Science.gov

Sample records for reduces gaba synaptic

  1. Reversed synaptic effects of hypocretin and NPY mediated by excitatory GABA-dependent synaptic activity in developing MCH neurons

    PubMed Central

    Li, Ying; Xu, Youfen

    2013-01-01

    In mature neurons, GABA is the primary inhibitory neurotransmitter. In contrast, in developing neurons, GABA exerts excitatory actions, and in some neurons GABA-mediated excitatory synaptic activity is more prevalent than glutamate-mediated excitation. Hypothalamic neuropeptides that modulate cognitive arousal and energy homeostasis, hypocretin/orexin and neuropeptide Y (NPY), evoked reversed effects on synaptic actions that were dependent on presynaptic GABA release onto melanin-concentrating hormone (MCH) neurons. MCH neurons were identified by selective green fluorescent protein (GFP) expression in transgenic mice. In adults, hypocretin increased GABA release leading to reduced excitation. In contrast, in the developing brain as studied here with analysis of miniature excitatory postsynaptic currents, paired-pulse ratios, and evoked potentials, hypocretin acted presynaptically to enhance the excitatory actions of GABA. The ability of hypocretin to enhance GABA release increases inhibition in adult neurons but paradoxically enhances excitation in developing MCH neurons. In contrast, NPY attenuation of GABA release reduced inhibition in mature neurons but enhanced inhibition during development by attenuating GABA excitation. Both hypocretin and NPY also evoked direct actions on developing MCH neurons. Hypocretin excited MCH cells by activating a sodium-calcium exchanger and by reducing potassium currents; NPY reduced activity by increasing an inwardly rectifying potassium current. These data for the first time show that both hypocretin and NPY receptors are functional presynaptically during early postnatal hypothalamic development and that both neuropeptides modulate GABA actions during development with a valence of enhanced excitation or inhibition opposite to that of the adult state, potentially allowing neuropeptide modulation of use-dependent synapse stabilization. PMID:23255725

  2. Synaptic GABA release prevents GABA transporter type-1 reversal during excessive network activity

    PubMed Central

    Savtchenko, Leonid; Megalogeni, Maria; Rusakov, Dmitri A.; Walker, Matthew C.; Pavlov, Ivan

    2015-01-01

    GABA transporters control extracellular GABA, which regulates the key aspects of neuronal and network behaviour. A prevailing view is that modest neuronal depolarization results in GABA transporter type-1 (GAT-1) reversal causing non-vesicular GABA release into the extracellular space during intense network activity. This has important implications for GABA uptake-targeting therapies. Here we combined a realistic kinetic model of GAT-1 with experimental measurements of tonic GABAA receptor currents in ex vivo hippocampal slices to examine GAT-1 operation under varying network conditions. Our simulations predict that synaptic GABA release during network activity robustly prevents GAT-1 reversal. We test this in the 0 Mg2+ model of epileptiform discharges using slices from healthy and chronically epileptic rats and find that epileptiform activity is associated with increased synaptic GABA release and is not accompanied by GAT-1 reversal. We conclude that sustained efflux of GABA through GAT-1 is unlikely to occur during physiological or pathological network activity. PMID:25798861

  3. Pre-synaptic GABA receptors inhibit glutamate release through GIRK channels in rat cerebral cortex.

    PubMed

    Ladera, Carolina; del Carmen Godino, María; José Cabañero, María; Torres, Magdalena; Watanabe, Masahiko; Luján, Rafael; Sánchez-Prieto, José

    2008-12-01

    Neuronal G protein-gated inwardly rectifying potassium (GIRK) channels mediate the slow inhibitory effects of many neurotransmitters post-synaptically. However, no evidence exists that supports that GIRK channels play any role in the inhibition of glutamate release by GABA(B) receptors. In this study, we show for the first time that GABA(B) receptors operate through two mechanisms in nerve terminals from the cerebral cortex. As shown previously, GABA(B) receptors reduces glutamate release and the Ca(2+) influx mediated by N-type Ca(2+) channels in a mode insensitive to the GIRK channel blocker tertiapin-Q and consistent with direct inhibition of this voltage-gated Ca(2+) channel. However, by means of weak stimulation protocols, we reveal that GABA(B) receptors also reduce glutamate release mediated by P/Q-type Ca(2+) channels, and that these responses are reversed by the GIRK channel blocker tertiapin-Q. Consistent with the functional interaction between GABA(B) receptors and GIRK channels at nerve terminals we demonstrate by immunogold electron immunohistochemistry that pre-synaptic boutons of asymmetric synapses co-express GABA(B) receptors and GIRK channels, thus suggesting that the functional interaction of these two proteins, found at the post-synaptic level, also occurs at glutamatergic nerve terminals.

  4. GABA Metabolism and Transport: Effects on Synaptic Efficacy

    PubMed Central

    Roth, Fabian C.; Draguhn, Andreas

    2012-01-01

    GABAergic inhibition is an important regulator of excitability in neuronal networks. In addition, inhibitory synaptic signals contribute crucially to the organization of spatiotemporal patterns of network activity, especially during coherent oscillations. In order to maintain stable network states, the release of GABA by interneurons must be plastic in timing and amount. This homeostatic regulation is achieved by several pre- and postsynaptic mechanisms and is triggered by various activity-dependent local signals such as excitatory input or ambient levels of neurotransmitters. Here, we review findings on the availability of GABA for release at presynaptic terminals of interneurons. Presynaptic GABA content seems to be an important determinant of inhibitory efficacy and can be differentially regulated by changing synthesis, transport, and degradation of GABA or related molecules. We will discuss the functional impact of such regulations on neuronal network patterns and, finally, point towards pharmacological approaches targeting these processes. PMID:22530158

  5. Substance P selectively modulates GABA(A) receptor-mediated synaptic transmission in striatal cholinergic interneurons.

    PubMed

    Govindaiah, G; Wang, Yanyan; Cox, Charles L

    2010-02-01

    Substance P (SP) is co-localized and co-released with gamma-amino butyric acid (GABA) from approximately 50% of GABAergic medium spiny neurons (MSNs) in the striatum. MSNs innervate several cellular targets including neighboring MSNs and cholinergic interneurons via collaterals. However, the functional role of SP release onto striatal interneurons is unknown. Here we examined SP-mediated actions on inhibitory synaptic transmission in cholinergic interneurons using whole-cell recordings in mouse corticostriatal slices. We found that SP selectively suppressed GABA(A) receptor-mediated inhibitory post-synaptic currents (IPSCs), but not excitatory post-synaptic currents (EPSCs) in cholinergic interneurons. In contrast, SP did not alter IPSCs in fast-spiking interneurons and MSNs. SP suppressed IPSC amplitude in a concentration-dependent and reversible manner, and the NK1 receptor antagonist RP67580 attenuated the SP-mediated suppression. In addition, RP67580 alone enhanced the evoked IPSC amplitude in cholinergic interneurons, suggesting an endogenous action of SP on regulation of inhibitory synaptic transmission. SP did not alter the paired-pulse ratio, but reduced the amplitudes of GABA(A) agonist muscimol-induced outward currents and miniature IPSCs in cholinergic interneurons, suggesting SP exerts its effects primarily at the post-synaptic site. Our results indicate that the physiological effects of SP are to enhance the activity of striatal cholinergic interneurons and provide a rationale for designing potential new antiparkinsonian agents.

  6. Ethanol potentiation of GABAergic synaptic transmission may be self-limiting: role of presynaptic GABA(B) receptors.

    PubMed

    Ariwodola, Olusegun J; Weiner, Jeffrey L

    2004-11-24

    Ethanol enhances GABAergic synaptic inhibition, and this interaction contributes to many of the behavioral and cognitive effects of this drug. Most studies suggest that ethanol enhances GABAergic neurotransmission via an allosteric potentiation of the postsynaptic GABA(A) receptors that mediate fast synaptic inhibition in the mammalian CNS. Despite widespread acceptance of this hypothesis, direct support for such a mechanism has been difficult to obtain. Ethanol does not enhance GABA(A) receptor function in all brain regions or under all experimental conditions, and factors responsible for this variability remain mostly unknown. Notably, blockade of GABA(B) receptors dramatically enhances ethanol potentiation of hippocampal GABA(A) IPSPs and IPSCs, suggesting that some unknown GABA(B) receptor mechanism limits the overall potentiating effect of ethanol on GABAergic synapses. In this study, we demonstrate that, at perisomatic synapses in the rat hippocampus, ethanol enhances presynaptic GABA(B) autoreceptor function and that this interaction reduces the overall potentiating effect of ethanol at these synapses. We further show that ethanol significantly elevates basal presynaptic GABA(B) receptor tone, possibly via an increase in spontaneous GABA release, and that pretreatment with a subthreshold concentration of the GABA(B) receptor agonist baclofen blocks ethanol but not flunitrazepam or pentobarbital potentiation of GABA(A) IPSCs. These data suggest that an interaction between ethanol and presynaptic GABA(B) autoreceptor activity regulates the ethanol sensitivity of GABAergic synapses. Given that the in vitro ethanol sensitivity of these synapses correlates with in vivo ethanol responsiveness in a number of rodent lines, our data further suggest that presynaptic GABA(B) receptor activity may play a role in regulating behavioral sensitivity to ethanol.

  7. Excitatory Synaptic Responses Mediated by GABA_A Receptors in the Hippocampus

    NASA Astrophysics Data System (ADS)

    Michelson, Hillary B.; Wong, Robert K. S.

    1991-09-01

    Gamma-aminobutyric acid (GABA) is a major inhibitory neurotransmitter in the cortex. Activation of postsynaptic GABA_A receptors hyperpolarizes cells and inhibits neuronal activity. Synaptic responses mediated by GABA_A receptors also strongly excited hippocampal neurons. This excitatory response was recorded in morphologically identified interneurons in the presence of 4-aminopyridine or after elevation of extracellular potassium concentrations. The synaptic excitation sustained by GABA_A receptors synchronized the activity of inhibitory interneurons. This synchronized discharge of interneurons in turn elicited large-amplitude inhibitory postsynaptic potentials in pyramidal and granule cells. Excitatory synaptic responses mediated by GABA_A receptors may thus provide a mechanism for the recruitment of GABAergic interneurons through their recurrent connections.

  8. GABA transporter 1 tunes GABAergic synaptic transmission at output neurons of the mouse neostriatum

    PubMed Central

    Kirmse, Knut; Dvorzhak, Anton; Kirischuk, Sergei; Grantyn, Rosemarie

    2008-01-01

    GABAergic medium-sized striatal output neurons (SONs) provide the principal output for the neostriatum. In vitro and in vivo data indicate that spike discharge of SONs is tightly controlled by effective synaptic inhibition. Although phasic GABAergic transmission critically depends on ambient GABA levels, the role of GABA transporters (GATs) in neostriatal GABAergic synaptic transmission is largely unknown. In the present study we aimed at elucidating the role of GAT-1 in the developing mouse neostriatum (postnatal day (P) 7–34). We recorded GABAergic postsynaptic currents (PSCs) using the whole-cell patch-clamp technique. Based on the effects of NO-711, a specific GAT-1 blocker, we demonstrate that GAT-1 is operative at this age and influences GABAergic synaptic transmission by presynaptic and postsynaptic mechanisms. Presynaptic GABABR-mediated suppression of GABA release was found to be functional at all ages tested; however, there was no evidence for persistent GABABR activity under control conditions, unless GAT-1 was blocked (P12–34). In addition, whereas no tonic GABAAR-mediated conductances were detected in SONs until P14, application of a specific GABAAR antagonist caused distinct tonic outward currents later in development (P19–34). In the presence of NO-711, tonic GABAAR-mediated currents were also observed at P7–14 and were dramatically increased at more mature stages. Furthermore, GAT-1 block reduced the median amplitude of GABAergic miniature PSCs indicating a decrease in quantal size. We conclude that in the murine neostriatum GAT-1 operates in a net uptake mode. It prevents the persistent activation of presynaptic GABABRs (P12–34) and prevents (P7–14) or reduces (P19–34) tonic postsynaptic GABAAR activity. PMID:18832421

  9. GABA and neuroligin signaling: linking synaptic activity and adhesion in inhibitory synapse development

    PubMed Central

    Huang, Z. Josh; Scheiffele, Peter

    2013-01-01

    GABA-mediated synaptic inhibition is crucial in neural circuit operations. In mammalian brains, the development of inhibitory synapses and innervation patterns is often a prolonged postnatal process, regulated by neural activity. Emerging evidence indicates that GABA acts beyond inhibitory transmission and regulates inhibitory synapse development. Indeed, GABAA receptors not only function as chloride channels that regulate membrane voltage and conductance but also play structural roles in synapse maturation and stabilization. The link from GABAA receptors to post- and pre- synaptic adhesion is likely mediated, in part, by neuroligin-reurexin interactions, which are potent in promoting GABAergic synapse formation. Therefore, similar to glutamate signaling at excitatory synapse, GABA signaling may coordinate maturation of pre- and post- synaptic sites at inhibitory synapses. Defining the many steps from GABA signaling to receptor trafficking/stability and neuroligin function will provide further mechanistic insights into activity-dependent development and possibly plasticity of inhibitory synapses. PMID:18513949

  10. Properties of GABA-mediated synaptic potentials induced by zinc in adult rat hippocampal pyramidal neurones.

    PubMed Central

    Xie, X; Smart, T G

    1993-01-01

    -nitroquinoxaline-2,3-dione (CNQX, 10 microM) did not affect the amplitude but slightly reduced the frequency of the giant depolarizations. 9. It is concluded that zinc induces a synchronized release of GABA, quite independent of intact excitatory synaptic transmission, which acts on GABAA receptors producing large depolarizing synaptic potentials. This increased level of GABA release may be of physiological and pathological importance since zinc is a naturally occurring metal ion endogenous to the central nervous system. PMID:8387588

  11. GABA regulates synaptic integration of newly generated neurons in the adult brain

    NASA Astrophysics Data System (ADS)

    Ge, Shaoyu; Goh, Eyleen L. K.; Sailor, Kurt A.; Kitabatake, Yasuji; Ming, Guo-Li; Song, Hongjun

    2006-02-01

    Adult neurogenesis, the birth and integration of new neurons from adult neural stem cells, is a striking form of structural plasticity and highlights the regenerative capacity of the adult mammalian brain. Accumulating evidence suggests that neuronal activity regulates adult neurogenesis and that new neurons contribute to specific brain functions. The mechanism that regulates the integration of newly generated neurons into the pre-existing functional circuitry in the adult brain is unknown. Here we show that newborn granule cells in the dentate gyrus of the adult hippocampus are tonically activated by ambient GABA (γ-aminobutyric acid) before being sequentially innervated by GABA- and glutamate-mediated synaptic inputs. GABA, the major inhibitory neurotransmitter in the adult brain, initially exerts an excitatory action on newborn neurons owing to their high cytoplasmic chloride ion content. Conversion of GABA-induced depolarization (excitation) into hyperpolarization (inhibition) in newborn neurons leads to marked defects in their synapse formation and dendritic development in vivo. Our study identifies an essential role for GABA in the synaptic integration of newly generated neurons in the adult brain, and suggests an unexpected mechanism for activity-dependent regulation of adult neurogenesis, in which newborn neurons may sense neuronal network activity through tonic and phasic GABA activation.

  12. Distinct activities of GABA agonists at synaptic- and extrasynaptic-type GABAA receptors

    PubMed Central

    Mortensen, Martin; Ebert, Bjarke; Wafford, Keith; Smart, Trevor G

    2010-01-01

    The activation characteristics of synaptic and extrasynaptic GABAA receptors are important for shaping the profile of phasic and tonic inhibition in the central nervous system, which will critically impact on the activity of neuronal networks. Here, we study in isolation the activity of three agonists, GABA, muscimol and 4,5,6,7-tetrahydoisoxazolo[5,4-c]pyridin-3(2H)-one (THIP), to further understand the activation profiles of α1β3γ2, α4β3γ2 and α4β3δ receptors that typify synaptic- and extrasynaptic-type receptors expressed in the hippocampus and thalamus. The agonists display an order of potency that is invariant between the three receptors, which is reliant mostly on the agonist dissociation constant. At δ subunit-containing extrasynaptic-type GABAA receptors, both THIP and muscimol additionally exhibited, to different degrees, superagonist behaviour. By comparing whole-cell and single channel currents induced by the agonists, we provide a molecular explanation for their different activation profiles. For THIP at high concentrations, the unusual superagonist behaviour on α4β3δ receptors is a consequence of its ability to increase the duration of longer channel openings and their frequency, resulting in longer burst durations. By contrast, for muscimol, moderate superagonist behaviour was caused by reduced desensitisation of the extrasynaptic-type receptors. The ability to specifically increase the efficacy of receptor activation, by selected exogenous agonists over that obtained with the natural transmitter, may prove to be of therapeutic benefit under circumstances when synaptic inhibition is compromised or dysfunctional. PMID:20176630

  13. A Missense Mutation of the Gene Encoding Synaptic Vesicle Glycoprotein 2A (SV2A) Confers Seizure Susceptibility by Disrupting Amygdalar Synaptic GABA Release

    PubMed Central

    Tokudome, Kentaro; Okumura, Takahiro; Terada, Ryo; Shimizu, Saki; Kunisawa, Naofumi; Mashimo, Tomoji; Serikawa, Tadao; Sasa, Masashi; Ohno, Yukihiro

    2016-01-01

    Synaptic vesicle glycoprotein 2A (SV2A) is specifically expressed in the membranes of synaptic vesicles and modulates action potential-dependent neurotransmitter release. To explore the role of SV2A in the pathogenesis of epileptic disorders, we recently generated a novel rat model (Sv2aL174Q rat) carrying a missense mutation of the Sv2a gene and showed that the Sv2aL174Q rats were hypersensitive to kindling development (Tokudome et al., 2016). Here, we further conducted behavioral and neurochemical studies to clarify the pathophysiological mechanisms underlying the seizure vulnerability in Sv2aL174Q rats. Sv2aL174Q rats were highly susceptible to pentylenetetrazole (PTZ)-induced seizures, yielding a significantly higher seizure scores and seizure incidence than the control animals. Brain mapping analysis of Fos expression, a biological marker of neural excitation, revealed that the seizure threshold level of PTZ region-specifically elevated Fos expression in the amygdala in Sv2aL174Q rats. In vivo microdialysis study showed that the Sv2aL174Q mutation preferentially reduced high K+ (depolarization)-evoked GABA release, but not glutamate release, in the amygdala. In addition, specific control of GABA release by SV2A was supported by its predominant expression in GABAergic neurons, which were co-stained with antibodies against SV2A and glutamate decarboxylase 1. The present results suggest that dysfunction of SV2A by the missense mutation elevates seizure susceptibility in rats by preferentially disrupting synaptic GABA release in the amygdala, illustrating the crucial role of amygdalar SV2A-GABAergic system in epileptogenesis. PMID:27471467

  14. Asymmetric diffusion into the postsynaptic neuron: an extremely efficient mechanism for removing excess GABA from synaptic clefts on the Deiters' neurone plasma membrane.

    PubMed

    Hyden, H; Cupello, A; Palm, A

    1986-05-01

    Microdissected Deiters' neuron plasma membranes have been used for studying the passage of GABA through the membrane both in the inward and outward direction. Working with 0.2 mM GABA in the compartment simulating the outside of the neurone and with 2.0 mM GABA in the one simulating the inside we found a net transport of GABA towards the inside. This mechanism does not require a Na+ ion gradient across the membrane. The nature of the transport process involved was studied by determining the rate of [3H]-GABA inward passage as a function of GABA concentration (1 nM - 800 microM) on the outward side of the membrane. The results have shown that until 50 microM a diffusion process (v = D1 X C, where D1 = 3.1 X 10(-11) 1/micron 2 X sec) is the sole mechanism involved. Above 50 microM a second diffusion process is activated v = D2 X (C - 50 X 10(-6), where D2 = 2.8 X 10(-11) 1/micron 2 X sec. Taking in account both inward and outward directed diffusion, one can calculate 16 microM as the equilibrium concentration of GABA on the outward side of the membrane. From a kinetic point of view, these diffusion processes are able to reduce GABA concentration in a synaptic cleft from 3 mM to 20 microM within 3 mu sec. These diffusion systems are discussed as extremely efficient in removing the excess of released GABA in the synaptic cleft.

  15. The modulation of synaptic GABA(A) receptors in the thalamus by eszopiclone and zolpidem.

    PubMed

    Jia, Fan; Goldstein, Peter A; Harrison, Neil L

    2009-03-01

    Eszopiclone (Lunesta; Sepracor, Marlborough, MA) and zolpidem [N,N,6-trimethyl-2-(4-methylphenyl)-imidazo(1,2-a)pyridine-3-acetamide] are among the most commonly prescribed hypnotics in use in the United States. The thalamus plays a pivotal role in sleep regulation and rhythmicity. Two distinct subtypes of synaptic GABA(A) receptors (GABA(A)-Rs), alpha(1)beta(2)gamma(2) and alpha(3)beta(3)gamma(2), are expressed in thalamocortical relay neurons and in interneurons of the RTN (reticular thalamic nucleus), respectively. Thalamocortical neurons also express extrasynaptic GABA(A)-Rs composed of alpha(4)beta(2)delta subunits. In this study, we compared the effects of eszopiclone and zolpidem on miniature inhibitory postsynaptic currents (IPSCs), spontaneous IPSCs, and tonic inhibition in the mouse thalamus. Eszopiclone (0.1-1 microM) slowed the decay phase of IPSCs recorded from RTN neurons, whereas zolpidem was less effective and increased the decay time constant only at > or = 0.3 microM. IPSCs of RTN neurons were more sensitive to eszopiclone than zolpidem at all concentrations tested. On the other hand, IPSCs of relay neurons in the ventrobasal nucleus (VB) were more sensitive to zolpidem than eszopiclone. Zolpidem (0.1-1 microM) prolonged the decay of IPSCs from VB neurons, whereas eszopiclone increased the decay time constant only at > or = 0.3 microM. Neither of these two hypnotics affected tonic inhibition in relay neurons. Our results demonstrate that eszopiclone has greater efficacy at synaptic GABA(A)-Rs of RTN neurons than in relay neurons, whereas zolpidem exerts bigger effects on relay neurons than RTN neurons. This distinct pattern of activity on thalamic neurons may contribute to some of the observed differences in the clinical effects of these two hypnotics.

  16. Signaling Cascades for δ-Opioid Receptor-Mediated Inhibition of GABA Synaptic Transmission and Behavioral Antinociception

    PubMed Central

    Zhang, Zhi

    2012-01-01

    Membrane trafficking of the δ-opioid receptor (DOR) from intracellular compartments to plasma membrane in central neurons, induced by various pathological conditions such as long-term opioid exposure, represents unique receptor plasticity involved in the mechanisms of long-term opioid effects in opioid addiction and opioid treatment of chronic pain. However, the signaling pathways coupled to the newly emerged functional DOR in central neurons are largely unknown at present. In this study, we investigated the signaling cascades of long-term morphine-induced DOR for its cellular and behavioral effects in neurons of the rat brainstem nucleus raphe magnus (NRM), a key supraspinal site for opioid analgesia. We found that, among the three phospholipase A2 (PLA2)-regulated arachidonic acid (AA) metabolic pathways of lipoxygenase, cyclooxygenase, and epoxygenase, 12-lipoxygenase of the lipoxygenase pathway primarily mediated DOR inhibition of GABA synaptic transmission, because inhibitors of 12-lipoxygenase as well as lipoxygenases and PLA2 largely blocked the DOR- or AA-induced GABA inhibition in NRM neurons in brainstem slices in vitro. Blockade of the epoxygenase pathway was ineffective, whereas blocking either 5-lipoxygenase of the lipoxygenase pathway or the cyclooxygenase pathway enhanced the DOR-mediated GABA inhibition. Behaviorally in rats in vivo, NRM infusion of 12-lipoxygenase inhibitors significantly reduced DOR-induced antinociceptive effect whereas inhibitors of 5-lipoxygenase and cyclooxygenase augmented the DOR antinociception. These findings suggest the PLA2-AA-12-lipoxygenase pathway as a primary signaling cascade for DOR-mediated analgesia through inhibition of GABA neurotransmission and indicate potential therapeutic benefits of combining 5-lipoxygenase and cyclooxygenase inhibitors for maximal pain inhibition. PMID:22144670

  17. Pacemaker GABA Synaptic Activity May Contribute to Network Synchronization in Pediatric Cortical Dysplasia

    PubMed Central

    Cepeda, Carlos; Chen, Jane Y.; Wu, Joyce Y.; Fisher, Robin S.; Vinters, Harry V.; Mathern, Gary W.; Levine, Michael S.

    2013-01-01

    Spontaneous pacemaker γ-aminobutyric acid (GABA) receptor-mediated synaptic activity (PGA) occurs in a subset of tissue samples from pediatric epilepsy surgery patients. In the present study, based on single-cell electrophysiological recordings from 120 cases, we describe the etiologies, cell types, and primary electrophysiological features of PGA. Cells displaying PGA occurred more frequently in the areas of greatest anatomical abnormality in cases of focal cortical dysplasia (CD), often associated with hemimegalencephaly (HME), and only rarely in non-CD etiologies. PGA was characterized by rhythmic synaptic events (5–10 Hz) and was observed in normal-like, dysmorphic cytomegalic, and immature pyramidal neurons. PGA was action potential-dependent, mediated by GABAA receptors, and unaffected by antagonism of glutamate receptors. We propose that PGA is a unique electrophysiological characteristic associated with CD and HME. It could represent an abnormal signal that may contribute to epileptogenesis in malformed postnatal cortex by facilitating pyramidal neuron synchrony. PMID:24121115

  18. Intracellular chloride ions regulate the time course of GABA-mediated inhibitory synaptic transmission.

    PubMed

    Houston, Catriona M; Bright, Damian P; Sivilotti, Lucia G; Beato, Marco; Smart, Trevor G

    2009-08-19

    The time-dependent integration of excitatory and inhibitory synaptic currents is an important process for shaping the input-output profiles of individual excitable cells, and therefore the activity of neuronal networks. Here, we show that the decay time course of GABAergic inhibitory synaptic currents is considerably faster when recorded with physiological internal Cl(-) concentrations than with symmetrical Cl(-) solutions. This effect of intracellular Cl(-) is due to a direct modulation of the GABA(A) receptor that is independent of the net direction of current flow through the ion channel. As a consequence, the time window during which GABAergic inhibition can counteract coincident excitatory inputs is much shorter, under physiological conditions, than that previously measured using high internal Cl(-). This is expected to have implications for neuronal network excitability and neurodevelopment, and for our understanding of pathological conditions, such as epilepsy and chronic pain, where intracellular Cl(-) concentrations can be altered.

  19. GABA B receptor modulation of excitatory and inhibitory synaptic transmission onto rat CA3 hippocampal interneurons.

    PubMed

    Lei, Saobo; McBain, Chris J

    2003-01-15

    Hippocampal stratum radiatum inhibitory interneurons receive glutamatergic excitatory innervation via the recurrent collateral fibers of CA3 pyramidal neurons and GABAergic inhibition from other interneurons. We examined both presynaptic- and postsynaptic-GABA(B) receptor-mediated responses at both synapse types. Postsynaptic GABA(B) receptor-mediated responses were absent in recordings from young (P16-18) but present in recordings from older animals (> or =P30) suggesting developmental regulation. In young animals, the GABA(B) receptor agonist, baclofen, inhibited the amplitude of evoked EPSCs and IPSCs, an effect blocked by prior application of the selective antagonist CGP55845. Baclofen enhanced the paired-pulse ratio and coefficient of variation of evoked EPSCs and IPSCs, consistent with a presynaptic mechanism of regulation. In addition, baclofen reduced the frequency of miniature IPSCs but not mEPSCs. However, baclofen reduced the frequency of KCl-induced mEPSCs; an effect blocked by Cd(2+), implicating presynaptic voltage-gated Ca(2+) channels as a target for baclofen modulation. In contrast, although Cd(2+) prevented the KCl-induced increase in mIPSC frequency, it failed to block baclofen's reduction of mIPSC frequency. Whereas N- and P/Q-types of Ca(2+) channels contributed equally to GABA(B) receptor-mediated inhibition of EPSCs, more P/Q-type Ca(2+) channels were involved in GABA(B) receptor-mediated inhibition of IPSCs. Finally, baclofen blocked the frequency-dependent depression of EPSCs and IPSCs, but was less effective at blocking frequency-dependent facilitation of EPSCs. Our results demonstrate that presynaptic GABA(B) receptors are expressed on the terminals of both excitatory and inhibitory synapses onto CA3 interneurons and that their activation modulates essential components of the release process underlying transmission at these two synapse types.

  20. Friedreich Ataxia: Failure of GABA-ergic and Glycinergic Synaptic Transmission in the Dentate Nucleus

    PubMed Central

    Koeppen, Arnulf H.; Ramirez, Liane; Becker, Alyssa B.; Feustel, Paul J.; Mazurkiewicz, Joseph E.

    2014-01-01

    Atrophy of large neurons in the dentate nucleus (DN) is an important pathological correlate of neurological disability in patients with Friedreich ataxia (FA). Thinning of the DN was quantified in 29 autopsy cases of FA and 2 carriers by measuring the thickness of the gray matter ribbon on stains with anti-glutamic acid decarboxylase (GAD), the rate-limiting enzyme in the biosynthesis of γ-amino-butyric acid (GABA). The DN was thinner than normal in all cases of FA, and atrophy correlated inversely with disease duration but not with age of onset or length of the homozygous guanine-adenine-adenine trinucleotide expansions. In 13 of the FA cases, frozen DN tissue was available for assay of frataxin. DN atrophy was more severe when frataxin was very low. Immunohistochemical staining for GAD revealed grumose reaction and preservation of small GABA-ergic neurons in the DN of FA patients. Residual small DN neurons and varicose axons also contained the glycine transporter 2, identifying them as glycinergic. Immunohistochemistry also confirmed severe loss of GABA-A and glycine receptors in the DN with comparable depletion of the receptor-anchoring protein gephyrin. Thus, loss of gephyrin and failure to position GABA-A and glycine receptors correctly may reduce trophic support of large DN neurons and contribute to their atrophy. By contrast, Purkinje cells may escape retrograde atrophy in FA by issuing new axonal sprouts to small surviving DN neurons where they form reparative grumose clusters. PMID:25575136

  1. Unique pH dynamics in GABAergic synaptic vesicles illuminates the mechanism and kinetics of GABA loading

    PubMed Central

    Egashira, Yoshihiro; Takase, Miki; Watanabe, Shoji; Ishida, Junji; Fukamizu, Akiyoshi; Kaneko, Ryosuke; Yanagawa, Yuchio; Takamori, Shigeo

    2016-01-01

    GABA acts as the major inhibitory neurotransmitter in the mammalian brain, shaping neuronal and circuit activity. For sustained synaptic transmission, synaptic vesicles (SVs) are required to be recycled and refilled with neurotransmitters using an H+ electrochemical gradient. However, neither the mechanism underlying vesicular GABA uptake nor the kinetics of GABA loading in living neurons have been fully elucidated. To characterize the process of GABA uptake into SVs in functional synapses, we monitored luminal pH of GABAergic SVs separately from that of excitatory glutamatergic SVs in cultured hippocampal neurons. By using a pH sensor optimal for the SV lumen, we found that GABAergic SVs exhibited an unexpectedly higher resting pH (∼6.4) than glutamatergic SVs (pH ∼5.8). Moreover, unlike glutamatergic SVs, GABAergic SVs displayed unique pH dynamics after endocytosis that involved initial overacidification and subsequent alkalization that restored their resting pH. GABAergic SVs that lacked the vesicular GABA transporter (VGAT) did not show the pH overshoot and acidified further to ∼6.0. Comparison of luminal pH dynamics in the presence or absence of VGAT showed that VGAT operates as a GABA/H+ exchanger, which is continuously required to offset GABA leakage. Furthermore, the kinetics of GABA transport was slower (τ > 20 s at physiological temperature) than that of glutamate uptake and may exceed the time required for reuse of exocytosed SVs, allowing reuse of incompletely filled vesicles in the presence of high demand for inhibitory transmission. PMID:27601664

  2. Acute increases in synaptic GABA detectable in the living human brain: a [¹¹C]Ro15-4513 PET study.

    PubMed

    Stokes, Paul R A; Myers, Jim F; Kalk, Nicola J; Watson, Ben J; Erritzoe, David; Wilson, Sue J; Cunningham, Vincent J; Riano Barros, Daniela; Hammers, Alexander; Turkheimer, Federico E; Nutt, David J; Lingford-Hughes, Anne R

    2014-10-01

    The inhibitory γ-aminobutyric acid (GABA) neurotransmitter system is associated with the regulation of normal cognitive functions and dysregulation has been reported in a number of neuropsychiatric disorders including anxiety disorders, schizophrenia and addictions. Investigating the role of GABA in both health and disease has been constrained by difficulties in measuring acute changes in synaptic GABA using neurochemical imaging. The aim of this study was to investigate whether acute increases in synaptic GABA are detectable in the living human brain using the inverse agonist GABA-benzodiazepine receptor (GABA-BZR) positron emission tomography (PET) tracer, [(11)C]Ro15-4513. We examined the effect of 15 mg oral tiagabine, which increases synaptic GABA by inhibiting the GAT1 GABA uptake transporter, on [(11)C]Ro15-4513 binding in 12 male participants using a paired, double blind, placebo-controlled protocol. Spectral analysis was used to examine synaptic α1 and extrasynaptic α5 GABA-BZR subtype availability in brain regions with high levels of [(11)C]Ro15-4513 binding. We also examined the test-retest reliability of α1 and a5-specific [(11)C]Ro15-4513 binding in a separate cohort of 4 participants using the same spectral analysis protocol. Tiagabine administration produced significant reductions in hippocampal, parahippocampal, amygdala and anterior cingulate synaptic α1 [(11)C]Ro15-4513 binding, and a trend significance reduction in the nucleus accumbens. These reductions were greater than test-retest reliability, indicating that they are not the result of chance observations. Our results suggest that acute increases in endogenous synaptic GABA are detectable in the living human brain using [(11)C]Ro15-4513 PET. These findings have potentially major implications for the investigation of GABA function in brain disorders and in the development of new treatments targeting this neurotransmitter system. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Corticotropin-releasing factor increases GABA synaptic activity and induces inward current in 5-hydroxytryptamine dorsal raphe neurons.

    PubMed

    Kirby, Lynn G; Freeman-Daniels, Emily; Lemos, Julia C; Nunan, John D; Lamy, Christophe; Akanwa, Adaure; Beck, Sheryl G

    2008-11-26

    Stress-related psychiatric disorders such as anxiety and depression involve dysfunction of the serotonin [5-hydroxytryptamine (5-HT)] system. Previous studies have found that the stress neurohormone corticotropin-releasing factor (CRF) inhibits 5-HT neurons in the dorsal raphe nucleus (DRN) in vivo. The goals of the present study were to characterize the CRF receptor subtypes (CRF-R1 and -R2) and cellular mechanisms underlying CRF-5-HT interactions. Visualized whole-cell patch-clamp recording techniques in brain slices were used to measure spontaneous or evoked GABA synaptic activity in DRN neurons of rats and CRF effects on these measures. CRF-R1 and -R2-selective agonists were bath applied alone or in combination with receptor-selective antagonists. CRF increased presynaptic GABA release selectively onto 5-HT neurons, an effect mediated by the CRF-R1 receptor. CRF increased postsynaptic GABA receptor sensitivity selectively in 5-HT neurons, an effect to which both receptor subtypes contributed. CRF also had direct effects on DRN neurons, eliciting an inward current in 5-HT neurons mediated by the CRF-R2 receptor and in non-5-HT neurons mediated by the CRF-R1 receptor. These results indicate that CRF has direct membrane effects on 5-HT DRN neurons as well as indirect effects on GABAergic synaptic transmission that are mediated by distinct receptor subtypes. The inhibition of 5-HT DRN neurons by CRF in vivo may therefore be primarily an indirect effect via stimulation of inhibitory GABA synaptic transmission. These results regarding the cellular mechanisms underlying the complex interaction between CRF, 5-HT, and GABA systems could contribute to the development of novel treatments for stress-related psychiatric disorders.

  4. CORTICOTROPIN-RELEASING FACTOR INCREASES GABA SYNAPTIC ACTIVITY AND INDUCES INWARD CURRENT IN 5-HYDROXYTRYPTAMINE DORSAL RAPHE NEURONS

    PubMed Central

    Kirby, Lynn G.; Freeman-Daniels, Emily; Lemos, Julia C.; Nunan, John D.; Lamy, Christophe; Akanwa, Adaure; Beck, Sheryl G.

    2008-01-01

    Stress-related psychiatric disorders such as anxiety and depression involve dysfunction of the serotonin (5-hydroxytryptamine; 5-HT) system. Previous studies have found that the stress neurohormone corticotropin-releasing factor (CRF) inhibits 5-HT neurons in the dorsal raphe nucleus (DRN) in vivo. The goals of the present study were to characterize the CRF receptor subtypes (CRF-R1 and R2) and cellular mechanisms underlying CRF-5-HT interactions. Visualized whole-cell patch clamp recording techniques in brain slices were used to measure spontaneous or evoked GABA synaptic activity in DRN neurons of rats and CRF effects on these measures. CRF-R1 and -R2-selective agonists were bath applied alone or in combination with receptor-selective antagonists. CRF increased presynaptic GABA release selectively onto 5-HT neurons, an effect mediated by the CRF-R1 receptor. CRF increased postsynaptic GABA receptor sensitivity selectively in 5-HT neurons, an effect to which both receptor subtypes contributed. CRF also had direct effects on DRN neurons, eliciting an inward current in 5-HT neurons mediated by the CRF-R2 receptor and in non 5-HT neurons mediated by the CRF-R1 receptor. These results indicate that CRF has direct membrane effects on 5-HT DRN neurons as well as indirect effects on GABAergic synaptic transmission that are mediated by distinct receptor subtypes. The inhibition of 5-HT DRN neurons by CRF in vivo may therefore be largely an indirect effect via stimulation of inhibitory GABA synaptic transmission. These results regarding the cellular mechanisms underlying the complex interaction between CRF, 5-HT and GABA systems could contribute to the development of novel treatments for stress-related psychiatric disorders. PMID:19036986

  5. GABA type a receptor trafficking and the architecture of synaptic inhibition.

    PubMed

    Lorenz-Guertin, Joshua M; Jacob, Tija C

    2017-09-13

    Ubiquitous expression of GABA type A receptors (GABAA R) in the central nervous system establishes their central role in coordinating most aspects of neural function and development. Dysregulation of GABAergic neurotransmission manifests in a number of human health disorders and conditions that in certain cases can be alleviated by drugs targeting these receptors. Precise changes in the quantity or activity of GABAA Rs localized at the cell surface and at GABAergic postsynaptic sites directly impact the strength of inhibition. The molecular mechanisms constituting receptor trafficking to and from these compartments therefore dictate the efficacy of GABAA R function. Here we review the current understanding of how GABAA Rs traffic through biogenesis, plasma membrane transport, and degradation. Emphasis is placed on discussing novel GABAergic synaptic proteins, receptor and scaffolding post-translational modifications, activity-dependent changes in GABAA R confinement, and neuropeptide and neurosteroid mediated changes. We further highlight modern techniques currently advancing the knowledge of GABAA R trafficking and clinically relevant neurodevelopmental diseases connected to GABAergic dysfunction. © 2017 Wiley Periodicals, Inc. Develop Neurobiol, 2017. © 2017 Wiley Periodicals, Inc.

  6. γ1-Containing GABA-A Receptors Cluster at Synapses Where they Mediate Slower Synaptic Currents than γ2-Containing GABA-A Receptors.

    PubMed

    Dixon, Christine L; Sah, Pankaj; Keramidas, Angelo; Lynch, Joseph W; Durisic, Nela

    2017-01-01

    GABA-A receptors (GABAARs) are pentameric ligand-gated ion channels that are assembled mainly from α (α1-6), β (β1-3) and γ (γ1-3) subunits. Although GABAARs containing γ2L subunits mediate most of the inhibitory neurotransmission in the brain, significant expression of γ1 subunits is seen in the amygdala, pallidum and substantia nigra. However, the location and function of γ1-containing GABAARs in these regions remains unclear. In "artificial" synapses, where the subunit composition of postsynaptic receptors is specifically controlled, γ1 incorporation slows the synaptic current decay rate without affecting channel deactivation, suggesting that γ1-containing receptors are not clustered and therefore activated by diffuse neurotransmitter. However, we show that γ1-containing receptors are localized at neuronal synapses and form clusters in both synaptic and extrasynaptic regions. In addition, they exhibit rapid membrane diffusion and a higher frequency of exchange between synaptic and perisynaptic populations compared to γ2L-containing GABAARs. A point mutation in the large intracellular domain and a pharmacological analysis reveal that when a single non-conserved γ2L residue is mutated to its γ1 counterpart (T349L), the synaptic current decay is slowed from γ2L- to γ1-like without changing the clustering or diffusion properties of the receptors. In addition, previous fast perfusion and single channel kinetic experiments revealed no difference in the intrinsic closing rates of γ2L- and γ1-containing receptors when expressed in HEK293 cells. These observations together with Monte Carlo simulations of synaptic function confirm that decreased clustering does not control γ1-containing GABAAR kinetics. Rather, they suggest that γ1- and γ2L-containing receptors exhibit differential synaptic current decay rates due to differential gating dynamics when localized at the synapse.

  7. GAD67-mediated GABA synthesis and signaling regulate inhibitory synaptic innervation in the visual cortex.

    PubMed

    Chattopadhyaya, Bidisha; Di Cristo, Graziella; Wu, Cai Zhi; Knott, Graham; Kuhlman, Sandra; Fu, Yu; Palmiter, Richard D; Huang, Z Josh

    2007-06-21

    The development of GABAergic inhibitory circuits is shaped by neural activity, but the underlying mechanisms are unclear. Here, we demonstrate a novel function of GABA in regulating GABAergic innervation in the adolescent brain, when GABA is mainly known as an inhibitory transmitter. Conditional knockdown of the rate-limiting synthetic enzyme GAD67 in basket interneurons in adolescent visual cortex resulted in cell autonomous deficits in axon branching, perisomatic synapse formation around pyramidal neurons, and complexity of the innervation fields; the same manipulation had little influence on the subsequent maintenance of perisomatic synapses. These effects of GABA deficiency were rescued by suppressing GABA reuptake and by GABA receptor agonists. Germline knockdown of GAD67 but not GAD65 showed similar deficits, suggesting a specific role of GAD67 in the maturation of perisomatic innervation. Since intracellular GABA levels are modulated by neuronal activity, our results implicate GAD67-mediated GABA synthesis in activity-dependent regulation of inhibitory innervation patterns.

  8. Modulation of GABA-mediated synaptic transmission by endogenous zinc in the immature rat hippocampus in vitro.

    PubMed Central

    Xie, X; Hider, R C; Smart, T G

    1994-01-01

    response to ionophoretically applied GABA was either unaffected or slightly enhanced by Zn2+. 7. Under conditions favouring the activation of non-NMDA receptors, excitatory synaptic transmission was unaffected by CP94 but was depressed by Zn2+. Responses to ionophoretically applied glutamate were not inhibited by Zn2+, indicating that Zn2+ affects excitatory synaptic transmission via a presynaptic mechanism. 8. We conclude that the naturally occurring large synaptic potentials in young CA3 neurones are apparently induced by endogenous Zn2+ which can promote or synchronize the release of GABA in the immature hippocampus. PMID:7965838

  9. Distinct changes in neuronal and astrocytic amino acid neurotransmitter metabolism in mice with reduced numbers of synaptic vesicles.

    PubMed

    Bogen, Inger Lise; Risa, Øystein; Haug, Kristin H; Sonnewald, Ursula; Fonnum, Frode; Walaas, S Ivar

    2008-06-01

    The relations between glutamate and GABA concentrations and synaptic vesicle density in nerve terminals were examined in an animal model with 40-50% reduction in synaptic vesicle numbers caused by inactivation of the genes encoding synapsin I and II. Concentrations and synthesis of amino acids were measured in extracts from cerebrum and a crude synaptosomal fraction by HPLC and (13)C nuclear magnetic resonance spectroscopy (NMRS), respectively. Analysis of cerebrum extracts, comprising both neurotransmitter and metabolic pools, showed decreased concentration of GABA, increased concentration of glutamine and unchanged concentration of glutamate in synapsin I and II double knockout (DKO) mice. In contrast, both glutamate and GABA concentrations were decreased in crude synaptosomes isolated from synapsin DKO mice, suggesting that the large metabolic pool of glutamate in the cerebral extracts may overshadow minor changes in the transmitter pool. (13)C NMRS studies showed that the changes in amino acid concentrations in the synapsin DKO mice were caused by decreased synthesis of GABA (20-24%) in cerebral neurons and increased synthesis of glutamine (36%) in astrocytes. In a crude synaptosomal fraction, the glutamate synthesis was reduced (24%), but this reduction could not be detected in cerebrum extracts. We suggest that lack of synaptic vesicles causes down-regulation of neuronal GABA and glutamate synthesis, with a concomitant increase in astrocytic synthesis of glutamine, in order to maintain normal neurotransmitter concentrations in the nerve terminal cytosol.

  10. Synaptic circuitry in the retinorecipient layers of the optic tectum of the lamprey (Lampetra fluviatilis). A combined hodological, GABA and glutamate immunocytochemical study.

    PubMed

    Repérant, Jacques; Ward, Roger; Médina, Monique; Kenigfest, Natalia B; Rio, Jean-Paul; Miceli, Dom; Jay, Bruno

    2009-09-01

    The ultrastructure of the retinorecipient layers of the lamprey optic tectum was analysed using tract tracing techniques combined with GABA and glutamate immunocytochemistry. Two types of neurons were identified; a population of large GABA-immunonegative cells, and a population of smaller, highly GABA-immunoreactive interneurons, some of whose dendrites contain synaptic vesicles (DCSV). Five types of axon terminals were identified and divided into two major categories. The first of these are GABA-immunonegative, highly glutamate-immunoreactive, contain round synaptic vesicles, make asymmetrical synaptic contacts, and can in turn be divided into AT1 and AT2 terminals. The AT1 terminals are those of the retinotectal projection. The origin of the nonretinal AT2 terminals could not be determined. AT1 and AT2 terminals establish synaptic contacts with DCSV, with dendrites of the retinopetal neurons (DRN), and with conventional dendritic (D) profiles. The terminals of the second category are GABA-immunoreactive and can similarly be divided into AT3 and AT4 terminals. The AT3 terminals contain pleiomorphic synaptic vesicles and make symmetrical synaptic contacts for the most part with glutamate-immunoreactive D profiles. The AT4 terminals contain rounded synaptic vesicles and make asymmetrical synaptic contacts with DRN, with DCSV, and with D profiles. A fifth, rarely observed category of terminals (AT5) contain both clear synaptic vesicles and a large number of dense-core vesicles. Synaptic triads involving AT1, AT2 or AT4 terminals are rare. Our findings are compared to these of previous studies of the fine structure and immunochemical properties of the retinorecipient layers of the optic tectum or superior colliculus of Gnathostomes.

  11. GAD67-mediated GABA Synthesis and Signaling Regulate Inhibitory Synaptic Innervation in the Visual Cortex

    PubMed Central

    Chattopadhyaya, Bidisha; Di Cristo, Graziella; Wu, Cai Zhi; Knott, Graham; Kuhlman, Sandra; Fu, Yu; Palmiter, Richard D.; Huang, Z. Josh

    2007-01-01

    The development of GABAergic inhibitory circuits is shaped by neural activity, but the underlying mechanisms are unclear. we demonstrate a novel function of GABA in regulating GABAergic innervation in the adolescent brain, when GABA is mainly known as an inhibitory transmitter. Conditional knockdown of the rate-limiting synthetic enzyme GAD67 in basket interneurons in adolescent visual cortex resulted in cell autonomous deficits in axon branching, perisomatic synapse formation around pyramidal neurons, and complexity of the innervation fields; the same manipulation had little influence on the subsequent maintenance of perisomatic synapses. These effects of GABA deficiency were rescued by suppressing GABA re-uptake and by GABA receptor agonists. Germ-line knockdown of GAD67 but not GAD65 showed similar deficits, suggesting a specific role of GAD67 in the maturation of perisomatic innervation. Since intracellular GABA levels are modulated by neuronal activity, our results implicate GAD67-mediated GABA synthesis in activity-dependent regulation of inhibitory innervation patterns. PMID:17582330

  12. Synaptic-type α1β2γ2L GABAA receptors produce large persistent currents in the presence of ambient GABA and anesthetic drugs.

    PubMed

    Li, Ping; Akk, Gustav

    2015-05-01

    Synaptic GABAA receptors respond to synaptically released GABA and are considered to be unaffected by the low levels of ambient transmitter in the brain. We show that synaptic-type α1β2γ2L GABAA receptors expressed in HEK293 cells respond with large steady-state currents to combinations of a low concentration (0.5 μM) of GABA and clinically used GABAergic modulators propofol, etomidate, or pentobarbital or the steroid alphaxalone. At a maximally effective concentration of modulator, the current levels at the end of 2-minute applications of drug combinations were >10% of the peak response to saturating GABA. In the absence of modulators, 0.5 μM GABA generated a steady-state response of 1% of the peak response to saturating GABA. The concentration-response curves for enhancement of steady-state currents by propofol, etomidate, pentobarbital, or alphaxalone were at similar or lower drug concentrations compared with concentration-response relationships for enhancement of peak responses. We propose that modulation of tonically activated synaptic-type GABAA receptors contributes to the clinical actions of sedative drugs.

  13. Presynaptic 5-HT3 receptor-mediated modulation of synaptic GABA release in the mechanically dissociated rat amygdala neurons

    PubMed Central

    Koyama, Susumu; Matsumoto, Nozomu; Kubo, Chiharu; Akaike, Norio

    2000-01-01

    Nystatin-perforated patch recordings were made from mechanically dissociated basolateral amygdala neurons with preserved intact native presynaptic nerve terminals to study the mechanism of 5-HT3 receptor-mediated serotonergic modulation of GABAergic inhibition. The specific 5-HT3 agonist mCPBG (1 μM) rapidly facilitated the frequency of GABAergic miniature inhibitory postsynaptic currents (mIPSCs) and this facilitation desensitized within 1 min. Tropisetron (30 nM), a specific 5-HT3 antagonist, blocked the mCPBG effect. mCPBG augmented mIPSC amplitude. However, no direct postsynaptic serotonergic currents were evoked by mCPBG. Neither GABA-evoked current amplitude nor the kinetics of individual GABAergic mIPSCs were affected by mCPBG. Therefore, the augmentation is unlikely to be due to postsynaptic effects evoked by mCPBG. At higher concentrations mCPBG produced shorter-duration facilitation of miniature events. While mCPBG increased the mIPSC frequency in calcium-containing solution with Cd2+, this increase was absent in Ca2+-free external solution. It appears that the Ca2+ influx through voltage-dependent calcium channels was not as crucial as that through 5-HT3 receptors for synaptic GABA release. When two pulses of mCPBG (each 1 μM, 1 min) were given, the response to the second pulse elicited full recovery when the interval between pulses was at least 9 min. Protein kinase A (PKA) activation by 8-Br-cAMP (300 μM) shortened and PKA inhibition by Rp-cAMP (100 μM) prolonged the recovery time. PKA activity did not affect the time course of fast desensitization. Our results suggest that a 5-HT3-specific agonist acts on presynaptic nerve terminals facilitating synaptic GABA release without postsynaptic effects. The facilitation requires calcium influx through presynaptic 5-HT3 receptors. PKA modulates the recovery process from desensitization of presynaptic 5-HT3 receptor-mediated regulation of synaptic GABA release. PMID:11101647

  14. Genetic deletion of synapsin II reduces neuropathic pain due to reduced glutamate but increased GABA in the spinal cord dorsal horn.

    PubMed

    Schmidtko, Achim; Luo, Ceng; Gao, Wei; Geisslinger, Gerd; Kuner, Rohini; Tegeder, Irmgard

    2008-10-31

    The synaptic vesicle protein synapsin II is specifically expressed in synaptic terminals of primary afferent nociceptive neurons and regulates transmitter release in the spinal cord dorsal horn. Here, we assessed its role in nerve injury-evoked molecular and behavioral adaptations in models of peripheral neuropathic pain using mice genetically lacking synapsin II. Deficiency of synapsin II resulted in reduced mechanical and cold allodynia in two models of peripheral neuropathic pain. This was associated with decreased glutamate release in the dorsal horn of the spinal cord upon sciatic nerve injury or capsaicin application onto the sciatic nerve and reduced calcium signals in spinal cord slices upon persistent activation of primary afferents. In addition, the expression of the vesicular glutamate transporters, VGLUT1 and VGLUT2, was strongly reduced in synapsin II knockout mice in the spinal cord. Conversely, synapsin II knockout mice showed a stronger and longer-lasting increase of GABA in lamina II of the dorsal horn after nerve injury than wild type mice. These results suggest that synapsin II is involved in the regulation of glutamate and GABA release in the spinal cord after nerve injury, and that a imbalance between glutamatergic and GABAergic synaptic transmission contributes to the manifestation of neuropathic pain.

  15. Trans-synaptic (GABA-dopamine) modulation of cocaine induced dopamine release: A potential therapeutic strategy for cocaine abuse

    SciTech Connect

    Dewey, S.L.; Straughter-Moore, R.; Chen, R.

    1995-05-01

    We recently developed a new experimental strategy for measuring interactions between functionally-linked neurotransmitter systems in the primate and human brain with PET. As part of this research, we demonstrated that increases in endogenous GABA concentrations significantly reduced striatal dopamine concentrations in the primate brain. We report here the application of the neurotransmitter interaction paradigm with PET and with microdialysis to the investigation of a novel therapeutic strategy for treating cocaine abuse based on the ability of GABA to inhibit cocaine induced increases in striatal dopamine. Using gamma-vinyl GABA (GVG, a suicide inhibitor of GABA transaminase), we performed a series of PET studies where animals received a baseline PET scan with labeled raclopride injection, animals received cocaine (2.0 mg/kg). Normally, a cocaine challenge significantly reduces the striatal binding of {sup 11}C-raclopride. However, in animals pretreated with GVG, {sup 11}C-raclopride binding was less affected by a cocaine challenge compared to control studies. Furthermore, microdialysis studies in freely moving rats demonstrate that GVG (300 mg/kg) significantly inhibited cocaine-induced increases in extracellular dopamine release. GVG also attenuated cocaine-induced increases in locomotor activity. However, at a dose of 100 mg/kg, GVG had no effect. Similar findings were obtained with alcohol. Alcohol pretreatment dose dependantly (1-4 g/kg) inhibited cocaine-induced increases in extracellular dopamine concentrations in freely moving rats. Taken together, these studies suggest that therapeutic strategies targeted at increasing central GABA concentrations may be beneficial for the treatment of cocaine abuse.

  16. Neonatal Nicotine Exposure Increases Excitatory Synaptic Transmission and Attenuates Nicotine-stimulated GABA release in the Adult Rat Hippocampus

    PubMed Central

    Damborsky, Joanne C.; Griffith, William H.; Winzer-Serhan, Ursula H.

    2014-01-01

    Developmental exposure to nicotine has been linked to long-lasting changes in synaptic transmission which may contribute to behavioral abnormalities seen in offspring of women who smoke during pregnancy. Here, we examined the long-lasting effects of developmental nicotine exposure on glutamatergic and GABAergic neurotransmission, and on acute nicotine-induced glutamate and GABA release in the adult hippocampus, a structure important in cognitive and emotional behaviors. We utilized a chronic neonatal nicotine treatment model to administer nicotine (6 mg/kg/day) to rat pups from postnatal day (P) 1–7, a period that falls developmentally into the third human trimester. Using whole-cell voltage clamp recordings from CA1 pyramidal neurons in hippocampal slices, we measured excitatory and inhibitory postsynaptic currents in neonatally control- and nicotine-treated young adult males. Neonatal nicotine exposure significantly increased AMPA receptor-mediated spontaneous and evoked excitatory signaling, with no change in glutamate release probability in adults. Conversely, there was no increase in spontaneous GABAergic neurotransmission in nicotine-males. Chronic neonatal nicotine treatment had no effect on acute nicotine-stimulated glutamate release in adults, but acute nicotine-stimulated GABA release was significantly attenuated. Thus, neonatal nicotine exposure results in a persistent net increase in excitation and a concurrent loss of nicotinic acetylcholine receptor (nAChR)-mediated regulation of presynaptic GABA but not glutamate release, which would exacerbate excitation following endogenous or exogenous nAChR activation. Our data underscore an important role for nAChRs in hippocampal excitatory synapse development, and suggest selective long-term changes at specific presynaptic nAChRs which together could explain some of the behavioral abnormalities associated with maternal smoking. PMID:24950455

  17. Neonatal nicotine exposure increases excitatory synaptic transmission and attenuates nicotine-stimulated GABA release in the adult rat hippocampus.

    PubMed

    Damborsky, Joanne C; Griffith, William H; Winzer-Serhan, Ursula H

    2015-01-01

    Developmental exposure to nicotine has been linked to long-lasting changes in synaptic transmission which may contribute to behavioral abnormalities seen in offspring of women who smoke during pregnancy. Here, we examined the long-lasting effects of developmental nicotine exposure on glutamatergic and GABAergic neurotransmission, and on acute nicotine-induced glutamate and GABA release in the adult hippocampus, a structure important in cognitive and emotional behaviors. We utilized a chronic neonatal nicotine treatment model to administer nicotine (6 mg/kg/day) to rat pups from postnatal day (P) 1-7, a period that falls developmentally into the third human trimester. Using whole-cell voltage clamp recordings from CA1 pyramidal neurons in hippocampal slices, we measured excitatory and inhibitory postsynaptic currents in neonatally control- and nicotine-treated young adult males. Neonatal nicotine exposure significantly increased AMPA receptor-mediated spontaneous and evoked excitatory signaling, with no change in glutamate release probability in adults. Conversely, there was no increase in spontaneous GABAergic neurotransmission in nicotine-males. Chronic neonatal nicotine treatment had no effect on acute nicotine-stimulated glutamate release in adults, but acute nicotine-stimulated GABA release was significantly attenuated. Thus, neonatal nicotine exposure results in a persistent net increase in excitation and a concurrent loss of nicotinic acetylcholine receptor (nAChR)-mediated regulation of presynaptic GABA but not glutamate release, which would exacerbate excitation following endogenous or exogenous nAChR activation. Our data underscore an important role for nAChRs in hippocampal excitatory synapse development, and suggest selective long-term changes at specific presynaptic nAChRs which together could explain some of the behavioral abnormalities associated with maternal smoking.

  18. Acupuncture inhibits GABA neuron activity in the ventral tegmental area and reduces ethanol self-administration.

    PubMed

    Yang, Chae Ha; Yoon, Seong Shoon; Hansen, David M; Wilcox, Jeffrey D; Blumell, Bryan R; Park, Jung Jae; Steffensen, Scott C

    2010-12-01

    Withdrawal from chronic ethanol enhances ventral tegmental area (VTA) GABA neuron excitability and reduces mesolimbic dopamine (DA) neurotransmission, which is suppressed by acupuncture at Shenmen (HT7) points (Zhao et al., 2006). The aim of this study was to evaluate the effects of HT7 acupuncture on VTA GABA neuron excitability, ethanol inhibition of VTA GABA neuron firing rate, and ethanol self-administration. A role for opioid receptors (ORs) in ethanol and acupuncture effects is also explored. Using electrophysiological methods in mature rats, we evaluated the effects of HT7 stimulation and opioid antagonists on VTA GABA neuron firing rate. Using behavioral paradigms in rats, we evaluated the effects of HT7 stimulation and opioid antagonists on ethanol self-administration using a modification of the sucrose-fading procedure. HT7 stimulation produced a biphasic modulation of VTA GABA neuron firing rate characterized by transient enhancement followed by inhibition and subsequent recovery in 5 minutes. HT7 inhibition of VTA GABA neuron firing rate was blocked by systemic administration of the nonselective μ-opioid receptor antagonist naloxone. HT7 stimulation significantly reduced ethanol suppression of VTA GABA neuron firing rate, which was also blocked by naloxone. HT7 acupuncture reduced ethanol self-administration without affecting sucrose consumption. Systemic administration of the δ-opioid receptor (DOR) antagonist naltrindole blocked ethanol suppression of VTA GABA neuron firing rate and significantly reduced ethanol self-administration without affecting sucrose consumption. These findings suggest that DOR-mediated opioid modulation of VTA GABA neurons may mediate acupuncture's role in modulating mesolimbic DA release and suppressing the reinforcing effects of ethanol. Copyright © 2010 by the Research Society on Alcoholism.

  19. Enhancement of GABA release through endogenous activation of axonal GABA(A) receptors in juvenile cerebellum.

    PubMed

    Trigo, Federico F; Chat, Mireille; Marty, Alain

    2007-11-14

    Recent evidence indicates the presence of presynaptic GABA(A) receptors (GABA(A)Rs) in the axon domain of several classes of central neurons, including cerebellar basket and stellate cells. Here, we investigate the possibility that these receptors could be activated in the absence of electrical or chemical stimulation. We find that low concentrations of GABA increase the frequency of miniature GABAergic synaptic currents. Submaximal concentrations of a GABA(A)R blocker, gabazine, decrease both the miniature current frequency and the probability of evoked GABA release. Zolpidem, an agonist of the benzodiazepine binding site, and NO-711 (1-[2-[[(diphenylmethylene)imino]oxy]ethyl]-1,2,5,6-tetrahydro-3-pyridinecarboxylic acid hydrochloride), a blocker of GABA uptake, both increase the frequency of miniature currents. These effects occur up to postnatal day 14, but not later. Immunohistochemistry indicates the presence of alpha1-containing GABA(A)Rs in interneuron presynaptic terminals with a similar age dependence. We conclude that, under resting conditions, axonal GABA(A)Rs are significantly activated, that this activation results in enhanced GABA release, and that it can be augmented by increasing the affinity of GABA(A)Rs or reducing GABA uptake. Our findings suggest the existence of a positive-feedback mechanism involving presynaptic GABA(A)Rs that maintains a high release rate and a high local GABA concentration in the immature cerebellar network.

  20. Adaptation in sound localization: from GABA(B) receptor-mediated synaptic modulation to perception.

    PubMed

    Stange, Annette; Myoga, Michael H; Lingner, Andrea; Ford, Marc C; Alexandrova, Olga; Felmy, Felix; Pecka, Michael; Siveke, Ida; Grothe, Benedikt

    2013-12-01

    Across all sensory modalities, the effect of context-dependent neural adaptation can be observed at every level, from receptors to perception. Nonetheless, it has long been assumed that the processing of interaural time differences, which is the primary cue for sound localization, is nonadaptive, as its outputs are mapped directly onto a hard-wired representation of space. Here we present evidence derived from in vitro and in vivo experiments in gerbils indicating that the coincidence-detector neurons in the medial superior olive modulate their sensitivity to interaural time differences through a rapid, GABA(B) receptor-mediated feedback mechanism. We show that this mechanism provides a gain control in the form of output normalization, which influences the neuronal population code of auditory space. Furthermore, psychophysical tests showed that the paradigm used to evoke neuronal GABA(B) receptor-mediated adaptation causes the perceptual shift in sound localization in humans that was expected on the basis of our physiological results in gerbils.

  1. Downregulation of Parvalbumin at Cortical GABA Synapses Reduces Network Gamma Oscillatory Activity

    PubMed Central

    Volman, Vladislav; Behrens, M. Margarita; Sejnowski, Terrence J.

    2012-01-01

    Postmortem and functional imaging studies of patients with psychiatric disorders, including schizophrenia, are consistent with a dysfunction of interneurons leading to compromised inhibitory control of network activity. Parvalbumin (PV)-expressing, fast-spiking interneurons interacting with pyramidal neurons generate cortical gamma oscillations (30 – 80 Hz) that synchronize cortical activity during cognitive processing. In postmortem studies of schizophrenia patients, these interneurons show reduced PV and glutamic acid decarboxylase 67 (GAD67), an enzyme that synthesizes GABA, but the consequences of this downregulation are unclear. We developed a biophysically realistic and detailed computational model of a cortical circuit including asynchronous release from GABAergic interneurons to investigate how reductions in PV and GABA affect gamma oscillations induced by sensory stimuli. Networks with reduced GABA were disinhibited and had altered gamma oscillations in response to stimulation; PV-deficient GABA synapses had increased asynchronous release of GABA, which decreased the level of excitation and reduced gamma-band activity. Combined reductions of PV and GABA resulted in a diminished gamma-band oscillatory activity in response to stimuli, similar to that observed in schizophrenia patients. Our results suggest a mechanism by which reduced GAD67 and PV in fast-spiking interneurons may contribute to cortical dysfunction in schizophrenia and related psychiatric disorders. PMID:22159125

  2. Intracellular chloride ions regulate the time-course of GABA-mediated inhibitory synaptic transmission

    PubMed Central

    Houston, Catriona M.; Bright, Damian P.; Sivilotti, Lucia G; Beato, Marco; Smart, Trevor G.

    2009-01-01

    The time-dependent integration of excitatory and inhibitory synaptic currents is an important process for shaping the input-output profiles of individual excitable cells, and therefore the activity of neuronal networks. Here, we show that the decay time-course of GABAergic inhibitory synaptic currents is considerably faster when recorded with physiological internal Cl− concentrations than with symmetrical Cl− solutions. This effect of intracellular Cl− is due to a direct modulation of the GABAA receptor that is independent of the net direction of current flow through the ion channel. As a consequence, the time window during which GABAergic inhibition can counteract coincident excitatory inputs is much shorter, under physiological conditions, compared to that previously measured using high internal Cl−. This is expected to have implications for neuronal network excitability and neurodevelopment, and for our understanding of pathological conditions, such as epilepsy and chronic pain, where intracellular Cl− concentrations can be altered. PMID:19692617

  3. Depolarizing GABA/glycine synaptic events switch from excitation to inhibition during frequency increases

    NASA Astrophysics Data System (ADS)

    Branchereau, Pascal; Cattaert, Daniel; Delpy, Alain; Allain, Anne-Emilie; Martin, Elodie; Meyrand, Pierre

    2016-02-01

    By acting on their ionotropic chloride channel receptors, GABA and glycine represent the major inhibitory transmitters of the central nervous system. Nevertheless, in various brain structures, depolarizing GABAergic/glycinergic postsynaptic potentials (dGPSPs) lead to dual inhibitory (shunting) and excitatory components, the functional consequences of which remain poorly acknowledged. Indeed, the extent to which each component prevails during dGPSP is unclear. Understanding the mechanisms predicting the dGPSP outcome on neural network activity is therefore a major issue in neurobiology. By combining electrophysiological recordings of spinal embryonic mouse motoneurons and modelling study, we demonstrate that increasing the chloride conductance (gCl) favors inhibition either during a single dGPSP or during trains in which gCl summates. Finally, based on this summation mechanism, the excitatory effect of EPSPs is overcome by dGPSPs in a frequency-dependent manner. These results reveal an important mechanism by which dGPSPs protect against the overexcitation of neural excitatory circuits.

  4. Depolarizing GABA/glycine synaptic events switch from excitation to inhibition during frequency increases

    PubMed Central

    Branchereau, Pascal; Cattaert, Daniel; Delpy, Alain; Allain, Anne-Emilie; Martin, Elodie; Meyrand, Pierre

    2016-01-01

    By acting on their ionotropic chloride channel receptors, GABA and glycine represent the major inhibitory transmitters of the central nervous system. Nevertheless, in various brain structures, depolarizing GABAergic/glycinergic postsynaptic potentials (dGPSPs) lead to dual inhibitory (shunting) and excitatory components, the functional consequences of which remain poorly acknowledged. Indeed, the extent to which each component prevails during dGPSP is unclear. Understanding the mechanisms predicting the dGPSP outcome on neural network activity is therefore a major issue in neurobiology. By combining electrophysiological recordings of spinal embryonic mouse motoneurons and modelling study, we demonstrate that increasing the chloride conductance (gCl) favors inhibition either during a single dGPSP or during trains in which gCl summates. Finally, based on this summation mechanism, the excitatory effect of EPSPs is overcome by dGPSPs in a frequency-dependent manner. These results reveal an important mechanism by which dGPSPs protect against the overexcitation of neural excitatory circuits. PMID:26912194

  5. Diminished neurosteroid sensitivity of synaptic inhibition and altered location of the alpha4 subunit of GABA(A) receptors in an animal model of epilepsy.

    PubMed

    Sun, Chengsan; Mtchedlishvili, Zakaria; Erisir, Alev; Kapur, Jaideep

    2007-11-14

    In animal models of temporal lobe epilepsy (TLE), neurosteroid sensitivity of GABA(A) receptors on dentate granule cells (DGCs) is diminished; the molecular mechanism underlying this phenomenon remains unclear. The current study investigated a mechanism for loss of neurosteroid sensitivity of synaptic GABA(A) receptors in TLE. Synaptic currents recorded from DGCs of epileptic animals (epileptic DGCs) were less frequent, larger in amplitude, and less sensitive to allopregnanolone modulation than those recorded from DGCs of control animals (control DGCs). Synaptic currents recorded from epileptic DGCs were less sensitive to diazepam and had altered sensitivity to benzodiazepine inverse agonist RO 15-4513 (ethyl-8-azido-6-dihydro-5-methyl-6-oxo-4H-imidazo[1,5alpha][1,4]benzodiazepine-3-carboxylate) and furosemide than those recorded from control DGCs. Properties of synaptic currents recorded from epileptic DGCs appeared similar to those of recombinant receptors containing the alpha4 subunit. Expression of the alpha4 subunit and its colocalization with the synaptic marker GAD65 was increased in epileptic DGCs. Location of the alpha4 subunit in relation to symmetric (inhibitory) synapses on soma and dendrites of control and epileptic DGCs was examined with postembedding immunogold electron microscopy. The alpha4 immunogold labeling was present more commonly within the synapse in epileptic DGCs compared with control DGCs, in which the subunit was extrasynaptic. These studies demonstrate that, in epileptic DGCs, the neurosteroid modulation of synaptic currents is diminished and alpha4 subunit-containing receptors are present at synapses and participate in synaptic transmission. These changes may facilitate seizures in epileptic animals.

  6. Mitochondrial reactive oxygen species regulate the strength of inhibitory GABA-mediated synaptic transmission

    NASA Astrophysics Data System (ADS)

    Accardi, Michael V.; Daniels, Bryan A.; Brown, Patricia M. G. E.; Fritschy, Jean-Marc; Tyagarajan, Shiva K.; Bowie, Derek

    2014-01-01

    Neuronal communication imposes a heavy metabolic burden in maintaining ionic gradients essential for action potential firing and synaptic signalling. Although cellular metabolism is known to regulate excitatory neurotransmission, it is still unclear whether the brain’s energy supply affects inhibitory signalling. Here we show that mitochondrial-derived reactive oxygen species (mROS) regulate the strength of postsynaptic GABAA receptors at inhibitory synapses of cerebellar stellate cells. Inhibition is strengthened through a mechanism that selectively recruits α3-containing GABAA receptors into synapses with no discernible effect on resident α1-containing receptors. Since mROS promotes the emergence of postsynaptic events with unique kinetic properties, we conclude that newly recruited α3-containing GABAA receptors are activated by neurotransmitter released onto discrete postsynaptic sites. Although traditionally associated with oxidative stress in neurodegenerative disease, our data identify mROS as a putative homeostatic signalling molecule coupling cellular metabolism to the strength of inhibitory transmission.

  7. Angiotensin II attenuates synaptic GABA release and excites paraventricular-rostral ventrolateral medulla output neurons.

    PubMed

    Li, De-Pei; Pan, Hui-Lin

    2005-06-01

    The hypothalamic paraventricular nucleus (PVN) neurons regulate sympathetic outflow through projections to the spinal cord and rostral ventrolateral medulla (RVLM). Although the PVN-RVLM pathway is important for the action of brain angiotensin II (Ang II) on autonomic control, the cellular mechanisms involved are not fully known. In this study, we examined the effect of Ang II on the excitability and synaptic inputs to RVLM-projecting PVN neurons. PVN neurons were retrogradely labeled by FluoSpheres injected into the RVLM of rats. Whole-cell patch-clamp recordings were performed on labeled PVN neurons in brain slices. Ang II significantly increased the firing rate of PVN neurons from 3.63 +/- 0.65 to 6.10 +/- 0.75 Hz (P < 0.05, n = 9), and such an effect was eliminated by an AT(1) receptor antagonist, losartan. Furthermore, inclusion of a G protein inhibitor, guanosine 5'-O-(2-thiodiphosphate, in the pipette internal solution did not alter the excitatory effect of Ang II on labeled PVN neurons. Application of 0.5 to 5 microM Ang II significantly decreased the amplitude of evoked GABAergic inhibitory postsynaptic currents (IPSCs) in a dose-dependent manner. Also, 2 microM Ang II significantly decreased the frequency of miniature IPSCs (mIPSCs) from 3.89 +/- 0.84 to 2.06 +/- 0.45 Hz (P < 0.05, n = 11), but did not change the amplitude and decay time constant of mIPSCs. By contrast, Ang II had no significant effect on glutamatergic excitatory postsynaptic currents at the concentrations that inhibited IPSCs. In addition, Ang II failed to excite PVN neurons in the presence of bicuculline. Collectively, this study provides important new information that Ang II excites RVLM-projecting PVN neurons through attenuation of GABAergic synaptic inputs.

  8. Low nanomolar GABA effects at extrasynaptic α4β1/β3δ GABA(A) receptor subtypes indicate a different binding mode for GABA at these receptors.

    PubMed

    Karim, Nasiara; Wellendorph, Petrine; Absalom, Nathan; Bang, Line Haunstrup; Jensen, Marianne Lerbech; Hansen, Maja Michelle; Lee, Ho Joon; Johnston, Graham A R; Hanrahan, Jane R; Chebib, Mary

    2012-08-15

    Ionotropic GABA(A) receptors are a highly heterogenous population of receptors assembled from a combination of multiple subunits. The aims of this study were to characterize the potency of GABA at human recombinant δ-containing extrasynaptic GABA(A) receptors expressed in Xenopus oocytes using the two-electrode voltage clamp technique, and to investigate, using site-directed mutagenesis, the molecular determinants for GABA potency at α4β3δ GABA(A) receptors. α4/δ-Containing GABA(A) receptors displayed high sensitivity to GABA, with mid-nanomolar concentrations activating α4β1δ (EC₅₀=24 nM) and α4β3δ (EC₅₀=12 nM) receptors. In the majority of oocytes expressing α4β3δ subtypes, GABA produced a biphasic concentration-response curve, and activated the receptor with low and high concentrations (EC₅₀(1)=16 nM; EC₅₀(2)=1.2 μM). At α4β2δ, GABA had low micromolar activity (EC₅₀=1 μM). An analysis of 10 N-terminal singly mutated α4β3δ receptors shows that GABA interacts with amino acids different to those reported for α1β2γ2 GABA(A) receptors. Residues Y205 and R207 of the β3-subunit significantly affected GABA potency, while the residue F71 of the α4- and the residue Y97 of the β3-subunit did not significantly affect GABA potency. Mutating the residue R218 of the δ-subunit, equivalent to the GABA binding residue R207 of the β2-subunit, reduced the potency of GABA by 670-fold, suggesting a novel GABA binding site at the δ-subunit interface. Taken together, GABA may have different binding modes for extrasynaptic δ-containing GABA(A) receptors compared to their synaptic counterparts.

  9. Simulated GABA synaptic input and L-type calcium channels form functional microdomains in hypothalamic gonadotropin-releasing hormone neurons.

    PubMed

    Hemond, Peter J; O'Boyle, Michael P; Roberts, Carson B; Delgado-Reyes, Alfonso; Hemond, Zoe; Suter, Kelly J

    2012-06-27

    Hypothalamic gonadotropin-releasing hormone (GnRH) neurons integrate the multiple internal and external cues that regulate sexual reproduction. In contrast to other neurons that exhibit extensive dendritic arbors, GnRH neurons usually have a single dendrite with relatively little branching. This largely precludes the integration strategy in which a single dendritic branch serves as a unit of integration. In the present study, we identify a gradient in L-type calcium channels in dendrites of mouse GnRH neurons and its interaction with GABAergic and glutamatergic inputs. Higher levels of L-type calcium channels are in somata/proximal dendrites (i.e., 0-26 μm) and distal dendrites (∼130 μm dendrite length), but intervening midlengths of dendrite (∼27-130 μm) have reduced L-type calcium channels. Using uncaging of GABA, there is a decreasing GABAergic influence along the dendrite and the impact of GABA(A) receptors is dependent on activation of L-type calcium channels. This results in amplification of proximal GABAergic signals and attenuation of distal dendritic signals. Most interestingly, the intervening dendritic regions create a filter through which only relatively high-amplitude, low-frequency GABAergic signaling to dendrites elicits action potentials. The findings of the present study suggest that GnRH dendrites adopt an integration strategy whereby segments of single nonbranching GnRH dendrites create functional microdomains and thus serve as units of integration.

  10. Laser photolysis of DPNI-GABA, a tool for investigating the properties and distribution of GABA receptors and for silencing neurons in situ.

    PubMed

    Trigo, Federico F; Papageorgiou, George; Corrie, John E T; Ogden, David

    2009-07-30

    Laser photolysis to release GABA at precisely defined times and locations permits investigation of the distribution of functional GABA(A) receptors in neuronal compartments, the activation kinetics and pharmacology of GABA(A) receptors in situ, and the role of individual neurons in neural circuits by selective silencing with low GABA concentrations. We describe the experimental evaluation and applications of a new nitroindoline-caged GABA, DPNI-GABA, modified to minimize the pharmacological interference commonly found with caged GABA reagents, but retaining the advantages of nitroindoline cages. Unlike the 5-methoxycarbonylmethyl-7-nitroindolinyl-GABA tested previously, DPNI-GABA inhibited GABA(A) receptors with much lower affinity, reducing peak GABA-evoked responses with an IC(50) of approximately 0.5 mM. Most importantly, the kinetics of receptor activation, determined as 10-90% rise-times, were comparable to synaptic events and were little affected by DPNI-GABA present at 1mM concentration, permitting photolysis of DPNI-GABA to mimic synaptic activation of GABA(A) receptors. With a laser spot of 1 microm applied to cerebellar molecular layer interneurons, the spatial resolution of uncaging DPNI-GABA in dendrites was estimated as 2 microm laterally and 7.5 microm focally. Finally, at low DPNI-GABA concentration, photorelease restricted to the area of the soma suppressed spiking in single Purkinje neurons or molecular layer interneurons for periods controlled by the flash intensity and duration. DPNI-GABA has properties better adapted for fast kinetic studies with laser photolysis at GABA(A) receptors than previously reported caged GABA reagents, and can be used in experiments where spatial resolution is determined by the dimensions of the laser light spot.

  11. Synaptic relationships between GABA-immunoreactive neurons and an identified uniglomerular projection neuron in the antennal lobe of Periplaneta americana: a double-labeling electron microscopic study.

    PubMed

    Malun, D

    1991-01-01

    Two types of central neurons in the antennal lobe of the American cockroach Periplaneta americana were labeled with a combination of two specific markers. Their synaptic contacts were characterized and their distribution on the neurons examined. A uniglomerular pheromone-sensitive projection neuron with dendritic arbor in the male-specific macroglomerulus (attractant neuron) was characterized physiologically by intracellular recording and then filled with biocytin, which was converted to a marker for this individual neuron by a preembedding procedure. In a postembedding procedure local, multiglomerular interneurons were marked by immunogold labeling of GABA. Two kinds of synaptic contacts were found on the attractant neuron. (i) Input synapses from GABA-immunoreactive profiles. There were many of these, which (together with results of previous studies) suggests that local interneurons mediate polysynaptic transmission from antennal receptor fibers to the projection neuron. (ii) Output synapses onto GABA-immunoreactive profiles and onto non-identified neurons. These contacts indicate that signals generated by the projection neurons in a given glomerulus are passed back to multiglomerular interneurons and hence are also transmitted to other glomeruli.

  12. GABA-shunt enzymes activity in GH3 cells with reduced level of PMCA2 or PMCA3 isoform

    SciTech Connect

    Kowalski, Antoni

    2011-08-12

    Highlights: {yields} Suppression of PMCA2 or PMCA3 slows down proliferation of GH3 cells. {yields} PMCA2 suppression lowers the activity of GABA-shunt enzymes. {yields} PMCA3 suppression increases the expression of glutamate decarboxylase 65. {yields} PMCA2 and PMCA3 function appears to be linked to regulation of GABA metabolism. -- Abstract: GABA ({gamma}-aminobutyric acid) is important neurotransmitter and regulator of endocrine functions. Its metabolism involves three enzymes: glutamate decarboxylase (GAD65 and GAD67), GABA aminotransferase (GABA-T) and succinic semialdehyde dehydrogenase (SSADH). As many cellular processes GABA turnover can depend on calcium homeostasis, which is maintained by plasma membrane calcium ATPases (PMCAs). In excitable cells PMCA2 and PMCA3 isoforms are particularly important. In this study we focused on GABA-metabolizing enzymes expression and activity in rat anterior pituitary GH3 cells with suppressed expression of PMCA2 or PMCA3. We observed that PMCA3-reduced cells have increased GAD65 expression. Suppression of PMCA2 caused a decrease in total GAD and GABA-T activity. These results indicate that PMCA2 and PMCA3 presence may be an important regulatory factor in GABA metabolism. Results suggest that PMCA2 and PMCA3 function is rather related to regulation of GABA synthesis and degradation than supplying cells with metabolites, which can be potentially energetic source.

