats were divided in two experimental groups: control (C) and chronic sleep restricted (CSR). Pregnancy was confirmed by vaginal smear. Chronic sleep restricted females were subjected to sleep restriction by the multiple platform technique for 20 h daily, between the 1st and 20th day of pregnancy. After birth, the litters were reduced to 6 rats per mother, and were designated as offspring from control (OC) and offspring from chronic sleep restricted (OCSR). Indirect blood pressure (BPi - tail cuff) was measured by plethysmography in male offspring at 3 months old. Following, the renal function and cardiac baroreflex response were analyzed. Values of BPi in OCSR were significantly higher compared to OC [OC: 127 ± 2.6 (19); OCSR: 144 ± 2.5 (17) mmHg]. The baroreflex sensitivity to the increase of blood pressure was reduced in OCSR [Slope: OC: -2.6 ± 0.15 (9); OCRS: -1.6 ± 0.13 (9)]. Hypothalamic activity of ACE2 was significantly reduced in OCSR compared to OC [OC: 97.4 ± 15 (18); OSR: 60.2 ± 3.6 (16) UAF/min/protein mg]. Renal function alteration was noticed by the increase in glomerular filtration rate (GFR) observed in OCSR [OC: 6.4 ± 0.2 (10); OCSR: 7.4 ± 0.3 (7)]. Chronic sleep restriction during pregnancy caused in the offspring hypertension, altered cardiac baroreflex response, reduced ACE-2 activity in the hypothalamus and renal alterations. Our data suggest that the reduction of sleeping time along the pregnancy is able to modify maternal homeostasis leading to functional alterations in offspring.
Lustgarten, Michael S; Fielding, Roger A
2017-12-15
Reduced skeletal muscle density in older adults is associated with insulin resistance, decreased physical function, and an increased all-cause mortality risk. To elucidate mechanisms that may underlie the maintenance of skeletal muscle density, we conducted a secondary analysis of previously published muscle composition and serum metabolomic data in 73 older adults (average age, 78y). Multivariable-adjusted linear regression was used to examine associations between 321 metabolites with muscle composition, defined as the ratio between normal density (NDM) with low density (LDM) thigh muscle cross sectional area (NDM/LDM). Sixty metabolites were significantly (p≤0.05 and q<0.30) associated with NDM/LDM. Decreased renal function and the immune response have been previously linked with reduced muscle density, but the mechanisms underlying these connections are less clear. Metabolites that were significantly associated with muscle composition were then tested for their association with circulating markers of renal function (blood urea nitrogen, creatinine, uric acid), and with the immune response (neutrophils/lymphocytes) and activation (kynurenine/tryptophan). 43 significant NDM/LDM metabolites (including urea) were co-associated with at least 1 marker of renal function; 23 of these metabolites have been previously identified as uremic solutes. The neutrophil/lymphocyte ratio was significantly associated with NDM/LDM (β±SE: -0.3±0.1, p=0.01, q=0.04). 35 significant NDM/LDM metabolites were co-associated with immune activation. Carbamylation (defined as homocitrulline/lysine) was identified as a pathway that may link renal function and immune activation with muscle composition, as 29 significant NDM/LDM metabolites were co-associated with homocitrulline/lysine, with at least 2 markers of renal function, and with kynurenine/tryptophan. When considering that elevated urea and uremic metabolites have been linked with an increased systemic microbial burden, that antimicrobial defense can be reduced in the presence of carbamylation, and that adipocytes can promote host defense, we propose the novel hypothesis that the age-related increase in adipogenesis within muscle may be a compensatory antimicrobial response to protect against an elevated microbial burden. Copyright © 2017 Elsevier Inc. All rights reserved.
Fernandes, Sheila Marques; Martins, Daniel Malisani; da Fonseca, Cassiane Dezoti; Watanabe, Mirian; Vattimo, Maria de Fátima Fernandes
2016-01-01
Iodinated contrast (IC) is clinically used in diagnostic and interventional procedures, but its use can result in contrast-induced acute kidney injury (CI-AKI). Chronic kidney disease (CKD) and chronic hyperglycemia (CH) are important predisposing factors to CI-AKI. The aim of this study was to investigate the impact of iodinated contrast on the renal function and hemodynamics in rats with chronic hyperglycemia and chronic kidney disease. A total of 30 rats were divided into six groups; Sham: control of chronic renal disease; Citrate: control of chronic hyperglycemia (CH); Nx5/6: rats with 5/6 nephrectomy; Chronic Hyperglycemia: rats receiving Streptozotocin 65 mg/kg; Nx5/6 + IC: rats Nx5/6 received 6 mL/kg of IC; CH + IC: Chronic hyperglycemia rats receiving 6 mL/kg of IC. Renal function (inulin clearance; urinary neutrophil gelatinase-associated lipocalin, NGAL) and hemodynamics (arterial blood pressure; renal blood flow; renal vascular resistance) were evaluated. Iodinated contrast significantly increased urinary NGAL and reduced inulin clearance, while the hemodynamics parameters showed changes in arterial blood pressure, renal blood flow, and renal vascular resistance in both CKD and CH groups. The results suggest that the iodinated contrast in risk factors models has important impact on renal function and hemodynamics. NGAL was confirmed to play a role of highlight in diagnosis of CI-AKI. PMID:27034930
Falkevall, Annelie; Mehlem, Annika; Palombo, Isolde; Heller Sahlgren, Benjamin; Ebarasi, Lwaki; He, Liqun; Ytterberg, A Jimmy; Olauson, Hannes; Axelsson, Jonas; Sundelin, Birgitta; Patrakka, Jaakko; Scotney, Pierre; Nash, Andrew; Eriksson, Ulf
2017-03-07
Diabetic kidney disease (DKD) is the most common cause of severe renal disease, and few treatment options are available today that prevent the progressive loss of renal function. DKD is characterized by altered glomerular filtration and proteinuria. A common observation in DKD is the presence of renal steatosis, but the mechanism(s) underlying this observation and to what extent they contribute to disease progression are unknown. Vascular endothelial growth factor B (VEGF-B) controls muscle lipid accumulation through regulation of endothelial fatty acid transport. Here, we demonstrate in experimental mouse models of DKD that renal VEGF-B expression correlates with the severity of disease. Inhibiting VEGF-B signaling in DKD mouse models reduces renal lipotoxicity, re-sensitizes podocytes to insulin signaling, inhibits the development of DKD-associated pathologies, and prevents renal dysfunction. Further, we show that elevated VEGF-B levels are found in patients with DKD, suggesting that VEGF-B antagonism represents a novel approach to treat DKD. Copyright © 2017 Elsevier Inc. All rights reserved.
SGLT2 Inhibitors and the Diabetic Kidney.
Fioretto, Paola; Zambon, Alberto; Rossato, Marco; Busetto, Luca; Vettor, Roberto
2016-08-01
Diabetic nephropathy (DN) is the most common cause of end-stage renal disease worldwide. Blood glucose and blood pressure control reduce the risk of developing this complication; however, once DN is established, it is only possible to slow progression. Sodium-glucose cotransporter 2 (SGLT2) inhibitors, the most recent glucose-lowering oral agents, may have the potential to exert nephroprotection not only through improving glycemic control but also through glucose-independent effects, such as blood pressure-lowering and direct renal effects. It is important to consider, however, that in patients with impaired renal function, given their mode of action, SGLT2 inhibitors are less effective in lowering blood glucose. In patients with high cardiovascular risk, the SGLT2 inhibitor empagliflozin lowered the rate of cardiovascular events, especially cardiovascular death, and substantially reduced important renal outcomes. Such benefits on DN could derive from effects beyond glycemia. Glomerular hyperfiltration is a potential risk factor for DN. In addition to the activation of the renin-angiotensin-aldosterone system, renal tubular factors, including SGLT2, contribute to glomerular hyperfiltration in diabetes. SGLT2 inhibitors reduce sodium reabsorption in the proximal tubule, causing, through tubuloglomerular feedback, afferent arteriole vasoconstriction and reduction in hyperfiltration. Experimental studies showed that SGLT2 inhibitors reduced hyperfiltration and decreased inflammatory and fibrotic responses of proximal tubular cells. SGLT2 inhibitors reduced glomerular hyperfiltration in patients with type 1 diabetes, and in patients with type 2 diabetes, they caused transient acute reductions in glomerular filtration rate, followed by a progressive recovery and stabilization of renal function. Interestingly, recent studies consistently demonstrated a reduction in albuminuria. Although these data are promising, only dedicated renal outcome trials will clarify whether SGLT2 inhibitors, in addition to their glycemic and blood pressure benefits, may provide nephroprotective effects. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
Sudarshan, Sunil; Shanmugasundaram, Karthigayan; Naylor, Susan L; Lin, Shu; Livi, Carolina B; O'Neill, Christine F; Parekh, Dipen J; Yeh, I-Tien; Sun, Lu-Zhe; Block, Karen
2011-01-01
Germline mutations of FH, the gene that encodes for the tricarboxylic acid TCA (TCA) cycle enzyme fumarate hydratase, are associated with an inherited form of cancer referred to as Hereditary Leiomyomatosis and Renal Cell Cancer (HLRCC). Individuals with HLRCC are predisposed to the development of highly malignant and lethal renal cell carcinoma (RCC). The mechanisms of tumorigenesis proposed have largely focused on the biochemical consequences of loss of FH enzymatic activity. While loss of the tumor suppressor gene von Hippel Lindau (VHL) is thought to be an initiating event for the majority of RCCs, a role for FH in sporadic renal cancer has not been explored. Here we report that FH mRNA and protein expression are reduced in clear cell renal cancer, the most common histologic variant of kidney cancer. Moreover, we demonstrate that reduced FH leads to the accumulation of hypoxia inducible factor- 2α (HIF-2α), a transcription factor known to promote renal carcinogenesis. Finally, we demonstrate that overexpression of FH in renal cancer cells inhibits cellular migration and invasion. These data provide novel insights into the tumor suppressor functions of FH in sporadic kidney cancer.
Grisk, Olaf
2017-05-01
Increased renal sympathetic nerve activity (RSNA) is present in human and experimental forms of arterial hypertension. Experimental denervation studies showed that renal nerves contribute to the development of hypertension. Clinical trials provided equivocal results on the antihypertensive efficacy of renal denervation in patients spurring discussions on technical aspects of renal denervation and further research on the role of renal nerves for the regulation of kidney function as well as the pathophysiology of hypertension. This review summarizes recent findings on adrenoceptor expression and function in the human kidney, adrenoceptor-dependent regulation of sodium chloride transport in the distal nephron, experimental data on chronic RSNA and the development of high arterial pressure and consequences of renal denervation that may limit its antihypertensive efficacy. Future research needs to reduce the gap between our knowledge on neural control of renal function in animals vs. humans to facilitate translation of experimental animal data to humans. More experimental studies on the temporal relationship between RSNA and arterial pressure in the chronic setting are needed to better define the pathogenetic role of heightened RSNA in different forms of arterial hypertension in order to improve the rational basis for renal denervation in antihypertensive therapy. Finally, research on unintended consequences of renal denervation including but not limited to reinnervation and denervation supersensitivity needs to be intensified to further assess the potential of renal denervation to slow the progression of renal disease and hypertension. Copyright © 2016 Elsevier B.V. All rights reserved.
Katsube, Takayuki; Wajima, Toshihiro; Ishibashi, Toru; Arjona Ferreira, Juan Camilo; Echols, Roger
2017-01-01
Cefiderocol, a novel parenteral siderophore cephalosporin, exhibits potent efficacy against most Gram-negative bacteria, including carbapenem-resistant strains. Since cefiderocol is excreted primarily via the kidneys, this study was conducted to develop a population pharmacokinetics (PK) model to determine dose adjustment based on renal function. Population PK models were developed based on data for cefiderocol concentrations in plasma, urine, and dialysate with a nonlinear mixed-effects model approach. Monte-Carlo simulations were conducted to calculate the probability of target attainment (PTA) of fraction of time during the dosing interval where the free drug concentration in plasma exceeds the MIC (T f >MIC ) for an MIC range of 0.25 to 16 μg/ml. For the simulations, dose regimens were selected to compare cefiderocol exposure among groups with different levels of renal function. The developed models well described the PK of cefiderocol for each renal function group. A dose of 2 g every 8 h with 3-h infusions provided >90% PTA for 75% T f >MIC for an MIC of ≤4 μg/ml for patients with normal renal function, while a more frequent dose (every 6 h) could be used for patients with augmented renal function. A reduced dose and/or extended dosing interval was selected for patients with impaired renal function. A supplemental dose immediately after intermittent hemodialysis was proposed for patients requiring intermittent hemodialysis. The PK of cefiderocol could be adequately modeled, and the modeling-and-simulation approach suggested dose regimens based on renal function, ensuring drug exposure with adequate bactericidal effect. Copyright © 2016 American Society for Microbiology.
Huang, Feifei; Chen, Jie; Liu, Xun; Han, Feng; Cai, Qingqing; Peng, Guicheng; Zhang, Kun; Chen, Weiqing; Wang, Jingfeng; Huang, Hui
2016-12-27
Elevated homocysteine (HCY) and smoking are both important risk factors for hypertensive patients. However, whether they have crossing effect on renal function deterioration of hypertensive patients and what is the underlying mechanism are unclear. In the present study, 3033 participants diagnosed as essential hypertension with estimated glomerular filtration rate (eGFR)> 30 ml/min/1.73 m2 from southern China were enrolled in this cross-sectional study. We collected the demographic and clinical data. In addition, the mediation effects were analyzed. The results showed that, comparing with non-smokers, smokers had significant higher levels of HCY (13.10 (11.20-16.87) vs. 11.00 (8.90-13.40) umol/L, P < 0.001) and lower eGFR (79.71 (66.83-91.05) vs. 82.89 (69.80-95.85) ml/min/1.73m2, P < 0.001). HCY levels and smoking were independently associated with decreased eGFR. Meanwhile, eGFR levels were significantly negatively correlated with HCY (P < 0.001), and this correlation might be stronger in current smokers. Current smoker consuming over 20 cigarettes per day would accelerate early renal function deterioration (OR = 1.859, P = 0.019). The mediation effects analysis further showed that the association between smoking and renal function deterioration was mediated by HCY. And elevated HCY was accounted for 56.94% of the estimated causal effect of smoking on renal function deterioration in hypertensive patients. Our findings indicated that cigarette smoking was associated with renal function deterioration in hypertensive patients, and the association between cigarette smoking and renal function deterioration was probably mediated by elevated HCY. Therefore, HCY-lowering therapy may be beneficial for renal function deterioration in hypertensive smoking patients.
Loria, Analia S; Osborn, Jeffrey L
2017-07-01
Adult rats exposed to maternal separation (MatSep) are normotensive but display lower glomerular filtration rate and increased renal neuroadrenergic drive. The aim of this study was to determine the renal α-adrenergic receptor density and the renal vascular responsiveness to adrenergic stimulation in male rats exposed to MatSep. In addition, baroreflex sensitivity was assessed to determine a component of neural control of the vasculature. Using tissue collected from 4-mo-old MatSep and control rats, α 1 -adrenergic receptors (α 1 -ARs) were measured in renal cortex and isolated renal vasculature using receptor binding assay, and the α-AR subtype gene expression was determined by RT-PCR. Renal cortical α 1 -AR density was similar between MatSep and control tissues (B max = 44 ± 1 vs. 42 ± 2 fmol/mg protein, respectively); however, MatSep reduced α 1 -AR density in renal vasculature (B max = 47 ± 4 vs. 62 ± 4 fmol/mg protein, P < 0.05, respectively). In a separate group of rats, the pressor, bradycardic, and renal vascular constrictor responses to acute norepinephrine injection (NE, 0.03-0.25 μg/μl) were determined under anesthesia. Attenuated NE-induced renal vasoconstriction was observed in rats exposed to MatSep compared with control ( P < 0.05). A third group of rats was infused at steady state with the α 1 agonist phenylephrine (10 μg/min iv) and vasodilator sodium nitroprusside (5 μg/min iv). The difference between the change in heart rate/mean arterial pressure slopes was indicative of reduced baroreflex sensitivity in MatSep vs. control rats (-0.45 ± 0.04 vs. -0.95 ± 0.07 beats·min -1 ·mmHg -1 , P < 0.05). These data support the notion that reduced α-adrenergic receptor expression and function in the renal vasculature could develop secondary to MatSep-induced overactivation of the renal neuroadrenergic tone. Copyright © 2017 the American Physiological Society.
Tsivian, Matvey; Ulusoy, Said; Abern, Michael; Wandel, Ayelet; Sidi, A Ami; Tsivian, Alexander
2012-10-01
Anatomic parameters determining renal mass complexity have been used in a number of proposed scoring systems despite lack of a critical analysis of their independent contributions. We sought to assess the independent contribution of anatomic parameters on perioperative outcomes of laparoscopic partial nephrectomy (LPN). Preoperative imaging studies were reviewed for 147 consecutive patients undergoing LPN for a single renal mass. Renal mass anatomy was recorded: Size, growth pattern (endo-/meso-/exophytic), centrality (central/hilar/peripheral), anterior/posterior, lateral/medial, polar location. Multivariable models were used to determine associations of anatomic parameters with warm ischemia time (WIT), operative time (OT), estimated blood loss (EBL), intra- and postoperative complications, as well as renal function. All models were adjusted for the learning curve and relevant confounders. Median (range) tumor size was 3.3 cm (1.5-11 cm); 52% were central and 14% hilar. While 44% were exophytic, 23% and 33% were mesophytic and endophytic, respectively. Anatomic parameters did not uniformly predict perioperative outcomes. WIT was associated with tumor size (P=0.068), centrality (central, P=0.016; hilar, P=0.073), and endophytic growth pattern (P=0.017). OT was only associated with tumor size (P<0.001). No anatomic parameter predicted EBL. Tumor centrality increased the odds of overall and intraoperative complications, without reaching statistical significance. Postoperative renal function was not associated with any of the anatomic parameters considered after adjustment for baseline function and WIT. Learning curve, considered as a confounder, was independently associated with reduced WIT and OT as well as reduced odds of intraoperative complications. This study provides a detailed analysis of the independent impact of renal mass anatomic parameters on perioperative outcomes. Our findings suggest diverse independent contributions of the anatomic parameters to the different measures of outcomes (WIT, OT, EBL, complications, and renal function) emphasizing the importance of the learning curve.
Parrinello, Gaspare; Paterna, Salvatore; Torres, Daniele; Di Pasquale, Pietro; Mezzero, Manuela; La Rocca, Gabriella; Cardillo, Mauro; Trapanese, Caterina; Caradonna, Mario; Licata, Giuseppe
2009-01-01
Hypertension is a significant cause of chronic renal injury and its effective treatment is capable of reducing the rate of renal failure. beta-Adrenoceptor antagonists (beta-blockers) have been reported to induce a deterioration in renal function, while several data have indicated a renoprotective effect of treatment with the angiotensin II type 1 receptor antagonist losartan. Previous studies of the interaction between the selective beta(1)-blocker bisoprolol and kidney function were performed only for short- and medium-term periods. The aim of this study was to compare the antihypertensive efficacy and renal and cardiac haemodynamic effects of bisoprolol with those of losartan over a 1-year time period in patients with essential hypertension. Seventy-two patients (40 males) with recently diagnosed uncomplicated (European Society of Hypertension [ESH] criteria stage 1-2) hypertension (mean +/- SD age 52 +/- 12 years) were enrolled in the study. After a run-in period of 14 days on placebo, the patients were randomized in a double-blind, prospective study to receive either bisoprolol 5 mg or losartan 50 mg, administered once daily for 1 year. At recruitment and 12 months after treatment, cardiac output and renal haemodynamics and function were evaluated by echocardiography and radionuclide studies, respectively. There were no significant differences in baseline clinical data, including glomerular filtration rate and blood pressure, between the two treatment groups. At 1 year, blood pressure had decreased significantly (p < 0.001) with both treatments, and heart rate was reduced only in the group taking bisoprolol. The long-term effects on renal haemodynamics and cardiac function were similar with both drugs, the only change being a significant reduction in the filtration fraction for each group. These data suggest that both bisoprolol and losartan are effective agents for the treatment of patients with recently diagnosed ESH stage 1-2 hypertension. Over a 1-year period, both agents maintained good renal and cardiac performance and haemodynamics.
Perera, M Thamara P R; Sharif, Khalid; Lloyd, Carla; Foster, Katharine; Hulton, Sally A; Mirza, Darius F; McKiernan, Patrick J
2011-01-01
Primary hyperoxaluria-I (PH-I) is a serious metabolic disease resulting in end-stage renal disease. Pre-emptive liver transplantation (PLT) for PH-I is an option for children with early diagnosis. There is still little information on its effect on long-term renal function in this situation. Long-term assessment of renal function was conducted using Schwartz's formula (estimated glomerular filtration rate-eGFR) in four children (Group A) undergoing PLT between 2002 and 2008, and a comparison was done with eight gender- and sex-matched controls (Group B) having liver transplantation for other indications. All patients received a liver graft from a deceased donor. Median follow-up for the two groups was 64 and 94 months, respectively. One child in Group A underwent re-transplantation due to hepatic artery thrombosis, while acute rejection was seen in one. A significant difference was seen in eGFR at transplant (81 vs 148 mL/min/1.73 m(2)) with greater functional impairment seen in the study population. In Group A, renal function reduced by 21 and 11% compared with 37 and 35% in Group B at 12 and 24 months, respectively. At 2 years post-transplantation, there was no significant difference in eGFR between the two groups (72 vs 100 mL/min/1.73 m(2), respectively; P = 0.06). Renal function remains relatively stable following pre-emptive LTx for PH-I. With early diagnosis of PH-I, isolated liver transplantation may prevent progression to end-stage renal disease and the need for renal transplantation.
Screening for Albuminuria Identifies Individuals at Increased Renal Risk
van der Velde, Marije; Halbesma, Nynke; de Charro, Frank T.; Bakker, Stephan J.L.; de Zeeuw, Dick; de Jong, Paul E.; Gansevoort, Ronald T.
2009-01-01
It is unknown whether screening for albuminuria in the general population identifies individuals at increased risk for renal replacement therapy (RRT) or accelerated loss of renal function. Here, in a general population-based cohort of 40,854 individuals aged 28 to 75 yr, we collected a first morning void for measurement of urinary albumin. In a subset of 6879 individuals, we measured 24-h urinary albumin excretion and estimated GFR at baseline and during 6 yr of follow-up. Linkage with the national RRT registry identified 45 individuals who started RRT during 9 yr of follow-up. The quantity of albuminuria was associated with increased renal risk: the higher the level of albuminuria, the higher the risk of need for renal replacement therapy and the more rapid renal function decline. A urinary albumin concentration of ≥20 mg/L identified individuals who started RRT during follow-up with 58% sensitivity and 92% specificity. Of the identified individuals, 39% were previously unknown to have impaired renal function, and 50% were not being medically treated. Restricting screening to high-risk groups (e.g., known hypertension, diabetes, cardiovascular disease [CVD], older age) reduced the sensitivity of the test only marginally but failed to identify 45% of individuals with micro- and macroalbuminuria. In conclusion, individuals with elevated levels of urinary albumin are at increased risk for RRT and accelerated loss of renal function. Screening for albuminuria identifies patients at increased risk for progressive renal disease, 40 to 50% of whom were previously undiagnosed or untreated. PMID:19211710
Serum creatinine; Kidney function - creatinine; Renal function - creatinine ... kidney damage or failure, infection, or reduced blood flow Loss of ... medicine overdose. Your provider will tell you more, if needed.
Liu, Xue-Jing; Wu, Xiao-Yue; Wang, Huan; Wang, Su-Xia; Kong, Wei; Zhang, Ling; Liu, George; Huang, Wei
2018-05-08
Seipin deficiency is responsible for type 2 congenital generalized lipodystrophy with severe loss of adipose tissue (AT) and could lead to renal failure in humans. However, the effect of Seipin on renal function is poorly understood. Here we report that Seipin knockout (SKO) mice exhibited impaired renal function, enlarged glomerular and mesangial surface areas, renal depositions of lipid, and advanced glycation end products. Elevated glycosuria and increased electrolyte excretion were also detected. Relative renal gene expression in fatty acid oxidation and reabsorption pathways were impaired in SKO mice. Elevated glycosuria might be associated with reduced renal glucose transporter 2 levels. To improve renal function, AT transplantation or leptin administration alone was performed. Both treatments effectively ameliorated renal injury by improving all of the parameters that were measured in the kidney. The treatments also rescued insulin resistance and low plasma leptin levels in SKO mice. Our findings demonstrate for the first time that Seipin deficiency induces renal injury, which is closely related to glucolipotoxicity and impaired renal reabsorption in SKO mice, and is primarily caused by the loss of AT and especially the lack of leptin. AT transplantation and leptin administration are two effective treatments for renal injury in Seipin-deficient mice.-Liu, X.-J., Wu, X.-Y., Wang, H., Wang, S.-X., Kong, W., Zhang, L., Liu, G., Huang, W. Renal injury in Seipin-deficient lipodystrophic mice and its reversal by adipose tissue transplantation or leptin administration alone: adipose tissue-kidney crosstalk.
Catheter-Based Radiorefrequency Renal Denervation Lowers Blood Pressure in Obese Hypertensive Dogs
Henegar, Jeffrey R.; Zhang, Yongxing; Rama, Rita De; Hata, Cary; Hall, Michael E.
2014-01-01
BACKGROUND Obesity-induced hypertension appears to be due, in part, to increased renal sympathetic activity. Catheter-based renal denervation (RD) has been reported to lower arterial blood pressure (BP) in humans with resistant hypertension, many of whom are obese. This study was performed to assess the impact of radiofrequency–induced RD on renal function, BP, renal norepinephrine (NE), and histology of nerves along the renal artery in obese, hypertensive dogs, an experimental model that closely mimics cardiorenal and metabolic changes in obese hypertensive humans. METHODS After control measurements of cardiovascular and renal function were obtained in obese dogs fed a high-fat diet, bilateral RD was performed using the St. Jude Medical EnligHTN RD system. After RD, BP was measured continuously for 8 weeks, and glomerular filtration rate (GFR) was measured biweekly for 6 weeks. At the end of the study, renal arteries were collected for histological analysis, and kidneys were obtained for NE measurement. RESULTS Eight weeks after RD, systolic BP fell from 157±5mm Hg pre-RD to 133±3mm Hg (P < 0.01), and mean arterial pressure decreased by 9mm Hg compared with pre-RD (P < 0.01). There were no significant changes in GFR. Renal nerve injury was most prevalent 0.28–3.5mm from the renal artery lumen. RD caused injury in 46% of the renal nerves observed and reduced renal tissue NE by 42% (P < 0.01). CONCLUSIONS Catheter-based RD with the St. Jude Medical EnligHTN system lowers BP in obese dogs without significantly compromising renal function. PMID:24709437
Stevens, R. Brian; Foster, Kirk W.; Miles, Clifford D.; Kalil, Andre C.; Florescu, Diana F.; Sandoz, John P.; Rigley, Theodore H.; Malik, Tamer; Wrenshall, Lucile E.
2015-01-01
Introduction The two most significant impediments to renal allograft survival are rejection and the direct nephrotoxicity of the immunosuppressant drugs required to prevent it. Calcineurin inhibitors (CNI), a mainstay of most immunosuppression regimens, are particularly nephrotoxic. Until less toxic antirejection agents become available, the only option is to optimize our use of those at hand. Aim To determine whether intensive rabbit anti-thymocyte globulin (rATG) induction followed by CNI withdrawal would individually or combined improve graft function and reduce graft chronic histopathology–surrogates for graft and, therefore, patient survival. As previously reported, a single large rATG dose over 24 hours was well-tolerated and associated with better renal function, fewer infections, and improved patient survival. Here we report testing whether complete CNI discontinuation would improve renal function and decrease graft pathology. Methods Between April 20, 2004 and 4-14-2009 we conducted a prospective, randomized, non-blinded renal transplantation trial of two rATG dosing protocols (single dose, 6 mg/kg vs. divided doses, 1.5 mg/kg every other day x 4; target enrollment = 180). Subsequent maintenance immunosuppression consisted of tacrolimus, a CNI, and sirolimus, a mammalian target of rapamycin inhibitor. We report here the outcome of converting patients after six months either to minimized tacrolimus/sirolimus or mycophenolate mofetil/sirolimus. Primary endpoints were graft function and chronic histopathology from protocol kidney biopsies at 12 and 24 months Results CNI withdrawal (on-treatment analysis) associated with better graft function (p <0.001) and lower chronic histopathology composite scores in protocol biopsies at 12 (p = 0.003) and 24 (p = 0.013) months, without affecting patient (p = 0.81) or graft (p = 0.93) survival, or rejection rate (p = 0.17). Conclusion CNI (tacrolimus) withdrawal at six months may provide a strategy for decreased nephrotoxicity and improved long-term function in steroid-free low immunological risk renal transplant patients. Trial Registration ClinicalTrials.gov NCT00556933 PMID:26465152
Protective Role for Antioxidants in Acute Kidney Disease
Dennis, Joanne M.; Witting, Paul K.
2017-01-01
Acute kidney injury causes significant morbidity and mortality in the community and clinic. Various pathologies, including renal and cardiovascular disease, traumatic injury/rhabdomyolysis, sepsis, and nephrotoxicity, that cause acute kidney injury (AKI), induce general or regional decreases in renal blood flow. The ensuing renal hypoxia and ischemia promotes the formation of reactive oxygen species (ROS) such as superoxide radical anions, peroxides, and hydroxyl radicals, that can oxidatively damage biomolecules and membranes, and affect organelle function and induce renal tubule cell injury, inflammation, and vascular dysfunction. Acute kidney injury is associated with increased oxidative damage, and various endogenous and synthetic antioxidants that mitigate source and derived oxidants are beneficial in cell-based and animal studies. However, the benefit of synthetic antioxidant supplementation in human acute kidney injury and renal disease remains to be realized. The endogenous low-molecular weight, non-proteinaceous antioxidant, ascorbate (vitamin C), is a promising therapeutic in human renal injury in critical illness and nephrotoxicity. Ascorbate may exert significant protection by reducing reactive oxygen species and renal oxidative damage via its antioxidant activity, and/or by its non-antioxidant functions in maintaining hydroxylase and monooxygenase enzymes, and endothelium and vascular function. Ascorbate supplementation may be particularly important in renal injury patients with low vitamin C status. PMID:28686196
Acute kidney injury: not just acute renal failure anymore?
Dirkes, Susan
2011-02-01
Until recently, no uniform standard existed for diagnosing and classifying acute renal failure. To clarify diagnosis, the Acute Dialysis Quality Initiative group stated its consensus on the need for a clear definition and classification system of renal dysfunction with measurable criteria. Today the term acute kidney injury has replaced the term acute renal failure, with an understanding that such injury is a common clinical problem in critically ill patients and typically is predictive of an increase in morbidity and mortality. A classification system, known as RIFLE (risk of injury, injury, failure, loss of function, and end-stage renal failure), includes specific goals for preventing acute kidney injury: adequate hydration, maintenance of renal perfusion, limiting exposure to nephrotoxins, drug protective strategies, and the use of renal replacement therapies that reduce renal injury.
NASA Technical Reports Server (NTRS)
Meehan, J. R.; Henry, J. P.
1973-01-01
Responses of an innervated and a contralateral chronically denervated kidney to mild positive pressure breathing are compared for saline volume expansions in chloralose anesthetized dogs. It is shown that mild pressure breathing significantly reduces sodium excretion, urine flow, free water clearance, and PAH clearance. After 20 minutes of positive pressure breathing, both kidney responses are identical suggesting the release of natriuretic hormone which reduces renal function in addition to the demonstrated change in renal nerve activity. Increase of the left atrial pressure through balloon obstruction of the mitral orifice increases urine flow, sodium excretion and PAH clearance; inflation of the balloon and positive pressure breathing again depresses renal function. Preliminary evidence indicates that receptors in the right atrium are more severely affected by pressure breathing than those in the left atrium.
Cuffe, James S M; Burgess, Danielle J; O'Sullivan, Lee; Singh, Reetu R; Moritz, Karen M
2016-04-01
Short-term maternal corticosterone (Cort) administration at mid-gestation in the mouse reduces nephron number in both sexes while programming renal and cardiovascular dysfunction in 12-month male but not female offspring. The renal renin-angiotensin-aldosterone system (RAAS), functions in a sexually dimorphic manner to regulate both renal and cardiovascular physiology. This study aimed to identify if there are sex-specific differences in basal levels of the intrarenal RAAS and to determine the impact of maternal Cort exposure on the RAAS in male and female offspring at 6 months of age. While intrarenal renin concentrations were higher in untreated females compared to untreated males, renal angiotensin II concentrations were higher in males than females. Furthermore, basal plasma aldosterone concentrations were greater in females than males. Cort exposed male but not female offspring had reduced water intake and urine excretion. Cort exposure increased renal renin concentrations and elevated mRNA expression of Ren1, Ace2, and Mas1 in male but not female offspring. In addition, male Cort exposed offspring had increased expression of the aldosterone receptor, Nr3c2 and renal sodium transporters. In contrast, Cort exposure increased Agtr1a mRNA levels in female offspring only. This study demonstrates that maternal Cort exposure alters key regulators of renal function in a sex-specific manner at 6 months of life. These finding likely contribute to the disease outcomes in male but not female offspring in later life and highlights the importance of renal factors other than nephron number in the programming of renal and cardiovascular disease. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
Hu, Ping; Zhou, Xiang-Hai; Wen, Xin; Ji, Linong
2016-10-01
Risk factors related to renal function decline in type 2 diabetes mellitus (T2DM) remain uncertain. This study aimed to investigate risk factors in relation to renal function decline in patients with T2DM and in a subgroup of patients with normoalbuminuria. This study was a retrospective cohort study, which included 451 patients with T2DM aged 63 ± 14 years admitted to a tertiary hospital in Beijing, China, between April and December 2010 and followed up for 6-60 months. Endpoint was renal function decline, defined as estimated glomerular filtration rate less than 60 mL/min 1.73 m 2 or at least twofold increase of serum creatinine. Cox proportional hazards analysis was used to estimate hazard ratios (HRs) for candidate risk factors of renal function decline. After a median follow-up of 3.3 years, 94 (20.8%) patients developed renal function decline. Increased age (HR, 1.045; 95% CI, 1.020-1.070), albuminuria (HR, 1.956; 95%CI, 1.271-3.011), mild renal dysfunction (HR, 4.521; 95%CI, 2.734-7.476), hyperfiltration (HR, 3.897; 95%CI, 1.572-9.663), and increased hemoglobin A1c (HR, 1.128; 95%CI, 1.020-1.249) were identified as major risk factors. Among a subgroup of 344 patients with normoalbuminuria at baseline, 53 (15.4%) patients developed renal function decline. Increased age (HR, 1.089; 95%CI, 1.050-1.129), mild renal dysfunction (HR, 4.667; 95%CI, 2.391-9.107), hyperfiltration (HR, 5.677; 95%CI, 1.544-20.872), smoking (HR, 2.886; 95%CI, 1.370-6.082), higher pulse pressure (HR, 1.022; 95%CI, 1.004-1.040), and increased fasting glucose (HR, 1.104; 95%CI, 1.020-1.194) were major risk factors. Risk factors of diabetic renal impairment in T2DM should be screened and evaluated at an early stage of diabetes. Albuminuria, mild renal dysfunction, hyperfiltration, increased blood glucose, increased pulse pressure, and smoking were all predictors for diabetic renal impairment and interventions that focus on these risk factors may reduce further decline in renal function.
Downregulated microRNA-510-5p acts as a tumor suppressor in renal cell carcinoma.
Chen, Duqun; Li, Yuchi; Yu, Zuhu; Li, Yifan; Su, Zhengming; Ni, Liangchao; Yang, Shangqi; Gui, Yaoting; Lai, Yongqing
2015-08-01
MicroRNA (miR)-510-5p has been demonstrated to be involved in a number of types of malignancy; however, the function of miR-510-5p in renal cancer remains unclear. The present study aimed to determine the expression of miR-510-5p in renal cell carcinoma (RCC) specimens and analyzed the impact of miR-510-5p on renal cancer by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, wound scratch and apoptosis assays. The results showed that miR-510-5p was significantly downregulated in RCC specimens compared with normal renal specimens. Overexpression of miR-510-5p by synthetic mature mimics reduced cell proliferation and migration and induced an increase in cell apoptosis, indicating that miR-510-5p may act as a tumor suppressor in RCC. The present study firstly revealed that downregulated miR-510-5p functioned as a tumor suppressor by reducing cellular proliferation and migration, and inducing apoptosis in RCC. Further research is required to define target genes of miR-510-5p to determine the cellular mechanism of miR-510-5p in the carcinogenesis of RCC.
Skarupskiene, Inga; Kuzminskis, Vytautas; Ziginskiene, Edita
2007-01-01
The aim of this study was to determine the frequency, etiology, and outcomes of acute renal failure. We retrospectively collected data on all patients (n=1653) who received renal replacement therapy for acute renal failure at the Kaunas University of Medicine Hospital during 1995-2006. The number of patients with acute renal failure increased nine times during the 11-year period. The mean age of patients was 59.76+/-17.52 years and increased from 44.97+/-17.1 years in 1995 to 62.84+/-16.49 years in 2006. The most common causes of acute renal failure were renal (n=646, 39%), prerenal (n=380, 23%), and obstructive (n=145, 9%). The renal replacement therapy was discontinued because of recovery of renal function in 49.9% of cases. The overall hospital mortality rate was 45.1%. Renal function did not recover in 6.7% of patients. The mortality rate over the 11-year period varied from 37.8 to 57.5%. The highest mortality rate was in the neurosurgical (62.3%) and cardiac surgical (61.8%) intensive care units. High mortality rate (more than 50%) was in the groups of patients with acute renal failure that was caused by hepatorenal syndrome, shock, sepsis, and reduced cardiac output.
Selective Arterial Clamping Versus Hilar Clamping for Minimally Invasive Partial Nephrectomy.
Yezdani, Mona; Yu, Sue-Jean; Lee, David I
2016-05-01
Partial nephrectomy has become an accepted treatment of cT1 renal masses as it provides improved long-term renal function compared to radical nephrectomy (Campbell et al. J Urol. 182:1271-9, 2009). Hilar clamping is utilized to help reduce bleeding and improve visibility during tumor resection. However, concern over risk of kidney injury with hilar clamping has led to new techniques to reduce length of warm ischemia time (WIT) during partial nephrectomy. These techniques have progressed over the years starting with early hilar unclamping, controlled hypotension during tumor resection, selective arterial clamping, minimal margin techniques, and off-clamp procedures. Selective arterial clamping has progressed significantly over the years. The main question is what are the exact short- and long-term renal effects from increasing clamp time. Moreover, does it make sense to perform these more time-consuming or more complex procedures if there is no long-term preservation of kidney function? More recent studies have shown no difference in renal function 6 months from surgery when selective arterial clamping or even hilar clamping is employed, although there is short-term improved decline in estimated glomerular filtration rate (eGFR) with selective clamping and off-clamp techniques (Komninos et al. BJU Int. 115:921-8, 2015; Shah et al. 117:293-9, 2015; Kallingal et al. BJU Int. doi: 10.1111/bju.13192, 2015). This paper reviews the progression of total hilar clamping to selective arterial clamping (SAC) and the possible difference its use makes on long-term renal function. SAC may be attempted based on surgeon's decision-making, but may be best used for more complex, larger, more central or hilar tumors and in patients who have renal insufficiency at baseline or a solitary kidney.
The renal nerves in chronic heart failure: efferent and afferent mechanisms
Schiller, Alicia M.; Pellegrino, Peter R.; Zucker, Irving H.
2015-01-01
The function of the renal nerves has been an area of scientific and medical interest for many years. The recent advent of a minimally invasive catheter-based method of renal denervation has renewed excitement in understanding the afferent and efferent actions of the renal nerves in multiple diseases. While hypertension has been the focus of much this work, less attention has been given to the role of the renal nerves in the development of chronic heart failure (CHF). Recent studies from our laboratory and those of others implicate an essential role for the renal nerves in the development and progression of CHF. Using a rabbit tachycardia model of CHF and surgical unilateral renal denervation, we provide evidence for both renal efferent and afferent mechanisms in the pathogenesis of CHF. Renal denervation prevented the decrease in renal blood flow observed in CHF while also preventing increases in Angiotensin-II receptor protein in the microvasculature of the renal cortex. Renal denervation in CHF also reduced physiological markers of autonomic dysfunction including an improvement in arterial baroreflex function, heart rate variability, and decreased resting cardiac sympathetic tone. Taken together, the renal sympathetic nerves are necessary in the pathogenesis of CHF via both efferent and afferent mechanisms. Additional investigation is warranted to fully understand the role of these nerves and their role as a therapeutic target in CHF. PMID:26300788
Gomes, Eduardo C; Falci, Diego R; Bergo, Pedro; Zavascki, Alexandre P; Rigatto, Maria Helena
2018-03-01
To evaluate the impact of polymyxin B (PMB)- associated Acute Kidney Injury (AKI) in 1-year mortality and renal function recovery. Patients >18 years old who survived the first 30-days after PMB therapy were followed for 1-year. The impact of AKI and Renal Failure (using RIFLE score) in 1-year mortality was analyzed, along with other confounding variables. Variables with a P value ≤0.2 were included in a forward stepwise Cox regression model. In the subgroup of patients who developed AKI, we evaluated renal function recovery. A total of 234 patients were included for analyses. Of these, 108 (46.1%) died, in a median time of 63 (38.3-102.5) days. The use of other nephrotoxic drugs along with PMB (P=0.05), renal failure (P=0.03), dialysis (P<0.01) and re-exposure to PMB (P<0.01), were all significantly related to 1-year mortality, while male gender had a protective effect (P=0.01). Independent factors related to death were age (aHR 1.02, 95%CI 1.00-1.03, P=0.02), re-exposure to PMB (aHR 2.69, 95%CI 1.82-3.95, P<0.01), and male gender (aHR0.6, 95%CI 0.41-0.87, P=0.01), when controlled for renal failure (aHR 1.28, 95%CI 0.78-2.10, P=0.34).Thirty one of 94 (33%) patients who developed AKI had renal function recovery within one-year. Mortality rates were high in the first year after PMB use and only one third of patients who develop AKI return to baseline renal function. Strategies to reduce renal toxicity are urgently needed in these patients. Copyright © 2018. Published by Elsevier B.V.
Temporal trends in renal function and birthweight in Japanese adolescent males (1998-2015).
Kanda, Takeshi; Takeda, Ayano; Hirose, Hiroshi; Abe, Takayuki; Urai, Hidenori; Inokuchi, Mikako; Wakino, Shu; Tokumura, Mitsuaki; Itoh, Hiroshi; Kawabe, Hiroshi
2018-02-01
Low birthweight (LBW) is a worldwide public health problem, demonstrating an increasing incidence in developed countries, including Japan. LBW is also a risk factor for later development of chronic kidney disease (CKD). To date, studies have not evaluated the population impacts of increasing LBW rates on renal function. Estimated glomerular filtration rate (eGFR) was evaluated in 3737 Japanese adolescent males (15-16 years old) using annual cross-sectional data over an 18-year period (1998-2015). Between the initial (1998-2003) and final (2010-15) periods of the study, the mean birthweight decreased from 3213.4 ± 383.8 to 3116.2 ± 382.3 g and the LBW rate increased from 2.5 to 5.5% (both P ≤ 0.01). Additionally, the mean eGFR decreased from 105.1 ± 15.9 to 97.4 ± 13.8 mL/min/1.73 m2 and the prevalence of mildly reduced renal function (eGFR ≤ 60- <90 mL/min/1.73 m2) increased from 16.4 to 30.0% (both P ≤ 0.01), most evident in the LBW group (from 10.3 to 41.7%, P ≤0.01). The prevalence of proteinuria also increased significantly. Mildly reduced renal function was significantly associated with LBW [odds ratio (LBW 3000-3999 g) 1.51; 95% confidence interval 1.00-2.55; P = 0.047]. In this population of Japanese adolescents, the frequency of mildly reduced renal function increased as the LBW frequency increased. Our findings may have implications for the broader Japanese population as well as for other populations in which the prevalence of LBW is increasing. © The Author 2017. Published by Oxford University Press on behalf of ERA-EDTA.
Renal function and plasma volume following ultramarathon cycling.
Neumayr, G; Pfister, R; Hoertnagl, H; Mitterbauer, G; Prokop, W; Joannidis, M
2005-01-01
In recreational cyclists marathon cycling influences renal function only on a minimal scale. Respective information on extreme ultramarathon cycling in better trained athletes is not available. The objective was to evaluate the renal and haematological effects of ultraendurance cycling in the world's best ultramarathon cyclists. Creatinine (CR), urea, haemoglobin (Hb), haematocrit (Hct) and plasma volume (PV) were investigated in 16 male ultramarathon cyclists during the 1st Race Across the Alps in 2001 (distance: 525 km; cumulative altitude difference: 12,600 m). All renal functional parameters were normal pre-exercise. During the race serum CR, urea and uric acid rose significantly by 33, 97 % and 18 % (p <0.001 respectively) and nearly normalised again on the following day. The decline in calculated CR clearance was 25 %. There was a negative correlation (r=- 0.575, p=0.02) between the rise in serum CR and the athlete's training kilometers. The serum urea/CR ratio rose above 40 in 12 athletes (75 %). Mean fractional sodium excretion and fractional uric acid excretion fell below 0.5 % (p <0.001) and 7 %, indicating reduced renal perfusion. The deflection of the renal functional parameters was temporary and nearly gone after 24 hours of recovery. Hct declined during the race from 0.44 to 0.42, and continued falling on the next day (0.42 --> 0.40; p <0.001). The corresponding rises in calculated PV were + 8 % and + 22 %. The study affirms that in world class cyclists the enormous strains of ultramarathon cycling influence renal function only on a minimal scale. The impact on the PV, however, is pronounced leading to marked haemodilution post-exercise. This very temporary "impairment of renal function" seems to be the physiological response to ultramarathon cycling and may be attenuated to some extent by preceding high-volume training.
Christopher, Ronald J; Morgan, Michael E; Tang, Yong; Anderson, Christen; Sanchez, Matilde; Shanahan, William
2017-04-01
To determine whether dosage adjustment is likely to be necessary for effective and well-tolerated use of a pharmaceutical agent, guidance documents from the US Food and Drug Administration recommend pharmacokinetics studies in patients with impaired renal or impaired hepatic function and in the elderly population. Three studies were conducted to evaluate the pharmacokinetic properties and tolerability of lorcaserin in these populations. Lorcaserin was evaluated in single-dose pharmacokinetics studies of 3 overweight/obese populations: (1) elderly (aged >65 years) patients; (2) patients with impaired renal function; and (3) those with impaired hepatic function. In elderly patients, C max was lower (geometric mean ratio [GMR], 0.83; 90% CI, 0.71-0.97), but AUC was unchanged versus adult patients. In patients with renal impairment, C max was reduced versus that in patients with normal renal function (GMR: mild impairment, 0.99 [90% CI, 0.76-1.29]; moderate, 0.70 [90% CI, 0.54-0.90]; and severe, 0.69 [90% CI, 0.53-0.89]); no trend in AUC was observed in this group versus renal impairment. In patients with hepatic impairment, C max was decreased (GMR: mild impairment, 0.92 [90% CI, 0.76-1.11]; moderate, 0.86 [90% CI, 0.71-1.04]), and AUC was increased versus patients with normal hepatic function. Based on these findings, no lorcaserin dose adjustments are necessary in elderly patients with normal renal function or in patients with mild/moderate renal or hepatic impairment. ClinicalTrials.gov identifiers: NCT00828581, NCT00828438, and NCT00828932. Copyright © 2017 Elsevier HS Journals, Inc. All rights reserved.
Renal Denervation to Modify Hypertension and the Heart Failure State.
Zhong, Ming; Kim, Luke K; Swaminathan, Rajesh V; Feldman, Dmitriy N
2017-07-01
Sympathetic overactivation of renal afferent and efferent nerves have been implicated in the development and maintenance of several cardiovascular disease states, including resistant hypertension and heart failure with both reduced and preserved systolic function. With the development of minimally invasive catheter-based techniques, percutaneous renal denervation has become a safe and effective method of attenuating sympathetic overactivation. Percutaneous renal denervation, therefore, has the potential to modify and treat hypertension and congestive heart failure. Although future randomized controlled studies are needed to definitively prove its efficacy, renal denervation has the potential to change the way we view and treat cardiovascular disease. Copyright © 2017 Elsevier Inc. All rights reserved.
The effect of discharge voltage on renal injury and impairment caused by lithotripsy in the pig.
Connors, B A; Evan, A P; Willis, L R; Blomgren, P M; Lingeman, J E; Fineberg, N S
2000-02-01
The present study was designed to determine the effects of shock wave voltage (kV) on lesion size and renal function induced by shock wave lithotripsy (SWL) in the 6- to 8-wk-old pig. Each SWL-treated pig received 2000 shock waves at 12, 18, or 24 kV to the lower pole calyx of one kidney. A group of sham SWL pigs served as time controls. Bilateral GFR, renal plasma flow (RPF), and para-aminohippurate (PAH) extraction were measured 1 h before and 1 and 4 h after SWL in all treated and sham animals. The kidneys were removed at the end of each experiment for morphometric analysis. The SWL-induced lesion increased significantly in size as shock wave energy was increased from 12 to 24 kV. PAH extraction, a measure of tubular function, was not significantly affected at 12 kV, was transiently reduced at 18 kV, and was reduced for the duration of the experiment at 24 kV. GFR and RPF, however, were significantly and similarly reduced at the 1 h post-SWL period at all three kilovolt levels. At the 4-h post-SWL period, both GFR and RPF had returned to baseline levels. Lesion size and tubular injury were correlated with changes in kilovoltage, while changes in renal hemodynamics were already maximal at the lowest discharge voltage. These findings suggest that renal microvessels are highly sensitive to shock waves and that frank injury to tubules and vessels may be more closely related to discharge energy than is renal blood flow.
Coordination of the cell cycle is an important determinant of the syndrome of acute renal failure.
Megyesi, Judit; Andrade, Lucia; Vieira, Jose M; Safirstein, Robert L; Price, Peter M
2002-10-01
Recovery from injury is usually accompanied by cell replication, in which new cells replace those irreparably damaged. After acute renal failure, normally quiescent kidney cells enter the cell cycle, which in tubule segments is accompanied by the induction of cell cycle inhibitors. We found that after acute renal failure induced by either cisplatin injection or renal ischemia, induction of the p21 cyclin-dependent kinase (cdk) inhibitor is protective. Mice lacking this gene developed more widespread kidney cell death, more severe renal failure, and had reduced survival, compared with mice with a functional p21 gene. Here, we show induction of 14-3-3sigma, a regulator of G(2)-to-M transition, after acute renal failure. Our findings, using both in vivo and in vitro models of acute renal failure, show that this protein likely helps to coordinate cell cycle activity to maximize recovery of renal epithelial cells from injury and reduce the extent of the injury itself. Because in terminally differentiated cells, these proteins are highly expressed only after injury, we propose that cell cycle coordination by induction of these proteins could be a general model of tissue recovery from stress and injury.
Cristelli, M P; Cofán, F; Rico, N; Trullàs, J C; Manzardo, C; Agüero, F; Bedini, J L; Moreno, A; Oppenheimer, F; Miro, J M
2017-02-10
Accurately determining renal function is essential for clinical management of HIV patients. Classically, it has been evaluated by estimating glomerular filtration rate (eGFR) with the MDRD-equation, but today there is evidence that the new Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation has greater diagnostic accuracy. To date, however, little information exists on patients with HIV-infection. This study aimed to evaluate eGFR by CKD-EPI vs. MDRD equations and to stratify renal function according to KDIGO guidelines. Cross-sectional, single center study including adult patients with HIV-infection. Four thousand five hundred three patients with HIV-infection (864 women; 19%) were examined. Median age was 45 years (IQR 37-52), and median baseline creatinine was 0.93 mg/dL (IQR 0.82-1.05). A similar distribution of absolute measures of eGFR was found using both formulas (p = 0.548). Baseline median eGFR was 95.2 and 90.4 mL/min/1.73 m 2 for CKD-EPI and MDRD equations (p < 0.001), respectively. Of the 4503 measurements, 4109 (91.2%) agreed, with a kappa index of 0.803. MDRD classified 7.3% of patients as "mild reduced GFR" who were classified as "normal function" with CKD-EPI. Using CKD-EPI, it was possible to identify "normal function" (>90 mL/min/1.73 m 2 ) in 73% patients and "mild reduced GFR" (60-89 mL/min/1.73 m 2 ) in 24.3% of the patients, formerly classified as >60 mL/min/1.73 m 2 with MDRD. There was good correlation between CKD-EPI and MDRD. Estimating renal function using CKD-EPI equation allowed better staging of renal function and should be considered the method of choice. CKD-EPI identified a significant proportion of patients (24%) with mild reduced GFR (60-89 mL/min/1.73 m 2 ).
Sjöström, Sofia; Jodal, Ulf; Sixt, Rune; Bachelard, Marc; Sillén, Ulla
2009-05-01
We sought to study renal abnormality and renal function through time in infants with high grade vesicoureteral reflux. This prospective observational study included 115 infants (80 boys and 35 girls) younger than 1 year with grade III to V vesicoureteral reflux. The diagnosis was made after prenatal ultrasound in 26% of the patients and after urinary tract infection in 71%. Patients were followed by renal scintigraphy, 51chromium edetic acid clearance and video cystometry. Median followup was 62 months. Renal abnormality, which was found in 90% of the children at followup, was generalized in 71% and focal in 29%. The abnormality was bilateral in 28% of the affected patients. Total glomerular filtration rate was less than 80% of expected in 30% of the patients. Single kidney function was less than 40% of expected total glomerular filtration rate in 71% of the patients. Renal status (parenchymal abnormality and function) remained unchanged through time in 84 of 108 available cases (78%), improved in 5 (5%) and deteriorated in 19 (18%). Predictive factors for deterioration were recurrent febrile urinary tract infection, bilateral abnormality and reduced total glomerular filtration rate. Deteriorated renal status was more common in cases diagnosed prenatally than in those detected after urinary tract infection. Among these infants with high grade vesicoureteral reflux renal abnormality was frequent and was associated with subnormal filtration of one of the kidneys. Decreased total glomerular filtration rate was seen in about a third of the patients. Overall deterioration of renal status was seen in only a fifth of the patients. Infection control seems to be an important factor to minimize the risk.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geyskes, G.G.; Oei, H.Y.; Puylaert, C.B.
Radioisotope renography was performed in 21 patients with hypertension and unilateral renal artery stenosis with and without premedication with 25 mg of captopril, and the results were compared with the effect of percutaneous transluminal angioplasty on the blood pressure, assessed 6 weeks after angioplasty. Angioplasty caused a considerable decrease in blood pressure in 15 of the 21 patients. In 12 of these 15 patients, captopril induced changes in the time-activity curves of the affected kidney only, suggesting deterioration of the excretory function of that kidney, while the function of the contralateral kidney remained normal. After angioplasty the asymmetry in themore » time-activity curves diminished despite identical pretreatment with captopril. Such captopril-induced unilateral impairment of the renal function was not seen in the six patients with unilateral renal artery stenosis whose blood pressure did not change after percutaneous transluminal angioplasty or in 13 patients with hypertension and normal renal arteries. The functional impairment of the affected kidneys was characterized by a decrease of /sup 99m/Tc-diethylenetriamine pentaacetic acid uptake and a delay of /sup 131/I-hippurate excretion, while the /sup 131/I-hippurate uptake remained unaffected. These data are in agreement with a reduced glomerular filtration rate and diuresis during preservation of the renal blood flow, changes that can be expected after converting enzyme inhibition in a kidney with low perfusion and an active, renin-mediated autoregulation of the glomerular filtration rate. These data suggest that functional captopril-induced unilateral changes, shown by split renal function studies with noninvasive gamma camera scintigraphy, can be used as a diagnostic test for renovascular hypertension caused by unilateral renal artery stenosis.« less
Zhao, Hailin; Yoshida, Akira; Xiao, Wei; Ologunde, Rele; O'Dea, Kieran P; Takata, Masao; Tralau-Stewart, Catherine; George, Andrew J T; Ma, Daqing
2013-10-01
Prolonged hypothermic storage elicits severe ischemia-reperfusion injury (IRI) to renal grafts, contributing to delayed graft function (DGF) and episodes of acute immune rejection and shortened graft survival. Organoprotective strategies are therefore needed for improving long-term transplant outcome. The aim of this study is to investigate the renoprotective effect of xenon on early allograft injury associated with prolonged hypothermic storage. Xenon exposure enhanced the expression of heat-shock protein 70 (HSP-70) and heme oxygenase 1 (HO-1) and promoted cell survival after hypothermia-hypoxia insult in human proximal tubular (HK-2) cells, which was abolished by HSP-70 or HO-1 siRNA. In the brown Norway to Lewis rat renal transplantation, xenon administered to donor or recipient decreased the renal tubular cell death, inflammation, and MHC II expression, while delayed graft function (DGF) was therefore reduced. Pathological changes associated with acute rejection, including T-cell, macrophage, and fibroblast infiltration, were also decreased with xenon treatment. Donors or recipients treated with xenon in combination with cyclosporin A had prolonged renal allograft survival. Xenon protects allografts against delayed graft function, attenuates acute immune rejection, and enhances graft survival after prolonged hypothermic storage. Furthermore, xenon works additively with cyclosporin A to preserve post-transplant renal function.
Comparative effects of mesenchymal stem cell therapy in distinct stages of chronic renal failure.
Caldas, Heloisa Cristina; de Paula Couto, Thaís Amarante Peres; Fernandes, Ida Maria Maximina; Baptista, Maria Alice Sperto Ferreira; Kawasaki-Oyama, Rosa Sayoko; Goloni-Bertollo, Eny Maria; Braile, Domingo Marcolino; Abbud-Filho, Mario
2015-10-01
The therapeutic potential of adult stem cells in the treatment of chronic diseases is becoming increasingly evident. In the present study, we sought to assess whether treatment with mesenchymal stem cells (MSCs) efficiently retards progression of chronic renal failure (CRF) when administered to experimental models of less severe CRF. We used two renal mass reduction models to simulate different stages of CRF (5/6 or 2/3 mass renal reduction). Renal functional parameters measured were serum creatinine (SCr), creatinine clearance (CCr), rate of decline in CCr (RCCr), and 24-h proteinuria (PT24h). We also evaluated renal morphology by histology and immunohistochemistry. MSCs were obtained from bone marrow aspirates and injected into the renal parenchyma of the remnant kidneys of both groups of rats with CRF (MSC5/6 or MSC2/3). Animals from groups MSC5/6 and CRF2/3 seemed to benefit from MSC therapy because they showed significantly reduction in SCr and PT24h, increase in CCr and slowed the RCCr after 90 days. Treatment reduced glomerulosclerosis but significant improvement did occur in the tubulointerstitial compartment with much less fibrosis and atrophy. MSC therapy reduced inflammation by decreasing macrophage accumulation proliferative activity (PCNA-positive cells) and fibrosis (α-SM-actin). Comparisons of renal functional and morphological parameters responses between the two groups showed that rats MSC2/3 were more responsive to MSC therapy than MSC5/6. This study showed that MSC therapy is efficient to retard CRF progression and might be more effective when administered during less severe stages of CRF.
Sievert, Horst; Schofer, Joachim; Ormiston, John; Hoppe, Uta C; Meredith, Ian T; Walters, Darren L; Azizi, Michel; Diaz-Cartelle, Juan; Cohen-Mazor, Meital
2015-02-01
To evaluate the safety and efficacy of the balloon-based bipolar Vessix Renal Denervation System in treating patients with resistant hypertension. In this prospective, multicentre, single-arm study, 146 patients (age 58.6±10.5 years; 61% men) with office systolic blood pressure (BP) ≥160 mmHg despite ≥3 antihypertensive medications at maximally tolerated doses were treated with the Vessix System. Efficacy endpoints were reductions in office and 24-hour ambulatory systolic and diastolic BPs at six months. Acute and long-term safety, with a focus on the renal artery and estimated glomerular filtration rate (eGFR), were assessed. Baseline office and ambulatory BPs were 182.4±18.4/100.2±14.0 mmHg and 153.0±15.1/87.5±13.2 mmHg, respectively. No acute renal artery injury requiring intervention or serious periprocedural cardiovascular events occurred. At six months, office BP was reduced by 24.7±22.1/10.3±12.7 mmHg (p<0.0001) and ambulatory BP was reduced by 8.4±14.4/5.9±9.1 mmHg (N=69; p<0.0001). Twenty-six patients (18%) achieved an office systolic BP <140 mmHg. One patient had renal artery stenosis which required stenting. Mean eGFR remained stable. Renal artery denervation with the Vessix System reduced both office and ambulatory BP at six months in patients with resistant hypertension. Renal artery safety and renal function results are favourable.
[Early detection, prevention and management of renal failure in liver transplantation].
Castells, Lluís; Baliellas, Carme; Bilbao, Itxarone; Cantarell, Carme; Cruzado, Josep Maria; Esforzado, Núria; García-Valdecasas, Juan Carlos; Lladó, Laura; Rimola, Antoni; Serón, Daniel; Oppenheimer, Federico
2014-10-01
Renal failure is a frequent complication in liver transplant recipients and is associated with increased morbidity and mortality. A variety of risk factors for the development of renal failure in the pre- and post-transplantation periods have been described, as well as at the time of surgery. To reduce the negative impact of renal failure in this population, an active approach is required for the identification of those patients with risk factors, the implementation of preventive strategies, and the early detection of progressive deterioration of renal function. Based on published evidence and on clinical experience, this document presents a series of recommendations on monitoring RF in LT recipients, as well as on the prevention and management of acute and chronic renal failure after LT and referral of these patients to the nephrologist. In addition, this document also provides an update of the various immunosuppressive regimens tested in this population for the prevention and control of post-transplantation deterioration of renal function. Copyright © 2013 Elsevier España, S.L.U. and AEEH y AEG. All rights reserved.
Yi, Weijie; Xie, Xiao; Du, Miying; Bu, Yongjun; Wu, Nannan; Yang, Hui; Tian, Chong; Xu, Fangyi; Xiang, Siyun; Zhang, Piwei; Chen, Zhuo
2017-01-01
Scope Several reports in the literature have suggested the renoprotective effects of ketone bodies and green tea polyphenols (GTPs). Our previous study found that GTP consumption could elevate the renal expression of the ketogenic rate-limiting enzyme, which was decreased by a high-fat diet (HFD) in rats. Here, we investigated whether ketogenesis can mediate renoprotection by GTPs against an HFD. Methods and Results Wistar rats were fed a standard or HFD with or without GTPs for 18 weeks. The renal oxidative stress level, kidney function, renal expression, and activity levels of mitochondrial 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) synthase 2 (HMGCS2) and sirtuin 3(SIRT3) were detected. The increased renal oxidative stress and the loss of renal function induced by the HFD were ameliorated by GTPs. Renal ketogenesis and SIRT3 expression and activity levels, which were reduced by the HFD, were restored by GTPs. In vitro, HEK293 cells were transfected with the eukaryotic expression plasmid pcDNA HMGCS2. GTP treatment could upregulate HMGCS2 and SIRT3 expression. Although SIRT3 expression was not affected by HMGCS2 transfection, the 4-hydroxy-2-nonenal (4-HNE) level and the acetyl-MnSOD (K122)/MnSOD ratio were reduced in HMGCS2-transfected cells in the context of H2O2. Conclusion The ketogenesis/SIRT3 pathway mediates the renoprotection of GTPs against the oxidative stress induced by an HFD. PMID:28814987
Cherney, David Z I; Scholey, James W; Jiang, Shan; Har, Ronnie; Lai, Vesta; Sochett, Etienne B; Reich, Heather N
2012-11-01
Diabetes is associated with renin-angiotensin system (RAS) activation, leading to renal and systemic vascular dysfunction that contribute to end-organ injury and significant morbidity. RAS blockade with ACE inhibitors reduces, but does not abolish, RAS effects. Accordingly, our aim was to determine if direct renin inhibition alone, and in combination with an ACE inhibitor, corrects early hemodynamic abnormalities associated with type 1 diabetes. Arterial stiffness (augmentation index), flow-mediated vasodilatation (FMD), and renal hemodynamic function (inulin and paraaminohippurate clearance) were measured at baseline under clamped euglycemic and hyperglycemic conditions (n = 21). Measures were repeated after 4 weeks of aliskiren therapy and again after aliskiren plus ramipril. Blood pressure-lowering effects of aliskiren were similar during clamped euglycemia and hyperglycemia. Combination therapy augmented this effect under both glycemic conditions (P = 0.0005). Aliskiren reduced arterial stiffness under clamped euglycemic and hyperglycemic conditions, and the effects were augmented by dual RAS blockade (-3.4 ± 11.2 to -8.0 ± 11.5 to -14.3 ± 8.4%, respectively, during euglycemia, P = 0.0001). During clamped euglycemia, aliskiren increased FMD; dual therapy exaggerated this effect (5.1 ± 3.3 to 7.5 ± 3.0 to 10.8 ± 3.5%, repeated-measures ANOVA, P = 0.0001). Aliskiren monotherapy caused renal vasodilatation during clamped hyperglycemia only. In contrast, dual therapy augmented renal vasodilatory effects during clamped euglycemia and hyperglycemia. In patients with uncomplicated type 1 diabetes, aliskiren-based dual RAS blockade is associated with greater arterial compliance, FMD, and renal vasodilatation.
Cobalt treatment does not prevent glomerular morphological alterations in type 1 diabetic rats.
Singh, Gaaminepreet; Krishan, Pawan
2018-06-02
Early renal morphological alterations including glomerular hypertrophy and mesangial expansion occur in diabetic kidney disease and correlate with various clinical manifestations of diabetes. The present study was designed to investigate the influence of pharmacological modulation of HIF-1α (hypoxia inducible factor-1 alpha) protein levels, on these glomerular changes in rodent model of type 1 diabetes. Male wistar rats were made diabetic (Streptozotocin 45 mg/kg; i.p.) and afterwards treated with HIF activator cobalt chloride for 4 weeks. Renal function was assessed by serum creatinine, albumin, proteinuria levels, oxidative stress: reduced glutathione levels and catalase activity, and renal tissue HIF-1α protein levels were determined by ELISA assay. Histological analysis of kidney sections was done by haematoxylin and eosin (glomeruli diameter), periodic acid Schiff (mesangial expansion and glomerulosclerosis) and sirius red (fibrosis, tubular dilation) staining. Diabetes rats displayed reduced serum albumin levels, marked proteinuria, lower kidney reduced glutathione content, glomerular hypertrophy, glomerulosclerosis, mesangial expansion, tubular dilation and renal fibrosis. Cobalt chloride treatment normalised renal HIF-1α protein levels, reduced development of proteinuria and tubulo-interstitial fibrosis, but the glomerular morphological alterations such as glomerulosclerosis, mesangial expansion, increased glomerular diameter and tubular vacoulations were not abrogated in diabetic kidneys. Glomerular morphological abnormalities might precede the development of proteinuria and renal fibrosis in experimental model of type 1 diabetes. Pharmacological modulation of renal HIF-1α protein levels does not influence glomerular and tubular dilatory changes in diabetic kidney disease.
Renal blood flow, fractional excretion of sodium and acute kidney injury: time for a new paradigm?
Prowle, John; Bagshaw, Sean M; Bellomo, Rinaldo
2012-12-01
Global renal blood flow is considered pivotal to renal function. Decreased global renal blood flow (decreased perfusion) is further considered the major mechanism of reduced glomerular filtration rate responsible for the development of acute kidney injury (AKI) in critically ill patients. Additionally, urinary biochemical tests are widely taught to allow the differential diagnosis of prerenal (functional) AKI and intrinsic [structural AKI (so-called acute tubular necrosis)]. In this review we will examine recent evidence regarding these two key clinical paradigms. Recent animal experiments and clinical studies in humans using cine-phase contrast magnetic resonance technology are not consistent with the decreased perfusion paradigm. They suggest instead that changes in the intra-renal circulation including modification in efferent arteriolar function and intra-renal shunting are much more likely to be responsible for AKI, especially in sepsis. Similarly, recent human studies indicate the urinary biochemistry has limited diagnostic or prognostic ability and is dissociated form biomarker and microscopic evidence of tubular injury. Intra-renal microcirculatory changes are likely more important than changes in global blood flow in the development of AKI. Urinary biochemistry is not a clinically useful diagnostic or prognostic tool in critically ill patients at risk of or with AKI.
Artifact in dynamic imaging of the kidneys with $sup 131$I-o-iodohippurate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bekier, A.; Bandhauer, K.
1974-02-01
An artifactural area of increased activity over the left lumbar region was observed in the radionuclide imaging of the kidneys with /sup 131/I-o- iodohippurate. The renal scan was falsely interpreted as a functionally reduced left kidney. The following renal arteriogram shows only a right renal artery. The agenesia of the left kidney was confirmed by a laparotomy. This artifact was probably due to gastric secretion of free /sup 131/I. (auth)
Eirin, Alfonso; Zhu, Xiang-Yang; Ferguson, Christopher M; Riester, Scott M; van Wijnen, Andre J; Lerman, Amir; Lerman, Lilach O
2015-01-19
Percutaneous transluminal renal angioplasty (PTRA) fails to fully improve cardiac injury and dysfunction in patients with renovascular hypertension (RVH). Mesenchymal stem cells (MSCs) restore renal function, but their potential for attenuating cardiac injury after reversal of RVH has not been explored. We hypothesized that replenishment of MSCs during PTRA would improve cardiac function and oxygenation, and decrease myocardial injury in porcine RVH. Pigs were studied after 16 weeks of RVH, RVH treated 4 weeks earlier with PTRA with or without adjunct intra-renal delivery of MSC (10^6 cells), and controls. Cardiac structure, function (fast-computed tomography (CT)), and myocardial oxygenation (Blood-Oxygen-Level-Dependent- magnetic resonance imaging) were assessed in-vivo. Myocardial microvascular density (micro-CT) and myocardial injury were evaluated ex-vivo. Kidney venous and systemic blood levels of inflammatory markers were measured and their renal release calculated. PTRA normalized blood pressure, yet stenotic-kidney glomerular filtration rate, similarly blunted in RVH and RVH + PTRA, normalized only in PTRA + MSC-treated pigs. PTRA attenuated left ventricular remodeling, whereas myocardial oxygenation, subendocardial microvascular density, and diastolic function remained decreased in RVH + PTRA, but normalized in RVH + PTRA-MSC. Circulating isoprostane levels and renal release of inflammatory cytokines increased in RVH and RVH + PTRA, but normalized in RVH + PTRA-MSC, as did myocardial oxidative stress, inflammation, collagen deposition, and fibrosis. Intra-renal MSC delivery during PTRA preserved stenotic-kidney function, reduced systemic oxidative stress and inflammation, and thereby improved cardiac function, oxygenation, and myocardial injury four weeks after revascularization, suggesting a therapeutic potential for adjunctive MSC delivery to preserve cardiac function and structure after reversal of experimental RVH.
Rogers, NM; Stephenson, MD; Kitching, AR; Horowitz, JD; Coates, PTH
2012-01-01
BACKGROUND AND PURPOSE Renal ischaemia–reperfusion (IR) injury is an inevitable consequence of renal transplantation, causing significant graft injury, increasing the risk of rejection and contributing to poor long-term graft outcome. Renal injury is mediated by cytokine and chemokine synthesis, inflammation and oxidative stress resulting from activation of the NF-κB pathway. EXPERIMENTAL APPROACH We utilized liposomal incorporation of a potent inhibitor of the NF-κB pathway, curcumin, to target delivery to renal tubular epithelial and antigen-presenting cells. Liposomes containing curcumin were administered before bilateral renal ischaemia in C57/B6 mice, with subsequent reperfusion. Renal function was assessed from plasma levels of urea and creatinine, 4 and 24 h after reperfusion. Renal tissue was examined for NF-κB activity and oxidative stress (histology, immunostaining) and for apoptosis (TUNEL). Cytokines and chemokines were measured by RT-PCR and Western blotting. KEY RESULTS Liposomal curcumin significantly improved serum creatinine, reduced histological injury and cellular apoptosis and lowered Toll-like receptor-4, heat shock protein-70 and TNF-α mRNA expression. Liposomal curcumin also reduced neutrophil infiltration and diminished inflammatory chemokine expression. Curcumin liposomes reduced intracellular superoxide generation and increased superoxide dismutase levels, decreased inducible NOS mRNA expression and 3-nitrotyrosine staining consistent with limitations in nitrosative stress and inhibited renal tubular mRNA and protein expression of thioredoxin-interacting protein. These actions of curcumin were mediated by inhibition of NF-κB, MAPK and phospho-S6 ribosomal protein. CONCLUSIONS AND IMPLICATIONS Liposomal delivery of curcumin promoted effective, targeted delivery of this non-toxic compound that provided cytoprotection via anti-inflammatory and multiple antioxidant mechanisms following renal IR injury. PMID:21745189
Rogers, N M; Stephenson, M D; Kitching, A R; Horowitz, J D; Coates, P T H
2012-05-01
Renal ischaemia-reperfusion (IR) injury is an inevitable consequence of renal transplantation, causing significant graft injury, increasing the risk of rejection and contributing to poor long-term graft outcome. Renal injury is mediated by cytokine and chemokine synthesis, inflammation and oxidative stress resulting from activation of the NF-κB pathway. We utilized liposomal incorporation of a potent inhibitor of the NF-κB pathway, curcumin, to target delivery to renal tubular epithelial and antigen-presenting cells. Liposomes containing curcumin were administered before bilateral renal ischaemia in C57/B6 mice, with subsequent reperfusion. Renal function was assessed from plasma levels of urea and creatinine, 4 and 24 h after reperfusion. Renal tissue was examined for NF-κB activity and oxidative stress (histology, immunostaining) and for apoptosis (TUNEL). Cytokines and chemokines were measured by RT-PCR and Western blotting. Liposomal curcumin significantly improved serum creatinine, reduced histological injury and cellular apoptosis and lowered Toll-like receptor-4, heat shock protein-70 and TNF-α mRNA expression. Liposomal curcumin also reduced neutrophil infiltration and diminished inflammatory chemokine expression. Curcumin liposomes reduced intracellular superoxide generation and increased superoxide dismutase levels, decreased inducible NOS mRNA expression and 3-nitrotyrosine staining consistent with limitations in nitrosative stress and inhibited renal tubular mRNA and protein expression of thioredoxin-interacting protein. These actions of curcumin were mediated by inhibition of NF-κB, MAPK and phospho-S6 ribosomal protein. Liposomal delivery of curcumin promoted effective, targeted delivery of this non-toxic compound that provided cytoprotection via anti-inflammatory and multiple antioxidant mechanisms following renal IR injury. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.
Faiman, Beth M; Mangan, Patricia; Spong, Jacy; Tariman, Joseph D
2011-08-01
Kidney dysfunction is a common clinical feature of symptomatic multiple myeloma. Some degree of renal insufficiency or renal failure is present at diagnosis or will occur during the course of the disease and, if not reversed, will adversely affect overall survival and quality of life. Chronic insults to the kidneys from other illnesses, treatment, or multiple myeloma itself can further damage renal function and increase the risk for additional complications, such as anemia. Patients with multiple myeloma who have light chain (Bence Jones protein) proteinuria may experience renal failure or progress to end-stage renal disease (ESRD) and require dialysis because of light chain cast nephropathy. Kidney failure in patients with presumed multiple myeloma also may result from amyloidosis, light chain deposition disease, or acute tubular necrosis caused by nephrotoxic agents; therefore, identification of patients at risk for kidney damage is essential. The International Myeloma Foundation's Nurse Leadership Board has developed practice recommendations for screening renal function, identifying positive and negative contributing risk and environmental factors, selecting appropriate therapies and supportive care measures to decrease progression to ESRD, and enacting dialysis to reduce and manage renal complications in patients with multiple myeloma.
Totou, N L; Moura, S S; Coelho, D B; Oliveira, E C; Becker, L K; Lima, W G
2018-03-01
Experimental studies in animal models have described the benefits of physical exercise (PE) to kidney diseases associated with hypertension. Land- and water-based exercises induce different responses in renal function. Our aim was to evaluate the renal alterations induced by different environments of PE in spontaneously hypertensive rats (SHRs). The SHRs were divided into sedentary (S), swimming exercise (SE), and running exercise (RE) groups, and were trained for 8 weeks under similar intensities (60 min/day). Arterial pressure (AP) and heart rate (HR) were recorded. The renal function was evaluated through urinary volume at each week of training; sodium and potassium excretions, plasma and urinary osmolarities, glomerular filtration rate (GFR), levels of proteinuria, and renal damage were determined. SE and RE rats presented reduced mean AP, systolic blood pressure, and HR in comparison with S group. SE and RE rats showed higher urine osmolarity compared with S. SE rats showed higher free water clearance (P < 0.01), lower urinary density (P < 0.0001), and increased weekly urine volume (P < 0.05) in comparison with RE and S groups. GFR was increased in both SE and RE rats. The proteinuria of SE (7.0 ± 0.8 mg/24 h) rats was decreased at the 8th week of the PE in comparison with RE (9.6 ± 0.8 mg/24 h) and S (9.8 ± 0.5 mg/24 h) groups. The glomerulosclerosis was reduced in SE rats (P < 0.02). SE produced different response in renal function in comparison with RE, in which only swimming-trained rats had better profile for proteinuria and glomerulosclerosis.
Singh, Reetu R.; Lankadeva, Yugeesh R.
2013-01-01
Renin-angiotensin system (RAS) is a powerful modulator of renal hemodynamic and fluid homeostasis. Up-regulation in components of intra-renal RAS occurs with ageing. Recently we reported that 2 year old uninephrectomised (uni-x) female sheep have low renin hypertension and reduced renal function. By 5 years of age, these uni-x sheep had augmented decrease in renal blood flow (RBF) compared to sham. We hypothesised that this decrease in RBF in 5 year old uni-x sheep was due to an up-regulation in components of the intra-renal RAS. In this study, renal responses to angiotensin II (AngII) infusion and AngII type 1 receptor (AT1R) blockade were examined in the same 5 year old sheep. We also administered AngII in the presence of losartan to increase AngII bioavailability to the AT2R in order to understand AT2R contribution to renal function in this model. Uni-x animals had significantly lower renal cortical content of renin, AngII (∼40%) and Ang 1–7 (∼60%) and reduced cortical expression of AT1R gene than sham animals. In response to both AngII infusion and AT1R blockade via losartan, renal hemodynamic responses and tubular sodium excretion were significantly attenuated in uni-x animals compared to sham. However, AngII infusion in the presence of losartan caused ∼33% increase in RBF in uni-x sheep compared to ∼14% in sham (P<0.05). This was associated with a significant decrease in renal vascular resistance in the uni-x animals (22% vs 15%, P<0.05) without any changes in systemic blood pressure. The present study shows that majority of the intra-renal RAS components are suppressed in this model of low renin hypertension. However, increasing the availability of AngII to AT2R by AT1R blockade improved renal blood flow in uni-x sheep. This suggests that manipulation of the AT2R maybe a potential therapeutic target for treatment of renal dysfunction associated with a congenital nephron deficit. PMID:23840884
Cheng, Yao; Kong, Fan-Zhen; Dong, Xiao-Feng; Xu, Qin-Rong; Gui, Qian; Wang, Wei; Feng, Hong-Xuan; Luo, Wei-Feng; Gao, Zong-En; Wu, Guan-Hui
2017-01-01
We examined whether the association between total homocysteine (tHCY) and risk of ischemic stroke (IS) varies depending on renal function to gain insight into why tHCY-lowering vitamins do not reduce the incidence of cardiovascular disease in clinical trials. We analyzed data from 542 IS patients with large artery atherosclerosis (LAA) or small artery occlusion (SAO) after stratification by estimated glomerular filtration rate (eGFR) to evaluate renal function. We found that tHCY level was positively associated with the occurrence of IS in both LAA (OR: 1.159, 95% CI: 1.074-1.252, P <0.001) and SAO (OR: 1.143, 95% CI: 1.064-1.228, P <0.001) patients and in LAA (OR: 1.135, 95% CI: 1.047-1.230, P =0.002) and SAO (OR: 1.159, 95% CI: 1.060-1.268, P =0.001) subgroups with normal renal function but not in LAA or SAO subgroups with renal insufficiency. eGFR level was positively associated with IS in LAA (OR: 1.022, 95% CI: 1.010-1.034, P <0.001) and SAO (OR: 1.024, 1.012-1.037, P <0.001) subgroups with normal renal function but was negatively associated with IS in LAA (OR: 0.875, 95% CI: 0.829-0.925, P <0.001) and SAO (OR: 0.890, 95% CI: 0.850-0.932, P <0.001) subgroups with renal insufficiency. Folic acid level was negatively associated with IS in LAA (OR: 0.734, 95% CI: 0.606-0.889, P =0.002) and SAO (OR: 0.861, 95% CI: 0.767-0.967, P =0.012) subgroups with renal insufficiency. Therefore, renal function as evaluated by eGFR exerts a significant influence on the association between tHCY and risk of IS.
Early diagnosis of diabetic vascular complications: impairment of red blood cell deformability
NASA Astrophysics Data System (ADS)
Shin, Sehyun; Ku, Yunhee; Park, Cheol-Woo; Suh, Jang-Soo
2006-02-01
Reduced deformability of red blood cells (RBCs) may play an important role on the pathogenesis of chronic vascular complications of diabetes mellitus. However, available techniques for measuring RBC deformability often require washing process after each measurement, which is not optimal for day-to-day clinical use at point of care. The objectives of the present study are to develop a device and to delineate the correlation of impaired RBC deformability with diabetic nephropathy. We developed a disposable ektacytometry to measure RBC deformability, which adopted a laser diffraction technique and slit rheometry. The essential features of this design are its simplicity (ease of operation and no moving parts) and a disposable element which is in contact with the blood sample. We studied adult diabetic patients divided into three groups according to diabetic complications. Group I comprised 57 diabetic patients with normal renal function. Group II comprised 26 diabetic patients with chronic renal failure (CRF). Group III consisted of 30 diabetic subjects with end-stage renal disease (ESRD) on hemodialysis. According to the renal function for the diabetic groups, matched non-diabetic groups were served as control. We found substantially impaired red blood cell deformability in those with normal renal function (group I) compared to non-diabetic control (P = 0.0005). As renal function decreases, an increased impairment in RBC deformability was found. Diabetic patients with chronic renal failure (group II) when compared to non-diabetic controls (CRF) had an apparently greater impairment in RBC deformability (P = 0.07). The non-diabetic cohort (CRF), on the other hand, manifested significant impairment in red blood cell deformability compared to healthy control (P = 0.0001). The newly developed slit ektacytometer can measure the RBC deformability with ease and accuracy. In addition, progressive impairment in cell deformability is associated with renal function loss in all patients regardless of the presence or absence of diabetes. In diabetic patients, early impairment in RBC deformability appears in patients with normal renal function.
Kamkuemah, Monika; Kaplan, Richard; Bekker, Linda-Gail; Little, Francesca; Myer, Landon
2015-04-01
Long-term use of tenofovir disoproxil fumarate is associated with declines in glomerular function and chronic kidney disease in HIV-infected patients. We aimed to assess the prevalence and incidence of renal impairment in a primary care setting in sub-Saharan Africa. We analysed data from 1092 HIV-infected patients initiating tenofovir at a primary care clinic in Cape Town, South Africa. Renal function was assessed for the first 12 months on ART by estimating glomerular filtration rate (eGFR) calculated using the Cockroft-Gault equation categorised into normal, mild, moderate and severe reduction in renal function based on values >90, 60-89, 30-59 and <30 ml/min/1.73 m(2) , respectively. Associations were assessed using logistic regression, and average GFR trajectory over time was modelled using linear mixed-effects models. The cohort consisted of 62% women; median age was 34 years (IQR 29; 41 years). The majority had normal renal function pre-ART (79%), 19% had mildly reduced GFR, and 2% had moderate renal impairment. Older age, more advanced WHO stage and anaemia were independently associated with prevalent renal impairment. On average, estimated glomerular function improved over the first year on tenofovir [1.10 ml/min/1.73 m(2) average increase over 12 months (95% CI: 0.80; 1.40)]. Male gender, anaemia and immunosuppression (WHO Stage III/IV and CD4 cell counts <100 cells/mm(3) ) were associated with lower average eGFR levels over time. Overall, 3% developed eGFR <50 ml/min/1.73 m(2) during this period. Serum creatinine tests conducted before 4 months on ART had low predictive value for predicting change in eGFR after a year on ART. Generally, renal function improved in HIV-infected adults initiating ART in this primary healthcare setting during the first year on ART. While monitoring of renal function is recommended in the first 4 months on ART, renal impairment appears uncommon during the first 12 months of tenofovir-containing ART in primary care populations. © 2014 John Wiley & Sons Ltd.
Hori, Shunta; Miyake, Makito; Morizawa, Yosuke; Nakai, Yasushi; Onishi, Kenta; Iida, Kota; Gotoh, Daisuke; Anai, Satoshi; Torimoto, Kazumasa; Aoki, Katsuya; Yoneda, Tatsuo; Tanaka, Nobumichi; Yoshida, Katsunori; Fujimoto, Kiyohide
2018-05-29
BACKGROUND Living kidney donors face the risk of renal dysfunction, resulting in end-stage renal disease, cardiovascular disease, or cerebrovascular disease, after donor nephrectomy. Reducing this risk is important to increasing survival of living donors. In this study, we investigated the effect of preoperative distribution of abdominal adipose tissue and nutritional status on postoperative renal function in living donors. MATERIAL AND METHODS Seventy-five living donors were enrolled in this retrospective study. Preoperative unenhanced computed tomography images were used to measure abdominal adipose tissue parameters. Prognostic nutritional index (PNI) was used to assess preoperative nutritional status. Donors were divided into 2 groups according to abdominal visceral adipose tissue (VAT) area at the level of the fourth and fifth lumbar vertebrae (<80 or ≥80 cm²). Postoperative renal function was compared in the 2 groups, and prognostic factors for development of chronic kidney disease (CKD) G3b were identified using multivariate analysis. RESULTS Donors with a VAT area ≥80 significantly more often had hypertension preoperatively. Although there was no significant difference in preoperative estimated glomerular filtration rate (eGFR) between the 2 groups, postoperative renal function was significantly decreased in donors with a VAT area ≥80 compared to those with a VAT area <80. In multivariate analysis, VAT area ≥80 and PNI <54 were independent factors predicting the development of CKD G3b after 12 months. CONCLUSIONS Our findings suggest that preoperative VAT and PNI affect postoperative renal function. Further research is required to establish appropriate exercise protocols and nutritional interventions during follow-up to improve outcomes in living donors.
Zinc deficiency during growth: influence on renal function and morphology.
Tomat, Analía Lorena; Costa, María Angeles; Girgulsky, Luciana Carolina; Veiras, Luciana; Weisstaub, Adriana Ruth; Inserra, Felipe; Balaszczuk, Ana María; Arranz, Cristina Teresa
2007-03-13
This study was designed to investigate the effects of moderate zinc deficiency during growth on renal morphology and function in adult life. Weaned male Wistar rats were divided into two groups and fed either a moderately zinc-deficient diet (zinc: 8 mg/kg, n=12) or a control diet (zinc: 30 mg/kg, n=12) for 60 days. We evaluated: renal parameters, NADPH-diaphorase and nitric oxide synthase activity in kidney, renal morphology and apoptotic cells in renal cortex. Zinc-deficient rats showed a decrease in glomerular filtration rate and no changes in sodium and potassium urinary excretion. Zinc deficiency decreased NADPH diaphorase activity in glomeruli and tubular segment of nephrons, and reduced activity of nitric oxide synthase in the renal medulla and cortex, showing that zinc plays an important role in preservation of the renal nitric oxide system. A reduction in nephron number, glomerular capillary area and number of glomerular nuclei in cortical and juxtamedullary areas was observed in zinc deficient kidneys. Sirius red staining and immunostaining for alpha-smooth muscle-actin and collagen III showed no signs of fibrosis in the renal cortex and medulla. An increase in the number of apoptotic cells in distal tubules and cortical collecting ducts neighboring glomeruli and, to a lesser extent, in the glomeruli was observed in zinc deficient rats. The major finding of our study is the emergence of moderate zinc deficiency during growth as a potential nutritional factor related to abnormalities in renal morphology and function that facilitates the development of cardiovascular and renal diseases in adult life.
Multiphoton imaging for assessing renal disposition in acute kidney injury
NASA Astrophysics Data System (ADS)
Liu, Xin; Liang, Xiaowen; Wang, Haolu; Roberts, Darren M.; Roberts, Michael S.
2016-11-01
Estimation of renal function and drug renal disposition in acute kidney injury (AKI), is important for appropriate dosing of drugs and adjustment of therapeutic strategies, but is challenging due to fluctuations in kidney function. Multiphoton microscopy has been shown to be a useful tool in studying drug disposition in liver and can reflect dynamic changes of liver function. We extend this imaging technique to investigate glomerular filtration rate (GFR) and tubular transporter functional change in various animal models of AKI, which mimic a broad range of causes of AKI such as hypoxia (renal ischemia- reperfusion), therapeutic drugs (e.g. cisplatin), rhabdomyolysis (e.g. glycerol-induced) and sepsis (e.g. LPSinduced). The MPM images revealed acute injury of tubular cells as indicated by reduced autofluorescence and cellular vacuolation in AKI groups compared to control group. In control animal, systemically injected FITC-labelled inulin was rapidly cleared from glomerulus, while the clearance of FITC-inulin was significantly delayed in most of animals in AKI group, which may reflect the reduced GFR in AKI. Following intravenous injection, rhodamine 123, a fluorescent substrate of p-glycoprotein (one of tubular transporter), was excreted into urine in proximal tubule via p-glycoprotein; in response to AKI, rhodamine 123 was retained in tubular cells as revealed by slower decay of fluorescence intensity, indicating P-gp transporter dysfunction in AKI. Thus, real-time changes in GFR and transporter function can be imaged in rodent kidney with AKI using multiphoton excitation of exogenously injected fluorescent markers.
Agmatine improves renal function in gentamicin-induced nephrotoxicity in rats.
