Sample records for reduces virion infectivity

  1. Quantitative Correlation between Infectivity and Gp120 Density on HIV-1 Virions Revealed by Optical Trapping Virometry*

    PubMed Central

    DeSantis, Michael C.; Kim, Jin H.; Song, Hanna; Klasse, Per Johan

    2016-01-01

    The envelope glycoprotein (Env) gp120/gp41 is required for HIV-1 infection of host cells. Although in general it has been perceived that more Env gives rise to higher infectivity, the precise quantitative dependence of HIV-1 virion infectivity on Env density has remained unknown. Here we have developed a method to examine this dependence. This method involves 1) production of a set of single-cycle HIV-1 virions with varied density of Env on their surface, 2) site-specific labeling of Env-specific antibody Fab with a fluorophore at high efficiency, and 3) optical trapping virometry to measure the number of gp120 molecules on individual HIV-1 virions. The resulting gp120 density per virion is then correlated with the infectivity of the virions measured in cell culture. In the presence of DEAE-dextran, the polycation known to enhance HIV-1 infectivity in cell culture, virion infectivity follows gp120 density as a sigmoidal dependence and reaches an apparent plateau. This quantitative dependence can be described by a Hill equation, with a Hill coefficient of 2.4 ± 0.6. In contrast, in the absence of DEAE-dextran, virion infectivity increases monotonically with gp120 density and no saturation is observed under the experimental conditions. These results provide the first quantitative evidence that Env trimers cooperate on the virion surface to mediate productive infection by HIV-1. Moreover, as a result of the low number of Env trimers on individual virions, the number of additional Env trimers per virion that is required for the optimal infectivity will depend on the inclusion of facilitating agents during infection. PMID:27129237

  2. Cellular v-ATPase is required for virion assembly compartment formation in human cytomegalovirus infection

    PubMed Central

    Pavelin, Jonathan; McCormick, Dominique; Chiweshe, Stephen; Ramachandran, Saranya; Lin, Yao-Tang

    2017-01-01

    Successful generation of virions from infected cells is a complex process requiring orchestrated regulation of host and viral genes. Cells infected with human cytomegalovirus (HCMV) undergo a dramatic reorganization of membrane organelles resulting in the formation of the virion assembly compartment, a process that is not fully understood. Here we show that acidification of vacuoles by the cellular v-ATPase is a crucial step in the formation of the virion assembly compartment and disruption of acidification results in mis-localization of virion components and a profound reduction in infectious virus levels. In addition, knockdown of ATP6V0C blocks the increase in nuclear size, normally associated with HCMV infection. Inhibition of the v-ATPase does not affect intracellular levels of viral DNA synthesis or gene expression, consistent with a defect in assembly and egress. These studies identify a novel host factor involved in virion production and a potential target for antiviral therapy. PMID:29093211

  3. Virion Architecture Unifies Globally Distributed Pleolipoviruses Infecting Halophilic Archaea

    PubMed Central

    Pietilä, Maija K.; Atanasova, Nina S.; Manole, Violeta; Liljeroos, Lassi; Butcher, Sarah J.; Oksanen, Hanna M.

    2012-01-01

    Our understanding of the third domain of life, Archaea, has greatly increased since its establishment some 20 years ago. The increasing information on archaea has also brought their viruses into the limelight. Today, about 100 archaeal viruses are known, which is a low number compared to the numbers of characterized bacterial or eukaryotic viruses. Here, we have performed a comparative biological and structural study of seven pleomorphic viruses infecting extremely halophilic archaea. The pleomorphic nature of this novel virion type was established by sedimentation analysis and cryo-electron microscopy. These nonlytic viruses form virions characterized by a lipid vesicle enclosing the genome, without any nucleoproteins. The viral lipids are unselectively acquired from host cell membranes. The virions contain two to three major structural proteins, which either are embedded in the membrane or form spikes distributed randomly on the external membrane surface. Thus, the most important step during virion assembly is most likely the interaction of the membrane proteins with the genome. The interaction can be driven by single-stranded or double-stranded DNA, resulting in the virions having similar architectures but different genome types. Based on our comparative study, these viruses probably form a novel group, which we define as pleolipoviruses. PMID:22357279

  4. A novel mosquito ubiquitin targets viral envelope protein for degradation and reduces virion production during dengue virus infection.

    PubMed

    Troupin, Andrea; Londono-Renteria, Berlin; Conway, Michael J; Cloherty, Erin; Jameson, Samuel; Higgs, Stephen; Vanlandingham, Dana L; Fikrig, Erol; Colpitts, Tonya M

    2016-09-01

    Dengue virus (DENV) is a mosquito-borne flavivirus that causes significant human disease and mortality in the tropics and subtropics. By examining the effects of virus infection on gene expression, and interactions between virus and vector, new targets for prevention of infection and novel treatments may be identified in mosquitoes. We previously performed a microarray analysis of the Aedes aegypti transcriptome during infection with DENV and found that mosquito ubiquitin protein Ub3881 (AAEL003881) was specifically and highly down-regulated. Ubiquitin proteins have multiple functions in insects, including marking proteins for proteasomal degradation, regulating apoptosis and mediating innate immune signaling. We used qRT-PCR to quantify gene expression and infection, and RNAi to reduce Ub3881 expression. Mosquitoes were infected with DENV through blood feeding. We transfected DENV protein expression constructs to examine the effect of Ub3881 on protein degradation. We used site-directed mutagenesis and transfection to determine what amino acids are involved in Ub3881-mediated protein degradation. Immunofluorescence, Co-immunoprecipitation and Western blotting were used to examine protein interactions and co-localization. The overexpression of Ub3881, but not related ubiquitin proteins, decreased DENV infection in mosquito cells and live Ae. aegypti. The Ub3881 protein was demonstrated to be involved in DENV envelope protein degradation and reduce the number of infectious virions released. We conclude that Ub3881 has several antiviral functions in the mosquito, including specific viral protein degradation. Our data highlights Ub3881 as a target for future DENV prevention strategies in the mosquito transmission vector. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Virion encapsidated HIV-1 Vpr induces NFAT to prime non-activated T cells for productive infection

    PubMed Central

    Höhne, Kristin; Businger, Ramona; van Nuffel, Anouk; Bolduan, Sebastian; Koppensteiner, Herwig; Baeyens, Ann; Vermeire, Jolien; Malatinkova, Eva; Verhasselt, Bruno; Schindler, Michael

    2016-01-01

    The majority of T cells encountered by HIV-1 are non-activated and do not readily allow productive infection. HIV-1 Vpr is highly abundant in progeny virions, and induces signalling and HIV-1 LTR transcription. We hence hypothesized that Vpr might be a determinant of non-activated T-cell infection. Virion-delivered Vpr activated nuclear factor of activated T cells (NFAT) through Ca2+ influx and interference with the NFAT export kinase GSK3β. This leads to NFAT translocation and accumulation within the nucleus and was required for productive infection of unstimulated primary CD4+ T cells. A mutagenesis approach revealed correlation of Vpr-mediated NFAT activation with its ability to enhance LTR transcription and mediate cell cycle arrest. Upon NFAT inhibition, Vpr did not augment resting T-cell infection, and showed reduced G2/M arrest and LTR transactivation. Altogether, Vpr renders unstimulated T cells more permissive for productive HIV-1 infection and stimulates activation of productively infected as well as virus-exposed T cells. Therefore, it could be involved in the establishment and reactivation of HIV-1 from viral reservoirs and might have an impact on the levels of immune activation, which are determinants of HIV-1 pathogenesis. PMID:27383627

  6. Virion encapsidated HIV-1 Vpr induces NFAT to prime non-activated T cells for productive infection.

    PubMed

    Höhne, Kristin; Businger, Ramona; van Nuffel, Anouk; Bolduan, Sebastian; Koppensteiner, Herwig; Baeyens, Ann; Vermeire, Jolien; Malatinkova, Eva; Verhasselt, Bruno; Schindler, Michael

    2016-07-01

    The majority of T cells encountered by HIV-1 are non-activated and do not readily allow productive infection. HIV-1 Vpr is highly abundant in progeny virions, and induces signalling and HIV-1 LTR transcription. We hence hypothesized that Vpr might be a determinant of non-activated T-cell infection. Virion-delivered Vpr activated nuclear factor of activated T cells (NFAT) through Ca(2+) influx and interference with the NFAT export kinase GSK3β. This leads to NFAT translocation and accumulation within the nucleus and was required for productive infection of unstimulated primary CD4(+) T cells. A mutagenesis approach revealed correlation of Vpr-mediated NFAT activation with its ability to enhance LTR transcription and mediate cell cycle arrest. Upon NFAT inhibition, Vpr did not augment resting T-cell infection, and showed reduced G2/M arrest and LTR transactivation. Altogether, Vpr renders unstimulated T cells more permissive for productive HIV-1 infection and stimulates activation of productively infected as well as virus-exposed T cells. Therefore, it could be involved in the establishment and reactivation of HIV-1 from viral reservoirs and might have an impact on the levels of immune activation, which are determinants of HIV-1 pathogenesis. © 2016 The Authors.

  7. Vpr overcomes macrophage-specific restriction of HIV-1 Env expression and virion production

    PubMed Central

    Mashiba, Michael; Collins, David R.; Terry, Valeri H.; Collins, Kathleen L.

    2014-01-01

    Summary The HIV-1 accessory protein Vpr enhances infection of primary macrophages through unknown mechanisms. Recent studies demonstrated that Vpr interactions with the cellular DCAF1-DDB1-CUL4 E3 ubiquitin ligase complex limit activation of innate immunity and interferon (IFN) induction. We describe a restriction mechanism that targets the HIV-1 envelope protein Env but is overcome by Vpr and its interaction with DCAF1. This restriction is active in the absence of Vpr in HIV-1-infected primary macrophages and macrophage-epithelial cell heterokaryons, but not epithelial cell lines. HIV-1-infected macrophages lacking Vpr express more IFN following infection, target Env for lysosomal degradation and produce fewer Env-containing virions. Conversely, Vpr expression reduces IFN induction, rescues Env expression and enhances virion release. Addition of IFN or silencing DCAF1 reduces the amount of cell-associated Env and virion production in wild-type HIV-1-infected primary macrophages. These findings provide insight into an IFN-stimulated macrophage-specific restriction pathway targeting HIV-1 Env that is counteracted by Vpr. PMID:25464830

  8. A parapoxviral virion protein inhibits NF-κB signaling early in infection

    PubMed Central

    Khatiwada, Sushil; Delhon, Gustavo; Nagendraprabhu, Ponnuraj; Chaulagain, Sabal; Luo, Shuhong; Diel, Diego G.; Flores, Eduardo F.

    2017-01-01

    Poxviruses have evolved unique proteins and mechanisms to counteract the nuclear factor κB (NF-κB) signaling pathway, which is an essential regulatory pathway of host innate immune responses. Here, we describe a NF-κB inhibitory virion protein of orf virus (ORFV), ORFV073, which functions very early in infected cells. Infection with ORFV073 gene deletion virus (OV-IA82Δ073) led to increased accumulation of NF-κB essential modulator (NEMO), marked phosphorylation of IκB kinase (IKK) subunits IKKα and IKKβ, IκBα and NF-κB subunit p65 (NF-κB-p65), and to early nuclear translocation of NF-κB-p65 in virus-infected cells (≤ 30 min post infection). Expression of ORFV073 alone was sufficient to inhibit TNFα induced activation of the NF-κB signaling in uninfected cells. Consistent with observed inhibition of IKK complex activation, ORFV073 interacted with the regulatory subunit of the IKK complex NEMO. Infection of sheep with OV-IA82Δ073 led to virus attenuation, indicating that ORFV073 is a virulence determinant in the natural host. Notably, ORFV073 represents the first poxviral virion-associated NF-κB inhibitor described, highlighting the significance of viral inhibition of NF-κB signaling very early in infection. PMID:28787456

  9. Proteomic Characterization of Bovine Herpesvirus 4 Extracellular Virions

    PubMed Central

    Lété, Céline; Palmeira, Leonor; Leroy, Baptiste; Mast, Jan; Machiels, Bénédicte; Wattiez, Ruddy; Vanderplasschen, Alain

    2012-01-01

    Gammaherpesviruses are important pathogens in human and animal populations. During early events of infection, these viruses manipulate preexisting host cell signaling pathways to allow successful infection. The different proteins that compose viral particles are therefore likely to have critical functions not only in viral structures and in entry into target cell but also in evasion of the host's antiviral response. In this study, we analyzed the protein composition of bovine herpesvirus 4 (BoHV-4), a close relative of the human Kaposi's sarcoma-associated herpesvirus. Using mass spectrometry-based approaches, we identified 37 viral proteins associated with extracellular virions, among which 24 were resistant to proteinase K treatment of intact virions. Analysis of proteins associated with purified capsid-tegument preparations allowed us to define protein localization. In parallel, in order to identify some previously undefined open reading frames, we mapped peptides detected in whole virion lysates onto the six frames of the BoHV-4 genome to generate a proteogenomic map of BoHV-4 virions. Furthermore, we detected important glycosylation of three envelope proteins: gB, gH, and gp180. Finally, we identified 38 host proteins associated with BoHV-4 virions; 15 of these proteins were resistant to proteinase K treatment of intact virions. Many of these have important functions in different cellular pathways involved in virus infection. This study extends our knowledge of gammaherpesvirus virions composition and provides new insights for understanding the life cycle of these viruses. PMID:22896609

  10. Reduction of virion-associated σ1 fibers on oncolytic reovirus variants promotes adaptation toward tumorigenic cells.

    PubMed

    Mohamed, Adil; Teicher, Carmit; Haefliger, Sarah; Shmulevitz, Maya

    2015-04-01

    Wild-type mammalian orthoreovirus serotype 3 Dearing (T3wt) is nonpathogenic in humans but preferentially infects and kills cancer cells in culture and demonstrates promising antitumor activity in vivo. Using forward genetics, we previously isolated two variants of reovirus, T3v1 and T3v2, with increased infectivity toward a panel of cancer cell lines and improved in vivo oncolysis in a murine melanoma model relative to that of T3wt. Our current study explored how mutations in T3v1 and T3v2 promote infectivity. Reovirions contain trimers of σ1, the reovirus cell attachment protein, at icosahedral capsid vertices. Quantitative Western blot analysis showed that purified T3v1 and T3v2 virions had ∼ 2- and 4-fold-lower levels of σ1 fiber than did T3wt virions. Importantly, using RNA interference to reduce σ1 levels during T3wt production, we were able to generate wild-type reovirus with reduced levels of σ1 per virion. As σ1 levels were reduced, virion infectivity increased by 2- to 5-fold per cell-bound particle, demonstrating a causal relationship between virion σ1 levels and the infectivity of incoming virions. During infection of tumorigenic L929 cells, T3wt, T3v1, and T3v2 uncoated the outer capsid proteins σ3 and μ1C at similar rates. However, having started with fewer σ1 molecules, a complete loss of σ1 was achieved sooner for T3v1 and T3v2. Distinct from intracellular uncoating, chymotrypsin digestion, as a mimic of natural enteric infection, resulted in more rapid σ3 and μ1C removal, unique disassembly intermediates, and a rapid loss of infectivity for T3v1 and T3v2 compared to T3wt. Optimal infectivity toward natural versus therapeutic niches may therefore require distinct reovirus structures and σ1 levels. Wild-type reovirus is currently in clinical trials as a potential cancer therapy. Our molecular studies on variants of reovirus with enhanced oncolytic activity in vitro and in vivo now show that distinct reovirus structures promote

  11. Mechanism of Human Influenza Virus RNA Persistence and Virion Survival in Feces: Mucus Protects Virions From Acid and Digestive Juices.

    PubMed

    Hirose, Ryohei; Nakaya, Takaaki; Naito, Yuji; Daidoji, Tomo; Watanabe, Yohei; Yasuda, Hiroaki; Konishi, Hideyuki; Itoh, Yoshito

    2017-07-01

    Although viral RNA or infectious virions have been detected in the feces of individuals infected with human influenza A and B viruses (IAV/IBV), the mechanism of viral survival in the gastrointestinal tract remains unclear. We developed a model that attempts to recapitulate the conditions encountered by a swallowed virus. While IAV/IBV are vulnerable to simulated digestive juices (gastric acid and bile/pancreatic juice), highly viscous mucus protects viral RNA and virions, allowing the virus to retain its infectivity. Our results suggest that virions and RNA present in swallowed mucus are not inactivated or degraded by the gastrointestinal environment, allowing their detection in feces. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  12. Bacteriophage-encoded virion-associated enzymes to overcome the carbohydrate barriers during the infection process.

    PubMed

    Latka, Agnieszka; Maciejewska, Barbara; Majkowska-Skrobek, Grazyna; Briers, Yves; Drulis-Kawa, Zuzanna

    2017-04-01

    Bacteriophages are bacterial viruses that infect the host after successful receptor recognition and adsorption to the cell surface. The irreversible adherence followed by genome material ejection into host cell cytoplasm must be preceded by the passage of diverse carbohydrate barriers such as capsule polysaccharides (CPSs), O-polysaccharide chains of lipopolysaccharide (LPS) molecules, extracellular polysaccharides (EPSs) forming biofilm matrix, and peptidoglycan (PG) layers. For that purpose, bacteriophages are equipped with various virion-associated carbohydrate active enzymes, termed polysaccharide depolymerases and lysins, that recognize, bind, and degrade the polysaccharide compounds. We discuss the existing diversity in structural locations, variable architectures, enzymatic specificities, and evolutionary aspects of polysaccharide depolymerases and virion-associated lysins (VALs) and illustrate how these aspects can correlate with the host spectrum. In addition, we present methods that can be used for activity determination and the application potential of these enzymes as antibacterials, antivirulence agents, and diagnostic tools.

  13. The vaccinia virus E6 protein influences virion protein localization during virus assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Condit, Richard C., E-mail: condit@mgm.ufl.edu; Moussatche, Nissin

    2015-08-15

    Vaccinia virus mutants in which expression of the virion core protein gene E6R is repressed are defective in virion morphogenesis. E6 deficient infections fail to properly package viroplasm into viral membranes, resulting in an accumulation of empty immature virions and large aggregates of viroplasm. We have used immunogold electron microscopy and immunofluorescence confocal microscopy to assess the intracellular localization of several virion structural proteins and enzymes during E6R mutant infections. We find that during E6R mutant infections virion membrane proteins and virion transcription enzymes maintain a normal localization within viral factories while several major core and lateral body proteins accumulatemore » in aggregated virosomes. The results support a model in which vaccinia virions are assembled from at least three substructures, the membrane, the viroplasm and a “pre-nucleocapsid”, and that the E6 protein is essential for maintaining proper localization of the seven-protein complex and the viroplasm during assembly. - Highlights: • Mutation of E6 disrupts association of viral membranes with viral core proteins • Mutation of E6 does not perturb viral membrane biosynthesis • Mutation of E6 does not perturb localization of viral transcription enzymes • Mutation of E6 causes mis-localization and aggregation of viral core proteins • Vaccinia assembly uses three subassemblies: membranes, viroplasm, prenucleocapsid.« less

  14. The adenovirus major core protein VII is dispensable for virion assembly but is essential for lytic infection

    PubMed Central

    Suomalainen, Maarit; Zheng, Yueting; Boucke, Karin

    2017-01-01

    The Adenovirus (Ad) genome within the capsid is tightly associated with a virus-encoded, histone-like core protein—protein VII. Two other Ad core proteins, V and X/μ, also are located within the virion and are loosely associated with viral DNA. Core protein VII remains associated with the Ad genome during the early phase of infection. It is not known if naked Ad DNA is packaged into the capsid, as with dsDNA bacteriophage and herpesviruses, followed by the encapsidation of viral core proteins, or if a unique packaging mechanism exists with Ad where a DNA-protein complex is simultaneously packaged into the virion. The latter model would require an entirely new molecular mechanism for packaging compared to known viral packaging motors. We characterized a virus with a conditional knockout of core protein VII. Remarkably, virus particles were assembled efficiently in the absence of protein VII. No changes in protein composition were evident with VII−virus particles, including the abundance of core protein V, but changes in the proteolytic processing of some capsid proteins were evident. Virus particles that lack protein VII enter the cell, but incoming virions did not escape efficiently from endosomes. This greatly diminished all subsequent aspects of the infectious cycle. These results reveal that the Ad major core protein VII is not required to condense viral DNA within the capsid, but rather plays an unexpected role during virus maturation and the early stages of infection. These results establish a new paradigm pertaining to the Ad assembly mechanism and reveal a new and important role of protein VII in early stages of infection. PMID:28628648

  15. GP3 is a structural component of the PRRSV type II (US) virion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lima, M. de; Departamento de Microbiologia e Parasitologia, Universidade Federal Fluminense, Niteroi, RJ; Ansari, I.H.

    2009-07-20

    Glycoprotein 3 (GP3) is a highly glycosylated PRRSV envelope protein which has been reported as being present in the virions of PRRSV type I, while missing in the type II PRRSV (US) virions. We herein present evidence that GP3 is indeed incorporated in the virus particles of a North American strain of PRRSV (FL12), at a density that is consistent with the minor structural role assigned to GP3 in members of the Arterivirus genus. Two 15aa peptides corresponding to two different immunodominant linear epitopes of GP3 derived from the North American strain of PRRSV (FL12) were used as antigen tomore » generate a rabbit monospecific antiserum to this protein. The specificity of this anti-GP3 antiserum was confirmed by radioimmunoprecipitation (RIP) assay using BHK-21 cells transfected with GP3 expressing plasmid, MARC-145 cells infected with FL12 PRRSV, as well as by confocal microscopy on PRRSV-infected MARC-145 cells. To test if GP3 is a structural component of the virion, {sup 35}S-labelled PRRSV virions were pelleted through a 30% sucrose cushion, followed by a second round of purification on a sucrose gradient (20-60%). Virions were detected in specific gradient fractions by radioactive counts and further confirmed by viral infectivity assay in MARC 145 cells. The GP3 was detected in gradient fractions containing purified virions by RIP using anti-GP3 antiserum. Predictably, the GP3 was less abundant in purified virions than other major structural envelope proteins such as GP5 and M. Further evidence of the presence of GP3 at the level of PRRSV FL12 envelope was obtained by immunogold staining of purified virions from the supernatant of infected cells with anti-GP3 antiserum. Taken together, these results indicate that GP3 is a minor structural component of the PRRSV type II (FL12 strain) virion, as had been previously described for PRRSV type I.« less

  16. Human Papillomavirus (HPV) virion induced cancer and subfertility, two sides of the same coin.

    PubMed

    Depuydt, C E; Beert, J; Bosmans, E; Salembier, G

    2016-12-01

    In the natural history of HPV infections, the HPV virions can induce two different pathways, namely the infec- tious virion producing pathway and the clonal transforming pathway. An overview is given of the burden that is associated with HPV infections that can both lead to cervical cancer and/or temporal subfertility. That HPV infections cause serious global health burden due to HPV-associated cancers is common knowledge, but that it is also responsible for a substantial part of idiopathic subfertility is greatly underestimated. The bulk of the detected HPV DNA whether in men or women is however infectious from origin. Because the dissociation between HPV viruses and HPV virions or infection and disease remains difficult for clinicians as well as for HPV detection, we propose a review of the different effects caused by the two different HPV virion induced pathways, and highlight the mechanisms that are responsible for causing transient subfertility and cancer.

  17. Human Papillomavirus (HPV) virion induced cancer and subfertility, two sides of the same coin

    PubMed Central

    Depuydt, CE; Beert, J; Bosmans, E; Salembier, G

    2016-01-01

    Abstract In the natural history of HPV infections, the HPV virions can induce two different pathways, namely the infec- tious virion producing pathway and the clonal transforming pathway. An overview is given of the burden that is associated with HPV infections that can both lead to cervical cancer and/or temporal subfertility. That HPV infections cause serious global health burden due to HPV-associated cancers is common knowledge, but that it is also responsible for a substantial part of idiopathic subfertility is greatly underestimated. The bulk of the detected HPV DNA whether in men or women is however infectious from origin. Because the dissociation between HPV viruses and HPV virions or infection and disease remains difficult for clinicians as well as for HPV detection, we propose a review of the different effects caused by the two different HPV virion induced pathways, and highlight the mechanisms that are responsible for causing transient subfertility and cancer. PMID:28210481

  18. Virion stiffness regulates immature HIV-1 entry

    PubMed Central

    2013-01-01

    Background Human immunodeficiency virus type 1 (HIV-1) undergoes a protease-mediated maturation process that is required for its infectivity. Little is known about how the physical properties of viral particles change during maturation and how these changes affect the viral lifecycle. Using Atomic Force Microscopy (AFM), we previously discovered that HIV undergoes a “stiffness switch”, a dramatic reduction in particle stiffness during maturation that is mediated by the viral Envelope (Env) protein. Results In this study, we show that transmembrane-anchored Env cytoplasmic tail (CT) domain is sufficient to regulate the particle stiffness of immature HIV-1. Using this construct expressed in trans with viral Env lacking the CT domain, we show that increasing particle stiffness reduces viral entry activity in immature virions. A similar effect was also observed for immature HIV-1 pseudovirions containing Env from vesicular stomatitis virus. Conclusions This linkage between particle stiffness and viral entry activity illustrates a novel level of regulation for viral replication, providing the first evidence for a biological role of virion physical properties and suggesting a new inhibitory strategy. PMID:23305456

  19. Common and Distinct Capsid and Surface Protein Requirements for Secretion of Complete and Genome-free Hepatitis B Virions.

    PubMed

    Ning, Xiaojun; Luckenbaugh, Laurie; Liu, Kuancheng; Bruss, Volker; Sureau, Camille; Hu, Jianming

    2018-05-09

    During the morphogenesis of hepatitis B virus (HBV), an enveloped virus, two types of virions are secreted: (1) a minor population of complete virions containing a mature nucleocapsid with the characteristic, partially double-stranded, relaxed circular DNA genome and (2) a major population containing an empty capsid with no DNA or RNA (empty virions). Secretion of both types of virions requires interactions between the HBV capsid or core protein (HBc) and the viral surface or envelope proteins. We have studied the requirements from both HBc and envelope proteins for empty virion secretion, in comparison with those for secretion of complete virions. Substitutions within the N-terminal domain of HBc that block secretion of DNA-containing virions reduced but did not prevent secretion of empty virions. The HBc C-terminal domain was not essential for empty virion secretion. Among the three viral envelope proteins, the smallest, S, alone was sufficient for empty virion secretion at a basal level. The largest protein, L, essential for complete virion secretion, was not required for, but could stimulate empty virion secretion. Also, substitutions in L that eliminate secretion of complete virions reduced but did not eliminate empty virion secretion. S mutations that block secretion of the hepatitis D virus (HDV), an HBV satellite, did not block secretion of either empty or complete HBV virions. Together, these results indicate that both common and distinct signals on empty capsids vs. mature nucleocapsids interact with the S and L proteins during the formation of complete vs. empty virions. IMPORTANCE Hepatitis B virus (HBV) is a major cause of severe liver diseases including cirrhosis and cancer. In addition to the complete infectious virion particle, which contains an outer envelope layer and an interior capsid that, in turn, encloses a DNA genome, HBV infected cells also secrete non-infectious, incomplete viral particles in large excess over the complete virions. In

  20. An amorphous silicon photodiode microfluidic chip to detect nanomolar quantities of HIV-1 virion infectivity factor.

    PubMed

    Vistas, Cláudia R; Soares, Sandra S; Rodrigues, Rogério M M; Chu, Virginia; Conde, João P; Ferreira, Guilherme N M

    2014-08-07

    A hydrogenated amorphous silicon (a-Si:H) photosensor was explored for the quantitative detection of a HIV-1 virion infectivity factor (Vif) at a detection limit in the single nanomolar range. The a-Si:H photosensor was coupled with a microfluidic channel that was functionalized with a recombinant single chain variable fragment antibody. The biosensor selectively recognizes HIV-1 Vif from human cell extracts.

  1. Nanoparticle-based flow virometry for the analysis of individual virions

    PubMed Central

    Arakelyan, Anush; Fitzgerald, Wendy; Margolis, Leonid; Grivel, Jean-Charles

    2013-01-01

    While flow cytometry has been used to analyze the antigenic composition of individual cells, the antigenic makeup of viral particles is still characterized predominantly in bulk. Here, we describe a technology, “flow virometry,” that can be used for antigen detection on individual virions. The technology is based on binding magnetic nanoparticles to virions, staining the virions with monoclonal antibodies, separating the formed complexes with magnetic columns, and characterizing them with flow cytometers. We used this technology to study the distribution of two antigens (HLA-DR and LFA-1) that HIV-1 acquires from infected cells among individual HIV-1 virions. Flow virometry revealed that the antigenic makeup of virions from a single preparation is heterogeneous. This heterogeneity could not be detected with bulk analysis of viruses. Moreover, in two preparations of the same HIV-1 produced by different cells, the distribution of antigens among virions was different. In contrast, HIV-1 of two different HIV-1 genotypes replicating in the same cells became somewhat antigenically similar. This nanotechnology allows the study of virions in bodily fluids without virus propagation and in principle is not restricted to the analysis of HIV, but can be applied to the analysis of the individual surface antigenic makeup of any virus. PMID:23925291

  2. Incomplete inhibition of HIV infection results in more HIV infected lymph node cells by reducing cell death

    PubMed Central

    Cele, Sandile; Ferreira, Isabella Markham; Young, Andrew C; Karim, Farina; Madansein, Rajhmun; Dullabh, Kaylesh J; Chen, Chih-Yuan; Buckels, Noel J; Ganga, Yashica; Khan, Khadija; Boulle, Mikael; Lustig, Gila; Neher, Richard A

    2018-01-01

    HIV has been reported to be cytotoxic in vitro and in lymph node infection models. Using a computational approach, we found that partial inhibition of transmissions of multiple virions per cell could lead to increased numbers of live infected cells. If the number of viral DNA copies remains above one after inhibition, then eliminating the surplus viral copies reduces cell death. Using a cell line, we observed increased numbers of live infected cells when infection was partially inhibited with the antiretroviral efavirenz or neutralizing antibody. We then used efavirenz at concentrations reported in lymph nodes to inhibit lymph node infection by partially resistant HIV mutants. We observed more live infected lymph node cells, but with fewer HIV DNA copies per cell, relative to no drug. Hence, counterintuitively, limited attenuation of HIV transmission per cell may increase live infected cell numbers in environments where the force of infection is high. PMID:29555018

  3. Predicting First Traversal Times for Virions and Nanoparticles in Mucus with Slowed Diffusion

    PubMed Central

    Erickson, Austen M.; Henry, Bruce I.; Murray, John M.; Klasse, Per Johan; Angstmann, Christopher N.

    2015-01-01

    Particle-tracking experiments focusing on virions or nanoparticles in mucus have measured mean-square displacements and reported diffusion coefficients that are orders of magnitude smaller than the diffusion coefficients of such particles in water. Accurate description of this subdiffusion is important to properly estimate the likelihood of virions traversing the mucus boundary layer and infecting cells in the epithelium. However, there are several candidate models for diffusion that can fit experimental measurements of mean-square displacements. We show that these models yield very different estimates for the time taken for subdiffusive virions to traverse through a mucus layer. We explain why fits of subdiffusive mean-square displacements to standard diffusion models may be misleading. Relevant to human immunodeficiency virus infection, using computational methods for fractional subdiffusion, we show that subdiffusion in normal acidic mucus provides a more effective barrier against infection than previously thought. By contrast, the neutralization of the mucus by alkaline semen, after sexual intercourse, allows virions to cross the mucus layer and reach the epithelium in a short timeframe. The computed barrier protection from fractional subdiffusion is some orders of magnitude greater than that derived by fitting standard models of diffusion to subdiffusive data. PMID:26153713

  4. Identification of Human Cytomegalovirus Genes Important for Biogenesis of the Cytoplasmic Virion Assembly Complex

    PubMed Central

    Das, Subhendu; Ortiz, Daniel A.; Gurczynski, Stephen J.; Khan, Fatin

    2014-01-01

    infected cells to build a factory for assembling new infectious particles (virions), the cytoplasmic virion assembly complex (cVAC). Here, we identified three HCMV genes (UL48, UL94, and UL103) as important contributors to cVAC development. In addition, we found that mutant viruses that express an unstable form of the UL103 protein have defects in cVAC development and production of infectious virions and produce small plaques and intracellular virions with aberrant appearances. Of these, only the reduced production of infectious virions is not eliminated by chemically stabilizing the protein. In addition to identifying new functions for these HCMV genes, this work is a necessary prelude to developing novel antivirals that would block cVAC development. PMID:24899189

  5. A conserved carboxy-terminal domain in the major tegument structural protein VP22 facilitates virion packaging of a chimeric protein during productive herpes simplex virus 1 infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlegel, Elisabeth F.M.; Blaho, John A., E-mail: john.blaho@mssm.ed

    2009-05-10

    Recombinant virus HSV-1(RF177) was previously generated to examine tegument protein VP22 function by inserting the GFP gene into the gene encoding VP22. During a detailed analysis of this virus, we discovered that RF177 produces a novel fusion protein between the last 15 amino acids of VP22 and GFP, termed GCT-VP22. Thus, the VP22 carboxy-terminal specific antibody 22-3 and two anti-GFP antibodies reacted with an approximately 28 kDa protein from RF177-infected Vero cells. GCT-VP22 was detected at 1 and 3 hpi. Examination of purified virions indicated that GCT-VP22 was incorporated into RF177 virus particles. These observations imply that at least amore » portion of the information required for virion targeting is located in this domain of VP22. Indirect immunofluorescence analyses showed that GCT-VP22 also localized to areas of marginalized chromatin during RF177 infection. These results indicate that the last fifteen amino acids of VP22 participate in virion targeting during HSV-1 infection.« less

  6. BST2/CD317 counteracts human coronavirus 229E productive infection by tethering virions at the cell surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Shiu-Mei; Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan; Huang, Kuo-Jung

    2014-01-20

    Bone marrow stromal antigen 2 (BST2), an interferon-inducible antiviral factor, has been shown to block the release of various enveloped viruses from cells. It has also been identified as an innate immune system component. Most enveloped viruses subject to BST2 restriction bud at the plasma membrane. Here we report our findings that (a) the production of human coronavirus 229E (HCoV-229E) progeny viruses, whose budding occurs at the ER-Golgi intermediate compartment (ERGIC), markedly decreases in the presence of BST2; and (b) BST2 knockdown expression results in enhanced HCoV-229E virion production. Electron microscopy analyses indicate that HCoV-229E virions are tethered to cellmore » surfaces or intracellular membranes by BST2. Our results suggest that BST2 exerts a broad blocking effect against enveloped virus release, regardless of whether budding occurs at the plasma membrane or intracellular compartments. - Highlights: • BST2 knockdown expression results in enhanced HCoV-229E egress. • HCoV-229E virions are tethered to cell surfaces or intracellular membranes by BST2. • HCoV-229E infection at high MOI can significantly downregulate HeLa BST2 and rescue HIV-1 egress.« less

  7. Bacteriophage virion-associated peptidoglycan hydrolases: potential new enzybiotics

    USDA-ARS?s Scientific Manuscript database

    Virion-associated peptidoglycan hydrolases (VAPGH) are phage-encoded lytic enzymes that locally degrade the peptidoglycan (PG) of the bacterial cell wall during infection. Their action usually generates a small hole through which the phage tail crosses the cell envelope to inject the phage genetic m...