  13. SDF-1α/CXCL12 enhances GABA and glutamate synaptic activity at serotonin neurons in the rat dorsal raphe nucleus

    PubMed Central

    Heinisch, Silke; Kirby, Lynn G.

    2009-01-01

    Summary The serotonin (5-hydroxytryptamine; 5-HT) system has a well-characterized role in depression. Recent reports describe comorbidities of mood-immune disorders, suggesting an immunological component may contribute to the pathogenesis of depression as well. Chemokines, immune proteins which mediate leukocyte trafficking, and their receptors are widely distributed in the brain, mediate neuronal patterning, and modulate various neuropathologies. The purpose of this study was to investigate the neuroanatomical relationship and functional impact of the chemokine stromal cell-derived factor-1α/CXCL12 and its receptor, CXCR4, on the serotonin dorsal raphe nucleus (DRN) system in the rat using anatomical and electrophysiological techniques. Immunohistochemical analysis indicates that over 70% of 5-HT neurons colocalize with CXCL12 and CXCR4. At a subcellular level, CXCL12 localizes throughout the cytoplasm whereas CXCR4 concentrates to the outer membrane and processes of 5-HT neurons. CXCL12 and CXCR4 also colocalize on individual DRN cells. Furthermore, electrophysiological studies demonstrate CXCL12 depolarization of 5-HT neurons indirectly via glutamate synaptic inputs. CXCL12 also enhances the frequency of spontaneous inhibitory and excitatory postsynaptic currents (sIPSC and sEPSC). CXCL12 concentration-dependently increases evoked IPSC amplitude and decreases evoked IPSC paired-pulse ratio selectively in 5-HT neurons, effects blocked by the CXCR4 antagonist AMD3100. These data indicate presynaptic enhancement of GABA and glutamate release at 5-HT DRN neurons by CXCL12. Immunohistochemical analysis further shows CXCR4 localization to DRN GABA neurons, providing an anatomical basis for CXCL12 effects on GABA release. Thus, CXCL12 indirectly modulates 5-HT neurotransmission via GABA and glutamate synaptic afferents. Future therapies targeting CXCL12 and other chemokines may treat serotonin related mood disorders, particularly depression experienced by immune

  14. Pregabalin reduces the release of synaptic vesicles from cultured hippocampal neurons.

    PubMed

    Micheva, Kristina D; Taylor, Charles P; Smith, Stephen J

    2006-08-01

    Pregabalin [S-[+]-3-isobutylGABA or (S)-3-(aminomethyl)-5-methylhexanoic acid, Lyrica] is an anticonvulsant and analgesic medication that is both structurally and pharmacologically related to gabapentin (Neurontin; Pfizer Inc., New York, NY). Previous studies have shown that pregabalin reduces the release of neurotransmitters in several in vitro preparations, although the molecular details of these effects are less clear. The present study was performed using living cultured rat hippocampal neurons with the synaptic vesicle fluorescent dye probe FM4-64 to determine details of the action of pregabalin to reduce neurotransmitter release. Our results indicate that pregabalin treatment, at concentrations that are therapeutically relevant, slightly but significantly reduces the emptying of neurotransmitter vesicles from presynaptic sites in living neurons. Dye release is reduced in both glutamic acid decarboxylase (GAD)-immunoreactive and GAD-negative (presumed glutamatergic) synaptic terminals. Furthermore, both calcium-dependent release and hyperosmotic (calcium-independent) dye release are reduced by pregabalin. The effects of pregabalin on dye release are masked in the presence of l-isoleucine, consistent with the fact that both of these compounds have a high binding affinity to the calcium channel alpha(2)-delta protein. The effect of pregabalin is not apparent in the presence of an N-methyl-d-aspartate (NMDA) antagonist [D(-)-2-amino-5-phosphonopentanoic acid], suggesting that pregabalin action depends on NMDA receptor activation. Finally, the action of pregabalin on dye release is most apparent before and early during a train of electrical stimuli when vesicle release preferentially involves the readily releasable pool.

  15. Parasitoid wasp sting: a cocktail of GABA, taurine, and beta-alanine opens chloride channels for central synaptic block and transient paralysis of a cockroach host.

    PubMed

    Moore, Eugene L; Haspel, Gal; Libersat, Frederic; Adams, Michael E

    2006-07-01

    The wasp Ampulex compressa injects venom directly into the prothoracic ganglion of its cockroach host to induce a transient paralysis of the front legs. To identify the biochemical basis for this paralysis, we separated venom components according to molecular size and tested fractions for inhibition of synaptic transmission at the cockroach cercal-giant synapse. Only fractions in the low molecular weight range (<2 kDa) caused synaptic block. Dabsylation of venom components and analysis by HPLC and MALDI-TOF-MS revealed high levels of GABA (25 mM), and its receptor agonists beta-alanine (18 mM), and taurine (9 mM) in the active fractions. Each component produces transient block of synaptic transmission at the cercal-giant synapse and block of efferent motor output from the prothoracic ganglion, which mimics effects produced by injection of whole venom. Whole venom evokes picrotoxin-sensitive chloride currents in cockroach central neurons, consistent with a GABAergic action. Together these data demonstrate that Ampulex utilizes GABAergic chloride channel activation as a strategy for central synaptic block to induce transient and focal leg paralysis in its host.

  16. GABA(B) receptor agonist only reduces ethanol drinking in light-drinking mice.

    PubMed

    Villas Boas, Gustavo Roberto; Zamboni, Camila Gadens; Peretti, Murilo Calvo; Correia, Diego; Rueda, André Veloso Lima; Camarini, Rosana; Brunialti-Godard, Ana Lucia; Boerngen-Lacerda, Roseli

    2012-08-01

    Baclofen, a GABA(B) agonist, reduces ethanol intake in animals and humans, but the contrary or no effect was also reported. Our previous study demonstrated that mice characterized as "loss of control over ethanol intake" had different Gabbr1 and Gabbr2 transcription levels, which express, respectively, the GABA(B1) and GABA(B2) subunits in brain areas related to addictive behavior. In the present study, we tested baclofen on ethanol intake in mice exposed to the free-choice paradigm. Adult male Swiss mice, individually housed, had free access to three bottles: ethanol (5% and 10%) and water. The protocol had four phases: acquisition (AC, 10 weeks), withdrawal (W, 4 cycles during 2 weeks of 2 day-free-choice and 2 day-only-water), reexposure (RE, 2 weeks), and adulteration of ethanol solutions with quinine (AD, 2 weeks). Mice characterized as "loss of control" (A, n=11, preference for ethanol in AC and maintenance of ethanol intake levels in AD), heavy (H, n=11, preference for ethanol in AC and reduction of ethanol intake levels in AD), and light (L, n=16, preference for water in all phases) drinkers were randomly distributed into two subgroups receiving either intraperitoneal injections of all doses of baclofen (1.25, 2.5, and 5.0mg/kg, given each dose twice in consecutive days) or saline, being exposed to free-choice. Fluid consumption was measured 24h later. Baclofen reduced ethanol intake in group L. In group H a reduction compared to AC was observed. Group A maintained their high ethanol intake even after baclofen treatment. Activation of the GABA(B) receptor depends on the precise balance between the GABA(B1) and GABA(B2) subunits, so the disproportionate transcription levels, we reported in group A, could explain this lack of response to baclofen. These data highlight the importance to test baclofen in individuals with different ethanol drinking profiles, including humans. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Ethanol, not metabolized in brain, significantly reduces brain metabolism, probably via specific GABA(A) receptors

    PubMed Central

    Rae, Caroline D.; Davidson, Joanne E.; Maher, Anthony D.; Rowlands, Benjamin D.; Kashem, Mohammed A.; Nasrallah, Fatima A.; Rallapalli, Sundari K.; Cook, James M; Balcar, Vladimir J.

    2014-01-01

    Ethanol is a known neuromodulatory agent with reported actions at a range of neurotransmitter receptors. Here, we used an indirect approach, measuring the effect of alcohol on metabolism of [3-13C]pyruvate in the adult Guinea pig brain cortical tissue slice and comparing the outcomes to those from a library of ligands active in the GABAergic system as well as studying the metabolic fate of [1,2-13C]ethanol. Ethanol (10, 30 and 60 mM) significantly reduced metabolic flux into all measured isotopomers and reduced all metabolic pool sizes. The metabolic profiles of these three concentrations of ethanol were similar and clustered with that of the α4β3δ positive allosteric modulator DS2 (4-Chloro-N-[2-(2-thienyl)imidazo[1,2a]-pyridin-3-yl]benzamide). Ethanol at a very low concentration (0.1 mM) produced a metabolic profile which clustered with those from inhibitors of GABA uptake, and ligands showing affinity for α5, and to a lesser extent, α1-containing GABA(A)R. There was no measureable metabolism of [1,2-13C]ethanol with no significant incorporation of 13C from [1,2-13C]ethanol into any measured metabolite above natural abundance, although there were measurable effects on total metabolite sizes similar to those seen with unlabeled ethanol. The reduction in metabolism seen in the presence of ethanol is therefore likely to be due to its actions at neurotransmitter receptors, particularly α4β3δ receptors, and not because ethanol is substituting as a substrate or because of the effects of ethanol catabolites acetaldehyde or acetate. We suggest that the stimulatory effects of very low concentrations of ethanol are due to release of GABA via GAT1 and the subsequent interaction of this GABA with local α5-containing, and to a lesser extent, α1-containing GABA(A)R. PMID:24313287

  18. Differences between magnetoencephalographic (MEG) spectral profiles of drugs acting on GABA at synaptic and extrasynaptic sites: a study in healthy volunteers.

    PubMed

    Nutt, David; Wilson, Sue; Lingford-Hughes, Anne; Myers, Jim; Papadopoulos, Andreas; Muthukumaraswamy, Suresh

    2015-01-01

    A range of medications target different aspects of the GABA system; understanding their effects is important to inform further drug development. Effects on the waking EEG comparing these mechanisms have not been reported; in this study we compare the effects on resting MEG spectra of the benzodiazepine receptor agonist zolpidem, the delta sub-unit selective agonist gaboxadol (also known as THIP) and the GABA reuptake inhibitor tiagabine. These were two randomised, single-blind, placebo-controlled, crossover studies in healthy volunteers, one using zolpidem 10 mg, gaboxadol 15 mg and placebo, and the other tiagabine 15 mg and placebo. Whole head MEG recordings and individual MEG spectra were divided into frequency bands. Baseline spectra were subtracted from each post-intervention spectra and then differences between intervention and placebo compared. After zolpidem there were significant increases in beta frequencies and reduction in alpha frequency power; after gaboxadol and tiagabine there were significant increases in power at all frequencies up to beta. Enhancement of tonic inhibition via extrasynaptic receptors by gaboxadol gives rise to a very different MEG signature from the synaptic action of zolpidem. Tiagabine theoretically can affect both types of receptor; from these MEG results it is likely that the latter is the more prominent effect here.

  19. Phasic, Nonsynaptic GABA-A Receptor-Mediated Inhibition Entrains Thalamocortical Oscillations

    PubMed Central

    Rovó, Zita; Mátyás, Ferenc; Barthó, Péter; Slézia, Andrea; Lecci, Sandro; Pellegrini, Chiara; Astori, Simone; Dávid, Csaba; Hangya, Balázs

    2014-01-01

    GABA-A receptors (GABA-ARs) are typically expressed at synaptic or nonsynaptic sites mediating phasic and tonic inhibition, respectively. These two forms of inhibition conjointly control various network oscillations. To disentangle their roles in thalamocortical rhythms, we focally deleted synaptic, γ2 subunit-containing GABA-ARs in the thalamus using viral intervention in mice. After successful removal of γ2 subunit clusters, spontaneous and evoked GABAergic synaptic currents disappeared in thalamocortical cells when the presynaptic, reticular thalamic (nRT) neurons fired in tonic mode. However, when nRT cells fired in burst mode, slow phasic GABA-AR-mediated events persisted, indicating a dynamic, burst-specific recruitment of nonsynaptic GABA-ARs. In vivo, removal of synaptic GABA-ARs reduced the firing of individual thalamocortical cells but did not abolish slow oscillations or sleep spindles. We conclude that nonsynaptic GABA-ARs are recruited in a phasic manner specifically during burst firing of nRT cells and provide sufficient GABA-AR activation to control major thalamocortical oscillations. PMID:24849349

  20. Reduced Synaptic Vesicle Recycling during Hypoxia in Cultured Cortical Neurons

    PubMed Central

    Fedorovich, Sergei; Hofmeijer, Jeannette; van Putten, Michel J. A. M.; le Feber, Joost

    2017-01-01

    Improvement of neuronal recovery in the ischemic penumbra, an area around the core of a brain infarct with some remaining perfusion, has a large potential for the development of therapy against acute ischemic stroke. However, mechanisms that lead to either recovery or secondary damage in the penumbra largely remain unclear. Recent studies in cultured networks of cortical neurons showed that failure of synaptic transmission (referred to as synaptic failure) is a critical factor in the penumbral area, but the mechanisms that lead to synaptic failure are still under investigation. Here we used a Styryl dye, FM1-43, to quantify endocytosis and exocytosis in cultures of rat cortical neurons under normoxic and hypoxic conditions. Hypoxia in cultured cortical networks rapidly depressed endocytosis and, to a lesser extent, exocytosis. These findings support electrophysiological findings that synaptic failure occurs quickly after the induction of hypoxia, and confirms that the failing processes are at least in part presynaptic. PMID:28261063

  1. Electrostimulation to reduce synaptic scaling driven progression of Alzheimer's disease

    PubMed Central

    Rowan, Mark S.; Neymotin, Samuel A.; Lytton, William W.

    2014-01-01

    Cell death and synapse dysfunction are two likely causes of cognitive decline in AD. As cells die and synapses lose their drive, remaining cells suffer an initial decrease in activity. Neuronal homeostatic synaptic scaling then provides a feedback mechanism to restore activity. This homeostatic mechanism is believed to sense levels of activity-dependent cytosolic calcium within the cell and to adjust neuronal firing activity by increasing the density of AMPA synapses at remaining synapses to achieve balance. The scaling mechanism increases the firing rates of remaining cells in the network to compensate for decreases in network activity. However, this effect can itself become a pathology, as it produces increased imbalance between excitatory and inhibitory circuits, leading to greater susceptibility to further cell loss via calcium-mediated excitotoxicity. Here, we present a mechanistic explanation of how directed brain stimulation might be expected to slow AD progression based on computational simulations in a 470-neuron biomimetic model of a neocortical column. The simulations demonstrate that the addition of low-intensity electrostimulation (neuroprosthesis) to a network undergoing AD-like cell death can raise global activity and break this homeostatic-excitotoxic cascade. The increase in activity within the remaining cells in the column results in lower scaling-driven AMPAR upregulation, reduced imbalances in excitatory and inhibitory circuits, and lower susceptibility to ongoing damage. PMID:24765074

  2. Electrostimulation to reduce synaptic scaling driven progression of Alzheimer's disease.

    PubMed

    Rowan, Mark S; Neymotin, Samuel A; Lytton, William W

    2014-01-01

    Cell death and synapse dysfunction are two likely causes of cognitive decline in AD. As cells die and synapses lose their drive, remaining cells suffer an initial decrease in activity. Neuronal homeostatic synaptic scaling then provides a feedback mechanism to restore activity. This homeostatic mechanism is believed to sense levels of activity-dependent cytosolic calcium within the cell and to adjust neuronal firing activity by increasing the density of AMPA synapses at remaining synapses to achieve balance. The scaling mechanism increases the firing rates of remaining cells in the network to compensate for decreases in network activity. However, this effect can itself become a pathology, as it produces increased imbalance between excitatory and inhibitory circuits, leading to greater susceptibility to further cell loss via calcium-mediated excitotoxicity. Here, we present a mechanistic explanation of how directed brain stimulation might be expected to slow AD progression based on computational simulations in a 470-neuron biomimetic model of a neocortical column. The simulations demonstrate that the addition of low-intensity electrostimulation (neuroprosthesis) to a network undergoing AD-like cell death can raise global activity and break this homeostatic-excitotoxic cascade. The increase in activity within the remaining cells in the column results in lower scaling-driven AMPAR upregulation, reduced imbalances in excitatory and inhibitory circuits, and lower susceptibility to ongoing damage.

  3. Reduced synaptic activity precedes synaptic stripping in vagal motoneurons after axotomy.

    PubMed

    Yamada, Jun; Hayashi, Yoshinori; Jinno, Shozo; Wu, Zhou; Inoue, Kazuhide; Kohsaka, Shinichi; Nakanishi, Hiroshi

    2008-10-01

    Activated microglia, which spread on the motor neurons following nerve injury, engage in the displacement of detached afferent synaptic boutons from the surface of regenerating motor neurons. This phenomenon is known as "synaptic stripping." The present study attempted to examine whether changes in the synaptic inputs after motor nerve injury correlated with the microglial attachment to the dorsal motor neurons of the vagus (DMV). DMV neurons in Wistar rats could survive after nerve injury, whereas most of injured DMV neurons in the C57BL/6 mice died. At 2 days after nerve injury, a significant decrease was observed in the frequencies of both spontaneous and miniature EPSCs and IPSCs recorded from DMV neurons in the slice preparation but not from the mechanically dissociated neurons in the Wistar rats. At this stage, no direct apposition of microglia on the injured neurons was observed. High-K(+) stimulation restored their frequencies to control levels. Furthermore, PPADS and DPCPX, antagonists of P2 and adenosine receptors, respectively, also stimulated the recovery of their frequencies. In contrast, no significant change was detected in the spontaneous EPSCs frequency recorded from the severely injured DMV neurons in the slice preparation of the C57BL/6 mice. These observations strongly suggest that presynaptic inhibition through glia-derived ATP and adenosine, thus precedes synaptic stripping in regenerating DMV neurons following nerve injury.

  4. GABA transporter deficiency causes tremor, ataxia, nervousness, and increased GABA-induced tonic conductance in cerebellum.

    PubMed

    Chiu, Chi-Sung; Brickley, Stephen; Jensen, Kimmo; Southwell, Amber; Mckinney, Sheri; Cull-Candy, Stuart; Mody, Istvan; Lester, Henry A

    2005-03-23

    GABA transporter subtype 1 (GAT1) knock-out (KO) mice display normal reproduction and life span but have reduced body weight (female, -10%; male, -20%) and higher body temperature fluctuations in the 0.2-1.5/h frequency range. Mouse GAT1 (mGAT1) KO mice exhibit motor disorders, including gait abnormality, constant 25-32 Hz tremor, which is aggravated by flunitrazepam, reduced rotarod performance, and reduced locomotor activity in the home cage. Open-field tests show delayed exploratory activity, reduced rearing, and reduced visits to the central area, with no change in the total distance traveled. The mGAT1 KO mice display no difference in acoustic startle response but exhibit a deficiency in prepulse inhibition. These open-field and prepulse inhibition results suggest that the mGAT1 KO mice display mild anxiety or nervousness. The compromised GABA uptake in mGAT1 KO mice results in an increased GABA(A) receptor-mediated tonic conductance in both cerebellar granule and Purkinje cells. The reduced rate of GABA clearance from the synaptic cleft is probably responsible for the slower decay of spontaneous IPSCs in cerebellar granule cells. There is little or no compensatory change in other proteins or structures related to GABA transmission in the mGAT1 KO mice, including GAT1-independent GABA uptake, number of GABAergic interneurons, and GABA(A)-, vesicular GABA transporter-, GAD65-, and GAT3-immunoreactive structures in cerebellum or hippocampus. Therefore, the excessive extracellular GABA present in mGAT1 KO mice results in behaviors that partially phenocopy the clinical side effects of tiagabine, suggesting that these side effects are inherent to a therapeutic strategy that targets the widely expressed GAT1 transporter system.

  5. GABBR1 and SLC6A1, two genes involved in modulation of GABA synaptic transmission influence risk for alcoholism; results from three ethnically diverse populations

    PubMed Central

    Enoch, Mary-Anne; Hodgkinson, Colin A.; Shen, Pei-Hong; Gorodetsky, Elena; Marietta, Cheryl A.; Roy, Alex; Goldman, David

    2015-01-01

    Background Animal and human studies indicate that GABBR1, encoding the GABAB1 receptor subunit, and SLC6A1, encoding the neuronal GABA transporter GAT1, play a role in addiction by modulating synaptic GABA. Therefore variants in these genes might predict risk/resilience for alcoholism. Methods This study included three populations that differed by ethnicity and alcoholism phenotype: African American (AA) men: 401 treatment-seeking inpatients with single/comorbid diagnoses of alcohol and drug dependence, 193 controls; Finnish Caucasian men: 159 incarcerated alcoholics, half with comorbid ASPD, 181 controls; a community sample of Plains Indian (PI) men and women: 239 alcoholics, 178 controls. Seven GABBR1 tag SNPs were genotyped in the AA and Finnish samples; rs29220 was genotyped in the PI for replication. Also, a uniquely African, functional SLC6A1 insertion promoter polymorphism (IND) was genotyped in the AAs. Results We found a significant and congruent association between GABBR1 rs29220 and alcoholism in all three populations. The major genotype (heterozygotes in AAs, Finns) and the major allele in PIs were significantly more common in alcoholics. Moreover, SLC6A1 IND was more abundant in controls, i.e. the major genotype predicted alcoholism. An analysis of combined GABBR1 rs29220 and SLC6A1 IND genotypes showed that rs29220 heterozygotes, irrespective of their IND status, had an increased risk for alcoholism whereas carriers of the IND allele and either rs29220 homozygote were more resilient. Conclusions Our results show that with both GABBR1 and SLC6A1, the minor genotypes/alleles were protective against risk for alcoholism. Finally, GABBR1 rs29220 might predict treatment response/adverse effects for baclofen, a GABAB receptor agonist. PMID:26727527

  6. GABBR1 and SLC6A1, Two Genes Involved in Modulation of GABA Synaptic Transmission, Influence Risk for Alcoholism: Results from Three Ethnically Diverse Populations.

    PubMed

    Enoch, Mary-Anne; Hodgkinson, Colin A; Shen, Pei-Hong; Gorodetsky, Elena; Marietta, Cheryl A; Roy, Alec; Goldman, David

    2016-01-01

    Animal and human studies indicate that GABBR1, encoding the GABAB1 receptor subunit, and SLC6A1, encoding the neuronal gamma-aminobutyric acid (GABA) transporter GAT1, play a role in addiction by modulating synaptic GABA. Therefore, variants in these genes might predict risk/resilience for alcoholism. This study included 3 populations that differed by ethnicity and alcoholism phenotype: African American (AA) men: 401 treatment-seeking inpatients with single/comorbid diagnoses of alcohol and drug dependence, 193 controls; Finnish Caucasian men: 159 incarcerated alcoholics, half with comorbid antisocial personality disorder, 181 controls; and a community sample of Plains Indian (PI) men and women: 239 alcoholics, 178 controls. Seven GABBR1 tag single nucleotide polymorphisms were genotyped in the AA and Finnish samples; rs29220 was genotyped in the PI for replication. Also, a uniquely African, functional SLC6A1 insertion promoter polymorphism (IND) was genotyped in the AAs. We found a significant and congruent association between GABBR1 rs29220 and alcoholism in all 3 populations. The major genotype (heterozygotes in AAs, Finns) and the major allele in PIs were significantly more common in alcoholics. Moreover, SLC6A1 IND was more abundant in controls, that is, the major genotype predicted alcoholism. An analysis of combined GABBR1 rs29220 and SLC6A1 IND genotypes showed that rs29220 heterozygotes, irrespective of their IND status, had an increased risk for alcoholism, whereas carriers of the IND allele and either rs29220 homozygote were more resilient. Our results show that with both GABBR1 and SLC6A1, the minor genotypes/alleles were protective against risk for alcoholism. Finally, GABBR1 rs29220 might predict treatment response/adverse effects for baclofen, a GABAB receptor agonist. Copyright © 2016 by the Research Society on Alcoholism. This article has been contributed to by US Government employees and their work is in the public domain in the USA.

  7. Acupuncture reduces relapse to cocaine-seeking behavior via activation of GABA neurons in the ventral tegmental area.

    PubMed

    Jin, Wyju; Kim, Min Sun; Jang, Eun Young; Lee, Jun Yeon; Lee, Jin Gyeom; Kim, Hong Yu; Yoon, Seong Shoon; Lee, Bong Hyo; Chang, Suchan; Kim, Jae Hyo; Choi, Kwang H; Koo, Ho; Gwak, Young Seob; Steffensen, Scott C; Ryu, Yeon-Hee; Kim, Hee Young; Yang, Chae Ha

    2017-03-07

    There is growing public interest in alternative approaches to addiction treatment and scientific interest in elucidating the neurobiological underpinnings of acupuncture. Our previous studies showed that acupuncture at a specific Shenmen (HT7) points reduced dopamine (DA) release in the nucleus accumbens (NAc) induced by drugs of abuse. The present study was carried out to evaluate the effects of HT7 acupuncture on γ-aminobutyric acid (GABA) neuronal activity in the ventral tegmental area (VTA) and the reinstatement of cocaine-seeking behavior. Using microdialysis and in vivo single-unit electrophysiology, we evaluated the effects of HT7 acupuncture on VTA GABA and NAc DA release and VTA GABA neuronal activity in rats. Using a within-session reinstatement paradigm in rats self-administering cocaine, we evaluated the effects of HT7 stimulation on cocaine-primed reinstatement. Acupuncture at HT7 significantly reduced cocaine suppression of GABA release and GABA neuron firing rates in the VTA. HT7 acupuncture attenuated cocaine-primed reinstatement, which was blocked by VTA infusions of the selective GABAB receptor antagonist 2-hydroxysaclofen. HT7 stimulation significantly decreased acute cocaine-induced DA release in the NAc, which was also blocked by 2-hydroxysaclofen. HT7 acupuncture also attenuated cocaine-induced sensitization of extracellular DA levels in the NAc. Moreover, HT7 acupuncture reduced both locomotor activity and neuronal activation in the NAc induced by acute cocaine in a needle-penetration depth-dependent fashion. These results suggest that acupuncture may suppress cocaine-induced DA release in the NAc and cocaine-seeking behavior through activation of VTA GABA neurons. Acupuncture may be an effective therapy to reduce cocaine relapse by enhancing GABAergic inhibition in the VTA.

  8. Conditional Knock-Out of Vesicular GABA Transporter Gene from Starburst Amacrine Cells Reveals the Contributions of Multiple Synaptic Mechanisms Underlying Direction Selectivity in the Retina

    PubMed Central

    Pei, Zhe; Chen, Qiang; Koren, David; Giammarinaro, Benno; Acaron Ledesma, Hector

    2015-01-01

    Direction selectivity of direction-selective ganglion cells (DSGCs) in the retina results from patterned excitatory and inhibitory inputs onto DSGCs during motion stimuli. The inhibitory inputs onto DSGCs are directionally tuned to the antipreferred (null) direction and therefore potently suppress spiking during motion in the null direction. However, whether direction-selective inhibition is indispensable for direction selectivity is unclear. Here, we selectively eliminated the directional tuning of inhibitory inputs onto DSGCs by disrupting GABA release from the presynaptic interneuron starburst amacrine cell in the mouse retina. We found that, even without directionally tuned inhibition, direction selectivity can still be implemented in a subset of On-Off DSGCs by direction-selective excitation and a temporal offset between excitation and isotropic inhibition. Our results therefore demonstrate the concerted action of multiple synaptic mechanisms for robust direction selectivity in the retina. SIGNIFICANCE STATEMENT The direction-selective circuit in the retina has been a classic model to study neural computations by the brain. An important but unresolved question is how direction selectivity is implemented by directionally tuned excitatory and inhibitory mechanisms. Here we specifically removed the direction tuning of inhibition from the circuit. We found that direction tuning of inhibition is important but not indispensable for direction selectivity of DSGCs' spiking activity, and that the residual direction selectivity is implemented by direction-selective excitation and temporal offset between excitation and inhibition. Our results highlight the concerted actions of synaptic excitation and inhibition required for robust direction selectivity in the retina and provide critical insights into how patterned excitation and inhibition collectively implement sensory processing. PMID:26400950

  9. Reduced GABA levels correlate with cognitive impairment in patients with relapsing-remitting multiple sclerosis.

    PubMed

    Cao, Guanmei; Edden, Richard A E; Gao, Fei; Li, Hao; Gong, Tao; Chen, Weibo; Liu, Xiaohui; Wang, Guangbin; Zhao, Bin

    2017-10-06

    To investigate if brain gamma-aminobutyric acid (GABA) levels in patients with relapsing-remitting multiple sclerosis (RRMS) are abnormal compared with healthy controls, and their relationship to cognitive function in RRMS. Twenty-eight RRMS patients and twenty-six healthy controls underwent magnetic resonance spectroscopy (MRS) at 3-T to detect GABA signals from posterior cingulate cortex (PCC), medial prefrontal cortex (mPFC) and left hippocampus using the 'MEGAPoint Resolved Spectroscopy Sequence' (MEGA-PRESS) technique. All subjects also underwent a cognitive assessment. In RRMS patients, GABA+ were lower in the PCC (p = 0.036) and left hippocampus (p = 0.039) compared with controls, decreased GABA+ in the PCC and left hippocampus were associated with specific cognitive functions (r = -0.452, p = 0.016 and r = 0.451, p = 0.016 respectively); GABA+ in the mPFC were not significantly decreased or related to any cognitive scores (p > 0.05). This study demonstrates that abnormalities of the GABAergic system may be present in the pathogenesis of RRMS and suggests a potential link between regional GABA levels and cognitive impairment in patients with RRMS. • GABA levels may decrease in patients with RRMS. • Lower GABA levels correlated with worse cognitive performance in patients with RRMS. • Dysfunctional GABAergic neurotransmission may have a role in cognitive impairment in RRMS.

  10. Reduced Brain GABA in Primary Insomnia: Preliminary Data from 4T Proton Magnetic Resonance Spectroscopy (1H-MRS)

    PubMed Central

    Winkelman, John W.; Buxton, Orfeu M.; Jensen, J. Eric; Benson, Kathleen L.; O'Connor, Shawn P.; Wang, Wei; Renshaw, Perry F.

    2008-01-01

    Study Objectives: Both basic and clinical data suggest a potential significant role for GABA in the etiology and maintenance of primary insomnia (PI). Proton magnetic resonance spectroscopy (1H-MRS) can non-invasively determine GABA levels in human brain. Our objective was to assess GABA levels in unmedicated individuals with PI, using 1H-MRS. Design and Setting: Matched-groups, cross-sectional study conducted at two university-based hospitals. Participants: Sixteen non-medicated individuals (8 women) with PI (mean age = 37.3 +/− 8.1) and 16 (7 women) well-screened normal sleepers (mean age = 37.6 +/− 4.5). Methods and Measurements: PI was established with an unstructured clinical interview, a Structured Clinical Interview for DSM-IV (SCID), sleep diary, actigraphy and polysomnography (PSG). 1H-MRS data were collected on a Varian 4 Tesla magnetic resonance imaging/spectroscopy scanner. Global brain GABA levels were averaged from samples in the basal ganglia, thalamus, and temporal, parietal, and occipital white-matter and cortex. Results: Average brain GABA levels were nearly 30% lower in patients with PI (.18 +/− .06) compared to controls (.25 +/− .11). GABA levels were negatively correlated with wake after sleep onset (WASO) on two independent PSGs (r = −0.71, p = 0.0024 and −0.70, p = 0.0048). Conclusions: Our preliminary finding of a global reduction in GABA in non-medicated individuals with PI is the first demonstration of a neurochemical difference in the brains of those with PI compared to normal sleeping controls. 1H-MRS is a valuable tool to assess GABA in vivo, and may provide a means to shed further light on the neurobiology of insomnia. Citation: Winkelman JW; Buxton OM; Jensen JE; Benson KL; O'Connor SP; Wang W; Renshaw PF. Reduced brain GABA in primary insomnia: preliminary data from 4T proton magnetic resonance spectroscopy (1H-MRS). SLEEP 2008;31(11):1499–1506. PMID:19014069

  11. At immature mossy fibers-CA3 connections, activation of presynaptic GABA(B) receptors by endogenously released GABA contributes to synapses silencing.

    PubMed

    Safiulina, Victoria F; Cherubini, Enrico

    2009-01-01

    Early in postnatal life correlated GABAergic activity in the hippocampus is thought to play a crucial role in synaptogenesis and in the development of adult neuronal networks. Unlike adulthood, at this developmental stage, mossy fibers (MF) which are the axons of granule cells, release GABA into CA3 principal cells and interneurons. Here, we tested the hypothesis that at MF-CA3 connections, tonic activation of GABA(B) autoreceptors by GABA is responsible for the low probability of release and synapse silencing. Blocking GABA(B) receptors with CGP55845 enhanced the probability of GABA release and switched on silent synapses while the opposite was observed with baclofen. Both these effects were presynaptic and were associated with changes in paired-pulse ratio and coefficient of variation. In addition, enhancing the extracellular GABA concentration by repetitive stimulation of MF or by blocking the GABA transporter GAT-1, switched off active synapses, an effect that was prevented by CGP55845. In the presence of CGP55845, stimulation of MF-induced synaptic potentiation. The shift of E(GABA) from the depolarizing to the hyperpolarizing direction with bumetanide, a blocker of the cation-chloride co-transporter NKCC1, prevented synaptic potentiation and caused synaptic depression, suggesting that the depolarizing action of GABA observed in the presence of CGP55845 is responsible for the potentiating effect. It is proposed that, activation of GABA(B) receptors by spillover of GABA from MF terminals reduces the probability of release and contributes to synapses silencing. This would act as a filter to prevent excessive activation of the auto-associative CA3 network and the emergence of seizures.

  12. Differential effects of GABA in modulating nociceptive vs. non-nociceptive synapses.

    PubMed

    Wang, Y; Summers, T; Peterson, W; Miiller, E; Burrell, B D

    2015-07-09

    GABA (γ-amino-butyric acid) -mediated signaling is normally associated with synaptic inhibition due to ionotropic GABA receptors that gate an inward Cl(-) current, hyperpolarizing the membrane potential. However, there are also situations where ionotropic GABA receptors trigger a Cl(-) efflux that results in depolarization. The well-characterized central nervous system of the medicinal leech was used to study the functional significance of opposing effects of GABA at the synaptic circuit level. Specifically, we focused on synapses made by the nociceptive N cell and the non-nociceptive P (pressure) cell that converge onto a common postsynaptic target. It is already known that GABA hyperpolarizes the P cell, but depolarizes the N cell and that inhibition of ionotropic GABA receptors by bicuculline (BIC) has opposing effects on the synapses made by these two inputs; enhancing P cell synaptic transmission, but depressing N cell synapses. The goal of the present study was to determine whether the opposing effects of GABA were due to differences in Cl(-) homeostasis between the two presynaptic neurons. VU 0240551 (VU), an inhibitor of the Cl(-) exporter K-Cl co-transporter isoform 2 (KCC2), attenuated GABA-mediated hyperpolarization of the non-nociceptive afferent while bumetanide (BUM), an inhibitor of the Cl(-) importer Na-K-Cl co-transporter isoform 1 (NKCC1), reduced GABA-mediated depolarization of the nociceptive neuron. VU treatment also enhanced P cell synaptic signaling, similar to the previously observed effects of BIC and consistent with the idea that GABA inhibits synaptic signaling at the presynaptic level. BUM treatment depressed N cell synapses, again similar to what is observed following BIC treatment and suggests that GABA has an excitatory effect on these synapses. The opposing effects of GABA could also be observed at the behavioral level with BIC and VU increasing responsiveness to non-nociceptive stimulation while BIC and BUM decreased responsiveness

  13. Prefrontal Cortical GABA Abnormalities Are Associated With Reduced Hippocampal Volume In Major Depressive Disorder

    PubMed Central

    Abdallah, Chadi G.; Jackowski, Andrea; Sato, João R.; Mao, Xiangling; Kang, Guoxin; Cheema, Raminder; Coplan, Jeremy D.; Mathew, Sanjay J.; Shungu, Dikoma C.

    2015-01-01

    Hippocampal volume reduction has been related to treatment-resistant depression (TRD) and is hypothesized to reflect impaired amino-acid neurotransmission. To better understand the role of amino acid neurotransmission in hippocampal volume deficits, and subsequent resistance to treatment, this study investigated the relationship between hippocampal volumes and GABA levels in the anterior cingulate cortex (ACC), previously associated with TRD. Thirty-three medication-free major depressive disorder (MDD; 14 TRD and 19 non-TRD) and 26 healthy controls (HC) subjects were studied. Participants underwent high-resolution magnetic resonance imaging (MRI) to estimate hippocampal volume and proton MR spectroscopy (1H MRS) to measure ACC GABA levels. MDD patients, with known ACC GABA levels, were divided into two groups: MDD Low GABA and MDD High GABA. We found a significant reduction in hippocampal volume in the MDD Low GABA group compared to MDD High GABA (p < 0.001) and HC (p = 0.01). The relationship between hippocampal volume and cortical GABA was population (i.e. MDD group) and region specific (i.e. prefrontal cortex). Comparing TRD, non-TRD and HC groups, there was a main effect of group on hippocampal volume (p = 0.04), which post hoc analysis revealed as smaller hippocampal volume in TRD subjects than in non-TRD (p = 0.05) and HC groups (p = 0.03). No hippocampal volume differences between non-TRD and HC groups. The data provides insight into the role of prefrontal neurochemical deficits in the limbic structural abnormalities observed in MDD. In addition, it replicates the relationship between TRD and smaller hippocampal volumes. PMID:25983019

  14. Reduced synaptic vesicle protein degradation at lysosomes curbs TBC1D24/sky-induced neurodegeneration.

    PubMed

    Fernandes, Ana Clara; Uytterhoeven, Valerie; Kuenen, Sabine; Wang, Yu-Chun; Slabbaert, Jan R; Swerts, Jef; Kasprowicz, Jaroslaw; Aerts, Stein; Verstreken, Patrik

    2014-11-24

    Synaptic demise and accumulation of dysfunctional proteins are thought of as common features in neurodegeneration. However, the mechanisms by which synaptic proteins turn over remain elusive. In this paper, we study Drosophila melanogaster lacking active TBC1D24/Skywalker (Sky), a protein that in humans causes severe neurodegeneration, epilepsy, and DOOR (deafness, onychdystrophy, osteodystrophy, and mental retardation) syndrome, and identify endosome-to-lysosome trafficking as a mechanism for degradation of synaptic vesicle-associated proteins. In fly sky mutants, synaptic vesicles traveled excessively to endosomes. Using chimeric fluorescent timers, we show that synaptic vesicle-associated proteins were younger on average, suggesting that older proteins are more efficiently degraded. Using a genetic screen, we find that reducing endosomal-to-lysosomal trafficking, controlled by the homotypic fusion and vacuole protein sorting (HOPS) complex, rescued the neurotransmission and neurodegeneration defects in sky mutants. Consistently, synaptic vesicle proteins were older in HOPS complex mutants, and these mutants also showed reduced neurotransmission. Our findings define a mechanism in which synaptic transmission is facilitated by efficient protein turnover at lysosomes and identify a potential strategy to suppress defects arising from TBC1D24 mutations in humans.

  15. GABA derivatives citrocard and salifen reduce the intensity of experimental gestosis.

    PubMed

    Tyurenkov, I N; Lova, V N Perfi; Reznikova, L B; Smirnova, L A; Ryabukha, A F; Suchkov, E A; Kuznetsov, K A

    2014-05-01

    Substitution of drinking water with 1.8 % NaCl solution in pregnant female rats from day 1 of gestation until parturitions was followed by the development of experimental gestosis. Gestosis manifested in an increase in BP by 18.2 %, protein concentration in the urine by 6.2 times, and edema severity in muscles, brain, and omentum in comparison with the initial level. The concentration of homocysteine in blood plasma of rats with complicated pregnancy 4.4-fold surpassed that in pregnant rats without gestosis, which can probably in a cause for gestosis development. GABA derivatives citrocard (50 mg/kg) and salifen (15 mg/kg), and the reference substance sulodexide (30 U/kg) reduced the severity of gestosis manifestations, which was seen from the absence of BP rise, decrease in urinary protein concentration by 1.9, 2.0, and 1.3 times and blood level of homocysteine by 1.7, 1.5, and 2.6 times, respectively, and a decrease in edema degree in comparison with female rats with experimental gestosis receiving physiological saline.

  16. Fructose consumption reduces hippocampal synaptic plasticity underlying cognitive performance

    PubMed Central

    Cisternas, Pedro; Salazar, Paulina; Serrano, Felipe G.; Montecinos-Oliva, Carla; Arredondo, Sebastián B.; Varela-Nallar, Lorena; Barja, Salesa; Vio, Carlos P.; Gomez-Pinilla, Fernando; Inestrosa, Nibaldo C.

    2017-01-01

    Metabolic syndrome (MetS) is a global epidemic, which involves a spectrum of metabolic disorders comprising diabetes and obesity. The impact of MetS on the brain is becoming to be a concern, however, the poor understanding of mechanisms involved has limited the development of therapeutic strategies. We induced a MetS-like condition by exposing mice to fructose feeding for 7 weeks. There was a dramatic deterioration in the capacity of the hippocampus to sustain synaptic plasticity in the forms of long-term potentiation (LTP) and long-term depression (LTD). Mice exposed to fructose showed a reduction in the number of contact zones and the size of postsynaptic densities (PSDs) in the hippocampus, as well as a decrease in hippocampal neurogenesis. There was an increase in lipid peroxidation likely associated with a deficiency in plasma membrane excitability. Consistent with an overall hippocampal dysfunction, there was a subsequent decrease in hippocampal dependent learning and memory performance, i.e., spatial learning and episodic memory. Most of the pathological sequel of MetS in the brain was reversed three month after discontinue fructose feeding. These results are novel to show that MetS triggers a cascade of molecular events, which disrupt hippocampal functional plasticity, and specific aspects of learning and memory function. The overall information raises concerns about the risk imposed by excessive fructose consumption on the pathology of neurological disorders. PMID:26300486

  17. Fructose consumption reduces hippocampal synaptic plasticity underlying cognitive performance.

    PubMed

    Cisternas, Pedro; Salazar, Paulina; Serrano, Felipe G; Montecinos-Oliva, Carla; Arredondo, Sebastián B; Varela-Nallar, Lorena; Barja, Salesa; Vio, Carlos P; Gomez-Pinilla, Fernando; Inestrosa, Nibaldo C

    2015-11-01

    Metabolic syndrome (MetS) is a global epidemic, which involves a spectrum of metabolic disorders comprising diabetes and obesity. The impact of MetS on the brain is becoming to be a concern, however, the poor understanding of mechanisms involved has limited the development of therapeutic strategies. We induced a MetS-like condition by exposing mice to fructose feeding for 7weeks. There was a dramatic deterioration in the capacity of the hippocampus to sustain synaptic plasticity in the forms of long-term potentiation (LTP) and long-term depression (LTD). Mice exposed to fructose showed a reduction in the number of contact zones and the size of postsynaptic densities (PSDs) in the hippocampus, as well as a decrease in hippocampal neurogenesis. There was an increase in lipid peroxidation likely associated with a deficiency in plasma membrane excitability. Consistent with an overall hippocampal dysfunction, there was a subsequent decrease in hippocampal dependent learning and memory performance, i.e., spatial learning and episodic memory. Most of the pathological sequel of MetS in the brain was reversed three month after discontinue fructose feeding. These results are novel to show that MetS triggers a cascade of molecular events, which disrupt hippocampal functional plasticity, and specific aspects of learning and memory function. The overall information raises concerns about the risk imposed by excessive fructose consumption on the pathology of neurological disorders. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  18. Cyclic AMP-dependent protein kinase phosphorylation facilitates GABA(B) receptor-effector coupling.

    PubMed

    Couve, A; Thomas, P; Calver, A R; Hirst, W D; Pangalos, M N; Walsh, F S; Smart, T G; Moss, S J

    2002-05-01

    GABA (gamma-aminobutyric acid)(B) receptors are heterodimeric G protein-coupled receptors that mediate slow synaptic inhibition in the central nervous system. Here we show that the functional coupling of GABA(B)R1/GABA(B)R2 receptors to inwardly rectifying K(+) channels rapidly desensitizes. This effect is alleviated after direct phosphorylation of a single serine residue (Ser892) in the cytoplasmic tail of GABA(B)R2 by cyclic AMP (cAMP)-dependent protein kinase (PKA). Basal phosphorylation of this residue is evident in rat brain membranes and in cultured neurons. Phosphorylation of Ser892 is modulated positively by pathways that elevate cAMP concentration, such as those involving forskolin and beta-adrenergic receptors. GABA(B) receptor agonists reduce receptor phosphorylation, which is consistent with PKA functioning in the control of GABA(B)-activated currents. Mechanistically, phosphorylation of Ser892 specifically enhances the membrane stability of GABA(B) receptors. We conclude that signaling pathways that activate PKA may have profound effects on GABA(B) receptor-mediated synaptic inhibition. These results also challenge the accepted view that phosphorylation is a universal negative modulator of G protein-coupled receptors.

  19. A therapeutic dose of zolpidem reduces thalamic GABA in healthy volunteers: A proton MRS study at 4 Tesla

    PubMed Central

    Licata, Stephanie C.; Jensen, J. Eric; Penetar, David M.; Prescot, Andrew P.; Lukas, scott E.; Renshaw, Perry F.

    2009-01-01

    Background Zolpidem is a non-benzodiazepine sedative/hypnotic that acts at GABAA receptors to influence inhibitory neurotransmission throughout the central nervous system. A great deal is known about the behavioral effects of this drug in humans and laboratory animals, but little is known about zolpidem’s specific effects on neurochemistry in vivo. Objectives We evaluated how acute administration of zolpidem affected levels of GABA, glutamate, glutamine, and other brain metabolites. Methods Proton magnetic resonance spectroscopy (1H MRS) at 4 Tesla was employed to measure the effects of zolpidem on brain chemistry in 19 healthy volunteers. Participants underwent scanning following acute oral administration of a therapeutic dose of zolpidem (10 mg) in a within-subject, single-blind, placebo-controlled, single-visit study. In addition to neurochemical measurements from single voxels within the anterior cingulate (ACC) and thalamus, a series of questionnaires were administered periodically throughout the experimental session to assess subjective mood states. Results Zolpidem reduced GABA levels in the thalamus, but not the ACC. There were no treatment effects with respect to other metabolite levels. Self-reported ratings of “dizzy”, “nauseous”, “confused”, and “bad effects” were increased relative to placebo, as were ratings on the sedation/intoxication (PCAG) and psychotomimetic/dysphoria (LSD) scales of the Addiction Research Center Inventory. Moreover, there was a significant correlation between the decrease in GABA and “dizzy”. Conclusions Zolpidem engendered primarily dysphoric-like effects and the correlation between reduced thalamic GABA and “dizzy” may be a function of zolpidem’s interaction with α1GABAA receptors in the cerebellum, projecting through the vestibular system to the thalamus. PMID:19125238

  20. GABA shunt mediates thermotolerance in Saccharomyces cerevisiae by reducing reactive oxygen production.

    PubMed

    Cao, Juxiang; Barbosa, Jose M; Singh, Narendra K; Locy, Robert D

    2013-04-01

    The GABA shunt pathway involves three enzymes, glutamate decarboxylase (GAD), GABA aminotransferase (GAT) and succinate semialdehyde dehydrogenase (SSADH). These enzymes act in concert to convert glutamate (α-ketoglutarate) to succinate. Deletion mutations in each of these genes in Saccharomyces cerevisiae resulted in growth defects at 45°C. Double and triple mutation constructs were compared for thermotolerance with the wild-type and single mutant strains. Although wild-type and all mutant strains were highly susceptible to brief heat stress at 50°C, a non-lethal 30 min at 40°C temperature pretreatment induced tolerance of the wild-type and all of the mutants to 50°C. The mutant strains collectively exhibited similar susceptibility at 45°C to the induced 50°C treatments. Intracellular reactive oxygen intermediate (ROI) accumulation was measured in wild-type and each of the mutant strains. ROI accumulation in each of the mutants and in various stress conditions was correlated to heat susceptibility of the mutant strains. The addition of ROI scavenger N-tert-butyl-α-phenylnitrone (PBN) enhanced survival of the mutants and strongly inhibited the accumulation of ROI, but did not have significant effect on the wild-type. Measurement of intracellular GABA, glutamate and α-ketoglutarate during lethal heat exposure at 45°C showed higher levels of accumulation of GABA and α-ketoglutarate in the uga1 and uga2 mutants, while glutamate accumulated at higher level in the gad1 mutant. These results suggest that the GABA shunt pathway plays a crucial role in protecting yeast cells from heat damage by restricting ROI production involving the flux of carbon from α-ketoglutarate to succinate during heat stress. Copyright © 2013 John Wiley & Sons, Ltd.

  1. Presynaptic modulating effects of GABA on depression, facilitation, and posttetanic potentiation of a cholinergic synapse in Aplysia californica.

    PubMed

    Tremblay, J P; Plourde, G

    1977-12-01

    The effects of gamma-aminobutyric acid (GABA) have been studied on the synaptic depression, frequency facilitation, and posttetanic potentiation (PTP) of a unitary, monosynaptic, and presumably cholinergic excitatory postsynaptic potential (EPSP). This EPSP, produced by minimal stimulation of the right visceropleural connective, was recorded in cell R 15 of Aplysia californica. Perfusion with GABA (10(-4)-10(-3) M) reduces the size of all EPSPs produced by a train of 100 stimuli at 1/s. It also reduced the synaptic depression and PTP, and increases the frequency facilitation seen during the train. GABA does not significantly effect the membrane resistance (mean 102%) but it slightly depolarizes (mean 6 mV) the postsynaptic cell. GABA does not reduce an acetylcholine iontophoretic potential produced on R15. The effects of GABA are reduction when chloride is replaced by acetate but they remain significant. Picrotoxin and bicuculline fail to antagonize GABA. Addition of sodium azide or dinitrophenol does not reduce the action of GABA and even prolongs it. The effects of GABA are attributed to two sites of action: a postsynaptic one, responsible for the small change in potential and partially responsible for the reduction of EPSP size; and a presynaptic one, responsible for a further reduction of EPSP size and the changes of depression, facilitation, and PTP.

  2. Depressed GABA and glutamate synaptic signaling by 5-HT1A receptors in the nucleus tractus solitarii and their role in cardiorespiratory function

    PubMed Central

    Ostrowski, Tim D.; Ostrowski, Daniela; Hasser, Eileen M.

    2014-01-01

    Serotonin (5-HT), and its 5-HT1A receptor (5-HT1AR) subtype, is a powerful modulator of the cardiorespiratory system and its sensory reflexes. The nucleus tractus solitarii (nTS) serves as the first central station for visceral afferent integration and is critical for cardiorespiratory reflex responses. However, the physiological and synaptic role of 5-HT1ARs in the nTS is relatively unknown. In the present study, we examined the distribution and modulation of 5-HT1ARs on cardiorespiratory and synaptic parameters in the nTS. 5-HT1ARs were widely distributed to cell bodies within the nTS but not synaptic terminals. In anesthetized rats, activation of 5-HT1ARs by microinjection of the 5-HT1AR agonist 8-OH-DPAT into the caudal nTS decreased minute phrenic neural activity via a reduction in phrenic amplitude. In brain stem slices, 8-OH-DPAT decreased the amplitude of glutamatergic tractus solitarii-evoked excitatory postsynaptic currents, and reduced overall spontaneous excitatory nTS network activity. These effects persisted in the presence of GABAA receptor blockade and were antagonized by coapplication of 5-HT1AR blocker WAY-100135. 5-HT1AR blockade alone had no effect on tractus solitarii-evoked excitatory postsynaptic currents, but increased excitatory network activity. On the other hand, GABAergic nTS-evoked inhibitory postsynaptic currents did not change by activation of the 5-HT1ARs, but spontaneous inhibitory nTS network activity decreased. Blocking 5-HT1ARs tended to increase nTS-evoked inhibitory postsynaptic currents and inhibitory network activity. Taken together, 5-HT1ARs in the caudal nTS decrease breathing, likely via attenuation of afferent transmission, as well as overall nTS network activity. PMID:24671532

  3. Presynaptic kainate receptors that enhance the release of GABA on CA1 hippocampal interneurons.

    PubMed

    Cossart, R; Tyzio, R; Dinocourt, C; Esclapez, M; Hirsch, J C; Ben-Ari, Y; Bernard, C

    2001-02-01

    We report that kainate receptors are present on presynaptic GABAergic terminals contacting interneurons and that their activation increases GABA release. Application of kainate increased the frequency of miniature inhibitory postsynaptic currents recorded in CA1 interneurons. Local applications of glutamate but not of AMPA or NMDA also increased GABA quantal release. Application of kainate as well as synaptically released glutamate reduced the number of failures of GABAergic neurotransmission between interneurons. Thus, activation of presynaptic kainate receptors increases the probability of GABA release at interneuron-interneuron synapses. Glutamate may selectively control the communication between interneurons by increasing their mutual inhibition.

  4. Reduced GABA Content in the Motor Thalamus during Effective Deep Brain Stimulation of the Subthalamic Nucleus

    PubMed Central

    Stefani, Alessandro; Fedele, Ernesto; Pierantozzi, Mariangela; Galati, Salvatore; Marzetti, Francesco; Peppe, Antonella; Pastore, Francesco Saverio; Bernardi, Giorgio; Stanzione, Paolo

    2011-01-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN), in Parkinson's disease (PD) patients, is a well established therapeutic option, but its mechanisms of action are only partially known. In our previous study, the clinical transitions from OFF- to ON-state were not correlated with significant changes of GABA content inside GPi or substantia nigra reticulata. Here, biochemical effects of STN-DBS have been assessed in putamen (PUT), internal pallidus (GPi), and inside the antero-ventral thalamus (VA), the key station receiving pallidothalamic fibers. In 10 advanced PD patients undergoing surgery, microdialysis samples were collected before and during STN-DBS. cGMP, an index of glutamatergic transmission, was measured in GPi and PUT by radioimmunoassay, whereas GABA from VA was measured by HPLC. During clinically effective STN-DBS, we found a significant decrease in GABA extracellular concentrations in VA (−30%). Simultaneously, cGMP extracellular concentrations were enhanced in PUT (+200%) and GPi (+481%). These findings support a thalamic dis-inhibition, in turn re-establishing a more physiological corticostriatal transmission, as the source of motor improvement. They indirectly confirm the relevance of patterning (instead of mere changes of excitability) and suggest that a rigid interpretation of the standard model, at least when it indicates the hyperactive indirect pathway as key feature of hypokinetic signs, is unlikely to be correct. Finally, given the demonstration of a key role of VA in inducing clinical relief, locally administration of drugs modulating GABA transmission in thalamic nuclei could become an innovative therapeutic strategy. PMID:21519387

  5. Histone deacetylase 2 cell autonomously suppresses excitatory and enhances inhibitory synaptic function in CA1 pyramidal neurons.

    PubMed

    Hanson, Jesse E; Deng, Lunbin; Hackos, David H; Lo, Shih-Ching; Lauffer, Benjamin E; Steiner, Pascal; Zhou, Qiang

    2013-04-03

    Histone deacetylase 2 (HDAC2) negatively regulates excitatory synapse number and memory performance. However, whether HDAC2 regulation of excitatory synapses occurs in a cell-autonomous manner and whether HDAC2 regulates inhibitory synaptic functions are not well understood. To examine these aspects of HDAC2 function, we used sparse transfection of rat hippocampal slice cultures and whole-cell recordings in pyramidal neurons. HDAC2 knockdown (KD) in single postsynaptic pyramidal neurons enhanced, whereas HDAC2 overexpression (OE) reduced, excitatory synaptic transmission. Postsynaptic KD of HDAC2 also facilitated expression of long-term potentiation induced by subthreshold induction stimuli, without altering long-term depression. In contrast, HDAC2 KD reduced, whereas HDAC2 OE enhanced, inhibitory synaptic transmission. Alterations of postsynaptic GABA(A) receptors (GABA(A)Rs) likely underlie the impact of HDAC2 on inhibitory transmission. Consistent with this, we observed reduced transcript and protein levels of the GABA(A)R γ2 subunit and reduced surface expression of the α2 subunit after HDAC2 KD. Furthermore, we observed a reduction in synaptic but not tonic GABA(A)R currents by HDAC2 KD, suggesting that HDAC2 selectively affects synaptic abundance of functional GABA(A)Rs. Immunostaining for postsynaptic GABA(A)Rs confirmed that HDAC2 KD and OE can regulate the synaptic abundance of these receptors. Together, these results highlight a role for HDAC2 in suppressing synaptic excitation and enhancing synaptic inhibition of hippocampal neurons. Therefore, a shift in the balance of synaptic excitation versus inhibition favoring excitation could contribute to the beneficial effects of reducing HDAC2 function in wild-type mice or of inhibiting HDACs in models of cognitive impairment.

  6. Treatment with Piribedil and Memantine Reduces Noise-Induced Loss of Inner Hair Cell Synaptic Ribbons

    PubMed Central

    Altschuler, Richard A.; Wys, Noel; Prieskorn, Diane; Martin, Cathy; DeRemer, Susan; Bledsoe, Sanford; Miller, Josef M.

    2016-01-01

    Noise overstimulation can induce loss of synaptic ribbons associated with loss of Inner Hair Cell – Auditory Nerve synaptic connections. This study examined if systemic administration of Piribedil, a dopamine agonist that reduces the sound evoked auditory nerve compound action potential and/or Memantine, an NMDA receptor open channel blocker, would reduce noise-induced loss of Inner Hair Cell ribbons. Rats received systemic Memantine and/or Piribedil for 3 days before and 3 days after a 3 hour 4 kHz octave band noise at 117 dB (SPL). At 21 days following the noise there was a 26% and 38% loss of synaptic ribbons in regions 5.5 and 6.5 mm from apex, respectively, elevations in 4-, 8- and 20 kHz tonal ABR thresholds and reduced dynamic output at higher intensities of stimulation. Combined treatment with Piribedil and Memantine produced a significant reduction in the noise-induced loss of ribbons in both regions and changes in ABR sensitivity and dynamic responsiveness. Piribedil alone gave significant reduction in only the 5.5 mm region and Memantine alone did not reach significance in either region. Results identify treatments that could prevent the hearing loss and hearing disorders that result from noise-induced loss of Inner Hair Cell – Auditory Nerve synaptic connections. PMID:27686418

  7. Ecophysiology of neuronal metabolism in transiently oxygen-depleted environments: evidence that GABA is accumulated pre-synaptically in the cerebellum.

    PubMed

    Renshaw, G M C; Wise, G; Dodd, P R

    2010-04-01

    Interactions between coral reef topography, tide cycles, and photoperiod provided selection pressure for adaptive physiological changes in sheltered hypoxic niches to be exploited by specialized tropical reef fish. The epaulette shark Hemiscyllium ocellatum withstands cyclic hypoxia in its natural environment, many hours of experimental hypoxia, and anoxia for up to 5h. It shows neuronal hypometabolism in response to 5% oxygen saturation. Northern-hemisphere hypoxia- and anoxia-tolerant vertebrates that over-winter under ice alter their inhibitory to excitatory neurotransmitter balance to forestall brain ATP depletion in the absence of oxidative phosphorylation. GABA immunochemistry, HPLC analysis and receptor binding studies in H. ocellatum cerebellum revealed a heterogeneous regional accumulation of neuronal GABA despite no change in its overall concentration, and a significant increase in GABA(A) receptor density without altered binding affinity. Increased GABA(A) receptor density would protect the cerebellum during reoxygenation when transmitter release resumes. While all hypoxia- and anoxia-tolerant teleosts examined to date respond to low oxygen levels by elevating brain GABA, the phylogenetically older epaulette shark did not, suggesting that it uses an alternative neuroprotective mechanism for energy conservation. This may reflect an inherent phylogenetic difference, or represent a novel ecophysiological adaptation to cyclic variations in the availability of oxygen.

  8. β-Hydroxybutyrate supports synaptic vesicle cycling but reduces endocytosis and exocytosis in rat brain synaptosomes.

    PubMed

    Hrynevich, Sviatlana V; Waseem, Tatyana V; Hébert, Audrey; Pellerin, Luc; Fedorovich, Sergei V

    2016-02-01

    The ketogenic diet is used as a prophylactic treatment for different types of brain diseases, such as epilepsy or Alzheimer's disease. In such a diet, carbohydrates are replaced by fats in everyday food, resulting in an elevation of blood-borne ketone bodies levels. Despite clinical applications of this treatment, the molecular mechanisms by which the ketogenic diet exerts its beneficial effects are still uncertain. In this study, we investigated the effect of replacing glucose by the ketone body β-hydroxybutyrate as the main energy substrate on synaptic vesicle recycling in rat brain synaptosomes. First, we observed that exposing presynaptic terminals to nonglycolytic energy substrates instead of glucose did not alter the plasma membrane potential. Next, we found that synaptosomes were able to maintain the synaptic vesicle cycle monitored with the fluorescent dye acridine orange when glucose was replaced by β-hydroxybutyrate. However, in presence of β-hydroxybutyrate, synaptic vesicle recycling was modified with reduced endocytosis. Replacing glucose by pyruvate also led to a reduced endocytosis. Addition of β-hydroxybutyrate to glucose-containing incubation medium was without effect. Reduced endocytosis in presence of β-hydroxybutyrate as sole energy substrate was confirmed using the fluorescent dye FM2-10. Also we found that replacement of glucose by ketone bodies leads to inhibition of exocytosis, monitored by FM2-10. However this reduction was smaller than the effect on endocytosis under the same conditions. Using both acridine orange in synaptosomes and the genetically encoded sensor synaptopHluorin in cortical neurons, we observed that replacing glucose by β-hydroxybutyrate did not modify the pH gradient of synaptic vesicles. In conclusion, the nonglycolytic energy substrates β-hydroxybutyrate and pyruvate are able to support synaptic vesicle recycling. However, they both reduce endocytosis. Reduction of both endocytosis and exocytosis together with

  9. Psychological stress-reducing effect of chocolate enriched with gamma-aminobutyric acid (GABA) in humans: assessment of stress using heart rate variability and salivary chromogranin A.

    PubMed

    Nakamura, H; Takishima, T; Kometani, T; Yokogoshi, H

    2009-01-01

    We studied the psychological stress-reducing effect of chocolate enriched with gamma-aminobutyric acid (GABA), on stress induced by an arithmetic task using changes of heart rate variability (HRV) and salivary chromogranin A (CgA). Subjects ingested 10 g chocolate enriched with 28 mg GABA (GABA chocolate); 15 min after the ingestion, subjects were assigned an arithmetic task for 15 min. After the task, an electrocardiogram was recorded and saliva samples were collected. HRV was determined from the electrocardiogram, and the activity of the autonomic nervous system was estimated through HRV. The CgA concentration of all saliva samples, an index for acute psychological stress, was measured. From HRV, those taking GABA chocolate made a quick recovery to the normal state from the stressful state. The CgA value after the task in those taking GABA chocolate did not increased in comparison with that before ingestion. From these results, GABA chocolate was considered to have a psychological stress-reducing effect.

  10. Methamphetamine-evoked depression of GABA(B) receptor signaling in GABA neurons of the VTA.

    PubMed

    Padgett, Claire L; Lalive, Arnaud L; Tan, Kelly R; Terunuma, Miho; Munoz, Michaelanne B; Pangalos, Menelas N; Martínez-Hernández, José; Watanabe, Masahiko; Moss, Stephen J; Luján, Rafael; Lüscher, Christian; Slesinger, Paul A

    2012-03-08

    Psychostimulants induce neuroadaptations in excitatory and fast inhibitory transmission in the ventral tegmental area (VTA). Mechanisms underlying drug-evoked synaptic plasticity of slow inhibitory transmission mediated by GABA(B) receptors and G protein-gated inwardly rectifying potassium (GIRK/Kir(3)) channels, however, are poorly understood. Here, we show that 1 day after methamphetamine (METH) or cocaine exposure both synaptically evoked and baclofen-activated GABA(B)R-GIRK currents were significantly depressed in VTA GABA neurons and remained depressed for 7 days. Presynaptic inhibition mediated by GABA(B)Rs on GABA terminals was also weakened. Quantitative immunoelectron microscopy revealed internalization of GABA(B1) and GIRK2, which occurred coincident with dephosphorylation of serine 783 (S783) in GABA(B2), a site implicated in regulating GABA(B)R surface expression. Inhibition of protein phosphatases recovered GABA(B)R-GIRK currents in VTA GABA neurons of METH-injected mice. This psychostimulant-evoked impairment in GABA(B)R signaling removes an intrinsic brake on GABA neuron spiking, which may augment GABA transmission in the mesocorticolimbic system. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. GABA receptor agonists: pharmacological spectrum and therapeutic actions.

    PubMed

    Bartholini, G

    1985-01-01

    From the data discussed in this review it appears that GABA receptor agonists exhibit a variety of actions in the central nervous system, some of which are therapeutically useful (Table V). GABA receptor agonists, by changing the firing rate of the corresponding neurons accelerate noradrenaline turnover without changes in postsynaptic receptor density and diminish serotonin liberation with an up-regulation of 5HT2 receptors. These effects differ from those of tricyclic antidepressants which primarily block monoamine re-uptake and cause down-regulation of beta-adrenergic and 5HT2 receptors. The GABA receptor agonist progabide has been shown to exert an antidepressant action which is indistinguishable from that of imipramine in patients with major affective disorders. The fact that: (a) GABA receptor agonists and tricyclic antidepressants affect noradrenergic and serotonergic transmission differently; and (b) tricyclic antidepressants alter GABA-related parameters challenges the classical monoamine hypothesis of depression and suggests that GABA-mediated mechanisms play a role in mood disorders. Decreases in cellular excitability produced by GABAergic stimulation leads to control of seizures in practically all animal models of epilepsy. GABA receptor agonists have a wide spectrum as they antagonize not only seizures which are dependent on decreased GABA synaptic activity but also convulsant states which are apparently independent of alterations in GABA-mediated events. These results in animals are confirmed in a wide range of human epileptic syndromes. GABA receptor agonists decrease dopamine turnover in the basal ganglia and antagonize neuroleptic-induced increase in dopamine release. On repeated treatment, progabide prevents or reverses the neuroleptic-induced up-regulation of dopamine receptors in the rat striatum and antagonizes the concomitant supersensitivity to dopaminomimetics. Behaviorally, GABA receptor agonists diminish the stereotypies induced by

  12. Extracellular protons reduce quantal content and prolong synaptic currents at the Drosophila larval neuromuscular junction.

    PubMed

    Sandstrom, David J

    2011-10-01

    Fluctuations in extracellular pH occur in the nervous system in response to a number of physiological and pathological processes, such as ischemia, hypercapnea, and high-frequency activity. Using the Drosophila larval neuromuscular junction, the author has examined acute effects of low and high pH on excitability and synaptic transmission. Acidification rapidly and reversibly reduces the size of electrically evoked excitatory junctional currents (EJCs) in a concentration-dependent manner, with transmission nearly abolished at pH 5.0. Conversely, raising pH to 7.8 increases EJC amplitude significantly. Further elevation to pH 8.5 causes an initial increase in amplitude, followed by profound, long-lasting depression of the synapse. Amplitudes of spontaneous miniature EJCs (mEJCs) are modestly, but significantly reduced at pH 5.0. It is therefore the number of quanta released per action potential, rather than the size of individual quanta, that is most strongly affected. Decay times of both EJCs and mEJCs are dramatically lengthened at low pH, suggesting that glutamate remains in the synaptic cleft for much longer than normal. Presynaptic excitability is also reduced, as indicated by increased latency between nerve shock and EJC onset. The response to low pH was not altered by mutations in genes encoding Transient Receptor Potential, Mucolipin subfamily (TRPML) and Slowpoke ion channels, which had previously been implicated as possible targets of extracellular protons. The author concludes that extracellular protons have strong effects on the release of glutamate and the time course of synaptic currents. These phenotypes can be exploited to study the mechanisms of acid-mediated changes in neuronal function, and to pursue the way in which pH modulates synaptic function in normal and pathophysiological conditions.

  13. Short-term synaptic depression and stochastic vesicle dynamics reduce and shape neuronal correlations.

    PubMed

    Rosenbaum, Robert; Rubin, Jonathan E; Doiron, Brent

    2013-01-01

    Correlated neuronal activity is an important feature in many neural codes, a neural correlate of a variety of cognitive states, as well as a signature of several disease states in the nervous system. The cellular and circuit mechanics of neural correlations is a vibrant area of research. Synapses throughout the cortex exhibit a form of short-term depression where increased presynaptic firing rates deplete neurotransmitter vesicles, which transiently reduces synaptic efficacy. The release and recovery of these vesicles are inherently stochastic, and this stochasticity introduces variability into the conductance elicited by depressing synapses. The impact of spiking and subthreshold membrane dynamics on the transfer of neuronal correlations has been studied intensively, but an investigation of the impact of short-term synaptic depression and stochastic vesicle dynamics on correlation transfer is lacking. We find that short-term synaptic depression and stochastic vesicle dynamics can substantially reduce correlations, shape the timescale over which these correlations occur, and alter the dependence of spiking correlations on firing rate. Our results show that short-term depression and stochastic vesicle dynamics need to be taken into account when modeling correlations in neuronal populations.

  14. Isoflurane inhibits synaptic vesicle exocytosis through reduced Ca2+ influx, not Ca2+-exocytosis coupling

    PubMed Central

    Baumgart, Joel P.; Zhou, Zhen-Yu; Hara, Masato; Cook, Daniel C.; Hoppa, Michael B.; Ryan, Timothy A.; Hemmings, Hugh C.

    2015-01-01

    Identifying presynaptic mechanisms of general anesthetics is critical to understanding their effects on synaptic transmission. We show that the volatile anesthetic isoflurane inhibits synaptic vesicle (SV) exocytosis at nerve terminals in dissociated rat hippocampal neurons through inhibition of presynaptic Ca2+ influx without significantly altering the Ca2+ sensitivity of SV exocytosis. A clinically relevant concentration of isoflurane (0.7 mM) inhibited changes in [Ca2+]i driven by single action potentials (APs) by 25 ± 3%, which in turn led to 62 ± 3% inhibition of single AP-triggered exocytosis at 4 mM extracellular Ca2+ ([Ca2+]e). Lowering external Ca2+ to match the isoflurane-induced reduction in Ca2+ entry led to an equivalent reduction in exocytosis. These data thus indicate that anesthetic inhibition of neurotransmitter release from small SVs occurs primarily through reduced axon terminal Ca2+ entry without significant direct effects on Ca2+-exocytosis coupling or on the SV fusion machinery. Isoflurane inhibition of exocytosis and Ca2+ influx was greater in glutamatergic compared with GABAergic nerve terminals, consistent with selective inhibition of excitatory synaptic transmission. Such alteration in the balance of excitatory to inhibitory transmission could mediate reduced neuronal interactions and network-selective effects observed in the anesthetized central nervous system. PMID:26351670

  15. Hierarchical Chunking of Sequential Memory on Neuromorphic Architecture with Reduced Synaptic Plasticity

    PubMed Central

    Li, Guoqi; Deng, Lei; Wang, Dong; Wang, Wei; Zeng, Fei; Zhang, Ziyang; Li, Huanglong; Song, Sen; Pei, Jing; Shi, Luping

    2016-01-01

    Chunking refers to a phenomenon whereby individuals group items together when performing a memory task to improve the performance of sequential memory. In this work, we build a bio-plausible hierarchical chunking of sequential memory (HCSM) model to explain why such improvement happens. We address this issue by linking hierarchical chunking with synaptic plasticity and neuromorphic engineering. We uncover that a chunking mechanism reduces the requirements of synaptic plasticity since it allows applying synapses with narrow dynamic range and low precision to perform a memory task. We validate a hardware version of the model through simulation, based on measured memristor behavior with narrow dynamic range in neuromorphic circuits, which reveals how chunking works and what role it plays in encoding sequential memory. Our work deepens the understanding of sequential memory and enables incorporating it for the investigation of the brain-inspired computing on neuromorphic architecture. PMID:28066223

  16. Hierarchical Chunking of Sequential Memory on Neuromorphic Architecture with Reduced Synaptic Plasticity.

    PubMed

    Li, Guoqi; Deng, Lei; Wang, Dong; Wang, Wei; Zeng, Fei; Zhang, Ziyang; Li, Huanglong; Song, Sen; Pei, Jing; Shi, Luping

    2016-01-01

    Chunking refers to a phenomenon whereby individuals group items together when performing a memory task to improve the performance of sequential memory. In this work, we build a bio-plausible hierarchical chunking of sequential memory (HCSM) model to explain why such improvement happens. We address this issue by linking hierarchical chunking with synaptic plasticity and neuromorphic engineering. We uncover that a chunking mechanism reduces the requirements of synaptic plasticity since it allows applying synapses with narrow dynamic range and low precision to perform a memory task. We validate a hardware version of the model through simulation, based on measured memristor behavior with narrow dynamic range in neuromorphic circuits, which reveals how chunking works and what role it plays in encoding sequential memory. Our work deepens the understanding of sequential memory and enables incorporating it for the investigation of the brain-inspired computing on neuromorphic architecture.

  17. NKCC1 knockdown decreases neuron production through GABA(A)-regulated neural progenitor proliferation and delays dendrite development.

    PubMed

    Young, Stephanie Z; Taylor, M Morgan; Wu, Sharon; Ikeda-Matsuo, Yuri; Kubera, Cathryn; Bordey, Angélique

    2012-09-26

    Signaling through GABA(A) receptors controls neural progenitor cell (NPC) development in vitro and is altered in schizophrenic and autistic individuals. However, the in vivo function of GABA(A) signaling on neural stem cell proliferation, and ultimately neurogenesis, remains unknown. To examine GABA(A) function in vivo, we electroporated plasmids encoding short-hairpin (sh) RNA against the Na-K-2Cl cotransporter NKCC1 (shNKCC1) in NPCs of the neonatal subventricular zone in mice to reduce GABA(A)-induced depolarization. Reduced GABA(A) depolarization identified by a loss of GABA(A)-induced calcium responses in most electroporated NPCs led to a 70% decrease in the number of proliferative Ki67(+) NPCs and a 60% reduction in newborn neuron density. Premature loss of GABA(A) depolarization in newborn neurons resulted in truncated dendritic arborization at the time of synaptic integration. However, by 6 weeks the dendritic tree had partially recovered and displayed a small, albeit significant, decrease in dendritic complexity but not total dendritic length. To further examine GABA(A) function on NPCs, we treated animals with a GABA(A) allosteric agonist, pentobarbital. Enhancement of GABA(A) activity in NPCs increased the number of proliferative NPCs by 60%. Combining shNKCC1 and pentobarbital prevented the shNKCC1 and the pentobarbital effects on NPC proliferation, suggesting that these manipulations affected NPCs through GABA(A) receptors. Thus, dysregulation in GABA(A) depolarizing activity delayed dendritic development and reduced NPC proliferation resulting in decreased neuronal density.

  18. My close encounter with GABA(B) receptors.

    PubMed

    Nicoll, Roger A

    2004-10-15

    In this review, I summarize the sequence of events involved in characterizing the functional role of GABA(B) receptors in the CNS and their involvement in synaptic transmission. The story was launched with the realization that baclofen was a selective agonist of GABA(B) receptors. This lead to the discovery in the CNS that GABA(B) receptor activation could result in a presynaptic inhibition of transmitter release as well as a postsynaptic increase in potassium conductance. Based on this information, it was found that GABA also activated a potassium conductance. A role for GABA(B) receptors in synaptic transmission was suggested by the fact that activation of GABAergic interneurons could generate a slow IPSP mediated by an increase in potassium conductance. To link this slow IPSP to GABA(B) receptors required a selective GABA(B) antagonist. Phaclofen was the first antagonist developed and was found to antagonize the action of baclofen and the GABA(A) independent action of GABA. Most importantly, it blocked the slow IPSP. The properties of GABA(A) and GABA(B) IPSPs are remarkably different. GABA(A) IPSPs powerfully inhibit neurons and rapidly curtail excitatory inputs. This greatly enhances the precision of excitatory synaptic transmission. GABA(B) IPSPs are recruited with repetitive and synchronous activity and are postulated to modulate the rhythmic network activity of cortical tissue.

  19. The GABA B agonist baclofen reduces cigarette consumption in a preliminary double-blind placebo-controlled smoking reduction study

    PubMed Central

    Franklin, Teresa R.; Harper, Derek; Kampman, Kyle; Kildea, Susan; Jens, Will; Lynch, Kevin; O’Brien, Charles P.; Childress, Anna Rose

    2009-01-01

    The surge in dopamine in ventral striatal regions in response to drugs of abuse and drug-associated stimuli is a final common pathway of addiction processes. GABA B agonists exert their effects indirectly, by quieting dopaminergic afferents. The ability of the GABA B agonist, baclofen to ameliorate nicotine and drug motivated behavior is established within the animal literature, however its potential to do so in humans is understudied, particularly with respect to its possible utility as a smoking cessation agent. We conducted a nine-week double-blind placebo-controlled pilot trial of baclofen for smoking reduction (N=30/group) in smokers contemplating, but not quite ready to quit. Baclofen was titrated upwards to 20 mg q.i.d. over a period of twelve days. The primary outcome measure was the number of cigarettes smoked per day (CPD). A significant group by time effect of medication was observed. Baclofen was superior to placebo in reducing CPD (β=0.01, t=1.97, p<0.05). The most common side effect reported during baclofen treatment is transient drowsiness, however there were no differences between groups in mild, moderate, or severe sedation. Craving was significantly lowered at end of treatment in all smokers (p<0.02). Retention did not differ between groups. In line with a multitude of preclinical studies examining the effects of baclofen on drug-motivated behavior, baclofen reduced CPD. In agreement with other studies examining craving and drug use, reductions in CPD were accompanied by a reduction in craving, a major motivator underlying continued smoking and relapse. These preliminary results demonstrate provisional evidence of the utility of baclofen to aid in smoking cessation and indicate further investigation. PMID:19398283

  20. The GABA B agonist baclofen reduces cigarette consumption in a preliminary double-blind placebo-controlled smoking reduction study.

    PubMed

    Franklin, Teresa R; Harper, Derek; Kampman, Kyle; Kildea-McCrea, Susan; Jens, Will; Lynch, Kevin G; O'Brien, Charles P; Childress, Anna Rose

    2009-07-01

    The surge in dopamine in ventral striatal regions in response to drugs of abuse and drug-associated stimuli is a final common pathway of addiction processes. GABA B agonists exert their effects indirectly, by quieting dopaminergic afferents. The ability of the GABA B agonist, baclofen to ameliorate nicotine and drug motivated behavior is established within the animal literature, however its potential to do so in humans is understudied, particularly with respect to its possible utility as a smoking cessation agent. We conducted a nine-week double-blind placebo-controlled pilot trial of baclofen for smoking reduction (N=30/group) in smokers contemplating, but not quite ready to quit. Baclofen was titrated upwards to 20mg q.i.d. over a period of twelve days. The primary outcome measure was the number of cigarettes smoked per day (CPD). A significant group by time effect of medication was observed. Baclofen was superior to placebo in reducing CPD (beta=0.01, t=1.97, p<0.05). The most common side effect reported during baclofen treatment is transient drowsiness, however there were no differences between groups in mild, moderate, or severe sedation. Craving was significantly lowered at end of treatment in all smokers (p<0.02). Retention did not differ between groups. In line with a multitude of preclinical studies examining the effects of baclofen on drug-motivated behavior, baclofen reduced CPD. In agreement with other studies examining craving and drug use, reductions in CPD were accompanied by a reduction in craving, a major motivator underlying continued smoking and relapse. These preliminary results demonstrate provisional evidence of the utility of baclofen to aid in smoking cessation and indicate further investigation.

  1. Conversion into GABA (gamma-aminobutyric acid) may reduce the capacity of L-glutamine as an insulin secretagogue.

    PubMed

    Fernández-Pascual, Sergio; Mukala-Nsengu-Tshibangu, André; Martín Del Río, Rafael; Tamarit-Rodríguez, Jorge

    2004-05-01

    We have carried out a detailed examination of L-glutamine metabolism in rat islets in order to elucidate the paradoxical failure of L-glutamine to stimulate insulin secretion. L-Glutamine was converted by isolated islets into GABA (gamma-aminobutyric acid), L-aspartate and L-glutamate. Saturation of the intracellular concentrations of all of these amino acids occurred at approx. 10 mmol/l L-glutamine, and their half-maximal values were attained at progressively increasing concentrations of L-glutamine (0.3 mmol/l for GABA; 0.5 and 1.0 mmol/l for Asp and Glu respectively). GABA accumulation accounted for most of the 14CO2 produced at various L-[U-14C]glutamine concentrations. Potentiation by L-glutamine of L-leucine-induced insulin secretion in perifused islets was suppressed by malonic acid dimethyl ester, was accompanied by a significant decrease in islet GABA accumulation, and was not modified in the presence of GABA receptor antagonists [50 micromol/l saclofen or 10 micromol/l (+)-bicuculline]. L-Leucine activated islet glutamate dehydrogenase activity, but had no effect on either glutamate decarboxylase or GABA transaminase activity, in islet homogenates. We conclude that (i) L-glutamine is metabolized preferentially to GABA and L-aspartate, which accumulate in islets, thus preventing its complete oxidation in the Krebs cycle, which accounts for its failure to stimulate insulin secretion; (ii) potentiation by L-glutamine of L-leucine-induced insulin secretion involves increased metabolism of L-glutamate and GABA via the Krebs cycle (glutamate dehydrogenase activation) and the GABA shunt (2-oxoglutarate availability for GABA transaminase) respectively, and (iii) islet release of GABA does not seem to play an important role in the modulation of the islet secretory response to the combination of L-leucine and L-glutamine.