El-Kashef, Dalia H; El-Kenawi, Asmaa E; Abdel Rahim, Mona; Suddek, Ghada M; Salem, Hatem A
2016-03-01
The present study was designed to explore the possible protective effects of agmatine, a known nitric oxide (NO) synthase inhibitor, against gentamicin-induced nephrotoxicity in rats. For this purpose, we quantitatively evaluated gentamicin-induced renal structural and functional alterations using histopathological and biochemical approaches. Furthermore, the effect of agmatine on gentamicin-induced hypersensitivity of urinary bladder rings to acetylcholine (ACh) was evaluated. Twenty-four male Wistar albino rats were randomly divided into 3 groups, namely control, gentamicin (100 mg/kg, i.p.), and gentamicin plus agmatine (40 mg/kg, orally). At the end of the study, all rats were sacrificed and then blood and urine samples and kidneys were taken. Administration of agmatine significantly decreased kidney/body mass ratio, serum creatinine, lactate dehydrogenase (LDH), renal malondialdehyde (MDA), myeloperoxidase (MPO), NO, and tumor necrosis factor-alpha (TNF-α) while it significantly increased creatinine clearance and renal superoxide dismutase (SOD) activity when compared with the gentamicin-treated group. Additionally, agmatine ameliorated tissue morphology as evidenced by histological evaluation and reduced the responses of isolated bladder rings to ACh. Our study indicates that agmatine administration with gentamicin attenuates oxidative-stress associated renal injury by reducing oxygen free radicals and lipid peroxidation, restoring NO level and inhibiting inflammatory mediators such as TNF-α.
Peces, Ramón; Martínez-Ara, Jorge; Peces, Carlos; Picazo, Mariluz; Cuesta-López, Emilio; Vega, Cristina; Azorín, Sebastián; Selgas, Rafael
2011-01-01
We report the case of a 38-year-old male with autosomal-dominant polycystic kidney disease (ADPKD) and concomitant nephrotic syndrome secondary to membranous nephropathy (MN). A 3-month course of prednisone 60 mg daily and losartan 100 mg daily resulted in resistance. Treatment with chlorambucil 0.2 mg/kg daily, low-dose prednisone, plus an angiotensin-converting enzyme inhibitor (ACEI) and an angiotensin II receptor blocker (ARB) for 6 weeks resulted in partial remission of his nephrotic syndrome for a duration of 10 months. After relapse of the nephrotic syndrome, a 13-month course of mycophenolate mofetil (MFM) 2 g daily and low-dose prednisone produced complete remission for 44 months. After a new relapse, a second 24-month course of MFM and low-dose prednisone produced partial to complete remission of proteinuria with preservation of renal function. Thirty-six months after MFM withdrawal, complete remission of nephrotic-range proteinuria was maintained and renal function was preserved. This case supports the idea that renal biopsy is needed for ADPKD patients with nephrotic-range proteinuria in order to exclude coexisting glomerular disease and for appropriate treatment/prevention of renal function deterioration. To the best of our knowledge, this is the first reported case of nephrotic syndrome due to MN in a patient with ADPKD treated with MFM, with remission of proteinuria and preservation of renal function after more than 10 years. Findings in this patient also suggest that MFM might reduce cystic cell proliferation and fibrosis, preventing progressive renal scarring with preservation of renal function. PMID:21552769
Parathyroidectomy Halts the Deterioration of Renal Function in Primary Hyperparathyroidism.
Tassone, Francesco; Guarnieri, Andrea; Castellano, Elena; Baffoni, Claudia; Attanasio, Roberto; Borretta, Giorgio
2015-08-01
Decreased renal function has been consistently included among factors prompting recommendation for surgery in primary hyperparathyroidism (PHPT). However, most retrospective studies addressing this issue did not show an improvement in renal function after parathyroidectomy (PTX). The aim of this study was to investigate changes in renal function after PTX in PHPT patients subdivided according to renal function at diagnosis. This was a retrospective cross-sectional study. We studied 109 consecutive PHPT patients before and after PTX. Biochemical evaluation included fasting total and ionized serum calcium, phosphate, creatinine, immunoreactive intact PTH, and 25-hydroxyvitamin D3 levels. Glomerular filtration rate (GFR) was assessed with the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation. Mean (± SD) CKD-EPI estimated GFR (eGFR) at diagnosis was 82.4 ± 19.3 mL/min/1.73 m(2) (median, 84.8 mL/min/1.73 m(2); interquartile range, 68.5-94.2 mL/min/1.73 m(2)). Patients with eGFR equal to or higher than 60 mL/min/1.73 m(2) (group 1, n = 95) were significantly younger than patients with eGFR lower than 60 mL/min/1.73 m(2) (group 2, n = 14; P < .0003). After PTX, eGFR did not change in patients of group 2 (P = .509), whereas it was significantly reduced in patients of group 1 (P < .0002). The difference in eGFR between baseline and post-PTX values was correlated negatively with baseline serum creatinine (R = -0.27; P = .0052) and positively with baseline CKD-EPI eGFR (R = 0.32; P = .00062). At multiple regression analysis, only systolic blood pressure and baseline CKD-EPI eGFR were independent predictors of GFR variation. Surgical cure of PHPT halts renal function deterioration in patients with coexisting renal disease. Our study thus supports the indication for surgery in patients with eGFR less than 60 mL/min/1.73 m(2), as recommended by current guidelines. Moreover, our data show that presurgical renal function is a relevant predictor of renal function after PTX.
Ahmed, Walaa; Zaki, Amr; Nabil, Taghred
2015-01-01
Methotrexate (MTX) has been widely used for treatment of cancer and rheumatoid arthritis, but its use has been limited by its nephrotoxicity. This study was carried out to determine whether garlic exerts a protective effect against MTX-induced nephrotoxicity. Nephrotoxicity was induced in rats after a single i.p. injection of MTX (20 mg/kg). Garlic extract (1 mL/100 g b.w.) was given orally for 7 days before and after MTX administration. Serum samples were collected to evaluate urea, creatinine, sodium, phosphorous, potassium, and calcium. Reduced glutathione, catalase, adenosine deaminase, nitric oxide, and malondialdehyde were measured in renal tissue. Tubular injury was evaluated by histopathological examination. MTX increased urea and creatinine levels and led to imbalances in some electrolytes. It also depleted renal antioxidant enzyme levels and increased malondialdehyde, adenosine deaminase, and nitric oxide levels. Histopathological examination showed glomerular and tubular alterations. Pretreatment with garlic significantly improved renal function and increased renal antioxidant enzyme activities. Furthermore, garlic reduced renal oxidative stress and prevented alterations in renal morphology. Garlic treatment has a reversible biochemical and histological effect upon MTX-induced nephrotoxicity.
Hoover, Randall K; Alcorn, Harry; Lawrence, Laura; Paulson, Susan K; Quintas, Megan; Luke, David R; Cammarata, Sue K
2018-03-26
Delafloxacin, a fluoroquinolone, has activity against Gram-positive organisms including methicillin-resistant S aureus and fluoroquinolone-susceptible and -resistant Gram-negative organisms. The intravenous formulation of delafloxacin contains the excipient sulfobutylether-β-cyclodextrin (SBECD), which is eliminated by renal filtration. This study examined the pharmacokinetics and safety of SBECD after single intravenous (IV) infusions in subjects with renal impairment. The study was an open-label, parallel-group, crossover study in subjects with normal renal function or mild, moderate, or severe renal impairment, and those with end-stage renal disease undergoing hemodialysis. Subjects received 300 mg delafloxacin IV or placebo IV, containing 2400 mg SBECD, in 2 periods separated by ≥14-day washouts. SBECD total clearance decreased with decreasing renal function, with a corresponding increase in area under the concentration-time curve (AUC 0-∞ ). After IV delafloxacin 300 mg administration, SBECD mean total clearance was 6.28 and 1.24 L/h, mean AUC 0-∞ was 387 and 2130 h·μg/mL, and mean renal clearance was 5.36 and 1.14 L/h in normal and severe renal subjects, respectively. Similar values were obtained after IV placebo administration. In subjects with end-stage renal disease, delafloxacin 300 mg IV produced mean SBECD AUC 0-48 values of 2715 and 7861 h·μg/mL when dosed before and after hemodialysis, respectively. Total SBECD clearance exhibited linear relationships to estimated glomerular filtration rate and creatinine clearance. Single doses of IV delafloxacin 300 mg and IV placebo were well tolerated in all groups. In conclusion, decreasing renal function causes reduced SBECD clearance and increased exposures, but SBECD continues to exhibit a good safety and tolerability profile in IV formulations. © 2018, The American College of Clinical Pharmacology.
Cicero, Arrigo F G; Kuwabara, Masanari; Johnson, Richard; Bove, Marilisa; Fogacci, Federica; Rosticci, Martina; Giovannini, Marina; D'Addato, Sergio; Borghi, Claudio
2018-06-15
Serum uric acid (SUA) and oxidized LDL (oxLDL) may be associated with arterial aging. The aim of our study was to evaluate the relationship between SUA, oxLDL and arterial stiffness in subjects with normal renal function and in patients with mild or moderate renal impairment. From the database of the 2012 Brisighella Heart Study, we compared age-matched adult, non-smoker subjects without cardiovascular disease and with normal renal function (n = 205), subjects with stage II chronic kidney disease (CKD) (n = 118) and subjects with stage III CKD (n = 94). All subjects underwent a determination of the LDL oxidative susceptibility, oxLDL levels, SUA and Pulse Wave Velocity (PWV). By univariate analysis, PWV correlated with a large number of clinical, haemodynamic and metabolic parameters, including estimated glomerular filtration rate (eGFR) in subjects with normal renal function and in those with stage II or III CKD. Stepwise multiple regression analyses showed that in the presence of normal renal function or stage II CKD, the main predictors of PWV were age, systolic blood pressure (SBP), ox-LDL, apolipoprotein B and SUA (p < 0.05), while in the presence of stage III CKD only age, SBP and apolipoprotein B remained significant (p < 0.05). Both ox-LDL and SUA independently predicts PWV only in subjects with normal or mildly reduced renal function, but not in the subjects with more compromised eGFR. This study confirms the complex relationship of SUA with cardiovascular and metabolic disease in the patient with established renal disease. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yuanyuan; Yuan, Fahuan; Cao, Xuejiao
2014-11-15
Nephrotoxicity is a common complication of cisplatin chemotherapy and thus limits the use of cisplatin in clinic. The purinergic 2X7 receptor (P2X7R) plays important roles in inflammation and apoptosis in some inflammatory diseases; however, its roles in cisplatin-induced nephrotoxicity remain unclear. In this study, we first assessed the expression of P2X7R in cisplatin-induced nephrotoxicity in C57BL/6 mice, and then we investigated the changes of renal function, histological injury, inflammatory response, and apoptosis in renal tissues after P2X7R blockade in vivo using an antagonist A-438079. Moreover, we measured the changes of nod-like receptor family, pyrin domain containing proteins (NLRP3) inflammasome components,more » oxidative stress, and proapoptotic genes in renal tissues in cisplatin-induced nephrotoxicity after treatment with A-438079. We found that the expression of P2X7R was significantly upregulated in the renal tubular epithelial cells in cisplatin-induced nephrotoxicity compared with that of the normal control group. Furthermore, pretreatment with A-438079 markedly attenuated the cisplatin-induced renal injury while lightening the histological damage, inflammatory response and apoptosis in renal tissue, and improved the renal function. These effects were associated with the significantly reduced levels of NLRP3 inflammasome components, oxidative stress, p53 and caspase-3 in renal tissues in cisplatin-induced nephrotoxicity. In conclusions, our studies suggest that the upregulated activity of P2X7R might play important roles in the development of cisplatin-induced nephrotoxicity, and P2X7R blockade might become an effective therapeutic strategy for this disease. - Highlights: • The P2X7R expression was markedly upregulated in cisplatin-induced nephrotoxicity. • P2X7R blockade significantly attenuated the cisplatin-induced renal injury. • P2X7R blockade reduced activities of NLRP3 inflammasome components in renal tissue. • P2X7R blockade reduced levels of oxidative stress and apoptosis in renal tissue. • P2X7R blockade may be a novel adjunctive therapy strategy for this disease.« less
Ishikawa, Ken; Bellomo, Rinaldo; May, Clive N
2011-04-01
In experimental hyperdynamic sepsis, renal function deteriorates despite renal vasodilatation and increased renal blood flow. Because nitric oxide is increased in sepsis and participates in renal blood flow control, we investigated the effects of intrarenal Nω-nitro-L-arginine methyl ester, a nonspecific nitric oxide synthase inhibitor, in mild and severe sepsis. Prospective crossover and randomized control interventional studies. University-affiliated research institute. Thirty-two merino ewes. Examination of responses to intrarenal infusion of Nω-nitro-L-arginine methyl ester for 8 hrs in unilaterally nephrectomized normal sheep and in sheep administered Escherichia coli. : In normal sheep, Nω-nitro-L-arginine methyl ester decreased renal blood flow (301 ± 30 to 228 ± 26 mL/min) and creatinine clearance (40.0 ± 5.8 to 31.1 ± 2.8 mL/min), whereas plasma creatinine increased, but fractional excretion of sodium was unchanged. In sheep with nonhypotensive hyperdynamic sepsis, plasma creatinine increased and there were decreases in creatinine clearance (34.5 ± 4.6 to 20.1 ± 3.7 mL/min) and fractional excretion of sodium despite increased renal blood flow. Infusion of Nω-nitro-L-arginine methyl ester normalized renal blood flow and increased urine output, but creatinine clearance did not improve and plasma creatinine and fractional excretion of sodium increased. In sheep with severe hypotensive sepsis, creatinine clearance decreased further (31.1 ± 5.4 to 16.0 ± 1.7 mL/min) despite increased renal blood flow. Infusion of Nω-nitro-L-arginine methyl ester restored mean arterial pressure and reduced renal blood flow but did not improve plasma creatinine or creatinine clearance. In hyperdynamic sepsis, with or without hypotension, creatinine clearance decreased despite increasing renal blood flow. Intrarenal Nω-nitro-L-arginine methyl ester infusion reduced renal blood flow but did not improve creatinine clearance. These data indicate that septic acute kidney injury is not the result of decreased renal blood flow nor is it improved by nonspecific nitric oxide synthase inhibition.
Handa, R K; Johns, E J
1985-01-01
Stimulation of the renal sympathetic nerves in pentobarbitone anaesthetized rats achieved a 13% reduction in renal blood flow, did not change glomerular filtration rate, but reduced urine flow by 37%, absolute sodium excretion by 37%, and fractional sodium excretion by 34%. Following inhibition of converting enzyme with captopril (0.38 mmol kg-1 h-1), similar nerve stimulation reduced both renal blood flow and glomerular filtration rate by 16%, and although urine flow and absolute sodium excretion fell by 32 and 31%, respectively, the 18% fall in fractional sodium excretion was significantly less than that observed in the absence of captopril. Renal nerve stimulation at low levels, which did not change either renal blood flow or glomerular filtration rate, reduced urine flow, and absolute and fractional sodium excretions by 25, 26 and 23%, respectively. In animals receiving captopril at 0.38 mmol kg-1 h-1, low-level nerve stimulation caused small increases in glomerular filtration rate of 7% and urine flow of 12%, but did not change either absolute or fractional sodium excretions. At one-fifth the dose of captopril (0.076 mmol kg-1 h-1), low-level nerve stimulation did not change renal haemodynamics but decreased urine flow, and absolute and fractional sodium excretions by 10, 10 and 8%, respectively. These results showed that angiotensin II production was necessary for regulation of glomerular filtration rate in the face of modest neurally induced reductions in renal blood flow and was compatible with an intra-renal site of action of angiotensin II preferentially at the efferent arteriole. They also demonstrated that in the rat the action of the renal nerves to decrease sodium excretion was dependent on angiotensin II. PMID:3005558
The effect of dehydroepiandrosterone (DHEA) on renal function and metabolism in diabetic rats.
Jahn, Matheus Parmegiani; Gomes, Luana Ferreira; Jacob, Maria Helena Vianna Metello; da Rocha Janner, Daiane; Araújo, Alex Sander da Rosa; Belló-Klein, Adriane; Ribeiro, Maria Flávia Marques; Kucharski, Luiz Carlos
2011-05-01
Dehydroepiandrosterone (DHEA) is an endogenous steroid hormone involved in a number of biological actions in humans and rodents, but its effects on renal tissue have not yet been fully understood. The aim of this study is to assess the effect of DHEA treatment on diabetic rats, mainly in relation to renal function and metabolism. Diabetic rats were treated with subcutaneous injections of a 10mg/kg dose of DHEA diluted in oil. Plasma glucose and creatinine, in addition to urine creatinine, were quantified espectophotometrically. Glucose uptake and oxidation were quantified using radioactive glucose, the urinary Transforming Growth Factor β(1) (TGF-β(1)) was assessed by enzyme immunoassay, and the total glutathione in the renal tissue was also measured. The diabetic rats displayed higher levels of glycemia, and DHEA treatment reduced hyperglycemia. Plasmatic creatinine levels were higher in the diabetic rats treated with DHEA, while creatinine clearance was lower. Glucose uptake and oxidation were lower in the renal medulla of the diabetic rats treated with DHEA, and urinary TGF-β(1), as well as total gluthatione levels, were higher in the diabetic rats treated with DHEA. DHEA treatment was not beneficial to renal tissue, since it reduced the glomerular filtration rate and renal medulla metabolism, while increasing the urinary excretion of TGF-β(1) and the compensatory response by the glutathione system, probably due to a mechanism involving a pro-oxidant action or a pro-fibrotic effect of this androgen or its derivatives. In conclusion, this study reports that DHEA treatment may be harmful to renal tissue, but the mechanisms of this action have not yet been fully understood. Copyright © 2011 Elsevier Inc. All rights reserved.
Low birth weight is associated with impaired murine kidney development and function.
Barnett, Christina; Nnoli, Oluwadara; Abdulmahdi, Wasan; Nesi, Lauren; Shen, Michael; Zullo, Joseph A; Payne, David L; Azar, Tala; Dwivedi, Parth; Syed, Kunzah; Gromis, Jonathan; Lipphardt, Mark; Jules, Edson; Maranda, Eric L; Patel, Amy; Rabadi, May M; Ratliff, Brian B
2017-08-01
BackgroundLow birth weight (LBW) neonates have impaired kidney development that leaves them susceptible to kidney disease and hypertension during adulthood. The study here identifies events that blunt nephrogenesis and kidney development in the murine LBW neonate.MethodsWe examined survival, kidney development, GFR, gene expression, and cyto-/chemokines in the LBW offspring of malnourished (caloric and protein-restricted) pregnant mice.ResultsMalnourished pregnant mothers gave birth to LBW neonates that had 40% reduced body weight and 54% decreased survival. Renal blood perfusion was reduced by 37%, whereas kidney volume and GFR were diminished in the LBW neonate. During gestation, the LBW neonatal kidney had 2.2-fold increased apoptosis, 76% decreased SIX2+ progenitor cells, downregulation of mesenchymal-to-epithelial signaling factors Wnt9b and Fgf8, 64% less renal vesicle formation, and 32% fewer nephrons than controls. At birth, increased plasma levels of IL-1β, IL-6, IL-12(p70), and granulocyte-macrophage colony-stimulating factor in the LBW neonate reduced SIX2+ progenitor cells.ConclusionIncreased pro-inflammatory cytokines in the LBW neonate decrease SIX2+ stem cells in the developing kidney. Reduced renal stem cells (along with the decreased mesenchymal-to-epithelial signaling) blunt renal vesicle generation, nephron formation, and kidney development. Subsequently, the mouse LBW neonate has reduced glomeruli volume, renal perfusion, and GFR.
Hering, Dagmara; Marusic, Petra; Walton, Antony S; Duval, Jacqueline; Lee, Rebecca; Sata, Yusuke; Krum, Henry; Lambert, Elisabeth; Peter, Karlheinz; Head, Geoff; Lambert, Gavin; Esler, Murray D; Schlaich, Markus P
2016-01-01
Renal denervation (RDN) has been shown to reduce blood pressure (BP), muscle sympathetic nerve activity (MSNA) and target organ damage in patients with resistant hypertension (RH) and bilateral single renal arteries. The safety and efficacy of RDN in patients with multiple renal arteries remains unclear. We measured office and 24-hour BP at baseline, 3 and 6 months following RDN in 91 patients with RH, including 65 patients with single renal arteries bilaterally (group 1), 16 patients with dual renal arteries on either one or both sides (group 2) and 10 patients with other anatomical constellations or structural abnormalities (group 3). Thirty nine out of 91 patients completed MSNA at baseline and follow-up. RDN significantly reduced office and daytime SBP in group 1 at both 3 and 6 months follow-up (P<0.001) but not in groups 2 and 3. Similarly, a significant reduction in resting baseline MSNA was only observed in group 1 (P<0.05). There was no deterioration in kidney function in any group. While RDN can be performed safely irrespective of the underlying renal anatomy, the presence of single renal arteries with or without structural abnormalities is associated with a more pronounced BP and MSNA lowering effect than the presence of dual renal arteries in patients with RH. However, when patients with dual renal arteries received renal nerve ablation in all arteries there was trend towards a greater BP reduction. Insufficient renal sympathetic nerve ablation may account for these differences. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
The pathogenesis and management of hypertension in diabetic kidney disease.
Van Buren, Peter N; Toto, Robert D
2013-01-01
Hypertension commonly coexists with diabetes, and its prevalence is even higher in the presence of diabetic kidney disease. The pathogenesis of hypertension in this population stems from increased extracellular volume and increased vasoconstriction that results from mechanisms that may be attributed to both diabetes and the eventual impairment of renal function. Antihypertensive therapy aimed at reducing blood pressure remains a primary goal in preventing the incidence of diabetic kidney and slowing its progression. Initial therapy should consist of an ACE inhibitor or ARB titrated to the maximally tolerated dose. Using combination RAAS therapy further reduces proteinuria, but the benefits of this strategy compared with the potential risks of hyperkalemia and acute deterioration of renal function are still unknown. Endothelin receptor antagonists also lower proteinuria, but these can be associated with volume overload and edema with no clear long-term benefit on renal function yet identified. Further large clinical trials are needed to better understand how progression to ESRD can be slowed or halted in patients with diabetic kidney disease. Copyright © 2013 Elsevier Inc. All rights reserved.
Sympathetic nervous system and the kidney in hypertension.
DiBona, Gerald F
2002-03-01
Long-term control of arterial pressure has been attributed to the kidney by virtue of its ability to couple the regulation of blood volume to the maintenance of sodium and water balance by the mechanisms of pressure natriuresis and diuresis. In the presence of a defect in renal excretory function, hypertension arises as the consequence of the need for an increase in arterial pressure to offset the abnormal pressure natriuresis and diuresis mechanisms, and to maintain sodium and water balance. There is growing evidence that an important cause of the defect in renal excretory function in hypertension is an increase in renal sympathetic nerve activity (RSNA). First, increased RSNA is found in animal models of hypertension and hypertensive humans. Second, renal denervation prevents or alleviates hypertension in virtually all animal models of hypertension. Finally, increased RSNA results in reduced renal excretory function by virtue of effects on the renal vasculature, the tubules, and the juxtaglomerular granular cells. The increase in RSNA is of central nervous system origin, with one of the stimuli being the action of angiotensin II, probably of central origin. By acting on brain stem nuclei that are important in the control of peripheral sympathetic vasomotor tone (e.g. rostral ventrolateral medulla), angiotensin II increases the basal level of RSNA and impairs its arterial baroreflex regulation. Therefore, the renal sympathetic nerves may serve as the link between central sympathetic nervous system regulatory sites and the kidney in contributing to the renal excretory defect in the development of hypertension.
Sarma, Debanga; Barua, Sasanka K; Rajeev, T P; Baruah, Saumar J
2012-10-01
Nuclear renal scan is currently the gold standard imaging study to determine differential renal function. We propose helical CT as single modality for both the anatomical and functional evaluation of kidney with impaired function. In the present study renal parenchymal volume is measured and percent total renal volume is used as a surrogate marker for differential renal function. The objective of this study is to correlate between differential renal function estimation using CT-based renal parenchymal volume measurement with differential renal function estimation using (99m)TC - DTPA renal scan. Twenty-one patients with unilateral obstructive uropathy were enrolled in this prospective comparative study. They were subjected to (99m)Tc - DTPA renal scan and 64 slice helical CT scan which estimates the renal volume depending on the reconstruction of arterial phase images followed by volume rendering and percent renal volume was calculated. Percent renal volume was correlated with percent renal function, as determined by nuclear renal scan using Pearson coefficient. RESULTS AND OBSERVATION: A strong correlation is observed between percent renal volume and percent renal function in obstructed units (r = 0.828, P < 0.001) as well as in nonobstructed units (r = 0.827, P < 0.001). There is a strong correlation between percent renal volume determined by CT scan and percent renal function determined by (99m)TC - DTPA renal scan both in obstructed and in normal units. CT-based percent renal volume can be used as a single radiological tests for both functional and anatomical assessment of impaired renal units.
Klaassen, Gerald; Zelle, Dorien M; Navis, Gerjan J; Dijkema, Desie; Bemelman, Frederike J; Bakker, Stephan J L; Corpeleijn, Eva
2017-09-15
Low physical activity and reduced physical functioning are common after renal transplantation, resulting in a reduced quality of life. Another common post-transplantation complication is poor cardio-metabolic health, which plays a main role in long-term outcomes in renal transplant recipients (RTR). It is increasingly recognized that weight gain in the first year after transplantation, especially an increase in fat mass, is a highly common contributor to cardio-metabolic risk. The aim of this study is to compare the outcomes of usual care to the effects of exercise alone, and exercise combined with dietary counseling, on physical functioning, quality of life and post-transplantation weight gain in RTR. The Active Care after Transplantation study is a multicenter randomized controlled trial with three arms in which RTR from 3 Dutch hospitals are randomized within the first year after transplantation to usual care, to exercise intervention (3 months supervised exercise 2 times per week followed by 12 months active follow-up), or to an exercise + diet intervention, consisting of the exercise training with additional dietary counseling (12 sessions over 15 months by a renal dietician). In total, 219 participants (73 per group) will be recruited. The primary outcome is the subdomain physical functioning of quality of life, (SF-36 PF). Secondary outcomes include other evaluations of quality of life (SF-36, KDQOL-SF, EQ-5D), objective measures of physical functioning (aerobic capacity and muscle strength), level of physical activity, gain in adiposity (body fat percentage by bio-electrical impedance assessment, BMI, waist circumference), and cardiometabolic risk factors (blood pressure, lipids, glucose metabolism). Furthermore, data on renal function, medical history, medication, psychological factors (motivation, kinesiophobia, coping style), nutrition knowledge, nutrition intake, nutrition status, fatigue, work participation, process evaluation and cost-effectiveness are collected. Evidence on the effectiveness of an exercise intervention, or an exercise + diet intervention on physical functioning, weight gain and cardiometabolic health in RTR is currently lacking. The outcomes of the present study may help to guide future evidence-based lifestyle care after renal transplantation. Number: NCT01047410 .
Creatinine, Arsenic Metabolism, and Renal Function in an Arsenic-Exposed Population in Bangladesh
Peters, Brandilyn A.; Hall, Megan N.; Liu, Xinhua; Neugut, Y. Dana; Pilsner, J. Richard; Levy, Diane; Ilievski, Vesna; Slavkovich, Vesna; Islam, Tariqul; Factor-Litvak, Pam; Graziano, Joseph H.; Gamble, Mary V.
2014-01-01
Kidney disease is emerging as an arsenic (As)-linked disease outcome, however further evidence of this association is warranted. Our first objective for this paper was to examine the potential renal toxicity of As exposure in Bangladesh. Our second objective relates to examining whether the previously reported positive association between urinary creatinine (uCrn) and As methylation may be explained by renal function. We had hypothesized that these associations relate to supply and demand for s-adenosylmethionine, the methyl donor for both creatine synthesis and As methylation. Alternatively, renal function could influence both As and creatinine excretion, or the As metabolites may influence renal function, which in turn influences uCrn. We conducted a cross-sectional study (N = 478) of adults, composed of a sample recruited in 2001 and a sample recruited in 2003. We assessed renal function using plasma cystatin C, and calculated the estimated glomerular filtration rate (eGFR). Consistent with renal toxicity of As, log-uAs had a marginal inverse association with eGFR in the 2003 sample (b = −5.6, p = 0.07), however this association was not significant in the 2001 sample (b = −1.9, p = 0.24). Adjustment for eGFR did not alter the associations between uCrn and the %uAs metabolites, indicating that GFR does not explain these associations. Increased eGFR was associated with increased odds of having %uInAs >12.2% (2001: OR = 1.01, 95%CI (1.00,1.03); 2003: OR = 1.04, 95%CI (1.01,1.07)). In the 2003 sample only, there was a negative association between eGFR and %uDMA (b = −0.08, p = 0.02). These results may indicate differential effects of renal function on excretion of InAs and DMA. Alternatively, a certain methylation pattern, involving decreased %InAs and increased %DMA, may reduce renal function. Given that these studies were cross-sectional, we cannot distinguish between these two possibilities. Discrepancies between the samples may be due to the higher As exposure, poorer nutrition, and lower As methylation capacity in the 2003 sample. PMID:25438247
Creatinine, arsenic metabolism, and renal function in an arsenic-exposed population in Bangladesh.
Peters, Brandilyn A; Hall, Megan N; Liu, Xinhua; Neugut, Y Dana; Pilsner, J Richard; Levy, Diane; Ilievski, Vesna; Slavkovich, Vesna; Islam, Tariqul; Factor-Litvak, Pam; Graziano, Joseph H; Gamble, Mary V
2014-01-01
Kidney disease is emerging as an arsenic (As)-linked disease outcome, however further evidence of this association is warranted. Our first objective for this paper was to examine the potential renal toxicity of As exposure in Bangladesh. Our second objective relates to examining whether the previously reported positive association between urinary creatinine (uCrn) and As methylation may be explained by renal function. We had hypothesized that these associations relate to supply and demand for s-adenosylmethionine, the methyl donor for both creatine synthesis and As methylation. Alternatively, renal function could influence both As and creatinine excretion, or the As metabolites may influence renal function, which in turn influences uCrn. We conducted a cross-sectional study (N = 478) of adults, composed of a sample recruited in 2001 and a sample recruited in 2003. We assessed renal function using plasma cystatin C, and calculated the estimated glomerular filtration rate (eGFR). Consistent with renal toxicity of As, log-uAs had a marginal inverse association with eGFR in the 2003 sample (b = -5.6, p = 0.07), however this association was not significant in the 2001 sample (b = -1.9, p = 0.24). Adjustment for eGFR did not alter the associations between uCrn and the %uAs metabolites, indicating that GFR does not explain these associations. Increased eGFR was associated with increased odds of having %uInAs >12.2% (2001: OR = 1.01, 95%CI (1.00,1.03); 2003: OR = 1.04, 95%CI (1.01,1.07)). In the 2003 sample only, there was a negative association between eGFR and %uDMA (b = -0.08, p = 0.02). These results may indicate differential effects of renal function on excretion of InAs and DMA. Alternatively, a certain methylation pattern, involving decreased %InAs and increased %DMA, may reduce renal function. Given that these studies were cross-sectional, we cannot distinguish between these two possibilities. Discrepancies between the samples may be due to the higher As exposure, poorer nutrition, and lower As methylation capacity in the 2003 sample.
2014-01-01
Background Renal ischemia-reperfusion injury (IRI) increases the rates of acute kidney failure, delayed graft function, and early mortality after kidney transplantation. The pathophysiology involved includes oxidative stress, mitochondrial dysfunction, and immune-mediated injury. The anti-oxidation, anti-apoptosis, and anti-inflammation properties of baicalin, a flavonoid glycoside isolated from Scutellaria baicalensis, have been verified. This study therefore assessed the effects of baicalin against renal IRI in rats. Methods Baicalin was intraperitoneally injected 30 min before renal ischemia. Serum and kidneys were harvested 24 h after reperfusion. Renal function and histological changes were assessed. Markers of oxidative stress, the Toll-like receptor (TLR)2 and TLR4 signaling pathway, mitochondrial stress, and cell apoptosis were also evaluated. Results Baicalin treatment decreased oxidative stress and histological injury, and improved kidney function, as well as inhibiting proinflammatory responses and tubular apoptosis. Baicalin pretreatment also reduced the expression of TLR2, TLR4, MyD88, p-NF-κB, and p-IκB proteins, as well as decreasing caspase-3 activity and increasing the Bcl-2/Bax ratio. Conclusions Baicalin may attenuate renal ischemia-reperfusion injury by inhibiting proinflammatory responses and mitochondria-mediated apoptosis. These effects are associated with the TLR2/4 signaling pathway and mitochondrial stress. PMID:24417870
Lin, Miao; Li, Long; Li, Liping; Pokhrel, Gaurab; Qi, Guisheng; Rong, Ruiming; Zhu, Tongyu
2014-01-13
Renal ischemia-reperfusion injury (IRI) increases the rates of acute kidney failure, delayed graft function, and early mortality after kidney transplantation. The pathophysiology involved includes oxidative stress, mitochondrial dysfunction, and immune-mediated injury. The anti-oxidation, anti-apoptosis, and anti-inflammation properties of baicalin, a flavonoid glycoside isolated from Scutellaria baicalensis, have been verified. This study therefore assessed the effects of baicalin against renal IRI in rats. Baicalin was intraperitoneally injected 30 min before renal ischemia. Serum and kidneys were harvested 24 h after reperfusion. Renal function and histological changes were assessed. Markers of oxidative stress, the Toll-like receptor (TLR)2 and TLR4 signaling pathway, mitochondrial stress, and cell apoptosis were also evaluated. Baicalin treatment decreased oxidative stress and histological injury, and improved kidney function, as well as inhibiting proinflammatory responses and tubular apoptosis. Baicalin pretreatment also reduced the expression of TLR2, TLR4, MyD88, p-NF-κB, and p-IκB proteins, as well as decreasing caspase-3 activity and increasing the Bcl-2/Bax ratio. Baicalin may attenuate renal ischemia-reperfusion injury by inhibiting proinflammatory responses and mitochondria-mediated apoptosis. These effects are associated with the TLR2/4 signaling pathway and mitochondrial stress.
Prieto, Minolfa C; Reverte, Virginia; Mamenko, Mykola; Kuczeriszka, Marta; Veiras, Luciana C; Rosales, Carla B; McLellan, Matthew; Gentile, Oliver; Jensen, V Behrana; Ichihara, Atsuhiro; McDonough, Alicia A; Pochynyuk, Oleh M; Gonzalez, Alexis A
2017-12-01
Augmented intratubular angiotensin (ANG) II is a key determinant of enhanced distal Na + reabsorption via activation of epithelial Na + channels (ENaC) and other transporters, which leads to the development of high blood pressure (BP). In ANG II-induced hypertension, there is increased expression of the prorenin receptor (PRR) in the collecting duct (CD), which has been implicated in the stimulation of the sodium transporters and resultant hypertension. The impact of PRR deletion along the nephron on BP regulation and Na + handling remains controversial. In the present study, we investigate the role of PRR in the regulation of renal function and BP by using a mouse model with specific deletion of PRR in the CD ( CD PRR-KO). At basal conditions, CD PRR-KO mice had decreased renal function and lower systolic BP associated with higher fractional Na + excretion and lower ANG II levels in urine. After 14 days of ANG II infusion (400 ng·kg -1 ·min -1 ), the increases in systolic BP and diastolic BP were mitigated in CD PRR-KO mice. CD PRR-KO mice had lower abundance of cleaved αENaC and γENaC, as well as lower ANG II and renin content in urine compared with wild-type mice. In isolated CD from CD PRR-KO mice, patch-clamp studies demonstrated that ANG II-dependent stimulation of ENaC activity was reduced because of fewer active channels and lower open probability. These data indicate that CD PRR contributes to renal function and BP responses during chronic ANG II infusion by enhancing renin activity, increasing ANG II, and activating ENaC in the distal nephron segments. Copyright © 2017 the American Physiological Society.
Ergin, Bulent; Zuurbier, Coert J; Kapucu, Aysegul; Ince, Can
2017-12-27
The pathogenesis of acute kidney injury (AKI) is characterized by the deterioration of tissue perfusion and oxygenation and enhanced inflammation. The purpose of this study was to investigate whether or not the hemodynamic and inflammatory effects of hypertonic saline (HS) protect the kidney by promoting renal microcirculatory oxygenation and possible deleterious effects of HS due to its high sodium content on renal functional and structural injury following ischemia/reperfusion. Mechanically ventilated and anesthetized rats were randomly divided into four groups (n = 6 per group): a sham-operated control group; a group subjected to renal ischemia for 45 min by supra-aortic occlusion followed by 2 h of reperfusion (I/R); and I/R group treated with a continuous i.v. infusion (5 mL/kg/h) of either % 0.9 NaCl (IR+NS) or %10 NaCl (I/R+HS) after releasing the clamp. Systemic and renal hemodynamic, renal cortical (CμPO2), and medullar microcirculatory pO2 (MμPO2) are measured by the oxygen-dependent quenching of the phosphorescence lifetime technique. Renal functional, inflammatory, and tissues damage parameters were also assessed. HS, but not NS, treatment restored I/R-induced reduced mean arterial pressure, CμPO2, renal oxygen deliver (DO2ren), and consumption (VO2ren). HS caused a decrease in tubular sodium reabsorption (TNa) that correlated with an elevation of fractional sodium excretion (EFNa) and urine output. HS had an anti-inflammatory effect by reducing the levels TNF-α, IL-6, and hyaluronic acid in the renal tissue samples as compared with the I/R and I/R+NS groups (P < 0.05). HS treatment was also associated with mild acidosis and an increased renal tubular damage. Despite HS resuscitation improving the systemic hemodynamics, microcirculatory oxygenation, and renal oxygen consumption as well as inflammation, it should be limited or strictly controlled for long-term use because of provoking widespread renal structural damage.
Wang, Cuifang; He, Bing; Piao, Dongxu; Han, Ping
2016-07-01
Roux-en-Y bariatric surgery has been shown to have a remarkable and sustainable improvement in type 2 diabetes. Recent clinical studies have shown that bariatric surgery can improve or halt the development of diabetic microvascular complications such as nephropathy. However, the exact underlying mechanisms of surgical procedures are unknown. Here, we have investigated the effects of Roux-en-Y esophagojejunostomy (RYEJ) on renal function and inflammation and fibrosis biomarkers for renal injury in type 2 diabetic rats. Sprague-Dawley rats with high fat diet and streptozotocin (STZ)-induced diabetes were randomly assigned into four groups: diabetic nephropathy (DN), DN treated with food restriction (DN-FR), DN treated with RYEJ surgery (DN-RYEJ), and DN-RYEJ sham (n = 6/group). Age-matched normal rats were assigned as control group. RYEJ and sham surgeries were performed. Hyperinsulinemic-euglycemic clamps with tracer infusion were completed to assess insulin sensitivity. Twenty-four hour urine albumin excretion rate (UAER) and glomerular filtration rate (GFR) were measured. The renal pathological injury was assessed by hematoxylin and eosin (HE) staining. Kidney messenger RNA (mRNA) and/or protein content/distribution of phospho-c-Jun NH2-terminal kinase (JNK), monocyte chemoattractant protein (MCP)-1, transforming growth factor (TGF)-β1, and mitogen-activated protein kinase phosphatase 5 (MKP5) were evaluated by real-time PCR and/or Western blotting/immunohistochemistry. Roux-en-Y esophagojejunostomy improved insulin sensitivity. RYEJ ameliorated renal function by improving UAER and GFR and attenuated glomerular hypertrophy after surgery. RYEJ also significantly downregulated the levels of JNK-mediated inflammatory response and upregulated the level of the anti-inflammatory mediator MKP5. Roux-en-Y esophagojejunostomy alleviates insulin resistance. RYEJ surgery ameliorated renal function and attenuated glomerular hypertrophy in a DN rat model. The considerable nephroprotective function may be mainly attributed to the reduced inflammatory and fibrotic biomarkers after RYEJ. The improvements in renal function and inflammation are not wholly dependent on the magnitude of weight loss.
van den Hoogen, Martijn W F; Kho, Marcia M L; Abrahams, Alferso C; van Zuilen, Arjan D; Sanders, Jan-Stephan; van Dijk, Marja; Hilbrands, Luuk B; Weimar, Willem; Hoitsma, Andries J
2013-04-01
Reducing the incidence of delayed graft function after transplant with donation after cardiac death donor renal allografts would facilitate managing recipients during their first weeks after a transplant. To reduce this incidence, in most studies, induction therapy with depleting anti-T-lymphocyte antibodies is coupled with a reduction of the dosage of the calcineurin inhibitor. The separate effect of anti-T-cell therapy on the incidence and duration of delayed graft function is therefore difficult to assess. We performed a randomized study to evaluate the effect of a single intraoperative high-dose of anti-T-lymphocyte immunoglobulin (ATG)-Fresenius (9 mg/kg body weight) on the incidence of delayed graft function. Eligible adult recipients of a first donation after cardiac death donor renal allograft were randomly assigned to ATG-Fresenius or no induction therapy. Maintenance immunosuppression consisted of tacrolimus, in an unadjusted dose, mycophenolate mofetil, and steroids. The study was prematurely terminated because of a lower-than-anticipated inclusion rate. Baseline characteristics were comparable in the ATG-Fresenius group (n=28) and the control group (n=24). Twenty-two patients in the ATG-Fresenius group (79%) had delayed graft function, compared with 13 in the control group (54%; P = .06). Allograft and patient survival were comparable in both groups. Serious adverse events occurred more frequently in the ATG-Fresenius group than they did in the control group (57% vs 29%; P < .05). Intraoperative administration of a single high-dose of ATG-Fresenius in donation after cardiac death donor renal allograft recipients, followed by triple immunosuppression with an unadjusted tacrolimus dose, seems ineffective to reduce the incidence of delayed graft function. Moreover, this was associated with a higher rate of serious adverse events (EudraCT-number, 2007-000210-36.).
de Almeida Chaves Rodrigues, Aline Fernanda; de Lima, Ingrid Lauren Brites; Bergamaschi, Cássia Toledo; Campos, Ruy Ribeiro; Hirata, Aparecida Emiko; Schoorlemmer, Guus Hermanus Maria; Gomes, Guiomar Nascimento
2013-01-15
The exposure of the fetus to a hyperglycemic environment promotes the development of hypertension and renal dysfunction in the offspring at adult age. We evaluated the role of renal nerves in the hypertension and renal changes seen in offspring of diabetic rats. Diabetes was induced in female Wistar rats (streptozotocin, 60 mg/kg ip) before mating. Male offspring from control and diabetic dams were studied at an age of 3 mo. Systolic blood pressure measured by tail cuff was increased in offspring of diabetic dams (146 ± 1.6 mmHg, n = 19, compared with 117 ± 1.4 mmHg, n = 18, in controls). Renal function, baseline renal sympathetic nerve activity (rSNA), and arterial baroreceptor control of rSNA were analyzed in anesthetized animals. Glomerular filtration rate, fractional sodium excretion, and urine flow were significantly reduced in offspring of diabetic dams. Two weeks after renal denervation, blood pressure and renal function in offspring from diabetic dams were similar to control, suggesting that renal nerves contribute to sodium retention in offspring from diabetic dams. Moreover, basal rSNA was increased in offspring from diabetic dams, and baroreceptor control of rSNA was impaired, with blunted responses to infusion of nitroprusside and phenylephrine. Thus, data from this study indicate that in offspring from diabetic mothers, renal nerves have a clear role in the etiology of hypertension; however, other factors may also contribute to this condition.
Congestive renal failure: the pathophysiology and treatment of renal venous hypertension.
Ross, Edward A
2012-12-01
Longstanding experimental evidence supports the role of renal venous hypertension in causing kidney dysfunction and "congestive renal failure." A focus has been heart failure, in which the cardiorenal syndrome may partly be due to high venous pressure, rather than traditional mechanisms involving low cardiac output. Analogous diseases are intra-abdominal hypertension and renal vein thrombosis. Proposed pathophysiologic mechanisms include reduced transglomerular pressure, elevated renal interstitial pressure, myogenic and neural reflexes, baroreceptor stimulation, activation of sympathetic nervous and renin angiotensin aldosterone systems, and enhanced proinflammatory pathways. Most clinical trials have addressed the underlying condition rather than venous hypertension per se. Interpreting the effects of therapeutic interventions on renal venous congestion are therefore problematic because of such confounders as changes in left ventricular function, cardiac output, and blood pressure. Nevertheless, there is preliminary evidence from small studies of intense medical therapy or extracorporeal ultrafiltration for heart failure that there can be changes to central venous pressure that correlate inversely with renal function, independently from the cardiac index. Larger more rigorous trials are needed to definitively establish under what circumstances conventional pharmacologic or ultrafiltration goals might best be directed toward central venous pressures rather than left ventricular or cardiac output parameters. Copyright © 2012 Elsevier Inc. All rights reserved.
Pratschke, Sebastian; Rauch, Alexandra; Albertsmeier, Markus; Rentsch, Markus; Kirschneck, Michaela; Andrassy, Joachim; Thomas, Michael; Hartwig, Werner; Figueras, Joan; Del Rio Martin, Juan; De Ruvo, Nicola; Werner, Jens; Guba, Markus; Weniger, Maximilian; Angele, Martin K
2016-12-01
The value of temporary intraoperative porto-caval shunts (TPCS) in cava-sparing liver transplantation is discussed controversially. Aim of this meta-analysis was to analyze the impact of temporary intraoperative porto-caval shunts on liver injury, primary non-function, time of surgery, transfusion of blood products and length of hospital stay in cava-sparing liver transplantation. A systematic search of MEDLINE/PubMed, EMBASE and PsycINFO retrieved a total of 909 articles, of which six articles were included. The combined effect size and 95 % confidence interval were calculated for each outcome by applying the inverse variance weighting method. Tests for heterogeneity (I 2 ) were also utilized. Usage of a TPCS was associated with significantly decreased AST values, significantly fewer transfusions of packed red blood cells and improved postoperative renal function. There were no statistically significant differences in primary graft non-function, length of hospital stay or duration of surgery. This meta-analysis found that temporary intraoperative porto-caval shunts in cava-sparing liver transplantation reduce blood loss as well as hepatic injury and enhance postoperative renal function without prolonging operative time. Randomized controlled trials investigating the use of temporary intraoperative porto-caval shunts are needed to confirm these findings.
Mulenga, Lloyd B.; Kruse, Gina; Lakhi, Shabir; Cantrell, Ronald A.; Reid, Stewart E.; Zulu, Isaac; Stringer, Elizabeth M.; Krishnasami, Zipporah; Mwinga, Alwyn; Saag, Michael S.; Stringer, Jeffrey S. A.; Chi, Benjamin H.
2009-01-01
Objective To examine the association between baseline renal insufficiency and mortality among adults initiating antiretroviral therapy (ART) in urban African setting. Design Open cohort evaluation Methods We examined mortality according to baseline renal function among adults initiating ART in Lusaka, Zambia. Renal function was assessed by the Cockcroft-Gault method, the Modification of Diet in Renal Disease (MDRD) equation, and serum creatinine. Results From April 2004 to September 2007, 25,779 individuals started ART with an available creatinine measurement at baseline. When creatinine clearance was calculated by the Cockcroft-Gault method, 8,456 (33.5%) had renal insufficiency: 73.5% were mild (60-89 mL/min), 23.4% moderate (30-59 mL/min), and 3.1% severe (<30 mL/min). Risk for mortality at or before 90 days was elevated for those with mildly (adjusted hazard ratio [AHR]=1.7; 95%CI=1.5-1.9), moderately (AHR=2.3; 95%CI=2.0-2.7), and severely (AHR=4.1; 95%CI=3.1-5.5) reduced creatinine clearance. Mild (AHR=1.4; 95%CI=1.2-1.6), moderate (AHR=1.9; 95%CI=1.5-2.3), and severe (AHR=3.6; 95%CI=2.4-5.5) insufficiency were also associated with increased mortality after 90 days, when compared to those with normal renal function. Trends were similar when renal function was estimated with MDRD or serum creatinine. Conclusions Renal insufficiency at time of ART initiation was prevalent and associated with increased mortality risk among adults in this population. These results have particular relevance for settings like Zambia, where tenofovir - a drug with known nephrotoxicity - has been adopted as part of first-line therapy. This emphasizes the need for resource-appropriate screening algorithms for renal disease, both as part of ART eligibility and pre-treatment assessment. PMID:18753939
Monitoring of circulating antibodies in a renal transplantation population: preliminary results.
Rodríguez Ferrero, M L; Arroyo, D; Panizo, N; Vicario, J L; Balas, A; Anaya, F
2012-11-01
The presence of circulating antibodies (CA) against human leukocyte antigen (HLA) and major-histocompatibility-complex class I-related chain A (MICA) antigens has been associated with worse renal function and reduced kidney allograft survival. We sought to describe the presence of donor-specific anti-HLA antibodies, non-donor specific antibodies, and antibodies against MICA antigens among a cohort of renal transplant recipients with respect to their evolution effects on renal function and occurrence of an acute rejection episode (AR) after transplantation. This prospective study of 22 renal transplant recipients of deceased donor kidneys underwent studies of antibodies before and 3 months after grafting using Luminex technology. Ten patients (five men and five women) showed preexistent CA. Comparing patients with versus without preformed CA, we did not observe a significant difference in donor and recipient age or gender. Eight patients (80%) with CA had undergone induction treatment with anti-human-activated T-lymphocyte rabbit immunoglobulin and 2 (20%) with basiliximab. There were no differences between groups regarding the incidence of acute rejection episodes (ARE n = 3 each). There was one case of Banff grade IIB ARE in a patient without preexisting CA; the other episodes were low-grade cellular responses. There were no differences in other variables including cold ischemia time, HLA mismatches, panel-reactive antibody levels, number of transfusions, cytomegalovirus infection or renal function at discharge and 3 months later. Retransplantation was the only factor associated with preformed CA. Retransplantation and preformed CA were associated with CA at 3 months after transplantation. CA monitoring is important for highly sensitized renal transplants, although our experience failed to show a difference in graft survival or renal function in the first 3 months' follow-up. Copyright © 2012 Elsevier Inc. All rights reserved.
Betz, Boris B; Jenks, Sara J; Cronshaw, Andrew D; Lamont, Douglas J; Cairns, Carolynn; Manning, Jonathan R; Goddard, Jane; Webb, David J; Mullins, John J; Hughes, Jeremy; McLachlan, Stela; Strachan, Mark W J; Price, Jackie F; Conway, Bryan R
2016-05-01
Many diabetic patients suffer from declining renal function without developing albuminuria. To identify alternative biomarkers for diabetic nephropathy (DN) we performed urinary peptidomic analysis in a rodent model in which hyperglycemia and hypertension synergize to promote renal pathologic changes consistent with human DN. We identified 297 increased and 15 decreased peptides in the urine of rats with DN compared with controls, including peptides derived from proteins associated with DN and novel candidate biomarkers. We confirmed by ELISA that one of the parent proteins, urinary epidermal growth factor (uEGF), was more than 2-fold reduced in rats with DN in comparison with controls. To assess the clinical utility of uEGF we examined renal outcomes in 642 participants from the Edinburgh Type 2 Diabetes Study who were normoalbuminuric and had preserved renal function at baseline. After adjustment for established renal risk factors, a lower uEGF to creatinine ratio was associated with new-onset estimated glomerular filtration rate less than 60 ml/min per 1.73m(2) (odds ratio 0.48; 95% confidence interval, 0.26-0.90), rapid (over 5% per annum) decline in renal function (odds ratio 0.44; 95% confidence interval, 0.27-0.72) or the composite of both outcomes (odds ratio 0.38; 95% confidence interval, 0.24-0.62). Thus, the utility of a low uEGF to creatinine ratio as a biomarker of progressive decline in renal function in normoalbuminuric patients should be assessed in additional populations. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
The effects of environmental chemicals on renal function.
Kataria, Anglina; Trasande, Leonardo; Trachtman, Howard
2015-10-01
The global incidence of chronic kidney disease (CKD) is increasing among individuals of all ages. Despite advances in proteomics, genomics and metabolomics, there remains a lack of safe and effective drugs to reverse or stabilize renal function in patients with glomerular or tubulointerstitial causes of CKD. Consequently, modifiable risk factors that are associated with a progressive decline in kidney function need to be identified. Numerous reports have documented the adverse effects that occur in response to graded exposure to a wide range of environmental chemicals. This Review summarizes the effects of such chemicals on four aspects of cardiorenal function: albuminuria, glomerular filtration rate, blood pressure and serum uric acid concentration. We focus on compounds that individuals are likely to be exposed to as a consequence of normal consumer activities or medical treatment, namely phthalates, bisphenol A, polyfluorinated alkyl acids, dioxins and furans, polycyclic aromatic hydrocarbons and polychlorinated biphenyls. Environmental exposure to these chemicals during everyday life could have adverse consequences on renal function and might contribute to progressive cumulative renal injury over a lifetime. Regulatory efforts should be made to limit individual exposure to environmental chemicals in an attempt to reduce the incidence of cardiorenal disease.
The effects of environmental chemicals on renal function
Kataria, Anglina; Trasande, Leonardo; Trachtman, Howard
2015-01-01
The global incidence of chronic kidney disease (CKD) is increasing among individuals of all ages. Despite advances in proteomics, genomics and metabolomics, there remains a lack of safe and effective drugs to reverse or stabilize renal function in patients with glomerular or tubulointerstitial causes of CKD. Consequently, modifiable risk factors that are associated with a progressive decline in kidney function need to be identified. Numerous reports have documented the adverse effects that occur in response to graded exposure to a wide range of environmental chemicals. This Review summarizes the effects of such chemicals on four aspects of cardiorenal function: albuminuria, glomerular filtration rate, blood pressure and serum uric acid concentration. We focus on compounds that individuals are likely to be exposed to as a consequence of normal consumer activities or medical treatment, namely phthalates, bisphenol A, polyfluorinated alkyl acids, dioxins and furans, polycyclic aromatic hydrocarbons and polychlorinated biphenyls. Environmental exposure to these chemicals during everyday life could have adverse consequences on renal function and might contribute to progressive cumulative renal injury over a lifetime. Regulatory efforts should be made to limit individual exposure to environmental chemicals in an attempt to reduce the incidence of cardiorenal disease. PMID:26100504
RON kinase inhibition reduces renal endothelial injury in sickle cell disease mice
Khaibullina, Alfia; Adjei, Elena A.; Afangbedji, Nowah; Ivanov, Andrey; Kumari, Namita; Almeida, Luis E.F.; Quezado, Zenaide M.N.; Nekhai, Sergei; Jerebtsova, Marina
2018-01-01
Sickle cell disease patients are at increased risk of developing a chronic kidney disease. Endothelial dysfunction and inflammation associated with hemolysis lead to vasculopathy and contribute to the development of renal disease. Here we used a Townes sickle cell disease mouse model to examine renal endothelial injury. Renal disease in Townes mice was associated with glomerular hypertrophy, capillary dilation and congestion, and significant endothelial injury. We also detected substantial renal macrophage infiltration, and accumulation of macrophage stimulating protein 1 in glomerular capillary. Treatment of human cultured macrophages with hemin or red blood cell lysates significantly increased expression of macrophage membrane-associated protease that might cleave and activate circulating macrophage stimulating protein 1 precursor. Macrophage stimulating protein 1 binds to and activates RON kinase, a cell surface receptor tyrosine kinase. In cultured human renal glomerular endothelial cells, macrophage stimulating protein 1 induced RON downstream signaling, resulting in increased phosphorylation of ERK and AKT kinases, expression of Von Willebrand factor, increased cell motility, and re-organization of F-actin. Specificity of macrophage stimulating protein 1 function was confirmed by treatment with RON kinase inhibitor BMS-777607 that significantly reduced downstream signaling. Moreover, treatment of sickle cell mice with BMS-777607 significantly reduced glomerular hypertrophy, capillary dilation and congestion, and endothelial injury. Taken together, our findings demonstrated that RON kinase is involved in the induction of renal endothelial injury in sickle cell mice. Inhibition of RON kinase activation may provide a novel approach for prevention of the development of renal disease in sickle cell disease. PMID:29519868
Frölich, Stefanie; Slattery, Patrick; Thomas, Dominique; Goren, Itamar; Ferreiros, Nerea; Jensen, Boye L; Nüsing, Rolf M
2017-04-01
Deletion of cyclooxygenase-2 (COX-2) causes impairment of postnatal kidney development. Here we tested whether the renin angiotensin system contributes to COX-2-dependent nephrogenesis in mice after birth and whether a rescue of impaired renal development and function in COX-2 -/- mice was achievable. Plasma renin concentration in mouse pups showed a birth peak and a second peak around day P8 during the first 10 days post birth. Administration of the angiotensin II receptor AT1 antagonist telmisartan from day P1 to P3 did not result in cortical damage. However, telmisartan treatment from day P3 to P8, the critical time frame of renal COX-2 expression, led to hypoplastic glomeruli, a thinned subcapsular cortex and maturational arrest of superficial glomeruli quite similar to that observed in COX-2 -/- mice. In contrast, AT2 receptor antagonist PD123319 was without any effect on renal development. Inhibition of the renin angiotensin system by aliskiren and enalapril caused similar glomerular defects as telmisartan. Administration of the AT1 receptor agonist L162313 to COX-2 -/- pups improved kidney growth, ameliorated renal defects, but had no beneficial effect on reduced cortical mass. L162313 rescued impaired renal function by reducing serum urea and creatinine and mitigated pathologic albumin excretion. Moreover, glomerulosclerosis in the kidneys of COX-2 -/- mice was reduced. Thus, angiotensin II-AT1-receptor signaling is necessary for COX-2-dependent normal postnatal nephrogenesis and maturation. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Renal impairment and heart failure with preserved ejection fraction early post-myocardial infarction
Jorapur, Vinod; Lamas, Gervasio A; Sadowski, Zygmunt P; Reynolds, Harmony R; Carvalho, Antonio C; Buller, Christopher E; Rankin, James M; Renkin, Jean; Steg, Philippe Gabriel; White, Harvey D; Vozzi, Carlos; Balcells, Eduardo; Ragosta, Michael; Martin, C Edwin; Srinivas, Vankeepuram S; Wharton III, William W; Abramsky, Staci; Mon, Ana C; Kronsberg, Shari S; Hochman, Judith S
2010-01-01
AIM: To study if impaired renal function is associated with increased risk of peri-infarct heart failure (HF) in patients with preserved ejection fraction (EF). METHODS: Patients with occluded infarct-related arteries (IRAs) between 1 to 28 d after myocardial infarction (MI) were grouped into chronic kidney disease (CKD) stages based on estimated glomerular filtration rate (eGFR). Rates of early post-MI HF were compared among eGFR groups. Logistic regression was used to explore independent predictors of HF. RESULTS: Reduced eGFR was present in 71.1% of 2160 patients, with significant renal impairment (eGFR < 60 mL/min every 1.73 m2) in 14.8%. The prevalence of HF was higher with worsening renal function: 15.5%, 17.8% and 29.4% in patients with CKD stages 1, 2 and 3 or 4, respectively (P < 0.0001), despite a small absolute difference in mean EF across eGFR groups: 48.2 ± 10.0, 47.9 ± 11.3 and 46.2 ± 12.1, respectively (P = 0.02). The prevalence of HF was again higher with worsening renal function among patients with preserved EF: 10.1%, 13.6% and 23.6% (P < 0.0001), but this relationship was not significant among patients with depressed EF: 27.1%, 26.2% and 37.9% (P = 0.071). Moreover, eGFR was an independent correlate of HF in patients with preserved EF (P = 0.003) but not in patients with depressed EF (P = 0.181). CONCLUSION: A significant proportion of post-MI patients with occluded IRAs have impaired renal function. Impaired renal function was associated with an increased rate of early post-MI HF, the association being strongest in patients with preserved EF. These findings have implications for management of peri-infarct HF. PMID:20885993
Becattini, C; Giustozzi, M; Ranalli, M G; Bogliari, G; Cianella, F; Verso, M; Agnelli, G; Vedovati, M C
2018-05-01
Essential In patients on treatment with direct anticoagulants (DOACs) variation of renal function is common. The effect of variations of renal function over time on major bleeding is not well defined. Variation of renal function over time is an independent predictor of major bleeding. Identifying conditions associated with variation of renal function may increase safety of DOACs. Background Chronic kidney disease is a risk factor for major bleeding in patients with atrial fibrillation (AF) treated with warfarin. Objective To assess the effect of variations in renal function over time on the risk of major bleeding during treatment with direct oral anticoagulants (DOACs) in patients with non-valvular AF. Methods Consecutive AF patients were prospectively followed after they had received the first DOAC prescription. Estimated glomerular filtration rate (eGFR) was periodically assessed, and the incidence of major bleeding was recorded. A joint survival model was used to estimate the association between variation in eGFR and the risk of major bleeding. Results During a mean follow-up of 575 days, 44 major bleeds occurred in 449 patients (6.1% per patient-year). eGFR over time was inversely and independently associated with the risk of major bleeding; every 1 mL min -1 absolute decrease in eGFR was associated with a 2% increase in the risk of major bleeding (hazard ratio [HR] 1.02, 95% confidence interval [CI] 1.01-1.04). A similar effect of the variation in eGFR over time was observed on the risk of clinically relevant non-major bleeding (HR 1.02, 95% CI 1.01-1.03). Deterioration of renal function leading to a change in eGFR staging was associated with an increase in the risk of major bleeding (HR 2.43, 95% CI 1.33-4.45). Conclusions Variation in renal function over time is associated with the risk of major bleeding in AF patients treated with DOACs in real life. Identification of intervening clinical conditions associated with variation in renal function is essential to reduce the risk of major bleeding and to make DOAC treatment more safe. © 2018 International Society on Thrombosis and Haemostasis.
de Bem, Graziele Freitas; da Costa, Cristiane Aguiar; de Oliveira, Paola Raquel Braz; Cordeiro, Viviane Silva Cristino; Santos, Izabelle Barcellos; de Carvalho, Lenize Costa Reis Marins; Souza, Marcelo Augusto Vieira; Ognibene, Dayane Texeira; Daleprane, Julio Beltrame; Sousa, Pergentino José Cunha; Resende, Angela Castro; de Moura, Roberto Soares
2014-09-01
This study examined the effect of açaí (Euterpe oleracea Mart.) seed extract (ASE) on cardiovascular and renal alterations in adult offspring, whose mothers were fed a low-protein (LP) diet during pregnancy. Four groups of rats were fed: control diet (20% protein); ASE (200 mg/kg per day); and LP (6% protein); LP + ASE (6% protein + ASE) during pregnancy. After weaning, all male offspring were fed a control diet and sacrificed at 4 months old. We evaluated the blood pressure, vascular function, serum and urinary parameters, plasma and kidney oxidative damage, and antioxidant activity and renal structural changes. Hypertension and the reduced acetylcholine-induced vasodilation in the LP group were prevented by ASE. Serum levels of urea, creatinine and fractional excretion of sodium were increased in LP and reduced in LP + ASE. ASE improved nitrite levels and the superoxide dismutase and glutathione peroxidase activity in LP, with a corresponding decrease of malondialdehyde and protein carbonyl levels. Kidney volume and glomeruli number were reduced and glomerular volume was increased in LP. These renal alterations were prevented by ASE. Treatment of protein-restricted dams with ASE provides protection from later-life hypertension, oxidative stress, renal functional and structural changes, probably through a vasodilator and antioxidant activity. © 2014 Royal Pharmaceutical Society.
Effects of taurine and housing density on renal function in laying hens*
Ma, Zi-li; Gao, Yang; Ma, Hai-tian; Zheng, Liu-hai; Dai, Bin; Miao, Jin-feng; Zhang, Yuan-shu
2016-01-01
This study investigated the putative protective effects of supplemental 2-aminoethane sulfonic acid (taurine) and reduced housing density on renal function in laying hens. We randomly assigned fifteen thousand green-shell laying hens into three groups: a free range group, a low-density caged group, and a high-density caged group. Each group was further divided equally into a control group (C) and a taurine treatment group (T). After 15 d, we analyzed histological changes in kidney cells, inflammatory mediator levels, oxidation and anti-oxidation levels. Experimental data revealed taurine supplementation, and rearing free range or in low-density housing can lessen morphological renal damage, inflammatory mediator levels, and oxidation levels and increase anti-oxidation levels. Our data demonstrate that taurine supplementation and a reduction in housing density can ameliorate renal impairment, increase productivity, enhance health, and promote welfare in laying hens. PMID:27921400
Functions of the Renal Nerves.
ERIC Educational Resources Information Center
Koepke, John P.; DiBona, Gerald F.
1985-01-01
Discusses renal neuroanatomy, renal vasculature, renal tubules, renin secretion, renorenal reflexes, and hypertension as related to renal nerve functions. Indicates that high intensitites of renal nerve stimulation have produced alterations in several renal functions. (A chart with various stimulations and resultant renal functions and 10-item,…
Lip, Gregory Y H; Al-Saady, Naab; Ezekowitz, Michael D; Banach, Maciej; Goette, Andreas
2017-11-01
The ENSURE-AF study (NCT 02072434) of anticoagulation for electrical cardioversion in nonvalvular atrial fibrillation (NVAF) showed comparable low rates of bleeding and thromboembolism between the edoxaban and the enoxaparin-warfarin treatment arms. This post hoc analysis investigated the relationship between renal function and clinical outcomes. ENSURE-AF was a multicenter, PROBE evaluation trial of edoxaban 60 mg, or dose reduced to 30 mg/d for weight≤60 kg, creatinine clearance (CrCl; Cockcroft-Gault) ≤50 mL/min, or concomitant P-glycoprotein inhibitors compared with therapeutically monitored enoxaparin-warfarin in 2,199 NVAF patients undergoing electrical cardioversion. Efficacy and safety outcomes and time in therapeutic range in the warfarin arm were analyzed in relation to CrCl in prespecified ranges ≥15 and ≤30, >30 and ≤50, >50 and <80, and ≥80 mL/min, and an exploratory ≥95-mL/min analysis. A total of 1,095 subjects were randomized to edoxaban and 1,104 to enoxaparin-warfarin. Mean age was 64.3±10 and 64.2±11 years. Mean time in therapeutic range was progressively lower with reducing CrCl strata, being 66.8% in those with CrCl >30 to ≤50 compared with 71.8% in those with CrCl ≥80. The odds ratios for the primary efficacy and safety end points were comparable for the different predefined renal function strata; given the small numbers, the 95% CI included 1.0. In the subset of those with CrCl ≥95, the odds ratios showed consistency with the other CrCl strata. When CrCl was assessed as a continuous variable, there was a nonsignificant trend toward higher major or clinically relevant nonmajor bleeding with reducing CrCl levels, with no significant differences between the 2 treatment arms. When we assessed CrCl at baseline compared with end of treatment, there were no significant differences in CrCl change between the edoxaban and enoxaparin-warfarin arms. The proportions with worsening of renal function (defined as a decrease of >20% from baseline) were similar in the 2 treatment arms. Given the small number of events in ENSURE-AF, no effect of renal (dys)function was demonstrated in comparing edoxaban to enoxaparin-warfarin for cardioversion; efficacy and safety of edoxaban remained consistent even in patients with normal or supranormal renal function. Copyright © 2017 Elsevier Inc. All rights reserved.
Pons, Marianne; Koniaris, Leonidas G; Moe, Sharon M; Gutierrez, Juan C; Esquela-Kerscher, Aurora; Zimmers, Teresa A
2018-05-03
GDF11 modulates embryonic patterning and kidney organogenesis. Herein, we sought to define GDF11 function in the adult kidney and in renal diseases. In vitro renal cell lines, genetic, and murine in vivo renal injury models were examined. Among tissues tested, Gdf11 was highest in normal adult mouse kidney. Expression was increased acutely after 5/6 nephrectomy, ischemia-reperfusion injury, kanamycin toxicity, or unilateral ureteric obstruction. Systemic, high-dose GDF11 administration in adult mice led to renal failure, with accompanying kidney atrophy, interstitial fibrosis, epithelial-to-mesenchymal transition of renal tubular cells, and eventually death. These effects were associated with phosphorylation of SMAD2 and could be blocked by follistatin. In contrast, Gdf11 heterozygous mice showed reduced renal Gdf11 expression, renal fibrosis, and expression of fibrosis-associated genes both at baseline and after unilateral ureteric obstruction compared with wild-type littermates. The kidney-specific consequences of GDF11 dose modulation are direct effects on kidney cells. GDF11 induced proliferation and activation of NRK49f renal fibroblasts and also promoted epithelial-to-mesenchymal transition of IMCD-3 tubular epithelial cells in a SMAD3-dependent manner. Taken together, these data suggest that GDF11 and its downstream signals are critical in vivo mediators of renal injury. These effects are through direct actions of GDF11 on renal tubular cells and fibroblasts. Thus, regulation of GDF11 presents a therapeutic target for diseases involving renal fibrosis and impaired tubular function. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Peleli, Maria; Al-Mashhadi, Ammar; Yang, Ting; Larsson, Erik; Wåhlin, Nils; Jensen, Boye L; G Persson, A Erik; Carlström, Mattias
2016-01-01
Hydronephrosis is associated with the development of salt-sensitive hypertension. Studies have suggested that increased sympathetic nerve activity and oxidative stress play important roles in hypertension and the modulation of salt sensitivity. The present study primarily aimed to examine the role of renal sympathetic nerve activity in the development of hypertension in rats with hydronephrosis. In addition, we aimed to investigate if NADPH oxidase (NOX) function could be affected by renal denervation. Partial unilateral ureteral obstruction (PUUO) was created in 3-wk-old rats to induce hydronephrosis. Sham surgery or renal denervation was performed at the same time. Blood pressure was measured during normal, high-, and low-salt diets. The renal excretion pattern, NOX activity, and expression as well as components of the renin-angiotensin-aldosterone system were characterized after treatment with the normal salt diet. On the normal salt diet, rats in the PUUO group had elevated blood pressure compared with control rats (115 ± 3 vs. 87 ± 1 mmHg, P < 0.05) and displayed increased urine production and lower urine osmolality. The blood pressure change in response to salt loading (salt sensitivity) was more pronounced in the PUUO group compared with the control group (15 ± 2 vs. 5 ± 1 mmHg, P < 0.05). Renal denervation in PUUO rats attenuated both hypertension (97 ± 3 mmHg) and salt sensitivity (5 ± 1 mmHg, P < 0.05) and normalized the renal excretion pattern, whereas the degree of renal fibrosis and inflammation was not changed. NOX activity and expression as well as renin and ANG II type 1A receptor expression were increased in the renal cortex from PUUO rats and normalized by denervation. Plasma Na(+) and K(+) levels were elevated in PUUO rats and normalized after renal denervation. Finally, denervation in PUUO rats was also associated with reduced NOX expression, superoxide production, and fibrosis in the heart. In conclusion, renal denervation attenuates hypertension and restores the renal excretion pattern, which is associated with reduced renal NOX and components of the renin-angiotensin-aldosterone system. This study emphasizes a link between renal nerves, the development of hypertension, and modulation of NOX function. Copyright © 2016 the American Physiological Society.
Laucho-Contreras, Maria E.; Petersen, Hans; Bijol, Vanesa; Sholl, Lynette M.; Choi, Mary E.; Divo, Miguel; Pinto-Plata, Victor; Chetta, Alfredo; Tesfaigzi, Yohannes; Celli, Bartolomé R.
2017-01-01
Rationale: Patients with chronic obstructive pulmonary disease (COPD) frequently have albuminuria (indicative of renal endothelial cell injury) associated with hypoxemia. Objectives: To determine whether (1) cigarette smoke (CS)-induced pulmonary and renal endothelial cell injury explains the association between albuminuria and COPD, (2) CS-induced albuminuria is linked to increases in the oxidative stress–advanced glycation end products (AGEs) receptor for AGEs (RAGE) pathway, and (3) enalapril (which has antioxidant properties) limits the progression of pulmonary and renal injury by reducing activation of the AGEs–RAGE pathway in endothelial cells in both organs. Methods: In 26 patients with COPD, 24 ever-smokers without COPD, 32 nonsmokers who underwent a renal biopsy or nephrectomy, and in CS-exposed mice, we assessed pathologic and ultrastructural renal lesions, and measured urinary albumin/creatinine ratios, tissue oxidative stress levels, and AGEs and RAGE levels in pulmonary and renal endothelial cells. The efficacy of enalapril on pulmonary and renal lesions was assessed in CS-exposed mice. Measurements and Main Results: Patients with COPD and/or CS-exposed mice had chronic renal injury, increased urinary albumin/creatinine ratios, and increased tissue oxidative stress and AGEs-RAGE levels in pulmonary and renal endothelial cells. Treating mice with enalapril attenuated CS-induced increases in urinary albumin/creatinine ratios, tissue oxidative stress levels, endothelial cell AGEs and RAGE levels, pulmonary and renal cell apoptosis, and the progression of chronic renal and pulmonary lesions. Conclusions: Patients with COPD and/or CS-exposed mice have pulmonary and renal endothelial cell injury linked to increased endothelial cell AGEs and RAGE levels. Albuminuria could identify patients with COPD in whom angiotensin-converting enzyme inhibitor therapy improves renal and lung function by reducing endothelial injury. PMID:28085500
Saad, Ahmed; Wang, Wei; Herrmann, Sandra M S; Glockner, James F; Mckusick, Michael A; Misra, Sanjay; Bjarnason, Haraldur; Lerman, Lilach O; Textor, Stephen C
2016-11-01
Atherosclerotic renal artery stenosis (ARAS) reduces renal blood flow (RBF), ultimately leading to kidney hypoxia and inflammation. Insulin-like growth factor binding protein-7 (IGFBP-7) and tissue inhibitor of metalloproteinases-2 (TIMP-2) are biomarkers of cell cycle arrest, often increased in ischemic conditions and predictive of acute kidney injury (AKI). This study sought to examine the relationships between renal vein levels of IGFBP-7, TIMP-2, reductions in RBF and postcontrast hypoxia as measured by blood oxygen level-dependent (BOLD) magnetic resonance imaging. Renal vein levels of IGFBP-7 and TIMP-2 were obtained in an ARAS cohort (n= 29) scheduled for renal artery stenting and essential hypertensive (EH) healthy controls (n = 32). Cortical and medullary RBFs were measured by multidetector computed tomography (CT) immediately before renal artery stenting and 3 months later. BOLD imaging was performed before and 3 months after stenting in all patients, and a subgroup (N = 12) underwent repeat BOLD imaging 24 h after CT/stenting to examine postcontrast/procedure levels of hypoxia. Preintervention IGFBP-7 and TIMP-2 levels were elevated in ARAS compared with EH (18.5 ± 2.0 versus 15.7 ± 1.5 and 97.4 ± 23.1 versus 62.7 ± 9.2 ng/mL, respectively; P< 0.0001); baseline IGFBP-7 correlated inversely with hypoxia developing 24 h after contrast injection (r = -0.73, P< 0.0001) and with prestent cortical blood flow (r = -0.59, P= 0.004). These data demonstrate elevated IGFBP-7 and TIMP-2 levels in ARAS as a function of the degree of reduced RBF. Elevated baseline IGFBP-7 levels were associated with protection against postimaging hypoxia, consistent with 'ischemic preconditioning'. Despite contrast injection and stenting, AKI in these high-risk ARAS subjects with elevated IGFBP-7/TIMP-2 was rare and did not affect long-term kidney function. © The Author 2016. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.
Javadzadegan, Ashkan; Fulker, David; Barber, Tracie
2017-07-01
Haemodynamic perturbations such as flow recirculation zones play a key role in progression and development of renal artery stenosis, which typically originate at the aorta-renal bifurcation. The spiral nature of aortic blood flow, division of aortic blood flow in renal artery as well as the exercise conditions have been shown to alter the haemodynamics in both positive and negative ways. This study focuses on the combinative effects of spiral component of blood flow, renal-to-aorta flow ratio and the exercise conditions on the size and distribution of recirculation zones in renal branches using computational fluid dynamics technique. Our findings show that the recirculation length was longest when the renal-to-aorta flow ratio was smallest. Spiral flow and exercise conditions were found to be effective in reducing the recirculation length in particular in small renal-to-aorta flow ratios. These results support the hypothesis that in renal arteries with small flow ratios where a stenosis is already developed an artificially induced spiral flow within the aorta may decelerate the progression of stenosis and thereby help preserve kidney function.
Ramadan fasting and patients with renal diseases: A mini review of the literature.
Emami-Naini, Afsoon; Roomizadeh, Peyman; Baradaran, Azar; Abedini, Amin; Abtahi, Mohammad
2013-08-01
Fasting during the month of Ramadan is one of the five pillars of Islam. During this month, adult Muslims are obligated to refrain from eating and drinking from dawn to dusk. Although based on Islamic principles patients are exempted from fasting, each year, many Muslim patients express their willingness to observe the fast in Ramadan month to respect the cultural customs. There are concerns about the impact of fluid restriction and dehydration during Ramadan fasting for patients with renal diseases. In this study, we reviewed the PubMed, Google Scholar, EBSCO, SCIRUS, Embase, and DOAJ data sources to identify the published studies on the impact of Ramadan fasting on patients with renal diseases. Our review on published reports on renal transplant recipients revealed no injurious effect of Ramadan fasting for the renal graft function. Nearly all studies on this topic suggest that Ramadan fasting is safe when the function of the renal graft is acceptable and stable. Regarding the impact of Ramadan fasting on patients with chronic kidney disease, there is concern about the role of renal hypoperfusion in developing tubular cell injury. Finally, there is controversy between studies about the risk of dehydration in Ramadan in developing renal stones. There are uncertainties about the change in the incidence of renal colic in Ramadan month compared with the other periods of the year. Despite such discrepancies, nearly all studies are in agreement on consuming adequate amounts of water from dusk to dawn to reduce the risk of renal stone formation.
Xu, Jia-Rui; Zhuang, Ya-Min; Liu, Lan; Shen, Bo; Wang, Yi-Mei; Luo, Zhe; Teng, Jie; Wang, Chun-Sheng; Ding, Xiao-Qiang
2017-01-01
Objective To evaluate the impact of the renal dysfunction (RD) type and change of postoperative cardiac function on the risk of developing acute kidney injury (AKI) in patients who underwent cardiac valve surgery. Method Reversible renal dysfunction (RRD) was defined as preoperative RD in patients who had not been initially diagnosed with chronic kidney disease (CKD). Cardiac function improvement (CFI) was defined as postoperative left ventricular ejection function – preoperative left ventricular ejection function (ΔEF) >0%, and cardiac function not improved (CFNI) as ΔEF ≤0%. Results Of the 4,805 (94%) cardiac valve surgery patients, 301 (6%) were RD cases. The AKI incidence in the RRD group (n=252) was significantly lower than in the CKD group (n=49) (36.5% vs 63.3%, P=0.018). The AKI and renal replacement therapy incidences in the CFI group (n=174) were significantly lower than in the CFNI group (n=127) (33.9% vs 50.4%, P=0.004; 6.3% vs 13.4%, P=0.037). After adjustment for age, gender, and other confounding factors, CKD and CKD + CFNI were identified as independent risk factors for AKI in all patients after cardiac valve surgery. Multivariate logistic regression analysis showed that the risk factors for postoperative AKI in preoperative RD patients were age, gender (male), hypertension, diabetes, chronic heart failure, cardiopulmonary bypass time (every 1 min added), and intraoperative hypotension, while CFI after surgery could reduce the risk. Conclusion For cardiac valve surgery patients, preoperative CKD was an independent risk factor for postoperative AKI, but RRD did not add to the risk. Improved postoperative cardiac function can significantly reduce the risk of postoperative AKI. PMID:29184415
O'Valle, Francisco; Del Moral, Raimundo G M; Benítez, María del Carmén; Martín-Oliva, David; Gómez-Morales, Mercedes; Aguilar, David; Aneiros-Fernández, José; Hernández-Cortés, Pedro; Osuna, Antonio; Moreso, Francesc; Serón, Daniel; Oliver, Francisco J; Del Moral, Raimundo G
2009-09-28
Cold ischemia time especially impacts on outcomes of expanded-criteria donor (ECD) transplantation. Ischemia-reperfusion (IR) injury produces excessive poly[ADP-Ribose] Polymerase-1 (PARP-1) activation. The present study explored the hypothesis that increased tubular expression of PARP-1 contributes to delayed renal function in suboptimal ECD kidney allografts and in non-ECD allografts that develop posttransplant acute tubular necrosis (ATN). Nuclear PARP-1 immunohistochemical expression was studied in 326 paraffin-embedded renal allograft biopsies (193 with different degrees of ATN and 133 controls) and in murine Parp-1 knockout model of IR injury. PARP-1 expression showed a significant relationship with cold ischemia time (r coefficient = 0.603), time to effective diuresis (r = 0.770), serum creatinine levels at biopsy (r = 0.649), and degree of ATN (r = 0.810) (p = 0.001, Pearson test). In the murine IR model, western blot showed an increase in PARP-1 that was blocked by Parp-1 inhibitor. Immunohistochemical study of PARP-1 in kidney allograft biopsies would allow early detection of possible delayed renal function, and the administration of PARP-1 inhibitors may offer a therapeutic option to reduce damage from IR in donor kidneys by preventing or minimizing ATN. In summary, these results suggest a pivotal role for PARP-1 in the ATN of renal transplantation. We propose the immunohistochemical assessment of PARP-1 in kidney allograft biopsies for early detection of a possible delayed renal function.
Renal angioplasty and stenting under protection: the way for the future?
Henry, Michel; Henry, Isabelle; Klonaris, Christos; Polydorou, Antonio; Rath, Pathrap; Lakshmi, Gopalakrishnan; Rajacopal, Sriram; Hugel, Michèle
2003-11-01
The purpose of this study was to evaluate the feasibility and safety of renal artery angioplasty and stenting utilizing a distal protection device to reduce the risk of intraprocedural artery embolism and avoid deterioration of the renal function. Fifty-six hypertensive patients (32 men; mean age, 66 +/- 11.8 years; range, 22-87) with atherosclerotic renal artery stenosis (8 bilateral) underwent angioplasty and stenting with distal protection in 65 renal arteries (58 ostial lesions). Five patients had a solitary kidney, 18 a renal insufficiency. The lesion was crossed either with a GuardWire temporary occlusion balloon (n = 38), which was inflated to provide parenchyma protection or with a filter (EPI Filter; n = 26), or with Angioguard (n = 1), which allows a continuous flow. Generated debris was aspirated and analyzed. Blood pressure and serum creatinine levels were followed. Immediate technical success was 100%. All lesions except one were stented, either directly (43 ostial lesions) or after predilatation (22 ostial lesions). Visible debris were aspirated with the PercuSurge in all patients or removed with filters in 80% of the patients. Mean particle number and diameter were 98.1 +/- 60.0 per procedure (range, 13-208) and 201.0 +/- 76.0 microm (range, 38-6,206), respectively. Mean renal artery occlusion time was 6.55 +/- 2.46 min (range, 2.29-13.21) with the PercuSurge device. Mean time in situ (filters) was 4.25 +/- 1.12 min. Mean follow-up was 22.6 +/- 17.6 months (range, 1-47). Systolic and diastolic blood pressure declined from 169.0 +/- 15.2 and 104.0 +/- 13.0 mm Hg, respectively, to 149.7 +/- 12.4 and 92.7 +/- 6.7 mm Hg after the procedure. The mean creatinine level remains constant during the follow-up. At 6-month follow-up (45 patients), renal function did not deteriorate in any patient, whereas 8 patients with baseline renal insufficiency improved after the procedure. At 3 years (19 patients), renal function deteriorated only in 1 patient with renal insufficiency and in 1 patient treated for bilateral renal stenosis, one side without protection. These preliminary results suggest the feasibility and safety of distal protection during renal interventions to protect against atheroembolism and to avoid renal function deterioration. This technique's beneficial effects should be evaluated by randomized studies. Copyright 2003 Wiley-Liss, Inc.
Relationship of MTHFR gene polymorphisms with renal and cardiac disease
Trovato, Francesca M; Catalano, Daniela; Ragusa, Angela; Martines, G Fabio; Pirri, Clara; Buccheri, Maria Antonietta; Di Nora, Concetta; Trovato, Guglielmo M
2015-01-01
AIM: To investigate the effects of different methylenetetrahydrofolate reductase (MTHFR) 677C>T gene polymorphism and hyperhomocysteinemia for the development of renal failure and cardiovascular events, which are controversial. METHODS: We challenged the relationship, if any, of MTHFR 677C>T and MTHFR 1298A>C polymorphisms with renal and heart function. The present article is a reappraisal of these concepts, investigating within a larger population, and including a subgroup of dialysis patients, if the two most common MTHFR polymorphisms, C677T and A1298C, as homozygous, heterozygous or with a compound heterozygous state, show different association with chronic renal failure requiring hemodialysis. MTHFR polymorphism could be a favorable evolutionary factor, i.e., a protective factor for many ominous conditions, like cancer and renal failure. A similar finding was reported in fatty liver disease in which it is suggested that MTHFR polymorphisms could have maintained and maintain their persistence by an heterozygosis advantage mechanism. We studied a total of 630 Italian Caucasian subject aged 54.60 ± 16.35 years, addressing to the increased hazard of hemodialysis, if any, according to the studied MTHFR genetic polymorphisms. RESULTS: A favorable association with normal renal function of MTHFR polymorphisms, and notably of MTHFR C677T is present independently of the negative effects of left ventricular hypertrophy, increased Intra-Renal arterial Resistance and hyperparathyroidism. CONCLUSION: MTHFR gene polymorphisms could have a protective role on renal function as suggested by their lower frequency among our dialysis patients in end-stage renal failure; differently, the association with left ventricular hypertrophy and reduced left ventricular relaxation suggest some type of indirect, or concurrent mechanism. PMID:25664255
Hall, J A; Yerramilli, M; Obare, E; Yerramilli, M; Yu, S; Jewell, D E
2014-12-01
The purpose of this study was to determine whether feeding cats reduced protein and phosphorus foods with added fish oil, L-carnitine, and medium-chain triglycerides (MCT) altered serum biomarkers of renal function. Thirty-two healthy cats, mean age 14.0 (8.3-19.6) years, were fed control food or one of two experimental foods for 6 months. All foods had similar concentrations of moisture, protein, and fat (approximately 8.0%, 26.5%, and 20.0%, respectively). Both experimental foods contained added fish oil (1.5%) and L-carnitine (500 mg/kg). Experimental-food 2 also contained increased MCT (10.5% from coconut oil), 1.5% added corn oil, and reduced animal fat. Glomerular filtration rate (GFR), serum biochemistries, renal function biomarkers including serum creatinine (sCr) and symmetrical dimethylarginine (SDMA), and plasma metabolomic profiles were measured at baseline, and at 1.5, 3, and 6 months. Body composition was determined by dual-energy X-ray absorptiometry. Although both experimental foods altered plasma fatty acids, carnitine and related metabolites, and lysophospholipid concentrations, there were no changes in renal function biomarkers. There was, however, a benefit in using SDMA versus sCr to assess renal function in older cats with less total lean mass. Compared with cats <12 years, those >15 years had lower total lean mass (P < 0.01), lower GFR (P = 0.04), and lower sCr concentrations (P < 0.01). However, SDMA concentrations (P < 0.01) were higher in older cats. This study shows that in cats, serum SDMA concentration is more highly correlated with GFR than sCr concentration, and, unlike sCr, which declines with age because of muscle wasting, SDMA increases as GFR declines with age. Copyright © 2014 Elsevier Ltd. All rights reserved.
Kelsen, Silvia; Hall, John E; Chade, Alejandro R
2011-07-01
Endothelin (ET)-1, a potent renal vasoconstrictor with mitogenic properties, is upregulated by ischemia and has been shown to induce renal injury via the ET-A receptor. The potential role of ET-A blockade in chronic renovascular disease (RVD) has not, to our knowledge, been previously reported. We hypothesized that chronic ET-A receptor blockade would preserve renal hemodynamics and slow the progression of injury of the stenotic kidney in experimental RVD. Renal artery stenosis, a major cause of chronic RVD, was induced in 14 pigs and observed for 6 wk. In half of the pigs, chronic ET-A blockade was initiated (RVD+ET-A, 0.75 mg·kg(-1)·day(-1)) at the onset of RVD. Single-kidney renal blood flow, glomerular filtration rate, and perfusion were quantified in vivo after 6 wk using multidetector computer tomography. Renal microvascular density was quantified ex vivo using three-dimensional microcomputer tomography, and growth factors, inflammation, apoptosis, and fibrosis were determined in renal tissue. The degree of stenosis and increase in blood pressure were similar in RVD and RVD+ET-A pigs. Renal hemodynamics, function, and microvascular density were decreased in the stenotic kidney but preserved by ET-A blockade, accompanied by increased renal expression of vascular endothelial growth factor, hepatocyte growth factor, and downstream mediators such as phosphorilated-Akt, angiopoietins, and endothelial nitric oxide synthase. ET-A blockade also reduced renal apoptosis, inflammation, and glomerulosclerosis. This study shows that ET-A blockade slows the progression of renal injury in experimental RVD and preserves renal hemodynamics, function, and microvascular density in the stenotic kidney. These results support a role for ET-1/ET-A as a potential therapeutic target in chronic RVD.
Kelsen, Silvia; Hall, John E.