  8. Proteomic analysis of the herpes simplex virus 1 virion protein 16 transactivator protein in infected cells.

    PubMed

    Suk, Hyung; Knipe, David M

    2015-06-01

    The herpes simplex virus 1 virion protein 16 (VP16) tegument protein forms a transactivation complex with the cellular proteins host cell factor 1 (HCF-1) and octamer-binding transcription factor 1 (Oct-1) upon entry into the host cell. VP16 has also been shown to interact with a number of virion tegument proteins and viral glycoprotein H to promote viral assembly, but no comprehensive study of the VP16 proteome has been performed at early times postinfection. We therefore performed a proteomic analysis of VP16-interacting proteins at 3 h postinfection. We confirmed the interaction of VP16 with HCF-1 and a large number of cellular Mediator complex proteins, but most surprisingly, we found that the major viral protein associating with VP16 is the infected cell protein 4 (ICP4) immediate-early (IE) transactivator protein. These results raise the potential for a new function for VP16 in associating with the IE ICP4 and playing a role in transactivation of early and late gene expression, in addition to its well-documented function in transactivation of IE gene expression. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Mixed genotype transmission bodies and virions contribute to the maintenance of diversity in an insect virus

    PubMed Central

    Clavijo, Gabriel; Williams, Trevor; Muñoz, Delia; Caballero, Primitivo; López-Ferber, Miguel

    2010-01-01

    An insect nucleopolyhedrovirus naturally survives as a mixture of at least nine genotypes. Infection by multiple genotypes results in the production of virus occlusion bodies (OBs) with greater pathogenicity than those of any genotype alone. We tested the hypothesis that each OB contains a genotypically diverse population of virions. Few insects died following inoculation with an experimental two-genotype mixture at a dose of one OB per insect, but a high proportion of multiple infections were observed (50%), which differed significantly from the frequencies predicted by a non-associated transmission model in which genotypes are segregated into distinct OBs. By contrast, insects that consumed multiple OBs experienced higher mortality and infection frequencies did not differ significantly from those of the non-associated model. Inoculation with genotypically complex wild-type OBs indicated that genotypes tend to be transmitted in association, rather than as independent entities, irrespective of dose. To examine the hypothesis that virions may themselves be genotypically heterogeneous, cell culture plaques derived from individual virions were analysed to reveal that one-third of virions was of mixed genotype, irrespective of the genotypic composition of the OBs. We conclude that co-occlusion of genotypically distinct virions in each OB is an adaptive mechanism that favours the maintenance of virus diversity during insect-to-insect transmission. PMID:19939845

  10. Requirement of cholesterol in the viral envelope for dengue virus infection.

    PubMed

    Carro, Ana C; Damonte, Elsa B

    2013-06-01

    The role of cholesterol in the virus envelope or in the cellular membranes for dengue virus (DENV) infection was examined by depletion with methyl-beta-cyclodextrin (MCD) or nystatin. Pretreatment of virions with MCD or nystatin significantly reduced virus infectivity in a dose-dependent manner. By contrast, pre-treatment of diverse human cell lines with MCD or nystatin did not affect DENV infection. The four DENV serotypes were similarly inactivated by cholesterol-extracting drugs and infectivity was partially rescued when virion suspensions were treated with MCD in the presence of bovine serum. The addition of serum or exogenous water-soluble cholesterol after MCD treatment did not produce a reversion of MCD inactivating effect. Furthermore, virion treatment with extra cholesterol exerted also a virucidal effect. Binding and uptake of cholesterol-deficient DENV into the host cell were not impaired, whereas the next step of fusion between virion envelope and endosome membrane leading to virion uncoating and release of nucleocapsids to the cytoplasm appeared to be prevented, as determined by the retention of capsid protein in cells infected with MCD inactivated-DENV virions. Thereafter, the infection was almost completely inhibited, given the failure of viral RNA synthesis and viral protein expression in cells infected with MCD-treated virions. These data suggest that envelope cholesterol is a critical factor in the fusion process for DENV entry. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Most Influenza A Virions Fail To Express at Least One Essential Viral Protein

    PubMed Central

    Brooke, Christopher B.; Ince, William L.; Wrammert, Jens; Ahmed, Rafi; Wilson, Patrick C.; Bennink, Jack R.

    2013-01-01

    Segmentation of the influenza A virus (IAV) genome enables rapid gene reassortment at the cost of complicating the task of assembling the full viral genome. By simultaneously probing for the expression of multiple viral proteins in MDCK cells infected at a low multiplicity with IAV, we observe that the majority of infected cells lack detectable expression of one or more essential viral proteins. Consistent with this observation, up to 90% of IAV-infected cells fail to release infectious progeny, indicating that many IAV virions scored as noninfectious by traditional infectivity assays are capable of single-round infection. This fraction was not significantly affected by target or producer cell type but varied widely between different IAV strains. These data indicate that IAV exists primarily as a swarm of complementation-dependent semi-infectious virions, and thus traditional, propagation-dependent assays of infectivity may drastically misrepresent the true infectious potential of a virus population. PMID:23283949

  12. Efficient Capsid Antigen Presentation From Adeno-Associated Virus Empty Virions In Vivo.

    PubMed

    Pei, Xiaolei; Earley, Lauriel Freya; He, Yi; Chen, Xiaojing; Hall, Nikita Elexa; Samulski, Richard Jude; Li, Chengwen

    2018-01-01

    Adeno-associated virus (AAV) vectors have been successfully applied in clinical trials for hemophilic patients. Although promising, the clinical results suggest that the capsid-specific CD8+T cell response has a negative effect on therapeutic success. In an in vitro analysis using an engineered AAV virus carrying immune-dominant SIINFEKL peptide in the capsid backbone, we have previously demonstrated that capsid antigen presentation from full (genome containing) AAV capsids requires endosome escape and is proteasome dependent and that no capsid antigen presentation is induced from empty virions. In the present study, we examined capsid antigen presentation from administration of empty virions in animal models. In wild-type mice, similar to AAV full particles, capsid antigen presentation from AAV empty virion infection was dose dependent, and the kinetics studies showed that antigen presentation was detected from 2 to 40 days after AAV empty virion administration. In the transporter associated with antigen processing 1 deficient (TAP-/-) mice, capsid antigen presentation was inhibited from both AAV full and empty virions, but higher inhibition was achieved from AAV full particle administration than that from empty virions. This indicates that the pathway of capsid antigen presentation from AAV transduction is dependent on proteasome-mediated degradation of AAV capsids (mainly for full particles) and that the endosomal pathway may also play a role in antigen presentation from empty particles but not full virions. The capsid antigen presentation efficiency from AAV preparations was positively correlated with the amount of empty virions contaminated with full particles. Collectively, the results indicate that contamination of AAV empty virions induces efficient antigen presentation in vivo and the mechanism of capsid antigen presentation from empty virions involves both endosomal and proteasomal pathways. The elucidation of capsid antigen presentation from AAV empty

  13. Efficient Capsid Antigen Presentation From Adeno-Associated Virus Empty Virions In Vivo

    PubMed Central

    Pei, Xiaolei; Earley, Lauriel Freya; He, Yi; Chen, Xiaojing; Hall, Nikita Elexa; Samulski, Richard Jude; Li, Chengwen

    2018-01-01

    Adeno-associated virus (AAV) vectors have been successfully applied in clinical trials for hemophilic patients. Although promising, the clinical results suggest that the capsid-specific CD8+T cell response has a negative effect on therapeutic success. In an in vitro analysis using an engineered AAV virus carrying immune-dominant SIINFEKL peptide in the capsid backbone, we have previously demonstrated that capsid antigen presentation from full (genome containing) AAV capsids requires endosome escape and is proteasome dependent and that no capsid antigen presentation is induced from empty virions. In the present study, we examined capsid antigen presentation from administration of empty virions in animal models. In wild-type mice, similar to AAV full particles, capsid antigen presentation from AAV empty virion infection was dose dependent, and the kinetics studies showed that antigen presentation was detected from 2 to 40 days after AAV empty virion administration. In the transporter associated with antigen processing 1 deficient (TAP−/−) mice, capsid antigen presentation was inhibited from both AAV full and empty virions, but higher inhibition was achieved from AAV full particle administration than that from empty virions. This indicates that the pathway of capsid antigen presentation from AAV transduction is dependent on proteasome-mediated degradation of AAV capsids (mainly for full particles) and that the endosomal pathway may also play a role in antigen presentation from empty particles but not full virions. The capsid antigen presentation efficiency from AAV preparations was positively correlated with the amount of empty virions contaminated with full particles. Collectively, the results indicate that contamination of AAV empty virions induces efficient antigen presentation in vivo and the mechanism of capsid antigen presentation from empty virions involves both endosomal and proteasomal pathways. The elucidation of capsid antigen presentation from AAV

  14. Antibody-Mediated Internalization of Infectious HIV-1 Virions Differs among Antibody Isotypes and Subclasses.

    PubMed

    Tay, Matthew Zirui; Liu, Pinghuang; Williams, LaTonya D; McRaven, Michael D; Sawant, Sheetal; Gurley, Thaddeus C; Xu, Thomas T; Dennison, S Moses; Liao, Hua-Xin; Chenine, Agnès-Laurence; Alam, S Munir; Moody, M Anthony; Hope, Thomas J; Haynes, Barton F; Tomaras, Georgia D

    2016-08-01

    Emerging data support a role for antibody Fc-mediated antiviral activity in vaccine efficacy and in the control of HIV-1 replication by broadly neutralizing antibodies. Antibody-mediated virus internalization is an Fc-mediated function that may act at the portal of entry whereby effector cells may be triggered by pre-existing antibodies to prevent HIV-1 acquisition. Understanding the capacity of HIV-1 antibodies in mediating internalization of HIV-1 virions by primary monocytes is critical to understanding their full antiviral potency. Antibody isotypes/subclasses differ in functional profile, with consequences for their antiviral activity. For instance, in the RV144 vaccine trial that achieved partial efficacy, Env IgA correlated with increased risk of HIV-1 infection (i.e. decreased vaccine efficacy), whereas V1-V2 IgG3 correlated with decreased risk of HIV-1 infection (i.e. increased vaccine efficacy). Thus, understanding the different functional attributes of HIV-1 specific IgG1, IgG3 and IgA antibodies will help define the mechanisms of immune protection. Here, we utilized an in vitro flow cytometric method utilizing primary monocytes as phagocytes and infectious HIV-1 virions as targets to determine the capacity of Env IgA (IgA1, IgA2), IgG1 and IgG3 antibodies to mediate HIV-1 infectious virion internalization. Importantly, both broadly neutralizing antibodies (i.e. PG9, 2G12, CH31, VRC01 IgG) and non-broadly neutralizing antibodies (i.e. 7B2 mAb, mucosal HIV-1+ IgG) mediated internalization of HIV-1 virions. Furthermore, we found that Env IgG3 of multiple specificities (i.e. CD4bs, V1-V2 and gp41) mediated increased infectious virion internalization over Env IgG1 of the same specificity, while Env IgA mediated decreased infectious virion internalization compared to IgG1. These data demonstrate that antibody-mediated internalization of HIV-1 virions depends on antibody specificity and isotype. Evaluation of the phagocytic potency of vaccine

  15. Antibody-Mediated Internalization of Infectious HIV-1 Virions Differs among Antibody Isotypes and Subclasses

    PubMed Central

    McRaven, Michael D; Sawant, Sheetal; Gurley, Thaddeus C; Xu, Thomas T.; Dennison, S. Moses; Liao, Hua-Xin; Chenine, Agnès-Laurence; Alam, S. Munir; Haynes, Barton F.; Tomaras, Georgia D.

    2016-01-01

    Emerging data support a role for antibody Fc-mediated antiviral activity in vaccine efficacy and in the control of HIV-1 replication by broadly neutralizing antibodies. Antibody-mediated virus internalization is an Fc-mediated function that may act at the portal of entry whereby effector cells may be triggered by pre-existing antibodies to prevent HIV-1 acquisition. Understanding the capacity of HIV-1 antibodies in mediating internalization of HIV-1 virions by primary monocytes is critical to understanding their full antiviral potency. Antibody isotypes/subclasses differ in functional profile, with consequences for their antiviral activity. For instance, in the RV144 vaccine trial that achieved partial efficacy, Env IgA correlated with increased risk of HIV-1 infection (i.e. decreased vaccine efficacy), whereas V1-V2 IgG3 correlated with decreased risk of HIV-1 infection (i.e. increased vaccine efficacy). Thus, understanding the different functional attributes of HIV-1 specific IgG1, IgG3 and IgA antibodies will help define the mechanisms of immune protection. Here, we utilized an in vitro flow cytometric method utilizing primary monocytes as phagocytes and infectious HIV-1 virions as targets to determine the capacity of Env IgA (IgA1, IgA2), IgG1 and IgG3 antibodies to mediate HIV-1 infectious virion internalization. Importantly, both broadly neutralizing antibodies (i.e. PG9, 2G12, CH31, VRC01 IgG) and non-broadly neutralizing antibodies (i.e. 7B2 mAb, mucosal HIV-1+ IgG) mediated internalization of HIV-1 virions. Furthermore, we found that Env IgG3 of multiple specificities (i.e. CD4bs, V1-V2 and gp41) mediated increased infectious virion internalization over Env IgG1 of the same specificity, while Env IgA mediated decreased infectious virion internalization compared to IgG1. These data demonstrate that antibody-mediated internalization of HIV-1 virions depends on antibody specificity and isotype. Evaluation of the phagocytic potency of vaccine

  16. The Use of Nanotrap Particles Technology in Capturing HIV-1 Virions and Viral Proteins from Infected Cells

    PubMed Central

    Sampey, Gavin; Shafagati, Nazly; Van Duyne, Rachel; Iordanskiy, Sergey; Kehn-Hall, Kylene; Liotta, Lance; Petricoin, Emanuel; Young, Mary; Lepene, Benjamin; Kashanchi, Fatah

    2014-01-01

    HIV-1 infection results in a chronic but incurable illness since long-term HAART can keep the virus to an undetectable level. However, discontinuation of therapy rapidly increases viral burden. Moreover, patients under HAART frequently develop various metabolic disorders and HIV-associated neuronal disease. Today, the main challenge of HIV-1 research is the elimination of the residual virus in infected individuals. The current HIV-1 diagnostics are largely comprised of serological and nucleic acid based technologies. Our goal is to integrate the nanotrap technology into a standard research tool that will allow sensitive detection of HIV-1 infection. This study demonstrates that majority of HIV-1 virions in culture supernatants and Tat/Nef proteins spiked in culture medium can be captured by nanotrap particles. To determine the binding affinities of different baits, we incubated target molecules with nanotrap particles at room temperature. After short sequestration, materials were either eluted or remained attached to nanotrap particles prior to analysis. The unique affinity baits of nanotrap particles preferentially bound HIV-1 materials while excluded albumin. A high level capture of Tat or Tat peptide by NT082 and NT084 particles was measured by western blot (WB). Intracellular Nef protein was captured by NT080, while membrane-associated Nef was captured by NT086 and also detected by WB. Selective capture of HIV-1 particles by NT073 and NT086 was measured by reverse transcriptase assay, while capture of infectious HIV-1 by these nanoparticles was demonstrated by functional transactivation in TZM-bl cells. We also demonstrated specific capture of HIV-1 particles and exosomes-containing TAR-RNA in patients' serum by NT086 and NT082 particles, respectively, using specific qRT-PCR. Collectively, our data indicate that certain types of nanotrap particles selectively capture specific HIV-1 molecules, and we propose to use this technology as a platform to enhance HIV-1

  17. Herpesvirus papio 2 encodes a virion host shutoff function.

    PubMed

    Bigger, John E; Martin, David W

    2002-12-05

    Infection of baboons with herpesvirus papio 2 (HVP-2) produces a disease that is similar to human infection with herpes simplex viruses (HSV). Molecular characterization of HVP-2 has demonstrated that the virion contains a factor which rapidly shuts off host cell protein synthesis after infection. Reduction of host cell protein synthesis occurs in parallel with the degradation of mRNA species. A homolog of the HSV virion host shutoff (vhs) gene was identified by Southern and DNA sequence analysis. The sequence of the HVP-2 vhs gene homolog had greater than 70% identity with the vhs genes of HSV 1 and 2. Disruption of the HVP-2 vhs open reading frame diminished the ability of the virus to shut off protein synthesis and degrade cellular mRNA, indicating that this gene was responsible for the vhs activity. The HVP-2 model system provides the opportunity to study the biological role of vhs in the context of a natural primate host. Further development of this system will provide a platform for proof-of-concept studies that will test the efficacy of vaccines that utilize vhs-deficient viruses.

  18. Differential protein partitioning within the herpesvirus tegument and envelope underlies a complex and variable virion architecture

    PubMed Central

    Bohannon, Kevin Patrick; Jun, Yonggun; Gross, Steven P.; Smith, Gregory Allan

    2013-01-01

    The herpesvirus virion is a multilayered structure consisting of a DNA-filled capsid, tegument, and envelope. Detailed reconstructions of the capsid are possible based on its icosahedral symmetry, but the surrounding tegument and envelope layers lack regular architecture. To circumvent limitations of symmetry-based ultrastructural reconstruction methods, a fluorescence approach was developed using single-particle imaging combined with displacement measurements at nanoscale resolution. An analysis of 11 tegument and envelope proteins defined the composition and plasticity of symmetric and asymmetric elements of the virion architecture. The resulting virion protein map ascribes molecular composition to density profiles previously acquired by traditional ultrastructural methods, and provides a way forward to examine the dynamics of the virion architecture during infection. PMID:23569236

  19. Differential protein partitioning within the herpesvirus tegument and envelope underlies a complex and variable virion architecture.

    PubMed

    Bohannon, Kevin Patrick; Jun, Yonggun; Gross, Steven P; Smith, Gregory Allan

    2013-04-23

    The herpesvirus virion is a multilayered structure consisting of a DNA-filled capsid, tegument, and envelope. Detailed reconstructions of the capsid are possible based on its icosahedral symmetry, but the surrounding tegument and envelope layers lack regular architecture. To circumvent limitations of symmetry-based ultrastructural reconstruction methods, a fluorescence approach was developed using single-particle imaging combined with displacement measurements at nanoscale resolution. An analysis of 11 tegument and envelope proteins defined the composition and plasticity of symmetric and asymmetric elements of the virion architecture. The resulting virion protein map ascribes molecular composition to density profiles previously acquired by traditional ultrastructural methods, and provides a way forward to examine the dynamics of the virion architecture during infection.

  20. The virion N protein of infectious bronchitis virus is more phosphorylated than the N protein from infected cell lysates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jayaram, Jyothi; Department of Biology, Texas A and M University, College Station, TX 77843-3258; Youn, Soonjeon

    Because phosphorylation of the infectious bronchitis virus (IBV) nucleocapsid protein (N) may regulate its multiple roles in viral replication, the dynamics of N phosphorylation were examined. {sup 32}P-orthophosphate labeling and Western blot analyses confirmed that N was the only viral protein that was phosphorylated. Pulse labeling with {sup 32}P-orthophosphate indicated that the IBV N protein was phosphorylated in the virion, as well as at all times during infection in either chicken embryo kidney cells or Vero cells. Pulse-chase analyses followed by immunoprecipitation of IBV N proteins using rabbit anti-IBV N polyclonal antibody demonstrated that the phosphate on the N proteinmore » was stable for at least 1 h. Simultaneous labeling with {sup 32}P-orthophosphate and {sup 3}H-leucine identified a 3.5-fold increase in the {sup 32}P:{sup 3}H counts per minute (cpm) ratio of N in the virion as compared to the {sup 32}P:{sup 3}H cpm ratio of N in the cell lysates from chicken embryo kidney cells, whereas in Vero cells the {sup 32}P:{sup 3}H cpm ratio of N from the virion was 10.5-fold greater than the {sup 32}P:{sup 3}H cpm ratio of N from the cell lysates. These studies are consistent with the phosphorylation of the IBV N playing a role in assembly or maturation of the viral particle.« less

  1. Interactions between HIV-1 Gag and Viral RNA Genome Enhance Virion Assembly.

    PubMed

    Dilley, Kari A; Nikolaitchik, Olga A; Galli, Andrea; Burdick, Ryan C; Levine, Louis; Li, Kelvin; Rein, Alan; Pathak, Vinay K; Hu, Wei-Shau

    2017-08-15

    Most HIV-1 virions contain two copies of full-length viral RNA, indicating that genome packaging is efficient and tightly regulated. However, the structural protein Gag is the only component required for the assembly of noninfectious viruslike particles, and the viral RNA is dispensable in this process. The mechanism that allows HIV-1 to achieve such high efficiency of genome packaging when a packageable viral RNA is not required for virus assembly is currently unknown. In this report, we examined the role of HIV-1 RNA in virus assembly and found that packageable HIV-1 RNA enhances particle production when Gag is expressed at levels similar to those in cells containing one provirus. However, such enhancement is diminished when Gag is overexpressed, suggesting that the effects of viral RNA can be replaced by increased Gag concentration in cells. We also showed that the specific interactions between Gag and viral RNA are required for the enhancement of particle production. Taken together, these studies are consistent with our previous hypothesis that specific dimeric viral RNA-Gag interactions are the nucleation event of infectious virion assembly, ensuring that one RNA dimer is packaged into each nascent virion. These studies shed light on the mechanism by which HIV-1 achieves efficient genome packaging during virus assembly. IMPORTANCE Retrovirus assembly is a well-choreographed event, during which many viral and cellular components come together to generate infectious virions. The viral RNA genome carries the genetic information to new host cells, providing instructions to generate new virions, and therefore is essential for virion infectivity. In this report, we show that the specific interaction of the viral RNA genome with the structural protein Gag facilitates virion assembly and particle production. These findings resolve the conundrum that HIV-1 RNA is selectively packaged into virions with high efficiency despite being dispensable for virion assembly

  2. The central globular domain of the nucleocapsid protein of human immunodeficiency virus type 1 is critical for virion structure and infectivity.

    PubMed

    Ottmann, M; Gabus, C; Darlix, J L

    1995-03-01

    The nucleocapsid protein NCp7 of human immunodeficiency virus type 1 (HIV-1) is a 72-amino-acid peptide containing two CCHC-type zinc fingers linked by a short basic sequence, 29RAPRKKG35, which is conserved in HIV-1 and simian immunodeficiency virus. The complete three-dimensional structure of NCp7 has been determined by 1H-nuclear magnetic resonance spectroscopy (N. Morellet, H. de Rocquigny, Y. Mely, N. Jullian, H. Demene, M. Ottmann, D. Gerard, J. L. Darlix, M. C. Fournié-Zaluski, and B. P. Roques, J. Mol. Biol. 235:287-301, 1994) and revealed a central globular domain where the two zinc fingers are brought in close proximity by the RAPRKKG linker. To examine the role of this globular structure and more precisely of the RAPRKKG linker in virion structure and infectivity, we generated HIV-1 DNA mutants in the RAPRKK sequence of NCp7 and analyzed the mutant virions produced by transfected cells. Mutations that probably alter the structure of NCp7 structure led to the formation of very poorly infectious virus (A30P) or noninfectious virus (P31L and R32G). In addition, the P31L mutant did not contain detectable amounts of reverse transcriptase and had an immature core morphology, as determined by electron microscopy. On the other hand, mutations changing the basic nature of NCp7 had poor effect. R29S had a wild-type phenotype, and the replacement of 32RKK34 by SSS (S3 mutant) resulted in a decrease by no more than 100-fold of the virus titer. These results clearly show that the RAPRKKG linker contains residues that are critical for virion structure and infectivity.

  3. The central globular domain of the nucleocapsid protein of human immunodeficiency virus type 1 is critical for virion structure and infectivity.

    PubMed Central

    Ottmann, M; Gabus, C; Darlix, J L

    1995-01-01

    The nucleocapsid protein NCp7 of human immunodeficiency virus type 1 (HIV-1) is a 72-amino-acid peptide containing two CCHC-type zinc fingers linked by a short basic sequence, 29RAPRKKG35, which is conserved in HIV-1 and simian immunodeficiency virus. The complete three-dimensional structure of NCp7 has been determined by 1H-nuclear magnetic resonance spectroscopy (N. Morellet, H. de Rocquigny, Y. Mely, N. Jullian, H. Demene, M. Ottmann, D. Gerard, J. L. Darlix, M. C. Fournié-Zaluski, and B. P. Roques, J. Mol. Biol. 235:287-301, 1994) and revealed a central globular domain where the two zinc fingers are brought in close proximity by the RAPRKKG linker. To examine the role of this globular structure and more precisely of the RAPRKKG linker in virion structure and infectivity, we generated HIV-1 DNA mutants in the RAPRKK sequence of NCp7 and analyzed the mutant virions produced by transfected cells. Mutations that probably alter the structure of NCp7 structure led to the formation of very poorly infectious virus (A30P) or noninfectious virus (P31L and R32G). In addition, the P31L mutant did not contain detectable amounts of reverse transcriptase and had an immature core morphology, as determined by electron microscopy. On the other hand, mutations changing the basic nature of NCp7 had poor effect. R29S had a wild-type phenotype, and the replacement of 32RKK34 by SSS (S3 mutant) resulted in a decrease by no more than 100-fold of the virus titer. These results clearly show that the RAPRKKG linker contains residues that are critical for virion structure and infectivity. PMID:7853517

  4. Proteomic and Functional Analyses of the Virion Transmembrane Proteome of Cyprinid Herpesvirus 3.

    PubMed

    Vancsok, Catherine; Peñaranda, M Michelle D; Raj, V Stalin; Leroy, Baptiste; Jazowiecka-Rakus, Joanna; Boutier, Maxime; Gao, Yuan; Wilkie, Gavin S; Suárez, Nicolás M; Wattiez, Ruddy; Gillet, Laurent; Davison, Andrew J; Vanderplasschen, Alain F C

    2017-11-01

    Virion transmembrane proteins (VTPs) mediate key functions in the herpesvirus infectious cycle. Cyprinid herpesvirus 3 (CyHV-3) is the archetype of fish alloherpesviruses. The present study was devoted to CyHV-3 VTPs. Using mass spectrometry approaches, we identified 16 VTPs of the CyHV-3 FL strain. Mutagenesis experiments demonstrated that eight of these proteins are essential for viral growth in vitro (open reading frame 32 [ORF32], ORF59, ORF81, ORF83, ORF99, ORF106, ORF115, and ORF131), and eight are nonessential (ORF25, ORF64, ORF65, ORF108, ORF132, ORF136, ORF148, and ORF149). Among the nonessential proteins, deletion of ORF25, ORF132, ORF136, ORF148, or ORF149 affects viral replication in vitro , and deletion of ORF25, ORF64, ORF108, ORF132, or ORF149 impacts plaque size. Lack of ORF148 or ORF25 causes attenuation in vivo to a minor or major extent, respectively. The safety and efficacy of a virus lacking ORF25 were compared to those of a previously described vaccine candidate deleted for ORF56 and ORF57 (Δ56-57). Using quantitative PCR, we demonstrated that the ORF25 deleted virus infects fish through skin infection and then spreads to internal organs as reported previously for the wild-type parental virus and the Δ56-57 virus. However, compared to the parental wild-type virus, the replication of the ORF25-deleted virus was reduced in intensity and duration to levels similar to those observed for the Δ56-57 virus. Vaccination of fish with a virus lacking ORF25 was safe but had low efficacy at the doses tested. This characterization of the virion transmembrane proteome of CyHV-3 provides a firm basis for further research on alloherpesvirus VTPs. IMPORTANCE Virion transmembrane proteins play key roles in the biology of herpesviruses. Cyprinid herpesvirus 3 (CyHV-3) is the archetype of fish alloherpesviruses and the causative agent of major economic losses in common and koi carp worldwide. In this study of the virion transmembrane proteome of CyHV-3, the

  5. Profiling of cellular proteins in porcine reproductive and respiratory syndrome virus virions by proteomics analysis

    PubMed Central

    2010-01-01

    Background Porcine reproductive and respiratory syndrome virus (PRRSV) is an enveloped virus, bearing severe economic consequences to the swine industry worldwide. Previous studies on enveloped viruses have shown that many incorporated cellular proteins associated with the virion's membranes that might play important roles in viral infectivity. In this study, we sought to proteomically profile the cellular proteins incorporated into or associated with the virions of a highly virulent PRRSV strain GDBY1, and to provide foundation for further investigations on the roles of incorporated/associated cellular proteins on PRRSV's infectivity. Results In our experiment, sixty one cellular proteins were identified in highly purified PRRSV virions by two-dimensional gel electrophoresis coupled with mass spectrometric approaches. The identified cellular proteins could be grouped into eight functional categories including cytoskeletal proteins, chaperones, macromolecular biosynthesis proteins, metabolism-associated proteins, calcium-dependent membrane-binding proteins and other functional proteins. Among the identified proteins, four have not yet been reported in other studied envelope viruses, namely, guanine nucleotide-binding proteins, tyrosine 3-monooxygenase/tryptophan 5-monooxygenase, peroxiredoxin 1 and galectin-1 protein. The presence of five selected cellular proteins (i.e., β-actin, Tubulin, Annexin A2, heat shock protein Hsp27, and calcium binding proteins S100) in the highly purified PRRSV virions was validated by Western blot and immunogold labeling assays. Conclusions Taken together, the present study has demonstrated the incorporation of cellular proteins in PRRSV virions, which provides valuable information for the further investigations for the effects of individual cellular proteins on the viral replication, assembly, and pathogenesis. PMID:20849641

  6. Formation of virions is strictly required for turnip yellows virus long-distance movement in plants.

    PubMed

    Hipper, Clémence; Monsion, Baptiste; Bortolamiol-Bécet, Diane; Ziegler-Graff, Véronique; Brault, Véronique

    2014-02-01

    Viral genomic RNA of the Turnip yellows virus (TuYV; genus Polerovirus; family Luteoviridae) is protected in virions formed by the major capsid protein (CP) and the minor component, the readthrough (RT*) protein. Long-distance transport, used commonly by viruses to systemically infect host plants, occurs in phloem sieve elements and two viral forms of transport have been described: virions and ribonucleoprotein (RNP) complexes. With regard to poleroviruses, virions have always been presumed to be the long-distance transport form, but the potential role of RNP complexes has not been investigated. Here, we examined the requirement of virions for polerovirus systemic movement by analysing CP-targeted mutants that were unable to form viral particles. We confirmed that TuYV mutants that cannot encapsidate into virions are not able to reach systemic leaves. To completely discard the possibility that the introduced mutations in CP simply blocked the formation or the movement of RNP complexes, we tested in trans complementation of TuYV CP mutants by providing WT CP expressed in transgenic plants. WT CP was able to facilitate systemic movement of TuYV CP mutants and this observation was always correlated with the formation of virions. This demonstrated clearly that virus particles are essential for polerovirus systemic movement.

  7. RNA Polymerase in Mumps Virion

    PubMed Central

    Bernard, Jacqueline P.; Northrop, Robert L.

    1974-01-01

    Mumps virions of the Enders' strain were examined for polymerase activity in vitro. An RNA-dependent RNA polymerase was found to be associated with the virion. The general properties of the reaction appear to be similar to those described for other paramyxoviruses. PMID:4836602

  8. Conserved and host-specific features of influenza virion architecture.

    PubMed

    Hutchinson, Edward C; Charles, Philip D; Hester, Svenja S; Thomas, Benjamin; Trudgian, David; Martínez-Alonso, Mónica; Fodor, Ervin

    2014-09-16

    Viruses use virions to spread between hosts, and virion composition is therefore the primary determinant of viral transmissibility and immunogenicity. However, the virions of many viruses are complex and pleomorphic, making them difficult to analyse in detail. Here we address this by identifying and quantifying virion proteins with mass spectrometry, producing a complete and quantified model of the hundreds of host-encoded and viral proteins that make up the pleomorphic virions of influenza viruses. We show that a conserved influenza virion architecture is maintained across diverse combinations of virus and host. This 'core' architecture, which includes substantial quantities of host proteins as well as the viral protein NS1, is elaborated with abundant host-dependent features. As a result, influenza virions produced by mammalian and avian hosts have distinct protein compositions. Finally, we note that influenza virions share an underlying protein composition with exosomes, suggesting that influenza virions form by subverting microvesicle production.

  9. The Splicing History of an mRNA Affects Its Level of Translation and Sensitivity to Cleavage by the Virion Host Shutoff Endonuclease during Herpes Simplex Virus Infections

    PubMed Central

    Sadek, Jouliana

    2016-01-01

    ABSTRACT During lytic herpes simplex virus (HSV) infections, the virion host shutoff (Vhs) (UL41) endoribonuclease degrades many cellular and viral mRNAs. In uninfected cells, spliced mRNAs emerge into the cytoplasm bound by exon junction complexes (EJCs) and are translated several times more efficiently than unspliced mRNAs that have the same sequence but lack EJCs. Notably, most cellular mRNAs are spliced, whereas most HSV mRNAs are not. To examine the effect of splicing on gene expression during HSV infection, cells were transfected with plasmids harboring an unspliced renilla luciferase (RLuc) reporter mRNA or RLuc constructs with introns near the 5′ or 3′ end of the gene. After splicing of intron-containing transcripts, all three RLuc mRNAs had the same primary sequence. Upon infection in the presence of actinomycin D, spliced mRNAs were much less sensitive to degradation by copies of Vhs from infecting virions than were unspliced mRNAs. During productive infections (in the absence of drugs), RLuc was expressed at substantially higher levels from spliced than from unspliced mRNAs. Interestingly, the stimulatory effect of splicing on RLuc expression was significantly greater in infected than in uninfected cells. The translational stimulatory effect of an intron during HSV-1 infections could be replicated by artificially tethering various EJC components to an unspliced RLuc transcript. Thus, the splicing history of an mRNA, and the consequent presence or absence of EJCs, affects its level of translation and sensitivity to Vhs cleavage during lytic HSV infections. IMPORTANCE Most mammalian mRNAs are spliced. In contrast, of the more than 80 mRNAs harbored by herpes simplex virus 1 (HSV-1), only 5 are spliced. In addition, synthesis of the immediate early protein ICP27 causes partial inhibition of pre-mRNA splicing, with the resultant accumulation of both spliced and unspliced versions of some mRNAs in the cytoplasm. A common perception is that HSV-1 infection

  10. A parapoxviral virion protein targets the retinoblastoma protein to inhibit NF-κB signaling

    PubMed Central

    Nagendraprabhu, Ponnuraj; Khatiwada, Sushil; Chaulagain, Sabal

    2017-01-01

    Poxviruses have evolved multiple strategies to subvert signaling by Nuclear Factor κB (NF-κB), a crucial regulator of host innate immune responses. Here, we describe an orf virus (ORFV) virion-associated protein, ORFV119, which inhibits NF-κB signaling very early in infection (≤ 30 min post infection). ORFV119 NF-κB inhibitory activity was found unimpaired upon translation inhibition, suggesting that virion ORFV119 alone is responsible for early interference in signaling. A C-terminal LxCxE motif in ORFV119 enabled the protein to interact with the retinoblastoma protein (pRb) a multifunctional protein best known for its tumor suppressor activity. Notably, experiments using a recombinant virus containing an ORFV119 mutation which abrogates its interaction with pRb together with experiments performed in cells lacking or with reduced pRb levels indicate that ORFV119 mediated inhibition of NF-κB signaling is largely pRb dependent. ORFV119 was shown to inhibit IKK complex activation early in infection. Consistent with IKK inhibition, ORFV119 also interacted with TNF receptor associated factor 2 (TRAF2), an adaptor protein recruited to signaling complexes upstream of IKK in infected cells. ORFV119-TRAF2 interaction was enhanced in the presence of pRb, suggesting that ORFV119-pRb complex is required for efficient interaction with TRAF2. Additionally, transient expression of ORFV119 in uninfected cells was sufficient to inhibit TNFα-induced IKK activation and NF-κB signaling, indicating that no other viral proteins are required for the effect. Infection of sheep with ORFV lacking the ORFV119 gene led to attenuated disease phenotype, indicating that ORFV119 contributes to virulence in the natural host. ORFV119 represents the first poxviral protein to interfere with NF-κB signaling through interaction with pRb. PMID:29244863

  11. Apobec 3G efficiently reduces infectivity of the human exogenous gammaretrovirus XMRV.

    PubMed

    Stieler, Kristin; Fischer, Nicole

    2010-07-23

    The human exogenous gammaretrovirus XMRV is thought to be implicated in prostate cancer and chronic fatigue syndrome. Besides pressing epidemiologic questions, the elucidation of the tissue and cell tropism of the virus, as well as its sensitivity to retroviral restriction factors is of fundamental importance. The Apobec3 (A3) proteins, a family of cytidine deaminases, are one important group of host proteins that control primary infection and efficient viral spread. Here we demonstrate that XMRV is resistant to human Apobec 3B, 3C and 3F, while being highly susceptible to the human A3G protein, a factor which is known to confer antiviral activity against most retroviruses. We show that XMRV as well as MoMLV virions package Apobec proteins independent of their specific restriction activity. hA3G was found to be a potent inhibitor of XMRV as well as of MoMLV infectivity. In contrast to MoMLV, XMRV infection can also be partially reduced by low concentrations of mA3. Interestingly, established prostate cancer cell lines, which are highly susceptible to XMRV infection, do not or only weakly express hA3G. Our findings confirm and extend recently published data that show restriction of XMRV infection by hA3G. The results will be of value to explore which cells are infected with XMRV and efficiently support viral spread in vivo. Furthermore, the observation that XMRV infection can be reduced by mA3 is of interest with regard to the current natural reservoir of XMRV infection.