  2. Conversion into GABA (gamma-aminobutyric acid) may reduce the capacity of L-glutamine as an insulin secretagogue.

    PubMed Central

    Fernández-Pascual, Sergio; Mukala-Nsengu-Tshibangu, André; Martín Del Río, Rafael; Tamarit-Rodríguez, Jorge

    2004-01-01

    We have carried out a detailed examination of L-glutamine metabolism in rat islets in order to elucidate the paradoxical failure of L-glutamine to stimulate insulin secretion. L-Glutamine was converted by isolated islets into GABA (gamma-aminobutyric acid), L-aspartate and L-glutamate. Saturation of the intracellular concentrations of all of these amino acids occurred at approx. 10 mmol/l L-glutamine, and their half-maximal values were attained at progressively increasing concentrations of L-glutamine (0.3 mmol/l for GABA; 0.5 and 1.0 mmol/l for Asp and Glu respectively). GABA accumulation accounted for most of the 14CO2 produced at various L-[U-14C]glutamine concentrations. Potentiation by L-glutamine of L-leucine-induced insulin secretion in perifused islets was suppressed by malonic acid dimethyl ester, was accompanied by a significant decrease in islet GABA accumulation, and was not modified in the presence of GABA receptor antagonists [50 micromol/l saclofen or 10 micromol/l (+)-bicuculline]. L-Leucine activated islet glutamate dehydrogenase activity, but had no effect on either glutamate decarboxylase or GABA transaminase activity, in islet homogenates. We conclude that (i) L-glutamine is metabolized preferentially to GABA and L-aspartate, which accumulate in islets, thus preventing its complete oxidation in the Krebs cycle, which accounts for its failure to stimulate insulin secretion; (ii) potentiation by L-glutamine of L-leucine-induced insulin secretion involves increased metabolism of L-glutamate and GABA via the Krebs cycle (glutamate dehydrogenase activation) and the GABA shunt (2-oxoglutarate availability for GABA transaminase) respectively, and (iii) islet release of GABA does not seem to play an important role in the modulation of the islet secretory response to the combination of L-leucine and L-glutamine. PMID:14763900

  3. Zolpidem, a clinical hypnotic that affects electronic transfer, alters synaptic activity through potential GABA receptors in the nervous system without significant free radical generation.

    PubMed

    Kovacic, Peter; Somanathan, Ratnasamy

    2009-01-01

    Zolpidem (trade name Ambien) has attracted much interest as a sleep-inducing agent and also in research. Attention has been centered mainly on receptor binding and electrochemistry in the central nervous system which are briefly addressed herein. A novel integrated approach to mode of action is presented. The pathways to be discussed involve basicity, reduction potential, electrostatics, cell signaling, GABA receptor binding, electron transfer (ET), pharmacodynamics, structure activity relationships (SAR) and side effects. The highly conjugated pyridinium salt formed by protonation of the amidine moiety is proposed to be the active form acting as an ET agent. Extrapolation of reduction potentials for related compounds supports the premise that zolpidem may act as an ET species in vivo. From recent literature reports, electrostatics is believed to play a significant role in drug action. The pyridinium cation displays molecular electrostatic potential which may well play a role energetically or as a bridging mechanism. An SAR analysis points to analogy with other physiologically active xenobiotics, namely benzodiazepines and paraquat in the conjugated iminium category. Inactivity of metabolites indicates that the parent is the active form of zolpidem. Absence of reactive oxygen species and oxidative stress is in line with minor side effects. In contrast, generally, the prior literature contains essentially no discussion of these fundamental biochemical relationships. Pharmacodynamics may play an important role. Concerning behavior at the blood-brain barrier, useful insight can be gained from investigations of the related cationic anesthetics that are structurally related to acetyl choline. Evidently, the neutral form of the drug penetrates the neuronal membrane, with the salt form operating at the receptor. The pathways of zolpidem have several clinical implications since the agent affects sedation, electroencephalographic activity, oxidative metabolites and

  4. Gestational changes of GABA levels and GABA binding in the human uterus

    SciTech Connect

    Erdoe, S.L.; Villanyi, P.; Laszlo, A.

    1989-01-01

    The concentrations of gamma-aminobutyric acid (GABA), the activities of L-glutamate decarboxylase and GABA-transaminase, and the nature of the sodium-independent binding of GABA were examined in uterine tissue pieces obtained surgically from pregnant and non-pregnant women. GABA concentrations were reduced, while the activity of GABA-transaminase and the specific binding of (/sup 3/H)GABA significantly increased in specimens from pregnant subjects. These findings suggest some gestation-related functional role for the GABA system in the human uterus.

  5. Depolarizing actions of GABA in immature neurons depend neither on ketone bodies nor on pyruvate.

    PubMed

    Tyzio, Roman; Allene, Camille; Nardou, Romain; Picardo, Michel A; Yamamoto, Sumii; Sivakumaran, Sudhir; Caiati, Maddalena D; Rheims, Sylvain; Minlebaev, Marat; Milh, Mathieu; Ferré, Pascal; Khazipov, Rustem; Romette, Jean-Louis; Lorquin, Jean; Cossart, Rosa; Khalilov, Ilgam; Nehlig, Astrid; Cherubini, Enrico; Ben-Ari, Yehezkel

    2011-01-05

    GABA depolarizes immature neurons because of a high [Cl(-)](i) and orchestrates giant depolarizing potential (GDP) generation. Zilberter and coworkers (Rheims et al., 2009; Holmgren et al., 2010) showed recently that the ketone body metabolite DL-3-hydroxybutyrate (DL-BHB) (4 mM), lactate (4 mM), or pyruvate (5 mM) shifted GABA actions to hyperpolarizing, suggesting that the depolarizing effects of GABA are attributable to inadequate energy supply when glucose is the sole energy source. We now report that, in rat pups (postnatal days 4-7), plasma D-BHB, lactate, and pyruvate levels are 0.9, 1.5, and 0.12 mM, respectively. Then, we show that DL-BHB (4 mM) and pyruvate (200 μM) do not affect (i) the driving force for GABA(A) receptor-mediated currents (DF(GABA)) in cell-attached single-channel recordings, (2) the resting membrane potential and reversal potential of synaptic GABA(A) receptor-mediated responses in perforated patch recordings, (3) the action potentials triggered by focal GABA applications, or (4) the GDPs determined with electrophysiological recordings and dynamic two-photon calcium imaging. Only very high nonphysiological concentrations of pyruvate (5 mM) reduced DF(GABA) and blocked GDPs. Therefore, DL-BHB does not alter GABA signals even at the high concentrations used by Zilberter and colleagues, whereas pyruvate requires exceedingly high nonphysiological concentrations to exert an effect. There is no need to alter conventional glucose enriched artificial CSF to investigate GABA signals in the developing brain.

  6. Glutamic acid decarboxylase 65: a link between GABAergic synaptic plasticity in the lateral amygdala and conditioned fear generalization.

    PubMed

    Lange, Maren D; Jüngling, Kay; Paulukat, Linda; Vieler, Marc; Gaburro, Stefano; Sosulina, Ludmila; Blaesse, Peter; Sreepathi, Hari K; Ferraguti, Francesco; Pape, Hans-Christian

    2014-08-01

    An imbalance of the gamma-aminobutyric acid (GABA) system is considered a major neurobiological pathomechanism of anxiety, and the amygdala is a key brain region involved. Reduced GABA levels have been found in anxiety patients, and genetic variations of glutamic acid decarboxylase (GAD), the rate-limiting enzyme of GABA synthesis, have been associated with anxiety phenotypes in both humans and mice. These findings prompted us to hypothesize that a deficiency of GAD65, the GAD isoform controlling the availability of GABA as a transmitter, affects synaptic transmission and plasticity in the lateral amygdala (LA), and thereby interferes with fear responsiveness. Results indicate that genetically determined GAD65 deficiency in mice is associated with (1) increased synaptic length and release at GABAergic connections, (2) impaired efficacy of GABAergic synaptic transmission and plasticity, and (3) reduced spillover of GABA to presynaptic GABAB receptors, resulting in a loss of the associative nature of long-term synaptic plasticity at cortical inputs to LA principal neurons. (4) In addition, training with high shock intensities in wild-type mice mimicked the phenotype of GAD65 deficiency at both the behavioral and synaptic level, indicated by generalization of conditioned fear and a loss of the associative nature of synaptic plasticity in the LA. In conclusion, GAD65 is required for efficient GABAergic synaptic transmission and plasticity, and for maintaining extracellular GABA at a level needed for associative plasticity at cortical inputs in the LA, which, if disturbed, results in an impairment of the cue specificity of conditioned fear responses typifying anxiety disorders.

  7. Chronic methylphenidate exposure during adolescence reduces striatal synaptic responses to ethanol.

    PubMed

    Crowley, Nicole A; Cody, Patrick A; Davis, Margaret I; Lovinger, David M; Mateo, Yolanda

    2014-02-01

    Dopamine (DA) plays an important role in integrative functions contributing to adaptive behaviors. In support of this essential function, DA modulates synaptic plasticity in different brain areas, including the striatum. Many drugs used for cognitive enhancement are psychostimulants, such as methylphenidate (MPH), which enhance DA levels. MPH treatment is of interest during adolescence, a period of enhanced neurodevelopment during which the DA system is in a state of flux. Recent epidemiological studies report the co-abuse of MPH and ethanol in adolescents and young adults. Although repeated MPH treatment produces enduring changes that affect subsequent behavioral responses to other psychostimulants, few studies have investigated the interactions between MPH and ethanol. Here we addressed whether chronic therapeutic exposure to MPH during adolescence predisposed mice to an altered response to ethanol and whether this was accompanied by altered DA release and striatal plasticity. C57BL/6J mice were administered MPH (3-6 mg/kg/day) via the drinking water between post-natal days 30 and 60. Voltammetry experiments showed that sufficient brain MPH concentrations were achieved during adolescence in mice to increase the DA clearance in adulthood. The treatment also increased long-term depression and reduced the effects of ethanol on striatal synaptic responses. Although the injection of 0.4 or 2 g/kg ethanol dose-dependently decreased locomotion in control mice, only the higher dose decreased locomotion in MPH-treated mice. These results suggested that the administration of MPH during development promoted long-term effects on synaptic plasticity in forebrain regions targeted by DA. These changes in plasticity might, in turn, underlie alterations in behaviors controlled by these brain regions into adulthood.

  8. Chronic methylphenidate exposure during adolescence reduces striatal synaptic responses to ethanol

    PubMed Central

    Crowley, Nicole A.; Cody, Patrick A.; Davis, Margaret I.; Lovinger, David M.; Mateo, Yolanda

    2014-01-01

    Dopamine (DA) plays an important role in integrative functions contributing to adaptive behaviors. In support of this essential function, DA modulates synaptic plasticity in different brain areas, including the striatum. Many drugs used for cognitive enhancement are psychostimulants, such as methylphenidate (MPH), which enhance DA levels. MPH treatment is of interest during adolescence, a period of enhanced neurodevelopment during which the DA system is in a state of flux. Recent epidemiological studies report the co-abuse of MPH and ethanol in adolescents and young adults. Although repeated MPH treatment produces enduring changes that affect subsequent behavioral responses to other psychostimulants, few studies have investigated the interactions between MPH and ethanol. Here we addressed whether chronic therapeutic exposure to MPH during adolescence predisposed mice to an altered response to ethanol and whether this was accompanied by altered DA release and striatal plasticity. C57BL/6J mice were administered MPH (3–6 mg/kg/day) via the drinking water between post-natal days 30 and 60. Voltammetry experiments showed that sufficient brain MPH concentrations were achieved during adolescence in mice to increase the DA clearance in adulthood. The treatment also increased long-term depression and reduced the effects of ethanol on striatal synaptic responses. Although the injection of 0.4 or 2 g/kg ethanol dose-dependently decreased locomotion in control mice, only the higher dose decreased locomotion in MPH-treated mice. These results suggested that the administration of MPH during development promoted long-term effects on synaptic plasticity in forebrain regions targeted by DA. These changes in plasticity might, in turn, underlie alterations in behaviors controlled by these brain regions into adulthood. PMID:24236977

  9. HCN1 channels reduce the rate of exocytosis from a subset of cortical synaptic terminals

    PubMed Central

    Huang, Zhuo; Li, Gengyu; Aguado, Carolina; Lujan, Rafael; Shah, Mala M.

    2017-01-01

    The hyperpolarization-activated cyclic nucleotide-gated (HCN1) channels are predominantly located in pyramidal cell dendrites within the cortex. Recent evidence suggests these channels also exist pre-synaptically in a subset of synaptic terminals within the mature entorhinal cortex (EC). Inhibition of pre-synaptic HCN channels enhances miniature excitatory post-synaptic currents (mEPSCs) onto EC layer III pyramidal neurons, suggesting that these channels decrease the release of the neurotransmitter, glutamate. Thus, do pre-synaptic HCN channels alter the rate of synaptic vesicle exocytosis and thereby enhance neurotransmitter release? To address this, we imaged the release of FM1-43, a dye that is incorporated into synaptic vesicles, from EC synaptic terminals using two photon microscopy in slices obtained from forebrain specific HCN1 deficient mice, global HCN1 knockouts and their wildtype littermates. This coupled with electrophysiology and pharmacology showed that HCN1 channels restrict the rate of exocytosis from a subset of cortical synaptic terminals within the EC and in this way, constrain non-action potential-dependent and action potential-dependent spontaneous release as well as synchronous, evoked release. Since HCN1 channels also affect post-synaptic potential kinetics and integration, our results indicate that there are diverse ways by which HCN1 channels influence synaptic strength and plasticity. PMID:28071723

  10. Basic aspects of GABA-transmission in alcoholism, with particular reference to GABA-transaminase.

    PubMed

    Sherif, F M; Tawati, A M; Ahmed, S S; Sharif, S I

    1997-02-01

    Neuronal dysfunction is the neurobiological basis for alcoholic behaviour, and ethanol craving seems related to hypofunction of the GABA-ergic activity. Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the central nervous system (CNS). In several studies, GABA has been shown to be an important target of ethanol in the CNS, partly, as a consequence of damage to membrane-bound enzymes and receptors. GABA is involved in mediating pre- and post-synaptic inhibition of neuronal activity. It is speculated that the initial excitatory effects of ethanol may be due to inhibition of GABA-ergic activity whereas the sedative effects of the higher doses may be mediated by the activation of this inhibitory system. In the CNS, GABA is synthesised from glutamic acid by the enzyme glutamate decarboxylase (GAD) and catabolized into succinic semialdehyde by the enzyme GABA-transaminase (GABA-T), which are pyridoxal phosphate (PLP) dependent enzymes. Platelet GABA-T was characterized as being similar to central GABA-T. Inhibition of GABA-T with certain potent and selective compounds markedly increases the levels of brain GABA. Experimentally, acute ethanol treatment does not alter GABA-T activity whereas chronic treatment produces an increase in the activity, though, with some reservations since a bimodal effect has been found in chronically ethanol-treated rats. Thus, as it will be discussed below, it may be suggested that GABA-T inhibitors (e.g. vigabatrin) could have a potential role in the treatment of alcoholism and in some of the problems of ethanol withdrawal and of other drugs of abuse. Related studies on metabolism and concentrations of GABA are also promising and show a greater increase in our understanding of the aetiology and treatment of ethanol dependence and withdrawal. In general, this article also reviews both the animal and clinical observations in the field of alcoholism with regard to the GABA system.

  11. Comparative immunohistochemical localisation of GABA(B1a), GABA(B1b) and GABA(B2) subunits in rat brain, spinal cord and dorsal root ganglion.

    PubMed

    Charles, K J; Evans, M L; Robbins, M J; Calver, A R; Leslie, R A; Pangalos, M N

    2001-01-01

    GABA(B) receptors are G-protein-coupled receptors mediating the slow onset and prolonged synaptic actions of GABA in the CNS. The recent cloning of two genes, GABA(B1) and GABA(B2), has revealed a novel requirement for GABA(B) receptor signalling. Studies have demonstrated that the two receptor subunits associate as a GABA(B1)/GABA(B2) heterodimer to form a functional GABA(B) receptor. In this study we have developed polyclonal antisera specific to two splice variants of the GABA(B1) subunit, GABA(B1a) and GABA(B1b), as well as an antiserum to the GABA(B2) subunit. Using affinity-purified antibodies derived from these antisera we have mapped out the distribution profile of each subunit in rat brain, spinal cord and dorsal root ganglion. In brain the highest areas of GABA(B1a), GABA(B1b) and GABA(B2) subunit expression were found in neocortex, hippocampus, thalamus, cerebellum and habenula. In spinal cord, GABA(B1) and GABA(B2) subunits were expressed in the superficial layers of the dorsal horn, as well as in motor neurones in the deeper layers of the ventral horn. GABA(B) receptor subunit immunoreactivity in dorsal root ganglion suggested that expression of GABA(B1b) was restricted to the large diameter neurones, in contrast to GABA(B1a) and GABA(B2) subunits which were expressed in both large and small diameter neurones. Although expression levels of GABA(B1) and GABA(B2) subunits varied we found no areas in which GABA(B1) was expressed in the absence of GABA(B2). This suggests that most, if not all, GABA(B1) immunoreactivity may represent functional GABA(B) receptors. Although our data are in general agreement with functional studies, some discrepancies in GABA(B1) subunit expression occurred with respect to other immunohistochemical studies. Overall our data suggest that GABA(B) receptors are widely expressed throughout the brain and spinal cord, and that GABA(B1a) and GABA(B1b) subunits can associate with GABA(B2) to form both pre- and post-synaptic receptors.

  12. Structure, function, and plasticity of GABA transporters

    PubMed Central

    Scimemi, Annalisa

    2014-01-01

    GABA transporters belong to a large family of neurotransmitter:sodium symporters. They are widely expressed throughout the brain, with different levels of expression in different brain regions. GABA transporters are present in neurons and in astrocytes and their activity is crucial to regulate the extracellular concentration of GABA under basal conditions and during ongoing synaptic events. Numerous efforts have been devoted to determine the structural and functional properties of GABA transporters. There is also evidence that the expression of GABA transporters on the cell membrane and their lateral mobility can be modulated by different intracellular signaling cascades. The strength of individual synaptic contacts and the activity of entire neuronal networks may be finely tuned by altering the density, distribution and diffusion rate of GABA transporters within the cell membrane. These findings are intriguing because they suggest the existence of complex regulatory systems that control the plasticity of GABAergic transmission in the brain. Here we review the current knowledge on the structural and functional properties of GABA transporters and highlight the molecular mechanisms that alter the expression and mobility of GABA transporters at central synapses. PMID:24987330

  13. Phenolic compounds prevent the oligomerization of α-synuclein and reduce synaptic toxicity.

    PubMed

    Takahashi, Ryoichi; Ono, Kenjiro; Takamura, Yusaku; Mizuguchi, Mineyuki; Ikeda, Tokuhei; Nishijo, Hisao; Yamada, Masahito

    2015-09-01

    Lewy bodies, mainly composed of α-synuclein (αS), are pathological hallmarks of Parkinson's disease and dementia with Lewy bodies. Epidemiological studies showed that green tea consumption or habitual intake of phenolic compounds reduced Parkinson's disease risk. We previously reported that phenolic compounds inhibited αS fibrillation and destabilized preformed αS fibrils. Cumulative evidence suggests that low-order αS oligomers are neurotoxic and critical species in the pathogenesis of α-synucleinopathies. To develop disease modifying therapies for α-synucleinopathies, we examined effects of phenolic compounds (myricetin (Myr), curcumin, rosmarinic acid (RA), nordihydroguaiaretic acid, and ferulic acid) on αS oligomerization. Using methods such as photo-induced cross-linking of unmodified proteins, circular dichroism spectroscopy, the electron microscope, and the atomic force microscope, we showed that Myr and RA inhibited αS oligomerization and secondary structure conversion. The nuclear magnetic resonance analysis revealed that Myr directly bound to the N-terminal region of αS, whereas direct binding of RA to monomeric αS was not detected. Electrophysiological assays for long-term potentiation in mouse hippocampal slices revealed that Myr and RA ameliorated αS synaptic toxicity by inhibition of αS oligomerization. These results suggest that Myr and RA prevent the αS aggregation process, reducing the neurotoxicity of αS oligomers. To develop disease modifying therapies for α-synucleinopathies, we examined effects of phenolic compounds on α-synuclein (αS) oligomerization. Phenolic compounds, especially Myricetin (Myr) and Rosmarinic acid (RA), inhibited αS oligomerization and secondary structure conversion. Myr and RA ameliorated αS synaptic toxicity on the experiment of long-term potentiation. Our results suggest that Myr and RA prevent αS aggregation process and reduce the neurotoxicity of αS oligomers. Phenolic compounds are good

  14. Neurobeachin Regulates Glutamate- and GABA-Receptor Targeting to Synapses via Distinct Pathways.

    PubMed

    Farzana, F; Zalm, R; Chen, N; Li, K W; Grant, Seth G N; Smit, A B; Toonen, R F; Verhage, M

    2016-05-01

    Neurotransmission and synaptic strength depend on expression of post-synaptic receptors on the cell surface. Post-translational modification of receptors, trafficking to the synapse through the secretory pathway, and subsequent insertion into the synapse involves interaction of the receptor with A-kinase anchor proteins (AKAPs) and scaffolding proteins. Neurobeachin (Nbea), a brain specific AKAP, is required for synaptic surface expression of both glutamate and GABA receptors. Here, we investigated the role of Nbea-dependent targeting of postsynaptic receptors by studying Nbea interaction with synapse-associated protein 102 (SAP102/Dlg3) and protein kinase A subunit II (PKA II). A Nbea mutant lacking the PKA binding domain showed a similar distribution as wild-type Nbea in Nbea null neurons and partially restored GABA receptor surface expression. To understand the relevance of Nbea interaction with SAP102, we analysed SAP102 null mutant mice. Nbea levels were reduced by ~80% in SAP102 null mice, but glutamatergic receptor expression was normal. A single-point mutation in the pleckstrin homology domain of Nbea (E2218R) resulted in loss of binding with SAP102. When expressed in Nbea null neurons, this mutant fully restored GABA receptor surface expression, but not glutamate receptor expression. Our results suggest that the PKA-binding domain is not essential for Nbea's role in receptor targeting and that Nbea targets glutamate and GABA receptors to the synapse via distinct molecular pathways by interacting with specific effector proteins.

  15. GABA-ergic neurons in the leach central nervous system

    SciTech Connect

    Cline, H.T.

    1985-01-01

    GABA is a candidate for an inhibitory neurotransmitter in the leech central nervous system because of the well-documented inhibitory action of GABA in other invertebrates. To demonstrate that GABA meets the criteria used to identify a substance as a neurotransmitter, the author examined GABA metabolism and synaptic interactions of inhibitory motor neurons in two leech species, Hirudo medicinalis and Haementeria ghilianii. Segmental ganglia of the leech ventral nerve cord and identified inhibitors have the capacity to synthesize GABA when incubated in the presence of the precursor glutamate. Application of GABA to cell bodies of excitatory motor neurons or muscle fibers innervated by the inhibitors hyperpolarizes the membrane potential of the target cell and activates a chloride ion conductance channel, similar to the inhibitory membrane response following intracellular stimulation of the inhibitor. Bicuculline methiodide (5 x 10/sup -5/M), GABA receptor antagonist, blocks reversibly the response to applied GABA and the inhibitory synaptic inputs onto the postsynaptic neurons or muscle fibers without interfering with their excitatory inputs. Furthermore, the inhibitors are included among approximately 25 neurons per segmental ganglion that take up GABA by a high affinity uptake system, as revealed by /sup 3/H-GABA-autoradiography. The development of the capacities to synthesize and to take up GABA were examined in leech embryos. The embryos are able to synthesize GABA at early stages of the development of the nervous system, before any neurons have extended neutrites.

  16. GABA-ergic Cell Therapy for Epilepsy: Advances, Limitations and Challenges

    PubMed Central

    Shetty, Ashok K.; Upadhya, Dinesh

    2016-01-01

    Diminution in the number of gamma-amino butyric acid positive (GABA-ergic) interneurons and their axon terminals, and/or alterations in functional inhibition are conspicuous brain alterations believed to contribute to the persistence of seizures in acquired epilepsies such as temporal lobe epilepsy. This has steered a perception that replacement of lost GABA-ergic interneurons would improve inhibitory synaptic neurotransmission in the epileptic brain region and thereby reduce the occurrence of seizures. Indeed, studies using animal prototypes have reported that grafting of GABA-ergic progenitors derived from multiple sources into epileptic regions can reduce seizures. This review deliberates recent advances, limitations and challenges concerning the development of GABA-ergic cell therapy for epilepsy. The efficacy and limitations of grafts of primary GABA-ergic progenitors from the embryonic lateral ganglionic eminence and medial ganglionic eminence (MGE), neural stem/progenitor cells expanded from MGE, and MGE-like progenitors generated from human pluripotent stem cells for alleviating seizures and co-morbidities of epilepsy are conferred. Additional studies required for possible clinical application of GABA-ergic cell therapy for epilepsy are also summarized. PMID:26748379

  17. GABA-ergic cell therapy for epilepsy: Advances, limitations and challenges.

    PubMed

    Shetty, Ashok K; Upadhya, Dinesh

    2016-03-01

    Diminution in the number of gamma-amino butyric acid positive (GABA-ergic) interneurons and their axon terminals, and/or alterations in functional inhibition are conspicuous brain alterations believed to contribute to the persistence of seizures in acquired epilepsies such as temporal lobe epilepsy. This has steered a perception that replacement of lost GABA-ergic interneurons would improve inhibitory synaptic neurotransmission in the epileptic brain region and thereby reduce the occurrence of seizures. Indeed, studies using animal prototypes have reported that grafting of GABA-ergic progenitors derived from multiple sources into epileptic regions can reduce seizures. This review deliberates recent advances, limitations and challenges concerning the development of GABA-ergic cell therapy for epilepsy. The efficacy and limitations of grafts of primary GABA-ergic progenitors from the embryonic lateral ganglionic eminence and medial ganglionic eminence (MGE), neural stem/progenitor cells expanded from MGE, and MGE-like progenitors generated from human pluripotent stem cells for alleviating seizures and co-morbidities of epilepsy are conferred. Additional studies required for possible clinical application of GABA-ergic cell therapy for epilepsy are also summarized. Published by Elsevier Ltd.

  18. Methamphetamine Reduces LTP and Increases Baseline Synaptic Transmission in the CA1 Region of Mouse Hippocampus

    PubMed Central

    Swant, Jarod; Chirwa, Sanika; Stanwood, Gregg; Khoshbouei, Habibeh

    2010-01-01

    Methamphetamine (METH) is an addictive psychostimulant whose societal impact is on the rise. Emerging evidence suggests that psychostimulants alter synaptic plasticity in the brain—which may partly account for their adverse effects. While it is known that METH increases the extracellular concentration of monoamines dopamine, serotonin, and norepinephrine, it is not clear how METH alters glutamatergic transmission. Within this context, the aim of the present study was to investigate the effects of acute and systemic METH on basal synaptic transmission and long-term potentiation (LTP; an activity-induced increase in synaptic efficacy) in CA1 sub-field in the hippocampus. Both the acute ex vivo application of METH to hippocampal slices and systemic administration of METH decreased LTP. Interestingly, the acute ex vivo application of METH at a concentration of 30 or 60 µM increased baseline synaptic transmission as well as decreased LTP. Pretreatment with eticlopride (D2-like receptor antagonist) did not alter the effects of METH on synaptic transmission or LTP. In contrast, pretreatment with D1/D5 dopamine receptor antagonist SCH23390 or 5-HT1A receptor antagonist NAN-190 abrogated the effect of METH on synaptic transmission. Furthermore, METH did not increase baseline synaptic transmission in D1 dopamine receptor haploinsufficient mice. Our findings suggest that METH affects excitatory synaptic transmission via activation of dopamine and serotonin receptor systems in the hippocampus. This modulation may contribute to synaptic maladaption induced by METH addiction and/or METH-mediated cognitive dysfunction. PMID:20614033

  19. Trophic actions of GABA on neuronal development.

    PubMed

    Represa, Alfonso; Ben-Ari, Yehezkel

    2005-06-01

    During brain development, transmitter-gated receptors are operative before synapse formation, suggesting that their action is not restricted to synaptic transmission. GABA, which is the principal excitatory transmitter in the developing brain, acts as an epigenetic factor to control processes including cell proliferation, neuroblast migration and dendritic maturation. These effects appear to be mediated through a paracrine, diffuse, non-synaptic mode of action that precedes the more focused, rapid mode of operation characteristic of synaptic connections. This sequential operation implies that GABA is used as an informative agent but in a unique context at an early developmental stage. This sequence also implies that by altering these effects, drugs acting on the GABA system could be pathogenic during pregnancy.

  20. Progranulin gene delivery reduces plaque burden and synaptic atrophy in a mouse model of Alzheimer's disease.

    PubMed

    Van Kampen, Jackalina M; Kay, Denis G

    2017-01-01

    Progranulin (PGRN) is a multifunctional protein that is widely expressed throughout the brain, where it has been shown to act as a critical regulator of CNS inflammation and also functions as an autocrine neuronal growth factor, important for long-term neuronal survival. PGRN has been shown to activate cell signaling pathways regulating excitoxicity, oxidative stress, and synaptogenesis, as well as amyloidogenesis. Together, these critical roles in the CNS suggest that PGRN has the potential to be an important therapeutic target for the treatment of various neurodegenerative disorders, particularly Alzheimer's disease (AD). AD is the leading cause of dementia and is marked by the appearance of extracellular plaques consisting of aggregates of amyloid-β (Aβ), as well as neuroinflammation, oxidative stress, neuronal loss and synaptic atrophy. The ability of PGRN to target multiple key features of AD pathophysiology suggests that enhancing its expression may benefit this disease. Here, we describe the application of PGRN gene transfer using in vivo delivery of lentiviral expression vectors in a transgenic mouse model of AD. Viral vector delivery of the PGRN gene effectively enhanced PGRN expression in the hippocampus of Tg2576 mice. This elevated PGRN expression significantly reduced amyloid plaque burden in these mice, accompanied by reductions in markers of inflammation and synaptic atrophy. The overexpression of PGRN was also found to increase activity of neprilysin, a key amyloid beta degrading enzyme. PGRN regulation of neprilysin activity could play a major role in the observed alterations in plaque burden. Thus, PGRN may be an effective therapeutic target for the treatment of AD.

  1. Mutations in y-aminobutyric acid (GABA) transaminase genes in plants or Pseudomonas syringae reduce bacterial virulence

    USDA-ARS?s Scientific Manuscript database

    Pseudomonas syringae pv. tomato DC3000 is a bacterial pathogen of Arabidopsis and tomato that grows in the apoplast. The non-protein amino acid '-amino butyric acid (GABA) is produced by Arabidopsis and tomato and is the most abundant amino acid in the apoplastic fluid of tomato. The DC3000 genome h...

  2. Striatal cholinergic interneurons Drive GABA release from dopamine terminals.

    PubMed

    Nelson, Alexandra B; Hammack, Nora; Yang, Cindy F; Shah, Nirao M; Seal, Rebecca P; Kreitzer, Anatol C

    2014-04-02

    Striatal cholinergic interneurons are implicated in motor control, associative plasticity, and reward-dependent learning. Synchronous activation of cholinergic interneurons triggers large inhibitory synaptic currents in dorsal striatal projection neurons, providing one potential substrate for control of striatal output, but the mechanism for these GABAergic currents is not fully understood. Using optogenetics and whole-cell recordings in brain slices, we find that a large component of these inhibitory responses derive from action-potential-independent disynaptic neurotransmission mediated by nicotinic receptors. Cholinergically driven IPSCs were not affected by ablation of striatal fast-spiking interneurons but were greatly reduced after acute treatment with vesicular monoamine transport inhibitors or selective destruction of dopamine terminals with 6-hydroxydopamine, indicating that GABA release originated from dopamine terminals. These results delineate a mechanism in which striatal cholinergic interneurons can co-opt dopamine terminals to drive GABA release and rapidly inhibit striatal output neurons. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Striatal cholinergic interneurons drive GABA release from dopamine terminals

    PubMed Central

    Nelson, Alexandra B.; Hammack, Nora; Yang, Cindy F.; Shah, Nirao M.; Seal, Rebecca P.; Kreitzer, Anatol C.

    2014-01-01

    Summary Striatal cholinergic interneurons are implicated in motor control, associative plasticity, and reward-dependent learning. Synchronous activation of cholinergic interneurons triggers large inhibitory synaptic currents in dorsal striatal projection neurons, providing one potential substrate for control of striatal output, but the mechanism for these GABAergic currents is not fully understood. Using optogenetics and whole-cell recordings in brain slices, we find that a large component of these inhibitory responses derive from action-potential-independent disynaptic neurotransmission mediated by nicotinic receptors. Cholinergically-driven IPSCs were not affected by ablation of striatal fast-spiking interneurons, but were greatly reduced after acute treatment with vesicular monoamine transport inhibitors or selective destruction of dopamine terminals with 6-hydroxydopamine, indicating that GABA release originated from dopamine terminals. These results delineate a mechanism in which striatal cholinergic interneurons can co-opt dopamine terminals to drive GABA release and rapidly inhibit striatal output neurons. PMID:24613418

  4. Increased neuroinflammatory and arachidonic acid cascade markers, and reduced synaptic proteins, in brain of HIV-1 transgenic rats

    PubMed Central

    2012-01-01

    Correction to Rao J S, Kim H W, Kellom M, Greenstein D, Chen M, Kraft A D, Harry G J, Rapoport S I, Basselin M. Increased neuroinflammatory and arachidonic acid cascade markers, and reduced synaptic proteins, in brain of HIV-1 transgenic rats. Journal of Neuroinflammation 8:101.

  5. Increased GABA-A receptor binding and reduced connectivity at the motor cortex in children with hemiplegic cerebral palsy: a multimodal investigation using 18F-fluoroflumazenil PET, immunohistochemistry, and MR imaging.

    PubMed

    Park, Hae-Jeong; Kim, Chul Hoon; Park, Eun Sook; Park, Bumhee; Oh, So Ra; Oh, Maeng-Keun; Park, Chang Il; Lee, Jong Doo

    2013-08-01

    γ-aminobutyric acid (GABA)-A receptor-mediated neural transmission is important to promote practice-dependent plasticity after brain injury. This study investigated alterations in GABA-A receptor binding and functional and anatomic connectivity within the motor cortex in children with cerebral palsy (CP). We conducted (18)F-fluoroflumazenil PET on children with hemiplegic CP to investigate whether in vivo GABA-A receptor binding is altered in the ipsilateral or contralateral hemisphere of the lesion site. To evaluate changes in the GABA-A receptor subunit after prenatal brain injury, we performed GABA-A receptor immunohistochemistry using rat pups with a diffuse hypoxic ischemic insult. We also performed diffusion tensor MR imaging and resting-state functional MR imaging on the same children with hemiplegic CP to investigate alterations in anatomic and functional connectivity at the motor cortex with increased GABA-A receptor binding. In children with hemiplegic CP, the (18)F-fluoroflumazenil binding potential was increased within the ipsilateral motor cortex. GABA-A receptors with the α1 subunit were highly expressed exclusively within cortical layers III, IV, and VI of the motor cortex in rat pups. The motor cortex with increased GABA-A receptor binding in children with hemiplegic CP had reduced thalamocortical and corticocortical connectivity, which might be linked to increased GABA-A receptor distribution in cortical layers in rats. Increased expression of the GABA-A receptor α1 subunit within the ipsilateral motor cortex may be an important adaptive mechanism after prenatal brain injury in children with CP but may be associated with improper functional connectivity after birth and have adverse effects on the development of motor plasticity.

  6. SUMOylation of synapsin Ia maintains synaptic vesicle availability and is reduced in an autism mutation

    PubMed Central

    Tang, Leo T. -H.; Craig, Tim J.; Henley, Jeremy M.

    2015-01-01

    Synapsins are key components of the presynaptic neurotransmitter release machinery. Their main role is to cluster synaptic vesicles (SVs) to each other and anchor them to the actin cytoskeleton to establish the reserve vesicle pool, and then release them in response to appropriate membrane depolarization. Here we demonstrate that SUMOylation of synapsin Ia (SynIa) at K687 is necessary for SynIa function. Replacement of endogenous SynIa with a non-SUMOylatable mutant decreases the size of the releasable vesicle pool and impairs stimulated SV exocytosis. SUMOylation enhances SynIa association with SVs to promote the efficient reclustering of SynIa following neuronal stimulation and maintain its presynaptic localization. The A548T mutation in SynIa is strongly associated with autism and epilepsy and we show that it leads to defective SynIa SUMOylation. These results identify SUMOylation as a fundamental regulator of SynIa function and reveal a novel link between reduced SUMOylation of SynIa and neurological disorders. PMID:26173895

  7. Chronic exposure to GSM 1800-MHz microwaves reduces excitatory synaptic activity in cultured hippocampal neurons.

    PubMed

    Xu, Shujun; Ning, Wei; Xu, Zhengping; Zhou, Suya; Chiang, Huai; Luo, Jianhong

    2006-05-08

    The world wide proliferation of mobile phones raises the concern about the health effects of 1800-MHz microwaves on the brain. The present study assesses the effects of microwave exposure on the function of cultured hippocampal neurons of rats using whole cell patch-clamp analysis combined with immunocytochemistry. We showed that chronic exposure (15 min per day for 8 days) to Global System for Mobile Communication (GSM) 1800-MHz microwaves at specific absorption rate (SAR) of 2.4 W/kg induced a selective decrease in the amplitude of alpha-amino-3-hydroxy-5-methyl-4-soxazole propionic acid (AMPA) miniature excitatory postsynaptic currents (mEPSCs), whereas the frequency of AMPA mEPSCs and the amplitude of N-methyl-D-aspartate (NMDA) mEPSCs did not change. Furthermore, the GSM microwave treatment decreased the expression of postsynaptic density 95 (PSD95) in cultured neurons. Our results indicated that 2.4 W/kg GSM 1800-MHz microwaves may reduce excitatory synaptic activity and the number of excitatory synapses in cultured rat hippocampal neurons.

  8. Taurine is a potent activator of extrasynaptic GABA(A) receptors in the thalamus.

    PubMed

    Jia, Fan; Yue, Minerva; Chandra, Dev; Keramidas, Angelo; Goldstein, Peter A; Homanics, Gregg E; Harrison, Neil L

    2008-01-02

    Taurine is one of the most abundant free amino acids in the brain. In a number of studies, taurine has been reported to activate glycine receptors (Gly-Rs) at moderate concentrations (> or = 100 microM), and to be a weak agonist at GABA(A) receptors (GABA(A)-Rs), which are usually activated at high concentrations (> or = 1 mM). In this study, we show that taurine reduced the excitability of thalamocortical relay neurons and activated both extrasynaptic GABA(A)-Rs and Gly-Rs in neurons in the mouse ventrobasal (VB) thalamus. Low concentrations of taurine (10-100 microM) decreased neuronal input resistance and firing frequency, and elicited a steady outward current under voltage clamp, but had no effects on fast inhibitory synaptic currents. Currents elicited by 50 microM taurine were abolished by gabazine, insensitive to midazolam, and partially blocked by 20 microM Zn2+, consistent with the pharmacological properties of extrasynaptic GABA(A)-Rs (alpha4beta2delta subtype) involved in tonic inhibition in the thalamus. Tonic inhibition was enhanced by an inhibitor of taurine transport, suggesting that taurine can act as an endogenous activator of these receptors. Taurine-evoked currents were absent in relay neurons from GABA(A)-R alpha4 subunit knock-out mice. The amplitude of the taurine current was larger in neurons from adult mice than juvenile mice. Taurine was a more potent agonist at recombinant alpha4beta2delta GABA(A)-Rs than at alpha1beta2gamma2 GABA(A)-Rs. We conclude that physiological concentrations of taurine can inhibit VB neurons via activation of extrasynaptic GABA(A)-Rs and that taurine may function as an endogenous regulator of excitability and network activity in the thalamus.

  9. Neurosteroids and GABA-A Receptor Function

    PubMed Central

    Wang, Mingde

    2011-01-01

    Neurosteroids represent a class of endogenous steroids that are synthesized in the brain, the adrenals, and the gonads and have potent and selective effects on the GABAA-receptor. 3α-hydroxy A-ring reduced metabolites of progesterone, deoxycorticosterone, and testosterone are positive modulators of GABAA-receptor in a non-genomic manner. Allopregnanolone (3α-OH-5α-pregnan-20-one), 5α-androstane-3α, 17α-diol (Adiol), and 3α5α-tetrahydrodeoxycorticosterone (3α5α-THDOC) enhance the GABA-mediated Cl- currents acting on a site (or sites) distinct from the GABA, benzodiazepine, barbiturate, and picrotoxin binding sites. 3α5α-P and 3α5α-THDOC potentiate synaptic GABAA-receptor function and activate δ-subunit containing extrasynaptic receptors that mediate tonic currents. On the contrary, 3β-OH pregnane steroids and pregnenolone sulfate (PS) are GABAA-receptor antagonists and induce activation-dependent inhibition of the receptor. The activities of neurosteroid are dependent on brain regions and types of neurons. In addition to the slow genomic action of the parent steroids, the non-genomic, and rapid actions of neurosteroids play a significant role in the GABAA-receptor function and shift in mood and memory function. This review describes molecular mechanisms underlying neurosteroid action on the GABAA-receptor, mood changes, and cognitive functions. PMID:22654809

  10. GABA deficiency in NF1

    PubMed Central

    Patricio, Miguel; Bernardino, Inês; Rebola, José; Abrunhosa, Antero J.; Ferreira, Nuno; Castelo-Branco, Miguel

    2016-01-01

    Objective: To provide a comprehensive investigation of the γ-aminobutyric acid (GABA) system in patients with neurofibromatosis type 1 (NF1) that allows understanding the nature of the GABA imbalance in humans at pre- and postsynaptic levels. Methods: In this cross-sectional study, we employed multimodal imaging and spectroscopy measures to investigate GABA type A (GABAA) receptor binding, using [11C]-flumazenil PET, and GABA concentration, using magnetic resonance spectroscopy (MRS). Fourteen adult patients with NF1 and 13 matched controls were included in the study. MRS was performed in the occipital cortex and in a frontal region centered in the functionally localized frontal eye fields. PET and MRS acquisitions were performed in the same day. Results: Patients with NF1 have reduced concentration of GABA+ in the occipital cortex (p = 0.004) and frontal eye fields (p = 0.026). PET results showed decreased binding of GABAA receptors in patients in the parieto-occipital cortex, midbrain, and thalamus, which are not explained by decreased gray matter levels. Conclusions: Abnormalities in the GABA system in NF1 involve both GABA concentration and GABAA receptor density suggestive of neurodevelopmental synaptopathy with both pre- and postsynaptic involvement. PMID:27473134

  11. [Effect of damage integrity rat brain synaptic membranes on the functional activity GABA(A)-receptor/Cl(-)-ionophore complex in the CNC].

    PubMed

    Rebrov, I G; Kalinina, M V

    2013-01-01

    Functional activity of the CGABA(A)-receptor/Cl(-) ionophore complex was investigated the muscimol-stimulated entry of the radioactive isotope 36Cl(-) in synaptoneurosomes in changing the structure and permeability of neuronal membranes. Integrity of the membranes was damaged by removal of Ca(+2) and Mg(+2) from the incubation medium and by the method of freezing-thawing synaptoneurosomes. In both cases, an increase in basal 36Cl(-) entry into synaptoneurosomes, indicating increased nonspecific permeability of neuronal membranes, and decreased activity the CABA(A)-receptor/Cl(-) ionophore complex. The conclusion about the relationship of processes damage neuronal membranes and reducing the inhibitory processes in the epileptic focus.

  12. GABA neurons of the VTA drive conditioned place aversion.

    PubMed

    Tan, Kelly R; Yvon, Cédric; Turiault, Marc; Mirzabekov, Julie J; Doehner, Jana; Labouèbe, Gwenaël; Deisseroth, Karl; Tye, Kay M; Lüscher, Christian

    2012-03-22

    Salient but aversive stimuli inhibit the majority of dopamine (DA) neurons in the ventral tegmental area (VTA) and cause conditioned place aversion (CPA). The cellular mechanism underlying DA neuron inhibition has not been investigated and the causal link to behavior remains elusive. Here, we show that GABA neurons of the VTA inhibit DA neurons through neurotransmission at GABA(A) receptors. We also observe that GABA neurons increase their firing in response to a footshock and provide evidence that driving GABA neurons with optogenetic effectors is sufficient to affect behavior. Taken together, our data demonstrate that synaptic inhibition of DA neurons drives place aversion. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. SRC Inhibition Reduces NR2B Surface Expression and Synaptic Plasticity in the Amygdala

    ERIC Educational Resources Information Center

    Sinai, Laleh; Duffy, Steven; Roder, John C.

    2010-01-01

    The Src protein tyrosine kinase plays a central role in the regulation of N-methyl-d-aspartate receptor (NMDAR) activity by regulating NMDAR subunit 2B (NR2B) surface expression. In the amygdala, NMDA-dependent synaptic plasticity resulting from convergent somatosensory and auditory inputs contributes to emotional memory; however, the role of Src…

  14. SRC Inhibition Reduces NR2B Surface Expression and Synaptic Plasticity in the Amygdala

    ERIC Educational Resources Information Center

    Sinai, Laleh; Duffy, Steven; Roder, John C.

    2010-01-01

    The Src protein tyrosine kinase plays a central role in the regulation of N-methyl-d-aspartate receptor (NMDAR) activity by regulating NMDAR subunit 2B (NR2B) surface expression. In the amygdala, NMDA-dependent synaptic plasticity resulting from convergent somatosensory and auditory inputs contributes to emotional memory; however, the role of Src…

  15. Vector-mediated release of GABA attenuates pain-related behaviors and reduces NaV1.7 in DRG neurons

    PubMed Central

    Chattopadhyay, Munmun; Mata, Marina; Fink, David J.

    2012-01-01

    Pain is a common and debilitating accompaniment of neuropathy that occurs as a complication of diabetes. In the current study, we examined the effect of continuous release of gamma amino butyric acid (GABA), achieved by gene transfer of glutamic acid decarboxylase (GAD67) to dorsal root ganglia (DRG) in vivo using a nonreplicating herpes simplex virus (HSV)-based vector (vG) in a rat model of painful diabetic neuropathy (PDN). Subcutaneous inoculation of vG reduced mechanical hyperalgesia, thermal hyperalgesia and cold allodynia in rats with PDN. Continuous release of GABA from vector transduced cells in vivo prevented the increase in the voltage gated sodium channel isoform 1.7 (NaV1.7) protein that is characteristic of PDN. In vitro, infection of primary DRG neurons with vG prevented the increase in NaV1.7 resulting from exposure to hyperglycemia. The effect of vector-mediated GABA on NaV1.7 levels in vitro was blocked by phaclofen but not by bicuculline, a GABAB receptor effect that was blocked by pertussis toxin-(PTX) interference with Gα(i/o) function. Taken in conjunction with our previous observation that continuous activation of delta opioid receptors by vector-mediated release of enkephalin also prevents the increase in NaV1.7 in DRG exposed to hyperglycemia in vitro or in vivo, the observations in this report suggest a novel common mechanism through which activation of G protein coupled receptors (GPCR) in DRG neurons regulate the phenotype of the primary afferent. PMID:21486703

  16. The expression of GABA(B1) and GABA(B2) receptor subunits in the cNS differs from that in peripheral tissues.

    PubMed

    Calver, A R; Medhurst, A D; Robbins, M J; Charles, K J; Evans, M L; Harrison, D C; Stammers, M; Hughes, S A; Hervieu, G; Couve, A; Moss, S J; Middlemiss, D N; Pangalos, M N

    2000-01-01

    GABA(B) receptors are G-protein-coupled receptors that mediate the slow and prolonged synaptic actions of GABA in the CNS via the modulation of ion channels. Unusually, GABA(B) receptors form functional heterodimers composed of GABA(B1) and GABA(B2) subunits. The GABA(B1) subunit is essential for ligand binding, whereas the GABA(B2) subunit is essential for functional expression of the receptor dimer at the cell surface. We have used real-time reverse transcriptase-polymerase chain reaction to analyse expression levels of these subunits, and their associated splice variants, in the CNS and peripheral tissues of human and rat. GABA(B1) subunit splice variants were expressed throughout the CNS and peripheral tissues, whereas surprisingly GABA(B2) subunit splice variants were neural specific. Using novel antisera specific to individual GABA(B) receptor subunits, we have confirmed these findings at the protein level. Analysis by immunoblotting demonstrated the presence of the GABA(B1) subunit, but not the GABA(B2) subunit, in uterus and spleen. Furthermore, we have shown the first immunocytochemical analysis of the GABA(B2) subunit in the brain and spinal cord using a GABA(B2)-specific antibody. We have, therefore, identified areas of non-overlap between GABA(B1) and GABA(B2) subunit expression in tissues known to contain functional GABA(B) receptors. Such areas are of interest as they may well contain novel GABA(B) receptor subunit isoforms, expression of which would enable the GABA(B1) subunit to reach the cell surface and form functional GABA(B) receptors.

  17. At Immature Mossy Fibers-CA3 Connections, Activation of Presynaptic GABAB Receptors by Endogenously Released GABA Contributes to Synapses Silencing

    PubMed Central

    Safiulina, Victoria F.; Cherubini, Enrico

    2008-01-01

    Early in postnatal life correlated GABAergic activity in the hippocampus is thought to play a crucial role in synaptogenesis and in the development of adult neuronal networks. Unlike adulthood, at this developmental stage, mossy fibers (MF) which are the axons of granule cells, release GABA into CA3 principal cells and interneurons. Here, we tested the hypothesis that at MF-CA3 connections, tonic activation of GABAB autoreceptors by GABA is responsible for the low probability of release and synapse silencing. Blocking GABAB receptors with CGP55845 enhanced the probability of GABA release and switched on silent synapses while the opposite was observed with baclofen. Both these effects were presynaptic and were associated with changes in paired-pulse ratio and coefficient of variation. In addition, enhancing the extracellular GABA concentration by repetitive stimulation of MF or by blocking the GABA transporter GAT-1, switched off active synapses, an effect that was prevented by CGP55845. In the presence of CGP55845, stimulation of MF-induced synaptic potentiation. The shift of EGABA from the depolarizing to the hyperpolarizing direction with bumetanide, a blocker of the cation-chloride co-transporter NKCC1, prevented synaptic potentiation and caused synaptic depression, suggesting that the depolarizing action of GABA observed in the presence of CGP55845 is responsible for the potentiating effect. It is proposed that, activation of GABAB receptors by spillover of GABA from MF terminals reduces the probability of release and contributes to synapses silencing. This would act as a filter to prevent excessive activation of the auto-associative CA3 network and the emergence of seizures. PMID:19277216

  18. Revised Ion/Substrate Coupling Stoichiometry of GABA Transporters.

    PubMed

    Eskandari, Sepehr; Willford, Samantha L; Anderson, Cynthia M

    2017-01-01

    The purpose of this review is to highlight recent evidence in support of a 3 Na(+): 1 Cl(-): 1 GABA coupling stoichiometry for plasma membrane GABA transporters (SLC6A1 , SLC6A11 , SLC6A12 , SLC6A13 ) and how the revised stoichiometry impacts our understanding of the contribution of GABA transporters to GABA homeostasis in synaptic and extrasynaptic regions in the brain under physiological and pathophysiological states. Recently, our laboratory probed the GABA transporter stoichiometry by analyzing the results of six independent measurements, which included the shifts in the thermodynamic transporter reversal potential caused by changes in the extracellular Na(+), Cl(-), and GABA concentrations, as well as the ratio of charge flux to substrate flux for Na(+), Cl(-), and GABA under voltage-clamp conditions. The shifts in the transporter reversal potential for a tenfold change in the external concentration of Na(+), Cl(-), and GABA were 84 ± 4, 30 ± 1, and 29 ± 1 mV, respectively. Charge flux to substrate flux ratios were 0.7 ± 0.1 charges/Na(+), 2.0 ± 0.2 charges/Cl(-), and 2.1 ± 0.1 charges/GABA. We then compared these experimental results with the predictions of 150 different transporter stoichiometry models, which included 1-5 Na(+), 0-5 Cl(-), and 1-5 GABA per transport cycle. Only the 3 Na(+): 1 Cl(-): 1 GABA stoichiometry model correctly predicts the results of all six experimental measurements. Using the revised 3 Na(+): 1 Cl(-): 1 GABA stoichiometry, we propose that the GABA transporters mediate GABA uptake under most physiological conditions. Transporter-mediated GABA release likely takes place under pathophysiological or extreme physiological conditions.

  19. The gamma 2 subunit of GABA(A) receptors is required for maintenance of receptors at mature synapses.

    PubMed

    Schweizer, Claude; Balsiger, Sylvia; Bluethmann, Horst; Mansuy, Isabelle M; Fritschy, Jean-Marc; Mohler, Hanns; Lüscher, Bernhard

    2003-10-01

    The gamma2 subunit of GABA(A) receptor chloride channels is required for normal channel function and for postsynaptic clustering of these receptors during synaptogenesis. In addition, GABA(A) receptor function is thought to contribute to normal postnatal maturation of neurons. Loss of postsynaptic GABA(A) receptors in gamma2-deficient neurons might therefore reflect a deficit in maturation of neurons due to the reduced channel function. Here, we have used the Cre-loxP strategy to examine the clustering function of the gamma2 subunit at mature synapses. Deletion of the gamma2 subunit in the third postnatal week resulted in loss of benzodiazepine-binding sites and parallel loss of punctate immunoreactivity for postsynaptic GABA(A) receptors and gephyrin. Thus, the gamma2 subunit contributes to postsynaptic localization of GABA(A) receptors and gephyrin by a mechanism that is operant in mature neurons and not limited to immature neurons, most likely through interaction with proteins involved in trafficking of synaptic GABA(A) receptors.

  20. Benzodiazepine-dependent stabilization of GABA(A) receptors at synapses.

    PubMed

    Gouzer, Géraldine; Specht, Christian G; Allain, Laure; Shinoe, Toru; Triller, Antoine

    2014-11-01

    GABA(A) receptors constitutively enter and exit synapses by lateral diffusion in the plane of the neuronal membrane. They are trapped at synapses through their interactions with gephyrin, the main scaffolding protein at inhibitory post-synaptic densities. Previous work has shown that the synaptic accumulation and diffusion dynamics of GABA(A)Rs are controlled via excitatory synaptic activity. However, it remains unknown whether GABA(A)R activity can itself impact the surface trafficking of the receptors. Here we report the effects of GABA(A)R agonists, antagonists and allosteric modulators on the receptor's surface dynamics. Using immunocytochemistry and single particle tracking experiments on mouse hippocampal neurons, we show that the agonist muscimol decreases GABA(A)R and gephyrin levels at synapses and accelerates the receptor's lateral diffusion within 30–120 min of treatment. In contrast, the GABA(A)R antagonist gabazine increased GABA(A)R amounts and slowed down GABA(A)R diffusion at synapses. The response to GABA(A)R activation or inhibition appears to be an adaptative regulation of GABAergic synapses. Surprisingly, the positive allosteric modulator diazepam abolished the regulation induced by muscimol, and this effect was observed on α1, α2, α5 and γ2 GABA(A)R subunits. Altogether these results indicate that diazepam stabilizes synaptic GABA(A)Rs and thus prevents the agonist-induced regulation of GABA(A)R levels at synapses. This occurred independently of neuronal activity and intracellular calcium and involved GABA(A)R–gephyrin interactions, suggesting that the changes in GABA(A)R diffusion depend on conformational changes of the receptor. Our study provides a new molecular mechanism involved in the adaptative response to changes in GABA(A)R activity and benzodiazepine treatments.

  1. Ionic Mechanisms of Neuronal Excitation by Inhibitory GABA_A Receptors

    NASA Astrophysics Data System (ADS)

    Staley, Kevin J.; Soldo, Brandi L.; Proctor, William R.

    1995-08-01

    Gamma-aminobutyric acid A (GABA_A) receptors are the principal mediators of synaptic inhibition, and yet when intensely activated, dendritic GABA_A receptors excite rather than inhibit neurons. The membrane depolarization mediated by GABA_A receptors is a result of the differential, activity-dependent collapse of the opposing concentration gradients of chloride and bicarbonate, the anions that permeate the GABA_A ionophore. Because this depolarization diminishes the voltage-dependent block of the N-methyl-D-aspartate (NMDA) receptor by magnesium, the activity-dependent depolarization mediated by GABA is sufficient to account for frequency modulation of synaptic NMDA receptor activation. Anionic gradient shifts may represent a mechanism whereby the rate and coherence of synaptic activity determine whether dendritic GABA_A receptor activation is excitatory or inhibitory.

  2. Modulation of GABAergic synaptic currents and current responses by α-thujone and dihydroumbellulone.

    PubMed

    Szczot, Marcin; Czyzewska, Marta Magdalena; Appendino, Giovanni; Mozrzymas, Jerzy Wladyslaw

    2012-04-27

    α-Thujone (1a), a constituent of wormwood, has been suspected to cause adverse psychoactive reactions in addicted drinkers of absinthe. While the content of 1a in absinthe is too low for such effects, at higher doses it can indeed induce seizures and inhibit GABA(A) receptors (GABA(A)Rs). The effect of 1a on GABAergic synaptic currents and the mechanisms by which it modulates GABA(A)Rs remain unknown. To address these issues, cultured hippocampal neurons were used to investigate the action of 1a on GABAergic miniature inhibitory postsynaptic currents (mIPSCs) and on responses to exogenous GABA applications. Since lipophilic compounds often show nonspecific actions related to their hydrophobicity, the action of 1a was compared to that of dihydroumbellulone (2), a configurationally pseudoenantiomeric constitutional isomer. α-Thujone (1a) reduced mIPSC frequency and amplitude and also moderately affected their kinetics, indicating both pre- and postsynaptic mechanisms. Analysis of current responses to exogenous GABA revealed that 1a reduced their amplitude, affecting their onset, desensitization, and deactivation, suggesting an effect on receptor gating. In contrast, 2 caused only a weak or negligible effect on GABAergic currents, supporting the effects of 1a on GABAergic inhibition as being due to specific interactions with GABA(A)Rs. © 2012 American Chemical Society and American Society of Pharmacognosy

  3. Increased synaptic inhibition in dentate gyrus of mice with reduced levels of endogenous brain-derived neurotrophic factor.

    PubMed

    Olofsdotter, K; Lindvall, O; Asztély, F

    2000-01-01

    The aim of this study was to explore the role of endogenous neurotrophins for inhibitory synaptic transmission in the dentate gyrus of adult mice. Heterozygous knockout (+/-) mice or neurotrophin scavenging proteins were used to reduce the levels of endogenous brain-derived neurotrophic factor and neurotrophin-3. Patch-clamp recordings from dentate granule cells in brain slices showed that the frequency, but not the kinetics or amplitude, of miniature inhibitory postsynaptic currents was modulated in brain-derived neurotrophic factor +/- compared to wild-type (+/+) mice. Furthermore, paired-pulse depression of evoked inhibitory synaptic responses was increased in brain-derived neurotrophic factor +/- mice. Similar results were obtained in brain slices from brain-derived neurotrophic factor +/+ mice incubated with tyrosine receptor kinase B-immunoglobulin G, which scavenges endogenous brain-derived neurotrophic factor. The increased inhibitory synaptic activity in brain-derived neurotrophic factor +/- mice was accompanied by decreased excitability of the granule cells. No differences in the frequency, amplitude or kinetics of miniature inhibitory postsynaptic currents were seen between neurotrophin-3 +/- and +/+ mice. From these results we suggest that endogenous brain-derived neurotrophic factor, but not neurotrophin-3, has acute modulatory effects on synaptic inhibition onto dentate granule cells. The site of action seems to be located presynaptically, i.e. brain-derived neurotrophic factor regulates the properties of inhibitory interneurons, leading to increased excitability of dentate granule cells. We propose that through this mechanism, brain-derived neurotrophic factor can change the gating/filtering properties of the dentate gyrus for incoming information from the entorhinal cortex to hippocampus. This will have consequences for the recruitment of hippocampal neural circuitries both under physiological and pathological conditions, such as epileptogenesis.

  4. Excitatory but not inhibitory synaptic transmission is reduced in lethargic (Cacnb4(lh)) and tottering (Cacna1atg) mouse thalami.

    PubMed

    Caddick, S J; Wang, C; Fletcher, C F; Jenkins, N A; Copeland, N G; Hosford, D A

    1999-05-01

    Excitatory but not inhibitory synaptic transmission is reduced in lethargic (Cacnb4(lh)) and tottering (Cacna1atg) mouse thalami. Recent studies of the homozygous tottering (Cacna1atg) and lethargic mouse (Cacnb4(lh)) models of absence seizures have identified mutations in the genes encoding the alpha1A and beta4 subunits, respectively, of voltage-gated Ca2+ channels (VGCCs). beta subunits normally regulate Ca2+ currents via a direct interaction with alpha1 (pore-forming) subunits of VGCCs, and VGCCs are known to play a significant role in controlling the release of transmitter from presynaptic nerve terminals in the CNS. Because the gene mutation in Cacnb4(lh) homozygotes results in loss of the beta4 subunit's binding site for alpha1 subunits, we hypothesized that synaptic transmission would be altered in the CNS of Cacnb4(lh) homozygotes. We tested this hypothesis by using whole cell recordings of single cells in an in vitro slice preparation to investigate synaptic transmission in one of the critical neuronal populations that generate seizure activity in this strain, the somatosensory thalamus. The primary finding reported here is the observation of a significant decrease in glutamatergic synaptic transmission mediated by both N-methyl-D-aspartate (NMDA) and non-NMDA receptors in somatosensory thalamic neurons of Cacnb4(lh) homozygotes compared with matched, nonepileptic mice. In contrast, there was no significant decrease in GABAergic transmission in Cacnb4(lh) homozygotes nor was there any difference in effects mediated by presynaptic GABAB receptors. We found a similar decrease in glutamatergic but not GABAergic responses in Cacna1atg homozygotes, suggesting that the independent mutations in the two strains each affected P/Q channel function by causing defective neurotransmitter release specific to glutamatergic synapses in the somatosensory thalamus. This may be an important factor underlying the generation of seizures in these models.

  5. Marlin-1, a novel RNA-binding protein associates with GABA receptors.

    PubMed

    Couve, Andrés; Restituito, Sophie; Brandon, Julia M; Charles, Kelly J; Bawagan, Hinayana; Freeman, Katie B; Pangalos, Menelas N; Calver, Andrew R; Moss, Stephen J

    2004-04-02

    GABA(B) receptors are heterodimeric G protein-coupled receptors that mediate slow synaptic inhibition in the central nervous system. Whereas heterodimerization between GABA(B) receptor GABA(B)R1 and GABA(B)R2 subunits is essential for functional expression, how neurons coordinate the assembly of these critical receptors remains to be established. Here we have identified Marlin-1, a novel GABA(B) receptor-binding protein that associates specifically with the GABA(B)R1 subunit in yeast, tissue culture cells, and neurons. Marlin-1 is expressed in the brain and exhibits a granular distribution in cultured hippocampal neurons. Marlin-1 binds different RNA species including the 3'-untranslated regions of both the GABA(B)R1 and GABA(B)R2 mRNAs in vitro and also associates with RNA in cultured neurons. Inhibition of Marlin-1 expression via small RNA interference technology results in enhanced intracellular levels of the GABA(B)R2 receptor subunit without affecting the level of GABA(B)R1. Together our results suggest that Marlin-1 functions to regulate the cellular levels of GABA(B) R2 subunits, which may have significant effects on the production of functional GABA(B) receptor heterodimers. Therefore, our observations provide an added level of regulation for the control of GABA(B) receptor expression and for the efficacy of inhibitory synaptic transmission.

  6. Excitatory actions of GABA in developing rat hypothalamic neurones.

    PubMed Central

    Chen, G; Trombley, P Q; van den Pol, A N

    1996-01-01

    1. Gramicidin-perforated patch clamp recording was employed to study GABA-mediated responses in rat hypothalamic neurones (n = 102) with an intracellular Cl- concentration unaltered by the pipette solution. 2. In young cultures after 1-7 days in vitro (DIV), GABA induced depolarizing membrane potentials (+16.5 +/- 1.3 mV) that often surpassed the threshold for the firing of action potentials (-42 +/- 1 mV) and resulted in an increase in neuronal activity. The depolarizing responses to GABA in young cultures were dose dependent. The concentration of GABA necessary to evoke the half-maximal depolarization (EC50) was 2.8 microM. In contrast, GABA induced hyperpolarizing membrane potentials (-12.0 +/- 1.4 mV) and a decrease in neuronal activity in older neurones (20-33 DIV). Both the depolarization and the hyperpolarization induced by GABA were blocked by bicuculline, indicating a mediation by GABAA receptors. 3. The reversal potentials of the GABA-evoked currents were between -40 to -50 mV during the first week of culture, and shifted to below -70 mV after 3 weeks of culture. In parallel, neurones that were dissociated from older animals (postnatal day 5) had a more negative reversal potential for the GABA-evoked currents than cells from younger animals (embryonic day 15), suggesting that the negative shift of the reversal potential occurs both in vitro and in vivo. Our data suggest that the mechanism for GABA-induced depolarization is the depolarized Cl- reversal potential found in young but not older neurones. 4. Consistent with the depolarizing response to exogenous application of GABA, some spontaneous depolarizing postsynaptic potentials in young cultures were insensitive to AP5-CNQX, but were eliminated by bicuculline, indicating that synaptically released GABA mediated excitatory synaptic transmission in early development. 5. By combining a rapid computer-controlled delivery of GABA with subthreshold positive current injections into recorded neurones, we found

  7. Intracellular trafficking of GABA(A) receptors.

    PubMed

    Barnes, E M

    2000-02-11

    Some of the mechanisms that control the intracellular trafficking of GABA(A) receptors have recently been described. Following the synthesis of alpha, beta, and gamma subunits in the endoplasmic reticulum, ternary receptor complexes assemble slowly and are inefficiently inserted into surface membranes of heterologous cells. While beta3, beta4, and gamma2S subunits appear to contain polypeptide sequences that alone are sufficient for surface targeting, these sequences are neither conserved nor essential for surface expression of heteromeric GABA(A) receptors formed from alpha1beta or alpha1betagamma subunits. At the neuronal surface, native GABA(A) receptor clustering and synaptic targeting require a gamma2 subunit and the participation of gephyrin, a clustering protein for glycine receptors. A linker protein, such as the GABA(A) receptor associated protein (GABARAP), may be necessary for the formation of GABA(A) receptor aggregates containing gephyrin. A substantial fraction of surface receptors are sequestered by endocytosis, another process which apparently requires a GABA(A) receptor gamma2 subunit. In heterologous cells, constitutive endocytosis seems to predominate while, in cortical neurons, internalization is evoked when receptors are occupied by GABA(A) agonists. After constitutive endocytosis, receptors are relatively stable and can be rapidly recycled to the cell surface, a process that may be regulated by protein kinase C. On the other hand, a portion of the intracellular GABA(A) receptors derived from ligand-dependent endocytosis is apparently degraded. The clustering of GABA(A) receptors at synapses and at coated pits are two mechanisms that may compete for a pool of diffusable receptors, providing a model for plasticity at inhibitory synapses.

  8. Seizure-induced alterations in fast-spiking basket cell GABA currents modulate frequency and coherence of gamma oscillation in network simulations

    SciTech Connect

    Proddutur, Archana; Yu, Jiandong; Elgammal, Fatima S.; Santhakumar, Vijayalakshmi

    2013-12-15

    Gamma frequency oscillations have been proposed to contribute to memory formation and retrieval. Fast-spiking basket cells (FS-BCs) are known to underlie development of gamma oscillations. Fast, high amplitude GABA synapses and gap junctions have been suggested to contribute to gamma oscillations in FS-BC networks. Recently, we identified that, apart from GABAergic synapses, FS-BCs in the hippocampal dentate gyrus have GABAergic currents mediated by extrasynaptic receptors. Our experimental studies demonstrated two specific changes in FS-BC GABA currents following experimental seizures [Yu et al., J. Neurophysiol. 109, 1746 (2013)]: increase in the magnitude of extrasynaptic (tonic) GABA currents and a depolarizing shift in GABA reversal potential (E{sub GABA}). Here, we use homogeneous networks of a biophysically based model of FS-BCs to examine how the presence of extrasynaptic GABA conductance (g{sub GABA-extra}) and experimentally identified, seizure-induced changes in g{sub GABA-extra} and E{sub GABA} influence network activity. Networks of FS-BCs interconnected by fast GABAergic synapses developed synchronous firing in the dentate gamma frequency range (40–100 Hz). Systematic investigation revealed that the biologically realistic range of 30 to 40 connections between FS-BCs resulted in greater coherence in the gamma frequency range when networks were activated by Poisson-distributed dendritic synaptic inputs rather than by homogeneous somatic current injections, which were balanced for FS-BC firing frequency in unconnected networks. Distance-dependent conduction delay enhanced coherence in networks with 30–40 FS-BC interconnections while inclusion of gap junctional conductance had a modest effect on coherence. In networks activated by somatic current injections resulting in heterogeneous FS-BC firing, increasing g{sub GABA-extra} reduced the frequency and coherence of FS-BC firing when E{sub GABA} was shunting (−74 mV), but failed to alter average

  9. Local GABA Concentration Predicts Perceptual Improvements After Repetitive Sensory Stimulation in Humans.

    PubMed

    Heba, Stefanie; Puts, Nicolaas A J; Kalisch, Tobias; Glaubitz, Benjamin; Haag, Lauren M; Lenz, Melanie; Dinse, Hubert R; Edden, Richard A E; Tegenthoff, Martin; Schmidt-Wilcke, Tobias

    2016-03-01

    Learning mechanisms are based on synaptic plasticity processes. Numerous studies on synaptic plasticity suggest that the regulation of the inhibitory neurotransmitter γ-aminobutyric acid (GABA) plays a central role maintaining the delicate balance of inhibition and excitation. However, in humans, a link between learning outcome and GABA levels has not been shown so far. Using magnetic resonance spectroscopy of GABA prior to and after repetitive tactile stimulation, we show here that baseline GABA+ levels predict changes in perceptual outcome. Although no net changes in GABA+ are observed, the GABA+ concentration prior to intervention explains almost 60% of the variance in learning outcome. Our data suggest that behavioral effects can be predicted by baseline GABA+ levels, which provide new insights into the role of inhibitory mechanisms during perceptual learning.

  10. Activity-regulated Somatostatin Expression Reduces Dendritic Spine Density and Lowers Excitatory Synaptic Transmission via Postsynaptic Somatostatin Receptor 4*

    PubMed Central

    Hou, Zai-Hua; Yu, Xiang

    2013-01-01

    Neuronal activity regulates multiple aspects of the morphological and functional development of neural circuits. One mechanism by which it achieves this is through regulation of gene expression. In a screen for activity-induced genes, we identified somatostatin (SST), a neuropeptide secreted by the SST subtype of interneurons. Using real time quantitative PCR and ELISA, we showed that persistent elevation of neuronal activity increased both the gene expression and protein secretion of SST over a relatively prolonged time course of 48 h. Using primary hippocampal neuronal cultures, we found that SST treatment for 1 day significantly reduced the density of dendritic spines, the morphological bases of excitatory synapses. Furthermore, the density of pre- and postsynaptic markers of excitatory synapses was significantly lowered following SST treatment, whereas that of inhibitory synapses was not affected. Consistently, SST treatment reduced the frequency of miniature excitatory postsynaptic currents, without affecting inhibition. Finally, lowering the endogenous level of SST receptor subtype 4 in individual hippocampal pyramidal neurons significantly blocked the effect of SST in reducing spine density and excitatory synaptic transmission in a cell autonomous fashion, suggesting that the effect of SST in regulating excitatory synaptic transmission is mainly mediated by SST receptor subtype 4. Together, our results demonstrated that activity-dependent release of SST reduced the density of dendritic spines and the number of excitatory synapses through postsynaptic activation of SST receptor subtype 4 in pyramidal neurons. To our knowledge, this is the first demonstration of the long term effect of SST on neuronal morphology. PMID:23233668

  11. Overelaborated synaptic architecture and reduced synaptomatrix glycosylation in a Drosophila classic galactosemia disease model

    PubMed Central

    Jumbo-Lucioni, Patricia; Parkinson, William; Broadie, Kendal

    2014-01-01

    Classic galactosemia (CG) is an autosomal recessive disorder resulting from loss of galactose-1-phosphate uridyltransferase (GALT), which catalyzes conversion of galactose-1-phosphate and uridine diphosphate (UDP)-glucose to glucose-1-phosphate and UDP-galactose, immediately upstream of UDP–N-acetylgalactosamine and UDP–N-acetylglucosamine synthesis. These four UDP-sugars are essential donors for driving the synthesis of glycoproteins and glycolipids, which heavily decorate cell surfaces and extracellular spaces. In addition to acute, potentially lethal neonatal symptoms, maturing individuals with CG develop striking neurodevelopmental, motor and cognitive impairments. Previous studies suggest that neurological symptoms are associated with glycosylation defects, with CG recently being described as a congenital disorder of glycosylation (CDG), showing defects in both N- and O-linked glycans. Here, we characterize behavioral traits, synaptic development and glycosylated synaptomatrix formation in a GALT-deficient Drosophila disease model. Loss of Drosophila GALT (dGALT) greatly impairs coordinated movement and results in structural overelaboration and architectural abnormalities at the neuromuscular junction (NMJ). Dietary galactose and mutation of galactokinase (dGALK) or UDP-glucose dehydrogenase (sugarless) genes are identified, respectively, as critical environmental and genetic modifiers of behavioral and cellular defects. Assaying the NMJ extracellular synaptomatrix with a broad panel of lectin probes reveals profound alterations in dGALT mutants, including depletion of galactosyl, N-acetylgalactosamine and fucosylated horseradish peroxidase (HRP) moieties, which are differentially corrected by dGALK co-removal and sugarless overexpression. Synaptogenesis relies on trans-synaptic signals modulated by this synaptomatrix carbohydrate environment, and dGALT-null NMJs display striking changes in heparan sulfate proteoglycan (HSPG) co-receptor and Wnt ligand

  12. Overelaborated synaptic architecture and reduced synaptomatrix glycosylation in a Drosophila classic galactosemia disease model.

    PubMed

    Jumbo-Lucioni, Patricia; Parkinson, William; Broadie, Kendal

    2014-12-01

    Classic galactosemia (CG) is an autosomal recessive disorder resulting from loss of galactose-1-phosphate uridyltransferase (GALT), which catalyzes conversion of galactose-1-phosphate and uridine diphosphate (UDP)-glucose to glucose-1-phosphate and UDP-galactose, immediately upstream of UDP-N-acetylgalactosamine and UDP-N-acetylglucosamine synthesis. These four UDP-sugars are essential donors for driving the synthesis of glycoproteins and glycolipids, which heavily decorate cell surfaces and extracellular spaces. In addition to acute, potentially lethal neonatal symptoms, maturing individuals with CG develop striking neurodevelopmental, motor and cognitive impairments. Previous studies suggest that neurological symptoms are associated with glycosylation defects, with CG recently being described as a congenital disorder of glycosylation (CDG), showing defects in both N- and O-linked glycans. Here, we characterize behavioral traits, synaptic development and glycosylated synaptomatrix formation in a GALT-deficient Drosophila disease model. Loss of Drosophila GALT (dGALT) greatly impairs coordinated movement and results in structural overelaboration and architectural abnormalities at the neuromuscular junction (NMJ). Dietary galactose and mutation of galactokinase (dGALK) or UDP-glucose dehydrogenase (sugarless) genes are identified, respectively, as critical environmental and genetic modifiers of behavioral and cellular defects. Assaying the NMJ extracellular synaptomatrix with a broad panel of lectin probes reveals profound alterations in dGALT mutants, including depletion of galactosyl, N-acetylgalactosamine and fucosylated horseradish peroxidase (HRP) moieties, which are differentially corrected by dGALK co-removal and sugarless overexpression. Synaptogenesis relies on trans-synaptic signals modulated by this synaptomatrix carbohydrate environment, and dGALT-null NMJs display striking changes in heparan sulfate proteoglycan (HSPG) co-receptor and Wnt ligand levels

  13. Synaptic reorganization of inhibitory hilar interneuron circuitry after traumatic brain injury in mice.

    PubMed

    Hunt, Robert F; Scheff, Stephen W; Smith, Bret N

    2011-05-04

    Functional plasticity of synaptic networks in the dentate gyrus has been implicated in the development of posttraumatic epilepsy and in cognitive dysfunction after traumatic brain injury, but little is known about potentially pathogenic changes in inhibitory circuits. We examined synaptic inhibition of dentate granule cells and excitability of surviving GABAergic hilar interneurons 8-13 weeks after cortical contusion brain injury in transgenic mice that express enhanced green fluorescent protein in a subpopulation of inhibitory neurons. Whole-cell voltage-clamp recordings in granule cells revealed a reduction in spontaneous and miniature IPSC frequency after head injury; no concurrent change in paired-pulse ratio was found in granule cells after paired electrical stimulation of the hilus. Despite reduced inhibitory input to granule cells, action potential and EPSC frequencies were increased in hilar GABA neurons from slices ipsilateral to the injury versus those from control or contralateral slices. Furthermore, increased excitatory synaptic activity was detected in hilar GABA neurons ipsilateral to the injury after glutamate photostimulation of either the granule cell or CA3 pyramidal cell layers. Together, these findings suggest that excitatory drive to surviving hilar GABA neurons is enhanced by convergent input from both pyramidal and granule cells, but synaptic inhibition of granule cells is not fully restored after injury. This rewiring of circuitry regulating hilar inhibitory neurons may reflect an important compensatory mechanism, but it may also contribute to network destabilization by increasing the relative impact of surviving individual interneurons in controlling granule cell excitability in the posttraumatic dentate gyrus.

  14. Excitatory effects of GABA on procerebrum neurons in a slug.

    PubMed

    Kobayashi, Suguru; Matsuo, Ryota; Sadamoto, Hisayo; Watanabe, Satoshi; Ito, Etsuro

    2012-08-01

    Classical neurotransmitters, such as glutamate and γ-aminobutyric acid (GABA), often have different actions on invertebrate neurons from those reported for vertebrate neurons. In the terrestrial mollusk Limax, glutamate was found to function as an inhibitory transmitter in the procerebrum (PC), but it has not yet been clarified how GABA acts in the PC. We thus examined what effects GABA exerts on PC neurons in the present study. For this purpose, we first applied GABA to isolated PC preparations and recorded postsynaptic currents and potentials in PC neurons. The GABA application reduced the amplitude of inhibitory postsynaptic currents and depolarization-induced outward currents recorded in nonbursting neurons and increased the number of spontaneous spikes of nonbursting neurons. However, direct GABA-induced currents were not observed in either bursting or nonbursting neurons. These results suggest a potential direct effect of GABA on outward currents resulting in enhanced excitability of PC neurons. Next, we measured the change in [Ca(2+)](i) in cultured PC neurons by application of GABA. The GABA application increased spontaneous Ca(2+) events in cultured neurons. These Ca(2+) events were ascribable to the influx of extracellular Ca(2+). We then confirmed the presence of GABA and GABA receptors in the PC. The GABA-like immunoreactivity was observed in the neuropil layers of the PC, and the mRNAs for both GABA(A) and GABA(B) receptors were expressed in the PC. In particular, GABA(B) receptor mRNA, rather than GABA(A), was found to be more abundantly expressed in the PC. These results suggest that GABA functions as an excitatory modulator for PC neurons via mainly GABA(B) receptors.

  15. Neuronal GABA release and GABA inhibition of ACh release in guinea pig urinary bladder.

    PubMed

    Kusunoki, M; Taniyama, K; Tanaka, C

    1984-04-01

    gamma-Aminobutyric acid (GABA) and glutamate decarboxylase (GAD) are present in the urinary bladder of guinea pigs, and the possible correlation in regional distribution between GABA, GAD, and the number of vesical ganglion cells was studied. Electrical stimulation of the bladder strips produced an increase in the calcium-dependent and tetrodotoxin-sensitive [3H]GABA release and contractions in the strips preloaded with [3H]GABA. Nicotine, acetylcholine chloride (ACh), and hexamethonium did not significantly alter the release of [3H]GABA. Bicuculline significantly enhanced [3H]ACh release and cholinergic components of contractions evoked by electrical stimulation of the bladder strips preloaded with [3H]choline, thereby suggesting that this compound antagonizes the effect of endogenous GABA released during stimulation. GABA and muscimol but not baclofen reduced both the [3H]ACh release and contractions evoked by nicotine. These effects of GABA were antagonized by bicuculline and furosemide but not by alpha- and beta-adrenergic blockers. These findings suggest that GABA may be a noncholinergic nonadrenergic inhibitory neurotransmitter in the urinary bladder. The motility of the urinary bladder is thus inhibited by reducing the release of ACh from the postganglionic cholinergic neurons through bicuculline-sensitive GABA receptors probably associated with the chloride ion channel.