2011-01-01
Endothelin (ET)-1, a potent renal vasoconstrictor with mitogenic properties, is upregulated by ischemia and has been shown to induce renal injury via the ET-A receptor. The potential role of ET-A blockade in chronic renovascular disease (RVD) has not, to our knowledge, been previously reported. We hypothesized that chronic ET-A receptor blockade would preserve renal hemodynamics and slow the progression of injury of the stenotic kidney in experimental RVD. Renal artery stenosis, a major cause of chronic RVD, was induced in 14 pigs and observed for 6 wk. In half of the pigs, chronic ET-A blockade was initiated (RVD+ET-A, 0.75 mg·kg−1·day−1) at the onset of RVD. Single-kidney renal blood flow, glomerular filtration rate, and perfusion were quantified in vivo after 6 wk using multidetector computer tomography. Renal microvascular density was quantified ex vivo using three-dimensional microcomputer tomography, and growth factors, inflammation, apoptosis, and fibrosis were determined in renal tissue. The degree of stenosis and increase in blood pressure were similar in RVD and RVD+ET-A pigs. Renal hemodynamics, function, and microvascular density were decreased in the stenotic kidney but preserved by ET-A blockade, accompanied by increased renal expression of vascular endothelial growth factor, hepatocyte growth factor, and downstream mediators such as phosphorilated-Akt, angiopoietins, and endothelial nitric oxide synthase. ET-A blockade also reduced renal apoptosis, inflammation, and glomerulosclerosis. This study shows that ET-A blockade slows the progression of renal injury in experimental RVD and preserves renal hemodynamics, function, and microvascular density in the stenotic kidney. These results support a role for ET-1/ET-A as a potential therapeutic target in chronic RVD. PMID:21478482
Piccoli, G B; Motta, D; Gai, M; Mezza, E; Maddalena, E; Bravin, M; Tattoli, F; Consiglio, V; Burdese, M; Bilucaglia, D; Ferrari, A; Segoloni, G P
2004-11-01
Restarting dialysis after kidney transplantation is a critical step with psychological and clinical implications. Maintenance of residual renal function a known factor affecting survival in chronic kidney disease, has so far not been investigated after a kidney transplantation. A 54-year-old woman who started dialysis in 1974 (first graft, 1975-1999) received a second "marginal" kidney graft in February 2001 (donor age, 65 years). Her chronic therapy was tacrolimus and steroids. She had a clinical history as follows: nadir creatinine level of 1.5 mg/dL, moderate-severe hypertension, progressive graft dysfunction, nonresponsiveness to addition of mycophenolate, tapering FK levels, and a rescue switch from tacrolimus to rapamycin. From October to December 2003, the creatinine level increased from 2-2.8 to 7 mg/dL. Biopsy specimen showed malignant and "benign" nephrosclerosis, posttransplantation glomerulopathy, and tacrolimus toxicity. Chronic dialysis was started (GFR <3 mL/min). Rapamycin was discontinued. Dialysis was tailored to reach an equivalent renal clearance of >15 mL/min (2 sessions/wk). Blood pressure control improved, nephrotoxic drugs were avoided, and fluid loss was minimized (maximum 500 mL/hr). By this policy, renal function progressively increased to GFR >10 mL/min in May 2004, allowing a once or twice weekly dialysis schedule, with good clinical balance, and obvious advantages for the quality of life. This long-term patient, who restarted dialysis with severely reduced renal function, regained sufficient renal function to allow once weekly dialysis. Thus, careful tailoring of dialysis sessions at the restart of dialysis may allow preservation of residual kidney function, at least in individuals for whom a subsequent graft is unlikely.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Pushpender, E-mail: pugupta@wakehealth.edu; Allen, Brian C., E-mail: bcallen2@wakehealth.edu; Chen, Michael Y., E-mail: mchen@wakehealth.edu
Purpose: To evaluate renal function changes related to radiofrequency ablation (RFA) for the treatment of multifocal renal neoplasms. Methods: This is an institutional review board-approved, Health Insurance Portability and Accountability Act compliant retrospective study of all patients treated with computed tomography guided RFA for multifocal renal neoplasms at one institution. Fifty-seven subjects, mean age 70 (range 37-88) years, underwent RFA of 169 renal neoplasms (average size 2.0 cm). Subjects had between 2 and 8 (mean 2.96) neoplasms ablated. Estimated glomerular filtration rate (eGFR) was measured before and after RFA. Complications related to RFA were recorded. Results: eGFR decreased on averagemore » of 4.4 % per tumor treated and 6.7 % per ablation session (average 1.76 tumors treated per session). For subjects with the largest neoplasm measuring >3 cm, eGFR decreased an average of 14.5 % during the course of their treatment. If the largest neoplasm measured 2-3 cm, eGFR decreased an average of 7.7 %, and if the largest neoplasm measured <2 cm, eGFR decreased an average of 3.8 %. Subjects with reduced baseline renal function were more likely to have a greater decline in eGFR after RFA. There was a minor complication rate of 6.3 % (6 of 96 sessions), none of which required treatment, and a major complication rate of 4.2 % (4 of 96 sessions). Conclusion: RFA for the treatment of multifocal renal neoplasms results in mild decline of renal function.« less
Sandilands, Euan A; Cameron, Sharon; Paterson, Frances; Donaldson, Sam; Briody, Lesley; Crowe, Jane; Donnelly, Julie; Thompson, Adrian; Johnston, Neil R; Mackenzie, Ivor; Uren, Neal; Goddard, Jane; Webb, David J; Megson, Ian L; Bateman, Nicholas; Eddleston, Michael
2012-02-03
Contrast-induced nephropathy is a common complication of contrast administration in patients with chronic kidney disease and diabetes. Its pathophysiology is not well understood; similarly the role of intravenous or oral acetylcysteine is unclear. Randomized controlled trials to date have been conducted without detailed knowledge of the effect of acetylcysteine on renal function. We are conducting a detailed mechanistic study of acetylcysteine on normal and impaired kidneys, both with and without contrast. This information would guide the choice of dose, route, and appropriate outcome measure for future clinical trials in patients with chronic kidney disease. We designed a 4-part study. We have set up randomised controlled cross-over studies to assess the effect of intravenous (50 mg/kg/hr for 2 hrs before contrast exposure, then 20 mg/kg/hr for 5 hrs) or oral acetylcysteine (1200 mg twice daily for 2 days, starting the day before contrast exposure) on renal function in normal and diseased kidneys, and normal kidneys exposed to contrast. We have also set up a parallel-group randomized controlled trial to assess the effect of intravenous or oral acetylcysteine on patients with chronic kidney disease stage III undergoing elective coronary angiography. The primary outcome is change in renal blood flow; secondary outcomes include change in glomerular filtration rate, tubular function, urinary proteins, and oxidative balance. Contrast-induced nephropathy represents a significant source of hospital morbidity and mortality. Over the last ten years, acetylcysteine has been administered prior to contrast to reduce the risk of contrast-induced nephropathy. Randomized controlled trials, however, have not reliably demonstrated renoprotection; a recent large randomized controlled trial assessing a dose of oral acetylcysteine selected without mechanistic insight did not reduce the incidence of contrast-induced nephropathy. Our study should reveal the mechanism of effect of acetylcysteine on renal function and identify an appropriate route for future dose response studies and in time randomized controlled trials. Clinical Trials.gov: NCT00558142; EudraCT: 2006-003509-18.
Medical therapy is best for atherosclerotic renal artery stenosis: Arguments for.
Annigeri, R A
2012-01-01
Atherosclerotic renal artery stenosis (ARAS) is a common condition that causes hypertension and reduction in the glomerular filtration rate and is an independent risk factor for death. Despite high technical success, the clinical benefit of renal artery (RA) angioplasty with stenting in ARAS remains doubtful. The published randomized clinical trials provide no support for the notion that renal angioplasty with stenting significantly improves blood pressure, preserves renal function, or reduces episodes of congestive heart failure in patients with ARAS. RA stenting is associated with procedure-related morbidity and mortality. Agents to block the renin-angiotensin-aldosterone system improve outcome and should be a part of a multifaceted medical regimen in ARAS. Medical therapy effectively controls atherosclerotic renovascular disease at all levels of vasculature and hence is the best therapy for ARAS.
Nashan, Bjorn; Schemmer, Peter; Braun, Felix; Dworak, Markus; Wimmer, Peter; Schlitt, Hans
2015-03-26
Introduction of calcineurin inhibitors had led to improved survival rates in liver transplant recipients. However, long-term use of calcineurin inhibitors is associated with a higher risk of chronic renal failure, neurotoxicity, de novo malignancies, recurrence of hepatitis C viral (HCV) infection and hepatocellular carcinoma. Several studies have shown that everolimus has the potential to provide protection against viral replication, malignancy, and progression of fibrosis, as well as preventing nephrotoxicity by facilitating calcineurin inhibitor reduction without compromising efficacy. The Hephaistos study evaluates the beneficial effects of early initiation of everolimus in de novo liver transplant recipients. Hephaistos is an ongoing 12-month, multi-center, open-label, controlled study aiming to enroll 330 de novo liver transplant recipients from 15 centers across Germany. Patients are randomized in a 1:1 ratio (7-21 days post-transplantation) to receive everolimus (trough levels 3-8 ng/mL) with reduced tacrolimus (trough levels <5 ng/mL), or standard tacrolimus (trough levels 6-10 ng/mL) after entering a run-in period (3-5 days post-transplantation). In the run-in period, patients are treated with induction therapy, mycophenolate mofetil, tacrolimus, and corticosteroids according to local practice. Randomization is stratified by HCV status and model of end-stage liver disease scores at transplantation. The primary objective of the study is to exhibit superior renal function (estimated glomerular filtration rate assessed by the Modification of Diet in Renal Disease (MDRD)-4 formula) with everolimus plus reduced tacrolimus compared to standard tacrolimus at Month 12. Other objectives are: to assess the incidence of treated biopsy-proven acute rejection, graft loss, or death; the incidences of components of the composite efficacy endpoint; renal function via estimated glomerular filtration rate using various formulae (MDRD-4, Nankivell, Cockcroft-Gault, chronic kidney disease epidemiology collaboration and Hoek formulae); the incidence of proteinuria; the incidence of adverse events and serious adverse events; the incidence and severity of cytomegalovirus and HCV infections and HCV-related fibrosis. This study aims to demonstrate superior renal function, comparable efficacy, and safety in de novo liver transplant recipients receiving everolimus with reduced tacrolimus compared with standard tacrolimus. This study also evaluates the antiviral benefit by early initiation of everolimus. NCT01551212 .
Zhang, M-J; Gu, Y; Wang, H; Zhu, P-F; Liu, X-Y; Wu, J
2016-01-01
Aortocaval fistula (AV) induced chronic volume overload in rats with preexisting mild renal dysfunction (right kidney remove: UNX) could mimic the type 4 cardiorenal syndrome (CRS): chronic renocardiac syndrome. Galectin-3, a β-galactoside binding lectin, is an emerging biomarker in cardiovascular as well as renal diseases. We observed the impact of valsartan on cardiac and renal hypertrophy and galectin-3 changes in this model. Adult male Sprague-Dawley (SD) rats (200-250 g) were divided into S (Sham, n = 7), M (UNX+AV, n = 7) and M+V (UNX+AV+valsartan, n = 7) groups. Eight weeks later, cardiac function was measured by echocardiography. Renal outcome was measured by glomerular filtration rate, effective renal plasma flow, renal blood flow and 24 hours albuminuria. Immunohistochemistry and real-time PCR were used to evaluate the expressions of galectin-3 in heart and renal. Cardiac hypertrophy and renal hypertrophy as well as cardiac enlargement were evidenced in this AV shunt induced chronic volume overload rat model with preexisting mild renal dysfunction. Cardiac and renal hypertrophy were significantly attenuated but cardiac enlargement was unaffected by valsartan independent of its blood pressure lowering effect. 24 hours urine albumin was significantly increased, which was significantly reduced by valsartan in this model. Immunohistochemistry and real-time PCR evidenced significantly up-regulated galectin-3 expression in heart and kidney and borderline increased myocardial collagen I expression, which tended to be lower post valsartan treatment. Up-regulated galectin-3 signaling might also be involved in the pathogenesis in this CRS model. The beneficial effects of valsartan in terms of attenuating cardiac and renal hypertrophy and reducing 24 hours albumin in this model might partly be mediated through down-regulating galectin-3 signal pathway.
Piao, Songzhe; Park, Juhyun; Son, Hwancheol; Jeong, Hyeon; Cho, Sung Yong
2016-05-01
To compare the perioperative relative renal function and determine predictors of deterioration and recovery of separate renal function in patients with renal stones >10 mm and who underwent mini-percutaneous nephrolithotomy or retrograde intra-renal surgery. A main stone >10 mm or stones growing, high-risk stone formers and extracorporeal shock-wave lithotripsy-resistant stones were prospectively included in 148 patients. Patients with bilateral renal stones and anatomical deformities were excluded. Renal function was evaluated by estimated glomerular filtration rate, 99m-technetium dimercaptosuccinic acid and 99m-technetium diethylenetriamine pentaacetate prior to intervention and at postoperative 3 months. Logistic regression analyses were performed to find predictors of functional deterioration and recovery. The overall stone-free rate was 85.1 %. A third of patients (53/148, 35.8 %) with renal stones >10 mm showed deterioration of separate renal function. Mean renal function of operative sites showed 58.2 % (36.8 %/63.2 %) of that of contralateral sites in these patients. Abnormal separate renal function showed postoperative recovery in 31 patients (58.5 %). Three cases (5.7 %) showed deterioration of separate renal function despite no presence of remnant stones. Improvement rates of the abnormal separate renal function did not differ according to the type of surgery. The presence of hydronephrosis and three or more stones were significant predictors for renal function deterioration. Female gender and three or more stones were significantly correlated with postoperative recovery. Mini-percutaneous nephrolithotomy or retrograde intra-renal surgery was effective and safe for renal function preservation. Patients with multiple large stones should be considered for candidates of active surgical removal.
Life threatening hyperkalemia and acidosis secondary to trimethoprim-sulfamethoxazole treatment.
Margassery, S; Bastani, B
2001-01-01
We present a 77-year-old male with moderate chronic renal insufficiency from diabetic nephropathy who developed severe metabolic acidosis and life threatening hyperkalemia on treatment with regular dose of trimethoprim-sulfamethoxazole (TMP-SMZ) for urinary tract infection. The metabolic acidosis and hyperkalemia resolved upon appropriate medical intervention and discontinuation of TMP-SMZ. While hyperkalemia has commonly been reported with high dose of TMP-SMZ, severe metabolic acidosis is quite uncommon with regular dose TMP-SMZ. We emphasize that patients with renal tubular acidosis (RTA), renal insufficiency, aldosterone deficiency, old age with reduced renal mass and function, and angiotensin converting enzyme (ACE)-inhibitor therapy are at high risk of developing these severe and potentially life threatening complications.
Hinojosa, Fabiola Quinteros; Revelo, Margarita; Salazar, Alexander; Maggi, Genaro; Schiraldi, Renato; Brogly, Nicolas; Gilsanz, Fernando
Inotropic drugs are part of the treatment of heart failure; however, inotropic treatment has been largely debated due to the increased incidence of adverse effects and increased mortality. Recently levosimendan, an inotropic positive agent, has been proved to be effective in acute heart failure, reducing the mortality and improving cardiac and renal performance. We report the case of a 75-year-old woman with history of heart and renal failure and hip fracture. Levosimendan was used in preoperative preparation as an adjuvant therapy, to improve cardiac and renal function and to allow surgery. Copyright © 2014 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.
Hinojosa, Fabiola Quinteros; Revelo, Margarita; Salazar, Alexander; Maggi, Genaro; Schiraldi, Renato; Brogly, Nicolas; Gilsanz, Fernando
Inotropic drugs are part of the treatment of heart failure; however, inotropic treatment has been largely debated due to the increased incidence of adverse effects and increased mortality. Recently levosimendan, an inotropic positive agent, has been proved to be effective in acute heart failure, reducing the mortality and improving cardiac and renal performance. We report the case of a 75-year-old woman with history of heart and renal failure and hip fracture. Levosimendan was used in preoperative preparation as an adjuvant therapy, to improve cardiac and renal function and to allow surgery. Copyright © 2014 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.
Frezzatti, Rodrigo; Silveira, Paulo Flavio
2011-01-01
Background Acute renal failure is one of the most serious complications of envenoming resulting from Crotalus durissus terrificus bites. This study evaluated the relevance of hyperuricemia and oxidative stress and the effects of allopurinol and probenecid in renal dysfunction caused by direct nephrotoxicity of C. d. terrificus venom. Methodology/Principal Findings Hematocrit, protein, renal function and redox status were assessed in mice. High ratio of oxidized/reduced glutathione and hyperuricemia induced by C. d. terrificus venom were ameliorated by both, allopurinol or probenecid, but only allopurinol significantly reduced the lethality caused by C. d. terrificus venom. The effectiveness of probenecid is compromised probably because it promoted hypercreatinemia and hypocreatinuria and worsed the urinary hypo-osmolality in envenomed mice. In turn, the highest effectiveness of allopurinol might be due to its ability to diminish the intracellular formation of uric acid. Conclusions/Significance Data provide consistent evidences linking uric acid with the acute renal failure induced by C. d. terrificus venom, as well as that this envenoming in mice constitutes an attractive animal model suitable for studying the hyperuricemia and that the allopurinol deserves to be clinically evaluated as an approach complementary to anti-snake venom serotherapy. PMID:21909449
Seidu, Samuel; Kunutsor, Setor K; Cos, Xavier; Gillani, Syed; Khunti, Kamlesh
2018-06-01
Sodium-glucose co-transporter 2 (SGLT2) inhibitors may have renal protective effects in people with impaired kidney function. We assessed the use of SGLT2 inhibitors in people with type 2 diabetes with or without renal impairment [defined as estimated glomerular filtration rate (eGFR) of ≥30 and <60ml/min/1.73m 2 and/or UACR>300 and ≤5000mg/g] by conducting a systematic review and meta-analysis of available studies. Randomised controlled trials (RCTs) were identified from MEDLINE, EMABASE, Web of Science, the Cochrane Library, and search of bibliographies to March 2017. No relevant observational study was identified. Summary measures were presented as mean differences and narrative synthesis performed for studies that could not be pooled. 42 articles which included 40 RCTs comprising 29,954 patients were included. In populations with renal impairment, SGLT2 inhibition compared with placebo was consistently associated with an initial decrease in eGFR followed by an increase and return to baseline levels. In pooled analysis of 17 studies in populations without renal impairment, there was no significant change in eGFR comparing SGLT2 inhibitors with placebo (mean difference, 0.51ml/min/1.73m 2 ; 95% CI: -0.69, 1.72; p=403). SGLT2 inhibition relative to placebo was associated with preservation in serum creatinine levels or initial increases followed by return to baseline levels in patients with renal impairment, but levels were preserved in patients without renal impairment. In populations with or without renal impairment, SGLT2 inhibitors (particularly canagliflozin and empagliflozin) compared with placebo were associated with decreased urine albumin, improved albuminiuria, slowed progression to macroalbuminuria, and reduced the risk of worsening renal impairment, the initiation of kidney transplant, and death from renal disease. Emerging data suggests that with SGLT2 inhibition, renal function seems to be preserved in people with diabetes with or without renal impairment. Furthermore, SGLT2 inhibition prevents further renal function deterioration and death from kidney disease in these patients. Copyright © 2018 Primary Care Diabetes Europe. Published by Elsevier Ltd. All rights reserved.
Weinberger, Sarah; Klarholz-Pevere, Carola; Liefeldt, Lutz; Baeder, Michael; Steckhan, Nico; Friedersdorff, Frank
2018-03-22
To analyse the influence of CT-based depth correction in the assessment of split renal function in potential living kidney donors. In 116 consecutive living kidney donors preoperative split renal function was assessed using the CT-based depth correction. Influence on donor side selection and postoperative renal function of the living kidney donors were analyzed. Linear regression analysis was performed to identify predictors of postoperative renal function. A left versus right kidney depth variation of more than 1 cm was found in 40/114 donors (35%). 11 patients (10%) had a difference of more than 5% in relative renal function after depth correction. Kidney depth variation and changes in relative renal function after depth correction would have had influence on side selection in 30 of 114 living kidney donors. CT depth correction did not improve the predictability of postoperative renal function of the living kidney donor. In general, it was not possible to predict the postoperative renal function from preoperative total and relative renal function. In multivariate linear regression analysis, age and BMI were identified as most important predictors for postoperative renal function of the living kidney donors. Our results clearly indicate that concerning the postoperative renal function of living kidney donors, the relative renal function of the donated kidney seems to be less important than other factors. A multimodal assessment with consideration of all available results including kidney size, location of the kidney and split renal function remains necessary.
Dose-adjusted arsenic trioxide for acute promyelocytic leukaemia in chronic renal failure.
Firkin, Frank; Roncolato, Fernando; Ho, Wai Khoon
2015-10-01
To determine the potential for arsenic trioxide (ATO) to be safely and effectively incorporated into induction therapy of newly diagnosed acute promyelocytic leukaemia (APL) in patients with severe chronic renal failure (CRF) by reduction of the ATO dosage to compensate for reduced renal elimination of arsenic in CRF. Two of the four CRF patients with APL in the study were dialysis-dependent, and two had eGFRs of 18 and 19 mL/min/1.73 m(2) . ATO dosage schedules were adjusted to obtain comparable whole-blood arsenic levels to those in APL patients with normal renal function who achieved molecular remission (MR) while receiving 10 mg ATO daily for 28 d. Average ATO administered per day in CRF patients ranged from 36 to 50% of the ATO administered to APL patients with normal renal function. No clinically significant cardiac, hepatic or other toxicities were detected. RT-PCR-negative MR was achieved after one treatment course in two patients and after two courses in the others. Relapse-free survival is 155, 60, 43 and 5 months. The observations in this pilot study have demonstrated whole-blood arsenic levels can provide a guide to adjustments of ATO dosage schedules that permit safe and effective therapeutic outcomes in APL patients with severely compromised renal function. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Urbanization and kidney function decline in low and middle income countries.
Jagannathan, Ram; Patzer, Rachel E
2017-08-29
Urbanization is expected to increase in low and middle-income countries (LMICs), and might contribute to the increased disease burden. The association between urbanization and CKD is incompletely understood among LMICs. Recently, Inoue et al., explored the association of urbanization on renal function from the China Health and Nutrition Survey. The study found that individuals living in an urban environment had a higher odds of reduced renal function independent of behavioral and cardiometabolic measures, and this effect increased in a dose dependent manner. In this commentary, we discuss the results of these findings and explain the need for more surveillance studies among LMICs.
Nejad, Khojasteh Hoseiny; Gharib-Naseri, Mohammad Kazem; Sarkaki, Alireza; Dianat, Mahin; Badavi, Mohammad; Farbood, Yaghoub
2017-01-01
Global cerebral ischemia-reperfusion (GCIR) causes disturbances in brain functions as well as other organs such as kidney. Our aim was to evaluate the protective effects of ellagic acid (EA) on certain renal disfunction after GCIR. Adult male Wistar rats (n=32, 250-300 g) were used. GCIR was induced by bilateral vertebral and common carotid arteries occlusion (4-VO). Animal groups were: 1) received DMSO/saline (10%) as solvent of EA, 2) solvent + GCIR, 3) EA + GCIR, and 4) EA. Under anesthesia with ketamine/xylazine, GCIR was induced (20 and 30 min respectively) in related groups. EA (100 mg/kg, dissolved in DMSO/saline (10%) or solvent was administered (1.5 ml/kg) orally for 10 consecutive days to the related groups. EEG was recorded from NTS in GCIR treated groups. Our data showed that: a) EEG in GCIR treated groups was flattened. b) GCIR reduced GFR ( P <0.01) and pretreatment with EA attenuated this reduction. c) BUN was increased by GCIR ( P <0.001) and pretreatment with EA improved the BUN to normal level. d) Serum creatinine concentration was elevated by GCIR but not significantly, however, in EA+GCIR group serum creatinine was reduced ( P <0.05). e) GCIR induced proteinuria ( P <0.05) but, EA was unable to reduced proteinuria. Results indicate that GCIR impairs certain renal functions and EA as an antioxidant can improve these functions. Our results suggest the possible usefulness of ellagic acid in patients with brain stroke.
Urt-Filho, Antônio; Oliveira, Rodrigo Juliano; Hermeto, Larissa Correa; Pesarini, João Renato; de David, Natan; Cantero, Wilson de Barros; Falcão, Gustavo; Marks, Guido; Antoniolli-Silva, Andréia Conceição Milan Brochado
2016-01-01
Abstract Acute renal failure (ARF) is an extremely important public health issue in need of novel therapies. The present study aimed to evaluate the capacity of mesenchymal stem cell (MSC) therapy to promote the improvement and recovery of renal function in a preclinical model. Wistar rats were used as the experimental model, and our results show that cisplatin (5mg/kg) can efficiently induce ARF, as measured by changes in biochemical (urea and creatinine) and histological parameters. MSC therapy performed 24h after the administration of chemotherapy resulted in normalized plasma urea and creatinine levels 30 and 45d after the onset of kidney disease. Furthermore, MSC therapy significantly reduced histological changes (intratubular cast formation in protein overload nephropathy and tubular hydropic degeneration) in this ARF model. Thus, considering that current therapies for ARF are merely palliative and that MSC therapy can promote the improvement and recovery of renal function in this model system, we suggest that innovative/alternative therapies involving MSCs should be considered for clinical studies in humans to treat ARF. PMID:27275667
Shimizu, Yoshio; Kamoda, Tomohiro; Nagata, Michio; Yoh, Keigyo; Hashimoto, Yuko; Matsui, Akira; Yoshikawa, Hiroyuki; Yamagata, Kunihiro; Koyama, Akio
2009-01-01
We report a successful case of pregnancy in a female patient with congenital chloride diarrhea (CLD) and reduced renal function due to interruption of treatment. CLD is an autosomal recessive disorder of intestinal electrolyte absorption caused by mutations in the solute carrier family 26, member 3 (SLC26A3) gene, and continuous production of watery diarrhea induces dehydration, metabolic alkalosis and many kinds of electrolyte disturbances in CLD patients. The patient in our case was a 24-year-old female CLD patient with moderate renal impairment; a renal biopsy specimen showed minimal glomerular changes, but tubulointerstitial damage by crystal formation, consistent with renal function data. One year after our initial examination and reinstitution of therapy, the patient got married and soon conceived. There were no major problems during the course of pregnancy, and the patient successfully delivered a healthy full-term infant vaginally. The symptoms and clinical course of the patient were particularly mild, and we discuss possible reasons for these observations from a perspective of genotype, phenotype and environmental conditions.
Glavey, S V; Gertz, M A; Dispenzieri, A; Kumar, S; Buadi, F; Lacy, M; Hayman, S R; Kapoor, P; Dingli, D; McCurdy, A; Hogan, W J; Gastineau, D A; Leung, N
2013-11-01
Renal failure commonly complicates multiple myeloma (MM) and is associated with reduced survival. It is not clear whether auto-SCT results in improved renal function or attainment of independence from dialysis in patients with advanced renal impairment due to MM. We conducted a retrospective cohort study of all patients who underwent auto-SCT for MM complicated by advanced renal failure at our institution over a 10-year period (2000-2010). We aimed to assess the association between auto-SCT and renal outcome in patients with serum creatinine (SCr) over 3 mg/dL, attributable to MM, including those who were dialysis dependent. Thirty patients (2.8% of all auto-SCT patients) met inclusion criteria. Fourteen of 15 patients who were dialysis dependent before auto-SCT remained dialysis dependent in the long term despite hematological response (HR). Of the remaining 15 patients with SCr >3 mg/dL, an improvement in glomerular filtration rate (GFR) from 15 to 19.4 mL/min/1.73 m(2) was noted post auto-SCT (P=0.035); however, neither HR post auto-SCT or pre-existing renal function were independently associated with renal outcome. Auto-SCT was not associated with independence from dialysis in patients with renal failure due to MM at our institution. Although auto-SCT was associated with an improvement in GFR in patients with SCr >3 mg/dL, this improvement was not related to HR.
Oxidative Stress in Hypertension: Role of the Kidney
Araujo, Magali
2014-01-01
Abstract Significance: Renal oxidative stress can be a cause, a consequence, or more often a potentiating factor for hypertension. Increased reactive oxygen species (ROS) in the kidney have been reported in multiple models of hypertension and related to renal vasoconstriction and alterations of renal function. Nicotinamide adenine dinucleotide phosphate oxidase is the central source of ROS in the hypertensive kidney, but a defective antioxidant system also can contribute. Recent Advances: Superoxide has been identified as the principal ROS implicated for vascular and tubular dysfunction, but hydrogen peroxide (H2O2) has been implicated in diminishing preglomerular vascular reactivity, and promoting medullary blood flow and pressure natriuresis in hypertensive animals. Critical Issues and Future Directions: Increased renal ROS have been implicated in renal vasoconstriction, renin release, activation of renal afferent nerves, augmented contraction, and myogenic responses of afferent arterioles, enhanced tubuloglomerular feedback, dysfunction of glomerular cells, and proteinuria. Inhibition of ROS with antioxidants, superoxide dismutase mimetics, or blockers of the renin-angiotensin-aldosterone system or genetic deletion of one of the components of the signaling cascade often attenuates or delays the onset of hypertension and preserves the renal structure and function. Novel approaches are required to dampen the renal oxidative stress pathways to reduced O2−• rather than H2O2 selectivity and/or to enhance the endogenous antioxidant pathways to susceptible subjects to prevent the development and renal-damaging effects of hypertension. Antioxid. Redox Signal. 20, 74–101. PMID:23472618
Kimura, Kimihiro; Ohkita, Mamoru; Koyama, Maki; Matsumura, Yasuo
2012-10-15
It has been reported that endothelin-1 (ET-1) overproduction and reduced nitric oxide (NO) production are closely related to the progression of renal diseases. In the present study, we examined the interrelation between ET-1 and NO system using rats treated with the combination of deoxycorticosterone acetate (DOCA)-salt and a non selective NO synthase inhibitor N(ω)-nitro-L-arginine (NOARG). Rats were treated with DOCA-salt (15 mg/kg, plus drinking water containing 1% NaCl) for two weeks, and then additional treatment of NOARG (0.6 mg/ml in the drinking water) was performed for three days. Combined treatment of DOCA-salt and NOARG drastically developed the severe renal dysfunction and tissue injury. This treatment additionally enhanced renal ET-1 production compared to the rats treated with DOCA-salt alone, whereas a selective ET(A) receptor antagonist ABT-627 completely prevented renal dysfunction and tissue injury. On the other hand, combined treatment of DOCA-salt and NOARG induced the phosphorylation of inhibitory protein kappa B (IκB), followed by the activation of nuclear factor-kappa B (NF-κB) in the kidney. In addition, pyrrolidine-dithiocarbamate completely suppressed not only NF-κB activation but also renal dysfunction and ET-1 overproduction. These results suggest that NF-κB/ET-1/ET(A) receptor-mediated actions are responsible for the increased susceptibility to DOCA-salt induced renal injuries in the case of reduced NO production. Copyright © 2012 Elsevier Inc. All rights reserved.
Nowak, Grazyna; Takacsova-Bakajsova, Diana; Megyesi, Judit
2017-01-01
Previously, we documented that activation of protein kinase C-ε (PKC-ε) mediates mitochondrial dysfunction in cultured renal proximal tubule cells (RPTC). This study tested whether deletion of PKC-ε decreases dysfunction of renal cortical mitochondria and improves kidney function after renal ischemia. PKC-ε levels in mitochondria of ischemic kidneys increased 24 h after ischemia. Complex I- and complex II-coupled state 3 respirations were reduced 44 and 27%, respectively, in wild-type (WT) but unchanged and increased in PKC-ε-deficient (KO) mice after ischemia. Respiratory control ratio coupled to glutamate/malate oxidation decreased 50% in WT but not in KO mice. Activities of complexes I, III, and IV were decreased 59, 89, and 61%, respectively, in WT but not in KO ischemic kidneys. Proteomics revealed increases in levels of ATP synthase (α-subunit), complexes I and III, cytochrome oxidase, α-ketoglutarate dehydrogenase, and thioredoxin-dependent peroxide reductase after ischemia in KO but not in WT animals. PKC-ε deletion prevented ischemia-induced increases in oxidant production. Plasma creatinine levels increased 12-fold in WT and 3-fold in KO ischemic mice. PKC-ε deletion reduced tubular necrosis, brush border loss, and distal segment damage in ischemic kidneys. PKC-ε activation in hypoxic RPTC in primary culture exacerbated, whereas PKC-ε inhibition reduced, decreases in: 1) complex I- and complex II-coupled state 3 respirations and 2) activities of complexes I, III, and IV. We conclude that PKC-ε activation mediates 1) dysfunction of complexes I and III of the respiratory chain, 2) oxidant production, 3) morphological damage to the kidney, and 4) decreases in renal functions after ischemia. Copyright © 2017 the American Physiological Society.
Takacsova-Bakajsova, Diana; Megyesi, Judit
2016-01-01
Previously, we documented that activation of protein kinase C-ε (PKC-ε) mediates mitochondrial dysfunction in cultured renal proximal tubule cells (RPTC). This study tested whether deletion of PKC-ε decreases dysfunction of renal cortical mitochondria and improves kidney function after renal ischemia. PKC-ε levels in mitochondria of ischemic kidneys increased 24 h after ischemia. Complex I- and complex II-coupled state 3 respirations were reduced 44 and 27%, respectively, in wild-type (WT) but unchanged and increased in PKC-ε-deficient (KO) mice after ischemia. Respiratory control ratio coupled to glutamate/malate oxidation decreased 50% in WT but not in KO mice. Activities of complexes I, III, and IV were decreased 59, 89, and 61%, respectively, in WT but not in KO ischemic kidneys. Proteomics revealed increases in levels of ATP synthase (α-subunit), complexes I and III, cytochrome oxidase, α-ketoglutarate dehydrogenase, and thioredoxin-dependent peroxide reductase after ischemia in KO but not in WT animals. PKC-ε deletion prevented ischemia-induced increases in oxidant production. Plasma creatinine levels increased 12-fold in WT and 3-fold in KO ischemic mice. PKC-ε deletion reduced tubular necrosis, brush border loss, and distal segment damage in ischemic kidneys. PKC-ε activation in hypoxic RPTC in primary culture exacerbated, whereas PKC-ε inhibition reduced, decreases in: 1) complex I- and complex II-coupled state 3 respirations and 2) activities of complexes I, III, and IV. We conclude that PKC-ε activation mediates 1) dysfunction of complexes I and III of the respiratory chain, 2) oxidant production, 3) morphological damage to the kidney, and 4) decreases in renal functions after ischemia. PMID:27760765
Miess, Heike; Dankworth, Beatrice; Gouw, Arvin M; Rosenfeldt, Mathias; Schmitz, Werner; Jiang, Ming; Saunders, Becky; Howell, Michael; Downward, Julian; Felsher, Dean W; Peck, Barrie; Schulze, Almut
2018-06-05
Metabolic reprogramming is a prominent feature of clear cell renal cell carcinoma (ccRCC). Here we investigated metabolic dependencies in a panel of ccRCC cell lines using nutrient depletion, functional RNAi screening and inhibitor treatment. We found that ccRCC cells are highly sensitive to the depletion of glutamine or cystine, two amino acids required for glutathione (GSH) synthesis. Moreover, silencing of enzymes of the GSH biosynthesis pathway or glutathione peroxidases, which depend on GSH for the removal of cellular hydroperoxides, selectively reduced viability of ccRCC cells but did not affect the growth of non-malignant renal epithelial cells. Inhibition of GSH synthesis triggered ferroptosis, an iron-dependent form of cell death associated with enhanced lipid peroxidation. VHL is a major tumour suppressor in ccRCC and loss of VHL leads to stabilisation of hypoxia inducible factors HIF-1α and HIF-2α. Restoration of functional VHL via exogenous expression of pVHL reverted ccRCC cells to an oxidative metabolism and rendered them insensitive to the induction of ferroptosis. VHL reconstituted cells also exhibited reduced lipid storage and higher expression of genes associated with oxidiative phosphorylation and fatty acid metabolism. Importantly, inhibition of β-oxidation or mitochondrial ATP-synthesis restored ferroptosis sensitivity in VHL reconstituted cells. We also found that inhibition of GSH synthesis blocked tumour growth in a MYC-dependent mouse model of renal cancer. Together, our data suggest that reduced fatty acid metabolism due to inhibition of β-oxidation renders renal cancer cells highly dependent on the GSH/GPX pathway to prevent lipid peroxidation and ferroptotic cell death.
Koo, Tai Yeon; Lee, Jae-Ghi; Yan, Ji-Jing; Jang, Joon Young; Ju, Kyung Don; Han, Miyeun; Oh, Kook-Hwan; Ahn, Curie; Yang, Jaeseok
2017-08-01
Extracellular adenosine triphosphate (ATP) binds to purinergic receptors and, as a danger molecule, promotes inflammatory responses. Here we tested whether periodate-oxidized ATP (oATP), a P2X7 receptor (P2X7R) antagonist can attenuate renal ischemia-reperfusion injury and clarify the related cellular mechanisms. Treatment with oATP prior to ischemia-reperfusion injury decreased blood urea nitrogen, serum creatinine, the tubular injury score, and tubular epithelial cell apoptosis after injury. The infiltration of dendritic cells, neutrophils, macrophages, CD69 + CD4 + , and CD44 + CD4 + T cells was attenuated, but renal Foxp3 + CD4 + Treg infiltration was increased by oATP. The levels of IL-6 and CCL2 were reduced in the oATP group. Additionally, oATP treatment following injury improved renal function, decreased the infiltration of innate and adaptive effector cells, and increased the renal infiltration of Foxp3 + CD4 + Tregs. Post-ischemia-reperfusion injury oATP treatment increased tubular cell proliferation and reduced renal fibrosis. oATP treatment attenuated renal functional deterioration after ischemia-reperfusion injury in RAG-1 knockout mice; however, Treg depletion using PC61 abrogated the beneficial effects of oATP in wild-type mice. Furthermore, oATP treatment after transfer of Tregs from wild-type mice improved the beneficial effects of Tregs on ischemia-reperfusion injury, but treatment after transfer of Tregs from P2X7R knockout mice did not. Renal ischemia-reperfusion injury was also attenuated in P2X7R knockout mice. Experiments using bone marrow chimeras established that P2X7R expression on hematopoietic cells rather than non-hematopoietic cells, such as tubular epithelial cells, plays a major role in ischemia-reperfusion injury. Thus, oATP attenuated acute renal damage and facilitated renal recovery in ischemia-reperfusion injury by expansion of Tregs. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
TruneČka, P; Klempnauer, J; Bechstein, W O; Pirenne, J; Friman, S; Zhao, A; Isoniemi, H; Rostaing, L; Settmacher, U; Mönch, C; Brown, M; Undre, N; Tisone, G
2015-07-01
DIAMOND: multicenter, 24-week, randomized trial investigating the effect of different once-daily, prolonged-release tacrolimus dosing regimens on renal function after de novo liver transplantation. Arm 1: prolonged-release tacrolimus (initial dose 0.2mg/kg/day); Arm 2: prolonged-release tacrolimus (0.15-0.175mg/kg/day) plus basiliximab; Arm 3: prolonged-release tacrolimus (0.2mg/kg/day delayed until Day 5) plus basiliximab. All patients received MMF plus a bolus of corticosteroid (no maintenance steroids). eGFR (MDRD4) at Week 24. Secondary endpoints: composite efficacy failure, BCAR and AEs. Baseline characteristics were comparable. Tacrolimus trough levels were readily achieved posttransplant; initially lower in Arm 2 versus 1 with delayed initiation in Arm 3. eGFR (MDRD4) was higher in Arms 2 and 3 versus 1 (p = 0.001, p = 0.047). Kaplan-Meier estimates of composite efficacy failure-free survival were 72.0%, 77.6%, 73.9% in Arms 1-3. BCAR incidence was significantly lower in Arm 2 versus 1 and 3 (p = 0.016, p = 0.039). AEs were comparable. Prolonged-release tacrolimus (0.15-0.175mg/kg/day) immediately posttransplant plus basiliximab and MMF (without maintenance corticosteroids) was associated with lower tacrolimus exposure, and significantly reduced renal function impairment and BCAR incidence versus prolonged-release tacrolimus (0.2mg/kg/day) administered immediately posttransplant. Delayed higher-dose prolonged-release tacrolimus initiation significantly reduced renal function impairment compared with immediate posttransplant administration, but BCAR incidence was comparable. © 2015 The Authors. American Journal of Transplantation published by Wiley Periodicals Inc.
Takakura, Koji; Mizukami, Kazuhiko; Mitori, Hikaru; Noto, Takahisa; Tomura, Yuichi
2014-08-15
While pirfenidone has been established as an effective anti-fibrosis remedy, whether or not its antifibrotic effect contributes to a reduction of proteinuria remains unclear. We investigated the renoprotective properties of pirfenidone in an anti-glomerular basement membrane (GBM) glomerulonephritis model both prophylactically and therapeutically to determine its profile against proteinuria. In the prophylactic regimen, pirfenidone was treated immediately after anti-serum injection. We observed a significant reduction in the progression of proteinuria (P<0.05) and decline in renal function (P<0.01) and also noted histological improvement in renal injury. These effects appeared to be due to the maintained expression of nephrin and podocin on podocytes as well as the reduced expression of profibrotic factors like transforming growth factor-β (TGF-β). The expression of nephrin mRNA was strongly negatively correlated with the amount of urinary protein excretion (R=-0.84, P<0.001), implicating podocyte damage in the outcome of proteinuria (R(2)=0.70). These results suggest that preservation of podocytes with the pirfenidone treatment may have resulted in the decrease of proteinuria. In contrast, when the therapeutic regimen was initiated 2 weeks after nephritis induction, pirfenidone had little effect on the progression of proteinuria, although the decline of renal function and fibrosis were suppressed. Taken together, present findings suggested that pirfenidone prevented the progression of proteinuria only when administered prophylactically but was still able to ameliorate the decline of renal function independent of proteinuria. In conclusion, pirfenidone as a prophylactic regimen reduces proteinuria in anti-GBM nephritis via preservation of podocytes with markedly reduced efficacy when administered as a therapeutic regimen. Copyright © 2014 Elsevier B.V. All rights reserved.
Canga, Ana; Kislikova, Maria; Martínez-Gálvez, María; Arias, Mercedes; Fraga-Rivas, Patricia; Poyatos, Cecilio; de Francisco, Angel L M
2014-01-01
Nephrogenic systemic fibrosis is a fibrosing disorder that affects patients with impaired renal function and is associated with the administration of gadolinium-based contrast media used in MRI. Despite being in a group of drugs that were considered safe, report about this potentially serious adverse reaction was a turning point in the administration guidelines of these contrast media. There has been an attempt to establish safety parameters to identify patients with risk factors of renal failure. The close pharmacovigilance and strict observation of current regulations, with special attention being paid to the value of glomerular filtration, have reduced the published cases involving the use of gadolinium-based contrast media. In a meeting between radiologists and nephrologists we reviewed the most relevant aspects currently and recommendations for its prevention.
Kelsen, Silvia; He, Xiaochen; Chade, Alejandro R
2012-08-15
Renal artery stenosis (RAS), the main cause of chronic renovascular disease (RVD), is associated with significant oxidative stress. Chronic RVD induces renal injury partly by promoting renal microvascular (MV) damage and blunting MV repair in the stenotic kidney. We tested the hypothesis that superoxide anion plays a pivotal role in MV dysfunction, reduction of MV density, and progression of renal injury in the stenotic kidney. RAS was induced in 14 domestic pigs and observed for 6 wk. Seven RAS pigs were chronically treated with the superoxide dismutase mimetic tempol (RAS+T) to reduce oxidative stress. Single-kidney hemodynamics and function were quantified in vivo using multidetector computer tomography (CT) and renal MV density was quantified ex vivo using micro-CT. Expression of angiogenic, inflammatory, and apoptotic factors was measured in renal tissue, and renal apoptosis and fibrosis were quantified in tissue sections. The degree of RAS and blood pressure were similarly increased in RAS and RAS+T. Renal blood flow (RBF) and glomerular filtration rate (GFR) were reduced in the stenotic kidney (280.1 ± 36.8 and 34.2 ± 3.1 ml/min, P < 0.05 vs. control). RAS+T kidneys showed preserved GFR (58.5 ± 6.3 ml/min, P = not significant vs. control) but a similar decreases in RBF (293.6 ± 85.2 ml/min) and further decreases in MV density compared with RAS. These changes were accompanied by blunted angiogenic signaling and increased apoptosis and fibrosis in the stenotic kidney of RAS+T compared with RAS. The current study shows that tempol administration provided limited protection to the stenotic kidney. Despite preserved GFR, renal perfusion was not improved by tempol, and MV density was further reduced compared with untreated RAS, associated with increased renal apoptosis and fibrosis. These results suggest that a tight balance of the renal redox status is necessary for a normal MV repair response to injury, at least at the early stage of RVD, and raise caution regarding antioxidant strategies in RAS.
Kelsen, Silvia; He, Xiaochen
2012-01-01
Renal artery stenosis (RAS), the main cause of chronic renovascular disease (RVD), is associated with significant oxidative stress. Chronic RVD induces renal injury partly by promoting renal microvascular (MV) damage and blunting MV repair in the stenotic kidney. We tested the hypothesis that superoxide anion plays a pivotal role in MV dysfunction, reduction of MV density, and progression of renal injury in the stenotic kidney. RAS was induced in 14 domestic pigs and observed for 6 wk. Seven RAS pigs were chronically treated with the superoxide dismutase mimetic tempol (RAS+T) to reduce oxidative stress. Single-kidney hemodynamics and function were quantified in vivo using multidetector computer tomography (CT) and renal MV density was quantified ex vivo using micro-CT. Expression of angiogenic, inflammatory, and apoptotic factors was measured in renal tissue, and renal apoptosis and fibrosis were quantified in tissue sections. The degree of RAS and blood pressure were similarly increased in RAS and RAS+T. Renal blood flow (RBF) and glomerular filtration rate (GFR) were reduced in the stenotic kidney (280.1 ± 36.8 and 34.2 ± 3.1 ml/min, P < 0.05 vs. control). RAS+T kidneys showed preserved GFR (58.5 ± 6.3 ml/min, P = not significant vs. control) but a similar decreases in RBF (293.6 ± 85.2 ml/min) and further decreases in MV density compared with RAS. These changes were accompanied by blunted angiogenic signaling and increased apoptosis and fibrosis in the stenotic kidney of RAS+T compared with RAS. The current study shows that tempol administration provided limited protection to the stenotic kidney. Despite preserved GFR, renal perfusion was not improved by tempol, and MV density was further reduced compared with untreated RAS, associated with increased renal apoptosis and fibrosis. These results suggest that a tight balance of the renal redox status is necessary for a normal MV repair response to injury, at least at the early stage of RVD, and raise caution regarding antioxidant strategies in RAS. PMID:22622460
Cardiovascular and renal manifestations of glutathione depletion induced by buthionine sulfoximine.
Vargas, Félix; Rodríguez-Gómez, Isabel; Pérez-Abud, Rocío; Vargas Tendero, Pablo; Baca, Yolanda; Wangensteen, Rosemary
2012-06-01
Oxidative stress contributes to the development of several cardiovascular diseases, including diabetes, renal insufficiency, and arterial hypertension. Animal studies have evidenced the association between higher blood pressure (BP) and increased oxidative stress, and treatment with antioxidants has been shown to reduce BP, while BP reduction due to antihypertensive drugs is associated with reduced oxidative stress. In 2000, it was first reported that oxidative stress and arterial hypertension were produced in normal Sprague-Dawley rats by oral administration of buthionine sulfoximine (BSO), which induces glutathione (GSH) depletion, indicating that oxidative stress may induce hypertension. The contribution of several potential pathogenic factors has been evaluated in the BSO rat model, the prototype of oxidative stress-induced hypertension, including vascular reactivity, endothelium-derived factors, renin-angiotensin system activity, TXA(2)-PGH(2) production, sodium sensitivity, renal dopamine-induced natriuresis, and sympathetic tone. This review summarizes the main factors implicated in the pathogenesis of BSO-induced hypertension and the alterations associated with GSH depletion that are related to renal function or BP control.
Elevations in serum creatinine with RAAS blockade: why isn't it a sign of kidney injury?
Ryan, Michael J; Tuttle, Katherine R
2008-09-01
The aim of this article is to review the pertinent physiology and pathophysiology of the renin-angiotensin-aldosterone system (RAAS), summarize the proven beneficial cardiovascular and renal effects of RAAS blockade, examine clinical situations in which RAAS blockade may induce reductions in glomerular filtration rate, and explore why increases in serum creatinine in the setting of angiotensin-converting enzyme inhibitor (ACEi) or angiotensin receptor blocker (ARB) therapy do not necessarily signify the presence of clinically relevant kidney failure. RAAS inhibition appears to reduce the likelihood of atrial fibrillation. RAAS inhibition leads to improved insulin sensitivity and glycemic control, but does not appear to prevent diabetes. The beneficial effects of ACEi/ARB therapy extend to those with significant renal disease. Combination ACEi/ARB is safe, and reduces proteinuria more than either agent alone in patients with macroalbuminuric nephropathy. Acute deteriorations in renal function that result from RAAS inhibition are usually reversible. RAAS blockade exerts potent hemodynamic, antihypertensive, and antiinflammatory effects, and slows progression of kidney disease beyond that due to lowering of blood pressure. The benefit extends to those with advanced disease. In spite of established benefit, ACEi and ARB therapy remains underutilized, in part due to concerns about acute deteriorations in renal function that result from interruption of the RAAS.
Ramadan fasting and patients with renal diseases: A mini review of the literature
Emami-Naini, Afsoon; Roomizadeh, Peyman; Baradaran, Azar; Abedini, Amin; Abtahi, Mohammad
2013-01-01
Fasting during the month of Ramadan is one of the five pillars of Islam. During this month, adult Muslims are obligated to refrain from eating and drinking from dawn to dusk. Although based on Islamic principles patients are exempted from fasting, each year, many Muslim patients express their willingness to observe the fast in Ramadan month to respect the cultural customs. There are concerns about the impact of fluid restriction and dehydration during Ramadan fasting for patients with renal diseases. In this study, we reviewed the PubMed, Google Scholar, EBSCO, SCIRUS, Embase, and DOAJ data sources to identify the published studies on the impact of Ramadan fasting on patients with renal diseases. Our review on published reports on renal transplant recipients revealed no injurious effect of Ramadan fasting for the renal graft function. Nearly all studies on this topic suggest that Ramadan fasting is safe when the function of the renal graft is acceptable and stable. Regarding the impact of Ramadan fasting on patients with chronic kidney disease, there is concern about the role of renal hypoperfusion in developing tubular cell injury. Finally, there is controversy between studies about the risk of dehydration in Ramadan in developing renal stones. There are uncertainties about the change in the incidence of renal colic in Ramadan month compared with the other periods of the year. Despite such discrepancies, nearly all studies are in agreement on consuming adequate amounts of water from dusk to dawn to reduce the risk of renal stone formation. PMID:24379850
Su, Shuhao; Cao, Meng; Wu, Guangyuan; Long, Zi; Cheng, Xiaodong; Fan, Junshu; Xu, Zhongrui; Su, Hongfei; Hao, Yiming; Li, Ge; Peng, Jie; Li, Shuang; Wang, Xin
2018-05-15
The worldwide prevalence of diabetes and associated metabolic diseases has dramatically increased. Pharmacological treatment of diabetes is still limited. Hordenine (HOR), a phenethylamine alkaloid, is a natural constituent in many plants. The present study was designed to explore the possible anti-diabetic effect of HOR in streptozotocin (STZ)-induced diabetic mice. Combined treatment of HOR and insulin significantly reduced fasting and postprandial blood glucose level in diabetic mice. HOR and insulin did not show evident protective effect against structural and functional injuries of pancreas. Renal histological and functional injuries were significantly improved by HOR or insulin treatment. Moreover, combined treatment of HOR and insulin resulted in a more significant amelioration of renal histological and functional injuries in diabetic mice. HOR induced a decrease of renal IL-1α/β and IL-6 expression, and a reduction of Col1α1 and MMP9 expression and PAS-stained mesangial expansion in glomeruli of diabetic mice. In diabetic mice, HOR significantly decreased Nrf2 expression and increased hnRNPF and hnRNPK expression in kidney. Moreover, HOR showed a synergistic effect with insulin on the expression of these regulators. Renal ROS level and TBARS content in diabetic mice were decreased by HOR. The reduction of renal expression of antioxidant enzymes in diabetic mice was inhibited by HOR and insulin. Furthermore, HOR and insulin function synergistically to play an antioxidant role against oxidative injury in diabetic nephropathy. In conclusion, to the best of our knowledge, we, for the first time, found the anti-diabetic, anti-inflammatory, and anti-fibrotic role of HOR in combination with insulin. HOR functions synergistically with insulin and prevents diabetic nephropathy. However, the molecular mechanism of the synergistic effect of HOR and insulin needs to be elucidated. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
O'Valle, Francisco; Del Moral, Raimundo G. M.; Benítez, María del Carmén; Martín-Oliva, David; Gómez-Morales, Mercedes; Aguilar, David; Aneiros-Fernández, José; Hernández-Cortés, Pedro; Osuna, Antonio; Moreso, Francesc; Serón, Daniel; Oliver, Francisco J.; Del Moral, Raimundo G.
2009-01-01
Cold ischemia time especially impacts on outcomes of expanded-criteria donor (ECD) transplantation. Ischemia-reperfusion (IR) injury produces excessive poly[ADP-Ribose] Polymerase-1 (PARP-1) activation. The present study explored the hypothesis that increased tubular expression of PARP-1 contributes to delayed renal function in suboptimal ECD kidney allografts and in non-ECD allografts that develop posttransplant acute tubular necrosis (ATN). Materials and Methods Nuclear PARP-1 immunohistochemical expression was studied in 326 paraffin-embedded renal allograft biopsies (193 with different degrees of ATN and 133 controls) and in murine Parp-1 knockout model of IR injury. Results PARP-1 expression showed a significant relationship with cold ischemia time (r coefficient = 0.603), time to effective diuresis (r = 0.770), serum creatinine levels at biopsy (r = 0.649), and degree of ATN (r = 0.810) (p = 0.001, Pearson test). In the murine IR model, western blot showed an increase in PARP-1 that was blocked by Parp-1 inhibitor. Immunohistochemical study of PARP-1 in kidney allograft biopsies would allow early detection of possible delayed renal function, and the administration of PARP-1 inhibitors may offer a therapeutic option to reduce damage from IR in donor kidneys by preventing or minimizing ATN. In summary, these results suggest a pivotal role for PARP-1 in the ATN of renal transplantation. We propose the immunohistochemical assessment of PARP-1 in kidney allograft biopsies for early detection of a possible delayed renal function. PMID:19784367
Rong, Song; Hueper, Katja; Kirsch, Torsten; Greite, Robert; Klemann, Christian; Mengel, Michael; Meier, Matthias; Menne, Jan; Leitges, Michael; Susnik, Nathan; Meier, Martin; Haller, Hermann; Shushakova, Nelli; Gueler, Faikah
2014-09-15
Acute kidney injury (AKI) increases the risk of morbidity and mortality after major surgery and transplantation. We investigated the effect of PKC-ε deficiency on AKI and ischemic allograft damage after kidney transplantation. PKC-ε-deficient and wild type (WT) control mice were subjected to 35 min of renal pedicle clamping to induce AKI. PKC-ε deficiency was associated with a marked improvement in survival and an attenuated loss of kidney function. Furthermore, functional MRI experiments revealed better renal perfusion in PKC-ε-deficient mice than in WT mice one day after IRI. Acute tubular necrosis and neutrophil infiltration were markedly reduced in PKC-ε-deficient mice. To determine whether this resistance to ischemia-reperfusion injury resulted from changes in local renal cells or infiltrating leukocytes, we studied a life-supporting renal transplant model of ischemic graft injury. We transplanted kidneys from H(2b) PKC-ε-deficient mice (129/SV) and their corresponding WT littermates into major histocompatibility complex-incompatible H(2d) recipients (BALB/c) and induced ischemic graft injury by prolonged cold ischemia time. Recipients of WT allografts developed severe renal failure and died within 10 days of transplantation. Recipients of PKC-ε-deficient allografts had better renal function and survival; they had less generation of ROS and upregulation of proinflammatory proteins (i.e., ICAM-1, inducible nitric oxide synthase, and TNF-α) and showed less tubular epithelial cell apoptosis and inflammation in their allografts. These data suggest that local renal PKC-ε expression mediates proapoptotic and proinflammatory signaling and that an inhibitor of PKC-ε signaling could be used to prevent hypoxia-induced AKI. Copyright © 2014 the American Physiological Society.
Parecoxib reduces renal injury in an ischemia/reperfusion model in rats.
Calistro Neto, José Pedro; Torres, Rômulo da Costa; Gonçalves, Giovanna Maria; Silva, Leopoldo Muniz da; Domingues, Maria Aparecida Custódio; Módolo, Norma Sueli Pinheiro; Barros, Guilherme Antonio Moreira de
2015-04-01
To evaluate the effect of parecoxib (an NSAID) on renal function by measuring plasma NGAL (serum neutrophil gelatinase-associated lipocalin) levels in an induced-ischemia rat model. Forty male Wistar rats were randomly assigned to one of four groups: Ischemia (I), Ischemia/parecoxib (IP), No-ischemia (NI), and No-ischemia/parecoxib (NIP). Body weight, mean arterial pressure, heart rate, body temperature, NGAL levels, and renal histology were compared across groups. The Ischemia (I) group, which did not receive parecoxib, showed the highest NGAL levels (p=0.001), while the IP group, which received the medication, had NGAL levels similar to those of the non-ischemic (NI and NIP) groups. Parecoxib resulted in renal protection in this experimental model.
Tatsukawa, Hideki; Otsu, Risa; Tani, Yuji; Wakita, Ryosuke; Hitomi, Kiyotaka
2018-05-09
Chronic kidney disease is characterized by prolonged decline in renal function, excessive accumulation of ECM, and progressive tissue fibrosis. Transglutaminase (TG) is a crosslinking enzyme that catalyzes the formation of covalent bonds between glutamine and lysine residues, and is involved in the induction of renal fibrosis via the stabilization of ECM and the activation of TGF-β1. Despite the accumulating evidences indicating that TG2 is a key enzyme in fibrosis, genetic knockout of TG2 reduced by only 50% the elevated protein crosslinking and fibrous protein in renal fibrosis model, whereas treatment with TG inhibitor almost completely reduced these levels. Here, we also clarified the distributions of TG isozymes and their in situ activities and identified the isozyme-specific crosslinked substrates for both TG1 and TG2 in fibrotic kidney. We found that TG1 activity was markedly enhanced in renal tubular epithelium and interstitial areas, whereas TG2 activity increased only in the extracellular space. In total, 47 and 67 possible candidates were identified as TG1 and TG2 substrates, respectively, only in fibrotic kidney. Among them, several possible substrates related to renal disease and fibrosis were identified. These findings provide novel insights into the mechanisms of renal fibrosis through the targeting of isozyme-specific TG substrates.
Palazzuoli, Alberto; Lombardi, Carlo; Ruocco, Gaetano; Padeletti, Margherita; Nuti, Ranuccio; Metra, Marco; Ronco, Claudio
2016-12-01
Nearly a third of patients with acute heart failure experience concomitant renal dysfunction. This condition is often associated with increased costs of care, length of hospitalisation and high mortality. Although the clinical impact of chronic kidney disease (CKD) has been well established, the exact clinical significance of worsening renal function (WRF) during the acute and post-hospitalisation phases is not completely understood. Therefore, it is still unclear which of the common laboratory markers are able to identify WRF at an early stage. Recent studies comparing CKD with WRF showed contradictory results; this could depend on a different WRF definition, clinical characteristics, haemodynamic disorders and the presence of prior renal dysfunction in the population enrolled. The current definition of acute cardiorenal syndrome focuses on both the heart and kidney but it lacks precise laboratory marker cut-offs and a specific diagnostic approach. WRF and CKD could represent different pathophysiological mechanisms in the setting of acute heart failure; the traditional view includes reduced cardiac output with systemic and renal vasoconstriction. Nevertheless, it has become a mixed model that encompasses both forward and backward haemodynamic dysfunction. Increased central venous pressure, renal congestion with tubular obliteration, tubulo-glomerular feedback and increased abdominal pressure are all potential additional contributors. The impact of WRF on patients who experience preserved renal function and individuals affected with CKD is currently unknown. Therefore it is extremely important to understand the origins, the clinical significance and the prognostic impact of WRF on CKD. © The European Society of Cardiology 2015.
Inappropriate Prescription and Renal Function Among Older Patients with Cognitive Impairment.
Sönnerstam, Eva; Sjölander, Maria; Gustafsson, Maria
2016-12-01
Older people are more sensitive to drugs and adverse drug reactions than younger people because of age-related physiological changes such as impaired renal function. As people with dementia are particularly vulnerable to the effects of drugs, it is especially important to evaluate the dosages of renally cleared medications in this group. The aim of this study was to estimate the prevalence of impaired renal function and inappropriate prescriptions on the basis of renal function among older patients with dementia or cognitive impairment. The medical records of 428 patients aged ≥65 years who were admitted to two hospitals in northern Sweden were reviewed and renally cleared medications were identified. The Cockcroft-Gault equation was used to evaluate renal function. Doses were evaluated according to the Geriatric Dosage Handbook. Renal function was impaired (estimated glomerular filtration rate <60 ml/min) in 65.4 % of the study population. Impaired renal function was associated with increasing age. Among 547 prescriptions identified as renally cleared medications, 9.1 % were inappropriate based on the patient's renal function; 13.5 % of the 326 patients prescribed renally cleared medications had inappropriate prescriptions. Inappropriate prescriptions were more common among patients living in nursing homes. Impaired renal function is common and inappropriate prescription is prevalent among old people with cognitive impairment in northern Sweden. Continuous consideration of renal function is important when prescribing medications to this group.
Reich, Heather N.; Jiang, Shan; Har, Ronnie; Nasrallah, Rania; Hébert, Richard L.; Lai, Vesta; Scholey, James W.; Sochett, Etienne B.
2012-01-01
Studies of experimental diabetes mellitus (DM) suggest that increased nitric oxide (NO) bioactivity contributes to renal hyperfiltration. However, the role of NO in mediating hyperfiltration has not been fully elucidated in humans. Our aim was to examine the effect of NO synthase inhibition on renal and peripheral vascular function in normotensive subjects with uncomplicated type 1 DM. Renal function and brachial artery flow-mediated vasodilatation (FMD) were measured before and after an intravenous infusion of the NO synthase inhibitor NG-nitro-l-arginine methyl ester (l-NMMA) in 21 healthy control and 37 type 1 DM patients. Measurements in DM participants were made under clamped euglycemic conditions. The effect of l-NMMA on circulating and urinary NO metabolites (NOx) and cGMP and on urinary prostanoids was also determined. Baseline characteristics were similar in the two groups. For analysis, the DM patients were divided into those with hyperfiltration (DM-H, n = 18) and normal glomerular filtration rate (GFR) levels (DM-N, n = 19). Baseline urine NOx and cGMP were highest in DM-H. l-NMMA led to a decline in GFR in DM-H (152 ± 16 to 140 ± 11 ml·min−1·1.73 m−2) but not DM-N or healthy control participants. The decline in effective renal plasma flow in response to l-NMMA (806 ± 112 to 539 ± 80 ml·min−1·1.73 m−2) in DM-H was also exaggerated compared with the other groups (repeated measures ANOVA, P < 0.05), along with declines in urinary NOx metabolites and cGMP. Baseline FMD was lowest in DM-H compared with the other groups and did not change in response to l-NMMA. l-NMMA reduced FMD and plasma markers of NO bioactivity in the healthy control and DM-N groups. In patients with uncomplicated type 1 DM, renal hyperfiltration is associated with increased NO bioactivity in the kidney and reduced NO bioactivity in the systemic circulation, suggesting a paradoxical state of high renal and low systemic vascular NO bioactivity. PMID:22855276
Lee, Chan Ho; Park, Young Joo; Ku, Ja Yoon; Ha, Hong Koo
2017-06-01
To evaluate the clinical application of computed tomography-based measurement of renal cortical volume and split renal volume as a single tool to assess the anatomy and renal function in patients with renal tumors before and after partial nephrectomy, and to compare the findings with technetium-99m dimercaptosuccinic acid renal scan. The data of 51 patients with a unilateral renal tumor managed by partial nephrectomy were retrospectively analyzed. The renal cortical volume of tumor-bearing and contralateral kidneys was measured using ImageJ software. Split estimated glomerular filtration rate and split renal volume calculated using this renal cortical volume were compared with the split renal function measured with technetium-99m dimercaptosuccinic acid renal scan. A strong correlation between split renal function and split renal volume of the tumor-bearing kidney was observed before and after surgery (r = 0.89, P < 0.001 and r = 0.94, P < 0.001). The preoperative and postoperative split estimated glomerular filtration rate of the operated kidney showed a moderate correlation with split renal function (r = 0.39, P = 0.004 and r = 0.49, P < 0.001). The correlation between reductions in split renal function and split renal volume of the operated kidney (r = 0.87, P < 0.001) was stronger than that between split renal function and percent reduction in split estimated glomerular filtration rate (r = 0.64, P < 0.001). The split renal volume calculated using computed tomography-based renal volumetry had a strong correlation with the split renal function measured using technetium-99m dimercaptosuccinic acid renal scan. Computed tomography-based split renal volume measurement before and after partial nephrectomy can be used as a single modality for anatomical and functional assessment of the tumor-bearing kidney. © 2017 The Japanese Urological Association.
Solini, Anna; Giannini, Livia; Seghieri, Marta; Vitolo, Edoardo; Taddei, Stefano; Ghiadoni, Lorenzo; Bruno, Rosa Maria
2017-10-23
Sodium-glucose cotransporter-2 inhibitors reduce blood pressure (BP) and renal and cardiovascular events in patients with type 2 diabetes through not fully elucidated mechanisms. Aim of this study was to investigate whether dapagliflozin is able to acutely modify systemic and renal vascular function, as well as putative mechanisms. Neuro-hormonal and vascular variables, together with 24 h diuresis, urinary sodium, glucose, isoprostanes and free-water clearance were assessed before and after a 2-day treatment with dapagliflozin 10 mg QD in sixteen type 2 diabetic patients; data were compared with those obtained in ten patients treated with hydrochlorothiazide 12.5 mg QD. Brachial artery endothelium-dependent and independent vasodilation (by flow-mediated dilation) and pulse wave velocity were assessed. Renal resistive index was obtained at rest and after glyceryl trinitrate administration. Differences were analysed by repeated measures ANOVA, considering treatment as between factor and time as within factor; Bonferroni post hoc comparison test was also used. Dapagliflozin decreased systolic BP and induced an increase in 24 h diuresis to a similar extent of hydrochlorothiazide; 24 h urinary glucose and serum magnesium were also increased. 24 h urinary sodium and fasting blood glucose were unchanged. Oxidative stress was reduced, as by a decline in urinary isoprostanes. Flow-mediated dilation was significantly increased (2.8 ± 2.2 to 4.0 ± 2.1%, p < 0.05), and pulse-wave-velocity was reduced (10.1 ± 1.6 to 8.9 ± 1.6 m/s, p < 0.05), even after correction for mean BP. Renal resistive index was reduced (0.62 ± 0.04 to 0.59 ± 0.05, p < 0.05). These vascular modifications were not observed in hydrochlorothiazide-treated individuals. An acute treatment with dapagliflozin significantly improves systemic endothelial function, arterial stiffness and renal resistive index; this effect is independent of changes in BP and occurs in the presence of stable natriuresis, suggesting a fast, direct beneficial effect on the vasculature, possibly mediated by oxidative stress reduction.
Suzuki, M; Aso, T; Sato, T; Michimata, M; Kazama, I; Saiki, H; Hatano, R; Ejima, Y; Miyama, N; Sato, A; Matsubara, M
2005-06-01
The calcium-sensing receptor (CaSR) regulates the extracellular calcium level, mainly by controlling parathyroid hormon secretion and renal calcium reabsorption. In gain-of-function CaSR mutations, the genetic abnormalities increase CaSR activity leading to the development of such clinical manifestations as hypercalciuric hypocalcemia and hypoparathyroidism. We report a Japanese case of CaSR gain-of-function mutation and represent a therapeutic intervention based on the functional characteristics of CaSR in renal tubule. DNA sequence analysis revealed a heterozygous G to T mutation identified in a 12-year-old Japanese girl presenting with sporadic onset of hypercalciuric hypocalcemia and hypoparathyroidism. The mutation is located in the N-terminal extracellular domain of the CaSR gene, one of the most important parts for the three-dimensional construction of the receptor, resulting in the substitution of phenylalanine for cysteine at amino acid 131 (C131F) in exon 3. Based on the diagnosis of the gain-of-function mutation in the CaSR, oral hydrochlorothiazide administration and supplemental hydration were started in addition to calcium supplementation. The combination therapy of thiazide and supplemental hydration markedly reduced both renal calcium excretion and urinary calcium concentration from 0.4-0.7 to less than 0.1 mg/mg (urinary calcium/creatinine ratio) and from 10-15 to 3-5 mg/dl (urinary calcium concentration), respectively. This therapy stopped the progression of renal calcification during the follow-up period. Supplemental hydration should be considered essential for the following reasons: (1) calcium supplementation activates the CaSR in the kidney and suppresses renal urinary concentrating ability, (2) the thiazide has a diuretic effect, (3) as calcium supplementation increases renal calcium excretion, the supplemental hydration decreases urinary calcium concentration by increasing urinary volume, thereby diminishing the risk of intratubular crystallization of calcium ion.
Vegt, Erik; Wetzels, Jack F M; Russel, Frans G M; Masereeuw, Rosalinde; Boerman, Otto C; van Eerd, Juliette E; Corstens, Frans H M; Oyen, Wim J G
2006-03-01
Peptide receptor-mediated radiotherapy of neuroendocrine and other somatostatin receptor-positive tumors with radiolabeled somatostatin analogs has been applied in several experimental settings. The kidneys are the organs responsible for dose-limiting toxicity attributable to the retention of radiolabeled octreotide in the renal cortex, leading to a relatively high radiation dose that may result in irreversible loss of kidney function. The administration of basic amino acids reduces renal uptake but does have significant side effects. We observed that gelatin-based plasma expanders induced tubular low-molecular-weight proteinuria in healthy volunteers, suggesting that components in these solutions can interfere with the tubular reabsorption of proteins and peptides. Here, we studied the effects of infusion of low doses of the plasma expander succinylated gelatin (GELO) on the renal uptake of 111In-labeled octreotide (111In-OCT). Five healthy volunteers were given 111In-OCT, first in combination with normal saline and 2 wk later in combination with GELO. Scintigraphic images of the kidneys as well as blood and urine samples were analyzed. To exclude a nonspecific hemodynamic effect of the plasma expander, the procedure was repeated with 5 other volunteers who received the carbohydrate-based plasma expander hydroxyethyl starch (HES). Low doses of GELO were able to effectively reduce the kidney retention of 111In-OCT. The renal radiation dose was significantly reduced by 45% +/- 10% (mean +/- SD) (P = 0.006), whereas HES showed no significant effect (0% +/- 12%). The infusion of GELO did not cause any side effects. GELO effectively reduces the renal uptake of 111In-OCT. In contrast to currently used mixtures of amino acids, GELO does not cause any side effects.
Poucher, S M; Karim, F
1991-01-01
1. The effect of direct electrical stimulation of the renal efferent nerves upon renal haemodynamics and function was studied in greyhounds anaesthetized with chloralose and artificially ventilated. The left kidney was neurally and vascularly isolated, and perfused with blood from one of the femoral arteries at a constant pressure of 99 +/- 1 mmHg. Renal blood flow was measured with a cannulating electromagnetic flow probe placed in the perfusion circuit, glomerular filtration rate by creatinine clearance, urinary sodium excretion by flame photometry and solute excretion by osmometry. Beta-Adrenergic receptor activation was blocked by the infusion of dl-propranolol (17 micrograms kg-1 min-1). The peripheral ends of the ligated renal nerves were stimulated at 0.5, 1.0, 1.5 and 2.0 Hz. 2. At 0.5 Hz frequency only osmolar excretion was significantly reduced (10.3 +/- 3.2%, P less than 0.05, n = 6). Reductions in sodium excretion (53.6 +/- 8.5%, P less than 0.01, n = 6) and water excretion (26.9 +/- 8.0%, P less than 0.05, n = 6) and further reductions of osmolar excretion (20.7 +/- 3.7%, P less than 0.01, n = 6) were observed at 1.0 Hz; however, these were observed in the absence of significant changes in renal blood flow and glomerular filtration rate. Significant reductions were observed in glomerular filtration rate at 1.5 Hz (16.3 +/- 4.1%, P less than 0.02, n = 5) and in renal blood flow at 2.0 Hz (13.1 +/- 4.0%, P less than 0.05, n = 5). Further reductions in urine flow and sodium excretion were also observed at these higher frequencies. 3. These results clearly show that significant changes in renal tubular function can occur in the absence of changes in renal blood flow and glomerular filtration rate when the renal nerves are stimulated electrically from a zero baseline activity up to a frequency of 1.5 Hz. Higher frequencies caused significant changes in both renal haemodynamics and function. PMID:2023113
Dynamic analysis of patterns of renal sympathetic nerve activity: implications for renal function.
DiBona, Gerald F
2005-03-01
Methods of dynamic analysis are used to provide additional understanding of the renal sympathetic neural control of renal function. The concept of functionally specific subgroups of renal sympathetic nerve fibres conveying information encoded in the frequency domain is presented. Analog pulse modulation and pseudorandom binary sequence stimulation patterns are used for the determination of renal vascular frequency response. Transfer function analysis is used to determine the effects of non-renal vasoconstrictor and vasoconstrictor intensities of renal sympathetic nerve activity on dynamic autoregulation of renal blood flow.
Hagar, Hanan; Medany, Azza El; Salam, Reem; Medany, Gamila El; Nayal, Omina A
2015-02-01
Cisplatin is one of the most potent chemotherapeutic antitumor drugs used in the treatment of a wide range of solid tumors. Its primary dose-limiting side effect is nephrotoxicity. This study aims to investigate the effect of betaine supplementation on cisplatin-induced nephrotoxicity. A single intraperitoneal injection of cisplatin (5mg/kg) deteriorated the kidney functions as reflected by elevated blood urea nitrogen and serum creatinine levels. Oxidative/nitrosative stress was evident in cisplatin group by increased renal thiobarbituric acid-reactive substances (TBARS), an indicator of lipid peroxidation, reduced renal total antioxidant status and increased renal nitrite concentration. Cisplatin resulted in a decline in the concentrations of reduced glutathione, glutathione peroxidase, catalase, and superoxide dismutase in renal tissues. Renal tumor necrosis factor-α (TNF-α) was also elevated. Expressions of nuclear factor-kappa B (NF-κB) and caspase-3 were up-regulated in renal tissues as indicated by immunohistochemical analysis. Histopathological changes were observed in cisplatin group. Betaine supplementation (250 mg/kg/day) orally via gavage for 21 days prior to cisplatin injection was able to protect against deterioration in kidney function, abrogate the decline in antioxidants enzymes and suppressed the increase in TBARS, nitrite and TNF-α concentrations. Moreover, betaine inhibited NF-κB and caspase-3 activation and improved the histological changes induced by cisplatin. Thus, the present study demonstrated the renoprotective nature of betaine by attenuating the pro-inflammatory and apoptotic mediators and improving antioxidant competence in kidney tissues of cisplatin treated rats. Betaine could be a beneficial dietary supplement to attenuate cisplatin nephrotoxicity. Copyright © 2014 Elsevier GmbH. All rights reserved.
Li, Quanxin; Wang, Ziying; Zhang, Yan; Zhu, Jiaqing; Li, Liang; Wang, Xiaojie; Cui, Xiaoyang; Sun, Yu; Tang, Wei; Gao, Chengjiang; Ma, Chunhong; Yi, Fan
2018-06-12
There is significant progress in understanding the structure and function of NLRC5, a member of the nucleotide oligomerization domain-like receptor family. However, in the context of MHC class I gene expression, the functions of NLRC5 in innate and adaptive immune responses beyond the regulation of MHC class I genes remain controversial and unresolved. In particular, the role of NLRC5 in the kidney is unknown. NLRC5 was significantly upregulated in the kidney from mice with renal ischemia/reperfusion injury. NLRC5 deficient mice significantly ameliorated renal injury as evidenced by decreased serum creatinine levels, improved morphological injuries, and reduced inflammatory responses versus wild type mice. Similar protective effects were also observed in cisplatin-induced acute kidney injury. Mechanistically, NLRC5 contributed to renal injury by promoting tubular epithelial cell apoptosis and reducing inflammatory responses were, at least in part, associated with the negative regulation of carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1). To determine the relative contribution of NLRC5 expression by parenchymal cells or leukocytes to renal damage during ischemia/reperfusion injury, we generated bone marrow chimeric mice. NLRC5 deficient mice engrafted with wild type hematopoietic cells had significantly lower serum creatinine and less tubular damage than wild type mice reconstituted with NLRC5 deficient bone marrow. This suggests that NLRC5 signaling in renal parenchymal cells plays the dominant role in mediating renal damage. Thus, modulation of the NLRC5-mediated pathway may have important therapeutic implications for patients with acute kidney injury. Copyright © 2018 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Choudhry, Naheed; Li, Ke; Zhang, Ting; Wu, Kun-Yi; Song, Yun; Farrar, Conrad A; Wang, Na; Liu, Cheng-Fei; Peng, Qi; Wu, Weiju; Sacks, Steven H; Zhou, Wuding
2016-09-01
Complement factor 5a (C5a) interaction with its receptor (C5aR1) contributes to the pathogenesis of inflammatory diseases, including acute kidney injury. However, its role in chronic inflammation, particularly in pathogen-associated disorders, is largely unknown. Here we tested whether the development of chronic inflammation and renal fibrosis is dependent on C5aR1 in a murine model of chronic pyelonephritis. C5aR1-deficient (C5aR1-/-) mice showed a significant reduction in bacterial load, tubule injury and tubulointerstitial fibrosis in the kidneys following infection, compared with C5aR1-sufficient mice. This was associated with reduced renal leukocyte infiltration specifically for the population of Ly6Chi proinflammatory monocytes/macrophages and reduced intrarenal gene expression of key proinflammatory and profibrogenic factors in C5aR1-/- mice following infection. Antagonizing C5aR1 decreased renal bacterial load, tissue inflammation and tubulointerstitial fibrosis. Ex vivo and in vitro studies showed that under infection conditions, C5a/C5aR1 interaction upregulated the production of proinflammatory and profibrogenic factors by renal tubular epithelial cells and monocytes/macrophages, whereas the phagocytic function of monocytes/macrophages was down-regulated. Thus, C5aR1-dependent bacterial colonization of the tubular epithelium, C5a/C5aR1-mediated upregulation of local inflammatory responses to uropathogenic E. coli and impairment of phagocytic function of phagocytes contribute to persistent bacterial colonization of the kidney, chronic renal inflammation and subsequent tubulointerstitial fibrosis. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Saad, Ahmed; Herrmann, Sandra M S; Crane, John; Glockner, James F; McKusick, Michael A; Misra, Sanjay; Eirin, Alfonso; Ebrahimi, Behzad; Lerman, Lilach O; Textor, Stephen C
2013-08-01
Atherosclerotic renal artery stenosis (ARAS) is known to reduce renal blood flow, glomerular filtration rate (GFR) and amplify kidney hypoxia, but the relationships between these factors and tubulointerstitial injury in the poststenotic kidney are poorly understood. The purpose of this study was to examine the effect of renal revascularization in ARAS on renal tissue hypoxia and renal injury. Inpatient studies were performed in patients with ARAS (n=17; >60% occlusion) before and 3 months after stent revascularization, or in patients with essential hypertension (n=32), during fixed Na(+) intake and angiotensin converting enzyme/angiotensin receptors blockers Rx. Single kidney cortical, medullary perfusion, and renal blood flow were measured using multidetector computed tomography, and GFR by iothalamate clearance. Tissue deoxyhemoglobin levels (R(2)*) were measured by blood oxygen level-dependent MRI at 3T, as was fractional kidney hypoxia (percentage of axial area with R(2)*>30/s). In addition, we measured renal vein levels of neutrophil gelatinase-associated lipocalin, monocyte chemoattractant protein-1, and tumor necrosis factor-α. Pre-stent single kidney renal blood flow, perfusion, and GFR were reduced in the poststenotic kidney. Renal vein neutrophil gelatinase-associated lipocalin, tumor necrosis factor-α, monocyte chemoattractant protein-1, and fractional hypoxia were higher in untreated ARAS than in essential hypertension. After stent revascularization, fractional hypoxia fell (P<0.002) with increased cortical perfusion and blood flow, whereas GFR and neutrophil gelatinase-associated lipocalin, monocyte chemoattractant protein-1, and tumor necrosis factor-α remained unchanged. These data demonstrate that despite reversal of renal hypoxia and partial restoration of renal blood flow after revascularization, inflammatory cytokines and injury biomarkers remained elevated and GFR failed to recover in ARAS. Restoration of vessel patency alone failed to reverse tubulointerstitial damage and partly explains the limited clinical benefit of renal stenting. These results identify potential therapeutic targets for recovery of kidney function in renovascular disease.
Niacin improves renal lipid metabolism and slows progression in chronic kidney disease.
Cho, Kyu-hyang; Kim, Hyun-ju; Kamanna, Vaijinath S; Vaziri, Nosratola D
2010-01-01
Mounting evidence points to lipid accumulation in the diseased kidney and its contribution to progression of nephropathy. We recently found heavy lipid accumulation and marked dysregulation of lipid metabolism in the remnant kidneys of rats with chronic renal failure (CRF). Present study sought to determine efficacy of niacin supplementation on renal tissue lipid metabolism in CRF. Kidney function, lipid content, and expression of molecules involved in cholesterol and fatty acid metabolism were determined in untreated CRF (5/6 nephrectomized), niacin-treated CRF (50 mg/kg/day in drinking water for 12 weeks) and control rats. CRF resulted in hypertension, proteinuria, renal tissue lipid accumulation, up-regulation of scavenger receptor A1 (SR-A1), acyl-CoA cholesterol acyltransferase-1 (ACAT1), carbohydrate-responsive element binding protein (ChREBP), fatty acid synthase (FAS), acyl-CoA carboxylase (ACC), liver X receptor (LXR), ATP binding cassette (ABC) A-1, ABCG-1, and SR-B1 and down-regulation of sterol responsive element binding protein-1 (SREBP-1), SREBP-2, HMG-CoA reductase, PPAR-alpha, fatty acid binding protein (L-FABP), and CPT1A. Niacin therapy attenuated hypertension, proteinuria, and tubulo-interstitial injury, reduced renal tissue lipids, CD36, ChREBP, LXR, ABCA-1, ABCG-1, and SR-B1 abundance and raised PPAR-alpha and L-FABP. Niacin administration improves renal tissue lipid metabolism and renal function and structure in experimental CRF.
Li, Xiao-Dong; Wu, Yu-Peng; Wei, Yong; Chen, Shao-Hao; Zheng, Qing-Shui; Cai, Hai; Xue, Xue-Yi; Xu, Ning
2018-01-01
This study aimed to identify factors predicting the recoverability of renal function after pyeloplasty in adult patients with ureteropelvic junction obstruction. We retrospectively reviewed 138 adults with unilateral renal obstruction-induced hydronephrosis and who underwent Anderson-Hynes dismembered pyeloplasty from January 2013 to January 2016. Hydronephrosis was classified preoperatively according to the Society for Fetal Urology (SFU) grading system. All patients underwent Doppler ultrasonography, excretory urography, computed tomography, and technetium-99m-diethylenetriamine pentaacetic acid radioisotope (99mTc DTPA) renography before and after surgery. Renal resistive index (RRI) and 99mTc DTPA renography were repeated at 1, 3, 6, and 12 months. Multivariate analysis identified age, renal pelvic type, SFU grade, preoperative RRI, decline of RRI, and renal parenchyma to hydronephrosis area ratio (PHAR) as independent predictors of renal function recoverability after pyeloplasty. However, preoperative RRI and RRI decline were not significantly associated with recoverability of renal function in patients aged >35 years. Lower preoperative RRI, greater decline in RRI, higher PHAR, lower SFU grade, and extrarenal pelvis were associated with greater improvements in postoperative renal function. Preoperative differential renal function cannot independently predict the recoverability of postoperative renal function in adult patients with unilateral renal obstruction-induced hydronephrosis. SFU grade, renal pelvic type, PHAR, preoperative RRI, and decline in RRI were significantly associated with the recoverability of renal function in adult patients aged <35 years, while only SFU grade, renal pelvic type, and PHAR were significantly associated with renal function recoverability in patients aged ≥35 years. Renal function recovery was better in patients younger than 35 years when compared with older patients. © 2018 S. Karger AG, Basel.
Renal dopamine containing nerves. What is their functional significance?
DiBona, G F
1990-06-01
Biochemical and morphological studies indicate that there are nerves within the kidney that contain dopamine and that various structures within the kidney contain dopamine receptors. However, the functional significance of these renal dopamine containing nerves in relation to renal dopamine receptors is unknown. The functional significance could be defined by demonstrating that an alteration in one or more renal functions occurring in response to reflex or electrical activation of efferent renal nerves is dependent on release of dopamine as the neurotransmitter from the renal nerve terminals acting on renal dopamine receptors. Thus, the hypothesis becomes: reflex or electrical activation of efferent renal nerves causes alterations in renal function (eg, renal blood flow, water and solute handling) that are inhibited by specific and selective dopamine receptor antagonists. As reviewed herein, the published experimental data do not support the hypothesis. Therefore, the view that alterations in one or more renal functions occurring in response to reflex or electrical activation of efferent renal nerves are dependent on release of dopamine as the neurotransmitter from the renal nerve terminals acting on renal dopamine receptors remains unproven.
Traditional and emerging cardiovascular and renal risk factors: an epidemiologic perspective.
Zoccali, C
2006-07-01
Patients with chronic kidney disease (CKD) represent an important segment of the population (7-10%) and, mostly because of the high risk of cardiovascular complications associated with renal insufficiency, detection and treatment of CKD is now a public health priority. Traditional risk factors can incite renal dysfunction and cardiovascular damage as well. As renal function deteriorates, non-traditional risk factors play an increasing role both in glomerular filtration rate (GFR) loss and cardiovascular damage. Secondary analyses of controlled clinical trials suggest that inflammation may be a modifiable risk factor both for cardiac ischemia and renal disease progression in patients with or at risk of coronary heart disease. Homocysteine predicts renal function loss in the general population and cardiovascular events in end-stage renal disease (ESRD), but evidence that this sulfur amino acid is directly implicated in the progression of renal disease and in the high cardiovascular mortality of uremic patients is still lacking. High sympathetic activity and raised plasma concentration of asymmetric dimethylarginine (ADMA) have been associated to reduced GFR in patients with CKD and to cardiovascular complications in those with ESRD but again we still lack clinical trials targeting these risk factors. Presently, the clinical management of CKD patients remains largely unsatisfactory because only a minority of these attain the treatment goals recommended by current guidelines. Thus, in addition to research into new and established risk factors, it is important that nephrologists make the best use of knowledge already available to optimize the follow-up of these patients.
Palanisamy, Nallasamy; Viswanathan, Periyasamy; Ravichandran, Mambakkam Katchapeswaran; Anuradha, Carani Venkataraman
2010-01-01
We studied whether substitution of soy protein for casein can improve insulin sensitivity, lower blood pressure (BP), and inhibit protein kinase C betaII (PKCbetaII) activation in kidney in an acquired model of metabolic syndrome. Adult male rats were fed 4 different diets: (i) starch (60%) and casein (20%) (CCD), (ii) fructose (60%) and casein (20%) (FCD), (iii) fructose (60%) and soy protein (20%) (FSD), and (iv) starch (60%) and soy protein (20%) (CSD). Renal function parameters, BP, pressor mechanisms, PKCbetaII expression, oxidative stress, and renal histology were evaluated after 60 days. FCD rats displayed insulin resistance and significant changes in body weight, kidney weight, urine volume, plasma and urine electrolytes accompanied by significant changes in renal function parameters compared with CCD rats. Elevated BP, plasma angiotensin-converting enzyme (ACE) activity, renal oxidative stress, and reduced nitrite (NO) and kallikrein activity were observed. Western blot analysis revealed enhanced renal expression of membrane-associated PKCbetaII in the FCD group. Histology showed fatty infiltration and thickening of glomeruli while urinary protein profile revealed a 5-fold increase in albumin. Substitution of soy protein for casein improved insulin sensitivity, lowered BP and PKCbetaII activation and restored renal function. Antioxidant action, inhibitory effect on ACE and PKCbetaII activation, and increased availability of kinins and NO could be contributing mechanisms for the benefits of dietary soy protein.
Shock wave lithotripsy (SWL) induces significant structural and functional changes in the kidney
NASA Astrophysics Data System (ADS)
Evan, Andrew P.; Willis, Lynn R.; Lingeman, James E.
2003-10-01
The foundation for understanding SWL-injury has been well-controlled renal structural and functional studies in pigs, a model that closely mimics the human kidney. A clinical dose (2000 shocks at 24 kV) of SWL administered by the Dornier HM3 induces a predictable, unique vascular injury at F2 that is associated with transient renal vasoconstriction, seen as a reduction in renal plasma flow, in both treated and untreated kidneys. Unilateral renal denervation studies links the fall in blood flow in untreated kidneys to autonomic nerve activity in the treated kidney. SWL-induced trauma is associated with an acute inflammatory process, termed Lithotripsy Nephritis and tubular damage at the site of damage that leads to a focal region of scar. Lesion size increases with shock number and kV level. In addition, risk factors like kidney size and pre-existing renal disease (e.g., pyelonephritis), can exaggerate the predicted level of renal impairment. Our new protection data show that lesion size can be greatly reduced by a pretreatment session with low kV and shock number. The mechanisms of soft tissue injury probably involves shear stress followed by acoustic cavitation. Because of the perceived enhanced level of bioeffects from 3rd generation lithotripters, these observations are more relevant than ever.
Kidney injury after sodium phosphate solution beyond the acute renal failure.
Fernández-Juárez, Gema; Parejo, Leticia; Villacorta, Javier; Tato, Ana; Cazar, Ramiro; Guerrero, Carmen; Marin, Isabel Martinez; Ocaña, Javier; Mendez-Abreu, Angel; López, Katia; Gruss, Enrique; Gallego, Eduardo
2016-01-01
Screening colonoscopy with polipectomy reduces colonorectal cancer incidence and mortality. An adequate bowel cleansing is one of the keys to achieving best results with this technique. Oral sodium phosphate solution (OSP) had a widespread use in the 90s decade. Its efficacy was similar to polyethylene glycol (PEG) solution, but with less cost and convenient administration. Series of patients with acute renal failure due to OSP use have been reported. However, large cohorts of patients found no difference in the incidence of renal damage between these two solutions. From 2006 to 2009 we identified twelve cases of phosphate nephropathy after colonoscopy prepared with OSP. All patients were followed up to six months. All patients had received just a single dose. We analyzed 12 cases with phosphate nephropathy; three patients debuted with AKI and nine patients had chronic renal injury. Four cases were confirmed with renal biopsy. One patient with AKI needed hemodialysis at diagnosis without subsequent recovery. Two patients (both with chronic damage) fully recovered their previous renal function. The remaining patients (nine) had an average loss of estimated glomerular filtration rate of 24ml/min/1.73m(2). The use of OSP can lead to both acute and chronic renal damage. However, chronic injury was the most common pattern. Both forms of presentation imply a significant and irreversible loss of renal function. Further studies analyzing renal damage secondary to bowel cleaning should consider these two different patterns of injury. Copyright © 2016 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.