  12. Nucleosome positioning in the regulatory region of SV40 chromatin correlates with the activation and repression of early and late transcription during infection

    PubMed Central

    Kumar, Meera Ajeet; Christensen, Kendra; Woods, Benjamin; Dettlaff, Ashley; Perley, Danielle; Scheidegger, Adam; Balakrishnan, Lata; Milavetz, Barry

    2017-01-01

    The location of nucleosomes in SV40 virions and minichromosomes isolated during infection were determined by next generation sequencing (NGS). The patterns of reads within the regulatory region of chromatin from wild-type virions indicated that micrococcal nuclease-resistant nucleosomes were specifically positioned at nt 5223 and nt 363, while in minichromosomes isolated 48 h post-infection we observed nuclease-resistant nucleosomes at nt 5119 and nt 212. The nucleosomes at nt 5223 and nt 363 in virion chromatin would be expected to repress early and late transcription, respectively. In virions from the mutant cs1085, which does not repress early transcription, we found that these two nucleosomes were significantly reduced compared to wild-type virions confirming a repressive role for them. In chromatin from cells infected for only 30 min with wild-type virus, we observed a significant reduction in the nucleosomes at nt 5223 and nt 363 indicating that the potential repression by these nucleosomes appeared to be relieved very early in infection. PMID:28126638

  13. The herpes simplex virus 2 virion-associated ribonuclease vhs interferes with stress granule formation.

    PubMed

    Finnen, Renée L; Hay, Thomas J M; Dauber, Bianca; Smiley, James R; Banfield, Bruce W

    2014-11-01

    In a previous study, it was observed that cells infected with herpes simplex virus 2 (HSV-2) failed to accumulate stress granules (SGs) in response to oxidative stress induced by arsenite treatment. As a follow-up to this observation, we demonstrate here that disruption of arsenite-induced SG formation by HSV-2 is mediated by a virion component. Through studies on SG formation in cells infected with HSV-2 strains carrying defective forms of UL41, the gene that encodes vhs, we identify vhs as a virion component required for this disruption. Cells infected with HSV-2 strains producing defective forms of vhs form SGs spontaneously late in infection. In addition to core SG components, these spontaneous SGs contain the viral immediate early protein ICP27 as well as the viral serine/threonine kinase Us3. As part of these studies, we reexamined the frameshift mutation known to reside within the UL41 gene of HSV-2 strain HG52. We demonstrate that this mutation is unstable and can rapidly revert to restore wild-type UL41 following low-multiplicity passaging. Identification of the involvement of virion-associated vhs in the disruption of SG formation will enable mechanistic studies on how HSV-2 is able to counteract antiviral stress responses early in infection. In addition, the ability of Us3 to localize to stress granules may indicate novel roles for this viral kinase in the regulation of translation. Eukaryotic cells respond to stress by rapidly shutting down protein synthesis and storing mRNAs in cytoplasmic stress granules (SGs). Stoppages in protein synthesis are problematic for all viruses as they rely on host cell machinery to synthesize viral proteins. Thus, many viruses target SGs for disruption or modification. Infection by herpes simplex virus 2 (HSV-2) was previously observed to disrupt SG formation induced by oxidative stress. In this follow-up study, we identify virion host shutoff protein (vhs) as a viral protein involved in this disruption. The

  14. Purification of infectious human herpesvirus 6A virions and association of host cell proteins

    PubMed Central

    Hammarstedt, Maria; Ahlqvist, Jenny; Jacobson, Steven; Garoff, Henrik; Fogdell-Hahn, Anna

    2007-01-01

    Background Viruses that are incorporating host cell proteins might trigger autoimmune diseases. It is therefore of interest to identify possible host proteins associated with viruses, especially for enveloped viruses that have been suggested to play a role in autoimmune diseases, like human herpesvirus 6A (HHV-6A) in multiple sclerosis (MS). Results We have established a method for rapid and morphology preserving purification of HHV-6A virions, which in combination with parallel analyses with background control material released from mock-infected cells facilitates qualitative and quantitative investigations of the protein content of HHV-6A virions. In our iodixanol gradient purified preparation, we detected high levels of viral DNA by real-time PCR and viral proteins by metabolic labelling, silver staining and western blots. In contrast, the background level of cellular contamination was low in the purified samples as demonstrated by the silver staining and metabolic labelling analyses. Western blot analyses showed that the cellular complement protein CD46, the receptor for HHV-6A, is associated with the purified and infectious virions. Also, the cellular proteins clathrin, ezrin and Tsg101 are associated with intact HHV-6A virions. Conclusion Cellular proteins are associated with HHV-6A virions. The relevance of the association in disease and especially in autoimmunity will be further investigated. PMID:17949490

  15. A Small Molecule Inhibits Virion Attachment to Heparan Sulfate- or Sialic Acid-Containing Glycans

    PubMed Central

    Colpitts, Che C.

    2014-01-01

    ABSTRACT Primary attachment to cellular glycans is a critical entry step for most human viruses. Some viruses, such as herpes simplex virus type 1 (HSV-1) and hepatitis C virus (HCV), bind to heparan sulfate, whereas others, such as influenza A virus (IAV), bind to sialic acid. Receptor mimetics that interfere with these interactions are active against viruses that bind to either heparan sulfate or to sialic acid. However, no molecule that inhibits the attachment of viruses in both groups has yet been identified. Epigallocatechin gallate (EGCG), a green tea catechin, is active against many unrelated viruses, including several that bind to heparan sulfate or to sialic acid. We sought to identify the basis for the broad-spectrum activity of EGCG. Here, we show that EGCG inhibits the infectivity of a diverse group of enveloped and nonenveloped human viruses. EGCG acts directly on the virions, without affecting the fluidity or integrity of the virion envelopes. Instead, EGCG interacts with virion surface proteins to inhibit the attachment of HSV-1, HCV, IAV, vaccinia virus, adenovirus, reovirus, and vesicular stomatitis virus (VSV) virions. We further show that EGCG competes with heparan sulfate for binding of HSV-1 and HCV virions and with sialic acid for binding of IAV virions. Therefore, EGCG inhibits unrelated viruses by a common mechanism. Most importantly, we have identified EGCG as the first broad-spectrum attachment inhibitor. Our results open the possibility for the development of small molecule broad-spectrum antivirals targeting virion attachment. IMPORTANCE This study shows that it is possible to develop a small molecule antiviral or microbicide active against the two largest groups of human viruses: those that bind to glycosaminoglycans and those that bind to sialoglycans. This group includes the vast majority of human viruses, including herpes simplex viruses, cytomegalovirus, influenza virus, poxvirus, hepatitis C virus, HIV, and many others. PMID

  16. Variola and Monkeypox Viruses Utilize Conserved Mechanisms of Virion Motility and Release That Depend on Abl and Src Family Tyrosine Kinases▿ †

    PubMed Central

    Reeves, Patrick M.; Smith, Scott K.; Olson, Victoria A.; Thorne, Steve H.; Bornmann, William; Damon, Inger K.; Kalman, Daniel

    2011-01-01

    Vaccinia virus (VacV) enters mammalian cells, replicates extranuclearly, and produces virions that move to the cell surface along microtubules, fuse with the plasma membrane, and move from infected cells toward apposing cells on actin-filled membranous protrusions or actin tails. To form actin tails, cell-associated enveloped virions (CEV) require Abl and Src family tyrosine kinases. Furthermore, release of CEV from the cell requires Abl but not Src family tyrosine kinases and is blocked by imatinib mesylate (STI-571; Gleevec), an Abl family kinase inhibitor used to treat chronic myelogenous leukemia in humans. Here we demonstrate that the Poxviridae family members monkeypox virus (MPX) and variola virus (VarV) use conserved mechanisms for actin motility and extracellular enveloped virion (EEV) release. Furthermore, we show that imatinib mesylate is effective in a mouse model of infection with VacV, whether delivered prophylactically or postinfection, and restricts spread of virions from the site of inoculation. While inhibitors of both Src and Abl family kinases, such as dasatinib (BMS-354825; Sprycel), are effective in limiting dissemination of VacV, VarV, and MPX in vitro, members of this class of drugs appear to have immunosuppressive effects in vivo that preclude their use as anti-infectives. Together, these data suggest a possible utility for imatinib mesylate in treating smallpox or MPX infections or complications associated with vaccination. PMID:20962097

  17. The African swine fever virus virion membrane protein pE248R is required for virus infectivity and an early postentry event.

    PubMed

    Rodríguez, Irene; Nogal, María L; Redrejo-Rodríguez, Modesto; Bustos, María J; Salas, María L

    2009-12-01

    The African swine fever virus (ASFV) protein pE248R, encoded by the gene E248R, is a late structural component of the virus particle. The protein contains intramolecular disulfide bonds and has been previously identified as a substrate of the ASFV-encoded redox system. Its amino acid sequence contains a putative myristoylation site and a hydrophobic transmembrane region near its carboxy terminus. We show here that the protein pE248R is myristoylated during infection and associates with the membrane fraction in infected cells, behaving as an integral membrane protein. Furthermore, the protein localizes at the inner envelope of the virus particles in the cytoplasmic factories. The function of the protein pE248R in ASFV replication was investigated by using a recombinant virus that inducibly expresses the gene E248R. Under repressive conditions, the ASFV polyproteins pp220 and pp62 are normally processed and virus particles with morphology indistinguishable from that of those produced in a wild-type infection or under permissive conditions are generated. Moreover, the mutant virus particles can exit the cell as does the parental virus. However, the infectivity of the pE248R-deficient virions was reduced at least 100-fold. An investigation of the defect of the mutant virus indicated that neither virus binding nor internalization was affected by the absence of the protein pE248R, but a cytopathic effect was not induced and early and late gene expression was impaired, indicating that the protein is required for some early postentry event.

  18. Interaction of the Coronavirus Infectious Bronchitis Virus Membrane Protein with β-Actin and Its Implication in Virion Assembly and Budding

    PubMed Central

    Wang, Jibin; Fang, Shouguo; Xiao, Han; Chen, Bo; Tam, James P.; Liu, Ding Xiang

    2009-01-01

    Coronavirus M protein is an essential component of virion and plays pivotal roles in virion assembly, budding and maturation. The M protein is integrated into the viral envelope with three transmembrane domains flanked by a short amino-terminal ectodomain and a large carboxy-terminal endodomain. In this study, we showed co-purification of the M protein from coronavirus infectious bronchitis virus (IBV) with actin. To understand the cellular factors that may be involved in virion assembly, budding and maturation processes, IBV M was used as the bait in a yeast two-hybrid screen, resulting in the identification of β-actin as a potentially interacting partner. This interaction was subsequently confirmed by coimmunoprecipitation and immunofluorescence microscopy in mammalian cells, and mutation of amino acids A159 and K160 on the M protein abolished the interaction. Introduction of the A159-K160 mutation into an infectious IBV clone system blocks the infectivity of the clone, although viral RNA replication and subgenomic mRNA transcription were actively detected. Disruption of actin filaments with cell-permeable agent cytochalasin D at early stages of the infection cycle led to the detection of viral protein synthesis in infected cells but not release of virus particles to the cultured media. However, the same treatment at late stages of the infection cycle did not affect the release of virus particles to the media, suggesting that disruption of the actin filaments might block virion assembly and budding, but not release of the virus particles. This study reveals an essential function of actin in the replication cycle of coronavirus. PMID:19287488

  19. Packaging of the virion host shutoff (Vhs) protein of herpes simplex virus: two forms of the Vhs polypeptide are associated with intranuclear B and C capsids, but only one is associated with enveloped virions.

    PubMed

    Read, G Sullivan; Patterson, Mary

    2007-02-01

    The virion host shutoff (Vhs) protein (UL41) is a minor component of herpes simplex virus virions which, following penetration, accelerates turnover of host and viral mRNAs. Infected cells contain 58-kDa and 59.5-kDa forms of Vhs, which differ in the extent of phosphorylation, yet only a 58-kDa polypeptide is incorporated into virions. In pulse-chase experiments, the primary Vhs translation product comigrated in sodium dodecyl sulfate-polyacrylamide gel electrophoresis with the 58-kDa virion polypeptide, and could be chased to 59.5 kDa. While both 59.5-kDa and 58-kDa forms were found in nuclear and cytoplasmic fractions, the 59.5-kDa form was significantly enriched in the nucleus. Both forms were associated with intranuclear B and C capsids, yet only the 58-kDa polypeptide was found in enveloped cytoplasmic virions. A 58-kDa form, but not the 59.5-kDa form, was found in L particles, noninfectious particles that contain an envelope and tegument but no capsid. The data suggest that virions contain two populations of Vhs that are packaged by different pathways. In the first pathway, the primary translation product is processed to 59.5 kDa, is transported to the nucleus, binds intranuclear capsids, and is converted to 58 kDa at some stage prior to final envelopment. The second pathway does not involve the 59.5-kDa form or interactions between Vhs and capsids. Instead, the primary translation product is phosphorylated to the 58-kDa virion form and packaged through interactions with other tegument proteins in the cytoplasm or viral envelope proteins at the site of final envelopment.

  20. Expression levels of glycoprotein O (gO) vary between strains of human cytomegalovirus, influencing the assembly of gH/gL complexes and virion infectivity.

    PubMed

    Zhang, Le; Zhou, Momei; Stanton, Richard; Kamil, Jeremy; Ryckman, Brent J

    2018-05-09

    Tropism of human cytomegalovirus (HCMV) is influenced by the envelope glycoprotein complexes gH/gL/gO and gH/gL/UL128-131. During virion assembly, gO and the UL128-131 proteins compete for binding to gH/gL in the ER. This assembly process clearly differs among strains since Merlin (ME) virions contain abundant gH/gL/UL128-131 and little gH/gL/gO, whereas TR contains much higher levels of total gH/gL, mostly in the form of gH/gL/gO, but much less gH/gL/UL128-131 than ME. Remaining questions include 1) what are the mechanisms behind these assembly differences, and 2) do differences reflect in vitro culture adaptations or natural genetic variations? Since the UL74(gO) ORF differs by 25% of amino acids between TR and ME, we analyzed recombinant viruses in which the UL74(gO) ORF was swapped. TR virions were >40-fold more infectious than ME. Transcriptional repression of UL128-131 enhanced infectivity of ME to the level of TR, despite still far lower levels of gH/gL/gO. Swapping the UL74(gO) ORF had no effect on either TR or ME. A quantitative immunoprecipitation approach revealed that gH/gL expression was within 4-fold between TR and ME, but gO expression was 20-fold less by ME, and suggested differences in mRNA transcription, translation or rapid ER-associated degradation of gO. Trans-complementation of gO expression during ME replication gave 6-fold enhancement of infectivity beyond the 40-fold effect of UL128-131 repression alone. Overall, strain variations in assembly of gH/gL complexes result from differences in expression of gO and UL128-131, and selective advantages for reduced UL128-131 expression during fibroblast propagation are much stronger than for higher gO expression. IMPORTANCE Specific genetic differences between independently isolated HCMV strains may result from purifying selection on de novo mutations arising during propagation in culture, or random sampling among the diversity of genotypes present in clinical specimens. Results presented indicate

  1. Dengue virus infection induces broadly cross-reactive human IgM antibodies that recognize intact virions in humanized BLT-NSG mice

    PubMed Central

    Jaiswal, Smita; Smith, Kenneth; Ramirez, Alejandro; Woda, Marcia; Pazoles, Pamela; Shultz, Leonard D; Greiner, Dale L; Brehm, Michael A

    2015-01-01

    The development of small animal models that elicit human immune responses to dengue virus (DENV) is important since prior immunity is a major risk factor for developing severe dengue disease. This study evaluated anti-DENV human antibody (hAb) responses generated from immortalized B cells after DENV-2 infection in NOD-scid IL2rγnull mice that were co-transplanted with human fetal thymus and liver tissues (BLT-NSG mice). DENV-specific human antibodies predominantly of the IgM isotype were isolated during acute infection and in convalescence. We found that while a few hAbs recognized the envelope protein produced as a soluble recombinant, a number of hAbs only recognized epitopes on intact virions. The majority of the hAbs isolated during acute infection and in immune mice were serotype-cross-reactive and poorly neutralizing. Viral titers in immune BLT-NSG mice were significantly decreased after challenge with a clinical strain of dengue. DENV-specific hAbs generated in BLT-NSG mice share some of the characteristics of Abs isolated in humans with natural infection. Humanized BLT-NSG mice provide an attractive preclinical platform to assess the immunogenicity of candidate dengue vaccines. PMID:25125497

  2. Antigenic properties of the human immunodeficiency virus envelope glycoprotein gp120 on virions bound to target cells.

    PubMed

    Mengistu, Meron; Ray, Krishanu; Lewis, George K; DeVico, Anthony L

    2015-03-01

    The HIV-1 envelope glycoprotein, gp120, undergoes multiple molecular interactions and structural rearrangements during the course of host cell attachment and viral entry, which are being increasingly defined at the atomic level using isolated proteins. In comparison, antigenic markers of these dynamic changes are essentially unknown for single HIV-1 particles bound to target cells. Such markers should indicate how neutralizing and/or non-neutralizing antibodies might interdict infection by either blocking infection or sensitizing host cells for elimination by Fc-mediated effector function. Here we address this deficit by imaging fluorescently labeled CCR5-tropic HIV-1 pseudoviruses using confocal and superresolution microscopy to track the exposure of neutralizing and non-neutralizing epitopes as they appear on single HIV-1 particles bound to target cells. Epitope exposure was followed under conditions permissive or non-permissive for viral entry to delimit changes associated with virion binding from those associated with post-attachment events. We find that a previously unexpected array of gp120 epitopes is exposed rapidly upon target cell binding. This array comprises both neutralizing and non-neutralizing epitopes, the latter being hidden on free virions yet capable of serving as potent targets for Fc-mediated effector function. Under non-permissive conditions for viral entry, both neutralizing and non-neutralizing epitope exposures were relatively static over time for the majority of bound virions. Under entry-permissive conditions, epitope exposure patterns changed over time on subsets of virions that exhibited concurrent variations in virion contents. These studies reveal that bound virions are distinguished by a broad array of both neutralizing and non-neutralizing gp120 epitopes that potentially sensitize a freshly engaged target cell for destruction by Fc-mediated effector function and/or for direct neutralization at a post-binding step. The elucidation of

  3. The African Swine Fever Virus Virion Membrane Protein pE248R Is Required for Virus Infectivity and an Early Postentry Event ▿

    PubMed Central

    Rodríguez, Irene; Nogal, María L.; Redrejo-Rodríguez, Modesto; Bustos, María J.; Salas, María L.

    2009-01-01

    The African swine fever virus (ASFV) protein pE248R, encoded by the gene E248R, is a late structural component of the virus particle. The protein contains intramolecular disulfide bonds and has been previously identified as a substrate of the ASFV-encoded redox system. Its amino acid sequence contains a putative myristoylation site and a hydrophobic transmembrane region near its carboxy terminus. We show here that the protein pE248R is myristoylated during infection and associates with the membrane fraction in infected cells, behaving as an integral membrane protein. Furthermore, the protein localizes at the inner envelope of the virus particles in the cytoplasmic factories. The function of the protein pE248R in ASFV replication was investigated by using a recombinant virus that inducibly expresses the gene E248R. Under repressive conditions, the ASFV polyproteins pp220 and pp62 are normally processed and virus particles with morphology indistinguishable from that of those produced in a wild-type infection or under permissive conditions are generated. Moreover, the mutant virus particles can exit the cell as does the parental virus. However, the infectivity of the pE248R-deficient virions was reduced at least 100-fold. An investigation of the defect of the mutant virus indicated that neither virus binding nor internalization was affected by the absence of the protein pE248R, but a cytopathic effect was not induced and early and late gene expression was impaired, indicating that the protein is required for some early postentry event. PMID:19793823

  4. HPV-16 virions can remain infectious for 2 weeks on senescent cells but require cell cycle re-activation to allow virus entry.

    PubMed

    Broniarczyk, Justyna; Ring, Nadja; Massimi, Paola; Giacca, Mauro; Banks, Lawrence

    2018-01-16

    Successful infection with Human Papillomaviruses requires mitosis, when incoming viral genomes gain access to nuclear components. However, very little is known about how long HPV particles can remain infectious in non-dividing cells or in which cellular compartments these viruses may reside. To investigate these questions we have used BJ cells as a reversible model of senescence and show that HPV-16 can only infect early-passage proliferating cells. Late-passage senescent cells are resistant to HPV infection, but this can be reversed by inducing cell cycle re-entry with a p53 siRNA. In senescent cells we find that efficient virus entry can be attained upon cell cycle re-entry 16 days after infection, demonstrating that HPV can persist for 2 weeks prior to induction of mitosis. However, exposing cells to anti-HPV-16 L1 neutralising antibody blocks infection at these late time points, suggesting that the virions reside near the cell surface. Indeed, immunofluorescence analysis shows that virions accumulate on the cell surface of senescent cells and only enter endocytic vesicles upon stimulation with p53 siRNA. These results demonstrate that HPV-16 virions can remain viable on a non-dividing cell for extended periods of time, but are nonetheless vulnerable to antibody-induced neutralisation throughout.

  5. Chimeric rabies glycoprotein with a transmembrane domain and cytoplasmic tail from Newcastle disease virus fusion protein incorporates into the Newcastle disease virion at reduced levels.

    PubMed

    Yu, Gui Mei; Zu, Shu Long; Zhou, Wei Wei; Wang, Xi Jun; Shuai, Lei; Wang, Xue Lian; Ge, Jin Ying; Bu, Zhi Gao

    2017-08-31

    Rabies remains an important worldwide health problem. Newcastle disease virus (NDV) was developed as a vaccine vector in animals by using a reverse genetics approach. Previously, our group generated a recombinant NDV (LaSota strain) expressing the complete rabies virus G protein (RVG), named rL-RVG. In this study, we constructed the variant rL-RVGTM, which expresses a chimeric rabies virus G protein (RVGTM) containing the ectodomain of RVG and the transmembrane domain (TM) and a cytoplasmic tail (CT) from the NDV fusion glycoprotein to study the function of RVG's TM and CT. The RVGTM did not detectably incorporate into NDV virions, though it was abundantly expressed at the surface of infected BHK-21 cells. Both rL-RVG and rL-RVGTM induced similar levels of NDV virus-neutralizing antibody (VNA) after initial and secondary vaccination in mice, whereas rabies VNA induction by rL-RVGTM was markedly lower than that induced by rL-RVG. Though rL-RVG could spread from cell to cell like that in rabies virus, rL-RVGTM lost this ability and spread in a manner similar to the parental NDV. Our data suggest that the TM and CT of RVG are essential for its incorporation into NDV virions and for spreading of the recombinant virus from the initially infected cells to surrounding cells.

  6. Safety and immunogenicity of adjuvanted inactivated split-virion and whole-virion influenza A (H5N1) vaccines in children: a phase I-II randomized trial.

    PubMed

    Wu, Jiang; Liu, Shu-Zhen; Dong, Shan-Shan; Dong, Xiao-Ping; Zhang, Wu-Li; Lu, Min; Li, Chang-Gui; Zhou, Ji-Chen; Fang, Han-Hua; Liu, Yan; Liu, Li-Ying; Qiu, Yuan-Zheng; Gao, Qiang; Zhang, Xiao-Mei; Chen, Jiang-Ting; Zhong, Xiang; Yin, Wei-Dong; Feng, Zi-Jian

    2010-08-31

    Highly pathogenic avian influenza A virus H5N1 has the potential to cause a pandemic. Many prototype pandemic influenza A (H5N1) vaccines had been developed and well evaluated in adults in recent years. However, data in children are limited. Herein we evaluate the safety and immunogenicity of adjuvanted split-virion and whole-virion H5N1 vaccines in children. An open-labelled phase I trial was conducted in children aged 3-11 years to receive aluminum-adjuvated, split-virion H5N1 vaccine (5-30 microg) and in children aged 12-17 years to receive aluminum-adjuvated, whole-virion H5N1 vaccine (5-15 microg). Safety of the two formulations was assessed. Then a randomized phase II trial was conducted, in which 141 children aged 3-11 years received the split-virion vaccine (10 or 15 microg) and 280 children aged 12-17 years received the split-virion vaccine (10-30 microg) or the whole-virion vaccine (5 microg). Serum samples were collected for hemagglutination-inhibition (HI) assays. 5-15 microg adjuvated split-virion vaccines were well tolerated in children aged 3-11 years and 5-30 microg adjuvated split-virion vaccines and 5 microg adjuvated whole-virion vaccine were well tolerated in children aged 12-17 years. Most local and systemic reactions were mild or moderate. Before vaccination, all participants were immunologically naïve to H5N1 virus. Immune responses were induced after the first dose and significantly boosted after the second dose. In 3-11 years children, the 10 and 15 microg split-virion vaccine induced similar responses with 55% seroconversion and seroprotection (HI titer >or=1:40) rates. In 12-17 years children, the 30 microg split-virion vaccine induced the highest immune response with 71% seroconversion and seroprotection rates. The 5 microg whole-virion vaccine induced higher response than the 10 microg split-virion vaccine did. The aluminum-adjuvanted, split-virion prototype pandemic influenza A (H5N1) vaccine showed good safety and immunogenicity in

  7. Expression of the highly conserved vaccinia virus E6 protein is required for virion morphogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Resch, Wolfgang; Weisberg, Andrea S.; Moss, Bernard, E-mail: bmoss@nih.go

    2009-04-10

    The vaccinia virus E6R gene (VACVWR062) is conserved in all members of the poxvirus family and encodes a protein associated with the mature virion. We confirmed this association and provided evidence for an internal location. An inducible mutant that conditionally expresses E6 was constructed. In the absence of inducer, plaque formation and virus production were severely inhibited in several cell lines, whereas some replication occurred in others. This difference could be due to variation in the stringency of repression, since we could not isolate a stable deletion mutant even in the more 'permissive' cells. Under non-permissive conditions, viral late proteinsmore » were synthesized but processing of core proteins was inefficient, indicative of an assembly block. Transmission electron microscopy of sections of cells infected with the mutant in the absence of inducer revealed morphogenetic defects with crescents and empty immature virions adjacent to dense inclusions of viroplasm. Mature virions were infrequent and cores appeared to have lucent centers.« less

  8. An Ensemble Method to Distinguish Bacteriophage Virion from Non-Virion Proteins Based on Protein Sequence Characteristics.

    PubMed

    Zhang, Lina; Zhang, Chengjin; Gao, Rui; Yang, Runtao

    2015-09-09

    Bacteriophage virion proteins and non-virion proteins have distinct functions in biological processes, such as specificity determination for host bacteria, bacteriophage replication and transcription. Accurate identification of bacteriophage virion proteins from bacteriophage protein sequences is significant to understand the complex virulence mechanism in host bacteria and the influence of bacteriophages on the development of antibacterial drugs. In this study, an ensemble method for bacteriophage virion protein prediction from bacteriophage protein sequences is put forward with hybrid feature spaces incorporating CTD (composition, transition and distribution), bi-profile Bayes, PseAAC (pseudo-amino acid composition) and PSSM (position-specific scoring matrix). When performing on the training dataset 10-fold cross-validation, the presented method achieves a satisfactory prediction result with a sensitivity of 0.870, a specificity of 0.830, an accuracy of 0.850 and Matthew's correlation coefficient (MCC) of 0.701, respectively. To evaluate the prediction performance objectively, an independent testing dataset is used to evaluate the proposed method. Encouragingly, our proposed method performs better than previous studies with a sensitivity of 0.853, a specificity of 0.815, an accuracy of 0.831 and MCC of 0.662 on the independent testing dataset. These results suggest that the proposed method can be a potential candidate for bacteriophage virion protein prediction, which may provide a useful tool to find novel antibacterial drugs and to understand the relationship between bacteriophage and host bacteria. For the convenience of the vast majority of experimental Int. J. Mol. Sci. 2015, 16,21735 scientists, a user-friendly and publicly-accessible web-server for the proposed ensemble method is established.

  9. The internal head protein Gp16 controls DNA ejection from the bacteriophage T7 virion.

    PubMed

    Struthers-Schlinke, J S; Robins, W P; Kemp, P; Molineux, I J

    2000-08-04

    A wild-type T7 virion ejects about 850 bp of the 40 kb genome into the bacterial cell by a transcription-independent process. Internalization of the remainder of the genome normally requires transcription. Inhibition of transcription-independent DNA translocation beyond the leading 850 bp is not absolute but the time taken by a population of phage genomes in overcoming the block averages about 20 minutes at 30 degrees C. There are additional blocks to transcription-independent translocation and less than 20 % of infecting DNA molecules completely penetrate the cell cytoplasm after four hours of infection. Mutant virions containing an altered gene 16 protein either prevent the blocks to transcription-independent DNA translocation or effect rapid release from blocking sites and allow the entire phage DNA molecule to enter the cell at a constant rate of about 75 bp per second. This rate is likely the same at which the leading 850 bp is ejected into the cell from a wild-type virion. All mutations fall into two clusters contained within 380 bp of the 4 kb gene 16, suggesting that a 127 residue segment of gp16 controls DNA ejection from the phage particle. We suggest that this segment of gp16 acts as a clamp to prevent transcription-independent DNA translocation. Copyright 2000 Academic Press.

  10. HIV-1 virion fusion assay: uncoating not required and no effect of Nef on fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cavrois, Marielle; Neidleman, Jason; Yonemoto, Wes

    2004-10-15

    We recently described a sensitive and specific assay that detects the fusion of HIV-1 virions to a broad range of target cells, including primary CD4 cells. This assay involves the use of virions containing {beta}-lactamase-Vpr (BlaM-Vpr) and the loading of target cells with CCF2, a fluorogenic substrate of {beta}-lactamase. Since Vpr strongly associates with the viral core, uncoating of the viral particle might be required for effective cleavage of CCF2 by BlaM-Vpr. Here, we show that BlaM-Vpr within mature viral cores effectively cleaves CCF2, indicating that this assay measures virion fusion independently of uncoating. We also show that wildtype andmore » Nef-deficient HIV-1 virions fuse with equivalent efficiency to HeLa-CD4 cells, SupT1 T cells, and primary CD4 T cells. Since Nef enhances cytoplasmic delivery of viral cores and increases viral infectivity, these findings indicate that Nef enhances an early post-fusion event in the multistep process of viral entry. Possible sites of Nef action include enlargement of the fusion pore, enhanced uncoating of viral particles, and more efficient passage of viral cores through the dense cortical actin network located immediately beneath the plasma membrane.« less

  11. Dengue virus infection induces broadly cross-reactive human IgM antibodies that recognize intact virions in humanized BLT-NSG mice.

    PubMed

    Jaiswal, Smita; Smith, Kenneth; Ramirez, Alejandro; Woda, Marcia; Pazoles, Pamela; Shultz, Leonard D; Greiner, Dale L; Brehm, Michael A; Mathew, Anuja

    2015-01-01

    The development of small animal models that elicit human immune responses to dengue virus (DENV) is important since prior immunity is a major risk factor for developing severe dengue disease. This study evaluated anti-DENV human antibody (hAb) responses generated from immortalized B cells after DENV-2 infection in NOD-scid IL2rγ(null) mice that were co-transplanted with human fetal thymus and liver tissues (BLT-NSG mice). DENV-specific human antibodies predominantly of the IgM isotype were isolated during acute infection and in convalescence. We found that while a few hAbs recognized the envelope protein produced as a soluble recombinant, a number of hAbs only recognized epitopes on intact virions. The majority of the hAbs isolated during acute infection and in immune mice were serotype-cross-reactive and poorly neutralizing. Viral titers in immune BLT-NSG mice were significantly decreased after challenge with a clinical strain of dengue. DENV-specific hAbs generated in BLT-NSG mice share some of the characteristics of Abs isolated in humans with natural infection. Humanized BLT-NSG mice provide an attractive preclinical platform to assess the immunogenicity of candidate dengue vaccines. © 2014 by the Society for Experimental Biology and Medicine.

  12. Virion Glycoprotein-Mediated Immune Evasion by Human Cytomegalovirus: a Sticky Virus Makes a Slick Getaway

    PubMed Central

    Gardner, Thomas J.

    2016-01-01

    SUMMARY The prototypic herpesvirus human cytomegalovirus (CMV) exhibits the extraordinary ability to establish latency and maintain a chronic infection throughout the life of its human host. This is even more remarkable considering the robust adaptive immune response elicited by infection and reactivation from latency. In addition to the ability of CMV to exist in a quiescent latent state, its persistence is enabled by a large repertoire of viral proteins that subvert immune defense mechanisms, such as NK cell activation and major histocompatibility complex antigen presentation, within the cell. However, dissemination outside the cell presents a unique existential challenge to the CMV virion, which is studded with antigenic glycoprotein complexes targeted by a potent neutralizing antibody response. The CMV virion envelope proteins, which are critical mediators of cell attachment and entry, possess various characteristics that can mitigate the humoral immune response and prevent viral clearance. Here we review the CMV glycoprotein complexes crucial for cell attachment and entry and propose inherent properties of these proteins involved in evading the CMV humoral immune response. These include viral glycoprotein polymorphism, epitope competition, Fc receptor-mediated endocytosis, glycan shielding, and cell-to-cell spread. The consequences of CMV virion glycoprotein-mediated immune evasion have a major impact on persistence of the virus in the population, and a comprehensive understanding of these evasion strategies will assist in designing effective CMV biologics and vaccines to limit CMV-associated disease. PMID:27307580

  13. Modeling of Virion Collisions in Cervicovaginal Mucus Reveals Limits on Agglutination as the Protective Mechanism of Secretory Immunoglobulin A

    PubMed Central

    Chen, Alex; McKinley, Scott A.; Shi, Feng; Wang, Simi; Mucha, Peter J.; Harit, Dimple; Forest, M. Gregory; Lai, Samuel K.

    2015-01-01

    Secretory immunoglobulin A (sIgA), a dimeric antibody found in high quantities in the gastrointestinal mucosa, is broadly associated with mucosal immune protection. A distinguishing feature of sIgA is its ability to crosslink pathogens, thereby creating pathogen/sIgA aggregates that are too large to traverse the dense matrix of mucin fibers in mucus layers overlying epithelial cells and consequently reducing infectivity. Here, we use modeling to investigate this mechanism of “immune exclusion” based on sIgA-mediated agglutination, in particular the potential use of sIgA to agglutinate HIV in cervicovaginal mucus (CVM) and prevent HIV transmission. Utilizing reported data on HIV diffusion in CVM and semen, we simulate HIV collision kinetics in physiologically-thick mucus layers–a necessary first step for sIgA-induced aggregation. We find that even at the median HIV load in semen of acutely infected individuals possessing high viral titers, over 99% of HIV virions will penetrate CVM and reach the vaginal epithelium without colliding with another virion. These findings imply that agglutination is unlikely to be the dominant mechanism of sIgA-mediated protection against HIV or other sexually transmitted pathogens. Rather, we surmise that agglutination is most effective against pathogens either present at exceedingly high concentrations or that possess motility mechanisms other than Brownian diffusion that significantly enhance encounter rates. PMID:26132216

  14. RNA helicase A modulates translation of HIV-1 and infectivity of progeny virions

    PubMed Central

    Bolinger, Cheryl; Sharma, Amit; Singh, Deepali; Yu, Lianbo; Boris-Lawrie, Kathleen

    2010-01-01

    Retroviruses rely on host RNA-binding proteins to modulate various steps in their replication. Previously several animal retroviruses were determined to mediate Dhx9/RNA helicase A (RHA) interaction with a 5′ terminal post-transcriptional control element (PCE) for efficient translation. Herein PCE reporter assays determined HTLV-1 and HIV-1 RU5 confer orientation-dependent PCE activity. The effect of Dhx9/RHA down-regulation and rescue with siRNA-resistant RHA on expression of HIV-1NL4–3 provirus determined that RHA is necessary for efficient HIV-1 RNA translation and requires ATPase-dependent helicase function. Quantitative analysis determined HIV-1 RNA steady-state and cytoplasmic accumulation were not reduced; rather the translational activity of viral RNA was reduced. Western blotting determined that RHA-deficient virions assemble with Lys-tRNA synthetase, exhibit processed reverse transcriptase and contain similar level of viral RNA, but they are poorly infectious on primary lymphocytes and HeLa cells. The results demonstrate RHA is an important host factor within the virus-producer cell and within the viral particle. The identification of RHA-dependent PCE activity in cellular junD RNA and in six of seven genera of Retroviridae suggests conservation of this translational control mechanism among vertebrates, and convergent evolution of Retroviridae to utilize this host mechanism. PMID:20007598

  15. Dense Array of Spikes on HIV-1 Virion Particles.

    PubMed

    Stano, Armando; Leaman, Daniel P; Kim, Arthur S; Zhang, Lei; Autin, Ludovic; Ingale, Jidnyasa; Gift, Syna K; Truong, Jared; Wyatt, Richard T; Olson, Arthur J; Zwick, Michael B

    2017-07-15

    HIV-1 is rare among viruses for having a low number of envelope glycoprotein (Env) spikes per virion, i.e., ∼7 to 14. This exceptional feature has been associated with avoidance of humoral immunity, i.e., B cell activation and antibody neutralization. Virus-like particles (VLPs) with increased density of Env are being pursued for vaccine development; however, these typically require protein engineering that alters Env structure. Here, we used instead a strategy that targets the producer cell. We employed fluorescence-activated cell sorting (FACS) to sort for cells that are recognized by trimer cross-reactive broadly neutralizing antibody (bnAb) and not by nonneutralizing antibodies. Following multiple iterations of FACS, cells and progeny virions were shown to display higher levels of antigenically correct Env in a manner that correlated between cells and cognate virions ( P = 0.027). High-Env VLPs, or hVLPs, were shown to be monodisperse and to display more than a 10-fold increase in spikes per particle by electron microscopy (average, 127 spikes; range, 90 to 214 spikes). Sequencing revealed a partial truncation in the C-terminal tail of Env that had emerged in the sort; however, iterative rounds of "cell factory" selection were required for the high-Env phenotype. hVLPs showed greater infectivity than standard pseudovirions but largely similar neutralization sensitivity. Importantly, hVLPs also showed superior activation of Env-specific B cells. Hence, high-Env HIV-1 virions, obtained through selection of producer cells, represent an adaptable platform for vaccine design and should aid in the study of native Env. IMPORTANCE The paucity of spikes on HIV is a unique feature that has been associated with evasion of the immune system, while increasing spike density has been a goal of vaccine design. Increasing the density of Env by modifying it in various ways has met with limited success. Here, we focused instead on the producer cell. Cells that stably express

  16. Determination of avian influenza A (H9N2) virions by inductively coupled plasma mass spectrometry based magnetic immunoassay with gold nanoparticles labeling

    NASA Astrophysics Data System (ADS)

    Xiao, Guangyang; Chen, Beibei; He, Man; Shi, Kaiwen; Zhang, Xing; Li, Xiaoting; Wu, Qiumei; Pang, Daiwen; Hu, Bin

    2017-12-01

    Avian influenza viruses are the pathogens of global poultry epidemics, and may even cause the human infections. Here, we proposed a novel inductively coupled plasma mass spectrometry (ICP-MS) based immunoassay with gold nanoparticles (Au NPs) labeling for the determination of H9N2 virions. Magnetic-beads modified with anti-influenza A H9N2 hemagglutinin mono-antibody (mAb-HA) were utilized for the capture of H9N2 virions in complex matrix; and Au NPs conjugated with mAb-HA were employed for the specific labeling of H9N2 virions for subsequent ICP-MS detection. With a sandwich immunoassay strategy, this method exhibited a high specificity for H9N2 among other influenza A virions such as H1N1 and H3N2. Under the optimized conditions, this method could detect as low as 0.63 ng mL- 1 H9N2 virions with the linear range of 2-400 ng mL- 1, the relative standard deviation for seven replicate detections of H9N2 virions was 7.2% (c = 10 ng mL- 1). The developed method was applied for the detection of H9N2 virions in real-world chicken dung samples, and the recovery for the spiking samples was 91.4-116.9%. This method is simple, rapid, sensitive, selective, reliable and has a good application potential for virions detection in real-world samples.