  16. Guinea Pig Horizontal Cells Express GABA, the GABA-Synthesizing Enzyme GAD65, and the GABA Vesicular Transporter

    PubMed Central

    Guo, Chenying; Hirano, Arlene A.; Stella, Salvatore L.; Bitzer, Michaela; Brecha, Nicholas C.

    2013-01-01

    γ-Aminobutyric acid (GABA) is likely expressed in horizontal cells of all species, although conflicting physiological findings have led to considerable controversy regarding its role as a transmitter in the outer retina. This study has evaluated key components of the GABA system in the outer retina of guinea pig, an emerging retinal model system. The presence of GABA, its rate-limiting synthetic enzyme glutamic acid decarboxylase (GAD65 and GAD67 isoforms), the plasma membrane GABA transporters (GAT-1 and GAT-3), and the vesicular GABA transporter (VGAT) was evaluated by using immunohistochemistry with well-characterized antibodies. The presence of GAD65 mRNA was also evaluated by using laser capture microdissection and reverse transcriptase-polymerase chain reaction. Specific GABA, GAD65, and VGAT immunostaining was localized to horizontal cell bodies, as well as to their processes and tips in the outer plexiform layer. Furthermore, immunostaining of retinal whole mounts and acutely dissociated retinas showed GAD65 and VGAT immunoreactivity in both A-type and B-type horizontal cells. However, these cells did not contain GAD67, GAT-1, or GAT-3 immunoreactivity. GAD65 mRNA was detected in horizontal cells, and sequencing of the amplified GAD65 fragment showed approximately 85% identity with other mammalian GAD65 mRNAs. These studies demonstrate the presence of GABA, GAD65, and VGAT in horizontal cells of the guinea pig retina, and support the idea that GABA is synthesized from GAD65, taken up into synaptic vesicles by VGAT, and likely released by a vesicular mechanism from horizontal cells. PMID:20235161

  17. Treating enhanced GABAergic inhibition in Down syndrome: use of GABA α5-selective inverse agonists.

    PubMed

    Martínez-Cué, Carmen; Delatour, Benoît; Potier, Marie-Claude

    2014-10-01

    Excess inhibition in the brain of individuals carrying an extra copy of chromosome 21 could be responsible for cognitive deficits observed throughout their lives. A change in the excitatory/inhibitory balance in adulthood would alter synaptic plasticity, potentially triggering learning and memory deficits. γ-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the mature central nervous system and binds to GABAA receptors, opens a chloride channel, and reduces neuronal excitability. In this review we discuss methods to alleviate neuronal inhibition in a mouse model of Down syndrome, the Ts65Dn mouse, using either an antagonist (pentylenetetrazol) or two different inverse agonists selective for the α5-subunit containing receptor. Both inverse agonists, which reduce inhibitory GABAergic transmission, could rescue learning and memory deficits in Ts65Dn mice. We also discuss safety issues since modulation of the excitatory-inhibitory balance to improve cognition without inducing seizures remains particularly difficult when using GABA antagonists.

  18. Acamprosate enhances N-methyl-D-apartate receptor-mediated neurotransmission but inhibits presynaptic GABA(B) receptors in nucleus accumbens neurons.

    PubMed

    Berton, F; Francesconi, W G; Madamba, S G; Zieglgänsberger, W; Siggins, G R

    1998-02-01

    Acamprosate (calcium acetylhomotaurine) is used therapeutically in Europe to reduce relapse in weaned alcoholics. However, the mechanisms of acamprosate action in the central nervous system are still obscure, although early studies suggested an action on GABA receptors. The nucleus accumbens (NAcc) is a brain region thought to underlie ethanol reinforcement. Recent studies from our laboratory have demonstrated that ethanol inhibits both N-methyl-D-aspartate (NMDA) and non-NMDA types of glutamatergic synaptic transmission in the NAcc. In the present study, we used voltage- and current-clamp intracellular recording of NAcc core neurons in a slice preparation to examine acamprosate actions on resting membrane properties and pharmacologically isolated synaptic responses. We isolated NMDA and non-NMDA receptor-mediated excitatory postsynaptic potentials or currents (EPSP/Cs) with 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and DL-2-amino-5-phosphonovalerate (d-APV), respectively. Bicuculline was also included to block GABA(A) receptors. Superfusion of acamprosate (5, 50, and 300 microM) did not alter the resting membrane properties of NAcc neurons. However, 300 microM acamprosate significantly increased the NMDA receptor-mediated components of EPSP/Cs (NMDA-EPSP/Cs) with recovery on washout. In contrast, 300 microM acamprosate had no significant effect on the non-NMDA receptor component of the EPSP/Cs (non-NMDA-EPSP/Cs). To test acamprosate actions on the GABA system, we superfused 60 microM d-APV and 20 microM CNQX to block glutamatergic transmission and evoked monosynaptic GABA(A) receptor-mediated synaptic responses within the NAcc. Acamprosate (300 microM) did not change these monosynaptic GABA(A)-IPSCs. We also used a paired-pulse paradigm to test whether acamprosate could act on presynaptic GABA(B) autoreceptors, in the presence of d-APV and CNQX to block glutamatergic transmission. Like 0.5 microM CGP 34358 (a GABA[B] receptor blocker), acamprosate significantly

  19. Loss of neuronal GSK3β reduces dendritic spine stability and attenuates excitatory synaptic transmission via β-catenin

    PubMed Central

    Ochs, S M; Dorostkar, M M; Aramuni, G; Schön, C; Filser, S; Pöschl, J; Kremer, A; Van Leuven, F; Ovsepian, S V; Herms, J

    2015-01-01

    Central nervous glycogen synthase kinase 3β (GSK3β) is implicated in a number of neuropsychiatric diseases, such as bipolar disorder, depression, schizophrenia, fragile X syndrome or anxiety disorder. Many drugs employed to treat these conditions inhibit GSK3β either directly or indirectly. We studied how conditional knockout of GSK3β affected structural synaptic plasticity. Deletion of the GSK3β gene in a subset of cortical and hippocampal neurons in adult mice led to reduced spine density. In vivo imaging revealed that this was caused by a loss of persistent spines, whereas stabilization of newly formed spines was reduced. In electrophysiological recordings, these structural alterations correlated with a considerable drop in the frequency and amplitude of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-dependent miniature excitatory postsynaptic currents. Expression of constitutively active β-catenin caused reduction in spine density and electrophysiological alterations similar to GSK3β knockout, suggesting that the effects of GSK3β knockout were mediated by the accumulation of β-catenin. In summary, changes of dendritic spines, both in quantity and in morphology, are correlates of experience-dependent synaptic plasticity; thus, these results may help explain the mechanism of action of psychotropic drugs inhibiting GSK3β. PMID:24912492

  20. μ-Opioid receptor stimulation in the medial subnucleus of the tractus solitarius inhibits gastric tone and motility by reducing local GABA activity

    PubMed Central

    Herman, Melissa A.; Alayan, Alisa; Sahibzada, Niaz; Bayer, Barbara; Verbalis, Joseph; Dretchen, Kenneth L.

    2010-01-01

    We examined the effects of altering μ-opioid receptor (MOR) activity in the medial subnucleus of the tractus solitarius (mNTS) on several gastric end points including intragastric pressure (IGP), fundus tone, and the receptive relaxation reflex (RRR). Microinjection of the MOR agonist [d-Ala2,MePhe4,Gly(ol)5]enkephalin (DAMGO; 1–10 fmol) into the mNTS produced dose-dependent decreases in IGP. Microinjection of the endogenous MOR agonists endomorphin-1 and endomorphin-2 (20 fmol) into the mNTS mimicked the effects of 10 fmol DAMGO. Microinjection of 1 and 100 pmol DAMGO into the mNTS produced a triphasic response consisting of an initial decrease, a transient increase, and a persistent decrease in IGP. The increase in IGP appeared to be due to diffusion to the dorsal motor nucleus of the vagus. The effects of 10 fmol DAMGO in the mNTS were blocked by vagotomy and by blockade of MORs, GABAA receptors, and ionotropic glutamate receptors in the mNTS. The RRR response was abolished by bilateral microinjection of the opioid receptor antagonist naltrexone into the mNTS and reduced by intravenous administration of naltrexone. Our data demonstrate that 1) activation of MORs in the mNTS with femtomole doses of agonist inhibits gastric motility, 2) the mechanism of MOR effects in the mNTS is through suppression of local GABA activity, and 3) blockade of MORs in the mNTS prevents the RRR response. These data suggest that opioids play an important role in mediating a vagovagal reflex through release of an endogenous opioid in the mNTS, which, in turn, inhibits ongoing local GABA activity and allows vagal sensory input to excite second-order mNTS neurons. PMID:20489046

  1. Quantitative autoradiographic characterization of GA-BA sub B receptors in mammalian central nervous system

    SciTech Connect

    Chu, D.Chin-Mei.

    1989-01-01

    The inhibitory effects of the amino acid neurotransmitter {gamma}-aminobutyric acid (GABA) within the nervous system appear to be mediated through two distinct classes of receptors: GABA{sub A} and GABA{sub B} receptors. A quantitative autoradiographic method with {sup 3}H-GABA was developed to examine the hypotheses that GABA{sub A} and GABA{sub B} sites have distinct anatomical distributions, pharmacologic properties, and synaptic localizations within the rodent nervous system. The method was also applied to a comparative study of these receptors in postmortem human brain from individuals afflicted with Alzheimer's disease and those without neurologic disease. The results indicated that GABA{sub B} receptors occur in fewer numbers and have a lower affinity for GABA than GABA{sub A} receptors in both rodent and human brain. Within rodent brain, the distribution of these two receptor populations were clearly distinct. GABA{sub B} receptors were enriched in the medial habenula, interpeduncular nucleus, cerebellar molecular layer and olfactory glomerular layer. After selective lesions of postsynaptic neurons of the corticostriatal and perforant pathway, both GABA{sub B} and GABA{sub A} receptors were significantly decreased in number. Lesions of the presynaptic limbs of the perforant but not the corticostriatal pathway resulted in upregulation of both GABA receptors in the area of innervation. GABA{sub B} receptors were also upregulated in CA3 dendritic regions after destruction of dentate granule neurons.

  2. Homeostatic synaptic plasticity in developing spinal networks driven by excitatory GABAergic currents

    PubMed Central

    Wenner, Peter

    2013-01-01

    Homeostatic plasticity refers to mechanisms that the cell or network engage in order to homeostatically maintain a preset level of activity. These mechanisms include compensatory changes in cellular excitability, excitatory and inhibitory synaptic strength and are typically studied at a developmental stage when GABA or glycine are inhibitory. Here we focus on the expression of homeostatic plasticity in the chick embryo spinal cord at a stage when GABA is excitatory. When spinal activity is perturbed in the living embryo there are compensatory changes in postsynaptic AMPA receptors and in the driving force for GABAergic currents. These changes are triggered by reduced GABAA receptor signaling, which appears to be part of the sensing machinery for triggering homeostatic plasticity. We compare and contrast these findings to homeostatic plasticity expressed in spinal systems at different stages of development, and to the developing retina at a stage when GABA is depolarizing. PMID:23727439

  3. Cross-talk and co-trafficking between rho1/GABA receptors and ATP-gated channels.

    PubMed

    Boué-Grabot, Eric; Emerit, Michel B; Toulmé, Estelle; Séguéla, Philippe; Garret, Maurice

    2004-02-20

    Gamma-aminobutyric-acid (GABA) and ATP ionotropic receptors represent two structurally and functionally different classes of neurotransmitter-gated channels involved in fast synaptic transmission. We demonstrate here that, when the inhibitory rho1/GABA and the excitatory P2X2 receptor channels are co-expressed in Xenopus oocytes, activation of one channel reduces the currents mediated by the other one. This reciprocal inhibitory cross-talk is a receptor-mediated phenomenon independent of agonist cross-modulation, membrane potential, direction of ionic flux, or channel densities. Functional interaction is disrupted when the cytoplasmic C-terminal domain of P2X2 is deleted or in competition experiments with minigenes coding for the C-terminal domain of P2X2 or the main intracellular loop of rho1 subunits. We also show a physical interaction between P2X2 and rho1 receptors expressed in oocytes and the co-clustering of these receptors in transfected hippocampal neurons. Co-expression with P2X2 induces retargeting and recruitment of mainly intracellular rho1/GABA receptors to surface clusters. Therefore, molecular and functional cross-talk between inhibitory and excitatory ligand-gated channels may regulate synaptic strength both by activity-dependent current occlusion and synaptic receptors co-trafficking.

  4. Neurochemical correlates of. gamma. -aminobutyrate (GABA) inhibition in cat visual cortex

    SciTech Connect

    Balcar, V.J.; Dreher, B. )

    1990-01-01

    High affinity binding of ({sup 3}H){gamma}-aminobutyric acid (GABA) to neuronal membranes from different parts of cat visual cortex was tested for sensitivity to GABA{sub A} agonists isoguvacine and THIP, GABA{sub A} antagonist SR95531 and GABA{sub B} agonist baclofen. Some of the GABA{sub A}-binding sites were found to have a very low affinity for THIP, suggesting the presence and, possibly, uneven distribution of non-synaptic GABA{sub A} receptors in cat visual cortex. There were no differences in K{sub m} and V{sub max} values of high affinity uptake of GABA and in the potency of K{sup +}-stimulated release of GABA, between primary and association cortices. Consequently, the present results indicate that despite the anatomical and physiological differences between the primary and association feline visual cortices the neurochemical characteristics of GABAergic inhibition are very similar in the two regions.

  5. Calcium dependent release of gamma-aminobutyric acid (GABA) from human cerebral cortex.

    PubMed

    Haugstad, T S; Hegstad, E; Langmoen, I A

    1992-07-06

    The release of the amino acids GABA, taurine, glycine, glutamine and leucine from human neocortex was investigated in vitro by utilizing brain tissue removed during 8 standard temporal lobectomies for epilepsy or tumor. Slices (0.5 mm thick) were cut from each biopsy and randomly placed in three different chambers. After 90 min preincubation, the three sets of slices were incubated for 60 s in wells containing, respectively, (A) regular ACSF (control), (B) ACSF with 50 mM K+ (to depolarize the cell membrane) and (C) ACSF with 50 mM K+, 0 mM Ca2+ and 4 mM Mg2+ (depolarization during blocked synaptic transmission). The content of amino acids in the wells was determined by high-performance liquid chromatography after pre-column derivatization of the amino acids with o-phthalaldehyde. Membrane depolarization (well B) increased the GABA release to 650% (620 pmol/mg) of control (well A, 95 pmol/mg). Blocking synaptic transmission (well C) reduced the evoked release by 50% (360 pmol/mg). The release of glycine, taurine, glutamine and leucine during membrane depolarization was not significantly different from the control values. The data provide evidence for a Ca(2+)-dependent release of GABA, supporting a possible role of this amino acid as a neurotransmitter in human neocortex.

  6. Loss of cortical GABA terminals in Unverricht-Lundborg disease.

    PubMed

    Buzzi, Andrea; Chikhladze, Maia; Falcicchia, Chiara; Paradiso, Beatrice; Lanza, Giovanni; Soukupova, Marie; Marti, Matteo; Morari, Michele; Franceschetti, Silvana; Simonato, Michele

    2012-08-01

    Unverricht-Lundborg disease (ULD) is the most common progressive myoclonic epilepsy. Its etiology has been identified in a defect of a protease inhibitor, cystatin B (CSTB), but the mechanism(s) by which this defect translates in the clinical manifestations of the disease are still obscure. We tested the hypothesis that ULD is accompanied by a loss of cortical GABA inhibition in a murine model (the CSTB knockout mouse) and in a human case. Cortical GABA signaling has been investigated measuring VGAT immunohistochemistry (a histological marker of the density of GABA terminals), GABA release from synaptosomes and paired-pulse stimulation. In CSTB knockout mice, a progressive decrease in neocortex thickness was found, associated with a prevalent loss of GABA interneurons. A marked reduction in VGAT labeling was found in the cortex of both CSTB knockout mice and an ULD patient. This implicates a reduction in GABA synaptic transmission, which was confirmed in the mouse model as reduction in GABA release from isolated nerve terminals and as loss of electrophysiologically measured GABA inhibition. The alterations in VGAT immunolabeling progressed in time, paralleling the worsening of myoclonus. These results provide direct evidence that loss of cortical GABA input occurs in a relevant animal model and in a case of human ULD, leading to a condition of latent hyperexcitability that favors myoclonus and seizures. These findings contribute to the understanding of the pathogenic mechanism of ULD and of the neurobiological basis of the effect of currently employed drugs.

  7. GABA modulates baroreflex in the ventral tegmental area in rat.

    PubMed

    Hatam, Masoumeh; Rasoulpanah, Minoo; Nasimi, Ali

    2015-12-01

    There are some reports demonstrating the cardiovascular functions of the ventral tegmental area (VTA). About 20-30% of the VTA neurons are GABAergic, which might play a role in baroreflex modulation. This study was performed to find the effects of GABA(A), GABA(B) receptors and reversible synaptic blockade of the VTA on baroreflex. Drugs were microinjected into the VTA of urethane anesthetized rats, and the maximum change of blood pressure and the gain of the reflex bradycardia in response to intravenous phenylephrine (Phe) injection were compared with the preinjection and the control values. Microinjection of bicuculline methiodide (BMI, 100 pmol/100 nl), a GABA(A) antagonist, into the VTA strongly decreased the Phe-induced hypertension, indicating that GABA itself attenuated the baroreflex. Muscimol, a GABA(A) agonist (30 mM, 100 nl), produced no significant changes. Baclofen, a GABA(B) receptor agonist (1000 pmole/100 nl), moderately attenuated the baroreflex, however phaclofen, a GABA(B) receptor antagonist (1000 pmole/100 nl), had no significant effect. In conclusion, for the first time, we demonstrated that GABA(A) receptors of the VTA strongly attenuate and GABA(B) receptors of the VTA moderately attenuate baroreflex in rat. © 2015 Wiley Periodicals, Inc.

  8. The C-terminal domains of the GABA(b) receptor subunits mediate intracellular trafficking but are not required for receptor signaling.

    PubMed

    Calver, A R; Robbins, M J; Cosio, C; Rice, S Q; Babbs, A J; Hirst, W D; Boyfield, I; Wood, M D; Russell, R B; Price, G W; Couve, A; Moss, S J; Pangalos, M N

    2001-02-15

    GABA(B) receptors are G-protein-coupled receptors that mediate slow synaptic inhibition in the brain and spinal cord. These receptors are heterodimers assembled from GABA(B1) and GABA(B2) subunits, neither of which is capable of producing functional GABA(B) receptors on homomeric expression. GABA(B1,) although able to bind GABA, is retained within the endoplasmic reticulum (ER) when expressed alone. In contrast, GABA(B2) is able to access the cell surface when expressed alone but does not couple efficiently to the appropriate effector systems or produce any detectable GABA-binding sites. In the present study, we have constructed chimeric and truncated GABA(B1) and GABA(B2) subunits to explore further GABA(B) receptor signaling and assembly. Removal of the entire C-terminal intracellular domain of GABA(B1) results in plasma membrane expression without the production of a functional GABA(B) receptor. However, coexpression of this truncated GABA(B1) subunit with either GABA(B2) or a truncated GABA(B2) subunit in which the C terminal has also been removed is capable of functional signaling via G-proteins. In contrast, transferring the entire C-terminal tail of GABA(B1) to GABA(B2) leads to the ER retention of the GABA(B2) subunit when expressed alone. These results indicate that the C terminal of GABA(B1) mediates the ER retention of this protein and that neither of the C-terminal tails of GABA(B1) or GABA(B2) is an absolute requirement for functional coupling of heteromeric receptors. Furthermore although GABA(B1) is capable of producing GABA-binding sites, GABA(B2) is of central importance in the functional coupling of heteromeric GABA(B) receptors to G-proteins and the subsequent activation of effector systems.

  9. Diversity of inhibitory neurotransmission through GABA(A) receptors.

    PubMed

    Mody, Istvan; Pearce, Robert A

    2004-09-01

    In the brain, highly connected and heterogeneous GABAergic cells are crucial in controling the activity of neuronal networks. They accomplish this task by communicating through remarkably diverse sets of inhibitory processes, the complexity of which is reflected by the variety of interneuron classification schemes proposed in recent years. It is now becoming clear that the subcellular localization and intrinsic properties of heteropentameric GABA(A) receptors themselves also constitute major sources of diversity in GABA-mediated signaling. This review summarizes some of the factors underlying this diversity, including GABA(A) receptor subunit composition, localization, activation, number and phosphorylation states, variance of GABA concentration in the synaptic cleft, and some of the presynaptic factors regulating GABA release.

  10. Blocking the Interaction between Apolipoprotein E and Aβ Reduces Intraneuronal Accumulation of Aβ and Inhibits Synaptic Degeneration

    PubMed Central

    Kuszczyk, Magdalena A.; Sanchez, Sandrine; Pankiewicz, Joanna; Kim, Jungsu; Duszczyk, Malgorzata; Guridi, Maitea; Asuni, Ayodeji A.; Sullivan, Patrick M.; Holtzman, David M.; Sadowski, Martin J.

    2014-01-01

    Accumulation of β-amyloid (Aβ) in the brain is a key event in Alzheimer disease pathogenesis. Apolipoprotein (Apo) E is a lipid carrier protein secreted by astrocytes, which shows inherent affinity for Aβ and has been implicated in the receptor-mediated Aβ uptake by neurons. To characterize ApoE involvement in the intraneuronal Aβ accumulation and to investigate whether blocking the ApoE/Aβ interaction could reduce intraneuronal Aβ buildup, we used a noncontact neuronal-astrocytic co-culture system, where synthetic Aβ peptides were added into the media without or with cotreatment with Aβ12-28P, which is a nontoxic peptide antagonist of ApoE/Aβ binding. Compared with neurons cultured alone, intraneuronal Aβ content was significantly increased in neurons co-cultured with wild-type but not with ApoE knockout (KO) astrocytes. Neurons co-cultured with astrocytes also showed impaired intraneuronal degradation of Aβ, increased level of intraneuronal Aβ oligomers, and marked down-regulation of several synaptic proteins. Aβ12-28P treatment significantly reduced intraneuronal Aβ accumulation, including Aβ oligomer level, and inhibited loss of synaptic proteins. Furthermore, we showed significantly reduced intraneuronal Aβ accumulation in APPSW/PS1dE9/ApoE KO mice compared with APPSW/PS1dE9/ApoE targeted replacement mice that expressed various human ApoE isoforms. Data from our co-culture and in vivo experiments indicate an essential role of ApoE in the mechanism of intraneuronal Aβ accumulation and provide evidence that ApoE/Aβ binding antagonists can effectively prevent this process. PMID:23499462

  11. VTA Projection Neurons Releasing GABA and Glutamate in the Dentate Gyrus

    PubMed Central

    2016-01-01

    Abstract Both dopamine and nondopamine neurons from the ventral tegmental area (VTA) project to a variety of brain regions. Here we examine nondopaminergic neurons in the mouse VTA that send long-range projections to the hippocampus. Using a combination of retrograde tracers, optogenetic tools, and electrophysiological recordings, we show that VTA GABAergic axons make synaptic contacts in the granule cell layer of the dentate gyrus, where we can elicit small postsynaptic currents. Surprisingly, the currents displayed a partial sensitivity to both bicuculline and NBQX, suggesting that these mesohippocampal neurons corelease both GABA and glutamate. Finally, we show that this projection is functional in vivo and its stimulation reduces granule cell-firing rates under anesthesia. Altogether, the present results describe a novel connection between GABA and glutamate coreleasing of cells of the VTA and the dentate gyrus. This connection could be relevant for a variety of functions, including reward-related memory and neurogenesis. PMID:27648470

  12. Corelease of acetylcholine and GABA from cholinergic forebrain neurons

    PubMed Central

    Saunders, Arpiar; Granger, Adam J; Sabatini, Bernardo L

    2015-01-01

    Neurotransmitter corelease is emerging as a common theme of central neuromodulatory systems. Though corelease of glutamate or GABA with acetylcholine has been reported within the cholinergic system, the full extent is unknown. To explore synaptic signaling of cholinergic forebrain neurons, we activated choline acetyltransferase expressing neurons using channelrhodopsin while recording post-synaptic currents (PSCs) in layer 1 interneurons. Surprisingly, we observed PSCs mediated by GABAA receptors in addition to nicotinic acetylcholine receptors. Based on PSC latency and pharmacological sensitivity, our results suggest monosynaptic release of both GABA and ACh. Anatomical analysis showed that forebrain cholinergic neurons express the GABA synthetic enzyme Gad2 and the vesicular GABA transporter (Slc32a1). We confirmed the direct release of GABA by knocking out Slc32a1 from cholinergic neurons. Our results identify GABA as an overlooked fast neurotransmitter utilized throughout the forebrain cholinergic system. GABA/ACh corelease may have major implications for modulation of cortical function by cholinergic neurons. DOI: http://dx.doi.org/10.7554/eLife.06412.001 PMID:25723967

  13. The dynamics of GABA signaling: Revelations from the circadian pacemaker in the suprachiasmatic nucleus.

    PubMed

    Albers, H Elliott; Walton, James C; Gamble, Karen L; McNeill, John K; Hummer, Daniel L

    2017-01-01

    Virtually every neuron within the suprachiasmatic nucleus (SCN) communicates via GABAergic signaling. The extracellular levels of GABA within the SCN are determined by a complex interaction of synthesis and transport, as well as synaptic and non-synaptic release. The response to GABA is mediated by GABAA receptors that respond to both phasic and tonic GABA release and that can produce excitatory as well as inhibitory cellular responses. GABA also influences circadian control through the exclusively inhibitory effects of GABAB receptors. Both GABA and neuropeptide signaling occur within the SCN, although the functional consequences of the interactions of these signals are not well understood. This review considers the role of GABA in the circadian pacemaker, in the mechanisms responsible for the generation of circadian rhythms, in the ability of non-photic stimuli to reset the phase of the pacemaker, and in the ability of the day-night cycle to entrain the pacemaker.

  14. Novel mechanism of voltage-gated N-type (Cav2.2) calcium channel inhibition revealed through α-conotoxin Vc1.1 activation of the GABA(B) receptor.

    PubMed

    Huynh, Thuan G; Cuny, Hartmut; Slesinger, Paul A; Adams, David J

    2015-02-01

    Neuronal voltage-gated N-type (Cav2.2) calcium channels are expressed throughout the nervous system and regulate neurotransmitter release and hence synaptic transmission. They are predominantly modulated via G protein-coupled receptor activated pathways, and the well characterized Gβγ subunits inhibit Cav2.2 currents. Analgesic α-conotoxin Vc1.1, a peptide from predatory marine cone snail venom, inhibits Cav2.2 channels by activating pertussis toxin-sensitive Gi/o proteins via the GABAB receptor (GABA(B)R) and potently suppresses pain in rat models. Using a heterologous GABA(B)R expression system, electrophysiology, and mutagenesis, we showed α-conotoxin Vc1.1 modulates Cav2.2 via a different pathway from that of the GABA(B)R agonists GABA and baclofen. In contrast to GABA and baclofen, Vc1.1 changes Cav2.2 channel kinetics by increasing the rate of activation and shifting its half-maximum inactivation to a more hyperpolarized potential. We then systematically truncated the GABA(B)(1a) C terminus and discovered that removing the proximal carboxyl terminus of the GABA(B)(1a) subunit significantly reduced Vc1.1 inhibition of Cav2.2 currents. We propose a novel mechanism by which Vc1.1 activates GABA(B)R and requires the GABA(B)(1a) proximal carboxyl terminus domain to inhibit Cav2.2 channels. These findings provide important insights into how GABA(B)Rs mediate Cav2.2 channel inhibition and alter nociceptive transmission. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  15. Deficits in cognition and synaptic plasticity in a mouse model of Down syndrome ameliorated by GABAB receptor antagonists.

    PubMed

    Kleschevnikov, Alexander M; Belichenko, Pavel V; Faizi, Mehrdad; Jacobs, Lucia F; Htun, Khin; Shamloo, Mehrdad; Mobley, William C

    2012-07-04

    Cognitive impairment in Down syndrome (DS) is characterized by deficient learning and memory. Mouse genetic models of DS exhibit impaired cognition in hippocampally mediated behavioral tasks and reduced synaptic plasticity of hippocampal pathways. Enhanced efficiency of GABAergic neurotransmission was implicated in those changes. We have recently shown that signaling through postsynaptic GABA(B) receptors is significantly increased in the dentate gyrus of Ts65Dn mice, a genetic model of DS. Here we examined a role for GABA(B) receptors in cognitive deficits in DS by defining the effect of selective GABA(B) receptor antagonists on behavior and synaptic plasticity of adult Ts65Dn mice. Treatment with the GABA(B) receptor antagonist CGP55845 restored memory of Ts65Dn mice in the novel place recognition, novel object recognition, and contextual fear conditioning tasks, but did not affect locomotion and performance in T-maze. The treatment increased hippocampal levels of brain-derived neurotrophic factor, equally in 2N and Ts65Dn mice. In hippocampal slices, treatment with the GABA(B) receptor antagonists CGP55845 or CGP52432 enhanced long-term potentiation (LTP) in the Ts65Dn DG. The enhancement of LTP was accompanied by an increase in the NMDA receptor-mediated component of the tetanus-evoked responses. These findings are evidence for a contribution of GABA(B) receptors to changes in hippocampal-based cognition in the Ts65Dn mouse. The ability to rescue cognitive performance through treatment with selective GABA(B) receptor antagonists motivates studies to further explore the therapeutic potential of these compounds in people with DS.

  16. Increased GABA-ergic Inhibition in the Midline Thalamus Affects Signaling and Seizure Spread in the Hippocampus-Prefrontal Cortex Pathway

    PubMed Central

    Sloan, David M.; Zhang, DeXing; Bertram, Edward H.

    2010-01-01

    Purpose The midline thalamus is an important component of the circuitry in limbic seizures, but it is unclear how synaptic modulation of the thalamus affects that circuitry. In this study, we wished to understand how synaptic modulation of the thalamus can affect inter-regional signaling and seizure spread in the limbic network. Methods We examined the effect of GABA modulation of the mediodorsal (MD) region of the thalamus on responses in the prefrontal cortex (PFC) by stimulation of the subiculum (SB). Muscimol, a GABA-A agonist, was injected into the MD, and the effect on local responses to subiculum stimulation were examined. Evoked potentials were induced in the MD and the PFC by low frequency stimulation of the SB, and seizures were generated in the subiculum by repeated 20 Hz stimulations. The effect of muscimol in the MD on the evoked potentials and seizures was measured. Key Findings Thalamic responses to stimulation of the subiculum were reduced in the presence of muscimol. Reduction of the amplitudes of evoked potentials in the MD resulted in an attenuation of the late, thalamic components of the responses in the PFC, as well as of seizure durations. Significance Activation of GABA- A receptors in the midline thalamus not only causes changes within the thalamus, but has broader effects on the limbic network. This work provides further evidence that synaptic modulation within the midline thalamus alters system excitability more broadly and reduces seizure activity. PMID:21204829

  17. Selected Gamma Aminobutyric Acid (GABA) Esters may Provide Analgesia for Some Central Pain Conditions

    PubMed Central

    Goldberg, Joel S.

    2010-01-01

    Central pain is an enigmatic, intractable condition, related to destruction of thalamic areas, resulting in likely loss of inhibitory synaptic transmission mediated by GABA. It is proposed that treatment of central pain, a localized process, may be treated by GABA supplementation, like Parkinson’s disease and depression. At physiologic pH, GABA exists as a zwitterion that is poorly permeable to the blood brain barrier (BBB). Because the pH of the cerebral spinal fluid (CSF) is acidic relative to the plasma, ion trapping may allow a GABA ester prodrug to accumulate and be hydrolyzed within the CSF. Previous investigations with ester local anesthetics may be applicable to some GABA esters since they are weak bases, hydrolyzed by esterases and cross the BBB. Potential non-toxic GABA esters are discussed. Many GABA esters were investigated in the 1980s and it is hoped that this paper may spark renewed interest in their development. PMID:20703328

  18. Altered bidirectional plasticity and reduced implicit motor learning in concussed athletes.

    PubMed

    De Beaumont, Louis; Tremblay, Sébastien; Poirier, Judes; Lassonde, Maryse; Théoret, Hugo

    2012-01-01

    Persistent motor/cognitive alterations and increased prevalence of Alzheimer's disease are known consequences of recurrent sports concussions, the most prevalent cause of mild traumatic brain injury (TBI) among youth. Animal models of TBI demonstrated that impaired learning was related to persistent synaptic plasticity suppression in the form of long-term potentiation (LTP) and depression (LTD). In humans, single and repeated concussive injuries lead to lifelong and cumulative enhancements of gamma-aminobutyric acid (GABA)-mediated inhibition, which is known to suppress LTP/LTD plasticity. To test the hypothesis that increased GABAergic inhibition after repeated concussions suppresses LTP/LTD and contributes to learning impairments, we used a paired associative stimulation (PAS) protocol to induce LTP/LTD-like effects in primary motor cortex (M1) jointly with an implicit motor learning task (serial reaction time task, SRTT). Our results indicate that repeated concussions induced persistent elevations of GABA(B)-mediated intracortical inhibition in M1, which was associated with suppressed PAS-induced LTP/LTD-like synaptic plasticity. This synaptic plasticity suppression was related to reduced implicit motor learning on the SRTT task relative to normal LTP/LTD-like synaptic plasticity in unconcussed teammates. These findings identify GABA neurotransmission alterations after repeated concussions and suggest that impaired learning after multiple concussions could at least partly be related to compromised GABA-dependent LTP/LTD synaptic plasticity.

  19. Evidence for a Revised Ion/Substrate Coupling Stoichiometry of GABA Transporters.

    PubMed

    Willford, Samantha L; Anderson, Cynthia M; Spencer, Shelly R; Eskandari, Sepehr

    2015-08-01

    Plasma membrane γ-aminobutyric acid (GABA) transporters (GATs) are electrogenic transport proteins that couple the cotranslocation of Na(+), Cl(-), and GABA across the plasma membrane of neurons and glia. A fundamental property of the transporter that determines its ability to concentrate GABA in cells and, hence, regulate synaptic and extra-synaptic GABA concentrations, is the ion/substrate coupling stoichiometry. Here, we scrutinized the currently accepted 2 Na(+):1 Cl(-):1 GABA stoichiometry because it is inconsistent with the measured net charge translocated per co-substrate (Na(+), Cl(-), and GABA). We expressed GAT1 and GAT3 in Xenopus laevis oocytes and utilized thermodynamic and uptake under voltage-clamp measurements to determine the stoichiometry of the GABA transporters. Voltage-clamped GAT1-expressing oocytes were internally loaded with GABA, and the reversal potential (V rev) of the transporter-mediated current was recorded at different external concentrations of Na(+), Cl(-), or GABA. The shifts in V rev for a tenfold change in the external Na(+), Cl(-), and GABA concentration were 84 ± 4, 30 ± 1, and 29 ± 1 mV, respectively. To determine the net charge translocated per Na(+), Cl(-), and GABA, we measured substrate fluxes under voltage clamp in cells expressing GAT1 or GAT3. Charge flux to substrate flux ratios were 0.7 ± 0.1 charge/Na(+), 2.0 ± 0.2 charges/Cl(-), and 2.1 ± 0.1 charges/GABA. Altogether, our results strongly suggest a 3 Na(+):1 Cl(-):1 GABA coupling stoichiometry for the GABA transporters. The revised stoichiometry has important implications for understanding the contribution of GATs to GABAergic signaling in health and disease.

  20. Regulation of Local Ambient GABA Levels via Transporter-Mediated GABA Import and Export for Subliminal Learning.

    PubMed

    Hoshino, Osamu

    2015-06-01

    Perception of supraliminal stimuli might in general be reflected in bursts of action potentials (spikes), and their memory traces could be formed through spike-timing-dependent plasticity (STDP). Memory traces for subliminal stimuli might be formed in a different manner, because subliminal stimulation evokes a fraction (but not a burst) of spikes. Simulations of a cortical neural network model showed that a subliminal stimulus that was too brief (10 msec) to perceive transiently (more than about 500 msec) depolarized stimulus-relevant principal cells and hyperpolarized stimulus-irrelevant principal cells in a subthreshold manner. This led to a small increase or decrease in ongoing-spontaneous spiking activity frequency (less than 1 Hz). Synaptic modification based on STDP during this period effectively enhanced relevant synaptic weights, by which subliminal learning was improved. GABA transporters on GABAergic interneurons modulated local levels of ambient GABA. Ambient GABA molecules acted on extrasynaptic receptors, provided principal cells with tonic inhibitory currents, and contributed to achieving the subthreshold neuronal state. We suggest that ongoing-spontaneous synaptic alteration through STDP following subliminal stimulation may be a possible neuronal mechanism for leaving its memory trace in cortical circuitry. Regulation of local ambient GABA levels by transporter-mediated GABA import and export may be crucial for subliminal learning.

  1. Glutamate and GABA in Appetite Regulation

    PubMed Central

    Delgado, Teresa C.

    2013-01-01

    Appetite is regulated by a coordinated interplay between gut, adipose tissue, and brain. A primary site for the regulation of appetite is the hypothalamus where interaction between orexigenic neurons, expressing Neuropeptide Y/Agouti-related protein, and anorexigenic neurons, expressing Pro-opiomelanocortin cocaine/Amphetamine-related transcript, controls energy homeostasis. Within the hypothalamus, several peripheral signals have been shown to modulate the activity of these neurons, including the orexigenic peptide ghrelin and the anorexigenic hormones insulin and leptin. In addition to the accumulated knowledge on neuropeptide signaling, presence and function of amino acid neurotransmitters in key hypothalamic neurons brought a new light into appetite regulation. Therefore, the principal aim of this review will be to describe the current knowledge of the role of amino acid neurotransmitters in the mechanism of neuronal activation during appetite regulation and the associated neuronal-astrocytic metabolic coupling mechanisms. Glutamate and GABA dominate synaptic transmission in the hypothalamus and administration of their receptors agonists into hypothalamic nuclei stimulates feeding. By using 13C High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance spectroscopy based analysis, the Cerdán group has shown that increased neuronal firing in mice hypothalamus, as triggered by appetite during the feeding-fasting paradigm, may stimulate the use of lactate as neuronal fuel leading to increased astrocytic glucose consumption and glycolysis. Moreover, fasted mice showed increased hypothalamic [2-13C]GABA content, which may be explained by the existence of GABAergic neurons in key appetite regulation hypothalamic nuclei. Interestingly, increased [2-13C]GABA concentration in the hypothalamus of fasted animals appears to result mainly from reduction in GABA metabolizing pathways, rather than increased GABA synthesis by augmented activity of the glutamate-glutamine-GABA

  2. Glutamate and GABA in Appetite Regulation.

    PubMed

    Delgado, Teresa C

    2013-01-01

    Appetite is regulated by a coordinated interplay between gut, adipose tissue, and brain. A primary site for the regulation of appetite is the hypothalamus where interaction between orexigenic neurons, expressing Neuropeptide Y/Agouti-related protein, and anorexigenic neurons, expressing Pro-opiomelanocortin cocaine/Amphetamine-related transcript, controls energy homeostasis. Within the hypothalamus, several peripheral signals have been shown to modulate the activity of these neurons, including the orexigenic peptide ghrelin and the anorexigenic hormones insulin and leptin. In addition to the accumulated knowledge on neuropeptide signaling, presence and function of amino acid neurotransmitters in key hypothalamic neurons brought a new light into appetite regulation. Therefore, the principal aim of this review will be to describe the current knowledge of the role of amino acid neurotransmitters in the mechanism of neuronal activation during appetite regulation and the associated neuronal-astrocytic metabolic coupling mechanisms. Glutamate and GABA dominate synaptic transmission in the hypothalamus and administration of their receptors agonists into hypothalamic nuclei stimulates feeding. By using (13)C High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance spectroscopy based analysis, the Cerdán group has shown that increased neuronal firing in mice hypothalamus, as triggered by appetite during the feeding-fasting paradigm, may stimulate the use of lactate as neuronal fuel leading to increased astrocytic glucose consumption and glycolysis. Moreover, fasted mice showed increased hypothalamic [2-(13)C]GABA content, which may be explained by the existence of GABAergic neurons in key appetite regulation hypothalamic nuclei. Interestingly, increased [2-(13)C]GABA concentration in the hypothalamus of fasted animals appears to result mainly from reduction in GABA metabolizing pathways, rather than increased GABA synthesis by augmented activity of the glutamate-glutamine-GABA

  3. α4βδ GABAA receptors reduce dendritic spine density in CA1 hippocampus and impair relearning ability of adolescent female mice: Effects of a GABA agonist and a stress steroid.

    PubMed

    Afroz, Sonia; Shen, Hui; Smith, Sheryl S

    2017-04-07

    Synaptic pruning underlies the transition from an immature to an adult CNS through refinements of neuronal circuits. Our recent study indicates that pubertal synaptic pruning is triggered by the inhibition generated by extrasynaptic α4βδ GABAA receptors (GABARs) which are increased for 10 d on dendritic spines of CA1 pyramidal cells at the onset of puberty (PND 35-44) in the female mouse, suggesting α4βδ GABARs as a novel target for the regulation of adolescent synaptic pruning. In the present study we used a pharmacological approach to further examine the role of these receptors in altering spine density during puberty of female mice and the impact of these changes on spatial learning, assessed in adulthood. Two drugs were chronically administered during the pubertal period (PND 35-44): the GABA agonist gaboxadol (GBX, 0.1mg/kg, i.p.), to enhance current gated by α4βδ GABARs and the neurosteroid/stress steroid THP (3α-OH-5β-pregnan-20-one, 10mg/kg, i.p.) to decrease expression of α4βδ. Spine density was determined on PND 56 with Golgi staining. Spatial learning and relearning were assessed using the multiple object relocation task and an active place avoidance task on PND 56. Pubertal GBX decreased spine density post-pubertally by 70% (P<0.05), while decreasing α4βδ expression with THP increased spine density by twofold (P<0.05), in both cases, with greatest effects on the mushroom spines. Adult relearning ability was compromised in both hippocampus-dependent tasks after pubertal administration of either drug. These findings suggest that an optimal spine density produced by α4βδ GABARs is necessary for optimal cognition in adults.

  4. Impact of exogenous GABA treatments on endogenous GABA metabolism in anthurium cut flowers in response to postharvest chilling temperature.

    PubMed

    Aghdam, Morteza Soleimani; Naderi, Roohangiz; Jannatizadeh, Abbasali; Babalar, Mesbah; Sarcheshmeh, Mohammad Ali Askari; Faradonbe, Mojtaba Zamani

    2016-09-01

    Anthurium flowers are susceptible to chilling injury, and the optimum storage temperature is 12.5-20 °C. The γ-aminobutyric acid (GABA) shunt pathway may alleviate chilling stress in horticultural commodities by providing energy (ATP), reducing molecules (NADH), and minimizing accumulation of reactive oxygen species (ROS). In this experiment, the impact of a preharvest spray treatment with 1 mM GABA and postharvest treatment of 5 mM GABA stem-end dipping on GABA shunt pathway activity of anthurium cut flowers (cv. Sirion) in response to cold storage (4 °C for 21 days) was investigated. GABA treatments resulted in lower glutamate decarboxylase (GAD) and higher GABA transaminase (GABA-T) activities in flowers during cold storage, which was associated with lower GABA content and coincided with higher ATP content. GABA treatments also enhanced accumulation of endogenous glycine betaine (GB) in flowers during cold storage, as well as higher spathe relative water content (RWC). These findings suggest that GABA treatments may alleviate chilling injury of anthurium cut flowers by enhancing GABA shunt pathway activity leading to provide sufficient ATP and promoting endogenous GB accumulation. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  5. Cotinine reduces depressive-like behavior, working memory deficits, and synaptic loss associated with chronic stress in mice.

    PubMed

    Grizzell, J Alex; Iarkov, Alexandre; Holmes, Rosalee; Mori, Takahashi; Echeverria, Valentina

    2014-07-15

    Chronic stress underlies and/or exacerbates many psychiatric conditions and often results in memory impairment as well as depressive symptoms. Such afflicted individuals use tobacco more than the general population and this has been suggested as a form of self-medication. Cotinine, the predominant metabolite of nicotine, may underlie such behavior as it has been shown to ameliorate anxiety and memory loss in animal models. In this study, we sought to investigate the effects of cotinine on working memory and depressive-like behavior in mice subjected to prolonged restraint. Cotinine-treated mice displayed better performance than vehicle-treated cohorts on the working memory task, the radial arm water maze test. In addition, with or without chronic stress exposure, cotinine-treated mice engaged in fewer depressive-like behaviors as assessed using the tail suspension and Porsolt's forced swim tests. These antidepressant and nootropic effects of cotinine were associated with an increase in the synaptophysin expression, a commonly used marker of synaptic density, in the hippocampus as well as the prefrontal and entorhinal cortices of restrained mice. The beneficial effects of cotinine in preventing various consequences of chronic stress were underscored by the inhibition of the glycogen synthase kinase 3 β in the hippocampus and prefrontal cortex. Taken together, our results show for the first time that cotinine reduces the negative effects of stress on mood, memory, and the synapse.

  6. GABA-Activated Chloride Channels in Secretory Nerve Endings

    NASA Astrophysics Data System (ADS)

    Zhang, Shuanglin J.; Jackson, Meyer B.

    1993-01-01

    Neurotransmitters acting on presynaptic terminals regulate synaptic transmission and plasticity. Because of the difficulty of direct electrophysiological recording from small presynaptic terminals, little is known about the ion channels that mediate these actions or about the mechanisms by which transmitter secretion is altered. The patch-clamp technique is used to show that the predominant inhibitory presynaptic neurotransmitter, γ-aminobutyric acid (GABA), activates a GABA_A receptor and gates a chloride channel in the membranes of peptidergic nerve terminals of the posterior pituitary. The opening of a chloride channel by GABA weakly depolarizes the nerve terminal membrane and blocks action potentials. In this way, GABA limits secretion by retarding the spread of excitation into the terminal arborization.

  7. Excitatory GABA in rodent developing neocortex in vitro.

    PubMed

    Rheims, Sylvain; Minlebaev, Marat; Ivanov, Anton; Represa, Alfonso; Khazipov, Rustem; Holmes, Gregory L; Ben-Ari, Yehezkel; Zilberter, Yuri

    2008-08-01

    GABA depolarizes immature cortical neurons. However, whether GABA excites immature neocortical neurons and drives network oscillations as in other brain structures remains controversial. Excitatory actions of GABA depend on three fundamental parameters: the resting membrane potential (Em), reversal potential of GABA (E(GABA)), and threshold of action potential generation (Vthr). We have shown recently that conventional invasive recording techniques provide an erroneous estimation of these parameters in immature neurons. In this study, we used noninvasive single N-methyl-d-aspartate and GABA channel recordings in rodent brain slices to measure both Em and E(GABA) in the same neuron. We show that GABA strongly depolarizes pyramidal neurons and interneurons in both deep and superficial layers of the immature neocortex (P2-P10). However, GABA generates action potentials in layer 5/6 (L5/6) but not L2/3 pyramidal cells, since L5/6 pyramidal cells have more depolarized resting potentials and more hyperpolarized Vthr. The excitatory GABA transiently drives oscillations generated by L5/6 pyramidal cells and interneurons during development (P5-P12). The NKCC1 co-transporter antagonist bumetanide strongly reduces [Cl(-)]i, GABA-induced depolarization, and network oscillations, confirming the importance of GABA signaling. Thus a strong GABA excitatory drive coupled with high intrinsic excitability of L5/6 pyramidal neurons and interneurons provide a powerful mechanism of synapse-driven oscillatory activity in the rodent neocortex in vitro. In the companion paper, we show that the excitatory GABA drives layer-specific seizures in the immature neocortex.

  8. Ethanol, not detectably metabolized in brain, significantly reduces brain metabolism, probably via action at specific GABA(A) receptors and has measureable metabolic effects at very low concentrations.

    PubMed

    Rae, Caroline D; Davidson, Joanne E; Maher, Anthony D; Rowlands, Benjamin D; Kashem, Mohammed A; Nasrallah, Fatima A; Rallapalli, Sundari K; Cook, James M; Balcar, Vladimir J

    2014-04-01

    Ethanol is a known neuromodulatory agent with reported actions at a range of neurotransmitter receptors. Here, we measured the effect of alcohol on metabolism of [3-¹³C]pyruvate in the adult Guinea pig brain cortical tissue slice and compared the outcomes to those from a library of ligands active in the GABAergic system as well as studying the metabolic fate of [1,2-¹³C]ethanol. Analyses of metabolic profile clusters suggest that the significant reductions in metabolism induced by ethanol (10, 30 and 60 mM) are via action at neurotransmitter receptors, particularly α4β3δ receptors, whereas very low concentrations of ethanol may produce metabolic responses owing to release of GABA via GABA transporter 1 (GAT1) and the subsequent interaction of this GABA with local α5- or α1-containing GABA(A)R. There was no measureable metabolism of [1,2-¹³C]ethanol with no significant incorporation of ¹³C from [1,2-¹³C]ethanol into any measured metabolite above natural abundance, although there were measurable effects on total metabolite sizes similar to those seen with unlabelled ethanol.

  9. Neurotransmitter GABA activates muscle but not α7 nicotinic receptors.

    PubMed

    Dionisio, Leonardo; Bergé, Ignacio; Bravo, Matías; Esandi, María Del Carmen; Bouzat, Cecilia

    2015-01-01

    Cys-loop receptors are neurotransmitter-activated ion channels involved in synaptic and extrasynaptic transmission in the brain and are also present in non-neuronal cells. As GABAA and nicotinic receptors (nAChR) belong to this family, we explored by macroscopic and single-channel recordings whether the inhibitory neurotransmitter GABA has the ability to activate excitatory nAChRs. GABA differentially activates nAChR subtypes. It activates muscle nAChRs, with maximal peak currents of about 10% of those elicited by acetylcholine (ACh) and 15-fold higher EC50 with respect to ACh. At the single-channel level, the weak agonism is revealed by the requirement of 20-fold higher concentration of GABA for detectable channel openings, a major population of brief openings, and absence of clusters of openings when compared with ACh. Mutations at key residues of the principal binding-site face of muscle nAChRs (αY190 and αG153) affect GABA activation similarly as ACh activation, whereas a mutation at the complementary face (εG57) shows a selective effect for GABA. Studies with subunit-lacking receptors show that GABA can activate muscle nAChRs through the α/δ interface. Interestingly, single-channel activity elicited by GABA is similar to that elicited by ACh in gain-of-function nAChR mutants associated to congenital myasthenic syndromes, which could be important in the progression of the disorders due to steady exposure to serum GABA. In contrast, GABA cannot elicit single-channel or macroscopic currents of α7 or the chimeric α7-serotonin-type 3 receptor, a feature important for preserving an adequate excitatory/inhibitory balance in the brain as well as for avoiding activation of non-neuronal receptors by serum GABA. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  10. Presynaptic gain control by endogenous cotransmission of dopamine and GABA in the olfactory bulb.

    PubMed

    Vaaga, Christopher E; Yorgason, Jordan T; Williams, John T; Westbrook, Gary L

    2017-03-01

    In the olfactory bulb, lateral inhibition mediated by local juxtaglomerular interneurons has been proposed as a gain control mechanism, important for decorrelating odorant responses. Among juxtaglomerular interneurons, short axon cells are unique as dual-transmitter neurons that release dopamine and GABA. To examine their intraglomerular function, we expressed channelrhodopsin under control of the DAT-cre promoter and activated olfactory afferents within individual glomeruli. Optical stimulation of labeled cells triggered endogenous dopamine release as measured by cyclic voltammetry and GABA release as measured by whole cell GABAA receptor currents. Activation of short axon cells reduced the afferent presynaptic release probability via D2 and GABAB receptor activation, resulting in reduced spiking in both mitral and external tufted cells. Our results suggest that short axon cells influence glomerular activity not only by direct inhibition of external tufted cells but also by inhibition of afferent inputs to external tufted and mitral cells.NEW & NOTEWORTHY Sensory systems, including the olfactory system, encode information across a large dynamic range, making synaptic mechanisms of gain control critical to proper function. Here we demonstrate that a dual-transmitter interneuron in the olfactory bulb controls the gain of intraglomerular afferent input via two distinct mechanisms, presynaptic inhibition as well as inhibition of a principal neuron subtype, and thereby potently controls the synaptic gain of afferent inputs. Copyright © 2017 the American Physiological Society.

  11. GABA and Central Neuropathic Pain following Spinal Cord Injury

    PubMed Central

    Gwak, Young S.; Hulsebosch, Claire E.

    2012-01-01

    Spinal cord injury induces maladaptive synaptic transmission in the somatosensory system that results in chronic central neuropathic pain. Recent literature suggests that glial-neuronal interactions are important modulators in synaptic transmission following spinal cord injury. Neuronal hyperexcitability is one of the predominant phenomenon caused by maladaptive synaptic transmission via altered glial-neuronal interactions after spinal cord injury. In the somatosensory system, spinal inhibitory neurons counter balance the enhanced synaptic transmission from peripheral input. For a decade, the literature suggests that hypofunction of GABAergic inhibitory tone is an important factor in the enhanced synaptic transmission that often results in neuronal hyperexcitability in dorsal horn neurons following spinal cord injury. Neurons and glial cells synergistically control intracellular chloride ion gradients via modulation of chloride transporters, extracellular glutamate and GABA concentrations via uptake mechanisms. Thus, the intracellular “GABA-glutamate-glutamine cycle” is maintained for normal physiological homeostasis. However, hyperexcitable neurons and glial activation after spinal cord injury disrupts the balance of chloride ions, glutamate and GABA distribution in the spinal dorsal horn and results in chronic neuropathic pain. In this review, we address spinal cord injury induced mechanisms in hypofunction of GABAergic tone that results in chronic central neuropathic pain. PMID:21216257

  12. Pentobarbital enhances GABAergic neurotransmission to cardiac parasympathetic neurons, which is prevented by expression of GABA(A) epsilon subunit.

    PubMed

    Irnaten, Mustapha; Walwyn, Wendy M; Wang, Jijiang; Venkatesan, Priya; Evans, Cory; Chang, Kyoung S K; Andresen, Michael C; Hales, Tim G; Mendelowitz, David

    2002-09-01

    Pentobarbital decreases the gain of the baroreceptor reflex on the order of 50%, and this blunting is caused nearly entirely by decreasing cardioinhibitory parasympathetic activity. The most likely site of action of pentobarbital is the gamma-aminobutyric acid type A (GABA(A)) receptor. The authors tested whether pentobarbital augments the inhibitory GABAergic neurotransmission to cardiac parasympathetic neurons, and whether expression of the GABA(A) epsilon subunit prevents this facilitation. The authors used a novel approach to study the effect of pentobarbital on identified cardiac parasympathetic preganglionic neurons in rat brainstem slices. The cardiac parasympathetic neurons in the nucleus ambiguus were retrogradely prelabeled with a fluorescent tracer and were visually identified for patch clamp recording. The effects of pentobarbital on spontaneous GABAergic synaptic events were tested. An adenovirus was used to express the epsilon subunit of the GABA(A) receptor in cardiac parasympathetic neurons to examine whether this transfection alters pentobarbital-mediated changes in GABAergic neurotransmission. Pentobarbital increased the duration but not the frequency or amplitude of spontaneous GABAergic currents in cardiac parasympathetic neurons. Transfection of cardiac parasympathetic neurons with the epsilon subunit of the GABA(A) receptor prevented the pentobarbital-evoked facilitation of GABAergic currents. Pentobarbital, at clinically relevant concentrations, prolongs the duration of spontaneous inhibitory postsynaptic currents that impinge on cardiac parasympathetic neurons. This action would augment the inhibition of cardiac parasympathetic neurons, reduce parasympathetic cardioinhibitory activity, and increase heart rate. Expression of the GABA(A) receptor epsilon subunit in cardiac parasympathetic neurons renders the GABA receptors insensitive to pentobarbital.

  13. Wnt signaling pathway improves central inhibitory synaptic transmission in a mouse model of Duchenne muscular dystrophy.

    PubMed

    Fuenzalida, Marco; Espinoza, Claudia; Pérez, Miguel Ángel; Tapia-Rojas, Cheril; Cuitino, Loreto; Brandan, Enrique; Inestrosa, Nibaldo C

    2016-02-01

    The dystrophin-associated glycoprotein complex (DGC) that connects the cytoskeleton, plasma membrane and the extracellular matrix has been related to the maintenance and stabilization of channels and synaptic receptors, which are both essential for synaptogenesis and synaptic transmission. The dystrophin-deficient (mdx) mouse model of Duchenne muscular dystrophy (DMD) exhibits a significant reduction in hippocampal GABA efficacy, which may underlie the altered synaptic function and abnormal hippocampal long-term plasticity exhibited by mdx mice. Emerging studies have implicated Wnt signaling in the modulation of synaptic efficacy, neuronal plasticity and cognitive function. We report here that the activation of the non-canonical Wnt-5a pathway and Andrographolide, improves hippocampal mdx GABAergic efficacy by increasing the number of inhibitory synapses and GABA(A) receptors or GABA release. These results indicate that Wnt signaling modulates GABA synaptic efficacy and could be a promising novel target for DMD cognitive therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. GABA Signaling and Neuroactive Steroids in Adrenal Medullary Chromaffin Cells

    PubMed Central

    Harada, Keita; Matsuoka, Hidetada; Fujihara, Hiroaki; Ueta, Yoichi; Yanagawa, Yuchio; Inoue, Masumi

    2016-01-01

    Gamma-aminobutyric acid (GABA) is produced not only in the brain, but also in endocrine cells by the two isoforms of glutamic acid decarboxylase (GAD), GAD65 and GAD67. In rat adrenal medullary chromaffin cells only GAD67 is expressed, and GABA is stored in large dense core vesicles (LDCVs), but not synaptic-like microvesicles (SLMVs). The α3β2/3γ2 complex represents the majority of GABAA receptors expressed in rat and guinea pig chromaffin cells, whereas PC12 cells, an immortalized rat chromaffin cell line, express the α1 subunit as well as the α3. The expression of α3, but not α1, in PC12 cells is enhanced by glucocorticoid activity, which may be mediated by both the mineralocorticoid receptor (MR) and the glucocorticoid receptor (GR). GABA has two actions mediated by GABAA receptors in chromaffin cells: it induces catecholamine secretion by itself and produces an inhibition of synaptically evoked secretion by a shunt effect. Allopregnanolone, a neuroactive steroid which is secreted from the adrenal cortex, produces a marked facilitation of GABAA receptor channel activity. Since there are no GABAergic nerve fibers in the adrenal medulla, GABA may function as a para/autocrine factor in the chromaffin cells. This function of GABA may be facilitated by expression of the immature isoforms of GAD and GABAA receptors and the lack of expression of plasma membrane GABA transporters (GATs). In this review, we will consider how the para/autocrine function of GABA is achieved, focusing on the structural and molecular mechanisms for GABA signaling. PMID:27147972

  15. GABA predicts visual intelligence.

    PubMed

    Cook, Emily; Hammett, Stephen T; Larsson, Jonas

    2016-10-06

    Early psychological researchers proposed a link between intelligence and low-level perceptual performance. It was recently suggested that this link is driven by individual variations in the ability to suppress irrelevant information, evidenced by the observation of strong correlations between perceptual surround suppression and cognitive performance. However, the neural mechanisms underlying such a link remain unclear. A candidate mechanism is neural inhibition by gamma-aminobutyric acid (GABA), but direct experimental support for GABA-mediated inhibition underlying suppression is inconsistent. Here we report evidence consistent with a global suppressive mechanism involving GABA underlying the link between sensory performance and intelligence. We measured visual cortical GABA concentration, visuo-spatial intelligence and visual surround suppression in a group of healthy adults. Levels of GABA were strongly predictive of both intelligence and surround suppression, with higher levels of intelligence associated with higher levels of GABA and stronger surround suppression. These results indicate that GABA-mediated neural inhibition may be a key factor determining cognitive performance and suggests a physiological mechanism linking surround suppression and intelligence. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  16. The activation of cannabinoid receptors in striatonigral GABAergic neurons inhibited GABA uptake.

    PubMed

    Romero, J; de Miguel, R; Ramos, J A; Fernández-Ruiz, J J

    1998-01-01

    Cannabinoid receptors (CNRs) in basal ganglia are located on striatal efferent neurons which are gamma-aminobutiric acid (GABA)-containing neurons. Recently, we have demonstrated that CN-induced motor inhibition is reversed by GABA-B, but not GABA-A, receptor antagonists, presumably indicating that the activation of CNRs in striatal outflow nuclei, mainly in the substantia nigra, should be followed by an increase of GABA concentrations into the synaptic cleft of GABA-B receptor synapses. The present study was designed to examine whether this was originated by increasing GABA synthesis and/or release or by decreasing GABA uptake. We analyzed: (i) GABA synthesis, by measuring the activity of glutamic acid decarboxylase (GAD) and GABA contents in brain regions that contain striatonigral GABAergic neurons, after in vivo administration of CNs and/or the CNR antagonist SR141716; (ii) [3H]GABA release in vitro in the presence or the absence of a synthetic CN agonist, HU-210, by using perifusion of small fragments of substantia nigra; and (iii) [3H]GABA uptake in vitro in the presence or the absence of WIN-55,212-2, by using synaptosomes obtained from either globus pallidus or substantia nigra. Results were as follows. Delta9-tetrahydrocannabinol (delta9-THC) and HU-210, did not alter neither GAD activity nor GABA contents in both the striatum and the ventral midbrain at any of the two times tested, thus suggesting that CNs apparently failed to change GABA synthesis in striatonigral GABAergic neurons. A similar lack of effect of HU-210 on in vitro [3H]GABA release, both basal and K+-evoked, was seen when this CN was added to perifused substantia nigra fragments, also suggesting no changes at the level of GABA release. However, when synaptosome preparations obtained from the substantia nigra were incubated in the presence of WIN-55,212-2, a decrease in [3H]GABA uptake could be measured. This lowering effect was specific of striatonigral GABAergic neurons since it was not

  17. The GABA Transporters GAT-1 and GAT-3 modulate glutamatergic transmission via activation of presynaptic GABAB receptors in the rat globus pallidus

    PubMed Central

    Jin, Xiao-Tao; Paré, Jean-Francois; Smith, Yoland

    2012-01-01

    Intrapallidal application of GAT-1 or GAT-3 transporter blockers (SKF 89976A or SNAP 5114) reduces the activity of pallidal neurons in monkey. This effect could be mediated through activation of presynaptic GABAB heteroreceptors in glutamatergic terminals by GABA spillover following GABA transporters (GATs) blockade. To test this hypothesis, we applied the whole-cell recording technique to study the effects of SKF 89976A and SNAP 5114 on evoked excitatory post synaptic currents (eEPSCs) in presence of gabazine, a GABAA receptor antagonist, in rat GP slice preparations. Under the condition of postsynaptic GABAB receptor blockade by intracellular application of OX314, bath application of SKF 89976A (10 μM) or SNAP 5114 (10 μM) decreased the amplitude of eEPSCs, without significant effect on its holding current and whole cell input resistance. The inhibitory effect of GATs blockade on eEPSCs was blocked by CGP 58845, a GABAB receptor antagonist. The paired-pulse ratio (PPR) of evoked EPSCs was increased, while the frequency, but not the amplitude, of miniature excitatory postsynaptic currents (mEPSCs) was reduced in presence of either GAT blockers, demonstrating a presynaptic effect. These results suggest that synaptically released GABA can inhibit glutamatergic transmission through activation of presynaptic GABAB heteroreceptors following GAT-1 or GAT-3 blockade. In conclusion, our findings demonstrate that pre-synaptic GABAB heteroreceptors in putative glutamatergic subthalamic afferents to GP are sensitive to increases in extracellular GABA induced by GATs inactivation, thereby suggesting that GATs blockade represents a potential mechanism by which overactive subthalamopallidal activity may be reduced in parkinsonism. PMID:22616751

  18. Phospho-dependent functional modulation of GABA(B) receptors by the metabolic sensor AMP-dependent protein kinase.

    PubMed

    Kuramoto, Nobuyuki; Wilkins, Megan E; Fairfax, Benjamin P; Revilla-Sanchez, Raquel; Terunuma, Miho; Tamaki, Keisuke; Iemata, Mika; Warren, Noel; Couve, Andrés; Calver, Andrew; Horvath, Zsolt; Freeman, Katie; Carling, David; Huang, Lan; Gonzales, Cathleen; Cooper, Edward; Smart, Trevor G; Pangalos, Menelas N; Moss, Stephen J

    2007-01-18

    GABA(B) receptors are heterodimeric G protein-coupled receptors composed of R1 and R2 subunits that mediate slow synaptic inhibition in the brain by activating inwardly rectifying K(+) channels (GIRKs) and inhibiting Ca(2+) channels. We demonstrate here that GABA(B) receptors are intimately associated with 5'AMP-dependent protein kinase (AMPK). AMPK acts as a metabolic sensor that is potently activated by increases in 5'AMP concentration that are caused by enhanced metabolic activity, anoxia, or ischemia. AMPK binds the R1 subunit and directly phosphorylates S783 in the R2 subunit to enhance GABA(B) receptor activation of GIRKs. Phosphorylation of S783 is evident in many brain regions, and is increased dramatically after ischemic injury. Finally, we also reveal that S783 plays a critical role in enhancing neuronal survival after ischemia. Together our results provide evidence of a neuroprotective mechanism, which, under conditions of metabolic stress or after ischemia, increases GABA(B) receptor function to reduce excitotoxicity and thereby promotes neuronal survival.

  19. Systematic analysis of γ-aminobutyric acid (GABA) metabolism and function in the social amoeba Dictyostelium discoideum.

    PubMed

    Wu, Yuantai; Janetopoulos, Chris

    2013-05-24

    While GABA has been suggested to regulate spore encapsulation in the social amoeba Dictyostelium discoideum, the metabolic profile and other potential functions of GABA during development remain unclear. In this study, we investigated the homeostasis of GABA metabolism by disrupting genes related to GABA metabolism and signaling. Extracellular levels of GABA are tightly regulated during early development, and GABA is generated by the glutamate decarboxylase, GadB, during growth and in early development. However, overexpression of the prespore-specific homologue, GadA, in the presence of GadB reduces production of extracellular GABA. Perturbation of extracellular GABA levels delays the process of aggregation. Cytosolic GABA is degraded by the GABA transaminase, GabT, in the mitochondria. Disruption of a putative vesicular GABA transporter (vGAT) homologue DdvGAT reduces secreted GABA. We identified the GABAB receptor-like family member GrlB as the major GABA receptor during early development, and either disruption or overexpression of GrlB delays aggregation. This delay is likely the result of an abolished pre-starvation response and late expression of several "early" developmental genes. Distinct genes are employed for GABA generation during sporulation. During sporulation, GadA alone is required for generating GABA and DdvGAT is likely responsible for GABA secretion. GrlE but not GrlB is the GABA receptor during late development.

  20. Willed-movement training reduces brain damage and enhances synaptic plasticity related proteins synthesis after focal ischemia.

    PubMed

    Nie, Jingjing; Yang, Xiaosu; Tang, Qingping; Shen, Qin; Li, Simin

    2016-01-01

    It has been wildly accepted that willed movement(WM) training promotes neurological rehabilitation in patients with stroke. However, it was not clear whether the effect of WM is better than other forms of exercise. The purpose of this study is to assess different effects of WM and other forms of exercise on rats with focal ischemia. The subjects are all had right middle cerebral artery occlusion (MCAO) surgery and randomly allocated to three groups of training and one control group with no training. Infarct volume by 2,3,5-triphenyltetrazolium chloride (TTC) dye, expression of PICK1 and synaptophysin in cerebral cortex and striatum of injured side by western blotting and immunofluorescence performed are analyzed. Exercise has done respectively on rats in each group for 15 days and 30 days. Compared with the control group, the brain damage is reduced in other groups after 15 days exercise. The protein expressions levels of synaptophysin and PICK1 are upregulated after exercise. Concentration of PICK1 protein in WM is greater than other exercise groups, and the expression of synaptophysin in WM and SM groups are higher than EM groups. The number of PICK1 positive cells, synaptophysin and PICK1 co-positive cells are increased by exercise. Synaptophysin is widely distributed in cortex surrounding the injury area in WM and EM. It is indicated in our result that willed-movement training is the most effective intervention in enhancing the PICK1-mediated synaptic plasticity in the area adjacent to the damage region of ischemic rats.

  1. Mitochondria-targeted molecules MitoQ and SS31 reduce mutant huntingtin-induced mitochondrial toxicity and synaptic damage in Huntington's disease.

    PubMed

    Yin, Xiangling; Manczak, Maria; Reddy, P Hemachandra

    2016-05-01

    The objective of this study was to determine the protective effects of the mitochondria-targeted molecules MitoQ and SS31 in striatal neurons that stably express mutant huntingtin (Htt) (STHDhQ111/Q111) in Huntington's disease (HD). We studied mitochondrial and synaptic activities by measuring mRNA and the protein levels of mitochondrial and synaptic genes, mitochondrial function, and ultra-structural changes in MitoQ- and SS31-treated mutant Htt neurons relative to untreated mutant Htt neurons. We used gene expression analysis, biochemical methods, transmission electron microscopy (TEM) and confocal microscopy methods. In the MitoQ- and SS31-treated mutant Htt neurons, fission genes Drp1 and Fis1 were down-regulated, and fusion genes Mfn1, Mfn2 and Opa1 were up-regulated relative to untreated neurons, suggesting that mitochondria-targeted molecules reduce fission activity. Interestingly, the mitochondrial biogenesis genes PGC1α, PGC1β, Nrf1, Nrf2 and TFAM were up-regulated in MitoQ- and SS31-treated mutant Htt neurons. The synaptic genes synaptophysin and PSD95 were up-regulated, and mitochondrial function was normal in the MitoQ- and SS31-treated mutant Htt neurons. Immunoblotting findings of mitochondrial and synaptic proteins agreed with the mRNA findings. TEM studies revealed decreased numbers of structurally intact mitochondria in MitoQ- and SS31-treated mutant Htt neurons. These findings suggest that mitochondria-targeted molecules MitoQ and SS31 are protective against mutant Htt-induced mitochondrial and synaptic damage in HD neurons, and these mitochondria-targeted molecules are potential therapeutic molecules for the treatment of HD neurons.

  2. Excitatory actions of GABA in the intact neonatal rodent hippocampus in vitro

    PubMed Central

    Valeeva, Guzel; Valiullina, Fliza; Khazipov, Roustem

    2013-01-01

    The excitatory action of gamma-aminobutyric acid (GABA) is considered to be a hallmark of the developing nervous system. However, in immature brain slices, excitatory GABA actions may be secondary to neuronal injury during slice preparation. Here, we explored GABA actions in the rodent intact hippocampal preparations and at different depths of hippocampal slices during the early post-natal period [post-natal days (P) 1–7]. We found that in the intact hippocampus at P1–3: (i) GABA exerts depolarizing action as seen in cell-attached single GABA(A) channel recordings; (ii) GABA(A) receptor (GABA(A)-R) agonist isoguvacine and synaptic activation of the GABA(A)-Rs increase the frequency of multiple unit activity and the frequency of the network-driven giant depolarizing potentials (GDPs); and that (iii) Na+–K+–2Cl- cotransporter (NKCC1) antagonist bumetanide suppresses GDPs and the excitatory actions of isoguvacine. In the hippocampal slices at P2–5, isoguvacine and synaptic activation of GABA(A)-Rs-evoked excitatory responses at all slice depths, including surface and core. Thus, GABA exerts excitatory actions in the intact hippocampus (P1–3) and at all depths of hippocampal slices (P2–5). Therefore, the excitatory actions of GABA in hippocampal slices during the first post-natal days are not due to neuronal injury during slice preparation, and the trauma-related excitatory GABA actions at the slice surface are a fundamentally different phenomenon observed during the second post-natal week. PMID:23467988

  3. Reduced sensory synaptic excitation impairs motor neuron function via Kv2.1 in spinal muscular atrophy.

    PubMed

    Fletcher, Emily V; Simon, Christian M; Pagiazitis, John G; Chalif, Joshua I; Vukojicic, Aleksandra; Drobac, Estelle; Wang, Xiaojian; Mentis, George Z

    2017-07-01

    Behavioral deficits in neurodegenerative diseases are often attributed to the selective dysfunction of vulnerable neurons via cell-autonomous mechanisms. Although vulnerable neurons are embedded in neuronal circuits, the contributions of their synaptic partners to disease process are largely unknown. Here we show that, in a mouse model of spinal muscular atrophy (SMA), a reduction in proprioceptive synaptic drive leads to motor neuron dysfunction and motor behavior impairments. In SMA mice or after the blockade of proprioceptive synaptic transmission, we observed a decrease in the motor neuron firing that could be explained by the reduction in the expression of the potassium channel Kv2.1 at the surface of motor neurons. Chronically increasing neuronal activity pharmacologically in vivo led to a normalization of Kv2.1 expression and an improvement in motor function. Our results demonstrate a key role of excitatory synaptic drive in shaping the function of motor neurons during development and the contribution of its disruption to a neurodegenerative disease.

  4. Copper reduces Aβ oligomeric species and ameliorates neuromuscular synaptic defects in a C. elegans model of inclusion body myositis.

    PubMed

    Rebolledo, Daniela L; Aldunate, Rebeca; Kohn, Rebecca; Neira, Iván; Minniti, Alicia N; Inestrosa, Nibaldo C

    2011-07-13

    Alzheimer's disease and inclusion body myositis (IBM) are disorders frequently found in the elderly and characterized by the presence of amyloid-β peptide (Aβ) aggregates. We used Caenorhabditis elegans that express Aβ in muscle cells as a model of IBM, with the aim of analyzing Aβ-induced muscle pathology and evaluating the consequences of modulating Aβ aggregation. First, we tested whether the altered motility we observed in the Aβ transgenic strain could be the result of a compromised neuromuscular synapse. Our pharmacological analyses show that synaptic transmission is defective in our model and suggest a specific defect on nicotine-sensitive acetylcholine receptors (AChRs). Through GFP-coupled protein visualization, we found that synaptic dysfunction correlates with mislocalization of ACR-16, the AChR subunit essential for nicotine-triggered currents. Histological and biochemical analysis allowed us to determine that copper treatment increases the amyloid deposits and decreases Aβ oligomers in this model. Furthermore, copper treatment improves motility, ACR-16 localization, and synaptic function and delays Aβ-induced paralysis. Our results indicate that copper modulates Aβ-induced pathology and suggest that Aβ oligomers are triggering neuromuscular dysfunction. Our findings emphasize the importance of neuromuscular synaptic dysfunction and the relevance of modulating the amyloidogenic component as an alternative therapeutic approach for this debilitating disease.

  5. Cannabinoids modulate spontaneous synaptic activity in retinal ganglion cells.

    PubMed

    Middleton, T P; Protti, D A

    2011-09-01

    The endocannabinoid (ECB) system has been found throughout the central nervous system and modulates cell excitability in various forms of short-term plasticity. ECBs and their receptors have also been localized to all retinal cells, and cannabinoid receptor activation has been shown to alter voltage-dependent conductances in several different retinal cell types, suggesting a possible role for cannabinoids in retinal processing. Their effects on synaptic transmission in the mammalian retina, however, have not been previously investigated. Here, we show that exogenous cannabinoids alter spontaneous synaptic transmission onto retinal ganglion cells (RGCs). Using whole-cell voltage-clamp recordings in whole-mount retinas, we measured spontaneous postsynaptic currents (SPSCs) in RGCs in adult and young (P14-P21) mice. We found that the addition of an exogenous cannabinoid agonist, WIN55212-2 (5 μM), caused a significant reversible reduction in the frequency of SPSCs. This change, however, did not alter the kinetics of the SPSCs, indicating a presynaptic locus of action. Using blockers to isolate inhibitory or excitatory currents, we found that cannabinoids significantly reduced the release probability of both GABA and glutamate, respectively. While the addition of cannabinoids reduced the frequency of both GABAergic and glutamatergic SPSCs in both young and adult mice, we found that the largest effect was on GABA-mediated currents in young mice. These results suggest that the ECB system may potentially be involved in the modulation of signal transmission in the retina. Furthermore, they suggest that it might play a role in the developmental maturation of synaptic circuits, and that exogenous cannabinoids are likely able to disrupt retinal processing and consequently alter vision.

  6. Up-regulation of GABA transporters and GABA(A) receptor α1 subunit in tremor rat hippocampus.

    PubMed

    Mao, Xiaoyuan; Guo, Feng; Yu, Junling; Min, Dongyu; Wang, Zhanyou; Xie, Ni; Chen, Tianbao; Shaw, Chris; Cai, Jiqun

    2010-12-17

    The loss of GABAergic neurotransmission has been closely linked with epileptogenesis. The modulation of the synaptic activity occurs both via the removal of GABA from the synaptic cleft and by GABA transporters (GATs) and by modulation of GABA receptors. The tremor rat (TRM; tm/tm) is the parent strain of the spontaneously epileptic rat (SER; zi/zi, tm/tm), which exhibits absence-like seizure after 8 weeks of age. However, there are no reports that can elucidate the effects of GATs and GABA(A) receptors (GABARs) on TRMs. The present study was conducted to detect GATs and GABAR α1 subunit in TRMs hippocampus at mRNA and protein levels. In this study, total synaptosomal GABA content was significantly decreased in TRMs hippocampus compared with control Wistar rats by high performance liquid chromatography (HPLC); mRNA and protein expressions of GAT-1, GAT-3 and GABAR α1 subunit were all significantly increased in TRMs hippocampus by real time PCR and Western blot, respectively; GAT-1 and GABAR α1 subunit proteins were localized widely in TRMs and control rats hippocampus including CA1, CA3 and dentate gyrus (DG) regions whereas only a wide distribution of GAT-3 was observed in CA1 region by immunohistochemistry. These data demonstrate that excessive expressions of GAT-1 as well as GAT-3 and GABAR α1 subunit in TRMs hippocampus may provide the potential therapeutic targets for genetic epilepsy. Copyright © 2010. Published by Elsevier Ireland Ltd.

  7. Genetic deficiency of GABA differentially regulates respiratory and non-respiratory motor neuron development.

    PubMed

    Fogarty, Matthew J; Smallcombe, Karen L; Yanagawa, Yuchio; Obata, Kunihiko; Bellingham, Mark C; Noakes, Peter G

    2013-01-01

    Central nervous system GABAergic and glycinergic synaptic activity switches from postsynaptic excitation to inhibition during the stage when motor neuron numbers are being reduced, and when synaptic connections are being established onto and by motor neurons. In mice this occurs between embryonic (E) day 13 and birth (postnatal day 0). Our previous work on mice lacking glycinergic transmission suggested that altered motor neuron activity levels correspondingly regulated motor neuron survival and muscle innervation for all respiratory and non respiratory motor neuron pools, during this period of development [1]. To determine if GABAergic transmission plays a similar role, we quantified motor neuron number and the extent of muscle innervation in four distinct regions of the brain stem and spinal cord; hypoglossal, phrenic, brachial and lumbar motor pools, in mice lacking the enzyme GAD67. These mice display a 90% drop in CNS GABA levels ( [2]; this study). For respiratory-based motor neurons (hypoglossal and phrenic motor pools), we have observed significant drops in motor neuron number (17% decline for hypoglossal and 23% decline for phrenic) and muscle innervations (55% decrease). By contrast for non-respiratory motor neurons of the brachial lateral motor column, we have observed an increase in motor neuron number (43% increase) and muscle innervations (99% increase); however for more caudally located motor neurons within the lumbar lateral motor column, we observed no change in either neuron number or muscle innervation. These results show in mice lacking physiological levels of GABA, there are distinct regional changes in motor neuron number and muscle innervation, which appear to be linked to their physiological function and to their rostral-caudal position within the developing spinal cord. Our results also suggest that for more caudal (lumbar) regions of the spinal cord, the effect of GABA is less influential on motor neuron development compared to that of

  8. NKCC1-dependent GABAergic excitation drives synaptic network maturation during early hippocampal development.

    PubMed

    Pfeffer, Carsten K; Stein, Valentin; Keating, Damien J; Maier, Hannes; Rinke, Ilka; Rudhard, York; Hentschke, Moritz; Rune, Gabriele M; Jentsch, Thomas J; Hübner, Christian A

    2009-03-18

    A high intracellular chloride concentration in immature neurons leads to a depolarizing action of GABA that is thought to shape the developing neuronal network. We show that GABA-triggered depolarization and Ca2+ transients were attenuated in mice deficient for the Na-K-2Cl cotransporter NKCC1. Correlated Ca2+ transients and giant depolarizing potentials (GDPs) were drastically reduced and the maturation of the glutamatergic and GABAergic transmission in CA1 delayed. Brain morphology, synaptic density, and expression levels of certain developmental marker genes were unchanged. The expression of lynx1, a protein known to dampen network activity, was decreased. In mice deficient for the neuronal Cl(-)/HCO(3)(-) exchanger AE3, GDPs were also diminished. These data show that NKCC1-mediated Cl(-) accumulation contributes to GABAergic excitation and network activity during early postnatal development and thus facilitates the maturation of excitatory and inhibitory synapses.