Freitas, Frederico F. C. T.; Araujo, Gilberto; Porto, Marcella L.; Freitas, Flavia P. S.; Graceli, Jones B.; Balarini, Camille M.; Vasquez, Elisardo C.; Meyrelles, Silvana S.; Gava, Agata L.
2016-01-01
Increased blood pressure variability (BPV), which can be experimentally induced by sinoaortic denervation (SAD), has emerged as a new marker of the prognosis of cardiovascular and renal outcomes. Considering that increased BPV can lead to organ-damage, the goal of the present study was to evaluate the effects of SAD on renal function in an experimental model of chronic kidney disease (CKD). SAD was performed in male Wistar rats 2 weeks before 5/6 nephrectomy and the animals were evaluated 4 weeks after the induction of CKD. Our data demonstrated that BPV was increased in SAD and CKD animals and that the combination of both conditions (SAD+CKD) exacerbated BPV. The baroreflex sensitivity index was diminished in the SAD and CKD groups; this reduction was more pronounced when SAD and CKD were performed together. 5/6 nephrectomy led to hypertension, which was higher in SAD+CKD animals. Regarding renal function, the combination of SAD and CKD resulted in reduced renal plasma and blood flow, increased renal vascular resistance and augmented uraemia when compared to CKD animals. Glomerular filtration rate and BPV were negatively correlated in SAD, CKD, and SAD+CKD animals. Moreover, SAD+CKD animals presented a higher level of glomerulosclerosis when compared to all other groups. Cardiac and renal hypertrophy, as well as oxidative stress, was also further increased when SAD and CKD were combined. These results show that SAD prior to 5/6 nephrectomy exacerbates renal dysfunction, suggesting that previous augmented BPV should be considered as an important factor to the progression of renal diseases. PMID:27721797
Thibodeau, Jean-Francois; Holterman, Chet E; He, Ying; Carter, Anthony; Cron, Gregory O; Boisvert, Naomi C; Abd-Elrahman, Khaled S; Hsu, Karolynn J; Ferguson, Stephen S G; Kennedy, Christopher R J
2016-10-20
Cyclooxygenase inhibition by non-steroidal anti-inflammatory drugs is contraindicated in hypertension, as it may reduce glomerular filtration rate (GFR) and renal blood flow. However, the identity of the specific eicosanoid and receptor underlying these effects is not known. We hypothesized that vascular smooth muscle prostaglandin E2 (PGE2) E-prostanoid 4 (EP4) receptor deletion predisposes to renal injury via unchecked vasoconstrictive actions of angiotensin II (AngII) in a hypertension model. Mice with inducible vascular smooth muscle cell (VSMC)-specific EP4 receptor deletion were generated and subjected to AngII-induced hypertension. EP4 deletion was verified by PCR of aorta and renal vessels, as well as functionally by loss of PGE2-mediated mesenteric artery relaxation. Both AngII-treated groups became similarly hypertensive, whereas albuminuria, foot process effacement, and renal hypertrophy were exacerbated in AngII-treated EP4 VSMC-/- but not in EP4 VSMC+/+ mice and were associated with glomerular scarring, tubulointerstitial injury, and reduced GFR. AngII-treated EP4 VSMC-/- mice exhibited capillary damage and reduced renal perfusion as measured by fluorescent bead microangiography and magnetic resonance imaging, respectively. NADPH oxidase 2 (Nox2) expression was significantly elevated in AngII-treated EP4 -/- mice. EP4-receptor silencing in primary VSMCs abolished PGE2 inhibition of AngII-induced Nox2 mRNA and superoxide production. These data suggest that vascular EP4 receptors buffer the actions of AngII on renal hemodynamics and oxidative injury. EP4 agonists may, therefore, protect against hypertension-associated kidney damage. Antioxid. Redox Signal. 25, 642-656.
Dini, Frank Lloyd; Simioniuc, Anca; Carluccio, Erberto; Ghio, Stefano; Rossi, Andrea; Biagioli, Paolo; Reboldi, Gianpaolo; Galeotti, Gian Giacomo; Lu, Fei; Zara, Cornelia; Whalley, Gillian; Temporelli, Pier Luigi
2016-12-01
We compared the follow-up data on loop diuretic use and renal function, as assessed by serum creatinine levels, and the estimated glomerular filtration rate (eGFR), of two groups of consecutive ambulatory HF patients: 1) the clinically-guided group, in which management was clinically driven based on the institutional protocol of the HF Unit of the Cardiovascular and Thoracic Department of Pisa (standard of care) and 2) the echo and B-type natriuretic peptide (BNP) guided group (patients conforming to the protocol of the Network Labs Ultrasound (NEBULA) in HF Study Group: Pisa, Perugia, Pavia; Verona, Auckland, and Veruno), in which therapy was delivered according to the serial assessment of BNP and echocardiography. Patients whose follow-up was based on standard of care had a significant higher prevalence of worsening renal function, that was likely related to higher diuretic dosages, whilst, a better management of renal function was observed in the echo-BNP-guided group. The data is related to "Echo and natriuretic peptide guided therapy improves outcome and reduces worsening renal function in systolic heart failure: An observational study of 1137 outpatients" (A. Simioniuc, E. Carluccio, S. Ghio, A. Rossi, P. Biagioli, G. Reboldi, G.G. Galeotti, F. Lu, C. Zara, G. Whalley, P.G. Temporelli, F.L. Dini, 2016; K.J. Harjai, H.K. Dinshaw, E. Nunez, M. Shah, H. Thompson, T. Turgut, H.O. Ventura, 1999; A. Ahmed, A. Husain, T.E. Love, G. Gambassi, L.J. Dell׳Italia, G.S. Francis, M. Gheorghiade, R.M. Allman, S. Meleth, R.C. Bourge, 2006) [1], [2], [3].
A new contrast media for functional MR urography: Gd-MAG3.
Algin, Oktay
2011-07-01
Tc-99m-MAG3 (tubular agent) provides high imaging quality and extraction efficiency; and has become one of the most widely used agent for scintigraphic examinations of urinary system pathologies and renal transplants. Recently, it was reported that functional magnetic resonance urography (FMRU) can be sufficient in detection of urinary tract obstruction, renal artery stenosis, calculation of kidney functions and evaluation of renal transplants. However the pharmacokinetics of magnetic resonance (MR) contrast-media used in FMRU and Tc-99m-MAG3 differs from each other. This may cause discordant results between the FMRU and most of the scintigraphic studies. To our knowledge, there is no contrast-media which is specific for FMRU. A kidney specific contrast material can be developed for FMRU studies as well. MAG3 is a good candidate for this chelation. In conclusion, MR imaging (MRI) will be the most useful and important technique for morphologic-functional evaluation of urinary system. FMRU examinations performed with MAG3 chelated gadolinium can be sufficient for the complete evaluation of urinary tract even in patients with impaired renal functions ("all in one MRI"). MRI has some important advantages including no risk for radiation exposure, high temporal and spatial resolution, no need for nephrotoxic contrast agent; besides being a fast and feasible technique. Gadolinium-containing contrast agents may cause a life-threatening adverse reaction known as nephrogenic systemic fibrosis in patients with severe renal impairment, but Gd-MAG3 may reduce the risk of nephrogenic systemic fibrosis due to its higher extraction capacity and other features. Copyright © 2011 Elsevier Ltd. All rights reserved.
The effects of medicinal plants on renal function and blood pressure in diabetes mellitus.
Musabayane, C T
2012-09-01
Diabetes mellitus is one of the most common chronic global diseases affecting children and adolescents in both the developed and developing nations. The major types of diabetes mellitus are type 1 and type 2, the former arising from inadequate production of insulin due to pancreatic β-cell dysfunction, and the latter from reduced sensitivity to insulin in the target tissues and/or inadequate insulin secretion. Sustained hyperglycaemia is a common result of uncontrolled diabetes and, over time, can damage the heart, eyes, kidneys and nerves, mainly through deteriorating blood vessels supplying the organs. Microvascular (retinopathy and nephropathy) and macrovascular (atherosclerotic) disorders are the leading causes of morbidity and mortality in diabetic patients. Therefore, emphasis on diabetes care and management is on optimal blood glucose control to avert these adverse outcomes. Studies have demonstrated that diabetic nephropathy is associated with increased cardiovascular mortality. In general, about one in three patients with diabetes develops end-stage renal disease (ESRD) which proceeds to diabetic nephropathy (DN), the principal cause of significant morbidity and mortality in diabetes. Hypertension, a well-established major risk factor for cardiovascular disease contributes to ESRD in diabetes. Clinical evidence suggests that there is no effective treatment for diabetic nephropathy and prevention of the progression of diabetic nephropathy. However, biomedical evidence indicates that some plant extracts have beneficial effects on certain processes associated with reduced renal function in diabetes mellitus. On the other hand, other plant extracts may be hazardous in diabetes, as reports indicate impairment of renal function. This article outlines therapeutic and pharmacological evidence supporting the potential of some medicinal plants to control or compensate for diabetes-associated complications, with particular emphasis on kidney function and hypertension.
Skibba, Melissa; Hye Khan, Md. Abdul; Kolb, Lauren L.; Yeboah, Michael M.; Falck, John R.; Amaradhi, Radhika; Imig, John D.
2017-01-01
Renal fibrosis, which is a critical pathophysiological event in chronic kidney diseases, is associated with renal epithelial-to-mesenchymal transition (EMT). Epoxyeicosatrienoic acids (EETs) are Cyp epoxygenase arachidonic acid metabolites that demonstrate biological actions that result in kidney protection. Herein, we investigated the ability of 14,15-EET and its synthetic analog, EET-A, to reduce kidney fibrosis induced by unilateral ureter obstruction (UUO). C57/BL6 male mice underwent sham or UUO surgical procedures and were treated with 14,15-EET or EET-A in osmotic pump (i.p.) for 10 days following UUO surgery. UUO mice demonstrated renal fibrosis with an 80% higher kidney-collagen positive area and 70% higher α-smooth muscle actin (SMA) positive renal areas compared to the sham group. As a measure of collagen content, kidney hydroxyproline content was also higher in UUO (6.4 ± 0.5 μg/10 mg) compared to sham group (2.5 ± 0.1 μg/10 mg). Along with marked renal fibrosis, UUO mice had reduced renal expression of EET producing Cyp epoxygenase enzymes. Endogenous 14,15-EET or EET-A demonstrated anti-fibrotic action in UUO by reducing kidney-collagen positive area (50–60%), hydroxyproline content (50%), and renal α-SMA positive area (85%). In UUO mice, renal expression of EMT inducers, Snail1 and ZEB1 were higher compared to sham group. Accordingly, renal epithelial marker E-cadherin expression was reduced and mesenchymal marker expression was elevated in the UUO compared to sham mice. Interestingly, EET-A reduced EMT in UUO mice by deceasing renal Snail1 and ZEB1 expression. EET-A treatment also opposed the decrease in renal E-cadherin expression and markedly reduced several prominent renal mesenchymal/myofibroblast markers in UUO mice. Overall, our results demonstrate that EET-A is a novel anti-fibrotic agent that reduces renal fibrosis by decreasing renal EMT. PMID:28713267
RAAS inhibition and renal protection.
Leoncini, Giovanna; Giovanna, Leoncini; Viazzi, Francesca; Francesca, Viazzi; Pontremoli, Roberto; Roberto, Pontremoli
2012-01-01
Chronic kidney disease has become a major public health problem worldwide mainly as a consequence of the emerging epidemic of hypertension, diabetes, and obesity. It is currently estimated that nearly 15% of the general population has some degree of renal damage, a figure that reaches 50% in at-risk subgroups. Renin-angiotensin-aldosterone system (RAAS) inhibitors represent the agents of choice to control hypertension and reduce urinary albumin excretion, thereby delaying renal function deterioration. Greater blockade of the RAAS either by the combined use of multiple drugs or by supramaximal doses of single agents may provide greater renal protection. Furthermore, it has been proposed especially in the presence of proteinuria. However, at this time there is insufficient evidence to routinely recommend this therapeutic approach in patients with chronic kidney disease. The present article examines the currently available evidence and practical implications of pharmacological disruption of RAAS activity for renal protection.
Loutzenhiser, Rodger; Griffin, Karen; Williamson, Geoffrey; Bidani, Anil
2006-01-01
When the kidney is subjected to acute increases in blood pressure (BP), renal blood flow (RBF) and glomerular filtration rate (GFR) are observed to remain relatively constant. Two mechanisms, tubuloglomerular feedback (TGF) and the myogenic response, are thought to act in concert to achieve a precise moment-by-moment regulation of GFR and distal salt delivery. The current view is that this mechanism insulates renal excretory function from fluctuations in BP. Indeed, the concept that renal autoregulation is necessary for normal renal function and volume homeostasis has long been a cornerstone of renal physiology. This article presents a very different view, at least in regard to the myogenic component of this response. We suggest that its primary purpose is to protect the kidney against the damaging effects of hypertension. The arguments advanced take into consideration the unique properties of the afferent arteriolar myogenic response that allow it to protect against the oscillating systolic pressure, and the accruing evidence that when this response is impaired the primary consequence is not a disturbed volume homeostasis, but rather an increased susceptibility to hypertensive injury. It is suggested that redundant and compensatory mechanisms are capable of achieving volume regulation despite considerable fluctuations in distal delivery and the assumed moment-by-moment regulation of renal hemodynamics is questioned. Evidence is presented suggesting that additional mechanisms may exist to maintain ambient levels of RBF and GFR within normal range despite chronic alterations in BP and severely impaired acute responses to pressure. Finally the implications of this new perspective on the divergent roles of the renal myogenic response to pressure versus the TGF response to changes in distal delivery are considered and it is proposed that, in addition to TGF-induced vasoconstrictor responses, vasodepressor responses to reduced distal delivery may play a more critical role in modulating afferent arteriolar reactivity, in order to integrate the regulatory and protective functions of the renal microvasculature. PMID:16603656
Ko, J-L; Tsai, C-H; Liu, T-C; Lin, M-Y; Lin, H-L; Ou, C-C
2016-08-01
Grape skin and seeds contain large amounts of phytochemicals such as polyphenols, resveratrol, and proanthocyanidins, which possess antioxidant activities. Cisplatin is widely used in the treatment of cancer. High doses of cisplatin have also been known to produce acute adverse effects. The aim of this study was to investigate the protective effects of antioxidant properties of whole grape juice (with skin and seeds) on cisplatin-induced acute gastrointestinal tract disorders and nephrotoxicity in Wistar rats. Gastric emptying is significantly increased in whole grape juice-pretreated rats when compared to cisplatin treatment alone. The expression of ghrelin mRNA of stomach is increased in rats with whole grape juice. However, pretreatment with whole grape juice did not reduce renal function markers in acute renal toxicity. No significant changes were recorded in the oxidative stress/antioxidant status parameters of any study group. In contrast, pretreatment with whole grape juice slightly improved tubular cell vacuolization, tubular dilatation, and cast formation in renal tubules. These results show that consumption of whole grape juice induces somewhat beneficial effects in preventing cisplatin-mediated dyspepsia but does not offer protection against cisplatin-induced acute renal toxicity. © The Author(s) 2015.
Desai, Rishi J; Franklin, Jessica M; Spoendlin-Allen, Julia; Solomon, Daniel H; Danaei, Goodarz; Kim, Seoyoung C
2018-01-01
Gout patients have a high burden of co-morbid conditions including diabetes mellitus (DM), chronic kidney disease (CKD), and cardiovascular disease (CVD). We sought to evaluate the association between changes in serum uric acid (SUA) levels over time and the risk of incident DM, CVD, and renal function decline in gout patients. An observational cohort study was conducted among enrollees of private health insurance programs in the US between 2004 and 2015. Gout patients were included on the index date of a SUA measurement ≥6.8 mg/dl. The exposure of interest was cumulative change in SUA levels from baseline. Hazard ratios (HR) and 95% confidence intervals (CI) for incident DM, incident CVD, and renal function decline (≥30% reduction in glomerular filtration rate) were derived using marginal structural models with stabilized inverse probability weights accounting for baseline confounders (age, gender, co-morbidities, co-medications) and time-varying confounders (serum creatinine, blood urea nitrogen, glycated hemoglobin). Among 26,341 patients with gout, the average age was 62, 75% were men, and the median baseline SUA was 8.6 mg/dl (interquartile range 7.7 to 9.5). The incidence rates/100 person-years (95% CI) were 1.63 (1.51-1.75) for DM, 0.77 (0.70-0.84) for CVD, and 4.32 (4.14-4.49) for renal function decline. The adjusted HR (95% CI) per 3 mg/dl reduction in SUA, corresponding on average to achieving the target level of <6 mg/dl in this population, was 1.04 (0.92-1.17) for DM, 1.07 (0.89-1.29) for CVD, and 0.85 (0.78-0.92) for renal function decline. Reduction in SUA in patients with gout may be associated with a reduced risk of renal function decline, but not with DM or CVD.
Effect of Age and Renal Function on Survival After Left Ventricular Assist Device Implantation.
Muslem, Rahatullah; Caliskan, Kadir; Akin, Sakir; Yasar, Yunus E; Sharma, Kavita; Gilotra, Nisha A; Kardys, Isabella; Houston, Brian; Whitman, Glenn; Tedford, Ryan J; Hesselink, Dennis A; Bogers, Ad J J C; Manintveld, Olivier C; Russell, Stuart D
2017-12-15
Left ventricular assist devices (LVAD) are increasingly used, especially as destination therapy in in older patients. The aim of this study was to evaluate the effect of age on renal function and mortality in the first year after implantation. A retrospective multicenter cohort study was conducted, evaluating all LVAD patients implanted in the 2 participating centers (age ≥18 years). Patients were stratified according to the age groups <45, 45-54, 55-64, and ≥65 years old. Overall, 241 patients were included (mean age 52.4 ± 12.9 years, 76% males, 33% destination therapy). The mean estimated Glomerular Filtration Rate (eGFR) at 1 year was 85, 72, 69, and 49 mL/min per 1.73 m 2 in the age groups <45(n = 65, 27%), 45-54(n = 52, 22%), 55-64(n = 87, 36%), and ≥65 years (n = 37, 15%) p <0.001)), respectively. Older age and lower eGFR at baseline (p <0.01) were independent predictors of worse renal function at 1 year. The 1-year survival post-implantation was 79%,84%, 68%, and 54% for those in the age group <45, 45-54, 55-64 and ≥65 years (Log-rank p = 0.003). Older age, lower eGFR and, INTERMACS class I were independent predictors of 1-year mortality. Furthermore, older patients (age > 60 years) with an impaired renal function (eGFR <55 mL/min per 1.73 m 2 ) had a 5-fold increased hazard ratio for mortality during the first year after implantation (p <0.001). In conclusion, age >60 years is an independent predictor for an impaired renal function and mortality. Older age combined with reduced renal function pre-implantation had a cumulative adverse effect on survival in patients receiving a LVAD. Copyright © 2017 Elsevier Inc. All rights reserved.
Reduced nephron endowment in the neonates of Indigenous Australian peoples.
Kandasamy, Y; Smith, R; Wright, I M R; Lumbers, E R
2014-02-01
Rates of chronic kidney disease (CKD) among Indigenous groups in Australia exceed non-Indigenous rates eight-fold. Using kidney volume as a surrogate for nephron number, we carried out a study to determine if Indigenous neonates have a smaller kidney volume (and thus a reduced nephron number) from birth compared with non-Indigenous neonates. We recruited term and preterm neonates (<32 weeks) at a tertiary care neonatal unit over a 12 months period. Preterm neonates were assessed (renal sonography and renal function measurement) at 32 weeks corrected age (CA) and again at 38 weeks CA when blood pressure was also measured. All term neonates were assessed in the first post-natal week, including renal sonography, renal function and blood pressure measurement. The primary outcome measured was total kidney volume (TKV) and estimated glomerular filtration rate (eGFR) was a secondary outcome. Data was available for 44 preterm (11 Indigenous) and 39 term (13 Indigenous) neonates. TKV of Indigenous neonates was significantly lower at 32 weeks [12.0 (2.0) v. 15.4 (5.1) ml; P=0.03] and 38 weeks CA [18.6 (4.0) v. 22.6 (5.9) ml; P=0.04] respectively. Term Indigenous neonates also had smaller kidney volumes compared with non-Indigenous neonates. Despite a smaller kidney volume (and reduced nephron number), Indigenous neonates did not have a significantly lower eGFR. Indigenous neonates achieve similar eGFRs to Non-Indigenous neonates, presumably through a higher single nephron filtration rate. This places Indigenous neonates at a greater risk of long-term kidney damage later in life.
2012-01-01
Background Contrast-induced nephropathy is a common complication of contrast administration in patients with chronic kidney disease and diabetes. Its pathophysiology is not well understood; similarly the role of intravenous or oral acetylcysteine is unclear. Randomized controlled trials to date have been conducted without detailed knowledge of the effect of acetylcysteine on renal function. We are conducting a detailed mechanistic study of acetylcysteine on normal and impaired kidneys, both with and without contrast. This information would guide the choice of dose, route, and appropriate outcome measure for future clinical trials in patients with chronic kidney disease. Methods/Design We designed a 4-part study. We have set up randomised controlled cross-over studies to assess the effect of intravenous (50 mg/kg/hr for 2 hrs before contrast exposure, then 20 mg/kg/hr for 5 hrs) or oral acetylcysteine (1200 mg twice daily for 2 days, starting the day before contrast exposure) on renal function in normal and diseased kidneys, and normal kidneys exposed to contrast. We have also set up a parallel-group randomized controlled trial to assess the effect of intravenous or oral acetylcysteine on patients with chronic kidney disease stage III undergoing elective coronary angiography. The primary outcome is change in renal blood flow; secondary outcomes include change in glomerular filtration rate, tubular function, urinary proteins, and oxidative balance. Discussion Contrast-induced nephropathy represents a significant source of hospital morbidity and mortality. Over the last ten years, acetylcysteine has been administered prior to contrast to reduce the risk of contrast-induced nephropathy. Randomized controlled trials, however, have not reliably demonstrated renoprotection; a recent large randomized controlled trial assessing a dose of oral acetylcysteine selected without mechanistic insight did not reduce the incidence of contrast-induced nephropathy. Our study should reveal the mechanism of effect of acetylcysteine on renal function and identify an appropriate route for future dose response studies and in time randomized controlled trials. Trial registration Clinical Trials.gov: NCT00558142; EudraCT: 2006-003509-18. PMID:22305183
Yang, Ting; Zhang, Xing-Mei; Tarnawski, Laura; Peleli, Maria; Zhuge, Zhengbing; Terrando, Niccolo; Harris, Robert A; Olofsson, Peder S; Larsson, Erik; Persson, A Erik G; Lundberg, Jon O; Weitzberg, Eddie; Carlstrom, Mattias
2017-10-01
Ischemia-reperfusion (IR) injury involves complex pathological processes in which reduction of nitric oxide (NO) bioavailability is suggested as a key factor. Inorganic nitrate can form NO in vivo via NO synthase-independent pathways and may thus provide beneficial effects during IR. Herein we evaluated the effects of dietary nitrate supplementation in a renal IR model. Male mice (C57BL/6J) were fed nitrate-supplemented chow (1.0mmol/kg/day) or standard chow for two weeks prior to 30min ischemia and during the reperfusion period. Unilateral renal IR caused profound tubular and glomerular damage in the ischemic kidney. Renal function, assessed by plasma creatinine levels, glomerular filtration rate and renal plasma flow, was also impaired after IR. All these pathologies were significantly improved by nitrate. Mechanistically, nitrate treatment reduced renal superoxide generation, pro-inflammatory cytokines (IL-1β, IL-6 and IL-12 p70) and macrophage infiltration in the kidney. Moreover, nitrate reduced mRNA expression of pro-inflammatory cytokines and chemo attractors, while increasing anti-inflammatory cytokines in the injured kidney. In another cohort of mice, two weeks of nitrate supplementation lowered superoxide generation and IL-6 expression in bone marrow-derived macrophages. Our study demonstrates protective effect of dietary nitrate in renal IR injury that may be mediated via modulation of oxidative stress and inflammatory responses. These novel findings suggest that nitrate supplementation deserve further exploration as a potential treatment in patients at high risk of renal IR injury. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Romero, Mariana; Caniffi, Carolina; Bouchet, Gonzalo; Costa, María A; Elesgaray, Rosana; Arranz, Cristina; Tomat, Analía L
2015-01-01
The aim of this study was to investigate the effects of chronic treatment with atrial natriuretic peptide (ANP) on renal function, nitric oxide (NO) system, oxidative stress, collagen content and apoptosis in kidneys of spontaneously hypertensive rats (SHR), as well as sex-related differences in the response to the treatment. 10 week-old male and female SHR were infused with ANP (100 ng/h/rat) or saline (NaCl 0.9%) for 14 days (subcutaneous osmotic pumps). Systolic blood pressure (SBP) was recorded and diuresis and natriuresis were determined. After treatment, renal NO synthase (NOS) activity and eNOS expression were evaluated. Thiobarbituric acid-reactive substances (TBARS), glutathione concentration and glutathione peroxidase (GPx) and superoxide dismutase (SOD) activities were determined in the kidney. Collagen was identified in renal slices by Sirius red staining and apoptosis by Tunel assay. Female SHR showed lower SBP, oxidative stress, collagen content and apoptosis in kidney, and higher renal NOS activity and eNOS protein content, than males. ANP lowered SBP, increased diuresis, natriuresis, renal NOS activity and eNOS expression in both sexes. Renal response to ANP was more marked in females than in males. In kidney, ANP reduced TBARS, renal collagen content and apoptosis, and increased glutathione concentration and activity of GPx and SOD enzymes in both sexes. Female SHR exhibited less organ damage than males. Chronic ANP treatment would ameliorate hypertension and end-organ damage in the kidney by reducing oxidative stress, increasing NO-system activity, and diminishing collagen content and apoptosis, in both sexes.
Romero, Mariana; Caniffi, Carolina; Bouchet, Gonzalo; Costa, María A.; Elesgaray, Rosana; Arranz, Cristina; Tomat, Analía L.
2015-01-01
Objective The aim of this study was to investigate the effects of chronic treatment with atrial natriuretic peptide (ANP) on renal function, nitric oxide (NO) system, oxidative stress, collagen content and apoptosis in kidneys of spontaneously hypertensive rats (SHR), as well as sex-related differences in the response to the treatment. Methods 10 week-old male and female SHR were infused with ANP (100 ng/h/rat) or saline (NaCl 0.9%) for 14 days (subcutaneous osmotic pumps). Systolic blood pressure (SBP) was recorded and diuresis and natriuresis were determined. After treatment, renal NO synthase (NOS) activity and eNOS expression were evaluated. Thiobarbituric acid-reactive substances (TBARS), glutathione concentration and glutathione peroxidase (GPx) and superoxide dismutase (SOD) activities were determined in the kidney. Collagen was identified in renal slices by Sirius red staining and apoptosis by Tunel assay. Results Female SHR showed lower SBP, oxidative stress, collagen content and apoptosis in kidney, and higher renal NOS activity and eNOS protein content, than males. ANP lowered SBP, increased diuresis, natriuresis, renal NOS activity and eNOS expression in both sexes. Renal response to ANP was more marked in females than in males. In kidney, ANP reduced TBARS, renal collagen content and apoptosis, and increased glutathione concentration and activity of GPx and SOD enzymes in both sexes. Conclusions Female SHR exhibited less organ damage than males. Chronic ANP treatment would ameliorate hypertension and end-organ damage in the kidney by reducing oxidative stress, increasing NO-system activity, and diminishing collagen content and apoptosis, in both sexes. PMID:25774801
The Non-Classical Renin-Angiotensin System and Renal Function
Chappell, Mark C.
2014-01-01
The renin-angiotensin-system (RAS) constitutes one of the most important hormonal systems in the physiological regulation of blood pressure through renal and non-renal mechanisms. Indeed, dysregulation of the RAS is considered a major factor in the development of cardiovascular pathologies including kidney injury and blockade of this system by the inhibition of angiotensin converting enzyme (ACE) or blockade of the angiotensin type 1 receptor (AT1R) by selective antagonists constitutes an effective therapeutic regimen. It is now apparent with the identification of multiple components of the RAS within the kidney and other tissues that the system is actually composed of different angiotensin peptides with diverse biological actions mediated by distinct receptor subtypes. The classic RAS can be defined as the ACE-Ang II AT1R axis that promotes vasoconstriction, water intake, sodium retention and other mechanisms to maintain blood pressure, as well as increase oxidative stress, fibrosis, cellular growth and inflammation in pathological conditions. In contrast, the non-classical RAS composed primarily of the AngII/Ang III–AT2R pathway and the ACE2-Ang-(1-7)-AT7R axis generally opposes the actions of a stimulated Ang II-AT1R axis through an increase in nitric oxide and prostaglandins and mediates vasodilation, natriuresis, diuresis, and a reduced oxidative stress. Moreover, increasing evidence suggests that these non-classical RAS components contribute to the therapeutic blockade of the classical system to reduce blood pressure and attenuate various indices of renal injury, as well as contribute to normal renal function. PMID:23720263
Bertolo, Riccardo; Fiori, Cristian; Piramide, Federico; Amparore, Daniele; Barrera, Monica; Sardo, Diego; Veltri, Andrea; Porpiglia, Francesco
2018-05-14
To evaluate the correlation between the loss of renal function as assessed by Tc99MAG-3 renal scan and the loss of renal volume as calculated by volumetric assessment on CT-scan in patients who underwent minimally-invasive partial nephrectomy (PN). PN prospectively-maintained database was retrospectively queried for patients who underwent minimally-invasive PN (2012-2017) for renal mass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ao, Ying; Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Wuhan 430071; Sun, Zhaoxia
Our previous study has indicated that prenatal caffeine exposure (PCE) could induce intrauterine growth retardation (IUGR) of offspring. Recent research suggested that IUGR is a risk factor for glomerulosclerosis. However, whether PCE could induce glomerulosclerosis and its underlying mechanisms remain unknown. This study aimed to demonstrate the induction to glomerulosclerosis in adult offspring by PCE and its intrauterine programming mechanisms. A rat model of IUGR was established by PCE, male fetuses and adult offspring at the age of postnatal week 24 were euthanized. The results revealed that the adult offspring kidneys in the PCE group exhibited glomerulosclerosis as well asmore » interstitial fibrosis, accompanied by elevated levels of serum creatinine and urine protein. Renal angiotensin II receptor type 2 (AT{sub 2}R) gene expression in adult offspring was reduced by PCE, whereas the renal angiotensin II receptor type 1a (AT{sub 1a}R)/AT{sub 2}R expression ratio was increased. The fetal kidneys in the PCE group displayed an enlarged Bowman's space and a shrunken glomerular tuft, accompanied by a reduced cortex width and an increase in the nephrogenic zone/cortical zone ratio. Observation by electronic microscope revealed structural damage of podocytes; the reduced expression level of podocyte marker genes, nephrin and podocin, was also detected by q-PCR. Moreover, AT{sub 2}R gene and protein expressions in fetal kidneys were inhibited by PCE, associated with the repression of the gene expression of glial-cell-line-derived neurotrophic factor (GDNF)/tyrosine kinase receptor (c-Ret) signaling pathway. These results demonstrated that PCE could induce dysplasia of fetal kidneys as well as glomerulosclerosis of adult offspring, and the low functional programming of renal AT{sub 2}R might mediate the developmental origin of adult glomerulosclerosis. - Highlights: • Prenatal caffeine exposure induces glomerulosclerosis in adult offspring. • Prenatal caffeine exposure inhibits fetal kidney development. • Prenatal caffeine exposure causes low functional programming of renal AT{sub 2}R.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Wei-Yu, E-mail: wychen624@cgmh.org.tw; Chang, Ya-Jen; Su, Chia-Hao
Interstitial fibrosis and loss of parenchymal tubular cells are the common outcomes of progressive renal diseases. Pro-inflammatory cytokines have been known contributing to the damage of tubular cells and fibrosis responses after renal injury. Interleukin (IL)-33 is a tissue-derived nucleus alarmin that drives inflammatory responses. The regulation and function of IL-33 in renal injury, however, is not well understood. To investigate the involvement of cytokines in the pathogenesis of renal injury and fibrosis, we performed the mouse renal injury model induced by unilateral urinary obstruction (UUO) and analyze the differentially upregulated genes between the obstructed and the contralateral unobstructed kidneysmore » using RNA sequencing (RNAseq). Our RNAseq data identified IL33 and its receptor ST2 were upregulated in the UUO kidney. Quantitative analysis confirmed that transcripts of IL33 and ST2 were upregulated in the obstructed kidneys. Immunofluorescent staining revealed that IL-33 was upregulated in Vimentin- and alpha-SMA-positive interstitial cells. By using genetically knockout mice, deletion of IL33 reduced UUO-induced renal fibrosis. Moreover, in combination with BrdU labeling technique, we observed that the numbers of proliferating tubular epithelial cells were increased in the UUO kidneys from IL33-or ST2-deficient mice compared to wild type mice. Collectively, our study demonstrated the upregulation of IL-33/ST2 signaling in the obstructed kidney may promote tubular cell injury and interstitial fibrosis. IL-33 may serve as a biomarker to detect renal injury and that IL-33/ST2 signaling may represent a novel target for treating renal diseases. -- Highlights: •Interleukin (IL)-33 was upregulated in obstructed kidneys. •Interstitial myofibroblasts expressed IL-33 after UUO-induced renal injury. •Deficiency of IL33 reduced interstitial fibrosis and promoted tubular cell proliferation.« less
Yao, Lan; Li, Linlin; Li, Xinxia; Li, Hui; Zhang, Yujie; Zhang, Rui; Wang, Jian; Mao, Xinmin
2015-09-07
Diabetic nephropathy is a serious complication of diabetes whose development process is associated with inflammation, renal hypertrophy, and fibrosis. Coreopsis tinctoria Nutt, traditionally used as a healthcare tea, has anti-inflammatory, anti-hyperlipidemia, and glycemic regulation activities. The aim of our study was to investigate the renal protective effect of ethyl acetate extract of C. tinctoria Nutt (AC) on high-glucose-fat diet and streptozotocin (STZ)-induced diabetic rats. A diabetic rat model was induced by high-glucose-fat diet and intraperitoneal injection of 35 mg/kg STZ. After treatment with AC at a daily dose of 150, 300 or, 600 mg/kg for 4 weeks, metabolic and renal function parameters of serum and urine were examined. Degree of renal damage, renal proinflammatory cytokines, and fibrotic protein expression were analyzed by histopathology and immunohistochemistry. Renal AMP-activated protein kinase (AMPK) and transforming growth factor (TGF)-β1/Smad signaling pathway were determined by western blotting. Diabetic rats showed obvious renal dysfunction, inflammation and fibrosis. However, AC significantly reduced levels of blood glucose, total cholesterol, triglyceride, blood urea nitrogen, serum creatinine and urinary albumin, as well as expression of kidney proinflammatory cytokines of monocyte chemoattractant protein-1 and intercellular adhesion molecule-1. AC also ameliorated renal hypertrophy and fibrosis by reducing fibronectin and collagen IV and suppressing the TGF-β1/Smad signaling pathway. Meanwhile, AMPKα as a protective cytokine was markedly stimulated by AC. In summary, AC controls blood glucose, inhibits inflammatory and fibrotic processes, suppresses the TGF-β1/Smad signaling pathway, and activates phosphorylation of AMPKα in the kidneys, which confirms the protective effects of AC in the early stage of diabetic kidney disease.
Shemeikka, Tero; Bastholm-Rahmner, Pia; Elinder, Carl-Gustaf; Vég, Anikó; Törnqvist, Elisabeth; Cornelius, Birgitta; Korkmaz, Seher
2015-06-01
To develop and verify proof of concept for a clinical decision support system (CDSS) to support prescriptions of pharmaceutical drugs in patients with reduced renal function, integrated in an electronic health record system (EHR) used in both hospitals and primary care. A pilot study in one geriatric clinic, one internal medicine admission ward and two outpatient healthcare centers was evaluated with a questionnaire focusing on the usefulness of the CDSS. The usage of the system was followed in a log. The CDSS is considered to increase the attention on patients with impaired renal function, provides a better understanding of dosing and is time saving. The calculated glomerular filtration rate (eGFR) and the dosing recommendation classification were perceived useful while the recommendation texts and background had been used to a lesser extent. Few previous systems are used in primary care and cover this number of drugs. The global assessment of the CDSS scored high but some elements were used to a limited extent possibly due to accessibility or that texts were considered difficult to absorb. Choosing a formula for the calculation of eGFR in a CDSS may be problematic. A real-time CDSS to support kidney-related drug prescribing in both hospital and outpatient settings is valuable to the physicians. It has the potential to improve quality of drug prescribing by increasing the attention on patients with renal insufficiency and the knowledge of their drug dosing. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Nishida, T; Hayashi, T; Inamoto, T; Kato, R; Ibuki, N; Takahara, K; Takai, T; Yoshikawa, Y; Uchimoto, T; Saito, K; Tanda, N; Kouno, J; Minami, K; Uehara, H; Hirano, H; Nomi, H; Okada, Y; Azuma, H
Hydrogen (H 2 ) and carbon monoxide (CO) gas are both reported to reduce reactive oxygen species and alleviate tissue ischemia-reperfusion (I-R) injury. The present study was conducted to evaluate the effects of a mixture of H 2 gas and CO gas (dual gas) in comparison with hydrogen gas (H 2 : 2%) alone on I-R renal injury (composition of dual gas; N 2 : 77.8%; O 2 : 20.9%; H 2 : 1.30%; CO: 250 parts per million). Adult male Sprague-Dawley rats (body weight 250-280 g) were divided into 5 groups: (1) sham operation control, (2) dual gas inhalation (dual treatment) without I-R treatment, (3) I-R renal injury, (4) H 2 gas alone inhalation (H 2 treatment) with I-R renal injury, and (5) dual treatment with I-R renal injury. I-R renal injury was induced by clamping the left renal artery and vein for 45 minutes followed by reperfusion, and then contralateral nephrectomy was performed 2 weeks later. Renal function was markedly decreased at 24 hours after reperfusion, and thereafter the effects of dual gas were assessed by histologic examination and determination of the superoxide radical, together with functional and molecular analyses. Pathologic examination of the kidney of I-R rats revealed severe renal damage. Importantly, cytoprotective effects of the dual treatment in comparison with H 2 treatment and I-R renal injury were observed in terms of superoxide radical scavenging activity and histochemical features. Rats given dual treatment and I-R renal injury showed significant decreases in blood urea nitrogen. Increased expression of several inflammatory cytokines (tumor necrosis factor-α, interleukin-6, intracellular adhesion molecule-1, nuclear factor-κB, hypoxia inducible factor-1α, and heme oxygenase-1) was attenuated by the dual treatment. Dual gas inhalation decreases oxidative stress and markedly improves I-R-induced renal injury. Copyright © 2017 Elsevier Inc. All rights reserved.
Reichetzeder, Christoph; von Websky, Karoline; Tsuprykov, Oleg; Mohagheghi Samarin, Azadeh; Falke, Luise Gabriele; Dwi Putra, Sulistyo Emantoko; Hasan, Ahmed Abdallah; Antonenko, Viktoriia; Curato, Caterina; Rippmann, Jörg; Klein, Thomas; Hocher, Berthold
2017-07-01
Results regarding protective effects of dipeptidyl peptidase 4 (DPP4) inhibitors in renal ischaemia-reperfusion injury (IRI) are conflicting. Here we have compared structurally unrelated DPP4 inhibitors in a model of renal IRI. IRI was induced in uninephrectomized male rats by renal artery clamping for 30 min. The sham group was uninephrectomized but not subjected to IRI. DPP4 inhibitors or vehicle were given p.o. once daily on three consecutive days prior to IRI: linagliptin (1.5 mg·kg -1 ·day -1 ), vildagliptin (8 mg·kg -1 ·day -1 ) and sitagliptin (30 mg·kg -1 ·day -1 ). An additional group received sitagliptin until study end (before IRI: 30 mg·kg -1 ·day -1 ; after IRI: 15 mg·kg -1 ·day -1 ). Plasma-active glucagon-like peptide type 1 (GLP-1) increased threefold to fourfold in all DPP4 inhibitor groups 24 h after IRI. Plasma cystatin C, a marker of GFR, peaked 48 h after IRI. Compared with the placebo group, DPP4 inhibition did not reduce increased plasma cystatin C levels. DPP4 inhibitors ameliorated histopathologically assessed tubular damage with varying degrees of drug-specific efficacies. Renal osteopontin expression was uniformly reduced by all DPP4 inhibitors. IRI-related increased renal cytokine expression was not decreased by DPP4 inhibition. Renal DPP4 activity at study end was significantly inhibited in the linagliptin group, but only numerically reduced in the prolonged/dose-adjusted sitagliptin group. Active GLP-1 plasma levels at study end were increased only in the prolonged/dose-adjusted sitagliptin treatment group. In rats with renal IRI, DPP4 inhibition did not alter plasma cystatin C, a marker of glomerular function, but may protect against tubular damage. © 2017 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.
Tröbs, R-B; Heinecke, K; Elouahidi, T; Nounla, J; Kluge, R
2006-01-01
We examined renal function and urinary drainage of children with primary megaureter (PMU) in dependence on conservative or operative treatment. The retrospective analysis covering the years 1994 to 2000 comprised children at an age of 0-7 years with 35 PMU. Sonography, dynamic MAG3 renography as well as endogenic creatinine clearance (GFR) were used to assess drainage and the renal function. Temporary urinary diversion was established in fourteen patients of both groups. In 14 children with 16 PMU a ureteroneocystostomy (UNC) was performed. The average observation period was 30 months (11-108). The children of the UNC group differed from the non-neoimplanted group in the age at diagnosis (10.5 vs. < 1 months), higher degrees of hydronephrosis on average, a more distinct dilatation of the ureter as well as renographically significant obstruction. Children of the non-UNC group, including four children with a type B drainage curve (O'Reilly), had an unimpaired differential renal function or improved during the observation period (initially 51% vs. 50.5% at the end). In neoimplantation group the differential function improved from 32.5% to 38.5% (p < 0.05) and obstruction resolved with one exception. Given a higher-grade PMU with a reduced function of the kidneys and a significant impaired drainage pattern and/or symptoms, neoimplantation without temporary diversion has proved to be an efficient renoprotective method. Furthermore, data clearly justify a conservative approach without urinary diversion in infants with large asymptomatic PMU.
Narita, Takuma; Hatakeyama, Shingo; Koie, Takuya; Hosogoe, Shogo; Matsumoto, Teppei; Soma, Osamu; Yamamoto, Hayato; Yoneyama, Tohru; Tobisawa, Yuki; Yoneyama, Takahiro; Hashimoto, Yasuhiro; Ohyama, Chikara
2017-08-31
Urinary tract obstruction and postoperative hydronephrosis are risk factor for renal function deterioration after orthotopic ileal neobladder construction. However, reports of relationship between transient hydronephrosis and renal function are limited. We assess the influence of postoperative transient hydronephrosis on renal function in patients with orthotopic ileal neobladder construction. Between January 2006 and June 2013, we performed radical cystectomy in 164 patients, and 101 received orthotopic ileal neobladder construction. This study included data available from 64 patients with 128 renal units who were enrolled retrospectively. The hydronephrosis grade of each renal unit scored 0-4. The patients were divided into 4 groups according to the grade of hydronephrosis: control, low, intermediate, and high. The grade of postoperative hydronephrosis was compared with renal function 1 month and 1 year after surgery. There were no significant differences in renal function before surgery between groups. One month after surgery, the presence of hydronephrosis was significantly associated with decreased renal function. However, 1 year after urinary diversion hydronephrosis grades were improved significantly, and renal function was comparable between groups. Postoperative hydronephrosis at 1 month had no significant influence on renal function 1 year after ileal neobladder construction. Limitations include retrospective design, short follow-up periods, and a sample composition. The presence of transient hydronephrosis immediately after surgery may have limited influence on renal function 1 year after ileal neobladder construction.
[Current role of color Doppler ultrasound in acute renal failure].
Bertolotto, M; Quaia, E; Rimondini, A; Lubin, E; Pozzi Mucelli, R
2001-01-01
Acute Renal Failure (ARF) is characterized by a rapid decline of the glomerular filtration rate, due to hypotension (prerenal ARF), obstruction of the urinary tract (post-renal ARF) or renal parenchymal disease (renal ARF). The differential diagnosis among different causes of ARF is based on anamnesis, clinical symptoms and laboratory data. Usually ultrasound (US) is the only imaging examination performed in these patients, because it is safe and readily available. In patients with ARF gray scale US is usually performed to rule out obstruction since it is highly sensitive to recognize hydronephrosis. Patients with renal ARF have no specific changes in renal morphology. The size of the kidneys is usually normal or increased, with smooth margins. Detection of small kidneys suggests underlying chronic renal pathology and worse prognosis. Echogenicity and parenchymal thickness are usually normal, but in some cases there are hyperechogenic kidneys, increased parenchymal thickness and increased cortico-medullary differentiation. Evaluation of renal vasculature with pulsed Doppler US is useful in the differential diagnosis between prerenal ARF and acute tubular necrosis (ATN), and in the diagnosis of renal obstruction. Latest generation US apparatus allow color Doppler and power Doppler evaluation of renal vasculature up to the interlobular vessels. A significant, but non specific, reduction in renal perfusion is usually appreciable in the patients with ARF. There are renal pathologic conditions presenting with ARF in which color Doppler US provides more specific morphologic and functional information. In particular, color Doppler US often provides direct or indirect signs which can lead to the right diagnosis in old patients with chronic renal insufficiency complicated with ARF, in patients with acute pyelonephritis, hepatic disease, vasculitis, thrombotic microangiopathies, and in patients with acute thrombosis of the renal artery and vein. Contrast enhanced US is another useful diagnostic tool in patients with ARF which has been recently introduced in clinical practice. Microbubble administration may reduce technical failure in the evaluation of the renal artery. Moreover, perfusion defects due to stenosis or thrombosis of the renal segmentary vessels are better recognized. New diagnostic possibilities of enhanced US include evaluation of both cortical and medullar vessels, and functional evaluation of renal perfusion. Measuring the transit time of the microbubbles is useful for the diagnosis of renal artery stenosis and, in transplanted kidneys, for differential diagnosis between ATN and acute rejection.
Mitchell, Tanecia; Rotaru, Dumitru; Saba, Hamida; Smith, Robin A. J.; Murphy, Michael P.
2011-01-01
The majority of kidneys used for transplantation are obtained from deceased donors. These kidneys must undergo cold preservation/storage before transplantation to preserve tissue quality and allow time for recipient selection and transport. However, cold storage (CS) can result in tissue injury, kidney discardment, or long-term renal dysfunction after transplantation. We have previously determined mitochondrial superoxide and other downstream oxidants to be important signaling molecules that contribute to CS plus rewarming (RW) injury of rat renal proximal tubular cells. Thus, this study's purpose was to determine whether adding mitoquinone (MitoQ), a mitochondria-targeted antioxidant, to University of Wisconsin (UW) preservation solution could offer protection against CS injury. CS was initiated by placing renal cells or isolated rat kidneys in UW solution alone (4 h at 4°C) or UW solution containing MitoQ or its control compound, decyltriphenylphosphonium bromide (DecylTPP) (1 μM in vitro; 100 μM ex vivo). Oxidant production, mitochondrial function, cell viability, and alterations in renal morphology were assessed after CS exposure. CS induced a 2- to 3-fold increase in mitochondrial superoxide generation and tyrosine nitration, partial inactivation of mitochondrial complexes, and a significant increase in cell death and/or renal damage. MitoQ treatment decreased oxidant production ∼2-fold, completely prevented mitochondrial dysfunction, and significantly improved cell viability and/or renal morphology, whereas DecylTPP treatment did not offer any protection. These findings implicate that MitoQ could potentially be of therapeutic use for reducing organ preservation damage and kidney discardment and/or possibly improving renal function after transplantation. PMID:21159749
Mitchell, Tanecia; Rotaru, Dumitru; Saba, Hamida; Smith, Robin A J; Murphy, Michael P; MacMillan-Crow, Lee Ann
2011-03-01
The majority of kidneys used for transplantation are obtained from deceased donors. These kidneys must undergo cold preservation/storage before transplantation to preserve tissue quality and allow time for recipient selection and transport. However, cold storage (CS) can result in tissue injury, kidney discardment, or long-term renal dysfunction after transplantation. We have previously determined mitochondrial superoxide and other downstream oxidants to be important signaling molecules that contribute to CS plus rewarming (RW) injury of rat renal proximal tubular cells. Thus, this study's purpose was to determine whether adding mitoquinone (MitoQ), a mitochondria-targeted antioxidant, to University of Wisconsin (UW) preservation solution could offer protection against CS injury. CS was initiated by placing renal cells or isolated rat kidneys in UW solution alone (4 h at 4°C) or UW solution containing MitoQ or its control compound, decyltriphenylphosphonium bromide (DecylTPP) (1 μM in vitro; 100 μM ex vivo). Oxidant production, mitochondrial function, cell viability, and alterations in renal morphology were assessed after CS exposure. CS induced a 2- to 3-fold increase in mitochondrial superoxide generation and tyrosine nitration, partial inactivation of mitochondrial complexes, and a significant increase in cell death and/or renal damage. MitoQ treatment decreased oxidant production ~2-fold, completely prevented mitochondrial dysfunction, and significantly improved cell viability and/or renal morphology, whereas DecylTPP treatment did not offer any protection. These findings implicate that MitoQ could potentially be of therapeutic use for reducing organ preservation damage and kidney discardment and/or possibly improving renal function after transplantation.
Does Altered Uric Acid Metabolism Contribute to Diabetic Kidney Disease Pathophysiology?
Gul, Ambreen; Zager, Philip
2018-03-01
Multiple experimental and clinical studies have identified pathways by which uric acid may facilitate the development and progression of chronic kidney disease (CKD) in people with diabetes. However, it remains uncertain if the association of uric acid with CKD represents a pathogenic effect or merely reflects renal impairment. In contrast to many published reports, a recent Mendelian randomization study did not identify a causal link between uric acid and CKD in people with type 1 diabetes. Two recent multicenter randomized control trials, Preventing Early Renal Function Loss in Diabetes (PERL) and FEbuxostat versus placebo rAndomized controlled Trial regarding reduced renal function in patients with Hyperuricemia complicated by chRonic kidney disease stage 3 (FEATHER), were recently designed to assess if uric acid lowering slows progression of CKD. We review the evidence supporting a role for uric acid in the pathogenesis of CKD in people with diabetes and the putative benefits of uric acid lowering.
Bruno, Stefania; Grange, Cristina; Collino, Federica; Deregibus, Maria Chiara; Cantaluppi, Vincenzo; Biancone, Luigi; Tetta, Ciro; Camussi, Giovanni
2012-01-01
Several studies demonstrated that treatment with mesenchymal stem cells (MSCs) reduces cisplatin mortality in mice. Microvesicles (MVs) released from MSCs were previously shown to favor renal repair in non lethal toxic and ischemic acute renal injury (AKI). In the present study we investigated the effects of MSC-derived MVs in SCID mice survival in lethal cisplatin-induced AKI. Moreover, we evaluated in vitro the effect of MVs on cisplatin-induced apoptosis of human renal tubular epithelial cells and the molecular mechanisms involved. Two different regimens of MV injection were used. The single administration of MVs ameliorated renal function and morphology, and improved survival but did not prevent chronic tubular injury and persistent increase in BUN and creatinine. Multiple injections of MVs further decreased mortality and at day 21 surviving mice showed normal histology and renal function. The mechanism of protection was mainly ascribed to an anti-apoptotic effect of MVs. In vitro studies demonstrated that MVs up-regulated in cisplatin-treated human tubular epithelial cells anti-apoptotic genes, such as Bcl-xL, Bcl2 and BIRC8 and down-regulated genes that have a central role in the execution-phase of cell apoptosis such as Casp1, Casp8 and LTA. In conclusion, MVs released from MSCs were found to exert a pro-survival effect on renal cells in vitro and in vivo, suggesting that MVs may contribute to renal protection conferred by MSCs. PMID:22431999
Impact of pretransplant renal function on survival after liver transplantation.
Gonwa, T A; Klintmalm, G B; Levy, M; Jennings, L S; Goldstein, R M; Husberg, B S
1995-02-15
To determine the effect of pretransplant liver function on survival following orthotopic liver transplantation and to quantify the effects of cyclosporine administration on long-term renal function in patients undergoing liver transplant, we performed an analysis of a prospectively maintained database. Data from 569 consecutive patients undergoing liver transplantation alone who were treated with CsA for immunosuppression were used for this study. Actuarial graft and patient survival rates were calculated using Kaplan-Meier statistics. Glomerular filtration rates, serum creatinine, and the use of various immunosuppressives were analyzed for this study. The initial analysis demonstrated that patients presenting for liver transplant with hepatorenal syndrome have a significantly decreased acturial patient survival after liver transplant at 5 years compared with patients without hepatorenal syndrome (60% vs. 68%, P < 0.03). Patients with hepatorenal syndrome recovered their renal function after liver transplant. Patients who had hepatorenal syndrome were sicker and required longer stays in the intensive care unit, longer hospitalizations, and more dialysis treatments after transplantation compared with patients who did not have hepatorenal syndrome. The incidence of end-stage renal disease after liver transplantation in patients who had hepatorenal syndrome was 7%, compared with 2% in patients who did not have hepatorenal syndrome. To more fully examine the effect of pretransplant renal function on posttransplant survival, the non-hepatorenal syndrome patients were divided into quartiles depending upon their pretransplant renal function. The patients with the lowest pretransplant renal function had the same survival as the patients with the highest pretransplant renal function. In addition, there was no increased incidence of acute or chronic rejection in any of the groups. The patients with the lower pretransplant renal function were treated with more azathioprine to maintain renal function and had a negligible decrease in glomerular filtration rate following transplant. Conversely, patients with the highest level of renal function pretransplant had a 40% decline in renal function in the first year, but maintained stable renal function up to 4 years after transplant. We conclude that pretransplant renal function other than hepato-renal syndrome has no effect on patient survival after orthotopic liver transplant. Renal function after liver transplant is stable after an initial decline, despite continued administration of CsA.(ABSTRACT TRUNCATED AT 400 WORDS)
Arun Thomas, E T; George, Jacob; Sruthi, Devi; Vineetha, N S; Gracious, Noble
2018-04-01
Dengue fever is a mosquito-borne viral disease endemic in many tropical and sub-tropical countries. There is only limited data in the literature about dengue fever in renal transplant recipients and patients with chronic kidney disease. This study compares the clinical course of dengue fever and its impact on renal function in renal transplant recipients, patients with chronic kidney disease and patients with normal base line renal function. An observational study was conducted from 1 st May to 31 st July 2017, at a tertiary care centre of South India. A major epidemic of dengue had occurred during the study period. Twelve renal transplant recipients, 22 patients with CKD and 58 patients with normal baseline renal function (control group) admitted with dengue fever were prospectively studied. Nadir WBC count was lowest in renal transplant recipients (2575 + 1187/mm 3 ), [P<0.001]. Renal transplant recipients took more time for normalisation of platelet count (6 + 4.5 days), [P<0.001]. All 22 patients with CKD and 11 of 12 renal transplant recipients had worsening of renal function where as only 17 of 58 patients in the control group had worsening [P<0.001]. Sixteen patients with CKD, one renal transplant recipient and none among control group required hemodialysis [P<0.001]. Dialysis requiring patients had more hemoconcentration (52.5+ 19.9% increase in haemoglobin), [P<0.001]. Seven patients with CKD were dialysis dependent at the end of 2 weeks. Clinical features of dengue fever were different in renal transplant recipients and patients with CKD. Severe worsening of renal function was common in CKD patients. Worsening of renal function in renal transplant recipients was less severe and transient. This article is protected by copyright. All rights reserved.
Vasanthi, A. Hannah Rachel; Muthulakshmi, V.; Gayathri, V.; Manikandan, R.; Ananthi, S.; Kuruvilla, Sarah
2017-01-01
Background: Sirupeelai Samoola Kudineer (SK), a polyherbal decoction containing four medicinal plants has been used in Siddha system of medicine, practiced in Southern parts of India for the management of urolithiasis. Objective: The present study is carried out to scientifically validate the traditional claim and to study the mechanism of action of the drug. Materials and Methods: In the present study, anti-urolithiatic effect of SK was evaluated in Sprague-Dawley rats using ethylene glycol through drinking water and intraperitoneal injection of sodium oxalate. Renal damage was confirmed by the increased production of thiobarbituric acid reactive substance (TBARS). Results: Co-treatment with SK to urolithiatic rats for 21 days significantly prevented the elevation of renal and urinary stone biomarkers in plasma and renal tissue thereby preventing renal damage and the formation of renal calculi. Administration of SK at all doses and cystone restored the antioxidant (glutathione) levels by preventing the elevation of TBARS in the kidney tissue, which was further confirmed by histological sections. Conclusions: SK treatment promotes diuresis which leads to flushing of the renal stones and maintains the alkaline environment in the urinary system which probably mediates the antilithiatic activity. SK provides structural and functional protection to the kidneys by enhancing its physiological function against stone formation and validates its clinical use. SUMMARY SK exhibited antilithiatic and diuretic potential in ethylene glycol and sodium oxalate induced urolithiasis in ratsElevated urinary stone markers (Calcium, oxalate, uric acid, magnesium and phosphates) in plasma and renal tubular enzymes (LDH, GGT, ALP, AST ALT) in urolithiatic rats were reversed by SK treatmentSK administration significantly reduced the level of renal stress markers like Urea, Creatinine, LPO and elevated SOD, GPx, GSH levels aiding in nephroprotectionSK also provides structural and functional protection against ethylene glycol- induced renal calculus in rats as evidenced by histopathological studies. Abbreviations used: SK: Sirupeelai Samoola Kudineer; TBARS: ThioBarbituric Acid Reactive Substances; SOD: SuperOxide Dismutase; GPx: Gluthathione peroxidase; GSH- Glutathione; LPO: Lipid peroxidation as measured as TBARS; AST: Aspartate AminoTransferase; ALT: Alanine Amino transferase; GGT: Gamma Glutamyl Transferase; LDH: Lactate Dehydrogenase. PMID:28808392
Sawhney, Simon; Mitchell, Mhairi; Marks, Angharad; Fluck, Nick; Black, Corrinda
2015-01-06
To summarise the evidence from studies of acute kidney injury (AKI) with regard to the effect of pre-AKI renal function and post-AKI renal function recovery on long-term mortality and renal outcomes, and to assess whether these factors should be taken into account in future prognostic studies. A systematic review of observational studies listed in Medline and EMBASE from 1990 to October 2012. All AKI studies in adults with data on baseline kidney function to identify AKI; with outcomes either stratified by pre-AKI and/or post-AKI kidney function, or described by the timing of the outcomes. Long-term mortality and worsening chronic kidney disease (CKD). Of 7385 citations, few studies met inclusion criteria, reported baseline kidney function and stratified by pre-AKI or post-AKI function. For mortality outcomes, three studies compared patients by pre-AKI renal function and six by post-AKI function. For CKD outcomes, two studies compared patients by pre-AKI function and two by post-AKI function. The presence of CKD pre-AKI (compared with AKI alone) was associated with doubling of mortality and a fourfold to fivefold increase in CKD outcomes. Non-recovery of kidney function was associated with greater mortality and CKD outcomes in some studies, but findings were inconsistent varying with study design. Two studies also reported that risk of poor outcome reduced over time post-AKI. Meta-analysis was precluded by variations in definitions for AKI, CKD and recovery. The long-term prognosis after AKI varies depending on cause and clinical setting, but it may also, in part, be explained by underlying pre-AKI and post-AKI renal function rather than the AKI episode itself. While carefully considered in clinical practice, few studies address these factors and with inconsistent study design. Future AKI studies should report pre-AKI and post-AKI function consistently as additional factors that may modify AKI prognosis. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
MicroRNA-125b as a new potential biomarker on diagnosis of renal ischemia-reperfusion injury.
Güçlü, Aydın; Koçak, Cengiz; Koçak, Fatma E; Akçılar, Raziye; Dodurga, Yavuz; Akçılar, Aydın; Elmas, Levent
2017-01-01
Acute renal failure is commonly seen in the perioperative period. Ischemia-reperfusion (IR) injury plays a major role in acute renal failure and delayed graft function. MicroRNAs (miRs), which are pivotal modulators of cell activities, offer a major opportunity for affective diagnosis and treatment strategies because they are tissue specific and in the center of gene expression modulation. The effect of bardoxolone methyl (BM) on miR-21, miR-223-5p, and miR-125b in renal IR injury was evaluated in this study. Wistar-Albino rats (12-16 wk old, weighing 300-350 g) were used in the study. Rats (n = 6) were randomized into three groups (control, IR, and BM + IR). Tissue levels of miRs were analyzed with reverse transcription polymerase chain reaction. Significant reduction of urea and total oxidant status, increase of total antioxidant status, and oxidative stress index were identified in the IR + BM group compared with the IR group. Significant increases of miR-21 (2842.82-fold) and miR-125b (536.8-fold) were identified in the IR group compared with the control group; however, miR-223-5p levels did not show any significant difference. Also, miR-21 and miR-125b were significantly reduced in the IR + BM group compared with the IR group. Reduced histopathologic changes were observed in the IR + BM group. A significant decrease in the number of tunel-positive cells was identified in the IR + BM group compared with the IR group. miR-125b was significantly increased in IR injury; thus, miR-125b can be a potential novel marker that can be used in diagnosis and treatment of renal IR injury. BM reduces miR-21 and miR-125b in case of IR injury and makes functional and histopathologic repairs. Copyright © 2016 Elsevier Inc. All rights reserved.
Influence of the renal artery ostium flow diverter on hemodynamics and atherogenesis
Albert, Scott; Balaban, Robert S.; Neufeld, Edward B.; Rossmann, Jenn Stroud
2014-01-01
The structure and function of the renal artery ostium flow diverter on the caudal side of the renal branch point were previously reported; in this study, we further evaluate the diverter’s possible functions. The protrusion of this structure into the abdominal aorta suggests that the diverter may preferentially direct blood flow to the renal arteries, and that it may also influence flow patterns and recirculation known to be involved in atherogenesis. Three-dimensional computational fluid dynamics (CFD) simulations of steady and pulsatile blood flow are performed to investigate the influence of diverter size and position, and vascular geometry, on the flow patterns and fluid mechanical forces in the neighborhood of the diverter. CFD results show that the flow diverter does affect the blood distribution: depending on the diverter’s position, the flow to the renal arteries may be increased or reduced. Calculated results also demonstrate the diverter’s effect on the Wall Shear Stress (WSS) distribution, and suggest that the diverter contributes to an atherogenic environment in the abdominal aorta, while being atheroprotective in the renal arteries themselves. These results support previous clinical findings, and suggest directions for further clinical study. The results of this work have direct implications in understanding the physiological significance of the diverter, and its potential role in the pathophysiological development of atherosclerosis. PMID:24703300
Influence of the renal artery ostium flow diverter on hemodynamics and atherogenesis.
Albert, Scott; Balaban, Robert S; Neufeld, Edward B; Rossmann, Jenn Stroud
2014-05-07
The structure and function of the renal artery ostium flow diverter on the caudal side of the renal branch point were previously reported; in this study, we further evaluate the diverter׳s possible functions. The protrusion of this structure into the abdominal aorta suggests that the diverter may preferentially direct blood flow to the renal arteries, and that it may also influence flow patterns and recirculation known to be involved in atherogenesis. Three-dimensional computational fluid dynamics (CFD) simulations of steady and pulsatile blood flow are performed to investigate the influence of diverter size and position, and vascular geometry, on the flow patterns and fluid mechanical forces in the neighborhood of the diverter. CFD results show that the flow diverter does affect the blood distribution; depending on the diverter׳s position, the flow to the renal arteries may be increased or reduced. Calculated results also demonstrate the diverter׳s effect on the wall shear stress (WSS) distribution, and suggest that the diverter contributes to an atherogenic environment in the abdominal aorta, while being atheroprotective in the renal arteries themselves. These results support previous clinical findings, and suggest directions for further clinical study. The results of this work have direct implications in understanding the physiological significance of the diverter, and its potential role in the pathophysiological development of atherosclerosis. Copyright © 2014 Elsevier Ltd. All rights reserved.
Lu, Fuhua; Lu, Zhaoyu; Liu, Xusheng; Chen, Cha; Qu, Pinghua; Li, Dingcheng; Hua, Zhengshuang; Qu, Yanni; Zou, Chuan
2016-01-01
Gut microbiota plays a dual role in chronic kidney disease (CKD) and is closely linked to production of uremic toxins. Strategies of reducing uremic toxins by targeting gut microbiota are emerging. It is known that Chinese medicine rhubarb enema can reduce uremic toxins and improve renal function. However, it remains unknown which ingredient or mechanism mediates its effect. Here we utilized a rat CKD model of 5/6 nephrectomy to evaluate the effect of emodin, a main ingredient of rhubarb, on gut microbiota and uremic toxins in CKD. Emodin was administered via colonic irrigation at 5ml (1mg/day) for four weeks. We found that emodin via colonic irrigation (ECI) altered levels of two important uremic toxins, urea and indoxyl sulfate (IS), and changed gut microbiota in rats with CKD. ECI remarkably reduced urea and IS and improved renal function. Pyrosequencing and Real-Time qPCR analyses revealed that ECI resumed the microbial balance from an abnormal status in CKD. We also demonstrated that ten genera were positively correlated with Urea while four genera exhibited the negative correlation. Moreover, three genera were positively correlated with IS. Therefore, emodin altered the gut microbiota structure. It reduced the number of harmful bacteria, such as Clostridium spp. that is positively correlated with both urea and IS, but augmented the number of beneficial bacteria, including Lactobacillus spp. that is negatively correlated with urea. Thus, changes in gut microbiota induced by emodin via colonic irrigation are closely associated with reduction in uremic toxins and mitigation of renal injury. PMID:27003359
Zeng, Yu-Qun; Dai, Zhenhua; Lu, Fuhua; Lu, Zhaoyu; Liu, Xusheng; Chen, Cha; Qu, Pinghua; Li, Dingcheng; Hua, Zhengshuang; Qu, Yanni; Zou, Chuan
2016-04-05
Gut microbiota plays a dual role in chronic kidney disease (CKD) and is closely linked to production of uremic toxins. Strategies of reducing uremic toxins by targeting gut microbiota are emerging. It is known that Chinese medicine rhubarb enema can reduce uremic toxins and improve renal function. However, it remains unknown which ingredient or mechanism mediates its effect. Here we utilized a rat CKD model of 5/6 nephrectomy to evaluate the effect of emodin, a main ingredient of rhubarb, on gut microbiota and uremic toxins in CKD. Emodin was administered via colonic irrigation at 5ml (1mg/day) for four weeks. We found that emodin via colonic irrigation (ECI) altered levels of two important uremic toxins, urea and indoxyl sulfate (IS), and changed gut microbiota in rats with CKD. ECI remarkably reduced urea and IS and improved renal function. Pyrosequencing and Real-Time qPCR analyses revealed that ECI resumed the microbial balance from an abnormal status in CKD. We also demonstrated that ten genera were positively correlated with Urea while four genera exhibited the negative correlation. Moreover, three genera were positively correlated with IS. Therefore, emodin altered the gut microbiota structure. It reduced the number of harmful bacteria, such as Clostridium spp. that is positively correlated with both urea and IS, but augmented the number of beneficial bacteria, including Lactobacillus spp. that is negatively correlated with urea. Thus, changes in gut microbiota induced by emodin via colonic irrigation are closely associated with reduction in uremic toxins and mitigation of renal injury.
Geometric Alteration of Renal Arteries After Fenestrated Grafting and the Impact on Renal Function.
Ou, Jiale; Chan, Yiu-Che; Chan, Crystal Yin-Tung; Cheng, Stephen W K
2017-05-01
This study aims to investigate the degree of geometric change on renal arteries and its impact on renal function after fenestrated endovascular aortic repair (fEVAR). Twenty-five patients with fEVAR were included. There were 47 renal arteries target vessels, and 43 of these (22 left and 21 right vessels) stented successfully. Their preoperative and first postoperative follow-up computed tomography (CT) images were reconstructed using the Aquarius workstation (TeraRecon, San Mateo, CA, USA). The superior mesenteric artery (SMA) or celiac axis (if SMA was stented) was appointed as reference origin. The longitudinal orientation of a renal artery or a stent was represented by a takeoff angle (ToA) between the renal artery or stent and the distal abdominal aorta. The postoperative stent ToAs were compared with those of preoperative renal arteries. Preoperative and short-term postoperative serum creatinine levels were measured. Renal function impairment was indicated as a >30% or >2.0 mg/dL rise in serum creatinine compared to the preoperative level. The relationship between postoperative renal function impairment and the stent orientation or geometric changes in renal arteries was correlated. The patency rate of renal arteries was 100% at the first postoperative CT review. The average ToAs of both renal arteries were significantly enlarged after stenting (P < 0.05). Seven stent deformations (16.3%) in four patients (16.0%) were observed. They were attributed to caudal misalignment of the fenestrated stent graft (n = 6) or inaccurate graft sizing (n = 1). There was no stent fracture or target vessel loss. Postoperatively, nine patients (36.0%) at day 1 and 10 patients (41.7%) after 3 months suffered the renal function impairment. This was found not to be associated with the stent angulation or angular change of the renal arteries (both P > 0.05). The three patients with stent deformation due to misalignment suffered postoperative renal function impairment and continuing deterioration in renal function. Implanted renal stents could angulate renal arteries more cephalad after fenestrated stenting. Postoperative renal function impairment was not associated with the stent orientation and changes in vessel orientation. Accurate fenestrated alignment is important to maintain stent performance and preserve renal function. Copyright © 2017 Elsevier Inc. All rights reserved.
Stacul, Fulvio; Bertolotto, Michele; Thomsen, Henrik S; Pozzato, Gabriele; Ugolini, Donatella; Bellin, Marie-France; Bongartz, Georg; Clement, Olivier; Heinz-Peer, Gertraud; van der Molen, Aart; Reimer, Peter; Webb, Judith A W
2018-02-01
Many radiologists and clinicians still consider multiple myeloma (MM) and monoclonal gammopathies (MG) a contraindication for using iodine-based contrast media. The ESUR Contrast Media Safety Committee performed a systematic review of the incidence of post-contrast acute kidney injury (PC-AKI) in these patients. A systematic search in Medline and Scopus databases was performed for renal function deterioration studies in patients with MM or MG following administration of iodine-based contrast media. Data collection and analysis were performed according to the PRISMA statement 2009. Eligibility criteria and methods of analysis were specified in advance. Cohort and case-control studies reporting changes in renal function were included. Thirteen studies were selected that reported 824 iodine-based contrast medium administrations in 642 patients with MM or MG, in which 12 unconfounded cases of PC-AKI were found (1.6 %). The majority of patients had intravenous urography with high osmolality ionic contrast media after preparatory dehydration and purgation. MM and MG alone are not risk factors for PC-AKI. However, the risk of PC-AKI may become significant in dehydrated patients with impaired renal function. Hypercalcaemia may increase the risk of kidney damage, and should be corrected before contrast medium administration. Assessment for Bence-Jones proteinuria is not necessary. • Monoclonal gammopathies including multiple myeloma are a large spectrum of disorders. • In monoclonal gammopathy with normal renal function, PC-AKI risk is not increased. • Renal function is often reduced in myeloma, increasing the risk of PC-AKI. • Correction of hypercalcaemia is necessary in myeloma before iodine-based contrast medium administration. • Bence-Jones proteinuria assessment in myeloma is unnecessary before iodine-based contrast medium administration.
The future of partial nephrectomy.
Malthouse, Theo; Kasivisvanathan, Veeru; Raison, Nicholas; Lam, Wayne; Challacombe, Ben
2016-12-01
Innovation in recent times has accelerated due to factors such as the globalization of communication; but there are also more barriers/safeguards in place than ever before as we strive to streamline this process. From the first planned partial nephrectomy completed in 1887, it took over a century to become recommended practice for small renal tumours. At present, identified areas for improvement/innovation are 1) to preserve renal parenchyma, 2) to optimise pre-operative eGFR and 3) to reduce global warm ischaemia time. All 3 of these, are statistically significant predictors of post-operative renal function. Urologists, have a proud history of embracing innovation & have experimented with different clamping techniques of the renal vasculature, image guidance in robotics, renal hypothermia, lasers and new robots under development. The DaVinci model may soon no longer have a monopoly on this market, as it loses its stranglehold with novel technology emerging including added features, such as haptic feedback with reduced costs. As ever, our predictions of the future may well fall wide of the mark, but in order to progress, one must open the mind to the possibilities that already exist, as evolution of existing technology often appears to be a revolution in hindsight. Copyright © 2016 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.
Morimoto, Takeyori; Nagashima, Hiroki; Morimoto, Yasuko; Tokuyama, Shogo
2017-01-01
Tazobactam/piperacillin (TAZ/PIPC) is a combination antibiotic frequently used to treat pneumonia. It has recently been reported that TAZ/PIPC worsens renal function in patients with existing renal impairment. Creatinine clearance is generally between 10 and 40 mL/min in Japanese patients, so TAZ/PIPC is given at a dose of 2.25 g three times daily or 4.5 g twice daily. If pneumonia is severe or intractable, the dose frequency may be increased to 2.25 g four times daily and 4.5 g three times daily. We examined the effect of these different dosing regimens on renal function. We studied a cohort of 57 patients with impaired renal function hospitalized with pneumonia and treated with TAZ/PIPC between January 2015 and November 2016. Patients were classified into four groups according to TAZ/PIPC dose: 2.25 g three times daily (Group A); 2.25 g four times daily (B); 4.5 g twice daily (C) and 4.5 g three times daily (D). We examined the frequency of acute kidney injury (AKI) and treatment effectiveness. In Groups A, B, C and D, AKI occurred in 5.6%, 0.0%, 25.0% and 38.5% of patient. In groups C and D, hydration and dose reduction were required to address early signs of impending AKI. Our findings suggest that the higher TAZ/PIPC dose of 4.5 g was responsible for the decline in renal function, even if the dose frequency was reduced.
Visnagri, Asjad; Adil, Mohammad; Kandhare, Amit D.; Bodhankar, Subhash L.
2015-01-01
Background: Renal artery occlusion (RAO) induced hypertension is a major health problem associated with structural and functional variations of the renal and cardiac vasculature. Naringin a flavanone glycoside derived possesses metal-chelating, antioxidant and free radical scavenging properties. Objective: The objective of this study was to investigate the antihypertensive activity of naringin in RAO induced hypertension in rats. Material and Methods: Male Wistar rats (180-200 g) were divided into five groups Sham, RAO, naringin (20, 40 and 80 mg/kg). Animals were pretreated with naringin (20, 40 and 80 mg/kg p.o) for 4 weeks. On the last day of the experiment, left renal artery was occluded with renal bulldog clamp for 4 h. After assessment of hemodynamic and left ventricular function various biochemical (superoxide dismutase [SOD], glutathione [GSH] and malondialdehyde [MDA]) and histological parameters were determined in the kidney. Results: RAO group significantly (P < 0.001) increased hemodynamic parameters at 15, 30 and 45 min of clamp removal. Naringin (40 and 80 mg/kg) treated groups showed a significant decrease in hemodynamic parameters at 15 min. after clamp removal that remained sustained for 60 min. Naringin (40 and 80 mg/kg) treated groups showed significant improvement in left ventricular function at 15, 30 and 45 min after clamp removal. Alteration in level of SOD, GSH and MDA was significantly restored by naringin (40 and 80 mg/kg) treatment. It also reduced histological aberration induced in kidney by RAO. Conclusion: It is concluded that the antihypertensive activity of naringin may result through inhibition of oxidative stress. PMID:25883516
Tullos, Nathan; Stewart, Nicholas J.; Surles, Bret
2015-01-01
Percutaneous transluminal renal angioplasty/stenting (PTRAS) is frequently used to treat renal artery stenosis and renovascular disease (RVD); however, renal function is restored in less than one half of the cases. This study was designed to test a novel intervention that could refine PTRAS and enhance renal recovery in RVD. Renal function was quantified in pigs after 6 weeks of chronic RVD (induced by unilateral renal artery stenosis), established renal damage, and hypertension. Pigs with RVD then underwent PTRAS and were randomized into three groups: placebo (RVD+PTRAS), chronic endothelin-A receptor (ET-A) blockade (RVD+PTRAS+ET-A), and chronic dual ET-A/B blockade (RVD+PTRAS+ET-A/B) for 4 weeks. Renal function was again evaluated after treatments, and then, ex vivo studies were performed on the stented kidney. PTRAS resolved renal stenosis, attenuated hypertension, and improved renal function but did not resolve renal microvascular rarefaction, remodeling, or renal fibrosis. ET-A blocker therapy after PTRAS significantly improved hypertension, microvascular rarefaction, and renal injury and led to greater recovery of renal function. Conversely, combined ET-A/B blockade therapy blunted the therapeutic effects of PTRAS alone or PTRAS followed by ET-A blockade. These data suggest that ET-A receptor blockade therapy could serve as a coadjuvant intervention to enhance the outcomes of PTRAS in RVD. These results also suggest that ET-B receptors are important for renal function in RVD and may contribute to recovery after PTRAS. Using clinically available compounds and techniques, our results could contribute to both refinement and design of new therapeutic strategies in chronic RVD. PMID:25377076
Fu, Shihui; Liu, Chunling; Luo, Leiming; Ye, Ping
2017-11-09
Predictive abilities of cardiovascular biomarkers to renal function decline are more significant in Chinese community-dwelling population without glomerular filtration rate (GFR) below 60 ml/min/1.73m 2 , and long-term prospective study is an optimal choice to explore this problem. Aim of this analysis was to observe this problem during the follow-up of 5 years. In a large medical check-up program in Beijing, there were 948 participants with renal function evaluated at baseline and follow-up of 5 years. Physical examinations were performed by well-trained physicians. Blood samples were analyzed by qualified technicians in central laboratory. Median rate of renal function decline was 1.46 (0.42-2.91) mL/min/1.73m 2 /year. Rapid decline of renal function had a prevalence of 23.5% (223 participants). Multivariate linear and Logistic regression analyses confirmed that age, sex, baseline GFR, homocysteine and N-terminal pro B-type natriuretic peptide (NT-proBNP) had independently predictive abilities to renal function decline rate and rapid decline of renal function (p < 0.05 for all). High-sensitivity cardiac troponin T (hs-cTnT), carotid femoral pulse wave velocity and central augmentation index had no statistically independent association with renal function decline rate and rapid decline of renal function (p > 0.05 for all). Homocysteine and NT-proBNP rather than hs-cTnT had independently predictive abilities to rapid decline of renal function in Chinese community-dwelling population without GFR below 60 ml/min/1.73m 2 . Baseline GFR was an independent factor predicting the rapid decline of renal function. Arterial stiffness and compliance had no independent effect on rapid decline of renal function. This analysis has a significant implication for public health, and changing the homocysteine and NT-proBNP levels might slow the rapid decline of renal function.
Thongnak, Laongdao; Pongchaidecha, Anchalee; Jaikumkao, Krit; Chatsudthipong, Varanuj; Chattipakorn, Nipon; Lungkaphin, Anusorn
2017-10-19
Hyperglycemia-induced oxidative stress is usually found in diabetic condition. 3-hydroxy-3-methylglutaryl coenzyme-A (HMG-CoA) reductase inhibitors, statins, are widely used as cholesterol-lowering medication with several "pleiotropic" effects in diabetic patients. This study aims to evaluate whether the protective effects of atorvastatin and insulin on renal function and renal organic anion transporter 3 (Oat3) function involve the modulation of oxidative stress and pancreatic function in type 1 diabetic rats. Type 1 diabetes was induced by intraperitoneal injection of streptozotocin (50 mg/kg BW). Atorvastatin and insulin as single or combined treatment were given for 4 weeks after diabetic condition had been confirmed. Diabetic rats demonstrated renal function and renal Oat3 function impairment with an increased MDA level and decreased SOD protein expression concomitant with stimulation of renal Nrf2 and HO-1 protein expression. Insulin plus atorvastatin (combined) treatment effectively restored renal function as well as renal Oat3 function which correlated with the decrease in hyperglycemia and oxidative stress. Moreover, pancreatic inflammation and apoptosis in diabetic rats were ameliorated by the combined drugs treatment. Therefore, atorvastatin plus insulin seems to exert the additive effect in improving renal functionby alleviating hyperglycemiaand the modulation of oxidative stress, inflammation and apoptosis.
Miyamoto, Takuma; Karimov, Jamshid H; Fukamachi, Kiyotaka
2018-03-01
Continuous-flow (CF) left ventricular assist devices (LVADs) are widely used to treat end-stage heart failure. Despite substantial improvement in clinical results, numerous complications remain associated with this technology. Worsening renal function is one, associated with morbidity and mortality in patients supported by CF LVADs. The effects of CF LVAD support on renal function have been investigated since the mid-1990s by many research groups. Area covered: We review the current status of LVAD therapy, experimental results regarding the effects of types of flow generated by LVADs on renal function and pathology, changes in renal function after LVAD implant, the influence of renal function on outcomes, and risk factors for renal dysfunction post implant. This information was obtained through online databases and direct extraction of single studies. Expert commentary: Immediately after CF LVAD implantation, renal function improves temporarily as patients recover from the kidneys' previously low perfusion and congestive state. However, many studies have shown that this initially recovered renal function gradually declines during long-term CF LVAD support. Although it is known that CF LVAD support adversely affects renal function over the long term, just how it does has not yet been clearly defined in terms of clinical symptoms or signs.
Renal damage detected by DMSA, despite normal renal ultrasound, in children with febrile UTI.
Bush, N C; Keays, M; Adams, C; Mizener, K; Pritzker, K; Smith, W; Traylor, J; Villanueva, C; Snodgrass, W T
2015-06-01
2011 American Academy of Pediatrics guidelines recommended renal-bladder ultrasound (RBUS) as the only evaluation after febrile urinary tract infection (FUTI) in infants aged 2-24 months. We determined the sensitivity, specificity, and false negative rate of RBUS to identify DMSA-detected renal damage in this age group as well as in older children. Consecutive patients referred to pediatric urology with a history of FUTI underwent DMSA ≥ 3 months after FUTI. Abnormal RBUS was defined as: Society of Fetal Urology hydronephrosis grades I-IV; hydroureter ≥ 7 mm; renal scar defined as focal parenchymal thinning; and/or size discrepancy ≥ 1 cm between kidneys. Abnormal DMSA was presence of any focal uptake defects and/or split renal function < 44%. We calculated sensitivity, specificity, positive and negative predictive values, and false negative rates of RBUS compared to DMSA. 618 patients (79% female), median age 3.4 years, were referred for FUTIs. Of the 512 (83%) with normal RBUS, 99 (19%) had abnormal DMSA. Children with normal RBUS after their first FUTI had abnormal DMSA in 15/151 (10%) aged ≤ 24 months and 23/119 (19%) aged > 24 months. RBUS had poor sensitivity (34%) and low positive predictive value (47%) to identify patients with renal damage. 99/149 (66%) children with renal damage on DMSA had normal RBUS. After FUTI, 66% of children with reduced renal function and/or renal cortical defects found by DMSA scintigraphy had a normal RBUS. Since abnormal DMSA may correlate with increased risk for VUR, recurrent FUTI and renal damage, our data suggest RBUS alone will fail to detect a significant proportion of patients at risk. The data suggest that imaging after FUTI should include acute RBUS and delayed DMSA, reserving VCUG for patients with abnormal DMSA and/or recurrent FUTI. Copyright © 2015 Journal of Pediatric Urology Company. Published by Elsevier Ltd. All rights reserved.
Gannon, Stephen A; Mukamal, Kenneth J; Chang, James D
2018-06-14
The aim of this study was to identify echocardiographic predictors of improved or worsening renal function during intravenous diuresis for decompensated heart failure. Secondary aim included defining the incidence and clinical risk factors for acute changes in renal function with decongestion. A retrospective review of 363 patients admitted to a single centre for decompensated heart failure who underwent intravenous diuresis and transthoracic echocardiography was conducted. Clinical, echocardiographic, and renal function data were retrospectively collected. A multinomial logistic regression model was created to determine relative risk ratios for improved renal function (IRF) or worsening renal function (WRF). Within this cohort, 36% of patients experienced WRF, 35% had stable renal function, and 29% had IRF. Patients with WRF were more likely to have a preserved left ventricular ejection fraction compared with those with stable renal function or IRF (P = 0.02). Patients with IRF were more likely to have a dilated, hypokinetic right ventricle compared with those with stable renal function or WRF (P ≤ 0.01), although this was not significant after adjustment for baseline characteristics. Left atrial size, left ventricular linear dimensions, and diastolic function did not significantly predict change in renal function. An acute change in renal function occurred in 65% of patients admitted with decompensated heart failure. WRF was statistically more likely in patients with a preserved left ventricular ejection fraction. A trend towards IRF was noted in patients with global right ventricular dysfunction. © 2018 The Authors. ESC Heart Failure published by John Wiley & Sons Ltd on behalf of the European Society of Cardiology.
Validation of serum free light chain reference ranges in primary care.
Galvani, Luca; Flanagan, Jane; Sargazi, Mansour; Neithercut, William D
2016-05-01
The demand for measurement of serum immunoglobulin free kappa (κ) and lambda (λ) light chains has increased. The κ:λ ratio is used to assist in diagnosis/monitoring of plasma cell disorders. The binding site reference range for serum-free light chain κ:λ ratios of 0.26-1.65 was derived from healthy volunteers. Subsequently, a reference range of 0.37-3.1 for patients with chronic kidney disease has been proposed. Elevated free light chain concentrations and borderline raised free light chain ratios also may be found in polyclonal gammopathies and with other non-renal illnesses. This assessment was conducted to validate the established free light chain reference ranges in individuals from primary care. A total of 130 samples were identified from routine blood samples collected in primary care for routine biochemistry testing and estimated glomerular filtration rate calculation. The median and range of κ:λ ratios found in each estimated glomerular filtration rate group used for chronic kidney disease classification were higher than previously described. This was the case for individuals with normal or essentially normal renal function with estimated glomerular filtration rates>90, (0.58-1.76) and estimated glomerular filtration rate of 60-90 mL/min/1.73 m(2), (0.71-1.93). Individuals with estimated glomerular filtration rate 15-30, (0.72-4.50) and estimated glomerular filtration rate <15 ml/min/1.73 m(2) (0.71-4.95) also had higher values when compared to the current renal reference range of 0.37-3.10. Elevation of free light chain-κ:λ ratios may occur in the absence of a reduced renal function shown by a normal estimated glomerular filtration rate and in the presence of reduced renal function by estimated glomerular filtration rate when comparing results with the established reference ranges. Explanations include choice of analytical systems or the presence of other concurrent non-plasma cell illness. © The Author(s) 2016.
Zhao, H; Watts, H R; Chong, M; Huang, H; Tralau-Stewart, C; Maxwell, P H; Maze, M; George, A J T; Ma, D
2013-01-01
Prolonged hypothermic storage causes ischemia-reperfusion injury (IRI) in the renal graft, which is considered to contribute to the occurrence of the delayed graft function (DGF) and chronic graft failure. Strategies are required to protect the graft and to prolong renal graft survival. We demonstrated that xenon exposure to human proximal tubular cells (HK-2) led to activation of range of protective proteins. Xenon treatment prior to or after hypothermia–hypoxia challenge stabilized the HK-2 cellular structure, diminished cytoplasmic translocation of high-mobility group box (HMGB) 1 and suppressed NF-κB activation. In the syngeneic Lewis-to-Lewis rat model of kidney transplantation, xenon exposure to donors before graft retrieval or to recipients after engraftment decreased caspase-3 expression, localized HMGB-1 within nuclei and prevented TLR-4/NF-κB activation in tubular cells; serum pro-inflammatory cytokines IL-1β, IL-6 and TNF-α were reduced and renal function was preserved. Xenon treatment of graft donors or of recipients prolonged renal graft survival following IRI in both Lewis-to-Lewis isografts and Fischer-to-Lewis allografts. Xenon induced cell survival or graft functional recovery was abolished by HIF-1α siRNA. Our data suggest that xenon treatment attenuates DGF and enhances graft survival. This approach could be translated into clinical practice leading to a considerable improvement in long-term graft survival. PMID:23710625
Morici, Nuccia; Savonitto, Stefano; Ponticelli, Claudio; Schrieks, Ilse C; Nozza, Anna; Cosentino, Francesco; Stähli, Barbara E; Perrone Filardi, Pasquale; Schwartz, Gregory G; Mellbin, Linda; Lincoff, A Michael; Tardif, Jean-Claude; Grobbee, Diederick E
2017-09-01
Worsening renal function during hospitalization for an acute coronary syndrome is strongly predictive of in-hospital and long-term outcome. However, the role of post-discharge worsening renal function has never been investigated in this setting. We considered the placebo cohort of the AleCardio trial comparing aleglitazar with standard medical therapy among patients with type 2 diabetes mellitus and a recent acute coronary syndrome. Patients who had died or had been admitted to hospital for heart failure before the 6-month follow-up, as well as patients without complete renal function data, were excluded, leaving 2776 patients for the analysis. Worsening renal function was defined as a >20% reduction in estimated glomerular filtration rate from discharge to 6 months, or progression to macroalbuminuria. The Cox regression analysis was used to determine the prognostic impact of 6-month renal deterioration on the composite of all-cause death and hospitalization for heart failure. Worsening renal function occurred in 204 patients (7.34%). At a median follow-up of 2 years the estimated rates of death and hospitalization for heart failure per 100 person-years were 3.45 (95% confidence interval [CI], 2.46-6.36) for those with worsening renal function, versus 1.43 (95% CI, 1.14-1.79) for patients with stable renal function. At the adjusted analysis worsening renal function was associated with the composite endpoint (hazard ratio 2.65; 95% CI, 1.57-4.49; P <.001). Post-discharge worsening renal function is not infrequent among patients with type 2 diabetes and acute coronary syndromes with normal or mildly depressed renal function, and is a strong predictor of adverse cardiovascular events. Copyright © 2017 Elsevier Inc. All rights reserved.
The utility of uric acid assay in dogs as an indicator of functional hepatic mass.