  17. Subcellular Localization of HIV-1 gag-pol mRNAs Regulates Sites of Virion Assembly

    PubMed Central

    Becker, Jordan T.

    2017-01-01

    ABSTRACT Full-length unspliced human immunodeficiency virus type 1 (HIV-1) RNAs serve dual roles in the cytoplasm as mRNAs encoding the Gag and Gag-Pol capsid proteins as well as genomic RNAs (gRNAs) packaged by Gag into virions undergoing assembly at the plasma membrane (PM). Because Gag is sufficient to drive the assembly of virus-like particles even in the absence of gRNA binding, whether viral RNA trafficking plays an active role in the native assembly pathway is unknown. In this study, we tested the effects of modulating the cytoplasmic abundance or distribution of full-length viral RNAs on Gag trafficking and assembly in the context of single cells. Increasing full-length viral RNA abundance or distribution had little-to-no net effect on Gag assembly competency when provided in trans. In contrast, artificially tethering full-length viral RNAs or surrogate gag-pol mRNAs competent for Gag synthesis to non-PM membranes or the actin cytoskeleton severely reduced net virus particle production. These effects were explained, in large part, by RNA-directed changes to Gag's distribution in the cytoplasm, yielding aberrant subcellular sites of virion assembly. Interestingly, RNA-dependent disruption of Gag trafficking required either of two cis-acting RNA regulatory elements: the 5′ packaging signal (Psi) bound by Gag during genome encapsidation or, unexpectedly, the Rev response element (RRE), which regulates the nuclear export of gRNAs and other intron-retaining viral RNAs. Taken together, these data support a model for native infection wherein structural features of the gag-pol mRNA actively compartmentalize Gag to preferred sites within the cytoplasm and/or PM. IMPORTANCE The spatial distribution of viral mRNAs within the cytoplasm can be a crucial determinant of efficient translation and successful virion production. Here we provide direct evidence that mRNA subcellular trafficking plays an important role in regulating the assembly of human immunodeficiency

  18. Subcellular Localization of HIV-1 gag-pol mRNAs Regulates Sites of Virion Assembly.

    PubMed

    Becker, Jordan T; Sherer, Nathan M

    2017-03-15

    Full-length unspliced human immunodeficiency virus type 1 (HIV-1) RNAs serve dual roles in the cytoplasm as mRNAs encoding the Gag and Gag-Pol capsid proteins as well as genomic RNAs (gRNAs) packaged by Gag into virions undergoing assembly at the plasma membrane (PM). Because Gag is sufficient to drive the assembly of virus-like particles even in the absence of gRNA binding, whether viral RNA trafficking plays an active role in the native assembly pathway is unknown. In this study, we tested the effects of modulating the cytoplasmic abundance or distribution of full-length viral RNAs on Gag trafficking and assembly in the context of single cells. Increasing full-length viral RNA abundance or distribution had little-to-no net effect on Gag assembly competency when provided in trans In contrast, artificially tethering full-length viral RNAs or surrogate gag-pol mRNAs competent for Gag synthesis to non-PM membranes or the actin cytoskeleton severely reduced net virus particle production. These effects were explained, in large part, by RNA-directed changes to Gag's distribution in the cytoplasm, yielding aberrant subcellular sites of virion assembly. Interestingly, RNA-dependent disruption of Gag trafficking required either of two cis -acting RNA regulatory elements: the 5' packaging signal (Psi) bound by Gag during genome encapsidation or, unexpectedly, the Rev response element (RRE), which regulates the nuclear export of gRNAs and other intron-retaining viral RNAs. Taken together, these data support a model for native infection wherein structural features of the gag-pol mRNA actively compartmentalize Gag to preferred sites within the cytoplasm and/or PM. IMPORTANCE The spatial distribution of viral mRNAs within the cytoplasm can be a crucial determinant of efficient translation and successful virion production. Here we provide direct evidence that mRNA subcellular trafficking plays an important role in regulating the assembly of human immunodeficiency virus type 1

  19. Bacterial lipopolysaccharide binding enhances virion stability and promotes environmental fitness of an enteric virus

    PubMed Central

    Robinson, Christopher M.; Jesudhasan, Palmy R.; Pfeiffer, Julie K.

    2014-01-01

    Summary Enteric viruses, including poliovirus and reovirus, encounter a vast microbial community in the mammalian gastrointestinal tract, which has been shown to promote virus replication and pathogenesis. Investigating the underlying mechanisms, we find that poliovirus binds bacterial surface polysaccharides, which enhances virion stability and cell attachment by increasing binding to the viral receptor. Additionally, we identified a poliovirus mutant, VP1-T99K, with reduced lipopolysaccharide (LPS) binding. Although T99K and WT poliovirus cell attachment, replication and pathogenesis in mice are equivalent, following peroral inoculation of mice, VP1-T99K poliovirus was unstable in feces. Consequently, the ratio of mutant virus in feces is reduced following additional cycles of infection in mice. Thus, the mutant virus incurs a fitness cost when environmental stability is a factor. These data suggest that poliovirus binds bacterial surface polysaccharides, enhancing cell attachment and environmental stability, potentially promoting transmission to a new host. PMID:24439896

  20. Infectivity of RNA from inactivated poliovirus.

    PubMed

    Nuanualsuwan, Suphachai; Cliver, Dean O

    2003-03-01

    During inactivation of poliovirus type 1 (PV-1) by exposure to UV, hypochlorite, and heat (72 degrees C), the infectivity of the virus was compared with that of its RNA. DEAE-dextran (1-mg/ml concentration in Dulbecco's modified Eagle medium buffered with 0.05 M Tris, pH 7.4) was used to facilitate transfecting PV-1 RNA into FRhK-4 host cells. After interaction of PV-1 RNA with cell monolayer at room temperature (21 to 22 degrees C) for 20 min, the monolayers were washed with 5 ml of Hanks balanced salt solution. The remainder of the procedure was the same as that for the conventional plaque technique, which was also used for quantifying the PV-1 whole-particle infectivity. Plaque formation by extracted RNA was approximately 100,000-fold less efficient than that by whole virions. The slopes of best-fit regression lines of inactivation curves for virion infectivity and RNA infectivity were compared to determine the target of inactivation. For UV and hypochlorite inactivation the slopes of inactivation curves of virion infectivity and RNA infectivity were not statistically different. However, the difference of slopes of inactivation curves of virion infectivity and RNA infectivity was statistically significant for thermal inactivation. The results of these experiments indicate that viral RNA is a primary target of UV and hypochlorite inactivations but that the sole target of thermal inactivation is the viral capsid.

  1. Infectivity of RNA from Inactivated Poliovirus

    PubMed Central

    Nuanualsuwan, Suphachai; Cliver, Dean O.

    2003-01-01

    During inactivation of poliovirus type 1 (PV-1) by exposure to UV, hypochlorite, and heat (72°C), the infectivity of the virus was compared with that of its RNA. DEAE-dextran (1-mg/ml concentration in Dulbecco's modified Eagle medium buffered with 0.05 M Tris, pH 7.4) was used to facilitate transfecting PV-1 RNA into FRhK-4 host cells. After interaction of PV-1 RNA with cell monolayer at room temperature (21 to 22°C) for 20 min, the monolayers were washed with 5 ml of Hanks balanced salt solution. The remainder of the procedure was the same as that for the conventional plaque technique, which was also used for quantifying the PV-1 whole-particle infectivity. Plaque formation by extracted RNA was approximately 100,000-fold less efficient than that by whole virions. The slopes of best-fit regression lines of inactivation curves for virion infectivity and RNA infectivity were compared to determine the target of inactivation. For UV and hypochlorite inactivation the slopes of inactivation curves of virion infectivity and RNA infectivity were not statistically different. However, the difference of slopes of inactivation curves of virion infectivity and RNA infectivity was statistically significant for thermal inactivation. The results of these experiments indicate that viral RNA is a primary target of UV and hypochlorite inactivations but that the sole target of thermal inactivation is the viral capsid. PMID:12620852

  2. Immunotherapy of HIV-infected patients with Gc protein-derived macrophage activating factor (GcMAF).

    PubMed

    Yamamoto, Nobuto; Ushijima, Naofumi; Koga, Yoshihiko

    2009-01-01

    Serum Gc protein (known as vitamin D3-binding protein) is the precursor for the principal macrophage activating factor (MAF). The MAF precursor activity of serum Gc protein of HIV-infected patients was lost or reduced because Gc protein is deglycosylated by alpha-N-acetylgalactosaminidase (Nagalase) secreted from HIV-infected cells. Therefore, macrophages of HIV-infected patients having deglycosylated Gc protein cannot be activated, leading to immunosuppression. Since Nagalase is the intrinsic component of the envelope protein gp120, serum Nagalase activity is the sum of enzyme activities carried by both HIV virions and envelope proteins. These Nagalase carriers were already complexed with anti-HIV immunoglobulin G (IgG) but retained Nagalase activity that is required for infectivity. Stepwise treatment of purified Gc protein with immobilized beta-galactosidase and sialidase generated the most potent macrophage activating factor (termed GcMAF), which produces no side effects in humans. Macrophages activated by administration of 100 ng GcMAF develop a large amount of Fc-receptors as well as an enormous variation of receptors that recognize IgG-bound and unbound HIV virions. Since latently HIV-infected cells are unstable and constantly release HIV virions, the activated macrophages rapidly intercept the released HIV virions to prevent reinfection resulting in exhaustion of infected cells. After less than 18 weekly administrations of 100 ng GcMAF for nonanemic patients, they exhibited low serum Nagalase activities equivalent to healthy controls, indicating eradication of HIV-infection, which was also confirmed by no infectious center formation by provirus inducing agent-treated patient PBMCs. No recurrence occurred and their healthy CD + cell counts were maintained for 7 years.

  3. Synaptic transmission and the susceptibility of HIV infection to anti-viral drugs

    NASA Astrophysics Data System (ADS)

    Komarova, Natalia L.; Levy, David N.; Wodarz, Dominik

    2013-07-01

    Cell-to-cell viral transmission via virological synapses has been argued to reduce susceptibility of the virus population to anti-viral drugs through multiple infection of cells, contributing to low-level viral persistence during therapy. Using a mathematical framework, we examine the role of synaptic transmission in treatment susceptibility. A key factor is the relative probability of individual virions to infect a cell during free-virus and synaptic transmission, a currently unknown quantity. If this infection probability is higher for free-virus transmission, then treatment susceptibility is lowest if one virus is transferred per synapse, and multiple infection of cells increases susceptibility. In the opposite case, treatment susceptibility is minimized for an intermediate number of virions transferred per synapse. Hence, multiple infection via synapses does not simply lower treatment susceptibility. Without further experimental investigations, one cannot conclude that synaptic transmission provides an additional mechanism for the virus to persist at low levels during anti-viral therapy.

  4. VP3 is crucial for the stability of Nora virus virions.

    PubMed

    Sadanandan, Sajna Anand; Ekström, Jens-Ola; Jonna, Venkateswara Rao; Hofer, Anders; Hultmark, Dan

    2016-09-02

    Nora virus is an enteric virus that causes persistent, non-pathological infection in Drosophila melanogaster. It replicates in the fly gut and is transmitted via the fecal-oral route. Nora virus has a single-stranded positive-sense RNA genome, which is translated in four open reading frames. Reading frame three encodes the VP3 protein, the structure and function of which we have investigated in this work. We have shown that VP3 is a trimer that has an α-helical secondary structure, with a functionally important coiled-coil domain. In order to identify the role of VP3 in the Nora virus life cycle, we constructed VP3-mutants using the cDNA clone of the virus. Our results show that VP3 does not have a role in the actual assembly of the virus particles, but virions that lack VP3 or harbor VP3 with a disrupted coiled coil domain are incapable of transmission via the fecal-oral route. Removing the region downstream of the putative coiled coil appears to have an effect on the fitness of the virus but does not hamper its replication or transmission. We also found that the VP3 protein and particularly the coiled coil domain are crucial for the stability of Nora virus virions when exposed to heat or proteases. Hence, we propose that VP3 is imperative to Nora virus virions as it confers stability to the viral capsid. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Virion-associated phosphatidylethanolamine promotes TIM1-mediated infection by Ebola, dengue, and West Nile viruses.

    PubMed

    Richard, Audrey Stéphanie; Zhang, Adam; Park, Sun-Jin; Farzan, Michael; Zong, Min; Choe, Hyeryun

    2015-11-24

    Phosphatidylserine (PS) receptors contribute to two crucial biological processes: apoptotic clearance and entry of many enveloped viruses. In both cases, they recognize PS exposed on the plasma membrane. Here we demonstrate that phosphatidylethanolamine (PE) is also a ligand for PS receptors and that this phospholipid mediates phagocytosis and viral entry. We show that a subset of PS receptors, including T-cell immunoglobulin (Ig) mucin domain protein 1 (TIM1), efficiently bind PE. We further show that PE is present in the virions of flaviviruses and filoviruses, and that the PE-specific cyclic peptide lantibiotic agent Duramycin efficiently inhibits the entry of West Nile, dengue, and Ebola viruses. The inhibitory effect of Duramycin is specific: it inhibits TIM1-mediated, but not L-SIGN-mediated, virus infection, and it does so by blocking virus attachment to TIM1. We further demonstrate that PE is exposed on the surface of apoptotic cells, and promotes their phagocytic uptake by TIM1-expressing cells. Together, our data show that PE plays a key role in TIM1-mediated virus entry, suggest that disrupting PE association with PS receptors is a promising broad-spectrum antiviral strategy, and deepen our understanding of the process by which apoptotic cells are cleared.

  6. Herpes Simplex Virus 1 UL37 Protein Tyrosine Residues Conserved among All Alphaherpesviruses Are Required for Interactions with Glycoprotein K, Cytoplasmic Virion Envelopment, and Infectious Virus Production

    PubMed Central

    Chouljenko, Dmitry V.; Jambunathan, Nithya; Chouljenko, Vladimir N.; Naderi, Misagh; Brylinski, Michal; Caskey, John R.

    2016-01-01

    ABSTRACT The herpes simplex virus 1 (HSV-1) UL37 protein functions in virion envelopment at trans-Golgi membranes, as well as in retrograde and anterograde transport of virion capsids. Recently, we reported that UL37 interacts with glycoprotein K (gK) and its interacting partner protein UL20 (N. Jambunathan, D. Chouljenko, P. Desai, A. S. Charles, R. Subramanian, V. N. Chouljenko, and K. G. Kousoulas, J Virol 88:5927–5935, 2014, http://dx.doi.org/10.1128/JVI.00278-14), facilitating cytoplasmic virion envelopment. Alignment of UL37 homologs encoded by alphaherpesviruses revealed the presence of highly conserved residues in the central portion of the UL37 protein. A cadre of nine UL37 site-specific mutations were produced and tested for their ability to inhibit virion envelopment and infectious virus production. Complementation analysis revealed that replacement of tyrosines 474 and 480 with alanine failed to complement the UL37-null virus, while all other mutated UL37 genes complemented the virus efficiently. The recombinant virus DC474-480 constructed with tyrosines 474, 476, 477, and 480 mutated to alanine residues produced a gK-null-like phenotype characterized by the production of very small plaques and accumulation of capsids in the cytoplasm of infected cells. Recombinant viruses having either tyrosine 476 or 477 replaced with alanine produced a wild-type phenotype. Immunoprecipitation assays revealed that replacement of all four tyrosines with alanines substantially reduced the ability of gK to interact with UL37. Alignment of HSV UL37 with the human cytomegalovirus and Epstein-Barr virus UL37 homologs revealed that Y480 was conserved only for alphaherpesviruses. Collectively, these results suggest that the UL37 conserved tyrosine 480 residue plays a crucial role in interactions with gK to facilitate cytoplasmic virion envelopment and infectious virus production. IMPORTANCE The HSV-1 UL37 protein is conserved among all herpesviruses, functions in both

  7. The Lettuce infectious yellows virus (LIYV)-encoded P26 is associated with plasmalemma deposits within LIYV-infected cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medina, V.; Sudarshana, M.R.; Tian, T.

    2005-03-15

    Cytological, immunological, and mutagenesis approaches were used to identify the viral factors associated with the formation of plasmalemma deposits (PLDs) in whole plants and protoplasts infected by Lettuce infectious yellows virus (LIYV). Transmission electron microscopy and immunogold labeling using polyclonal antibodies to four of the five LIYV RNA 2-encoded large proteins, capsid protein (CP), minor capsid protein (CPm), HSP70 homolog (HSP70h), and P59, showed specific labeling of LIYV virions or virion aggregates around the vesiculated membranous inclusions, but not PLDs in LIYV-infected Nicotiana benthamiana, Nicotiana clevelandii, Lactuca sativa, and Chenopodium murale plants, and Nicotiana tabacum protoplasts. In contrast, antibodies tomore » the RNA 2-encoded P26 showed specific labeling of PLDs but not virions in both LIYV-infected plants and protoplasts. Virion-like particles (VLPs) were seen in protoplasts infected by all LIYV RNA 2 mutants except for the CP (major capsid protein) mutant. PLDs were more difficult to find in protoplasts, but were seen in protoplasts infected by the CP and CPm mutants, but not in protoplasts infected by the P26, HSP70h, or P59 mutants. Interestingly, although the CPm mutant showed VLPs and PLDs, the PLDs did not show associated virions/virion-like particles as was always observed for PLDs seen in protoplasts infected by wild-type LIYV. Immunoblot analyses performed on purified LIYV virions showed that P26 was not detected with purified virions, but was detected in the cell wall, 1000 g and 30,000 g pellet fractions of LIYV-infected plants. These data suggest that P26 is associated with the LIYV-induced PLDs, and in contrast to the other RNA 2-encoded large proteins, P26 is not a virion protein.« less

  8. Mass Determination of Rous Sarcoma Virus Virions by Scanning Transmission Electron Microscopy

    PubMed Central

    Vogt, Volker M.; Simon, Martha N.

    1999-01-01

    The internal structural protein of retroviruses, Gag, comprises most of the mass of the virion, and Gag itself can give rise to virus-like particles when expressed in appropriate cells. Previously the stoichiometry of Gag in virions was inferred from indirect measurements carried out 2 decades ago. We now have directly determined the masses of individual particles of the prototypic avian retrovirus, Rous sarcoma virus (RSV), by using scanning transmission electron microscopy. In this technique, the number of scattered electrons in the dark-field image integrated over an individual freeze-dried virus particle on a grid is directly proportional to its mass. The RSV virions had a mean mass of 2.5 × 108 Da, corresponding to about 1,500 Gag molecules per virion. The population of virions was not homogeneous, with about one-third to two-thirds of the virions deviating from the mean by more than 10% of the mass in two respective preparations. The mean masses for virions carrying genomes of 7.4 or 9.3 kb were indistinguishable, suggesting that mass variability is not due to differences in RNA incorporation. PMID:10400808

  9. Type I Interferons and NK Cells Restrict Gammaherpesvirus Lymph Node Infection.

    PubMed

    Lawler, Clara; Tan, Cindy S E; Simas, J Pedro; Stevenson, Philip G

    2016-10-15

    Gammaherpesviruses establish persistent, systemic infections and cause cancers. Murid herpesvirus 4 (MuHV-4) provides a unique window into the early events of host colonization. It spreads via lymph nodes. While dendritic cells (DC) pass MuHV-4 to lymph node B cells, subcapsular sinus macrophages (SSM), which capture virions from the afferent lymph, restrict its spread. Understanding how this restriction works offers potential clues to a more comprehensive defense. Type I interferon (IFN-I) blocked SSM lytic infection and reduced lytic cycle-independent viral reporter gene expression. Plasmacytoid DC were not required, but neither were SSM the only source of IFN-I, as IFN-I blockade increased infection in both intact and SSM-depleted mice. NK cells restricted lytic SSM infection independently of IFN-I, and SSM-derived virions spread to the spleen only when both IFN-I responses and NK cells were lacking. Thus, multiple innate defenses allowed SSM to adsorb virions from the afferent lymph with relative impunity. Enhancing IFN-I and NK cell recruitment could potentially also restrict DC infection and thus improve infection control. Human gammaherpesviruses cause cancers by infecting B cells. However, vaccines designed to block virus binding to B cells have not stopped infection. Using a related gammaherpesvirus of mice, we have shown that B cells are infected not via cell-free virus but via infected myeloid cells. This suggests a different strategy to stop B cell infection: stop virus production by myeloid cells. Not all myeloid infection is productive. We show that subcapsular sinus macrophages, which do not pass infection to B cells, restrict gammaherpesvirus production by recruiting type I interferons and natural killer cells. Therefore, a vaccine that speeds the recruitment of these defenses might stop B cell infection. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  10. Type I Interferons and NK Cells Restrict Gammaherpesvirus Lymph Node Infection

    PubMed Central

    Lawler, Clara; Tan, Cindy S. E.; Simas, J. Pedro

    2016-01-01

    ABSTRACT Gammaherpesviruses establish persistent, systemic infections and cause cancers. Murid herpesvirus 4 (MuHV-4) provides a unique window into the early events of host colonization. It spreads via lymph nodes. While dendritic cells (DC) pass MuHV-4 to lymph node B cells, subcapsular sinus macrophages (SSM), which capture virions from the afferent lymph, restrict its spread. Understanding how this restriction works offers potential clues to a more comprehensive defense. Type I interferon (IFN-I) blocked SSM lytic infection and reduced lytic cycle-independent viral reporter gene expression. Plasmacytoid DC were not required, but neither were SSM the only source of IFN-I, as IFN-I blockade increased infection in both intact and SSM-depleted mice. NK cells restricted lytic SSM infection independently of IFN-I, and SSM-derived virions spread to the spleen only when both IFN-I responses and NK cells were lacking. Thus, multiple innate defenses allowed SSM to adsorb virions from the afferent lymph with relative impunity. Enhancing IFN-I and NK cell recruitment could potentially also restrict DC infection and thus improve infection control. IMPORTANCE Human gammaherpesviruses cause cancers by infecting B cells. However, vaccines designed to block virus binding to B cells have not stopped infection. Using a related gammaherpesvirus of mice, we have shown that B cells are infected not via cell-free virus but via infected myeloid cells. This suggests a different strategy to stop B cell infection: stop virus production by myeloid cells. Not all myeloid infection is productive. We show that subcapsular sinus macrophages, which do not pass infection to B cells, restrict gammaherpesvirus production by recruiting type I interferons and natural killer cells. Therefore, a vaccine that speeds the recruitment of these defenses might stop B cell infection. PMID:27466430

  11. Virus-producing cells determine the host protein profiles of HIV-1 virion cores

    PubMed Central

    2012-01-01

    Background Upon HIV entry into target cells, viral cores are released and rearranged into reverse transcription complexes (RTCs), which support reverse transcription and also protect and transport viral cDNA to the site of integration. RTCs are composed of viral and cellular proteins that originate from both target and producer cells, the latter entering the target cell within the viral core. However, the proteome of HIV-1 viral cores in the context of the type of producer cells has not yet been characterized. Results We examined the proteomic profiles of the cores purified from HIV-1 NL4-3 virions assembled in Sup-T1 cells (T lymphocytes), PMA and vitamin D3 activated THP1 (model of macrophages, mMΦ), and non-activated THP1 cells (model of monocytes, mMN) and assessed potential involvement of identified proteins in the early stages of infection using gene ontology information and data from genome-wide screens on proteins important for HIV-1 replication. We identified 202 cellular proteins incorporated in the viral cores (T cells: 125, mMΦ: 110, mMN: 90) with the overlap between these sets limited to 42 proteins. The groups of RNA binding (29), DNA binding (17), cytoskeleton (15), cytoskeleton regulation (21), chaperone (18), vesicular trafficking-associated (12) and ubiquitin-proteasome pathway-associated proteins (9) were most numerous. Cores of the virions from SupT1 cells contained twice as many RNA binding proteins as cores of THP1-derived virus, whereas cores of virions from mMΦ and mMN were enriched in components of cytoskeleton and vesicular transport machinery, most probably due to differences in virion assembly pathways between these cells. Spectra of chaperones, cytoskeletal proteins and ubiquitin-proteasome pathway components were similar between viral cores from different cell types, whereas DNA-binding and especially RNA-binding proteins were highly diverse. Western blot analysis showed that within the group of overlapping proteins, the level of

  12. TIM1 (HAVCR1) Is Not Essential for Cellular Entry of Either Quasi-enveloped or Naked Hepatitis A Virions

    PubMed Central

    Das, Anshuman; Hirai-Yuki, Asuka; González-López, Olga; Rhein, Bethany; Moller-Tank, Sven; Brouillette, Rachel; Hensley, Lucinda; Misumi, Ichiro; Lovell, William; Cullen, John M.; Whitmire, Jason K.; Maury, Wendy

    2017-01-01

    ABSTRACT Receptor molecules play key roles in the cellular entry of picornaviruses, and TIM1 (HAVCR1) is widely accepted to be the receptor for hepatitis A virus (HAV), an unusual, hepatotropic human picornavirus. However, its identification as the hepatovirus receptor predated the discovery that hepatoviruses undergo nonlytic release from infected cells as membrane-cloaked, quasi-enveloped HAV (eHAV) virions that enter cells via a pathway distinct from naked, nonenveloped virions. We thus revisited the role of TIM1 in hepatovirus entry, examining both adherence and infection/replication in cells with clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9-engineered TIM1 knockout. Cell culture-derived, gradient-purified eHAV bound Huh-7.5 human hepatoma cells less efficiently than naked HAV at 4°C, but eliminating TIM1 expression caused no difference in adherence of either form of HAV, nor any impact on infection and replication in these cells. In contrast, TIM1-deficient Vero cells showed a modest reduction in quasi-enveloped eHAV (but not naked HAV) attachment and replication. Thus, TIM1 facilitates quasi-enveloped eHAV entry in Vero cells, most likely by binding phosphatidylserine (PtdSer) residues on the eHAV membrane. Both Tim1−/− Ifnar1−/− and Tim4−/− Ifnar1−/− double-knockout mice were susceptible to infection upon intravenous challenge with infected liver homogenate, with fecal HAV shedding and serum alanine aminotransferase (ALT) elevations similar to those in Ifnar1−/− mice. However, intrahepatic HAV RNA and ALT elevations were modestly reduced in Tim1−/−Ifnar1−/− mice compared to Ifnar1−/− mice challenged with a lower titer of gradient-purified HAV or eHAV. We conclude that TIM1 is not an essential hepatovirus entry factor, although its PtdSer-binding activity may contribute to the spread of quasi-enveloped virus and liver injury in mice. PMID:28874468

  13. Differential segregation of nodaviral coat protein and RNA into progeny virions during mixed infection with FHV and NoV

    PubMed Central

    Gopal, Radhika; Venter, P. Arno; Schneemann, Anette

    2014-01-01

    Nodaviruses are icosahedral viruses with a bipartite, positive-sense RNA genome. The two RNAs are packaged into a single virion by a poorly understood mechanism. We chose two distantly related nodaviruses, Flock House virus and Nodamura virus, to explore formation of viral reassortants as a means to further understand genome recognition and encapsidation. In mixed infections, the viruses were incompatible at the level of RNA replication and their coat proteins segregated into separate populations of progeny particles. RNA packaging, on the other hand, was indiscriminate as all four viral RNAs were detectable in each progeny population. Consistent with the trans-encapsidation phenotype, fluorescence in situ hybridization of viral RNA revealed that the genomes of the two viruses co-localized throughout the cytoplasm. Our results imply that nodaviral RNAs lack rigorously defined packaging signals and that coencapsidation of the viral RNAs does not require a pair of cognate RNA1 and RNA2. PMID:24725955

  14. Cooperative vaccinia infection demonstrated at the single-cell level using FluidFM.

    PubMed

    Stiefel, Philipp; Schmidt, Florian I; Dörig, Pablo; Behr, Pascal; Zambelli, Tomaso; Vorholt, Julia A; Mercer, Jason

    2012-08-08

    The mechanisms used by viruses to enter and replicate within host cells are subjects of intense investigation. These studies are ultimately aimed at development of new drugs that interfere with these processes. Virus entry and infection are generally monitored by dispensing bulk virus suspensions on layers of cells without accounting for the fate of each virion. Here, we take advantage of the recently developed FluidFM to deposit single vaccinia virions onto individual cells in a controlled manner. While the majority of virions were blocked prior to early gene expression, infection of individual cells increased in a nondeterministic fashion with respect to the number of viruses placed. Microscopic analyses of several stages of the virus lifecycle indicated that this was the result of cooperativity between virions during early stages of infection. These findings highlight the importance of performing controlled virus infection experiments at the single cell level.

  15. Studies of Ebola Virus Glycoprotein-Mediated Entry and Fusion by Using Pseudotyped Human Immunodeficiency Virus Type 1 Virions: Involvement of Cytoskeletal Proteins and Enhancement by Tumor Necrosis Factor Alpha

    PubMed Central

    Yonezawa, Akihito; Cavrois, Marielle; Greene, Warner C.

    2005-01-01

    The Ebola filoviruses are aggressive pathogens that cause severe and often lethal hemorrhagic fever syndromes in humans and nonhuman primates. To date, no effective therapies have been identified. To analyze the entry and fusion properties of Ebola virus, we adapted a human immunodeficiency virus type 1 (HIV-1) virion-based fusion assay by substituting Ebola virus glycoprotein (GP) for the HIV-1 envelope. Fusion was detected by cleavage of the fluorogenic substrate CCF2 by β-lactamase-Vpr incorporated into virions and released as a result of virion fusion. Entry and fusion induced by the Ebola virus GP occurred with much slower kinetics than with vesicular stomatitis virus G protein (VSV-G) and were blocked by depletion of membrane cholesterol and by inhibition of vesicular acidification with bafilomycin A1. These properties confirmed earlier studies and validated the assay for exploring other properties of Ebola virus GP-mediated entry and fusion. Entry and fusion of Ebola virus GP pseudotypes, but not VSV-G or HIV-1 Env pseudotypes, were impaired in the presence of the microtubule-disrupting agent nocodazole but were enhanced in the presence of the microtubule-stabilizing agent paclitaxel (Taxol). Agents that impaired microfilament function, including cytochalasin B, cytochalasin D, latrunculin A, and jasplakinolide, also inhibited Ebola virus GP-mediated entry and fusion. Together, these findings suggest that both microtubules and microfilaments may play a role in the effective trafficking of vesicles containing Ebola virions from the cell surface to the appropriate acidified vesicular compartment where fusion occurs. In terms of Ebola virus GP-mediated entry and fusion to various target cells, primary macrophages proved highly sensitive, while monocytes from the same donors displayed greatly reduced levels of entry and fusion. We further observed that tumor necrosis factor alpha, which is released by Ebola virus-infected monocytes/macrophages, enhanced Ebola

  16. Two-color fluorescence analysis of individual virions determines the distribution of the copy number of proteins in herpes simplex virus particles.

    PubMed

    Clarke, Richard W; Monnier, Nilah; Li, Haitao; Zhou, Dejian; Browne, Helena; Klenerman, David

    2007-08-15

    We present a single virion method to determine absolute distributions of copy number in the protein composition of viruses and apply it to herpes simplex virus type 1. Using two-color coincidence fluorescence spectroscopy, we determine the virion-to-virion variability in copy numbers of fluorescently labeled tegument and envelope proteins relative to a capsid protein by analyzing fluorescence intensity ratios for ensembles of individual dual-labeled virions and fitting the resulting histogram of ratios. Using EYFP-tagged capsid protein VP26 as a reference for fluorescence intensity, we are able to calculate the mean and also, for the first time to our knowledge, the variation in numbers of gD, VP16, and VP22 tegument. The measurement of the number of glycoprotein D molecules was in good agreement with independent measurements of average numbers of these glycoproteins in bulk virus preparations, validating the method. The accuracy, straightforward data processing, and high throughput of this technique make it widely applicable to the analysis of the molecular composition of large complexes in general, and it is particularly suited to providing insights into virus structure, assembly, and infectivity.

  17. Abortive replication of Bombyx mori nucleopolyhedrovirus in Sf9 and High Five cells: Defective nuclear transport of the virions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katou, Yasuhiro; Ikeda, Motoko; Kobayashi, Michihiro

    2006-04-10

    Despite close genetic relationship, Bombyx mori nucleopolyhedrovirus (BmNPV) and Autographa californica multicapsid NPV (AcMNPV) display a distinct host range property. Here, BmNPV replication was examined in Sf9 and High Five cells that were nonproductive for BmNPV infection but supported high titers of AcMNPV replication. Recombinant BmNPV, vBm/gfp/lac, containing bm-ie1 promoter-driven egfp showed that few Sf9 and High Five cells infected with vBm/gfp/lac expressed EGFP, while large proportion of EGFP-expressing cells was observed when transfected with vBm/gfp/lac DNA. Immunocytochemical analysis showed that BmNPV was not imported into the nucleus of these two cell lines, while recombinant BmNPV, vBm{delta}64/ac-gp64 possessing AcMNPV gp64more » was imported into the nucleus, yielding progeny virions in High Five cells, but not Sf9 cells. These results indicate that the defective nuclear import of infected virions due to insufficient BmNPV GP64 function is involved in the restricted BmNPV replication in Sf9 and High Five cells.« less

  18. Noninfectious X4 but not R5 human immunodeficiency virus type 1 virions inhibit humoral immune responses in human lymphoid tissue ex vivo

    NASA Technical Reports Server (NTRS)

    Fitzgerald, Wendy; Sylwester, Andrew W.; Grivel, Jean-Charles; Lifson, Jeffrey D.; Margolis, Leonid B.

    2004-01-01

    Ex vivo human immunodeficiency virus type 1 (HIV-1) infection of human lymphoid tissue recapitulates some aspects of in vivo HIV-1 infection, including a severe depletion of CD4(+) T cells and suppression of humoral immune responses to recall antigens or to polyclonal stimuli. These effects are induced by infection with X4 HIV-1 variants, whereas infection with R5 variants results in only mild depletion of CD4(+) T cells and no suppression of immune responses. To study the mechanisms of suppression of immune responses in this ex vivo system, we used aldrithiol-2 (AT-2)-inactivated virions that have functional envelope glycoproteins but are not infectious and do not deplete CD4(+) T cells in human lymphoid tissues ex vivo. Nevertheless, AT-2-inactivated X4 (but not R5) HIV-1 virions, even with only a brief exposure, inhibit antibody responses in human lymphoid tissue ex vivo, similarly to infectious virus. This phenomenon is mediated by soluble immunosuppressive factor(s) secreted by tissue exposed to virus.

  19. Human endogenous retrovirus K Gag coassembles with HIV-1 Gag and reduces the release efficiency and infectivity of HIV-1.

    PubMed

    Monde, Kazuaki; Contreras-Galindo, Rafael; Kaplan, Mark H; Markovitz, David M; Ono, Akira

    2012-10-01

    Human endogenous retroviruses (HERVs), which are remnants of ancestral retroviruses integrated into the human genome, are defective in viral replication. Because activation of HERV-K and coexpression of this virus with HIV-1 have been observed during HIV-1 infection, it is conceivable that HERV-K could affect HIV-1 replication, either by competition or by cooperation, in cells expressing both viruses. In this study, we found that the release efficiency of HIV-1 Gag was 3-fold reduced upon overexpression of HERV-K(CON) Gag. In addition, we observed that in cells expressing Gag proteins of both viruses, HERV-K(CON) Gag colocalized with HIV-1 Gag at the plasma membrane. Furthermore, HERV-K(CON) Gag was found to coassemble with HIV-1 Gag, as demonstrated by (i) processing of HERV-K(CON) Gag by HIV-1 protease in virions, (ii) coimmunoprecipitation of virion-associated HERV-K(CON) Gag with HIV-1 Gag, and (iii) rescue of a late-domain-defective HERV-K(CON) Gag by wild-type (WT) HIV-1 Gag. Myristylation-deficient HERV-K(CON) Gag localized to nuclei, suggesting cryptic nuclear trafficking of HERV-K Gag. Notably, unlike WT HERV-K(CON) Gag, HIV-1 Gag failed to rescue myristylation-deficient HERV-K(CON) Gag to the plasma membrane. Efficient colocalization and coassembly of HIV-1 Gag and HERV-K Gag also required nucleocapsid (NC). These results provide evidence that HIV-1 Gag heteromultimerizes with HERV-K Gag at the plasma membrane, presumably through NC-RNA interaction. Intriguingly, HERV-K Gag overexpression reduced not only HIV-1 release efficiency but also HIV-1 infectivity in a myristylation- and NC-dependent manner. Altogether, these results indicate that Gag proteins of endogenous retroviruses can coassemble with HIV-1 Gag and modulate the late phase of HIV-1 replication.