  9. Segregation of Acetylcholine and GABA in the Rat Superior Cervical Ganglia: Functional Correlation

    PubMed Central

    Elinos, Diana; Rodríguez, Raúl; Martínez, Luis Andres; Zetina, María Elena; Cifuentes, Fredy; Morales, Miguel Angel

    2016-01-01

    Sympathetic neurons have the capability to segregate their neurotransmitters (NTs) and co-transmitters to separate varicosities of single axons; furthermore, in culture, these neurons can even segregate classical transmitters. In vivo sympathetic neurons employ acetylcholine (ACh) and other classical NTs such as gamma aminobutyric acid (GABA). Herein, we explore whether these neurons in vivo segregate these classical NTs in the superior cervical ganglia of the rat. We determined the topographical distribution of GABAergic varicosities, somatic GABAA receptor, as well as the regional distribution of the segregation of ACh and GABA. We evaluated possible regional differences in efficacy of ganglionic synaptic transmission, in the sensitivity of GABAA receptor to GABA and to the competitive antagonist picrotoxin (PTX). We found that sympathetic preganglionic neurons in vivo do segregate ACh and GABA. GABAergic varicosities and GABAA receptor expression showed a rostro-caudal gradient along ganglia; in contrast, segregation exhibited a caudo-rostral gradient. These uneven regional distributions in expression of GABA, GABAA receptors, and level of segregation correlate with stronger synaptic transmission found in the caudal region. Accordingly, GABAA receptors of rostral region showed larger sensitivity to GABA and PTX. These results suggest the presence of different types of GABAA receptors in each region that result in a different regional levels of endogenous GABA inhibition. Finally, we discuss a possible correlation of these different levels of GABA modulation and the function of the target organs innervated by rostral and caudal ganglionic neurons. PMID:27092054

  10. Immature Responses to GABA in Fragile X Neurons Derived from Human Embryonic Stem Cells

    PubMed Central

    Telias, Michael; Segal, Menahem; Ben-Yosef, Dalit

    2016-01-01

    Fragile X Syndrome (FXS) is the most common form of inherited cognitive disability. However, functional deficiencies in FX neurons have been described so far almost exclusively in animal models. In a recent study we found several functional deficits in FX neurons differentiated in-vitro from human embryonic stem cells (hESCs), including their inability to fire repetitive action potentials, and their lack of synaptic activity. Here, we investigated the responses of such neurons to pulse application of the neurotransmitter GABA. We found two distinct types of responses to GABA and sensitivity to the GABA-A receptor antagonist bicuculline; type 1 (mature) characterized by non-desensitized responses to GABA as well as a high sensitivity to bicuculline, and type 2 (immature) which are desensitized to GABA and insensitive to bicuculline. Type 1 responses were age-dependent and dominant in mature WT neurons. In contrast, FX neurons expressed primarily type 2 phenotype. Expression analysis of GABA-A receptor subunits demonstrated that this bias in human FX neurons was associated with a significant alteration in the expression pattern of the GABA-A receptor subunits α2 and β2. Our results indicate that FMRP may play a role in the development of the GABAergic synapse during neurogenesis. This is the first demonstration of the lack of a mature response to GABA in human FX neurons and may explain the inappropriate synaptic functions in FXS. PMID:27242433

  11. GABA-independent GABAA Receptor Openings Maintain Tonic Currents

    PubMed Central

    Wlodarczyk, Agnieszka I.; Sylantyev, Sergiy; Herd, Murray B.; Kersanté, Flavie; Lambert, Jeremy J.; Rusakov, Dmitri A.; Linthorst, Astrid C.E.; Semyanov, Alexey; Belelli, Delia; Pavlov, Ivan; Walker, Matthew C.

    2013-01-01

    Activation of GABAA receptors (GABAARs) produces two forms of inhibition: ‘phasic’ inhibition generated by the rapid, transient activation of synaptic GABAARs by presynaptic GABA release, and tonic inhibition generated by the persistent activation of peri- or extrasynaptic GABAARs which can detect extracellular GABA. Such tonic GABAAR-mediated currents are particularly evident in dentate granule cells in which they play a major role in regulating cell excitability. Here we show that in rat dentate granule cells in ex-vivo hippocampal slices, tonic currents are predominantly generated by GABA-independent GABAA receptor openings. This tonic GABAAR conductance is resistant to the competitive GABAAR antagonist SR95531, which at high concentrations acts as a partial agonist, but can be blocked by an open channel blocker picrotoxin. When slices are perfused with 200 nM GABA, a concentration that is comparable to cerebrospinal fluid concentrations but is twice that measured by us in the hippocampus in vivo using zero-net-flux microdialysis, negligible GABA is detected by dentate granule cells. Spontaneously opening GABAARs, therefore, maintain dentate granule cell tonic currents in the face of low extracellular GABA concentrations. PMID:23447601

  12. Synaptic vesicle glycoprotein 2A (SV2A) regulates kindling epileptogenesis via GABAergic neurotransmission

    PubMed Central

    Tokudome, Kentaro; Okumura, Takahiro; Shimizu, Saki; Mashimo, Tomoji; Takizawa, Akiko; Serikawa, Tadao; Terada, Ryo; Ishihara, Shizuka; Kunisawa, Naofumi; Sasa, Masashi; Ohno, Yukihiro

    2016-01-01

    Synaptic vesicle glycoprotein 2A (SV2A) is a prototype synaptic vesicle protein regulating action potential-dependent neurotransmitters release. SV2A also serves as a specific binding site for certain antiepileptics and is implicated in the treatment of epilepsy. Here, to elucidate the role of SV2A in modulating epileptogenesis, we generated a novel rat model (Sv2aL174Q rat) carrying a Sv2a-targeted missense mutation (L174Q) and analyzed its susceptibilities to kindling development. Although animals homozygous for the Sv2aL174Q mutation exhibited normal appearance and development, they are susceptible to pentylenetetrazole (PTZ) seizures. In addition, development of kindling associated with repeated PTZ treatments or focal stimulation of the amygdala was markedly facilitated by the Sv2aL174Q mutation. Neurochemical studies revealed that the Sv2aL174Q mutation specifically reduced depolarization-induced GABA, but not glutamate, release in the hippocampus without affecting basal release or the SV2A expression level in GABAergic neurons. In addition, the Sv2aL174Q mutation selectively reduced the synaptotagmin1 (Syt1) level among the exocytosis-related proteins examined. The present results demonstrate that dysfunction of SV2A due to the Sv2aL174Q mutation impairs the synaptic GABA release by reducing the Syt1 level and facilitates the kindling development, illustrating the crucial role of SV2A-GABA system in modulating kindling epileptogenesis. PMID:27265781

  13. GABA predicts time perception.

    PubMed

    Terhune, Devin B; Russo, Sonia; Near, Jamie; Stagg, Charlotte J; Cohen Kadosh, Roi

    2014-03-19

    Our perception of time constrains our experience of the world and exerts a pivotal influence over a myriad array of cognitive and motor functions. There is emerging evidence that the perceived duration of subsecond intervals is driven by sensory-specific neural activity in human and nonhuman animals, but the mechanisms underlying individual differences in time perception remain elusive. We tested the hypothesis that elevated visual cortex GABA impairs the coding of particular visual stimuli, resulting in a dampening of visual processing and concomitant positive time-order error (relative underestimation) in the perceived duration of subsecond visual intervals. Participants completed psychophysical tasks measuring visual interval discrimination and temporal reproduction and we measured in vivo resting state GABA in visual cortex using magnetic resonance spectroscopy. Time-order error selectively correlated with GABA concentrations in visual cortex, with elevated GABA associated with a rightward horizontal shift in psychometric functions, reflecting a positive time-order error (relative underestimation). These results demonstrate anatomical, neurochemical, and task specificity and suggest that visual cortex GABA contributes to individual differences in time perception.

  14. Reduced ATP concentration as a basis for synaptic transmission failure during hypoxia in the in vitro guinea-pig hippocampus

    PubMed Central

    Lipton, Peter; Whittingham, Tim S.

    1982-01-01

    1. Experiments were performed to determine whether a decrease in tissue ATP contributes to the rapid failure of cerebral synaptic transmission during hypoxia. Transmission between the perforant path and the dentate granule cells in the in vitro hippocampus was studied. 2. Hippocampal slice ATP is decreased by ∼ 15% at the time that the evoked response begins to diminish in standard Krebs bicarbonate buffer. This is about 2 min after the onset of hypoxia. 3. When transmission failure is accelerated by increasing extracellular K+ from 4·4 to 13·4 mM, the evoked response begins to decay about 30 sec after exposure to hypoxia. There is no decrease in hippocampal slice ATP at this time. 4. However, ATP in the molecular layer (the synaptic region of the tissue) is decreased by ∼ 15% at the time the evoked response begins to decay in the slices exposed to elevated K+ concentration. 5. Exposing the hippocampal slice to 25 mM-creatine for 3 hr elevates molecular layer phosphocreatine fourfold. Synaptic transmission during hypoxia survives three times as long as it does in the absence of creatine. 6. In the creatine fortified medium, molecular layer ATP no longer declines within 30 sec of hypoxia. However the molecular layer ATP does decline within 90 sec of hypoxia, the time at which the evoked response begins to decay in this creatine-fortified buffer. 7. The results establish that ATP in the region of the active synapses is lowered when the first signs of electrophysiological failure appear during hypoxia. They also show that maintaining ATP for longer than normal during hypoxia is associated with a prolonged maintenance of the evoked response. They thus suggest that a decline in ATP is one factor causing hypoxic block of synaptic transmission. 8. It is further suggested that the very rapid failure of the electroencephalogram during anoxia may also result from a decline in ATP. PMID:6286944

  15. Deletion of CB2 cannabinoid receptors reduces synaptic transmission and long-term potentiation in the mouse hippocampus.

    PubMed

    Li, Yong; Kim, Jimok

    2016-03-01

    The effects of cannabinoids are mostly mediated by two types of cannabinoid receptors--CB1 receptors in the nervous system and CB2 receptors in the immune system. However, CB2 cannabinoid receptors have recently been discovered in the brain and also implicated in neurophysiological functions. The deletion of CB2 receptors in mice induces long-term memory deficits and schizophrenia-like behaviors, implying that endogenous activity of CB2 receptors might be involved in neuropsychiatric effects. Little is known about the cellular mechanisms by which physiological activation of CB2 receptors modulates neuronal functions. We aimed to determine how deletion of CB2 receptors in mice affects synaptic transmission and plasticity. Electrophysiological and morphological studies indicated that CB2 receptor knockout resulted in decreases in excitatory synaptic transmission, long-term potentiation, and dendritic spine density in the hippocampus. Our data imply that endogenous activity of CB2 receptors might contribute to the maintenance of synaptic functions and the expression of normal long-term potentiation. This study provides insights into the role of CB2 cannabinoid receptors in regulating cognitive functions such as long-term memory. © 2016 Wiley Periodicals, Inc.

  16. gamma-Hydroxybutyrate (GHB) induces GABA(B) receptor independent intracellular Ca2+ transients in astrocytes, but has no effect on GHB or GABA(B) receptors of medium spiny neurons in the nucleus accumbens.

    PubMed

    Molnár, T; Antal, K; Nyitrai, G; Emri, Z

    2009-08-18

    We report on cellular actions of the illicit recreational drug gamma-hydroxybutyrate (GHB) in the brain reward area nucleus accumbens. First, we compared the effects of GHB and the GABA(B) receptor agonist baclofen. Neither of them affected the membrane currents of medium spiny neurons in rat nucleus accumbens slices. GABAergic and glutamatergic synaptic potentials of medium spiny neurons, however, were reduced by baclofen but not GHB. These results indicate the lack of GHB as well as postsynaptic GABA(B) receptors, and the presence of GHB insensitive presynaptic GABA(B) receptors in medium spiny neurons. In astrocytes GHB induced intracellular Ca(2+) transients, preserved in slices from GABA(B) receptor type 1 subunit knockout mice. The effects of tetrodotoxin, zero added Ca(2+) with/without intracellular Ca(2+) store depletor cyclopiazonic acid or vacuolar H-ATPase inhibitor bafilomycin A1 indicate that GHB-evoked Ca(2+) transients depend on external Ca(2+) and intracellular Ca(2+) stores, but not on vesicular transmitter release. GHB-induced astrocytic Ca(2+) transients were not affected by the GHB receptor-specific antagonist NCS-382, suggesting the presence of a novel NCS-382-insensitive target for GHB in astrocytes. The activation of astrocytes by GHB implies their involvement in physiological actions of GHB. Our findings disclose a novel profile of GHB action in the nucleus accumbens. Here, unlike in other brain areas, GHB does not act on GABA(B) receptors, but activates an NCS-382 insensitive GHB-specific target in a subpopulation of astrocytes. The lack of either post- or presynaptic effects on medium spiny neurons in the nucleus accumbens distinguishes GHB from many drugs and natural rewards with addictive properties and might explain why GHB has only a weak reinforcing capacity.

  17. EEA1 restores homeostatic synaptic plasticity in hippocampal neurons from Rett syndrome mice.

    PubMed

    Xu, Xin; Pozzo-Miller, Lucas

    2017-08-15

    Rett syndrome is a neurodevelopmental disorder caused by loss-of-function mutations in MECP2, the gene encoding the transcriptional regulator methyl-CpG-binding protein 2 (MeCP2). Mecp2 deletion in mice results in an imbalance of excitation and inhibition in hippocampal neurons, which affects 'Hebbian' synaptic plasticity. We show that Mecp2-deficient neurons also lack homeostatic synaptic plasticity, likely due to reduced levels of EEA1, a protein involved in AMPA receptor endocytosis. Expression of EEA1 restored homeostatic synaptic plasticity in Mecp2-deficient neurons, providing novel targets of intervention in Rett syndrome. Rett syndrome is a neurodevelopmental disorder caused by loss-of-function mutations in MECP2, the gene encoding the transcriptional regulator methyl-CpG-binding protein 2 (MeCP2). Deletion of Mecp2 in mice results in an imbalance of synaptic excitation and inhibition in hippocampal pyramidal neurons, which affects 'Hebbian' long-term synaptic plasticity. Since the excitatory-inhibitory balance is maintained by homeostatic mechanisms, we examined the role of MeCP2 in homeostatic synaptic plasticity (HSP) at excitatory synapses. Negative feedback HSP, also known as synaptic scaling, maintains the global synaptic strength of individual neurons in response to sustained alterations in neuronal activity. Hippocampal neurons from Mecp2 knockout (KO) mice do not show the characteristic homeostatic scaling up of the amplitude of miniature excitatory postsynaptic currents (mEPSCs) and of synaptic levels of the GluA1 subunit of AMPA-type glutamate receptors after 48 h silencing with the Na(+) channel blocker tetrodotoxin. This deficit in HSP is bidirectional because Mecp2 KO neurons also failed to scale down mEPSC amplitudes and GluA1 synaptic levels after 48 h blockade of type A GABA receptor (GABAA R)-mediated inhibition with bicuculline. Consistent with the role of synaptic trafficking of AMPA-type of glutamate receptors in HSP, Mecp2 KO neurons

  18. Parkinson's Disease and Neurodegeneration: GABA-Collapse Hypothesis

    PubMed Central

    Błaszczyk, Janusz W.

    2016-01-01

    Neurodegenerative diseases constitute a heterogeneous group of age-related disorders that are characterized by a slow but irreversible deterioration of brain functions. Evidence accumulated over more than two decades has implicated calcium-related homeostatic mechanisms, giving rise to the Ca2+ hypothesis of brain aging and, ultimately, cell death. Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter within the central (CNS), peripheral and enteric nervous systems. It appears to be involved in a wide variety of physiological functions within and outside the nervous system, that are maintained through a complex interaction between GABA and calcium-dependent neurotransmission and cellular metabolic functions. Within CNS the Ca2+/GABA mechanism stabilizes neuronal activity both at cellular and systemic levels. Decline in the Ca2+/GABA control initiates several cascading processes leading to both weakened protective barriers (in particular the blood-brain barrier) and accumulations of intracellular deposits of calcium and Lewy bodies. Linking such a vital mechanism of synaptic transmission with metabolism (both at cellular and tissue level) by means of a common reciprocal Ca2+/GABA inhibition results in a fragile balance, which is prone to destabilization and auto-destruction. The GABA decline etiology proposed here appears to apply to all human neurodegenerative processes initiated by abnormal intracellular calcium levels. Therefore, the original description of Parkinson's disease (PD) as due to the selective damage of dopaminergic neurons in the mesencephalon should be updated into the concept of a severe multisystemic neurodegenerative disorder of the nervous system, whose clinical symptoms reflect the localization and progression of the most advanced GABA pathology. A future and more complete therapeutic approach to PD should be aimed first at slowing (or stopping) the progression of Ca2+/GABA functional decline. PMID:27375426

  19. Quantum Dot Conjugates of GABA and Muscimol: Binding to α1β2γ2 and ρ1 GABAA Receptors

    PubMed Central

    2012-01-01

    GABAA receptors are ligand-gated ion channels that mediate inhibitory synaptic signaling in the CNS. Fluorescent probes with the ability to target these receptors can provide insights into receptor location, distribution and dynamics in live cells, while revealing abnormalities in their distribution and dynamics that could occur in a variety of diseases. We have developed fluorescent probes of GABAA receptors that are composed of a CdSe/ZnS core–shell nanocrystal (quantum dot; qdot) conjugated to pegylated derivatives of the GABA receptor agonists GABA and muscimol (GABA-qdots and muscimol-qdots, respectively). Quantitative fluorescence imaging was used to analyze the binding activity of these conjugates to α1β2γ2 GABAA and ρ1 GABAA receptors expressed in Xenopus oocytes. The selectivity of these conjugates for α1β2γ2 GABAA and ρ1 GABAA receptors was determined by their ability to compete with the antagonists bicuculline and methyl-(1,2,3,6-tetrahydropyridin-4-yl)phosphinic acid (TPMPA). Both GABA- and muscimol-qdots exhibited robust binding to both α1β2γ2 and ρ1 GABAA receptors. At α1β2γ2 receptors, pretreatment with bicuculline reduced conjugate binding by ≥8-fold on average, an extent far exceeding the reduction produced by TPMPA (∼30%). Conversely, at ρ1 receptors, pretreatment with TPMPA inhibited binding by ∼10-fold, an extent greatly exceeding the change produced by bicuculline (∼50% or less). These results indicate specific binding of muscimol-qdots and GABA-qdots to α1β2γ2 GABAA and ρ1 GABAA receptors in a manner that preserves the respective pharmacological sensitivities of these receptors to TPMPA and bicuculline, and encourage the use of qdot-conjugated neurotransmitter analogs as labeling agents at GABAA receptors. PMID:23509979

  20. GABA application to hippocampal CA3 or CA1 stratum lacunosum-moleculare excites an interneuron network.

    PubMed

    Perkins, Katherine L

    2002-03-01

    Whole cell voltage-clamp recording and focal application of the neurotransmitter gamma-aminobutyric acid (GABA) were used to investigate the ability of exogenous GABA applied to different locations within the guinea pig hippocampal slice to trigger a giant GABA-mediated postsynaptic current (GPSC) in pyramidal cells. A GPSC reflects the synchronous release of GABA from a group of interneurons. Recordings were done in the presence of 4-aminopyridine (4-AP) and blockers of ionotropic glutamatergic synaptic transmission. Spontaneous GPSCs occurred rhythmically in pyramidal cells under these conditions. Brief focal pressure application of GABA (500 microM; 30-200 ms) to CA3 stratum lacunosum-moleculare (SLM) or to the border between CA3 s. radiatum (SR) and SLM triggered an "all-or-none" GPSC in CA3 and CA1 pyramidal cells that looked like the spontaneous GPSCs. During the refractory period following a spontaneous GPSC, application of GABA could not trigger a GPSC. Both spontaneous GPSCs and GPSCs triggered by exogenous GABA were blocked by suppressing synaptic transmission with high Mg(2+)/low Ca(2+) bath solution. On the other hand, focal application of GABA to CA3 s. oriens (SO) or to proximal SR did not trigger a GPSC in the CA3 pyramidal cell; instead it produced a graded response. Focal application of GABA to regions other than CA3 was also tested. Focal application of GABA to CA1 SLM always triggered a GPSC in the CA3 pyramidal cell. Focal application of GABA within the outer two-thirds of the dentate molecular layer often elicited a GPSC in the CA3 pyramidal cell. In contrast, focal application of GABA to CA1 SO, to CA1 SR, or to the hilus elicited no current response in the CA3 pyramidal cell. These data indicate that the GPSC recorded in pyramidal cells that was triggered by focal GABA application resulted from the synchronous synaptic release of GABA from activated interneurons rather than from the binding of exogenous GABA to receptors on the pyramidal cell

  1. Autoantibodies to epilepsy-related LGI1 in limbic encephalitis neutralize LGI1-ADAM22 interaction and reduce synaptic AMPA receptors.

    PubMed

    Ohkawa, Toshika; Fukata, Yuko; Yamasaki, Miwako; Miyazaki, Taisuke; Yokoi, Norihiko; Takashima, Hiroshi; Watanabe, Masahiko; Watanabe, Osamu; Fukata, Masaki

    2013-11-13

    More than 30 mutations in LGI1, a secreted neuronal protein, have been reported with autosomal dominant lateral temporal lobe epilepsy (ADLTE). Although LGI1 haploinsufficiency is thought to cause ADLTE, the underlying molecular mechanism that results in abnormal brain excitability remains mysterious. Here, we focused on a mode of action of LGI1 autoantibodies associated with limbic encephalitis (LE), which is one of acquired epileptic disorders characterized by subacute onset of amnesia and seizures. We comprehensively screened human sera from patients with immune-mediated neurological disorders for LGI1 autoantibodies, which also uncovered novel autoantibodies against six cell surface antigens including DCC, DPP10, and ADAM23. Our developed ELISA arrays revealed a specific role for LGI1 antibodies in LE and concomitant involvement of multiple antibodies, including LGI1 antibodies in neuromyotonia, a peripheral nerve disorder. LGI1 antibodies associated with LE specifically inhibited the ligand-receptor interaction between LGI1 and ADAM22/23 by targeting the EPTP repeat domain of LGI1 and reversibly reduced synaptic AMPA receptor clusters in rat hippocampal neurons. Furthermore, we found that disruption of LGI1-ADAM22 interaction by soluble extracellular domain of ADAM22 was sufficient to reduce synaptic AMPA receptors in rat hippocampal neurons and that levels of AMPA receptor were greatly reduced in the hippocampal dentate gyrus in the epileptic LGI1 knock-out mouse. Therefore, either genetic or acquired loss of the LGI1-ADAM22 interaction reduces the AMPA receptor function, causing epileptic disorders. These results suggest that by finely regulating the synaptic AMPA receptors, the LGI1-ADAM22 interaction maintains physiological brain excitability throughout life.

  2. Autoantibodies to Epilepsy-Related LGI1 in Limbic Encephalitis Neutralize LGI1-ADAM22 Interaction and Reduce Synaptic AMPA Receptors

    PubMed Central

    Ohkawa, Toshika; Fukata, Yuko; Yamasaki, Miwako; Miyazaki, Taisuke; Yokoi, Norihiko; Takashima, Hiroshi; Watanabe, Masahiko; Watanabe, Osamu

    2013-01-01

    More than 30 mutations in LGI1, a secreted neuronal protein, have been reported with autosomal dominant lateral temporal lobe epilepsy (ADLTE). Although LGI1 haploinsufficiency is thought to cause ADLTE, the underlying molecular mechanism that results in abnormal brain excitability remains mysterious. Here, we focused on a mode of action of LGI1 autoantibodies associated with limbic encephalitis (LE), which is one of acquired epileptic disorders characterized by subacute onset of amnesia and seizures. We comprehensively screened human sera from patients with immune-mediated neurological disorders for LGI1 autoantibodies, which also uncovered novel autoantibodies against six cell surface antigens including DCC, DPP10, and ADAM23. Our developed ELISA arrays revealed a specific role for LGI1 antibodies in LE and concomitant involvement of multiple antibodies, including LGI1 antibodies in neuromyotonia, a peripheral nerve disorder. LGI1 antibodies associated with LE specifically inhibited the ligand-receptor interaction between LGI1 and ADAM22/23 by targeting the EPTP repeat domain of LGI1 and reversibly reduced synaptic AMPA receptor clusters in rat hippocampal neurons. Furthermore, we found that disruption of LGI1-ADAM22 interaction by soluble extracellular domain of ADAM22 was sufficient to reduce synaptic AMPA receptors in rat hippocampal neurons and that levels of AMPA receptor were greatly reduced in the hippocampal dentate gyrus in the epileptic LGI1 knock-out mouse. Therefore, either genetic or acquired loss of the LGI1-ADAM22 interaction reduces the AMPA receptor function, causing epileptic disorders. These results suggest that by finely regulating the synaptic AMPA receptors, the LGI1-ADAM22 interaction maintains physiological brain excitability throughout life. PMID:24227725

  3. Enhanced excitatory input to MCH neurons during developmental period of high food intake is mediated by GABA

    PubMed Central

    Li, Ying; van den Pol, Anthony N.

    2010-01-01

    In contrast to the local axons of GABA neurons of the cortex and hippocampus, lateral hypothalamic neurons containing melanin concentrating hormone (MCH) and GABA send long axons throughout the brain and play key roles in energy homeostasis and mental status. In adults, MCH neurons maintain a hyperpolarized membrane potential and most of the synaptic input is inhibitory. In contrast, we found that developing MCH neurons received substantially more excitatory synaptic input. Based on gramicidicin-perforated patch recordings in hypothalamic slices from MCH-GFP transgenic mice, we found that GABA was the primary excitatory synaptic transmitter in embryonic and neonatal ages up to postnatal day 10. Surprisingly, glutamate assumed only a minor excitatory role, if any. GABA plays a complex role in developing MCH neurons, with its actions conditionally dependent on a number of factors. GABA depolarization could lead to an increase in spikes either independently or in summation with other depolarizing stimuli, or alternately, depending on the relative timing of other depolarizing events, could lead to shunting inhibition. The developmental shift from depolarizing to hyperpolarizing occurred later in the dendrites than in the cell body. Early GABA depolarization was based on a Cl− dependent inward current. An interesting secondary depolarization in mature neurons that followed an initial hyperpolarization was based on a bicarbonate mechanism. Thus during the early developmental period when food consumption is high, MCH neurons are more depolarized than in the adult, and an increased level of excitatory synaptic input to these orexigenic cells is mediated by GABA. PMID:19955372

  4. Seizure-induced alterations in fast-spiking basket cell GABA currents modulate frequency and coherence of gamma oscillation in network simulations

    NASA Astrophysics Data System (ADS)

    Proddutur, Archana; Yu, Jiandong; Elgammal, Fatima S.; Santhakumar, Vijayalakshmi

    2013-12-01

    Gamma frequency oscillations have been proposed to contribute to memory formation and retrieval. Fast-spiking basket cells (FS-BCs) are known to underlie development of gamma oscillations. Fast, high amplitude GABA synapses and gap junctions have been suggested to contribute to gamma oscillations in FS-BC networks. Recently, we identified that, apart from GABAergic synapses, FS-BCs in the hippocampal dentate gyrus have GABAergic currents mediated by extrasynaptic receptors. Our experimental studies demonstrated two specific changes in FS-BC GABA currents following experimental seizures [Yu et al., J. Neurophysiol. 109, 1746 (2013)]: increase in the magnitude of extrasynaptic (tonic) GABA currents and a depolarizing shift in GABA reversal potential (EGABA). Here, we use homogeneous networks of a biophysically based model of FS-BCs to examine how the presence of extrasynaptic GABA conductance (gGABA-extra) and experimentally identified, seizure-induced changes in gGABA-extra and EGABA influence network activity. Networks of FS-BCs interconnected by fast GABAergic synapses developed synchronous firing in the dentate gamma frequency range (40-100 Hz). Systematic investigation revealed that the biologically realistic range of 30 to 40 connections between FS-BCs resulted in greater coherence in the gamma frequency range when networks were activated by Poisson-distributed dendritic synaptic inputs rather than by homogeneous somatic current injections, which were balanced for FS-BC firing frequency in unconnected networks. Distance-dependent conduction delay enhanced coherence in networks with 30-40 FS-BC interconnections while inclusion of gap junctional conductance had a modest effect on coherence. In networks activated by somatic current injections resulting in heterogeneous FS-BC firing, increasing gGABA-extra reduced the frequency and coherence of FS-BC firing when EGABA was shunting (-74 mV), but failed to alter average FS-BC frequency when EGABA was depolarizing

  5. Chronic methamphetamine treatment reduces the expression of synaptic plasticity genes and changes their DNA methylation status in the mouse brain.

    PubMed

    Cheng, Min-Chih; Hsu, Shih-Hsin; Chen, Chia-Hsiang

    2015-12-10

    Methamphetamine (METH) is a highly addictive psychostimulant that may cause long-lasting synaptic dysfunction and abnormal gene expression. We aimed to explore the differential expression of synaptic plasticity genes in chronic METH-treated mouse brain. We used the RT(2) Profiler PCR Array and the real-time quantitative PCR to characterize differentially expressed synaptic plasticity genes in the frontal cortex and the hippocampus of chronic METH-treated mice compared with normal saline-treated mice. We further used pyrosequencing to assess DNA methylation changes in the CpG region of the five immediate early genes (IEGs) in chronic METH-treated mouse brain. We detected six downregulated genes in the frontal cortex and the hippocampus of chronic METH-treated mice, including five IEGs (Arc, Egr2, Fos, Klf10, and Nr4a1) and one neuronal receptor gene (Grm1), compared with normal saline-treated group, but only four genes (Arc, Egr2, Fos, and Nr4a1) were confirmed to be different. Furthermore, we found several CpG sites of the Arc and the Fos that had significant changes in DNA methylation status in the frontal cortex of chronic METH-treated mice, while the klf10 and the Nr4a1 that had significant changes in the hippocampus. Our results show that chronic administration of METH may lead to significant downregulation of the IEGs expression in both the frontal cortex and the hippocampus, which may partly account for the molecular mechanism of the action of METH. Furthermore, the changes in DNA methylation status of the IEGs in the brain indicate that an epigenetic mechanism-dependent transcriptional regulation may contribute to METH addiction, which warrants additional study. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. GABA signaling promotes synapse elimination and axon pruning in developing cortical inhibitory interneurons.

    PubMed

    Wu, Xiaoyun; Fu, Yu; Knott, Graham; Lu, Jiangteng; Di Cristo, Graziella; Huang, Z Josh

    2012-01-04

    Accumulating evidence indicates that GABA acts beyond inhibitory synaptic transmission and regulates the development of inhibitory synapses in the vertebrate brain, but the underlying cellular mechanism is not well understood. We have combined live imaging of cortical GABAergic axons across time scales from minutes to days with single-cell genetic manipulation of GABA release to examine its role in distinct steps of inhibitory synapse formation in the mouse neocortex. We have shown previously, by genetic knockdown of GABA synthesis in developing interneurons, that GABA signaling promotes the maturation of inhibitory synapses and axons. Here we found that a complete blockade of GABA release in basket interneurons resulted in an opposite effect, a cell-autonomous increase in axon and bouton density with apparently normal synapse structures. These results not only demonstrate that GABA is unnecessary for synapse formation per se but also uncover a novel facet of GABA in regulating synapse elimination and axon pruning. Live imaging revealed that developing GABAergic axons form a large number of transient boutons, but only a subset was stabilized. Release blockade led to significantly increased bouton stability and filopodia density, increased axon branch extension, and decreased branch retraction. Our results suggest that a major component of GABA function in synapse development is transmission-mediated elimination of subsets of nascent contacts. Therefore, GABA may regulate activity-dependent inhibitory synapse formation by coordinately eliminating certain nascent contacts while promoting the maturation of other nascent synapses.

  7. Enhanced phasic GABA inhibition during the repair phase of stroke: a novel therapeutic target

    PubMed Central

    Paz, Jeanne T.; Wang, Eric Hou Jen; Badgely, Corrine; Olson, Andrew; Micheva, Kristina D.; Wang, Gordon; Lemmens, Robin; Tran, Kevin V.; Nishiyama, Yasuhiro; Liang, Xibin; Hamilton, Scott A.; O’Rourke, Nancy; Smith, Stephen J.; Huguenard, John R.; Bliss, Tonya M.

    2016-01-01

    Ischaemic stroke is the leading cause of severe long-term disability yet lacks drug therapies that promote the repair phase of recovery. This repair phase of stroke occurs days to months after stroke onset and involves brain remapping and plasticity within the peri-infarct zone. Elucidating mechanisms that promote this plasticity is critical for the development of new therapeutics with a broad treatment window. Inhibiting tonic (extrasynaptic) GABA signalling during the repair phase was reported to enhance functional recovery in mice suggesting that GABA plays an important function in modulating brain repair. While tonic GABA appears to suppress brain repair after stroke, less is known about the role of phasic (synaptic) GABA during the repair phase. We observed an increase in postsynaptic phasic GABA signalling in mice within the peri-infarct cortex specific to layer 5; we found increased numbers of α1 receptor subunit-containing GABAergic synapses detected using array tomography, and an associated increased efficacy of spontaneous and miniature inhibitory postsynaptic currents in pyramidal neurons. Furthermore, we demonstrate that enhancing phasic GABA signalling using zolpidem, a Food and Drug Administration (FDA)-approved GABA-positive allosteric modulator, during the repair phase improved behavioural recovery. These data identify potentiation of phasic GABA signalling as a novel therapeutic strategy, indicate zolpidem’s potential to improve recovery, and underscore the necessity to distinguish the role of tonic and phasic GABA signalling in stroke recovery. PMID:26685158

  8. GABA Signaling Promotes Synapse Elimination and Axon Pruning in Developing Cortical Inhibitory Interneurons

    PubMed Central

    Wu, Xiaoyun; Fu, Yu; Knott, Graham; Lu, Jiangteng; Di Cristo, Graziella

    2012-01-01

    Accumulating evidence indicates that GABA acts beyond inhibitory synaptic transmission and regulates the development of inhibitory synapses in the vertebrate brain, but the underlying cellular mechanism is not well understood. We have combined live imaging of cortical GABAergic axons across time scales from minutes to days with single-cell genetic manipulation of GABA release to examine its role in distinct steps of inhibitory synapse formation in the mouse neocortex. We have shown previously, by genetic knockdown of GABA synthesis in developing interneurons, that GABA signaling promotes the maturation of inhibitory synapses and axons. Here we found that a complete blockade of GABA release in basket interneurons resulted in an opposite effect, a cell-autonomous increase in axon and bouton density with apparently normal synapse structures. These results not only demonstrate that GABA is unnecessary for synapse formation per se but also uncover a novel facet of GABA in regulating synapse elimination and axon pruning. Live imaging revealed that developing GABAergic axons form a large number of transient boutons, but only a subset was stabilized. Release blockade led to significantly increased bouton stability and filopodia density, increased axon branch extension, and decreased branch retraction. Our results suggest that a major component of GABA function in synapse development is transmission-mediated elimination of subsets of nascent contacts. Therefore, GABA may regulate activity-dependent inhibitory synapse formation by coordinately eliminating certain nascent contacts while promoting the maturation of other nascent synapses. PMID:22219294

  9. Presynaptic serotonergic inhibition of GABAergic synaptic transmission in mechanically dissociated rat basolateral amygdala neurons

    PubMed Central

    Koyama, Susumu; Kubo, Chiharu; Rhee, Jeong-Seop; Akaike, Norio

    1999-01-01

    The basolateral amygdala (ABL) nuclei contribute to the process of anxiety. GABAergic transmission is critical in these nuclei and serotonergic inputs from dorsal raphe nuclei also significantly regulate GABA release. In mechanically dissociated rat ABL neurons, spontaneous miniature inhibitory postsynaptic currents (mIPSCs) arising from attached GABAergic presynaptic nerve terminals were recorded with the nystatin-perforated patch method and pharmacological isolation.5-HT reversibly reduced the GABAergic mIPSC frequency without affecting the mean amplitude. The serotonergic effect was mimicked by the 5-HT1A specific agonist 8-OH DPAT (8-hydroxy-2-(di-n-propylamino)tetralin) and blocked by the 5-HT1A antagonist spiperone.The GTP-binding protein inhibitor N-ethylmaleimide removed the serotonergic inhibition of mIPSC frequency. In either K+-free or Ca2+-free external solution, 5-HT could inhibit mIPSC frequency.High K+ stimulation increased mIPSC frequency and 8-OH DPAT inhibited this increase even in the presence of Cd2+.Forskolin, an activator of adenylyl cyclase (AC), significantly increased synaptic GABA release frequency. Pretreatment with forskolin prevented the serotonergic inhibition of mIPSC frequency in both the standard and high K+ external solution.Ruthenium Red (RR), an agent facilitating the secretory process in a Ca2+-independent manner, increased synaptic GABA release. 5-HT also suppressed RR-facilitated mIPSC frequency.We conclude that 5-HT inhibits GABAergic mIPSCs by inactivating the AC-cAMP signal transduction pathway via a G-protein-coupled 5-HT1A receptor and this intracellular pathway directly acts on the GABA-releasing process independent of K+ and Ca2+ channels in the presynaptic nerve terminals. PMID:10381597

  10. Dynamic functions of GABA signaling during granule cell maturation

    PubMed Central

    Dieni, Cristina V.; Chancey, Jessica H.; Overstreet-Wadiche, Linda S.

    2013-01-01

    The dentate gyrus is one of the few areas of the brain where new neurons are generated throughout life. Neural activity influences multiple stages of neurogenesis, thereby allowing experience to regulate the production of new neurons. It is now well established that GABAA receptor-mediated signaling plays a pivotal role in mediating activity-dependent regulation of adult neurogenesis. GABA first acts as a trophic signal that depolarizes progenitors and early post mitotic granule cells, enabling network activity to control molecular cascades essential for proliferation, survival and growth. Following the development of glutamatergic synaptic inputs, GABA signaling switches from excitatory to inhibitory. Thereafter robust synaptic inhibition enforces low spiking probability of granule cells in response to cortical excitatory inputs and maintains the sparse activity patterns characteristic of this brain region. Here we review these dynamic functions of GABA across granule cell maturation, focusing on the potential role of specific interneuron circuits at progressive developmental stages. We further highlight questions that remain unanswered about GABA signaling in granule cell development and excitability. PMID:23316139

  11. The Anaphase-Promoting Complex (APC) ubiquitin ligase regulates GABA transmission at the C. elegans neuromuscular junction

    PubMed Central

    Kowalski, Jennifer R.; Dube, Hitesh; Touroutine, Denis; Rush, Kristen M.; Goodwin, Patricia R.; Carozza, Marc; Didier, Zachary; Francis, Michael M.; Juo, Peter

    2014-01-01

    Regulation of both excitatory and inhibitory synaptic transmission is critical for proper nervous system function. Aberrant synaptic signaling, including altered excitatory to inhibitory balance, is observed innumerous neurological diseases. The ubiquitin enzyme system controls the abundance of many synaptic proteins and thus plays a key role in regulating synaptic transmission. The Anaphase-Promoting Complex (APC) is a multi-subunit ubiquitin ligase that was originally discovered as a key regulator of protein turnover during the cell cycle. More recently, the APC has been shown to function in postmitotic neurons, where it regulates diverse processes such as synapse development and synaptic transmission at glutamatergic synapses. Here we report that the APC regulates synaptic GABA signaling by acting in motor neurons to control the balance of excitatory (acetylcholine) to inhibitory (GABA) transmission at the Caenorhabditis elegans neuromuscular junction (NMJ). Loss-of-function mutants in multiple APC subunits have increased muscle excitation at the NMJ; this phenotype is rescued by expression of the missing subunit in GABA neurons. Quantitative imaging and electrophysiological analyses indicate that APC mutants have decreased GABA release but normal cholinergic transmission. Consistent with this, APC mutants exhibit convulsions in a seizure assay sensitive to reductions in GABA signaling. Previous studies in other systems showed that the APC can negatively regulate the levels of the active zone protein SYD-2 Liprin-α. Similarly, we found that SYD-2 accumulates in APC mutants at GABAergic presynaptic sites. Finally, we found that the APC subunit EMB-27 CDC16 can localize to presynapses in GABA neurons. Together, our data suggest a model in which the APC acts at GABAergic presynapses to promote GABA release and inhibit muscle excitation. These findings are the first evidence that the APC regulates transmission at inhibitory synapses and have implications for

  12. GABA-A and GABA-B receptors in the cuneate nucleus of the rat in vivo.

    PubMed

    Orviz, P; Cecchini, B G; Andrés-Trelles, F

    1986-09-01

    Electric stimulation of the rat forepaw evokes a negative potential (N-wave) at the ipsilateral cuneate nucleus. The responses of the N-wave to microiontophoretically applied GABA agonists and antagonists have been studied. Applications of GABA-A agonists (3-amino-propanesulfonic acid and muscimol) reduce the amplitude of the N-wave. This effect decreases during prolonged application, suggesting a desensitization of GABA-A receptors. In addition the effect of muscimol is reduced by (-)-bicuculline methiodide. Baclofen (a GABA-B agonist) also depresses the N-wave but its action lasts longer, is less reversible, shows no desensitization and is not blocked by (-)-bicuculline methiodide. The different responses of the N-wave to GABA-A and GABA-B agonists are compatible with the existence of different types of functional receptors for them in the cuneate nucleus of the rat. The receptors activated by muscimol (GABA-A) are clearly not the same as the ones activated by baclofen (conceivably GABA-B).

  13. Activation of metabotropic GABA receptors increases the energy barrier for vesicle fusion.

    PubMed

    Rost, Benjamin R; Nicholson, Patrick; Ahnert-Hilger, Gudrun; Rummel, Andreas; Rosenmund, Christian; Breustedt, Joerg; Schmitz, Dietmar

    2011-09-15

    Neurotransmitter release from presynaptic terminals is under the tight control of various metabotropic receptors. We report here that in addition to the regulation of Ca(2+) channel activity, metabotropic GABA(B) receptors (GABA(B)Rs) at murine hippocampal glutamatergic synapses utilize an inhibitory pathway that directly targets the synaptic vesicle release machinery. Acute application of the GABA(B)R agonist baclofen rapidly and reversibly inhibits vesicle fusion, which occurs independently of the SNAP-25 C-terminus. Using applications of hypertonic sucrose solutions, we find that the size of the readily releasable pool remains unchanged by GABA(B)R activation, but the sensitivity of primed vesicles to hypertonic stimuli appears lowered as the response amplitudes at intermediate sucrose concentrations are smaller and release kinetics are slowed. These data show that presynaptic GABA(B)Rs can inhibit neurotransmitter release directly by increasing the energy barrier for vesicle fusion.

  14. Regulation of tonic GABA inhibitory function, presympathetic neuronal activity and sympathetic outflow from the paraventricular nucleus by astroglial GABA transporters

    PubMed Central

    Park, Jin Bong; Jo, Ji Yoon; Zheng, Hong; Patel, Kaushik P; Stern, Javier E

    2009-01-01

    Neuronal activity in the hypothalamic paraventricular nucleus (PVN), as well as sympathetic outflow from the PVN, is basally restrained by a GABAergic inhibitory tone. We recently showed that two complementary GABAA receptor-mediated modalities underlie inhibition of PVN neuronal activity: a synaptic, quantal inhibitory modality (IPSCs, Iphasic) and a sustained, non-inactivating modality (Itonic). Here, we investigated the role of neuronal and/or glial GABA transporters (GATs) in modulating these inhibitory modalities, and assessed their impact on the activity of RVLM-projecting PVN neurons (PVN-RVLM neurons), and on PVN influence of renal sympathetic nerve activity (RSNA). Patch-clamp recordings were obtained from retrogradely labelled PVN-RVLM neurons in a slice preparation. The non-selective GAT blocker nipecotic acid (100–300 μm) caused a large increase in GABAAItonic, and reduced IPSC frequency. These effects were replicated by β-alanine (100 μm), but not by SKF 89976A (30 μm), relatively selective blockers of GAT3 and GAT1 isoforms, respectively. Similar effects were evoked by the gliotoxin l-α-aminodipic acid (2 mm). GAT blockade attenuated the firing activity of PVN-RVLM neurons. Moreover, PVN microinjections of nipecotic acid in the whole animal diminished ongoing RSNA. A robust GAT3 immunoreactivity was observed in the PVN, which partially colocalized with the glial marker GFAP. Altogether, our results indicate that by modulating ambient GABA levels and the efficacy of GABAAItonic, PVN GATs, of a likely glial location, contribute to setting a basal tone of PVN-RVLM firing activity, and PVN-driven RSNA. PMID:19703969

  15. GABA uptake into astrocytes is not associated with significant metabolic cost: implications for brain imaging of inhibitory transmission.

    PubMed

    Chatton, Jean-Yves; Pellerin, Luc; Magistretti, Pierre J

    2003-10-14

    Synaptically released glutamate has been identified as a signal coupling excitatory neuronal activity to increased glucose utilization. The proposed mechanism of this coupling involves glutamate uptake into astrocytes resulting in increased intracellular Na+ (Nai+) and activation of the Na+/K+-ATPase. Increased metabolic demand linked to disruption of Nai+ homeostasis activates glucose uptake and glycolysis in astrocytes. Here, we have examined whether a similar neurometabolic coupling could operate for the inhibitory neurotransmitter gamma-aminobutyric acid (GABA), also taken up by Na+-dependent transporters into astrocytes. Thus, we have compared the Nai+ response to GABA and glutamate in mouse astrocytes by microspectrofluorimetry. The Nai+ response to GABA consisted of a rapid rise of 4-6 mM followed by a plateau that did not, however, significantly activate the pump. Indeed, the GABA transporter-evoked Na+ influxes are transient in nature, almost totally shutting off within approximately 30 sec of GABA application. The metabolic consequences of the GABA-induced Nai+ response were evaluated by monitoring cellular ATP changes indirectly in single cells and measuring 2-deoxyglucose uptake in astrocyte populations. Both approaches showed that, whereas glutamate induced a robust metabolic response in astrocytes (decreased ATP levels and glucose uptake stimulation), GABA did not cause any measurable metabolic response, consistent with the Nai+ measurements. Results indicate that GABA does not couple inhibitory neuronal activity with glucose utilization, as does glutamate for excitatory neurotransmission, and suggest that GABA-mediated synaptic transmission does not contribute directly to brain imaging signals based on deoxyglucose.

  16. A noncanonical release of GABA and glutamate modulates neuronal migration.

    PubMed

    Manent, Jean-Bernard; Demarque, Michaël; Jorquera, Isabel; Pellegrino, Christophe; Ben-Ari, Yehezkel; Aniksztejn, Laurent; Represa, Alfonso

    2005-05-11

    Immature neurons express GABA and glutamate receptors before synapse formation, and both transmitters are released at an early developmental stage. We have now tested the hypothesis that the ongoing release of GABA and glutamate modulates neuronal migration. Using 5-bromo-2'-deoxyuridine labeling and cocultures of hippocampal slices obtained from naive and green fluorescent protein-transgenic mice, we report that migration is severely affected by GABA(A) or NMDA receptor antagonist treatments. These effects were also present in munc18-1 knock-out slices in which soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-dependent vesicular secretion of transmitters has been deleted. GABA(A) antagonists were more efficient than NMDA antagonists to reduce cell migration, in keeping with the earlier maturation of GABAergic mechanisms. We conclude that GABA and, to a lesser degree, glutamate released in a SNARE-independent mechanism exert a paracrine action on neuronal migration.

  17. Excitatory action of gamma-aminobutyric acid (GABA) on crustacean neurosecretory cells.

    PubMed

    García, U; Onetti, C; Valdiosera, R; Aréchiga, H

    1994-02-01

    1. Intracellular and voltage-clamp recordings were obtained from a selected population of neurosecretory (ns) cells in the X organ of the crayfish isolated eyestalk. Pulses of gamma-aminobutyric acid (GABA) elicited depolarizing responses and bursts of action potentials in a dose-dependent manner. These effects were blocked by picrotoxin (50 microM) but not by bicuculline. Picrotoxin also suppressed spontaneous synaptic activity. 2. The responses to GABA were abolished by severing the neurite of X organ cells, at about 150 microns from the cell body. Responses were larger when the application was made at the neuropil level. 3. Topical application of Cd2+ (2 mM), while suppressing synaptic activity, was incapable of affecting the responses to GABA. 4. Under whole-cell voltage-clamp, GABA elicited an inward current with a reversal potential dependent on the chloride equilibrium potential. The GABA effect was accompanied by an input resistance reduction up to 33% at a -50 mV holding potential. No effect of GABA was detected on potassium, calcium, and sodium currents present in X organ cells. 5. The effect of GABA on steady-state currents was dependent on the intracellular calcium concentration. At 10(-6) M [Ca2+]i, GABA (50 microM) increased the membrane conductance more than threefold and shifted the zero-current potential from -25 to -10 mV. At 10(-9) M [Ca2+]i, GABA induced only a 1.3-fold increase in membrane conductance, without shifting the zero-current potential. 6. These results support the notion that in the population of X organ cells sampled in this study, GABA acts as an excitatory neurotransmitter, opening chloride channels.

  18. Frequency-dependent depression of inhibition in guinea-pig neocortex in vitro by GABAB receptor feed-back on GABA release.

    PubMed Central

    Deisz, R A; Prince, D A

    1989-01-01

    1. The mechanisms involved in the lability of inhibition at higher frequencies of stimulation were investigated in the guinea-pig in vitro neocortical slice preparation by intracellular recording techniques. We attempted to test the possibility of a feedback depression of GABA on subsequent release. 2. At resting membrane potential (Em, -75.8 +/- 5.2 mV) stimulation of either the pial surface or subcortical white matter evoked a sequence of depolarizing and hyperpolarizing synaptic components in most neurones. An early hyperpolarizing component (IPSPA) was usually only obvious as a pronounced termination of the EPSP, followed by a later hyperpolarizing event (IPSPB). Current-voltage relationships revealed two different conductances of about 200 and 20 nS and reversal potentials of -73.0 +/- 4.4 and -88.6 +/- 6.1 mV for the early and late component, respectively. 3. The conductances of IPSPA and IPSPB were fairly stable at a stimulus frequency of 0.1 Hz. At frequencies between 0.5 and 2 Hz both IPSPs were attenuated with the second stimulus and after about five stimuli a steady state was reached. Concomitantly IPSPs were shortened. The average decrease in synaptic conductance between 0.1 and 1 Hz was 80% for the IPSPA and 60% for the IPSPB. At these frequencies the reversal potentials decreased by 5 and 2 mV, respectively; Em and input resistance (Rin) were not consistently affected. 4. The amplitudes of field potentials, action potentials and EPSPs of pyramidal cells were attenuated less than 10% at stimulus frequencies up to 1 Hz, suggesting that alterations in local circuits between the stimulation site and excitatory input onto inhibitory interneurones may play only a minor role in the frequency-dependent decay of IPSPs. 5. Localized application of GABA produced multiphasic responses. With low concentrations and application near the soma an early hyperpolarization prevailed followed by a depolarizing late component. Brief application of GABA at low frequencies

  19. Molecular mechanisms supporting a paracrine role of GABA in rat adrenal medullary cells

    PubMed Central

    Matsuoka, Hidetada; Harada, Keita; Endo, Yutaka; Warashina, Akira; Doi, Yoshiaki; Nakamura, Jun; Inoue, Masumi

    2008-01-01

    GABA is known to produce membrane depolarization and secretion in adrenal medullary (AM) cells in various species. However, whether the GABAergic system is intrinsic or extrinsic or both in the adrenal medulla and the role that GABA plays are controversial. Therefore, these issues were addressed by combining a biochemical and functional analysis. Glutamic acid decarboxylase (GAD), a GABA synthesizing enzyme, and vesicular GABA transporter (VGAT) were expressed in rat AM cells at the mRNA and protein levels, and the adrenal medulla had no nerve fibre-like structures immunoreactive to an anti-GAD Ab. The double staining for VGAT and chromogranin A indicates that GABA was stored in chromaffin granules. The α1, α3, β2/3, γ2 and δ subunits of GABAA receptors were identified in AM cells at the mRNA and protein levels. Pharmacological properties of GABA-induced Cl− currents, immunoprecipitation experiments and immunocytochemistry indicated the expression of not only γ2-, but also δ-containing GABAA receptors, which have higher affinities for GABA and neurosteroids. Expression of GATs, which are involved in the clearance of GABA at GABAergic synapses, were conspicuously suppressed in the adrenal medulla, compared with expression levels of GABAA receptors. Increases in Ca2+ signal in AM cells evoked trans-synaptically by nerve stimulation were suppressed during the response to GABA, and this suppression was attributed to the shunt effect of the GABA-induced increase in conductance. Overall Ca2+ responses to electrical stimulation and GABA in AM cells were larger or smaller than those to electrical stimulation alone, depending on the frequency of stimulation. The results indicate that GABA functions as a paracrine in rat AM cells and this function may be supported by the suppression of GAT expression and the expression of not only γ2-, but also δ-GABAA receptors. PMID:18755746

  20. Overexpression of the calpain-specific inhibitor calpastatin reduces human alpha-Synuclein processing, aggregation and synaptic impairment in [A30P]αSyn transgenic mice

    PubMed Central

    Diepenbroek, Meike; Casadei, Nicolas; Esmer, Hakan; Saido, Takaomi C.; Takano, Jiro; Kahle, Philipp J.; Nixon, Ralph A; Rao, Mala V.; Melki, Ronald; Pieri, Laura; Helling, Stefan; Marcus, Katrin; Krueger, Rejko; Masliah, Eliezer; Riess, Olaf; Nuber, Silke

    2014-01-01

    Lewy bodies, a pathological hallmark of Parkinson's disease (PD), contain aggregated alpha-synuclein (αSyn), which is found in several modified forms and can be discovered phosphorylated, ubiquitinated and truncated. Aggregation-prone truncated species of αSyn caused by aberrant cleavage of this fibrillogenic protein are hypothesized to participate in its sequestration into inclusions subsequently leading to synaptic dysfunction and neuronal death. Here, we investigated the role of calpain cleavage of αSyn in vivo by generating two opposing mouse models. We crossed into human [A30P]αSyn transgenic (i) mice deficient for calpastatin, a calpain-specific inhibitor, thus enhancing calpain activity (SynCAST(−)) and (ii) mice overexpressing human calpastatin leading to reduced calpain activity (SynCAST(+)). As anticipated, a reduced calpain activity led to a decreased number of αSyn-positive aggregates, whereas loss of calpastatin led to increased truncation of αSyn in SynCAST(−). Furthermore, overexpression of calpastatin decreased astrogliosis and the calpain-dependent degradation of synaptic proteins, potentially ameliorating the observed neuropathology in [A30P]αSyn and SynCAST(+) mice. Overall, our data further support a crucial role of calpains, particularly of calpain 1, in the pathogenesis of PD and in disease-associated aggregation of αSyn, indicating a therapeutic potential of calpain inhibition in PD. PMID:24619358

  1. Peroxisome proliferators reduce spatial memory impairment, synaptic failure, and neurodegeneration in brains of a double transgenic mice model of Alzheimer's disease.

    PubMed

    Inestrosa, Nibaldo C; Carvajal, Francisco J; Zolezzi, Juan M; Tapia-Rojas, Cheril; Serrano, Felipe; Karmelic, Daniel; Toledo, Enrique M; Toro, Andrés; Toro, Jessica; Santos, Manuel J

    2013-01-01

    Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a progressive deterioration of cognitive abilities, accumulation of the amyloid-β peptide (Aβ), increase of oxidative stress, and synaptic alterations. The scavenging of reactive oxygen species through their matrix enzyme catalase is one of the most recognized functions of peroxisomes. The induction of peroxisome proliferation is attained through different mechanisms by a set of structurally diverse molecules called peroxisome proliferators. In the present work, a double transgenic mouse model of AD that co-expresses a mutant human amyloid-β protein precursor (AβPPswe) and presenilin 1 without exon 9 (PS1dE9) was utilized in order to assess the effect of peroxisomal proliferation on Aβ neurotoxicity in vivo. Mice were tested for spatial memory and their brains analyzed by cytochemical, electrophysiological, and biochemical methods. We report here that peroxisomal proliferation significantly reduces (i) memory impairment, found in this model of AD; (ii) Aβ burden and plaque-associated acetylcholinesterase activity; (iii) neuroinflammation, measured by the extent of astrogliosis and microgliosis; and (iv) the decrease in postsynaptic proteins, while promoting synaptic plasticity in the form of long-term potentiation. We concluded that peroxisomal proliferation reduces various AD neuropathological markers and peroxisome proliferators may be considered as potential therapeutic agents against the disease.

  2. Synaptic plasticity by antidromic firing during hippocampal network oscillations.

    PubMed

    Bukalo, Olena; Campanac, Emilie; Hoffman, Dax A; Fields, R Douglas

    2013-03-26

    Learning and other cognitive tasks require integrating new experiences into context. In contrast to sensory-evoked synaptic plasticity, comparatively little is known of how synaptic plasticity may be regulated by intrinsic activity in the brain, much of which can involve nonclassical modes of neuronal firing and integration. Coherent high-frequency oscillations of electrical activity in CA1 hippocampal neurons [sharp-wave ripple complexes (SPW-Rs)] functionally couple neurons into transient ensembles. These oscillations occur during slow-wave sleep or at rest. Neurons that participate in SPW-Rs are distinguished from adjacent nonparticipating neurons by firing action potentials that are initiated ectopically in the distal region of axons and propagate antidromically to the cell body. This activity is facilitated by GABA(A)-mediated depolarization of axons and electrotonic coupling. The possible effects of antidromic firing on synaptic strength are unknown. We find that facilitation of spontaneous SPW-Rs in hippocampal slices by increasing gap-junction coupling or by GABA(A)-mediated axon depolarization resulted in a reduction of synaptic strength, and electrical stimulation of axons evoked a widespread, long-lasting synaptic depression. Unlike other forms of synaptic plasticity, this synaptic depression is not dependent upon synaptic input or glutamate receptor activation, but rather requires L-type calcium channel activation and functional gap junctions. Synaptic stimulation delivered after antidromic firing, which was otherwise too weak to induce synaptic potentiation, triggered a long-lasting increase in synaptic strength. Rescaling synaptic weights in subsets of neurons firing antidromically during SPW-Rs might contribute to memory consolidation by sharpening specificity of subsequent synaptic input and promoting incorporation of novel information.

  3. Prostaglandin E2 EP2 activation reduces memory decline in R6/1 mouse model of Huntington's disease by the induction of BDNF-dependent synaptic plasticity.

    PubMed

    Anglada-Huguet, Marta; Vidal-Sancho, Laura; Giralt, Albert; García-Díaz Barriga, Gerardo; Xifró, Xavier; Alberch, Jordi

    2016-11-01

    Huntington's disease (HD) patients and mouse models show learning and memory impairment even before the onset of motor symptoms. Deficits in hippocampal synaptic plasticity have been involved in the HD memory impairment. Several studies show that prostaglandin E2 (PGE2) EP2 receptor stimulates synaptic plasticity and memory formation. However, this role was not explored in neurodegenerative diseases. Here, we investigated the capacity of PGE2 EP2 receptor to promote synaptic plasticity and memory improvements in a model of HD, the R6/1 mice, by administration of the agonist misoprostol. We found that misoprostol increases dendritic branching in cultured hippocampal neurons in a brain-derived neurotrophic factor (BDNF)-dependent manner. Then, we implanted an osmotic mini-pump system to chronically administrate misoprostol to R6/1 mice from 14 to 18weeks of age. We observed that misoprostol treatment ameliorates the R6/1 long-term memory deficits as analyzed by the T-maze spontaneous alternation task and the novel object recognition test. Importantly, administration of misoprostol promoted the expression of hippocampal BDNF. Moreover, the treatment with misoprostol in R6/1 mice blocked the reduction in the number of PSD-95 and VGluT-1 positive particles observed in hippocampus of vehicle-R6/1 mice. In addition, we observed an increase of cAMP levels in the dentate ` of WT and R6/1 mice treated with misoprostol. Accordingly, we showed a reduction in the number of mutant huntingtin nuclear inclusions in the dentate gyrus of R6/1 mice. Altogether, these results suggest a putative therapeutic effect of PGE2 EP2 receptor in reducing cognitive deficits in HD. Copyright © 2016. Published by Elsevier Inc.

  4. Synaptic Control of Motoneuronal Excitability

    PubMed Central

    Rekling, Jens C.; Funk, Gregory D.; Bayliss, Douglas A.; Dong, Xiao-Wei; Feldman, Jack L.

    2016-01-01

    Movement, the fundamental component of behavior and the principal extrinsic action of the brain, is produced when skeletal muscles contract and relax in response to patterns of action potentials generated by motoneurons. The processes that determine the firing behavior of motoneurons are therefore important in understanding the transformation of neural activity to motor behavior. Here, we review recent studies on the control of motoneuronal excitability, focusing on synaptic and cellular properties. We first present a background description of motoneurons: their development, anatomical organization, and membrane properties, both passive and active. We then describe the general anatomical organization of synaptic input to motoneurons, followed by a description of the major transmitter systems that affect motoneuronal excitability, including ligands, receptor distribution, pre- and postsynaptic actions, signal transduction, and functional role. Glutamate is the main excitatory, and GABA and glycine are the main inhibitory transmitters acting through ionotropic receptors. These amino acids signal the principal motor commands from peripheral, spinal, and supraspinal structures. Amines, such as serotonin and norepinephrine, and neuropeptides, as well as the glutamate and GABA acting at metabotropic receptors, modulate motoneuronal excitability through pre- and postsynaptic actions. Acting principally via second messenger systems, their actions converge on common effectors, e.g., leak K+ current, cationic inward current, hyperpolarization-activated inward current, Ca2+ channels, or presynaptic release processes. Together, these numerous inputs mediate and modify incoming motor commands, ultimately generating the coordinated firing patterns that underlie muscle contractions during motor behavior. PMID:10747207

  5. Disorders of GABA metabolism: SSADH and GABA-transaminase deficiencies.

    PubMed

    Parviz, Mahsa; Vogel, Kara; Gibson, K Michael; Pearl, Phillip L

    2014-11-25

    Clinical disorders known to affect inherited gamma-amino butyric acid (GABA) metabolism are autosomal recessively inherited succinic semialdehyde dehydrogenase and GABA-transaminase deficiency. The clinical presentation of succinic semialdehyde dehydrogenase deficiency includes intellectual disability, ataxia, obsessive-compulsive disorder and epilepsy with a nonprogressive course in typical cases, although a progressive form in early childhood as well as deterioration in adulthood with worsening epilepsy are reported. GABA-transaminase deficiency is associated with a severe neonatal-infantile epileptic encephalopathy.

  6. Muscarinic receptor modulation of GABA-mediated giant depolarizing potentials in the neonatal rat hippocampus

    PubMed Central

    Avignone, Elena; Cherubini, Enrico

    1999-01-01

    The whole-cell patch clamp technique was used to study the role of muscarinic receptors in regulating the frequency of giant depolarizing potentials (GDPs) in CA3 hippocampal neurones in slices from postnatal (P) P1-P8 rats. Atropine (1 μM) reduced the frequency of GDPs by 64·2 ± 2·9%. The acetylcholinesterase inhibitor edrophonium (20 μM) increased the frequency of GDPs in a developmentally regulated way. This effect was antagonized by the M1 muscarinic receptor antagonist pirenzepine. In the presence of edrophonium, tetanic stimulation of cholinergic fibres induced either an enhancement of GDP frequency (179 ± 79%) or a membrane depolarization (27 ± 16 mV) associated with an increase in synaptic noise. These effects were prevented by atropine. Application of carbachol (3 μM) produced an increase in GDP frequency that at P5-P6 was associated with a membrane depolarization and an increase in synaptic noise. These effects were prevented by atropine, pirenzepine (3 μM) and bicuculline (10 μM). In the presence of pirenzepine, carbachol reduced GDP frequency by 50 ± 4%. Conversely, in the presence of methoctramine (3 μM), carbachol enhanced GDP frequency by 117 ± 4%. It is concluded that endogenous acetylcholine, through the activation of M1 receptors, enhances the release of γ-aminobutyric acid (GABA), in a developmentally regulated way. On the other hand, carbachol exerts both an up- and downregulation of GABA release through the activation of M1 and M2 receptors, respectively. PMID:10373692

  7. Association of GABA(B) receptors and members of the 14-3-3 family of signaling proteins.

    PubMed

    Couve, A; Kittler, J T; Uren, J M; Calver, A R; Pangalos, M N; Walsh, F S; Moss, S J

    2001-02-01

    Two GABA(B) receptors, GABA(B)R1 and GABA(B)R2, have been cloned recently. Unlike other G protein-coupled receptors, the formation of a heterodimer between GABA(B)R1 and GABA(B)R2 is required for functional expression. We have used the yeast two hybrid system to identify proteins that interact with the C-terminus of GABA(B)R1. We report a direct association between GABA(B) receptors and two members of the 14-3-3 protein family, 14-3-3eta and 14-3-3zeta. We demonstrate that the C-terminus of GABA(B)R1 associates with 14-3-3zeta in rat brain preparations and tissue cultured cells, that they codistribute after rat brain fractionation, colocalize in neurons, and that the binding site overlaps partially with the coiled-coil domain of GABA(B)R1. Furthermore we show a reduced interaction between the C-terminal domains of GABA(B)R1 and GABA(B)R2 in the presence of 14-3-3. The results strongly suggest that GABA(B)R1 and 14-3-3 associate in the nervous system and begin to reveal the signaling complexities of the GABA(B)R1/GABA(B)R2 receptor heterodimer.

  8. Plasticity in respiratory motor neurons in response to reduced synaptic inputs: A form of homeostatic plasticity in respiratory control?

    PubMed

    Braegelmann, K M; Streeter, K A; Fields, D P; Baker, T L

    2017-01-01

    For most individuals, the respiratory control system produces a remarkably stable and coordinated motor output-recognizable as a breath-from birth until death. Very little is understood regarding the processes by which the respiratory control system maintains network stability in the presence of changing physiological demands and network properties that occur throughout life. An emerging principle of neuroscience is that neural activity is sensed and adjusted locally to assure that neurons continue to operate in an optimal range, yet to date, it is unknown whether such homeostatic plasticity is a feature of the neurons controlling breathing. Here, we review the evidence that local mechanisms sense and respond to perturbations in respiratory neural activity, with a focus on plasticity in respiratory motor neurons. We discuss whether these forms of plasticity represent homeostatic plasticity in respiratory control. We present new analyses demonstrating that reductions in synaptic inputs to phrenic motor neurons elicit a compensatory enhancement of phrenic inspiratory motor output, a form of plasticity termed inactivity-induced phrenic motor facilitation (iPMF), that is proportional to the magnitude of activity deprivation. Although the physiological role of iPMF is not understood, we hypothesize that it has an important role in protecting the drive to breathe during conditions of prolonged or intermittent reductions in respiratory neural activity, such as following spinal cord injury or during central sleep apnea.

  9. Alterations in GABA-related transcriptome in the dorsolateral prefrontal cortex of subjects with schizophrenia.

    PubMed

    Hashimoto, T; Arion, D; Unger, T; Maldonado-Avilés, J G; Morris, H M; Volk, D W; Mirnics, K; Lewis, D A

    2008-02-01

    In subjects with schizophrenia, impairments in working memory are associated with dysfunction of the dorsolateral prefrontal cortex (DLPFC). This dysfunction appears to be due, at least in part, to abnormalities in gamma-aminobutyric acid (GABA)-mediated inhibitory circuitry. To test the hypothesis that altered GABA-mediated circuitry in the DLPFC of subjects with schizophrenia reflects expression changes of genes that encode selective presynaptic and postsynaptic components of GABA neurotransmission, we conducted a systematic expression analysis of GABA-related transcripts in the DLPFC of 14 pairs of schizophrenia and age-, sex- and post-mortem interval-matched control subjects using a customized DNA microarray with enhanced sensitivity and specificity. Subjects with schizophrenia exhibited expression deficits in GABA-related transcripts encoding (1) presynaptic regulators of GABA neurotransmission (67 kDa isoform of glutamic acid decarboxylase (GAD(67)) and GABA transporter 1), (2) neuropeptides (somatostatin (SST), neuropeptide Y (NPY) and cholecystokinin (CCK)) and (3) GABA(A) receptor subunits (alpha1, alpha4, beta3, gamma2 and delta). Real-time qPCR and/or in situ hybridization confirmed the deficits for six representative transcripts tested in the same pairs and in an extended cohort, respectively. In contrast, GAD(67), SST and alpha1 subunit mRNA levels, as assessed by in situ hybridization, were not altered in the DLPFC of monkeys chronically exposed to antipsychotic medications. These findings suggest that schizophrenia is associated with alterations in inhibitory inputs from SST/NPY-containing and CCK-containing subpopulations of GABA neurons and in the signaling via certain GABA(A) receptors that mediate synaptic (phasic) or extrasynaptic (tonic) inhibition. In concert with previous findings, these data suggest that working memory dysfunction in schizophrenia is mediated by altered GABA neurotransmission in certain DLPFC microcircuits.

  10. Cocaine dysregulates opioid gating of GABA neurotransmission in the ventral pallidum.

    PubMed

    Kupchik, Yonatan M; Scofield, Michael D; Rice, Kenner C; Cheng, Kejun; Roques, Bernard P; Kalivas, Peter W

    2014-01-15

    The ventral pallidum (VP) is a target of dense nucleus accumbens projections. Many of these projections coexpress GABA and the neuropeptide enkephalin, a δ and μ opioid receptor (MOR) ligand. Of these two, the MOR in the VP is known to be involved in reward-related behaviors, such as hedonic responses to palatable food, alcohol intake, and reinstatement of cocaine seeking. Stimulating MORs in the VP decreases extracellular GABA, indicating that the effects of MORs in the VP on cocaine seeking are via modulating GABA neurotransmission. Here, we use whole-cell patch-clamp on a rat model of withdrawal from cocaine self-administration to test the hypothesis that MORs presynaptically regulate GABA transmission in the VP and that cocaine withdrawal changes the interaction between MORs and GABA. We found that in cocaine-extinguished rats pharmacological activation of MORs no longer presynaptically inhibited GABA release, whereas blocking the MORs disinhibited GABA release. Moreover, MOR-dependent long-term depression of GABA neurotransmission in the VP was lost in cocaine-extinguished rats. Last, GABA neurotransmission was found to be tonically suppressed in cocaine-extinguished rats. These substantial synaptic changes indicated that cocaine was increasing tone on MOR receptors. Accordingly, increasing endogenous tone by blocking the enzymatic degradation of enkephalin inhibited GABA neurotransmission in yoked saline rats but not in cocaine-extinguished rats. In conclusion, our results indicate that following withdrawal from cocaine self-administration enkephalin levels in the VP are elevated and the opioid modulation of GABA neurotransmission is impaired. This may contribute to the difficulties withdrawn addicts experience when trying to resist relapse.

  11. Cocaine Dysregulates Opioid Gating of GABA Neurotransmission in the Ventral Pallidum

    PubMed Central

    Scofield, Michael D.; Rice, Kenner C.; Cheng, Kejun; Roques, Bernard P.

    2014-01-01

    The ventral pallidum (VP) is a target of dense nucleus accumbens projections. Many of these projections coexpress GABA and the neuropeptide enkephalin, a δ and μ opioid receptor (MOR) ligand. Of these two, the MOR in the VP is known to be involved in reward-related behaviors, such as hedonic responses to palatable food, alcohol intake, and reinstatement of cocaine seeking. Stimulating MORs in the VP decreases extracellular GABA, indicating that the effects of MORs in the VP on cocaine seeking are via modulating GABA neurotransmission. Here, we use whole-cell patch-clamp on a rat model of withdrawal from cocaine self-administration to test the hypothesis that MORs presynaptically regulate GABA transmission in the VP and that cocaine withdrawal changes the interaction between MORs and GABA. We found that in cocaine-extinguished rats pharmacological activation of MORs no longer presynaptically inhibited GABA release, whereas blocking the MORs disinhibited GABA release. Moreover, MOR-dependent long-term depression of GABA neurotransmission in the VP was lost in cocaine-extinguished rats. Last, GABA neurotransmission was found to be tonically suppressed in cocaine-extinguished rats. These substantial synaptic changes indicated that cocaine was increasing tone on MOR receptors. Accordingly, increasing endogenous tone by blocking the enzymatic degradation of enkephalin inhibited GABA neurotransmission in yoked saline rats but not in cocaine-extinguished rats. In conclusion, our results indicate that following withdrawal from cocaine self-administration enkephalin levels in the VP are elevated and the opioid modulation of GABA neurotransmission is impaired. This may contribute to the difficulties withdrawn addicts experience when trying to resist relapse. PMID:24431463

  12. Impaired striatal D2 receptor function leads to enhanced GABA transmission in a mouse model of DYT1 dystonia.

    PubMed

    Sciamanna, Giuseppe; Bonsi, Paola; Tassone, Annalisa; Cuomo, Dario; Tscherter, Anne; Viscomi, Maria Teresa; Martella, Giuseppina; Sharma, Nutan; Bernardi, Giorgio; Standaert, David G; Pisani, Antonio

    2009-04-01

    DYT1 dystonia is caused by a deletion in a glutamic acid residue in the C-terminus of the protein torsinA, whose function is still largely unknown. Alterations in GABAergic signaling have been involved in the pathogenesis of dystonia. We recorded GABA- and glutamate-mediated synaptic currents from a striatal slice preparation obtained from a mouse model of DYT1 dystonia. In medium spiny neurons (MSNs) from mice expressing human mutant torsinA (hMT), we observed a significantly higher frequency, but not amplitude, of GABAergic spontaneous inhibitory postsynaptic currents (sIPSCs) and miniature currents (mIPSCs), whereas glutamate-dependent spontaneous excitatory synaptic currents (sEPSCs) were normal. No alterations were found in mice overexpressing normal human torsinA (hWT). To identify the possible sources of the increased GABAergic tone, we recorded GABAergic Fast-Spiking (FS) interneurons that exert a feed-forward inhibition on MSNs. However, both sEPSC and sIPSC recorded from hMT FS interneurons were comparable to hWT and non-transgenic (NT) mice. In physiological conditions, dopamine (DA) D2 receptor act presynaptically to reduce striatal GABA release. Of note, application of the D2-like receptor agonist quinpirole failed to reduce the frequency of sIPSCs in MSNs from hMT as compared to hWT and NT mice. Likewise, the inhibitory effect of quinpirole was lost on evoked IPSCs both in MSNs and FS interneurons from hMT mice. Our findings demonstrate a disinhibition of striatal GABAergic synaptic activity, that can be at least partially attributed to a D2 DA receptor dysfunction.

  13. Dual effect of GABA on the contractile activity of the guinea-pig isolated urinary bladder.

    PubMed

    Maggi, C A; Santicioli, P; Meli, A

    1985-06-01

    The effects of GABA and related substances were examined in isolated detrusor strips from the dome of the guinea-pig urinary bladder. GABA (0.01-1 mM) produced concentration-related phasic contractions of isolated strips from the guinea-pig urinary bladder dome. This effect of GABA was mimicked by homotaurine and muscimol, selective GABAA receptor agonists but not by (+/-)-baclofen, a selective GABAB receptor agonist. A specific cross desensitization was observed between GABA, homotaurine and muscimol but not between (+/-)-baclofen and GABA. GABA (1 mM)-induced contractions were antagonized by picrotoxin, a selective GABAA receptor antagonist. GABA-induced contractions were almost abolished by tetrodotoxin (0.5 microM, TTX) thus indicating their neurogenic origin. In addition GABA-induced contractions were partially antagonized by atropine (to about the same extent as those produced by dimethylphenylpiperazinium (DMPP), a ganglionic stimulant), but were unaffected by hexamethonium (10 microM), phentolamine (0.2 microM) or indomethacin (5 microM). In the presence of GABA the contractile effect of both DMPP (TTX-sensitive) and acetylcholine (ACh, TTX-insensitive) were significantly reduced. Similar findings were obtained with DMPP, i.e. in preparations exposed to this ganglionic stimulant both GABA- and ACh-induced contractions were depressed. Homotaurine but not (+/-)-baclofen mimicked the depressant effect of GABA on DMPP-induced contractions. The depressant effect of GABA on ACh-induced contractions of the guinea-pig urinary bladder was neurogenic in origin, i.e., was not observed in preparations exposed to TTX. These experiments indicate that GABA has a dual effect on the contractile behaviour of the guinea-pig isolated urinary bladder. Recently it has been proposed that endogenous GABA plays a neuromodulatory role in this organ. Our data suggest that in the early phase of neurogenic activation of detrusor muscle (micturition reflex) GABA might transiently

  14. Long-Term Transformation of an Inhibitory into an Excitatory GABAergic Synaptic Response

    NASA Astrophysics Data System (ADS)

    Alkon, Daniel L.; Sanchez-Andres, Juan-Vincente; Ito, Etsuro; Oka, Kotaro; Yoshioka, Tohru; Collin, Carlos

    1992-12-01

    For a constant membrane potential, a predominantly inhibitory GABAergic synaptic response is shown to undergo long-term transformation into an excitatory response after pairing of exogenous γ-aminobutyric acid (GABA) with postsynaptic depolarization or pairing of pre- and postsynaptic stimulation. Current- and voltage-clamp experiments suggest that this synaptic transformation is due to a shift from a net increase of conductance to a net decrease of conductance in response to GABA. GABA-induced elevation of intracellular calcium is prolonged after the same stimulus pairing and may, therefore, contribute to this synaptic transformation via Ca2+-activated phosphorylation pathways. This synaptic transformation, which does not follow unpaired stimulus presentations, occurs in a neuronal compartment spatially separated from the soma, which also changes during stimulus pairing.

  15. Chronic psychoemotional stress impairs cannabinoid-receptor-mediated control of GABA transmission in the striatum.

    PubMed

    Rossi, Silvia; De Chiara, Valentina; Musella, Alessandra; Kusayanagi, Hajime; Mataluni, Giorgia; Bernardi, Giorgio; Usiello, Alessandro; Centonze, Diego

    2008-07-16

    Exposure to stressful events has a myriad of consequences in animals and in humans, and triggers synaptic adaptations in many brain areas. Stress might also alter cannabinoid-receptor-mediated transmission in the brain, but no physiological study has addressed this issue so far. In the present study, we found that social defeat stress, induced in mice by exposure to aggression, altered cannabinoid CB(1)-receptor-mediated control of synaptic transmission in the striatum. In fact, the presynaptic inhibition of GABAergic IPSCs induced by the cannabinoid CB(1) receptor agonist HU210 [(6aR)-trans-3-(1,1-dimethylheptyl)-6a,7,10,10a-tetrahydro-1-hydroxy-6,6-dimethyl-6H-dibenzo[b,d]pyran-9-methanol] was reduced after a single stressful episode and fully abolished after 3 and 7 d of stress exposure. Repeated psychoemotional stress also impaired the sensitivity of GABA synapses to endocannabinoids mobilized by group I metabotropic glutamate receptor stimulation, whereas the cannabinoid CB(1)-mediated control of glutamate transmission was unaffected by repeated exposure to an aggressor. Corticosteroids released in response to the activation of the hypothalamic-pituitary-adrenal axis played a major role in the synaptic defects observed in stressed animals, because these alterations were fully prevented by pharmacological blockade of glucocorticoid receptors and were mimicked by corticosterone injections. The recovery of stress-induced synaptic defects was favored when stressed mice were given access to a running wheel or to sucrose consumption, which function as potent natural rewards. A similar rescuing effect was obtained by a single injection of cocaine, a psychostimulant with strong rewarding properties. Targeting cannabinoid CB(1) receptors or endocannabinoid metabolism might be a valuable option to treat stress-associated neuropsychiatric conditions.

  16. Intranasal insulin restores insulin signaling, increases synaptic proteins, and reduces Aβ level and microglia activation in the brains of 3xTg-AD mice.

    PubMed

    Chen, Yanxing; Zhao, Yang; Dai, Chun-Ling; Liang, Zhihou; Run, Xiaoqin; Iqbal, Khalid; Liu, Fei; Gong, Cheng-Xin

    2014-11-01

    Decreased brain insulin signaling has been found recently in Alzheimer's disease (AD). Intranasal administration of insulin, which delivers the drug directly into the brain, improves memory and cognition in both animal studies and small clinical trials. However, the underlying mechanisms are unknown. Here, we treated 9-month-old 3xTg-AD mice, a commonly used mouse model of AD, with daily intranasal administration of insulin for seven days and then studied brain abnormalities of the mice biochemically and immunohistochemically. We found that intranasal insulin restored insulin signaling, increased the levels of synaptic proteins, and reduced Aβ40 level and microglia activation in the brains of 3xTg-AD mice. However, this treatment did not affect the levels of glucose transporters and O-GlcNAcylation or tau phosphorylation. Our findings provide a mechanistic insight into the beneficial effects of intranasal insulin treatment and support continuous clinical trials of intranasal insulin for the treatment of AD.

  17. GABAergic synaptic plasticity during a developmentally regulated sleep-like state in C. elegans.

    PubMed

    Dabbish, Nooreen S; Raizen, David M

    2011-11-02

    Approximately one-fourth of the neurons in Caenorhabditis elegans adults are born during larval development, indicating tremendous plasticity in larval nervous system structure. Larval development shows cyclical expression of sleep-like quiescent behavior during lethargus periods, which occur at larval stage transitions. We studied plasticity at the neuromuscular junction during lethargus using the acetylcholinesterase inhibitor aldicarb. The rate of animal contraction when exposed to aldicarb is controlled by the balance between excitatory cholinergic and inhibitory GABAergic input on the muscle. During lethargus, there is an accelerated rate of contraction on aldicarb. Mutant analysis and optogenetic studies reveal that GABAergic synaptic transmission is reduced during lethargus. Worms in lethargus show partial resistance to GABA(A) receptor agonists, indicating that postsynaptic mechanisms contribute to lethargus-dependent plasticity. Using genetic manipulations that separate the quiescent state from the developmental stage, we show that the synaptic plasticity is dependent on developmental time and not on the behavioral state of the animal. We propose that the synaptic plasticity regulated by a developmental clock in C. elegans is analogous to synaptic plasticity regulated by the circadian clock in other species.