Hill, J M; Leisewitz, A L; Goddard, A
2011-06-01
Uric acid was used as a test for liver disease before the advent of enzymology. Three old studies criticised uric acid as a test of liver function. Uric acid, as an end-product of purine metabolism in the liver, deserved re-evaluation as a liver function test. Serum totalbile acids are widely accepted as the most reliable liver function test. This study compared the ability of serum uric acid concentration to assess liver function with that of serum pre-prandial bile acids in dogs. In addition, due to the renal excretion of uric acid the 2 assays were also compared in a renal disease group. Using a control group of healthy dogs, a group of dogs with congenital vascular liver disease, a group of dogs with non-vascular parenchymal liver diseases and a renal disease group, the ability of uric acid and pre-prandial bile acids was compared to detect reduced functional hepatic mass overall and in the vascular or parenchymal liver disease groups separately. Sensitivities, specificities and predictive value parameters were calculated for each test. The medians of uric acid concentration did not differ significantly between any of the groups, whereas pre-prandial bile acids medians were significantly higher in the liver disease groups compared with the normal and renal disease group of dogs. The sensitivity of uric acid in detecting liver disease overall was 65% while the specificity of uric acid in detecting liver disease overall was 59%. The sensitivity and specificity of uric acid in detecting congenital vascular liver disease was 68% and 59%, respectively. The sensitivity and specificity of uric acid in detecting parenchymal liver disease was 63% and 60%, respectively. The overall positive and negative predictive values for uric acid in detecting liver disease were poor and the data in this study indicated uric acid to be an unreliable test of liver function. In dogs suffering from renal compromise serum uric acid concentrations may increase into the abnormal range due to its renal route of excretion.
O'Sullivan, Dawn; McCarthy, Geraldine
2007-11-01
To measure fatigue and physical functioning in patients with end stage renal disease (ESRD) receiving haemodialysis and to investigate the relationships between fatigue and physical functioning. Fatigue and reduced physical functioning are among the most bothersome symptoms experienced by individuals receiving haemodialysis for ESRD. Research has shown that increasing activity levels has resulted in decreased fatigue levels and improved physical functioning in individuals with cancer. Establishing whether or not a relationship exists between both concepts in haemodialysis patients is a preliminary step in identifying potential fatigue reducing strategies necessary for improved wellbeing. A quantitative exploratory correlational design was used with 46 individuals completing the Multi-dimensional Fatigue Inventory, the Medical Outcomes Study Short-Form 36-item questionnaire and a Demographic Questionnaire. Results indicated fatigue was prevalent with highest scores achieved for physical fatigue; reduced activity and general fatigue. Substantial limitations in physical functioning were found. A significant moderate negative relationship between general fatigue and physical functioning indicated that, as physical functioning levels increased, fatigue levels decreased. A significant difference was also found between general fatigue scores for males and females. Significant relationships were found between overall physical functioning, older age and employment status. The research indicates the prevalence of fatigue and limitations in physical functioning in individuals with ESRD. However, as physical functioning increased fatigue decreased; a finding relevant to clinical nursing. Understanding the levels of fatigue and the value of exercise is of relevance to clinical practice thus assessment of fatigue and physical functioning ability in the clinical setting is necessary.
Mid-Term Vascular Safety of Renal Denervation Assessed by Follow-up MR Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmid, Axel, E-mail: axel.schmid@uk-erlangen.de; Schmieder, Raphael; Lell, Michael
Background/AimsRenal denervation (RDN) emerged as a treatment option for reducing blood pressure (BP) in patients with treatment-resistant hypertension (TRH). However, concerns have been raised regarding the incidence of late renal artery stenosis or thromboembolism after RDN. The goal of the current study was, therefore, to conduct a prospective clinical trial on the mid-term vascular integrity of the renal arteries and the perfusion of the renal parenchyma assessed by magnetic resonance imaging (MRI) in the follow-up after catheter-based RDN.MethodsIn our single-centre investigator initiated study, 51 patients with true TRH underwent catheter-based RDN using the Symplicity Flex{sup TM} catheter (Medtronic Inc., Palomore » Alto, CA). Follow-up MRI was performed at a median of 11 months (interquartile range 6–18 months) after RDN on a 1.5T MR unit. High-resolution MR angiography (MRA) and MRI results were compared to the baseline digital angiography of renal arteries obtained at time of RDN. In case of uncertainties (N = 2) catheter angiography was repeated.ResultsBoth office and 24-h ambulatory BP were significantly reduced 6 and 12 months after RDN. Renal function remained unchanged 6 and 12 months after RDN. In all patients, MRA excluded new or progression of pre-existing low grade renal artery stenosis as well as focal aneurysms at the sites of radiofrequency ablation. In none of the patients new segmental perfusion deficits in either kidney were detected on MRI.ConclusionsNo vascular or parenchymal complications after radiofrequency-based RDN were detected in 51 patients followed up by MRI.« less
Gender hormones and the progression of experimental polycystic kidney disease.
Stringer, Kenneth D; Komers, Radko; Osman, Shukri A; Oyama, Terry T; Lindsley, Jessie N; Anderson, Sharon
2005-10-01
Male gender is a risk factor for progression of autosomal-dominant polycystic kidney disease (ADPKD), clinically and in the Han:SPRD rat model. Orchiectomy limits progression, but mechanisms of the detrimental effect of androgen, and/or beneficial effects of estrogen, are not known. This protocol tested the hypothesis that male gender (intact androgen status) promotes progression, while female gender (intact estrogen status) is protective; and that these disease-modifying effects are due to changes in expression of known fibrotic mediators. Studies were performed in male and female noncystic control (+/+) and cystic (+/-) rats subjected to orchiectomy, ovariectomy, or sham operation. At 12 weeks of age, renal function was measured. Blood and kidneys were taken for measurement of plasma and renal renin, endothelin (ET-1), endothelial nitric oxide synthase (eNOS), and vascular endothelial growth factor (VEGF), using biochemical, protein expression, and immunohistochemical methods. Cystic male rats exhibited significantly reduced glomerular filtration (GFR) and effective renal plasma flow (ERPF) rates, with suppression of plasma and renal renin, up-regulation of renal ET-1 and eNOS, and down-regulation of renal VEGF expression. Orchiectomy attenuated the fall in GFR and ERPF, while numerically limiting changes in eNOS and VEGF. Female rats exhibited less cystic growth, with normal renin status, lesser elevation of renal ET-1, and proportionately lesser changes in VEGF and eNOS. Ovariectomy led to higher blood pressure and reduced GFR and ERPF, with a trend toward upregulation of ET-1, and significant down-regulation of VEGF and eNOS. Female gender is protective, but ovariectomy attenuates the protective effect of female gender, in association with changes in renal expression of ET-1, VEGF, and eNOS. The accelerated disease in male rats can be attenuated by orchiectomy and consequent changes in expression of disease mediators.
Baroreflex activation therapy in patients with prior renal denervation.
Wallbach, Manuel; Halbach, Marcel; Reuter, Hannes; Passauer, Jens; Lüders, Stephan; Böhning, Enrico; Zenker, Dieter; Müller, Gerhard A; Wachter, Rolf; Koziolek, Michael J
2016-08-01
Both baroreflex activation therapy (BAT) and renal denervation modulate sympathetic activity. The aim of this study was to systematically investigate whether additive modulation of autonomic nervous system by BAT lowers blood pressure (BP) in patients who still suffer from uncontrolled resistant hypertension despite prior renal denervation. From 2012 to January 2015, patients treated with BAT for uncontrolled resistant hypertension, who prior received renal denervation were consecutively analyzed in four German centers for hypertension. Analyses of office BP, 24-h ambulatory BP, central hemodynamics, parameters of renal function were performed. A total of 28 patients, who underwent renal denervation at least 5 months before and still suffer from uncontrolled BP, were subsequently treated with BAT. The office SBP decreased from 182 ± 28 to 163 ± 27 mmHg (P < 0.01) with a responder rate of 68% (office SBP reduction ≥10 mmHg) at month 6, whereas the number of prescribed antihypertensive drug classes remained unchanged (6.2 ± 1.5 vs. 6.0 ± 1.7, P = 0.30). Serum creatinine, estimated glomerular filtration rate and cystatin C remained stable (P = 1.00, P = 0.41 and P = 0.22, respectively), whereas albuminuria was significantly reduced by a median of -29% (P = 0.02). Central SBP (-15 ± 24 mmHg, P = 0.047) and end systolic pressure (-14 ± 20 mmHg, P = 0.03) were significantly reduced. The present data demonstrate that BAT may exert BP-lowering as well as antiproteinuric effects in patients with prior renal denervation. However, precise evaluation of BAT effects in patients with prior renal denervation will need randomized controlled trials using sham procedures.
Jia, Linpei; Zhang, Weiguang; Ma, Jie; Chen, Xizhao; Chen, Lei; Li, Zuoxiang; Cai, Guangyan; Huang, Jing; Zhang, Jinping; Bai, Xiaojuan; Feng, Zhe; Sun, Xuefeng; Chen, Xiangmei
2017-01-01
In this study, we aim to investigate the association between renal function and arterial stiffness in a Chinese Han population, and further to discuss the effects of smoking on renal function. We collected the data of the brachium-ankle pulse wave velocity (baPWV), blood pressure, blood chemistry and smoking status. Then, the multiple linear regression was done to explore the relationship between estimated glomerular filtration (eGFR) and baPWV. Further, the parameters were compared among the four groups divided according to the quartiles of baPWV. Finally, the baPWV, eGFR and albuminuria values were compared between smokers and non-smokers. baPWV is associated with eGFR in the correlation analysis and univariate linear regression model. After adjustment, the pulse pressure (PP) instead of baPWV showed a significant association with eGFR. Nevertheless, the eGFR values differed among the four baPWV groups; the baPWV values were significantly higher in the subjects at the CKD (eGFR<60 mL/min/1.73 m2) and the early CKD stage (eGFR60-80 mL/min/1.73 m2). The baPWV values and the ratio of proteinuria were significantly increased in smokers. PP but not baPWV is a predictor of declined renal function. Smokers have worse arterial stiffness and worse renal function. © 2017 The Author(s)Published by S. Karger AG, Basel.
Amaral, Liliany S de Brito; Silva, Fernanda A; Correia, Vicente B; Andrade, Clara EF; Dutra, Bárbara A; Oliveira, Márcio V; de Magalhães, Amélia CM; Volpini, Rildo A; Seguro, Antonio C; Coimbra, Terezila M
2016-01-01
This study evaluated the effects of aerobic exercise performed both previously and after the induction of diabetes mellitus on changes of renal function and structure in streptozotocin-induced diabetic rats. Female wistar rats were divided into five groups: sedentary control (C + Se); trained control (C + Ex); sedentary diabetic (D + Se); trained diabetic (D + Ex) and previously trained diabetic (D + PEx). The previous exercise consisted of treadmill running for four weeks before the induction of diabetes mellitus. After induction of diabetes mellitus with streptozotocin, the D + PEx, D + Ex and C + Ex groups were submitted to eight weeks of aerobic exercise. At the end of the training protocol, we evaluate the serum glucose, insulin and 17β-estradiol levels, renal function and structure, proteinuria, and fibronectin, collagen IV and transforming growth factor beta 1 (TGF-β1) renal expressions. Induction of diabetes mellitus reduced the insulin and did not alter 17β-estradiol levels, and exercise did not affect any of these parameters. Previous exercise training attenuated the loss of body weight, the blood glucose, the increase of glomerular filtration rate and prevented the proteinuria in the D + PEx group compared to D + Se group. Previous exercise also reduced glomerular hypertrophy, tubular and glomerular injury, as well as the expressions of fibronectin and collagen IV. These expressions were associated with reduced expression of TGF-β1. In conclusion, our study shows that regular aerobic exercise especially performed previously to induction of diabetes mellitus improved metabolic control and has renoprotective action on the diabetic kidney. PMID:26490345
Amaral, Liliany S de Brito; Silva, Fernanda A; Correia, Vicente B; Andrade, Clara E F; Dutra, Bárbara A; Oliveira, Márcio V; de Magalhães, Amélia C M; Volpini, Rildo A; Seguro, Antonio C; Coimbra, Terezila M; Soares, Telma de J
2016-02-01
This study evaluated the effects of aerobic exercise performed both previously and after the induction of diabetes mellitus on changes of renal function and structure in streptozotocin-induced diabetic rats. Female wistar rats were divided into five groups: sedentary control (C + Se); trained control (C + Ex); sedentary diabetic (D + Se); trained diabetic (D + Ex) and previously trained diabetic (D + PEx). The previous exercise consisted of treadmill running for four weeks before the induction of diabetes mellitus. After induction of diabetes mellitus with streptozotocin, the D + PEx, D + Ex and C + Ex groups were submitted to eight weeks of aerobic exercise. At the end of the training protocol, we evaluate the serum glucose, insulin and 17β-estradiol levels, renal function and structure, proteinuria, and fibronectin, collagen IV and transforming growth factor beta 1 (TGF-β1) renal expressions. Induction of diabetes mellitus reduced the insulin and did not alter 17β-estradiol levels, and exercise did not affect any of these parameters. Previous exercise training attenuated the loss of body weight, the blood glucose, the increase of glomerular filtration rate and prevented the proteinuria in the D + PEx group compared to D + Se group. Previous exercise also reduced glomerular hypertrophy, tubular and glomerular injury, as well as the expressions of fibronectin and collagen IV. These expressions were associated with reduced expression of TGF-β1. In conclusion, our study shows that regular aerobic exercise especially performed previously to induction of diabetes mellitus improved metabolic control and has renoprotective action on the diabetic kidney. © 2016 by the Society for Experimental Biology and Medicine.
Li, Yan; Wang, Xiaomin; O'Mara, Edward; Dimopoulos, Meletios A; Sonneveld, Pieter; Weisel, Katja C; Matous, Jeffrey; Siegel, David S; Shah, Jatin J; Kueenburg, Elisabeth; Sternas, Lars; Cavanaugh, Chloe; Zaki, Mohamed; Palmisano, Maria; Zhou, Simon
2017-01-01
Pomalidomide is an immunomodulatory drug for treatment of relapsed or refractory multiple myeloma (rrMM) in patients who often have comorbid renal conditions. To assess the impact of renal impairment on pomalidomide exposure, a population pharmacokinetics (PPK) model of pomalidomide in rrMM patients with various degrees of impaired renal function was developed. Intensive and sparse pomalidomide concentration data collected from two clinical studies in rrMM patients with normal renal function, moderately impaired renal function, severely impaired renal function not requiring dialysis, and with severely impaired renal function requiring dialysis were pooled over the dose range of 2 to 4 mg, to assess specifically the influence of the impaired renal function as a categorical variable and a continuous variable on pomalidomide clearance and plasma exposure. In addition, pomalidomide concentration data collected on dialysis days from both the withdrawal (arterial) side and from the returning (venous) side of the dialyzer, from rrMM patients with severely impaired renal function requiring dialysis, were used to assess the extent to which dialysis contributes to the removal of pomalidomide from blood circulation. PPK analyses demonstrated that moderate to severe renal impairment not requiring dialysis has no influence on pomalidomide clearance or plasma exposure, as compared to those patients with normal renal function, while pomalidomide exposure increased approximately 35% in patients with severe renal impairment requiring dialysis on nondialysis days. In addition, dialysis increased total body pomalidomide clearance from 5 L/h to 12 L/h, indicating that dialysis will significantly remove pomalidomide from the blood circulation. Thus, pomalidomide should be administered post-dialysis on the days of dialysis.
Demir, E; Yeğit, O; Erol, A; Akgül, S U; Çalışkan, B; Bayraktar, A; Çalışkan, Y; Türkmen, A; Savran, F O; Sever, M S
2017-04-01
The crossmatch test is essential prior to kidney transplantation (tx) to confirm compatibility between the donor and the recipient. However, its results can be misleading due to "undetectable antibodies" in the recipient's serum. To establish if undetectable autoantibodies are responsible for a positive result, an auto-crossmatch test can be performed. In this study, we aim to determine the long-term prognostic value of auto-flow cytometric auto-crossmatch (FCXM) test on kidney survival in kidney tx recipients. The primary outcome variable was reduced renal function. Secondary endpoints were incidence of biopsy-confirmed chronic antibody-mediated rejection (CAMR) and recurrent glomerulonephritis (GN). There were no differences regarding initial serum creatinine levels between the study and control groups (P = .441). Patients who had positive auto-B FCXM had a significantly reduced renal function compared with the control group (P = .016). Four patients developed biopsy-confirmed CAMR in the study group and 1 patient in the control group (P = .047). Five patients had biopsy-confirmed recurrent GN in the GN study group, and only 1 patient had recurrent GN in the GN control group (P = .026). Kidney transplant recipients with positive auto-FCXM test had significantly reduced renal function and a higher incidence of recurrent GN and CAMR compared with the control group. The findings of this study suggest a potential role of auto-antibody causing positive auto-FCXM test result, meanwhile increasing the risk of CAMR, recurrent GN, and new-onset diabetes after tx. Copyright © 2017 Elsevier Inc. All rights reserved.
Measuring residual renal function for hemodialysis adequacy: Is there an easier option?
Davenport, Andrew
2017-10-01
Most patients starting hemodialysis (HD) have residual renal function. As such, there has been increased interest in starting patients with less frequent and shorter dialysis session times. However, for this incremental approach to be successful, patients require regular monitoring of residual renal function, so that as residual renal function declines, the amount of HD is appropriately increased. Currently most dialysis centers rely on interdialytic urine collections. However, many patients find these inconvenient and there may be marked intrapatient variability due to compliance issues. Thus, alternative markers of residual renal function are required for routine clinical practice. Currently three middle sized molecules; cystatin C, β2 microglobulin, and βtrace protein have been investigated as potential endogenous markers of glomerular filtration. Although none is ideal, combinations of these markers have been proposed to provide a more accurate estimation of glomerular clearance, and in particular cut offs for minimal residual renal function. However, in patients with low levels of residual renal function it remains unclear as to whether the benefits of residual renal function equally apply to glomerular filtration or tubular function. © 2017 International Society for Hemodialysis.
Gude, Einar; Gullestad, Lars; Andreassen, Arne K
2017-06-01
De-novo introduction of everolimus (Eve) in heart transplant recipients opens for early reduction of calcineurin inhibitors (CNI) and potential of preserving renal function, attenuate progression of coronary allograft vasculopathy (CAV) and maintain rejection efficacy. The first trials demonstrated adequate rejection prophylaxis and favorable outcomes on CAV, but observed enhanced nephrotoxicity because of insufficient CNI reduction. The SCHEDULE trial compared de-novo Eve with significantly reduced CNI exposure and conversion to CNI-free treatment week 7-11 postheart transplant, with standard CNI immunosuppression. Improved renal function and attenuation of CAV was found among Eve patients, with higher numbers of treated acute rejections observed. With sustained superior renal and CAV related data also after 36 months with the Eve protocol, cardiac function was equally well preserved in both groups. According to the International Society of Heart and Lunge Transplantation registry, mammalian target of rapamycin inhibitor treatment is uncommon during the first postoperative year, with a prevalence of 20% in patients after 5 years. Current evidence suggests a greater benefit from these immunosuppressives if introduced at an earlier timepoint. Immunosuppressive protocols based on Eve treatment in de-novo patients should be further investigated and developed, enabling CNI avoidance before accelerating side-effects lead to irreversible damage.
Ezquer, Fernando; Giraud-Billoud, Maximiliano; Carpio, Daniel; Cabezas, Fabián; Conget, Paulette; Ezquer, Marcelo
2015-01-01
The aim of our work was to evaluate, in an animal model of severe diabetes mellitus, the effect of mesenchymal stem cells (MSCs) administration on diabetic nephropathy (DN) progression. After diabetes induction, one group of mice received the vehicle (DM) and other group received a single dose of MSCs (DM + MSCs). DM + MSCs mice showed a significant improvement in functional parameters of the kidney compared with untreated mice. While DM mice presented marked histopathological changes characteristics of advanced stages of DN (fibrosis, glomerulosclerosis, glomerular basement membrane thickening, capillary occlusion, decreased podocyte density, and effacement of foot processes), DM + MSCs mice showed only slight tubular dilatation. The renoprotection was not associated with an improvement in diabetic condition and very low number of donor cells was found in the kidney of DM + MSCs mice, suggesting that renoprotection could be mediated by paracrine effects. Indeed, DM + MSC mice presented increased renal proliferation index, decreased renal apoptotic index and the restoration of proregenerative factors, and anti-inflammatory cytokines levels. Moreover, macrophage infiltration and oxidative stress damage were also reduced in DM + MSCs mice. Our data demonstrate that MSC administration triggers a proregenerative microenvironment in DN kidney, which allows the preservation of the renal function even if diabetes was uncorrected.
Ezquer, Fernando; Giraud-Billoud, Maximiliano; Carpio, Daniel; Cabezas, Fabián; Conget, Paulette
2015-01-01
The aim of our work was to evaluate, in an animal model of severe diabetes mellitus, the effect of mesenchymal stem cells (MSCs) administration on diabetic nephropathy (DN) progression. After diabetes induction, one group of mice received the vehicle (DM) and other group received a single dose of MSCs (DM + MSCs). DM + MSCs mice showed a significant improvement in functional parameters of the kidney compared with untreated mice. While DM mice presented marked histopathological changes characteristics of advanced stages of DN (fibrosis, glomerulosclerosis, glomerular basement membrane thickening, capillary occlusion, decreased podocyte density, and effacement of foot processes), DM + MSCs mice showed only slight tubular dilatation. The renoprotection was not associated with an improvement in diabetic condition and very low number of donor cells was found in the kidney of DM + MSCs mice, suggesting that renoprotection could be mediated by paracrine effects. Indeed, DM + MSC mice presented increased renal proliferation index, decreased renal apoptotic index and the restoration of proregenerative factors, and anti-inflammatory cytokines levels. Moreover, macrophage infiltration and oxidative stress damage were also reduced in DM + MSCs mice. Our data demonstrate that MSC administration triggers a proregenerative microenvironment in DN kidney, which allows the preservation of the renal function even if diabetes was uncorrected. PMID:26167475
Shen, Xiaohua; Hu, Bo; Xu, Guangtao; Chen, Fengjuan; Ma, Ruifen; Zhang, Nenghua; Liu, Jie; Ma, Xiaoqin; Zhu, Jia; Wu, Yuhong; Shen, Ruilin
2017-01-01
Diabetes mellitus can exacerbate renal ischemia-reperfusion (I/R) injury (RI/RI). The aim of the present study was to evaluate the protective effect of GSK-3β inhibition (TDZD-8) on I/R-induced renal injury through the Nrf2/HO-1 pathway in a streptozocin (STZ)-induced diabetic rat model. STZ-induced diabetic rats preconditioned with TDZD-8 and ZnPP were subjected to renal I/R. The extent of renal morphologic lesions. Renal function was assessed from blood urea nitrogen (BUN) and serum creatinine (Scr), as determined utlizing commercial kits. Oxidative stress and inflammatory activity in the kidney tissue was estimated from levels of malondialdehyde (MDA), interleukin-10 (IL-10), tumor necrosis factor-α (TNF-α), and nitric oxide (NO), as well as the activities of superoxide dismutase (SOD) and glutathione (GSH) using qRT-PCR and ELISA. The expressions of Nrf2, HO-1, Bcl-2 and NF-κB in the renal tissue were measured by qRT-PCR and western blotting. I/R-induced renal inflammation was reduced significantly by TDZD-8 pretreatment. Preconditioning with TDZD-8 suppressed NF-κB expression and enhanced Bcl-2 expression in the renal tissue. The upregulated level of malondialdehyde (MDA), and reduced activities of superoxide dismutase (SOD) and glutathione (GSH) in I/R-shocked rats were markedly restored by TDZD-8 pretreatment. Furthermore, pretreatment with TDZD-8 enhanced activation of the Nrf2/HO-1 pathway in the renal tissue of diabetic RI/RI rats. These findings suggest that preconditioning with TDZD-8 may protect the kidney from I/R-induced damage via the activation of the Nrf2/HO-1 pathway in STZ-induced diabetic rats. Further detailed studies are needed to further clarify the underlying mechanisms. © 2017 The Author(s). Published by S. Karger AG, Basel.
Ayalasomayajula, Surya P; Langenickel, Thomas H; Jordaan, Pierre; Zhou, Wei; Chandra, Priyamvada; Albrecht, Diego; Pal, Parasar; Rajman, Iris; Sunkara, Gangadhar
2016-09-01
LCZ696 (sacubitril/valsartan), an angiotensin receptor neprilysin inhibitor, is indicated for chronic heart failure (HF) and reduced ejection fraction (HFrEF) to reduce the risk of cardiovascular death and hospitalization for HF. Following oral administration, LCZ696 provides systemic exposure to valsartan and sacubitril (a prodrug), and its metabolite sacubitrilat (the active neprilysin inhibitor, formerly named as LBQ657), which is eliminated primarily via renal route. Since renal dysfunction is a common comorbidity in patients with HF, two open-label studies assessing the effect of mild, moderate, and severe renal impairment were conducted. Patients with mild (N = 8; creatinine clearance [CrCl] 50 to ≤80 mL/min), moderate (N = 8; CrCl 30 to <50 mL/min), and severe (N = 6; CrCl <30 mL/min) renal impairment and matching healthy subjects (CrCl >80 mL/min) for each severity group were enrolled to assess the pharmacokinetics of LCZ696 analytes following administration of LCZ696 400 mg once daily (QD) on days 1 and 5. The steady-state Cmax and AUC0-24h of sacubitril and valsartan were unchanged in patients with renal impairment compared with healthy subjects. However, the steady-state Cmax of sacubitrilat was increased by ∼60 % in patients irrespective of degree of renal impairment; half-life increased from 12 h (in healthy subjects) to 21.1, 23.7, and 38.5 h, respectively; and AUC0-24h was increased 2.10-, 2.24-, and 2.70-fold, respectively, in patients with mild, moderate, and severe renal impairment. Renal dysfunction increases exposure to sacubitrilat while not impacting sacubitril and valsartan exposure. LCZ696 was generally well tolerated in patients with renal impairment.
Watts, Kara L; Ghosh, Propa; Stein, Solomon; Ghavamian, Reza
2017-01-01
To assess the relationship between individual nephrometry score (NS) constituents (RENAL) on perioperative outcomes and renal function of the surgical kidney in patients undergoing laparoscopic partial nephrectomy or robotic-assisted partial nephrectomy. Two hundred forty-five patients who underwent laparoscopic partial nephrectomy or robotic-assisted partial nephrectomy between 2005 and 2014 were retrospectively reviewed. Each renal mass' NS was calculated from preoperative computed tomography imaging. Multivariate regression analysis was used to evaluate the effect of NS variables on perioperative outcomes and change in overall renal function (as estimated by glomerular filtration rate) from preoperative to 1-year postoperative. A cohort analysis assessed the effect of NS variables on change in split renal function of the surgical kidney from pre- to postoperative based on nuclear medicine renal scintigraphy. Tumor radius (R), endophytic nature (E), and nearness to collecting system (N) variables significantly and incrementally predicted a longer operative time and warm ischemia time. Overall renal function based on glomerular filtration rate was not affected by any NS variable. However, percent function of the surgical kidney by renal scintigraphy significantly decreased postoperatively as R and E values increased. R, E, and N were associated with significant changes in warm ischemia time and operative time. R and E were associated with a significant decrease in split renal function of the surgical kidney at 1 year after surgery but not with overall renal function. R, E, and N are the NS constituents most relevant to perioperative outcomes and postoperative differential renal function after partial nephrectomy. Copyright © 2016. Published by Elsevier Inc.
Mahfoud, F; Vonend, O; Bruck, H; Clasen, W; Eckert, S; Frye, B; Haller, H; Hausberg, M; Hoppe, U C; Hoyer, J; Hahn, K; Keller, T; Krämer, B K; Kreutz, R; Potthoff, S A; Reinecke, H; Schmieder, R; Schwenger, V; Kintscher, U; Böhm, M; Rump, L C
2011-11-01
This commentary summarizes the expert consensus and recommendations of the working group 'Herz und Niere' of the German Society of Cardiology (DGK), the German Society of Nephrology (DGfN) and the German Hypertension League (DHL) on renal denervation for antihypertensive treatment. Renal denervation is a new, interventional approach to selectively denervate renal afferent and efferent sympathetic fibers. Renal denervation has been demonstrated to reduce office systolic and diastolic blood pressure in patients with resistant hypertension, defined as systolic office blood pressure ≥ 160 mm Hg and ≥ 150 mm Hg in patients with diabetes type 2, which should currently be used as blood pressure thresholds for undergoing the procedure. Exclusion of secondary hypertension causes and optimized antihypertensive drug treatment is mandatory in every patient with resistant hypertension. In order to exclude pseudoresistance, 24-hour blood pressure measurements should be performed. Preserved renal function was an inclusion criterion in the Symplicity studies, therefore, renal denervation should be only considered in patients with a glomerular filtration rate > 45 ml/min. Adequate centre qualification in both, treatment of hypertension and interventional expertise are essential to ensure correct patient selection and procedural safety. Long-term follow-up after renal denervation and participation in the German Renal Denervation (GREAT) Registry are recommended to assess safety and efficacy after renal denervation over time. © Georg Thieme Verlag KG Stuttgart · New York.
Chen, Jun-Feng; Liu, Hong; Ni, Hai-Feng; Lv, Lin-Li; Zhang, Ming-Hui; Zhang, Ai-Hua; Tang, Ri-Ning; Chen, Ping-Sheng; Liu, Bi-Cheng
2013-01-01
Dysfunctional mitochondria participate in the progression of chronic kidney disease (CKD). Pirfenidone is a newly identified anti-fibrotic drug. However, its mechanism remains unclear. Mitochondrial dysfunction is an early event that occurs prior to the onset of renal fibrosis. In this context, we investigated the protective effect of pirfenidone on mitochondria and its relevance to apoptosis and oxidative stress in renal proximal tubular cells. A remnant kidney rat model was established. Human renal proximal tubular epithelial cells (HK2) using rotenone, a mitochondrial respiratory chain complex Ι inhibitor were further investigated in vitro to examine the mitochondrial protective effect of pirfenidone. Pirfenidone protected mitochondrial structures and functions by stabilizing the mitochondrial membrane potential, maintaining ATP production and improving the mitochondrial DNA (mtDNA) copy number. Pirfenidone decreased tubular cell apoptosis by inhibiting the mitochondrial apoptotic signaling pathway. Pirfenidone also reduced oxidative stress by enhancing manganese superoxide dismutase (Mn-SOD) and inhibiting intracellular reactive oxygen species (ROS) generation, which suggested that the anti-oxidant effects occurred at least partially via the mitochondrial pathway. Pirfenidone may be effective prior to the onset of renal fibrosis because this drug exerts its anti-fibrotic effect by protection of mitochondria in renal proximal tubular cells.
Chen, Jun-Feng; Liu, Hong; Ni, Hai-Feng; Lv, Lin-Li; Zhang, Ming-Hui; Zhang, Ai-Hua; Tang, Ri-Ning; Chen, Ping-Sheng; Liu, Bi-Cheng
2013-01-01
Dysfunctional mitochondria participate in the progression of chronic kidney disease (CKD). Pirfenidone is a newly identified anti-fibrotic drug. However, its mechanism remains unclear. Mitochondrial dysfunction is an early event that occurs prior to the onset of renal fibrosis. In this context, we investigated the protective effect of pirfenidone on mitochondria and its relevance to apoptosis and oxidative stress in renal proximal tubular cells. A remnant kidney rat model was established. Human renal proximal tubular epithelial cells (HK2) using rotenone, a mitochondrial respiratory chain complex Ι inhibitor were further investigated in vitro to examine the mitochondrial protective effect of pirfenidone. Pirfenidone protected mitochondrial structures and functions by stabilizing the mitochondrial membrane potential, maintaining ATP production and improving the mitochondrial DNA (mtDNA) copy number. Pirfenidone decreased tubular cell apoptosis by inhibiting the mitochondrial apoptotic signaling pathway. Pirfenidone also reduced oxidative stress by enhancing manganese superoxide dismutase (Mn-SOD) and inhibiting intracellular reactive oxygen species (ROS) generation, which suggested that the anti-oxidant effects occurred at least partially via the mitochondrial pathway. Pirfenidone may be effective prior to the onset of renal fibrosis because this drug exerts its anti-fibrotic effect by protection of mitochondria in renal proximal tubular cells. PMID:24349535
Systemic and Renal-Specific Sympathoinhibition in Obesity Hypertension
Lohmeier, Thomas E.; Iliescu, Radu; Liu, Boshen; Henegar, Jeffrey R.; Maric-Bilkan, Christine; Irwin, Eric D.
2012-01-01
Chronic pressure-mediated baroreflex activation suppresses renal sympathetic nerve activity. Recent observations indicate that chronic electrical activation of the carotid baroreflex produces sustained reductions in global sympathetic activity and arterial pressure. Thus, we investigated the effects of global and renal specific suppression of sympathetic activity in dogs with sympathetically-mediated, obesity-induced hypertension by comparing the cardiovascular, renal, and neurohormonal responses to chronic baroreflex activation and bilateral surgical renal denervation. After control measurements, the diet was supplemented with beef fat while sodium intake was held constant. After 4 weeks on the high-fat, when body weight had increased ~a 50%, fat intake was reduced to a level that maintained this body weight. This weight increase was associated with an increase in mean arterial pressure from 100±2 to 117±3 mm Hg and heart rate from 86±3 to 130±4 bpm. The hypertension was associated with a marked increase in cumulative sodium balance despite ~ a 35% increase in GFR. The importance of increased tubular reabsorption to sodium retention was further reflected by ~ a 35% decrease in fractional sodium excretion. Subsequently, both chronic baroreflex activation (7 days) and renal denervation decreased plasma renin activity and abolished the hypertension. However, baroreflex activation also suppressed systemic sympathetic activity and tachycardia and reduced glomerular hyperfiltration while increasing fractional sodium excretion. In contrast, GFR increased further after renal denervation. Thus, by improving autonomic control of cardiac function and diminishing glomerular hyperfiltration, suppression of global sympathetic activity by baroreflex activation may have beneficial effects in obesity beyond simply attenuating hypertension. PMID:22184321
Update on the renal toxicity of iodinated contrast drugs used in clinical medicine
Andreucci, Michele; Faga, Teresa; Serra, Raffaele; De Sarro, Giovambattista; Michael, Ashour
2017-01-01
An important side effect of diagnostic contrast drugs is contrast-induced acute kidney injury (CI-AKI; a sudden decrease in renal function) occurring 48–72 hours after injection of a contrast drug that cannot be attributed to other causes. Its existence has recently been challenged, because of some retrospective studies in which the incidence of AKI was not different between subjects who received a contrast drug and those who did not, even using propensity score matching to prevent selection bias. For some authors, only patients with estimated glomerular filtration rate <30 mL/min/1.73 m2 are at significant risk of CI-AKI. Most agree that when renal function is normal, there is no CI-AKI risk. Many experimental studies, however, are in favor of the existence of CI-AKI. Contrast drugs have been shown to cause the following changes: renal vasoconstriction, resulting in a rise in intrarenal resistance (decrease in renal blood flow and glomerular filtration rate and medullary hypoxia); epithelial vacuolization and dilatation and necrosis of proximal tubules; potentiation of angiotensin II effects, reducing nitric oxide (NO) and causing direct constriction of descending vasa recta, leading to formation of reactive oxygen species in isolated descending vasa recta of rats microperfused with a solution of iodixanol; increasing active sodium reabsorption in the thick ascending limbs of Henle’s loop (increasing O2 demand and consequently medullary hypoxia); direct cytotoxic effects on endothelial and tubular epithelial cells (decrease in release of NO in vasa recta); and reducing cell survival, due to decreased activation of Akt and ERK1/2, kinases involved in cell survival/proliferation. Prevention is mainly based on extracellular volume expansion, statins, and N-acetylcysteine; conflicting results have been obtained with nebivolol, furosemide, calcium-channel blockers, theophylline, and hemodialysis. PMID:28579836
Corticosteroids in IgA Nephropathy: A Retrospective Analysis from the VALIGA Study
Tesar, Vladimir; Troyanov, Stéphan; Bellur, Shubha; Verhave, Jacobien C.; Cook, H. Terence; Feehally, John; Roberts, Ian S.D.; Cattran, Daniel
2015-01-01
Current guidelines suggest treatment with corticosteroids (CS) in IgA nephropathy (IgAN) when proteinuria is persistently ≥1 g/d despite 3–6 months of supportive care and when eGFR is >50 ml/min per 1.73 m2. Whether the benefits of this treatment extend to patients with an eGFR≤50 ml/min per 1.73 m2, other levels of proteinuria, or different renal pathologic lesions remains unknown. We retrospectively studied 1147 patients with IgAN from the European Validation Study of the Oxford Classification of IgAN (VALIGA) cohort classified according to the Oxford-MEST classification and medication used, with details of duration but not dosing. Overall, 46% of patients received immunosuppression, of which 98% received CS. Treated individuals presented with greater clinical and pathologic risk factors of progression. They also received more antihypertensive medication, and a greater proportion received renin angiotensin system blockade (RASB) compared with individuals without immunosuppressive therapy. Immunosuppression was associated with a significant reduction in proteinuria, a slower rate of renal function decline, and greater renal survival. Using a propensity score, we matched 184 subjects who received CS and RASB to 184 patients with a similar risk profile of progression who received only RASB. Within this group, CS reduced proteinuria and the rate of renal function decline and increased renal survival. These benefits extended to those with an eGFR≤50 ml/min per 1.73 m2, and the benefits increased proportionally with the level of proteinuria. Thus, CS reduced the risk of progression regardless of initial eGFR and in direct proportion to the extent of proteinuria in this cohort. PMID:25677392
Corticosteroids in IgA Nephropathy: A Retrospective Analysis from the VALIGA Study.
Tesar, Vladimir; Troyanov, Stéphan; Bellur, Shubha; Verhave, Jacobien C; Cook, H Terence; Feehally, John; Roberts, Ian S D; Cattran, Daniel; Coppo, Rosanna
2015-09-01
Current guidelines suggest treatment with corticosteroids (CS) in IgA nephropathy (IgAN) when proteinuria is persistently ≥1 g/d despite 3-6 months of supportive care and when eGFR is >50 ml/min per 1.73 m(2). Whether the benefits of this treatment extend to patients with an eGFR≤50 ml/min per 1.73 m(2), other levels of proteinuria, or different renal pathologic lesions remains unknown. We retrospectively studied 1147 patients with IgAN from the European Validation Study of the Oxford Classification of IgAN (VALIGA) cohort classified according to the Oxford-MEST classification and medication used, with details of duration but not dosing. Overall, 46% of patients received immunosuppression, of which 98% received CS. Treated individuals presented with greater clinical and pathologic risk factors of progression. They also received more antihypertensive medication, and a greater proportion received renin angiotensin system blockade (RASB) compared with individuals without immunosuppressive therapy. Immunosuppression was associated with a significant reduction in proteinuria, a slower rate of renal function decline, and greater renal survival. Using a propensity score, we matched 184 subjects who received CS and RASB to 184 patients with a similar risk profile of progression who received only RASB. Within this group, CS reduced proteinuria and the rate of renal function decline and increased renal survival. These benefits extended to those with an eGFR≤50 ml/min per 1.73 m(2), and the benefits increased proportionally with the level of proteinuria. Thus, CS reduced the risk of progression regardless of initial eGFR and in direct proportion to the extent of proteinuria in this cohort. Copyright © 2015 by the American Society of Nephrology.
Motawi, Tarek K; El-Maraghy, Shohda A; Senousy, Mahmoud A
2013-07-01
Angiotensin-converting enzyme (ACE) is upregulated in the diabetic kidney and contributes to renal injury. This study investigates the possible beneficial effects of the ACE inhibitor (ACEI), enalapril and the AT1 receptor blocker (ARB), valsartan, on renal ACE expression, renal structure, and function in streptozotocin (STZ)-induced diabetic rats. Male Wistar rats were allocated into four groups: control, STZ-diabetic rats, and STZ-diabetic rats treated with either enalapril (10 mg/kg/day) or valsartan (50 mg/kg/day) for 8 weeks. Enalapril and valsartan reduced renal ACE mRNA and protein expression, Na(+) /K(+) -ATPase activity, oxidative stress, and serum transforming growth factor-β1 levels compared to the diabetic group. Both treatments normalized renal nitrate/nitrite levels and ameliorated the observed histopathological changes. In conclusion, ACE downregulation by ACEI and ARB indicates that angiotensin II upregulates ACE through AT1 receptor. Prevention of diabetes-induced changes in ACE expression and Na(+) /K(+) -ATPase activity could be a new explanation of the renoprotective effects of ACEIs and ARBs. © 2013 Wiley Periodicals, Inc.
Mitchell, Marc A; Wartinger, David D
2016-10-01
The identification and evaluation of activities capable of dislodging calyceal renal calculi require a patient surrogate or validated functional pyelocalyceal renal model. To evaluate roller coaster facilitation of calyceal renal calculi passage using a functional pyelocalyceal renal model. A previously described adult ureteroscopy and renoscopy simulator (Ideal Anatomic) was modified and remolded to function as a patient surrogate. Three renal calculi of different sizes from the patient who provided the original computed tomographic urograph on which the simulator was based were used. The renal calculi were suspended in urine in the model and taken for 20 rides on the Big Thunder Mountain Railroad roller coaster at Walt Disney World in Orlando, Florida. The roller coaster rides were analyzed using variables of renal calculi volume, calyceal location, model position on the roller coaster, and renal calculi passage. Sixty renal calculi rides were analyzed. Independent of renal calculi volume and calyceal location, front seating on the roller coaster resulted in a passage rate of 4 of 24. Independent of renal calculi volume and calyceal location, rear seating on the roller coaster resulted in a passage rate of 23 of 36. Independent of renal calculi volume in rear seating, calyceal location differed in passage rates, with an upper calyceal calculi passage rate of 100%; a middle calyceal passage rate of 55.6%; and a lower calyceal passage rate of 40.0%. The functional pyelocalyceal renal model serves as a functional patient surrogate to evaluate activities that facilitate calyceal renal calculi passage. The rear seating position on the roller coaster led to the most renal calculi passages.
Lenders, Malte; Canaan-Kühl, Sima; Krämer, Johannes; Duning, Thomas; Reiermann, Stefanie; Sommer, Claudia; Stypmann, Jörg; Blaschke, Daniela; Üçeyler, Nurcan; Hense, Hans-Werner; Brand, Stefan-Martin; Wanner, Christoph; Weidemann, Frank; Brand, Eva
2016-03-01
Because of the shortage of agalsidase-β supply between 2009 and 2012, patients with Fabry disease either were treated with reduced doses or were switched to agalsidase-α. In this observational study, we assessed end organ damage and clinical symptoms with special focus on renal outcome after 2 years of dose-reduction and/or switch to agalsidase-α. A total of 89 adult patients with Fabry disease who had received agalsidase-β (1.0 mg/kg body wt) for >1 year were nonrandomly assigned to continue this treatment regimen (regular-dose group, n=24), to receive a reduced dose of 0.3-0.5 mg/kg and a subsequent switch to 0.2 mg/kg agalsidase-α (dose-reduction-switch group, n=28), or to directly switch to 0.2 mg/kg agalsidase-α (switch group, n=37) and were followed-up for 2 years. We assessed clinical events (death, myocardial infarction, severe arrhythmia, stroke, progression to ESRD), changes in cardiac and renal function, Fabry-related symptoms (pain, hypohidrosis, diarrhea), and disease severity scores. Determination of renal function by creatinine and cystatin C-based eGFR revealed decreasing eGFRs in the dose-reduction-switch group and the switch group. The Mainz Severity Score Index increased significantly in these two groups (P=0.02 and P<0.001, respectively), and higher frequencies of gastrointestinal pain occurred during follow-up. In conclusion, after 2 years of observation, all groups showed a stable clinical disease course with respect to serious clinical events. However, patients under agalsidase-β dose-reduction and switch or a direct switch to agalsidase-α showed a decline of renal function independent of the eGFR formula used. Copyright © 2016 by the American Society of Nephrology.
Lenders, Malte; Canaan-Kühl, Sima; Krämer, Johannes; Duning, Thomas; Reiermann, Stefanie; Sommer, Claudia; Stypmann, Jörg; Blaschke, Daniela; Üçeyler, Nurcan; Hense, Hans-Werner; Brand, Stefan-Martin; Wanner, Christoph; Weidemann, Frank
2016-01-01
Because of the shortage of agalsidase-β supply between 2009 and 2012, patients with Fabry disease either were treated with reduced doses or were switched to agalsidase-α. In this observational study, we assessed end organ damage and clinical symptoms with special focus on renal outcome after 2 years of dose-reduction and/or switch to agalsidase-α. A total of 89 adult patients with Fabry disease who had received agalsidase-β (1.0 mg/kg body wt) for >1 year were nonrandomly assigned to continue this treatment regimen (regular-dose group, n=24), to receive a reduced dose of 0.3–0.5 mg/kg and a subsequent switch to 0.2 mg/kg agalsidase-α (dose-reduction-switch group, n=28), or to directly switch to 0.2 mg/kg agalsidase-α (switch group, n=37) and were followed-up for 2 years. We assessed clinical events (death, myocardial infarction, severe arrhythmia, stroke, progression to ESRD), changes in cardiac and renal function, Fabry-related symptoms (pain, hypohidrosis, diarrhea), and disease severity scores. Determination of renal function by creatinine and cystatin C–based eGFR revealed decreasing eGFRs in the dose-reduction-switch group and the switch group. The Mainz Severity Score Index increased significantly in these two groups (P=0.02 and P<0.001, respectively), and higher frequencies of gastrointestinal pain occurred during follow-up. In conclusion, after 2 years of observation, all groups showed a stable clinical disease course with respect to serious clinical events. However, patients under agalsidase-β dose-reduction and switch or a direct switch to agalsidase-α showed a decline of renal function independent of the eGFR formula used. PMID:26185201
García-Trabanino, Ramón; Jarquín, Emmanuel; Wesseling, Catharina; Johnson, Richard J; González-Quiroz, Marvin; Weiss, Ilana; Glaser, Jason; José Vindell, Juan; Stockfelt, Leo; Roncal, Carlos; Harra, Tamara; Barregard, Lars
2015-10-01
An epidemic of progressive kidney failure afflicts sugarcane workers in Central America. Repeated high-intensity work in hot environments is a possible cause. To assess heat stress, dehydration, biomarkers of renal function and their possible associations. A secondary aim was to evaluate the prevalence of pre-shift renal damage and possible causal factors. Sugarcane cutters (N=189, aged 18-49 years, 168 of them male) from three regions in El Salvador were examined before and after shift. Cross-shift changes in markers of dehydration and renal function were examined and associations with temperature, work time, region, and fluid intake were assessed. Pre-shift glomerular filtration rate was estimated (eGFR) from serum creatinine. The mean work-time was 4 (1.4-11) hours. Mean workday temperature was 34-36 °C before noon, and 39-42 °C at noon. The mean liquid intake during work was 0.8L per hour. There were statistically significant changes across shift. The mean urine specific gravity, urine osmolality and creatinine increased, and urinary pH decreased. Serum creatinine, uric acid and urea nitrogen increased, while chloride and potassium decreased. Pre-shift serum uric acid levels were remarkably high and pre-shift eGFR was reduced (<60 mL/min) in 23 male workers (14%). The high prevalence of reduced eGFR, and the cross-shift changes are consistent with recurrent dehydration from strenuous work in a hot and humid environment as an important causal factor. The pathophysiology may include decreased renal blood flow, high demands on tubular reabsorption, and increased levels of uric acid. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
The role of oxidative stress in streptozotocin-induced diabetic nephropathy in rats.
Fernandes, Sheila Marques; Cordeiro, Priscilla Mendes; Watanabe, Mirian; Fonseca, Cassiane Dezoti da; Vattimo, Maria de Fatima Fernandes
2016-10-01
The objective of this study was to evaluate the role of oxidative stress in an experimental model of streptozotocin-induced diabetic nephropathy in rats. Wistar, adult, male rats were used in the study. Animals were divided in the following groups: Citrate (control, citrate buffer 0.01M, pH 4.2 was administrated intravenously - i.v - in the caudal vein), Uninephrectomy+Citrate (left uninephrectomy-20 days before the study), DM (streptozotocin, 65 mg/kg, i.v, on the 20th day of the study), Uninephrectomy+DM. Physiological parameters (water and food intake, body weight, blood glucose, kidney weight, and relative kidney weight); renal function (creatinine clearance), urine albumin (immunodiffusion method); oxidative metabolites (urinary peroxides, thiobarbituric acid reactive substances, and thiols in renal tissue), and kidney histology were evaluated. Polyphagia, polydipsia, hyperglycemia, and reduced body weight were observed in diabetic rats. Renal function was reduced in diabetic groups (creatinine clearance, p < 0.05). Uninephrectomy potentiated urine albumin and increased kidney weight and relative kidney weight in diabetic animals (p < 0.05). Urinary peroxides and thiobarbituric acid reactive substances were increased, and the reduction in thiol levels demonstrated endogenous substrate consumption in diabetic groups (p < 0.05). The histological analysis revealed moderate lesions of diabetic nephropathy. This study confirms lipid peroxidation and intense consumption of the antioxidant defense system in diabetic rats. The association of hyperglycemia and uninephrectomy resulted in additional renal injury, demonstrating that the model is adequate for the study of diabetic nephropathy.
Glycogen synthase kinase-3β promotes cyst expansion in polycystic kidney disease.
Tao, Shixin; Kakade, Vijayakumar R; Woodgett, James R; Pandey, Pankaj; Suderman, Erin D; Rajagopal, Madhumitha; Rao, Reena
2015-06-01
Polycystic kidney diseases (PKDs) are inherited disorders characterized by the formation of fluid filled renal cysts. Elevated cAMP levels in PKDs stimulate progressive cyst enlargement involving cell proliferation and transepithelial fluid secretion often leading to end-stage renal disease. The glycogen synthase kinase-3 (GSK3) family of protein kinases consists of GSK3α and GSK3β isoforms and has a crucial role in multiple cellular signaling pathways. We previously found that GSK3β, a regulator of cell proliferation, is also crucial for cAMP generation and vasopressin-mediated urine concentration by the kidneys. However, the role of GSK3β in the pathogenesis of PKDs is not known. Here we found that GSK3β expression and activity were markedly upregulated and associated with cyst-lining epithelia in the kidneys of mice and humans with PKD. Renal collecting duct-specific gene knockout of GSK3β or pharmacological inhibition of GSK3 effectively slowed down the progression of PKD in mouse models of autosomal recessive or autosomal dominant PKD. GSK3 inactivation inhibited cAMP generation and cell proliferation resulting in reduced cyst expansion, improved renal function, and extended life span. GSK3β inhibition also reduced pERK, c-Myc, and cyclin-D1, known mitogens in proliferation of cystic epithelial cells. Thus, GSK3β has a novel functional role in PKD pathophysiology, and its inhibition may be therapeutically useful to slow down cyst expansion and progression of PKD.
Coelho, Isabela; Casare, Fernando; Pequito, Danielle C T; Borghetti, Gina; Yamazaki, Ricardo K; Brito, Gleisson A P; Kryczyk, Marcelo; Fernandes, Luiz Claudio; Coimbra, Terezila M; Fernandez, Ricardo
2012-11-01
The objective of the present work was to study the renal function of healthy and tumor-bearing rats chronically supplemented with fish oil (FO), a source of n-3 polyunsaturated fatty acids. Weanling male rats were divided in two groups, one control (C) and another orally supplemented for 70 days with FO (1 g/kg body weight). After this time, half the animals of each group were injected in the right flank with a suspension of Walker 256 tumor cells (W and WFO). The W group had less proteinemia reflecting cachectic proteolysis, FO reversed this fact. Tumor weight gain was also reduced in WFO. Glomerular filtration rate (GFR) was not different in FO or W compared to C, but was higher in WFO. Renal plasma flow (RPF) was higher in the FO supplemented groups. The W group had lower plasma osmolality than the C group, but FO supplementation resulted in normalization of this parameter. Fractional sodium excretion (FE(Na+)) of FO rats was similar to C. Proximal Na(+) reabsorption, evaluated by lithium clearance, was similar among the groups. Urinary thromboxane B(2) (TXB(2)) excretion was lower in the supplemented groups. The number of macrophages in renal tissue was higher in W compared to C rats, but was lower in WFO rats compared to W rats. In conclusion, FO supplementation resulted in less tumor growth and cachexia, and appeared to be renoprotective, as suggested by higher RPF and GFR.
Cvan Trobec, Katja; Kerec Kos, Mojca; von Haehling, Stephan; Anker, Stefan D; Macdougall, Iain C; Ponikowski, Piotr; Lainscak, Mitja
2015-12-01
To compare the performance of iohexol plasma clearance and creatinine-based renal function estimating equations in monitoring longitudinal renal function changes in chronic heart failure (CHF) patients, and to assess the effects of body composition on the equation performance. Iohexol plasma clearance was measured in 43 CHF patients at baseline and after at least 6 months. Simultaneously, renal function was estimated with five creatinine-based equations (four- and six-variable Modification of Diet in Renal Disease, Cockcroft-Gault, Cockcroft-Gault adjusted for lean body mass, Chronic Kidney Disease Epidemiology Collaboration equation) and body composition was assessed using bioimpedance and dual-energy x-ray absorptiometry. Over a median follow-up of 7.5 months (range 6-17 months), iohexol clearance significantly declined (52.8 vs 44.4 mL/[min ×1.73 m2], P=0.001). This decline was significantly higher in patients receiving mineralocorticoid receptor antagonists at baseline (mean decline -22% of baseline value vs -3%, P=0.037). Mean serum creatinine concentration did not change significantly during follow-up and no creatinine-based renal function estimating equation was able to detect the significant longitudinal decline of renal function determined by iohexol clearance. After accounting for body composition, the accuracy of the equations improved, but not their ability to detect renal function decline. Renal function measured with iohexol plasma clearance showed relevant decline in CHF patients, particularly in those treated with mineralocorticoid receptor antagonists. None of the equations for renal function estimation was able to detect these changes. ClinicalTrials.gov registration number: NCT01829880.
MicroRNA-29a Promotion of Nephrin Acetylation Ameliorates Hyperglycemia-Induced Podocyte Dysfunction
Lin, Chun-Liang; Lee, Pei-Hsien; Hsu, Yung-Chien; Lei, Chen-Chou; Ko, Jih-Yang; Chuang, Pei-Chin; Huang, Yu-Ting; Wang, Shao-Yu; Wu, Shin-Long; Chen, Yu-Shan; Chiang, Wen-Chih; Reiser, Jochen
2014-01-01
Podocyte dysfunction is a detrimental feature in diabetic nephropathy, with loss of nephrin integrity contributing to diabetic podocytopathy. MicroRNAs (miRs) reportedly modulate the hyperglycemia-induced perturbation of renal tissue homeostasis. This study investigated whether regulation of histone deacetylase (HDAC) actions and nephrin acetylation by miR-29 contributes to podocyte homeostasis and renal function in diabetic kidneys. Hyperglycemia accelerated podocyte injury and reduced nephrin, acetylated nephrin, and miR-29a levels in primary renal glomeruli from streptozotocin-induced diabetic mice. Diabetic miR-29a transgenic mice had better nephrin levels, podocyte viability, and renal function and less glomerular fibrosis and inflammation reaction compared with diabetic wild-type mice. Overexpression of miR-29a attenuated the promotion of HDAC4 signaling, nephrin ubiquitination, and urinary nephrin excretion associated with diabetes and restored nephrin acetylation. Knockdown of miR-29a by antisense oligonucleotides promoted HDAC4 action, nephrin loss, podocyte apoptosis, and proteinuria in nondiabetic mice. In vitro, interruption of HDAC4 signaling alleviated the high glucose–induced apoptosis and inhibition of nephrin acetylation in podocyte cultures. Furthermore, HDAC4 interference increased the acetylation status of histone H3 at lysine 9 (H3K9Ac), the enrichment of H3K9Ac in miR-29a proximal promoter, and miR-29a transcription in high glucose–stressed podocytes. In conclusion, hyperglycemia impairs miR-29a signaling to intensify HDAC4 actions that contribute to podocyte protein deacetylation and degradation as well as renal dysfunction. HDAC4, via epigenetic H3K9 hypoacetylation, reduces miR-29a transcription. The renoprotective effects of miR-29a in diabetes-induced loss of podocyte integrity and renal homeostasis highlights the importance of post-translational acetylation reactions in podocyte microenvironments. Increasing miR-29a action may protect against diabetic podocytopathy. PMID:24578127
Xiong, Ying; Shang, Bingzhen; Xu, Siying; Zhao, Ran; Gou, He; Wang, Chun
2016-09-01
Drug-induced renal injury is a serious toxic side effect of 5-fluorouracil (5-FU) treatment. Bu-zhong-yi-qi decoction (BZYQD), a water extract of Chinese traditional herbal medicine, is widely used in Asia as an alternative treatment to reduce the side effects of chemotherapy and also improve cancer survival. However, the mechanism is unknown. This study is designed to investigate the protective effect of BZYQD on 5-FU-induced renal injury in mice. Mice were divided into four groups: the control, 5-FU, 5-FU + low, and high BZYQD group. Mice in the three latter groups were administered 5-FU (100 mg/kg/day, intraperitoneally) for six days, and in the 5-FU + low and high BZYQD groups were given BZYQD (1 or 2 g raw herb/kg/day, intragastrically) beginning four days before 5-FU and continuing until the termination of the experiment. The right kidney fixed in formalin for histological examination and the left was homogenized to measure the levels of apoptosis-related proteins and activities of oxidative stress-related biomarkers. Blood samples were collected for measuring renal function-related biochemical indices. Renal morphology injury, increased urea nitrogen and creatinine concentration, and decreased SOD, CAT, and GSH-Px were all observed in 5-FU-administrated mice. However, BZYQD almost reversed the morphological injury as well as renal function-related indices and antioxidant enzyme activity. These results suggest that BZYQD inhibits 5-FU-induced renal injury, possibly through the reduction of apoptosis and necrosis in renal tubular epithelial cells via the antioxidant mechanism. Henceforth, BZYQD may be a potential antioxidant against drug-induced oxidative stress.
Xu, Hongmei; Zhou, Wangda; Zhou, Diansong; Li, Jianguo; Al-Huniti, Nidal
2017-03-01
Aztreonam is a monocyclic β-lactam antibiotic often used to treat infections caused by Enterobacteriaceae or Pseudomonas aeruginosa. Despite the long history of clinical use, population pharmacokinetic modeling of aztreonam in renally impaired patients is not yet available. The aims of this study were to assess the impact of renal impairment on aztreonam exposure and to evaluate dosing regimens for patients with renal impairment. A population model describing aztreonam pharmacokinetics following intravenous administration was developed using plasma concentrations from 42 healthy volunteers and renally impaired patients from 2 clinical studies. The final pharmacokinetic model was used to predict aztreonam plasma concentrations and evaluate the probability of pharmacodynamic target attainment (PTA) in patients with different levels of renal function. A 2-compartment model with first-order elimination adequately described aztreonam pharmacokinetics. The population mean estimates of aztreonam clearance, intercompartmental clearance, volume of distribution of the central compartment, and volume of distribution of the peripheral compartment were 4.93 L/h, 9.26 L/h, 7.43 L, and 6.44 L, respectively. Creatinine clearance and body weight were the most significant variables to explain patient variability in aztreonam clearance and volume of distribution, respectively. Simulations using the final pharmacokinetic model resulted in a clinical susceptibility break point of 4 and 8 mg/L, respectively, based on the clinical use of 1- and 2-g loading doses with the same or reduced maintenance dose every 8 hours for various renal deficiency patients. The population pharmacokinetic modeling and PTA estimation support adequate PTAs (>90% PTA) from the aztreonam label for dose adjustment of aztreonam in patients with moderate and severe renal impairment. © 2016, The American College of Clinical Pharmacology.
Oates, Jim C; Halushka, Perry V; Hutchison, Florence N; Ruiz, Philip; Gilkeson, Gary S
2011-02-01
Proliferative lupus nephritis (LN) is marked by increased renal thromboxane (TX) A₂ production. Targeting the TXA₂ receptor or TXA₂ synthase effectively improves renal function in humans with LN and improves glomerular pathology in murine LN. This study was designed to address the following hypotheses: (1) TXA₂ production in the MRL/MpJ-Tnfrsf6(lpr)/J (MRL/lpr) model of proliferative LN is cyclooxygenase (COX)-2 dependent and (2) COX2 inhibitor therapy improves glomerular filtration rate (GFR), proteinuria, markers of innate immune response and glomerular pathology. Twenty female MRL/lpr and 20 BALB/cJ mice were divided into 2 equal treatment groups: (1) SC-236, a moderately selective COX2 inhibitor or (2) vehicle. After treatment from the age of 10 to 20 weeks, the effectiveness of inhibition of TXA₂ was determined by measuring urine TXB₂. Response endpoints measured at the age of 20 weeks were renal function (GFR), proteinuria, urine nitrate + nitrite (NO(x)) and glomerular histopathology. SC-236 therapy reduced surrogate markers of renal TXA₂ production during early, active glomerulonephritis. When this pharmacodynamic endpoint was reached, therapy improved GFR. Parallel reductions in markers of the innate immune response (urine NO(x)) during therapy were observed. However, the beneficial effect of SC-236 therapy on GFR was only transient, and renal histopathology was not improved in late disease. These data demonstrate that renal TXA2 production is COX2 dependent in murine LN and suggest that NO production is directly or indirectly COX2 dependent. However, COX2 inhibitor therapy in this model failed to improve renal pathology, making COX2 inhibition a less attractive approach for treating LN.
Sommerer, Claudia; Suwelack, Barbara; Dragun, Duska; Schenker, Peter; Hauser, Ingeborg A; Nashan, Björn; Thaiss, Friedrich
2016-02-17
Immunosuppression with calcineurin inhibitors remains the mainstay of treatment after kidney transplantation; however, long-term use of these drugs may be associated with nephrotoxicity. In this regard, the current approach is to optimise available immunosuppressive regimens to reduce the calcineurin inhibitor dose while protecting renal function without affecting the efficacy. The ATHENA study is designed to evaluate renal function in two regimens: an everolimus and reduced calcineurin inhibitor-based regimen versus a standard treatment protocol with mycophenolic acid and tacrolimus in de novo kidney transplant recipients. ATHENA is a 12-month, multicentre, open-label, prospective, randomised, parallel-group study in de novo kidney transplant recipients (aged 18 years or older) receiving renal allografts from deceased or living donors. Eligible patients are randomised (1:1:1) prior to transplantation to one of the following three treatment arms: everolimus (starting dose 1.5 mg/day; C0 3-8 ng/mL) with cyclosporine or everolimus (starting dose 3 mg/day; C0 3-8 ng/mL) with tacrolimus or mycophenolic acid (enteric-coated mycophenolate sodium at 1.44 g/day or mycophenolate mofetil at 2 g/day) with tacrolimus; in combination with corticosteroids. All patients receive induction therapy with basiliximab. The primary objective is to demonstrate non-inferiority of renal function (eGFR by the Nankivell formula) in one of the everolimus arms compared with the standard group at month 12 post transplantation. The key secondary objective is to assess the incidence of treatment failure, defined as biopsy-proven acute rejection, graft loss, or death, among the treatment groups. Other objectives include assessment of the individual components of treatment failure, incidence and severity of viral infections, incidence and duration of delayed graft function, incidence of indication biopsies, slow graft function and wound healing complications, and overall safety and tolerability. Exploratory objectives include evaluation of left ventricular hypertrophy assessed by the left ventricular mass index, evolution of human leukocyte antigen and non-human leukocyte antigen antibodies, and a cytomegalovirus substudy. As one of the largest European multicentre kidney transplant studies, ATHENA will determine whether a de novo everolimus-based regimen can preserve renal function versus the standard of care. This study further assesses a number of clinical issues which impact long-term outcomes post transplantation; hence, its results will have a major clinical impact. Clinicaltrials.gov: NCT01843348, date of registration--18 April 2013; EUDRACT number: 2011-005238-21, date of registration--20 March 2012.
Feldman, Ross D; Ding, Qingming; Hussain, Yasin; Limbird, Lee E; Pickering, J Geoffrey; Gros, Robert
2016-06-01
Although aldosterone is a known regulator of renal and cardiovascular function, its role as a regulator of cancer growth and spread has not been widely considered. This study tested the hypothesis that aldosterone regulates cancer cell growth/spread via G protein-coupled estrogen receptor (GPER) activation. In vitro in murine renal cortical adenocarcinoma (RENCA) cells, a widely used murine in vitro model for the study of renal cell adenocarcinoma, aldosterone increased RENCA cell proliferation to a maximum of 125 ± 3% of control at a concentration of 10 nM, an effect blocked by the GPER antagonist G15 or by GPER knockdown using short interfering (sh) RNA techniques. Further, aldosterone increased RENCA cell migration to a maximum of 170 ± 20% of control at a concentration of 100 nM, an effect also blocked by G15 or by GPER down-regulation. In vivo, after orthotopic RENCA cell renal transplantation, pulmonary tumor spread was inhibited by pharmacologic blockade of aldosterone effects with spironolactone (percentage of lung occupied by metastasis: control = 68 ± 13, spironolactone = 26 ± 8, P < 0.05) or inhibition of aldosterone synthesis with a high dietary salt diet (percentage of lung: control = 44 ± 6, high salt = 12 ± 3, P < 0.05), without reducing primary tumor size. Additionally, adrenalectomy significantly reduced the extent of pulmonary tumor spread, whereas aldosterone infusion recovered pulmonary metastatic spread toward baseline levels. Finally, inhibition of GPER either with the GPER antagonist G15 or by GPER knockdown comparably inhibited RENCA cell pulmonary metastatic cancer spread. Taken together, these findings provide strong evidence for aldosterone serving a causal role in renal cell cancer regulation via its GPER receptor; thus, antagonism of GPER represents a potential new target for treatment to reduce metastatic spread.-Feldman, R. D., Ding, Q., Hussain, Y., Limbird, L. E., Pickering, J. G., Gros, R. Aldosterone mediates metastatic spread of renal cancer via the G protein-coupled estrogen receptor (GPER). © FASEB.
Weir, Matthew A; Gomes, Tara; Mamdani, Muhammad; Juurlink, David N; Hackam, Daniel G; Mahon, Jeffrey L; Jain, Arsh K; Garg, Amit X
2011-06-01
Little evidence justifies the avoidance of glyburide in patients with impaired renal function. We aimed to determine if renal function modifies the risk of hypoglycaemia among patients using glyburide. We conducted a nested case-control study using administrative records and laboratory data from Ontario, Canada. We included outpatients 66 years of age and older with diabetes mellitus and prescriptions for glyburide, insulin or metformin. We ascertained hypoglycaemic events using administrative records and estimated glomerular filtration rates (eGFR) using serum creatinine concentrations. From a cohort of 19,620 patients, we identified 204 cases whose eGFR was ≥ 60 mL/min/1.73 m(2) (normal renal function) and 354 cases whose eGFR was < 60 mL/min/1.73 m(2) (impaired renal function). Compared to metformin, glyburide is associated with a greater risk of hypoglycaemia in patients with both normal [adjusted odds ratio (OR) 9.0, 95% confidence interval (95% CI) 4.9-16.4] and impaired renal function (adjusted OR 6.0, 95% CI 3.8-9.5). We observed a similar relationship when comparing insulin to metformin; the risk was greater in patients with normal renal function (adjusted OR 18.7, 95% CI 10.5-33.5) compared to those with impaired renal function (adjusted OR 7.9, 95% CI 5.0-12.4). Tests of interaction showed that among glyburide users, renal function did not significantly modify the risk of hypoglycaemia, but among insulin users, impaired renal function is associated with a lower risk. In this population-based study, impaired renal function did not augment the risk of hypoglycaemia associated with glyburide use.
Staub, Daniel; Partovi, Sasan; Zeller, Thomas; Breidthardt, Tobias; Kaech, Max; Boeddinghaus, Jasper; Puelacher, Christian; Nestelberger, Thomas; Aschwanden, Markus; Mueller, Christian
2016-06-01
Identifying patients likely to have improved renal function after percutaneous transluminal renal angioplasty and stenting (PTRA) for renal artery stenosis (RAS) is challenging. The purpose of this study was to use a comprehensive multimarker assessment to identify those patients who would benefit most from correction of RAS. In 127 patients with RAS and decreased renal function and/or hypertension referred for PTRA, quantification of hemodynamic cardiac stress using B-type natriuretic peptide (BNP), renal function using estimated glomerular filtration rate (eGFR), parenchymal renal damage using resistance index (RI), and systemic inflammation using C-reactive protein (CRP) were performed before intervention. Predefined renal function improvement (increase in eGFR ≥10%) at 6 months occurred in 37% of patients. Prognostic accuracy as quantified by the area under the receiver-operating characteristics curve for the ability of BNP, eGFR, RI and CRP to predict renal function improvement were 0.59 (95% CI, 0.48-0.70), 0.71 (95% CI, 0.61-0.81), 0.52 (95% CI, 0.41-0.65), and 0.56 (95% CI, 0.44-0.68), respectively. None of the possible combinations increased the accuracy provided by eGFR (lower eGFR indicated a higher likelihood for eGFR improvement after PTRA, P=ns for all). In the subgroup of 56 patients with pre-interventional eGFR <60 mL/min/1.73 m(2), similar findings were obtained. Quantification of renal function, but not any other pathophysiologic signal, provides at least moderate accuracy in the identification of patients with RAS in whom PTRA will improve renal function.
Samukawa, Yoshishige; Haneda, Masakazu; Seino, Yutaka; Sasaki, Takashi; Fukatsu, Atsushi; Kubo, Yusuke; Sato, Yuri; Sakai, Soichi
2018-04-25
This open-label, parallel-group, multicenter study aimed to assess the effects of renal impairment on the pharmacokinetics, pharmacodynamics, and safety of luseogliflozin. A single 5-mg dose of luseogliflozin was administered to Japanese patients with type 2 diabetes mellitus in the following groups: G1, normal renal function; G2, mild renal impairment; G3a, mild to moderate impairment; G3b, moderate to severe impairment; G4, severe impairment, based on estimated glomerular filtration rate (eGFR; ≥90, 60-89, 45-59, 30-44, 15-29 mL/min/1.73 m 2 , respectively). While luseogliflozin pharmacokinetics were similar for patients across all renal function groups, the increase in plasma concentration was slightly slower and maximum concentration was slightly reduced in the lower eGFR groups compared with the other groups. However, luseogliflozin pharmacodynamics were affected by the severity of renal impairment. Urinary glucose excretion (UGE) increased in all groups relative to baseline levels, but the degree of UGE increase was smaller in the lower eGFR groups. Moreover, plasma glucose AUC changes from baseline tended to be smaller in the lower eGFR groups. No clear trends were observed between eGFR and incidence, type, or severity of adverse events. Thus, luseogliflozin administration should be carefully considered, as patients with renal impairment may show an insufficient response to treatment. © 2018 The Authors. Clinical Pharmacology in Drug Development Published by Wiley Periodicals, Inc. on behalf of The American College of Clinical Pharmacology.
Papadimou, Evangelia; Morigi, Marina; Iatropoulos, Paraskevas; Xinaris, Christodoulos; Tomasoni, Susanna; Benedetti, Valentina; Longaretti, Lorena; Rota, Cinzia; Todeschini, Marta; Rizzo, Paola; Introna, Martino; Grazia de Simoni, Maria; Remuzzi, Giuseppe; Goligorsky, Michael S; Benigni, Ariela
2015-04-14
The application of cell-based therapies in regenerative medicine is gaining recognition. Here, we show that human bone marrow stromal cells (BMSCs), also known as bone-marrow-derived mesenchymal cells, can be reprogrammed into renal proximal tubular-like epithelial cells using cell-free extracts. Streptolysin-O-permeabilized BMSCs exposed to HK2-cell extracts underwent morphological changes-formation of "domes" and tubule-like structures-and acquired epithelial functional properties such as transepithelial-resistance, albumin-binding, and uptake and specific markers E-cadherin and aquaporin-1. Transmission electron microscopy revealed the presence of brush border microvilli and tight intercellular contacts. RNA sequencing showed tubular epithelial transcript abundance and revealed the upregulation of components of the EGFR pathway. Reprogrammed BMSCs integrated into self-forming kidney tissue and formed tubular structures. Reprogrammed BMSCs infused in immunodeficient mice with cisplatin-induced acute kidney injury engrafted into proximal tubuli, reduced renal injury and improved function. Thus, reprogrammed BMSCs are a promising cell resource for future cell therapy. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Hruska, Matthew W; Adamczyk, Robert; Colston, Elizabeth; Hesney, Michael; Stonier, Michele; Myler, Heather; Bertz, Richard
2015-09-01
This open label study was conducted to assess the effect of renal impairment (RI) on the pharmacokinetics (PK) of peginterferon lambda-1a (Lambda). Subjects (age 18-75 years, BMI 18-35 kg m(-2) ) were enrolled into one of five renal function groups: normal (n = 12), mild RI (n = 8), moderate RI (n = 8), severe RI (n = 7), end-stage renal disease (ESRD, n = 8) based on estimated glomerular filtration rate (eGFR) calculated using the Modification of Diet in Renal Disease (MDRD) equation. Subjects received a single dose of Lambda (180 µg) subcutaneously on day 1 followed by PK serum sample collections through day 29. Safety, tolerability and immunogenicity data were collected through day 43. PK parameters were estimated and summarized by group. Geometric mean ratios (GMR) and 90% confidence intervals (CIs) were calculated between normal and RI groups. With decreasing eGFR, Lambda exposure (Cmax , AUC) increased while apparent clearance (CL/F) and apparent volume of distribution (V/F) decreased. Relative to subjects with normal renal function (geometric mean AUC = 99.5 ng ml(-1) h), Lambda exposure estimates (AUC) were slightly increased in the mild RI group (geometric mean [90% CI]: 1.20 [0.82, 1.77]) and greater in the moderate (1.95 [1.35, 2.83]), severe RI (1.95 [1.30, 2.93]) and ESRD (1.88 [1.30, 2.73]) groups. Lambda was generally well tolerated. The results demonstrated that RI reduces the clearance of Lambda and suggests that dose modifications may not be required in patients with mild RI but may be required in patients with moderate to severe RI or ESRD. © 2015 The British Pharmacological Society.
The KUPNetViz: a biological network viewer for multiple -omics datasets in kidney diseases.
Moulos, Panagiotis; Klein, Julie; Jupp, Simon; Stevens, Robert; Bascands, Jean-Loup; Schanstra, Joost P
2013-07-24
Constant technological advances have allowed scientists in biology to migrate from conventional single-omics to multi-omics experimental approaches, challenging bioinformatics to bridge this multi-tiered information. Ongoing research in renal biology is no exception. The results of large-scale and/or high throughput experiments, presenting a wealth of information on kidney disease are scattered across the web. To tackle this problem, we recently presented the KUPKB, a multi-omics data repository for renal diseases. In this article, we describe KUPNetViz, a biological graph exploration tool allowing the exploration of KUPKB data through the visualization of biomolecule interactions. KUPNetViz enables the integration of multi-layered experimental data over different species, renal locations and renal diseases to protein-protein interaction networks and allows association with biological functions, biochemical pathways and other functional elements such as miRNAs. KUPNetViz focuses on the simplicity of its usage and the clarity of resulting networks by reducing and/or automating advanced functionalities present in other biological network visualization packages. In addition, it allows the extrapolation of biomolecule interactions across different species, leading to the formulations of new plausible hypotheses, adequate experiment design and to the suggestion of novel biological mechanisms. We demonstrate the value of KUPNetViz by two usage examples: the integration of calreticulin as a key player in a larger interaction network in renal graft rejection and the novel observation of the strong association of interleukin-6 with polycystic kidney disease. The KUPNetViz is an interactive and flexible biological network visualization and exploration tool. It provides renal biologists with biological network snapshots of the complex integrated data of the KUPKB allowing the formulation of new hypotheses in a user friendly manner.
The KUPNetViz: a biological network viewer for multiple -omics datasets in kidney diseases
2013-01-01
Background Constant technological advances have allowed scientists in biology to migrate from conventional single-omics to multi-omics experimental approaches, challenging bioinformatics to bridge this multi-tiered information. Ongoing research in renal biology is no exception. The results of large-scale and/or high throughput experiments, presenting a wealth of information on kidney disease are scattered across the web. To tackle this problem, we recently presented the KUPKB, a multi-omics data repository for renal diseases. Results In this article, we describe KUPNetViz, a biological graph exploration tool allowing the exploration of KUPKB data through the visualization of biomolecule interactions. KUPNetViz enables the integration of multi-layered experimental data over different species, renal locations and renal diseases to protein-protein interaction networks and allows association with biological functions, biochemical pathways and other functional elements such as miRNAs. KUPNetViz focuses on the simplicity of its usage and the clarity of resulting networks by reducing and/or automating advanced functionalities present in other biological network visualization packages. In addition, it allows the extrapolation of biomolecule interactions across different species, leading to the formulations of new plausible hypotheses, adequate experiment design and to the suggestion of novel biological mechanisms. We demonstrate the value of KUPNetViz by two usage examples: the integration of calreticulin as a key player in a larger interaction network in renal graft rejection and the novel observation of the strong association of interleukin-6 with polycystic kidney disease. Conclusions The KUPNetViz is an interactive and flexible biological network visualization and exploration tool. It provides renal biologists with biological network snapshots of the complex integrated data of the KUPKB allowing the formulation of new hypotheses in a user friendly manner. PMID:23883183
Fetal development and renal function in adult rats prenatally subjected to sodium overload.
Cardoso, Henriqueta D; Cabral, Edjair V; Vieira-Filho, Leucio D; Vieyra, Adalberto; Paixão, Ana D O
2009-10-01
The aims of this study were (1) to evaluate two factors that affect fetal development--placental oxidative stress (Ox) and plasma volume (PV)--in dams with sodium overload and (2) to correlate possible alterations in these factors with subsequent modifications in the renal function of adult offspring. Wistar dams were maintained on 0.17 M NaCl instead of water from 20 days before mating until either the twentieth pregnancy day/parturition or weaning. Colorimetric methods were used to measure Ox in maternal and offspring tissues, PV, 24-h urinary protein (U(Prot24 h)) and serum triacylglycerols (TG) and cholesterol (Chol). Renal hemodynamics was evaluated in the offspring at 90 days of age using a blood pressure transducer, a flow probe and inulin clearance to measure mean arterial pressure (MAP), renal blood flow and glomerular filtration rate (GFR), respectively. The number of nephrons (NN) was counted in kidney suspensions. Dams showed unchanged PV, placental Ox and fetal weight but increased U(Prot24 h) (150%, P < 0.05). Prenatally sodium-overloaded pups showed increased U(Prot24 h) (45%, P < 0.05) but unchanged MAP, renal hemodynamics, NN and kidney Ox. Prenatally and postnatally sodium-overloaded rats showed increased U(Prot24 h) (27%, P < 0.05) and kidney Ox (44%, P < 0.05), reduced GFR (12%, P < 0.05), increased PV (26%, P < 0.05) and unchanged MAP and NN. The TG increased in both groups of treated offspring (21%, P < 0.05), whereas Chol increased only in the postnatally sodium-overloaded group. We conclude that salt overload from the prenatal stage until weaning leads to alterations in lipid metabolism and in the renal function of the pups, which are additional to those alterations seen in rats only overloaded prenatally.
Li, Pu; Qin, Chao; Cao, Qiang; Li, Jie; Lv, Qiang; Meng, Xiaoxin; Ju, Xiaobing; Tang, Lijun; Shao, Pengfei
2016-10-01
To evaluate the feasibility and efficiency of laparoscopic partial nephrectomy (LPN) with segmental renal artery clamping, and to analyse the factors affecting postoperative renal function. We conducted a retrospective analysis of 466 consecutive patients undergoing LPN using main renal artery clamping (group A, n = 152) or segmental artery clamping (group B, n = 314) between September 2007 and July 2015 in our department. Blood loss, operating time, warm ischaemia time (WIT) and renal function were compared between groups. Univariable and multivariable linear regression analyses were applied to assess the correlations of selected variables with postoperative glomerular filtration rate (GFR) reduction. Volumetric data and estimated GFR of a subset of 60 patients in group B were compared with GFR to evaluate the correlation between these functional variables and preserved renal function after LPN. The novel technique slightly increased operating time, WIT and intra-operative blood loss (P < 0.001), while it provided better postoperative renal function (P < 0.001) compared with the conventional technique. The blocking method and tumour characteristics were independent factors affecting GFR reduction, while WIT was not an independent factor. Correlation analysis showed that estimated GFR presented better correlation with GFR compared with kidney volume (R(2) = 0.794 cf. R(2) = 0.199) in predicting renal function after LPN. LPN with segmental artery clamping minimizes warm ischaemia injury and provides better early postoperative renal function compared with clamping the main renal artery. Kidney volume has a significantly inferior role compared with eGFR in predicting preserved renal function. © 2016 The Authors BJU International © 2016 BJU International Published by John Wiley & Sons Ltd.
Functional MRI detects perfusion impairment in renal allografts with delayed graft function.
Hueper, Katja; Gueler, Faikah; Bräsen, Jan Hinrich; Gutberlet, Marcel; Jang, Mi-Sun; Lehner, Frank; Richter, Nicolas; Hanke, Nils; Peperhove, Matti; Martirosian, Petros; Tewes, Susanne; Vo Chieu, Van Dai; Großhennig, Anika; Haller, Hermann; Wacker, Frank; Gwinner, Wilfried; Hartung, Dagmar
2015-06-15
Delayed graft function (DGF) after kidney transplantation is not uncommon, and it is associated with long-term allograft impairment. Our aim was to compare renal perfusion changes measured with noninvasive functional MRI in patients early after kidney transplantation to renal function and allograft histology in biopsy samples. Forty-six patients underwent MRI 4-11 days after transplantation. Contrast-free MRI renal perfusion images were acquired using an arterial spin labeling technique. Renal function was assessed by estimated glomerular filtration rate (eGFR), and renal biopsies were performed when indicated within 5 days of MRI. Twenty-six of 46 patients had DGF. Of these, nine patients had acute rejection (including borderline), and eight had other changes (e.g., tubular injury or glomerulosclerosis). Renal perfusion was significantly lower in the DGF group compared with the group with good allograft function (231 ± 15 vs. 331 ± 15 ml·min(-1)·100 g(-1), P < 0.001). Living donor allografts exhibited significantly higher perfusion values compared with deceased donor allografts (P < 0.001). Renal perfusion significantly correlated with eGFR (r = 0.64, P < 0.001), resistance index (r = -0.57, P < 0.001), and cold ischemia time (r = -0.48, P < 0.01). Furthermore, renal perfusion impairment early after transplantation predicted inferior renal outcome and graft loss. In conclusion, noninvasive functional MRI detects renal perfusion impairment early after kidney transplantation in patients with DGF. Copyright © 2015 the American Physiological Society.
James, Stefan; Budaj, Andrzej; Aylward, Philip; Buck, Kristen K; Cannon, Christopher P; Cornel, Jan H; Harrington, Robert A; Horrow, Jay; Katus, Hugo; Keltai, Matyas; Lewis, Basil S; Parikh, Keyur; Storey, Robert F; Szummer, Karolina; Wojdyla, Daniel; Wallentin, Lars
2010-09-14
Reduced renal function is associated with a poorer prognosis and increased bleeding risk in patients with acute coronary syndromes and may therefore alter the risk-benefit ratio with antiplatelet therapies. In the Platelet Inhibition and Patient Outcomes (PLATO) trial, ticagrelor compared with clopidogrel reduced the primary composite end point of cardiovascular death, myocardial infarction, and stroke at 12 months but with similar major bleeding rates. Central laboratory serum creatinine levels were available in 15 202 (81.9%) acute coronary syndrome patients at baseline, and creatinine clearance, estimated by the Cockcroft Gault equation, was calculated. In patients with chronic kidney disease (creatinine clearance <60 mL/min; n=3237), ticagrelor versus clopidogrel significantly reduced the primary end point to 17.3% from 22.0% (hazard ratio [HR], 0.77; 95% confidence interval [CI], 0.65 to 0.90) with an absolute risk reduction greater than that of patients with normal renal function (n=11 965): 7.9% versus 8.9% (HR, 0.90; 95% CI, 0.79 to 1.02). In patients with chronic kidney disease, ticagrelor reduced total mortality (10.0% versus 14.0%; HR, 0.72; 95% CI, 0.58 to 0.89). Major bleeding rates, fatal bleedings, and non-coronary bypass-related major bleedings were not significantly different between the 2 randomized groups (15.1% versus 14.3%; HR, 1.07; 95% CI, 0.88 to 1.30; 0.34% versus 0.77%; HR, 0.48; 95% CI, 0.15 to 1.54; and 8.5% versus 7.3%; HR, 1.28; 95% CI, 0.97 to 1.68). The interactions between creatinine clearance and randomized treatment on any of the outcome variables were nonsignificant. In acute coronary syndrome patients with chronic kidney disease, ticagrelor compared with clopidogrel significantly reduces ischemic end points and mortality without a significant increase in major bleeding but with numerically more non-procedure-related bleeding. URL:http://www.clinicatrials.gov. Unique identifier: NCT00391872.
Renal function monitoring in heart failure – what is the optimal frequency? A narrative review
Wright, David; Devonald, Mark Alexander John; Pirmohamed, Munir
2017-01-01
The second most common cause of hospitalization due to adverse drug reactions in the UK is renal dysfunction due to diuretics, particularly in patients with heart failure, where diuretic therapy is a mainstay of treatment regimens. Therefore, the optimal frequency for monitoring renal function in these patients is an important consideration for preventing renal failure and hospitalization. This review looks at the current evidence for optimal monitoring practices of renal function in patients with heart failure according to national and international guidelines on the management of heart failure (AHA/NICE/ESC/SIGN). Current guidance of renal function monitoring is in large part based on expert opinion, with a lack of clinical studies that have specifically evaluated the optimal frequency of renal function monitoring in patients with heart failure. Furthermore, there is variability between guidelines, and recommendations are typically nonspecific. Safer prescribing of diuretics in combination with other antiheart failure treatments requires better evidence for frequency of renal function monitoring. We suggest developing more personalized monitoring rather than from the current medication‐based guidance. Such flexible clinical guidelines could be implemented using intelligent clinical decision support systems. Personalized renal function monitoring would be more effective in preventing renal decline, rather than reacting to it. PMID:28901643
Cardiorenal Syndrome in Acute Heart Failure: Revisiting Paradigms.
Núñez, Julio; Miñana, Gema; Santas, Enrique; Bertomeu-González, Vicente
2015-05-01
Cardiorenal syndrome has been defined as the simultaneous dysfunction of both the heart and the kidney. Worsening renal function that occurs in patients with acute heart failure has been classified as cardiorenal syndrome type 1. In this setting, worsening renal function is a common finding and is due to complex, multifactorial, and not fully understood processes involving hemodynamic (renal arterial hypoperfusion and renal venous congestion) and nonhemodynamic factors. Traditionally, worsening renal function has been associated with worse outcomes, but recent findings have revealed mixed and heterogeneous results, perhaps suggesting that the same phenotype represents a diversity of pathophysiological and clinical situations. Interpreting the magnitude and chronology of renal changes together with baseline renal function, fluid overload status, and clinical response to therapy might help clinicians to unravel the clinical meaning of renal function changes that occur during an episode of heart failure decompensation. In this article, we critically review the contemporary evidence on the pathophysiology and clinical aspects of worsening renal function in acute heart failure. Copyright © 2014 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.
High Prolactin Excretion in Patients with Diabetes Mellitus and Impaired Renal Function.
Triebel, Jakob; Moreno-Vega, Aura Ileana; Vázquez-Membrillo, Miguel; Nava, Gabriel; García-Franco, Renata; López-Star, Ellery; Baldivieso-Hurtado, Olivia; Ochoa, Daniel; Macotela, Yazmín; Bertsch, Thomas; Martinez de la Escalera, Gonzalo; Clapp, Carmen
2015-01-01
The metabolic clearance of prolactin (PRL) is partially executed by the kidney. Here, we investigate the urine excretion of PRL in patients with Diabetes Mellitus and renal impairment. Serum and urine samples were collected from male, mestizo patients in central Mexico employing a cross-sectional study design. Ninety-eight individuals had either no diabetes and normal renal function (control), diabetes and normal renal function, or diabetes with impaired renal function. PRL was determined by a chemiluminescent immunometric assay; protein, albumin, and creatinine were evaluated using quantitative colorimetric assays. The results were analyzed using ANOVA-testing. Patients with Diabetes Mellitus and renal impairment had significantly higher urine PRL levels than patients with Diabetes Mellitus and normal renal function and control patients. Higher urine PRL levels were associated with lower glomerular filtration rates, higher serum creatinine, and higher urinary albumin-to-creatinine ratios (UACR). Urine PRL levels correlated positively with UACR. Serum PRL levels were similar among groups. Patients with Diabetes Mellitus and impaired renal function demonstrate a high urinary PRL excretion. Urinary PRL excretion in the context of proteinuria could contribute to PRL dysregulation in renal impairment.
Limitation on the use of amiloride in early renal failure.
Knauf, H; Reuter, K; Mutschler, E
1985-01-01
The effect of a single oral dose of 10 mg amiloride was studied on urinary excretion of Na+, K+, Ca++ and Mg++ in healthy subjects and in patients with varying degrees of renal impairment. Amiloride produced a moderate diuresis and sodium excretion, and a slight calciuresis. Urinary excretion of potassium was significantly reduced as compared to the controls. Despite its diuretic and natriuretic effects, amiloride did not change the excretion of Mg++ as compared to the pretreatment period. When the creatinine clearance was below 50 ml/min, the net excretion of Na+ and Ca++ was drastically reduced. However, K+ retention and neutrality of Mg++ excretion were maintained down to end-stage renal disease. In the healthy volunteers the mean elimination half-life of amiloride was 20 h, and it rose to about 100 h in end-stage renal disease. This was because about 3/4 of native amiloride was eliminated through the kidney. Nonrenal elimination of amiloride was calculated to amount to only 1/4 of the total elimination. Therefore, the anticaliuretic amiloride is a valuable comedication in subjects with normal kidney function to prevent K+ and Mg++ loss. However, its use is hazardous if plasma creatinine is raised.
[Nephrocalcinosis associated with the use of anabolic steroid].