  20. A simple method for measuring porcine circovirus 2 whole virion particles and standardizing vaccine formulation.

    PubMed

    Zanotti, Cinzia; Amadori, Massimo

    2015-03-01

    Porcine Circovirus 2 (PCV2) is involved in porcine circovirus-associated disease, that causes great economic losses to the livestock industry worldwide. Vaccination against PCV2 proved to be very effective in reducing disease occurrence and it is currently performed on a large scale. Starting from a previous model concerning Foot-and Mouth Disease Virus antigens, we developed a rapid and simple method to quantify PCV2 whole virion particles in inactivated vaccines. This procedure, based on sucrose gradient analysis and fluorometric evaluation of viral genomic content, allows for a better standardization of the antigen payload in vaccine batches. It also provides a valid indication of virion integrity. Most important, such a method can be applied to whole virion vaccines regardless of the production procedures, thus enabling meaningful comparisons on a common basis. In a future batch consistency approach to PCV2 vaccine manufacture, our procedure represents a valuable tool to improve in-process controls and to guarantee conformity of the final product with passmarks for approval. This might have important repercussions in terms of reduced usage of animals for vaccine batch release, in the framework of the current 3Rs policy. Copyright © 2015 The International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  1. Early events of polyoma infection: adsorption, penetration and nuclear transport

    NASA Technical Reports Server (NTRS)

    Consigli, R. A.; Haynes, J. I. Jr; Chang, D.; Grenz, L.; Richter, D.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    Polyoma virions have different attachment proteins which are responsible for hemagglutination of erythrocytes and attachment to cultured mouse kidney cells (MKC). Virion binding studies demonstrated that MKC possess specific (productive infection) and nonspecific (nonproductive) receptors. Empty polyoma capsids have hemagglutination activity and bind to non-specific MKC receptors, but they are not capable of competing for specific virion cell receptors or preventing productive infection. Isoelectric focusing of the virion major capsid protein, VP1, separated this protein into six species (A through F). These species had identical amino acid sequences, but differed in degree of modification (phosphorylation, acetylation, sulfation and hydroxylation). Evidence based upon precipitation with specific antisera supports the view that VP1 species E is required for specific adsorption and that D and F are required for hemagglutination. The virion attachment domain has been localized to an 18 kilodalton fragment of the C-terminal region of VP1. Monopinocytotic vesicles containing 125I-labeled polyoma virions were isolated from infected MKC. A crosslinker was used to bind the MKC cell receptor(s) covalently to VP1 attachment protein, and a new 120 kilodalton band was identified by SDS-PAGE. An anti-idiotype antibody prepared against a neutralizing polyoma monoclonal antiody was used to identify a putative 50 kilodalton receptor protein from a detergent extract of MKC, as well as from MKC membrane preparation.

  2. Myristoylation of the Arenavirus Envelope Glycoprotein Stable Signal Peptide Is Critical for Membrane Fusion but Dispensable for Virion Morphogenesis.

    PubMed

    York, Joanne; Nunberg, Jack H

    2016-09-15

    Arenaviruses are responsible for severe and often fatal hemorrhagic disease. In the absence of effective antiviral therapies and vaccines, these viruses pose serious threats to public health and biodefense. Arenaviruses enter the host cell by fusion of the viral and endosomal membranes, a process mediated by the virus envelope glycoprotein GPC. Unlike other class I viral fusion proteins, GPC retains its stable signal peptide (SSP) as an essential third subunit in the mature complex. SSP spans the membrane twice and is myristoylated at its cytoplasmic N terminus. Mutations that abolish SSP myristoylation have been shown to reduce pH-induced cell-cell fusion activity of ectopically expressed GPC to ∼20% of wild-type levels. In order to examine the role of SSP myristoylation in the context of the intact virus, we used reverse genetics to generate Junín viruses (Candid #1 isolate) in which the critical glycine-2 residue in SSP was either replaced by alanine (G2A) or deleted (ΔG2). These mutant viruses produced smaller foci of infection in Vero cells and showed an ∼5-fold reduction in specific infectivity, commensurate with the defect in cell-cell fusion. However, virus assembly and GPC incorporation into budded virions were unaffected. Our findings suggest that the myristate moiety is cryptically disposed in the prefusion GPC complex and may function late in the fusion process to promote merging of the viral and cellular membranes. Hemorrhagic fever arenaviruses pose significant threats to public health and biodefense. Arenavirus entry into the host cell is promoted by the virus envelope glycoprotein GPC. Unlike other viral envelope glycoproteins, GPC contains a myristoylated stable signal peptide (SSP) as an essential third subunit. Myristoylation has been shown to be important for the membrane fusion activity of recombinantly expressed GPC. Here, we use reverse genetics to study the role of SSP myristoylation in the context of the intact virion. We find that

  3. Residue 41 of the Eurasian Avian-Like Swine Influenza A Virus Matrix Protein Modulates Virion Filament Length and Efficiency of Contact Transmission

    PubMed Central

    Campbell, Patricia J.; Kyriakis, Constantinos S.; Marshall, Nicolle; Suppiah, Suganthi; Seladi-Schulman, Jill; Danzy, Shamika; Lowen, Anice C.

    2014-01-01

    ABSTRACT Position 41 of the influenza A virus matrix protein encodes a highly conserved alanine in human and avian lineages. Nonetheless, strains of the Eurasian avian-like swine (Easw) lineage contain a change at this position: position 41 of A/swine/Spain/53207/04 (H1N1) (SPN04) encodes a proline. To assess the impact of this naturally occurring polymorphism on viral fitness, we utilized reverse genetics to produce recombinant viruses encoding wild-type M1 41P (rSPN04-P) and consensus 41A (rSPN04-A) residues. Relative to rSPN04-A, rSPN04-P virus displayed reduced growth in vitro. In the guinea pig model, rSPN04-P was transmitted to fewer contact animals than rSPN04-A and failed to infect guinea pigs that received a low-dose inoculum. Moreover, the P41A change altered virion morphology, reducing the number and length of filamentous virions, as well as reducing the neuraminidase activity of virions. The lab-adapted human isolate, A/PR/8/34 (H1N1) (PR8), is nontransmissible in the guinea pig model, making it a useful background in which to identify certain viral factors that enhance transmissibility. We assessed transmission in the context of single-, double-, and triple-reassortant viruses between PR8 and SPN04; PR8/SPN04 M, PR8/SPN04 M+NA, and PR8/SPN04 M+NA+HA, encoding either matrix 41 A or P, were generated. In each case, the virus possessing 41P transmitted less well than the corresponding 41A-encoding virus. In summary, we have identified a naturally occurring mutation in the influenza A virus matrix protein that impacts transmission efficiency and can alter virion morphology and neuraminidase activity. IMPORTANCE We have developed a practical model for examining the genetics underlying transmissibility of the Eurasian avian-like swine lineage viruses, which contributed M and NA segments to the 2009 pandemic strain. Here, we use our system to investigate the impact on viral fitness of a naturally occurring polymorphism at matrix (M1) position 41 in an Easw

  4. Human apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3G (APOBEC3G) is incorporated into HIV-1 virions through interactions with viral and nonviral RNAs.

    PubMed

    Svarovskaia, Evguenia S; Xu, Hongzhan; Mbisa, Jean L; Barr, Rebekah; Gorelick, Robert J; Ono, Akira; Freed, Eric O; Hu, Wei-Shau; Pathak, Vinay K

    2004-08-20

    Apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3G (APOBEC3G) is a host cytidine deaminase that is packaged into virions and confers resistance to retroviral infection. APOBEC3G deaminates deoxycytidines in minus strand DNA to deoxyuridines, resulting in G to A hypermutation and viral inactivation. Human immunodeficiency virus type 1 (HIV-1) virion infectivity factor counteracts the antiviral activity of APOBEC3G by inducing its proteosomal degradation and preventing virion incorporation. To elucidate the mechanism of viral suppression by APOBEC3G, we developed a sensitive cytidine deamination assay and analyzed APOBEC3G virion incorporation in a series of HIV-1 deletion mutants. Virus-like particles derived from constructs in which pol, env, and most of gag were deleted still contained high levels of cytidine deaminase activity; in addition, coimmunoprecipitation of APOBEC3G and HIV-1 Gag in the presence and absence of RNase A indicated that the two proteins do not interact directly but form an RNase-sensitive complex. Viral particles lacking HIV-1 genomic RNA which were generated from the gag-pol expression constructs pC-Help and pSYNGP packaged APOBEC3G at 30-40% of the wild-type level, indicating that interactions with viral RNA are not necessary for incorporation. In addition, viral particles produced from an nucleocapsid zinc finger mutant contained approximately 1% of the viral genomic RNA but approximately 30% of the cytidine deaminase activity. The reduction in APOBEC3G incorporation was equivalent to the reduction in the total RNA present in the nucleocapsid mutant virions. These results indicate that interactions with viral proteins or viral genomic RNA are not essential for APOBEC3G incorporation and suggest that APOBEC3G interactions with viral and nonviral RNAs that are packaged into viral particles are sufficient for APOBEC3G virion incorporation.

  5. Non-plaque-forming virions of Modified Vaccinia virus Ankara express viral genes.

    PubMed

    Lülf, Anna-Theresa; Freudenstein, Astrid; Marr, Lisa; Sutter, Gerd; Volz, Asisa

    2016-12-01

    In cell culture infections with vaccinia virus the number of counted virus particles is substantially higher than the number of plaques obtained by titration. We found that standard vaccine preparations of recombinant Modified Vaccinia virus Ankara produce only about 20-30% plaque-forming virions in fully permissive cell cultures. To evaluate the biological activity of the non-plaque-forming particles, we generated recombinant viruses expressing fluorescent reporter proteins under transcriptional control of specific viral early and late promoters. Live cell imaging and automated counting by fluorescent microscopy indicated that virtually all virus particles can enter cells and switch on viral gene expression. Although most of the non-plaque-forming infections are arrested at the level of viral early gene expression, we detected activation of late viral transcription in 10-20% of single infected cells. Thus, non-plaque-forming particles are biologically active, and likely contribute to the immunogenicity of vaccinia virus vaccines. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Deletion of the Vaccinia Virus I2 Protein Interrupts Virion Morphogenesis, Leading to Retention of the Scaffold Protein and Mislocalization of Membrane-Associated Entry Proteins.

    PubMed

    Hyun, Seong-In; Weisberg, Andrea; Moss, Bernard

    2017-08-01

    The I2L open reading frame of vaccinia virus (VACV) encodes a conserved 72-amino-acid protein with a putative C-terminal transmembrane domain. Previous studies with a tetracycline-inducible mutant demonstrated that I2-deficient virions are defective in cell entry. The purpose of the present study was to determine the step of replication or entry that is affected by loss of the I2 protein. Fluorescence microscopy experiments showed that I2 colocalized with a major membrane protein of immature and mature virions. We generated a cell line that constitutively expressed I2 and allowed construction of the VACV I2L deletion mutant vΔI2. As anticipated, vΔI2 was unable to replicate in cells that did not express I2. Unexpectedly, morphogenesis was interrupted at a stage after immature virion formation, resulting in the accumulation of dense spherical particles instead of brick-shaped mature virions with well-defined core structures. The abnormal particles retained the D13 scaffold protein of immature virions, were severely deficient in the transmembrane proteins that comprise the entry fusion complex (EFC), and had increased amounts of unprocessed membrane and core proteins. Total lysates of cells infected with vΔI2 also had diminished EFC proteins due to instability attributed to their hydrophobicity and failure to be inserted into viral membranes. A similar instability of EFC proteins had previously been found with unrelated mutants blocked earlier in morphogenesis that also accumulated viral membranes retaining the D13 scaffold. We concluded that I2 is required for virion morphogenesis, release of the D13 scaffold, and the association of EFC proteins with viral membranes. IMPORTANCE Poxviruses comprise a large family that infect vertebrates and invertebrates, cause disease in both in humans and in wild and domesticated animals, and are being engineered as vectors for vaccines and cancer therapy. In addition, investigations of poxviruses have provided insights into

  7. Deletion of the Vaccinia Virus I2 Protein Interrupts Virion Morphogenesis, Leading to Retention of the Scaffold Protein and Mislocalization of Membrane-Associated Entry Proteins

    PubMed Central

    Hyun, Seong-In; Weisberg, Andrea

    2017-01-01

    ABSTRACT The I2L open reading frame of vaccinia virus (VACV) encodes a conserved 72-amino-acid protein with a putative C-terminal transmembrane domain. Previous studies with a tetracycline-inducible mutant demonstrated that I2-deficient virions are defective in cell entry. The purpose of the present study was to determine the step of replication or entry that is affected by loss of the I2 protein. Fluorescence microscopy experiments showed that I2 colocalized with a major membrane protein of immature and mature virions. We generated a cell line that constitutively expressed I2 and allowed construction of the VACV I2L deletion mutant vΔI2. As anticipated, vΔI2 was unable to replicate in cells that did not express I2. Unexpectedly, morphogenesis was interrupted at a stage after immature virion formation, resulting in the accumulation of dense spherical particles instead of brick-shaped mature virions with well-defined core structures. The abnormal particles retained the D13 scaffold protein of immature virions, were severely deficient in the transmembrane proteins that comprise the entry fusion complex (EFC), and had increased amounts of unprocessed membrane and core proteins. Total lysates of cells infected with vΔI2 also had diminished EFC proteins due to instability attributed to their hydrophobicity and failure to be inserted into viral membranes. A similar instability of EFC proteins had previously been found with unrelated mutants blocked earlier in morphogenesis that also accumulated viral membranes retaining the D13 scaffold. We concluded that I2 is required for virion morphogenesis, release of the D13 scaffold, and the association of EFC proteins with viral membranes. IMPORTANCE Poxviruses comprise a large family that infect vertebrates and invertebrates, cause disease in both in humans and in wild and domesticated animals, and are being engineered as vectors for vaccines and cancer therapy. In addition, investigations of poxviruses have provided insights

  8. TIM1 (HAVCR1) Is Not Essential for Cellular Entry of Either Quasi-enveloped or Naked Hepatitis A Virions.

    PubMed

    Das, Anshuman; Hirai-Yuki, Asuka; González-López, Olga; Rhein, Bethany; Moller-Tank, Sven; Brouillette, Rachel; Hensley, Lucinda; Misumi, Ichiro; Lovell, William; Cullen, John M; Whitmire, Jason K; Maury, Wendy; Lemon, Stanley M

    2017-09-05

    Receptor molecules play key roles in the cellular entry of picornaviruses, and TIM1 (HAVCR1) is widely accepted to be the receptor for hepatitis A virus (HAV), an unusual, hepatotropic human picornavirus. However, its identification as the hepatovirus receptor predated the discovery that hepatoviruses undergo nonlytic release from infected cells as membrane-cloaked, quasi-enveloped HAV (eHAV) virions that enter cells via a pathway distinct from naked, nonenveloped virions. We thus revisited the role of TIM1 in hepatovirus entry, examining both adherence and infection/replication in cells with clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9-engineered TIM1 knockout. Cell culture-derived, gradient-purified eHAV bound Huh-7.5 human hepatoma cells less efficiently than naked HAV at 4°C, but eliminating TIM1 expression caused no difference in adherence of either form of HAV, nor any impact on infection and replication in these cells. In contrast, TIM1-deficient Vero cells showed a modest reduction in quasi-enveloped eHAV (but not naked HAV) attachment and replication. Thus, TIM1 facilitates quasi-enveloped eHAV entry in Vero cells, most likely by binding phosphatidylserine (PtdSer) residues on the eHAV membrane. Both Tim1 -/- Ifnar1 -/- and Tim4 -/- Ifnar1 -/- double-knockout mice were susceptible to infection upon intravenous challenge with infected liver homogenate, with fecal HAV shedding and serum alanine aminotransferase (ALT) elevations similar to those in Ifnar1 -/- mice. However, intrahepatic HAV RNA and ALT elevations were modestly reduced in Tim1 -/- Ifnar1 -/- mice compared to Ifnar1 -/- mice challenged with a lower titer of gradient-purified HAV or eHAV. We conclude that TIM1 is not an essential hepatovirus entry factor, although its PtdSer-binding activity may contribute to the spread of quasi-enveloped virus and liver injury in mice. IMPORTANCE T cell immunoglobulin and mucin-containing domain protein 1 (TIM1) was reported more than

  9. Two distinct sets of NS2A molecules are responsible for dengue virus RNA synthesis and virion assembly.

    PubMed

    Xie, Xuping; Zou, Jing; Puttikhunt, Chunya; Yuan, Zhiming; Shi, Pei-Yong

    2015-01-15

    Flavivirus nonstructural protein 2A (NS2A) plays important roles in both viral RNA synthesis and virion assembly. The molecular details of how the NS2A protein modulates the two distinct events have not been defined. To address this question, we have performed a systematic mutagenesis of NS2A using dengue virus (DENV) serotype 2 (DENV-2) as a model. We identified two sets of NS2A mutations with distinct defects during a viral infection cycle. One set of NS2A mutations (D125A and G200A) selectively abolished viral RNA synthesis. Mechanistically, the D125A mutation abolished viral RNA synthesis through blocking the N-terminal cleavage of the NS2A protein, leading to an unprocessed NS1-NS2A protein; this result suggests that amino acid D125 (far downstream of the N terminus of NS2A) may contribute to the recognition of host protease at the NS1-NS2A junction. The other set of NS2A mutations (G11A, E20A, E100A, Q187A, and K188A) specifically impaired virion assembly without significantly affecting viral RNA synthesis. Remarkably, mutants defective in virion assembly could be rescued by supplying in trans wild-type NS2A molecules expressed from a replicative replicon, by wild-type NS2A protein expressed alone, by a mutant NS2A (G200A) that is lethal for viral RNA synthesis, or by a different mutant NS2A that is defective in virion assembly. In contrast, none of the mutants defective in viral RNA synthesis could be rescued by trans-complementation. Collectively, the results indicate that two distinct sets of NS2A molecules are responsible for DENV RNA synthesis and virion assembly. Dengue virus (DENV) represents the most prevalent mosquito-borne human pathogen. Understanding the replication of DENV is essential for development of vaccines and therapeutics. Here we characterized the function of DENV-2 NS2A using a systematic mutagenesis approach. The mutagenesis results revealed two distinct sets of NS2A mutations: one set of mutations that result in defects in viral RNA

  10. The Adenovirus Genome Contributes to the Structural Stability of the Virion

    PubMed Central

    Saha, Bratati; Wong, Carmen M.; Parks, Robin J.

    2014-01-01

    Adenovirus (Ad) vectors are currently the most commonly used platform for therapeutic gene delivery in human gene therapy clinical trials. Although these vectors are effective, many researchers seek to further improve the safety and efficacy of Ad-based vectors through detailed characterization of basic Ad biology relevant to its function as a vector system. Most Ad vectors are deleted of key, or all, viral protein coding sequences, which functions to not only prevent virus replication but also increase the cloning capacity of the vector for foreign DNA. However, radical modifications to the genome size significantly decreases virion stability, suggesting that the virus genome plays a role in maintaining the physical stability of the Ad virion. Indeed, a similar relationship between genome size and virion stability has been noted for many viruses. This review discusses the impact of the genome size on Ad virion stability and emphasizes the need to consider this aspect of virus biology in Ad-based vector design. PMID:25254384

  11. Cholesterol is required for stability and infectivity of influenza A and respiratory syncytial viruses.

    PubMed

    Bajimaya, Shringkhala; Frankl, Tünde; Hayashi, Tsuyoshi; Takimoto, Toru

    2017-10-01

    Cholesterol-rich lipid raft microdomains in the plasma membrane are considered to play a major role in the enveloped virus lifecycle. However, the functional role of cholesterol in assembly, infectivity and stability of respiratory RNA viruses is not fully understood. We previously reported that depletion of cellular cholesterol by cholesterol-reducing agents decreased production of human parainfluenza virus type 1 (hPIV1) particles by inhibiting virus assembly. In this study, we analyzed the role of cholesterol on influenza A virus (IAV) and respiratory syncytial virus (RSV) production. Unlike hPIV1, treatment of human airway cells with the agents did not decrease virus particle production. However, the released virions were less homogeneous in density and unstable. Addition of exogenous cholesterol to the released virions restored virus stability and infectivity. Collectively, these data indicate a critical role of cholesterol in maintaining IAV and RSV membrane structure that is essential for sustaining viral stability and infectivity. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Endophilins interact with Moloney murine leukemia virus Gag and modulate virion production

    PubMed Central

    Wang, Margaret Q; Kim, Wankee; Gao, Guangxia; Torrey, Ted A; Morse, Herbert C; De Camilli, Pietro; Goff, Stephen P

    2004-01-01

    Background The retroviral Gag protein is the central player in the process of virion assembly at the plasma membrane, and is sufficient to induce the formation and release of virus-like particles. Recent evidence suggests that Gag may co-opt the host cell's endocytic machinery to facilitate retroviral assembly and release. Results A search for novel partners interacting with the Gag protein of the Moloney murine leukemia virus (Mo-MuLV) via the yeast two-hybrid protein-protein interaction assay resulted in the identification of endophilin 2, a component of the machinery involved in clathrin-mediated endocytosis. We demonstrate that endophilin interacts with the matrix or MA domain of the Gag protein of Mo-MuLV, but not of human immunodeficiency virus, HIV. Both exogenously expressed and endogenous endophilin are incorporated into Mo-MuLV viral particles. Titration experiments suggest that the binding sites for inclusion of endophilin into viral particles are limited and saturable. Knock-down of endophilin with small interfering RNA (siRNA) had no effect on virion production, but overexpression of endophilin and, to a lesser extent, of several fragments of the protein, result in inhibition of Mo-MuLV virion production, but not of HIV virion production. Conclusions This study shows that endophilins interact with Mo-MuLV Gag and affect virion production. The findings imply that endophilin is another component of the large complex that is hijacked by retroviruses to promote virion production. PMID:14659004

  13. Infected Peripheral Blood Mononuclear Cells Transmit Latent Varicella Zoster Virus Infection to the Guinea Pig Enteric Nervous System

    PubMed Central

    Gan, Lin; Wang, Mingli; Chen, Jason J.; Gershon, Michael D.; Gershon, Anne A.

    2014-01-01

    Latent wild-type (WT) and vaccine (vOka) varicella-zoster virus (VZV) are found in the human enteric nervous system (ENS). VZV also infects guinea pig enteric neurons in vitro, establishes latency and can be reactivated. We therefore determined whether lymphocytes infected in vitro with VZV secrete infectious virions and can transfer infection in vivo to the ENS of recipient guinea pigs. T lymphocytes (CD3-immunoreactive) were preferentially infected following co-culture of guinea pig or human peripheral blood mononuclear cells with VZV-infected HELF. VZV proliferated in the infected T cells and expressed immediate early and late VZV genes. Electron microscopy confirmed that VZV-infected T cells produced encapsulated virions. Extracellular virus, however, was pleomorphic, suggesting degradation occurred prior to release, which was confirmed by the failure of VZV-infected T cells to secrete infectious virions. Intravenous injection of WT- or vOka-infected PBMCs, nevertheless, transmitted VZV to recipient animals (guinea pig > human lymphocytes). Two days post-inoculation, lung and liver, but not gut, contained DNA and transcripts encoding ORFs 4, 40, 66 and 67. Twenty-eight days after infection, gut contained DNA and transcripts encoding ORFs 4 and 66 but neither DNA nor transcripts could any longer be found in lung or liver. In situ hybridization revealed VZV DNA in enteric neurons, which also expressed ORF63p (but not ORF68p) immunoreactivity. Observations suggest that VZV infects T cells, which can transfer VZV to and establish latency in enteric neurons in vivo. Guinea pigs may be useful for studies of VZV pathogenesis in the ENS. PMID:24965252

  14. Tegument Protein ORF45 Plays an Essential Role in Virion Morphogenesis of Murine Gammaherpesvirus 68

    PubMed Central

    Jia, Xing; Shen, Sheng; Lv, Ying; Zhang, Ziwei; Guo, Haitao

    2016-01-01

    Tegument proteins play critical roles in herpesvirus morphogenesis. ORF45 is a conserved tegument protein of gammaherpesviruses; however, its role in virion morphogenesis is largely unknown. In this work, we determined the ultrastructural localization of murine gammaherpesvirus 68 (MHV-68) ORF45 and found that this protein was incorporated into virions around the site of host-derived vesicles. Notably, the absence of ORF45 inhibited nucleocapsid egress and blocked cytoplasmic virion maturation, demonstrating that ORF45 is essential for MHV-68 virion morphogenesis. PMID:27226376

  15. US9, a stable lysine-less herpes simplex virus 1 protein, is ubiquitinated before packaging into virions and associates with proteasomes

    PubMed Central

    Brandimarti, Renato; Roizman, Bernard

    1997-01-01

    The US9 gene of herpes simplex virus 1 encodes a virion tegument protein with a predicted Mr of 10,000. Earlier studies have shown that the gene is not essential for viral replication in cells in culture. We report that (i) US9 forms in denaturing polyacrylamide gels multiple overlapping bands ranging in Mr from 12,000 to 25,000; (ii) the protein recovered from infected cells or purified virions reacts with anti-ubiquitin antibodies; (iii) autoradiographic images of US9 protein immunoprecipitated from cells infected with [35S]methionine-labeled virus indicate that the protein is stable for at least 4 h after entry into cells (the protein was also stable for at least 4 h after a 1-h labeling interval 12 h after infection); (iv) antibody to subunit 12 of proteasomes pulls down US9 protein from herpes simplex virus-infected cell lysates; and (v) the US9 gene is highly conserved among the members of the alpha subfamily of herpes viruses, and the US9 gene product lacks lysines. We conclude that US9 is a lysine-less, ubiquitinated protein that interacts with the ubiquitin-dependent pathway for degradation of proteins and that this function may be initiated at the time of entry of the virus into the cell. PMID:9391137

  16. Reaction-diffusion basis of retroviral infectivity

    NASA Astrophysics Data System (ADS)

    Sadiq, S. Kashif

    2016-11-01

    Retrovirus particle (virion) infectivity requires diffusion and clustering of multiple transmembrane envelope proteins (Env3) on the virion exterior, yet is triggered by protease-dependent degradation of a partially occluding, membrane-bound Gag polyprotein lattice on the virion interior. The physical mechanism underlying such coupling is unclear and only indirectly accessible via experiment. Modelling stands to provide insight but the required spatio-temporal range far exceeds current accessibility by all-atom or even coarse-grained molecular dynamics simulations. Nor do such approaches account for chemical reactions, while conversely, reaction kinetics approaches handle neither diffusion nor clustering. Here, a recently developed multiscale approach is considered that applies an ultra-coarse-graining scheme to treat entire proteins at near-single particle resolution, but which also couples chemical reactions with diffusion and interactions. A model is developed of Env3 molecules embedded in a truncated Gag lattice composed of membrane-bound matrix proteins linked to capsid subunits, with freely diffusing protease molecules. Simulations suggest that in the presence of Gag but in the absence of lateral lattice-forming interactions, Env3 diffuses comparably to Gag-absent Env3. Initial immobility of Env3 is conferred through lateral caging by matrix trimers vertically coupled to the underlying hexameric capsid layer. Gag cleavage by protease vertically decouples the matrix and capsid layers, induces both matrix and Env3 diffusion, and permits Env3 clustering. Spreading across the entire membrane surface reduces crowding, in turn, enhancing the effect and promoting infectivity. This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'.

  17. Retroviral proteases and their roles in virion maturation.

    PubMed

    Konvalinka, Jan; Kräusslich, Hans-Georg; Müller, Barbara

    2015-05-01

    Proteolytic processing of viral polyproteins is essential for retrovirus infectivity. Retroviral proteases (PR) become activated during or after assembly of the immature, non-infectious virion. They cleave viral polyproteins at specific sites, inducing major structural rearrangements termed maturation. Maturation converts retroviral enzymes into their functional form, transforms the immature shell into a metastable state primed for early replication events, and enhances viral entry competence. Not only cleavage at all PR recognition sites, but also an ordered sequence of cleavages is crucial. Proteolysis is tightly regulated, but the triggering mechanisms and kinetics and pathway of morphological transitions remain enigmatic. Here, we outline PR structures and substrate specificities focusing on HIV PR as a therapeutic target. We discuss design and clinical success of HIV PR inhibitors, as well as resistance development towards these drugs. Finally, we summarize data elucidating the role of proteolysis in maturation and highlight unsolved questions regarding retroviral maturation. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Antigenic Properties of the HIV Envelope on Virions in Solution

    PubMed Central

    Mengistu, Meron; Lewis, George K.; Lakowicz, Joseph R.

    2014-01-01

    The structural flexibility found in human immunodeficiency virus (HIV) envelope glycoproteins creates a complex relationship between antigenicity and sensitivity to antiviral antibodies. The study of this issue in the context of viral particles is particularly problematic as conventional virus capture approaches can perturb antigenicity profiles. Here, we employed a unique analytical system based on fluorescence correlation spectroscopy (FCS), which measures antibody-virion binding with all reactants continuously in solution. Panels of nine anti-envelope monoclonal antibodies (MAbs) and five virus types were used to connect antibody binding profiles with neutralizing activities. Anti-gp120 MAbs against the 2G12 or b12 epitope, which marks functional envelope structures, neutralized viruses expressing CCR5-tropic envelopes and exhibited efficient virion binding in solution. MAbs against CD4-induced (CD4i) epitopes considered hidden on functional envelope structures poorly bound these viruses and were not neutralizing. Anti-gp41 MAb 2F5 was neutralizing despite limited virion binding. Similar antigenicity patterns occurred on CXCR4-tropic viruses, except that anti-CD4i MAbs 17b and 19e were neutralizing despite little or no virion binding. Notably, anti-gp120 MAb PG9 and anti-gp41 MAb F240 bound to both CCR5-tropic and CXCR4-tropic viruses without exerting neutralizing activity. Differences in the virus production system altered the binding efficiencies of some antibodies but did not enhance antigenicity of aberrant gp120 structures. Of all viruses tested, only JRFL pseudoviruses showed a direct relationship between MAb binding efficiency and neutralizing potency. Collectively, these data indicate that the antigenic profiles of free HIV particles generally favor the exposure of functional over aberrant gp120 structures. However, the efficiency of virion-antibody interactions in solution inconsistently predicts neutralizing activity in vitro. PMID:24284318

  19. Effects of amino acid substitutions in hepatitis B virus surface protein on virion secretion, antigenicity, HBsAg and viral DNA.

    PubMed

    Xiang, Kuan-Hui; Michailidis, Eleftherios; Ding, Hai; Peng, Ya-Qin; Su, Ming-Ze; Li, Yao; Liu, Xue-En; Dao Thi, Viet Loan; Wu, Xian-Fang; Schneider, William M; Rice, Charles M; Zhuang, Hui; Li, Tong

    2017-02-01

    As important virological markers, serum hepatitis B surface antigen (HBsAg) and hepatitis B virus (HBV) DNA levels show large fluctuations among chronic hepatitis B patients. The aim of this study was to reveal the potential impact and mechanisms of amino acid substitutions in small hepatitis B surface proteins (SHBs) on serum HBsAg and HBV DNA levels. Serum samples from 230 untreated chronic hepatitis B patients with genotype C HBV were analyzed in terms of HBV DNA levels, serological markers of HBV infection and SHBs sequences. In vitro functional analysis of the identified SHBs mutants was performed. Among 230 SHBs sequences, there were 39 (16.96%) sequences with no mutation detected (wild-type) and 191 (83.04%) with single or multiple mutations. SHBs consist of 226 amino acids, of which 104 (46.02%) had mutations in our study. Some mutations (e.g., sE2G, sL21S, sR24K, sT47A/K, sC69stop (sC69∗), sL95W, sL98V, and sG145R) negatively correlated with serum HBsAg levels. HBsAg and HBV DNA levels from this group of patients had a positive correlation (r=0.61, p<0.001). In vitro analysis showed that these mutations reduced extracellular HBsAg and HBV DNA levels by restricting virion secretion and antibody binding capacity. Virion secretion could be rescued for sE2G, sC69∗, and sG145R by co-expression of wild-type HBsAg. The serum HBsAg levels were lower in untreated CHB patients with novel SHBs mutations outside the major antigenic region than those without mutations. Underlying mechanisms include impairment of virion secretion and lower binding affinity to antibodies used for HBsAg measurements. The hepatitis B surface antigen (HBsAg) is a major viral protein of the hepatitis B virus (HBV) secreted into patient blood serum and its quantification value serves as an important marker for the evaluation of chronic HBV infection and antiviral response. We found a few new amino acid substitutions in HBsAg associated with lower serum HBsAg and HBV DNA levels. These

  20. Essential role of the unordered VP2 n-terminal domain of the parvovirus MVM capsid in nuclear assembly and endosomal enlargement of the virion fivefold channel for cell entry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez-Martinez, Cristina; Grueso, Esther; Carroll, Miles

    The unordered N-termini of parvovirus capsid proteins (Nt) are translocated through a channel at the icosahedral five-fold axis to serve for virus traffick. Heterologous peptides were genetically inserted at the Nt of MVM to study their functional tolerance to manipulations. Insertion of a 5T4-single-chain antibody at VP2-Nt (2Nt) yielded chimeric capsid subunits failing to enter the nucleus. The VEGFR2-binding peptide (V1) inserted at both 2Nt and VP1-Nt efficiently assembled in virions, but V1 disrupted VP1 and VP2 entry functions. The VP2 defect correlated with restricted externalization of V1-2Nt out of the coat. The specific infectivity of MVM and wtVP-pseudotyped mosaicmore » MVM-V1 virions, upon heating and/or partial 2Nt cleavage, demonstrated that some 2Nt domains become intracellularly translocated out of the virus shell and cleaved to initiate entry. The V1 insertion defines a VP2-driven endosomal enlargement of the channel as an essential structural rearrangement performed by the MVM virion to infect.« less

  1. Essential role of the unordered VP2 n-terminal domain of the parvovirus MVM capsid in nuclear assembly and endosomal enlargement of the virion fivefold channel for cell entry.

    PubMed

    Sánchez-Martínez, Cristina; Grueso, Esther; Carroll, Miles; Rommelaere, Jean; Almendral, José M

    2012-10-10

    The unordered N-termini of parvovirus capsid proteins (Nt) are translocated through a channel at the icosahedral five-fold axis to serve for virus traffick. Heterologous peptides were genetically inserted at the Nt of MVM to study their functional tolerance to manipulations. Insertion of a 5T4-single-chain antibody at VP2-Nt (2Nt) yielded chimeric capsid subunits failing to enter the nucleus. The VEGFR2-binding peptide (V1) inserted at both 2Nt and VP1-Nt efficiently assembled in virions, but V1 disrupted VP1 and VP2 entry functions. The VP2 defect correlated with restricted externalization of V1-2Nt out of the coat. The specific infectivity of MVM and wtVP-pseudotyped mosaic MVM-V1 virions, upon heating and/or partial 2Nt cleavage, demonstrated that some 2Nt domains become intracellularly translocated out of the virus shell and cleaved to initiate entry. The V1 insertion defines a VP2-driven endosomal enlargement of the channel as an essential structural rearrangement performed by the MVM virion to infect. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Orsay virus utilizes ribosomal frameshifting to express a novel protein that is incorporated into virions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Hongbing; Franz, Carl J.; Wu, Guang

    2014-02-15

    Orsay virus is the first identified virus that is capable of naturally infecting Caenorhabditis elegans. Although it is most closely related to nodaviruses, Orsay virus differs from nodaviruses in its genome organization. In particular, the Orsay virus RNA2 segment encodes a putative novel protein of unknown function, termed delta, which is absent from all known nodaviruses. Here we present evidence that Orsay virus utilizes a ribosomal frameshifting strategy to express a novel fusion protein from the viral capsid (alpha) and delta ORFs. Moreover, the fusion protein was detected in purified virus fractions, demonstrating that it is most likely incorporated intomore » Orsay virions. Furthermore, N-terminal sequencing of both the fusion protein and the capsid protein demonstrated that these proteins must be translated from a non-canonical initiation site. While the function of the alpha–delta fusion remains cryptic, these studies provide novel insights into the fundamental properties of this new clade of viruses. - Highlights: • Orsay virus encodes a novel fusion protein by a ribosomal frameshifting mechanism. • Orsay capsid and fusion protein is translated from a non-canonical initiation site. • The fusion protein is likely incorporated into Orsay virions.« less

  3. Role of a reducing environment in disassembly of the herpesvirus tegument

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newcomb, William W.; Jones, Lisa M.; Dee, Alexander

    2012-09-15

    Initiation of infection by herpes family viruses involves a step in which most of the virus tegument becomes detached from the capsid. Detachment takes place in the host cell cytosol near the virus entry site and it is followed by dispersal of tegument proteins and disappearance of the tegument as a distinct entity. Here we describe the results of experiments designed to test the idea that the reducing environment of the cytosol may contribute to tegument detachment and disassembly. Non-ionic detergent was used to remove the membrane of purified herpes simplex virus under control and reducing conditions. The effects onmore » the tegument were then examined by SDS-PAGE and electron microscopy. Protein analysis demonstrated that most major tegument proteins were removed under both oxidizing and reducing conditions except for UL49 which required a reducing environment. It is proposed therefore that the reducing conditions in the cytosol are involved in removal of UL49 protein. Electron microscopic analysis revealed that capsids produced under oxidizing conditions contained a coating of protein that was absent in reduced virions and which correlated uniquely with the presence of UL49. This capsid-associated layer is suggested to be the location of UL49 in the extracted virion.« less

  4. Incorporation of Hepatitis C Virus E1 and E2 Glycoproteins: The Keystones on a Peculiar Virion

    PubMed Central

    Vieyres, Gabrielle; Dubuisson, Jean; Pietschmann, Thomas

    2014-01-01

    Hepatitis C virus (HCV) encodes two envelope glycoproteins, E1 and E2. Their structure and mode of fusion remain unknown, and so does the virion architecture. The organization of the HCV envelope shell in particular is subject to discussion as it incorporates or associates with host-derived lipoproteins, to an extent that the biophysical properties of the virion resemble more very-low-density lipoproteins than of any virus known so far. The recent development of novel cell culture systems for HCV has provided new insights on the assembly of this atypical viral particle. Hence, the extensive E1E2 characterization accomplished for the last two decades in heterologous expression systems can now be brought into the context of a productive HCV infection. This review describes the biogenesis and maturation of HCV envelope glycoproteins, as well as the interplay between viral and host factors required for their incorporation in the viral envelope, in a way that allows efficient entry into target cells and evasion of the host immune response. PMID:24618856

  5. Reducing haemodialysis access infection rates.

    PubMed

    Dorman, Amanda; Dainton, Marissa

    Infections are the second most common cause of vascular access loss in the long-term haemodialysis patient, and recent years have seen an increase in healthcare-associated infections (HCAIs) associated with vascular access (Suhail, 2009). There have been a number of drivers including publication guidelines (Department of Health, 2006; 2007) and local protocols providing evidence-based recommendations that, when implemented, can reduce the risk of these infections. In England, the selection of bloodstream infections caused by methicillin resistant staphylococcus aureus (MRSA) as a significant clinical outcome has led to a vast amount of work in this area. Root cause analysis of individual infections (by the clinical teams when these occur) in many specialities identified areas where practice could be improved, including practice relating to vascular access within the renal setting. Manufacturers have also supported this work by focusing on developing products that are designed to reduce the likelihood of infections occurring. One product identified and used within the NHS is Chloraprep.