  18. Synaptic encoding of temporal contiguity

    PubMed Central

    Ostojic, Srdjan; Fusi, Stefano

    2013-01-01

    Often we need to perform tasks in an environment that changes stochastically. In these situations it is important to learn the statistics of sequences of events in order to predict the future and the outcome of our actions. The statistical description of many of these sequences can be reduced to the set of probabilities that a particular event follows another event (temporal contiguity). Under these conditions, it is important to encode and store in our memory these transition probabilities. Here we show that for a large class of synaptic plasticity models, the distribution of synaptic strengths encodes transitions probabilities. Specifically, when the synaptic dynamics depend on pairs of contiguous events and the synapses can remember multiple instances of the transitions, then the average synaptic weights are a monotonic function of the transition probabilities. The synaptic weights converge to the distribution encoding the probabilities also when the correlations between consecutive synaptic modifications are considered. We studied how this distribution depends on the number of synaptic states for a specific model of a multi-state synapse with hard bounds. In the case of bistable synapses, the average synaptic weights are a smooth function of the transition probabilities and the accuracy of the encoding depends on the learning rate. As the number of synaptic states increases, the average synaptic weights become a step function of the transition probabilities. We finally show that the information stored in the synaptic weights can be read out by a simple rate-based neural network. Our study shows that synapses encode transition probabilities under general assumptions and this indicates that temporal contiguity is likely to be encoded and harnessed in almost every neural circuit in the brain. PMID:23641210

  19. Modulation of GABA release from the thalamic reticular nucleus by cocaine and caffeine: role of serotonin receptors.

    PubMed

    Goitia, Belén; Rivero-Echeto, María Celeste; Weisstaub, Noelia V; Gingrich, Jay A; Garcia-Rill, Edgar; Bisagno, Verónica; Urbano, Francisco J

    2016-02-01

    Serotonin receptors are targets of drug therapies for a variety of neuropsychiatric and neurodegenerative disorders. Cocaine inhibits the re-uptake of serotonin (5-HT), dopamine, and noradrenaline, whereas caffeine blocks adenosine receptors and opens ryanodine receptors in the endoplasmic reticulum. We studied how 5-HT and adenosine affected spontaneous GABAergic transmission from thalamic reticular nucleus. We combined whole-cell patch clamp recordings of miniature inhibitory post-synaptic currents (mIPSCs) in ventrobasal thalamic neurons during local (puff) application of 5-HT in wild type (WT) or knockout mice lacking 5-HT2A receptors (5-HT2A -/-). Inhibition of mIPSCs frequency by low (10 μM) and high (100 μM) 5-HT concentrations was observed in ventrobasal neurons from 5-HT2A -/- mice. In WT mice, only 100 μM 5-HT significantly reduced mIPSCs frequency. In 5-HT2A -/- mice, NAN-190, a specific 5-HT1A antagonist, prevented the 100 μM 5-HT inhibition while blocking H-currents that prolonged inhibition during post-puff periods. The inhibitory effects of 100 μM 5-HT were enhanced in cocaine binge-treated 5-HT2A -/- mice. Caffeine binge treatment did not affect 5-HT-mediated inhibition. Our findings suggest that both 5-HT1A and 5-HT2A receptors are present in pre-synaptic thalamic reticular nucleus terminals. Serotonergic-mediated inhibition of GABA release could underlie aberrant thalamocortical physiology described after repetitive consumption of cocaine. Our findings suggest that both 5-HT1A , 5-HT2A and A1 receptors are present in pre-synaptic TRN terminals. 5-HT1A and A1 receptors would down-regulate adenylate cyclase, whereas 5-HT1A would also increase the probability of the opening of G-protein-activated inwardly rectifying K(+) channels (GIRK). Sustained opening of GIRK channels would hyperpolarize pre-synaptic terminals activating H-currents, resulting in less GABA release. 5-HT2A -would activate PLC and IP3 , increasing intracellular [Ca(2+) ] and

  20. A Model of Synaptic Reconsolidation

    PubMed Central

    Kastner, David B.; Schwalger, Tilo; Ziegler, Lorric; Gerstner, Wulfram

    2016-01-01

    Reconsolidation of memories has mostly been studied at the behavioral and molecular level. Here, we put forward a simple extension of existing computational models of synaptic consolidation to capture hippocampal slice experiments that have been interpreted as reconsolidation at the synaptic level. The model implements reconsolidation through stabilization of consolidated synapses by stabilizing entities combined with an activity-dependent reservoir of stabilizing entities that are immune to protein synthesis inhibition (PSI). We derive a reduced version of our model to explore the conditions under which synaptic reconsolidation does or does not occur, often referred to as the boundary conditions of reconsolidation. We find that our computational model of synaptic reconsolidation displays complex boundary conditions. Our results suggest that a limited resource of hypothetical stabilizing molecules or complexes, which may be implemented by protein phosphorylation or different receptor subtypes, can underlie the phenomenon of synaptic reconsolidation. PMID:27242410

  1. Reduction of Phosphorylated Synapsin I (Ser-553) Leads to Spatial Memory Impairment by Attenuating GABA Release after Microwave Exposure in Wistar Rats

    PubMed Central

    Qiao, Simo; Peng, Ruiyun; Yan, Haitao; Gao, Yabing; Wang, Changzhen; Wang, Shuiming; Zou, Yong; Xu, Xinping; Zhao, Li; Dong, Ji; Su, Zhentao; Feng, Xinxin; Wang, Lifeng; Hu, Xiangjun

    2014-01-01

    Background Abnormal release of neurotransmitters after microwave exposure can cause learning and memory deficits. This study investigated the mechanism of this effect by exploring the potential role of phosphorylated synapsin I (p-Syn I). Methods Wistar rats, rat hippocampal synaptosomes, and differentiated (neuronal) PC12 cells were exposed to microwave radiation for 5 min at a mean power density of 30 mW/cm2. Sham group rats, synaptosomes, and cells were otherwise identically treated and acted as controls for all of the following post-exposure analyses. Spatial learning and memory in rats was assessed using the Morris Water Maze (MWM) navigation task. The protein expression and presynaptic distribution of p-Syn I and neurotransmitter transporters were examined via western blotting and immunoelectron microscopy, respectively. Levels amino acid neurotransmitter release from rat hippocampal synaptosomes and PC12 cells were measured using high performance liquid chromatograph (HPLC) at 6 hours after exposure, with or without synapsin I silencing via shRNA transfection. Results In the rat experiments, there was a decrease in spatial memory performance after microwave exposure. The expression of p-Syn I (ser-553) was decreased at 3 days post-exposure and elevated at later time points. Vesicular GABA transporter (VGAT) was significantly elevated after exposure. The GABA release from synaptosomes was attenuated and p-Syn I (ser-553) and VGAT were both enriched in small clear synaptic vesicles, which abnormally assembled in the presynaptic terminal after exposure. In the PC12 cell experiments, the expression of p-Syn I (ser-553) and GABA release were both attenuated at 6 hours after exposure. Both microwave exposure and p-Syn I silencing reduced GABA release and maximal reduction was found for the combination of the two, indicating a synergetic effect. Conclusion p-Syn I (ser-553) was found to play a key role in the impaired GABA release and cognitive dysfunction that was

  2. Exogenous and endogenous cannabinoids control synaptic transmission in mice nucleus accumbens.

    PubMed

    Robbe, David; Alonso, Gerard; Manzoni, Oliver J

    2003-11-01

    Addictive drugs are thought to alter normal brain function and cause the remodeling of synaptic functions in areas important to memory and reward. Excitatory transmission to the nucleus accumbens (NAc) is involved in the actions of most drugs of abuse, including cannabis. We have explored the functions of the endocannabinoid system at the prefrontal cortex-NAc synapses. Immunocytochemistry showed cannabinoid receptor (CB1) expression on axonal terminals making contacts with NAc neurons. In NAc slices, synthetic cannabinoids inhibit spontaneous and evoked glutamate-mediated transmission through presynaptic activation of presynaptic K+ channels and GABA-mediated transmission most likely via a direct presynaptic action on the vesicular release machinery. How does synaptic activity lead to the production of endogenous cannabinoids (eCBs) in the NAc? More generally, do eCBs participate in long-term synaptic plasticity in the brain? We found that tetanic stimulation (mimicking naturally occurring frequencies) of prelimbic glutamatergic afferents induced a presynaptic LTD dependent on eCB and CB1 receptors (eCB-LTD). Induction of eCB-LTD required postsynaptic activation of mGlu5 receptors and a rise in postsynaptic Ca2+ from ryanodine-sensitive intracellular Ca2+ stores. This retrograde signaling cascade involved postsynaptic eCB release and activation of presynaptic CB1 receptors. In the NAc, eCB-LTD might be part of a negative feedback loop, reducing glutamatergic synaptic strength during sustained cortical activity. The fact that this new form of LTD was occluded by an exogenous cannabinoid suggested that cannabis derivatives, such as marijuana, may alter normal eCB-mediated synaptic plasticity. These data suggest a major role of the eCB system in long-term synaptic plasticity and give insights into how cannabis derivatives, such as marijuana, alter normal eCB functions in the brain reward system.

  3. Comparing GABA-dependent physiological measures of inhibition with proton magnetic resonance spectroscopy measurement of GABA using ultra-high-field MRI.

    PubMed

    Dyke, Katherine; Pépés, Sophia E; Chen, Chen; Kim, Soyoung; Sigurdsson, Hilmar P; Draper, Amelia; Husain, Masud; Nachev, Parashkev; Gowland, Penelope A; Morris, Peter G; Jackson, Stephen R

    2017-03-09

    Imbalances in glutamatergic (excitatory) and GABA (inhibitory) signalling within key brain networks are thought to underlie many brain and mental health disorders, and for this reason there is considerable interest in investigating how individual variability in localised concentrations of these molecules relate to brain disorders. Magnetic resonance spectroscopy (MRS) provides a reliable means of measuring, in vivo, concentrations of neurometabolites such as GABA, glutamate and glutamine that can be correlated with brain function and dysfunction. However, an issue of much debate is whether the GABA observed and measured using MRS represents the entire pool of GABA available for measurement (i.e., metabolic, intracellular, and extracellular) or is instead limited to only some portion of it. GABA function can also be investigated indirectly in humans through the use of non-invasive transcranial magnetic stimulation (TMS) techniques that can be used to measure cortical excitability and GABA-mediated physiological inhibition. To investigate this issue further we collected in a single session both types of measurement, i.e., TMS measures of cortical excitability and physiological inhibition and ultra-high-field (7 T) MRS measures of GABA, glutamate and glutamine, from the left sensorimotor cortex of the same group of right-handed individuals. We found that TMS and MRS measures were largely uncorrelated with one another, save for the plateau of the TMS IO curve that was negatively correlated with MRS-Glutamate (Glu) and intra-cortical facilitation (10ms ISI) that was positively associated with MRS-Glutamate concentration. These findings are consistent with the view that the GABA concentrations measured using the MRS largely represent pools of GABA that are linked to tonic rather than phasic inhibition and thus contribute to the inhibitory tone of a brain area rather than GABAergic synaptic transmission.

  4. VPAC1 and VPAC2 receptor opposed modulation of GABA release from hippocampal nerve terminals involves multiple signalling pathways.

    PubMed

    Cunha-Reis, Diana; Ribeiro, Joaquim Alexandre; de Almeida, Rodrigo F M; Sebastião, Ana M

    2017-09-25

    Vasoactive intestinal peptide (VIP) is an important modulator of hippocampal synaptic transmission that influences both GABAergic synaptic transmission and glutamatergic cell excitability through activation of VPAC1 and VPAC2 receptors. Presynaptic enhancement of GABA release contributes to VIP modulation of hippocampal synaptic transmission. We now investigated which VIP receptors and coupled transduction pathways are involved in VIP enhancement of K(+) -evoked [(3) H]-GABA) release from rat hippocampal isolated nerve terminals. VIP enhancement in [(3) H]-GABA release was potentiated in the presence of the VPAC1 receptor antagonist PG 97-269 but converted into an inhibition in the presence of the VPAC2 receptor antagonist PG 99-465, suggesting that activation of VPAC1 receptors inhibits and activation of VPAC2 receptors enhances GABA release. A VPAC1 receptor agonist inhibited exocytotic voltage-gated calcium channel (VGCC)-dependent [(3) H]-GABA release through activation of protein Gi/o , an effect also dependent on PKC activity. A VPAC2 receptor agonist enhanced both exocytotic VGCC-dependent release through protein Gs , PKA and PKC dependent mechanisms, and GAT-1 GABA transporter-mediated [(3) H]-GABA release through a Gs protein and PKC dependent mechanism. Our results show that VPAC1 and VPAC2 VIP receptors have opposite actions on GABA release from hippocampal nerve terminals through activation of different transduction pathways. Given their location in different layers of the Ammon's Horn, our results suggest that VPAC1 and VPAC2 VIP receptors underlie different modulation of synaptic transmission to pyramidal cell dendrites and cell bodies, with important consequences for their possible therapeutic application in the treatment of epilepsy. This article is protected by copyright. All rights reserved.

  5. Short-term potentiation of GABAergic synaptic inputs to vasopressin and oxytocin neurones.

    PubMed

    Morton, Linda A; Popescu, Ion R; Haam, Juhee; Tasker, Jeffrey G

    2014-10-01

    The magnocellular vasopressin (VP) and oxytocin (OT) neurones undergo long-term synaptic plasticity to accommodate prolonged hormone demand. By contrast, rapidly induced,transient synaptic plasticity in response to brief stimuli could enable the activation of magnocellular neurones in response to acute challenges. Here, we report a robust short-term potentiation of asynchronous GABAergic synaptic inputs (STP(GABA)) to VP and OT neurones of the hypothalamic supraoptic nucleus elicited by repetitive extracellular electrical stimulation.The STP(GABA) required extracellular Ca2+, but did not require activation of glutamate, VP or OT receptors or nitric oxide synthesis. Presynaptic action potential generation was necessary for the induction, but not the maintenance, of STP(GABA). The STP(GABA) led to a minutes-long GABA(A)receptor-dependent increase in spike frequency in VP neurones, but not in OT neurones,consistent with an excitatory function of GABA in only VP neurones and with the generation of prolonged bursts of action potentials in VP neurones. Therefore, this short-term plasticity of GABAergic synaptic inputs is likely to play very different roles in the regulation of OT and VP neurones and their distinct patterns of physiological activation.

  6. Reduced levels of brain-derived neurotrophic factor contribute to synaptic imbalance during the critical period of respiratory development in rats.

    PubMed

    Gao, Xiu-Ping; Liu, Qiuli; Nair, Bindu; Wong-Riley, Margaret T T

    2014-07-01

    Previously, our electrophysiological studies revealed a transient imbalance between suppressed excitation and enhanced inhibition in hypoglossal motoneurons of rats on postnatal days (P) 12-13, a critical period when abrupt neurochemical, metabolic, ventilatory and physiological changes occur in the respiratory system. The mechanism underlying the imbalance is poorly understood. We hypothesised that the imbalance was contributed by a reduced expression of brain-derived neurotrophic factor (BDNF), which normally enhances excitation and suppresses inhibition. We also hypothesised that exogenous BDNF would partially reverse this synaptic imbalance. Immunohistochemistry/single-neuron optical densitometry, real-time quantitative PCR (RT-qPCR) and whole-cell patch-clamp recordings were done on hypoglossal motoneurons in brainstem slices of rats during the first three postnatal weeks. Our results indicated that: (1) the levels of BDNF and its high-affinity tyrosine receptor kinase B (TrkB) receptor mRNAs and proteins were relatively high during the first 1-1.5 postnatal weeks, but dropped precipitously at P12-13 before rising again afterwards; (2) exogenous BDNF significantly increased the normally lowered frequency of spontaneous excitatory postsynaptic currents but decreased the normally heightened amplitude and frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) during the critical period; (3) exogenous BDNF also decreased the normally heightened frequency of miniature IPSCs at P12-13; and (4) the effect of exogenous BDNF was partially blocked by K252a, a TrkB receptor antagonist. Thus, our results are consistent with our hypothesis that BDNF and TrkB play an important role in the synaptic imbalance during the critical period. This may have significant implications for the mechanism underlying sudden infant death syndrome.

  7. (R)-roscovitine, a cyclin-dependent kinase inhibitor, enhances tonic GABA inhibition in rat hippocampus.

    PubMed

    Ivanov, A; Tyzio, R; Zilberter, Y; Ben-Ari, Yehezkel

    2008-10-02

    Pharmacological agents that mediate a persistent GABAergic conductance are of considerable interest for treatment of epilepsy. (R)-roscovitine is a membrane permeable cyclin-dependent kinase inhibitor, designed to block cell division. It is currently undergoing a phase II clinical trial as an anticancer drug. We show that (R)-roscovitine increases a tonic GABA-mediated current in rat hippocampal neurons. This enhanced tonic current appears independent of synaptic GABA release and requires functional transmembrane GABA transport. The effect of (R)-roscovitine is associated with neither modification of GABAA receptors nor protein kinase activity, but is associated with a significant increase in intracellular GABA concentration in hippocampal GABAergic neurons. (R)-roscovitine-induced tonic inhibition significantly suppresses spontaneous spiking activity of hippocampal pyramidal cells. Therefore, (R)-roscovitine is a potent modulator of neuronal activity in rat hippocampus and may provide a tool for preventing paroxysmal activity.

  8. The GABA[subscript A] Receptor Agonist Muscimol Induces an Age- and Region-Dependent Form of Long-Term Depression in the Mouse Striatum

    ERIC Educational Resources Information Center

    Zhang, Xiaoqun; Yao, Ning; Chergui, Karima

    2016-01-01

    Several forms of long-term depression (LTD) of glutamatergic synaptic transmission have been identified in the dorsal striatum and in the nucleus accumbens (NAc). Such experience-dependent synaptic plasticity might play important roles in reward-related learning. The GABA[subscript A] receptor agonist muscimol was recently found to trigger a…

  9. The GABA[subscript A] Receptor Agonist Muscimol Induces an Age- and Region-Dependent Form of Long-Term Depression in the Mouse Striatum

    ERIC Educational Resources Information Center

    Zhang, Xiaoqun; Yao, Ning; Chergui, Karima

    2016-01-01

    Several forms of long-term depression (LTD) of glutamatergic synaptic transmission have been identified in the dorsal striatum and in the nucleus accumbens (NAc). Such experience-dependent synaptic plasticity might play important roles in reward-related learning. The GABA[subscript A] receptor agonist muscimol was recently found to trigger a…

  10. Novel functions of GABA signaling in adult neurogenesis

    PubMed Central

    PONTES, Adalto; ZHANG, Yonggang; HU, Wenhui

    2013-01-01

    Neurotransmitter gamma-aminobutiric acid (GABA) through ionotropic GABAA and metabotropic GABAB receptors plays key roles in modulating the development, plasticity and function of neuronal networks. GABA is inhibitory in mature neurons but excitatory in immature neurons, neuroblasts and neural stem/progenitor cells (NSCs/NPCs). The switch from excitatory to inhibitory occurs following the development of glutamatergic synaptic input and results from the dynamic changes in the expression of Na+/K+/2Cl− co-transporter NKCC1 driving Cl− influx and neuron-specific K+/Cl− co-transporter KCC2 driving Cl− efflux. The developmental transition of KCC2 expression is regulated by Disrupted-in-Schizophrenia 1 (DISC1) and brain-derived neurotrophic factor (BDNF) signaling. The excitatory GABA signaling during early neurogenesis is important to the activity/experience-induced regulation of NSC quiescence, NPC proliferation, neuroblast migration and newborn neuronal maturation/functional integration. The inhibitory GABA signaling allows for the sparse and static functional networking essential for learning/memory development and maintenance. PMID:24285940

  11. Effect of antioxidant treatment on spinal GABA neurons in a neuropathic pain model in the mouse.

    PubMed

    Yowtak, June; Wang, Jigong; Kim, Hee Young; Lu, Ying; Chung, Kyungsoon; Chung, Jin Mo

    2013-11-01

    One feature of neuropathic pain is a reduced spinal gamma-aminobutyric acid (GABA)-ergic inhibitory function. However, the mechanisms behind this attenuation remain to be elucidated. This study investigated the involvement of reactive oxygen species in the spinal GABA neuron loss and reduced GABA neuron excitability in spinal nerve ligation (SNL) model of neuropathic pain in mice. The importance of spinal GABAergic inhibition in neuropathic pain was tested by examining the effects of intrathecally administered GABA receptor agonists and antagonists in SNL and naïve mice, respectively. The effects of SNL and antioxidant treatment on GABA neuron loss and functional changes were examined in transgenic GAD67-enhanced green fluorescent protein positive (EGFP+) mice. GABA receptor agonists transiently reversed mechanical hypersensitivity of the hind paw in SNL mice. On the other hand, GABA receptor antagonists made naïve mice mechanically hypersensitive. Stereological analysis showed that the numbers of enhanced green fluorescent protein positive (EGFP+) GABA neurons were significantly decreased in the lateral superficial laminae (I-II) on the ipsilateral L5 spinal cord after SNL. Repeated antioxidant treatments significantly reduced the pain behaviors and prevented the reduction in EGFP+ GABA neurons. The response rate of the tonic firing GABA neurons recorded from SNL mice increased with antioxidant treatment, whereas no change was seen in those recorded from naïve mice, which suggested that oxidative stress impaired some spinal GABA neuron activity in the neuropathic pain condition. Together the data suggest that neuropathic pain, at least partially, is attributed to oxidative stress, which induces both a GABA neuron loss and dysfunction of surviving GABA neurons. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  12. Anaesthetic impairment of immune function is mediated via GABA(A) receptors.

    PubMed

    Wheeler, Daniel W; Thompson, Andrew J; Corletto, Federico; Reckless, Jill; Loke, Justin C T; Lapaque, Nicolas; Grant, Andrew J; Mastroeni, Pietro; Grainger, David J; Padgett, Claire L; O'Brien, John A; Miller, Nigel G A; Trowsdale, John; Lummis, Sarah C R; Menon, David K; Beech, John S

    2011-02-24

    GABA(A) receptors are members of the Cys-loop family of neurotransmitter receptors, proteins which are responsible for fast synaptic transmission, and are the site of action of wide range of drugs. Recent work has shown that Cys-loop receptors are present on immune cells, but their physiological roles and the effects of drugs that modify their function in the innate immune system are currently unclear. We are interested in how and why anaesthetics increase infections in intensive care patients; a serious problem as more than 50% of patients with severe sepsis will die. As many anaesthetics act via GABA(A) receptors, the aim of this study was to determine if these receptors are present on immune cells, and could play a role in immunocompromising patients. We demonstrate, using RT-PCR, that monocytes express GABA(A) receptors constructed of α1, α4, β2, γ1 and/or δ subunits. Whole cell patch clamp electrophysiological studies show that GABA can activate these receptors, resulting in the opening of a chloride-selective channel; activation is inhibited by the GABA(A) receptor antagonists bicuculline and picrotoxin, but not enhanced by the positive modulator diazepam. The anaesthetic drugs propofol and thiopental, which can act via GABA(A) receptors, impaired monocyte function in classic immunological chemotaxis and phagocytosis assays, an effect reversed by bicuculline and picrotoxin. Our results show that functional GABA(A) receptors are present on monocytes with properties similar to CNS GABA(A) receptors. The functional data provide a possible explanation as to why chronic propofol and thiopental administration can increase the risk of infection in critically ill patients: their action on GABA(A) receptors inhibits normal monocyte behaviour. The data also suggest a potential solution: monocyte GABA(A) receptors are insensitive to diazepam, thus the use of benzodiazepines as an alternative anesthetising agent may be advantageous where infection is a life

  13. Presynaptic Kainate Receptor Activation Preserves Asynchronous GABA Release Despite the Reduction in Synchronous Release from Hippocampal CCK Interneurons

    PubMed Central

    Daw, Michael I.; Pelkey, Kenneth A.; Chittajallu, Ramesh; McBain, Chris J.

    2010-01-01

    Inhibitory synaptic transmission in the hippocampus in mediated by a wide variety of different interneuron classes which are assumed to play different roles in network activity. Activation of presynaptic kainate receptors (KARs) has been shown to reduce inhibitory transmission but the interneuron class(es) at which they act is only recently beginning to emerge. Using paired recordings we show that KAR activation causes a decrease in presynaptic release from CCK- but not PV-containing interneurons and that this decrease is observed when pyramidal cells, but not interneurons, are the postsynaptic target. We also show that although the synchronous release component is reduced, the barrage of asynchronous GABA release from CCK interneurons during sustained firing is unaffected by KAR activation. This indicates that presynaptic KARs preserve and act in concert with asynchronous release to switch CCK interneurons from a phasic inhibition mode to produce prolonged inhibition during periods of intense activity. PMID:20720128

  14. Agonist pharmacology of two Drosophila GABA receptor splice variants.

    PubMed Central

    Hosie, A. M.; Sattelle, D. B.

    1996-01-01

    1. The Drosophila melanogaster gamma-aminobutyric acid (GABA) receptor subunits, RDLac and DRC 17-1-2, form functional homo-oligomeric receptors when heterologously expressed in Xenopus laevis oocytes. The subunits differ in only 17 amino acids, principally in regions of the N-terminal domain which determine agonist pharmacology in vertebrate ionotropic neurotransmitter receptors. A range of conformationally restricted GABA analogues were tested on the two homo-oligomers and their agonists pharmacology compared with that of insect and vertebrate iontropic GABA receptors. 2. The actions of GABA, isoguvacine and isonipecotic acid on RDLac and DRC 17-1-2 homo-oligomers were compared, by use of two-electrode voltage-clamp. All three compounds were full agonists of both receptors, but were 4-6 fold less potent agonists of DRC 17-1-2 homo-oligomers than of RDLac. However, the relative potencies of these agonists on each receptor were very similar. 3. A more complete agonist profile was established for RDLac homo-oligomers. The most potent agonists of these receptors were GABA, muscimol and trans-aminocrotonic acid (TACA), which were approximately equipotent. RDLac homo-oligomers were fully activated by a range of GABA analogues, with the order of potency: GABA > ZAPA ((Z)-3-[(aminoiminomethyl)thio]prop-2-enoic acid) > isoguvacine > imidazole-4-acetic acid > or = isonipecotic acid > or = cis-aminocrotonic acid (CACA) > beta-alanine. 3-Aminopropane sulphonic acid (3-APS), a partial agonist of RDLac homo-oligomers, was the weakest agonist tested and 100 fold less potent than GABA. 4. SR95531, an antagonist of vertebrate GABAA receptors, competitively inhibited the GABA responses of RDLac homo-oligomers, which have previously been found to insensitive to bicuculline. However, its potency (IC50 500 microM) was much reduced when compared to GABAA receptors. 5. The agonist pharmacology of Drosophila RDLac homo-oligomers exhibits aspects of the characteristic pharmacology of

  15. Activity- and age-dependent GABAergic synaptic plasticity in the developing rat hippocampus.

    PubMed

    Gubellini, P; Ben-Ari, Y; Gaïarsa, J L

    2001-12-01

    Activity-dependent plasticity of GABAergic synaptic transmission was investigated in rat hippocampal slices obtained between postnatal day (P) 0-15 using the whole-cell patch-clamp recording technique. Spontaneous GABA(A) receptor-mediated postsynaptic currents (sGABA(A)-PSCs) were isolated in the presence of ionotropic glutamate receptor antagonists. A conditioning protocol relevant to the physiological condition, consisting of repetitive depolarizing pulses (DPs) at 0.1 Hz, was able to induce long-lasting changes in both frequency and amplitude of sGABA(A)-PSCs between P0 and P8. Starting from P12, DPs were unable to induce any form of synaptic plasticity. The effects of DPs were tightly keyed to the frequency at which they were delivered. When delivered at a lower (0.05 Hz) or higher (1 Hz) frequency, DPs failed to induce any long-lasting change in the frequency or amplitude of sGABA(A)-PSCs. In two cases, DPs were able to activate sGABA(A)-PSCs in previously synaptically silent cells at P0-1. These results show that long-term changes in GABAergic synaptic activity can be induced during a restricted period of development by a conditioning protocol relevant to the physiological condition. It is suggested that such activity-induced modifications may represent a physiological mechanism for the functional maturation of GABAergic synaptic transmission.

  16. Glucocorticoids Regulate Glutamate and GABA Synapse-Specific Retrograde Transmission via Divergent Non-Genomic Signaling Pathways

    PubMed Central

    Di, Shi; Maxson, Marc M.; Franco, Alier; Tasker, Jeffrey G.

    2009-01-01

    Glucocorticoids exert an opposing rapid regulation of glutamate and GABA synaptic inputs to hypothalamic magnocellular neurons via the activation of postsynaptic membrane-associated receptors and the release of retrograde messengers. Glucocorticoids suppress synaptic glutamate release via the retrograde release of endocannabinoids and facilitate synaptic GABA release via an unknown retrograde messenger. Here, we show that the glucocorticoid facilitation of GABA inputs is due to the retrograde release of neuronal nitric oxide, and that glucocorticoid-induced endocannabinoid synthesis and nitric oxide synthesis are mediated by divergent G protein signaling mechanisms. While the glucocorticoid-induced, endocannabinoid-mediated suppression of glutamate release is dependent on activation of the Gαs G protein subunit and cAMP-PKA activation, the nitric oxide facilitation of GABA release is mediated by Gβγ signaling that leads to activation of neuronal nitric oxide synthase. Our findings indicate, therefore, that glucocorticoids exert opposing rapid actions on glutamate and GABA release by activating divergent G protein signaling pathways that trigger the synthesis of, and glutamate and GABA synapse-specific retrograde actions of, endocannabinoids and nitric oxide, respectively. The simultaneous rapid stimulation of nitric oxide and endocannabinoid synthesis by glucocorticoids has important implications for the impact of stress on the brain as well as on neural-immune interactions in the hypothalamus. PMID:19144839

  17. Contribution of metabotropic GABA(B) receptors to neuronal network construction.

    PubMed

    Gaiarsa, Jean-Luc; Kuczewski, Nicola; Porcher, Christophe

    2011-11-01

    In the 1980s, Bowery and colleagues discovered the presence of a novel, bicuculline-resistant and baclofen-sensitive type of GABA receptor on peripheral nerve terminals, the GABA(B) receptor. Since this pioneering work, GABA(B) receptors have been identified in the Central Nervous System (CNS), where they provide an important inhibitory control of postsynaptic excitability and presynaptic transmitter release. GABA(B) receptors have been implicated in a number of important processes in the adult brain such as the regulation of synaptic plasticity and modulation of rhythmic activity. As a result of these studies, several potential therapeutic applications of GABA(B) receptor ligands have been identified. Recent advances have further shown that GABA(B) receptors play more than a classical inhibitory role in adult neurotransmission, and can in fact function as an important developmental signal early in life. Here we summarize current knowledge on the contribution of GABA(B) receptors to the construction and function of developing neuronal networks.

  18. Snake neurotoxin α-bungarotoxin is an antagonist at native GABA(A) receptors.

    PubMed

    Hannan, Saad; Mortensen, Martin; Smart, Trevor G

    2015-06-01

    The snake neurotoxin α-bungarotoxin (α-Bgtx) is a competitive antagonist at nicotinic acetylcholine receptors (nAChRs) and is widely used to study their function and cell-surface expression. Increasingly, α-Bgtx is also used as an imaging tool for fluorophore-labelling studies, and given the structural conservation within the pentameric ligand-gated ion channel family, we assessed whether α-Bgtx could bind to recombinant and native γ-aminobutyric type-A receptors (GABAARs). Applying fluorophore-linked α-Bgtx to recombinant αxβ1/2γ2 GABAARs expressed in HEK-293 cells enabled clear cell-surface labelling of α2β1/2γ2 contrasting with the weaker staining of α1/4β1/2γ2, and no labelling for α3/5/6β1/2γ2. The labelling of α2β2γ2 was abolished by bicuculline, a competitive antagonist at GABAARs, and by d-tubocurarine (d-Tc), which acts in a similar manner at nAChRs and GABAARs. Labelling by α-Bgtx was also reduced by GABA, suggesting that the GABA binding site at the receptor β-α subunit interface forms part of the α-Bgtx binding site. Using whole-cell recording, high concentrations of α-Bgtx (20 μM) inhibited GABA-activated currents at all αxβ2γ2 receptors examined, but at lower concentrations (5 μM), α-Bgtx was selective for α2β2γ2. Using α-Bgtx, at low concentrations, permitted the selective inhibition of α2 subunit-containing GABAARs in hippocampal dentate gyrus granule cells, reducing synaptic current amplitudes without affecting the GABA-mediated tonic current. In conclusion, α-Bgtx can act as an inhibitor at recombinant and native GABAARs and may be used as a selective tool to inhibit phasic but not tonic currents in the hippocampus.

  19. EDITORIAL: Synaptic electronics Synaptic electronics

    NASA Astrophysics Data System (ADS)

    Demming, Anna; Gimzewski, James K.; Vuillaume, Dominique

    2013-09-01

    Conventional computers excel in logic and accurate scientific calculations but make hard work of open ended problems that human brains handle easily. Even von Neumann—the mathematician and polymath who first developed the programming architecture that forms the basis of today's computers—was already looking to the brain for future developments before his death in 1957 [1]. Neuromorphic computing uses approaches that better mimic the working of the human brain. Recent developments in nanotechnology are now providing structures with very accommodating properties for neuromorphic approaches. This special issue, with guest editors James K Gimzewski and Dominique Vuillaume, is devoted to research at the serendipitous interface between the two disciplines. 'Synaptic electronics', looks at artificial devices with connections that demonstrate behaviour similar to synapses in the nervous system allowing a new and more powerful approach to computing. Synapses and connecting neurons respond differently to incident signals depending on the history of signals previously experienced, ultimately leading to short term and long term memory behaviour. The basic characteristics of a synapse can be replicated with around ten simple transistors. However with the human brain having around 1011 neurons and 1015 synapses, artificial neurons and synapses from basic transistors are unlikely to accommodate the scalability required. The discovery of nanoscale elements that function as 'memristors' has provided a key tool for the implementation of synaptic connections [2]. Leon Chua first developed the concept of the 'The memristor—the missing circuit element' in 1971 [3]. In this special issue he presents a tutorial describing how memristor research has fed into our understanding of synaptic behaviour and how they can be applied in information processing [4]. He also describes, 'The new principle of local activity, which uncovers a minuscule life-enabling "Goldilocks zone", dubbed the

  20. Glycinergic inhibition in thalamus revealed by synaptic receptor blockade.

    PubMed

    Ghavanini, Ahmad A; Mathers, David A; Puil, Ernest

    2005-09-01

    Using juvenile rat brain slices, we examined the possibility that strychnine-sensitive receptors for glycine-like amino acids contributed to synaptic inhibition in ventrobasal thalamus, where gamma-aminobutyrate (GABA) is the prevalent inhibitory transmitter. Ventrobasal nuclei showed staining for antibodies against alpha1 and alpha2 subunits of the glycine receptor. Exogenously applied glycine, taurine and beta-alanine increased membrane conductance, effects antagonized by strychnine, indicative of functional glycine receptors. Using glutamate receptor antagonists, we isolated inhibitory postsynaptic potentials and currents (IPSPs and IPSCs) evoked by high-threshold stimulation of medial lemniscus. Like the responses to glycine agonists, these synaptic responses reversed near E(Cl). In comparative tests with GABA receptor antagonists, strychnine attenuated inhibition in a majority of neurons, but did not alter slow, GABA(B) inhibition. For complete blockade, the majority of fast IPSPs required co-application of strychnine with bicuculline or gabazine, GABA(A) receptor antagonists. Strychnine acting with an IC50 approximately = 33 nM, eliminated residual fast inhibition during selective GABA(A) receptor blockade with gabazine. The latency of onset for IPSPs was compatible with polysynaptic pathways or prolonged axonal propagation time. Strychnine lacked effects on monosynaptic, GABAergic IPSPs from zona incerta. The specific actions of strychnine implicated a glycine receptor contribution to fast inhibition in somatosensory thalamus.

  1. The effect of GABA and the GABA-uptake-blocker NO-711 on the b-wave of the ERG and the responses of horizontal cells to light.

    PubMed

    Hanitzsch, Renate; Küppers, Lea; Flade, Andreas

    2004-09-01

    The effects of GABA in the retina have now become of special interest because the anti-epileptic drug vigabatrin, a GABA analogue, can cause visual field loss in humans. Vigabatrin inhibits the GABA-aminotransferase, which finally results in GABA accumulation in the extracellular space. The b-wave of the electroretinogram (ERG), which originates partly in on-bipolar cells, is influenced by both GABAergic horizontal cells (HCs) and GABAergic amacrine cells (ACs). Their influences, however, are difficult to separate. In an attempt to isolate the effect of GABAergic ACs, use has been made of the specific effect of the GABA-uptake-blocker NO-711, which blocks only the GABA transporter GAT1 of GABAergic ACs. The ERG and the intracellular responses of HCs to light were recorded in the isolated rabbit retina, and the effects of GABA and NO-711, when added separately to the superfusate, were determined. GABA reduced significantly both the light responses of HCs and the b-wave. NO-711 enlarged the b-wave drastically, but did not affect the responses of HCs to light. An increase in the extracellular GABA concentration decreases the b-wave; an impairment of the function of ACs increases the b-wave. These conditions are discussed in the context of the lack of consistent changes to the b-wave during therapy with vigabatrin.

  2. Regulation of GABA release by nicotinic acetylcholine receptors in the neonatal rat hippocampus

    PubMed Central

    Maggi, Laura; Sher, Emanuele; Cherubini, Enrico

    2001-01-01

    The whole-cell configuration of the patch-clamp technique was used to study the modulation of giant depolarizing potentials (GDPs) by nicotinic acetylcholine receptors (nAChRs) in CA3 hippocampal neurons in slices from postnatal day (P) 2–6 rats.Bath application of nicotine increased GDP frequency in a concentration-dependent manner. For example, nicotine (0.5–1 μm) enhanced GDP frequency from 0.05 ± 0.04 to 0.17 ± 0.04 Hz. This effect was prevented by the broad-spectrum nicotinic receptor antagonist dihydro-β-erythtroidine (DHβE, 50 μm) and partially antagonized by methyllycaconitine (MLA, 50 nm) a competitive antagonist of α7 nAChRs. GDP frequency was also enhanced by AR-17779 (100 μm), a selective agonist of α7 nAChRs.The GABAA receptor antagonist bicuculline (10 μm) and the non-NMDA glutamate receptor antagonist DNQX (20 μm) blocked GDPs and prevented the effects of nicotine on GDPs. In the presence of DNQX, nicotine increased GABA-mediated synaptic noise, indicating that this drug may have a direct effect on GABAergic interneurons.Bath application of edrophonium (20 μm), a cholinesterase inhibitor, in the presence of atropine (1 μm), increased GDP frequency, indicating that nAChRs can be activated by ACh released from the septo-hippocampal fibres. This effect was prevented by DHβE (50 μm).In the majority of neurons tested, MLA (50 nm) and DHβE (50 μm) reduced the frequency of GDPs with different efficacy: a reduction of 98 ± 11 and 61 ± 29 % was observed with DHβE and MLA, respectively. In a subset of cells (40 % in the case of MLA and 17 % in the case of DHβE) these drugs induced a twofold increase in GDP frequency.It is suggested that, during development, nAChRs modulate the release of GABA, assessed as GDPs, through distinct nAChRs. The rise of intracellular calcium via nAChRs would further strengthen GABA-mediated oscillatory activity. This can be crucial for consolidation of synaptic contacts and for the fine-tuning of the

  3. Gad1 mRNA as a reliable indicator of altered GABA release from orexigenic neurons in the hypothalamus

    PubMed Central

    Dicken, Matthew S.; Hughes, Alexander R.; Hentges, Shane T.

    2016-01-01

    The strength of γ-aminobutyric acid (GABA)-mediated inhibitory synaptic input is a principle determinant of neuronal activity. However, because of differences in the number of GABA afferent inputs and the sites of synapses, it is difficult to directly assay for altered GABA transmission between specific cells. The present study tested the hypothesis that the level of mRNA for the GABA synthetic enzyme glutamate decarboxylase (GAD) can provide a reliable proxy for GABA release. This was tested in a mouse hypothalamic circuit important in the regulation of energy balance. Fluorescent in situ hybridization results show that the expression of Gad1 mRNA (encoding the GAD67 enzyme) was increased in hypothalamic neuropeptide Y/agouti-related peptide (NPY/AgRP) neurons after an overnight fast, consistent with the ability of GABA from these neurons to stimulate food intake. Optogenetic studies confirmed that the observed increase in Gad1 mRNA correlated with an increase in the probability of GABA release from NPY/AgRP neurons onto downstream proopiomelanocortin neurons. Likewise, there was an increase in the readily releasable pool of GABA in NPY/AgRP neurons. Selective inhibition of GAD activity in NPY/AgRP neurons decreased GABA release, indicating that GAD67 activity, which is largely dictated by expression level, is a key determinant of GABA release. Altogether, it appears that Gad expression may be a reliable proxy of altered GABAergic transmission. Examining changes in Gad mRNA as a proxy for GABA release may be particularly helpful when the downstream targets are not known or when limited tools exist for detecting GABA release at a particular synapse. PMID:26370162

  4. Relaxation and immunity enhancement effects of gamma-aminobutyric acid (GABA) administration in humans.

    PubMed

    Abdou, Adham M; Higashiguchi, S; Horie, K; Kim, Mujo; Hatta, H; Yokogoshi, H

    2006-01-01

    The effect of orally administrated gamma-aminobutyric acid (GABA) on relaxation and immunity during stress has been investigated in humans. Two studies were conducted. The first evaluated the effect of GABA intake by 13 subjects on their brain waves. Electroencephalograms (EEG) were obtained after 3 tests on each volunteer as follows: intake only water, GABA, or L-theanine. After 60 minutes of administration, GABA significantly increases alpha waves and decreases beta waves compared to water or L-theanine. These findings denote that GABA not only induces relaxation but also reduces anxiety. The second study was conducted to see the role of relaxant and anxiolytic effects of GABA intake on immunity in stressed volunteers. Eight acrophobic subjects were divided into 2 groups (placebo and GABA). All subjects were crossing a suspended bridge as a stressful stimulus. Immunoglobulin A (IgA) levels in their saliva were monitored during bridge crossing. Placebo group showed marked decrease of their IgA levels, while GABA group showed significantly higher levels. In conclusion, GABA could work effectively as a natural relaxant and its effects could be seen within 1 hour of its administration to induce relaxation and diminish anxiety. Moreover, GABA administration could enhance immunity under stress conditions.

  5. Liraglutide can reverse memory impairment, synaptic loss and reduce plaque load in aged APP/PS1 mice, a model of Alzheimer's disease.

    PubMed

    McClean, Paula L; Hölscher, Christian

    2014-01-01

    Type 2 diabetes is a risk factor in the development of Alzheimer's disease (AD). It has been shown that insulin signalling is desensitised in the brains of AD patients. The incretin hormone Glucagon-like peptide-1 (GLP-1) facilitates insulin signalling, and long-lasting analogues such as liraglutide (Victoza(®)) are on the market as type 2 diabetes treatments. We have previously shown that liraglutide improved cognitive function, reduced amyloid plaque deposition, inflammation, overall APP and oligomer levels and enhanced LTP when injected peripherally for two months in 7 month old APPswe/PS1ΔE9 (APP/PS1) mice. This showed that liraglutide has preventive effects at the early stage of AD development. The current study investigated whether Liraglutide would have restorative effects in late-stage Alzheimer's disease in mice. Accordingly, 14-month-old APP/PS1 and littermate control mice were injected with Liraglutide (25 nmol/kg bw) ip. for 2 months. Spatial memory was improved by Liraglutide-treatment in APP/PS1 mice compared with APP/PS1 saline-treated mice. Overall plaque load was reduced by 33%, and inflammation reduced by 30%, while neuronal progenitor cell count in the dentate gyrus was increased by 50%. LTP was significantly enhanced in APP/PS1 liraglutide-treated mice compared with APP/PS1 saline mice, corroborated with increased synapse numbers in hippocampus and cortex. Total brain APP and beta-amyloid oligomer levels were reduced in Liraglutide-treated APP/PS1 mice while IDE levels were increased. These results demonstrate that Liraglutide not only has preventive properties, but also can reverse some of the key pathological hallmarks of AD. Liraglutide is now being tested in clinical trials in AD patients. This article is part of the Special Issue entitled 'The Synaptic Basis of Neurodegenerative Disorders'. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Combination of fluoxetine and extinction treatments forms a unique synaptic protein profile that correlates with long-term fear reduction in adult mice.

    PubMed

    Popova, Dina; Ágústsdóttir, Arna; Lindholm, Jesse; Mazulis, Ulams; Akamine, Yumiko; Castrén, Eero; Karpova, Nina N

    2014-07-01

    The antidepressant fluoxetine induces synaptic plasticity in the visual and fear networks and promotes the structural remodeling of neuronal circuits, which is critical for experience-dependent plasticity in response to an environmental stimulus. We recently demonstrated that chronic fluoxetine administration together with extinction training in adult mice reduced fear in a context-independent manner. Fear conditioning and extinction alter excitatory and inhibitory transmissions within the fear circuitry. In this study, we investigated whether fluoxetine, extinction or their combination produced distinct long-lasting changes in the synaptic protein profile in the amygdala, hippocampus and prefrontal cortex of conditioned mice. We determined that extinction induced synaptophysin expression and down-regulated the GluA1:GluA2 ratio throughout the fear network in water- and fluoxetine-treated mice, suggesting a common fluoxetine-independent mechanism for increased synaptic transmission and re-arrangement of AMPA-receptors by extinction training. In contrast to common changes, the presynaptic vesicular neurotransmitter transporters VGAT and Vglut1 were upregulated after extinction in water- and fluoxetine-treated mice, respectively. The cortical levels of the GABA transporter Gat1 were reduced in high-freezing water-drinking mice, suggesting a maladaptive increase of GABA spillover at cortical inhibitory synapses. Fear conditioning decreased, and extinction induced the expression of GABA-receptor alpha1 and alpha2 subunits in water- and fluoxetine-treated mice, respectively. Only a combination of fluoxetine with extinction enhanced GluN2A expression in the amygdala and hippocampus, emphasizing the role of this NMDA-receptor subunit in the successful erasure of fear memories. Our finding provides novel data that may become helpful in developing beneficial pharmacological fear-reducing treatment strategies.

  7. Reduced thymic expression of ErbB receptors without auto-antibodies against synaptic ErbB in myasthenia gravis.

    PubMed

    Vrolix, Kathleen; Niks, Erik H; Le Panse, Rozen; van Ostaijen-Ten Dam, Monique M; Muris, Anne-Hilde; Jol-van der Zijde, Cornelia M; van Tol, Maarten J D; Losen, Mario; Molenaar, Peter C; van Zoelen, Everardus J J; Berrih-Aknin, Sonia; De Baets, Marc H; Verschuuren, Jan J G M; Martínez-Martínez, Pilar

    2011-03-01

    In myasthenia gravis (MG), the neuromuscular transmission is impaired mainly by auto-antibodies against the acetylcholine receptor (AChR) or MuSK. In about 5% of the MG patients, however, the auto-antigen is still unknown. We investigated whether these idiopathic MG patients (iMG) have auto-antibodies against ErbB proteins, which influence the AChR density at the NMJ. Our results show reduced mRNA expression levels of ErbB4 in thymus tissue of iMG patients compared to AChR-MG and non-MG patients, but we could not detect anti-ErbB antibodies in sera of iMG patients. Therefore, our results do not support a role for ErbB receptors as auto-antigens in iMG patients.

  8. Synaptic connectivity in hippocampal neuronal networks cultured on micropatterned surfaces.

    PubMed

    Liu, Q Y; Coulombe, M; Dumm, J; Shaffer, K M; Schaffner, A E; Barker, J L; Pancrazio, J J; Stenger, D A; Ma, W

    2000-04-14

    Embryonic rat hippocampal neurons were grown on patterned silane surface in order to organize synapse formations in a controlled manner. The surface patterns were composed of trimethoxysilylpropyl-diethylenetriamine (DETA) lines separated by tridecafluoro-1,1,2,2-tetrahydrooctyl-1-dimethylchlorosilane (13F) spaces. Pre- and post-synaptic specializations were identified by immunostaining for synapsin I and microtubule-associated protein-2 (MAP-2). Functional synaptic connections were examined by recording simultaneously from pairs of neurons using the whole-cell configuration of the patch-clamp technique. Spontaneous and evoked synaptic currents were recorded in neurons cultured for 2-14 days. The formation of functional connections was accompanied by the appearance of spontaneous synaptic currents (SSCs), which could be detected after approximately 3 days in culture in the absence of evoked synaptic currents (ESCs). ESCs were detected only after approximately 7 days in culture, mostly in the form of unidirectional synaptic connections. Other forms of synaptic connectivity, such as bidirectional and autaptic connections, were also identified. Both transient GABAergic and glutamatergic signals mediated the transmissions between communicating cells. These results demonstrate the combination of various types of synaptic connections forming simple and complex networks in neurons cultured on line (DETA)-space (13F) patterns. Finally, precisely synchronized SSCs were recorded in neuron pairs cultured on pattern indicating the existence of a fast-acting feedback mechanism mediated by pre-synaptic GABA(A) receptors.

  9. Early depolarizing GABA controls critical period plasticity in the rat visual cortex

    PubMed Central

    Deidda, Gabriele; Allegra, Manuela; Cerri, Chiara; Naskar, Shovan; Bony, Guillaume; Zunino, Giulia; Bozzi, Yuri; Caleo, Matteo; Cancedda, Laura

    2014-01-01

    SUMMARY Hyperpolarizing and inhibitory GABA regulates “critical periods” for plasticity in sensory cortices. Here, we examine the role of early, depolarizing GABA in controlling plasticity mechanisms. We report that brief interference with depolarizing GABA during early development prolonged critical period plasticity in visual cortical circuits, without affecting overall development of the visual system. The effects on plasticity were accompanied by dampened inhibitory neurotransmission, down-regulation of BDNF expression, and reduced density of extracellular matrix-perineuronal nets. Early interference with depolarizing GABA decreased perinatal BDNF signaling, and pharmacological increase of BDNF signaling during GABA interference rescued the effects on plasticity and its regulators later in life. We conclude that depolarizing GABA exerts a long-lasting, selective modulation of plasticity of cortical circuits by a strong crosstalk with BDNF. PMID:25485756

  10. Increased Spinal Cord Na+-K+-2Cl− Cotransporter-1 (NKCC1) Activity Contributes to Impairment of Synaptic Inhibition in Paclitaxel-induced Neuropathic Pain*

    PubMed Central

    Chen, Shao-Rui; Zhu, Lihong; Chen, Hong; Wen, Lei; Laumet, Geoffroy; Pan, Hui-Lin

    2014-01-01

    Microtubule-stabilizing agents, such as paclitaxel (Taxol), are effective chemotherapy drugs for treating many cancers, and painful neuropathy is a major dose-limiting adverse effect. Cation-chloride cotransporters, such as Na+-K+-2Cl− cotransporter-1 (NKCC1) and K+-Cl− cotransporter-2 (KCC2), critically influence spinal synaptic inhibition by regulating intracellular chloride concentrations. Here we show that paclitaxel treatment in rats significantly reduced GABA-induced membrane hyperpolarization and caused a depolarizing shift in GABA reversal potential of dorsal horn neurons. However, paclitaxel had no significant effect on AMPA or NMDA receptor-mediated glutamatergic input from primary afferents to dorsal horn neurons. Paclitaxel treatment significantly increased protein levels, but not mRNA levels, of NKCC1 in spinal cords. Inhibition of NKCC1 with bumetanide reversed the paclitaxel effect on GABA-mediated hyperpolarization and GABA reversal potentials. Also, intrathecal bumetanide significantly attenuated hyperalgesia and allodynia induced by paclitaxel. Co-immunoprecipitation revealed that NKCC1 interacted with β-tubulin and β-actin in spinal cords. Remarkably, paclitaxel increased NKCC1 protein levels at the plasma membrane and reduced NKCC1 levels in the cytosol of spinal cords. In contrast, treatment with an actin-stabilizing agent had no significant effect on NKCC1 protein levels in the plasma membrane or cytosolic fractions of spinal cords. In addition, inhibition of the motor protein dynein blocked paclitaxel-induced subcellular redistribution of NKCC1, whereas inhibition of kinesin-5 mimicked the paclitaxel effect. Our findings suggest that increased NKCC1 activity contributes to diminished spinal synaptic inhibition and neuropathic pain caused by paclitaxel. Paclitaxel disrupts intracellular NKCC1 trafficking by interfering with microtubule dynamics and associated motor proteins. PMID:25253692

  11. In vivo electroretinographic studies of the role of GABAC receptors in retinal signal processing

    SciTech Connect

    Wang, Jing; Mojumder, Deb Kumar; Yan, Jun; Xie, An; Standaert, Robert F.; Qian, Haohua; Pepperberg, David R.; Frishman, Laura J.

    2015-07-08

    The retina expresses all three classes of receptors for the inhibitory neurotransmitter GABA (GABAR). Our study investigated roles of GABAR, especially GABA(C)R (GABA(A)-rho), in retinal signaling in vivo by studying effects on the mouse electroretinogram (ERG) of genetic deletion of GABA(C)R versus pharmacological blockade using receptor antagonists. Brief full-field flash ERGs were recorded from anesthetized GABA(C)R(-/-) mice, and WT C57BL/6 (B6) mice, before and after intravitreal injection of GABA(C)R antagonists, TPMPA, 3-APMPA, or the more recently developed 2-AEMP; GABA(A)R antagonist, SR95531; GABA(B)R antagonist, CGP, and agonist, baclofen. Intravitreal injections of TPMPA and SR95531 were also made in Brown Norway rats. The effect of 2-AEMP on GABA-induced current was tested directly in isolated rat rod bipolar cells, and 2-AEMP was found to preferentially block GABA(C)R in those cells. Maximum amplitudes of dark (DA) and light-adapted (LA) ERG b-waves were reduced in GABA(C)R(-/-) mice, compared to B6 mice, by 30-60%; a-waves were unaltered and oscillatory potential amplitudes were increased. In B6 mice, after injection of TPMPA (also in rats), 3-APMPA or 2-AEMP, ERGs became similar to ERGs of GABA(C)R(-/-) mice. Blockade of GABA(A)Rs and GABA(B)Rs, or agonism of GABA(B)Rs did not alter B6 DA b-wave amplitude. Furthermore, the negative scotopic threshold response (nSTR) was slightly less sensitive in GABA(C)R(-/-) than in B6 mice, and unaltered by 2-AEMP. However, amplitudes of nSTR and photopic negative response (PhNR), both of which originate from inner retina, were enhanced by TPMPA and 3-APMPA, each of which has GABA(B) agonist properties, and further increased by baclofen. The finding that genetic deletion of GABA(C)R, the GABA(C)R antagonist 2-AEMP, and other antagonists all reduced ERG b-wave amplitude, supports a role for CABA(C)R in determining the maximum response amplitude of bipolar cells contributing to the b-wave. GABA(C)R antagonists

  12. 2-Aminoethyl Methylphosphonate, a Potent and Rapidly Acting Antagonist of GABAA-ρ1 Receptors

    SciTech Connect

    Xie, A.; Yan, J.; Yue, L.; Feng, F.; Mir, F.; Abdel-Halim, H.; Chebib, M.; Le Breton, G. C.; Standaert, R. F.; Qian, H.; Pepperberg, D. R.

    2011-08-02

    All three classes of receptors for the inhibitory neurotransmitter GABA (GABAR) are expressed in the retina. This study investigated roles of GABAR, especially GABA(C)R (GABA(A)-rho), in retinal signaling in vivo by studying effects on the mouse electroretinogram (ERG) of genetic deletion of GABA(C)R versus pharmacological blockade using receptor antagonists. Brief full-field flash ERGs were recorded from anesthetized GABA(C)R(-/-) mice, and WT C57BL/6 (B6) mice, before and after intravitreal injection of GABA(C)R antagonists, TPMPA, 3-APMPA, or the more recently developed 2-AEMP; GABA(A)R antagonist, SR95531; GABA(B)R antagonist, CGP, and agonist, baclofen. Intravitreal injections of TPMPA and SR95531 were also made in Brown Norway rats. The effect of 2-AEMP on GABA-induced current was tested directly in isolated rat rod bipolar cells, and 2-AEMP was found to preferentially block GABA(C)R in those cells. Maximum amplitudes of dark (DA) and light-adapted (LA) ERG b-waves were reduced in GABA(C)R(-/-) mice, compared to B6 mice, by 30-60%; a-waves were unaltered and oscillatory potential amplitudes were increased. In B6 mice, after injection of TPMPA (also in rats), 3-APMPA or 2-AEMP, ERGs became similar to ERGs of GABA(C)R(-/-) mice. Blockade of GABA(A)Rs and GABA(B)Rs, or agonism of GABA(B)Rs did not alter B6 DA b-wave amplitude. The negative scotopic threshold response (nSTR) was slightly less sensitive in GABA(C)R(-/-) than in B6 mice, and unaltered by 2-AEMP. However, amplitudes of nSTR and photopic negative response (PhNR), both of which originate from inner retina, were enhanced by TPMPA and 3-APMPA, each of which has GABA(B) agonist properties, and further increased by baclofen. The finding that genetic deletion of GABA(C)R, the GABA(C)R antagonist 2-AEMP, and other antagonists all reduced ERG b-wave amplitude, supports a role for CABA(C)R in determining the maximum response amplitude of bipolar cells contributing to the b-wave. GABA(C)R antagonists differed

  13. Enhanced cognitive activity--over and above social or physical activity--is required to protect Alzheimer's mice against cognitive impairment, reduce Abeta deposition, and increase synaptic immunoreactivity.

    PubMed

    Cracchiolo, Jennifer R; Mori, Takashi; Nazian, Stanley J; Tan, Jun; Potter, Huntington; Arendash, Gary W

    2007-10-01

    Although social, physical, and cognitive activities have each been suggested to reduce the risk of Alzheimer's disease (AD), epidemiologic studies cannot determine which activity or combination of activities is most important. To address this question, mutant APP transgenic AD mice were reared long-term in one of four housing conditions (impoverished, social, social+physical, or complete enrichment) from 1(1/2) through 9 months of age. Thus, a stepwise layering of social, physical, and enhanced cognitive activity was created. Behavioral evaluation in a full battery of sensorimotor, anxiety, and cognitive tasks was carried out during the final 5 weeks of housing. Only AD mice raised in complete enrichment (i.e., enhanced cognitive activity) showed: (1) protection against cognitive impairment, (2) decreased brain beta-amyloid deposition, and (3) increased hippocampal synaptic immunoreactivity. The protection provided by enhanced cognitive activity spanned multiple cognitive domains (working memory, reference learning, and recognition/identification). Cognitive and neurohistologic benefits of complete enrichment occurred without any changes in blood cytokine or corticosterone levels, suggesting that enrichment-dependent mechanisms do not involve changes in the inflammatory response or stress levels, respectively. These results indicate that the enhanced cognitive activity of complete enrichment is required for cognitive and neurologic benefit to AD mice-physical and/or social activity are insufficient. Thus, our data suggest that humans who emphasize a high lifelong level of cognitive activity (over and above social and physical activities) will attain the maximal environmental protection against AD.

  14. Selective Loss of Dentate Hilar Interneurons Contributes to Reduced Synaptic Inhibition of Granule Cells in an Electrical Stimulation-Based Animal Model of Temporal Lobe Epilepsy

    PubMed Central

    SUN, CHENGSAN; MTCHEDLISHVILI, ZAKARIA; BERTRAM, EDWARD H.; ERISIR, ALEV; KAPUR, JAIDEEP

    2010-01-01

    Neuropeptide-containing hippocampal interneurons and dentate granule cell inhibition were investigated at different periods following electrical stimulation-induced, self-sustaining status epilepticus (SE) in rats. Immunohistochemistry for somatostatin (SOM), neuropeptide Y (NPY), parvalbumin (PV), cholecystokinin (CCK), and Fluoro-Jade B was performed on sections from hippocampus contralateral to the stimulated side and studied by confocal laser scanning microscopy. Compared to paired age-matched control animals, there were fewer SOM and NPY-immunoreactive (IR) interneurons in the hilus of the dentate gyrus in animals with epilepsy (40 – 60 days after SE), and 1, 3, and 7 days following SE. In the hilus of animals that had recently undergone SE, some SOM-IR and NPY-IR interneurons also stained for Fluoro-Jade B. Furthermore, there was electron microscopic evidence of the degeneration of SOM-IR interneurons following SE. In contrast, the number of CCK and PV-IR basket cells in epileptic animals was similar to that in controls, although it was transiently diminished following SE; there was no evidence of degeneration of CCK or PV-IR interneurons. Patch-clamp recordings revealed a diminished frequency of inhibitory postsynaptic currents in dentate granule cells (DGCs) recorded from epileptic animals and animals that had recently undergone SE compared with controls. These results confirm the selective vulnerability of a particular subset of dentate hilar interneurons after prolonged SE. This loss may contribute to the reduced GABAergic synaptic inhibition of granule cells in epileptic animals. PMID:17177260

  15. Microtransplantation of cellular membranes from squid stellate ganglion reveals ionotropic GABA receptors.

    PubMed

    Conti, Luca; Limon, Agenor; Palma, Eleonora; Miledi, Ricardo

    2013-02-01

    The squid has been the most studied cephalopod, and it has served as a very useful model for investigating the events associated with nerve impulse generation and synaptic transmission. While the physiology of squid giant axons has been extensively studied, very little is known about the distribution and function of the neurotransmitters and receptors that mediate inhibitory transmission at the synapses. In this study we investigated whether γ-aminobutyric acid (GABA) activates neurotransmitter receptors in stellate ganglia membranes. To overcome the low abundance of GABA-like mRNAs in invertebrates and the low expression of GABA in cephalopods, we used a two-electrode voltage clamp technique to determine if Xenopus laevis oocytes injected with cell membranes from squid stellate ganglia responded to GABA. Using this method, membrane patches containing proteins and ion channels from the squid's stellate ganglion were incorporated into the surface of oocytes. We demonstrated that GABA activates membrane receptors in cellular membranes isolated from squid stellate ganglia. Using the same approach, we were able to record native glutamate-evoked currents. The squid's GABA receptors showed an EC(50) of 98 μmol l(-1) to GABA and were inhibited by zinc (IC(50) = 356 μmol l(-1)). Interestingly, GABA receptors from the squid were only partially blocked by bicuculline. These results indicate that the microtransplantation of native cell membranes is useful to identify and characterize scarce membrane proteins. Moreover, our data also support the role of GABA as an ionotropic neurotransmitter in cephalopods, acting through chloride-permeable membrane receptors.

  16. GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations.

    PubMed

    Ben-Ari, Yehezkel; Gaiarsa, Jean-Luc; Tyzio, Roman; Khazipov, Rustem

    2007-10-01

    Developing networks follow common rules to shift from silent cells to coactive networks that operate via thousands of synapses. This review deals with some of these rules and in particular those concerning the crucial role of the neurotransmitter gamma-aminobuytric acid (GABA), which operates primarily via chloride-permeable GABA(A) receptor channels. In all developing animal species and brain structures investigated, neurons have a higher intracellular chloride concentration at an early stage leading to an efflux of chloride and excitatory actions of GABA in immature neurons. This triggers sodium spikes, activates voltage-gated calcium channels, and acts in synergy with NMDA channels by removing the voltage-dependent magnesium block. GABA signaling is also established before glutamatergic transmission, suggesting that GABA is the principal excitatory transmitter during early development. In fact, even before synapse formation, GABA signaling can modulate the cell cycle and migration. The consequence of these rules is that developing networks generate primitive patterns of network activity, notably the giant depolarizing potentials (GDPs), largely through the excitatory actions of GABA and its synergistic interactions with glutamate signaling. These early types of network activity are likely required for neurons to fire together and thus to "wire together" so that functional units within cortical networks are formed. In addition, depolarizing GABA has a strong impact on synaptic plasticity and pathological insults, notably seizures of the immature brain. In conclusion, it is suggested that an evolutionary preserved role for excitatory GABA in immature cells provides an important mechanism in the formation of synapses and activity in neuronal networks.

  17. Alterations in GABA-related transcriptome in the dorsolateral prefrontal cortex of subjects with schizophrenia

    PubMed Central

    Hashimoto, T; Arion, D; Unger, T; Maldonado-Avilés, JG; Morris, HM; Volk, DW; Mirnics, K; Lewis, DA

    2010-01-01

    In subjects with schizophrenia, impairments in working memory are associated with dysfunction of the dorsolateral prefrontal cortex (DLPFC). This dysfunction appears to be due, at least in part, to abnormalities in γ-aminobutyric acid (GABA)-mediated inhibitory circuitry. To test the hypothesis that altered GABA-mediated circuitry in the DLPFC of subjects with schizophrenia reflects expression changes of genes that encode selective presynaptic and postsynaptic components of GABA neurotransmission, we conducted a systematic expression analysis of GABA-related transcripts in the DLPFC of 14 pairs of schizophrenia and age-, sex- and post-mortem interval-matched control subjects using a customized DNA microarray with enhanced sensitivity and specificity. Subjects with schizophrenia exhibited expression deficits in GABA-related transcripts encoding (1) presynaptic regulators of GABA neurotransmission (67 kDa isoform of glutamic acid decarboxylase (GAD67) and GABA transporter 1), (2) neuropeptides (somatostatin (SST), neuropeptide Y (NPY) and cholecystokinin (CCK)) and (3) GABAA receptor subunits (α1, α4, β3, γ2 and δ). Real-time qPCR and/or in situ hybridization confirmed the deficits for six representative transcripts tested in the same pairs and in an extended cohort, respectively. In contrast, GAD67, SST and α1 subunit mRNA levels, as assessed by in situ hybridization, were not altered in the DLPFC of monkeys chronically exposed to antipsychotic medications. These findings suggest that schizophrenia is associated with alterations in inhibitory inputs from SST/NPY-containing and CCK-containing subpopulations of GABA neurons and in the signaling via certain GABAA receptors that mediate synaptic (phasic) or extrasynaptic (tonic) inhibition. In concert with previous findings, these data suggest that working memory dysfunction in schizophrenia is mediated by altered GABA neurotransmission in certain DLPFC microcircuits. PMID:17471287

  18. Estimation of ambient GABA levels in layer I of the mouse neonatal cortex in brain slices

    PubMed Central

    Dvorzhak, Anton; Myakhar, Olga; Unichenko, Petr; Kirmse, Knut; Kirischuk, Sergei

    2010-01-01

    GABAergic synapses on Cajal–Retzius neurons in layer I of the murine neocortex experience GABAB receptor (GABABR)-mediated tonic inhibition. Extracellular GABA concentration ([GABA]o) that determines the strength of GABABR-mediated inhibition is controlled by GABA transporters (GATs). In this study, we hypothesized that the strength ofpresynaptic GABABR activation reflects [GABA]o in the vicinity of synaptic contacts. Slices obtained from two age groups were used, namely postnatal days (P)2–3 and P5–7. GABAergic postsynaptic currents (IPSCs) were recorded using the whole-cell patch-clamp technique. Minimal electrical stimulation in layer I was applied to elicit evoked IPSCs (eIPSCs) using a paired-pulse protocol. Three parameters were selected for comparison: the mean eIPSC amplitude, paired-pulse ratio, and failure rate. When GAT-1 and GAT-2/3 were blocked by NO-711 (10 μm) and SNAP-5114 (40 μm), respectively, no tonic GABABR-mediated inhibition was observed. In order to restore the control levels of GABABR-mediated inhibition, 250 and 125 nm exogenous GABA was required at P2–3 and P5–7, respectively. Addition of 3-mercaptopropionic acid, a glutamate decarboxylase inhibitor, did not significantly change the obtained values arguing against the suggestion that a mechanism different from GATs contributes to [GABA]o control. We conclude that juxtasynaptic [GABA]o is higher (about 250 nm) at P2–3 than at P5–7 (about 125 nm). As both radial cell migration and corticogenesis in general are strongly dependent on [GABA]o and the formation of the last layer 2/3 is finished by P4 in rodents, the observed [GABA]o reduction in layer I might reflect this crucial event in the cortical development. PMID:20421290

  19. Increased neuronal PreP activity reduces Aβ accumulation, attenuates neuroinflammation and improves mitochondrial and synaptic function in Alzheimer disease's mouse model

    PubMed Central

    Fang, Du; Wang, Yongfu; Zhang, Zhihua; Du, Heng; Yan, Shiqiang; Sun, Qinru; Zhong, Changjia; Wu, Long; Vangavaragu, Jhansi Rani; Yan, Shijun; Hu, Gang; Guo, Lan; Rabinowitz, Molly; Glaser, Elzbieta; Arancio, Ottavio; Sosunov, Alexander A.; McKhann, Guy M.; Chen, John Xi; Yan, Shirley ShiDu

    2015-01-01

    Accumulation of amyloid-β (Aβ) in synaptic mitochondria is associated with mitochondrial and synaptic injury. The underlying mechanisms and strategies to eliminate Aβ and rescue mitochondrial and synaptic defects remain elusive. Presequence protease (PreP), a mitochondrial peptidasome, is a novel mitochondrial Aβ degrading enzyme. Here, we demonstrate for the first time that increased expression of active human PreP in cortical neurons attenuates Alzheimer disease's (AD)-like mitochondrial amyloid pathology and synaptic mitochondrial dysfunction, and suppresses mitochondrial oxidative stress. Notably, PreP-overexpressed AD mice show significant reduction in the production of proinflammatory mediators. Accordingly, increased neuronal PreP expression improves learning and memory and synaptic function in vivo AD mice, and alleviates Aβ-mediated reduction of long-term potentiation (LTP). Our results provide in vivo evidence that PreP may play an important role in maintaining mitochondrial integrity and function by clearance and degradation of mitochondrial Aβ along with the improvement in synaptic and behavioral function in AD mouse model. Thus, enhancing PreP activity/expression may be a new therapeutic avenue for treatment of AD. PMID:26123488

  20. Free radical modification of high-affinity GABA transport in the central nervous system

    SciTech Connect

    Debler, E.A.

    1985-01-01

    Presynaptic nerve terminals of DNS neurons can be characterized as dynamic self-contained subunits of the overall neuron. These neuron subunits together with the adjacent post-synaptic terminals constitute the functional unit of neurotransmission. One major function of the presynaptic nerve terminal in neurotransmission is its role in the release and subsequent reuptake of neurotransmitters. Neurochemical and morphological analysis of this high-affinity uptake process, for the amino acid neurotransmitter gamma-aminobutyric acid (GABA), revealed that free radical modification (lipid peroxidation) of presynaptic nerve terminal membrane structures resulted in a decrease in high-affinity (/sup 14/C)GABA uptake. Depolarized nerve terminals exposed to horseradish peroxidase (HRP)-generated superoxide radicals (.O/sub 2//sup -/) exhibited an alteration of synaptic vesicle membrane structure and a reduction of high-affinity (/sup 14/C)GABA uptake. In the kinetic analysis of high affinity (/sup 14/C)GABA uptake, hypoxanthine/xanthine oxidase (HPX/XOD)-treated synaptosomes exhibited a significant reduction in V/sub max/ but no significant alteration of K/sub m/. This HPX/XOD treatment also resulted in significant structural alterations of both the synaptic vesicle membrane and the synaptosomal plasma membrane. Structural and functional correlates appear to exist between synaptic vesicle and plasma membrane systems and high-affinity (/sup 14/C)GABA uptake. Together, the selectivity of the .O/sub 2//sup -/ toxicity and that of the high-K/sup +//Na/sup +/-free effect support the idea of two separate and different amino acid uptake systems in CNS tissue.

  1. Aqua-soluble DDQ reduces the levels of Drp1 and Aβ and inhibits abnormal interactions between Aβ and Drp1 and protects Alzheimer's disease neurons from Aβ- and Drp1-induced mitochondrial and synaptic toxicities.

    PubMed

    Kuruva, Chandra Sekhar; Manczak, Maria; Yin, Xiangling; Ogunmokun, Gilbert; Reddy, Arubala P; Reddy, P Hemachandra

    2017-09-01

    The purpose of our study was to develop a therapeutic target that can reduce Aβ and Drp1 levels, and also can inhibit abnormal interactions between Aβ and Drp1 in AD neurons. To achieve this objective, we designed various compounds and their 3-dimensional molecular structures were introduced into Aβ and Drp1 complex and identified their inhibitory properties against Aβ-Drp1 interaction. Among all, DDQ was selected for further investigation because of 1) its best docking score and 2) its binding capability at interacting sites of Drp1 and Aβ complex. We synthesized DDQ using retro-synthesis and analyzed its structure spectrally. Using biochemical, molecular biology, immunostaining and transmission electron microscopy (TEM) methods, we studied DDQ's beneficial effects in AD neurons. We measured the levels of Aβ and Drp1, Aβ and Drp1 interaction, mRNA and protein levels of mitochondrial dynamics, biogenesis and synaptic genes, mitochondrial function and cell viability and mitochondrial number in DDQ-treated and untreated AD neurons. Our qRT-PCR and immunoblotting analysis revealed that reduced levels of mitochondrial fission and increased fusion, biogenesis and synaptic genes in DDQ-treated AD neurons. Our immunoblotting and immunostaining analyses revealed that Aβ and Drp1 levels were reduced in DDQ-treated AD neurons. Interaction between Aβ and Drp1 is reduced in DDQ-treated AD neurons. Aβ42 levels were significantly reduced in DDQ-treated mutant APPSwe/Ind cells. Mitochondrial number is significantly reduced and mitochondrial length is significantly increased. Mitochondrial function and cell viability were maintained in AD neurons treated with DDQ. These observations indicate that DDQ reduces excessive mitochondrial fragmentation, enhances fusion, biogenesis and synaptic activity and reduces Aβ42 levels and protects AD neurons against Aβ-induced mitochondrial and synaptic toxicities. © The Author 2017. Published by Oxford University Press. All rights

  2. Hyperpolarizing inhibition develops without trophic support by GABA in cultured rat midbrain neurons.

    PubMed

    Titz, Stefan; Hans, Michael; Kelsch, Wolfgang; Lewen, Andrea; Swandulla, Dieter; Misgeld, Ulrich

    2003-08-01

    During a limited period of early neuronal development, GABA is depolarizing and elevates [Ca2+]i, which mediates the trophic action of GABA in neuronal maturation. We tested the attractive hypothesis that GABA itself promotes the developmental change of its response from depolarizing to hyperpolarizing (Ganguly et al. 2001). In cultured midbrain neurons we found that the GABA response changed from depolarizing to hyperpolarizing, although GABAA receptors had been blocked throughout development. In immature neurons prolonged exposure of the cells to nanomolar concentrations of GABA or brief repetitive applications of GABA strongly diminished the elevation of [Ca+]i by GABA. As revealed by gramicidin perforated-patch recording, reduced [Ca2+]i responses were due to a diminished driving force for Cl-. This suggests that immature neurons do not have an efficient inward transport that can compensate the loss of cytosolic Cl-resulting from sustained GABAA receptor activation by ambient GABA. Transient increases in external K+, which can induce voltage-dependent Cl- entry, restored GABA-induced [Ca2+]i elevations. In mature neurons, GABA reduced [Ca2+]i provided that background [Ca2+]i was elevated by the application of an L-type Ca2+ channel agonist. This was probably due to a hyperpolarization of the membrane by Cl- currents. K(+)-Cl- cotransport maintained the gradient for hyperpolarizing Cl-currents. We conclude that in immature midbrain neurons an inward Cl- transport is not effective although the GABA response is depolarizing. Further, GABA itself is not required for the developmental switch of GABAergic responses from depolarizing to hyperpolarizing in cultured midbrain neurons.

  3. Hyperpolarizing Inhibition Develops without Trophic support by GABA in Cultured Rat Midbrain Neurons

    PubMed Central

    Titz, Stefan; Hans, Michael; Kelsch, Wolfgang; Lewen, Andrea; Swandulla, Dieter; Misgeld, Ulrich

    2003-01-01

    During a limited period of early neuronal development, GABA is depolarizing and elevates [Ca2+]i, which mediates the trophic action of GABA in neuronal maturation. We tested the attractive hypothesis that GABA itself promotes the developmental change of its response from depolarizing to hyperpolarizing (Ganguly et al. 2001). In cultured midbrain neurons we found that the GABA response changed from depolarizing to hyperpolarizing, although GABAA receptors had been blocked throughout development. In immature neurons prolonged exposure of the cells to nanomolar concentrations of GABA or brief repetitive applications of GABA strongly diminished the elevation of [Ca2+]i by GABA. As revealed by gramicidin perforated-patch recording, reduced [Ca2+]i responses were due to a diminished driving force for Cl−. This suggests that immature neurons do not have an efficient inward transport that can compensate the loss of cytosolic Cl− resulting from sustained GABAA receptor activation by ambient GABA. Transient increases in external K+, which can induce voltage-dependent Cl− entry, restored GABA-induced [Ca2+]i elevations. In mature neurons, GABA reduced [Ca2+]i provided that background [Ca2+]i was elevated by the application of an L-type Ca2+ channel agonist. This was probably due to a hyperpolarization of the membrane by Cl− currents. K+-Cl− cotransport maintained the gradient for hyperpolarizing Cl− currents. We conclude that in immature midbrain neurons an inward Cl− transport is not effective although the GABA response is depolarizing. Further, GABA itself is not required for the developmental switch of GABAergic responses from depolarizing to hyperpolarizing in cultured midbrain neurons. PMID:12938674

  4. Functional role of ambient GABA in refining neuronal circuits early in postnatal development

    PubMed Central

    Cellot, Giada; Cherubini, Enrico

    2013-01-01

    Early in development, γ-aminobutyric acid (GABA), the primary inhibitory neurotransmitter in the mature brain, depolarizes and excites targeted neurons by an outwardly directed flux of chloride, resulting from the peculiar balance between the cation-chloride importer NKCC1 and the extruder KCC2. The low expression of KCC2 at birth leads to accumulation of chloride inside the cell and to the equilibrium potential for chloride positive respect to the resting membrane potential. GABA exerts its action via synaptic and extrasynaptic GABAA receptors mediating phasic and tonic inhibition, respectively. Here, recent data on the contribution of “ambient” GABA to the refinement of neuronal circuits in the immature brain have been reviewed. In particular, we focus on the hippocampus, where, prior to the formation of conventional synapses, GABA released from growth cones and astrocytes in a calcium- and SNARE (soluble N-ethylmaleimide-sensitive-factor attachment protein receptor)-independent way, diffuses away to activate in a paracrine fashion extrasynaptic receptors localized on distal neurons. The transient increase in intracellular calcium following the depolarizing action of GABA leads to inhibition of DNA synthesis and cell proliferation. Tonic GABA exerts also a chemotropic action on cell migration. Later on, when synapses are formed, GABA spilled out from neighboring synapses, acting mainly on extrasynaptic α5, β2, β3, and γ containing GABAA receptor subunits, provides the membrane depolarization necessary for principal cells to reach the window where intrinsic bursts are generated. These are instrumental in triggering calcium transients associated with network-driven giant depolarizing potentials which act as coincident detector signals to enhance synaptic efficacy at emerging GABAergic and glutamatergic synapses. PMID:23964205

  5. Active transport of. gamma. -aminobutyric acid and glycine into synaptic vesicles

    SciTech Connect

    Kish, P.E.; Fischer-Bovenkerk, C.; Ueda, T. )

    1989-05-01

    Although {gamma}-aminobutyric acid (GABA) and glycine are recognized as major amino acid inhibitory neurotransmitters in the central nervous system, their storage is poorly understood. In this study the authors have characterized vesicular GABA and glycine uptakes in the cerebrum and spinal cord, respectively. They present evidence that GABA and glycine are each taken up into isolated synaptic vesicles in an ATP-dependent manner and that the uptake is driven by an electrochemical proton gradient. Uptake for both amino acids exhibited kinetics with low affinity similar to a vesicular glutamate uptake. The ATP-dependent GABA uptake was not inhibited by the putative amino acid neurotransmitters glycine, taurine, glutamate, or aspartate or by GABA analogs, agonists, and antagonists. Similarly, ATP-dependent glycine uptake was hardly affected by GABA, taurine, glutamate, or aspartate or by glycine analogs or antagonists. The GABA uptake was not affected by chloride, which is in contrast to the uptake of the excitatory neurotransmitter glutamate, whereas the glycine uptake was slightly stimulated by low concentrations of chloride. Tissue distribution studies indicate that the vesicular uptake systems for GABA, glycine, and glutamate are distributed in different proportions in the cerebrum and spinal cord. These results suggest that the vesicular uptake systems for GABA, glycine, and glutamate are distinct from each other.