Luchi, Weverton Machado; Ricarte, Rodrigo Nasser; Roitman, Luciana Fernandes; Santos, Omar da Rosa
2015-01-01
The anabolic steroid have been used as a therapeutic tool in various clinical conditions. However, indiscriminate use associated with other nutritional supplements has generated serious adverse effects. Male, 21 years old, admitted with nausea, fatigue, appetite loss, headache and hypertension. Blood tests showed Cr: 3.9 mg% U: 100 mg% and Total Calcium 14 mg/dl. Ultrasonography and renal biopsy were consistent with nephrocalcinosis. There has been gradual improvement in renal function and calcium levels after vigorous hydration and furosemide. However, after 1 year, renal calcium deposits persist, corticomedullary ratio reduced in ultrasound and stable creatinine of 1.4 mg/dl. Previous cases showed acute tubular necrosis and interstitial nephritis with little calcium deposits in the renal interstitium. In this case we found severe nephrocalcinosis associated with nephrosclerosis. Our objective is to report the occurrence of acute kidney Injury with nephrocalcinosis associated with use of anabolic steroid and provide a review of the matter.
Relaxation by urocortin of rat renal arteries: effects of diabetes in males and females.
Sanz, Elena; Fernández, Nuria; Monge, Luis; Climent, Belén; Diéguez, Godofredo; García-Villalón, Angel Luis
2003-06-01
Urocortin is a peptide structurally related to corticotropin releasing factor (CRF), and the present study was performed to examine the effects of diabetes mellitus on the relaxation by urocortin of renal arteries from males and females. The response to urocortin was studied in isolated segments, 2 mm long, from renal arteries, from male and female, control (normoglycemic) and streptozotocin-induced diabetic rats. In the renal arterial segments precontracted with endothelin-1, urocortin produced concentration-dependent relaxation, that was not different between males and females. Diabetes reduced the relaxation in renal arteries from females but not in those from males. The potassium channel blocker charybdotoxin (10(-7) M) reduced the relaxation to urocortin of renal arteries from normoglycemic males and females. The cyclooxygenase inhibitor meclofenamate did not modify the relaxation to urocortin in renal arteries from normoglycemic males or females. The inhibitor of nitric oxide synthesis N(W)-nitro-L-arginine methyl ester (L-NAME, 10(-4) M) reduced the relaxation to urocortin in renal arteries from normoglycemic females, but not in renal arteries from normoglycemic males. Neither charybdotoxin, L-NAME or meclofenamate modified the relaxation to urocortin of renal arteries from diabetic females. These results suggest that urocortin produces a marked vasodilation of renal arteries, which may be mediated by nitric oxide in females and by activation of potassium channels in both genders, and is reduced by diabetes in renal arteries from females.
Hijazi, Ziad; Hohnloser, Stefan H; Andersson, Ulrika; Alexander, John H; Hanna, Michael; Keltai, Matyas; Parkhomenko, Alexander; López-Sendón, José L; Lopes, Renato D; Siegbahn, Agneta; Granger, Christopher B; Wallentin, Lars
2016-07-01
Renal impairment confers an increased risk of stroke, bleeding, and death in patients with atrial fibrillation. Little is known about the efficacy and safety of apixaban in relation to renal function changes over time. To evaluate changes of renal function over time and their interactions with outcomes during a median of 1.8 years of follow-up in patients with atrial fibrillation randomized to apixaban vs warfarin treatment. The prospective, randomized, double-blind Apixaban for Reduction in Stroke and Other Thromboembolic Events in Atrial Fibrillation (ARISTOTLE) clinical trial randomized 18 201 patients with atrial fibrillation to apixaban or warfarin. Serial creatinine measurements were available in 16 869 patients. Worsening of renal function was defined as an annual decrease in estimated glomerular filtration more than 20%. The relations between treatment, outcomes, and renal function were investigated using Cox regression models, with renal function as a time-dependent covariate. Stroke or systemic embolism (primary outcome), major bleeding (safety outcome), and mortality were examined in relation to renal function over time estimated with both the Cockcroft-Gault and Chronic Kidney Disease Epidemiology Collaboration equations. Among 16 869 patients, the median age was 70 years and 65.2% of patients were men. Worsening in estimated glomerular filtration more than 20% was observed in 2294 patients (13.6%) and was associated with older age and more cardiovascular comorbidities. The risks of stroke or systemic embolism, major bleeding, and mortality were higher in patients with worsening renal function (HR, 1.53; 95% CI, 1.17-2.01 for stroke or systemic embolism; HR, 1.56; 95% CI, 1.27-1.93 for major bleeding; and HR, 2.31; 95% CI, 1.98-2.68 for mortality). The beneficial effects of apixaban vs warfarin on rates of stroke or systemic embolism and major bleeding were consistent in patients with normal or poor renal function over time and also in those with worsening renal function. In patients with atrial fibrillation, declining renal function was more common in elderly patients and those with cardiovascular comorbidities. Worsening renal function was associated with a higher risk of subsequent cardiovascular events and bleeding. The superior efficacy and safety of apixaban as compared with warfarin were similar in patients with normal, poor, and worsening renal function. clinicaltrials.gov Identifier: NCT00412984.
Cvan Trobec, Katja; Kerec Kos, Mojca; von Haehling, Stephan; Anker, Stefan D.; Macdougall, Iain C.; Ponikowski, Piotr; Lainscak, Mitja
2015-01-01
Aim To compare the performance of iohexol plasma clearance and creatinine-based renal function estimating equations in monitoring longitudinal renal function changes in chronic heart failure (CHF) patients, and to assess the effects of body composition on the equation performance. Methods Iohexol plasma clearance was measured in 43 CHF patients at baseline and after at least 6 months. Simultaneously, renal function was estimated with five creatinine-based equations (four- and six-variable Modification of Diet in Renal Disease, Cockcroft-Gault, Cockcroft-Gault adjusted for lean body mass, Chronic Kidney Disease Epidemiology Collaboration equation) and body composition was assessed using bioimpedance and dual-energy x-ray absorptiometry. Results Over a median follow-up of 7.5 months (range 6-17 months), iohexol clearance significantly declined (52.8 vs 44.4 mL/[min ×1.73 m2], P = 0.001). This decline was significantly higher in patients receiving mineralocorticoid receptor antagonists at baseline (mean decline -22% of baseline value vs -3%, P = 0.037). Mean serum creatinine concentration did not change significantly during follow-up and no creatinine-based renal function estimating equation was able to detect the significant longitudinal decline of renal function determined by iohexol clearance. After accounting for body composition, the accuracy of the equations improved, but not their ability to detect renal function decline. Conclusions Renal function measured with iohexol plasma clearance showed relevant decline in CHF patients, particularly in those treated with mineralocorticoid receptor antagonists. None of the equations for renal function estimation was able to detect these changes. ClinicalTrials.gov registration number NCT01829880 PMID:26718759
Renal Function Recovery with Total Artificial Heart Support.
Quader, Mohammed A; Goodreau, Adam M; Shah, Keyur B; Katlaps, Gundars; Cooke, Richard; Smallfield, Melissa C; Tchoukina, Inna F; Wolfe, Luke G; Kasirajan, Vigneshwar
2016-01-01
Heart failure patients requiring total artificial heart (TAH) support often have concomitant renal insufficiency (RI). We sought to quantify renal function recovery in patients supported with TAH at our institution. Renal function data at 30, 90, and 180 days after TAH implantation were analyzed for patients with RI, defined as hemodialysis supported or an estimated glomerular filtration rate (eGFR) less than 60 ml/min/1.73 m. Between January 2008 and December 2013, 20 of the 46 (43.5%) TAH recipients (age 51 ± 9 years, 85% men) had RI, mean preoperative eGFR of 48 ± 7 ml/min/1.73 m. Renal function recovery was noted at each follow-up interval: increment in eGFR (ml/min/1.73 m) at 30, 90, and 180 days was 21 ± 35 (p = 0.1), 16.5 ± 18 (p = 0.05), and 10 ± 9 (p = 0.1), respectively. Six patients (30%) required preoperative dialysis. Of these, four recovered renal function, one remained on dialysis, and one died. Six patients (30%) required new-onset dialysis. Of these, three recovered renal function and three died. Overall, 75% (15 of 20) of patients' renal function improved with TAH support. Total artificial heart support improved renal function in 75% of patients with pre-existing significant RI, including those who required preoperative dialysis.
Unilateral Renal Ischemia as a Model of Acute Kidney Injury and Renal Fibrosis in Cats.
Schmiedt, C W; Brainard, B M; Hinson, W; Brown, S A; Brown, C A
2016-01-01
The objectives of this study were to define the acute and chronic effects of 1-hour unilateral in vivo renal ischemia on renal function and histology in cats. Twenty-one adult purpose-bred research cats were anesthetized, and 1 kidney underwent renal artery and vein occlusion for 1 hour. Serum creatinine and urea concentrations, urine protein:creatinine ratio, urine-specific gravity, glomerular filtration rate, hematocrit, platelet concentration and function, and white blood cell count were measured at baseline and variable time points after ischemia. Renal histopathology was evaluated on days 3, 6, 12, 21, 42, and 70 postischemia; changes in smooth muscle actin and interstitial collagen were examined. Following ischemia, whole animal glomerular filtration rate was significantly reduced (57% of baseline on day 6; P < .05). At the early time points, the ischemic kidneys exhibited severe acute epithelial necrosis accompanied by evidence of regeneration of tubules predominantly within the corticomedullary junction. At later periods, postischemic kidneys had evidence of tubular atrophy and interstitial inflammation with significantly more smooth muscle actin and interstitial collagen staining and interstitial fibrosis when compared with the contralateral control kidneys. This study characterizes the course of ischemic acute kidney injury in cats and demonstrates that ischemic acute kidney injury triggers chronic fibrosis, interstitial inflammation, and tubular atrophy in feline kidneys. These late changes are typical of those observed in cats with naturally occurring chronic kidney disease. © The Author(s) 2015.
Forced diuresis with the RenalGuard system: impact on contrast induced acute kidney injury.
Solomon, Richard
2014-01-01
Kidney injury following the administration of iodinated contrast media occurs particularly in patients with reduced kidney and cardiac function and when large doses of contrast are used. There is little compelling evidence that vasodilators and anti-oxidants prevent this injury. Most prevention trials have employed intravenous volume loading as a central strategy. However, the success of this approach depends upon maintaining euvolemia while producing a vigorous diuresis. A novel strategy for maintaining euvolemia and inducing a vigorous diuresis has been developed using the RenalGuard system. In this review; the mechanism of protective action is reviewed. The trials of the RenalGuard device are reviewed and future uses of the device are discussed. Copyright © 2013. Published by Elsevier Ltd.
Rodríguez-Ruiz, M; Somoza, I; Curros-Mata, N
2016-01-01
Kidney failure is the main cause of morbidity and mortality in patients with myelodysplasia. We analysed the presence of renal lesions in these patients using dimercaptosuccinic acid scintigraphy and related their presence with the type of vesical function and the delay in receiving appropriate management. We performed a retrospective study of patients with myelodysplasia treated in our hospital since 2004. We analysed the epidemiological and clinical data and the pattern of bladder function according to urodynamic studies. We classified the patients into 4 urodynamic patterns according to detrusor and sphincter behaviour. We linked this behaviour to renal function in the scintigraphy and the care received since birth. The study included 39 patients with myelodysplasia. The most common bladder pattern was type A (61.5%), with sphincter and detrusor hyperactivity, followed by type D (20.5%), C (7.8%) and B (5.1%). Some 38% of our patients (n=15) had some type of nephropathy. Some 92.9% of the children who were properly treated during the first year of their life had no renal lesions in the scintigraphy. We found some type of nephropathy in 56% of the patients for whom appropriate treatment was delayed for more than a year. The nephropathy was more severe the later the management was started. There is a statistically significant relationship between a delay in treatment and impairment in renal scintigraphy in patients with neurogenic bladders. The early study and treatment of patients is essential for decreasing renal impairment, reducing the need for surgery and improving the continence options. Copyright © 2014 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.
Mulubwa, Mwila; Rheeders, Malie; Fourie, Carla; Viljoen, Michelle
2016-01-01
Tenofovir disoproxil fumarate (TDF) has been associated with kidney tubular dysfunction and reduced renal function. Limited studies were performed in Europe and Asia that related plasma tenofovir (TFV) concentration with renal function; no such studies to date have been performed on Africans. To investigate the correlation between plasma tenofovir (TFV) concentration and certain renal function markers in HIV-infected women on TDF antiretroviral therapy (ART). These markers were also compared to a HIV-uninfected control group. HIV-infected women ( n = 30) on TDF-based ART were matched with 30 controls for age and body mass index. Renal markers analysed were estimated glomerular filtration rate (eGFR), creatinine clearance (CrCl), serum creatinine, albuminuria, glucosuria, serum urea, serum uric acid, urine sodium and maximum tubular reabsorption of phosphate. Baseline eGFR and CrCl data were obtained retrospectively for the HIV-infected women. Plasma TFV was assayed using a validated HPLC-MS/MS method. Stepwise regression, Mann-Whitney test, unpaired and paired t -tests were applied in the statistical analyses. TFV concentration was independently associated with albuminuria (adjusted r 2 = 0.339 ; p = 0.001) in HIV-infected women. In the adjusted (weight) analysis, eGFR ( p = 0.038), CrCl ( p = 0.032) and albuminuria ( p = 0.048) were significantly higher in HIV-infected compared to the uninfected women, but eGFR was abnormally high in HIV-infected women. Both eGFR ( p < 0.001) and CrCl ( p = 0.008) increased from baseline to follow-up in HIV-infected women. Plasma TFV concentration was associated with increased albuminuria in HIV-infected women in this sub-study. Both eGFR and CrCl were increased in HIV-infected women from baseline. These findings should be confirmed in larger studies, and hyperfiltration in HIV-infected women warrants further investigation.
Toda, Noboru; Okamura, Tomio
2016-09-01
Increasing evidence support the idea that hyperhomocysteinemia (HHcy) is responsible for pathogenesis underlying cerebral, coronary, renal, and other vascular circulatory disorders and for hypertension. Impaired synthesis of nitric oxide (NO) in the endothelium or increased production of asymmetric dimethylarginine and activated oxygen species are involved in the impairment of vasodilator effects of NO. Impaired circulation in the brain derived from reduced synthesis and actions of NO would be an important triggering factor to dementia and Alzheimer's disease. Reduced actions of NO and brain hypoperfusion trigger increased production of amyloid-β that inhibits endothelial function, thus establishing a vicious cycle for impairing brain circulation. HHcy is involved in the genesis of anginal attack and coronary myocardial infarction. HHcy is also involved in renal circulatory diseases. The homocysteine (Hcy)-induced circulatory failure is promoted by methionine and is prevented by increased folic acid and vitamin B6/B12. Eliminating poor life styles, such as smoking and being sedentary; keeping favorable dietary habits; and early treatment maintaining constitutive NOS functions healthy, reducing oxidative stresses would be beneficial in protecting HHcy-induced circulatory failures.
Anesthesia and kidney transplantation.
Ricaurte, L; Vargas, J; Lozano, E; Díaz, L
2013-05-01
Chronic kidney disease (CKD) has diverse causes and the outcomes can change with renal transplantation, which has the potential to increase quality of life and improve survival. Because transplant recipients usually have comorbid conditions, presurgical assessment, optimization of health status, monitoring, and intraoperative anesthetic management are essential. The objective of this study was to evaluate available medical literature concerning presurgical anesthetic assessment and intraoperative and postoperative anesthetic management of patients undergoing renal transplantation. REVIEW CRITERIA: A bibliographic search was made in MEDLINE, OVID, and LILIACS without language or design limits. Available evidence from February 1991 to February 2011 was taken. Articles about anesthesia in renal transplantation were included. Information quality was assessed according to design type with "Critical Appraisal Skills Program" (CASP-UK) tools. Epidemiological data in Colombia were obtained from the Social Protection Ministry and FOSYGA (Solidarity and Guarantee Fund) web pages. Regarding prognosis, CKD mortality increases with dialysis and with its duration, whereas transplantation reduces it and enhances survival. Recipient mortality, functionality, and graft lifespan are influenced by donor type (immediate diuresis with living donors, P < .05), hydration (60-90 mL/kg), early diuresis (13% mortality rate at 1 year if delayed and reduction of graft lifetime 20%-40%). When comparing diuresis, clearance creatinine, kidney perfusion, and function, there were no significant differences between general and regional anesthesia. Nevertheless, postoperative analgesia was better with epidural anesthesia. Examination of the patient and optimization of the overall health status contributes to graft optimal function and patient survival. Regional anesthesia has better control over postoperative pain, but it has no effect on the prognosis, The intraoperative maintenance of appropriate hydration enhances flux and renal perfusion, which allows early functionality of the graft. This, together with a living donor are considered good prognosis factors, moreover they reduce recipient mortality and improve graft lifetime. Copyright © 2013 Elsevier Inc. All rights reserved.
Chen, L; Kaßmann, M; Sendeski, M; Tsvetkov, D; Marko, L; Michalick, L; Riehle, M; Liedtke, W B; Kuebler, W M; Harteneck, C; Tepel, M; Patzak, A; Gollasch, M
2015-02-01
Transient receptor potential vanilloid 1 (TRPV1) and vanilloid 4 (TRPV4) cation channels have been recently identified to promote endothelium-dependent relaxation of mouse mesenteric arteries. However, the role of TRPV1 and TRPV4 in the renal vasculature is largely unknown. We hypothesized that TRPV1/4 plays a role in endothelium-dependent vasodilation of renal blood vessels. We studied the distribution of functional TRPV1/4 along different segments of the renal vasculature. Mesenteric arteries were studied as control vessels. The TRPV1 agonist capsaicin relaxed mouse mesenteric arteries with an EC50 of 25 nm, but large mouse renal arteries or rat descending vasa recta only at >100-fold higher concentrations. The vasodilatory effect of capsaicin in the low-nanomolar concentration range was endothelium-dependent and absent in vessels of Trpv1 -/- mice. The TRPV4 agonist GSK1016790A relaxed large conducting renal arteries, mesenteric arteries and vasa recta with EC50 of 18, 63 nm and ~10 nm respectively. These effects were endothelium-dependent and inhibited by a TRPV4 antagonist, AB159908 (10 μm). Capsaicin and GSK1016790A produced vascular dilation in isolated mouse perfused kidneys with EC50 of 23 and 3 nm respectively. The capsaicin effects were largely reduced in Trpv1 -/- kidneys, and the effects of GSK1016790A were inhibited in Trpv4 -/- kidneys. Our results demonstrate that two TRPV channels have unique sites of vasoregulatory function in the kidney with functional TRPV1 having a narrow, discrete distribution in the resistance vasculature and TRPV4 having more universal, widespread distribution along different vascular segments. We suggest that TRPV1/4 channels are potent therapeutic targets for site-specific vasodilation in the kidney. © 2014 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.
Nishi, Morihiro; Matsumoto, Kazumasa; Fujita, Tetsuo; Iwamura, Masatsugu
2016-11-01
To evaluate the efficacy of laparoscopic pyeloplasty (LPP) for lower functioning kidney, we investigated the outcome of this procedure for patients with ureteropelvic junction obstruction with decreased renal function, defined as less than 20% split renal function. Between October 1998 and June 2015, we performed transperitoneal dismembered LPP in 224 patients. Among them, 15 patients with less than 20% split renal function were included in this study. Patient characteristics, perioperative split renal functions, complications, and surgical outcomes were retrospectively investigated. Fourteen of 15 patients had preoperative symptoms, including flank pain in 13 patients and gross hematuria in 1 patient. Preoperative 99mTc-mercaptoacetyltriglycine (MAG3) renogram revealed no response to diuretic injection and median split renal function was 16.5%. Median operative time and blood loss were 170 minutes and 20 mL, respectively. There were no complications during the perioperative period. Postoperative MAG3 renogram at 6 and 12 months after the operation revealed significantly increased split renal function (median: 23.8% and 23.7%, p = 0.001 and 0.008, respectively) and response to diuretic injection in all patients. Preoperative symptoms disappeared and no recurrence was seen during the follow-up period for all patients except for one who experienced flank pain again 4 months after the surgery. He subsequently underwent open pyeloplasty, and flank pain disappeared soon after. LPP for patients with low split renal function and flank pain significantly improved symptoms and split renal functions. Although the long-term clinical effects of LPP are unknown, we recommend performing LPP before considering nephrectomy for patients with lower functioning kidney.
Acute renal infarction from a cardiac thrombus.
Nasser, Nicola J; Abadi, Sobhi; Azzam, Zaher S
2007-11-01
A 53-year-old man presented to hospital 2 hours after the abrupt onset of left upper abdominal pain. He was treated with analgesics and discharged after 4 hours of observation, but presented to another hospital 2 hours later with severe left abdominal pain. His past medical history included ischemic dilated cardiomyopathy due to recurrent myocardial infarction. Physical examination, electrocardiography, laboratory investigations, contrast-enhanced computed tomography, and transesophageal echocardiography. Renal artery thromboembolism resulting from dilated cardiomyopathy, severely reduced cardiac function and an intracardiac thrombus. Anticoagulation with unfractionated heparin followed by enoxaparin and warfarin.
Shevalye, Hanna; Lupachyk, Sergey; Watcho, Pierre; Stavniichuk, Roman; Khazim, Khaled; Abboud, Hanna E; Obrosova, Irina G
2012-03-01
This study evaluated early renal functional, structural, and biochemical changes in high-calorie/high-fat diet fed mice, a model of prediabetes and alimentary obesity. Male C57BL6/J mice were fed normal (11 kcal% fat) or high-fat (58 kcal% fat) diets for 16 wk. Renal changes were evaluated by histochemistry and immunohistochemistry, Western blot analysis, ELISA, enzymatic assays, and chemiluminometry. High-fat diet consumption led to increased body and kidney weights, impaired glucose tolerance, hyperinsulinemia, polyuria, a 2.7-fold increase in 24-h urinary albumin excretion, 20% increase in renal glomerular volume, 18% increase in renal collagen deposition, and 8% drop of glomerular podocytes. It also resulted in a 5.3-fold increase in urinary 8-isoprostane excretion and a 38% increase in renal cortex 4-hydroxynonenal adduct accumulation. 4-hydroxynonenal adduct level and immunoreactivity or Sirtuin 1 expression in renal medulla were not affected. Studies of potential mechanisms of the high-fat diet induced renal cortex oxidative injury revealed that whereas nicotinamide adenine dinucleotide phosphate reduced form oxidase activity only tended to increase, 12/15-lipoxygenase was significantly up-regulated, with approximately 12% increase in the enzyme protein expression and approximately 2-fold accumulation of 12(S)-hydroxyeicosatetraenoic acid, a marker of 12/15-lipoxygenase activity. Accumulation of periodic acid-Schiff -positive material, concentrations of TGF-β, sorbitol pathway intermediates, and expression of nephrin, CAAT/enhancer-binding protein homologous protein, phosphoeukaryotic initiation factor-α, and total eukaryotic initiation factor-α in the renal cortex were indistinguishable between experimental groups. Vascular endothelial growth factor concentrations were reduced in high-fat diet fed mice. In conclusion, systemic and renal cortex oxidative stress associated with 12/15-lipoxygenase overexpression and activation is an early phenomenon caused by high-calorie/high-fat diet consumption and a likely contributor to kidney disease associated with prediabetes and alimentary obesity.
Wang, Y; Huang, WC; Wang, CY; Tsai, CC; Chen, CL; Chang, YT; Kai, JI; Lin, CF
2009-01-01
Background and purpose: Excessive inflammation and apoptosis are pathological features of endotoxaemic acute renal failure. Activation of glycogen synthase kinase-3 (GSK-3) is involved in inflammation and apoptosis. We investigated the effects of inhibiting GSK-3 on lipopolysaccharide (LPS)-induced acute renal failure, nuclear factor-κB (NF-κB), inflammation and apoptosis. Experimental approach: The effects of inhibiting GSK-3 with inhibitors, including lithium chloride (LiCl) and 6-bromo-indirubin-3′-oxime (BIO), on LPS-treated (15 mg·kg−1) C3H/HeN mice (LiCl, 40 mg·kg−1 and BIO, 2 mg·kg−1) and LPS-treated (1 µg·mL−1) renal epithelial cells (LiCl, 20 mM and BIO, 5 µM) were studied. Mouse survival was monitored and renal function was analysed by histological and serological examination. Cytokine and chemokine production, and cell apoptosis were measured by enzyme-linked immunosorbent assay and terminal deoxynucleotidyl transferase-mediated dUTP–biotin nick-end labelling staining, respectively. Activation of NF-κB and GSK-3 was determined by immunostaining and Western blotting, respectively. Key results: Mice treated with GSK-3 inhibitors showed decreased mortality, renal tubular dilatation, vacuolization and sloughing, blood urea nitrogen, creatinine and renal cell apoptosis in response to endotoxaemia. Inhibiting GSK-3 reduced LPS-induced tumour necrosis factor-α (TNF-α) and CCL5/RANTES (released upon activation of normal T-cells) in vivo in mice and in vitro in murine kidney cortical collecting duct epithelial M1 cells. Inhibiting GSK-3 did not block TNF-α-induced cytotoxicity in rat kidney proximal tubular epithelial NRK52E or in M1 cells. Conclusions and implications: These results suggest that GSK-3 inhibition protects against endotoxaemic acute renal failure mainly by down-regulating pro-inflammatory TNF-α and RANTES. PMID:19508392
Masola, Valentina; Zaza, Gianluigi; Bellin, Gloria; Dall'Olmo, Luigi; Granata, Simona; Vischini, Gisella; Secchi, Maria Francesca; Lupo, Antonio; Gambaro, Giovanni; Onisto, Maurizio
2018-02-01
Heparanase (HPSE) is part of the biologic network triggered by ischemia/reperfusion (I/R) injury, a complication of renal transplantation and acute kidney injury. During this period, the kidney or graft undergoes a process of macrophages recruitment and activation. HPSE may therefore control these biologic effects. We measured the ability of HPSE and its inhibitor, SST0001, to regulate macrophage polarization and the crosstalk between macrophages and HK-2 renal tubular cells during in vitro hypoxia/reoxygenation (H/R). Furthermore, we evaluated in vivo renal inflammation, macrophage polarization, and histologic changes in mice subjected to monolateral I/R and treated with SST0001 for 2 or 7 d. The in vitro experiments showed that HPSE sustained M1 macrophage polarization and modulated apoptosis, the release of damage associated molecular patterns in post-H/R tubular cells, the synthesis of proinflammatory cytokines, and the up-regulation of TLRs on both epithelial cells and macrophages. HPSE also regulated M1 polarization induced by H/R-injured tubular cells and the partial epithelial-mesenchymal transition of these epithelial cells by M1 macrophages. All these effects were prevented by inhibiting HPSE. Furthermore, the inhibition of HPSE in vivo reduced inflammation and M1 polarization in mice undergoing I/R injury, partially restored renal function and normal histology, and reduced apoptosis. These results show for the first time that HPSE regulates macrophage polarization as well as renal damage and repair after I/R. HPSE inhibitors could therefore provide a new pharmacologic approach to minimize acute kidney injury and to prevent the chronic profibrotic damages induced by I/R.-Masola, V., Zaza, G., Bellin, G., Dall'Olmo, L., Granata, S., Vischini, G., Secchi, M. F., Lupo, A., Gambaro, G., Onisto, M. Heparanase regulates the M1 polarization of renal macrophages and their crosstalk with renal epithelial tubular cells after ischemia/reperfusion injury.
Partovi, Sasan; Zeller, Thomas; Breidthardt, Tobias; Kaech, Max; Boeddinghaus, Jasper; Puelacher, Christian; Nestelberger, Thomas; Aschwanden, Markus; Mueller, Christian
2016-01-01
Background Identifying patients likely to have improved renal function after percutaneous transluminal renal angioplasty and stenting (PTRA) for renal artery stenosis (RAS) is challenging. The purpose of this study was to use a comprehensive multimarker assessment to identify those patients who would benefit most from correction of RAS. Methods In 127 patients with RAS and decreased renal function and/or hypertension referred for PTRA, quantification of hemodynamic cardiac stress using B-type natriuretic peptide (BNP), renal function using estimated glomerular filtration rate (eGFR), parenchymal renal damage using resistance index (RI), and systemic inflammation using C-reactive protein (CRP) were performed before intervention. Results Predefined renal function improvement (increase in eGFR ≥10%) at 6 months occurred in 37% of patients. Prognostic accuracy as quantified by the area under the receiver-operating characteristics curve for the ability of BNP, eGFR, RI and CRP to predict renal function improvement were 0.59 (95% CI, 0.48–0.70), 0.71 (95% CI, 0.61–0.81), 0.52 (95% CI, 0.41–0.65), and 0.56 (95% CI, 0.44–0.68), respectively. None of the possible combinations increased the accuracy provided by eGFR (lower eGFR indicated a higher likelihood for eGFR improvement after PTRA, P=ns for all). In the subgroup of 56 patients with pre-interventional eGFR <60 mL/min/1.73 m2, similar findings were obtained. Conclusions Quantification of renal function, but not any other pathophysiologic signal, provides at least moderate accuracy in the identification of patients with RAS in whom PTRA will improve renal function. PMID:27280085
Fu, Shihui; Zhang, Zhao; Luo, Leiming; Ye, Ping
2017-04-07
Although previous studies have analyzed the relationship between renal function and coronary artery calcification (CAC) in pre-dialysis and dialysis patients, limited studies have discussed the relationship between renal function and CAC in Chinese elderly men without obvious damage of renal function. The present study was designed to explore the relationship between renal function and CAC in Chinese elderly men without obvious damage of renal function. This cross-sectional study was carried out in 105 male participants older than 60 years with glomerular filtration rate (GFR) ≥ 45 ml/min/1.73 m 2 . CAC was detected by high-definition computerized tomography (HDCT), which is a highly sensitive technique for detecting the CAC and provides the most accurate CAC scores up to date. Age was 72 ± 8.4 years on average and ranged from 60 to 89 years. Simple correlation analysis indicated that all kinds of CAC scores including the Agatston, volume and mass scores inversely correlated with GFR values (p < 0.05 for all). In multivariate linear regression analysis, GFR values were independently associated with all these CAC scores (p < 0.05 for all). Renal function had an independent relationship with CAC detected by HDCT in Chinese elderly men, demonstrating that the relationship between renal function and CAC started at the early stage of renal function decline.
Geist, Barbara Katharina; Dobrozemsky, Georg; Samal, Martin; Schaffarich, Michael P; Sinzinger, Helmut; Staudenherz, Anton
2015-12-01
The split or differential renal function is the most widely accepted quantitative parameter derived from radionuclide renography. To examine the intercenter variance of this parameter, we designed a worldwide round robin test. Five selected dynamic renal studies have been distributed all over the world by e-mail. Three of these studies are anonymized patient data acquired using the EANM standardized protocol and two studies are phantom studies. In a simple form, individual participants were asked to measure renal split function as well as to provide additional information such as data analysis software, positioning of background region of interest, or the method of calculation. We received the evaluation forms from 34 centers located in 21 countries. The analysis of the round robin test yielded an overall z-score of 0.3 (a z-score below 1 reflecting a good result). However, the z-scores from several centers were unacceptably high, with values greater than 3. In particular, the studies with impaired renal function showed a wide variance. A wide variance in the split renal function was found in patients with impaired kidney function. This study indicates the ultimate importance of quality control and standardization of the measurement of the split renal function. It is especially important with respect to the commonly accepted threshold for significant change in split renal function by 10%.
Avci, E; Avci, G Alp; Ozcelik, B; Cevher, S Coskun; Suicmez, M
2017-01-01
Our study focuses on the determination and evaluation of TGF-β1 levels of patients receiving hemodialysis treatment because of chronic renal failure. Chronic renal failure, characterized by irreversible loss of renal function, is a major public health problem in the world. Transforming growth factor-beta is a multifunctional cytokine involved in the cellular growth, differentiation, migration, apoptosis and immune regulation. Among the three TGF-β isoforms, TGF-β1 plays a key role in the pathogenesis of renal diseases. We studied 24 patients who were on regular hemodialysis, with non-diabetic nephropathy. 20 healthy people who proved to be in a good state of health and free from any signs of chronic diseases or disorders were enrolled as a control group. Serum samples were collected both before and after hemodialysis treatment from each patient. TGF-β1 levels were determined by Enzyme Immunoassay method. TGF-β1 levels were found significantly higher in the hemodialysis patients than those of the control groups. Also, the TGF-β1 was significantly reduced after hemodialysis treatment but it was still higher than in control groups. This result indicates that hemodialysis is an effective treatment method to decrease the serum TGF-B1 levels. Nevertheless, this decrease is not enough to reduce existing risks (Tab. 1, Fig. 2, Ref. 28).
Colistin Use in Patients With Reduced Kidney Function.
Fiaccadori, Enrico; Antonucci, Elio; Morabito, Santo; d'Avolio, Antonio; Maggiore, Umberto; Regolisti, Giuseppe
2016-08-01
Colistin (polymyxin E) is a mainly concentration-dependent bactericidal antimicrobial active against multidrug-resistant Gram-negative bacteria. After being abandoned over the past 30 years due to its neuro- and nephrotoxicity, colistin has been reintroduced recently as a last-resort drug for the treatment of multidrug-resistant Gram-negative bacteria infections in combination with other antimicrobials. Unfortunately, although renal toxicity is a well-known dose-related adverse effect of colistin, relatively few studies are currently available on its peculiar pharmacodynamic/pharmacokinetic properties in clinical settings at high risk for drug accumulation, such as acute or chronic kidney disease. In these specific contexts, the risk for underdosing is also substantial because colistin can be easily removed by dialysis/hemofiltration, especially when the most efficient modalities of renal replacement therapy (RRT) are used in critically ill patients. For this reason, recent recommendations in patients undergoing RRT have shifted toward higher dosing regimens, and therapeutic drug monitoring is advised. This review aims to summarize the main issues related to chemical structure, pharmacodynamics/pharmacokinetics, and renal toxicity of colistin. Moreover, recent data and current recommendations concerning colistin dosing in patients with reduced kidney function, with special regard to those receiving RRT such as dialysis or hemofiltration, are also discussed. Copyright © 2016 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
Renal function monitoring in heart failure - what is the optimal frequency? A narrative review.
Al-Naher, Ahmed; Wright, David; Devonald, Mark Alexander John; Pirmohamed, Munir
2018-01-01
The second most common cause of hospitalization due to adverse drug reactions in the UK is renal dysfunction due to diuretics, particularly in patients with heart failure, where diuretic therapy is a mainstay of treatment regimens. Therefore, the optimal frequency for monitoring renal function in these patients is an important consideration for preventing renal failure and hospitalization. This review looks at the current evidence for optimal monitoring practices of renal function in patients with heart failure according to national and international guidelines on the management of heart failure (AHA/NICE/ESC/SIGN). Current guidance of renal function monitoring is in large part based on expert opinion, with a lack of clinical studies that have specifically evaluated the optimal frequency of renal function monitoring in patients with heart failure. Furthermore, there is variability between guidelines, and recommendations are typically nonspecific. Safer prescribing of diuretics in combination with other antiheart failure treatments requires better evidence for frequency of renal function monitoring. We suggest developing more personalized monitoring rather than from the current medication-based guidance. Such flexible clinical guidelines could be implemented using intelligent clinical decision support systems. Personalized renal function monitoring would be more effective in preventing renal decline, rather than reacting to it. © 2017 The Authors. British Journal of Clinical Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.
Lange, Daniel; Helck, Andreas; Rominger, Axel; Crispin, Alexander; Meiser, Bruno; Werner, Jens; Fischereder, Michael; Stangl, Manfred; Habicht, Antje
2018-07-01
Renal function of potential living kidney donors is routinely assessed with scintigraphy. Kidney anatomy is evaluated by imaging techniques such as magnetic resonance imaging (MRI). We evaluated if a MRI-based renal volumetry is a good predictor of kidney function pre- and postdonation. We retrospectively analyzed the renal volume (RV) in a MRI of 100 living kidney donors. RV was correlated with the tubular excretion rate (TER) of MAG3-scintigraphy, a measured creatinine clearance (CrCl), and the estimated glomerular filtration rate (eGFR) by Cockcroft-Gault (CG), CKD-EPI, and modification of diet in renal disease (MDRD) formula pre- and postdonation during a follow-up of 3 years. RV correlated significantly with the TER (total: r = 0.6735, P < 0.0001). Correlation between RV and renal function was the highest for eGFR by CG (r = 0.5595, P < 0.0001), in comparison with CrCl, MDRD-GFR, and CKD-EPI-GFR predonation. RV significantly correlated with CG-GFR postdonation and predicted CG-GFR until 3 years after donation. MRI renal volumetry might be an alternative technique for the evaluation of split renal function and prediction of renal function postdonation in living kidney donors. © 2018 Steunstichting ESOT.
Tubular Epithelial NF-κB Activity Regulates Ischemic AKI
Vigolo, Emilia; Hinze, Christian; Park, Joon-Keun; Roël, Giulietta; Balogh, András; Choi, Mira; Wübken, Anne; Cording, Jimmi; Blasig, Ingolf E.; Luft, Friedrich C.; Scheidereit, Claus; Schmidt-Ott, Kai M.; Schmidt-Ullrich, Ruth; Müller, Dominik N.
2016-01-01
NF-κB is a key regulator of innate and adaptive immunity and is implicated in the pathogenesis of AKI. The cell type–specific functions of NF-κB in the kidney are unknown; however, the pathway serves distinct functions in immune and tissue parenchymal cells. We analyzed tubular epithelial-specific NF-κB signaling in a mouse model of ischemia-reperfusion injury (IRI)–induced AKI. NF-κB reporter activity and nuclear localization of phosphorylated NF-κB subunit p65 analyses in mice revealed that IRI induced widespread NF-κB activation in renal tubular epithelia and in interstitial cells that peaked 2–3 days after injury. To genetically antagonize tubular epithelial NF-κB activity, we generated mice expressing the human NF-κB super-repressor IκBαΔN in renal proximal, distal, and collecting duct epithelial cells. Compared with control mice, these mice exhibited improved renal function, reduced tubular apoptosis, and attenuated neutrophil and macrophage infiltration after IRI-induced AKI. Furthermore, tubular NF-κB–dependent gene expression profiles revealed temporally distinct functional gene clusters for apoptosis, chemotaxis, and morphogenesis. Primary proximal tubular cells isolated from IκBαΔN-expressing mice and exposed to hypoxia-mimetic agent cobalt chloride exhibited less apoptosis and expressed lower levels of chemokines than cells from control mice did. Our results indicate that postischemic NF-κB activation in renal tubular epithelia aggravates tubular injury and exacerbates a maladaptive inflammatory response. PMID:26823548
Zhao, H; Watts, H R; Chong, M; Huang, H; Tralau-Stewart, C; Maxwell, P H; Maze, M; George, A J T; Ma, D
2013-08-01
Prolonged hypothermic storage causes ischemia-reperfusion injury (IRI) in the renal graft, which is considered to contribute to the occurrence of the delayed graft function (DGF) and chronic graft failure. Strategies are required to protect the graft and to prolong renal graft survival. We demonstrated that xenon exposure to human proximal tubular cells (HK-2) led to activation of range of protective proteins. Xenon treatment prior to or after hypothermia-hypoxia challenge stabilized the HK-2 cellular structure, diminished cytoplasmic translocation of high-mobility group box (HMGB) 1 and suppressed NF-κB activation. In the syngeneic Lewis-to-Lewis rat model of kidney transplantation, xenon exposure to donors before graft retrieval or to recipients after engraftment decreased caspase-3 expression, localized HMGB-1 within nuclei and prevented TLR-4/NF-κB activation in tubular cells; serum pro-inflammatory cytokines IL-1β, IL-6 and TNF-α were reduced and renal function was preserved. Xenon treatment of graft donors or of recipients prolonged renal graft survival following IRI in both Lewis-to-Lewis isografts and Fischer-to-Lewis allografts. Xenon induced cell survival or graft functional recovery was abolished by HIF-1α siRNA. Our data suggest that xenon treatment attenuates DGF and enhances graft survival. This approach could be translated into clinical practice leading to a considerable improvement in long-term graft survival. © Copyright 2013 The American Society of Transplantation and the American Society of Transplant Surgeons.
Clout, Madeleine; Harris, Tracy; Rogers, Chris; Culliford, Lucy; Taylor, Jodi; Angelini, Gianni; Narayan, Pradeep; Reeves, Barnaby; Hillier, James; Ashton, Kate; Sarkar, Kunal
2017-01-01
Background Diabetes mellitus is a major risk factor for prolonged hospital stays, renal failure, and mortality in patients having coronary artery bypass grafting (CABG). Complications pose a serious threat to patients and prolong intensive care and hospital stays. Low glomerular filtration rate (GFR) due to existing renal impairment or volume depletion may exacerbate acute renal impairment/failure in these patients. Preoperative volume replacement therapy (VRT) is reported to increase the GFR and we hypothesize that VRT will reduce renal impairment and related complications in diabetic patients. Objective The objective of this study is to establish the efficacy of preoperative VRT in reducing postoperative complications in diabetic patients undergoing CABG surgery. Time to “fit for discharge”, incidence of postoperative renal failure, cardiac injury, inflammation, and other health outcomes will be investigated. Methods In this open parallel group randomized controlled trial, 170 diabetic patients undergoing elective or urgent CABG surgery received 1 mL/kg/hour of Hartmann’s solution for 12 consecutive hours prior to surgery, versus routine care. The primary outcome was time until participants were “fit for discharge”, which is defined as presence of: normal temperature, pulse, and respiration; normal oxygen saturation on air; normal bowel function; and physical mobility. Secondary outcomes included: incidence of renal failure; markers of renal function, inflammation, and cardiac damage; operative morbidity; intensive care stay; patient-assessed outcome, including the Coronary Revascularization Outcome Questionnaire; and use of hospital resources. Results Recruitment started in July 2010. Enrolment for the study was completed in July 2014. Data analysis commenced in December 2016. Study results will be submitted for publication in the summer of 2017. Conclusions VRT is a relatively easy treatment to administer in patients undergoing surgical procedures who are at risk of renal failure. This experimental protocol will increase scientific and clinical knowledge of VRT in diabetic patients undergoing elective or urgent CABG surgery. Findings supporting the efficacy of this intervention could easily be implemented in the health care system. Trial Registration International Standard Randomized Controlled Trial Number (ISRCTN): 02159606; http://www.controlled-trials.com/ISRCTN02159606 (Archived by WebCite at http://www.webcitation.org/6rDkSSkkK) PMID:28630035
Witt, Lars; Glage, Silke; Lichtinghagen, Ralf; Pape, Lars; Boethig, Dietmar; Dennhardt, Nils; Heiderich, Sebastian; Leffler, Andreas; Sümpelmann, Robert
2016-03-01
Despite serious renal side effects in critically ill adult patients, artificial colloids are still fundamental components of perioperative fluid therapy in infants and children, although the impact of 6% hydroxyethyl starch (HES) and 4% gelatin (GEL) on renal function during pediatric surgery has not been identified yet. To determine the impact of high doses of artificial colloids on renal function, we conducted an experimental animal study and hypothesized that neither the infusion of HES nor of GEL would have a serious impact on renal function. Fifteen sedated piglets were randomly assigned to receive an infusion of either 50 ml · kg(-1) HES or GEL, or a balanced electrolyte solution (crystalloid group). Before and 1 week after infusion, serum and urine renal function tests were recorded and renal biopsies were taken. Serum and urine renal function tests revealed no increase after administration of HES and GEL, and only a discrete increase in serum creatinine (median 9.8 μmol · l(-1), 95% CI 4.0-19.1) in the crystalloid group. Histopathological examination indicated a sparsely, multifocal infiltration of mononuclear cells in all groups and an unspecific pyelectasia of one animal in the GEL group. After high doses of HES or GEL in piglets, no relevant impact on renal function could be found. These results confirm that AKI after HES or GEL is very unlikely in hemodynamically stable perioperative patients with normal renal function. © 2015 John Wiley & Sons Ltd.
Johnson, Florence L; Patel, Nimesh S A; Purvis, Gareth S D; Chiazza, Fausto; Chen, Jianmin; Sordi, Regina; Hache, Guillaume; Merezhko, Viktoria V; Collino, Massimo; Yaqoob, Muhammed M; Thiemermann, Christoph
2017-07-03
Acute kidney injury (AKI) is a major risk factor for the development of chronic kidney disease. Nuclear factor-κB is a nuclear transcription factor activated post-ischemia, responsible for the transcription of proinflammatory proteins. The role of nuclear factor-κB in the renal fibrosis post-AKI is unknown. We used a rat model of AKI caused by unilateral nephrectomy plus contralateral ischemia (30 minutes) and reperfusion injury (up to 28 days) to show impairment of renal function (peak: 24 hours), activation of nuclear factor-κB (peak: 48 hours), and fibrosis (28 days). In humans, AKI is diagnosed by a rise in serum creatinine. We have discovered that the IκB kinase inhibitor IKK16 (even when given at peak serum creatinine) still improved functional and structural recovery and reduced myofibroblast formation, macrophage infiltration, transforming growth factor-β expression, and Smad2/3 phosphorylation. AKI resulted in fibrosis within 28 days (Sirius red staining, expression of fibronectin), which was abolished by IKK16. To confirm the efficacy of IKK16 in a more severe model of fibrosis, animals were subject to 14 days of unilateral ureteral obstruction, resulting in tubulointerstitial fibrosis, myofibroblast formation, and macrophage infiltration, all of which were attenuated by IKK16. Inhibition of IκB kinase at peak creatinine improves functional recovery, reduces further injury, and prevents fibrosis. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
Giri, Ramesh; Wrigley, Benmjamin; Hennessy, Anne-Marie; Nicholas, Johann; Nevill, Alan
2017-01-01
Objectives As proof of concept, this prospective, observational study assessed the feasibility and early clinical outcomes of performing on-pump cardiac surgery with the RenalGuard system. Background Acute kidney injury (AKI) is reported in up to 30% of patients undergoing cardiac surgery and is a recognised independent predictor of both morbidity and mortality. Forced diuresis with the RenalGuard system reduces the incidence of AKI during percutaneous coronary intervention procedures but its use in cardiac surgery has not been explored. Methods Ten consecutive patients who were at risk of developing AKI during cardiac surgery were selected. The RenalGuard system was used to facilitate forced diuresis using weight-adjusted intravenous furosemide while maintaining neutral fluid balance by matched intravenous fluid replacement. This regimen was initiated preoperatively in all patients and continued for 6–12 hours postoperatively. Serum creatinine, electrolytes and need for renal replacement were documented in all patients. Results The RenalGuard system functioned successfully in all patients and facilitated high perioperative urine outputs, even when patients were placed on cardiopulmonary bypass (CPB). There were no incidences of significant (A) electrolyte imbalance, (B) changes in haemoglobin levels or (C) pulmonary oedema. No patients developed AKI within 36 hours of surgery despite one patient developing cardiac tamponade 8 hours postoperatively and one patient developing paralytic ileus. One patient, however, was ‘electively’ haemofiltered on day 2 after developing acute right ventricular failure. The median intensive care stay was 1.5 (1, 5) days. Conclusion The RenalGuard system can be used successfully in patients undergoing cardiac surgery with CPB and may reduce the incidence of AKI in at-risk patients. Trial registration NCT02974946; Pre-results. PMID:29071091
Luckraz, Heyman; Giri, Ramesh; Wrigley, Benmjamin; Hennessy, Anne-Marie; Nicholas, Johann; Nevill, Alan
2017-01-01
As proof of concept, this prospective, observational study assessed the feasibility and early clinical outcomes of performing on-pump cardiac surgery with the RenalGuard system. Acute kidney injury (AKI) is reported in up to 30% of patients undergoing cardiac surgery and is a recognised independent predictor of both morbidity and mortality. Forced diuresis with the RenalGuard system reduces the incidence of AKI during percutaneous coronary intervention procedures but its use in cardiac surgery has not been explored. Ten consecutive patients who were at risk of developing AKI during cardiac surgery were selected. The RenalGuard system was used to facilitate forced diuresis using weight-adjusted intravenous furosemide while maintaining neutral fluid balance by matched intravenous fluid replacement. This regimen was initiated preoperatively in all patients and continued for 6-12 hours postoperatively. Serum creatinine, electrolytes and need for renal replacement were documented in all patients. The RenalGuard system functioned successfully in all patients and facilitated high perioperative urine outputs, even when patients were placed on cardiopulmonary bypass (CPB). There were no incidences of significant (A) electrolyte imbalance, (B) changes in haemoglobin levels or (C) pulmonary oedema. No patients developed AKI within 36 hours of surgery despite one patient developing cardiac tamponade 8 hours postoperatively and one patient developing paralytic ileus. One patient, however, was 'electively' haemofiltered on day 2 after developing acute right ventricular failure. The median intensive care stay was 1.5 (1, 5) days. The RenalGuard system can be used successfully in patients undergoing cardiac surgery with CPB and may reduce the incidence of AKI in at-risk patients. NCT02974946; Pre-results.
Matsumoto, N; Riley, S; Fraser, D; Al-Assaf, S; Ishimura, E; Wolever, T; Phillips, G O; Phillips, A O
2006-01-01
Anecdotal evidence suggests that high fibre supplementation of dietary intake may have health benefits in renal disease related to alterations in circulating levels of short-chain fatty acids. The aim of the study was to examine the hypothesis that dietary manipulation may increase serum butyrate and thus have potential beneficial effects in renal disease. We examined the effect of dietary supplementation with a gum arabic sample of standardized molecular characteristics, Acacia(sen) SUPERGUM EM2 (SUPERGUM), on systemic levels of butyrate in normal human subjects. In an in vitro study, we also examined the potential role of butyrate in modifying the generation of the profibrotic cytokine transforming growth factor-beta (TGF-beta1) by renal epithelial cells. Following 8 weeks of dietary supplementation with 25 g/day of SUPERGUM, there was a two-fold increase in serum butyrate (n=7, P=0.03). In vitro work demonstrated that exposure of renal epithelial cells to elevated concentrations of butyrate suppressed both basal and stimulated TGF-beta1 synthesis. The action of butyrate was mediated by suppression of the extracellular signal-regulated kinase/mitogen-activated protein kinase signalling pathway. In addition, butyrate exposures reduced the response of renal epithelial cells to TGF-beta1 as assessed by luciferase activity of a TGF-beta-responsive reporter construct. Attenuation of TGF-beta1 signalling was associated with reduced phosphorylation of Smad 3 and decreased trafficking of TGF-beta1 receptors into signalling, non-lipid raft-associated membrane fractions. In conclusion, the data demonstrate that dietary supplementation with SUPERGU increased serum butyrate, which at least in vitro has beneficial effects on renal pro-fibrotic cytokine generation.
Flavocoxid attenuates gentamicin-induced nephrotoxicity in rats.
El-Kashef, Dalia H; El-Kenawi, Asmaa E; Suddek, Ghada M; Salem, Hatem A
2015-12-01
Gentamicin is a widely used antibiotic against serious and life-threatening infections; however, its usefulness is limited by the development of nephrotoxicity. The present study was designed to determine whether flavocoxid has a protective effect against gentamicin-induced nephrotoxicity in rats. For this purpose, we quantitatively evaluated gentamicin-induced renal structural and functional alterations using histopathological and biochemical approaches. Furthermore, the effect of flavocoxid on gentamicin induced hypersensitivity of urinary bladder rings to acetylcholine (ACh) was determined. Twenty-four male Wistar albino rats were randomly divided into three groups, namely control, gentamicin (100 mg/kg, i.p.) and gentamicin plus flavocoxid (20 mg/kg, orally). At the end of the study, all rats were sacrificed and then blood, urine samples and kidneys were collected for further analysis. Gentamicin administration caused a severe nephrotoxicity which was evidenced by an elevated renal somatic index (RSI), serum creatinine, blood urea nitrogen, serum lactate dehydrogenase, and protein in urine with a concomitant reduction in serum albumin and normalized creatinine clearance value as compared with the controls. Moreover, a significant increase in renal contents of malondialdehyde, myeloperoxidase, and tumor necrosis factor-alpha with a significant decrease in renal reduced glutathione and superoxide dismutase activities was detected upon gentamicin administration together with increasing the sensitivity of isolated urinary bladder rings to ACh. Exposure to gentamicin induced necrosis of renal tubular epithelial cells. Flavocoxid protected kidney tissue against the oxidative damage and the nephrotoxic effect caused by gentamicin treatment. In addition, flavocoxid significantly reduced the responses of isolated bladder rings to ACh. The results from our study indicate that flavocoxid supplement attenuates gentamicin-induced renal injury via the amelioration of oxidative stress and inflammation of renal tubular cells.
Chiang, I-Ni; Pu, Yeong-Shiau; Huang, Chao-Yuan; Young, Tai-Horng
2017-01-01
Far infrared radiation, a subdivision of the electromagnetic spectrum, is beneficial for long-term tissue healing, anti-inflammatory effects, growth promotion, sleep modulation, acceleration of microcirculation, and pain relief. We investigated if far infrared radiation is beneficial for renal proximal tubule cell cultivation and renal tissue engineering. We observed the effects of far infrared radiation on renal proximal tubules cells, including its effects on cell proliferation, gene and protein expression, and viability. We also examined the protective effects of far infrared radiation against cisplatin, a nephrotoxic agent, using the human proximal tubule cell line HK-2. We found that daily exposure to far infrared radiation for 30 min significantly increased rabbit renal proximal tubule cell proliferation in vitro, as assessed by MTT assay. Far infrared radiation was not only beneficial to renal proximal tubule cell proliferation, it also increased the expression of ATPase Na+/K+ subunit alpha 1 and glucose transporter 1, as determined by western blotting. Using quantitative polymerase chain reaction, we found that far infrared radiation enhanced CDK5R1, GNAS, NPPB, and TEK expression. In the proximal tubule cell line HK-2, far infrared radiation protected against cisplatin-mediated nephrotoxicity by reducing apoptosis. Renal proximal tubule cell cultivation with far infrared radiation exposure resulted in better cell proliferation, significantly higher ATPase Na+/K+ subunit alpha 1 and glucose transporter 1 expression, and significantly enhanced expression of CDK5R1, GNAS, NPPB, and TEK. These results suggest that far infrared radiation improves cell proliferation and differentiation. In HK-2 cells, far infrared radiation mediated protective effects against cisplatin-induced nephrotoxicity by reducing apoptosis, as indicated by flow cytometry and caspase-3 assay.
Stress and sodium intake in neural control of renal function in hypertension.
DiBona, G F
1991-04-01
The interaction between genetic and environmental factors is important in the pathophysiology of hypertension. By examining the effects of two environmental factors--acute psychoemotional stress and dietary sodium intake--in rats with genetic hypertension, an important influence on central neural mechanisms governing the renal sympathetic neural control of renal function has been demonstrated. Additional studies of the central opioid systems have demonstrated an important role of opioid peptides in modulating the renal functional responses to acute psychoemotional stress. The observed renal functional alterations--antidiuresis, antinatriuresis, and renal vasoconstriction--are known to be capable of contributing to the initiation, development, and maintenance of the hypertensive process.
Cytochrome P450 and Lipoxygenase Metabolites on Renal Function
Imig, John D.; Hye Khan, Md. Abdul
2018-01-01
Arachidonic acid metabolites have a myriad of biological actions including effects on the kidney to alter renal hemodynamics and tubular transport processes. Cyclooxygenase metabolites are products of an arachidonic acid enzymatic pathway that has been extensively studied in regards to renal function. Two lesser-known enzymatic pathways of arachidonic acid metabolism are the lipoxygenase (LO) and cytochrome P450 (CYP) pathways. The importance of LO and CYP metabolites to renal hemodynamics and tubular transport processes is now being recognized. LO and CYP metabolites have actions to alter renal blood flow and glomerular filtration rate. Proximal and distal tubular sodium transport and fluid and electrolyte homeostasis are also significantly influenced by renal CYP and LO levels. Metabolites of the LO and CYP pathways also have renal actions that influence renal inflammation, proliferation, and apoptotic processes at vascular and epithelial cells. These renal LO and CYP pathway actions occur through generation of specific metabolites and cell-signaling mechanisms. Even though the renal physiological importance and actions for LO and CYP metabolites are readily apparent, major gaps remain in our understanding of these lipid mediators to renal function. Future studies will be needed to fill these major gaps regarding LO and CYP metabolites on renal function. PMID:26756638
Renal perfusion index reflects cardiac systolic function in chronic cardio-renal syndrome.
Lubas, Arkadiusz; Ryczek, Robert; Kade, Grzegorz; Niemczyk, Stanisław
2015-04-17
Cardiac dysfunction can modify renal perfusion, which is crucial to maintain sufficient kidney tissue oxygenation. Renal cortex perfusion assessed by dynamic ultrasound method is related both to renal function and cardiac hemodynamics. The aim of the study was to test the hypothesis that Renal Perfusion Index (RPI) can more closely reflect cardiac hemodynamics and differentiate etiology of chronic cardio-renal syndrome. Twenty-four patients with hypertension and chronic kidney disease (CKD) at 2-4 stage (12 with hypertensive nephropathy and 12 with CKD prior to hypertension) were enrolled in the study. Blood tests, 24-h ABPM, echocardiography, and ultrasonography with estimation of Total renal Cortical Perfusion intensity and Renal Perfusion Index (RPI) were performed. In the group of all patients, RPI correlated with left ventricular stoke volume (LVSV), and cardiac index, but not with markers of renal function. In multiple stepwise regression analysis CKD-EPI(Cys-Cr) (b=-0.360), LVSV (b=0.924) and MAP (b=0.376) together independently influenced RPI (R2=0.74; p<0.0001). RPI<0.567 allowed for the identification of patients with chronic cardio-renal syndrome with sensitivity of 41.7% and specificity of 83.3%. Renal perfusion index relates more strongly to cardiac output than to renal function, and could be helpful in recognizing chronic cardio-renal syndrome. Applicability of RPI in diagnosing early abnormalities in the cardio-renal axis requires further investigation.
Di Giacopo, Andrea; Rubio-Aliaga, Isabel; Cantone, Alessandra; Artunc, Ferruh; Rexhepaj, Rexhep; Frey-Wagner, Isabelle; Font-Llitjós, Mariona; Gehring, Nicole; Stange, Gerti; Jaenecke, Isabel; Mohebbi, Nilufar; Closs, Ellen I; Palacín, Manuel; Nunes, Virginia; Daniel, Hannelore; Lang, Florian; Capasso, Giovambattista; Wagner, Carsten A
2013-12-15
Cystinuria is an autosomal recessive disease caused by mutations in SLC3A1 (rBAT) and SLC7A9 (b(0,+)AT). Gene targeting of the catalytic subunit (Slc7a9) in mice leads to excessive excretion of cystine, lysine, arginine, and ornithine. Here, we studied this non-type I cystinuria mouse model using gene expression analysis, Western blotting, clearance, and brush-border membrane vesicle (BBMV) uptake experiments to further characterize the renal and intestinal consequences of losing Slc7a9 function. The electrogenic and BBMV flux studies in the intestine suggested that arginine and ornithine are transported via other routes apart from system b(0,+). No remarkable gene expression changes were observed in other amino acid transporters and the peptide transporters in the intestine and kidney. Furthermore, the glomerular filtration rate (GFR) was reduced by 30% in knockout animals compared with wild-type animals. The fractional excretion of arginine was increased as expected (∼100%), but fractional excretions of lysine (∼35%), ornithine (∼16%), and cystine (∼11%) were less affected. Loss of function of b(0,+)AT reduced transport of cystine and arginine in renal BBMVs and completely abolished the exchanger activity of dibasic amino acids with neutral amino acids. In conclusion, loss of Slc7a9 function decreases the GFR and increases the excretion of several amino acids to a lesser extent than expected with no clear regulation at the mRNA and protein level of alternative transporters and no increased renal epithelial uptake. These observations indicate that transporters located in distal segments of the kidney and/or metabolic pathways may partially compensate for Slc7a9 loss of function.
Hadj Ayed Tka, Kaouther; Mahfoudh Boussaid, Asma; Zaouali, Mohamed Amine; Kammoun, Rym; Bejaoui, Mohamed; Ghoul Mazgar, Sonia; Rosello Catafau, Joan; Ben Abdennebi, Hassen
2015-01-01
Melatonin (Mel) is widely used to attenuate ischemia/reperfusion (I/R) injury in several organs. Nevertheless, the underlying mechanisms remain unclear. This study was conducted to explore the effect of Mel on endoplasmic reticulum (ER) stress, Akt and MAPK cascades after renal warm I/R. Eighteen Wistar rats were randomized into three groups: Sham, I/R, and Mel + I/R. The ischemia period was 60 min followed by 120 min of reperfusion. Mel (10 mg/kg) was administrated 30 min prior to ischemia. The creatinine clearance, MDA, LDH levels, and histopathological changes were evaluated. In addition, Western blot was performed to study ER stress and its downstream apoptosis as well as phosphorylation of Akt, GSK-3β, VDAC, ERK, and P38. Mel decreased cytolysis and lipid peroxidation and improved renal function and morphology compared to I/R group. Parallely, it significantly reduced the ER stress parameters including GRP 78, p-PERK, XBP 1, ATF 6, CHOP, and JNK. Simultaneously, p-Akt level was significantly enhanced and its target molecules GSK-3β and VDAC were inhibited. Furthermore, the ERK and P38 phosphorylation were evidently augmented after Mel administration in comparison to I/R group. In conclusion, Mel improves the recovery of renal function by decreasing ER stress and stimulating Akt pathway after renal I/R injury. PMID:26229743
O'Hagan, Emma; Mallett, Tamara; Convery, Mairead; McKeever, Karl
2015-01-01
Antiglomerular basement membrane (anti-GBM) antibody disease is uncommon in the pediatric population. There are no cases in the literature describing the development of anti-GBM disease following XGP or nephrectomy. We report the case of a 7-year-old boy with no past history of urological illness, treated with antimicrobials and nephrectomy for diffuse, unilateral xanthogranulomatous pyelonephritis (XGP). Renal function and ultrasound scan of the contralateral kidney postoperatively were normal. Three months later, the child represented in acute renal failure with rapidly progressive glomerulonephritis requiring hemodialysis. Renal biopsy showed severe crescentic glomerulonephritis with 95% of glomeruli demonstrating circumferential cellular crescents. Strong linear IgG staining of the glomerular basement membranes was present, in keeping with anti-GBM disease. Circulating anti-GBM antibodies were positive. Treatment with plasma exchange, methylprednisolone, and cyclophosphamide led to normalization of anti-GBM antibody titers. Frequency of hemodialysis was reduced as renal function improved, and he is currently independent of dialysis with estimated glomerular filtration rate 20.7 mls/min/1.73 m 2 . Case studies in the adult literature have reported the development of a rapidly progressive anti-GBM antibody-induced glomerulonephritis following renal surgery where patients expressed HLA DR2/HLA DR15 major histocompatibility (MHC) antigens. Of note, our patient also expresses the HLA DR15 MHC antigen.
Hadj Ayed Tka, Kaouther; Mahfoudh Boussaid, Asma; Zaouali, Mohamed Amine; Kammoun, Rym; Bejaoui, Mohamed; Ghoul Mazgar, Sonia; Rosello Catafau, Joan; Ben Abdennebi, Hassen
2015-01-01
Melatonin (Mel) is widely used to attenuate ischemia/reperfusion (I/R) injury in several organs. Nevertheless, the underlying mechanisms remain unclear. This study was conducted to explore the effect of Mel on endoplasmic reticulum (ER) stress, Akt and MAPK cascades after renal warm I/R. Eighteen Wistar rats were randomized into three groups: Sham, I/R, and Mel + I/R. The ischemia period was 60 min followed by 120 min of reperfusion. Mel (10 mg/kg) was administrated 30 min prior to ischemia. The creatinine clearance, MDA, LDH levels, and histopathological changes were evaluated. In addition, Western blot was performed to study ER stress and its downstream apoptosis as well as phosphorylation of Akt, GSK-3β, VDAC, ERK, and P38. Mel decreased cytolysis and lipid peroxidation and improved renal function and morphology compared to I/R group. Parallely, it significantly reduced the ER stress parameters including GRP 78, p-PERK, XBP 1, ATF 6, CHOP, and JNK. Simultaneously, p-Akt level was significantly enhanced and its target molecules GSK-3β and VDAC were inhibited. Furthermore, the ERK and P38 phosphorylation were evidently augmented after Mel administration in comparison to I/R group. In conclusion, Mel improves the recovery of renal function by decreasing ER stress and stimulating Akt pathway after renal I/R injury.
We Avoid RAAS Inhibitors in PD Patients with Residual Renal Function.
Turner, Jeffrey M
2016-07-01
Preserving residual renal function in patients on peritoneal dialysis (PD) positively impacts mortality. While it is important to avoid nephrotoxic agents in this setting, clinicians should appreciate that inhibitors of the renin-angiotensin-aldosterone system (RAAS), including angiotensin converting enzyme inhibitors, and angiotensin receptor blockers are likely to preserve glomerular filtration rate and prolong the time until patients on PD reach anuria, and this may improve mortality in these patients. In addition, RAAS blockade favorably affects the peritoneal membrane by reducing morphologic changes that can lead to ultrafiltration failure. This in turn may delay or prevent modality failure in patients on PD. Thus, clinicians should avoid the impulse to stop RAAS inhibitors in the PD population. © 2016 Wiley Periodicals, Inc.
Vega-Diaz, Nicanor; Gonzalez-Cabrera, Fayna; Marrero-Robayna, Silvia; Santana-Estupiñan, Raquel; Gallego-Samper, Roberto; Henriquez-Palop, Fernando; Perez-Borges, Patricia; Rodriguez-Perez, José Carlos
2015-01-01
Background: In order to reduce the cardiovascular risk, morbidity and mortality of peritoneal dialysis (PD), a minimal level of small-solute clearances as well as a sodium and water balance are needed. The peritoneal dialysis solutions used in combination have reduced the complications and allow for a long-time function of the peritoneal membrane, and the preservation of residual renal function (RRF) in patients on peritoneal dialysis (PD) is crucial for the maintenance of life quality and long-term survival. This retrospective cohort study reviews our experience in automatic peritoneal dialysis (APD) patients, with end-stage renal disease (ESRD) secondary to diabetic nephropathy (DN) in comparison to non-diabetic nephropathy (NDN), using different PD solutions in combination. Design: Fifty-two patients, 29 diabetic and 23 non-diabetic, were included. The follow-up period was 24 months, thus serving as their own control. Results: The fraction of renal urea clearance (Kt) relative to distribution volume (V) (or total body water) (Kt/V), or creatinine clearance relative to the total Kt/V or creatinine clearance (CrCl) decreases according to loss of RRF. The loss of the slope of RRF is more pronounced in DN than in NDN patients, especially at baseline time interval to 12 months (loss of 0.29 mL/month vs. 0.13 mL/month, respectively), and is attenuated in the range from 12 to 24 months (loss of 0.13 mL/month vs. 0.09 mL/month, respectively). Diabetic patients also experienced a greater decrease in urine output compared to non-diabetic, starting from a higher baseline urine output. The net water balance was adequate in both groups during the follow up period. Regarding the balance sodium, no inter-group differences in sodium excretion over follow up period was observed. In addition, the removal of sodium in the urine output decreases with loss of renal function. The average concentration of glucose increase in the cycler in both groups (DN: baseline 1.44 ± 0.22, 12 months 1.63 ± 0.39, 24 months 1.73 ± 0.47; NDN: baseline 1.59 ± 0.40, 12 months 1.76 ± 0.47, 24 months 1.80 ± 0.46), in order to maintain the net water balance. The daytime dwell contribution, the fraction of day and the renal fraction of studies parameters provide sustained benefit in the follow-up time, above 30%. Conclusions: The wet day and residual renal function are determinants in the achievement of the objective dose of dialysis, as well as in the water and sodium balance. The cause of chronic kidney disease (CKD) does not seem to influence the cleansing effectiveness of the technique. PMID:26239689
Matavelli, Luis C; Huang, Jiqian; Siragy, Helmy M
2012-03-01
We hypothesized that compared with hydrochlorothiazide (HCTZ), the renin inhibitor aliskiren (ALISK) or amlodipine (AMLO) and their combination reduce albuminuria via reduction in renal inflammation, independent of blood pressure (BP) changes. We studied normal and streptozotocin-induced diabetic (DM) Sprague-Dawley rats treated for 6 weeks with vehicle, ALISK, HCTZ, or AMLO individually and combined and evaluated the effects of treatments on BP, urine albumin to creatinine ratio, renal interstitial fluid levels of angiotensin II, tumor necrosis factor alpha (TNF-α), and interleukin 6 (IL-6) and renal expression of TNF-α, IL-6, transforming growth factor beta 1, and nuclear factor kappa B. There were no differences in BP between treatments. Only ALISK and its combinations reduced renal interstitial fluid angiotensin II. Urine albumin to creatinine ratio increased in DM rats and decreased with ALISK alone or combined with HCTZ or AMLO. HCTZ or AMLO individually and combined did not influence urine albumin to creatinine ratio. Renal interstitial fluid TNF-α and IL-6, and the renal expression of TNF-α, IL-6, transforming growth factor beta 1, and nuclear factor kappa B were increased in DM rats. These renal inflammatory markers were reduced only with ALISK or AMLO individually or combined with other treatments. We conclude that ALISK alone and combined with HCTZ or AMLO reduced albuminuria in diabetes via reduction in renal inflammation, independent of BP changes.
DiBona, G F
2000-12-01
Increases in renal sympathetic nerve activity regulate the functions of the nephron, the vasculature, and the renin-containing juxtaglomerular granular cells. Because increased activity of the renin-angiotensin system can also influence nephron and vascular function, it is important to understand the interactions between the renal sympathetic nerves and the renin-angiotensin system in the control of renal function. These interactions can be intrarenal, for example, the direct (by specific innervation) and indirect (by angiotensin II) contributions of increased renal sympathetic nerve activity to the regulation of renal function. The effects of increased renal sympathetic nerve activity on renal function are attenuated when the activity of the renin-angiotensin system is suppressed or antagonized with ACE inhibitors or angiotensin II-type AT(1)-receptor antagonists. The effects of intrarenal administration of angiotensin II are attenuated after renal denervation. These interactions can also be extrarenal, for example, in the central nervous system, wherein renal sympathetic nerve activity and its arterial baroreflex control are modulated by changes in activity of the renin-angiotensin system. In addition to the circumventricular organs, whose permeable blood-brain barrier permits interactions with circulating angiotensin II, there are interactions at sites behind the blood-brain barrier that depend on the influence of local angiotensin II. The responses to central administration of angiotensin II-type AT(1)-receptor antagonists into the ventricular system or microinjected into the rostral ventrolateral medulla are modulated by changes in activity of the renin-angiotensin system produced by physiological changes in dietary sodium intake. Similar modulation is observed in pathophysiological models wherein activity of both the renin-angiotensin and sympathetic nervous systems is increased (eg, congestive heart failure). Thus, both renal and extrarenal sites of interaction between the renin-angiotensin system and renal sympathetic nerve activity are involved in influencing the neural control of renal function.
Haroldsen, Peter E; Sisic, Zlatko; Datt, Joe; Musson, Donald G; Ingenito, Gary
2017-07-01
The purpose of this study is to evaluate safety, tolerability, and pharmacokinetic (PK) properties of amifampridine phosphate (Firdapse™) and its major inactive 3-N-acetyl metabolite in renally impaired and healthy individuals with slow acetylator (SA) and rapid acetylator (RA) phenotypes. This was a Phase I, multicenter, open-label study of the PK properties and safety profile of amifampridine phosphate in individuals with normal, mild, moderate, or severely impaired renal function. Amifampridine phosphate was given as a single 10 mg (base equivalent) dose, and the plasma and urine PK properties of amifampridine and its 3-N-acetyl metabolite were determined. The safety profile was evaluated by monitoring adverse events (AEs), clinical laboratory tests, and physical examinations. Amifampridine clearance was predominantly metabolic through N-acetylation, regardless of renal function in both acetylator phenotypes. In individuals with normal renal function, mean renal clearance represented approximately 3% and 18% of the total clearance of amifampridine in RA and SA, respectively. Large differences in amifampridine exposure were observed between acetylation phenotypes across renal function levels. Mean amifampridine exposure values of AUC 0-∞ and C max were up to 8.8-fold higher in the SA group compared with the RA group across renal function levels. By comparison, mean AUC 0-∞ was less affected by renal function within an acetylator group, only 2- to 3-fold higher in individuals with severe renal impairment (RI) compared with those with normal renal function. Exposure to amifampridine in the SA group with normal renal function was higher (AUC 0-∞, approximately 1.8-fold; C max, approximately 4.1-fold) than the RA group with severe RI. Exposure to the inactive 3-N-acetyl metabolite was higher than amifampridine in both acetylator groups, independent of renal function level. The metabolite is cleared by renal excretion, and exposure was clearly dependent on renal function with 4.0- to 6.8-fold increases in AUC 0-∞ from normal to severe RI. No new tolerability findings were observed. A single dose of 10 mg of amifampridine phosphate was well tolerated, independent of renal function and acetylator status. The results indicate that the PK profile of amifampridine is affected by metabolic acetylator phenotype to a greater extent than by renal function level, supporting Firdapse™ administration in individuals with RI in line with current labeling recommendations. Amifampridine should be dosed to effect per the individual patient need, altering administration frequency and dose in normal through severe RI. The therapeutic dose of amifampridine phosphate should be tailored to the individual patient needs by gradual dose titration up to the present maximum recommended dose (60-80 mg/day) or until dose-limiting AEs intervene to avoid overdosing and underdosing. EudraCT identifier: 2013-005349-35. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Khedun, S M; Naicker, T; Moodley, J
2000-05-01
To improve the diagnostic accuracy of concurrent renal disease in hypertension of pregnancy, biopsy evaluation is essential. In addition, establishing underlying renal disease is important for prognosis on future pregnancies. We therefore designed a study to determine the diagnostic yield of postpartum renal biopsy and the nature and frequency of complications associated with this procedure. Also, to determine relationships, if any, between renal function tests and ultrastructural and histopathological findings. Fifty renal biopsies were performed in the immediate postpartum period in black African women with early onset pre-eclampsia. Each biopsy specimen was placed in a separate container and coded so that sampling was unknown to the electron microscopist. Each biopsy specimen was divided into three parts, and processed and stained for light, fluorescent and transmission electron microscopy using conventional techniques. Renal tissue biopsies were adequate for diagnostic purposes in all cases. There were no complications in any of the 50 patients studied. Ultrastructural examination confirmed the light microscopy findings. In addition the ultrastructural findings showed intramembranous deposits, foot process fusion and mesangial deposits. In 16 patients with normal renal function tests; the biopsies evaluation from these patients showed ultrastructural changes. In the remaining 34 patients with abnormal renal function tests of varying severity; biopsy evaluation from these patients showed both ultrastructural and histopathological changes. Renal biopsy procedure is safe, and ultrastructural and histological findings obtained from postpartum renal biopsies are more informative than the routine renal function tests.
Hsiao, Shih-Hung; Chiou, Kuan-Rau
2017-05-01
Since natriuretic peptide and troponin are associated with renal prognosis and left atrial (LA) parameters are indicators of subclinical cardiovascular abnormalities, this study investigated whether LA expansion index can predict renal decline. This study analysed 733 (69% male) non-diabetic patients with sinus rhythm, preserved systolic function, and estimated glomerular filtration rate (eGFR) higher than 60 mL/min/1.73 m2. In all patients, echocardiograms were performed and LA expansion index was calculated. Renal function was evaluated annually. The endpoint was a downhill trend in renal function with a final eGFR of <60 mL/min/1.73 m2. Rapid renal decline was defined as an annual decline in eGFR >3 mL/min/1.73 m2. The median follow-up time was 5.2 years, and 57 patients (7.8%) had renal function declines (19 had rapid renal declines, and 38 had incidental renal dysfunction). Events were associated with left ventricular mass index, LA expansion index, and heart failure during the follow-up period. The hazard ratio was 1.426 (95% confidence interval, 1.276-1.671; P < 0.0001) per 10% decrease in LA expansion index and was independently associated with an increased event rate. Compared with the highest quartile for the LA expansion index, the lowest quartile had a 9.7-fold risk of renal function decline in the unadjusted model and a 6.9-fold risk after adjusting for left ventricular mass index and heart failure during the follow-up period. Left atrial expansion index is a useful early indicator of renal function decline and may enable the possibility of early intervention to prevent renal function from worsening. NCT01171040. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.
Matsue, Yuya; Suzuki, Makoto; Seya, Mie; Iwatsuka, Ryota; Mizukami, Akira; Nagahori, Wataru; Ohno, Masakazu; Matsumura, Akihiko; Hashimoto, Yuji
2013-02-01
Although tolvaptan is a recently approved drug for heart failure and causes aquaresis without affecting renal function, its clinical efficacy for patients with acute decompensated heart failure (ADHF) is yet to be elucidated. We conducted a prospective observational study in patients with ADHF and high risk for worsening renal function (WRF). Risk stratification for WRF was done by scoring system. Of 174 patients, 114 patients were included as high-risk population for WRF. Incidence of WRF, urine output within 24h and 48 h, and changes in brain natriuretic peptide (BNP) were recorded in 44 patients treated with tolvaptan plus conventional therapy, and 70 patients with only conventional therapy. Urine output at 24h and 48 h after admission were both significantly higher in the tolvaptan group (p=0.001 and <0.001, respectively), and changes in BNP were not significantly different (p=0.351). However, the incidence of WRF was significantly lower in the tolvaptan group compared to the conventional group (22.7% vs 41.4%, p=0.045). Logistic regression analysis showed that treatment with tolvaptan was an independent factor for reducing WRF (hazard ratio 0.28, 95% confidence interval; 0.10-0.84; p=0.023). In patients with ADHF with high risk of WRF, treatment with tolvaptan could prevent WRF compared to conventional therapy. Copyright © 2012 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.
Longitudinal changes in kidney parenchymal volume associated with renal artery stenting.
Modrall, J Gregory; Timaran, Carlos H; Rosero, Eric B; Chung, Jayer; Plummer, Mitchell; Valentine, R James; Trimmer, Clayton
2012-03-01
This study assessed the longitudinal changes in renal volume after renal artery stenting (RAS) to determine if renal mass is preserved by stenting. The study cohort consisted of 38 patients with longitudinal imaging available for renal volume quantification before and after RAS. Renal volume was estimated as (kidney length) × (width) × (depth/2) based on preoperative renal imaging. For each patient, the clinical response of blood pressure (BP) and renal function to RAS was categorized according to modified American Heart Association guidelines. Changes in renal volume were assessed using paired nonparametric analyses. The cohort was a median age of 69 years (interquartile range [IQR], 60-74 years). A favorable BP response was observed in 11 of 38 patients (28.9%). At a median interval between imaging studies of 21 months (IQR, 13-32 months), ipsilateral renal volume was significantly increased from baseline (146.8 vs 133.8 cm(3);P = .02). This represents a 6.9% relative increase in ipsilateral kidney volume from baseline. A significant negative correlation between preoperative renal volume and the relative change in renal volume postoperatively (r = -0.42; P = .0055) suggests that smaller kidneys experienced the greatest gains in renal volume after stenting. It is noteworthy that the 25 patients with no change in BP or renal function-clinical failures using traditional definitions-experienced a 12% relative increase in ipsilateral renal volume after RAS. Multivariate analysis determined that stable or improved renal volume after stenting was an independent predictor of stable or improved long-term renal function (odds ratio, 0.008; 95% confidence interval, 0.000-0.206; P = .004). These data lend credence to the belief that RAS preserves renal mass in some patients. This benefit of RAS even extends to those patients who would be considered treatment failures by traditional definitions. Patients with stable or increased renal volume after RAS had more stable renal function during long-term follow-up, whereas patients with renal volume loss after stenting were prone to deterioration of renal function. Published by Mosby, Inc.
Vargas, Félix; Rodríguez-Gómez, Isabel; Vargas-Tendero, Pablo; Jimenez, Eugenio; Montiel, Mercedes
2012-04-01
Thyroid disorders are among the most common endocrine diseases and affect virtually all physiological systems, with an especially marked impact on cardiovascular and renal systems. This review summarizes the effects of thyroid hormones on the renin-angiotensin system (RAS) and the participation of the RAS in the cardiovascular and renal manifestations of thyroid disorders. Thyroid hormones are important regulators of cardiac and renal mass, vascular function, renal sodium handling, and consequently blood pressure (BP). The RAS acts globally to control cardiovascular and renal functions, while RAS components act systemically and locally in individual organs. Various authors have implicated the systemic and local RAS in the mediation of functional and structural changes in cardiovascular and renal tissues due to abnormal thyroid hormone levels. This review analyzes the influence of thyroid hormones on RAS components and discusses the role of the RAS in BP, cardiac mass, vascular function, and renal abnormalities in thyroid disorders.
Orban, Jean-Christophe; Fontaine, Eric; Cassuto, Elisabeth; Baumstarck, Karine; Leone, Marc; Constantin, Jean-Michel; Ichai, Carole
2018-04-17
Renal transplantation represents the treatment of choice of end-stage kidney disease. Delayed graft function (DGF) remains the most frequent complication after this procedure, reaching more than 30%. Its prevention is essential as it impedes early- and long-term prognosis of transplantation. Numerous pharmacological interventions aiming to prevent ischemia-reperfusion injuries failed to reduce the rate of DGF. We hypothesize that cyclosporine as an early preconditioning procedure in donors would be associated with decreased DGF. The Cis-A-rein study is an investigator-initiated, prospective, multicenter, double-blind, randomized, controlled study performed to assess the effects of a donor preconditioning with cyclosporine A on kidney grafts function in transplanted patients. After randomization, a brain dead donor will receive 2.5 mg kg -1 of cyclosporine A or the same volume of 5% glucose solution. The primary objective is to compare the rate of DGF, defined as the need for at least one dialysis session within the 7 days following transplantation, between both groups. The secondary objectives include rate of slow graft function, mild and severe DGF, urine output and serum creatinine during the first week after transplantation, rate of primary graft dysfunction, renal function and mortality at 1 year. The sample size (n = 648) was determined to obtain 80% power to detect a 10% difference for rate of DGF at day 7 between the two groups (30% of the patients in the placebo group and 20% of the patients in the intervention group). Delayed graft function is a major issue after renal transplantation, impeding long-term prognosis. Cyclosporine A pretreatment in deceased donors could improve the outcome of patients after renal transplantation. ClinicalTrials.gov, ID: NCT02907554 Registered on 20 September 2016.
Oliveira, Fabiana S T; Vieira-Filho, Leucio D; Cabral, Edjair V; Sampaio, Luzia S; Silva, Paulo A; Carvalho, Vera C O; Vieyra, Adalberto; Einicker-Lamas, Marcelo; Lima, Vera L M; Paixão, Ana D O
2013-04-01
It has been demonstrated that reabsorption of Na⁺ in the thick ascending limb is reduced and the ability to concentrate urine can be compromised in undernourished individuals. Alterations in phospholipid and cholesterol content in renal membranes, leading to Na⁺ loss and the inability to concentrate urine, were investigated in undernourished rats. Sixty-day-old male Wistar rats were utilized to evaluate (1) phospholipid and cholesterol content in the membrane fraction of whole kidneys, (2) cholesterol content and the levels of active Na⁺ transporters, (Na⁺ + K⁺)ATPase and Na⁺-ATPase, in basolateral membranes of kidney proximal tubules, and (3) functional indicators of medullary urine concentration. Body weight in the undernourished group was 73 % lower than in control. Undernourishment did not affect the levels of cholesterol in serum or in renal homogenates. However, membranes of whole kidneys revealed 56 and 66 % reduction in the levels of total phospholipids and cholesterol, respectively. Furthermore, cholesterol and (Na⁺ + K⁺)ATPase activity in proximal tubule membranes were reduced by 55 and 68 %, respectively. Oxidative stress remained unaltered in the kidneys of undernourished rats. In contrast, Na⁺-ATPase activity, an enzyme with all regulatory components in membrane, was increased in the proximal tubules of undernourished rats. Free water clearance and fractional Na⁺ excretion were increased by 86 and 24 %, respectively, and urinary osmolal concentration was 21 % lower in undernourished rats than controls. Life-long undernutrition reduces the levels of total phospholipids and cholesterol in membranes of renal tubular cells. This alteration in membrane integrity could diminish (Na⁺ + K⁺)ATPase activity resulting in reduced Na⁺ reabsorption and urinary concentrating ability.
Changes in Renal Function and Blood Pressure in Patients with Stone Disease
NASA Astrophysics Data System (ADS)
Worcester, Elaine M.
2007-04-01
Stone disease is a rare cause of renal failure, but a history of kidney stones is associated with an increased risk for chronic kidney disease, particularly in overweight patients. Loss of renal function seems especially notable for patients with stones associated with cystinuria, hyperoxaluria, and renal tubular acidosis, in whom the renal pathology shows deposits of mineral obstructing inner medullary collecting ducts, often diffusely. However, even idiopathic calcium oxalate stone formers have a mild but significant decrease in renal function, compared to age, sex and weight-matched normals, and appear to lose renal function with age at a slightly faster rate than non-stone formers. There is also an increased incidence of hypertension among stone formers, although women are more likely to be affected than men.
Sarashina, Akiko; Ueki, Kohjiro; Sasaki, Tomohiro; Tanaka, Yuko; Koiwai, Kazuki; Sakamoto, Wataru; Woerle, Hans J; Salsali, Afshin; Broedl, Uli C; Macha, Sreeraj
2014-11-01
The purpose of this study was to assess the effect of renal impairment on the pharmacokinetic, pharmacodynamic, and safety profiles of empagliflozin, a sodium glucose cotransporter 2 (SGLT2) inhibitor, in Japanese patients with type 2 diabetes mellitus (T2DM). In an open-label, parallel-group study, 32 Japanese patients with T2DM and different degrees of renal function (n = 8 per renal function category: normal renal function, estimated glomerular filtration rate [eGFR; Japanese equation] ≥90 mL/min/1.73 m(2); mild renal impairment, eGFR of 60-<90 mL/min/1.73 m(2); moderate renal impairment, eGFR of 30-<60 mL/min/1.73 m(2); and severe renal impairment, eGFR of 15-<30 mL/min/1.73 m(2)) received a single 25 mg dose of empagliflozin. Empagliflozin exposure increased with increasing renal impairment. Maximum empagliflozin plasma concentrations were similar among all renal function groups. Adjusted geometric mean ratios for extent of exposure (AUC0-∞) to empagliflozin versus normal renal function were 128.8% (95% CI, 106.0-156.6%), 143.8% (95% CI, 118.3-174.8%), and 152.3% (95% CI, 125.3-185.2%) for patients with mild, moderate, and severe renal impairment, respectively. Decreases in renal clearance of empagliflozin correlated with eGFR. Urinary glucose excretion decreased with increasing renal impairment and correlated with eGFR (adjusted mean [SE] change from baseline: 75.0 [4.84] g, 62.6 [5.75] g, 57.9 [4.86] g, and 23.7 [5.24] g for patients with normal renal function and mild, moderate, and severe renal impairment, respectively). Only 2 patients (6%) had adverse events; both were mild. Pharmacokinetic data suggest that no dose adjustment of empagliflozin is necessary in Japanese patients with T2DM and renal impairment because increases in exposure were <2-fold. Urinary glucose excretion decreased with increasing renal impairment. ClinicalTrials.gov identifier: NCT01581658. Copyright © 2014 Elsevier HS Journals, Inc. All rights reserved.
Ghlissi, Zohra; Hakim, Ahmed; Mnif, Hela; Kallel, Rim; Zeghal, Khaled; Boudawara, Tahiya; Sahnoun, Zouheir
2018-01-01
This study was carried out to evaluate spontaneous renal regeneration after stopping colistin methanesulfonate (CMS), which induces tubular damage, and the curative effect of Vitamin E (vit E) in rats. Animals were given the following: sterile saline (n = 6), 300,000 IU/kg/ day of CMS (n = 24), or 450,000 IU/kg/day of CMS (n = 24) for seven days. Each CMS group was subdivided into four subgroups (n = 6) and sacrificed as follows: (i) 12 h after stopping CMS, (ii) two weeks after stopping CMS, (iii) two weeks after stopping treatment with vit E, and (iv) two weeks after stopping treatment with olive oil. Subsequently, plasma creatinine (pCr), urine N-acetyl-b-D-glucosaminidase (NAG), renal tissue level of malondialdehyde (MDA), superoxide dismutase (SOD), glutathione reductase (GSH), and renal histology were tested. CMS-induced tubular damage increased the NAG and MDA levels and decreased the SOD and GSH activities. After two weeks of stopping CMS, there was no significant renal recovery. However, treatment with vit E improved tubular regeneration and reduced the biochemical impairments. Two weeks might not be long enough for significant spontaneous renal regeneration. Improvement of renal parameters by vit E could be explained by the reduction of oxidative stress damage.
Yu, Gang; Bai, Zhiming; Chen, Zhiyuan; Chen, Hui; Wang, Guoren; Wang, Gang; Liu, Zhenxiang
2017-02-01
Ozone therapy is an effective medical treatment for various diseases. A previous study has demonstrated its reno-protective effect in chronic kidney disease (CKD), but the mechanism involved is not completely known. This study produced the 5/6 nephrectomized CKD rat model and investigated whether the reno-protective effect of ozone therapy was achieved by its anti-inflammatory property through the modulation of the NLRP3 inflammasome. The results showed that ozone therapy at a low concentration improved renal function and ameliorated renal morphological injury in 5/6 nephrectomized rats. The expression of NLRP3, ASC, and caspase-1-p10 in the kidney of these rats was simultaneously lowered by ozone therapy. Moreover, renal inflammation caused by IL-1β was significantly alleviated by ozone therapy. The Pearson correlation analysis indicated that the protein level of IL-1β was positively correlated with renal injury scores. Taken together, these results indicated that ozone therapy might reduce sterile renal inflammation and slow down CKD progression through the modulation of the NLRP3 inflammasome in 5/6 nephrectomized rats. Copyright © 2016 Elsevier B.V. All rights reserved.
Chu, Shichun; Hu, Liuhua; Wang, Xiaolei; Sun, Shiqun; Zhang, Tuo; Sun, Zhe; Shen, Linghong; Jin, Shuxuan; He, Ben
2016-11-01
The aim of this study was to assess the preventive effect of xuezhikang (XZK) to replace atorvastatin on the contrast media-induced acute kidney injury (CI-AKI). The male Sprague-Dawley rats were divided into five groups: group 1 (sham), injected with normal saline; group 2 (XZK), treated with XZK; group 3 contrast media (CM), injected with CM; group 4 (CM + ATO), injected with CM + pretreatment with atorvastatin; group 5 (CM + XZK), injected with CM + pretreatment with XZK. Twenty-four hours after injection with normal saline or CM, the blood sample and the kidneys were collected for the measurement of biochemical parameters, oxidative stress markers, nitric oxide production, inflammatory parameters, as well as renal histopathology and apoptosis detection. Our results indicated that XZK restored the renal function by reducing serum blood urea nitrogen (BUN) and serum creatinine (Scr), depressing renal malondialdehyde (MDA), increasing renal NO production, decreasing TNF-ɑ and IL-6 expression, attenuating renal pathological changes and inhibiting the apoptosis of renal tubular cells. XZK's therapeutic effect is similar, or even better than atorvastatin at the same effectual dose in some parts.