  6. Selective incorporation of vRNP into influenza A virions determined by its specific interaction with M1 protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaimayo, Chutikarn

    Influenza A viruses contain eight single-stranded, negative-sense RNA segments as viral genomes in the form of viral ribonucleoproteins (vRNPs). During genome replication in the nucleus, positive-sense complementary RNPs (cRNPs) are produced as replicative intermediates, which are not incorporated into progeny virions. To analyze the mechanism of selective vRNP incorporation into progeny virions, we quantified vRNPs and cRNPs in the nuclear and cytosolic fractions of infected cells, using a strand-specific qRT-PCR. Unexpectedly, we found that cRNPs were also exported to the cytoplasm. This export was chromosome region maintenance 1 (CRM1)-independent unlike that of vRNPs. Although both vRNPs and cRNPs were presentmore » in the cytosol, viral matrix (M1) protein, a key regulator for viral assembly, preferentially bound vRNPs over cRNPs. These results indicate that influenza A viruses selectively uptake cytosolic vRNPs through a specific interaction with M1 during viral assembly. - Highlights: •Influenza cRNPs are exported from the nucleus of an infected cell via a CRM1-independent pathway. •Influenza A viruses selectively incorporate cytosolic vRNPs through a specific interaction with M1 during viral assembly. •M1 dissociates from vRNP export complex after nuclear export, and is re-associated with vRNPs at the plasma membrane.« less

  7. Glyceraldehyde 3-phosphate dehydrogenase negatively regulates human immunodeficiency virus type 1 infection

    PubMed Central

    2012-01-01

    Background Host proteins are incorporated inside human immunodeficiency virus type 1 (HIV-1) virions during assembly and can either positively or negatively regulate HIV-1 infection. Although the identification efficiency of host proteins is improved by mass spectrometry, how those host proteins affect HIV-1 replication has not yet been fully clarified. Results In this study, we show that virion-associated glyceraldehyde 3-phosphate dehydrogenase (GAPDH) does not allosterically inactivate HIV-1 reverse transcriptase (RT) but decreases the efficiency of reverse transcription reactions by decreasing the packaging efficiency of lysyl-tRNA synthetase (LysRS) and tRNALys3 into HIV-1 virions. Two-dimensional (2D) gel electrophoresis demonstrated that some isozymes of GAPDH with different isoelectric points were expressed in HIV-1-producing CEM/LAV-1 cells, and a proportion of GAPDH was selectively incorporated into the virions. Suppression of GAPDH expression by RNA interference in CEM/LAV-1 cells resulted in decreased GAPDH packaging inside the virions, and the GAPDH-packaging-defective virus maintained at least control levels of viral production but increased the infectivity. Quantitative analysis of reverse transcription products indicated that the levels of early cDNA products of the GAPDH-packaging-defective virus were higher than those of the control virus owing to the higher packaging efficiencies of LysRS and tRNALys3 into the virions rather than the GAPDH-dependent negative allosteric modulation for RT. Furthermore, immunoprecipitation assay using an anti-GAPDH antibody showed that GAPDH directly interacted with Pr55gag and p160gag-pol and the overexpression of LysRS in HIV-1-producing cells resulted in a decrease in the efficiency of GAPDH packaging in HIV particles. In contrast, the viruses produced from cells expressing a high level of GAPDH showed decreased infectivity in TZM-bl cells and reverse transcription efficiency in TZM-bl cells and peripheral blood

  8. A gradient-free method for the purification of infective dengue virus for protein-level investigations.

    PubMed

    Jensen, Stephanie M; Nguyen, Celina T; Jewett, John C

    2016-09-01

    Dengue virus (DENV) is a mosquito-transmitted flavivirus that infects approximately 100 million people annually. Multi-day protocols for purification of DENV reduce the infective titer due to viral sensitivity to both temperature and pH. Herein we describe a 5-h protocol for the purification of all DENV serotypes, utilizing traditional gradient-free ultracentrifugation followed by selective virion precipitation. This protocol allows for the separation of DENV from contaminating proteins - including intact C6/36 densovirus, for the production of infective virus at high concentration for protein-level analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. De novo Fatty Acid Biosynthesis Contributes Significantly to Establishment of a Bioenergetically Favorable Environment for Vaccinia Virus Infection

    PubMed Central

    Greseth, Matthew D.; Traktman, Paula

    2014-01-01

    The poxvirus life cycle, although physically autonomous from the host nucleus, is nevertheless dependent upon cellular functions. A requirement for de novo fatty acid biosynthesis was implied by our previous demonstration that cerulenin, a fatty acid synthase inhibitor, impaired vaccinia virus production. Here we show that additional inhibitors of this pathway, TOFA and C75, reduce viral yield significantly, with partial rescue provided by exogenous palmitate, the pathway's end-product. Palmitate's major role during infection is not for phospholipid synthesis or protein palmitoylation. Instead, the mitochondrial import and β-oxidation of palmitate are essential, as shown by the impact of etomoxir and trimetazidine, which target these two processes respectively. Moreover, the impact of these inhibitors is exacerbated in the absence of exogenous glucose, which is otherwise dispensable for infection. In contrast to glucose, glutamine is essential for productive viral infection, providing intermediates that sustain the TCA cycle (anaplerosis). Cumulatively, these data suggest that productive infection requires the mitochondrial β-oxidation of palmitate which drives the TCA cycle and energy production. Additionally, infection causes a significant rise in the cellular oxygen consumption rate (ATP synthesis) that is ablated by etomoxir. The biochemical progression of the vaccinia life cycle is not impaired in the presence of TOFA, C75, or etomoxir, although the levels of viral DNA and proteins synthesized are somewhat diminished. However, by reversibly arresting infections at the onset of morphogenesis, and then monitoring virus production after release of the block, we determined that virion assembly is highly sensitive to TOFA and C75. Electron microscopic analysis of cells released into C75 revealed fragmented aggregates of viroplasm which failed to be enclosed by developing virion membranes. Taken together, these data indicate that vaccinia infection, and in

  10. De novo fatty acid biosynthesis contributes significantly to establishment of a bioenergetically favorable environment for vaccinia virus infection.

    PubMed

    Greseth, Matthew D; Traktman, Paula

    2014-03-01

    The poxvirus life cycle, although physically autonomous from the host nucleus, is nevertheless dependent upon cellular functions. A requirement for de novo fatty acid biosynthesis was implied by our previous demonstration that cerulenin, a fatty acid synthase inhibitor, impaired vaccinia virus production. Here we show that additional inhibitors of this pathway, TOFA and C75, reduce viral yield significantly, with partial rescue provided by exogenous palmitate, the pathway's end-product. Palmitate's major role during infection is not for phospholipid synthesis or protein palmitoylation. Instead, the mitochondrial import and β-oxidation of palmitate are essential, as shown by the impact of etomoxir and trimetazidine, which target these two processes respectively. Moreover, the impact of these inhibitors is exacerbated in the absence of exogenous glucose, which is otherwise dispensable for infection. In contrast to glucose, glutamine is essential for productive viral infection, providing intermediates that sustain the TCA cycle (anaplerosis). Cumulatively, these data suggest that productive infection requires the mitochondrial β-oxidation of palmitate which drives the TCA cycle and energy production. Additionally, infection causes a significant rise in the cellular oxygen consumption rate (ATP synthesis) that is ablated by etomoxir. The biochemical progression of the vaccinia life cycle is not impaired in the presence of TOFA, C75, or etomoxir, although the levels of viral DNA and proteins synthesized are somewhat diminished. However, by reversibly arresting infections at the onset of morphogenesis, and then monitoring virus production after release of the block, we determined that virion assembly is highly sensitive to TOFA and C75. Electron microscopic analysis of cells released into C75 revealed fragmented aggregates of viroplasm which failed to be enclosed by developing virion membranes. Taken together, these data indicate that vaccinia infection, and in

  11. A positive-strand RNA virus uses alternative protein-protein interactions within a viral protease/cofactor complex to switch between RNA replication and virion morphogenesis.

    PubMed

    Dubrau, Danilo; Tortorici, M Alejandra; Rey, Félix A; Tautz, Norbert

    2017-02-01

    The viruses of the family Flaviviridae possess a positive-strand RNA genome and express a single polyprotein which is processed into functional proteins. Initially, the nonstructural (NS) proteins, which are not part of the virions, form complexes capable of genome replication. Later on, the NS proteins also play a critical role in virion formation. The molecular basis to understand how the same proteins form different complexes required in both processes is so far unknown. For pestiviruses, uncleaved NS2-3 is essential for virion morphogenesis while NS3 is required for RNA replication but is not functional in viral assembly. Recently, we identified two gain of function mutations, located in the C-terminal region of NS2 and in the serine protease domain of NS3 (NS3 residue 132), which allow NS2 and NS3 to substitute for uncleaved NS2-3 in particle assembly. We report here the crystal structure of pestivirus NS3-4A showing that the NS3 residue 132 maps to a surface patch interacting with the C-terminal region of NS4A (NS4A-kink region) suggesting a critical role of this contact in virion morphogenesis. We show that destabilization of this interaction, either by alanine exchanges at this NS3/4A-kink interface, led to a gain of function of the NS3/4A complex in particle formation. In contrast, RNA replication and thus replicase assembly requires a stable association between NS3 and the NS4A-kink region. Thus, we propose that two variants of NS3/4A complexes exist in pestivirus infected cells each representing a basic building block required for either RNA replication or virion morphogenesis. This could be further corroborated by trans-complementation studies with a replication-defective NS3/4A double mutant that was still functional in viral assembly. Our observations illustrate the presence of alternative overlapping surfaces providing different contacts between the same proteins, allowing the switch from RNA replication to virion formation.

  12. Enzymatic treatment of duck hepatitis B virus: Topology of the surface proteins for virions and noninfectious subviral particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franke, Claudia; Matschl, Urte; Bruns, Michael

    The large surface antigen L of duck hepatitis B virus exhibits a mixed topology with the preS domains of the protein alternatively exposed to the particles' interior or exterior. After separating virions from subviral particles (SVPs), we compared their L topologies and showed that both particle types exhibit the same amount of L with the following differences: 1-preS of intact virions was enzymatically digested with chymotrypsin, whereas in SVPs only half of preS was accessible, 2-phosphorylation of L at S118 was completely removed by phosphatase treatment only in virions, 3-iodine-125 labeling disclosed a higher ratio of exposed preS to Smore » domains in virions compared to SVPs. These data point towards different surface architectures of virions and SVPs. Because the preS domain acts in binding to a cellular receptor of hepatocytes, our findings implicate the exclusion of SVPs as competitors for the receptor binding and entry of virions.« less

  13. Ultrastructure of Bacterial Cells Infected with Bacteriophage PM2, a Lipid-containing Bacterial Virus

    PubMed Central

    Cota-Robles, Eugene; Espejo, Romilio Torres; Haywood, Patricia Williams

    1968-01-01

    The cytological pattern of infection of a host pseudomonad with PM2, a lipid-containing bacterial virus, was investigated by electron microscopy. Normal and infected cells frequently contain a myelin figure, which is found in the nucleoid region or at the periphery of the cell. The most striking finding in this investigation was that completed virions are found in the cell adjacent to or in association with the cytoplasmic membrane. This localization is precise; virions are not found elsewhere in infected cells. The completed virions occasionally appear to be attached to the cytoplasmic membrane. The virus contains a darkly staining core surrounded by a tripartite envelope of a thickness of approximately 70 A, which is identical to the thickness of the cytoplasmic membrane. Lysing cells appear to undergo extensive damage of the cytoplasmic membrane prior to rupture of the L layer of the cell wall. Images PMID:5742028

  14. Palmitoylation of Sindbis Virus TF Protein Regulates Its Plasma Membrane Localization and Subsequent Incorporation into Virions.

    PubMed

    Ramsey, Jolene; Renzi, Emily C; Arnold, Randy J; Trinidad, Jonathan C; Mukhopadhyay, Suchetana

    2017-02-01

    Palmitoylation is a reversible, posttranslational modification that helps target proteins to cellular membranes. The alphavirus small membrane proteins 6K and TF have been reported to be palmitoylated and to positively regulate budding. 6K and TF are isoforms that are identical in their N termini but unique in their C termini due to a -1 ribosomal frameshift during translation. In this study, we used cysteine (Cys) mutants to test differential palmitoylation of the Sindbis virus 6K and TF proteins. We modularly mutated the five Cys residues in the identical N termini of 6K and TF, the four additional Cys residues in TF's unique C terminus, or all nine Cys residues in TF. Using these mutants, we determined that TF palmitoylation occurs primarily in the N terminus. In contrast, 6K is not palmitoylated, even on these shared residues. In the C-terminal Cys mutant, TF protein levels increase both in the cell and in the released virion compared to the wild type. In viruses with the N-terminal Cys residues mutated, TF is much less efficiently localized to the plasma membrane, and it is not incorporated into the virion. The three Cys mutants have minor defects in cell culture growth but a high incidence of abnormal particle morphologies compared to the wild-type virus as determined by transmission electron microscopy. We propose a model where the C terminus of TF modulates the palmitoylation of TF at the N terminus, and palmitoylated TF is preferentially trafficked to the plasma membrane for virus budding. Alphaviruses are a reemerging viral cause of arthritogenic disease. Recently, the small 6K and TF proteins of alphaviruses were shown to contribute to virulence in vivo Nevertheless, a clear understanding of the molecular mechanisms by which either protein acts to promote virus infection is missing. The TF protein is a component of budded virions, and optimal levels of TF correlate positively with wild-type-like particle morphology. In this study, we show that the

  15. Characterization of retroviral infectivity and superinfection resistance during retrovirus-mediated transduction of mammalian cells.

    PubMed

    Liao, J; Wei, Q; Fan, J; Zou, Y; Song, D; Liu, J; Liu, F; Ma, C; Hu, X; Li, L; Yu, Y; Qu, X; Chen, L; Yu, X; Zhang, Z; Zhao, C; Zeng, Z; Zhang, R; Yan, S; Wu, T; Wu, X; Shu, Y; Lei, J; Li, Y; Zhang, W; Wang, J; Reid, R R; Lee, M J; Huang, W; Wolf, J M; He, T-C; Wang, J

    2017-06-01

    Retroviral vectors including lentiviral vectors are commonly used tools to stably express transgenes or RNA molecules in mammalian cells. Their utilities are roughly divided into two categories, stable overexpression of transgenes and RNA molecules, which requires maximal transduction efficiency, or functional selection with retrovirus (RV)-based libraries, which takes advantage of retroviral superinfection resistance. However, the dynamic features of RV-mediated transduction are not well characterized. Here, we engineered two murine stem cell virus-based retroviral vectors expressing dual fluorescence proteins and antibiotic markers, and analyzed virion production efficiency and virion stability, dynamic infectivity and superinfection resistance in different cell types, and strategies to improve transduction efficiency. We found that the highest virion production occurred between 60 and 72 h after transfection. The stability of the collected virion supernatant decreased by >60% after 3 days in storage. We found that RV infectivity varied drastically in the tested human cancer lines, while low transduction efficiency was partially overcome with increased virus titer, prolonged infection duration and/or repeated infections. Furthermore, we demonstrated that RV receptors PIT1 and PIT2 were lowly expressed in the analyzed cells, and that PIT1 and/or PIT2 overexpression significantly improved transduction efficiency in certain cell lines. Thus, our findings provide resourceful information for the optimal conditions of retroviral-mediated gene delivery.

  16. Herpesvirus gB-induced fusion between the virion envelope and outer nuclear membrane during virus egress is regulated by the viral US3 kinase.

    PubMed

    Wisner, Todd W; Wright, Catherine C; Kato, Akihisa; Kawaguchi, Yasushi; Mou, Fan; Baines, Joel D; Roller, Richard J; Johnson, David C

    2009-04-01

    Herpesvirus capsids collect along the inner surface of the nuclear envelope and bud into the perinuclear space. Enveloped virions then fuse with the outer nuclear membrane (NM). We previously showed that herpes simplex virus (HSV) glycoproteins gB and gH act in a redundant fashion to promote fusion between the virion envelope and the outer NM. HSV mutants lacking both gB and gH accumulate enveloped virions in herniations, vesicles that bulge into the nucleoplasm. Earlier studies had shown that HSV mutants lacking the viral serine/threonine kinase US3 also accumulate herniations. Here, we demonstrate that HSV gB is phosphorylated in a US3-dependent manner in HSV-infected cells, especially in a crude nuclear fraction. Moreover, US3 directly phosphorylated the gB cytoplasmic (CT) domain in in vitro assays. Deletion of gB in the context of a US3-null virus did not add substantially to defects in nuclear egress. The majority of the US3-dependent phosphorylation of gB involved the CT domain and amino acid T887, a residue present in a motif similar to that recognized by US3 in other proteins. HSV recombinants lacking gH and expressing either gB substitution mutation T887A or a gB truncated at residue 886 displayed substantial defects in nuclear egress. We concluded that phosphorylation of the gB CT domain is important for gB-mediated fusion with the outer NM. This suggested a model in which the US3 kinase is incorporated into the tegument layer (between the capsid and envelope) in HSV virions present in the perinuclear space. By this packaging, US3 might be brought close to the gB CT tail, leading to phosphorylation and triggering fusion between the virion envelope and the outer NM.

  17. Zika plasma viral dynamics in nonhuman primates provides insights into early infection and antiviral strategies

    PubMed Central

    Best, Katharine; Guedj, Jeremie; Madelain, Vincent; de Lamballerie, Xavier; Lim, So-Yon; Osuna, Christa E.; Whitney, James B.; Perelson, Alan S.

    2017-01-01

    The recent outbreak of Zika virus (ZIKV) has been associated with fetal abnormalities and neurological complications, prompting global concern. Here we present a mathematical analysis of the within-host dynamics of plasma ZIKV burden in a nonhuman primate model, allowing for characterization of the growth and clearance of ZIKV within individual macaques. We estimate that the eclipse phase for ZIKV, the time between cell infection and viral production, is most likely short (∼4 h), the median within-host basic reproductive number R0 is 10.7, the rate of viral production is rapid (>25,000 virions d−1), and the lifetime of an infected cell while producing virus is ∼5 h. We also estimate that the minimum number of virions produced by an infected cell over its lifetime is ∼5,500. We assess the potential effect of an antiviral treatment that blocks viral replication, showing that the median time to undetectable plasma viral load (VL) can be reduced from ∼5 d to ∼3 d with a drug concentration ∼15 times the drug’s EC50 when treatment is given prophylactically starting at the time of infection. In the case of favipiravir, a polymerase inhibitor with activity against ZIKV, we predict a dose of 150 mg/kg given twice a day initiated at the time of infection can reduce the peak median VL by ∼3 logs and shorten the time to undetectable median VL by ∼2 d, whereas treatment given 2 d postinfection is mostly ineffective in accelerating plasma VL loss in macaques. PMID:28765371

  18. A Functional Link between RNA Replication and Virion Assembly in the Potyvirus Plum Pox Virus.

    PubMed

    Gallo, Araiz; Valli, Adrian; Calvo, María; García, Juan Antonio

    2018-05-01

    Accurate assembly of viral particles in the potyvirus Plum pox virus (PPV) has been shown to depend on the contribution of the multifunctional viral protein HCPro. In this study, we show that other viral factors, in addition to the capsid protein (CP) and HCPro, are necessary for the formation of stable PPV virions. The CP produced in Nicotiana benthamiana leaves from a subviral RNA termed LONG, which expresses a truncated polyprotein that lacks P1 and HCPro, together with HCPro supplied in trans , was assembled into virus-like particles and remained stable after in vitro incubation. In contrast, deletions in multiple regions of the LONG coding sequence prevented the CP stabilization mediated by HCPro. In particular, we demonstrated that the first 178 amino acids of P3, but not a specific nucleotide sequence coding for them, are required for CP stability and proper assembly of PPV particles. Using a sequential coagroinfiltration assay, we observed that the subviral LONG RNA replicates and locally spreads in N. benthamiana leaves expressing an RNA silencing suppressor. The analysis of the effect of both point and deletion mutations affecting RNA replication in LONG and full-length PPV demonstrated that this process is essential for the assembly of stable viral particles. Interestingly, in spite of this requirement, the CP produced by a nonreplicating viral RNA can be stably assembled into virions as long as it is coexpressed with a replication-proficient RNA. Altogether, these results highlight the importance of coupling encapsidation to other viral processes to secure a successful infection. IMPORTANCE Viruses of the family Potyviridae are among the most dangerous threats for basically every important crop, and such socioeconomical relevance has made them a subject of many research studies. In spite of this, very little is currently known about proteins and processes controlling viral genome encapsidation by the coat protein. In the case of Plum pox virus (genus

  19. Syncytial Hepatitis of Tilapia ( Oreochromis niloticus L.) is Associated With Orthomyxovirus-Like Virions in Hepatocytes.

    PubMed

    Del-Pozo, J; Mishra, N; Kabuusu, R; Cheetham, S; Eldar, A; Bacharach, E; Lipkin, W I; Ferguson, H W

    2017-01-01

    Using transmission electron microscopy (TEM), the presented work expands on the ultrastructural findings of an earlier report on "syncytial hepatitis," a novel disease of tilapia (SHT). Briefly, TEM confirmed the presence of an orthomyxovirus-like virus within the diseased hepatocytes but not within the endothelium. This was supported by observing extracellular and intracellular (mostly intraendosomal), 60-100 nm round virions with a trilaminar capsid containing up to 7 electron-dense aggregates. Other patterns noted included enveloped or filamentous virions and virion-containing cytoplasmic membrane folds, suggestive of endocytosis. Patterns atypical for orthymyxovirus included the formation of syncytia and the presence of virions within the perinuclear cisternae (suspected to be the Golgi apparatus). The ultrastructural morphology of SHT-associated virions is similar to that previously reported for tilapia lake virus (TiLV). A genetic homology was investigated using the available reverse transcriptase polymerase chain reaction (RT-PCR) probes for TiLV and comparing clinically sick with clinically normal fish and negative controls. By RT-PCR analysis, viral nucleic acid was detected only in diseased fish. Taken together, these findings strongly suggest that a virus is causally associated with SHT, that this virus shares ultrastructural features with orthomyxoviruses, and it presents with partial genetic homology with TiLV (190 nucleotides).

  20. RAB1A promotes Vaccinia virus replication by facilitating the production of intracellular enveloped virions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pechenick Jowers, Tali; Featherstone, Rebecca J.; Reynolds, Danielle K.

    2015-01-15

    Vaccinia virus (VACV) is a large double-stranded DNA virus with a complex cytoplasmic replication cycle that exploits numerous cellular proteins. This work characterises the role of a proviral cellular protein, the small GTPase RAB1A, in VACV replication. Using siRNA, we identified RAB1A as required for the production of extracellular enveloped virions (EEVs), but not intracellular mature virions (IMVs). Immunofluorescence and electron microscopy further refined the role of RAB1A as facilitating the wrapping of IMVs to become intracellular enveloped virions (IEVs). This is consistent with the known function of RAB1A in maintenance of ER to Golgi transport. VACV can therefore bemore » added to the growing list of viruses which require RAB1A for optimal replication, highlighting this protein as a broadly proviral host factor. - Highlights: • Characterisation of the role of the small GTPase RAB1A in VACV replication. • RAB1A is not required for production of the primary virion form (IMV). • RAB1A is required for production of processed virion forms (IEVs, CEVs and EEVs). • Consistent with known role of RAB1A in ER to Golgi transport.« less

  1. Lymphotropic Virions Affect Chemokine Receptor-Mediated Neural Signaling and Apoptosis: Implications for Human Immunodeficiency Virus Type 1-Associated Dementia

    PubMed Central

    Zheng, Jialin; Ghorpade, Anuja; Niemann, Douglas; Cotter, Robin L.; Thylin, Michael R.; Epstein, Leon; Swartz, Jennifer M.; Shepard, Robin B.; Liu, Xiaojuan; Nukuna, Adeline; Gendelman, Howard E.

    1999-01-01

    Chemokine receptors pivotal for human immunodeficiency virus type 1 (HIV-1) infection in lymphocytes and macrophages (CCR3, CCR5, and CXCR4) are expressed on neural cells (microglia, astrocytes, and/or neurons). It is these cells which are damaged during progressive HIV-1 infection of the central nervous system. We theorize that viral coreceptors could effect neural cell damage during HIV-1-associated dementia (HAD) without simultaneously affecting viral replication. To these ends, we studied the ability of diverse viral strains to affect intracellular signaling and apoptosis of neurons, astrocytes, and monocyte-derived macrophages. Inhibition of cyclic AMP, activation of inositol 1,4,5-trisphosphate, and apoptosis were induced by diverse HIV-1 strains, principally in neurons. Virions from T-cell-tropic (T-tropic) strains (MN, IIIB, and Lai) produced the most significant alterations in signaling of neurons and astrocytes. The HIV-1 envelope glycoprotein, gp120, induced markedly less neural damage than purified virions. Macrophage-tropic (M-tropic) strains (ADA, JR-FL, Bal, MS-CSF, and DJV) produced the least neural damage, while 89.6, a dual-tropic HIV-1 strain, elicited intermediate neural cell damage. All T-tropic strain-mediated neuronal impairments were blocked by the CXCR4 antibody, 12G5. In contrast, the M-tropic strains were only partially blocked by 12G5. CXCR4-mediated neuronal apoptosis was confirmed in pure populations of rat cerebellar granule neurons and was blocked by HA1004, an inhibitor of calcium/calmodulin-dependent protein kinase II, protein kinase A, and protein kinase C. Taken together, these results suggest that progeny HIV-1 virions can influence neuronal signal transduction and apoptosis. This process occurs, in part, through CXCR4 and is independent of CD4 binding. T-tropic viruses that traffic in and out of the brain during progressive HIV-1 disease may play an important role in HAD neuropathogenesis. PMID:10482576

  2. SP10 Infectivity Is Aborted after Bacteriophage SP10 Infection Induces nonA Transcription on the Prophage SPβ Region of the Bacillus subtilis Genome

    PubMed Central

    Yamamoto, Tatsuya; Obana, Nozomu; Yee, Lii Mien; Asai, Kei; Nomura, Nobuhiko

    2014-01-01

    Bacteria have developed various strategies for phage resistance. Infection with phage induces the transcription of part of the phage resistance gene, but the regulatory mechanisms of such transcription remain largely unknown. The phage resistance gene nonA is located on the SPβ prophage region of the Bacillus subtilis Marburg strain genome. The nonA transcript was detected at the late stage of SP10 infection but is undetectable in noninfected cells. The nonA transcript was detected after the induction of the sigma factor Orf199-Orf200 (σOrf199-200), when sigma factors encoded in the SP10 genome were expressed from a xylose-inducible plasmid. Thus, the SP10 sigma factor is an activator of a set of SP10 genes and nonA. The nonA gene encodes a 72-amino-acid protein with a transmembrane motif and has no significant homology with any protein in any database. NonA overexpression halted cell growth and reduced the efficiency of B. subtilis colony formation and respiration activity. In addition, SP10 virion protein synthesis was inhibited in the nonA+ strain, and SP10 virion particles were scarce in it. These results indicate that NonA is a novel protein that can abort SP10 infection, and its transcription was regulated by SP10 sigma factor. PMID:24272782

  3. Trafficking of bluetongue virus visualized by recovery of tetracysteine-tagged virion particles.

    PubMed

    Du, Junzheng; Bhattacharya, Bishnupriya; Ward, Theresa H; Roy, Polly

    2014-11-01

    Bluetongue virus (BTV), a member of the Orbivirus genus in the Reoviridae family, is a double-capsid insect-borne virus enclosing a genome of 10 double-stranded RNA segments. Like those of other members of the family, BTV virions are nonenveloped particles containing two architecturally complex capsids. The two proteins of the outer capsid, VP2 and VP5, are involved in BTV entry and in the delivery of the transcriptionally active core to the cell cytoplasm. Although the importance of the endocytic pathway in BTV entry has been reported, detailed analyses of entry and the role of each protein in virus trafficking have not been possible due to the lack of availability of a tagged virus. Here, for the first time, we report on the successful manipulation of a segmented genome of a nonenveloped capsid virus by the introduction of tags that were subsequently fluorescently visualized in infected cells. The genetically engineered fluorescent BTV particles were observed to enter live cells immediately after virus adsorption. Further, we showed the separation of VP2 from VP5 during virus entry and confirmed that while VP2 is shed from virions in early endosomes, virus particles still consisting of VP5 were trafficked sequentially from early to late endosomes. Since BTV infects both mammalian and insect cells, the generation of tagged viruses will allow visualization of the trafficking of BTV farther downstream in different host cells. In addition, the tagging technology has potential for transferable application to other nonenveloped complex viruses. Live-virus trafficking in host cells has been highly informative on the interactions between virus and host cells. Although the insertion of fluorescent markers into viral genomes has made it possible to study the trafficking of enveloped viruses, the physical constraints of architecturally complex capsid viruses have imposed practical limitations. In this study, we have successfully genetically engineered the segmented RNA

  4. The Human Cytomegalovirus-Specific UL1 Gene Encodes a Late-Phase Glycoprotein Incorporated in the Virion Envelope

    PubMed Central

    Shikhagaie, Medya; Mercé-Maldonado, Eva; Isern, Elena; Muntasell, Aura; Albà, M. Mar; López-Botet, Miguel; Hengel, Hartmut

    2012-01-01

    We have investigated the previously uncharacterized human cytomegalovirus (HCMV) UL1 open reading frame (ORF), a member of the rapidly evolving HCMV RL11 family. UL1 is HCMV specific; the absence of UL1 in chimpanzee cytomegalovirus (CCMV) and sequence analysis studies suggest that UL1 may have originated by the duplication of an ancestor gene from the RL11-TRL cluster (TRL11, TRL12, and TRL13). Sequence similarity searches against human immunoglobulin (Ig)-containing proteins revealed that HCMV pUL1 shows significant similarity to the cellular carcinoembryonic antigen-related (CEA) protein family N-terminal Ig domain, which is responsible for CEA ligand recognition. Northern blot analysis revealed that UL1 is transcribed during the late phase of the viral replication cycle in both fibroblast-adapted and endotheliotropic strains of HCMV. We characterized the protein encoded by hemagglutinin (HA)-tagged UL1 in the AD169-derived HB5 background. UL1 is expressed as a 224-amino-acid type I transmembrane glycoprotein which becomes detectable at 48 h postinfection. In infected human fibroblasts, pUL1 colocalized at the cytoplasmic site of virion assembly and secondary envelopment together with TGN-46, a marker for the trans-Golgi network, and viral structural proteins, including the envelope glycoprotein gB and the tegument phosphoprotein pp28. Furthermore, analyses of highly purified AD169 UL1-HA epitope-tagged virions revealed that pUL1 is a novel constituent of the HCMV envelope. Importantly, the deletion of UL1 in HCMV TB40/E resulted in reduced growth in a cell type-specific manner, suggesting that pUL1 may be implicated in regulating HCMV cell tropism. PMID:22345456

  5. Inhibition of cellular fatty acid synthase impairs replication of budded virions of Autographa californica multiple nucleopolyhedrovirus in Spodoptera frugiperda cells.

    PubMed

    Li, Jingfeng; Sun, Yu; Li, Yuying; Liu, Ximeng; Yue, Qi; Li, Zhaofei

    2018-05-07

    Fatty acid synthase (FASN) catalyzes the synthesis of palmitate, which is required for formation of complex fatty acids and phospholipids that are involved in energy production, membrane remodeling and modification of host and viral proteins. Presently, the roles of cellular fatty acid synthesis pathway in Autographa californica multiple nucleopolyhedrovirus (AcMNPV) infection is not clear. In this study, we found that the transcripts level of fasn was significantly up-regulated at the early stage of AcMNPV infection. Treatment of AcMNPV-infected Spodoptera frugiperda Sf9 cells with C75, a specific inhibitor of FASN, did not affect the internalization of budded virions into cells, but dramatically reduced the infectious AcMNPV production. Further analysis revealed that the presence of C75 significantly decreased the expression level for two reporter genes, beta-galactosidase and beta-glucuronidase, that were separately directed by the early and late promoter of AcMNPV. Similarly, Western blot analysis showed that, in C75-treated cells, the expression of viral gp64 was delayed and decreased. Additionally, treatment with C75 also resulted in a significant reduction in the accumulation of viral genomic DNA. Together, these results demonstrate that the fatty acid synthesis pathway is required for efficient replication of AcMNPV, but it might not be necessary for AcMNPV entry into insect cells. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. A Novel Type of Polyhedral Viruses Infecting Hyperthermophilic Archaea.

    PubMed

    Liu, Ying; Ishino, Sonoko; Ishino, Yoshizumi; Pehau-Arnaudet, Gérard; Krupovic, Mart; Prangishvili, David

    2017-07-01

    Encapsidation of genetic material into polyhedral particles is one of the most common structural solutions employed by viruses infecting hosts in all three domains of life. Here, we describe a new virus of hyperthermophilic archaea, Sulfolobus polyhedral virus 1 (SPV1), which condenses its circular double-stranded DNA genome in a manner not previously observed for other known viruses. The genome complexed with virion proteins is wound up sinusoidally into a spherical coil which is surrounded by an envelope and further encased by an outer polyhedral capsid apparently composed of the 20-kDa virion protein. Lipids selectively acquired from the pool of host lipids are integral constituents of the virion. None of the major virion proteins of SPV1 show similarity to structural proteins of known viruses. However, minor structural proteins, which are predicted to mediate host recognition, are shared with other hyperthermophilic archaeal viruses infecting members of the order Sulfolobales The SPV1 genome consists of 20,222 bp and contains 45 open reading frames, only one-fifth of which could be functionally annotated. IMPORTANCE Viruses infecting hyperthermophilic archaea display a remarkable morphological diversity, often presenting architectural solutions not employed by known viruses of bacteria and eukaryotes. Here we present the isolation and characterization of Sulfolobus polyhedral virus 1, which condenses its genome into a unique spherical coil. Due to the original genomic and architectural features of SPV1, the virus should be considered a representative of a new viral family, "Portogloboviridae." Copyright © 2017 American Society for Microbiology.

  7. 5' termini of poliovirus RNA: difference between virion and nonencapsidated 35S RNA.

    PubMed Central

    Fernandez-Muñoz, R; Lavi, U

    1977-01-01

    Poliovirus cytoplasmic, nonencapsidated 35S RNA yields approximately one pUp per molecule upon T2 RNase digestion, indicating that this RNA has the same 5' end as the polyribosome-associated viral RNA fraction. Double-stranded, replicative form RNA after the same treatment yielded approximately four pNp structures per molecule, 65% of which was pUp. In contrast, the 35S RNA from mature virions contained no detectable pNp, indicating that the 5' end of the virion RNA is different from that of the nonencapsidated RNA. None of the above molecules contained pppNp, ppNp, or GpppNp structures present in host mRNA. The virion RNA molecules, as we have shown previously for thenonencapsidated 35S viral RNA (Fernandez-Muñoz and Darnell, 1976), is not labeled with [methyl-3H]methionine. PMID:189096

  8. Cross-linking measurements of the Potato leafroll virus reveal protein interaction topologies required for virion stability, aphid transmission, and virus-plant interactions.