  6. Local and global ligand-induced changes in the structure of the GABA(A) receptor.

    PubMed

    Muroi, Yukiko; Czajkowski, Cynthia; Jackson, Meyer B

    2006-06-13

    Ligand-gated channels mediate synaptic transmission through conformational transitions triggered by the binding of neurotransmitters. These transitions are well-defined in terms of ion conductance, but their structural basis is poorly understood. To probe these changes in structure, GABA(A) receptors were expressed in Xenopus oocytes and labeled at selected sites with environment-sensitive fluorophores. With labels at two different residues in the alpha1 subunit in loop E of the GABA-binding pocket, GABA elicited fluorescence changes opposite in sign. This pattern of fluorescence changes is consistent with a closure of the GABA-binding cavity at the subunit interface. The competitive antagonist SR-95531 inverted this pattern of fluorescence change, but the noncompetitive antagonist picrotoxin failed to elicit optical signals. In response to GABA (but not SR-95531), labels at the homologous residues in the beta2 subunit showed the same pattern of fluorescence change as the alpha1-subunit labels, indicating a global transition with comparable movements in homologous regions of different subunits. Incorporation of the gamma2 subunit altered the fluorescence changes of alpha1-subunit labels and eliminated them in beta2-subunit labels. Thus, the ligand-induced structural changes in the GABA(A) receptor can extend over considerable distances or remain highly localized, depending upon subunit composition and ligand.

  7. Midbrain dopamine neurons sustain inhibitory transmission using plasma membrane uptake of GABA, not synthesis

    PubMed Central

    Tritsch, Nicolas X; Oh, Won-Jong; Gu, Chenghua; Sabatini, Bernardo L

    2014-01-01

    Synaptic transmission between midbrain dopamine neurons and target neurons in the striatum is essential for the selection and reinforcement of movements. Recent evidence indicates that nigrostriatal dopamine neurons inhibit striatal projection neurons by releasing a neurotransmitter that activates GABAA receptors. Here, we demonstrate that this phenomenon extends to mesolimbic afferents, and confirm that the released neurotransmitter is GABA. However, the GABA synthetic enzymes GAD65 and GAD67 are not detected in midbrain dopamine neurons. Instead, these cells express the membrane GABA transporters mGAT1 (Slc6a1) and mGAT4 (Slc6a11) and inhibition of these transporters prevents GABA co-release. These findings therefore indicate that GABA co-release is a general feature of midbrain dopaminergic neurons that relies on GABA uptake from the extracellular milieu as opposed to de novo synthesis. This atypical mechanism may confer dopaminergic neurons the flexibility to differentially control GABAergic transmission in a target-dependent manner across their extensive axonal arbors. DOI: http://dx.doi.org/10.7554/eLife.01936.001 PMID:24843012

  8. Delineation of the Role of Astroglial GABA Transporters in Seizure Control.

    PubMed

    Schousboe, Arne; Madsen, Karsten K

    2017-02-11

    Studies of GABA transport in neurons and astrocytes have provided evidence that termination of GABA as neurotransmitter is brought about primarily by active transport into the presynaptic, GABAergic nerve endings. There is, however, a considerable transport capacity in the astrocytes surrounding the synaptic terminals, a transport which may limit the availability of transmitter GABA leading to a higher probability of seizure activity governed by the balance of excitatory and inhibitory neurotransmission. Based on this it was hypothesized that selective inhibition of astrocytic GABA transport might prevent such seizure activity. A series of GABA analogs of restricted conformation were synthesized and in a number of collaborative investigations between Prof. Steve White at the University of Utah and medicinal chemists and pharmacologists at the School of Pharmacy and the University of Copenhagen, Denmark, GABA analogs with exactly this pharmacological property were identified. The most important analogs identified were N-methyl-exo-THPO (N-methyl-3-hydroxy-4-amino-4,5,6,7-tetrahydro-1,2-benzisoxazole) and its lipophilic analog EF-1502 ((RS)-4-[N-[1,1-bis(3-methyl-2-thienyl)but-1-en-4-yl]-N-methylamino]-4,5,6,7-tetrahydrobenzo[d]isoxazol-3-ol) both of which turned out to be potent anticonvulsants in animal models of epilepsy.

  9. Hyperpolarization-independent maturation and refinement of GABA/glycinergic connections in the auditory brain stem

    PubMed Central

    Lee, Hanmi; Bach, Eva; Noh, Jihyun; Delpire, Eric

    2015-01-01

    During development GABA and glycine synapses are initially excitatory before they gradually become inhibitory. This transition is due to a developmental increase in the activity of neuronal potassium-chloride cotransporter 2 (KCC2), which shifts the chloride equilibrium potential (ECl) to values more negative than the resting membrane potential. While the role of early GABA and glycine depolarizations in neuronal development has become increasingly clear, the role of the transition to hyperpolarization in synapse maturation and circuit refinement has remained an open question. Here we investigated this question by examining the maturation and developmental refinement of GABA/glycinergic and glutamatergic synapses in the lateral superior olive (LSO), a binaural auditory brain stem nucleus, in KCC2-knockdown mice, in which GABA and glycine remain depolarizing. We found that many key events in the development of synaptic inputs to the LSO, such as changes in neurotransmitter phenotype, strengthening and elimination of GABA/glycinergic connection, and maturation of glutamatergic synapses, occur undisturbed in KCC2-knockdown mice compared with wild-type mice. These results indicate that maturation of inhibitory and excitatory synapses in the LSO is independent of the GABA and glycine depolarization-to-hyperpolarization transition. PMID:26655825

  10. Acid Stimulation (Sour Taste) Elicits GABA and Serotonin Release from Mouse Taste Cells

    PubMed Central

    Huang, Yijen A.; Pereira, Elizabeth; Roper, Stephen D.

    2011-01-01

    Several transmitter candidates including serotonin (5-HT), ATP, and norepinephrine (NE) have been identified in taste buds. Recently, γ-aminobutyric acid (GABA) as well as the associated synthetic enzymes and receptors have also been identified in taste cells. GABA reduces taste-evoked ATP secretion from Receptor cells and is considered to be an inhibitory transmitter in taste buds. However, to date, the identity of GABAergic taste cells and the specific stimulus for GABA release are not well understood. In the present study, we used genetically-engineered Chinese hamster ovary (CHO) cells stably co-expressing GABAB receptors and Gαqo5 proteins to measure GABA release from isolated taste buds. We recorded robust responses from GABA biosensors when they were positioned against taste buds isolated from mouse circumvallate papillae and the buds were depolarized with KCl or a stimulated with an acid (sour) taste. In contrast, a mixture of sweet and bitter taste stimuli did not trigger GABA release. KCl- or acid-evoked GABA secretion from taste buds was Ca2+-dependent; removing Ca2+ from the bathing medium eliminated GABA secretion. Finally, we isolated individual taste cells to identify the origin of GABA secretion. GABA was released only from Presynaptic (Type III) cells and not from Receptor (Type II) cells. Previously, we reported that 5-HT released from Presynaptic cells inhibits taste-evoked ATP secretion. Combined with the recent findings that GABA depresses taste-evoked ATP secretion [1], the present results indicate that GABA and 5-HT are inhibitory transmitters in mouse taste buds and both likely play an important role in modulating taste responses. PMID:22028776

  11. A study on quality components and sleep-promoting effects of GABA black tea.

    PubMed

    Zhao, Wenfang; Li, Yun; Ma, William; Ge, Yazhong; Huang, Yahui

    2015-10-01

    The aims of this study were to analyze the changes in quality components of gamma (γ)-aminobutyric acid (GABA) black tea during processing, and to investigate the effect of three dosages of GABA black tea on sleep improvement. The results showed that the GABA content was increased significantly up to 2.70 mg g(-1) after vacuum anaerobic and aerobic treatment. In addition, the content of GABA after drying reached 2.34 mg g(-1), which achieved the standard of GABA tea. During the entire processing of GABA black tea, the contents of tea polyphenols, caffeine and total catechins displayed a gradually descending trend, while the contents of free amino acids and GABA were firstly increased, and then reduced. The GABA black tea had significant effects on prolonging the sleeping time with sodium pentobarbital (P < 0.05) and significantly enhancing the sleeping rate induced by sodium pentobarbital at a sub-threshold dose (P < 0.05). But its effect on shortening the sleeping latency period induced by sodium barbital was not significant (P > 0.05). It had no effect on directly inducing sleep and the mouse body weight. The extract of GABA black tea improved the sleeping quality of mice to extend with an optimal effect being found in the high dose-treated mice.

  12. [GABA--the basic mediator of excitation in the early stages of hippocampal development].

    PubMed

    Khazipov, R N; Zefirov, A L; Ben-Ari, E

    1998-01-01

    GABA is the principal neurotransmitter of inhibition in the adult mammalian brain. However, at early stages of development, including embryonic period and first week of postnatal life, GABA plays the role of main neurotransmitter of excitation. The paradoxical excitatory effect of GABA is due to an inversed chloride gradient and therefore a depolarizing direction of GABA-A receptor mediated responses. In addition, another type of GABAergic inhibition mediated by postsynaptic GABA-B receptors is not functional at early stage of life. In the neonatal rat hippocampus, GABA, acting via GABA-A receptors, activates voltage gated sodium and calcium channels and potentiates the activity of NMDA receptors by reducing their voltage dependent Mg2+ block. The temporal window when GABA exerts excitatory actions coincides with a particular pattern of activity of hippocampal neuronal network that is characterized by periodical giant depolarizing potentials (GDPs) reminiscent of interictal-like epileptiform discharges. Recent studies have shown that GDPs result from the synchronous discharge of GABAergic interneurons and principal glutamatergic pyramidal cells and are mediated by the synergistic excitatory actions of GABA-A and glutamate receptors. GDPs provide synchronous intracellular Ca2+ oscillations and may therefore be implicated in hebbian modulation of developing synapses and activity-dependent formation of the hippocampal network.

  13. GABA promotes human β-cell proliferation and modulates glucose homeostasis.

    PubMed

    Purwana, Indri; Zheng, Juan; Li, Xiaoming; Deurloo, Marielle; Son, Dong Ok; Zhang, Zhaoyun; Liang, Christie; Shen, Eddie; Tadkase, Akshaya; Feng, Zhong-Ping; Li, Yiming; Hasilo, Craig; Paraskevas, Steven; Bortell, Rita; Greiner, Dale L; Atkinson, Mark; Prud'homme, Gerald J; Wang, Qinghua

    2014-12-01

    γ-Aminobutyric acid (GABA) exerts protective and regenerative effects on mouse islet β-cells. However, in humans it is unknown whether it can increase β-cell mass and improve glucose homeostasis. To address this question, we transplanted a suboptimal mass of human islets into immunodeficient NOD-scid-γ mice with streptozotocin-induced diabetes. GABA treatment increased grafted β-cell proliferation, while decreasing apoptosis, leading to enhanced β-cell mass. This was associated with increased circulating human insulin and reduced glucagon levels. Importantly, GABA administration lowered blood glucose levels and improved glucose excursion rates. We investigated GABA receptor expression and signaling mechanisms. In human islets, GABA activated a calcium-dependent signaling pathway through both GABA A receptor and GABA B receptor. This activated the phosphatidylinositol 3-kinase-Akt and CREB-IRS-2 signaling pathways that convey GABA signals responsible for β-cell proliferation and survival. Our findings suggest that GABA regulates human β-cell mass and may be beneficial for the treatment of diabetes or improvement of islet transplantation. © 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  14. Modulatory action of taurine on the release of GABA in cerebellar slices of the guinea pig.

    PubMed

    Namima, M; Okamoto, K; Sakai, Y

    1983-01-01

    For the purpose of demonstrating the action of taurine as a neuromodulator in addition to its suggested neurotransmitter function, the effects of taurine and muscimol on the depolarization-induced Ca-dependent release of [3H] gamma-aminobutyric acid ([3H]GABA) and L-[3H]glutamate in cerebellar slices from guinea pigs were investigated. The release of [3H]GABA was found to be greatly decreased by a GABA agonist, muscimol, and by taurine, but not by glycine. The release of L-[3H]glutamate was little affected by taurine. The release of [3H]GABA, was enhanced by bicuculline and strychnine, but not by picrotoxin, and the suppressive action of muscimol on the GABA release was antagonized by bicuculline, picrotoxin, and strychnine, suggesting the possible existence of presynaptic autoreceptors for GABA in the cerebellum. The suppressive action of taurine on the release of [3H]GABA, on the other hand, was blocked only by bicuculline. These results suggest that taurine reduced the release of [3H]GABA from cerebellar slices by acting on the GABA autoreceptors or, more likely, on other types of receptors that are sensitive to bicuculline. As a possible mechanism for this modulatory action of taurine, the blockade by this amino acid of the influx of Ca2+ into cerebellar tissues was tentatively suggested.

  15. Serotonin increases GABA release in rat entorhinal cortex by inhibiting interneuron TASK-3 K+ channels.

    PubMed

    Deng, Pan-Yue; Lei, Saobo

    2008-10-01

    Whereas the entorhinal cortex (EC) receives profuse serotonergic innervations from the raphe nuclei in the brain stem and is critically involved in the generation of temporal lobe epilepsy, the function of serotonin (5-hydroxytryptamine, 5-HT) in the EC and particularly its roles in temporal lobe epilepsy are still elusive. Here we explored the cellular and molecular mechanisms underlying 5-HT-mediated facilitation of GABAergic transmission and depression of epileptic activity in the superficial layers of the EC. Application of 5-HT increased sIPSC frequency and amplitude recorded from the principal neurons in the EC with no effects on mIPSCs recorded in the presence of TTX. However, 5-HT reduced the amplitude of IPSCs evoked by extracellular field stimulation and in synaptically connected interneuron and pyramidal neuron pairs. Application of 5-HT generated membrane depolarization and increased action potential firing frequency but reduced the amplitude of action potentials in presynaptic interneurons suggesting that 5-HT still increases GABA release whereas the depressant effects of 5-HT on evoked IPSCs could be explained by 5-HT-induced reduction in action potential amplitude. The depolarizing effect of 5-HT was mediated by inhibition of TASK-3 K(+) channels in interneurons and required the functions of 5-HT(2A) receptors and Galpha(q/11) but was independent of phospholipase C activity. Application of 5-HT inhibited low-Mg(2+)-induced seizure activity in slices via 5-HT(1A) and 5-HT(2A) receptors suggesting that 5-HT-mediated depression of neuronal excitability and increase in GABA release contribute to its anti-epileptic effects in the EC.

  16. Astroglial potassium clearance contributes to short-term plasticity of synaptically evoked currents at the tripartite synapse.

    PubMed

    Sibille, Jérémie; Pannasch, Ulrike; Rouach, Nathalie

    2014-01-01

    Astroglial processes enclose ∼60% of CA1 hippocampal synapses to form the tripartite synapse. Although astrocytes express ionic channels, neurotransmitter receptors and transporters to detect neuronal activity, the nature, plasticity and impact of the currents induced by neuronal activity on short-term synaptic plasticity remain elusive in hippocampal astrocytes. Using simultaneous electrophysiological recordings of astrocytes and neurons, we found that single stimulation of Schaffer collaterals in hippocampal slices evokes in stratum radiatum astrocytes a complex prolonged inward current synchronized to synaptic and spiking activity in CA1 pyramidal cells. The astroglial current is composed of three components sensitive to neuronal activity, i.e. a long-lasting potassium current mediated by Kir4.1 channels, a transient glutamate transporter current and a slow residual current, partially mediated by GABA transporters and Kir4.1-independent potassium channels. We show that all astroglial membrane currents exhibit activity-dependent short-term plasticity. However, only the astroglial glutamate transporter current displays neuronal-like dynamics and plasticity. As Kir4.1 channel-mediated potassium uptake contributes to 80% of the synaptically evoked astroglial current, we investigated in turn its impact on short-term synaptic plasticity. Using glial conditional Kir4.1 knockout mice, we found that astroglial potassium uptake reduces synaptic responses to repetitive stimulation and post-tetanic potentiation. These results show that astrocytes integrate synaptic activity via multiple ionic channels and transporters and contribute to short-term plasticity in part via potassium clearance mediated by Kir4.1 channels.

  17. Astroglial potassium clearance contributes to short-term plasticity of synaptically evoked currents at the tripartite synapse

    PubMed Central

    Sibille, Jérémie; Pannasch, Ulrike; Rouach, Nathalie

    2014-01-01

    Abstract Astroglial processes enclose ∼60% of CA1 hippocampal synapses to form the tripartite synapse. Although astrocytes express ionic channels, neurotransmitter receptors and transporters to detect neuronal activity, the nature, plasticity and impact of the currents induced by neuronal activity on short-term synaptic plasticity remain elusive in hippocampal astrocytes. Using simultaneous electrophysiological recordings of astrocytes and neurons, we found that single stimulation of Schaffer collaterals in hippocampal slices evokes in stratum radiatum astrocytes a complex prolonged inward current synchronized to synaptic and spiking activity in CA1 pyramidal cells. The astroglial current is composed of three components sensitive to neuronal activity, i.e. a long-lasting potassium current mediated by Kir4.1 channels, a transient glutamate transporter current and a slow residual current, partially mediated by GABA transporters and Kir4.1-independent potassium channels. We show that all astroglial membrane currents exhibit activity-dependent short-term plasticity. However, only the astroglial glutamate transporter current displays neuronal-like dynamics and plasticity. As Kir4.1 channel-mediated potassium uptake contributes to 80% of the synaptically evoked astroglial current, we investigated in turn its impact on short-term synaptic plasticity. Using glial conditional Kir4.1 knockout mice, we found that astroglial potassium uptake reduces synaptic responses to repetitive stimulation and post-tetanic potentiation. These results show that astrocytes integrate synaptic activity via multiple ionic channels and transporters and contribute to short-term plasticity in part via potassium clearance mediated by Kir4.1 channels. PMID:24081156

  18. Targeting CCR3 to Reduce Amyloid-β Production, Tau Hyperphosphorylation, and Synaptic Loss in a Mouse Model of Alzheimer's Disease.

    PubMed

    Zhu, Chunyan; Xu, Bing; Sun, Xiaohong; Zhu, Qiwen; Sui, Yi

    2016-11-23

    The majority of Alzheimer's disease (AD) patients have a late onset, and chronic neuroinflammation, characterized by glial activation and secretion of pro-inflammatory cytokines and chemokines, plays a role in the pathogenesis of AD. The chemokine CCL11 has been shown to be a causative factor of cognitive decline in the process of aging, but little is known whether it is involved in the pathogenesis of AD. In the present study, we showed that CCR3, the receptor for CCL11, was expressed by hippocampal neurons and treatment of primary hippocampal neuronal cultures (14 days in vitro) with CCL11 resulted in activation of cyclin-dependent kinase 5 and glycogen synthase kinase-3β, associated with elevated tau phosphorylation at multiple sites. CCL11 treatment also induced the production of Aβ and dendritic spine loss in the hippocampal neuronal cultures. All these effects were blocked by the CCR3 specific antagonist, GW766994. An age-dependent increase in CCL11, predominantly expressed by the activated microglia, was observed in the cerebrospinal fluid of both APP/PS1 double transgenic mice and wild-type (WT) littermates, with a markedly higher level in APP/PS1 double transgenic mice than that in WT littermates. Deletion of CCR3 in APP/PS1 double transgenic mice significantly reduced the phosphorylation of CDK5 and GSK3β, tau hyperphosphorylation, Aβ deposition, microgliosis, astrogliosis, synaptic loss, and spatial learning and memory deficits. Thus, the age-related increase in CCL11 may be a risk factor of AD, and antagonizing CCR3 may bring therapeutic benefits to AD.

  19. Conditional Ablation of Neuroprogenitor Cells in Adult Mice Impedes Recovery of Poststroke Cognitive Function and Reduces Synaptic Connectivity in the Perforant Pathway

    PubMed Central

    Sun, Chongran; Sun, Hui; Wu, Steven; Lee, Chih Cheng; Akamatsu, Yosuke; Wang, Ruikang K.; Kernie, Steven G.

    2013-01-01

    The causal relationship between neurogenesis and the recovery of poststroke cognitive function has not been properly explored. The current study aimed to determine whether depleting neuroprogenitor cells (NPCs) affects poststroke functional outcome in nestin-δ-HSV-TK-EGFP transgenic mice, in which the expression of a truncated viral thymidine kinase gene and EGFP was restricted to nestin-expressing NPCs. Ganciclovir (GCV; 200 mg/kg/d) or saline was continuously administered via osmotic pumps in mice for 4 weeks before the induction of experimental stroke. Both baseline and stroke-induced type 1 and type 2 NPCs were conditionally ablated. GCV eliminated NPCs in a duration-dependent fashion, but it did not attenuate the genesis of astroglia or oligodendrocytes in the peri-infarct cortex, nor did it affect infarct size or cerebral blood reperfusion after stroke. Transgenic stroke mice given GCV displayed impaired spatial learning and memory in the Barnes maze test compared with saline control or wild-type stroke mice given GCV, suggesting a contributing role of stroke-induced neurogenesis in the recovery of cognitive function. However, there was no significant difference in poststroke motor function between transgenic mice treated with GCV and those treated with vehicle, despite a significant ablation of NPCs in the subventricular zone of the former. Furthermore, nestin-δ-HSV-TK-EGFP mice treated with GCV had fewer retrogradely labeled neurons in the entorhinal cortex (EC) when injected with the polysynaptic viral marker PRV614 in the dentate gyrus (DG), suggesting that there might be reduced synaptic connectivity between the DG and EC following ablation of NPCs, which may contribute to impaired poststroke memory function. PMID:24174664

  20. GABA Not Only a Neurotransmitter: Osmotic Regulation by GABAAR Signaling

    PubMed Central

    Cesetti, Tiziana; Ciccolini, Francesca; Li, Yuting

    2012-01-01

    Mature macroglia and almost all neural progenitor types express γ-aminobutyric (GABA) A receptors (GABAARs), whose activation by ambient or synaptic GABA, leads to influx or efflux of chloride (Cl−) depending on its electro-chemical gradient (ECl). Since the flux of Cl− is indissolubly associated to that of osmotically obliged water, GABAARs regulate water movements by modulating ion gradients. In addition, since water movements also occur through specialized water channels and transporters, GABAAR signaling could affect the movement of water by regulating the function of the channels and transporters involved, thereby affecting not only the direction of the water fluxes but also their dynamics. We will here review recent observations indicating that in neural cells GABAAR-mediated osmotic regulation affects the cellular volume thereby activating multiple intracellular signaling mechanisms important for cell proliferation, maturation, and survival. In addition, we will discuss evidence that the osmotic regulation exerted by GABA may contribute to brain water homeostasis in physiological and in pathological conditions causing brain edema, in which the GABAergic transmission is often altered. PMID:22319472

  1. Analysis of GABA(A)- and GABA(B)-receptor mediated effects on intracellular Ca(2+) in DRG hybrid neurones.

    PubMed

    Yokogawa, T; Kim, S U; Krieger, C; Puil, E

    2001-09-01

    1. Using pharmacological analysis and fura-2 spectrofluorimetry, we examined the effects of gamma-aminobutyric acid (GABA) and related substances on intracellular Ca(2+) concentration ([Ca(2+)]i) of hybrid neurones, called MD3 cells. The cell line was produced by fusion between a mouse neuroblastoma cell and a mouse dorsal root ganglion (DRG) neurone. 2. MD3 cells exhibited DRG neurone-like properties, such as immunoreactivity to microtubule-associated protein-2 and neurofilament proteins. Bath applications of capsaicin and alpha, beta-methylene adenosine triphosphate reversibly increased [Ca(2+)]i. However, repeated applications of capsaicin were much less effective. 3. Pressure applications of GABA (100 microM), (Z)-3-[(aminoiminomethyl) thio] prop-2-enoic acid sulphate (ZAPA; 100 microM), an agonist at low affinity GABA(A)-receptors, or KCl (25 mM), transiently increased [Ca(2+)]i. 4. Bath application of bicuculline (100 nM - 100 microM), but not picrotoxinin (10 - 25 microM), antagonized GABA-induced increases in [Ca(2+)]i in a concentration-dependent manner (IC(50)=9.3 microM). 5. Ca(2+)-free perfusion reversibly abolished GABA-evoked increases in [Ca(2+)]i. Nifedipine and nimodipine eliminated GABA-evoked increases in [Ca(2+)]i. These results imply GABA response dependence on extracellular Ca(2+). 6. Baclofen (500 nM - 100 microM) activation of GABA(B)-receptors reversibly attenuated KCl-induced increases in [Ca(2+)]i in a concentration-dependent manner (EC(50)=1.8 microM). 2-hydroxy-saclofen (1 - 20 microM) antagonized the baclofen-depression of the KCl-induced increase in [Ca(2+)]i. 7. In conclusion, GABA(A)-receptor activation had effects similar to depolarization by high external K(+), initiating Ca(2+) influx through high voltage-activated channels, thereby transiently elevating [Ca(2+)]i. GABA(B)-receptor activation reduced Ca(2+) influx evoked by depolarization, possibly at Ca(2+)-channel sites in MD3 cells.

  2. Decreased astrocytic thrombospondin-1 secretion after chronic ammonia treatment reduces the level of synaptic proteins: in vitro and in vivo studies.

    PubMed

    Jayakumar, Arumugam R; Tong, Xiao Y; Curtis, Kevin M; Ruiz-Cordero, Roberto; Shamaladevi, Nagarajarao; Abuzamel, Missa; Johnstone, Joshua; Gaidosh, Gabriel; Rama Rao, Kakulavarapu V; Norenberg, Michael D

    2014-11-01

    Chronic hepatic encephalopathy (CHE) is a major complication in patients with severe liver disease. Elevated blood and brain ammonia levels have been implicated in its pathogenesis, and astrocytes are the principal neural cells involved in this disorder. Since defective synthesis and release of astrocytic factors have been shown to impair synaptic integrity in other neurological conditions, we examined whether thrombospondin-1 (TSP-1), an astrocytic factor involved in the maintenance of synaptic integrity, is also altered in CHE. Cultured astrocytes were exposed to ammonia (NH₄Cl, 0.5-2.5 mM) for 1-10 days, and TSP-1 content was measured in cell extracts and culture media. Astrocytes exposed to ammonia exhibited a reduction in intra- and extracellular TSP-1 levels. Exposure of cultured neurons to conditioned media from ammonia-treated astrocytes showed a decrease in synaptophysin, PSD95, and synaptotagmin levels. Conditioned media from TSP-1 over-expressing astrocytes that were treated with ammonia, when added to cultured neurons, reversed the decline in synaptic proteins. Recombinant TSP-1 similarly reversed the decrease in synaptic proteins. Metformin, an agent known to increase TSP-1 synthesis in other cell types, also reversed the ammonia-induced TSP-1 reduction. Likewise, we found a significant decline in TSP-1 level in cortical astrocytes, as well as a reduction in synaptophysin content in vivo in a rat model of CHE. These findings suggest that TSP-1 may represent an important therapeutic target for CHE. Defective release of astrocytic factors may impair synaptic integrity in chronic hepatic encephalopathy. We found a reduction in the release of the astrocytic matricellular proteins thrombospondin-1 (TSP-1) in ammonia-treated astrocytes; such reduction was associated with a decrease in synaptic proteins caused by conditioned media from ammonia-treated astrocytes. Exposure of neurons to CM from ammonia-treated astrocytes, in which TSP-1 is over

  3. Alterations in hippocampal excitability, synaptic transmission and synaptic plasticity in a neurodevelopmental model of schizophrenia.

    PubMed

    Sanderson, Thomas M; Cotel, Marie-Caroline; O'Neill, Michael J; Tricklebank, Mark D; Collingridge, Graham L; Sher, Emanuele

    2012-03-01

    The risk of developing schizophrenia has been linked to perturbations in embryonic development, but the physiological alterations that result from such insults are incompletely understood. Here, we have investigated aspects of hippocampal physiology in a proposed neurodevelopmental model of schizophrenia, induced during gestation in rats by injection of the antimitotic agent methylazoxymethanol acetate (MAM) at embryonic day 17 (MAM(E17)). We observed a reduction in synaptic innervation and synaptic transmission in the dorsal hippocampus of MAM(E17) treated rats, accompanied by a pronounced increase in CA1 pyramidal neuron excitability. Pharmacological investigations suggested that a deficit in GABAergic inhibition could account for the increase in excitability; furthermore, some aspects of the hyper-excitability could be normalised by the GABA(A) receptor (GABA(A)R) potentiator diazepam. Despite these alterations, two major forms of synaptic plasticity, long-term potentiation (LTP) and long-term depression (LTD) could be readily induced. In contrast, there was a substantial deficit in the reversal of LTP, depotentiation. These findings suggest that delivering neurodevelopmental insults at E17 may offer insights into some of the physiological alterations that underlie behavioural and cognitive symptoms observed in schizophrenia.

  4. Allosteric ligands and their binding sites define γ-aminobutyric acid (GABA) type A receptor subtypes.

    PubMed

    Olsen, Richard W

    2015-01-01

    GABAA receptors (GABA(A)Rs) mediate rapid inhibitory transmission in the brain. GABA(A)Rs are ligand-gated chloride ion channel proteins and exist in about a dozen or more heteropentameric subtypes exhibiting variable age and brain regional localization and thus participation in differing brain functions and diseases. GABA(A)Rs are also subject to modulation by several chemotypes of allosteric ligands that help define structure and function, including subtype definition. The channel blocker picrotoxin identified a noncompetitive channel blocker site in GABA(A)Rs. This ligand site is located in the transmembrane channel pore, whereas the GABA agonist site is in the extracellular domain at subunit interfaces, a site useful for low energy coupled conformational changes of the functional channel domain. Two classes of pharmacologically important allosteric modulatory ligand binding sites reside in the extracellular domain at modified agonist sites at other subunit interfaces: the benzodiazepine site and the high-affinity, relevant to intoxication, ethanol site. The benzodiazepine site is specific for certain GABA(A)R subtypes, mainly synaptic, while the ethanol site is found at a modified benzodiazepine site on different, extrasynaptic, subtypes. In the transmembrane domain are allosteric modulatory ligand sites for diverse chemotypes of general anesthetics: the volatile and intravenous agents, barbiturates, etomidate, propofol, long-chain alcohols, and neurosteroids. The last are endogenous positive allosteric modulators. X-ray crystal structures of prokaryotic and invertebrate pentameric ligand-gated ion channels, and the mammalian GABA(A)R protein, allow homology modeling of GABA(A)R subtypes with the various ligand sites located to suggest the structure and function of these proteins and their pharmacological modulation. © 2015 Elsevier Inc. All rights reserved.

  5. Optogenetic and pharmacological evidence that somatostatin‐GABA neurons are important regulators of parasympathetic outflow to the stomach

    PubMed Central

    Lewin, Amanda E.; Vicini, Stefano; Richardson, Janell; Dretchen, Kenneth L.; Gillis, Richard A.

    2016-01-01

    Key points The dorsal motor nucleus of the vagus (DMV) in the brainstem consists primarily of vagal preganglionic neurons that innervate postganglionic neurons of the upper gastrointestinal tract.The activity of the vagal preganglionic neurons is predominantly regulated by GABAergic transmission in the DMV.The present findings indicate that the overwhelming GABAergic drive present at the DMV is primarily from somatostatin positive GABA (Sst‐GABA) DMV neurons.Activation of both melanocortin and μ‐opioid receptors at the DMV inhibits Sst‐GABA DMV neurons.Sst‐GABA DMV neurons may serve as integrative targets for modulating vagal output activity to the stomach. Abstract We have previously shown that local GABA signalling in the brainstem is an important determinant of vagally‐mediated gastric activity. However, the neural identity of this GABA source is currently unknown. To determine this, we focused on the somatostatin positive GABA (Sst‐GABA) interneuron in the dorsal motor nucleus of the vagus (DMV), a nucleus that is intimately involved in regulating gastric activity. Also of particular interest was the effect of melanocortin and μ‐opioid agonists on neural activity of Sst‐GABA DMV neurons because their in vivo administration in the DMV mimics GABA blockade in the nucleus. Experiments were conducted in brain slice preparation of transgenic adult Sst‐IRES‐Cre mice expressing tdTomato fluorescence, channelrhodopsin‐2, archaerhodopsin or GCaMP3. Electrophysiological recordings were obtained from Sst‐GABA DMV neurons or DiI labelled gastric‐antrum projecting DMV neurons. Our results show that optogenetic stimulation of Sst‐GABA neurons results in a robust inhibition of action potentials of labelled premotor DMV neurons to the gastric‐antrum through an increase in inhibitory post‐synaptic currents. The activity of the Sst‐GABA neurons in the DMV is inhibited by both melanocortin and μ‐opioid agonists. These agonists counteract the

  6. Taurine allosterically modulates flunitrazepam binding to synaptic membranes.

    PubMed

    Quinn, M R; Miller, C L

    1992-09-01

    Taurine is hypothesized to exert its inhibitory neuromodulatory effects, in part, by interaction with the GABAA receptor. Although taurine displaces GABA agonist binding to synaptic membranes, its allosteric effects on the benzodiazepine recognition site of the GABAA receptor complex is unsettled. We determined the effects of taurine on [3H]flunitrazepam (Flu) binding to well-washed, frozen-thawed synaptic membranes prepared from rat cortex. Comparative binding studies were conducted at 37 degrees C and on ice (0-4 degrees C). At 37 degrees C taurine increased Flu binding in a concentration dependent way by interaction with a bicuculline sensitive site, similar to GABA. Taurine increased Flu binding by causing a decrease in KD. The maximal effectiveness of taurine on Flu binding could not be increased further by addition of GABA. In contrast, the maximal stimulation of Flu binding by GABA was decreased by addition of taurine to the level attained by taurine alone. These mixed agonist/antagonist effects of taurine are pharmacologically specific and qualify taurine as a partial GABA agonist in this type of allosteric interaction. However, taurine causes opposite effects on Flu binding when measured at 0-4 degrees C: taurine interacts with a bicuculline insensitive site to inhibit Flu binding by increasing the KD. Taurine inhibition of Flu binding is not overcome by increasing concentrations of GABA. Although the mechanism of taurine inhibition of Flu binding at 0-4 degrees C is unclear, it may be an indirect effect of taurine interaction with membrane phospholipids.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Decreased Astrocytic Thrombospondin-1 Secretion After Chronic Ammonia Treatment Reduces the Level of Synaptic Proteins: In Vitro and In Vivo Studies

    PubMed Central

    Jayakumar, A. R.; Tong, X. Y.; Curtis, K. M.; Ruiz-Cordero, R.; Shamaladevi, N.; Abuzamel, M.; Johnstone, J.; Gaidosh, G.; Rama Rao, K.V.; Norenberg, M. D.

    2014-01-01

    Chronic hepatic encephalopathy (CHE) is a major complication in patients with severe liver disease. Elevated blood and brain ammonia levels have been implicated in its pathogenesis, and astrocytes are the principal neural cells involved in this disorder. Since defective synthesis and release of astrocytic factors have been shown to impair synaptic integrity in other neurological conditions, we examined whether thrombospondin-1 (TSP-1), an astrocytic factor involved in the maintenance of synaptic integrity, is also altered in CHE. Cultured astrocytes were exposed to ammonia (NH4Cl, 0.5–2.5 mM) for 1–10 days, and TSP-1 content was measured in cell extracts and culture media. Astrocytes exposed to ammonia exhibited a reduction in intra- and extracellular TSP-1 levels. Exposure of cultured neurons to conditioned media (CM) from ammonia-treated astrocytes showed a decrease in synaptophysin, PSD95 and synaptotagmin levels. CM from TSP-1 overexpressing astrocytes that were treated with ammonia, when added to cultured neurons, reversed the decline in synaptic proteins. Recombinant TSP-1 similarly reversed the decrease in synaptic proteins. Metformin, an agent known to increase TSP-1 synthesis in other cell types also reversed the ammonia-induced TSP-1 reduction. Likewise, we found a significant decline in TSP-1 level in cortical astrocytes, as well as a reduction in synaptophysin content in vivo in a rat model of CHE. These findings suggest that TSP-1 may represent an important therapeutic target for CHE. PMID:25040426

  8. Assignment of the human GABA transporter gene (GABATHG) locus to chromosome 3p24-p25

    SciTech Connect

    Huang, Fang; Fei, Jian; Guo, Li-He

    1995-09-01

    An essential regulatory process of synaptic transmission is the inactivation of released neurotransmitters by the transmitter-specific uptake mechanism, {gamma}-Aminobutyric acid (GABA) is an inhibitory transmitter in the vertebrate central nervous system; its activity is terminated by a high-affinity Na{sup +} and Cl{sup -} -dependent specific GABA transporter (GAT), which carries the neurotransmitter to the presynaptic neuron and/or glial elements surrounding the synaptic cleft. Deficiency of the transporter may cause epilepsy and some other nervous diseases. The human GAT gene (GABATHG), approximately 25 kb in length, has been cloned and sequenced by our colleagues (7). Here the results of the in situ hybridization mapping with the gene are presented. 10 refs., 1 fig.

  9. Potentiating effect of eszopiclone on GABA(A) receptor-mediated responses in pedunculopontine neurons.

    PubMed

    Ye, Meijun; Garcia-Rill, Edgar

    2009-07-01

    The pedunculopontine nucleus (PPN) is part of the cholinergic arm of the reticular activating system, which is mostly active during waking and REM sleep. GABAergic modulation of this area appears to regulate sleep-wake cycles. Eszopiclone (ESZ), a nonbenzodiazepine hypnotic agent, appears to modulate GABAergic receptors. However, the action site of ESZ in the brain is still unresolved. We tested the hypothesis that ESZ acts by potentiating GABA(A) receptors on PPN neurons. Wholecell voltage clamp recordings were performed on PPN neurons in 7-15 day rat brainstem slices, and the potentiating effects of ESZ on the responses to the GABA(A) receptor agonist isoguvacine (IGV), and on GABA(A) receptor-mediated inhibitory post-synaptic currents (IPSCs), were determined. In the presence of tetrodotoxin, ESZ (1) increased the amplitude of the outward current induced by IGV, (2) increased its duration, and (3) enhanced the IGV-induced decrease in input resistance (Rin). The GABA(A) receptor antagonist gabazine (GBZ) blocked these effects. ESZ alone did not induce detectable currents or change Rin at a holding potential of -60 mV, but when held at 0 mV, ESZ induced an outward current in 13/21 PPN cells, an effect blocked by GBZ. ESZ also increased the amplitude (n = 18/21), duration (n = 17/21), and frequency (n = 13/15) of IPSCs. ESZ may potentiate GABA(A) inhibition in the PPN via pre- and post-synaptic modulation, which may underlie the hypnotic effects of ESZ. The differential effects of ESZ on both pre- and post-synaptic sites may partially explain why it has less significant side effects compared to other hypnotic agents.

  10. [Influence of exogenous gamma-aminobutyric acid (GABA) on GABA metabolism and amino acid contents in roots of melon seedling under hypoxia stress].

    PubMed

    Wang, Chun-Yan; Li, Jing-Rui; Xia, Qing-Ping; Wu, Xiao-Lei; Gao, Hong-Bo

    2014-07-01

    This paper investigated the influence of gamma-aminobutyric acid (GABA) on GABA metabolism and amino acid content under hypoxia stress by accurately controlling the level of dissolved oxygen in hydroponics, using the roots of melon 'Xiyu 1' seedlings as the test material. The results showed that compared with the control, the growth of roots was inhibited seriously under hypoxia stress. Meanwhile, the hypoxia-treated roots had significantly higher activities of glutamate decarboxylase (GAD), glutamate dehydrogenase (GDH), glutamate synthase (GOGAT), glutamine synthetase (GS), alanine aminotransferase (ALT), aspartate aminotransferase (AST) as well as the contents of GABA, pyruvic acid, alanine (Ala) and aspartic acid (Asp). But the contents of glutamic acid (Glu) and alpha-keto glutaric acid in roots under hypoxia stress was obviously lower than those of the control. Exogenous treatment with GABA alleviated the inhibition effect of hypoxia stress on root growth, which was accompanied by an increase in the contents of endogenous GABA, Glu, alpha-keto glutaric acid and Asp. Furthermore, under hypoxia stress, the activities of GAD, GDH, GOGAT, GS, ALT, AST as well as the contents of pyruvic acid and Ala significantly decreased in roots treated with GABA. However, adding GABA and viny-gamma-aminobutyric acid (VGB) reduced the alleviation effect of GABA on melon seedlings under hypoxia stress. The results suggested that absorption of GABA by roots could alleviate the injury of hypoxia stress to melon seedlings. This meant that GABA treatment allows the normal physiological metabolism under hypoxia by inhibiting the GAD activity through feedback and maintaining higher Glu content as well as the bal- ance of carbon and nitrogen.

  11. Stoichiometry of δ subunit containing GABA(A) receptors.

    PubMed

    Patel, B; Mortensen, M; Smart, T G

    2014-02-01

    Although the stoichiometry of the major synaptic αβγ subunit-containing GABAA receptors has consensus support for 2α:2β:1γ, a clear view of the stoichiometry of extrasynaptic receptors containing δ subunits has remained elusive. Here we examine the subunit stoichiometry of recombinant α4β3δ receptors using a reporter mutation and a functional electrophysiological approach. Using site-directed mutagenesis, we inserted a highly characterized 9' serine to leucine mutation into the second transmembrane (M2) region of α4, β3 and δ subunits that increases receptor sensitivity to GABA. Whole-cell, GABA-activated currents were recorded from HEK-293 cells co-expressing different combinations of wild-type (WT) and/or mutant α4(L297S), β3(L284S) and δ(L288S) subunits. Recombinant receptors containing one or more mutant subunits showed increased GABA sensitivity relative to WT receptors by approximately fourfold, independent of the subunit class (α, β or δ) carrying the mutation. GABA dose-response curves of cells co-expressing WT subunits with their respective L9'S mutants exhibited multiple components, with the number of discernible components enabling a subunit stoichiometry of 2α, 2β and 1δ to be deduced for α4β3δ receptors. Varying the cDNA transfection ratio by 10-fold had no significant effect on the number of incorporated δ subunits. Subunit stoichiometry is an important determinant of GABAA receptor function and pharmacology, and δ subunit-containing receptors are important mediators of tonic inhibition in several brain regions. Here we demonstrate a preferred subunit stoichiometry for α4β3δ receptors of 2α, 2β and 1δ. © 2013 The British Pharmacological Society.

  12. Effect of GABA, a Bacterial Metabolite, on Pseudomonas fluorescens Surface Properties and Cytotoxicity

    PubMed Central

    Dagorn, Audrey; Chapalain, Annelise; Mijouin, Lily; Hillion, Mélanie; Duclairoir-Poc, Cécile; Chevalier, Sylvie; Taupin, Laure; Orange, Nicole; Feuilloley, Marc G. J.

    2013-01-01

    Different bacterial species and, particularly Pseudomonas fluorescens, can produce gamma-aminobutyric acid (GABA) and express GABA-binding proteins. In this study, we investigated the effect of GABA on the virulence and biofilm formation activity of different strains of P. fluorescens. Exposure of a psychotropic strain of P. fluorescens (MF37) to GABA (10−5 M) increased its necrotic-like activity on eukaryotic (glial) cells, but reduced its apoptotic effect. Conversely, muscimol and bicuculline, the selective agonist and antagonist of eukaryote GABAA receptors, respectively, were ineffective. P. fluorescens MF37 did not produce biosurfactants, and its caseinase, esterase, amylase, hemolytic activity or pyoverdine productions were unchanged. In contrast, the effect of GABA was associated to rearrangements of the lipopolysaccharide (LPS) structure, particularly in the lipid A region. The surface hydrophobicity of MF37 was marginally modified, and GABA reduced its biofilm formation activity on PVC, but not on glass, although the initial adhesion was increased. Five other P. fluorescens strains were studied, and only one, MFP05, a strain isolated from human skin, showed structural differences of biofilm maturation after exposure to GABA. These results reveal that GABA can regulate the LPS structure and cytotoxicity of P. fluorescens, but that this property is specific to some strains. PMID:23743829

  13. Inhibition of GABA-gated chloride channels by 12,14-dichlorodehydroabietic acid in mammalian brain

    PubMed Central

    Nicholson, Russell A; Lees, George; Zheng, Jian; Verdon, Bernard

    1999-01-01

    12,14-dichlorodehydroabietic acid (12,14-Cl2DHA) reduced GABA-stimulated uptake of 36Cl− into mouse brain synaptoneurosomes suggesting inhibition of mammalian GABAA receptor function. 12,14-Cl2DHA did not affect the binding of [3H]-muscimol to brain membranes but displaced specifically bound [3H]-EBOB. The inhibitory effect on [3H]-EBOB binding was not reversible. 12,14-Cl2DHA reduced the availability of [3H]-EBOB binding sites (Bmax) without changing the KD of the radioligand for remaining sites. 12,14-Cl2DHA did not affect the rate of association of [3H]-EBOB with its chloride channel receptor, but increased the initial rate of [3H]-EBOB dissociation. 12,14-Cl2DHA enhanced the incidence of EPSCs when rapidly applied to cultured rat cortical neurones. Longer exposures produced block of IPSCs with marked increases in the frequency of EPSCs and min EPSCs. 12,14-Cl2DHA also irreversibly suppressed chloride currents evoked by pulses of exogenous GABA in these cells. Ultimately, 12,14-Cl2DHA inhibited all synaptic traffic and action currents in current clamped cells indicating that, in contrast to picrotoxinin (which causes paroxysmal bursting), it is not fully selective for the GABAA receptor-chloride channel complex. The depolarizing block seen with 12,14-Cl2DHA in amphotericin-perforated preparations implicates loss of Ca2+ buffering in the polarity change and this may account for inhibition of spontaneous action potentials. Our investigation demonstrates that 12,14-Cl2DHA blocks GABA-dependent chloride entry in mammalian brain and operates as a non-competitive insurmountable GABAA antagonist. The mechanism likely involves either irreversible binding of 12,14-Cl2DHA to the trioxabicyclooctane recognition site or a site that is allosterically coupled to it. We cannot exclude, however, the possibility that 12,14-Cl2DHA causes localized proteolysis or more extensive conformational change within a critical subunit of the chloride channel. PMID:10204999

  14. [GABA, a key transmitter for fetal brain maturation].

    PubMed

    Ben-Ari, Yehezkel

    2007-01-01

    GABA, the principal inhibitory transmitter excites immature neurons in all animal species studied. This is due to the higher intracellular concentration of chloride at early developmental stages. Excitatory actions of GABA play an important action in brain maturation. Recent observations also suggest an abrupt shift during delivery that exerts a neuro-protective action contributing to reduce the sequels of trauma and anoxic episodes. These observations have important clinical implications in relation to delivery associated insults but also preterm delivery and more generally consumption of agents during gestation.

  15. Developmental expression of GABA transporter-1 and 3 during formation of the GABAergic synapses in the mouse cerebellar cortex.

    PubMed

    Takayama, Chitoshi; Inoue, Yoshiro

    2005-08-08

    In the brain, gamma-amino butyric acid (GABA), released extrasynaptically and synaptically from GABAergic neurons, plays important roles in morphogenesis, expression of higher functions and so on. In the GABAergic transmission system, plasma membrane GABA transporters (GATs) mediate GABA-uptake from the synaptic cleft in the mature brain and are thought to mediate diacrine of cytosolic GABA in the immature brain. In the present study, we focused on two GATs (GAT-1 and GAT-3) in the mouse cerebellar cortex, which are widely localized in neural and glial cells. Firstly, we examined the localization of GATs in the dendrites and cell bodies of developing GABAergic neurons, where GABA is extrasynaptically distributed, to clarify the GABA-diacrine before synaptogenesis. Secondly, we examined the developmental changes in the localization of GATs to reveal the development of the GABA-uptake system. Neither transporter was detected within the dendrites and cell bodies of GABAergic neurons, including Purkinje, stellate, basket and Golgi cells, in the immature cerebellar cortex. GAT-1 was observed within the Golgi cell axon terminals after postnatal day 5 (P5) and presynaptic axons of stellate and basket cells after P7. GAT-3 was localized within the astrocyte processes, sealing the GABAergic synapses in the Purkinje cell and granular layers after P10. These results indicated that GABA-diacrine did not work in the mouse cerebellar cortex. The onset of GAT-1-expression was prior to that of GAT-3. GAT-1 started to be localized within the GABAergic axon terminals during synapse formation. GAT-3 started to be localized within astrocyte processes when they sealed the synapses.

  16. GABA transporters as targets for new drugs.

    PubMed

    Sałat, Kinga; Kulig, Katarzyna

    2011-02-01

    GABA, the principal inhibitory neurotransmitter in the cerebral cortex, maintains the inhibitory tone that counterbalances neuronal excitation. The identification and subsequent development of GABA-transport inhibitors has shown the important role that GABA transporters play in the control of the CNS. To date, four GABA transporters have been cloned (GAT1-4). Compounds that inhibit GABA uptake are targets for epilepsy treatment. Currently, they are also being investigated for other possible indications such as the treatment of psychosis, general anxiety and sleep disorders, drug addiction, acute and chronic pain. These and other issues are discussed in this article.

  17. Interneuron- and GABAA receptor-specific inhibitory synaptic plasticity in cerebellar Purkinje cells

    PubMed Central

    He, Qionger; Duguid, Ian; Clark, Beverley; Panzanelli, Patrizia; Patel, Bijal; Thomas, Philip; Fritschy, Jean-Marc; Smart, Trevor G.

    2015-01-01

    Inhibitory synaptic plasticity is important for shaping both neuronal excitability and network activity. Here we investigate the input and GABAA receptor subunit specificity of inhibitory synaptic plasticity by studying cerebellar interneuron–Purkinje cell (PC) synapses. Depolarizing PCs initiated a long-lasting increase in GABA-mediated synaptic currents. By stimulating individual interneurons, this plasticity was observed at somatodendritic basket cell synapses, but not at distal dendritic stellate cell synapses. Basket cell synapses predominantly express β2-subunit-containing GABAA receptors; deletion of the β2-subunit ablates this plasticity, demonstrating its reliance on GABAA receptor subunit composition. The increase in synaptic currents is dependent upon an increase in newly synthesized cell surface synaptic GABAA receptors and is abolished by preventing CaMKII phosphorylation of GABAA receptors. Our results reveal a novel GABAA receptor subunit- and input-specific form of inhibitory synaptic plasticity that regulates the temporal firing pattern of the principal output cells of the cerebellum. PMID:26179122

  18. Interneuron- and GABAA receptor-specific inhibitory synaptic plasticity in cerebellar Purkinje cells

    NASA Astrophysics Data System (ADS)

    He, Qionger; Duguid, Ian; Clark, Beverley; Panzanelli, Patrizia; Patel, Bijal; Thomas, Philip; Fritschy, Jean-Marc; Smart, Trevor G.

    2015-07-01

    Inhibitory synaptic plasticity is important for shaping both neuronal excitability and network activity. Here we investigate the input and GABAA receptor subunit specificity of inhibitory synaptic plasticity by studying cerebellar interneuron-Purkinje cell (PC) synapses. Depolarizing PCs initiated a long-lasting increase in GABA-mediated synaptic currents. By stimulating individual interneurons, this plasticity was observed at somatodendritic basket cell synapses, but not at distal dendritic stellate cell synapses. Basket cell synapses predominantly express β2-subunit-containing GABAA receptors; deletion of the β2-subunit ablates this plasticity, demonstrating its reliance on GABAA receptor subunit composition. The increase in synaptic currents is dependent upon an increase in newly synthesized cell surface synaptic GABAA receptors and is abolished by preventing CaMKII phosphorylation of GABAA receptors. Our results reveal a novel GABAA receptor subunit- and input-specific form of inhibitory synaptic plasticity that regulates the temporal firing pattern of the principal output cells of the cerebellum.

  19. Retinal and cortical afferents to the dorsal lateral geniculate nucleus of the turtle, Emys orbicularis: a combined axonal tracing, glutamate, and GABA immunocytochemical electron microscopic study.

    PubMed

    Kenigfest, N B; Repérant, J; Rio, J P; Belekhova, M G; Ward, R; Vesselkin, N P; Miceli, D; Herbin, M

    1998-02-22

    The dorsal lateral geniculate nucleus (GLd) of the turtle Emys orbicularis has been analyzed with axonal tracing methods and immunocytochemical techniques for glutamate (GLU) and gamma-aminobutyric acid (GABA), in combination with a quantitative study of the morphologic characteristics, distribution, and synaptology of the retinofugal and corticofugal terminals. Ultrastructural observations show that the vast majority of retinal terminals (Rtr) have clear, rounded synaptic vesicles and account for 16% of all profiles containing synaptic vesicles (PCSV). Their synaptic index (0.5) is low, and they make three times more contacts with the dendrites of projection cells than with those of interneurons. A low proportion of retinal terminals of a second category contain pleomorphic synaptic vesicles and are highly GABA immunoreactive. Axon terminals, unlabeled after intraocular injection of the tracer (SR), smaller in size and with more rounded clear synaptic vesicles, longer synaptic differentiations, and higher synaptic index than Rtr terminals, account for 19.7% of all PCSV and make asymmetric synaptic contacts with large dendrites of projection cells and less with the dendrites of interneurons. Some SR have been unambiguously identified as corticofugal terminals (Cg), either after cortical injection of the tracer (16%) or cortical lesion (37%). Retinal and Cg/SR terminals are spatially segregated within the GLd. Both are highly GLU immunoreactive, with the highest density of labeling over synaptic vesicles, suggesting that these terminals may use GLU as neurotransmitter. The level of GLU immunoreactivity of GABA-positive profiles is half that of Rtr and Cg/SR terminals and is greatest over mitochondria, possibly reflecting the 'metabolic' pool of GLU that serves as a precursor in the formation of GABA.

  20. The developmental switch in GABA polarity is delayed in fragile X mice.

    PubMed

    He, Qionger; Nomura, Toshihiro; Xu, Jian; Contractor, Anis

    2014-01-08

    Delays in synaptic and neuronal development in the cortex are key hallmarks of fragile X syndrome, a prevalent neurodevelopmental disorder that causes intellectual disability and sensory deficits and is the most common known cause of autism. Previous studies have demonstrated that the normal progression of plasticity and synaptic refinement during the critical period is altered in the cortex of fragile X mice. Although the disruptions in excitatory synapses are well documented in fragile X, there is less known about inhibitory neurotransmission during the critical period. GABAergic transmission plays a crucial trophic role in cortical development through its early depolarizing action. At the end of cortical critical period, response properties of GABA transform into their mature hyperpolarizing type due to developmental changes in intracellular chloride homeostasis. We found that the timing of the switch from depolarizing to hyperpolarizing GABA is delayed in the cortex of fragile X mice and there is a concurrent alteration in the expression of the neuronal chloride cotransporter NKCC1 that promotes the accumulation of intracellular chloride. Disruption of the trophic effects of GABA during cortical development could contribute to the altered trajectory of synaptic maturation in fragile X syndrome.

  1. Gamma-amino butyric acid (GABA) synthesis of Lactobacillus in fermentation of defatted rice bran extract

    NASA Astrophysics Data System (ADS)

    Dat, Lai Quoc; Ngan, Tran Thi Kim; Nu, Nguyen Thi Xuan

    2017-09-01

    This research focused on the synthesis of GABA by Lactobacillus bacteria in fermentation of defatted rice bran extract without adding glutamate. Two strains of Lactobacillus were investigated into capacity of GABA synthesis. Result indicates that, Lactobacillus brevis VTCC - B - 454 exhibited the higher capacity of GABA synthesis in fermentation of defatted rice bran extract than that of Lactobacillus plantarum VTCC - B - 890. Total dissolved solid (TDS), free amino acids (AA) and reducing sugar (RS) contents in fermentation of defatted rice bran extract with two strains also significantly decreased. At pH 5 and 9 %w/w of TDS content in defatted rice bran extract, Lactobacillus brevis VTCC - B - 454 accumulated 2,952 ppm of GABA in 24 hours of fermentation. The result implies that fermentation with Lactobacillus brevis VTCC - B - 454 can be applied for GABA production from defatted rice bran extract.

  2. Timing of the developmental switch in GABA(A) mediated signaling from excitation to inhibition in CA3 rat hippocampus using gramicidin perforated patch and extracellular recordings.

    PubMed

    Tyzio, Roman; Holmes, Gregory L; Ben-Ari, Yehezkiel; Khazipov, Roustem

    2007-01-01

    The timing of the developmental switch in the GABA(A) mediated responses from excitatory to inhibitory was studied in Wistar rat CA3 hippocampal pyramidal cells using gramicidin perforated patch-clamp and extracellular recordings. Gramicidin perforated patch recordings revealed a gradual developmental shift in the reversal potential of synaptic and isoguvacine-induced GABA(A) mediated responses from -55 +/- 4 mV at postnatal days P0-2 to -74 +/- 3 mV at P13-15 with a midpoint of disappearance of the excitatory effects of GABA at around P8. Extracellular recordings in CA3 pyramidal cell layer revealed that the effect of isoguvacine on multiple unit activity (MUA) switched from an increase to a decrease at around P10. The effect of synaptic GABA(A) mediated responses on MUA switched from an increase to a decrease at around P8. It is concluded that the developmental switch in the action of GABA via GABA(A) receptors from excitatory to inhibitory occurs in Wistar rat CA3 pyramidal cells at around P8-10, an age that coincides with the transition from immature to mature hippocampal rhythms. We propose that excitatory GABA contributes to enhanced excitability and ictogenesis in the neonatal rat hippocampus.

  3. Apolipoprotein E level and cholesterol are associated with reduced synaptic amyloid beta in Alzheimer’s disease and apoE TR mouse cortex

    PubMed Central

    Arold, Stephen; Sullivan, Patrick; Bilousova, Tina; Teng, Edmond; Miller, Carol A.; Poon, Wayne W.; Vinters, Harry V.; Cornwell, Lindsey B.; Saing, Tommy; Cole, Gregory M.

    2012-01-01

    The apolipoprotein E4 allele (APOE4) contributes to Alzheimer’s disease (AD) risk and APOE2 is protective, but the relevant cellular mechanisms are unknown. We have used flow cytometry analysis to measure apolipoprotein E (apoE) and amyloid beta peptide (Aβ) levels in large populations of synaptic terminals from AD and aged cognitively normal controls, and demonstrate that modest but significant increases in soluble apoE levels accompany elevated Aβ in AD cortical synapses and in an APP/PS1 rat model of AD. Dual labeling experiments document co-localization of apoE and Aβ in individual synapses with concentration of Aβ in a small population of apoE-positive synapses in both AD and controls. Consistent with a clearance role, the apoE level was higher in Aβ-positive synapses in control cases. In aged targeted replacement mice expressing human apoE, apoE2/4 synaptic terminals demonstrated the highest level of apoE and the lowest level of Aβ compared to apoE3/3 and apoE4/4 lines. In apoE2/4 terminals, the pattern of immunolabeling for apoE and Aβ closely resembled the pattern in human control cases, and elevated apoE was accompanied by elevated free cholesterol in apoE2/4 synaptic terminals. These results are consistent with a role for APOE in Aβ clearance in AD synapses, and suggest that optimal lipidation of apoE2 compared to E3 and E4 makes an important contribution to Aβ clearance and synaptic function. PMID:22020632

  4. Actions of the insecticide fipronil, on dieldrin-sensitive and- resistant GABA receptors of Drosophila melanogaster.

    PubMed Central

    Hosie, A. M.; Baylis, H. A.; Buckingham, S. D.; Sattelle, D. B.

    1995-01-01

    1. Blocking actions of the novel insecticide, fipronil, were examined on GABA responses recorded from Xenopus oocytes expressing either wild type (dieldrin-sensitive) or mutant (dieldrin-resistant) forms of the Drosophila melanogaster GABA-gated chloride channel homo-oligomer, RDL (the product of the resistance to dieldrin locus: Rdl). 2. In the case of the wild type receptor, fipronil blocked GABA-induced currents inducing both a shift to the right in the GABA dose-response curve and depressing the maximum amplitude of responses to GABA. The potency of fipronil was dependent on the GABA concentration but was unaffected by membrane potential. 3. Mutant RDL GABA-receptors, which have a naturally occurring amino acid substitution (A302-->S) in the putative ion-channel lining region, conferring resistance to dieldrin and picrotoxinin, were markedly less sensitive to fipronil than the wild-type receptors. 4. Fipronil antagonism is qualitatively similar to that produced by the structurally distinct compound, picrotoxinin. As the mutation A302-->S reduces the potency of both fipronil and picrotoxinin, homooligomeric RDL receptors should facilitate detailed studies of the molecular basis of convulsant/insecticide antagonist actions on GABA receptors. PMID:7582519

  5. GABA excitation in mouse hilar neuropeptide Y neurons

    PubMed Central

    Fu, Li-Ying; van den Pol, Anthony N

    2007-01-01

    Neuropeptide Y-containing interneurons in the dentate hilar area play an important role in inhibiting the activity of hippocampal circuitry. Hilar cells are often among the first lost in hippocampal epilepsy. As many types of neurons are found in the hilus, we used a new transgenic mouse expressing green fluorescent protein (GFP) in a subset of neurons that colocalized neuropeptide Y (NPY), somatostatin (SST), and GABA for whole-cell, perforated, and cell-attached recording in 240 neurons. As these neurons have not previously been identifiable in live slices, they have not been the focus of physiological analysis. Hilar NPY neurons showed modest spike frequency adaptation, a large 15.6 ± 1.0 mV afterhyperpolarization, a mean input resistance of 335 ± 26 mΩ, and were capable of fast-firing. Muscimol-mediated excitatory actions were found in a nominally Ca2+-free/high-Mg2+ bath solution using cell-attached recording. GABAA receptor antagonists inhibited half the recorded neurons and blocked burst firing. Gramicidin perforated-patch recording revealed a GABA reversal potential positive to both the resting membrane potential and spike threshold. Together, these data suggest GABA is excitatory to many NPY cells. NPY and SST consistently hyperpolarized and reduced spike frequency in these neurons. No hyperpolarization of NPY on membrane potential was detected in the presence of tetrodotoxin, AP5, CNQX and bicuculline, supporting an indirect effect. Under similar conditions, SST hyperpolarized the cells, suggesting a direct postsynaptic action. Depolarizing actions of GABA and GABA-dependent burst-firing may synchronize a rapid release of GABA, NPY, and SST, leading to pre- and postsynaptic inhibition of excitatory hippocampal circuits. PMID:17204505

  6. PR-independent neurosteroid regulation of α2-GABA-A receptors in the hippocampus subfields.

    PubMed

    Reddy, Doodipala Samba; Gangisetty, Omkaram; Wu, Xin

    2017-03-15

    Progesterone (P) binding to the intracellular progesterone receptors (PRs) plays a key role in epilepsy via modulation of GABA-A receptor plasticity in the brain. This is thought to occur via conversion of P to neurosteroids such as allopregnanolone, an allosteric modulator of GABA-A receptors. In the female brain, the composition of GABA-A receptors is not static and undergoes dynamic spatial changes in response to fluctuations in P and neurosteroid levels. Synaptic α2-containing GABA-A receptors contribute to phasic neuronal excitability and seizure susceptibility. However, the mechanisms underlying α2-subunit plasticity remain unclear. Here, we utilized the neurosteroid synthesis inhibitor finasteride and PR knockout mice to investigate the role of PRs in α2-subunit in the hippocampus. α2-Subunit expression was significantly upregulated during the high-P state of diestrous stage and with P treatment in wildtype and PR knockout mice. In contrast, there was no change in α2-subunit expression when metabolism of P into neurosteroids was blocked by finasteride in both genotypes. These findings suggest that ovarian cycle-related P and neurosteroids regulate α2-GABA-A receptor expression in the hippocampus via a non-PR pathway, which may be relevant to menstrual-cycle related brain conditions.

  7. Effect of pressure on (/sup 3/H)GABA release by synaptosomes isolated from cerebral cortex

    SciTech Connect

    Gilman, S.C.; Colton, J.S.; Hallenbeck, J.M.

    1986-12-01

    High hydrostatic pressure has been shown to produce neurological changes in humans which manifest, in part, as tremor, myoclonic jerks, electroencephalographic changes, and convulsions. This clinical pattern has been termed high-pressure nervous syndrome (HPNS). These symptoms may represent an alteration in synaptic transmission in the central nervous system with the inhibitory neural pathways being affected in particular. Since gamma-aminobutyric acid (GABA) transmission has been implicated in other seizure disorders, it was of interest to study GABAergic function at high pressure. Isolated synaptosomes were used to follow GABA release at 67.7 ATA of pressure. The major observation was a 33% depression in total (/sup 3/H)GABA efflux from depolarized cerebrocortical synaptosomes at 67.7 ATA. The Ca2+-dependent component of release was found to be completely blocked during the 1st min of (/sup 3/H)GABA efflux with a slow rise over the subsequent 3 min. These findings lead us to conclude that high pressure interferes with the intraterminal cascade for Ca2+-dependent release of GABA.

  8. Functional Maturation of GABA Synapses During Postnatal Development of the Monkey Dorsolateral Prefrontal Cortex

    PubMed Central

    Gonzalez-Burgos, Guillermo; Miyamae, Takeaki; Pafundo, Diego E.; Yoshino, Hiroki; Rotaru, Diana C.; Hoftman, Gil; Datta, Dibyadeep; Zhang, Yun; Hammond, Mahjub; Sampson, Allan R.; Fish, Kenneth N.; Bard Ermentrout, G.; Lewis, David A.

    2015-01-01

    Development of inhibition onto pyramidal cells may be crucial for the emergence of cortical network activity, including gamma oscillations. In primate dorsolateral prefrontal cortex (DLPFC), inhibitory synaptogenesis starts in utero and inhibitory synapse density reaches adult levels before birth. However, in DLPFC, the expression levels of γ-aminobutyric acid (GABA) synapse-related gene products changes markedly during development until young adult age, suggesting a highly protracted maturation of GABA synapse function. Therefore, we examined the development of GABA synapses by recording GABAAR-mediated inhibitory postsynaptic currents (GABAAR-IPSCs) from pyramidal cells in the DLPFC of neonatal, prepubertal, peripubertal, and adult macaque monkeys. We found that the decay of GABAAR-IPSCs, possibly including those from parvalbumin-positive GABA neurons, shortened by prepubertal age, while their amplitude increased until the peripubertal period. Interestingly, both GABAAR-mediated quantal response size, estimated by miniature GABAAR-IPSCs, and the density of GABAAR synaptic appositions, measured with immunofluorescence microscopy, were stable with age. Simulations in a computational model network with constant GABA synapse density showed that the developmental changes in GABAAR-IPSC properties had a significant impact on oscillatory activity and predicted that, whereas DLPFC circuits can generate gamma frequency oscillations by prepubertal age, mature levels of gamma band power are attained at late stages of development. PMID:24904071

  9. Functional Maturation of GABA Synapses During Postnatal Development of the Monkey Dorsolateral Prefrontal Cortex.

    PubMed

    Gonzalez-Burgos, Guillermo; Miyamae, Takeaki; Pafundo, Diego E; Yoshino, Hiroki; Rotaru, Diana C; Hoftman, Gil; Datta, Dibyadeep; Zhang, Yun; Hammond, Mahjub; Sampson, Allan R; Fish, Kenneth N; Ermentrout, G Bard; Lewis, David A

    2015-11-01

    Development of inhibition onto pyramidal cells may be crucial for the emergence of cortical network activity, including gamma oscillations. In primate dorsolateral prefrontal cortex (DLPFC), inhibitory synaptogenesis starts in utero and inhibitory synapse density reaches adult levels before birth. However, in DLPFC, the expression levels of γ-aminobutyric acid (GABA) synapse-related gene products changes markedly during development until young adult age, suggesting a highly protracted maturation of GABA synapse function. Therefore, we examined the development of GABA synapses by recording GABAAR-mediated inhibitory postsynaptic currents (GABAAR-IPSCs) from pyramidal cells in the DLPFC of neonatal, prepubertal, peripubertal, and adult macaque monkeys. We found that the decay of GABAAR-IPSCs, possibly including those from parvalbumin-positive GABA neurons, shortened by prepubertal age, while their amplitude increased until the peripubertal period. Interestingly, both GABAAR-mediated quantal response size, estimated by miniature GABAAR-IPSCs, and the density of GABAAR synaptic appositions, measured with immunofluorescence microscopy, were stable with age. Simulations in a computational model network with constant GABA synapse density showed that the developmental changes in GABAAR-IPSC properties had a significant impact on oscillatory activity and predicted that, whereas DLPFC circuits can generate gamma frequency oscillations by prepubertal age, mature levels of gamma band power are attained at late stages of development.

  10. Rapid, activity-independent turnover of vesicular transmitter content at a mixed glycine/GABA synapse

    PubMed Central

    Apostolides, Pierre F.; Trussell, Laurence O.

    2013-01-01

    The release of neurotransmitter via the fusion of transmitter-filled, presynaptic vesicles is the primary means by which neurons relay information. However, little is known regarding the molecular mechanisms that supply neurotransmitter destined for vesicle filling, the endogenous transmitter concentrations inside presynaptic nerve terminals or the dynamics of vesicle refilling after exocytosis. We addressed these issues by recording from synaptically-coupled pairs of glycine/GABA co-releasing interneurons (cartwheel cells) of the mouse dorsal cochlear nucleus. We find that the plasma membrane transporter GlyT2 and the intracellular enzyme glutamate decarboxylase supply the majority of glycine and GABA, respectively. Pharmacological block of GlyT2 or glutamate decarboxylase led to rapid and complete rundown of transmission, whereas increasing GABA synthesis via intracellular glutamate uncaging dramatically potentiated GABA release within one minute. These effects were surprisingly independent of exocytosis, indicating that pre-filled vesicles re-equilibrated upon acute changes in cytosolic transmitter. Titration of cytosolic transmitter with postsynaptic responses indicated that endogenous, non-vesicular glycine/GABA levels in nerve terminals are 5 to 7 mM, and that vesicular transport mechanisms are not saturated under basal conditions. Thus, cytosolic transmitter levels dynamically set the strength of inhibitory synapses in a release-independent manner. PMID:23486948

  11. Restoring the spinal pain gate: GABA(A) receptors as targets for novel analgesics.

    PubMed

    Zeilhofer, Hanns Ulrich; Ralvenius, William T; Acuña, Mario A

    2015-01-01

    GABAA receptors (GABA(A)Rs) and glycine receptors are key elements of the spinal control of nociception and pain. Compromised functioning of these two transmitter systems contributes to chronic pain states. Restoring their proper function through positive allosteric modulators should constitute a rational approach to the treatment of chronic pain syndromes involving diminished inhibitory spinal pain control. Although classical benzodiazepines (i.e., full agonists at the benzodiazepine binding site of GABA(A)Rs) potentiate synaptic inhibition in spinal pain controlling circuits, they lack clinically relevant analgesic activity in humans. Recent data obtained from experiments in GABA(A)R point-mutated mice suggests dose-limiting sedative effects of classical nonspecific benzodiazepines as the underlying cause. Experiments in genetically engineered mice resistant to the sedative effects of classical benzodiazepines and studies with novel less sedating benzodiazepines have indeed shown that profound antihyperalgesia can be obtained at least in preclinical pain models. Present evidence suggests that compounds with high intrinsic activity at α2-GABA(A)R and minimal agonistic activity at α1-GABA(A)R should possess relevant antihyperalgesic activity without causing unwanted sedation. On-going preclinical studies in genetically engineered mice and clinical trials with more selective benzodiazepine site agonists should soon provide additional insights into this emerging topic.

  12. Postnatal alterations of GABA receptor profiles in the rat superior colliculus.

    PubMed

    Clark, S E; Garret, M; Platt, B

    2001-01-01

    slices were double labelled for GABA(C) receptors and neurofilament, some overlap was observed. Double labelling for the presynaptic protein synaptophysin and GABA(C) receptors showed proximity in some places, indicative of a partly synaptic location of GABA(C) receptors. When GABA(C) and GABA(A) receptors were labelled simultaneously, some but not all neurones showed immunoreactivity for both receptor types. In conclusion, all three GABA receptor types were found to be present in the superior colliculus from birth, and all show some form of postnatal modification, with GABA(A) receptors demonstrating the most dramatic changes. However, GABA(B) and GABA(C) receptors are modified significantly around the onset of input-specific activity. Together, this points towards a contribution of the GABAergic system to processes of postnatal maturation in the superficial superior colliculus.

  13. Synaptic Vesicle Endocytosis

    PubMed Central

    Saheki, Yasunori; De Camilli, Pietro

    2012-01-01

    Neurons can sustain high rates of synaptic transmission without exhausting their supply of synaptic vesicles. This property relies on a highly efficient local endocytic recycling of synaptic vesicle membranes, which can be reused for hundreds, possibly thousands, of exo-endocytic cycles. Morphological, physiological, molecular, and genetic studies over the last four decades have provided insight into the membrane traffic reactions that govern this recycling and its regulation. These studies have shown that synaptic vesicle endocytosis capitalizes on fundamental and general endocytic mechanisms but also involves neuron-specific adaptations of such mechanisms. Thus, investigations of these processes have advanced not only the field of synaptic transmission but also, more generally, the field of endocytosis. This article summarizes current information on synaptic vesicle endocytosis with an emphasis on the underlying molecular mechanisms and with a special focus on clathrin-mediated endocytosis, the predominant pathway of synaptic vesicle protein internalization. PMID:22763746

  14. Developmental Changes in Synaptic Distribution in Arcuate Nucleus Neurons

    PubMed Central

    Kirigiti, Melissa A.; Baquero, Karalee C.; Lee, Shin J.; Smith, M. Susan; Grove, Kevin L.

    2015-01-01

    Neurons coexpressing neuropeptide Y, agouti-related peptide, and GABA (NAG) play an important role in ingestive behavior and are located in the arcuate nucleus of the hypothalamus. NAG neurons receive both GABAergic and glutamatergic synaptic inputs, however, the developmental time course of synaptic input organization of NAG neurons in mice is unknown. In this study, we show that these neurons have low numbers of GABAergic synapses and that GABA is inhibitory to NAG neurons during early postnatal period. In contrast, glutamatergic inputs onto NAG neurons are relatively abundant by P13 and are comparatively similar to the levels observed in the adult. As mice reach adulthood (9–10 weeks), GABAergic tone onto NAG neurons increases. At this age, NAG neurons received similar numbers of inhibitory and EPSCs. To further differentiate age-associated changes in synaptic distribution, 17- to 18-week-old lean and diet-induced obesity (DIO) mice were studied. Surprisingly, NAG neurons from lean adult mice exhibit a reduction in the GABAergic synapses compared with younger adults. Conversely, DIO mice display reductions in the number of GABAergic and glutamatergic inputs onto NAG neurons. Based on these experiments, we propose that synaptic distribution in NAG neurons is continuously restructuring throughout development to accommodate the animals' energy requirements. PMID:26041922

  15. Presynaptic GABAB and adenosine A1 receptors regulate synaptic transmission to rat substantia nigra reticulata neurones.

    PubMed Central

    Shen, K Z; Johnson, S W

    1997-01-01

    1. Patch pipettes were used to record whole-cell currents under voltage clamp in substantia nigra zona reticulata (SNR) neurones in the rat midbrain slice. Bipolar electrodes evoked synaptic currents mediated by glutamate (EPSCs) and GABAA receptors (IPSCs). 2. Baclofen reduced the amplitude of IPSCs by 48% at its IC50 value of 0.60 microM. The GABAB antagonist CGP 35348 blocked this effect with a Kd value estimated by Schild analysis of 5 microM. 3. Adenosine reduced IPSCs by 48% at its IC50 value of 56 microM. Adenosine agonists reduced IPSCs with the following rank order of potency: CPA (N6-cyclopentyladenosine) > R-PIA (R(-)N6-(2-phenylisopropyl)adenosine) > CHA (N6-cyclohexyladenosine) = NECA (5'-N-ethylcarboxamidoadenosine) > 2-CADO (2-chloroadenosine) > adenosine. Schild analysis yielded a Kd value of 0.4 nM for antagonism of CPA by the adenosine A1 receptor antagonist DPCPX (8-cyclopentyl-1,3-dipropylxanthine). 4. Both baclofen and adenosine reduced the magnitude of paired-pulse depression of IPSCs, and neither blocked currents evoked by GABA, which was pressure-ejected from micropipettes. 5. Glutamate EPSCs were reduced by baclofen (IC50 = 0.78 microM) and adenosine (IC50 = 57 microM). Schild analysis yielded a Kd value of 11 microM for antagonism of baclofen-induced inhibition of EPSCs by CGP 35348. DPCPX (1 microM) completely blocked the inhibitory effects of adenosine (100 microM) and CPA (100 nM) on EPSCs. Neither adenosine nor baclofen reduced inward currents evoked by glutamate which was pressure-ejected from micropipettes. 6. These results show that presynaptic GABAB and A1 receptors reduce glutamate and GABA release from nerve terminals in the SNR. PMID:9409479

  16. Insect Herbivory-Elicited GABA Accumulation in Plants is a Wound-Induced, Direct, Systemic, and Jasmonate-Independent Defense Response

    PubMed Central

    Scholz, Sandra S.; Reichelt, Michael; Mekonnen, Dereje W.; Ludewig, Frank; Mithöfer, Axel

    2015-01-01

    The non-proteinogenic amino acid γ-aminobutyric acid (GABA) is present in all organisms analyzed so far. In invertebrates GABA acts as a neurotransmitter; in plants different functions are under discussion. Among others, its involvement in abiotic stress reactions and as a defensive compound against feeding insects is suggested. GABA is synthesized from glutamate by glutamate decarboxylases and degraded by GABA-transaminases. Here, in Arabidopsis thaliana, gad1/2 double mutants showing reduced GABA concentrations as well as GABA-enriched triple mutants (gad1/2 x pop2-5) were generated and employed for a systematic study of GABA induction, accumulation and related effects in Arabidopsis leaves upon herbivory. The results demonstrate that GABA accumulation is stimulated by insect feeding-like wounding by a robotic caterpillar, MecWorm, as well as by real insect (Spodoptera littoralis) herbivory. Higher GABA levels in both plant tissue and artificial dietary supplements in turn affect the performance of feeding larvae. GABA enrichment occurs not only in the challenged but also in adjacent leaf. This induced response is neither dependent on herbivore defense-related phytohormones, jasmonates, nor is jasmonate induction dependent on the presence of GABA. Thus, in Arabidopsis the rapid accumulation of GABA very likely represents a general, direct and systemic defense reaction against insect herbivores. PMID:26734035

  17. Effects of the gamma-aminobutyrate transaminase inhibitors gabaculine and gamma-vinyl GABA on gamma-aminobutyric acid release from slices of rat cerebral cortex

    SciTech Connect

    Bedwani, J.R.; Mehta, A.

    1987-01-01

    The release of (/sup 3/H)gamma-aminobutyric acid (GABA) from pre-loaded slices of rat cerebral cortex was investigated in the presence and absence of the GABA-transaminase inhibitors gabaculine and gamma-vinyl GABA. In the experiments carried out without an inhibitor, an ion-exchange column chromatographic technique was used to separate (/sup 3/H)GABA from tritiated metabolites released with it into the superfusate. The presence of gabaculine (5 microM) substantially reduced the Ca2+-dependence of the release of (/sup 3/H)GABA evoked by a 4 min 30 mM K+ pulse, whereas this was not appreciably reduced by the presence of gamma-vinyl GABA (2 mM or 10 mM). Nevertheless, the characteristics of (/sup 3/H)GABA release were not identical in the presence and absence of either inhibitor.

  18. Nerve growth factor in the hippocamposeptal system: Evidence for activity-dependent anterograde delivery and modulation of synaptic activity

    PubMed Central

    Guo, Lan; Yeh, Mason L.; Cuzon Carlson, Verginia C.; Johnson-Venkatesh, Erin M.; Yeh, Hermes H.

    2012-01-01

    Neurotrophins have been implicated in regulating neuronal differentiation, promoting neuronal survival, and modulating synaptic efficacy and plasticity. Depending on the target and mode of action, the prevailing view is that most neurotrophins can be trafficked and released either anterogradely or retrogradely in an activity-dependent manner. However, the prototypic neurotrophin, nerve growth factor (NGF), is not thought to be anterogradely delivered. Here we provide the neuroanatomical substrate for an anterograde hippocamposeptal transport of NGF by demonstrating its presence in mouse hippocampal GABAergic neurons and in their hippocamposeptal axons that ramify densely and abut neurons in the medial septum/diagonal band of Broca (MS/DB). We also demonstrate an activity-dependent increase in septal NGF levels that is dependent on the pattern of intrahippocampal stimulation. In addition, acute exposure to NGF, via activation of TrkA, attenuated GABAA receptor-mediated inhibitory synaptic currents and reduced sensitivity to exogenously applied GABA. These acute actions of NGF display cell type and functional selectivity, insofar as (1) they were found in cholinergic, but not GABAergic MS/DB neurons, and (2) glutamate-mediated excitatory synaptic activity as well as AMPA-activated current responses were unaffected. Our results advocate a novel anterograde, TrkA-mediated NGF signaling in the central nervous system. PMID:22649248

  19. Effect of GABA on oxidative stress in the skeletal muscles and plasma free amino acids in mice fed high-fat diet.

    PubMed

    Xie, Z X; Xia, S F; Qiao, Y; Shi, Y H; Le, G W

    2015-06-01

    Increased levels of plasma free amino acids (pFAAs) can disturb the blood glucose levels in patients with obesity, diabetes mellitus and metabolic syndrome (MS) and are associated with enhanced protein oxidation. Oxidation of proteins, especially in the muscles, can promote protein degradation and elevate the levels of pFAAs. Gamma-aminobutyric acid (GABA), a food additive, can reduce high-fat diet (HFD)-induced hyperglycaemia; however, the mechanisms remain unclear. The aim of this study was to evaluate the effects of GABA on protein oxidation and pFAAs changes. One hundred male C57BL/6 mice were randomly divided into five groups that were fed with control diet, HFD and HFD supplied with 0.2%, 0.12% and 0.06% GABA in drinking water for 20 weeks respectively. HFD feeding led to muscular oxidative stress, protein oxidation, pFAA disorders, hyperglycaemia and augmented plasma GABA levels. Treatment with GABA restored normally fasting blood glucose level and dose-dependently inhibited body weight gains, muscular oxidation and protein degradation. While medium and low doses of GABA mitigated HFD-induced pFAA disorders, the high dose of GABA deteriorated the pFAA disorders. Medium dose of GABA increased the levels of GABA, but high dose of GABA reduced the levels of plasma GABA and increased the activity of succinic semialdehyde dehydrogenase in the liver. Therefore, treatment with GABA mitigated HFD-induced hyperglycaemia probably by repairing HFD-induced muscular oxidative stress and pFAA disorders in mice. Our data also suggest that an optimal dose of GABA is crucial for the prevention of excess GABA-related decrease in the levels of pFAA and GABA as well as obesity. Journal of Animal Physiology and Animal Nutrition © 2014 Blackwell Verlag GmbH.