FGF23 regulates renal sodium handling and blood pressure
Andrukhova, Olena; Slavic, Svetlana; Smorodchenko, Alina; Zeitz, Ute; Shalhoub, Victoria; Lanske, Beate; Pohl, Elena E; Erben, Reinhold G
2014-01-01
Fibroblast growth factor-23 (FGF23) is a bone-derived hormone regulating renal phosphate reabsorption and vitamin D synthesis in renal proximal tubules. Here, we show that FGF23 directly regulates the membrane abundance of the Na+:Cl− co-transporter NCC in distal renal tubules by a signaling mechanism involving the FGF receptor/αKlotho complex, extracellular signal-regulated kinase 1/2 (ERK1/2), serum/glucocorticoid-regulated kinase 1 (SGK1), and with-no lysine kinase-4 (WNK4). Renal sodium (Na+) reabsorption and distal tubular membrane expression of NCC are reduced in mouse models of Fgf23 and αKlotho deficiency. Conversely, gain of FGF23 function by injection of wild-type mice with recombinant FGF23 or by elevated circulating levels of endogenous Fgf23 in Hyp mice increases distal tubular Na+ uptake and membrane abundance of NCC, leading to volume expansion, hypertension, and heart hypertrophy in a αKlotho and dietary Na+-dependent fashion. The NCC inhibitor chlorothiazide abrogates FGF23-induced volume expansion and heart hypertrophy. Our findings suggest that FGF23 is a key regulator of renal Na+ reabsorption and plasma volume, and may explain the association of FGF23 with cardiovascular risk in chronic kidney disease patients. PMID:24797667
Mao, Wei; Zhou, Jianjun; Zeng, Mengsu; Ding, Yuqin; Qu, Lijie; Chen, Caizhong; Ding, Xiaoqiang; Wang, Yaqiong; Fu, Caixia
2018-05-01
Because chronic kidney disease (CKD) is a worldwide problem, accurate pathological and functional evaluation is required for planning treatment and follow-up. Intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) can assess both capillary perfusion and tissue diffusion and may be helpful in evaluating renal function and pathology. To evaluate functional and pathological alterations in CKD by applying IVIM-DWI. Prospective study. In all, 72 CKD patients who required renal biopsy and 20 healthy volunteers. 1.5T. All subjects underwent IVIM-DWI of the kidneys, and image analysis was performed by two radiologists. The mean values of true diffusion coefficient (D), pseudo diffusion coefficient (D*), and perfusion fraction (f) were acquired from renal parenchyma. Correlation between IVIM-DWI parameters and estimated glomerular filtration rate (eGFR), as well as pathological damage, were assessed. One-way analysis of variance (ANOVA), paired sample t-test and Spearman correlation analysis. The paired sample t-test revealed that IVIM-DWI parameters were significantly lower in medulla than cortex for both patients and controls (P < 0.01). Regardless of whether eGFR was reduced, ANOVA revealed that f values of renal parenchyma were significantly lower in patients than controls (P < 0.05). Spearman correlation analysis revealed that there were positive correlations between eGFR and D (cortex, r = 0.466, P < 0.001; medulla, r = 0.491, P < 0.001), and between eGFR and f (cortex, r = 0.713, P < 0.001; medulla, r = 0.512, P < 0.001). Negative correlations were found between f and glomerular injury (cortex, r = -0.773, P < 0.001; medulla, r = -0.629, P < 0.001), and between f and tubulointerstitial lesion (cortex, r = -0.728, P < 0.001; medulla, r = -0.547, P < 0.001). IVIM-DWI might be feasible for noninvasive evaluation of renal function and pathology of CKD, especially in detection of renal insufficiency at an early stage. 1 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2018;47:1251-1259. © 2017 International Society for Magnetic Resonance in Medicine.
HRV Influence During Renal Transplantation Procedure on Long-Term Mortality.
Biernawska, J; Kotfis, K; Kaczmarczyk, M; Błaszczyk, W; Barnik, E; Żukowski, M
2016-06-01
The autonomic nervous system plays an important role in heart function regulation. One of the most acknowledged methods for noninvasive measurement of autonomic system activity is to determine heart rate variability (HRV). Reduced HRV parameters-heart rate rigidity/stiffness-are an independent prognostic factor of sudden cardiac death risk because of arrhythmia. Renal transplantation is an important factor in HRV changes because of hemodynamic and ion disturbances. The main purpose of this study was to determine the influence of HRV disturbances during renal transplantation procedures on long-term mortality in patients with chronic kidney disease. A prospective observation study was performed in the Department of Anesthesiology, Intensive Care, and Acute Poisoning, Pomeranian Medical University, Szczecin, Poland. There were 75 patients (mean age, 47 ± 12 years; 42 men) treated with renal transplantation between 2008 and 2010. Patients were monitored with electrocardiographic tracing with the use of 7 electrodes in position type B. The final stage of analysis was to determine the possible relationship between HRV parameters during the perioperative period and the number of deaths within a 5-year follow-up. HRV parameters during the perioperative period of renal transplantation and the number of deaths within a 5-year follow-up, measured by use of the Holter method, did not differ among patients in the studied population. HRV is a noninvasive and confirmed tool used for the evaluation of autonomic function and mortality risk in patients with end-stage renal disease. HRV parameters recorded in the perioperative period are not optimal stratification tools for estimating the risk of cardiac deaths in patients with end-stage renal disease. Copyright © 2016 Elsevier Inc. All rights reserved.
Nikolaeva, Svetlana; Ansermet, Camille; Centeno, Gabriel; Pradervand, Sylvain; Bize, Vincent; Mordasini, David; Henry, Hugues; Koesters, Robert; Maillard, Marc; Bonny, Olivier; Tokonami, Natsuko; Firsov, Dmitri
2016-10-01
The circadian clock controls a wide variety of metabolic and homeostatic processes in a number of tissues, including the kidney. However, the role of the renal circadian clocks remains largely unknown. To address this question, we performed a combined functional, transcriptomic, and metabolomic analysis in mice with inducible conditional knockout (cKO) of BMAL1, which is critically involved in the circadian clock system, in renal tubular cells (Bmal1 lox/lox /Pax8-rtTA/LC1 mice). Induction of cKO in adult mice did not produce obvious abnormalities in renal sodium, potassium, or water handling. Deep sequencing of the renal transcriptome revealed significant changes in the expression of genes related to metabolic pathways and organic anion transport in cKO mice compared with control littermates. Furthermore, kidneys from cKO mice exhibited a significant decrease in the NAD + -to-NADH ratio, which reflects the oxidative phosphorylation-to-glycolysis ratio and/or the status of mitochondrial function. Metabolome profiling showed significant changes in plasma levels of amino acids, biogenic amines, acylcarnitines, and lipids. In-depth analysis of two selected pathways revealed a significant increase in plasma urea level correlating with increased renal Arginase II activity, hyperargininemia, and increased kidney arginine content as well as a significant increase in plasma creatinine concentration and a reduced capacity of the kidney to secrete anionic drugs (furosemide) paralleled by an approximate 80% decrease in the expression level of organic anion transporter 3 (SLC22a8). Collectively, these results indicate that the renal circadian clocks control a variety of metabolic/homeostatic processes at the intrarenal and systemic levels and are involved in drug disposition. Copyright © 2016 by the American Society of Nephrology.
Saeed, Aso; DiBona, Gerald F; Grimberg, Elisabeth; Nguy, Lisa; Mikkelsen, Minne Line Nedergaard; Marcussen, Niels; Guron, Gregor
2014-03-15
This study examined the effects of 2 wk of high-NaCl diet on kidney function and dynamic renal blood flow autoregulation (RBFA) in rats with adenine-induced chronic renal failure (ACRF). Male Sprague-Dawley rats received either chow containing adenine or were pair-fed an identical diet without adenine (controls). After 10 wk, rats were randomized to either remain on the same diet (0.6% NaCl) or to be switched to high 4% NaCl chow. Two weeks after randomization, renal clearance experiments were performed under isoflurane anesthesia and dynamic RBFA, baroreflex sensitivity (BRS), systolic arterial pressure variability (SAPV), and heart rate variability were assessed by spectral analytical techniques. Rats with ACRF showed marked reductions in glomerular filtration rate and renal blood flow (RBF), whereas mean arterial pressure and SAPV were significantly elevated. In addition, spontaneous BRS was reduced by ∼50% in ACRF animals. High-NaCl diet significantly increased transfer function fractional gain values between arterial pressure and RBF in the frequency range of the myogenic response (0.06-0.09 Hz) only in ACRF animals (0.3 ± 4.0 vs. -4.4 ± 3.8 dB; P < 0.05). Similarly, a high-NaCl diet significantly increased SAPV in the low-frequency range only in ACRF animals. To conclude, a 2-wk period of a high-NaCl diet in ACRF rats significantly impaired dynamic RBFA in the frequency range of the myogenic response and increased SAPV in the low-frequency range. These abnormalities may increase the susceptibility to hypertensive end-organ injury and progressive renal failure by facilitating pressure transmission to the microvasculature.
Zhang, Ya-Li; Qiao, Shu-Kai; Wang, Rong-Ying; Guo, Xiao-Nan
2018-06-01
Ischemia/reperfusion (I/R) injury is a main cause of acute kidney injury (AKI), and currently lacks effective therapies. This study is to investigate the level of Neutrophil gelatinase-associated lipocalin (NGAL) and autophagy status during renal I/R injury, so as to determine whether the exogenous NGAL protein could exert a protective effect for I/R injury and explore the potential mechanisms. Forty male Wistar rats were randomly divided into the following four groups: Sham, I/R, pre-treated with NGAL before I/R (I/R + pre-N), treated with NGAL after I/R (I/R + post-N). All rats were subjected to clamping the left renal pedicle for 45 min after right nephrectomy, followed by 24 h of reperfusion. Serum creatinine (SCr) and blood urea nitrogen (BUN) were used for renal function, tubular cell apoptosis and autophagy were measured by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) method, histological examination and electron microscope, respectively. The tubular cell proliferation was assessed by the protein expression of proliferating cell nuclear antigen (PCNA). Western blotting was used to quantitate the levels of LC3, Beclin-1, Bcl-2 and Bax in kidney tissues. Exogenous NGAL protein intervention significantly improved renal function, reduced tubular cell apoptosis, increased tubular cell proliferation and promoted autophagy activation after renal I/R injury. Further, the efficacy in pre-N was significantly better than post-N. The mechanisms were involved in the regulation of several autophagy and apoptosis-related genes. Our study demonstrated that exogenous NGAL protein play a protective role during I/R injury, which may offer a novel may for prevention and treatment of renal I/R injury. Copyright © 2018. Published by Elsevier B.V.
Sahu, Bidya Dhar; Tatireddy, Srujana; Koneru, Meghana; Borkar, Roshan M; Kumar, Jerald Mahesh; Kuncha, Madhusudana; Srinivas, R; Shyam Sunder, R; Sistla, Ramakrishna
2014-05-15
Gentamicin-induced nephrotoxicity has been well documented, although its underlying mechanisms and preventive strategies remain to be investigated. The present study was designed to investigate the protective effect of naringin, a bioflavonoid, on gentamicin-induced nephrotoxicity and to elucidate the potential mechanism. Serum specific renal function parameters (blood urea nitrogen and creatinine) and histopathology of kidney tissues were evaluated to assess the gentamicin-induced nephrotoxicity. Renal oxidative stress (lipid peroxidation, protein carbonylation, enzymatic and non-enzymatic antioxidants), inflammatory (NF-kB [p65], TNF-α, IL-6 and MPO) and apoptotic (caspase 3, caspase 9, Bax, Bcl-2, p53 and DNA fragmentation) markers were also evaluated. Significant decrease in mitochondrial NADH dehydrogenase, succinate dehydrogenase, cytochrome c oxidase and mitochondrial redox activity indicated the gentamicin-induced mitochondrial dysfunction. Naringin (100mg/kg) treatment along with gentamicin restored the mitochondrial function and increased the renal endogenous antioxidant status. Gentamicin induced increased renal inflammatory cytokines (TNF-α and IL-6), nuclear protein expression of NF-κB (p65) and NF-κB-DNA binding activity and myeloperoxidase (MPO) activity were significantly decreased upon naringin treatment. In addition, naringin treatment significantly decreased the amount of cleaved caspase 3, Bax, and p53 protein expression and increased the Bcl-2 protein expression. Naringin treatment also ameliorated the extent of histologic injury and reduced inflammatory infiltration in renal tubules. U-HPLS-MS data revealed that naringin co-administration along with gentamicin did not alter the renal uptake and/or accumulation of gentamicin in kidney tissues. These findings suggest that naringin treatment attenuates renal dysfunction and structural damage through the reduction of oxidative stress, mitochondrial dysfunction, inflammation and apoptosis in the kidney. Copyright © 2014 Elsevier Inc. All rights reserved.
Kimura, Kazuhiro; Momose, Tomoyasu; Hasegawa, Tomoya; Morita, Takehiro; Misawa, Takuo; Motoki, Hirohiko; Izawa, Atsushi; Ikeda, Uichi
2016-05-01
Loop diuretics used in the treatment of heart failure often induce renal impairment. This study was conducted in order to evaluate the renal protective effect of adding tolvaptan (TLV), compared to increasing the furosemide (FRM) dose, for the treatment of acute decompensated heart failure (ADHF) in a real-world elderly patient population. This randomized controlled trial enrolled 52 consecutive hospitalized patients (age 83.4±9.6 years) with ADHF. The patients were assigned alternately to either the TLV group (TLV plus conventional treatment, n=26) or the FRM group (increasing the dose of FRM, n=26). TLV was administered within 24h from admission. The incidence of worsening renal function (WRF) within 7 days from admission was significantly lower in the TLV group (26.9% vs. 57.7%, p=0.025). Furthermore, the rates of occurrence of persistent and late-onset (≥5 days from admission) WRF were significantly lower in the TLV group. Persistent and late-onset WRF were significantly associated with a higher incidence of cardiac death or readmission for worsening heart failure in the 90 days following discharge, compared to transient and early-onset WRF, respectively. Early administration of TLV, compared to increased FRM dosage, reduces the incidence of WRF in real-world elderly ADHF patients. In addition, it reduces the occurrence of 'worse' WRF-persistent and late-onset WRF-which are associated with increased rates of cardiac death or readmission for worsening heart failure in the 90 days after discharge. Copyright © 2015 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.
Picard, Nicolas; Trompf, Katja; Yang, Chao-Ling; Miller, R. Lance; Carrel, Monique; Loffing-Cueni, Dominique; Fenton, Robert A.; Ellison, David H.
2014-01-01
The thiazide-sensitive NaCl cotransporter (NCC) of the renal distal convoluted tubule (DCT) controls ion homeostasis and arterial BP. Loss-of-function mutations of NCC cause renal salt wasting with arterial hypotension (Gitelman syndrome). Conversely, mutations in the NCC-regulating WNK kinases or kelch-like 3 protein cause familial hyperkalemic hypertension. Here, we performed automated sorting of mouse DCTs and microarray analysis for comprehensive identification of novel DCT-enriched gene products, which may potentially regulate DCT and NCC function. This approach identified protein phosphatase 1 inhibitor-1 (I-1) as a DCT-enriched transcript, and immunohistochemistry revealed I-1 expression in mouse and human DCTs and thick ascending limbs. In heterologous expression systems, coexpression of NCC with I-1 increased thiazide-dependent Na+ uptake, whereas RNAi-mediated knockdown of endogenous I-1 reduced NCC phosphorylation. Likewise, levels of phosphorylated NCC decreased by approximately 50% in I-1 (I-1−/−) knockout mice without changes in total NCC expression. The abundance and phosphorylation of other renal sodium-transporting proteins, including NaPi-IIa, NKCC2, and ENaC, did not change, although the abundance of pendrin increased in these mice. The abundance, phosphorylation, and subcellular localization of SPAK were similar in wild-type (WT) and I-1−/− mice. Compared with WT mice, I-1−/− mice exhibited significantly lower arterial BP but did not display other metabolic features of NCC dysregulation. Thus, I-1 is a DCT-enriched gene product that controls arterial BP, possibly through regulation of NCC activity. PMID:24231659
Maicas, Nuria; van der Vlag, Johan; Bublitz, Janin; Florquin, Sandrine; Bakker-van Bebber, Marinka; Dinarello, Charles A.; Verweij, Vivienne; Masereeuw, Roos; Joosten, Leo A.
2017-01-01
Several lines of evidence have demonstrated the anti-inflammatory and cytoprotective effects of alpha-1-antitrypsin (AAT), the major serum serine protease inhibitor. The aim of the present study was to investigate the effects of human AAT (hAAT) monotherapy during the early and recovery phase of ischemia-induced acute kidney injury. Mild renal ischemia-reperfusion (I/R) injury was induced in male C57Bl/6 mice by bilateral clamping of the renal artery and vein for 20 min. hAAT (80 mg/kg, Prolastin®) was administered daily intraperitoneally (i.p.) from day -1 until day 7 after surgery. Control animals received the same amount of human serum albumin (hAlb). Plasma, urine and kidneys were collected at 2h, 1, 2, 3, 8 and 15 days after reperfusion for histological and biochemical analysis. hAAT partially preserved renal function and tubular integrity after induction of bilateral kidney I/R injury, which was accompanied with reduced renal influx of macrophages and a significant decrease of neutrophil gelatinase-associated lipocalin (NGAL) protein levels in urine and plasma. During the recovery phase, hAAT significantly decreased kidney injury molecule-1 (KIM-1) protein levels in urine but showed no significant effect on renal fibrosis. Although the observed effect size of hAAT administration was limited and therefore the clinical relevance of our findings should be evaluated carefully, these data support the potential of this natural protein to ameliorate ischemic and inflammatory conditions. PMID:28235038
Mergia, Evanthia; Thieme, Manuel; Hoch, Henning; Daniil, Georgios; Hering, Lydia; Yakoub, Mina; Scherbaum, Christina Rebecca; Rump, Lars Christian; Koesling, Doris; Stegbauer, Johannes
2018-03-23
Nitric oxide (NO) modulates renal blood flow (RBF) and kidney function and is involved in blood pressure (BP) regulation predominantly via stimulation of the NO-sensitive guanylyl cyclase (NO-GC), existing in two isoforms, NO-GC1 and NO-GC2. Here, we used isoform-specific knockout (KO) mice and investigated their contribution to renal hemodynamics under normotensive and angiotensin II-induced hypertensive conditions. Stimulation of the NO-GCs by S -nitrosoglutathione (GSNO) reduced BP in normotensive and hypertensive wildtype (WT) and NO-GC2-KO mice more efficiently than in NO-GC1-KO. NO-induced increase of RBF in normotensive mice did not differ between the genotypes, but the respective increase under hypertensive conditions was impaired in NO-GC1-KO. Similarly, inhibition of endogenous NO increased BP and reduced RBF to a lesser extent in NO-GC1-KO than in NO-GC2-KO. These findings indicate NO-GC1 as a target of NO to normalize RBF in hypertension. As these effects were not completely abolished in NO-GC1-KO and renal cyclic guanosine monophosphate (cGMP) levels were decreased in both NO-GC1-KO and NO-GC2-KO, the results suggest an additional contribution of NO-GC2. Hence, NO-GC1 plays a predominant role in the regulation of BP and RBF, especially in hypertension. However, renal NO-GC2 appears to compensate the loss of NO-GC1, and is able to regulate renal hemodynamics under physiological conditions.
Recommendations of everolimus use in liver transplant.
Rubín Suárez, Angel; Bilbao Aguirre, Itxarone; Fernández-Castroagudin, Javier; Pons Miñano, José Antonio; Salcedo Plaza, Magdalena; Varo Pérez, Evaristo; Prieto Castillo, Martín
2017-11-01
Mammalian target of rapamycin (mTOR) inhibitors, everolimus (EVL) and sirolimus are immunosuppressive agents with a minor nephrotoxic effect, limited to the development of proteinuria in some cases. The combination of EVL and low-dose tacrolimus has proven to be as safe and effective as standard therapy with tacrolimus for the prevention of acute cellular rejection. Early initiation of EVL-based immunosuppressive regimens with reduced exposure to calcineurin inhibitors has been shown to significantly improve renal function of LT recipients during induction and maintenance phases, with comparable efficacy and safety profiles. In patients with established kidney failure, initiating EVL may enable clinicians to reduce calcineurin inhibitors exposure, thereby contributing to the improved renal function of these patients. Although there is not sufficient evidence to recommend their use to prevent the recurrence of hepatocellular carcinoma and the progression of de novo tumours, they are used in this context in routine clinical practice. Copyright © 2017 Elsevier España, S.L.U., AEEH y AEG. All rights reserved.
Velciov, Silvia; Hoinoiu, B; Hoinoiu, Teodora; Popescu, Alina; Gluhovschi, Cristina; Grădinaru, Oana; Popescu, Mădalină; Moţiu, Flavia; Timar, R; Gluhovschi, G H; Sporea, I
2013-01-01
Colorectal cancer represents the third cause of cancer. Since its detection in due time is important resolution, appropriate monitoring is mandatory. The present study deals with the relationship between colorectal cancer and renal function, as well as other associated risk factors. Chronic kidney disease (CKD) represents a risk factor of cancer, both in non-dialysed patients and especially in dialysed patients and in patients with renal transplant. It can get aggravated with cancer in general and particularly with colorectal cancer, partly related to the toxins that cannot be appropriately eliminated because of renal functional disturbances. At the same time, immunosuppressive therapy used for treating glomerular or secondary nephropathies represents an important risk factor of cancer. Some patients with colorectal cancer were found to present also impaired renal function, a fact whose significance is still little known. The object of the present paper is an analysis of the case records of a clinic of gastroenterology on the relationship between colorectal cancer and renal functional impairment. We found in the patients with colorectal cancer under study a glomerular filtration rate (GFR calculated with the EPI formula) of < 60 ml/min/1.73m2 in 31/180 patients, respectively 17.22% of the cases, a value that is similar to that in specialised literature. We also analysed associated risk factors that could be related to renal function impairment in these patients: age, gender, anaemia, diabetes mellitus and hypertension. These could represent, together with the colorectal cancer of the investigated patients, risk factors affecting on the one hand renal function, and on the other hand, potentially increasing the risk of cancer. Correction of these risk factors would have beneficial effects on patients. The relationship between renal functional impairment, respectively CKD, and colorectal cancer is to be regarded from the point of view of complex reciprocity: the impairment of the renal function is a factor of risk of colorectal cancer and colorectal cancer can influence renal function of these patients. This report of reciprocity based on important pathogenic mechanisms also interrelates with factors of risk consecutive to both renal function impairment and colorectal cancer.
Haneda, Masakazu; Kadowaki, Takashi; Ito, Hiroshi; Sasaki, Kazuyo; Hiraide, Sonoe; Ishii, Manabu; Matsukawa, Miyuki; Ueno, Makoto
2018-06-01
Teneligliptin is a novel oral dipeptidyl peptidase-4 inhibitor for the treatment of type 2 diabetes mellitus (T2DM). Safety and efficacy of teneligliptin have been demonstrated in clinical studies; however, data supporting its use in patients with moderate or severe renal impairment are limited. This interim analysis of a post-marketing surveillance of teneligliptin, exploRing the long-term efficacy and safety included cardiovascUlar events in patients with type 2 diaBetes treated bY teneligliptin in the real-world (RUBY), aims to verify the long-term safety and efficacy of teneligliptin in Japanese patients with T2DM and impaired renal function. For this analysis, we used the data from case report forms of the RUBY surveillance between May 2013 and June 2017. The patients were classified into G1-G5 stages of chronic kidney disease according to estimated glomerular filtration rate (eGFR) at initiation of teneligliptin treatment. Safety and efficacy were evaluated in these subgroups. Patients on dialysis were also assessed. Safety was assessed from adverse drug reactions (ADRs). Glycemic control was evaluated up to 2 years after teneligliptin initiation. A total of 11,677 patients were enrolled in the surveillance and 11,425 patient case-report forms were collected for the interim analysis. The incidence of ADRs in each subgroup was 2.98-6.98% of patients, with no differences in the ADR profile (including hypoglycemia and renal function ADRs) between subgroups. At 1 and 2 years after starting teneligliptin, the least-squares mean change in HbA1c adjusted to the baseline was - 0.68 to - 0.85% and - 0.71 to - 0.85% across the eGFR groups, respectively. Treatment with teneligliptin in patients on dialysis reduced or tended to reduce glycated albumin levels [- 2.29%, (p < 0.001) after 1 year; - 1.64%, (p = 0.064) after 2 years]. During long-term treatment, teneligliptin was generally well tolerated in patients with any stage of renal impairment from normal to end-stage renal disease, including those on dialysis, and improved glycemic control. Japic CTI-153047. Mitsubishi Tanabe Pharma Corporation and Daiichi Sankyo Co, Ltd.
Surgical treatment reduces blood pressure in children with unilateral congenital hydronephrosis.
Al-Mashhadi, Ammar; Nevéus, Tryggve; Stenberg, Arne; Karanikas, Birgitta; Persson, A Erik G; Carlström, Mattias; Wåhlin, Nils
2015-04-01
Renal disorders can cause hypertension, but less is known about the influence of hydronephrosis on blood pressure. Hydronephrosis due to pelvo-ureteric junction obstruction (PUJO) is a fairly common condition (incidence in newborns of 0.5-1%). Although hypertensive effects of hydronephrosis have been suggested, this has not been substantiated by prospective studies in humans [1-3]. Experimental studies with PUJO have shown that animals with induced hydronephrosis develop salt-sensitive hypertension, which strongly correlate to the degree of obstruction [4-7]. Moreover, relief of the obstruction normalized blood pressure [8]. In this first prospective study our aim was to study the blood pressure pattern in pediatric patients with hydronephrosis before and after surgical correction of the ureteral obstruction. Specifically, we investigated if preoperative blood pressure is reduced after surgery and if split renal function and renographic excretion curves provide any prognostic information. Twelve patients with unilateral congenital hydronephrosis were included in this prospective study. Ambulatory blood pressure (24 h) was measured preoperatively and six months after surgery. Preoperative evaluations of bilateral renal function by Tc99m-MAG3 scintigraphy, and renography curves, classified according to O'Reilly, were also performed. As shown in the summary figure, postoperative systolic (103 ± 2 mmHg) and diastolic (62 ± 2 mmHg) blood pressure were significantly lower than those obtained preoperatively (110 ± 4 and 69 ± 2 mmHg, respectively), whereas no changes in circadian variation or pulse pressure were observed. Renal functional share of the hydronephrotic kidney ranged from 11 to 55%. There was no correlation between the degree of renal function impairment and the preoperative excretory pattern, or between the preoperative excretory pattern and the blood pressure reduction postoperatively. However, preoperative MAG3 function of the affected kidney correlated with the magnitude of blood pressure change after surgery. Correction of the obstruction lowered blood pressure, and the reduction in blood pressure appeared to correlate with the degree of renal functional impairment, but not with the excretory pattern. Thus, in the setting of hypertension, it appears that the functional share of the hydronephrotic kidney should be considered an indicator of the need for surgery, whereas the renography curve is less reliable. The strength of the present study is the prospective nature and that ambulatory blood pressure monitoring was used. Future longitudinal prolonged follow-up studies are warranted to confirm the present findings, and to understand if a real nephrogenic hypertension with potential necessity of treatment will develop. This novel prospective study in patients with congenital hydronephrosis demonstrates a reduction in blood pressure following relief of the obstruction. Based on the present results, we propose that the blood pressure level should also be taken into account when deciding whether to correct hydronephrosis surgically or not. Copyright © 2015 Journal of Pediatric Urology Company. Published by Elsevier Ltd. All rights reserved.
Zhou, Xiaoxu; Liu, Lirong; Masucci, Monica V.; Tang, Jinhua; Li, Xuezhu; Liu, Na; Bayliss, George; Zhao, Ting C.; Zhuang, Shougang
2017-01-01
Activation of Src kinase has been implicated in the pathogenesis of acute brain, liver, and lung injury. However, the role of Src in acute kidney injury (AKI) remains unestablished. To address this, we evaluated the effects of Src inhibition on renal dysfunction and pathological changes in a murine model of AKI induced by ischemia/reperfusion (I/R). I/R injury to the kidney resulted in increased Src phosphorylation at tyrosine 416 (activation). Administration of PP1, a highly selective Src inhibitor, blocked Src phosphorylation, improved renal function and ameliorated renal pathological damage. PP1 treatment also suppressed renal expression of neutrophil gelatinase-associated lipocalin and reduced apoptosis in the injured kidney. Moreover, Src inhibition prevented downregulation of several adherens and tight junction proteins, including E-cadherin, ZO-1, and claudins-1/−4 in the kidney after I/R injury as well as in cultured renal proximal tubular cells following oxidative stress. Finally, PP1 inhibited I/R–induced renal expression of matrix metalloproteinase-2 and -9, phosphorylation of extracellular signal–regulated kinases1/2, signal transducer and activator of transcription-3, and nuclear factor-κB, and the infiltration of macrophages into the kidney. These data indicate that Src is a pivotal mediator of renal epithelial injury and that its inhibition may have a therapeutic potential to treat AKI. PMID:28415724
Huang, Zhongdi; He, Liqun; Huang, Di; Lei, Shi; Gao, Jiandong
2015-10-21
Chronic kidney disease poses a serious health problem worldwide with increasing prevalence and lack of effective treatment. This study aimed to investigate the mechanism of icariin in alleviating chronic renal failure induced by 5/6 nephrectomy in rats. The chronic renal failure model was established by a two-phased 5/6 nephrectomy procedure. The model rats were given daily doses of water or icariin for 8 weeks. The kidney morphology was checked by HE staining. The levels of blood urea nitrogen, serum creatinine, and serum uric acid were measured by colometric methods. The expression of specified genes was analyzed by quantitative real-time PCR and immunohistochemical staining. The number of renal stem/progenitor cells was analyzed by CD133 and CD24 immunohistochemical staining. Icariin protected against CDK-caused damages to kidney histology and improved renal function, significantly reduced levels of BUN, creatinine, and uric acid. Icariin inhibited the expression level of TGF-β1 whereas upregulated HGF, BMP-7, WT-1, and Pax2 expression. Moreover, ccariin significantly increased the expression of CD24, CD133, Osr1, and Nanog in remnant kidney and the numbers of CD133(+)/CD24(+) renal stem/progenitor cells. These data demonstrated that icariin effectively alleviated 5/6 nephrectomy induced chronic renal failure through increasing renal stem/progenitor cells.
Kaneko, Hidehiro; Neuss, Michael; Schau, Thomas; Weissenborn, Jens; Butter, Christian
2017-02-01
MitraClip (MC; Abbott Vascular, Menlo Park, CA, USA) is a treatment option for mitral regurgitation. Renal dysfunction is closely associated with cardiovascular disease. However, the influence of renal function in MC remains not fully understood. In this study, we aimed to clarify the association between renal function and MC. We examined 206 consecutive patients who underwent MC and divided patients into 3 groups according to estimated glomerular filtration rate (eGFR), normal eGFR (≥60mL/min/1.73m 2 ) (n=70), mild chronic kidney disease (CKD) (30-59mL/min/1.73m 2 ) (n=106), and severe CKD (<30mL/min/1.73m 2 ) (n=30). N-terminal pro-B type natriuretic peptide (NT-pro BNP) levels increased with decreasing eGFR. Kaplan-Meier curves revealed that the long-term survival rate significantly decreased with eGFR. After adjustment with the covariates, severe CKD was still associated with mortality. Improved renal function was observed in 30% and associated with baseline lower NT-pro BNP levels. Patients with improved renal function had higher chronic phase survival rate. Renal dysfunction is common in MC patients and the survival rate decreased with eGFR in association with increased NT-pro BNP levels. MC may improve renal function in approximately 30% of MC patients. Improved renal function is associated with lower NT-pro BNP levels and results in satisfactory prognosis. These results implies a close association between renal function and MC treatment. Copyright © 2016 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.
Abebe, Nardos; Kebede, Tedla; Wolde, Mistire
2016-01-01
Studies demonstrated that abnormal thyroid functions may result in decreased or increased kidney size, kidney weight, and affect renal functions. In this regard, studies on the association of abnormal thyroid functions and renal function tests are scarcely found in Ethiopia. To assess renal function and electrolytes in patients with thyroid dysfunction, in Addis Ababa, Ethiopia. Cross sectional study was conducted from March 21/2015-May 27/2015 at Arsho Advanced Medical Laboratory. During the study period, 71 patients with thyroid dysfunction were eligible, and socio demographic data collected by structured questionnaire. Then blood sample was collected for thyroid function tests, renal function and blood electrolyte analysis. The collected data was analyzed by SPSS version 20. ANOVA and binary logistic regression were employed to evaluate the mean deference and associations of thyroid hormone with renal function and electrolyte balances. Among the renal function tests, serum uric acid, and creatinine mean values were significantly decreased in hyperthyroid patients; whereas, eGFR mean value was significantly increased in hyperthyroid study patients (P<0.05). Meanwhile, from the electrolyte measurements made, only the mean serum sodium value was significantly increased in hyperthyroid study participants. Binary logistic regression analysis on the association of thyroid dysfunction with electrolyte balance and renal function tests indicated that serum sodium, creatinine, eGFR values and hyperthyroidism have a statistical significant association at AOR 95% CI of 0.141(0.033-0.593, P=0.008); 16.236(3.481-75.739, P=0.001), and 13.797(3.261-58.67, P=0.001) respectively. The current study reveals, thyroid abnormalities may lead to renal function alterations and also may disturb electrolyte balance. Knowledge of this significant association has worthwhile value for clinicians, to manage their patients' optimally.
Na/K-ATPase/src complex mediates regulation of CD40 in renal parenchyma.
Xie, Jeffrey X; Zhang, Shungang; Cui, Xiaoyu; Zhang, Jue; Yu, Hui; Khalaf, Fatimah K; Malhotra, Deepak; Kennedy, David J; Shapiro, Joseph I; Tian, Jiang; Haller, Steven T
2017-12-22
Recent studies have highlighted a critical role for CD40 in the pathogenesis of renal injury and fibrosis. However, little is currently understood about the regulation of CD40 in this setting. We use novel Na/K-ATPase cell lines and inhibitors in order to demonstrate the regulatory function of Na/K-ATPase with regards to CD40 expression and function. We utilize 5/6 partial nephrectomy as well as direct infusion of a Na/K-ATPase ligand to demonstrate this mechanism exists in vivo. We demonstrate that knockdown of the α1 isoform of Na/K-ATPase causes a reduction in CD40 while rescue of the α1 but not the α2 isoform restores CD40 expression in renal epithelial cells. Second, because the major functional difference between α1 and α2 is the ability of α1 to form a functional signaling complex with Src, we examined whether the Na/K-ATPase/Src complex is important for CD40 expression. We show that a gain-of-Src binding α2 mutant restores CD40 expression while loss-of-Src binding α1 reduces CD40 expression. Furthermore, loss of a functional Na/K-ATPase/Src complex also disrupts CD40 signaling. Importantly, we show that use of a specific Na/K-ATPase/Src complex antagonist, pNaKtide, can attenuate cardiotonic steroid (CTS)-induced induction of CD40 expression in vitro. Because the Na/K-ATPase/Src complex is also a key player in the pathogenesis of renal injury and fibrosis, our new findings suggest that Na/K-ATPase and CD40 may comprise a pro-fibrotic feed-forward loop in the kidney and that pharmacological inhibition of this loop may be useful in the treatment of renal fibrosis. © The Author 2017. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.
Choi, Hyo Jei Claudia; Lin, Jia-Ren; Vannier, Jean-Baptiste; Slaats, Gisela G.; Kile, Andrew C.; Paulsen, Renee D.; Manning, Danielle K.; Beier, David R.; Giles, Rachel H.; Boulton, Simon J.; Cimprich, Karlene A.
2013-01-01
Summary Renal ciliopathies are a leading cause of kidney failure, but their exact etiology is poorly understood. NEK8/NPHP9 is a ciliary kinase associated with two renal ciliopathies in humans and mice, nephronophthisis (NPHP) and polycystic kidney disease. Here, we identify NEK8 as a key effector of the ATR-mediated replication stress response. Cells lacking NEK8 form spontaneous DNA double-strand breaks (DSBs) which further accumulate when replication forks stall, and they exhibit reduced fork rates, unscheduled origin firing, and increased replication fork collapse. NEK8 suppresses DSB formation by limiting cyclin A-associated CDK activity. Strikingly, a mutation in NEK8 that is associated with renal ciliopathies affects its genome maintenance functions. Moreover, kidneys of NEK8 mutant mice accumulate DNA damage, and loss of NEK8 or replication stress similarly disrupts renal cell architecture in a 3D-culture system. Thus, NEK8 is a critical component of the DNA damage response that links replication stress with cystic kidney disorders. PMID:23973373
The role of keto acids in the supportive treatment of children with chronic renal failure.
Mir, Sevgi; Ozkayin, Nese; Akgun, Aysegul
2005-07-01
According to the hyperfiltration theory of renal diseases characterized by a decrease in the number of functional nephrons, increased arterial blood pressure, excessive protein intake in the diet, high levels of calcium (Ca) and phosphorus (P), secondary hyperparathyroidism, hypertriglyceridemia and/or hypercholesterolemia, proteinuria and metabolic acidosis are some factors that impair the prognosis of the disease. The amount of protein in the diet is the most important of these factors. A protein-restricted diet administered to patients with chronic renal failure results in the risk of inadequate amino acid intake. To overcome this problem, the use of dysaminated alpha-keto analogues has been considered to reduce the risk of nitrogenemia resulting from the continuous intake of essential amino acids. Currently, the necessity of essential amino acids even in adult patients with chronic renal failure is controversial; besides, trials on the use of these amino acids in pediatric patients are scarce. The aim of this study is to investigate the efficacy and applicability of conservative therapy with a protein-restricted diet supplemented with keto acids in the management of chronic renal insufficiency or failure.
Asdonk, T; Nickenig, G; Hammerstingl, C
2014-10-01
Mitral regurgitation (MR) is a frequent valve disorder in elderly patients, often accompanied by multiple comorbidities such as renal impairment. In these patients percutaneous mitral valve (MV) repair has become an established treatment option but the role of MR on renal dysfunction is not yet well defined. We here report on two cases presenting with severe MR and progressive renal failure caused by cardio renal syndrome, in which percutaneous MV treatment with the MitraClip system significantly improved renal function. These findings suggest that interventional MV repair can prevent progression of renal deterioration in patients suffering from combined advanced heart and renal failure. Further clinical studies are necessary to support our finding and to answer the question whether optimizing renal function by implantation of the MitraClip device is also of prognostic relevance in these patients. © 2014 Wiley Periodicals, Inc.
Comprehensive functional analysis of Rab GTPases in Drosophila nephrocytes.
Fu, Yulong; Zhu, Jun-Yi; Zhang, Fujian; Richman, Adam; Zhao, Zhanzheng; Han, Zhe
2017-06-01
The Drosophila nephrocyte is a critical component of the fly renal system and bears structural and functional homology to podocytes and proximal tubule cells of the mammalian kidney. Investigations of nephrocyte cell biological processes are fundamental to understanding the insect renal system. Nephrocytes are highly active in endocytosis and vesicle trafficking. Rab GTPases regulate endocytosis and trafficking but specific functions of nephrocyte Rabs remain undefined. We analyzed Rab GTPase expression and function in Drosophila nephrocytes and found that 11 out of 27 Drosophila Rabs were required for normal activity. Rabs 1, 5, 7, 11 and 35 were most important. Gene silencing of the nephrocyte-specific Rab5 eliminated all intracellular vesicles and the specialized plasma membrane structures essential for nephrocyte function. Rab7 silencing dramatically increased clear vacuoles and reduced lysosomes. Rab11 silencing increased lysosomes and reduced clear vacuoles. Our results suggest that Rab5 mediates endocytosis that is essential for the maintenance of functionally critical nephrocyte plasma membrane structures and that Rabs 7 and 11 mediate alternative downstream vesicle trafficking pathways leading to protein degradation and membrane recycling, respectively. Elucidating molecular pathways underlying nephrocyte function has the potential to yield important insights into human kidney cell physiology and mechanisms of cell injury that lead to disease. The Drosophila nephrocyte is emerging as a useful in vivo model system for molecular target identification and initial testing of therapeutic approaches in humans.
Quantitative analysis of the renal aging in rats. Stereological study.
Melchioretto, Eduardo Felippe; Zeni, Marcelo; Veronez, Djanira Aparecida da Luz; Martins, Eduardo Lopes; Fraga, Rogério de
2016-05-01
To evaluate the renal function and the renal histological alterations through the stereology and morphometrics in rats submitted to the natural process of aging. Seventy two Wistar rats, divided in six groups. Each group was sacrificed in a different age: 3, 6, 9, 12, 18 and 24 months. It was performed right nephrectomy, stereological and morphometric analysis of the renal tissue (renal volume and weight, density of volume (Vv[glom]) and numerical density (Nv[glom]) of the renal glomeruli and average glomerular volume (Vol[glom])) and also it was evaluated the renal function for the dosage of serum creatinine and urea. There was significant decrease of the renal function in the oldest rats. The renal volume presented gradual increase during the development of the rats with the biggest values registered in the group of animals at 12 months of age and significant progressive decrease in older animals. Vv[glom] presented statistically significant gradual reduction between the groups and the Nv[glom] also decreased significantly. The renal function proved to be inferior in senile rats when compared to the young rats. The morphometric and stereological analysis evidenced renal atrophy, gradual reduction of the volume density and numerical density of the renal glomeruli associated to the aging process.
Inoue, Yosuke; Howard, Annie Green; Thompson, Amanda L; Mendez, Michelle A; Herring, Amy H; Gordon-Larsen, Penny
2017-05-15
While chronic kidney disease (CKD) is a growing public health concern in low- and middle-income countries, such as China, few studies have investigated the association between urbanization and the occurrence of CKD in those countries. We investigated the association between urbanization and estimated glomerular filtration rate (eGFR), an important CKD risk marker. Data came from the China Health and Nutrition Survey wave 2009, in which we collected fasting serum, individual and household data along with community level urbanization data, which was used to derive a study-specific urbanization measure, in 218 communities across nine provinces. A total of 3644 men and 4154 women participants aged 18 years or older were included in the analysis. Reduced renal function was defined as eGFR of less than 60 mL/min/1.73 m 2 measured using serum creatinine concentration (mg/dL). After adjusting for socio-demographic (e.g., age, education and household income), a sex-stratified multilevel logistic model revealed that living in a more urbanized community was associated with higher odds of reduced eGFR (odds ratio [OR] = 1.38 per one-standard deviation [SD] increase in the CHNS specific urbanization index, 95% confidence interval [CI] = 1.11-1.73 for men; OR = 1.35, 95% CI = 1.11-1.62 for women). After adjusting for behavioral variables (i.e., alcohol consumption, smoking, physical activity and diet), as well as obesity and cardiometabolic risk factors, the association was attenuated in men (OR = 1.25, 95% CI = 0.98-1.59), but remained statistically significant in women (OR = 1.24, 95% CI = 1.01-1.52). Our findings suggest that living in an urban environment is linked with higher odds of reduced renal function independently of behavioral and cardiometabolic risk factors, which have been shown to increase along with urbanization.
Tosaki, Takahiro; Kamiya, Hideki; Himeno, Tatsuhito; Kato, Yoshiro; Kondo, Masaki; Toyota, Kaori; Nishida, Tomoyo; Shiroma, Megumi; Tsubonaka, Kaori; Asai, Hitomi; Moribe, Miho; Nakaya, Yuki; Nakamura, Jiro
2017-01-01
Objective and Methods An SGLT2 inhibitor (ipragliflozin, dapagliflozin, luseogliflozin, tofogliflozin, or canagliflozin) was administered to 132 outpatients with type 2 diabetes mellitus with or without other antidiabetic drugs for 6 months to evaluate its efficacy, the incidence of adverse events, and its influence on the renal function. Results The patient's mean glycated hemoglobin level significantly improved from 7.52±1.16% to 6.95±0.98% (p<0.001). The body weight of the patients was significantly reduced from 78.0±15.3 kg to 75.6±15.1 kg (p<0.001). The estimated visceral fat area was also significantly reduced from 108.4±44.6 cm2 to 94.5±45.3 cm2 (p<0.001). The waist circumference, blood pressure, serum alanine aminotransferase, γ-glutamyl transpeptidase, and uric acid levels also showed a significant decrease. The urinary albumin/creatinine ratio (U-ACR) was significantly reduced in the patients whose U-ACR levels were 30-300 mg/gCr at the baseline. The mean eGFR significantly decreased in the patients with a pre-treatment eGFR value of ≥90 mL/min/1.73 m2 but remained unchanged in the patients with a pre-treatment value of <90 mL/min/1.73 m2. A total of 13 adverse events were noted, including systemic eruption (n=1), cystitis (n=2), pudendal pruritus (n=2), nausea (n=1), malaise (n=1), a strong hunger sensation and increased food ingestion (n=1), and non-serious hypoglycemia (n=5). Conclusion SGLT2 inhibitors seemed to be useful in the treatment of obese type 2 diabetes mellitus patients. Furthermore, these data suggest that SGLT2 inhibitors may protect the renal function. PMID:28321056
Renal function in pregnant rats with two-kidney goldblatt hypertension.
Dal Canton, A; Sabbatini, M; Esposito, C; Altomonte, M; Romano, G; Uccello, F; Conte, G; Fuiano, G; Russo, D; Andreucci, V E
1983-01-01
This study was carried out in female Wistar-Münich rats with two-kidney, one-clip hypertension, using clipped normotensive rats as controls. Metabolic studies were performed in the first two weeks of pregnancy, consisting of daily measurement of systolic blood pressure (BP) (tail-cuff), body weight (BW), and salt and water balance. At the end of metabolic studies, glomerular dynamics were studied in the unclipped kidney by micropuncture. During pregnancy, urinary output of Na+ and water was greater in hypertensive than normotensive rats. The greater natriuresis accounted for a reduced Na+ retention and a lower increase in maternal BW. Micropuncture studies showed an impaired renal auto-regulation. These results show that hypertension in pregnancy causes a salt-losing tendency, that may be secondary to incomplete renal autoregulation.
Udell, Jacob A; Bhatt, Deepak L; Braunwald, Eugene; Cavender, Matthew A; Mosenzon, Ofri; Steg, Ph Gabriel; Davidson, Jaime A; Nicolau, Jose C; Corbalan, Ramon; Hirshberg, Boaz; Frederich, Robert; Im, KyungAh; Umez-Eronini, Amarachi A; He, Ping; McGuire, Darren K; Leiter, Lawrence A; Raz, Itamar; Scirica, Benjamin M
2015-04-01
The glycemic management of patients with type 2 diabetes mellitus (T2DM) and renal impairment is challenging, with few treatment options. We investigated the effect of saxagliptin in the Saxagliptin Assessment of Vascular Outcomes Recorded in Patients with Diabetes Mellitus (SAVOR)-Thrombolysis in Myocardial Infarction (TIMI) 53 trial according to baseline renal function. Patients with T2DM at risk for cardiovascular events were stratified as having normal or mildly impaired renal function (estimated glomerular filtration rate [eGFR] >50 mL/min/1.73 m(2); n = 13,916), moderate renal impairment (eGFR 30-50 mL/min/1.73 m(2); n = 2,240), or severe renal impairment (eGFR <30 mL/min/1.73 m(2); n = 336) and randomized to receive saxagliptin or placebo. The primary end point was cardiovascular death, myocardial infarction, or ischemic stroke. After a median duration of 2 years, saxagliptin neither increased nor decreased the risk of the primary and secondary composite end points compared with placebo, irrespective of renal function (all P for interactions ≥ 0.19). Overall, the risk of hospitalization for heart failure among the three eGFR groups of patients was 2.2% (referent), 7.4% (adjusted hazard ratio [HR] 2.38 [95% CI 1.95-2.91], P < 0.001), and 13.0% (adjusted HR 4.59 [95% CI 3.28-6.28], P < 0.001), respectively. The relative risk of hospitalization for heart failure with saxagliptin was similar (P for interaction = 0.43) in patients with eGFR >50 mL/min/1.73 m(2) (HR 1.23 [95% CI 0.99-1.55]), eGFR 30-50 mL/min/1.73 m(2) (HR 1.46 [95% CI 1.07-2.00]), and in patients with eGFR <30 (HR 0.94 [95% CI 0.52-1.71]). Patients with renal impairment achieved reductions in microalbuminuria with saxagliptin (P = 0.041) that were similar to those of the overall trial population. Saxagliptin did not affect the risk of ischemic cardiovascular events, increased the risk of heart failure hospitalization, and reduced progressive albuminuria, irrespective of baseline renal function. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
Gotoh, Masahiro; Ichikawa, Hitoshi; Arai, Eri; Chiku, Suenori; Sakamoto, Hiromi; Fujimoto, Hiroyuki; Hiramoto, Masaki; Nammo, Takao; Yasuda, Kazuki; Yoshida, Teruhiko; Kanai, Yae
2014-01-01
The aim of this study was to clarify the participation of expression of chimeric transcripts in renal carcinogenesis. Whole transcriptome analysis (RNA sequencing) and exploration of candidate chimeric transcripts using the deFuse program were performed on 68 specimens of cancerous tissue (T) and 11 specimens of non-cancerous renal cortex tissue (N) obtained from 68 patients with clear cell renal cell carcinomas (RCCs) in an initial cohort. As positive controls, two RCCs associated with Xp11.2 translocation were analyzed. After verification by reverse transcription (RT)-PCR and Sanger sequencing, 26 novel chimeric transcripts were identified in 17 (25%) of the 68 clear cell RCCs. Genomic breakpoints were determined in five of the chimeric transcripts. Quantitative RT-PCR analysis revealed that the mRNA expression levels for the MMACHC, PTER, EPC2, ATXN7, FHIT, KIFAP3, CPEB1, MINPP1, TEX264, FAM107A, UPF3A, CDC16, MCCC1, CPSF3, and ASAP2 genes, being partner genes involved in the chimeric transcripts in the initial cohort, were significantly reduced in 26 T samples relative to the corresponding 26 N samples in the second cohort. Moreover, the mRNA expression levels for the above partner genes in T samples were significantly correlated with tumor aggressiveness and poorer patient outcome, indicating that reduced expression of these genes may participate in malignant progression of RCCs. As is the case when their levels of expression are reduced, these partner genes also may not fully function when involved in chimeric transcripts. These data suggest that generation of chimeric transcripts may participate in renal carcinogenesis by inducing dysfunction of tumor-related genes. PMID:25230976
McAlister, Finlay A; Ezekowitz, Justin; Tarantini, Luigi; Squire, Iain; Komajda, Michel; Bayes-Genis, Antoni; Gotsman, Israel; Whalley, Gillian; Earle, Nikki; Poppe, Katrina K; Doughty, Robert N
2012-05-01
Prior studies in heart failure (HF) have used the Modification of Diet in Renal Disease (MDRD) equation to calculate estimated glomerular filtration rate (eGFR). The Chronic Kidney Disease-Epidemiology Collaboration Group (CKD-EPI) equation provides a more-accurate eGFR than the MDRD when compared against the radionuclide gold standard. The prevalence and prognostic import of renal dysfunction in HF if the CKD-EPI equation is used rather than the MDRD is uncertain. We used individual patient data from 25 prospective studies to stratify patients with HF by eGFR using the CKD-EPI and the MDRD equations and examined survival across eGFR strata. In 20 754 patients (15 962 with HF with reduced ejection fraction [HF-REF] and 4792 with HF with preserved ejection fraction [HF-PEF]; mean age, 68 years; deaths per 1000 patient-years, 151; 95% CI, 146-155), 10 589 (51%) and 11 422 (55%) had an eGFR <60 mL/min using the MDRD and CKD-EPI equations, respectively. Use of the CKD-EPI equation resulted in 3760 (18%) patients being reclassified into different eGFR risk strata; 3089 (82%) were placed in a lower eGFR category and exhibited higher all-cause mortality rates (net reclassification improvement with CKD-EPI, 3.7%; 95% CI, 1.5%-5.9%). Reduced eGFR was a stronger predictor of all-cause mortality in HF-REF than in HF-PEF. Use of the CKD-EPI rather than the MDRD equation to calculate eGFR leads to higher estimates of renal dysfunction in HF and a more-accurate categorization of mortality risk. Renal function is more closely related to outcomes in HF-REF than in HF-PEF.
Kitai, Yuichiro; Doi, Yohei; Osaki, Keisuke; Sugioka, Sayaka; Koshikawa, Masao; Sugawara, Akira
2015-12-01
Proteinuria is an established risk factor for progression of renal disease, including diabetic nephropathy. The predictive power of proteinuria, especially nephrotic range proteinuria, for progressive renal deterioration has been well demonstrated in diabetic patients with normal to relatively preserved renal function. However, little is known about the relationship between severity of proteinuria and renal outcome in pre-dialysis diabetic patients with severely impaired renal function. 125 incident dialysis patients with type 2 diabetes were identified. This study was aimed at retrospectively evaluating the impact of nephrotic range proteinuria (urinary protein-creatinine ratio above 3.5 g/gCr) on renal function decline during the 3 months just prior to dialysis initiation. In total, 103 patients (82.4 %) had nephrotic range proteinuria. The median rate of decline in estimated glomerular filtration rate (eGFR) in this study population was 0.98 (interquartile range 0.51-1.46) ml/min/1.73 m(2) per month. Compared to patients without nephrotic range proteinuria, patients with nephrotic range proteinuria showed significantly faster renal function decline (0.46 [0.24-1.25] versus 1.07 [0.64-1.54] ml/min/1.73 m(2) per month; p = 0.007). After adjusting for gender, age, systolic blood pressure, serum albumin, calcium-phosphorus product, hemoglobin A1c, and use of an angiotensin-converting enzyme inhibitor or an angiotensin II receptor blocker, patients with nephrotic range proteinuria showed a 3.89-fold (95 % CI 1.08-14.5) increased risk for rapid renal function decline defined as a decline in eGFR ≥0.5 ml/min/1.73 m(2) per month. Nephrotic range proteinuria is the predominant renal risk factor in type 2 diabetic patients with severely impaired renal function receiving pre-dialysis care.
New advances in renal amyloidosis.
Nishi, Shinichi; Alchi, Bassam; Imai, Nofumi; Gejyo, Fumitake
2008-04-01
Renal amyloidosis is a rare and intractable disease that accounts for 0.2% of the original kidney diseases of dialysis patients in Japan. However, the number of patients with renal amyloidosis seems to be increasing in recent years. There have been some new concepts focusing on the mechanism of amyloidogenesis, such as molecular chaperones, seeding mechanism, and genetic polymorphisms of precursor protein. Clinical and histological features of renal amyloidosis vary according to the type. Significantly higher levels of urinary protein excretion are seen in the AL type, whereas microscopic haematuria is more prominent in the AA type. Histologically, amyloid deposition of AL type has stronger predilection for GBM than mesangium, and spicule formation is more frequently observed. In contrast, AA type has a higher affinity to TBM and interstitial area. For the histological diagnosis of renal amyloidosis, plural staining methods including Congo-red, Daylon and thioflavin-T stains are available. Combinations of these staining methods are necessary for establishing the precise diagnosis. The more recent and intensive treatments for renal amyloidosis are expected to improve patient outcome. For AL amyloidosis, high-dose melphalan plus high-dose dexamethasone or VAD, in conjunction with bone marrow stem cells transplantation, have shown a definitive effect on reducing urinary protein excretion. The biological agent, tumor necrosis factor (TNF alpha) blocker, improves the renal function in AA-type renal amyloidosis, as well as suppresses the inflammatory reactions in patients with rheumatoid arthritis. Clinical advances have been made in various aspects of renal amyloidosis.
Genomic integration of ERRγ-HNF1β regulates renal bioenergetics and prevents chronic kidney disease.
Zhao, Juanjuan; Lupino, Katherine; Wilkins, Benjamin J; Qiu, Chengxiang; Liu, Jian; Omura, Yasuhiro; Allred, Amanda L; McDonald, Caitlin; Susztak, Katalin; Barish, Grant D; Pei, Liming
2018-05-22
Mitochondrial dysfunction is increasingly recognized as a critical determinant of both hereditary and acquired kidney diseases. However, it remains poorly understood how mitochondrial metabolism is regulated to support normal kidney function and how its dysregulation contributes to kidney disease. Here, we show that the nuclear receptor estrogen-related receptor gamma (ERRγ) and hepatocyte nuclear factor 1 beta (HNF1β) link renal mitochondrial and reabsorptive functions through coordinated epigenomic programs. ERRγ directly regulates mitochondrial metabolism but cooperatively controls renal reabsorption via convergent binding with HNF1β. Deletion of ERRγ in renal epithelial cells (RECs), in which it is highly and specifically expressed, results in severe renal energetic and reabsorptive dysfunction and progressive renal failure that recapitulates phenotypes of animals and patients with HNF1β loss-of-function gene mutations. Moreover, ERRγ expression positively correlates with renal function and is decreased in patients with chronic kidney disease (CKD). REC-ERRγ KO mice share highly overlapping renal transcriptional signatures with human patients with CKD. Together these findings reveal a role for ERRγ in directing independent and HNF1β-integrated programs for energy production and use essential for normal renal function and the prevention of kidney disease.
Allopurinol attenuates rhabdomyolysis-associated acute kidney injury: Renal and muscular protection.
Gois, Pedro H F; Canale, Daniele; Volpini, Rildo A; Ferreira, Daniela; Veras, Mariana M; Andrade-Oliveira, Vinicius; Câmara, Niels O S; Shimizu, Maria H M; Seguro, Antonio C
2016-12-01
Acute kidney injury (AKI) is the most severe complication of rhabdomyolysis. Allopurinol (Allo), a xanthine oxidase inhibitor, has been in the spotlight in the last decade due to new therapeutic applications related to its potent antioxidant effect. The aim of this study was to evaluate the efficacy of Allo in the prevention and treatment of rhabdomyolysis-associated AKI. Male Wistar rats were divided into five groups: saline control group; prophylactic Allo (300mg/L of drinking water, 7 days); glycerol (50%, 5ml/kg, IM); prophylactic Allo + glycerol; and therapeutic Allo (50mg/Kg, IV, 30min after glycerol injection) + glycerol. Glycerol-injected rats showed markedly reduced glomerular filtration rate associated with renal vasoconstriction, renal tubular damage, increased oxidative stress, apoptosis and inflammation. Allo ameliorated all these alterations. We found 8-isoprostane-PGF 2a (F2-IsoP) as a main factor involved in the oxidative stress-mediated renal vasoconstriction following rhabdomyolysis. Allo reduced F2-IsoP renal expression and restored renal blood flow. Allo also reduced oxidative stress in the damaged muscle, attenuated muscle lesion/inflammation and accelerated muscular recovery. Moreover, we showed new insights into the pathogenesis of rhabdomyolysis-associated AKI, whereas Allo treatment reduced renal inflammation by decreasing renal tissue uric acid levels and consequently inhibiting the inflammasome cascade. Allo treatment attenuates renal dysfunction in a model of rhabdomyolysis-associated AKI by reducing oxidative stress (systemic, renal and muscular), apoptosis and inflammation. This may represent a new therapeutic approach for rhabdomyolysis-associated AKI - a new use for an old and widely available medication. Copyright © 2016 Elsevier Inc. All rights reserved.
Liu, Yan; Mo, Lan; Goldfarb, David S.; Evan, Andrew P.; Liang, Fengxia; Khan, Saeed R.; Lieske, John C.
2010-01-01
Mammalian urine contains a range of macromolecule proteins that play critical roles in renal stone formation, among which Tamm-Horsfall protein (THP) is by far the most abundant. While THP is a potent inhibitor of crystal aggregation in vitro and its ablation in vivo predisposes one of the two existing mouse models to spontaneous intrarenal calcium crystallization, key controversies remain regarding the role of THP in nephrolithiasis. By carrying out a long-range follow-up of more than 250 THP-null mice and their wild-type controls, we demonstrate here that renal calcification is a highly consistent phenotype of the THP-null mice that is age and partially gene dosage dependent, but is gender and genetic background independent. Renal calcification in THP-null mice is progressive, and by 15 mo over 85% of all the THP-null mice develop spontaneous intrarenal crystals. The crystals consist primarily of calcium phosphate in the form of hydroxyapatite, are located more frequently in the interstitial space of the renal papillae than intratubularly, particularly in older animals, and lack accompanying inflammatory cell infiltration. The interstitial deposits of hydroxyapatite observed in THP-null mice bear strong resemblances to the renal crystals found in human kidneys bearing idiopathic calcium oxalate stones. Compared with 24-h urine from the wild-type mice, that of THP-null mice is supersaturated with brushite (calcium phosphate), a stone precursor, and has reduced urinary excretion of citrate, a stone inhibitor. While less frequent than renal calcinosis, renal pelvic and ureteral stones and hydronephrosis occur in the aged THP-null mice. These results provide direct in vivo evidence indicating that normal THP plays an important role in defending the urinary system against calcification and suggest that reduced expression and/or decreased function of THP could contribute to nephrolithiasis. PMID:20591941
Hua, Kuo-Feng; Yang, Shun-Min; Kao, Tzu-Yang; Chang, Jia-Ming; Chen, Hui-Ling; Tsai, Yung-Jen; Chen, Ann; Yang, Sung-Sen; Chao, Louis Kuoping; Ka, Shuk-Man
2013-01-01
Renal reactive oxygen species (ROS) and mononuclear leukocyte infiltration are involved in the progressive stage (exacerbation) of IgA nephropathy (IgAN), which is characterized by glomerular proliferation and renal inflammation. The identification of the mechanism responsible for this critical stage of IgAN and the development of a therapeutic strategy remain a challenge. Osthole is a pure compound isolated from Cnidiummonnieri (L.) Cusson seeds, which are used as a traditional Chinese medicine, and is anti-inflammatory, anti-apoptotic, and anti-fibrotic both in vitro and in vivo. Recently, we showed that osthole acts as an anti-inflammatory agent by reducing nuclear factor-kappa B (NF-κB) activation in and ROS release by activated macrophages. In this study, we examined whether osthole could prevent the progression of IgAN using a progressive IgAN (Prg-IgAN) model in mice. Our results showed that osthole administration resulted in prevention of albuminuria, improved renal function, and blocking of renal progressive lesions, including glomerular proliferation, glomerular sclerosis, and periglomerular mononuclear leukocyte infiltration. These findings were associated with (1) reduced renal superoxide anion levels and increased Nrf2 nuclear translocation, (2) inhibited renal activation of NF-κB and the NLRP3 inflammasome, (3) decreased renal MCP-1 expression and mononuclear leukocyte infiltration, (4) inhibited ROS production and NLRP3 inflammasome activation in cultured, activated macrophages, and (5) inhibited ROS production and MCP-1 protein levels in cultured, activated mesangial cells. The results suggest that osthole exerts its reno-protective effects on the progression of IgAN by inhibiting ROS production and activation of NF-κB and the NLRP3 inflammasome in the kidney. Our data also confirm that ROS generation and activation of NF-κB and the NLRP3 inflammasome are crucial mechanistic events involved in the progression of the renal disorder. PMID:24204969
Role of adipose tissue-derived stem cells in the progression of renal disease.
Donizetti-Oliveira, Cassiano; Semedo, Patricia; Burgos-Silva, Marina; Cenedeze, Marco Antonio; Malheiros, Denise Maria Avancini Costa; Reis, Marlene Antônia Dos; Pacheco-Silva, Alvaro; Câmara, Niels Olsen Saraiva
2011-03-01
To analyze the role of adipose tissue-derived stem cells in reducing the progression of renal fibrosis. adipose tissue-derived stem cells were isolated from C57Bl/6 mice and characterized by cytometry and differentiation. Renal fibrosis was established after unilateral clamping of the renal pedicle for 1 hour. Four hours after reperfusion, 2.105 adipose tissue-derived stem cells were administered intraperitoneally and the animals were followed for 24 hours during 6 weeks. In another experimental group, 2.105adipose tissue-derived stem cells were administered only after 6 weeks of reperfusion, and they were euthanized and studied 4 weeks later. Twenty-four hours after reperfusion, the animals treated with adipose tissue-derived stem cells displayed reduced renal and tubular dysfunction and an increase of the regenerative process. Renal expression of IL-6 and TNF mRNA were decreased in the animals treated with adipose tissue-derived stem cells, while the levels of IL-4, IL-10, and HO-1 were increased, despite the fact that adipose tissue-derived stem cells were not observed in the kidneys via SRY analysis. In 6 weeks, the kidneys of non-treated animals decreased in size, and the kidneys of the animals treated with adipose tissue-derived stem cells remained at normal size and display less deposition of type 1 collagen and FSP-1. The renal protection observed in animals treated with adipose tissue-derived stem cells was followed by a drop in serum levels of TNF-α, KC, RANTES, and IL-1a. Treatment with adipose tissue-derived stem cells after 6 weeks, when the animals already displayed established fibrosis, demonstrated an improvement in functional parameters and less fibrosis analyzed by Picrosirius stain, as well as a reduction of the expression of type 1 collagen and vimentin mRNA. Treatment with adipose tissue-derived stem cells may deter the progression of renal fibrosis by modulation of the early inflammatory response, likely via reduction of the epithelial-mesenchymal transition.
Chade, Alejandro R.; Kelsen, Silvia
2011-01-01
Background Percutaneous trasluminal renal angioplasty (PTRA) is the most frequent therapeutic approach to resolve renal artery stenosis (RAS). However, renal function recovers in only 30% of the cases. The causes of these poor outcomes are still unknown. We hypothesize that preserving the renal microcirculation distal to RAS will improve the responses to PTRA. Methods and Results RAS was induced in 28 pigs. In 14, vascular endothelial growth factor (VEGF)-165 was infused intra-renally (RAS+VEGF, 0.05 µg/kg). Single-kidney function was assessed in all pigs in vivo using ultra-fast CT after 6 weeks. Half of the RAS/RAS+VEGF completed their observation, and the other half underwent PTRA, VEGF was repeated, and CT studies repeated 4 weeks later. Pigs were then euthanized, the stenotic kidney removed, renal microvascular (MV) architecture reconstructed ex-vivo using 3D micro-CT, and renal fibrosis quantified. Degree of RAS and hypertension were similar in RAS and RAS+VEGF. Renal function and MV density were decreased in RAS but improved in RAS+VEGF. PTRA largely resolved RAS, but the improvements of hypertension and renal function were greater in RAS+VEGF+PTRA than in RAS+PTRA, accompanied by a 34% increase in MV density and decreased fibrosis. Conclusion Preservation of the MV architecture and function in the stenotic kidney improved the responses to PTRA, indicating that renal MV integrity plays a role in determining the responses to PTRA. This study indicates that damage and early loss of renal MV is an important determinant of the progression of renal injury in RAS and instigates often irreversible damage. PMID:20587789
Jovanović, Natasa; Lausević, Mirjana; Stojimirović, Biljana
2005-01-01
During the last years, an increasing number of patients with end-stage renal failure caused by various underlying diseases, all over the world, is treated by renal replacement therapy. NUTRITIONAL STATUS: Malnutrition is often found in patients affected by renal failure; it is caused by reduced intake of nutritional substances due to anorexia and dietary restrictions hormonal and metabolic disorders, comorbid conditions and loss of proteins, amino-acids, and vitamins during the dialysis procedure itself. Nutritional status significantly affects the outcome of patients on chronic dialysis treatment. Recent epiodemiological trials have proved that survival on chronic continuous ambulatory peritoneal dialysis program depends more on residual renal function (RRF) than on peritoneal clearances of urea and creatinine. The aim of the study was to analyze the influence of RRF on common biochemical and anthropometric markers of nutrition in 32 patients with end-stage renal failure with various underlying diseases during the first 6 months on continuous ambulatory peritoneal dialysis (CAPD). The mean residual creatinine clearance was 8,3 ml/min and the mean RRF was 16,24 l/week in our patients at the beginning of the chronic peritoneal dialysis treatment. During the follow-up, the RRF slightly decreased, while the nutritional status of patients significantly improved. Gender and age, as well as the leading disease and peritonitis didn't influence the RRF during the first 6 months of CAPD treatment. We found several positive correlations between RRF and laboratory and anthropometric markers of nutrition during the follow-up, proving the positive influence of RRF on nutritional status of patients on chronic peritoneal dialysis.
Renal cytokines improve early after bariatric surgery.
Bueter, M; Dubb, S S; Gill, A; Joannou, L; Ahmed, A; Frankel, A H; Tam, F W K; le Roux, C W
2010-12-01
Bariatric surgery has been suggested to improve arterial hypertension and renal function. This prospective controlled observational study aimed to investigate changes in renal inflammation, renal function and arterial blood pressure before and after bariatric surgery. Blood pressure was measured, and urine and blood samples were collected from 34 morbidly obese patients before and 4 weeks after bariatric surgery. Serum levels of cystatin C, creatinine, albumin, cholesterol and C-reactive protein (CRP) were measured, along with urinary cytokine/creatinine ratios for macrophage migration inhibitory factor (MIF), monocyte chemotactic protein (MCP) 1, chemokine ligand (CCL) 18 and CCL-15. Mean(s.e.m.) bodyweight dropped from 124·1(2·6) to 114·8(2·4) kg (P < 0·001) and mean arterial blood pressure decreased from 105·7(1·8) to 95·5(1·2) mmHg (P < 0·001) in 4 weeks. Systemic and urinary inflammatory markers improved, with a reduction in serum CRP level (P < 0·001), and decreased urinary MIF/creatinine (P < 0·001), MCP-1/creatinine (P < 0·001) and CCL-18/creatinine (P = 0·003) ratios. In contrast, urinary CCL-15/creatinine ratios did not change and the glomerular filtration rate, measured by serum cystatin C, was unchanged (P = 0·615). Surgically induced weight loss contributed to a decrease in blood pressure and markers of renal inflammation. The reduced levels of CRP and urinary cytokines suggest that bariatric surgery attenuates systemic and renal inflammatory status. Copyright © 2010 British Journal of Surgery Society Ltd. Published by John Wiley & Sons, Ltd.
Just, Armin; Wittmann, Uwe; Ehmke, Heimo; Kirchheim, Hartmut R
1998-01-01
The aim of this study was to investigate the autoregulation of renal blood flow under physiological conditions, when challenged by the normal pressure fluctuations, and the contribution of the tubuloglomerular feedback (TGF). The transfer function between 0.0018 and 0.5 Hz was calculated from the spontaneous fluctuations in renal arterial blood pressure (RABP) and renal blood flow (RBF) in conscious resting dogs. The response of RBF to stepwise artificially induced reductions in RABP was also studied (stepwise autoregulation). Under control conditions (n = 12 dogs), the gain of the transfer function started to decrease, indicating improving autoregulation, below 0.06-0.15 Hz (t = 7-17 s). At 0.027 Hz a prominent peak of high gain was found. Below 0.01 Hz (t > 100 s), the gain reached a minimum (maximal autoregulation) of -6.3 ± 0.6 dB. The stepwise autoregulation (n = 4) was much stronger (-19.5 dB). The time delay of the transfer function was remarkably constant from 0.03 to 0.08 Hz (high frequency (HF) range) at 1.7 s and from 0.0034 to 0.01 Hz (low frequency (LF) range) at 14.3 s, respectively. Nifedipine, infused into the renal artery, abolished the stepwise autoregulation (-2.0 ± 1.1 dB, n = 3). The gain of the transfer function (n = 4) remained high down to 0.0034 Hz; in the LF range it was higher than in the control (0.3 ± 1.0 dB, P < 0.05). The time delay in the HF range was reduced to 0.5 s (P < 0.05). After ganglionic blockade (n = 7) no major changes in the transfer function were observed. Under furosemide (frusemide) (40 mg + 10 mg h−1 or 300 mg + 300 mg h−1 i.v.) the stepwise autoregulation was impaired to -7.8 ± 0.3 or -6.7 ± 1.9 dB, respectively (n = 4). In the transfer function (n = 7 or n = 4) the peak at 0.027 Hz was abolished. The delay in the LF range was reduced to -1.1 or -1.6 s, respectively. The transfer gain in the LF range (-5.5 ± 1.2 or -3.8 ± 0.8 dB, respectively) did not differ from the control but was smaller than that under nifedipine (P < 0.05). It is concluded that the ample capacity for regulation of RBF is only partially employed under physiological conditions. The abolition by nifedipine and the negligible effect of ganglionic blockade show that above 0.0034 Hz it is almost exclusively due to autoregulation by the kidney itself. TGF contributes to the maximum autoregulatory capacity, but it is not required for the level of autoregulation expended under physiological conditions. Around 0.027 Hz, TGF even reduces the degree of autoregulation. PMID:9481688
Tian, Haibin; Lu, Yan; Shah, Shraddha P; Wang, Quansheng; Hong, Song
2012-05-01
Bone marrow mesenchymal stem cells (MSCs) have shown potential to improve treatment of renal failure. The prohealing functions of MSCs have been found to be enhanced by treatment with the lipid mediator, 14S,21R-dihydroxy-docosa4Z,7Z,10Z,12E,16Z,19Z-hexaenoic acid (14S,21R-diHDHA). In this article, using a murine model of renal ischemia/reperfusion (I/R) injury, we found that treatment with 14S,21R-diHDHA enhanced MSC amelioration of renal I/R injury. Treated MSCs more efficiently inhibited I/R-induced elevation of serum creatinine levels, reduced renal tubular cell death, and inhibited infiltration of neutrophils, macrophages, and dendritic cells in kidneys. Conditioned medium from treated MSCs reduced the generation of tumor necrosis factor-α and reactive oxygen species by macrophages under I/R conditions. Infusion of treated MSCs more efficiently reduced I/R-damage to renal histological structures compared with untreated MSCs (injury score: 7.9±0.4 vs. 10.5±0.5). Treated MSCs were resistant to apoptosis in vivo when transplanted under capsules of I/R-injured kidneys (active caspase-3+ MSCs: 4.2%±2.8% vs. 11.7%±2.4% of control) and in vitro when cultured under I/R conditions. Treatment with 14S,21R-diHDHA promoted viability of MSCs through a mechanism involving activation of the phosphoinositide 3-kinase -Akt signaling pathway. Additionally, treatment of MSCs with 14S,21R-diHDHA promoted secretion of renotrophic hepatocyte growth factor and insulin growth factor-1. Similar results were obtained when 14S,21RdiHDHA was used to inhibit apoptosis of human MSCs (hMSCs) and to increase the generation of renotrophic cytokines from hMSCs. These findings provide a lead for new strategies in the treatment of acute kidney injury with MSCs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
El-Gowelli, Hanan M.; Helmy, Maged W.; Ali, Rabab M.
Endothelin (ET) signaling provokes nephrotoxicity induced by the immunosuppressant drug cyclosporine A (CSA). We tested the hypotheses that (i): celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor, counterbalances renal derangements caused by CSA in rats and (ii) the COX-2/endothelin ET{sub B} receptor signaling mediates the CSA-celecoxib interaction. Ten-day treatment with CSA (20 mg/kg/day) significantly increased biochemical indices of renal function (serum urea, creatinine), inflammation (interleukin-2, IL-2) and fibrosis (transforming growth factor-β{sub 1}, TGF-β{sub 1}). Histologically, CSA caused renal tubular atrophy along with interstitial fibrosis. These detrimental renal effects of CSA were largely reduced in rats treated concurrently with celecoxib (10 mg/kg/day). Wemore » also report that cortical glomerular and medullary tubular protein expressions of COX-2 and ET{sub B} receptors were reduced by CSA and restored to near-control values in rats treated simultaneously with celecoxib. The importance of ET{sub B} receptors in renal control and in the CSA-celecoxib interaction was further verified by the findings (i) most of the adverse biochemical, inflammatory, and histopathological profiles of CSA were replicated in rats treated with the endothelin ET{sub B} receptor antagonist BQ788 (0.1 mg/kg/day, 10 days), and (ii) the BQ788 effects, like those of CSA, were alleviated in rats treated concurrently with celecoxib. Together, the data suggest that the facilitation of the interplay between the TGF-β1/IL-2/COX-2 pathway and the endothelin ET{sub B} receptors constitutes the cellular mechanism by which celecoxib ameliorates the nephrotoxic manifestations of CSA in rats. - Highlights: • Celecoxib abolishes nephrotoxic manifestations of CSA in rats. • Blockade of ETB receptors by BQ788 mimicked the nephrotoxic effects of CSA. • CSA or BQ788 reduces renal protein expression of COX-2 and endothelin ETB receptors. • Enhanced TGFβ1/IL-2/COX2/ETB signaling mediates celecoxib renoprotection.« less
Availability of information on renal function in Dutch community pharmacies.
Koster, Ellen S; Philbert, Daphne; Noordam, Michelle; Winters, Nina A; Blom, Lyda; Bouvy, Marcel L
2016-08-01
Background Early detection and monitoring of impaired renal function may prevent drug related problems. Objective To assess the availability of information on patient's renal function in Dutch community pharmacies, for patients using medication that might need monitoring in case of renal impairment. Methods Per pharmacy, 25 patients aged ≥65 years using at least one drug that requires monitoring, were randomly selected from the pharmacy information system. For these patients, information on renal function [estimated glomerular filtration rate (eGFR)], was obtained from the pharmacy information system. When absent, this information was obtained from the general practitioner (GP). Results Data were collected for 1632 patients. For 1201 patients (74 %) eGFR values were not directly available in the pharmacy, for another 194 patients (12 %) the eGFR value was not up-to-date. For 1082 patients information could be obtained from the GP, resulting in 942 additional recent eGFR values. Finally, recent information on renal function was available for 72 % (n = 1179) of selected patients. Conclusion In patients using drugs that require renal monitoring, information on renal function is often unknown in the pharmacy. For the majority of patients this information can be retrieved from the GP.
Carotid artery wall shear stress is independently correlated with renal function in the elderly.
Guo, Yuqi; Wei, Fang; Wang, Juan; Zhao, Yingxin; Sun, Shangwen; Zhang, Hua; Liu, Zhendong
2018-01-12
Hemodynamic has increasingly been regarded as an important factor of renal function. However, the relationship between carotid artery wall shear stress (WSS) and renal function is not clarified. To investigate the relationship between carotid WSS and renal function, we recruited 761 older subjects aged 60 years and over from community-dwelling in the Shandong area, China. Carotid WSS, endothelial function, and estimated glomerular filtration rate (eGFR) were assessed in all subjects. Subjects were grouped by the interquartile of the carotid artery mean WSS. We found that the eGFRs derived from serum creatinine and/or cystatin C using three CKD-EPI equations were significantly higher and albumin/creatinine ratio was lower in the higher interquartile groups than in the lower interquartile groups ( P <0.05). The mean WSS was independently correlated with eGFRs even after adjustment for confounders. Similar findings were found between carotid artery peak WSS and eGFRs and albumin/creatinine ratio. In addition, we found that endothelial function was strongly related to carotid WSS and renal function after adjustment for confounders. In conclusion, there is an independent correlation of carotid WSS with renal function in the elderly. The local rheologic forces may play an important role in renal function changing. The correlation may be mediated by regulation of endothelial function.
A Review of Anesthetic Effects on Renal Function: Potential Organ Protection.
Motayagheni, Negar; Phan, Sheshanna; Eshraghi, Crystal; Nozari, Ala; Atala, Anthony
2017-01-01
Renal protection is a critical concept for anesthesiologists, nephrologists, and urologists, since anesthesia and renal function are highly interconnected and can potentially interfere with one another. Therefore, a comprehensive understanding of anesthetic drugs and their effects on renal function remains fundamental to the success of renal surgeries, especially transplant procedures. Some experimental studies have shown that some anesthetics provide protection against renal ischemia/reperfusion (IR) injury, but there is limited clinical evidence. The effects of anesthetic drugs on renal failure are particularly important in the context of kidney transplantation, since the conditions of preservation following removal profoundly influence the recovery of organ function. Currently, preservation procedures are typically based on the usage of a cold-storage solution. Some anesthetic drugs induce anti-inflammatory, anti-necrotic, and anti-apoptotic effects. A more thorough understanding of anesthetic effects on renal function can present a novel approach for developing organ-protective strategies. The aim of this review is to discuss the effects of different anesthetic drugs on renal function, with particular focus on IR injury. Many studies have demonstrated the organ-protective effects of some anesthetic drugs, specifically propofol, which indicate the potential of some anesthetics to introduce novel organ protective targets. This is not surprising, since lipid emulsions are major components of propofol, which accumulating data show provide organ protective effects against IR injury. Key Messages: Thorough understanding of the interaction between anesthetic drugs and renal function remains fundamental to the delivery of safe perioperative care and to optimizing outcomes after renal surgeries, particularly transplant procedures. Anesthetics can be repurposed for organ protection with more information about their effects, especially during transplant procedures. Here, we review the effects of different anesthetic drugs - specifically those that contain lipids in their structure, with special reference to IR injury. © 2017 S. Karger AG, Basel.
Faisal, Nabiha; Bilodeau, Marc; Aljudaibi, Bandar; Hirch, Geri; Yoshida, Eric M; Hussaini, Trana; Ghali, Maged P; Congly, Stephen E; Ma, Mang M; Lilly, Leslie B
2018-04-04
We assessed the impact of sofosbuvir-based regimens on renal function in liver transplant recipients with recurrent hepatitis C virus and the role of renal function on the efficacy and safety of these regimens. In an expanded pan-Canadian cohort, 180 liver transplant recipients were treated with sofosbuvir-based regimens for hepatitis C virus recurrence from January 2014 to May 2015. Mean age was 58 ± 6.85 years, and 50% had F3/4 fibrosis. Patients were stratified into 4 groups based on baseline estimated glomerular filtration rate (calculated by the Modification of Diet in Renal Disease formula): < 30, 30 to 45, 46 to 60, and > 60 mL/min/173 m2. The primary outcome was posttreatment changes in renal function from baseline. Secondary outcomes included sustained virologic response at 12 weeks posttreatment and anemia-related and serious adverse events. Posttreatment renal function was improved in most patients (58%). Renal function declined in 22% of patients, which was more marked in those with estimated glomerular filtration rate < 30 mL/min/173 m2, advanced cirrhosis (P = .05), and aggressive hepatitis C virus/fibrosing cholestatic hepatitis (P < .05). High rates (80%-88%) of sustained virologic response at 12 weeks posttreatment were seen across all renal function strata. Cirrhotic patients with glomerular filtration rates < 30 mL/min/173 m2 had sustained virologic response rates at 12 weeks posttreatment comparable to the overall patient group. Rates of anemia-related adverse events and transfusion requirements increased across decreasing estimated glomerular filtration rate groups, with notably more occurrences with ribavirin-based regimens. Sofosbuvir-based regimens improved overall renal function in liver transplant recipients, with sustained virologic response, suggesting an association of subclinical hepatitis C virus-related renal disease. Sustained virologic response rates at 12 weeks posttreatment (80%-88%) were comparable regardless of baseline renal function but lower in cirrhosis.
Salvadori, M; Bock, A; Chapman, J; Dussol, B; Fritsche, L; Kliem, V; Lebranchu, Y; Oppenheimer, F; Pohanka, E; Tufveson, G; Rosati, A; Puig, X; Corbetta, G
2005-01-01
Mycophenolate mofetil (MMF) has greatly reduced the risk of acute rejection episodes (ARE) after renal transplantation, but dose reductions/withdrawals could jeopardize long-term results. The MOST database of "de novo" patients treated with MMF at month 1 and functioning grafts at month 12 were divided into 2 groups: groups 1, 2 g MMF at month 1 and month 12; and group 2, 2 g MMF at month 1 but MMF <2 g at month 12 to evaluate renal function glonerular filtration rate (GFR). In this study, 1136 patients were receiving 2 g MMF at month 1. On month 12, 645 were on 2 g (56.8%, group 1) and 431 were on <2 g (43.2%, group 2). Group 1 included younger recipients of younger donors with fewer patients with delayed graft function (DGF). Group 1 showed more ARE during month 1 and more patients who received induction. Mean Neoral daily doses at month 1/month 12 were 5.3/3.0 and 5.3/3.1 mg/kg in group 1 and group 2, respectively (P = .05 at month 12). GFR in group 1 and group 2 were 59.06 (CI 57.10-60.60) and 53.81 (CI 52-55.7) at month 1 (P < .001); 63.7 (CI 62.1-65.30) and 55.9 (CI 54.1-57.7) mL/min*1.73 m(2) at month 12 (P < .001). The mean increases in GFR between month 1 and month 12 were 4.64 and 1.94 mL/min*1.73 m(2), respectively (P < .05). A multivariate analysis also included 795 patients from the "maintenance" patient database with retrospective detailed information. The following parameters were highly predictive for good renal function at month 12: donor age younger than 60 years, recipient age younger than 60 years, immediate graft function, 12-month MMF dose = 2 g, absence of CMV infection, and 12-month Neoral dose <3 mg/kg/d. Maintenance of MMF dose at 2 g/d during the first year appears to facilitate the attainment of optimal renal function at 12-months after kidney transplantation.
Rassaf, Tienush; Balzer, Jan; Rammos, Christos; Zeus, Tobias; Hellhammer, Katharina; v Hall, Silke; Wagstaff, Rabea; Kelm, Malte
2015-04-01
In patients with mitral regurgitation (MR), changes in cardiac stroke volume, and thus renal preload and afterload may affect kidney function. Percutaneous mitral valve repair (PMVR) with the MitraClip® system can be a therapeutic alternative to surgical valve repair. The influence of MitraClip® therapy on renal function and clinical outcome parameters is unknown. Sixty patients with severe MR underwent PMVR using the MitraClip® system in an open-label observational study. Patients were stratified according to their renal function. All clips have been implanted successfully. Effective reduction of MR by 2-3 grades acutely improved KDOQI class. Lesser MR reduction (MR reduction of 0-1 grades) led to worsening of renal function in patients with pre-existing normal or mild (KDOQI 1-2) compared to severe (KDOQI 3-4) renal dysfunction. Reduction of MR was associated with improvement in Minnesota Living with Heart Failure Questionnaire (MLHFQ), NYHA-stadium, and 6-minute walk test. Successful PMVR was associated with an improvement in renal function. The improvement in renal function was associated with the extent of MR reduction and pre-existing kidney dysfunction. Our data emphasize the relevance of PVMR to stabilize the cardiorenal axis in patients with severe MR. © 2014 Wiley Periodicals, Inc.
Makabe, Shiho; Kataoka, Hiroshi; Kondo, Tsunenori; Tanabe, Kazunari; Tsuchiya, Ken; Nitta, Kosaku; Mochizuki, Toshio
2018-05-01
Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the occurrence of multiple cysts that increase the size of both kidneys, progressively reducing kidney function. Usually the cysts occur bilaterally, and there is no difference in the degree of cyst enlargement between the left and right. Here, we report a case of ADPKD in which kidney size increased markedly on the left side and was accompanied by severe abdominal distension and discomfort. Renal dynamic scintigraphy revealed a severe reduction in function of the left kidney compared with the right. Open left nephrectomy was performed. No change in renal function was observed postoperatively [preoperative estimated glomerular filtration rate (eGFR): 57.6 mL/min/1.73 m 2 , 3-month postoperative eGFR: 56.4 mL/min/1.73 m 2 ], and the abdominal symptoms subsided. When one kidney is markedly larger than the other, the cause and status of the laterality should be evaluated by using renal dynamic scintigraphy in addition to other examinations such as computed tomography or magnetic resonance imaging. Unilateral nephrectomy should be considered as a potential treatment.
Role of renal sensory nerves in physiological and pathophysiological conditions
2014-01-01
Whether activation of afferent renal nerves contributes to the regulation of arterial pressure and sodium balance has been long overlooked. In normotensive rats, activating renal mechanosensory nerves decrease efferent renal sympathetic nerve activity (ERSNA) and increase urinary sodium excretion, an inhibitory renorenal reflex. There is an interaction between efferent and afferent renal nerves, whereby increases in ERSNA increase afferent renal nerve activity (ARNA), leading to decreases in ERSNA by activation of the renorenal reflexes to maintain low ERSNA to minimize sodium retention. High-sodium diet enhances the responsiveness of the renal sensory nerves, while low dietary sodium reduces the responsiveness of the renal sensory nerves, thus producing physiologically appropriate responses to maintain sodium balance. Increased renal ANG II reduces the responsiveness of the renal sensory nerves in physiological and pathophysiological conditions, including hypertension, congestive heart failure, and ischemia-induced acute renal failure. Impairment of inhibitory renorenal reflexes in these pathological states would contribute to the hypertension and sodium retention. When the inhibitory renorenal reflexes are suppressed, excitatory reflexes may prevail. Renal denervation reduces arterial pressure in experimental hypertension and in treatment-resistant hypertensive patients. The fall in arterial pressure is associated with a fall in muscle sympathetic nerve activity, suggesting that increased ARNA contributes to increased arterial pressure in these patients. Although removal of both renal sympathetic and afferent renal sensory nerves most likely contributes to the arterial pressure reduction initially, additional mechanisms may be involved in long-term arterial pressure reduction since sympathetic and sensory nerves reinnervate renal tissue in a similar time-dependent fashion following renal denervation. PMID:25411364
Functional Renal Imaging with 2-Deoxy-2-18F-Fluorosorbitol PET in Rat Models of Renal Disorders.