    PubMed

    Chavez, Juan D; Cilia, Michelle; Weisbrod, Chad R; Ju, Ho-Jong; Eng, Jimmy K; Gray, Stewart M; Bruce, James E

    2012-05-04

    Protein interactions are critical determinants of insect transmission for viruses in the family Luteoviridae. Two luteovirid structural proteins, the capsid protein (CP) and the readthrough protein (RTP), contain multiple functional domains that regulate virus transmission. There is no structural information available for these economically important viruses. We used Protein Interaction Reporter (PIR) technology, a strategy that uses chemical cross-linking and high resolution mass spectrometry, to discover topological features of the Potato leafroll virus (PLRV) CP and RTP that are required for the diverse biological functions of PLRV virions. Four cross-linked sites were repeatedly detected, one linking CP monomers, two within the RTP, and one linking the RTP and CP. Virus mutants with triple amino acid deletions immediately adjacent to or encompassing the cross-linked sites were defective in virion stability, RTP incorporation into the capsid, and aphid transmission. Plants infected with a new, infectious PLRV mutant lacking 26 amino acids encompassing a cross-linked site in the RTP exhibited a delay in the appearance of systemic infection symptoms. PIR technology provided the first structural insights into luteoviruses which are crucially lacking and are involved in vector-virus and plant-virus interactions. These are the first cross-linking measurements on any infectious, insect-transmitted virus.

  9. Cross-linking measurements of the Potato leafroll virus reveal protein interaction topologies required for virion stability, aphid transmission, and virus-plant interactions

    PubMed Central

    Chavez, Juan D.; Cilia, Michelle; Weisbrod, Chad R.; Ju, Ho-Jong; Eng, Jimmy K.; Gray, Stewart M.; Bruce, James E.

    2012-01-01

    Protein interactions are critical determinants of insect-transmission for viruses in the family Luteoviridae. Two luteovirid structural proteins, the capsid protein (CP) and the readthrough protein (RTP), contain multiple functional domains that regulate virus transmission. There is no structural information available for these economically important viruses. We used Protein Interaction Reporter (PIR) technology, a strategy that uses chemical cross-linking and high resolution mass spectrometry, to discover topological features of the Potato leafroll virus (PLRV) CP and RTP that are required for the diverse biological functions of PLRV virions. Four cross-linked sites were repeatedly detected, one linking CP monomers, two within the RTP, and one linking the RTP and CP. Virus mutants with triple amino acid deletions immediately adjacent to or encompassing the cross-linked sites were defective in virion stability, RTP incorporation into the capsid, and aphid transmission. Plants infected with a new, infectious PLRV mutant lacking 26 amino acids encompassing a cross-linked site in the RTP exhibited a delay in the appearance of systemic infection symptoms. PIR technology provided the first structural insights into luteoviruses which are crucially lacking and that are involved in vector-virus and plant-virus interactions. These are the first cross-linking measurements on any infectious, insect-transmitted virus. PMID:22390342

  10. Early cytoplasmic uncoating is associated with infectivity of HIV-1

    PubMed Central

    Cianci, Gianguido C.; Anderson, Meegan R.; Hope, Thomas J.

    2017-01-01

    After fusion, HIV delivers its conical capsid into the cytoplasm. To release the contained reverse-transcribing viral genome, the capsid must disassemble in a process termed uncoating. Defining the kinetics, dynamics, and cellular location of uncoating of virions leading to infection has been confounded by defective, noninfectious particles and the stochastic minefield blocking access to host DNA. We used live-cell fluorescent imaging of intravirion fluid phase markers to monitor HIV-1 uncoating at the individual particle level. We find that HIV-1 uncoating of particles leading to infection is a cytoplasmic process that occurs ∼30 min postfusion. Most, but not all, of the capsid protein is rapidly shed in tissue culture and primary target cells, independent of entry pathway. Extended time-lapse imaging with less than one virion per cell allows identification of infected cells by Gag-GFP expression and directly links individual particle behavior to infectivity, providing unprecedented insights into the biology of HIV infection. PMID:28784755

  11. Stability and Expression Levels of HLA-C on the Cell Membrane Modulate HIV-1 Infectivity

    PubMed Central

    2017-01-01

    , increasing its infectivity. Individuals with HLA-C variants with a predominance of immunologically active conformations would display stronger immunity to HIV-1, reduced viral infectivity and effective control of HIV-1 infection, while subjects with HLA-C variants that easily dissociate from β2 microglobulin/peptide would have a reduced immunological response to HIV-1 and produce more infectious virions. This study provides new information that could be useful in the design of novel vaccine strategies and therapeutic approaches to HIV-1. PMID:29070683

  12. New small-molecule inhibitor class targeting human immunodeficiency virus type 1 virion maturation.

    PubMed

    Blair, Wade S; Cao, Joan; Fok-Seang, Juin; Griffin, Paul; Isaacson, Jason; Jackson, R Lynn; Murray, Edward; Patick, Amy K; Peng, Qinghai; Perros, Manos; Pickford, Chris; Wu, Hua; Butler, Scott L

    2009-12-01

    A new small-molecule inhibitor class that targets virion maturation was identified from a human immunodeficiency virus type 1 (HIV-1) antiviral screen. PF-46396, a representative molecule, exhibits antiviral activity against HIV-1 laboratory strains and clinical isolates in T-cell lines and peripheral blood mononuclear cells (PBMCs). PF-46396 specifically inhibits the processing of capsid (CA)/spacer peptide 1 (SP1) (p25), resulting in the accumulation of CA/SP1 (p25) precursor proteins and blocked maturation of the viral core particle. Viral variants resistant to PF-46396 contain a single amino acid substitution in HIV-1 CA sequences (CAI201V), distal to the CA/SP1 cleavage site in the primary structure, which we demonstrate is sufficient to confer significant resistance to PF-46396 and 3-O-(3',3'-dimethylsuccinyl) betulinic acid (DSB), a previously described maturation inhibitor. Conversely, a single amino substitution in SP1 (SP1A1V), which was previously associated with DSB in vitro resistance, was sufficient to confer resistance to DSB and PF-46396. Further, the CAI201V substitution restored CA/SP1 processing in HIV-1-infected cells treated with PF-46396 or DSB. Our results demonstrate that PF-46396 acts through a mechanism that is similar to DSB to inhibit the maturation of HIV-1 virions. To our knowledge, PF-46396 represents the first small-molecule HIV-1 maturation inhibitor that is distinct in chemical class from betulinic acid-derived maturation inhibitors (e.g., DSB), demonstrating that molecules of diverse chemical classes can inhibit this mechanism.

  13. Role of L-Particles during Herpes Simplex Virus Infection.

    PubMed

    Heilingloh, Christiane S; Krawczyk, Adalbert

    2017-01-01

    Infection of eukaryotic cells with α-herpesviruses results in the formation and secretion of infectious heavy particles (virions; H-particles) and non-infectious light particles (L-particles). Herpes simplex virus type 1 (HSV-1) H-particles consist of a genome-containing capsid surrounded by tegument proteins and a glycoprotein-rich lipid bilayer. Non-infectious L-particles are composed mainly of envelope and tegument proteins and are devoid of capsids and viral DNA. L-particles were first described in the early nineties and from then on investigated for their formation and role during virus infection. The development and secretion of L-particles occur simultaneously to the assembly of complete viral particles. HSV-1 L-particles are assembled by budding of condensed tegument into Golgi-delivered vesicles and are capable of delivering their functional content to non-infected cells. Thereby, HSV-1 L-particles contribute to viral pathogenesis within the infected host by enhancing virion infectivity and providing immune evasion functions. In this review we discuss the emergence of HSV-1 L-particles during virus replication and their biological functions described thus far.

  14. Infection and Proliferation of Giant Viruses in Amoeba Cells.

    PubMed

    Takemura, Masaharu

    2016-01-01

    Acanthamoeba polyphaga mimivirus, the first discovered giant virus with genome size and particle size much larger than previously discovered viruses, possesses several genes for translation and CRISPER Cas system-like defense mechanism against virophages, which co-infect amoeba cells with the giant virus and which inhibit giant virus proliferation. Mimiviruses infect amoeba cells by phagocytosis and release their DNA into amoeba cytoplasm through their stargate structure. After infection, giant virion factories (VFs) form in amoeba cytoplasm, followed by DNA replication and particle formation at peripheral regions of VF. Marseilleviruses, the smallest giant viruses, infect amoeba cells by phagocytosis or endocytosis, form larger VF than Mimivirus's VF in amoeba cytoplasm, and replicate their particles. Pandoraviruses found in 2013 have the largest genome size and particle size among all viruses ever found. Pandoraviruses infect amoeba cells by phagocytosis and release their DNA into amoeba cytoplasm through their mouth-like apical pores. The proliferation of Pandoraviruses occurs along with nucleus disruption. New virions form at the periphery of the region formerly occupied by the amoeba cell nucleus.

  15. Studies of Infection and Dissemination of Rift Valley Fever Virus in Mosquitoes.

    DTIC Science & Technology

    1991-10-15

    have carried out the following studies:(l) Ultrastructural study of Rift Valley fever ( RVF ) virions in the cardia. (2) Immunocytochemical studies of...tissues for RVF virus in hemocoelically-infected Cx. pipiens. (5) Development of an immunogold procedure for in situ labelling of RVF viri-ons in electron...microscopic preps. (6) Worked toward the idetiTifTcation and isolation of the mosquito cell surface receptor molecule for RVF virus. (7) Developed and

  16. Cytomegalovirus Virions Shed in Urine Have a Reversible Block to Epithelial Cell Entry and Are Highly Resistant to Antibody Neutralization

    PubMed Central

    Cui, Xiaohong; Adler, Stuart P.; Schleiss, Mark R.; Demmler Harrison, Gail J.

    2017-01-01

    ABSTRACT Cytomegalovirus (CMV) causes sensorineural hearing loss and developmental disabilities in newborns when infections are acquired in utero. Pregnant women may acquire CMV from oral exposure to CMV in urine or saliva from young children. Neutralizing antibodies in maternal saliva have the potential to prevent maternal infection and, in turn, fetal infection. As CMV uses different viral glycoprotein complexes to enter different cell types, the first cells to be infected in the oral cavity could determine the type of antibodies needed to disrupt oral transmission. Antibodies targeting the pentameric complex (PC) should block CMV entry into epithelial cells but not into fibroblasts or Langerhans cells (which do not require the PC for entry), while antibodies targeting glycoprotein complexes gB or gH/gL would be needed to block entry into fibroblasts, Langerhans cells, or other cell types. To assess the potential for antibodies to disrupt oral acquisition, CMV from culture-positive urine samples (uCMV) was used to study cell tropisms and sensitivity to antibody neutralization. uCMV entered epithelial cells poorly compared with the entry into fibroblasts. CMV-hyperimmune globulin or monoclonal antibodies targeting gB, gH/gL, or the PC were incapable of blocking the entry of uCMV into either fibroblasts or epithelial cells. Both phenotypes were lost after one passage in cultured fibroblasts, suggestive of a nongenetic mechanism. These results suggest that uCMV virions have a reversible block to epithelial cell entry. Antibodies may be ineffective in preventing maternal oral CMV acquisition but may limit viral spread in blood or tissues, thereby reducing or preventing fetal infection and disease. PMID:28404573

  17. Differential Expression of HERV-K (HML-2) Proviruses in Cells and Virions of the Teratocarcinoma Cell Line Tera-1

    PubMed Central

    Bhardwaj, Neeru; Montesion, Meagan; Roy, Farrah; Coffin, John M.

    2015-01-01

    Human endogenous retrovirus (HERV-K (HML-2)) proviruses are among the few endogenous retroviral elements in the human genome that retain coding sequence. HML-2 expression has been widely associated with human disease states, including different types of cancers as well as with HIV-1 infection. Understanding of the potential impact of this expression requires that it be annotated at the proviral level. Here, we utilized the high throughput capabilities of next-generation sequencing to profile HML-2 expression at the level of individual proviruses and secreted virions in the teratocarcinoma cell line Tera-1. We identified well-defined expression patterns, with transcripts emanating primarily from two proviruses located on chromosome 22, only one of which was efficiently packaged. Interestingly, there was a preference for transcripts of recently integrated proviruses, over those from other highly expressed but older elements, to be packaged into virions. We also assessed the promoter competence of the 5’ long terminal repeats (LTRs) of expressed proviruses via a luciferase assay following transfection of Tera-1 cells. Consistent with the RNASeq results, we found that the activity of most LTRs corresponded to their transcript levels. PMID:25746218

  18. Vpr Promotes Macrophage-Dependent HIV-1 Infection of CD4+ T Lymphocytes

    PubMed Central

    Collins, David R.; Lubow, Jay; Lukic, Zana; Mashiba, Michael; Collins, Kathleen L.

    2015-01-01

    Vpr is a conserved primate lentiviral protein that promotes infection of T lymphocytes in vivo by an unknown mechanism. Here we demonstrate that Vpr and its cellular co-factor, DCAF1, are necessary for efficient cell-to-cell spread of HIV-1 from macrophages to CD4+ T lymphocytes when there is inadequate cell-free virus to support direct T lymphocyte infection. Remarkably, Vpr functioned to counteract a macrophage-specific intrinsic antiviral pathway that targeted Env-containing virions to LAMP1+ lysosomal compartments. This restriction of Env also impaired virological synapses formed through interactions between HIV-1 Env on infected macrophages and CD4 on T lymphocytes. Treatment of infected macrophages with exogenous interferon-alpha induced virion degradation and blocked synapse formation, overcoming the effects of Vpr. These results provide a mechanism that helps explain the in vivo requirement for Vpr and suggests that a macrophage-dependent stage of HIV-1 infection drives the evolutionary conservation of Vpr. PMID:26186441

  19. Single-virion sequencing of lamivudine-treated HBV populations reveal population evolution dynamics and demographic history.

    PubMed

    Zhu, Yuan O; Aw, Pauline P K; de Sessions, Paola Florez; Hong, Shuzhen; See, Lee Xian; Hong, Lewis Z; Wilm, Andreas; Li, Chen Hao; Hue, Stephane; Lim, Seng Gee; Nagarajan, Niranjan; Burkholder, William F; Hibberd, Martin

    2017-10-27

    Viral populations are complex, dynamic, and fast evolving. The evolution of groups of closely related viruses in a competitive environment is termed quasispecies. To fully understand the role that quasispecies play in viral evolution, characterizing the trajectories of viral genotypes in an evolving population is the key. In particular, long-range haplotype information for thousands of individual viruses is critical; yet generating this information is non-trivial. Popular deep sequencing methods generate relatively short reads that do not preserve linkage information, while third generation sequencing methods have higher error rates that make detection of low frequency mutations a bioinformatics challenge. Here we applied BAsE-Seq, an Illumina-based single-virion sequencing technology, to eight samples from four chronic hepatitis B (CHB) patients - once before antiviral treatment and once after viral rebound due to resistance. With single-virion sequencing, we obtained 248-8796 single-virion sequences per sample, which allowed us to find evidence for both hard and soft selective sweeps. We were able to reconstruct population demographic history that was independently verified by clinically collected data. We further verified four of the samples independently through PacBio SMRT and Illumina Pooled deep sequencing. Overall, we showed that single-virion sequencing yields insight into viral evolution and population dynamics in an efficient and high throughput manner. We believe that single-virion sequencing is widely applicable to the study of viral evolution in the context of drug resistance and host adaptation, allows differentiation between soft or hard selective sweeps, and may be useful in the reconstruction of intra-host viral population demographic history.

  20. Experimental infection of goats with tick-borne encephalitis virus and the possibilities to prevent virus transmission by raw goat milk.

    PubMed

    Balogh, Zsuzsanna; Egyed, László; Ferenczi, Emőke; Bán, Enikő; Szomor, Katalin N; Takács, Mária; Berencsi, György

    2012-01-01

    The aim of this work was to study the tick-borne encephalitis virus (TBEV) infection of goats and the possibilities to prevent human milk-borne infections either by immunizing animals or the heat treatment of milk. An experiment was conducted with 20 milking goats. Ten goats (half of them immunized) were challenged with live TBEV and 10 were left uninfected. Clinical signs and body temperatures of the animals were recorded and milk samples were collected daily. The presence of viral RNA and infectious virions in milk were detected by RT-PCR and intracerebral inoculation of suckling mice, respectively. Milk samples containing infectious virions were subjected to various heat treatment conditions and retested afterwards to assess the effect on infectivity. The infected goats did not show any clinical signs or fever compared to uninfected ones. Infectious virions were detected for 8-19 days from the milk samples (genome for 3-18 days by PCR) of infected goats. Immunized goats did not shed the virus. After heat treatment of the milk, the inoculated mice survived. Goats shed the virus with their milk without showing any symptoms. Human milk-borne infections can be avoided both by immunizing goats and boiling/pasteurizing infected milk. Copyright © 2011 S. Karger AG, Basel.

  1. Bacteria Facilitate Enteric Virus Co-infection of Mammalian Cells and Promote Genetic Recombination.

    PubMed

    Erickson, Andrea K; Jesudhasan, Palmy R; Mayer, Melinda J; Narbad, Arjan; Winter, Sebastian E; Pfeiffer, Julie K

    2018-01-10

    RNA viruses exist in genetically diverse populations due to high levels of mutations, many of which reduce viral fitness. Interestingly, intestinal bacteria can promote infection of several mammalian enteric RNA viruses, but the mechanisms and consequences are unclear. We screened a panel of 41 bacterial strains as a platform to determine how different bacteria impact infection of poliovirus, a model enteric virus. Most bacterial strains, including those extracted from cecal contents of mice, bound poliovirus, with each bacterium binding multiple virions. Certain bacterial strains increased viral co-infection of mammalian cells even at a low virus-to-host cell ratio. Bacteria-mediated viral co-infection correlated with bacterial adherence to cells. Importantly, bacterial strains that induced viral co-infection facilitated genetic recombination between two different viruses, thereby removing deleterious mutations and restoring viral fitness. Thus, bacteria-virus interactions may increase viral fitness through viral recombination at initial sites of infection, potentially limiting abortive infections. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Picornavirus RNA is protected from cleavage by ribonuclease during virion uncoating and transfer across cellular and model membranes.

    PubMed

    Groppelli, Elisabetta; Levy, Hazel C; Sun, Eileen; Strauss, Mike; Nicol, Clare; Gold, Sarah; Zhuang, Xiaowei; Tuthill, Tobias J; Hogle, James M; Rowlands, David J

    2017-02-01

    Picornaviruses are non-enveloped RNA viruses that enter cells via receptor-mediated endocytosis. Because they lack an envelope, picornaviruses face the challenge of delivering their RNA genomes across the membrane of the endocytic vesicle into the cytoplasm to initiate infection. Currently, the mechanism of genome release and translocation across membranes remains poorly understood. Within the enterovirus genus, poliovirus, rhinovirus 2, and rhinovirus 16 have been proposed to release their genomes across intact endosomal membranes through virally induced pores, whereas one study has proposed that rhinovirus 14 releases its RNA following disruption of endosomal membranes. For the more distantly related aphthovirus genus (e.g. foot-and-mouth disease viruses and equine rhinitis A virus) acidification of endosomes results in the disassembly of the virion into pentamers and in the release of the viral RNA into the lumen of the endosome, but no details have been elucidated as how the RNA crosses the vesicle membrane. However, more recent studies suggest aphthovirus RNA is released from intact particles and the dissociation to pentamers may be a late event. In this study we have investigated the RNase A sensitivity of genome translocation of poliovirus using a receptor-decorated-liposome model and the sensitivity of infection of poliovirus and equine-rhinitis A virus to co-internalized RNase A. We show that poliovirus genome translocation is insensitive to RNase A and results in little or no release into the medium in the liposome model. We also show that infectivity is not reduced by co-internalized RNase A for poliovirus and equine rhinitis A virus. Additionally, we show that all poliovirus genomes that are internalized into cells, not just those resulting in infection, are protected from RNase A. These results support a finely coordinated, directional model of viral RNA delivery that involves viral proteins and cellular membranes.

  3. Mapping in vitro local material properties of intact and disrupted virions at high resolution using multi-harmonic atomic force microscopy.

    PubMed

    Cartagena, Alexander; Hernando-Pérez, Mercedes; Carrascosa, José L; de Pablo, Pedro J; Raman, Arvind

    2013-06-07

    Understanding the relationships between viral material properties (stiffness, strength, charge density, adhesion, hydration, viscosity, etc.), structure (protein sub-units, genome, surface receptors, appendages), and functions (self-assembly, stability, disassembly, infection) is of significant importance in physical virology and nanomedicine. Conventional Atomic Force Microscopy (AFM) methods have measured a single physical property such as the stiffness of the entire virus from nano-indentation at a few points which severely limits the study of structure-property-function relationships. We present an in vitro dynamic AFM technique operating in the intermittent contact regime which synthesizes anharmonic Lorentz-force excited AFM cantilevers to map quantitatively at nanometer resolution the local electro-mechanical force gradient, adhesion, and hydration layer viscosity within individual φ29 virions. Furthermore, the changes in material properties over the entire φ29 virion provoked by the local disruption of its shell are studied, providing evidence of bacteriophage depressurization. The technique significantly generalizes recent multi-harmonic theory (A. Raman, et al., Nat. Nanotechnol., 2011, 6, 809-814) and enables high-resolution in vitro quantitative mapping of multiple material properties within weakly bonded viruses and nanoparticles with complex structure that otherwise cannot be observed using standard AFM techniques.

  4. Ross River virus mutant with a deletion in the E2 gene: properties of the virion, virus-specific macromolecule synthesis, and attenuation of virulence for mice.

    PubMed

    Vrati, S; Faragher, S G; Weir, R C; Dalgarno, L

    1986-06-01

    A mutant of RRV T48 the prototype strain of Ross River virus has been isolated with a 21-nucleotide deletion in the gene coding for the envelope glycoprotein E2. Direct sequencing of the 26 S subgenomic RNA, together with HaeIII and TaqI restriction digest analysis of cDNA to RNAs from cells infected with the mutant virus (RRV dE2) and with RRV T48, were consistent with the deletion being the only major alteration in the mutant genome. The E2 protein of RRV dE2 virions had a higher electrophoretic mobility than that of RRV T48 E2 protein. Neither RRV dE2 nor RRV T48 virions contained more than trace amounts of E3, the small envelope glycoprotein found in Semliki Forest virus. RRV dE2 generated small plaques on Vero cell monolayers; plaque formation was not temperature-sensitive between 32 and 41 degrees. By comparison with RRV T48 the infectivity of RRV dE2 virions was thermolabile at 50 degrees. In BHK cells RRV dE2 grew with similar kinetics to RRV T48. Rates of synthesis of 26 S RNA and 49 S RNA were higher in cells infected with RRV dE2 than in cells infected with RRV T48. Virus-specific protein synthesis and shut-down of host protein synthesis occurred 2-3 hr earlier in RRV dE2-infected cells than in cells infected with RRV T48. Minor differences between the two viruses were observed in the profiles of virus-specific proteins generated in infected cells. In day-old mice RRV dE2 induced less severe symptoms of hind leg paralysis than did RRV T48. A small increase in LD50 and average survival time was observed in RRV dE2-infected mice by comparison with RRV T48 infected mice. Peak titers reached by RRV dE2 in the hind leg muscle, brain, and blood of day-old mice were 3-4 log units less than the titers reached during infection with RRV T48. In week-old mice the differences in virulence between the two strains were magnified: RRV dE2 induced no detectable symptoms even when injected at high doses (8 X 10(6) PFU) whereas the LD50 and average survival time for RRV T

  5. Human Papillomavirus 16 Infection Induces VAP-Dependent Endosomal Tubulation.

    PubMed

    Siddiqa, Abida; Massimi, Paola; Pim, David; Broniarczyk, Justyna; Banks, Lawrence

    2018-03-15

    Human papillomavirus (HPV) infection involves complex interactions with the endocytic transport machinery, which ultimately facilitates the entry of the incoming viral genomes into the trans -Golgi network (TGN) and their subsequent nuclear entry during mitosis. The endosomal pathway is a highly dynamic intracellular transport system, which consists of vesicular compartments and tubular extensions, although it is currently unclear whether incoming viruses specifically alter the endocytic machinery. In this study, using MICAL-L1 as a marker for tubulating endosomes, we show that incoming HPV-16 virions induce a profound alteration in global levels of endocytic tubulation. In addition, we also show a critical requirement for the endoplasmic reticulum (ER)-anchored protein VAP in this process. VAP plays an essential role in actin nucleation and endosome-to-Golgi transport. Indeed, the loss of VAP results in a dramatic decrease in the level of endosomal tubulation induced by incoming HPV-16 virions. This is also accompanied by a marked reduction in virus infectivity. In VAP knockdown cells, we see that the defect in virus trafficking occurs after capsid disassembly but prior to localization at the trans -Golgi network, with the incoming virion-transduced DNA accumulating in Vps29/TGN46-positive hybrid vesicles. Taken together, these studies demonstrate that infection with HPV-16 virions induces marked alterations of endocytic transport pathways, some of which are VAP dependent and required for the endosome-to-Golgi transport of the incoming viral L2/DNA complex. IMPORTANCE Human papillomavirus infectious entry involves multiple interactions with the endocytic transport machinery. In this study, we show that incoming HPV-16 virions induce a dramatic increase in endocytic tubulation. This tubulation requires ER-associated VAP, which plays a critical role in ensuring the delivery of cargoes from the endocytic compartments to the trans -Golgi network. Indeed, the loss of

  6. Cellular Antiviral Factors that Target Particle Infectivity of HIV-1.

    PubMed

    Goffinet, Christine

    2016-01-01

    In the past decade, the identification and characterization of antiviral genes with the ability to interfere with virus replication has established cell-intrinsic innate immunity as a third line of antiviral defense in addition to adaptive and classical innate immunity. Understanding how cellular factors have evolved to inhibit HIV-1 reveals particularly vulnerable points of the viral replication cycle. Many, but not all, antiviral proteins share type I interferon-upregulated expression and sensitivity to viral counteraction or evasion measures. Whereas well-established restriction factors interfere with early post-entry steps and release of HIV-1, recent research has revealed a diverse set of proteins that reduce the infectious quality of released particles using individual, to date poorly understood modes of action. These include induction of paucity of mature glycoproteins in nascent virions or self-incorporation into the virus particle, resulting in poor infectiousness of the virion and impaired spread of the infection. A better understanding of these newly discovered antiviral factors may open new avenues towards the design of drugs that repress the spread of viruses whose genomes have already integrated.

  7. Structure-Based Mutagenesis of Sulfolobus Turreted Icosahedral Virus B204 Reveals Essential Residues in the Virion-Associated DNA-Packaging ATPase.

    PubMed

    Dellas, Nikki; Snyder, Jamie C; Dills, Michael; Nicolay, Sheena J; Kerchner, Keshia M; Brumfield, Susan K; Lawrence, C Martin; Young, Mark J

    2015-12-23

    the virion during infection. The experiments described here highlight the elements of this enzyme that are essential for proper function and also provide supporting evidence that B204 is present in the mature STIV virion. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  8. The T7-related Pseudomonas putida phage φ15 displays virion-associated biofilm degradation properties.

    PubMed

    Cornelissen, Anneleen; Ceyssens, Pieter-Jan; T'Syen, Jeroen; Van Praet, Helena; Noben, Jean-Paul; Shaburova, Olga V; Krylov, Victor N; Volckaert, Guido; Lavigne, Rob

    2011-04-19

    Formation of a protected biofilm environment is recognized as one of the major causes of the increasing antibiotic resistance development and emphasizes the need to develop alternative antibacterial strategies, like phage therapy. This study investigates the in vitro degradation of single-species Pseudomonas putida biofilms, PpG1 and RD5PR2, by the novel phage ϕ15, a 'T7-like virus' with a virion-associated exopolysaccharide (EPS) depolymerase. Phage ϕ15 forms plaques surrounded by growing opaque halo zones, indicative for EPS degradation, on seven out of 53 P. putida strains. The absence of haloes on infection resistant strains suggests that the EPS probably act as a primary bacterial receptor for phage infection. Independent of bacterial strain or biofilm age, a time and dose dependent response of ϕ15-mediated biofilm degradation was observed with generally a maximum biofilm degradation 8 h after addition of the higher phage doses (10(4) and 10(6) pfu) and resistance development after 24 h. Biofilm age, an in vivo very variable parameter, reduced markedly phage-mediated degradation of PpG1 biofilms, while degradation of RD5PR2 biofilms and ϕ15 amplification were unaffected. Killing of the planktonic culture occurred in parallel with but was always more pronounced than biofilm degradation, accentuating the need for evaluating phages for therapeutic purposes in biofilm conditions. EPS degrading activity of recombinantly expressed viral tail spike was confirmed by capsule staining. These data suggests that the addition of high initial titers of specifically selected phages with a proper EPS depolymerase are crucial criteria in the development of phage therapy.

  9. The baculovirus core gene ac83 is required for nucleocapsid assembly and per os infectivity of Autographa californica nucleopolyhedrovirus.

    PubMed

    Zhu, Shimao; Wang, Wei; Wang, Yan; Yuan, Meijin; Yang, Kai

    2013-10-01

    Autographa californica multiple nucleopolyhedrovirus (AcMNPV) ac83 is a baculovirus core gene whose function in the AcMNPV life cycle is unknown. In the present study, an ac83-knockout AcMNPV (vAc83KO) was constructed to investigate the function of ac83 through homologous recombination in Escherichia coli. No budded virions were produced in vAc83KO-transfected Sf9 cells, although viral DNA replication was unaffected. Electron microscopy revealed that nucleocapsid assembly was aborted due to the ac83 deletion. Domain-mapping studies revealed that the expression of Ac83 amino acid residues 451 to 600 partially rescued the ability of AcMNPV to produce infectious budded virions. Bioassays indicated that deletion of the chitin-binding domain of Ac83 resulted in the failure of oral infection of Trichoplusia ni larvae by AcMNPV, but AcMNPV remained infectious following intrahemocoelic injection, suggesting that the domain is involved in the binding of occlusion-derived virions to the peritrophic membrane and/or to other chitin-containing insect tissues. It has been demonstrated that Ac83 is the only component with a chitin-binding domain in the per os infectivity factor complex on the occlusion-derived virion envelope. Interestingly, a functional inner nuclear membrane sorting motif, which may facilitate the localization of Ac83 to the envelopes of occlusion-derived virions, was identified by immunofluorescence analysis. Taken together, these results demonstrate that Ac83 plays an important role in nucleocapsid assembly and the establishment of oral infection.

  10. Virology: The Next Generation from Digital PCR to Single Virion Genomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Richard A.; Brazelton De Cardenas, Jessica N.; Hayden, Randall T.

    In the past 25 years, virology has had major technology breakthroughs stemming first from the introduction of nucleic acid amplification testing, but more recently from the use of next-generation sequencing, digital PCR, and the possibility of single virion genomics. These technologies have and will improve diagnosis and disease state monitoring in clinical settings, aid in environmental monitoring, and reveal the vast genetic potential of viruses. Using the principle of limiting dilution, digital PCR amplifies single molecules of DNA in highly partitioned endpoint reactions and reads each of those reactions as either positive or negative based on the presence or absencemore » of target fluorophore. In this review, digital PCR will be highlighted along with current studies, advantages/disadvantages, and future perspectives with regard to digital PCR, viral load testing, and the possibility of single virion genomics.« less

  11. Impact of ethanolic lamiaceae extracts on herpesvirus infectivity in cell culture.

    PubMed

    Reichling, Jürgen; Nolkemper, Silke; Stintzing, Florian C; Schnitzler, Paul

    2008-12-01

    Extracts of medicinal plants are increasingly of interest as novel drugs for antimicrobial and antiviral agents, since microorganisms might develop resistance to commonly used antimicrobial or antiviral agents. Ethanolic extracts from Lamiaceae plants prunella, peppermint, rosemary and thyme were phytochemically characterised. The inhibitory activity of four 20% ethanolic plant extracts and four 80% ethanolic extracts against herpes simplex virus (HSV) strains was tested in cell culture. Rosmarinic acid, a typical compound in Lamiaceae species, was identified in the extracts except for thyme 20% ethanolic extract. In addition, some other phenolic compounds such as apigenin- and luteolin-derivatives were identified in different amounts. All extracts exhibited high and concentration-dependent levels of antiviral activity against free acyclovir-sensitive and acyclovir-resistant HSV-1 strains with 50% inhibitory concentrations of 0.05-0.82 microg/ml. Mechanistically, exposure of free virions as well as host cells to prunella and peppermint 80% ethanolic extracts at maximum non-cytotoxic concentrations prior to infection reduced plaque formation drastically. Thus, both extracts revealed a dual mode of action similar to aqueous lemon balm extracts. Since infectivity of acyclovir-susceptible and acyclovir-resistant HSV strains was significantly reduced with Lamiaceae extracts, the results obtained indicate that ethanolic plant extracts affected herpesvirus prior to and during adsorption and in a different way than acyclovir. Based on its dual mode of action, e.g. antiviral effect against free virions and blocking virus attachment to host cells, prunella and peppermint 80% ethanolic extracts are promising antiviral agents in recurrent herpes labialis for topical therapeutic applications. 2008 S. Karger AG, Basel.

  12. Endocytic function is critical for influenza A virus infection via DC-SIGN and L-SIGN

    PubMed Central

    Gillespie, Leah; Roosendahl, Paula; Ng, Wy Ching; Brooks, Andrew G.; Reading, Patrick C.; Londrigan, Sarah L.

    2016-01-01

    The ubiquitous presence of cell-surface sialic acid (SIA) has complicated efforts to identify specific transmembrane glycoproteins that function as bone fide entry receptors for influenza A virus (IAV) infection. The C-type lectin receptors (CLRs) DC-SIGN (CD209) and L-SIGN (CD209L) enhance IAV infection however it is not known if they act as attachment factors, passing virions to other unknown receptors for virus entry, or as authentic entry receptors for CLR-mediated virus uptake and infection. Sialic acid-deficient Lec2 Chinese Hamster Ovary (CHO) cell lines were resistant to IAV infection whereas expression of DC-SIGN/L-SIGN restored susceptibility of Lec2 cells to pH- and dynamin-dependent infection. Moreover, Lec2 cells expressing endocytosis-defective DC-SIGN/L-SIGN retained capacity to bind IAV but showed reduced susceptibility to infection. These studies confirm that DC-SIGN and L-SIGN are authentic endocytic receptors for IAV entry and infection. PMID:26763587

  13. Retroviral Gag protein-RNA interactions: Implications for specific genomic RNA packaging and virion assembly.

    PubMed

    Olson, Erik D; Musier-Forsyth, Karin

    2018-03-31

    Retroviral Gag proteins are responsible for coordinating many aspects of virion assembly. Gag possesses two distinct nucleic acid binding domains, matrix (MA) and nucleocapsid (NC). One of the critical functions of Gag is to specifically recognize, bind, and package the retroviral genomic RNA (gRNA) into assembling virions. Gag interactions with cellular RNAs have also been shown to regulate aspects of assembly. Recent results have shed light on the role of MA and NC domain interactions with nucleic acids, and how they jointly function to ensure packaging of the retroviral gRNA. Here, we will review the literature regarding RNA interactions with NC, MA, as well as overall mechanisms employed by Gag to interact with RNA. The discussion focuses on human immunodeficiency virus type-1, but other retroviruses will also be discussed. A model is presented combining all of the available data summarizing the various factors and layers of selection Gag employs to ensure specific gRNA packaging and correct virion assembly. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. The allosteric HIV-1 integrase inhibitor BI-D affects virion maturation but does not influence packaging of a functional RNA genome.

    PubMed

    van Bel, Nikki; van der Velden, Yme; Bonnard, Damien; Le Rouzic, Erwann; Das, Atze T; Benarous, Richard; Berkhout, Ben

    2014-01-01

    The viral integrase (IN) is an essential protein for HIV-1 replication. IN inserts the viral dsDNA into the host chromosome, thereby aided by the cellular co-factor LEDGF/p75. Recently a new class of integrase inhibitors was described: allosteric IN inhibitors (ALLINIs). Although designed to interfere with the IN-LEDGF/p75 interaction to block HIV DNA integration during the early phase of HIV-1 replication, the major impact was surprisingly found on the process of virus maturation during the late phase, causing a reverse transcription defect upon infection of target cells. Virus particles produced in the presence of an ALLINI are misformed with the ribonucleoprotein located outside the virus core. Virus assembly and maturation are highly orchestrated and regulated processes in which several viral proteins and RNA molecules closely interact. It is therefore of interest to study whether ALLINIs have unpredicted pleiotropic effects on these RNA-related processes. We confirm that the ALLINI BI-D inhibits virus replication and that the produced virus is non-infectious. Furthermore, we show that the wild-type level of HIV-1 genomic RNA is packaged in virions and these genomes are in a dimeric state. The tRNAlys3 primer for reverse transcription was properly placed on this genomic RNA and could be extended ex vivo. In addition, the packaged reverse transcriptase enzyme was fully active when extracted from virions. As the RNA and enzyme components for reverse transcription are properly present in virions produced in the presence of BI-D, the inhibition of reverse transcription is likely to reflect the mislocalization of the components in the aberrant virus particle.

  15. Use of virion DNA as a cloning vector for the construction of mutant and recombinant herpesviruses.

    PubMed

    Duboise, S M; Guo, J; Desrosiers, R C; Jung, J U

    1996-10-15

    We have developed improved procedures for the isolation of deletion mutant, point mutant, and recombinant herpesvirus saimiri. These procedures take advantage of the absence of NotI and AscI restriction enzyme sites within the viral genome and use reporter genes for the identification of recombinant viruses. Genes for secreted engineered alkaline phosphatase and green fluorescent protein were placed under simian virus 40 early promoter control and flanked by NotI and AscI restriction sites. When permissive cells were cotransfected with herpesvirus saimiri virion DNA and one of the engineered reporter genes cloned within herpesvirus saimiri sequences, recombinant viruses were readily identified and purified on the basis of expression of the reporter gene. Digestion of recombinant virion DNA with NotI or AscI was used to delete the reporter gene from the recombinant herpesvirus saimiri. Replacement of the reporter gene can be achieved by NotI or AscI digestion of virion DNA and ligation with a terminally matched fragment or, alternatively, by homologous recombination in cotransfected cells. Any gene can, in theory, be cloned directly into the virion DNA when flanked by the appropriate NotI or AscI sites. These procedures should be widely applicable in their general form to most or all herpesviruses that replicate permissively in cultured cells.