  20. A study on the involvement of GABA-transaminase in MCT induced pulmonary hypertension.

    PubMed

    Lingeshwar, Poorella; Kaur, Gurpreet; Singh, Neetu; Singh, Seema; Mishra, Akanksha; Shukla, Shubha; Ramakrishna, Rachumallu; Laxman, Tulsankar Sachin; Bhatta, Rabi Sankar; Siddiqui, Hefazat H; Hanif, Kashif

    2016-02-01

    Increased sympathetic nervous system (SNS) activity is associated with cardiovascular diseases but its role has not been completely explored in pulmonary hypertension (PH). Increased SNS activity is distinguished by elevated level of norepinephrine (NE) and activity of γ-Amino butyric acid Transminase (GABA-T) which degrades GABA, an inhibitory neurotransmitter within the central and peripheral nervous system. Therefore, we hypothesized that GABA-T may contribute in pathophysiology of PH by modulating level of GABA and NE. The effect of daily oral administration of GABA-T inhibitor, Vigabatrin (GVG, 50 and 75 mg/kg/day, 35 days) was studied following a single subcutaneous administration of monocrotaline (MCT, 60 mg/kg) in male SD rats. The pressure and hypertrophy of right ventricle (RV), oxidative stress, inflammation, pulmonary vascular remodelling were assessed after 35 days in MCT treated rats. The expression of GABA-T and HIF-1α was studied in lung tissue. The levels of plasma NE (by High performance liquid chromatography coupled with electrochemical detector; HPLC-ECD) and lung GABA (by liquid chromatography-mass spectrometry) were also estimated. GVG at both doses significantly attenuated increased in pressure (35.82 ± 4.80 mm Hg, p < 0.001; 28.37 ± 3.32 mm Hg, p < 0.001 respectively) and hypertrophy of RV, pulmonary vascular remodelling, oxidative stress and inflammation in lungs of MCT exposed rats. GVG also reduced the expression of GABA-T and HIF-1α in MCT treated rats. Increased NE level and decreased GABA level was also reversed by GVG in MCT exposed rats. GABA-T plays an important role in PH by modulating SNS activity and may be considered as a therapeutic target in PH.

  1. GABA System in Schizophrenia and Mood Disorders: A Mini Review on Third-Generation Imaging Studies

    PubMed Central

    Chiapponi, Chiara; Piras, Federica; Piras, Fabrizio; Caltagirone, Carlo; Spalletta, Gianfranco

    2016-01-01

    Third-generation neuroimaging research has been enriched by advances in magnetic resonance spectroscopy (MRS) measuring the concentration of important neurotrasmitters, such as the inhibitory amino acid GABA. Here, we performed a systematic mini-review on brain MRS studies measuring GABA concentration in patients affected by schizophrenia (SZ), bipolar disorder (BD), and major depressive disorder (MDD). We wondered whether multimodal investigations could overcome intrinsic technical limits of MRS giving a broader view of mental disorders pathogenesis. In SZ, unimodal studies gave mixed results, as increased, decreased, or unaltered GABA levels were reported depending on region, disease phase, and treatment. Conversely, multimodal results showed reduced level of glutamate, but not of GABA, in patients mirrored by in vitro biochemical findings revealing hippocampal reduction in glutamate signaling in SZ, and no deficits in GABA synthesis. Moreover, a mouse model confirmed the unique pathological characteristic of glutamate function in SZ. Unimodal studies in BD revealed again, inconsistent results, while no multimodal investigations including MRS on GABA exist. In MDD, unimodal studies could not differentiate patients from controls nor characterize high-risk subjects and remitted patients. However, a multimodal study combining functional magnetic resonance imaging and MRS revealed that cingulate cortex activity is related to glutamate, N-acetylaspartate levels and anhedonia in patients, and to GABA concentration in healthy subjects, improving the distinction between MDD and physiology. Overall, our results show that unimodal studies do not indicate GABA as a biomarker for the psychiatric disorders considered. Conversely, multimodal studies can widen the understanding of the link between psychopathology, genetics, neuroanatomy, and functional–biochemical brain activity in mental disorders. Although scarce, multimodal approaches seem promising for moving from GABA

  2. Daily changes of GABA and taurine concentrations in various hypothalamic areas are affected by chronic hyperprolactinemia.

    PubMed

    Duvilanski, Beatriz H; Alvarez, M Pilar; Castrillón, Patricia O; Cano, Pilar; Esquifino, Ana I

    2003-03-01

    This study was designed to characterize, in anterior, mediobasal, and posterior hypothalamic and median eminence, the 24h changes of gamma aminobutyric acid (GABA) and taurine (TAU) contents in adult male rats and to analyze whether chronic hyperprolactinemia may affect these patterns. Rats were turned hyperprolactinemic by a pituitary graft. Plasma prolactin (PRL) levels increased after pituitary grafting at all time points examined. A disruption of the circadian rhythm was observed in pituitary-grafted rats, whereas GABA and TAU content followed daily rhythms in all areas studied in controls. In the mediobasal hypothalamus, two peaks for each amino acid were found at midnight and midday. In the anterior hypothalamus, GABA and TAU showed only one peak of concentration at midnight. In the posterior hypothalamus, the values of both GABA and TAU were higher during the light as compared to the dark phase of the photoperiod. In the median eminence GABA content peaked at 20:00h, the time when TAU exhibited the lowest values. Hyperprolactinemia abolished the 24h changes of GABA in the mediobasal hypothalamus and reduced its content as compared to controls. Hyperprolactinemia advanced the diurnal peak of TAU to 12:00h in the mediobasal hypothalamus and did not modify the 24:00h peak. In the anterior hypothalamus, hyperprolactinemia increased GABA and TAU contents during the light phase while it decreased them during the dark phase of the photoperiod. In the posterior hypothalamus hyperprolactinemia did not modify GABA or TAU patterns as compared to controls. In the median eminence hyperprolactinemia increased the 20:00h peak of GABA and shift advanced the decrease in TAU content at 20:00h and its maximum at 24:00h as compared to controls. These data show that GABA and TAU content exhibit specific daily patterns in each hypothalamic region studied. PRL differentially affects the daily pattern of these amino acids in each hypothalamic region analyzed.

  3. Anion transport and GABA signaling

    PubMed Central

    Hübner, Christian A.; Holthoff, Knut

    2013-01-01

    Whereas activation of GABAA receptors by GABA usually results in a hyperpolarizing influx of chloride into the neuron, the reversed chloride driving force in the immature nervous system results in a depolarizing efflux of chloride. This GABAergic depolarization is deemed to be important for the maturation of the neuronal network. The concept of a developmental GABA switch has mainly been derived from in vitro experiments and reliable in vivo evidence is still missing. As GABAA receptors are permeable for both chloride and bicarbonate, the net effect of GABA also critically depends on the distribution of bicarbonate. Whereas chloride can either mediate depolarizing or hyperpolarizing currents, bicarbonate invariably mediates a depolarizing current under physiological conditions. Intracellular bicarbonate is quickly replenished by cytosolic carbonic anhydrases. Intracellular bicarbonate levels also depend on different bicarbonate transporters expressed by neurons. The expression of these proteins is not only developmentally regulated but also differs between cell types and even subcellular regions. In this review we will summarize current knowledge about the role of some of these transporters for brain development and brain function. PMID:24187533

  4. Inhibition of GABA uptake potentiates the conductance increase produced by GABA-mimetic compounds on single neurones in isolated olfactory cortex slices of the guinea-pig.

    PubMed

    Brown, D A; Scholfield, C N

    1984-09-01

    Membrane potential and input conductance were recorded in single neurones in slices of guinea-pig olfactory cortex in vitro. gamma-Aminobutyric acid (GABA) and GABA-mimetic compounds were applied by bath-perfusion. Potency was measured as the concentration required to double the input conductance. The potency of GABA was increased (i.e. the equi-effective concentrations were reduced) by 15.5 +/- 2.3 times (mean +/- s.e. mean) on reducing external [Na+] from 144 to 20 mmol l-1, by replacement with Mg2+. Corresponding potency changes for other agonists were + 10.8 +/- 2.5 for 3-aminopropanesulphonic acid (3-APS); 3.25 +/- 1.06 for isoguvacine and 2.43 +/- 0.69 for muscimol. Nipecotic acid (0.5 mM) produced the following increases in potency: GABA 2.68 +/- 0.02; 3-aminopropanesulphonic acid, 3.11 +/- 0.07; isoguvacine, 1.92 +/- 0.34; muscimol, 2.24 +/- 0.17. The concentration of GABA in the bathing fluid necessary to double input conductance increased with increasing depth of the recording site from the cut surface. The apparent potency fell 10 times for each 60 micron depth increment up to 150 micron. The recording depth also affected the apparent potency of muscimol and 3-APS but to a lesser extent. Reduction of external [Na+] reduced the depth-dependence of both GABA and 3-APS potency. No clear change in the duration of the recurrent inhibitory postsynaptic conductance could be detected in the presence of 0.5 mmol l-1 nipecotic acid. 6 It is suggested that agonist uptake by a Na+-dependent, nipecotic acid-sensitive mechanism severely attenuates the responses of olfactory neurones to exogenous GABA and to its analogues 3-APS, muscimol and isoguvacine, but has little immediate influence on the duration of the GABA-mediated inhibitory postsynaptic conductance.

  5. Differential synaptic organization of GABAergic bipolar cells and non-GABAergic (glutamatergic) bipolar cells in the tiger salamander retina.

    PubMed

    Yang, Chen-Yu; Zhang, Jun; Yazulla, Stephen

    2003-01-06

    The synaptic organizations of gamma-aminobutyric acid-immunoreactive (GABA-IR, GABAergic) and non-GABA-IR (non-IR, glutamatergic) bipolar cells in salamander retina were compared by postembedding immunoelectron microscopy. A total of 238 presynaptic bipolar cell synapses were studied; 61 were GABA-IR and 177 were non-IR. Both groups were similar in that (1). they made asymmetrical ribbon synapses as well as asymmetrical non-ribbon synapses; (2). they made ribbon synapses at dyads, triads, and monads; and (3). the vast majority of ribbon synapses ( approximately 90%) were with dyads. The differences were that synapses of GABA-IR bipolar cells had a higher proportion of (1). direct contact with ganglion cells, (2). non-ribbon synapses, (3). output to GABA-IR amacrine cells, and (4). output in sublamina a. Overall, the output of GABA-IR ribbons was equally split between amacrine and ganglion cell processes, whereas for non-IR ribbons, it was approximately 2:1 in favor of amacrine cells. The ribbon:non-ribbon synapse ratio was approximately 1.2:1 (33:28) for GABA-IR but approximately 2:1 (118:59) for non-IR terminals. Thus, GABA-IR bipolar cells made more direct contacts with ganglion cells and used a higher proportion of non-ribbon synapses. GABA-IR dyads were more likely to contact GABA-IR amacrine profiles (52% vs. 38%). Finally, GABA-IR ribbon synapses were more common in sublamina a than sublamina b (2:1), whereas non-IR synapses were equally present in sublaminas a and b. This differential targeting of ganglion cells and amacrine cells in the OFF vs. ON layers indicates a difference in the role of bipolar cells in the generation of receptive field properties, depending on whether or not they use GABA as well as glutamate for their transmitter.

  6. Presence of a low molecular weight endogenous inhibitor on 3H-muscimol binding in synaptic membranes

    NASA Astrophysics Data System (ADS)

    Yoneda, Yukio; Kuriyama, Kinya

    1980-06-01

    The specific binding of 3H-muscimol to synaptic membrane preparations obtained from the rat brain has been thought to reflect the association of γ-aminobutyric acid (GABA), a potential candidate as an inhibitory neurotransmitter in the mammalian central nervous system (CNS), with its synaptic receptors1,2. Treatment of synaptic membranes with Triton X-100 significantly increases the specific binding of 3H-muscimol2. Several reports also indicate the presence of endogenous substances, such as GABA3, acidic protein4 and phosphatidylethanolamine5, which inhibit Na-independent binding of 3H-GABA in the synaptic membranous fractions from the rat brain. We report here that in the supernatant obtained from Triton-treated synaptic membranes there exists a new type of endogenous inhibitor of 3H-muscimol binding which is apparently different from the inhibitory substances described previously3-5. The new inhibitor has a low molecular weight (MW) and probably originated from neurones rather than glial cells. We have termed this endogenous inhibitor the GABA receptor binding inhibitory factor (GRIF).

  7. Homomeric RDL and heteromeric RDL/LCCH3 GABA receptors in the honeybee antennal lobes: two candidates for inhibitory transmission in olfactory processing.

    PubMed

    Dupuis, Julien Pierre; Bazelot, Michaël; Barbara, Guillaume Stéphane; Paute, Sandrine; Gauthier, Monique; Raymond-Delpech, Valérie

    2010-01-01

    gamma-Aminobutyric acid (GABA)-gated chloride channel receptors are abundant in the CNS, where their physiological role is to mediate fast inhibitory neurotransmission. In insects, this inhibitory transmission plays a crucial role in olfactory information processing. In an effort to understand the nature and properties of the ionotropic receptors involved in these processes in the honeybee Apis mellifera, we performed a pharmacological and molecular characterization of GABA-gated channels in the primary olfactory neuropile of the honeybee brain-the antennal lobe (AL)-using whole cell patch-clamp recordings coupled with single-cell RT-PCR. Application of GABA onto AL cells at -110 mV elicited fast inward currents, demonstrating the existence of ionotropic GABA-gated chloride channels. Molecular analysis of the GABA-responding cells revealed that both subunits RDL and LCCH3 were expressed out of the three orthologs of Drosophila melanogaster GABA-receptor subunits encoded within the honeybee genome (RDL, resistant to dieldrin; GRD, GABA/glycine-like receptor of Drosophila; LCCH3, ligand-gated chloride channel homologue 3), opening the door to possible homo- and/or heteromeric associations. The resulting receptors were activated by insect GABA-receptor agonists muscimol and CACA and blocked by antagonists fipronil, dieldrin, and picrotoxin, but not bicuculline, displaying a typical RDL-like pharmacology. Interestingly, increasing the intracellular calcium concentration potentiated GABA-elicited currents, suggesting a modulating effect of calcium on GABA receptors possibly through phosphorylation processes that remain to be determined. These results indicate that adult honeybee AL cells express typical RDL-like GABA receptors whose properties support a major role in synaptic inhibitory transmission during olfactory information processing.

  8. GABA interaction with lipids in organic medium

    SciTech Connect

    Beltramo, D.; Kivatinitz, S.; Lassaga, E.; Arce, A.

    1987-08-10

    The interaction of TH-GABA and UC-glutamate with lipids in an aqueous organic partition system was studied. With this partition system TH-GABA and UC-glutamate were able to interact with sphingomyelin, sulfatide, phosphatidylcholine, phosphatidylserine, phosphatidylethanolamine and phosphatidic acid but not with cholesterol or ceramide. In an homogeneous aqueous medium the authors could not demonstrate any interaction between TH-GABA-lipids. The apparent dissociation constants (K/sub d/) for TH-GABA-lipids or UC-glutamate-lipids interactions inorganic medium were in the millimolar range and maximal charge between 3 and 7 moles of GABA or glutamate by mole of lipid. Amino acids such as glutamic acid, US -alanine and glycine displaced TH-GABA with the same potency as GABA itself; thus these results show that the interaction lacks pharmacological specificity. To detect this interaction lipid concentrations higher than 2 M were required and in the partition system TH-GABA and lipid phosphorus were both concentrated at the interface. Therefore, lipids tested with a biphasic partition system do not fulfill the classical criteria for a neurotransmitter receptor at least not for GABA and glutamate. 15 references, 1 figure, 3 tables.

  9. GABA pharmacology: the search for analgesics.

    PubMed

    McCarson, Kenneth E; Enna, S J

    2014-10-01

    Decades of research have been devoted to defining the role of GABAergic transmission in nociceptive processing. Much of this work was performed using rigid, orthosteric GABA analogs created by Povl Krogsgaard-Larsen and his associates. A relationship between GABA and pain is suggested by the anatomical distribution of GABA receptors and the ability of some GABA agonists to alter nociceptive responsiveness. Outlined in this report are data supporting this proposition, with particular emphasis on the anatomical localization and function of GABA-containing neurons and the molecular and pharmacological properties of GABAA and GABAB receptor subtypes. Reference is made to changes in overall GABAergic tone, GABA receptor expression and activity as a function of the duration and intensity of a painful stimulus or exposure to GABAergic agents. Evidence is presented that the plasticity of this receptor system may be responsible for the variability in the antinociceptive effectiveness of compounds that influence GABA transmission. These findings demonstrate that at least some types of persistent pain are associated with a regionally selective decline in GABAergic tone, highlighting the need for agents that enhance GABA activity in the affected regions without compromising GABA function over the long-term. As subtype selective positive allosteric modulators may accomplish these goals, such compounds might represent a new class of analgesic drugs.

  10. Fine structure of the dorsal lateral geniculate nucleus of the turtle, Emys orbicularis: a Golgi, combined HRP tracing and GABA immunocytochemical study.

    PubMed

    Kenigfest, N B; Repérant, J; Rio, J P; Belekhova, M G; tumanova, N L; Ward, R; Vesselkin, N P; Herbin, M; Chkeidze, D D; Ozirskaya, E V

    1995-06-12

    The afferent and efferent cortical projections of the dorsal lateral geniculate nucleus (GLD) of adult specimens of the turtle Emys orbicularis were investigated after intraocular or intracortical injections of horseradish peroxidase (HRP), and the distribution of gamma aminobutyric acid (GABA) immunoreactivity in the nucleus was carried out by immunocytochemical techniques, both techniques being combined with light and electron microscopy. In addition, some specimens were prepared for double-labeling of HRP and GABA immunoreactivity, and additional samples impregnated by a rapid Golgi technique. On purely morphological grounds, four types of neurons can be distinguished by light microscopy: two types of large cells in the cell plate which project to the cortex, and two types of smaller cells in the neuropil and optic tract which do not. The small cells are consistently GABA-immunoreactive, while the former are, with extremely rare exceptions, immunonegative for GABA. The supposition that the small neurons of the neuropil are interneurons is supported by electron microscopic observations; these strongly GABA-immunoreactive cells have large plicated nuclei surrounded by a thin layer of cytoplasm poorly endowed with organelles. The dendrites of these cells may contain pleomorphic synaptic vesicles (DCSVs) and appear to be presynaptic to other dendritic profiles. These DCSVs are occasionally contacted by GABA-immunoreactive axon terminals, and more frequently by retinal terminals consistently immunonegative for GABA. The latter, frequently organized in glomeruli, also make synaptic contacts with immunonegative dendrites arising from corticopetal neurons of the cell plate. Two major categories of GABA-immunoreactive axon terminals can be distinguished, and we are led to the conclusion that one of these represents an intrinsic GABAergic innervation of the GLD, while the second is tentatively interpreted as an extrinsic source of GABA to the nucleus, possibly from

  11. Influence of GABA and GABA-producing Lactobacillus brevis DPC 6108 on the development of diabetes in a streptozotocin rat model.

    PubMed

    Marques, T M; Patterson, E; Wall, R; O'Sullivan, O; Fitzgerald, G F; Cotter, P D; Dinan, T G; Cryan, J F; Ross, R P; Stanton, C

    2016-06-01

    The aim of this study was to investigate if dietary administration of γ-aminobutyric acid (GABA)-producing Lactobacillus brevis DPC 6108 and pure GABA exert protective effects against the development of diabetes in streptozotocin (STZ)-induced diabetic Sprague Dawley rats. In a first experiment, healthy rats were divided in 3 groups (n=10/group) receiving placebo, 2.6 mg/kg body weight (bw) pure GABA or L. brevis DPC 6108 (~10(9)microorganisms). In a second experiment, rats (n=15/group) were randomised to five groups and four of these received an injection of STZ to induce type 1 diabetes. Diabetic and non-diabetic controls received placebo [4% (w/v) yeast extract in dH2O], while the other three diabetic groups received one of the following dietary supplements: 2.6 mg/kg bw GABA (low GABA), 200 mg/kg bw GABA (high GABA) or ~10(9) L. brevis DPC 6108. L. brevis DPC 6108 supplementation was associated with increased serum insulin levels (P<0.05), but did not alter other metabolic markers in healthy rats. Diabetes induced by STZ injection decreased body weight (P<0.05), increased intestinal length (P<0.05) and stimulated water and food intake. Insulin was decreased (P<0.05), whereas glucose was increased (P<0.001) in all diabetic groups, compared with non-diabetic controls. A decrease (P<0.01) in glucose levels was observed in diabetic rats receiving L. brevis DPC 6108, compared with diabetic-controls. Both the composition and diversity of the intestinal microbiota were affected by diabetes. Microbial diversity in diabetic rats supplemented with low GABA was not reduced (P>0.05), compared with non-diabetic controls while all other diabetic groups displayed reduced diversity (P<0.05). L. brevis DPC 6108 attenuated hyperglycaemia induced by diabetes but additional studies are needed to understand the mechanisms involved in this reduction.

  12. States and synaptic algebras

    NASA Astrophysics Data System (ADS)

    Foulis, David J.; Jenčová, Anna; Pulmannová, Sylvia

    2017-02-01

    Different versions of the notion of a state have been formulated for various so-called quantum structures. In this paper, we investigate the interplay among states on synaptic algebras and on its sub-structures. A synaptic algebra is a generalization of the partially ordered Jordan algebra of all bounded self-adjoint operators on a Hilbert space. The paper culminates with a characterization of extremal states on a commutative generalized Hermitian algebra, a special kind of synaptic algebra.

  13. Muscarinic receptor subtypes differentially control synaptic input and excitability of cerebellum-projecting medial vestibular nucleus neurons.

    PubMed

    Zhu, Yun; Chen, Shao-Rui; Pan, Hui-Lin

    2016-04-01

    Neurons in the vestibular nuclei have a vital function in balance maintenance, gaze stabilization, and posture. Although muscarinic acetylcholine receptors (mAChRs) are expressed and involved in regulating vestibular function, it remains unclear how individual mAChR subtypes regulate vestibular neuronal activity. In this study, we determined which specific subtypes of mAChRs control synaptic input and excitability of medial vestibular nucleus (MVN) neurons that project to the cerebellum. Cerebellum-projecting MVN neurons were labeled by a fluorescent retrograde tracer and then identified in rat brainstem slices. Quantitative PCR analysis suggested that M2 and M3 were the possible major mAChR subtypes expressed in the MVN. The mAChR agonist oxotremorine-M significantly reduced the amplitude of glutamatergic excitatory post-synaptic currents evoked by stimulation of vestibular primary afferents, and this effect was abolished by the M2-preferring antagonist AF-DX 116. However, oxotremorine-M had no effect on GABA-mediated spontaneous inhibitory post-synaptic currents of labeled MVN neurons. Furthermore, oxotremorine-M significantly increased the firing activity of labeled MVN neurons, and this effect was blocked by the M3-preferring antagonist J104129 in most neurons tested. In addition, AF-DX 116 reduced the onset latency and prolonged the excitatory effect of oxotremorine-M on the firing activity of labeled MVN neurons. Our findings suggest that M3 is the predominant post-synaptic mAChR involved in muscarinic excitation of cerebellum-projecting MVN neurons. Pre-synaptic M2 mAChR regulates excitatory glutamatergic input from vestibular primary afferents, which in turn influences the excitability of cerebellum-projecting MVN neurons. This new information has important therapeutic implications for treating vestibular disorders with mAChR subtype-selective agents. Medial vestibular nucleus (MVN) neurons projecting to the cerebellum are involved in balance control. We

  14. Neurosteroids shift partial agonist activation of GABA(A) receptor channels from low- to high-efficacy gating patterns.

    PubMed

    Bianchi, Matt T; Macdonald, Robert L

    2003-11-26

    Although GABA activates synaptic (alphabetagamma) GABA(A) receptors with high efficacy, partial agonist activation of alphabetagamma isoforms and GABA activation of the primary extrasynaptic (alphabetadelta) GABA(A) receptors are limited to low-efficacy activity, characterized by minimal desensitization and brief openings. The unusual sensitivity of alphabetadelta receptor channels to neurosteroid modulation prompted investigation of whether this high sensitivity was dependent on the delta subunit or the low-efficacy channel function that it confers. We show that the isoform specificity (alphabetadelta > alphabetagamma) of neurosteroid modulation could be reversed by conditions that reversed isoform-specific activity modes, including the use of beta-alanine to achieve increased efficacy with alphabetadelta receptors and taurine to render alphabetagamma receptors low efficacy. We suggest that neurosteroids preferentially enhance low-efficacy GABA(A) receptor activity independent of subunit composition. Allosteric conversion of partial to full agonism may be a general mechanism for reversibly scaling the efficacy of GABA(A) receptors to endogenous partial agonists.

  15. micro-Opioid receptor endocytosis prevents adaptations in ventral tegmental area GABA transmission induced during naloxone-precipitated morphine withdrawal.

    PubMed

    Madhavan, Anuradha; He, Li; Stuber, Garret D; Bonci, Antonello; Whistler, Jennifer L

    2010-03-03

    Chronic morphine drives adaptations in synaptic transmission thought to underlie opiate dependence. Here we examine the role of micro-opioid receptor (MOR) trafficking in one of these adaptations, specifically, changes in GABA transmission in the ventral tegmental area (VTA). To address this question, we used a knock-in mouse, RMOR (for recycling MOR), in which genetic change in the MOR promotes morphine-induced receptor desensitization and endocytosis in GABA interneurons of the VTA. In wild-type mice (postnatal days 23-28) chronic morphine (10 mg/kg, s.c., twice daily for 5 d), induced a cAMP-dependent increase in the probability of GABA release onto VTA dopamine neurons. The increased GABA release frequency correlated with physical dependence on morphine measured by counting somatic signs of morphine withdrawal, such as, tremors, jumps, rears, wet-dog shakes, and grooming behavior precipitated by subcutaneous administration of naloxone (NLX) (2 mg/kg). This adaptation in GABA release was prevented in RMOR mice given the same morphine treatment, implicating MOR trafficking in this morphine-induced change in plasticity. Importantly, treatment with the cAMP activity inhibitor rp-cAMPS [(R)-adenosine, cyclic 3',5'-(hydrogenphosphorothioate) triethylammonium] (50 ng/0.5 microl), directly to the VTA, attenuated somatic withdrawal signs to systemic morphine produced by intra-VTA NLX (500 ng/0.5 microl), directly tying enhanced cAMP-driven GABA release to naloxone-precipitated morphine withdrawal in the VTA.

  16. Synaptic inhibition by glycine acting at a metabotropic receptor in tiger salamander retina.

    PubMed

    Hou, Mingli; Duan, Lei; Slaughter, Malcolm M

    2008-06-15

    Glycine is the lone fast neurotransmitter for which a metabotropic pathway has not been identified. In retina, we found a strychnine-insensitive glycine response in bipolar and ganglion cells. This glycine response reduced high voltage-activated calcium current. It was G-protein mediated and protein kinase A dependent. The EC(50) of the metabotropic glycine response is 3 mum, an order of magnitude lower than the ionotropic glycine receptor in the same retina. The bipolar cell glutamatergic input to ganglion cells was suppressed by metabotropic glycine action. The synaptic output of about two-thirds of bipolar cells and calcium current in two-thirds of ganglion cells are sensitive to the action of glycine at metabotropic receptors, suggesting this signal regulates specific synaptic pathways in proximal retina. This study resolves the curious absence of a metabotropic glycine pathway in the nervous system and reveals that the major fast inhibitory neurotransmitters, GABA and glycine, both activate G-protein-coupled pathways as well.

  17. Toluene decreases Purkinje cell output by enhancing inhibitory synaptic transmission in the cerebellar cortex.

    PubMed

    Gmaz, Jimmie M; McKay, Bruce E

    2014-02-07

    Toluene belongs to a class of psychoactive drugs known as inhalants. Found in common household products such as adhesives, paint products, and aerosols, toluene is inhaled for its intoxicating and euphoric properties. Additionally, exposure to toluene disrupts motor behaviors in a manner consistent with impairments to cerebellar function. Previous work has suggested a role of GABA in mediating toluene's neurobehavioral effects, but how this manifests in the cerebellar cortex is not yet understood. In the present study, we examined the effects of toluene on cerebellar Purkinje cell action potential output and inhibitory synaptic transmission onto Purkinje cells using patch clamp electrophysiology in acute rat cerebellar slices. Toluene (1mM) reduced the frequency of Purkinje cell action potential output without affecting input resistance. Furthermore, toluene dose-dependently enhanced inhibitory synaptic transmission onto Purkinje cells, increasing the amplitude and frequency of inhibitory postsynaptic currents; no change in the frequency of action potentials from molecular layer interneurons was noted. The observed decreases in Purkinje cell action potential output could contribute to toluene-evoked impairments in cerebellar and motor functions. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. Presynaptic establishment of the synaptic cleft extracellular matrix is required for post-synaptic differentiation

    PubMed Central

    Rohrbough, Jeffrey; Rushton, Emma; Woodruff, Elvin; Fergestad, Tim; Vigneswaran, Krishanthan; Broadie, Kendal

    2007-01-01

    Formation and regulation of excitatory glutamatergic synapses is essential for shaping neural circuits throughout development. In a Drosophila genetic screen for synaptogenesis mutants, we identified mind the gap (mtg), which encodes a secreted, extracellular N-glycosaminoglycan-binding protein. MTG is expressed neuronally and detected in the synaptic cleft, and is required to form the specialized transsynaptic matrix that links the presynaptic active zone with the post-synaptic glutamate receptor (GluR) domain. Null mtg embryonic mutant synapses exhibit greatly reduced GluR function, and a corresponding loss of localized GluR domains. All known post-synaptic signaling/scaffold proteins functioning upstream of GluR localization are also grossly reduced or mislocalized in mtg mutants, including the dPix–dPak–Dock cascade and the Dlg/PSD-95 scaffold. Ubiquitous or neuronally targeted mtg RNA interference (RNAi) similarly reduce post-synaptic assembly, whereas post-synaptically targeted RNAi has no effect, indicating that presynaptic MTG induces and maintains the post-synaptic pathways driving GluR domain formation. These findings suggest that MTG is secreted from the presynaptic terminal to shape the extracellular synaptic cleft domain, and that the cleft domain functions to mediate transsynaptic signals required for post-synaptic development. PMID:17901219

  19. The TM2 6' position of GABA(A) receptors mediates alcohol inhibition.

    PubMed

    Johnson, W David; Howard, Rebecca J; Trudell, James R; Harris, R Adron

    2012-02-01

    Ionotropic GABA(A) receptors (GABA(A)Rs), which mediate inhibitory neurotransmission in the central nervous system, are implicated in the behavioral effects of alcohol and alcoholism. Site-directed mutagenesis studies support the presence of discrete molecular sites involved in alcohol enhancement and, more recently, inhibition of GABA(A)Rs. We used Xenopus laevis oocytes to investigate the 6' position in the second transmembrane region of GABA(A)Rs as a site influencing alcohol inhibition. We asked whether modification of the 6' position by substitution with larger residues or methanethiol labeling [using methyl methanethiosulfonate (MMTS)] of a substituted cysteine, reduced GABA action and/or blocked further inhibition by alcohols. Labeling of the 6' position in either α2 or β2 subunits reduced responses to GABA. In addition, methanol and ethanol potentiation increased after MMTS labeling or substitution with tryptophan or methionine, consistent with elimination of an inhibitory site for these alcohols. Specific alcohols, but not the anesthetic etomidate, competed with MMTS labeling at the 6' position. We verified a role for the 6' position in previously tested α2β2 as well as more physiologically relevant α2β2γ2s GABA(A)Rs. Finally, we built a novel molecular model based on the invertebrate glutamate-gated chloride channel receptor, a GABA(A)R homolog, revealing that the 6' position residue faces the channel pore, and modification of this residue alters volume and polarity of the pore-facing cavity in this region. These results indicate that the 6' positions in both α2 and β2 GABA(A)R subunits mediate inhibition by short-chain alcohols, which is consistent with the presence of multiple counteracting sites of action for alcohols on ligand-gated ion channels.

  20. Differences in cardiovascular responses to peripherally administered GABA as influenced by basal conditions and type of anaesthesia.

    PubMed

    Giuliani, S; Maggi, C A; Meli, A

    1986-07-01

    The cardiovascular (blood pressure, heart rate, cardiac contractility) effects of i.v. gamma-aminobutyric acid (GABA) were investigated in guinea-pigs anaesthetized with barbitone or urethane. GABA (0.1-10 mg kg-1) produced a transient 'depressive' effect on cardiovascular parameters which in barbitone-anaesthetized animals was followed by a transient 'excitatory' effect. Resting cardiovascular parameters were higher in urethane-as compared to barbitone-anaesthetized animals. Picrotoxin pretreatment (2 mg kg-1, i.v.) barely affected the cardiovascular changes produced by GABA in barbitone-anaesthetized animals. In picrotoxin pretreated animals anaesthetized with urethane, GABA produced an initial depression of cardiovascular parameters followed by an excitatory phase. Hexamethonium (20 mg kg-1, i.v.) suppressed or reduced markedly the GABA-induced cardiovascular changes both in barbitone- or urethane- anaesthetized animals. Reserpine pretreatment lowered resting cardiovascular parameters. In these animals, regardless of type of anaesthesia, the effects of i.v. GABA were of the 'excitatory' type only. Reserpine pretreated animals anaesthetized with barbitone were selected for further experiments. Various GABAA receptor agonists (homotaurine, muscimol, THIP, 5-aminovaleric acid) mimicked the 'excitatory' effect of GABA in reserpine pretreated animals anesthetized with barbitone and prevented the effects of subsequent GABA administration. On the other hand (+/-)-baclofen, a selective GABAB receptor agonist, had a slight depressant effect and did not prevent the 'excitatory' cardiovascular effects of GABA. Neither bicuculline nor picrotoxin pretreatment prevented the 'excitatory' cardiovascular effect of i.v. GABA in reserpine pretreated, guinea-pigs anaesthetized with barbitone. In adrenalectomized guinea-pigs or in preparations receiving i.v. phentolamine plus propranolol, GABA produced only a small 'depressant' effect on cardiovascular parameters. These findings

  1. Activity-dependent transport of GABA analogues into specific cell types demonstrated at high resolution using a novel immunocytochemical strategy.

    PubMed

    Pow, D V; Baldridge, W; Crook, D K

    1996-08-01

    We have raised antisera against the GABA analogues gamma-vinyl GABA, diaminobutyric acid and gabaculine. These analogues are thought to be substrates for high-affinity GABA transporters. Retinae were exposed to micromolar concentrations of these analogues in the presence or absence of uptake inhibitors and then fixed and processed for immunocytochemistry at the light and electron microscopic levels. Immunolabelling for gamma-vinyl GABA revealed specific labelling of GABAergic amacrine cells and displaced amacrine cells in retinae of rabbits, cats, chickens, fish and a monkey. GABA-containing horizontal cells of cat and monkey retinae failed to exhibit labelling for gamma-vinyl GABA, suggesting that they lacked an uptake system for this molecule. In light-adapted fish, gamma-vinyl GABA was readily detected in H1 horizontal cells; similar labelling was also observed in light-adapted chicken retinae. The pattern of labelling in the fish and chicken retinae was modified by dark adaptation, when labelling was greatly reduced in the horizontal cells, indicating the activity dependence of GABA (analogue) transport. Intraperitoneal injection of gamma-vinyl GABA into rats resulted in its transport across the blood-brain barrier and subsequent uptake into populations of GABAergic neurons. The other analogues investigated in this study exhibited different patterns of transport; gabaculine was taken up into glial cells, whilst diaminobutyric acid was taken up into neurons, glial cells and retinal pigment epithelia. Thus, these analogues are probably substrates for different GABA transporters. We conclude that immunocytochemical detection of the high-affinity uptake of gamma-vinyl GABA permits the identification of GABAergic neurons which are actively transporting GABA, and suggest that this novel methodology will be a useful tool in rapidly assessing the recent activity of GABAergic neurons at the cellular level.

  2. Ethanol attenuates sensory stimulus-evoked responses in cerebellar granule cells via activation of GABA(A) receptors in vivo in mice.

    PubMed

    Wu, Guang; Liu, Heng; Jin, Juan; Hong, Lan; Lan, Yan; Chu, Chun-Ping; Qiu, De-Lai

    2014-02-21

    Acute alcohol intoxication affects cerebellar motor regulation possibly by altering the transfer and integration of external information in cerebellar cortical neurons, resulting in a dysfunction of cerebellar motor regulation or a cerebellar atexia. However, the synaptic mechanisms of ethanol induced impairments of sensory information processing in cerebellar cortical neurons are not fully understand. In the present study, we used electrophysiological and pharmacological methods to study the effects of ethanol on the sensory stimulation-evoked responses in cerebellar granule cells (GCs) in vivo in urethane anesthetized mice. Air-puff stimulation of the ipsilateral whisker-pad evoked stimulus-on (P1) and stimulus-off responses (P2) in GCs of cerebellar Crus II. Cerebellar surface perfusion of ethanol did not alter the onset latency of the sensory stimulation-evoked responses, but reversible reduced the amplitude of P1 and P2. The ethanol-induced reduction of the GCs sensory responses was concentration-dependent. In the presence of ethanol, the mean half-width, area under curve, rise Tau and decay Tau of P1 were significantly decreased. Blockade of gamma-aminobutyric acid type A (GABA(A)) receptors activity induced an increase in amplitude of P1, and abolished the ethanol induced inhibition of the GCs sensory responses. These results indicate that ethanol inhibits the tactile evoked responses in cerebellar GCs through enhancement of GABA(A) receptors activity.

  3. GABA is the principal fast-acting excitatory transmitter in the neonatal brain.

    PubMed

    Leinekugel, X; Khalilov, I; McLean, H; Caillard, O; Gaiarsa, J L; Ben-Ari, Y; Khazipov, R

    1999-01-01

    gamma-aminobutyric acid (GABA) is the principal neurotransmitter of inhibition in the adult mammalian brain. However, at early stages of development, including the embryonic period and first week of postnatal life, GABA plays the role of main neurotransmitter of excitation. The paradoxical excitatory effect of GABA is caused by an inverted chloride gradient and, therefore, a depolarizing direction of GABA type A (GABAA) receptor mediated responses. In addition, another type of GABAergic inhibition mediated by postsynaptic GABA type B (GABAB) receptors is not functional at early stage of life. In the neonatal rat hippocampus, GABA, acting via GABAA receptors, activates voltage-gated sodium and calcium channels and potentiates the activity of N-methyl-D-aspartate (NMDA) receptors by reducing their voltage-dependent Mg2+ block. The temporal window when GABA exerts excitatory actions coincides with a particular pattern of activity of hippocampal neuronal network that is characterized by periodical giant depolarizing potentials (GDPs) reminiscent of interictal-like epileptiform discharges. Recent studies have shown that GDPs result from the synchronous discharge of GABAergic interneurons and principal glutamatergic pyramidal cells, and they are mediated by the synergistic excitatory actions of GABAA and glutamate receptors. GDPs provide synchronous intracellular Ca2+ oscillations and may, therefore, be implicated in hebbian modulation of developing synapses and activity-dependent formation of the hippocampal network.

  4. Regulation of (/sup 3/H)GABA release from strips of guinea pig urinary bladder

    SciTech Connect

    Shirakawa, J.; Taniyama, K.; Iwai, S.; Tanaka, C.

    1988-12-01

    The presence of receptors that regulate the release of gamma-aminobutyric acid (GABA) was studied in strips of the guinea pig urinary bladder. GABA (10(-8)-10(-5) M) and muscimol (10(-8)-10(-5) M), but not baclofen (10(-5) M), reduced the Ca2+-dependent, tetrodotoxin-resistant release of (/sup 3/H)GABA evoked by high K+ from the urinary bladder strips preloaded with (/sup 3/H)GABA. The inhibitory effect of muscimol was antagonized by bicuculline and potentiated by diazepam, clonazepam, and pentobarbital sodium. The potentiating effect of clonazepam was antagonized by Ro 15-1788. Acetylcholine (ACh) inhibited the high K+-evoked release of (/sup 3/H)GABA. The inhibitory effect of ACh was antagonized by atropine sulfate and pirenzepine but not by hexamethonium. Norepinephrine (NE) inhibited the evoked release of (/sup 3/H)GABA. The inhibitory effect of NE was mimicked by clonidine, but not by phenylephrine, and was antagonized by yohimbine but not by prazosin. These results provide evidence that the release of GABA from strips of guinea pig urinary bladder is regulated via the bicuculline-sensitive GABAA receptor, M1-muscarinic, and alpha 2-adrenergic receptors.

  5. GABA mediated excitation in immature rat CA3 hippocampal neurons.

    PubMed

    Cherubini, E; Rovira, C; Gaiarsa, J L; Corradetti, R; Ben Ari, Y

    1990-01-01

    Intracellular recordings from rat hippocampal neurons in vitro during the first postnatal week revealed the presence of spontaneous giant depolarizing potentials (GDPs). These were generated by the synchronous discharge of a population of neurons. GDPs reversed polarity at -27 and -51 mV when recorded with KCl or K-methylsulphate filled electrodes, respectively. GDPs were blocked by the GABAA receptor antagonist bicuculline (10 microM). Iontophoretic or bath applications of GABA (10-300 microM) in the presence of tetrodotoxin (1 microM), induced a membrane depolarization or in voltage clamp experiments an inward current which reversed polarity at the same potential as GDPs. The response to GABA was blocked in a non-competitive manner by bicuculline (10 microM) and did not desensitize. GABA mediated GDPs were presynaptically modulated by N-methyl-D-aspartate (NMDA) and non-NMDA receptors. Their frequency was reduced or blocked by NMDA receptor antagonists and by the rather specific non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). The frequency of GDPs was enhanced by glycine and D-serine (10-30 microM) in a strychnine insensitive manner. This effect was blocked by AP-5, suggesting that it was mediated by the allosteric modulatory site of the NMDA receptor. These observations suggest that most of the 'excitatory' drive in immature neurons is mediated by GABA acting on GABAA receptors; furthermore excitatory amino acids modulate the release of GABA by a presynaptic action on GABAergic interneurons.

  6. GABA (γ-Aminobutyric Acid) Uptake Via the GABA Permease GabP Represses Virulence Gene Expression in Pseudomonas syringae pv. tomato DC3000.

    PubMed

    McCraw, S L; Park, D H; Jones, R; Bentley, M A; Rico, A; Ratcliffe, R G; Kruger, N J; Collmer, A; Preston, G M

    2016-12-01

    The nonprotein amino acid γ-aminobutyric acid (GABA) is the most abundant amino acid in the tomato (Solanum lycopersicum) leaf apoplast and is synthesized by Arabidopsis thaliana in response to infection by the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 (hereafter called DC3000). High levels of exogenous GABA have previously been shown to repress the expression of the type III secretion system (T3SS) in DC3000, resulting in reduced elicitation of the hypersensitive response (HR) in the nonhost plant tobacco (Nicotiana tabacum). This study demonstrates that the GABA permease GabP provides the primary mechanism for GABA uptake by DC3000 and that the gabP deletion mutant ΔgabP is insensitive to GABA-mediated repression of T3SS expression. ΔgabP displayed an enhanced ability to elicit the HR in young tobacco leaves and in tobacco plants engineered to produce increased levels of GABA, which supports the hypothesis that GABA uptake via GabP acts to regulate T3SS expression in planta. The observation that P. syringae can be rendered insensitive to GABA through loss of gabP but that gabP is retained by this bacterium suggests that GabP is important for DC3000 in a natural setting, either for nutrition or as a mechanism for regulating gene expression. [Formula: see text] Copyright © 2016 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .

  7. Altered GABA(A) receptor subunit expression and pharmacology in human Angelman syndrome cortex.

    PubMed

    Roden, William H; Peugh, Lindsey D; Jansen, Laura A

    2010-10-15

    The neurodevelopmental disorder Angelman syndrome is most frequently caused by deletion of the maternally derived chromosome 15q11-q13 region, which includes not only the causative UBE3A gene, but also the beta(3)-alpha(5)-gamma(3) GABA(A) receptor subunit gene cluster. GABAergic dysfunction has been hypothesized to contribute to the occurrence of epilepsy and cognitive and behavioral impairments in this condition. In the present study, analysis of GABA(A) receptor subunit expression and pharmacology was performed in cerebral cortex from four subjects with Angelman syndrome and compared to that from control tissue. The membrane fraction of frozen postmortem neocortical tissue was isolated and subjected to quantitative Western blot analysis. The ratios of beta(3)/beta(2) and alpha(5)/alpha(1) subunit protein expression in Angelman syndrome cortex were significantly decreased when compared with controls. An additional membrane fraction was injected into Xenopus oocytes, resulting in incorporation of the brain membrane vesicles with their associated receptors into the oocyte cellular membrane. Two-electrode voltage-clamp analysis of GABA(A) receptor currents was then performed. Studies of GABA(A) receptor pharmacology in Angelman syndrome cortex revealed increased current enhancement by the alpha(1)-selective benzodiazepine-site agonist zolpidem and by the barbiturate phenobarbital, while sensitivity to current inhibition by zinc was decreased. GABA(A) receptor affinity and modulation by neurosteroids were unchanged. This shift in GABA(A) receptor subunit expression and pharmacology in Angelman syndrome is consistent with impaired extrasynaptic but intact to augmented synaptic cortical GABAergic inhibition, which could contribute to the epileptic, behavioral, and cognitive phenotypes of the disorder.

  8. Control of GABA Release at Mossy Fiber-CA3 Connections in the Developing Hippocampus.

    PubMed

    Safiulina, Victoria F; Caiati, Maddalena D; Sivakumaran, Sudhir; Bisson, Giacomo; Migliore, Michele; Cherubini, Enrico

    2010-01-01

    In this review some of the recent work carried out in our laboratory concerning the functional role of GABAergic signalling at immature mossy fibres (MF)-CA3 principal cell synapses has been highlighted. While in adulthood MF, the axons of dentate gyrus granule cells release onto CA3 principal cells and interneurons glutamate, early in postnatal life they release GABA, which exerts into targeted cells a depolarizing and excitatory action. We found that GABA(A)-mediated postsynaptic currents (MF-GPSCs) exhibited a very low probability of release, were sensitive to L-AP4, a group III metabotropic glutamate receptor agonist, and revealed short-term frequency-dependent facilitation. Moreover, MF-GPSCs were down regulated by presynaptic GABA(B) and kainate receptors, activated by spillover of GABA from MF terminals and by glutamate present in the extracellular medium, respectively. Activation of these receptors contributed to the low release probability and in some cases to synapses silencing. By pairing calcium transients, associated with network-driven giant depolarizing potentials or GDPs (a hallmark of developmental networks thought to represent a primordial form of synchrony between neurons), generated by the synergistic action of glutamate and GABA with MF activation increased the probability of GABA release and caused the conversion of silent synapses into conductive ones suggesting that GDPs act as coincident detector signals for enhancing synaptic efficacy. Finally, to compare the relative strength of CA3 pyramidal cell output in relation to their MF glutamatergic or GABAergic inputs in adulthood or in postnatal development, respectively, a realistic model was constructed taking into account different biophysical properties of these synapses.

  9. Traumatic alterations in GABA signaling disrupt hippocampal network activity in the developing brain

    PubMed Central

    Dzhala, Volodymyr; Valeeva, Guzel; Glykys, Joseph; Khazipov, Rustem; Staley, Kevin

    2012-01-01

    Severe head trauma causes widespread neuronal shear injuries and acute seizures. Shearing of neural processes might contribute to seizures by disrupting the transmembrane ion gradients that subserve normal synaptic signaling. To test this possibility, we investigated changes in intracellular chloride concentration ([Cl−]i) associated with the widespread neural shear injury induced during preparation of acute brain slices. In hippocampal slices and intact hippocampal preparations from immature CLM-1 mice, increases in [Cl−]i correlated with disruption of neural processes and biomarkers of cell injury. Traumatized neurons with higher [Cl−]i demonstrated excitatory GABA signaling, remained synaptically active, and facilitated network activity as assayed by the frequency of extracellular action potentials and spontaneous network-driven oscillations. These data support a more inhibitory role for GABA in the unperturbed immature brain, demonstrate the utility of the acute brain slice preparation for the study of the consequences of trauma, and provide potential mechanisms for both GABA-mediated excitatory network events in the slice preparation and early post-traumatic seizures. PMID:22442068

  10. Closing the loop on the GABA shunt in plants: are GABA metabolism and signaling entwined?

    PubMed

    Michaeli, Simon; Fromm, Hillel

    2015-01-01

    γ-Aminobutyric acid (GABA) is a non-proteinogenic amino acid that is found in uni- and multi-cellular organisms and is involved in many aspects of plant life cycle. GABA metabolism occurs by the action of evolutionary conserved enzymes that constitute the GABA shunt, bypassing two steps of the TCA cycle. The central position of GABA in the interface between plant carbon and nitrogen metabolism is well established. In parallel, there is evidence to support a role for GABA as a signaling molecule in plants. Here we cover some of the recent findings on GABA metabolism and signaling in plants and further suggest that the metabolic and signaling aspects of GABA may actually be inseparable.

  11. Closing the loop on the GABA shunt in plants: are GABA metabolism and signaling entwined?

    PubMed Central

    Michaeli, Simon; Fromm, Hillel

    2015-01-01

    γ-Aminobutyric acid (GABA) is a non-proteinogenic amino acid that is found in uni- and multi-cellular organisms and is involved in many aspects of plant life cycle. GABA metabolism occurs by the action of evolutionary conserved enzymes that constitute the GABA shunt, bypassing two steps of the TCA cycle. The central position of GABA in the interface between plant carbon and nitrogen metabolism is well established. In parallel, there is evidence to support a role for GABA as a signaling molecule in plants. Here we cover some of the recent findings on GABA metabolism and signaling in plants and further suggest that the metabolic and signaling aspects of GABA may actually be inseparable. PMID:26106401

  12. Excitatory action of GABA on immature neurons is not due to absence of ketone bodies metabolites or other energy substrates.

    PubMed

    Ben-Ari, Yehezkel; Tyzio, Roman; Nehlig, Astrid

    2011-09-01

    Brain slices incubated with glucose have provided most of our knowledge on cellular, synaptic, and network driven mechanisms. It has been recently suggested that γ-aminobutyric acid (GABA) excites neonatal neurons in conventional glucose-perfused slices but not when ketone bodies metabolites, pyruvate, and/or lactate are added, suggesting that the excitatory actions of GABA are due to energy deprivation when glucose is the sole energy source. In this article, we review the vast number of studies that show that slices are not energy deprived in glucose-containing medium, and that addition of other energy substrates at physiologic concentrations does not alter the excitatory actions of GABA on neonatal neurons. In contrast, lactate, like other weak acids, can produce an intracellular acidification that will cause a reduction of intracellular chloride and a shift of GABA actions. The effects of high concentrations of lactate, and particularly of pyruvate (4-5 mm), as used are relevant primarily to pathologic conditions; these concentrations not being found in the brain in normal "control" conditions. Slices in glucose-containing medium may not be ideal, but additional energy substrates neither correspond to physiologic conditions nor alter GABA actions. In keeping with extensive observations in a wide range of animal species and brain structures, GABA depolarizes immature neurons and the reduction of the intracellular concentration of chloride ([Cl(-)](i)) is a basic property of brain maturation that has been preserved throughout evolution. In addition, this developmental sequence has important clinical implications, notably concerning the higher incidence of seizures early in life and their long-lasting deleterious sequels. Immature neurons have difficulties exporting chloride that accumulates during seizures, leading to permanent increase of [Cl(-)](i) that converts the inhibitory actions of GABA to excitatory and hampers the efficacy of GABA-acting antiepileptic

  13. GABA localization in the nematode Ascaris

    SciTech Connect

    Guastella, J.

    1988-01-01

    A histochemical approach was used to examine the distribution of GABA-associated neurons in the nematode Ascaris, an organism whose small number of morphologically simple neurons make it an excellent preparation for analyzing neuronal phenotypes. Two GABAergic markers were examined: GABA-like immunoreactivity (GLIR), a marker for endogenous stores of GABA; and ({sup 3}H)-GABA uptake, a marker for GABA uptake sites. Strong GLIR was present in the cell bodies, neurites and commissures of dorsal and ventral inhibitory motorneurons present in this region. Strong GLIR was also present in the cell bodies and processes of the four RME neurons in the nerve ring and in several other ganglionic neurons. Staining was absent in excitatory motorneurons, in ventral cord interneurons and in muscle cells and hypodermis. GABA uptake sites were found in single neural processes in both the ventral and dorsal nerve cords. ({sup 3}H)-GABA labeling was also observed in the other two RME cells and several other cephalic neurons. Four putative cholinergic excitatory motorneurons in the retrovesicular ganglion (RVG) were heavily labeled. Ventral and dorsal nerve cord inhibitory motorneurons did not take up ({sup 3}H)-GABA. Labeling of the ventral cord excitatory motorneuron somata and cell bodies was at or slightly above background. Heavy labeling of muscle cells was also observed.

  14. GABA protects pancreatic beta cells against apoptosis by increasing SIRT1 expression and activity.

    PubMed

    Prud'homme, Gérald J; Glinka, Yelena; Udovyk, Oleksandr; Hasilo, Craig; Paraskevas, Steven; Wang, Qinghua

    2014-09-26

    We have previously shown that GABA protects pancreatic islet cells against apoptosis and exerts anti-inflammatory effects. Notably, GABA inhibited the activation of NF-κB in both islet cells and lymphocytes. NF-κB activation is detrimental to beta cells by promoting apoptosis. However, the mechanisms by which GABA mediates these effects are unknown. Because the above-mentioned effects mimic the activity of sirtuin 1 (SIRT1) in beta cells, we investigated whether it is involved. SIRT1 is an NAD(+)-dependent deacetylase that enhances insulin secretion, and counteracts inflammatory signals in beta cells. We found that the incubation of a clonal beta-cell line (rat INS-1) with GABA increased the expression of SIRT1, as did GABA receptor agonists acting on either type A or B receptors. NAD(+) (an essential cofactor of SIRT1) was also increased. GABA augmented SIRT1 enzymatic activity, which resulted in deacetylation of the p65 component of NF-κB, and this is known to interfere with the activation this pathway. GABA increased insulin production and reduced drug-induced apoptosis, and these actions were reversed by SIRT1 inhibitors. We examined whether SIRT1 is similarly induced in newly isolated human islet cells. Indeed, GABA increased both NAD(+) and SIRT1 (but not sirtuins 2, 3 and 6). It protected human islet cells against spontaneous apoptosis in culture, and this was negated by a SIRT1 inhibitor. Thus, our findings suggest that major beneficial effects of GABA on beta cells are due to increased SIRT1 and NAD(+), and point to a new pathway for diabetes therapy. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Presynaptic Na+-dependent transport and exocytose of GABA and glutamate in brain in hypergravity.

    NASA Astrophysics Data System (ADS)

    Borisova, T.; Pozdnyakova, N.; Krisanova, N.; Himmelreich, N.

    γ-Aminobutyric acid (GABA) and L-glutamate are the most widespread neurotransmitter amino acids in the mammalian central nervous system. GABA is now widely recognized as the major inhibitory neurotransmitter. L-glutamate mediates the most of excitatory synaptic neurotransmission in the brain. They involved in the main aspects of normal brain function. The nerve terminals (synaptosomes) offer several advantages as a model system for the study of general mechanisms of neurosecretion. Our data allowed to conclude that exposure of animals to hypergravity (centrifugation of rats at 10G for 1 hour) had a profound effect on synaptic processes in brain. Comparative analysis of uptake and release of GABA and glutamate have demonstrated that hypergravity loading evokes oppositely directed alterations in inhibitory and excitatory signal transmission. We studied the maximal velocities of [^3H]GABA reuptake and revealed more than twofold enhancement of GABA transporter activity (Vmax rises from 1.4 |pm 0.3 nmol/min/mg of protein in the control group to 3.3 ± 0.59 nmol/min/mg of protein for animals exposed to hypergravity (P ≤ 0.05)). Recently we have also demonstrated the significant lowering of glutamate transporter activity (Vmax of glutamate reuptake decreased from 12.5 ± 3.2 nmol/min/mg of protein in the control group to 5.6 ± 0.9 nmol/min/mg of protein in the group of animals, exposed to the hypergravity stress (P ≤ 0.05)). Significant changes occurred in release of neurotransmitters induced by stimulating exocytosis with the agents, which depolarized nerve terminal plasma membrane. Depolarization-evoked Ca2+-stimulated release was more abundant for GABA (7.2 ± 0.54% and 11,74 ±1,2 % of total accumulated label for control and hypergravity, respectively (P≤0.05)) and was essentially less for glutamate (14.4 ± 0.7% and 6.2 ± 1.9%) after exposure of animals to centrifuge induced artificial gravity. Changes observed in depolarization-evoked exocytotic release

  16. Evidence for GABA-Induced Systemic GABA Accumulation in Arabidopsis upon Wounding

    PubMed Central

    Scholz, Sandra S.; Malabarba, Jaiana; Reichelt, Michael; Heyer, Monika; Ludewig, Frank; Mithöfer, Axel

    2017-01-01

    The non-proteinogenic amino acid γ-aminobutyric acid (GABA) is present in all plant species analyzed so far. Its synthesis is stimulated by either acidic conditions occurring after tissue disruption or higher cytosolic calcium level. In mammals, GABA acts as inhibitory neurotransmitter but its function in plants is still not well understood. Besides its involvement in abiotic stress resistance, GABA has a role in the jasmonate-independent defense against invertebrate pests. While the biochemical basis for GABA accumulation in wounded leaves is obvious, the underlying mechanisms for wounding-induced GABA accumulation in systemic leaves remained unclear. Here, the Arabidopsis thaliana knock-out mutant lines pop2-5, unable to degrade GABA, and tpc1-2, lacking a wounding-induced systemic cytosolic calcium elevation, were employed for a comprehensive investigation of systemic GABA accumulation. A wounding-induced systemic GABA accumulation was detected in tpc1-2 plants demonstrating that an increased calcium level was not involved. Similarly, after both mechanical wounding and Spodoptera littoralis feeding, GABA accumulation in pop2-5 plants was significantly higher in local and systemic leaves, compared to wild-type plants. Consequently, larvae feeding on these GABA-enriched mutant plants grew significantly less. Upon exogenous application of a D2-labeled GABA to wounded leaves of pop2-5 plants, its uptake but no translocation to unwounded leaves was detected. In contrast, an accumulation of endogenous GABA was observed in vascular connected systemic leaves. These results suggest that the systemic accumulation of GABA upon wounding does not depend on the translocation of GABA or on an increase in cytosolic calcium. PMID:28382046

  17. Cortical GABA Levels in Primary Insomnia

    PubMed Central

    Morgan, Peter T.; Pace-Schott, Edward F.; Mason, Graeme F.; Forselius, Erica; Fasula, Madonna; Valentine, Gerald W.; Sanacora, Gerard

    2012-01-01

    Study Objectives: GABA is increasingly recognized as an important neurotransmitter for the initiation and maintenance of sleep. We sought to measure cortical GABA content through proton magnetic resonance spectroscopy (MRS) in persons with and without primary insomnia, and relate brain GABA levels to polysomnographic sleep measures. Design: Two-group comparison study. Setting: Outpatient study at a university research clinic. Participants: Non-medicated persons with primary insomnia (N = 16) and no sleep complaints (N = 17). Interventions: Participants kept sleep diaries and a regular time-in-bed schedule for 9 days, culminating in 2 consecutive nights of ambulatory polysomnography and a single proton MRS session. The main outcome measure was occipital GABA/creatine ratios; secondary measures included sleep measurements and relationship between polysomnographically measured time awake after sleep onset and occipital GABA content. Measurements and Results: The primary insomnia group was distinguished from persons with no sleep complaints on self-reported and polysomnographically measured sleep. The two groups did not differ in age, sex, body mass index, habitual bed- and wake-times, napping, use of caffeine, or use of cigarettes. Mean occipital GABA level was 12% higher in persons with insomnia than in persons without sleep complaints (P < 0.05). In both groups, GABA levels correlated negatively with polysomnographically measured time awake after sleep onset (P < 0.05). Conclusions: Increased GABA levels in persons with insomnia may reflect an allostatic response to chronic hyperarousal. The preserved, negative relationship between GABA and time awake after sleep onset supports this notion, indicating that the possible allostatic response is adaptive. Citation: Morgan PT; Pace-Schott EF; Mason GF; Forselius E; Fasula M; Valentine GW; Sanacora G. Cortical GABA levels in primary insomnia. SLEEP 2012;35(6):807-814. PMID:22654200

  18. A1R-A2AR heteromers coupled to Gs and G i/0 proteins modulate GABA transport into astrocytes.

    PubMed

    Cristóvão-Ferreira, Sofia; Navarro, Gemma; Brugarolas, Marc; Pérez-Capote, Kamil; Vaz, Sandra H; Fattorini, Giorgia; Conti, Fiorenzo; Lluis, Carmen; Ribeiro, Joaquim A; McCormick, Peter J; Casadó, Vicent; Franco, Rafael; Sebastião, Ana M

    2013-09-01

    Astrocytes play a key role in modulating synaptic transmission by controlling extracellular gamma-aminobutyric acid (GABA) levels via GAT-1 and GAT-3 GABA transporters (GATs). Using primary cultures of rat astrocytes, we show here that a further level of regulation of GABA uptake occurs via modulation of the GATs by the adenosine A1 (A1R) and A2A (A2AR) receptors. This regulation occurs through A1R-A2AR heteromers that signal via two different G proteins, Gs and Gi/0, and either enhances (A2AR) or inhibits (A1R) GABA uptake. These results provide novel mechanistic insight into how GPCR heteromers signal. Furthermore, we uncover a previously unknown mechanism where adenosine, in a concentration-dependent manner, acts via a heterocomplex of adenosine receptors in astrocytes to significantly contribute to neurotransmission at the tripartite (neuron-glia-neuron) synapse.

  19. GABA and 5-HT chitosan nanoparticles decrease striatal neuronal degeneration and motor deficits during liver injury.

    PubMed

    Shilpa, J; Paulose, C S

    2014-07-01

    The metabolic alterations resulted from hepatic injury and cell loss lead to synaptic defects and neurodegeneration that undoubtedly contribute motor deficits. In the present study, GABA and 5-HT chitosan nanoparticles mediated liver cell proliferation influenced by growth factor and cytokines and neuronal survival in corpus striatum of partially hepatectomised rats was evaluated. Liver cell proliferation was initiated and progressed by the combined effect of increased expression of growth factor, insulin like growth factor-1 and decreased expressions of cytokines, tumor necrosis factor-α and Akt-1. This was confirmed by the extent of incorporation of thymidine analogue, BrdU, in the DNA of rapidly dividing cells. Inappropriate influx of compounds to corpus striatum resulting from incomplete metabolism elevated GABAB and 5-HT2A neurotransmissions compared to those treated with nanoparticles. This directly influenced cyclic AMP response element binding protein, glial cell derived neurotrophic factor and brain derived neurotrophic factor in the corpus striatum that facilitate neurogenesis, neuronal survival, development, differentiation and neuroprotection. Motor deficits due to liver injury followed striatal neuronal damage were scored by grid walk and rotarod studies, which confirmed the regain of motor activity by GABA and 5-HT chitosan nanoparticle treatment. The present study revealed the therapeutic significance of GABA and 5-HT chitosan nanoparticles in liver based diseases and related striatal neuronal damage that influenced by GABA and 5-HT.

  20. Metabotropic GABAB receptors mediate GABA inhibition of acetylcholine release in the rat neuromuscular junction.

    PubMed

    Malomouzh, Artem I; Petrov, Konstantin A; Nurullin, Leniz F; Nikolsky, Evgeny E

    2015-12-01

    Gamma-aminobutyric acid (GABA) is an amino acid which acts as a neurotransmitter in the central nervous system. Here, we studied the effects of GABA on non-quantal, spontaneous, and evoked quantal acetylcholine (ACh) release from motor nerve endings. We found that while the application of 10 μM of GABA had no effect on spontaneous quantal ACh release, as detected by the frequency of miniature endplate potentials, GABA reduced the non-quantal ACh release by 57%, as determined by the H-effect value. Finally, the evoked quantal ACh release, estimated by calculating the quantal content of full-sized endplate potentials (EPPs), was reduced by 34%. GABA's inhibitory effect remained unchanged after pre-incubation with picrotoxin, an ionotropic GABAA receptor blocker, but was attenuated following application of the GABAB receptor blocker CGP 55845, which itself had no effect on ACh release. An inhibitor of phospholipase C, U73122, completely prevented the GABA-induced decrease in ACh release. Immunofluorescence demonstrated the presence of both subunits of the GABAB receptor (GABAB R1 and GABAB R2) in the neuromuscular junction. These findings suggest that metabotropic GABAB receptors are expressed in the mammalian neuromuscular synapse and their activation results in a phospholipase C-mediated reduction in the intensity of non-quantal and evoked quantal ACh release. We investigated the effect of gamma-aminobutyric acid (GABA) on neuromuscular transmission. GABA reduced the non-quantal and evoked quantal release of acetylcholine. These effects are mediated by GABAB receptors and are implemented via phospholipase C (PLC) activation. Our findings suggest that in the mammalian neuromuscular synapse, metabotropic GABAB receptors are expressed and their activation results in a reduction in the intensity of acetylcholine release. © 2015 International Society for Neurochemistry.

  1. Pharmacological characterization of the rhythmic synaptic drive onto lumbosacral motoneurons in the chick embryo spinal cord.

    PubMed

    Sernagor, E; Chub, N; Ritter, A; O'Donovan, M J

    1995-11-01

    The isolated spinal cord of the chick embryo generates episodes of rhythmic bursting in which sartorius (hip flexor) and femorotibialis (knee extensor) motoneurons exhibit characteristic patterns of activity. At the beginning of each cycle both sets of motoneurons discharge synchronously. Following this brief synchronous activation sartorius motoneurons stop firing at the time of peak femorotibialis activity, producing a period of alternation between the two sets of motoneurons. Intracellular recording from motoneurons has suggested that the pause is mediated by a synaptically induced shunt conductance. However, the pharmacological basis for this shunt and the nature of the excitatory drive to motoneurons is unknown. To address these questions we have investigated the pharmacology of the rhythmic, synaptic drive to lumbosacral motoneurons using local and bath application of several excitatory and inhibitory antagonists, and documenting their effects on motor output in E10-E12 chick embryos. Local application of bicuculline or picrotoxin over sartorius motoneurons abolished the pause in firing recorded from the sartorius muscle nerve. As a consequence, the pattern of sartorius and femorotibialis activity was similar and the motoneurons were coactive. The pause in sartorius firing was shortened following local application of the glycine antagonist strychnine the nicotinic, cholinergic antagonists mecamylamine, and dihydro-beta-erythroidine and several excitatory amino acid antagonists. Application of the GABA uptake inhibitor nipecotic acid depressed the slow potentials and discharge recorded from the sartorius muscle nerve. These findings suggest that the pause is determined primarily by synaptic inputs acting at motoneuron GABAA receptors with contributions from glycinergic, cholinergic, and glutamatergic inputs. The actions of locally applied GABA onto spinal neurons are consistent with these findings because the neurotransmitter depolarizes spinal neurons and

  2. Taurine content in different brain structures during ageing: effect on hippocampal synaptic plasticity.

    PubMed

    Suárez, Luz M; Muñoz, María-Dolores; Martín Del Río, Rafael; Solís, José M

    2016-05-01

    A reduction in taurine content accompanies the ageing process in many tissues. In fact, the decline of brain taurine levels has been associated with cognitive deficits whereas chronic administration of taurine seems to ameliorate age-related deficits such as memory acquisition and retention. In the present study, using rats of three age groups (young, adult and aged) we determined whether the content of taurine and other amino acids (glutamate, serine, glutamine, glycine, alanine and GABA) was altered during ageing in different brain areas (cerebellum, cortex and hippocampus) as well non-brain tissues (heart, kidney, liver and plasma). Moreover, using hippocampal slices we tested whether ageing affects synaptic function and plasticity. These parameters were also determined in aged rats fed with either taurine-devoid or taurine-supplemented diets. With age, we found heterogeneous changes in amino acid content depending on the amino acid type and the tissue. In the case of taurine, its content was reduced in the cerebellum of adult and aged rats, but it remained unchanged in the hippocampus, cortex, heart and liver. The synaptic response amplitude decreased in aged rats, although the late phase of long-term synaptic potentiation (late-LTP), a taurine-dependent process, was not altered. Our study highlights the stability of taurine content in the hippocampus during ageing regardless of whether taurine was present in the diet, which is consistent with the lack of changes detected in late-LTP. These results indicate that the beneficial effects of taurine supplementation might be independent of the replenishment of taurine stores.

  3. Impact of single-site axonal GABAergic synaptic events on cerebellar interneuron activity.

    PubMed

    de San Martin, Javier Zorrilla; Jalil, Abdelali; Trigo, Federico F

    2015-12-01

    Axonal ionotropic receptors are present in a variety of neuronal types, and their function has largely been associated with the modulation of axonal activity and synaptic release. It is usually assumed that activation of axonal GABA(A)Rs comes from spillover, but in cerebellar molecular layer interneurons (MLIs) the GABA source is different: in these cells, GABA release activates presynaptic GABA(A) autoreceptors (autoRs) together with postsynaptic targets, producing an autoR-mediated synaptic event. The frequency of presynaptic, autoR-mediated miniature currents is twice that of their somatodendritic counterparts, suggesting that autoR-mediated responses have an important effect on interneuron activity. Here, we used local Ca(2+) photolysis in MLI axons of juvenile rats to evoke GABA release from individual varicosities to study the activation of axonal autoRs in single release sites. Our data show that single-site autoR conductances are similar to postsynaptic dendritic conductances. In conditions of high [Cl(-)](i), autoR-mediated conductances range from 1 to 5 nS; this corresponds to ∼30-150 GABA(A) channels per presynaptic varicosity, a value close to the number of channels in postsynaptic densities. Voltage responses produced by the activation of autoRs in single varicosities are amplified by a Na(v)-dependent mechanism and propagate along the axon with a length constant of 91 µm. Immunolabeling determination of synapse location shows that on average, one third of the synapses produce autoR-mediated signals that are large enough to reach the axon initial segment. Finally, we show that single-site activation of presynaptic GABA(A) autoRs leads to an increase in MLI excitability and thus conveys a strong feedback signal that contributes to spiking activity.

  4. GABA metabolism pathway genes, UGA1 and GAD1, regulate replicative lifespan in Saccharomycescerevisiae

    SciTech Connect

    Kamei, Yuka; Tamura, Takayuki; Yoshida, Ryo; Ohta, Shinji; Fukusaki, Eiichiro; Mukai, Yukio

    2011-04-01

    extension. These results strongly suggest reduced activity of the GABA-metabolizing enzymes extends lifespan by shifting carbon metabolism toward respiration, as calorie restriction does.

  5. Effects of glutamate decarboxylase and gamma-aminobutyric acid (GABA) transporter on the bioconversion of GABA in engineered Escherichia coli.

    PubMed

    Le Vo, Tam Dinh; Kim, Tae Wan; Hong, Soon Ho

    2012-05-01

    Gamma-aminobutyric acid (GABA) is a non-essential amino acid and a precursor of pyrrolidone, a monomer of nylon 4. GABA can be biosynthesized through the decarboxylation of L: -glutamate by glutamate decarboxylase. In this study, the effects of glutamate decarboxylase (gadA, gadB), glutamate/GABA antiporter (gadC) and GABA aminotransferase (gabT) on GABA production were investigated in Escherichia coli. Glutamate decarboxylase was overexpressed alone or with the glutamate/GABA antiporter to enhance GABA synthesis. GABA aminotransferase, which redirects GABA into the TCA cycle, was knock-out mutated. When gadB and gadC were co-overexpressed in the gabT mutant strain, a final GABA concentration of 5.46 g/l was obtained from 10 g/l of monosodium glutamate (MSG), which corresponded to a GABA yield of 89.5%.

  6. Regulation of cognition and symptoms of psychosis: focus on GABA(A) receptors and glycine transporter 1.

    PubMed

    Möhler, Hanns; Rudolph, Uwe; Boison, Detlev; Singer, Philipp; Feldon, Joram; Yee, Benjamin K

    2008-07-01

    Adaptive purposeful behaviour depends on appropriate modifications of synaptic connectivity that incorporate an organism's past experience. At least some forms of such synaptic plasticity are believed to be mediated by NMDA receptors (NMDARs). Complementary interaction with inhibitory neurotransmission mediated by GABA(A) receptors, and upstream control of the excitability of NMDARs by glycine availability can greatly influence the efficacy of NMDAR mediated neuroplasticity, and thereby exert significant effects on cognition. Memory, selective attention or sensorimotor gating functions can be modified in mice with a reduction of alpha(5)GABA(A) receptors in the hippocampus or a selective deletion of glycine transporter 1 (GlyT1) in the forebrain. Both genetic manipulations altered the formation or persistence of associative links leading to distinct phenotypes on trace conditioning, extinction learning, latent inhibition, working memory, and object recognition. Behavioural assays of latent inhibition, prepulse inhibition, working memory, and sensitivity to psychostimulants in particular suggest that alpha(3) and alpha(5) subunit-containing GABA(A) receptors as well as GlyT1 are potential sites for ameliorating psychotic-like behaviour. Taken together, these results qualify distinct GABA-A receptor subtypes and GlyT1 as molecular targets for the development of a new pharmacology in the treatment of cognitive decline and psychotic symptoms.

  7. Optogenetic stimulation of GABA neurons can decrease local neuronal activity while increasing cortical blood flow

    PubMed Central

    Anenberg, Eitan; Chan, Allen W; Xie, Yicheng; LeDue, Jeffrey M; Murphy, Timothy H

    2015-01-01

    We investigated the link between direct activation of inhibitory neurons, local neuronal activity, and hemodynamics. Direct optogenetic cortical stimulation in the sensorimotor cortex of transgenic mice expressing Channelrhodopsin-2 in GABAergic neurons (VGAT-ChR2) greatly attenuated spontaneous cortical spikes, but was sufficient to increase blood flow as measured with laser speckle contrast imaging. To determine whether the observed optogenetically evoked gamma aminobutyric acid (GABA)-neuron hemodynamic responses were dependent on ionotropic glutamatergic or GABAergic synaptic mechanisms, we paired optogenetic stimulation with application of antagonists to the cortex. Incubation of glutamatergic antagonists directly on the cortex (NBQX and MK-801) blocked cortical sensory evoked responses (as measured with electroencephalography and intrinsic optical signal imaging), but did not significantly attenuate optogenetically evoked hemodynamic responses. Significant light-evoked hemodynamic responses were still present after the addition of picrotoxin (GABA-A receptor antagonist) in the presence of the glutamatergic synaptic blockade. This activation of cortical inhibitory interneurons can mediate large changes in blood flow in a manner that is by and large not dependent on ionotropic glutamatergic or GABAergic synaptic transmission. This supports the hypothesis that activation of inhibitory neurons can increase local cerebral blood flow in a manner that is not entirely dependent on levels of net ongoing neuronal activity. PMID:26082013

  8. AMPA receptor inhibition by synaptically released zinc

    PubMed Central

    Kalappa, Bopanna I.; Anderson, Charles T.; Lippard, Stephen J.; Tzounopoulos, Thanos

    2015-01-01

    The vast amount of fast excitatory neurotransmission in the mammalian central nervous system is mediated by AMPA-subtype glutamate receptors (AMPARs). As a result, AMPAR-mediated synaptic transmission is implicated in nearly all aspects of brain development, function, and plasticity. Despite the central role of AMPARs in neurobiology, the fine-tuning of synaptic AMPA responses by endogenous modulators remains poorly understood. Here we provide evidence that endogenous zinc, released by single presynaptic action potentials, inhibits synaptic AMPA currents in the dorsal cochlear nucleus (DCN) and hippocampus. Exposure to loud sound reduces presynaptic zinc levels in the DCN and abolishes zinc inhibition, implicating zinc in experience-dependent AMPAR synaptic plasticity. Our results establish zinc as an activity-dependent, endogenous modulator of AMPARs that tunes fast excitatory neurotransmission and plasticity in glutamatergic synapses. PMID:26647187

  9. Treatment of GABA from Fermented Rice Germ Ameliorates Caffeine-Induced Sleep Disturbance in Mice.

    PubMed

    Mabunga, Darine Froy N; Gonzales, Edson Luck T; Kim, Hee Jin; Choung, Se Young

    2015-05-01

    γ-Aminobutyric acid (GABA), a major inhibitory neurotransmitter in the mammalian central nervous system, is involved in sleep physiology. Caffeine is widely used psychoactive substance known to induce wakefulness and insomnia to its consumers. This study was performed to examine whether GABA extracts from fermented rice germ ameliorates caffeine-induced sleep disturbance in mice, without affecting spontaneous locomotor activity and motor coordination. Indeed, caffeine (10 mg/kg, i.p.) delayed sleep onset and reduced sleep duration of mice. Conversely, rice germ ferment extracts-GABA treatment (10, 30, or 100 mg/kg, p.o.), especially at 100 mg/kg, normalized the sleep disturbance induced by caffeine. In locomotor tests, rice germ ferment extracts-GABA slightly but not significantly reduced the caffeine-induced increase in locomotor activity without affecting motor coordination. Additionally, rice germ ferment extracts-GABA per se did not affect the spontaneous locomotor activity and motor coordination of mice. In conclusion, rice germ ferment extracts-GABA supplementation can counter the sleep disturbance induced by caffeine, without affecting the general locomotor activities of mice.

  10. GABA induced changes in acetylcholine release from slices of guinea-pig brain.

    PubMed

    Bianchi, C; Tanganelli, S; Marzola, G; Beani, L

    1982-03-01

    The effect of GABA on acetylcholine (ACh) release was investigated on superfused slices of guinea-pig cerebral cortex (CC), caudate nucleus (CN), tuberculum olfactorium and brain stem. GABA (1--6 x 10(-3) mol/l) increased the spontaneous and KCl-evoked ACh overflow in CC and CN, reduced the electrically-evoked release in all areas tested (most evidently in CC and CN) and lowered the threshold of electric stimulation-induced ACh release in CC. These effects were also caused by 3-amino-1-propane sulphonic acid (1 x 10(-3) mol/l) and ethanolamine-O-sulphate (2 x 10(-3) mol/l), were reduced by bicuculline (1 x 10(-4) mol/l) and fully antagonized by picrotoxin (8 x 10(-5) mol/l), but they were not influenced by phentolamine, methysergide, spiroperidol or strychnine. Tetrodotoxin (TTX) (5 x 10(-7) mol/l) blocked the facilitation of spontaneous ACh release by GABA only when the slices were perfused with normal Krebs solution, but not when perfused with a KCl-enriched medium. These results suggest that GABA affects the cholinergic transmitter release through bicuculline- and picrotoxin-sensitive receptors, showing low affinity toward the agonist. Moreover GABA modulation of resting ACh release requires action potentials only in normal [K+]0, but not in high [K+]0, suggesting that GABA-receptive sites are located at cholinergic terminals.

  11. Treatment of GABA from Fermented Rice Germ Ameliorates Caffeine-Induced Sleep Disturbance in Mice

    PubMed Central

    Mabunga, Darine Froy N.; Gonzales, Edson Luck T.; Kim, Hee Jin; Choung, Se Young

    2015-01-01

    γ-Aminobutyric acid (GABA), a major inhibitory neurotransmitter in the mammalian central nervous system, is involved in sleep physiology. Caffeine is widely used psychoactive substance known to induce wakefulness and insomnia to its consumers. This study was performed to examine whether GABA extracts from fermented rice germ ameliorates caffeine-induced sleep disturbance in mice, without affecting spontaneous locomotor activity and motor coordination. Indeed, caffeine (10 mg/kg, i.p.) delayed sleep onset and reduced sleep duration of mice. Conversely, rice germ ferment extracts-GABA treatment (10, 30, or 100 mg/kg, p.o.), especially at 100 mg/kg, normalized the sleep disturbance induced by caffeine. In locomotor tests, rice germ ferment extracts-GABA slightly but not significantly reduced the caffeine-induced increase in locomotor activity without affecting motor coordination. Additionally, rice germ ferment extracts-GABA per se did not affect the spontaneous locomotor activity and motor coordination of mice. In conclusion, rice germ ferment extracts-GABA supplementation can counter the sleep disturbance induced by caffeine, without affecting the general locomotor activities of mice. PMID:25995826

  12. Astrocytes optimize synaptic fidelity

    NASA Astrophysic