Werner, Rudolf A; Wakabayashi, Hiroshi; Chen, Xinyu; Hirano, Mitsuru; Shinaji, Tetsuya; Lapa, Constantin; Rowe, Steven P; Javadi, Mehrbod S; Higuchi, Takahiro
2018-05-01
Precise regional quantitative assessment of renal function is limited with conventional 99m Tc-labeled renal radiotracers. A recent study reported that the PET radiotracer 2-deoxy-2- 18 F-fluorosorbitol ( 18 F-FDS) has ideal pharmacokinetics for functional renal imaging. Furthermore, 18 F-FDS is available via simple reduction from routinely used 18 F-FDG. We aimed to further investigate the potential of 18 F-FDS PET as a functional renal imaging agent using rat models of kidney disease. Methods: Two different rat models of renal impairment were investigated: induction of acute renal failure by intramuscular administration of glycerol in the hind legs, and induction of unilateral ureteral obstruction by ligation of the left ureter. At 24 h after these procedures, dynamic 30-min 18 F-FDS PET data were acquired using a dedicated small-animal PET system. Urine 18 F-FDS radioactivity 30 min after radiotracer injection was measured together with coinjected 99m Tc-diethylenetriaminepentaacetic acid urine activity. Results: Dynamic PET imaging demonstrated rapid 18 F-FDS accumulation in the renal cortex and rapid radiotracer excretion via the kidneys in healthy control rats. On the other hand, significantly delayed renal radiotracer uptake (continuous slow uptake) was observed in acute renal failure rats and unilateral ureteral obstruction kidneys. Measured urine radiotracer concentrations of 18 F-FDS and 99m Tc-diethylenetriaminepentaacetic acid correlated well with each other ( R = 0.84, P < 0.05). Conclusion: 18 F-FDS PET demonstrated favorable kinetics for functional renal imaging in rat models of kidney diseases. 18 F-FDS PET imaging, with its advantages of high spatiotemporal resolution and simple tracer production, could potentially complement or replace conventional renal scintigraphy in select cases and significantly improve the diagnostic performance of renal functional imaging. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.
An Extract of Rhodobacter sphaeroides Reduces Cisplatin-Induced Nephrotoxicity in Mice
Chang, Wen-Wei; Liu, Jau-Jin; Liu, Chi-Fan; Liu, Wen-Sheng; Lim, Yun-Ping; Cheng, Yu-Jung; Lee, Che-Hsin
2013-01-01
Cisplatin is used as a treatment for various types of solid tumors. Renal injury severely limits the use of cisplatin. Renal cell apoptosis, oxidative stress, and inflammation contribute to cisplatin-induced nephrotoxicity. Previously, we found that an extract of Rhodobacter sphaeroides (Lycogen™) inhibited proinflammatory cytokines and the production of nitric oxide in activated macrophages in a dextran sodium sulfate (DSS)-induced colitis model. Here, we evaluated the effect of Lycogen™, a potent anti-inflammatory agent, in mice with cisplatin-induced renal injury. We found that attenuated renal injury correlated with decreased apoptosis due to a reduction in caspase-3 expression in renal cells. Oral administration of Lycogen™ significantly reduced the expression of tumor necrosis factor-α and interleukin-1β in mice with renal injury. Lycogen™ reduces renal dysfunction in mice with cisplatin-induced renal injury. The protective effects of the treatment included blockage of the cisplatin-induced elevation in serum urea nitrogen and creatinine. Meanwhile, Lycogen™ attenuated body weight loss and significantly prolonged the survival of mice with renal injury. We propose that Lycogen™ exerts anti-inflammatory activities that represent a promising strategy for the treatment of cisplatin-induced renal injury. PMID:24335753
Osthole ameliorates renal ischemia-reperfusion injury in rats.
Zheng, Yi; Lu, Min; Ma, Lulin; Zhang, Shudong; Qiu, Min; Wang, Yunpeng
2013-07-01
Renal ischemia-reperfusion (I/R) injury is a major cause of acute kidney injury. The pathogenetic mechanisms underlying I/R injury involve oxidative stress and apoptosis. Osthole, a natural coumarin derivative, has been reported to possess antioxidant and antiapoptotic activities. This study aimed to investigate the potential effects of osthole on renal I/R injury in an in vivo rat model. We induced renal I/R injury by clamping the left renal artery for 45 min followed by reperfusion, along with a contralateral nephrectomy. We randomly assigned 54 rats to three groups (18 rats/group): sham-operated, vehicle-treated I/R, and osthole-treated I/R. We treated rats intraperitoneally with osthole (40 mg/kg) or vehicle (40 mg/kg) 30 min before renal ischemia. We harvested serum and kidneys at 1, 6, and 24 h after reperfusion. Renal function and histological changes were assessed. We also determined markers of oxidative stress and cell apoptosis in kidneys. Osthole treatment significantly attenuated renal dysfunction and histologic damage induced by I/R injury. The I/R-induced elevation in kidney malondialdehyde level decreased, whereas reduced kidney superoxide dismutase and catalase activities were markedly increased. Moreover, osthole-treated rats had a dramatic decrease in apoptotic tubular cells, along with a decrease in caspase-3 and an increase in the Bcl-2/Bax ratio. Osthole treatment protects murine kidney from renal I/R injury by suppressing oxidative stress and cell apoptosis. Thus, osthole may represent a novel practical strategy to prevent renal I/R injury. Copyright © 2013 Elsevier Inc. All rights reserved.
Cortese, Francesca; Scicchitano, Pietro; Gesualdo, Michele; Ricci, Gabriella; Carbonara, Santa; Franchini, Carlo; Pia Schiavone, Brigida Immacolata; Corbo, Filomena; Ciccone, Marco Matteo
2017-11-17
Thromboembolic events, principally stroke, represent one of the leading causes of morbidity and mortality among subjects with atrial fibrillation. Chronic kidney disease determines a further increase of thromboembolic events, bleeding and mortality and complicates the pharmacological management of patients with atrial fibrillation, mainly due to the side effects of antiarrhythmic and anticoagulant drugs with renal excretion. Apixaban is a new oral anticoagulant characterized by good bioavailability and renal elimination accounting for only 25%, showing a safety profile and effectiveness in patients with renal impairment. In this manuscript, we reviewed literature data on the use of apixaban in the management of non-valvular atrial fibrillation in patients with renal failure, in order to clarify an often-debated topic in clinical practice. A PubMed search was performed on the terms atrial fibrillation, apixaban and renal failure with the aim of identifying relevant manuscripts, large randomized clinical trials, meta-analyses, and current guidelines. Literature data show that apixaban could represent an interesting alternative to warfarin and other selective antagonists of coagulation factors in patients with impaired renal function. About the risk of major bleeding, apixaban appears to be safer than warfarin in the presence of any degree of renal failure. Apixaban show to be an effective anticoagulant in patients with atrial fibrillation, even superior to warfarin in reducing the risk of stroke and systemic embolism regardless of the presence of renal insufficiency. Moreover, Food and Drug Administration allows the use of apixaban in patients with end stage renal disease on hemodialysis. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Trujillo, Joyce; Ramírez, Victoria; Pérez, Jazmín; Torre-Villalvazo, Ivan; Torres, Nimbe; Tovar, Armando R; Muñoz, Rosa M; Uribe, Norma; Gamba, Gerardo; Bobadilla, Norma A
2005-01-01
The obese Zucker rat is a valuable model for studying kidney disease associated with obesity and diabetes. Previous studies have shown that substitution of animal protein with soy ameliorates the progression of renal disease. To explore the participation of nitric oxide (NO) and caveolin-1 in this protective effect, we evaluated proteinuria, creatinine clearance, renal structural lesions, nitrites and nitrates urinary excretion (UNO(2)(-)/NO(3)V), and mRNA and protein levels of neuronal NO synthase (nNOS), endothelial NOS (eNOS), and caveolin-1 in lean and fatty Zucker rats fed with 20% casein or soy protein diet. After 160 days of feeding with casein, fatty Zucker rats developed renal insufficiency, progressive proteinuria, and renal structural lesions; these alterations were associated with an important fall of UNO(2)(-)/NO(3)V, changes in nNOS and eNOS mRNA levels, together with increased amount of eNOS and caveolin-1 present in plasma membrane proteins of the kidney. In fatty Zucker rats fed with soy, we observed that soy diet improved renal function, UNO(2)(-)/NO(3)V, and proteinuria and reduced glomerulosclerosis, tubular dilation, intersticial fibrosis, and extracapilar proliferation. Renal protection was associated with reduction of caveolin-1 and eNOS in renal plasma membrane proteins. In conclusion, our results suggest that renal protective effect of soy protein appears to be mediated by improvement of NO generation and pointed out to caveolin-1 overexpression as a potential pathophysiological mechanism in renal disease.
Production and actions of the anandamide metabolite prostamide E2 in the renal medulla.
Ritter, Joseph K; Li, Cao; Xia, Min; Poklis, Justin L; Lichtman, Aron H; Abdullah, Rehab A; Dewey, William L; Li, Pin-Lan
2012-09-01
Medullipin has been proposed to be an antihypertensive lipid hormone released from the renal medulla in response to increased arterial pressure and renal medullary blood flow. Because anandamide (AEA) possesses characteristics of this purported hormone, the present study tested the hypothesis that AEA or one of its metabolites represents medullipin. AEA was demonstrated to be enriched in the kidney medulla compared with cortex. Western blotting and enzymatic analyses of renal cortical and medullary microsomes revealed opposite patterns of enrichment of two AEA-metabolizing enzymes, with fatty acid amide hydrolase higher in the renal cortex and cyclooxygenase-2 (COX-2) higher in the renal medulla. In COX-2 reactions with renal medullary microsomes, prostamide E2, the ethanolamide of prostaglandin E₂, was the major product detected. Intramedullarily infused AEA dose-dependently increased urine volume and sodium and potassium excretion (15-60 nmol/kg/min) but had little effect on mean arterial pressure (MAP). The renal excretory effects of AEA were blocked by intravenous infusion of celecoxib (0.1 μg/kg/min), a selective COX-2 inhibitor, suggesting the involvement of a prostamide intermediate. Plasma kinetic analysis revealed longer elimination half-lives for AEA and prostamide E2 compared with prostaglandin E₂. Intravenous prostamide E2 reduced MAP and increased renal blood flow (RBF), actions opposite to those of angiotensin II. Coinfusion of prostamide E2 inhibited angiotensin II effects on MAP and RBF. These results suggest that AEA and/or its prostamide metabolites in the renal medulla may represent medullipin and function as a regulator of body fluid and MAP.
Determination of split renal function using dynamic CT-angiography: preliminary results.
Helck, Andreas; Schönermarck, Ulf; Habicht, Antje; Notohamiprodjo, Mike; Stangl, Manfred; Klotz, Ernst; Nikolaou, Konstantin; la Fougère, Christian; Clevert, Dirk Andrè; Reiser, Maximilian; Becker, Christoph
2014-01-01
To determine the feasibility of a dynamic CT angiography-protocol with regard to simultaneous assessment of renal anatomy and function. 7 healthy potential kidney donors (58 ± 7 years) underwent a dynamic computed tomography angiography (CTA) using a 128-slice CT-scanner with continuous bi-directional table movement, allowing the coverage of a scan range of 18 cm within 1.75 sec. Twelve scans of the kidneys (n = 14) were acquired every 3.5 seconds with the aim to simultaneously obtain CTA and renal function data. Image quality was assessed quantitatively (HU-measurements) and qualitatively (grade 1-4, 1 = best). The glomerular filtration rate (GFR) was calculated by a modified Patlak method and compared with the split renal function obtained with renal scintigraphy. Mean maximum attenuation was 464 ± 58 HU, 435 ± 48 HU and 277 ± 29 HU in the aorta, renal arteries, and renal veins, respectively. The abdominal aorta and all renal vessels were depicted excellently (grade 1.0). The image quality score for cortex differentiation was 1.6 ± 0.49, for the renal parenchyma 2.4 ± 0.49. GFR obtained from dynamic CTA correlated well with renal scintigraphy with a correlation coefficient of r = 0.84; P = 0.0002 (n = 14). The average absolute deviation was 1.6 mL/min. The average effective dose was 8.96 mSv. Comprehensive assessment of renal anatomy and function is feasible using a single dynamic CT angiography examination. The proposed protocol may help to improve management in case of asymmetric kidney function as well as to simplify evaluation of potential living kidney donors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sahu, Bidya Dhar; Tatireddy, Srujana; Koneru, Meghana
Gentamicin-induced nephrotoxicity has been well documented, although its underlying mechanisms and preventive strategies remain to be investigated. The present study was designed to investigate the protective effect of naringin, a bioflavonoid, on gentamicin-induced nephrotoxicity and to elucidate the potential mechanism. Serum specific renal function parameters (blood urea nitrogen and creatinine) and histopathology of kidney tissues were evaluated to assess the gentamicin-induced nephrotoxicity. Renal oxidative stress (lipid peroxidation, protein carbonylation, enzymatic and non-enzymatic antioxidants), inflammatory (NF-kB [p65], TNF-α, IL-6 and MPO) and apoptotic (caspase 3, caspase 9, Bax, Bcl-2, p53 and DNA fragmentation) markers were also evaluated. Significant decrease in mitochondrialmore » NADH dehydrogenase, succinate dehydrogenase, cytochrome c oxidase and mitochondrial redox activity indicated the gentamicin-induced mitochondrial dysfunction. Naringin (100 mg/kg) treatment along with gentamicin restored the mitochondrial function and increased the renal endogenous antioxidant status. Gentamicin induced increased renal inflammatory cytokines (TNF-α and IL-6), nuclear protein expression of NF-κB (p65) and NF-κB-DNA binding activity and myeloperoxidase (MPO) activity were significantly decreased upon naringin treatment. In addition, naringin treatment significantly decreased the amount of cleaved caspase 3, Bax, and p53 protein expression and increased the Bcl-2 protein expression. Naringin treatment also ameliorated the extent of histologic injury and reduced inflammatory infiltration in renal tubules. U-HPLS-MS data revealed that naringin co-administration along with gentamicin did not alter the renal uptake and/or accumulation of gentamicin in kidney tissues. These findings suggest that naringin treatment attenuates renal dysfunction and structural damage through the reduction of oxidative stress, mitochondrial dysfunction, inflammation and apoptosis in the kidney. - Highlights: • Naringin ameliorated gentamicin-induced nephrotoxicity in rats. • Naringin treatment attenuated gentamicin-induced renal apoptosis in rats. • Naringin ameliorated gentamicin-induced renal mitochondrial dysfunction in rats. • Naringin decreased NF-κB activation and pro-inflammatory cytokine release. • U-HPLC-MS data revealed that naringin did not alter the renal uptake of gentamicin.« less
Rasche, F. M.; Rasche, W. G.; Schiekofer, S.; Boldt, A.; Sack, U.; Fahnert, J.
2016-01-01
Summary IgA nephropathy (IgAN) is the most common primary glomerulonephritis worldwide. Lifelong mesangial deposition of IgA1 complexes subsist inflammation and nephron loss, but the complex pathogenesis in detail remains unclear. In regard to the heterogeneous course, classical immunosuppressive and specific therapeutic regimens adapted to the loss of renal function will here be discussed in addition to the essential common renal supportive therapy. Renal supportive therapy alleviates secondary, surrogate effects or sequelae on renal function and proteinuria of high intraglomerular pressure and subsequent nephrosclerosis by inhibition of the renin angiotensin system (RAASB). In patients with physiological (ΔGFR < 1·5 ml/min/year) or mild (ΔGFR 1·5–5 ml/min/year) decrease of renal function and proteinuric forms (> 1 g/day after RAASB), corticosteroids have shown a reduction of proteinuria and might protect further loss of renal function. In patients with progressive loss of renal function (ΔGFR > 3 ml/min within 3 months) or a rapidly progressive course with or without crescents in renal biopsy, cyclophosphamide with high‐dose corticosteroids as induction therapy and azathioprine maintenance has proved effective in one randomized controlled study of a homogeneous cohort in loss of renal function (ΔGFR). Mycophenolic acid provided further maintenance in non‐randomized trials. Differentiated, precise, larger, randomized, placebo‐controlled studies focused on the loss of renal function in the heterogeneous forms of IgAN are still lacking. Prospectively, fewer toxic agents will be necessary in the treatment of IgAN. PMID:27283488
Prostaglandin control of renal circulation in the unanesthetized dog and baboon
NASA Technical Reports Server (NTRS)
Swain, J. A.; Vatner, S. F.; Heyndrickx, G. R.; Boettcher, D. H.
1975-01-01
Effects of indomethacin and meclofenamate, inhibitors of prostaglandin synthesis, were evaluated in the regulation of renal blood flow in conscious and anesthetized dogs and in tranquilized baboons, instrumented with arterial pressure catheters and renal blood flow probes. Indomethacin, 10 mg/kg, did not alter renal blood flow or resistance significantly in the conscious dog. In the anesthetized dog, however, indomethacin caused a reduction in renal blood flow and an elevation of renal vascular resistance. Meclofenamate, 4 mg/kg, reduced renal flow and increased renal vascular resistance in conscious dogs. In conscious dogs and tranquilized primates, indomethacin and meclofenamate reduced the reactive hyperemia in the renal bed. Methoxamine and angiotensin II infused in graded doses induced significantly greater renal vasoconstriction in conscious dogs in the presence of indomethacin. Thus, in the conscious animal, prostaglandins appear to play only a minor part in the control of renal circulation at rest, but they are of greater importance in mediating the renal responses to reactive hyperemia and to vasoconstriction.
Hassouneh, Ramzi; Nasrallah, Rania; Zimpelmann, Joe; Gutsol, Alex; Eckert, David; Ghossein, Jamie; Burns, Kevin D; Hébert, Richard L
2016-06-01
The first clinical manifestation of diabetes is polyuria. The prostaglandin E2 (PGE2) receptor EP3 antagonises arginine vasopressin (AVP)-mediated water reabsorption and its expression is increased in the diabetic kidney. The purpose of this work was to study the contribution of EP3 to diabetic polyuria and renal injury. Male Ep 3 (-/-) (also known as Ptger3 (-/-)) mice were treated with streptozotocin (STZ) to generate a mouse model of diabetes and renal function was evaluated after 12 weeks. Isolated collecting ducts (CDs) were microperfused to study the contribution of EP3 to AVP-mediated fluid reabsorption. Ep 3 (-/-)-STZ mice exhibited attenuated polyuria and increased urine osmolality compared with wild-type STZ (WT-STZ) mice, suggesting enhanced water reabsorption. Compared with WT-STZ mice, Ep 3 (-/-)-STZ mice also had increased protein expression of aquaporin-1, aquaporin-2, and urea transporter A1, and reduced urinary AVP excretion, but increased medullary V2 receptors. In vitro microperfusion studies indicated that Ep 3 (-/-) and WT-STZ CDs responded to AVP stimulation similarly to those of wild-type mice, with a 60% increase in fluid reabsorption. In WT non-injected and WT-STZ mice, EP3 activation with sulprostone (PGE2 analogue) abrogated AVP-mediated water reabsorption; this effect was absent in mice lacking EP3. A major finding of this work is that Ep 3 (-/-)-STZ mice showed blunted renal cyclooxygenase-2 protein expression, reduced renal hypertrophy, reduced hyperfiltration and reduced albuminuria, as well as diminished tubular dilation and nuclear cysts. Taken together, the data suggest that EP3 contributes to diabetic polyuria by inhibiting expression of aquaporins and that it promotes renal injury during diabetes. EP3 may prove to be a promising target for more selective management of diabetic kidney disease.
Well Preserved Renal Function in Children With Untreated Chronic Liver Disease.
Berg, Ulla B; Németh, Antal
2018-04-01
On the basis of studies with hepatorenal syndrome, it is widely regarded that renal function is impacted in chronic liver disease (CLD). Therefore, we investigated renal function in children with CLD. In a retrospective study of 277 children with CLD, renal function was investigated as glomerular filtration rate (GFR) and effective renal plasma flow (ERPF), measured as clearance of inulin and para-amino hippuric acid or clearance of iohexol. The data were analyzed with regard to different subgroups of liver disease and to the grade of damage. Hyperfiltration (>+2 SD of controls) was found in the subgroups of progressive familial intrahepatic cholestasis (44%), glycogenosis (75%), and acute fulminant liver failure (60%). Patients with biliary atresia, most other patients with metabolic disease and intrahepatic cholestasis, and those with vascular anomalies and cryptogenic cirrhosis had normal renal function. Decreased renal function was found in patients with Alagille's syndrome (64% < -2 SD). Increased GFR and ERPF was found in patients with elevated transaminases, low prothrombin level, high bile acid concentration, and high aspartate-aminotransferase-to-platelet ratio. Most children with CLD had surprisingly well preserved renal function and certain groups had even hyperfiltration. The finding that children with decompensated liver disease and ongoing liver failure had stable kidney function suggests that no prognostic markers of threatening hepatorenal syndrome were at hand. Moreover, estimation of GFR based on serum creatinine fails to reveal hyperfiltration.
Chen, Szu-Chia; Lin, Tsung-Hsien; Hsu, Po-Chao; Chang, Jer-Ming; Lee, Chee-Siong; Tsai, Wei-Chung; Su, Ho-Ming; Voon, Wen-Chol; Chen, Hung-Chun
2011-09-01
Heart failure and increased arterial stiffness are associated with declining renal function. Few studies have evaluated the association between left ventricular ejection fraction (LVEF) and brachial-ankle pulse-wave velocity (baPWV) and renal function progression. The aim of this study was to assess whether LVEF<40% and baPWV are associated with a decline in the estimated glomerular filtration rate (eGFR) and the progression to a renal end point of ≥25% decline in eGFR. This longitudinal study included 167 patients. The baPWV was measured with an ankle-brachial index-form device. The change in renal function was estimated by eGFR slope. The renal end point was defined as ≥25% decline in eGFR. Clinical and echocardiographic parameters were compared and analyzed. After a multivariate analysis, serum hematocrit was positively associated with eGFR slope, and diabetes mellitus, baPWV (P=0.031) and LVEF<40% (P=0.001) were negatively associated with eGFR slope. Forty patients reached the renal end point. Multivariate, forward Cox regression analysis found that lower serum albumin and hematocrit levels, higher triglyceride levels, higher baPWV (P=0.039) and LVEF<40% (P<0.001) were independently associated with progression to the renal end point. Our results show that LVEF<40% and increased baPWV are independently associated with renal function decline and progression to the renal end point.
Increased renal tubular sodium reabsorption during exercise-induced hypervolemia in humans
NASA Technical Reports Server (NTRS)
Nagashima, K.; Wu, J.; Kavouras, S. A.; Mack, G. W.
2001-01-01
We tested the hypothesis that renal tubular Na(+) reabsorption increased during the first 24 h of exercise-induced plasma volume expansion. Renal function was assessed 1 day after no-exercise control (C) or intermittent cycle ergometer exercise (Ex, 85% of peak O(2) uptake) for 2 h before and 3 h after saline loading (12.5 ml/kg over 30 min) in seven subjects. Ex reduced renal blood flow (p-aminohippurate clearance) compared with C (0.83 +/- 0.12 vs. 1.49 +/- 0.24 l/min, P < 0.05) but did not influence glomerular filtration rates (97 +/- 10 ml/min, inulin clearance). Fractional tubular reabsorption of Na(+) in the proximal tubules was higher in Ex than in C (P < 0.05). Saline loading decreased fractional tubular reabsorption of Na(+) from 99.1 +/- 0.1 to 98.7 +/- 0.1% (P < 0.05) in C but not in Ex (99.3 +/- 0.1 to 99.4 +/- 0.1%). Saline loading reduced plasma renin activity and plasma arginine vasopressin levels in C and Ex, although the magnitude of decrease was greater in C (P < 0.05). These results indicate that, during the acute phase of exercise-induced plasma volume expansion, increased tubular Na(+) reabsorption is directed primarily to the proximal tubules and is associated with a decrease in renal blood flow. In addition, saline infusion caused a smaller reduction in fluid-regulating hormones in Ex. The attenuated volume-regulatory response acts to preserve distal tubular Na(+) reabsorption during saline infusion 24 h after exercise.
Ω3 fatty acids may reduce hyperlipidemia in pediatric renal transplant recipients.
Filler, Guido; Weiglein, Geneva; Gharib, Mireille Tina; Casier, Shelley
2012-12-01
Life expectancy after pediatric renal transplantation remains lower than that of the normal population largely due to cardiovascular morbidity and mortality. Hyperlipidemia is a potentially modifiable risk factor for cardiovascular morbidity. Retrospective chart review of all available pediatric renal transplant patients (26) in a single center with assessment of anthropometry, renal function, steroid, calcineurin or mTOR inhibitor exposure and Ω3 FA supplementation. Eighteen transplant recipients without Ω3 FA supplementation served as control. Nutrition and supplement surveys were conducted with standardized questionnaires. Fasting cholesterol values were compared using the latest value prior to start of Ω3 FA and at last follow-up. Eight patients (five receiving mTOR inhibitor) started Ω3 FA supplementation at a mean dose of 29.2 ± 12 mg of EPA/kg and 16.1 ± 7.4 mg DHA/kg body weight. Median duration of treatment was 2.5 yr (range 0.8-5.9 yr) and their total fasting cholesterol at last follow-up dropped significantly from 5.08 ± 0.97 (control group 3.77 ± 0.81, p = 0.0084) to 4.17 ± 0.54 mm (p = 0.0158). High-density lipoprotein cholesterol increased not significantly from 1.74 ± 0.49 to 2.02 ± 0.93 mm. No patient had increased bleeding. Supplementation of omega-3 FAs may reduce hyperlipidaemia after pediatric renal transplantation. © 2012 John Wiley & Sons A/S.
Antibody and complement reduce renal hemodynamic function in isolated perfused rat kidney.
Jocks, T; Zahner, G; Helmchen, U; Kneissler, U; Stahl, R A
1996-01-01
To evaluate the effect of antibody and complement on renal hemodynamic changes, glomerular injury was induced in isolated perfused kidneys by an anti-thymocyte antibody (ATS) and rat serum (RS). Glomerular filtration rate (GFR), renal vascular resistance (RVR), and renal perfusate flow (RPF) were assessed over an 80-min period. The possible role of thromboxane (Tx) was tested by the application of the Tx synthesis inhibitor UK-38485 and the Tx receptor blocker daltroban. Perfusion of kidneys with ATS and RS significantly reduced GFR at 10 min (control, 501 +/- 111; ATS + RS, 138 +/- 86 ml.g kidney-1.min-1, significance of F = 0.000) after RS. Similarly, RPF (ml.g kidney-1.min-1) fell from 19.2 +/- 1.8 to 6.1 +/- 2.0 (significance of F = 0.000), whereas RVR (mmHg.ml-1.g.min) increased threefold from 5.2 +/- 0.4 to 17.9 +/- 5.0 at 10 min. These changes were ameliorated by the pretreatment of the rats with daltroban and UK-38485. Addition of erythrocytes to the perfusate increased RVR and GFR, whereas RPF decreased compared with cell-free perfused kidneys. ATS and RS in this preparation also decrease GFR and RPF. The hemodynamic alterations appeared without changes in filtration fraction. Compared with untreated, perfused control kidneys, glomerular Tx formation was significantly increased in ATS and RS perfused kidneys. These data demonstrate that antibody and RS induce impairment of renal hemodynamics, which are mediated by increased Tx formation.
Liu, Youxia; Ma, Xinxin; Zheng, Jie; Jia, Junya; Yan, Tiekun
2017-06-30
The role of angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) reducing risk of cardiovascular events (CVEs) and preserving kidney function in patients with chronic kidney disease is well-documented. However, the efficacy and safety of these agents in dialysis patients is still a controversial issue. We systematically searched MEDLINE, Embase, Cochrane Library and Wanfang for randomized trials. The relative risk (RR) reductions were calculated with a random-effects model. Major cardiovascular events, changes in GFR and drug-related adverse events were analyzed. Eleven trials included 1856 participants who were receiving dialysis therapy. Compared with placebo or other active agents groups, ARB therapy reduced the risk of heart failure events by 33% (RR 0.67, 95% CI 0.47 to 0.93) with similar decrement in blood pressure in dialysis patients. Indirect comparison suggested that fewer cardiovascular events happened during treatment with ARB (0.77, 0.63 to 0.94). The results indicated no significant differences between the two treatment regimens with regard to frequency of myocardial infarction (1.0, 0.45 to 2.22), stroke (1.16, 0.69 to 1.96), cardiovascular death (0.89, 0.64 to 1.26) and all-cause mortality (0.94, 0.75 to 1.17). Five studies reported the renoprotective effect and revealed that ACEI/ARB therapy significantly slowed the rate of decline in both residual renal function (MD 0.93 mL/min/1.73 m 2 , 0.38 to 1.47 mL/min/1.73 m 2 ) and urine volume (MD 167 ml, 95% CI 21 ml to 357 ml). No difference in drug-related adverse events was observed in both treatment groups. This study demonstrates that ACE-Is/ARBs therapy decreases the loss of residual renal function, mainly for patients with peritoneal dialysis. Overall, ACE-Is and ARBs do not reduce cardiovascular events in dialysis patients, however, treatment with ARB seems to reduce cardiovascular events including heart failure. ACE-Is and ARBs do not induce an extra risk of side effects.
Ha, Il-Soo; Yap, Hui K; Munarriz, Reyner L; Zambrano, Pedro H; Flynn, Joseph T; Bilge, Ilmay; Szczepanska, Maria; Lai, Wai-Ming; Antonio, Zenaida L; Gulati, Ashima; Hooman, Nakysa; van Hoeck, Koen; Higuita, Lina M S; Verrina, Enrico; Klaus, Günter; Fischbach, Michel; Riyami, Mohammed A; Sahpazova, Emilja; Sander, Anja; Warady, Bradley A; Schaefer, Franz
2015-09-01
In dialyzed patients, preservation of residual renal function is associated with better survival, lower morbidity, and greater quality of life. To analyze the evolution of residual diuresis over time, we prospectively monitored urine output in 401 pediatric patients in the global IPPN registry who commenced peritoneal dialysis (PD) with significant residual renal function. Associations of patient characteristics and time-variant covariates with daily urine output and the risk of developing oligoanuria (under 100 ml/m(2)/day) were analyzed by mixed linear modeling and Cox regression analysis including time-varying covariates. With an average loss of daily urine volume of 130 ml/m(2) per year, median time to oligoanuria was 48 months. Residual diuresis significantly subsided more rapidly in children with glomerulopathies, lower diuresis at start of PD, high ultrafiltration volume, and icodextrin use. Administration of diuretics significantly reduced oligoanuria risk, whereas the prescription of renin-angiotensin system antagonists significantly increased the risk oligoanuria. Urine output on PD was significantly associated in a negative manner with glomerulopathies (-584 ml/m(2)) and marginally with the use of icodextrin (-179 ml/m(2)) but positively associated with the use of biocompatible PD fluid (+111 ml/m(2)). Children in both Asia and North America had consistently lower urine output compared with those in Europe perhaps due to regional variances in therapy. Thus, in children undergoing PD, residual renal function depends strongly on the cause of underlying kidney disease and may be modifiable by diuretic therapy, peritoneal ultrafiltration, and choice of PD fluid.
Ha, Il-Soo; Yap, Hui K; Munarriz, Reyner L; Zambrano, Pedro H; Flynn, Joseph T; Bilge, Ilmay; Szczepanska, Maria; Lai, Wai-Ming; Antonio, Zenaida L; Gulati, Ashima; Hooman, Nakysa; van Hoeck, Koen; Higuita, Lina M S; Verrina, Enrico; Klaus, Günter; Fischbach, Michel; Riyami, Mohammed A; Sahpazova, Emilja; Sander, Anja; Warady, Bradley A; Schaefer, Franz
2015-01-01
In dialyzed patients, preservation of residual renal function is associated with better survival, lower morbidity, and greater quality of life. To analyze the evolution of residual diuresis over time, we prospectively monitored urine output in 401 pediatric patients in the global IPPN registry who commenced peritoneal dialysis (PD) with significant residual renal function. Associations of patient characteristics and time-variant covariates with daily urine output and the risk of developing oligoanuria (under 100 ml/m2/day) were analyzed by mixed linear modeling and Cox regression analysis including time-varying covariates. With an average loss of daily urine volume of 130 ml/m2 per year, median time to oligoanuria was 48 months. Residual diuresis significantly subsided more rapidly in children with glomerulopathies, lower diuresis at start of PD, high ultrafiltration volume, and icodextrin use. Administration of diuretics significantly reduced oligoanuria risk, whereas the prescription of renin–angiotensin system antagonists significantly increased the risk oligoanuria. Urine output on PD was significantly associated in a negative manner with glomerulopathies (−584 ml/m2) and marginally with the use of icodextrin (−179 ml/m2) but positively associated with the use of biocompatible PD fluid (+111 ml/m2). Children in both Asia and North America had consistently lower urine output compared with those in Europe perhaps due to regional variances in therapy. Thus, in children undergoing PD, residual renal function depends strongly on the cause of underlying kidney disease and may be modifiable by diuretic therapy, peritoneal ultrafiltration, and choice of PD fluid. PMID:25874598
Nutritional status and body composition in patients early after renal transplantation.
Netto, M C A S; Alves-Filho, G; Mazzali, M
2012-10-01
After renal transplantation recovery in nutritional status occurs during the first year. We assessed the changes in nutritional status after transplantation in 145 transplant recipients (94 males, 51 females). Patients were evaluated immediately after renal transplant (baseline data) and at 6 months' follow-up. Analysis included body mass index (BMI), body composition (skin fold and arm circumference), and estimated body composition (calculated percent of fat, arm circumference, arm muscle circumference, and arm muscle area). Other data obtained from medical records included renal function (MDRD) serum albumin and lipid profile. At baseline evaluation (21 ± 15 days posttransplant), mean BMI was 23.9 ± 3.9 kg/m(2), serum albumin was 3.7 ± 0.7 g/dL, and lipid profile showed (cholesterol 158.5 ± 52.7 mg% and triglycerides 135.9 ± 91.8 mg%. Body composition analysis showed better adaptation of muscle mass in females [AC (91 ± 10.2 × 98 ± 14.6; male × female, P < .05) arm muscle circumference (92.6 ± 1.4 × 102.3% ± 2.9%, male × female, P < .05) and arm muscle area (87.1 ± 22.3 × 105.5% ± 25.9%, male × female, P < .05)]. Body fat was above the recommended levels in 80% of patients, especially females. After 6 months we divided the groups according to BMI, observing better renal function in the normal weight group compared with obese subjects (60 ± 17.2 × 39.5 ± 19.8 mL/min MDRD, P < .05), despite comparable estimated glomerular filtration rate at baseline. The nutritional assessment of patients with end-stage renal disease early after renal transplantation, showed inadequate body composition, with increased fat and reduced lean body mass. The lower glomerular filtration rate after 6 months may be attributed to relatively inadequate renal mass or to obesity-induced hyperfiltration. Copyright © 2012 Elsevier Inc. All rights reserved.
Renal function and acute heart failure outcome.
Llauger, Lluís; Jacob, Javier; Miró, Òscar
2018-06-05
The interaction between acute heart failure (AHF) and renal dysfunction is complex. Several studies have evaluated the prognostic value of this syndrome. The aim of this systematic review, which includes non-selected samples, was to investigate the impact of different renal function variables on the AHF prognosis. The categories included in the studies reviewed included: creatinine, blood urea nitrogen (BUN), the BUN/creatinine quotient, chronic kidney disease, the formula to estimate the glomerular filtration rate, criteria of acute renal injury and new biomarkers of renal damage such as neutrophil gelatinase-associated lipocalin (NGAL and cystatin c). The basal alterations of the renal function, as well as the acute alterations, transient or not, are related to a worse prognosis in AHF, it is therefore necessary to always have baseline, acute and evolutive renal function parameters. Copyright © 2018 Elsevier España, S.L.U. All rights reserved.
Garrido, Patrícia; Ribeiro, Sandra; Fernandes, João; Vala, Helena; Bronze-da-Rocha, Elsa; Rocha-Pereira, Petronila; Belo, Luís; Costa, Elísio; Santos-Silva, Alice; Reis, Flávio
2015-01-01
Anemia is a common complication of chronic kidney disease (CKD) that develops early and its severity increases as renal function declines. It is mainly due to a reduced production of erythropoietin (EPO) by the kidneys; however, there are evidences that iron metabolism disturbances increase as CKD progresses. Our aim was to study the mechanisms underlying the development of anemia of CKD, as well as renal damage, in the remnant kidney rat model of CKD induced by 5/6 nephrectomy. This model of CKD presented a sustained degree of renal dysfunction, with mild and advanced glomerular and tubulointerstitial lesions. Anemia developed 3 weeks after nephrectomy and persisted throughout the protocol. The remnant kidney was still able to produce EPO and the liver showed an increased EPO gene expression. In spite of the increased EPO blood levels, anemia persisted and was linked to low serum iron and transferrin levels, while serum interleukin (IL)-6 and high sensitivity C-reactive protein (hs-CRP) levels showed the absence of systemic inflammation. The increased expression of duodenal ferroportin favours iron absorption; however, serum iron is reduced which might be due to iron leakage through advanced kidney lesions, as showed by tubular iron accumulation. Our data suggest that the persistence of anemia may result from disturbances in iron metabolism and by an altered activity/function of EPO as a result of kidney cell damage and a local inflammatory milieu, as showed by the increased gene expression of different inflammatory proteins in the remnant kidney. In addition, this anemia and the associated kidney hypoxia favour the development of fibrosis, angiogenesis and inflammation that may underlie a resistance to EPO stimuli and reduced iron availability. These findings might contribute to open new windows to identify putative therapeutic targets for this condition, as well as for recombinant human EPO (rHuEPO) resistance, which occurs in a considerable percentage of CKD patients. PMID:25867633
Ao, Ying; Sun, Zhaoxia; Hu, Shuangshuang; Zuo, Na; Li, Bin; Yang, Shuailong; Xia, Liping; Wu, Yong; Wang, Linlong; He, Zheng; Wang, Hui
2015-09-01
Our previous study has indicated that prenatal caffeine exposure (PCE) could induce intrauterine growth retardation (IUGR) of offspring. Recent research suggested that IUGR is a risk factor for glomerulosclerosis. However, whether PCE could induce glomerulosclerosis and its underlying mechanisms remain unknown. This study aimed to demonstrate the induction to glomerulosclerosis in adult offspring by PCE and its intrauterine programming mechanisms. A rat model of IUGR was established by PCE, male fetuses and adult offspring at the age of postnatal week 24 were euthanized. The results revealed that the adult offspring kidneys in the PCE group exhibited glomerulosclerosis as well as interstitial fibrosis, accompanied by elevated levels of serum creatinine and urine protein. Renal angiotensin II receptor type 2 (AT2R) gene expression in adult offspring was reduced by PCE, whereas the renal angiotensin II receptor type 1a (AT1aR)/AT2R expression ratio was increased. The fetal kidneys in the PCE group displayed an enlarged Bowman's space and a shrunken glomerular tuft, accompanied by a reduced cortex width and an increase in the nephrogenic zone/cortical zone ratio. Observation by electronic microscope revealed structural damage of podocytes; the reduced expression level of podocyte marker genes, nephrin and podocin, was also detected by q-PCR. Moreover, AT2R gene and protein expressions in fetal kidneys were inhibited by PCE, associated with the repression of the gene expression of glial-cell-line-derived neurotrophic factor (GDNF)/tyrosine kinase receptor (c-Ret) signaling pathway. These results demonstrated that PCE could induce dysplasia of fetal kidneys as well as glomerulosclerosis of adult offspring, and the low functional programming of renal AT2R might mediate the developmental origin of adult glomerulosclerosis. Copyright © 2015. Published by Elsevier Inc.
Age dependent regulation of bone-mass and renal function by the MEPE ASARM-motif
Zelenchuk, Lesya V; Hedge, Anne-Marie; Rowe, Peter S N
2015-01-01
Context Mice with null mutations in Matrix Extracellular Phosphoglycoprotein (MEPE) have increased bone mass, increased trabecular density and abnormal cancellous bone (MN-mice). These defects worsen with age and MEPE over expression induces opposite effects. Also, Genome Wide Association studies show MEPE plays a major role in bone mass. We hypothesized the conserved C-terminal MEPE ASARM-motif is chiefly responsible for regulating bone mass and trabecular structure. Design To test our theory we over expressed C-terminal ASARM-peptide in MN-mice using the Col1α1 promoter (MNAt-mice). We then compared the bone and renal phenotypes of the MNAt-mouse with the MN-mouse and the X-linked hypophosphatemic rickets mouse (HYP). The HYP mouse over expresses ASARM-peptides and is defective for the PHEX gene. Results The MN-mouse developed increased bone mass, bone strength and trabecular abnormalities that worsened markedly with age. Defects in bone formation were chiefly responsible with suppressed sclerostin and increased active β-catenin. Increased uric acid levels also suggested abnormalities in purine-metabolism and a reduced fractional excretion of uric acid signaled additional renal transport changes. The MN mouse developed a worsening hyperphosphatemia and reduced FGF23 with age. An increase in the fractional excretion of phosphate (FEP) despite the hyperphosphatemia confirms an imbalance in kidney-intestinal phosphate regulation. Also, the MN mice showed an increased creatinine clearance suggesting hyperfiltration. A reversal of the MN bone-renal phenotype changes occurred with the MNAt mice including the apparent hyperfiltration. The MNAt mice also developed localized hypomineralization, hypophosphatemia and increased FGF23. Conclusions The C-terminal ASARM-motif plays a major role in regulating bone–mass and cancellous structure as mice age. In healthy mice, the processing and release of free ASARM-peptide is chiefly responsible for preserving normal bone and renal function. Free ASARM-peptide also effects renal mineral phosphate handling by influencing FGF23 expression. These findings have implications for understanding age-dependent osteoporosis, unraveling drug-targets and developing treatments. PMID:26051469
Cóndor, José M.; Rodrigues, Camila E.; de Sousa Moreira, Roberto; Canale, Daniele; Volpini, Rildo A.; Shimizu, Maria H.M.; Camara, Niels O.S.; Noronha, Irene de L.
2016-01-01
The pathophysiology of sepsis involves complex cytokine and inflammatory mediator networks. Downregulation of endothelial nitric oxide synthase contributes to sepsis-induced endothelial dysfunction. Human Wharton’s jelly-derived mesenchymal stem cells (WJ-MSCs) are known to reduce expression of proinflammatory cytokines and markers of apoptosis. We hypothesized that treatment with WJ-MSCs would protect renal, hepatic, and endothelial function in a cecal ligation and puncture (CLP) model of sepsis in rats. Rats were randomly divided into three groups: sham-operated rats; rats submitted to CLP and left untreated; and rats submitted to CLP and intraperitoneally injected, 6 hours later, with 1 × 106 WJ-MSCs. The glomerular filtration rate (GFR) was measured at 6 and 24 hours after CLP or sham surgery. All other studies were conducted at 24 hours after CLP or sham surgery. By 6 hours, GFR had decreased in the CLP rats. At 24 hours, Klotho renal expression significantly decreased. Treatment with WJ-MSCs improved the GFR; improved tubular function; decreased the CD68-positive cell count; decreased the fractional interstitial area; decreased expression of nuclear factor κB and of cytokines; increased expression of eNOS, vascular endothelial growth factor, and Klotho; attenuated renal apoptosis; ameliorated hepatic function; increased glycogen deposition in the liver; and improved survival. Sepsis-induced acute kidney injury is a state of Klotho deficiency, which WJ-MSCs can attenuate. Klotho protein expression was higher in WJ-MSCs than in human adipose-derived MSCs. Because WJ-MSCs preserve renal and hepatic function, they might play a protective role in sepsis. Significance Sepsis is the leading cause of death in intensive care units. Although many different treatments for sepsis have been tested, sepsis-related mortality rates remain high. It was hypothesized in this study that treatment with human Wharton’s jelly-derived mesenchymal stem cells (WJ-MSCs) would protect renal, hepatic, and endothelial function in a model of sepsis in rats. Treatment with WJ-MSCs improved the glomerular filtration rate, improved tubular function, decreased expression of nuclear factor κB and of cytokines, increased expression of eNOS and of Klotho, attenuated renal apoptosis, and improved survival. Sepsis-induced acute kidney injury is a state of Klotho deficiency, which WJ-MSCs can attenuate. PMID:27280799
Srivastava, Divya; Sahu, Sandeep; Chandra, Abhilash; Tiwari, Tanmay; Kumar, Sanjay; Singh, P K
2015-12-01
Transesophageal Doppler (TED)-guided intraoperative fluid therapy has shown to noninvasively optimize intravascular volume and reduce postoperative morbidity. The aim of this study was to compare the effects of Doppler-guided intraoperative fluid administration and central venous pressure (CVP)-guided fluid therapy on renal allograft outcome and postoperative complications. A prospective nonrandomized active controlled study was conducted on end-stage renal disease patients scheduled for living donor renal transplant surgery. 110 patients received intraoperative fluid guided by corrected flow time (FTc) and variation in stroke volume values obtained by continuous TED monitoring. Data of 104 patients in whom intraoperative fluid administration was guided by CVP values were retrospectively obtained for a control. The amount of intraoperative fluid given in the study group (12.20 ± 4.24 ml/kg/h) was significantly lower than in the controls (22.21 ± 4.67 ml/kg/h). The amount of colloid used was also significantly less and fewer recipients were seen to require colloid (69 vs 85%). The mean arterial pressures were comparable throughout. CVP reached was 7.18 ± 3.17 mmHg in the study group. It was significantly higher in the controls (13.42 ± 3.12 mmHg). The postoperative graft function and rate of dysfunction were comparable. Side-effects like postoperative dyspnoea (4.8 vs 0%) and tissue edema (9.6 vs 2.7%) were higher in the controls. FTc-guided intraoperative fluid therapy achieved the same rate of immediate graft function as CVP-guided fluid therapy but used a significantly less amount of fluid. The incidence of postoperative complications related to fluid overload was also reduced. The use of TED may replace invasive central line insertions in the future.
Baek, Seung-Hoon; Shin, Byong-Kyu; Kim, Nam Jae; Chang, Sun-Young; Park, Jeong Hill
2017-07-01
Nephrotoxicity is the major side effect in cisplatin chemotherapy. Previously, we reported that the ginsenosides Rk3 and Rh4 reduced cisplatin toxicity on porcine renal proximal epithelial tubular cells (LLC-PK1). Here, we aimed to evaluate the protective effect of ginsenosides Rk3 and Rh4 on kidney function and elucidate their antioxidant effect using in vitro and in vivo models of cisplatin-induced acute renal failure. An enriched mixture of ginsenosides Rk3 and Rh4 (KG-KH; 49.3% and 43.1%, respectively) was purified from sun ginseng (heat processed Panax ginseng ). Cytotoxicity was induced by treatment of 20μM cisplatin to LLC-PK1 cells and rat model of acute renal failure was generated by single intraperitoneal injection of 5 mg/kg cisplatin. Protective effects were assessed by determining cell viability, reactive oxygen species generation, blood urea nitrogen, serum creatinine, antioxidant enzyme activity, and histopathological examination. The in vitro assay demonstrated that KG-KH (50 μg/mL) significantly increased cell viability (4.6-fold), superoxide dismutase activity (2.8-fold), and glutathione reductase activity (1.5-fold), but reduced reactive oxygen species generation (56%) compared to cisplatin control cells. KG-KH (6 mg/kg, per os ) also significantly inhibited renal edema (87% kidney index) and dysfunction (71.4% blood urea nitrogen, 67.4% creatinine) compared to cisplatin control rats. Of note, KG-KH significantly recovered the kidney levels of catalase (1.2-fold) and superoxide dismutase (1.5-fold). Considering the oxidative injury as an early trigger of cisplatin nephrotoxicity, our findings suggest that ginsenosides Rk3 and Rh4 protect the kidney from cisplatin-induced oxidative injury and help to recover renal function by restoring intrinsic antioxidant defenses.
Knight, Simon R; Hussain, Samia
2016-12-01
Early measures of graft function are increasingly used to assess efficacy in clinical trials of kidney transplant immunosuppression. This study aimed to assess the variability and quality of reporting of these endpoints in contemporary trials. Data regarding renal function endpoints were extracted from 213 reports from randomized controlled trials comparing immunosuppressive interventions in renal transplant recipients published between 2010 and 2014. A total of 174 (81.7%) reports included a measure of renal function; in 44 (20.7%), this was the primary endpoint. A total of 103 manuscripts (48.4%) reported serum creatinine, 142 (66.6%) reported estimated glomerular filtration rate (eGFR), and 26 (12.2%) reported measured GFR. Formulas used for GFR estimation were modification of diet in renal disease (42.3%), Cockroft-Gault (23.5%), Nankivell (15.0%), and CKD-EPI (0.9%). Six studies (2.8%) did not report the formula used to estimate GFR. A total of 13.9% of endpoints had missing data. In 10 studies, disagreement was found in the significance of findings using different measures of renal function. There is a great deal of variability in the reporting of renal function endpoints, with a significant proportion of studies using underperforming or inappropriate estimates. There is a need for consensus as to the best tool for monitoring and reporting renal function post-transplant, and in particular for use in clinical trials and registries. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Assaram, Shirelle; Mashamba-Thompson, Tivani P; Magula, Nombulelo P
2018-01-01
Our systematic scoping review has demonstrated a research gap in antiretroviral treatment (ART) nephrotoxicity as well as in the long-term outcomes of renal function for patients on ART in South Africa. Bearing in mind the high prevalence of human immunodeficiency virus (HIV) in South Africa, this is of great concern. To determine the risk factors and co-morbidities associated with changes in renal function in HIV-infected adults in South Africa. We conducted a retrospective study of 350 ART-naïve adult patients attending the King Edward VIII HIV clinic, Durban, South Africa. Data were collected at baseline (pre-ART) and at six, 12, 18 and 24 months on ART. Renal function was assessed in the 24-month period using the Modification of Diet in Renal Disease equation and was categorised into normal renal function (estimated glomerular filtration rate [eGFR] ≥ 60), moderate renal impairment (eGFR 30-59), severe renal impairment (eGFR 15-29) and kidney failure (eGFR < 15 mL/min/1.73 m 2 ). Generalised linear models for binary data were used to model the probability of renal impairment over the five time periods, controlling for repeated measures within participants over time. Risk ratios and 95% confidence intervals (CI) were reported for each time point versus baseline. The cohort was 64% female, and 99% were Black. The median age was 36 years. At baseline, 10 patients had hypertension (HPT), six had diabetes, 61 were co-infected with tuberculosis (TB) and 157 patients had a high body mass index (BMI) with 25.4% being categorised as overweight and 19.4% as obese. The majority of the patients (59.3%) were normotensive. At baseline, the majority of the patients (90.4%) had normal renal function (95% CI: 86% - 93%), 7.0% (CI: 5% - 10%) had moderate renal impairment, 1.3% (CI: 0% - 3%) had severe renal impairment and 1.3% (CI: 0% - 3%) had renal failure. As BMI increased by one unit, the risk of renal impairment increased by 1.06 (CI: 1.03-1.10) times. The association of HPT with abnormal renal function was found to be insignificant, p > 0.05. The vast majority of patients were initiated on tenofovir disoproxil fumarate (TDF) (90.6%), in combination with lamivudine (3TC) (100%) and either efavirenz (EFV) (56.6%) or nevirapine (NVP) (43.4%). This study reports a low prevalence of baseline renal impairment in HIV-infected ART-naïve outpatients. An improvement in renal function after the commencement of ART has been demonstrated in this population. However, the long-term outcomes of patients with HIV-related renal disease are not known.
Okada, Akira
2014-05-16
Some elderly patients on chronic lithium therapy for bipolar disorder and their doctors may be faced with a therapeutic dilemma over whether or not to continue prescribing/taking lithium given their increased risk of reduced renal function. We present the case of a 78-year-old woman with bipolar disorder who discontinued lithium therapy due to increased risk factors for renal injury. After discontinuation, she experienced markedly decreased appetite secondary to a depressive episode, and developed acute renal failure, which subsequently progressed to a more advanced stage of chronic kidney disease. This case suggests that extreme care must be taken to prevent the recurrence of depression in elderly patients with bipolar disorder who discontinue lithium therapy, even when they had been emotionally stable for a long time while receiving lithium. Medications other than lithium for bipolar disorder may be needed at the time lithium therapy is discontinued. 2014 BMJ Publishing Group Ltd.
Dabigatran - Metabolism, Pharmacologic Properties and Drug Interactions.
Antonijevic, Nebojsa M; Zivkovic, Ivana D; Jovanovic, Ljubica M; Matic, Dragan M; Kocica, Mladen J; Mrdovic, Igor B; Kanjuh, Vladimir I; Culafic, Milica D
2017-01-01
The superiority of dabigatran has been well proven in the standard dosing regimen in prevention of stroke and systemic embolism in patients with non-valvular atrial fibrillation (NVAF) and extended venous thromboembolism (VTE) treatment. Dabigatran, an anticoagulant with a good safety profile, reduces intracranial bleeding in patients with atrial fibrillation and decreases major and clinically relevant non-major bleeding in acute VTE treatment. However, several important clinical issues are not fully covered by currently available directions with regard to dabigatran administration. The prominent one is reflected in the fact that dynamic impairment in renal function due to dehydratation may lead to haemorragic complications on the one hand, while on the other hand glomerular hyperfiltration may be a possible cause of dabigatran subdosing, hence reducing the drug's efficacy. Furthermore, limitations of the Cockcroft-Gault formula, considered a standard equation for assessing the renal function, may imply that other calculations are likely to obtain more accurate estimates of the kidney function in specific patient populations. Method and Conclusions: Although not routinely recommended, a possibility of monitoring dabigatran in special clinical settings adds to optimization of its dosage regimens, timely perioperative care and administration of urgently demanded thrombolytic therapy, therefore significantly improving this drug's safety profile. Despite the fact that dabigatran has fewer reported interactions with drugs, food constituents, and dietary supplements, certain interactions still remain, requiring considerable caution, notably in elderly, high bleeding risk patients, patients with decreased renal function and those on complex drug regimens. Additionally, upon approval of idarucizumab, an antidote to dabigatran solution, hitherto being a major safety concern, has been finally reached, which plays a vital role in life-threatening bleeding and emergency interventions and surgery. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Two distinct clinical courses of renal involvement in rheumatoid patients with AA amyloidosis.
Uda, Hiroshi; Yokota, Akira; Kobayashi, Kumiko; Miyake, Tadao; Fushimi, Hiroaki; Maeda, Akira; Saiki, Osamu
2006-08-01
We conducted a prospective study to investigate whether a correlation exists between the clinical course of renal involvement and the pathological findings of renal amyloidosis in patients with rheumatoid arthritis (RA). Patients with RA of more than 5 years' duration and who did not show renal manifestations were selected and received a duodenal biopsy for the diagnosis of amyloidosis. After the diagnosis of AA amyloidosis, patients received a renal biopsy, and patterns of amyloid deposition were examined. We followed the renal functions (serum levels of blood urea nitrogen and creatinine) of patients diagnosed with AA amyloidosis for 5 years. We diagnosed 53 patients with AA amyloidosis and monitored the renal function of 38 of them for > 5 years. The histological patterns were examined; in the 38 patients there were appreciable variations in the patterns of amyloid deposition. In 27 patients, amyloid deposits were found exclusively in the glomerulus (type 1). In the other 11 patients, however, amyloid deposits were found selectively around blood vessels and were totally absent in the glomerulus (type 2). In type 1 patients with glomerular involvement, renal function deteriorated rapidly regardless of disease state; most patients received hemodialysis. In type 2 patients with purely vascular involvement, however, renal function did not deteriorate significantly. In patients with RA and AA amyloidosis, 2 distinct clinical courses in terms of renal involvement were identified. It is suggested that renal function does not deteriorate when amyloid deposition is totally lacking in the glomerulus.
Chade, Alejandro R; Kelsen, Silvia
2010-08-01
Percutaneous transluminal renal angioplasty (PTRA) is the most frequent therapeutic approach to resolving renal artery stenosis (RAS). However, renal function recovers in only 30% of the cases. The causes of these poor outcomes are still unknown. We hypothesized that preserving the renal microcirculation distal to RAS will improve the responses to PTRA. RAS was induced in 28 pigs. In 14, vascular endothelial growth factor (VEGF)-165 0.05 microg/kg was infused intrarenally (RAS+VEGF). Single-kidney function was assessed in all pigs in vivo using ultrafast CT after 6 weeks. Observation of half of the RAS and RAS+VEGF pigs was completed. The other half underwent PTRA and repeated VEGF, and CT studies were repeated 4 weeks later. Pigs were then euthanized, the stenotic kidney removed, renal microvascular (MV) architecture reconstructed ex vivo using 3D micro-CT, and renal fibrosis quantified. The degree of RAS and hypertension were similar in RAS and RAS+VEGF. Renal function and MV density were decreased in RAS but improved in RAS+VEGF. PTRA largely resolved RAS, but the improvements of hypertension and renal function were greater in RAS+VEGF+PTRA than in RAS+PTRA, accompanied by a 34% increase in MV density and decreased fibrosis. Preservation of the MV architecture and function in the stenotic kidney improved the responses to PTRA, indicating that renal MV integrity plays a role in determining the responses to PTRA. This study indicates that damage and early loss of renal MV is an important determinant of the progression of renal injury in RAS and instigates often irreversible damage.
NFκB-mediated cyclin D1 expression by microRNA-21 influences renal cancer cell proliferation.
Bera, Amit; Ghosh-Choudhury, Nandini; Dey, Nirmalya; Das, Falguni; Kasinath, Balakuntalam S; Abboud, Hanna E; Choudhury, Goutam Ghosh
2013-12-01
MicroRNAs regulate post-transcriptomic landscape in many tumors including renal cell carcinoma. We have recently shown significantly increased expression of miR-21 in renal tumors and that this miRNA contributes to the proliferation of renal cancer cells in culture. However, the mechanism by which miR-21 regulates renal cancer cell proliferation is poorly understood. Addiction to constitutive NFκB activity is hallmark of many cancers including renal cancer. Using miR-21 Sponge in renal cancer cells to block endogenous function of miR-21, we show inhibition of phosphorylation of p65 subunit of NFκB, IKKβ and IκB, which results in attenuation of NFκB transcriptional activity. Subtle reduction in the tumor suppressor PTEN has been linked to various malignancies. We showed previously that miR-21 targeted PTEN in renal cancer cells. Inhibition of PTEN by siRNAs restored miR-21 Sponge-induced suppression of phosphorylation of p65, IKKβ, IκB and NFκB transcriptional activity along with reversal of miR-21 Sponge-reduced phosphorylation of Akt. Expression of constitutively active Akt protected against miR-21 Sponge- and PTEN-mediated decrease in p65/IKKβ/IκB phosphorylation and NFκB transcriptional activity. Furthermore, IKKβ and p65 were required for miR-21-induced renal cancer cell proliferation. Interestingly, miR-21 controlled the expression of cyclin D1 through NFκB-dependent transcription. Finally, we demonstrate that miR-21-regulated renal cancer cell proliferation is mediated by cyclin D1 and CDK4. Together, our results establish a molecular order of a phosphatase-kinase couple involving PTEN/Akt/IKKβ and NFκB-dependent cyclin D1 expression for renal carcinoma cell proliferation by increased miR-21 levels. © 2013.
NFκB-mediated cyclin D1 expression by microRNA-21 influences renal cancer cell proliferation
Bera, Amit; Ghosh-Choudhury, Nandini; Dey, Nirmalya; Das, Falguni; Kasinath, Balakuntalam S.; Abboud, Hanna E.; Choudhury, Goutam Ghosh
2013-01-01
MicroRNAs regulate post-transcriptomic landscape in many tumors including renal cell carcinoma. We have recently shown significantly increased expression of miR-21 in renal tumors and that this miRNA contributes to the proliferation of renal cancer cells in culture. However, the mechanism by which miR-21 regulates renal cancer cells proliferation is poorly understood. Addiction to constitutive NFκB activity is hallmark of many cancers including renal cancer. Using miR-21 Sponge in renal cancer cells to block endogenous function of miR-21, we show inhibition of phosphorylation of p65 subunit of NFκB, IKKβ and IκB, which results in attenuation of NFκB transcriptional activity. Subtle reduction in the tumor suppressor PTEN has been linked to various malignancies. We showed previously that miR-21 targeted PTEN in renal cancer cells. Inhibition of PTEN by siRNAs restored miR-21 Sponge-induced suppression of phosphorylation of p65, IKKβ, IκB and NFκB transcriptional activity along with reversal of miR-21 Sponge-reduced phosphorylation of Akt. Expression of constitutively active Akt protected against miR-21 Sponge- and PTEN-mediated decrease in p65/IKKβ/IκB phosphorylation and NFκB transcriptional activity. Furthermore, IKKβ and p65 were required for miR-21-induced renal cancer cell proliferation. Interestingly, miR-21 controlled the expression of cyclin D1 through NFκB-dependent transcription. Finally, we demonstrate that miR-21-regulated renal cancer cell proliferation is mediated by cyclin D1 and CDK4. Together, our results establish a molecular order of a phosphatase-kinase couple involving PTEN/Akt/IKKβ and NFκB-dependent cyclin D1 expression for renal carcinoma cell proliferation by increased miR-21 levels. PMID:23981302
Garcia-Martinez, Rita; Noiret, Lorette; Sen, Sambit; Mookerjee, Rajeshwar; Jalan, Rajiv
2015-02-01
In cirrhotic patients with renal failure, renal blood flow autoregulation curve is shifted to the right, which is consequent upon sympathetic nervous system activation and endothelial dysfunction. Albumin infusion improves renal function in cirrhosis by mechanisms that are incompletely understood. We aimed to determine the effect of albumin infusion on systemic haemodynamics, renal blood flow, renal function and endothelial function in patients with acute decompensation of cirrhosis and acute kidney injury. Twelve patients with refractory ascites and 10 patients with acute decompensation of cirrhosis and acute kidney injury were studied. Both groups were treated with intravenous albumin infusion, 40-60 g/days over 3-4 days. Cardiac and renal haemodynamics were measured. Endothelial activation/dysfunction was assessed using von Willebrand factor and serum nitrite levels. F2α Isoprostanes, resting neutrophil burst and noradrenaline levels were quantified as markers of oxidative stress, endotoxemia and sympathetic activation respectively. Albumin infusion leads to a shift in the renal blood flow autoregulation curve towards normalization, which resulted in a significant increase in renal blood flow. Accordingly, improvement of renal function was observed. In parallel, a significant decrease in sympathetic activation, inflammation/oxidative stress and endothelial activation/dysfunction was documented. Improvement of renal blood flow correlated with improvement in endothelial activation (r = 0.741, P < 0.001). The data suggest that albumin infusion improves renal function in acutely decompensated cirrhotic patients with acute kidney injury by impacting on renal blood flow autoregulation. This is possibly achieved through endothelial stabilization and a reduction in the sympathetic tone, endotoxemia and oxidative stress. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Prevention of shockwave induced functional and morphological alterations: an overview.
Sarica, Kemal; Yencilek, Faruk
2008-03-01
Experimental as well as clinical findings reported in the literature suggest that treatment with shock wave lithotripsy (SWL) causes renal parenchymal damage mainly by generating free radicals through ischaemia/reperfusion injury mechanism. Although SWL-induced renal damage is well tolerated in the majority of healthy cases with no permanent functional and/or morphologic side effects, a subset of patients with certain risk factors requires close attention on this aspect among which the ones with pre-existing renal disorders, urinary tract infection, previous lithotripsy history and solitary kidneys could be mentioned. It is clear that in such patients lowering the number of shock waves (per session) could be beneficial and has been applied by the physicians as the first practical step of diminishing SWL induced parenchymal damage. On the other hand, taking the injurious effects of high energy shock wave (HESW) induced free radical formation on renal parenchyma and subsequent histopathologic alterations into account, physicians searched for some protective agents in an attempt to prevent or at least to limit the extent of the functional as well as the morphologic alterations. Among these agents calcium channel blocking agents (verapamil and nifedipine), antioxidant agents (allopurinol, vitamin E and selenium) and potassium citrate have been used to minimize these adverse effects. Additionally, therapeutic application of these agents on reducing stone recurrence particularly after SWL will gain more importance in the future in order to limit new stone formation in these cases. Lastly, as experimental and clinical studies have demonstrated, combination of anti-oxidants with free radical scavengers may provide superior renal protection against shock wave induced trauma. However, we believe that further investigations are certainly needed to determine the dose-response relationship between the damaging effects of SWL application and the protective role of these agents.
Diffuse vascular damage in a transplanted kidney: an indication for nuclear magnetic resonance?
Burdese, M; Consiglio, V; Mezza, E; Savio, D; Guarena, C; Rossetti, M; Messina, M; Soragna, G; Suriani, C; Rabbia, C; Segoloni, G P; Piccoli, G B
2005-06-01
Vascular lesions are an increasing challenge after renal transplantation due to the wider indications for recipients and acceptance criteria for donors. Diagnostic approach and prognostic interpretation are still matter of controversy. The case reported herein may summarize some of the issues in this regard. A 54-year-old woman, on renal replacement therapy since 1974, and a kidney graft recipient from 1975 to 1999, received a second graft in 2001. The donor age was 65 years (cold ischemia 22 hours; two mismatches). The early posttransplant follow-up was characterized by delayed graft function, hypertension, and diabetes. During the initial hypertension workup, renal graft ultrasound (US) Doppler demonstrated increased vascular resistances, stable over time (resistance index 0.74 to 0.77); renal scintiscan displayed homogeneously parenchymoa and angio-magnetic resonance imaging (MRI), an homogeneous parenchymal vascularization. Initial immunosuppression with tacrolimus and steroids was modulated by adding mycophenolate mofetil to taper tacrolimus (to reduce nephrotoxicity and hypertension). Despite this, kidney function slowly deteriorated; serum creatinine reached 3 to 3.5 mg/dL by the second year. After a severe hypertensive crisis with unchanged scintiscan and US doppler examinations, angio-MRI revealed the almost complete disappearance of parenchymal enhancement beyond the lobar arteries. A renal biopsy confirmed the severe vascular damage. The patient was switched to rapamycine and a low-dose of an angiotension converting enzyme (ACE) inhibitor. She did relatively well (serum creatinine 2.2 to 3 mg/dL) for 6 months, when rapid functional impairment forced her to restart hemodialysis. This case, almost paradigmatic of the problems occurring when the rigid vasculature of long-term dialysis patients is matched with "marginal kidneys," suggests that MRI may be a sensible good to define vascular damage in the grafted kidney.
The influence of diltiazem and nifedipine on renal function in the rat.
Johns, E. J.
1985-01-01
The effect of intravenous administration of the calcium-entry blocking drugs, diltiazem and nifedipine, on renal haemodynamic and tubular function was examined in denervated kidneys of pentobarbitone-anaesthetized rats. Infusion of vehicle for the compounds had no effect on renal function which was stable for the duration of the experiments. Diltiazem was infused at 5, 10 and 20 micrograms kg-1 min-1. Blood pressure did not change following 5 micrograms kg-1 min-1 diltiazem but was significantly reduced, by 12 mmHg, after 10 micrograms kg-1 min-1 and by 17 mmHg after 20 micrograms kg-1 min-1. Renal blood flow was not affected by any dose of diltiazem while at the lowest dose of drug, glomerular filtration rate (g.f.r.) was significantly increased, by 24%. Absolute and fractional sodium excretion were increased significantly, 154% and 77% respectively, by 5 micrograms kg-1 min-1 diltiazem, 20% and 24% respectively, by 10 micrograms kg-1 min-1 diltiazem, but were unchanged by 20 micrograms kg-1 min-1. Infusion of nifedipine at 0.5, 1.0 and 2.0 micrograms kg-1 min-1 decreased systemic blood pressure by 9, 9 and 20 mmHg, respectively. Renal blood flow was increased (7%) by 1.0 microgram kg-1 min-1 only, while g.f.r. did not change at any dose. Urine flow, absolute and fractional sodium excretions were increased, 127%, 96% and 90% respectively, by 0.5 microgram kg-1 min-1 nifedipine, 127%, 197% and 194% respectively, by 1.0 microgram kg-1 min-1, while these variables remained unchanged by a dose of 2.0 micrograms kg-1 min-1.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3986432
Hypoxia-induced long non-coding RNA Malat1 is dispensable for renal ischemia/reperfusion-injury.
Kölling, Malte; Genschel, Celina; Kaucsar, Tamas; Hübner, Anika; Rong, Song; Schmitt, Roland; Sörensen-Zender, Inga; Haddad, George; Kistler, Andreas; Seeger, Harald; Kielstein, Jan T; Fliser, Danilo; Haller, Hermann; Wüthrich, Rudolf; Zörnig, Martin; Thum, Thomas; Lorenzen, Johan
2018-02-21
Renal ischemia-reperfusion (I/R) injury is a major cause of acute kidney injury (AKI). Non-coding RNAs are crucially involved in its pathophysiology. We identified hypoxia-induced long non-coding RNA Malat1 (Metastasis Associated Lung Adenocarcinoma Transcript 1) to be upregulated in renal I/R injury. We here elucidated the functional role of Malat1 in vitro and its potential contribution to kidney injury in vivo. Malat1 was upregulated in kidney biopsies and plasma of patients with AKI, in murine hypoxic kidney tissue as well as in cultured and ex vivo sorted hypoxic endothelial cells and tubular epithelial cells. Malat1 was transcriptionally activated by hypoxia-inducible factor 1-α. In vitro, Malat1 inhibition reduced proliferation and the number of endothelial cells in the S-phase of the cell cycle. In vivo, Malat1 knockout and wildtype mice showed similar degrees of outer medullary tubular epithelial injury, proliferation, capillary rarefaction, inflammation and fibrosis, survival and kidney function. Small-RNA sequencing and whole genome expression analysis revealed only minor changes between ischemic Malat1 knockout and wildtype mice. Contrary to previous studies, which suggested a prominent role of Malat1 in the induction of disease, we did not confirm an in vivo role of Malat1 concerning renal I/R-injury.
Renal Failure in Mice with Gsα Deletion in Juxtaglomerular Cells
Chen, Limeng; Faulhaber-Walter, Robert; Wen, Yubing; Huang, Yuning; Mizel, Diane; Chen, Min; Sequeira Lopez, Maria Luisa; Weinstein, Lee S.; Gomez, R. Ariel; Briggs, Josephine P.; Schnermann, Jurgen
2010-01-01
Background Mice with deletion of Gsα in renin-producing cells (RC/FF mice) have been shown to have greatly reduced renin production and lack of responsiveness of renin secretion to acute stimuli. In addition, young RC/FF mice are hypotensive and have a vasopressin-resistant concentrating defect. In the present study we have determined the long-term effect on renal function, blood pressure, and renal pathology in this low renin and diuretic mouse model. Methods and Results Urine osmolarity of RC/FF mice was decreased in all age groups. GFR measured at 7, 14 and 20 weeks of age declined progressively. Single nephron GFR similarly declined while fractional proximal fluid absorption was maintained. Expression levels of extracellular matrix proteins (collagen I, IV and fibronectin) and α-smooth muscle actin were increased in kidneys of RC/FF mice at 20 weeks, and this was accompanied by focal segmental glomerulosclerosis and periglomerular interstitial fibrosis. RC/FF mice showed a progressive reduction of body weight, an increase in urine albumin excretion, and an increase of blood pressure with aging. Conclusion A chronic reduction of renin production in mice may be a risk factor in its own right, and does not protect renal function against the profibrotic influence of a chronically elevated urine flow. PMID:20551626
Ederoth, Per; Dardashti, Alain; Grins, Edgars; Brondén, Björn; Metzsch, Carsten; Erdling, André; Nozohoor, Shahab; Mokhtari, Arash; Hansson, Magnus J; Elmér, Eskil; Algotsson, Lars; Jovinge, Stefan; Bjursten, Henrik
2018-04-01
Acute kidney injury is a common complication after cardiac surgery, leading to increased morbidity and mortality. One suggested cause for acute kidney injury is extracorporeal circulation-induced ischemia-reperfusion injury. In animal studies, cyclosporine has been shown to reduce ischemia-reperfusion injury in the kidneys. We hypothesized that administering cyclosporine before extracorporeal circulation could protect the kidneys in patients undergoing cardiac surgery. The Cyclosporine to Protect Renal Function in Cardiac Surgery (CiPRICS) study was an investigator-initiated, double-blind, randomized, placebo-controlled, single-center study. The primary objective was to assess if cyclosporine could reduce acute kidney injury in patients undergoing coronary artery bypass grafting surgery with extracorporeal circulation. In the study, 154 patients with an estimated glomerular filtration rate of 15 to 90 ml · min · 1.73 m were enrolled. Study patients were randomized to receive 2.5 mg/kg cyclosporine or placebo intravenously before surgery. The primary endpoint was relative plasma cystatin C changes from the preoperative day to postoperative day 3. Secondary endpoints included biomarkers of kidney, heart, and brain injury. All enrolled patients were analyzed. The cyclosporine group (136.4 ± 35.6%) showed a more pronounced increase from baseline plasma cystatin C to day 3 compared to placebo (115.9 ± 30.8%), difference, 20.6% (95% CI, 10.2 to 31.2%, P < 0.001). The same pattern was observed for the other renal markers. The cyclosporine group had more patients in Risk Injury Failure Loss End-stage (RIFLE) groups R (risk), I (injury), or F (failure; 31% vs. 8%, P < 0.001). There were no differences in safety parameter distribution between groups. Administration of cyclosporine did not protect coronary artery bypass grafting patients from acute kidney injury. Instead, cyclosporine caused a decrease in renal function compared to placebo that resolved after 1 month.
Tabara, Yasuharu; Kohara, Katsuhiko; Kawamoto, Ryuichi; Hiura, Yumiko; Nishimura, Kunihiro; Morisaki, Takayuki; Kokubo, Yoshihiro; Okamura, Tomonori; Tomoike, Hitonobu; Iwai, Naoharu; Miki, Tetsuro
2010-01-01
Recent genome-wide association studies have identified several genetic variants as susceptibility loci for serum uric acid (UA) levels. We also identified a common nonsense mutation, W258X, responsible for renal hypouricemia. Here, we investigated clinical implications of these genetic variants by cross-sectional and longitudinal genetic epidemiological analysis. The study enrolled 5,165 Japanese subjects aged 64 ± 12 years from the general population. Clinical parameters were obtained from the personal health records, evaluated at medical checkups. Serum UA levels were significantly different between the SLC22A12 rs11231825 (CC/CT/TT: 4.5 ± 1.6, 5.0 ± 1.4, 5.3 ± 1.4 mg/dl; p = 7.6 × 10(-20)), SLC2A9 rs1014290 (TT/TG/GG: 4.9 ± 1.4, 5.1 ± 1.4, 5.3 ± 1.4 mg/dl; p = 3.1 × 10(-11)) and ABCG2 rs2231142 (TT/TG/GG: 5.3 ± 1.5, 5.2 ± 1.4, 5.1 ± 1.4 mg/dl; p = 2.0 × 10(-5)) genotypes. During 9.4 years of follow-up, 87 new cases of hyperuricemia were diagnosed. Multiple logistic regression analysis identified the accumulation of risk alleles as a significant determinant of future development of hyperuricemia (OR = 7.94; 95% CI: 1.97-53.6). In contrast, subjects with nonsense mutation predominantly showed lower UA levels (XX/XW/WW: 1.3 ± 1.7, 3.6 ± 1.0, 5.2 ± 1.4 mg/dl; p = 9.3 × 10(-82)). However, these subjects showed significantly reduced renal function (β = -0.111; p < 0.001) independently of possible covariates. Accumulation of risk genotypes was an independent risk factor for future development of hyperuricemia. Genetically developed hypouricemia was an independent risk factor for decreased renal function. Copyright © 2010 S. Karger AG, Basel.
The significance of serum urea and renal function in patients with heart failure.
Gotsman, Israel; Zwas, Donna; Planer, David; Admon, Dan; Lotan, Chaim; Keren, Andre
2010-07-01
Renal function and urea are frequently abnormal in patients with heart failure (HF) and are predictive of increased mortality. The relative importance of each parameter is less clear. We prospectively compared the predictive value of renal function and serum urea on clinical outcome in patients with HF. Patients hospitalized with definite clinical diagnosis of HF (n = 355) were followed for short-term (1 yr) and long-term (mean, 6.5 yr) survival and HF rehospitalization. Increasing tertiles of discharge estimated glomerular filtration rate (eGFR) were an independent predictor of increased long-term survival (hazard ratio [HR], 0.65; 95% confidence interval [CI], 0.47-0.91; p = 0.01) but not short-term survival. Admission and discharge serum urea and blood urea nitrogen (BUN)/creatinine ratio were predictors of reduced short- and long-term survival on multivariate Cox regression analysis. Increasing tertiles of discharge urea were a predictor of reduced 1-year survival (HR, 2.13; 95% CI, 1.21-3.73; p = 0.009) and long-term survival (HR, 1.93; 95% CI, 1.37-2.71; p < 0.0001). Multivariate analysis including discharge eGFR and serum urea demonstrated that only serum urea remained a significant predictor of long-term survival; however, eGFR and BUN/creatinine ratio were both independently predictive of survival. Urea was more discriminative than eGFR in predicting long-term survival by area under the receiver operating characteristic curve (0.803 vs. 0.787; p = 0.01). Increasing tertiles of discharge serum urea and BUN/creatinine were independent predictors of HF rehospitalization and combined death and HF rehospitalization. This study suggests that serum urea is a more powerful predictor of survival than eGFR in patients with HF. This may be due to urea's relation to key biological parameters including renal, hemodynamic, and neurohormonal parameters pertaining to the overall clinical status of the patient with chronic HF.
Emans, Tonja W; Janssen, Ben J; Pinkham, Maximilian I; Ow, Connie P C; Evans, Roger G; Joles, Jaap A; Malpas, Simon C; Krediet, C T Paul; Koeners, Maarten P
2016-11-01
Our understanding of the mechanisms underlying the role of hypoxia in the initiation and progression of renal disease remains rudimentary. We have developed a method that allows wireless measurement of renal tissue oxygen tension in unrestrained rats. This method provides stable and continuous measurements of cortical tissue oxygen tension (PO2) for more than 2 weeks and can reproducibly detect acute changes in cortical oxygenation. Exogenous angiotensin-II reduced renal cortical tissue PO2 more than equi-pressor doses of phenylephrine, probably because it reduced renal oxygen delivery more than did phenylephrine. Activation of the endogenous renin-angiotensin system in transgenic Cyp1a1Ren2 rats reduced cortical tissue PO2; in this model renal hypoxia precedes the development of structural pathology and can be reversed acutely by an angiotensin-II receptor type 1 antagonist. Angiotensin-II promotes renal hypoxia, which may in turn contribute to its pathological effects during development of chronic kidney disease. We hypothesised that both exogenous and endogenous angiotensin-II (AngII) can decrease the partial pressure of oxygen (PO2) in the renal cortex of unrestrained rats, which might in turn contribute to the progression of chronic kidney disease. Rats were instrumented with telemeters equipped with a carbon paste electrode for continuous measurement of renal cortical tissue PO2. The method reproducibly detected acute changes in cortical oxygenation induced by systemic hyperoxia and hypoxia. In conscious rats, renal cortical PO2 was dose-dependently reduced by intravenous AngII. Reductions in PO2 were significantly greater than those induced by equi-pressor doses of phenylephrine. In anaesthetised rats, renal oxygen consumption was not affected, and filtration fraction was increased only in the AngII infused animals. Oxygen delivery decreased by 50% after infusion of AngII and renal blood flow (RBF) fell by 3.3 ml min -1 . Equi-pressor infusion of phenylephrine did not significantly reduce RBF or renal oxygen delivery. Activation of the endogenous renin-angiotensin system in Cyp1a1Ren2 transgenic rats reduced cortical tissue PO2. This could be reversed within minutes by pharmacological angiotensin-II receptor type 1 (AT 1 R) blockade. Thus AngII is an important modulator of renal cortical oxygenation via AT 1 receptors. AngII had a greater influence on cortical oxygenation than did phenylephrine. This phenomenon appears to be attributable to the profound impact of AngII on renal oxygen delivery. We conclude that the ability of AngII to promote renal cortical hypoxia may contribute to its influence on initiation and progression of chronic kidney disease. © 2016 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
Aortic calcification burden predicts deterioration of renal function after radical nephrectomy.
Fukushi, Ken; Hatakeyama, Shingo; Yamamoto, Hayato; Tobisawa, Yuki; Yoneyama, Tohru; Soma, Osamu; Matsumoto, Teppei; Hamano, Itsuto; Narita, Takuma; Imai, Atsushi; Yoneyama, Takahiro; Hashimoto, Yasuhiro; Koie, Takuya; Terayama, Yuriko; Funyu, Tomihisa; Ohyama, Chikara
2017-02-06
Radical nephrectomy for renal cell carcinoma (RCC) is a risk factor for the development of chronic kidney disease (CKD), and the possibility of postoperative deterioration of renal function must be considered before surgery. We investigated the contribution of the aortic calcification index (ACI) to the prediction of deterioration of renal function in patients undergoing radical nephrectomy. Between January 1995 and December 2012, we performed 511 consecutive radical nephrectomies for patients with RCC. We retrospectively studied data from 109 patients who had regular postoperative follow-up of renal function for at least five years. The patients were divided into non-CKD and pre-CKD based on a preoperative estimated glomerular filtration rate (eGFR) of ≥60 mL/min/1.73 m 2 or <60 mL/min/1.73 m 2 , respectively. The ACI was quantitatively measured by abdominal computed tomography before surgery. The patients in each group were stratified between low and high ACIs. Variables such as age, sex, comorbidities, and pre- and postoperative renal function were compared between patients with a low or high ACI in each group. Renal function deterioration-free interval rates were evaluated by Kaplan-Meier analysis. Factors independently associated with deterioration of renal function were determined using multivariate analysis. The median age, preoperative eGFR, and ACI in this cohort were 65 years, 68 mL/min/1.73 m 2 , and 8.3%, respectively. Higher ACI (≥8.3%) was significantly associated with eGFR decline in both non-CKD and pre-CKD groups. Renal function deterioration-free interval rates were significantly lower in the ACI-high than ACI-low strata in both of the non-CKD and pre-CKD groups. Multivariate analysis showed that higher ACI was an independent risk factor for deterioration of renal function at 5 years after radical nephrectomy. Aortic calcification burden is a potential predictor of deterioration of renal function after radical nephrectomy. This study was registered as a clinical trial: UMIN000023577.
Shen, Chong; Meng, Qin; Zhang, Guoliang
2013-08-01
Tissue engineering devices as in vitro cell culture systems in scaffolds has encountered the bottleneck due to their much lower cell functions than real tissues/organs in vivo. Such situation has been improved in some extent by mimicking the cell microenvironments in vivo from either chemical or physical ways. However, microenvironmental curvature, commonly seen in real tissues/organs, has never been manipulated to regulate the cell performance in vitro. In this regard, this paper fabricated polysulfone membranes with or without polyethylene glycol modification to investigate the impact of curvature on two renal tubular cells. Regardless the varying membrane curvatures among hollow fiber membranes of different diameters and flat membrane of zero curvature, both renal cells could well attach at 4 h of seeding and form similar confluent layers at 6 days on each membrane. Nevertheless, the renal cells on hollow fibers, though showing confluent morphology as those on flat membranes, expressed higher renal functions and, moreover, the renal functions significantly increased with the membrane curvature among hollow fibers. Such upregulation on functions was unassociated with mass transport barrier of hollow fibers, because the cultures on lengthwise cut hollow fibers without mass transfer barrier showed same curvature effect on renal functions as whole hollow fibers. It could be proposed that the curvature of hollow fiber membrane approaching to the large curvature in kidney tubules increased the mechanical stress in the renal cells and thus might up-regulate the renal cell functions. In conclusion, the increase of substrate curvature could up-regulate the cell functions without altering the confluent cell morphology and this finding will facilitate the design of functional tissue engineering devices. Copyright © 2013 Wiley Periodicals, Inc.
Ando, Makoto; Matsumoto, Takayuki; Taguchi, Kumiko; Kobayashi, Tsuneo
2018-05-04
Recent evidence suggests that endoplasmic reticulum (ER) stress is involved in the regulation of various physiological functions, including those of the vascular system. However, the relationship between ER stress and vascular function is poorly understood. The endothelial cells control the vascular tone by releasing endothelium-derived relaxing factors and contracting factors (EDCFs). We hypothesized that tunicamycin, an inducer of ER stress, modifies endothelium-dependent contraction and prostaglandins (PGs), a major class of EDCFs, induced contractions in the rat renal artery in rats. An organ-culture technique was used to purely investigate the effects of ER stress on the vascular tissue. We observed that tunicamycin treatment (20 μg/mL for 23 ± 1 h) did not affect acetylcholine (ACh)-induced relaxation and decreased EDCF-mediated contractions under nitric oxide synthase (NOS) inhibition induced by ACh, ATP, or A23187 (a calcium ionophore) in the renal arteries. Under NOS inhibition, U46619 (a thromboxane A 2 mimetic)- and beraprost (a prostacyclin analog)-induced contractions were also decreased in the renal arteries of the tunicamycin-treated group (vs. vehicle), while PGE 2 - and PGF 2α -induced contractions were similar between the groups. Tunicamycin treatment slightly enhanced the contractions induced by phenylephrine, an α 1 adrenoceptor ligand. Isotonic high-K + -induced contractions were similar between the vehicle- and tunicamycin-treated groups. Another ER stress inducer, thapsigargin (4 μmol/L for 23 ± 1 h), also caused substantial reduction of ACh-induced EDCF-mediated contraction (vs. vehicle-treated group). In the cultured renal arteries, tunicamycin and thapsigargin increased the expression of binding immunoglobulin protein (BiP), an ER stress marker. In conclusion, ER stress induction directly affects renal arterial function, especially in reducing EDCF-mediated contractions.
Casteleijn, Niek F; Messchendorp, A Lianne; Bae, Kyong T; Higashihara, Eiji; Kappert, Peter; Torres, Vicente; Meijer, Esther; Leliveld, Anna M
2017-06-01
Tolvaptan, a vasopressin V2 receptor antagonist, has been shown to reduce the rates of growth in total kidney volume (TKV) and renal function loss in ADPKD patients, but also leads to polyuria because of its aquaretic effect. Prolonged polyuria can result in ureter dilatation with consequently renal function loss. Therefore, we aimed to investigate the effect of tolvaptan-induced polyuria on ureter diameter in ADPKD patients. 70 ADPKD patients were included (51 were randomized to tolvaptan and 19 to placebo). At baseline and after 3 years of treatment renal function was measured (mGFR) and MRI was performed to measure TKV and ureter diameter at the levels of renal pelvis and fifth lumbar vertebral body (L5). In these patients [65.7 % male, age 41 ± 9 years, mGFR 74 ± 27 mL/min/1.73 m 2 and TKV 1.92 (1.27-2.67) L], no differences were found between tolvaptan and placebo-treated patients in 24-h urine volume at baseline (2.5 vs. 2.5 L, p = 0.8), nor in ureter diameter at renal pelvis and L5 (4.0 vs. 4.2 mm, p = 0.4 and 3.0 vs. 3.1 mm, p = 0.3). After 3 years of treatment 24-h urine volume was higher in tolvaptan-treated patients when compared to placebo (4.7 vs. 2.3 L, p < 0.001), but no differences were found in ureter diameter between both groups (renal pelvis: 4.2 vs. 4.4 mm, p = 0.4 and L5: 3.1 vs. 3.3 mm, p = 0.4). Tolvaptan-induced polyuria did not lead to an increase in ureter diameter, suggesting that tolvaptan is a safe therapy from a urological point of view.
Casteleijn, Niek F.; Messchendorp, A. Lianne; Bae, Kyong T.; Higashihara, Eiji; Kappert, Peter; Torres, Vicente; Meijer, Esther; Leliveld, Anna M.
2017-01-01
Background Tolvaptan, a vasopressin V2 receptor antagonist, has been shown to reduce the rates of growth in total kidney volume (TKV) and renal function loss in ADPKD patients, but also leads to polyuria because of its aquaretic effect. Prolonged polyuria can result in ureter dilatation with consequently renal function loss. Therefore, we aimed to investigate the effect of tolvaptan-induced polyuria on ureter diameter in ADPKD patients. Methods 70 ADPKD patients were included (51 were randomized to tolvaptan and 19 to placebo). At baseline and after 3 years of treatment renal function was measured (mGFR) and MRI was performed to measure TKV and ureter diameter at the levels of renal pelvis and fifth lumbar vertebral body (L5). Results In these patients [65.7 % male, age 41 ± 9 years, mGFR 74 ± 27 mL/min/1.73 m2 and TKV 1.92 (1.27–2.67) L], no differences were found between tolvaptan and placebo-treated patients in 24-h urine volume at baseline (2.5 vs. 2.5 L, p = 0.8), nor in ureter diameter at renal pelvis and L5 (4.0 vs. 4.2 mm, p = 0.4 and 3.0 vs. 3.1 mm, p = 0.3). After 3 years of treatment 24-h urine volume was higher in tolvaptan-treated patients when compared to placebo (4.7 vs. 2.3 L, p < 0.001), but no differences were found in ureter diameter between both groups (renal pelvis: 4.2 vs. 4.4 mm, p = 0.4 and L5: 3.1 vs. 3.3 mm, p = 0.4). Conclusions Tolvaptan-induced polyuria did not lead to an increase in ureter diameter, suggesting that tolvaptan is a safe therapy from a urological point of view. PMID:27339446
Chade, Alejandro R; Kelsen, Silvia
2012-05-15
Renal microvascular (MV) damage and loss contribute to the progression of renal injury in renovascular disease (RVD). Whether a targeted intervention in renal microcirculation could reverse renal damage is unknown. We hypothesized that intrarenal vascular endothelial growth factor (VEGF) therapy will reverse renal dysfunction and decrease renal injury in experimental RVD. Unilateral renal artery stenosis (RAS) was induced in 14 pigs, as a surrogate of chronic RVD. Six weeks later, renal blood flow (RBF) and glomerular filtration rate (GFR) were quantified in vivo in the stenotic kidney using multidetector computed tomography (CT). Then, intrarenal rhVEGF-165 or vehicle was randomly administered into the stenotic kidneys (n = 7/group), they were observed for 4 additional wk, in vivo studies were repeated, and then renal MV density was quantified by 3D micro-CT, and expression of angiogenic factors and fibrosis was determined. RBF and GFR, MV density, and renal expression of VEGF and downstream mediators such as p-ERK 1/2, Akt, and eNOS were significantly reduced after 6 and at 10 wk of untreated RAS compared with normal controls. Remarkably, administration of VEGF at 6 wk normalized RBF (from 393.6 ± 50.3 to 607.0 ± 45.33 ml/min, P < 0.05 vs. RAS) and GFR (from 43.4 ± 3.4 to 66.6 ± 10.3 ml/min, P < 0.05 vs. RAS) at 10 wk, accompanied by increased angiogenic signaling, augmented renal MV density, and attenuated renal scarring. This study shows promising therapeutic effects of a targeted renal intervention, using an established clinically relevant large-animal model of chronic RAS. It also implies that disruption of renal MV integrity and function plays a pivotal role in the progression of renal injury in the stenotic kidney. Furthermore, it shows a high level of plasticity of renal microvessels to a single-dose VEGF-targeted intervention after established renal injury, supporting promising renoprotective effects of a novel potential therapeutic intervention to treat chronic RVD.