  16. Apolipoprotein B100 is required for hepatitis C infectivity and Mipomersen inhibits hepatitis C.

    PubMed

    Schaefer, Esperance A K; Meixiong, James; Mark, Christina; Deik, Amy; Motola, Daniel L; Fusco, Dahlene; Yang, Andrew; Brisac, Cynthia; Salloum, Shadi; Lin, Wenyu; Clish, Clary B; Peng, Lee F; Chung, Raymond T

    2016-12-07

    To characterize the role of apolipoprotein B100 (apoB100) in hepatitis C viral (HCV) infection. In this study, we utilize a gene editing tool, transcription activator-like effector nucleases (TALENs), to generate human hepatoma cells with a stable genetic deletion of APOB to assess of apoB in HCV. Using infectious cell culture-competent HCV, viral pseudoparticles, replicon models, and lipidomic analysis we determined the contribution of apoB to each step of the viral lifecycle. We further studied the effect of mipomersen, an FDA-approved antisense inhibitor of apoB100, on HCV using in vitro cell-culture competent HCV and determined its impact on viral infectivity with the TCID50 method. We found that apoB100 is indispensable for HCV infection. Using the JFH-1 fully infectious cell-culture competent virus in Huh 7 hepatoma cells with TALEN-mediated gene deletion of apoB ( APOB KO ), we found a significant reduction in HCV RNA and protein levels following infection. Pseudoparticle and replicon models demonstrated that apoB did not play a role in HCV entry or replication. However, the virus produced by APOB KO cells had significantly diminished infectivity as measured by the TCID-50 method compared to wild-type virus. Lipidomic analysis demonstrated that these virions have a fundamentally altered lipidome, with complete depletion of cholesterol esters. We further demonstrate that inhibition of apoB using mipomersen, an FDA-approved anti-sense oligonucleotide, results in a potent anti-HCV effect and significantly reduces the infectivity of the virus. ApoB is required for the generation of fully infectious HCV virions, and inhibition of apoB with mipomersen blocks HCV. Targeting lipid metabolic pathways to impair viral infectivity represents a novel host targeted strategy to inhibit HCV.

  17. Apolipoprotein B100 is required for hepatitis C infectivity and Mipomersen inhibits hepatitis C

    PubMed Central

    Schaefer, Esperance A K; Meixiong, James; Mark, Christina; Deik, Amy; Motola, Daniel L; Fusco, Dahlene; Yang, Andrew; Brisac, Cynthia; Salloum, Shadi; Lin, Wenyu; Clish, Clary B; Peng, Lee F; Chung, Raymond T

    2016-01-01

    AIM To characterize the role of apolipoprotein B100 (apoB100) in hepatitis C viral (HCV) infection. METHODS In this study, we utilize a gene editing tool, transcription activator-like effector nucleases (TALENs), to generate human hepatoma cells with a stable genetic deletion of APOB to assess of apoB in HCV. Using infectious cell culture-competent HCV, viral pseudoparticles, replicon models, and lipidomic analysis we determined the contribution of apoB to each step of the viral lifecycle. We further studied the effect of mipomersen, an FDA-approved antisense inhibitor of apoB100, on HCV using in vitro cell-culture competent HCV and determined its impact on viral infectivity with the TCID50 method. RESULTS We found that apoB100 is indispensable for HCV infection. Using the JFH-1 fully infectious cell-culture competent virus in Huh 7 hepatoma cells with TALEN-mediated gene deletion of apoB (APOB KO), we found a significant reduction in HCV RNA and protein levels following infection. Pseudoparticle and replicon models demonstrated that apoB did not play a role in HCV entry or replication. However, the virus produced by APOB KO cells had significantly diminished infectivity as measured by the TCID-50 method compared to wild-type virus. Lipidomic analysis demonstrated that these virions have a fundamentally altered lipidome, with complete depletion of cholesterol esters. We further demonstrate that inhibition of apoB using mipomersen, an FDA-approved anti-sense oligonucleotide, results in a potent anti-HCV effect and significantly reduces the infectivity of the virus. CONCLUSION ApoB is required for the generation of fully infectious HCV virions, and inhibition of apoB with mipomersen blocks HCV. Targeting lipid metabolic pathways to impair viral infectivity represents a novel host targeted strategy to inhibit HCV. PMID:28018102

  18. Immunogenicity and tolerability after two doses of non-adjuvanted, whole-virion pandemic influenza A (H1N1) vaccine in HIV-infected individuals.

    PubMed

    Lagler, Heimo; Grabmeier-Pfistershammer, Katharina; Touzeau-Römer, Veronique; Tobudic, Selma; Ramharter, Michael; Wenisch, Judith; Gualdoni, Guido Andrés; Redlberger-Fritz, Monika; Popow-Kraupp, Theresia; Rieger, Armin; Burgmann, Heinz

    2012-01-01

    During the influenza pandemic of 2009/10, the whole-virion, Vero-cell-derived, inactivated, pandemic influenza A (H1N1) vaccine Celvapan® (Baxter) was used in Austria. Celvapan® is adjuvant-free and was the only such vaccine at that time in Europe. The objective of this observational, non-interventional, prospective single-center study was to evaluate the immunogenicity and tolerability of two intramuscular doses of this novel vaccine in HIV-positive individuals. A standard hemagglutination inhibition (HAI) assay was used for evaluation of the seroconversion rate and seroprotection against the pandemic H1N1 strain. In addition, H1N1-specific IgG antibodies were measured using a recently developed ELISA and compared with the HAI results. Tolerability of vaccination was evaluated up to one month after the second dose. A total of 79 HIV-infected adults with an indication for H1N1 vaccination were evaluated. At baseline, 55 of the 79 participants had an HAI titer ≥1:40 and two patients showed a positive IgG ELISA. The seroconversion rate was 31% after the first vaccination, increasing to 41% after the second; the corresponding seroprotection rates were 92% and 83% respectively. ELISA IgG levels were positive in 25% after the first vaccination and in 37% after the second. Among the participants with baseline HAI titers <1:40, 63% seroconverted. Young age was clearly associated with lower HAI titers at baseline and with higher seroconversion rates, whereas none of the seven patients >60 years of age had a baseline HAI titer <1:40 or seroconverted after vaccination. The vaccine was well tolerated. The non-adjuvanted pandemic influenza A (H1N1) vaccine was well tolerated and induced a measurable immune response in a sample of HIV-infected individuals.

  19. Immunogenicity and Tolerability after Two Doses of Non-Adjuvanted, Whole-Virion Pandemic Influenza A (H1N1) Vaccine in HIV-Infected Individuals

    PubMed Central

    Lagler, Heimo; Grabmeier-Pfistershammer, Katharina; Touzeau-Römer, Veronique; Tobudic, Selma; Ramharter, Michael; Wenisch, Judith; Gualdoni, Guido Andrés; Redlberger-Fritz, Monika; Popow-Kraupp, Theresia; Rieger, Armin; Burgmann, Heinz

    2012-01-01

    Background During the influenza pandemic of 2009/10, the whole-virion, Vero-cell-derived, inactivated, pandemic influenza A (H1N1) vaccine Celvapan® (Baxter) was used in Austria. Celvapan® is adjuvant-free and was the only such vaccine at that time in Europe. The objective of this observational, non-interventional, prospective single-center study was to evaluate the immunogenicity and tolerability of two intramuscular doses of this novel vaccine in HIV-positive individuals. Methods and Findings A standard hemagglutination inhibition (HAI) assay was used for evaluation of the seroconversion rate and seroprotection against the pandemic H1N1 strain. In addition, H1N1-specific IgG antibodies were measured using a recently developed ELISA and compared with the HAI results. Tolerability of vaccination was evaluated up to one month after the second dose. A total of 79 HIV-infected adults with an indication for H1N1 vaccination were evaluated. At baseline, 55 of the 79 participants had an HAI titer ≥1∶40 and two patients showed a positive IgG ELISA. The seroconversion rate was 31% after the first vaccination, increasing to 41% after the second; the corresponding seroprotection rates were 92% and 83% respectively. ELISA IgG levels were positive in 25% after the first vaccination and in 37% after the second. Among the participants with baseline HAI titers <1∶40, 63% seroconverted. Young age was clearly associated with lower HAI titers at baseline and with higher seroconversion rates, whereas none of the seven patients >60 years of age had a baseline HAI titer <1∶40 or seroconverted after vaccination. The vaccine was well tolerated. Conclusion The non-adjuvanted pandemic influenza A (H1N1) vaccine was well tolerated and induced a measurable immune response in a sample of HIV-infected individuals. PMID:22629330

  20. [Analysis of core virion polypeptides from the pathogen causing chicken egg-drop syndrome].

    PubMed

    Iurov, G K; Dadykov, V A; Neugodova, G L; Naroditskiĭ, B S

    1998-01-01

    The cores of egg-drop syndrome virus (EDS-76) were isolated by the pyridine technique. EDS-76 proved to be much more resistant to pyridine disruption than other adenoviruses and treatment with 10% pyridine did not lead to complete dissociation of capsid and cores; only increase of pyridine concentration to 20% produced satisfactory results. At least three polypeptides (24, 10.5, and 6.5 kDa) were found in the core by SDS-PAGE, whereas the 40 kDa reacting with the core is most probably not a core component. Much more intensive reactions of the core with EDS-76 virion capsid suggest that its virion structure differs from that of other adenoviruses.

  1. Low Temperature Storage of Southern Rice Black-Streaked Dwarf Virus-Infected Rice Plants Cannot Sustain Virus Transmission by the Vector.

    PubMed

    Liu, Danfeng; Li, Pei; Han, Yongqiang; Lei, Wenbin; Hou, Maolin

    2016-02-01

    Southern rice black-streaked dwarf virus (SRBSDV) is a novel virus transmitted by white-backed planthopper Sogatella furcifera (Hováth) (Hemiptera: Delphacidae). Due to low virus transmission efficiency by the planthopper, researchers are frequently confronted with shortage of viruliferous vectors or infected rice plants, especially in winter and the following spring. To find new ways to maintain virus-infected materials, viral rice plants were stored at -80°C for 45 or 140 d and evaluated as virus sources in virus transmission by the vector. SRBSDV virions were not degraded during storage at -80°C as indicated by reverse transcription-polymerase chain reaction and reverse transcription real-time PCR detection. The planthopper nymphs fed on the infected thawed plants for 48 h survived at about 40% and showed positive detection of SRBSDV, but they lost the virus after feeding for another 20 d (the circulative transmission period) on noninfected plants. Transmission electron microscope images indicated broken capsid of virions in infected thawed leaves in contrast to integrity capsid of virions in infected fresh leaves. These results show that low temperature storage of SRBSDV-infected rice plants cannot sustain virus transmission by white-backed planthopper. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Human immunodeficiency virus type 1 envelope proteins traffic toward virion assembly sites via a TBC1D20/Rab1-regulated pathway

    PubMed Central

    2012-01-01

    Background The cellular activity of many factors and pathways is required to execute the complex replication cycle of the human immunodeficiency virus type 1 (HIV-1). To reveal these cellular components, several extensive RNAi screens have been performed, listing numerous 'HIV-dependency factors'. However, only a small overlap between these lists exists, calling for further evaluation of the relevance of specific factors to HIV-1 replication and for the identification of additional cellular candidates. TBC1D20, the GTPase-activating protein (GAP) of Rab1, regulates endoplasmic reticulum (ER) to Golgi trafficking, was not identified in any of these screens, and its involvement in HIV-1 replication cycle is tested here. Findings Excessive TBC1D20 activity perturbs the early trafficking of HIV-1 envelope protein through the secretory pathway. Overexpression of TBC1D20 hampered envelope processing and reduced its association with detergent-resistant membranes, entailing a reduction in infectivity of HIV-1 virion like particles (VLPs). Conclusions These findings add TBC1D20 to the network of host factors regulating HIV replication cycle. PMID:22260459

  3. Virus-Specific RNA Synthesis in Cells Infected by Infectious Pancreatic Necrosis Virus

    PubMed Central

    Somogyi, Paul; Dobos, Peter

    1980-01-01

    Pulse-labeling experiments with [3H]uridine revealed that the rate of infections pancreatic necrosis virus-specific RNA synthesis was maximal at 8 to 10 h after infection and was completely diminished by 12 to 14 h. Three forms of RNA intermediates were detected: (i) a putative transcription intermediate (TRI) which comigrated in acrylamide gels with virion double-stranded RNA (dsRNA) after RNase treatment; (ii) a 24S genome length mRNA which could be resolved into two bands by polyacrylamide gel electrophoresis; and (iii) a 14S dsRNA component indistinguishable from virion RNA by gradient centrifugation and gel electrophoresis. The TRI (i) was LiCl precipitable; (ii) sedimented slightly faster and broader (14 to 16S) than the 14S virion dsRNA; (iii) had a lower electrophoretic mobility in acrylamide gels than dsRNA, barely entering acrylamide gels as a heterogenous component; (iv) yielded genome-sized pieces of dsRNA after RNase digestion; and (v) was the most abundant RNA form early in the infectious cycle. The 24S single-stranded RNA was thought to be the viral mRNA since it: (i) became labeled during short pulses; (ii) was found in the polysomal fraction of infected cells; and (iii) hybridized to denatured viral RNA, forming two segments of RNase-resistant RNA that comigrated with virion dsRNA in gels. The 24S mRNA component was formed before the synthesis of dsRNA, and radioactivity could be chased from 24S single-stranded RNA to dsRNA, indicating that 24S RNA may serve as template for the synthesis of complementary strands to form dsRNA. Similar to reovirus, infectious pancreatic necrosis viral 24S mRNA contained no polyadenylic acid tracts. Images PMID:16789184

  4. Characterization of the Influence of Semen-Derived Enhancer of Virus Infection on the Interaction of HIV-1 with Female Reproductive Tract Tissues

    PubMed Central

    Allen, Shannon A.; Carias, Ann M.; Anderson, Meegan R.; Okocha, Eneniziaogochukwu A.; Benning, Lorie; McRaven, Michael D.; Kelley, Z L.; Lurain, John; Veazey, Ronald S.

    2015-01-01

    ABSTRACT The majority of human immunodeficiency virus type 1 (HIV-1) transmission events occur in women when semen harboring infectious virus is deposited onto the mucosal barriers of the vaginal, ectocervical, and endocervical epithelia. Seminal factors such as semen-derived enhancer of virus infection (SEVI) fibrils were previously shown to greatly enhance the infectivity of HIV-1 in cell culture systems. However, when SEVI is intravaginally applied to living animals, there is no effect on vaginal transmission. To define how SEVI might function in the context of sexual transmission, we applied HIV-1 and SEVI to intact human and rhesus macaque reproductive tract tissues to determine how it influences virus interactions with these barriers. We show that SEVI binds HIV-1 and sequesters most virions to the luminal surface of the stratified squamous epithelium, significantly reducing the number of virions that penetrated the tissue. In the simple columnar epithelium, SEVI was no longer fibrillar in structure and was detached from virions but allowed significantly deeper epithelial virus penetration. These observations reveal that the action of SEVI in intact tissues is very different in the anatomical context of sexual transmission and begin to explain the lack of stimulation of infection observed in the highly relevant mucosal transmission model. IMPORTANCE The most common mode of HIV-1 transmission in women occurs via genital exposure to the semen of HIV-infected men. A productive infection requires the virus to penetrate female reproductive tract epithelial barriers to infect underlying target cells. Certain factors identified within semen, termed semen-derived enhancers of virus infection (SEVI), have been shown to significantly enhance HIV-1 infectivity in cell culture. However, when applied to the genital tracts of living female macaques, SEVI did not enhance virus transmission. Here we show that SEVI functions very differently in the context of intact mucosal

  5. Thermal inactivation of oral polio vaccine: contribution of RNA and protein inactivation.

    PubMed Central

    Rombaut, B; Verheyden, B; Andries, K; Boeyé, A

    1994-01-01

    Heating the Sabin strains of poliovirus at 42 to 45 degrees C caused inactivation, loss of native antigen, and release of the viral RNA (vRNA). The loss of virion infectivity exceeded the loss of vRNA infectivity (as measured by transfection) by roughly 2 log10. Pirodavir inhibited the loss of native antigen and RNA release and reduced the loss of virion infectivity to the same level as the loss of vRNA infectivity. Thermoinactivation thus involves an RNA and a protein component, and pirodavir protected only against the latter. PMID:8083982

  6. Effect of the Deletion of Genes Encoding Proteins of the Extracellular Virion Form of Vaccinia Virus on Vaccine Immunogenicity and Protective Effectiveness in the Mouse Model

    PubMed Central

    Meseda, Clement A.; Campbell, Joseph; Kumar, Arunima; Garcia, Alonzo D.; Merchlinsky, Michael; Weir, Jerry P.

    2013-01-01

    Antibodies to both infectious forms of vaccinia virus, the mature virion (MV) and the enveloped virion (EV), as well as cell-mediated immune response appear to be important for protection against smallpox. EV virus particles, although more labile and less numerous than MV, are important for dissemination and spread of virus in infected hosts and thus important in virus pathogenesis. The importance of the EV A33 and B5 proteins for vaccine induced immunity and protection in a murine intranasal challenge model was evaluated by deletion of both the A33R and B5R genes in a vaccine-derived strain of vaccinia virus. Deletion of either A33R or B5R resulted in viruses with a small plaque phenotype and reduced virus yields, as reported previously, whereas deletion of both EV protein-encoding genes resulted in a virus that formed small infection foci that were detectable and quantifiable only by immunostaining and an even more dramatic decrease in total virus yield in cell culture. Deletion of B5R, either as a single gene knockout or in the double EV gene knockout virus, resulted in a loss of EV neutralizing activity, but all EV gene knockout viruses still induced a robust neutralizing activity against the vaccinia MV form of the virus. The effect of elimination of A33 and/or B5 on the protection afforded by vaccination was evaluated by intranasal challenge with a lethal dose of either vaccinia virus WR or IHD-J, a strain of vaccinia virus that produces relatively higher amounts of EV virus. The results from multiple experiments, using a range of vaccination doses and virus challenge doses, and using mortality, morbidity, and virus dissemination as endpoints, indicate that the absence of A33 and B5 have little effect on the ability of a vaccinia vaccine virus to provide protection against a lethal intranasal challenge in a mouse model. PMID:23785523

  7. Localization of the Houdinisome (Ejection Proteins) inside the Bacteriophage P22 Virion by Bubblegram Imaging

    PubMed Central

    Wu, Weimin; Leavitt, Justin C.; Cheng, Naiqian; Gilcrease, Eddie B.; Motwani, Tina; Teschke, Carolyn M.; Casjens, Sherwood R.

    2016-01-01

    ABSTRACT The P22 capsid is a T=7 icosahedrally symmetric protein shell with a portal protein dodecamer at one 5-fold vertex. Extending outwards from that vertex is a short tail, and putatively extending inwards is a 15-nm-long α-helical barrel formed by the C-terminal domains of portal protein subunits. In addition to the densely packed genome, the capsid contains three “ejection proteins” (E-proteins [gp7, gp16, and gp20]) destined to exit from the tightly sealed capsid during the process of DNA delivery into target cells. We estimated their copy numbers by quantitative SDS-PAGE as approximately 12 molecules per virion of gp16 and gp7 and 30 copies of gp20. To localize them, we used bubblegram imaging, an adaptation of cryo-electron microscopy in which gaseous bubbles induced in proteins by prolonged irradiation are used to map the proteins’ locations. We applied this technique to wild-type P22, a triple mutant lacking all three E-proteins, and three mutants each lacking one E-protein. We conclude that all three E-proteins are loosely clustered around the portal axis, in the region displaced radially inwards from the portal crown. The bubblegram data imply that approximately half of the α-helical barrel seen in the portal crystal structure is disordered in the mature virion, and parts of the disordered region present binding sites for E-proteins. Thus positioned, the E-proteins are strategically placed to pass down the shortened barrel and through the portal ring and the tail, as they exit from the capsid during an infection. PMID:27507825

  8. Formation of Orthopoxvirus Cytoplasmic A-Type Inclusion Bodies and Embedding of Virions Are Dynamic Processes Requiring Microtubules

    PubMed Central

    Howard, Amanda R.

    2012-01-01

    In cells infected with some orthopoxviruses, numerous mature virions (MVs) become embedded within large, cytoplasmic A-type inclusions (ATIs) that can protect infectivity after cell lysis. ATIs are composed of an abundant viral protein called ATIp, which is truncated in orthopoxviruses such as vaccinia virus (VACV) that do not form ATIs. To study ATI formation and occlusion of MVs within ATIs, we used recombinant VACVs that express the cowpox full-length ATIp or we transfected plasmids encoding ATIp into cells infected with VACV, enabling ATI formation. ATI enlargement and MV embedment required continued protein synthesis and an intact microtubular network. For live imaging of ATIs and MVs, plasmids expressing mCherry fluorescent protein fused to ATIp were transfected into cells infected with VACV expressing the viral core protein A4 fused to yellow fluorescent protein. ATIs appeared as dynamic, mobile bodies that enlarged by multiple coalescence events, which could be prevented by disrupting microtubules. Coalescence of ATIs was confirmed in cells infected with cowpox virus. MVs were predominantly at the periphery of ATIs early in infection. We determined that coalescence contributed to the distribution of MVs within ATIs and that microtubule-disrupting drugs abrogated coalescence-mediated MV embedment. In addition, MVs were shown to move from viral factories at speeds consistent with microtubular transport to the peripheries of ATIs, whereas disruption of microtubules prevented such trafficking. The data indicate an important role for microtubules in the coalescence of ATIs into larger structures, transport of MVs to ATIs, and embedment of MVs within the ATI matrix. PMID:22438543

  9. Introducing a frameshift mutation to the POL sequence of HIV-1 provirus and evaluation of the immunogenic characteristics of the mutated virions (RINNL4-3).

    PubMed

    Zabihollahi, Rezvan; Sadat, Seyed Mehdi; Vahabpour, Rouhollah; Salehi, Mansoor; Azadmanesh, Kayhan; Siadat, Seyed Davar; Saraji, Ali Reza Azizi; Pouriavali, Mohamamd Hassan; Momen, Seyed Bahman; Aghasadeghi, Mohamad Reza

    2012-01-01

    Inactivation of the reverse transcriptase (RT) and integrase (IN) enzymes can abolish the replication of the human immunodeficiency virus (HIV) and, thus, its infectivity. Here, inactivated HIV particles convenient for designing virus-like particle (VLP) based vaccines have been produced. Inactivated HIV-provirus was created by introducing a frame shift mutation. HIV provirus DNA was cut in the pol region by Age I restriction enzyme, followed by filling of sticky ends using the Klenow fragment before ligation. The resulting plasmid was named as pRINNL4-3. HEK-293T cells were used as producer, after being transfected with the modified plasmid. Viral particle production and biological activity were assayed by virus capsid protein (p24) quantification and syncytium formation in MT2 cells, respectively. The immunogenicity of the RINNL4-3 virions was investigated in a mouse model. The mutation was expected to inactivate the virus RT and IN enzymes. The results showed that the VLPs were assembled, as measured by the p24 load of the culture supernatant, and contained functional envelope proteins (Env) as monitored by the syncytium formation. However, these VLPs had no ability to infect target MT2 cells, as well as their VSVG (vesicular stomatitis virus-glycoprotein) pseudotyped counterparts infected HEK-293T cells. A high level of antibody response was observed in immunized mice. Since RINNL4-3 virions are replication incompetent, they are convenient for production and use in biomedical studies. Also, RINNL4-3 is a candidate for a vaccine development due to it contains envelope and structural virus proteins which are crucial for triggering neutralizing antibodies and the cellular immune response.

  10. Reverse Genetic Analysis of Ourmiaviruses Reveals the Nucleolar Localization of the Coat Protein in Nicotiana benthamiana and Unusual Requirements for Virion Formation ▿ † ‡

    PubMed Central

    Crivelli, Giulia; Ciuffo, Marina; Genre, Andrea; Masenga, Vera; Turina, Massimo

    2011-01-01

    Ourmia melon virus (OuMV) is the type member of the genus Ourmiavirus. These viruses have a trisegmented genome, each part of which encodes a single protein. Ourmiaviruses share a distant similarity with other plant viruses only in their movement proteins (MP), whereas their RNA-dependent RNA polymerase (RdRP) shares features only with fungal viruses of the family Narnaviridae. Thus, ourmiaviruses are in a unique phylogenetic position among existing plant viruses. Here, we developed an agroinoculation system to launch infection in Nicotiana benthamiana plants. Using different combinations of the three segments, we demonstrated that RNA1 is necessary and sufficient for cis-acting replication in the agroinfiltrated area. RNA2 and RNA3, encoding the putative movement protein and the coat protein (CP), respectively, are both necessary for successful systemic infection of N. benthamiana. The CP is dispensable for long-distance transport of the virus through vascular tissues, but its absence prevents efficient systemic infection at the exit sites. Virion formation occurred only when the CP was translated from replication-derived RNA3. Transient expression of a green fluorescent protein-MP (GFP-MP) fusion via agroinfiltration showed that the MP is present in cytoplasmic connections across plant cell walls; in protoplasts the GFP-MP fusion stimulates the formation of tubular protrusions. Expression through agroinfiltration of a GFP-CP fusion displays most of the fluorescence inside the nucleus and within the nucleolus in particular. Nuclear localization of the CP was also confirmed through Western blot analysis of purified nuclei. The significance of several unusual properties of OuMV for replication, virion assembly, and movement is discussed in relation to other positive-strand RNA viruses. PMID:21411534

  11. Drug repurposing of minocycline against dengue virus infection.

    PubMed

    Leela, Shilpa Lekshmi; Srisawat, Chatchawan; Sreekanth, Gopinathan Pillai; Noisakran, Sansanee; Yenchitsomanus, Pa-Thai; Limjindaporn, Thawornchai

    2016-09-09

    Dengue virus infection is one of the most common arthropod-borne viral diseases. A complex interplay between host and viral factors contributes to the severity of infection. The antiviral effects of three antibiotics, lomefloxacin, netilmicin, and minocycline, were examined in this study, and minocycline was found to be a promising drug. This antiviral effect was confirmed in all four serotypes of the virus. The effects of minocycline at various stages of the viral life cycle, such as during viral RNA synthesis, intracellular envelope protein expression, and the production of infectious virions, were examined and found to be significantly reduced by minocycline treatment. Minocycline also modulated host factors, including the phosphorylation of extracellular signal-regulated kinase1/2 (ERK1/2). The transcription of antiviral genes, including 2'-5'-oligoadenylate synthetase 1 (OAS1), 2'-5'-oligoadenylate synthetase 3 (OAS3), and interferon α (IFNA), was upregulated by minocycline treatment. Therefore, the antiviral activity of minocycline may have a potential clinical use against Dengue virus infection. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Cross-reactive dengue human monoclonal antibody prevents severe pathologies and death from Zika virus infections

    PubMed Central

    Kam, Yiu-Wing; Lee, Cheryl Yi-Pin; Teo, Teck-Hui; Howland, Shanshan W.; Amrun, Siti Naqiah; See, Peter; Kng, Nicholas Qing-Rong; Huber, Roland G.; Xu, Mei-Hui; Tan, Heng-Liang; Choo, Andre; Ginhoux, Florent; Fink, Katja; Wang, Cheng-I; Ng, Lisa F.P.

    2017-01-01

    Zika virus (ZIKV) infections have been linked with neurological complications and congenital Zika syndrome. Given the high level of homology between ZIKV and the related flavivirus dengue virus (DENV), we investigated the level of cross-reactivity with ZIKV using a panel of DENV human mAbs. A majority of the mAbs showed binding to ZIKV virions, with several exhibiting neutralizing capacities against ZIKV in vitro. Three of the best ZIKV-neutralizing mAbs were found to recognize diverse epitopes on the envelope (E) glycoprotein: the highly conserved fusion-loop peptide, a conformation-specific epitope on the E monomer, and a quaternary epitope on the virion surface. The most potent ZIKV-neutralizing mAb (SIgN-3C) was assessed in 2 type I interferon receptor–deficient (IFNAR–/–) mouse models of ZIKV infection. Treatment of adult nonpregnant mice with SIgN-3C rescued mice from virus-induced weight loss and mortality. The SIgN-3C variant with Leu-to-Ala mutations in the Fc region (SIgN-3C-LALA) did not induce antibody-dependent enhancement (ADE) in vitro but provided similar levels of protection in vivo. In pregnant ZIKV-infected IFNAR–/– mice, treatment with SIgN-3C or SIgN-3C-LALA significantly reduced viral load in the fetal organs and placenta and abrogated virus-induced fetal growth retardation. Therefore, SIgN-3C-LALA holds promise as a ZIKV prophylactic and therapeutic agent. PMID:28422757

  13. Small Rho GTPases and Cholesterol Biosynthetic Pathway Intermediates in African Swine Fever Virus Infection

    PubMed Central

    Quetglas, Jose I.; Hernáez, Bruno; Galindo, Inmaculada; Muñoz-Moreno, Raquel; Cuesta-Geijo, Miguel A.

    2012-01-01

    The integrity of the cholesterol biosynthesis pathway is required for efficient African swine fever virus (ASFV) infection. Incorporation of prenyl groups into Rho GTPases plays a key role in several stages of ASFV infection, since both geranylgeranyl and farnesyl pyrophosphates are required at different infection steps. We found that Rho GTPase inhibition impaired virus morphogenesis and resulted in an abnormal viral factory size with the accumulation of envelope precursors and immature virions. Furthermore, abundant defective virions reached the plasma membrane, and filopodia formation in exocytosis was abrogated. Rac1 was activated at early ASFV infection stages, coincident with microtubule acetylation, a process that stabilizes microtubules for virus transport. Rac1 inhibition did not affect the viral entry step itself but impaired subsequent virus production. We found that specific Rac1 inhibition impaired viral induced microtubule acetylation and viral intracellular transport. These findings highlight that viral infection is the result of a carefully orchestrated modulation of Rho family GTPase activity within the host cell; this modulation results critical for virus morphogenesis and in turn, triggers cytoskeleton remodeling, such as microtubule stabilization for viral transport during early infection. PMID:22114329

  14. Reducing the health burden of HPV infection through vaccination.

    PubMed

    Soper, David

    2006-01-01

    Human papillomavirus (HPV), a sexually transmitted infection and the etiologic cause of genital warts and cervical cancer, is highly prevalent in sexually active men and women. Although cervical screening procedures have significantly reduced the disease burden associated with HPV infection, they are expensive and abnormal results cause significant emotional distress. Therefore, prevention may be an effective strategy for reducing the economic, psychosocial, and disease burden of HPV infection. Multivalent vaccines are now in clinical development. A bivalent vaccine that protects against HPV 16 and 18, and a quadrivalent vaccine which protects against HPV types 6, 11, 16, and 18, have been shown to significantly reduce the occurrence of incident and persistent HPV infections in phase 2 clinical trials; phase 3 trials are currently underway. HPV vaccines will be most effective when administered prior to initiation of sexual activity, and vaccination campaigns should aggressively target preadolescent and adolescent populations.

  15. Reducing the Health Burden of HPV Infection Through Vaccination

    PubMed Central

    Soper, David

    2006-01-01

    Human papillomavirus (HPV), a sexually transmitted infection and the etiologic cause of genital warts and cervical cancer, is highly prevalent in sexually active men and women. Although cervical screening procedures have significantly reduced the disease burden associated with HPV infection, they are expensive and abnormal results cause significant emotional distress. Therefore, prevention may be an effective strategy for reducing the economic, psychosocial, and disease burden of HPV infection. Multivalent vaccines are now in clinical development. A bivalent vaccine that protects against HPV 16 and 18, and a quadrivalent vaccine which protects against HPV types 6, 11, 16, and 18, have been shown to significantly reduce the occurrence of incident and persistent HPV infections in phase 2 clinical trials; phase 3 trials are currently underway. HPV vaccines will be most effective when administered prior to initiation of sexual activity, and vaccination campaigns should aggressively target preadolescent and adolescent populations. PMID:16967913

  16. Reduced Risk of Disease During Postsecondary Dengue Virus Infections

    PubMed Central

    Olkowski, Sandra; Forshey, Brett M.; Morrison, Amy C.; Rocha, Claudio; Vilcarromero, Stalin; Halsey, Eric S.; Kochel, Tadeusz J.; Scott, Thomas W.; Stoddard, Steven T.

    2013-01-01

    Background. Antibodies induced by infection with any 1 of 4 dengue virus (DENV) serotypes (DENV-1–4) may influence the clinical outcome of subsequent heterologous infections. To quantify potential cross-protective effects, we estimated disease risk as a function of DENV infection, using data from longitudinal studies performed from September 2006 through February 2011 in Iquitos, Peru, during periods of DENV-3 and DENV-4 transmission. Methods. DENV infections before and during the study period were determined by analysis of serial serum samples with virus neutralization tests. Third and fourth infections were classified as postsecondary infections. Dengue fever cases were detected by door-to-door surveillance for acute febrile illness. Results. Among susceptible participants, 39% (420/1077) and 53% (1595/2997) seroconverted to DENV-3 and DENV-4, respectively. Disease was detected in 7% of DENV-3 infections and 10% of DENV-4 infections. Disease during postsecondary infections was reduced by 93% for DENV-3 and 64% for DENV-4, compared with primary and secondary infections. Despite lower disease rates, postsecondary infections constituted a significant proportion of apparent infections (14% [for DENV-3 infections], 45% [for DENV-4 infections]). Conclusions. Preexisting heterotypic antibodies markedly reduced but did not eliminate the risk of disease in this study population. These results improve understanding of how preinfection history can be associated with dengue outcomes and DENV transmission dynamics. PMID:23776195

  17. Fusion between perinuclear virions and the outer nuclear membrane requires the fusogenic activity of herpes simplex virus gB.

    PubMed

    Wright, Catherine C; Wisner, Todd W; Hannah, Brian P; Eisenberg, Roselyn J; Cohen, Gary H; Johnson, David C

    2009-11-01

    Herpesviruses cross nuclear membranes (NMs) in two steps, as follows: (i) capsids assemble and bud through the inner NM into the perinuclear space, producing enveloped virus particles, and (ii) the envelopes of these virus particles fuse with the outer NM. Two herpes simplex virus (HSV) glycoproteins, gB and gH (the latter, likely complexed as a heterodimer with gL), are necessary for the second step of this process. Mutants lacking both gB and gH accumulate in the perinuclear space or in herniations (membrane vesicles derived from the inner NM). Both gB and gH/gL are also known to act directly in fusing the virion envelope with host cell membranes during HSV entry into cells, i.e., both glycoproteins appear to function directly in different aspects of the membrane fusion process. We hypothesized that HSV gB and gH/gL also act directly in the membrane fusion that occurs during virus egress from the nucleus. Previous studies of the role of gB and gH/gL in nuclear egress involved HSV gB and gH null mutants that could potentially also possess gross defects in the virion envelope. Here, we produced recombinant HSV-expressing mutant forms of gB with single amino acid substitutions in the hydrophobic "fusion loops." These fusion loops are thought to play a direct role in membrane fusion by insertion into cellular membranes. HSV recombinants expressing gB with any one of four fusion loop mutations (W174R, W174Y, Y179K, and A261D) were unable to enter cells. Moreover, two of the mutants, W174Y and Y179K, displayed reduced abilities to mediate HSV cell-to-cell spread, and W174R and A261D exhibited no spread. All mutant viruses exhibited defects in nuclear egress, enveloped virions accumulated in herniations and in the perinuclear space, and fewer enveloped virions were detected on cell surfaces. These results support the hypothesis that gB functions directly to mediate the fusion between perinuclear virus particles and the outer NM.

  18. The NS2 proteins of parvovirus minute virus of mice are required for efficient nuclear egress of progeny virions in mouse cells.

    PubMed

    Eichwald, Virginie; Daeffler, Laurent; Klein, Michèle; Rommelaere, Jean; Salomé, Nathalie

    2002-10-01

    The small nonstructural NS2 proteins of parvovirus minute virus of mice (MVMp) were previously shown to interact with the nuclear export receptor Crm1. We report here the analysis of two MVM mutant genomic clones generating NS2 proteins that are unable to interact with Crm1 as a result of amino acid substitutions within their nuclear export signal (NES) sequences. Upon transfection of human and mouse cells, the MVM-NES21 and MVM-NES22 mutant genomic clones were proficient in synthesis of the four virus-encoded proteins. While the MVM-NES22 clone was further able to produce infectious mutant virions, no virus could be recovered from cells transfected with the MVM-NES21 clone. Whereas the defect of MVM-NES21 appeared to be complex, the phenotype of MVM-NES22 could be traced back to a novel distinct NS2 function. Infection of mouse cells with the MVM-NES22 mutant led to stronger nuclear retention not only of the NS2 proteins but also of infectious progeny MVM particles. This nuclear sequestration correlated with a severe delay in the release of mutant virions in the medium and with prolonged survival of the infected cell populations compared with wild-type virus-treated cultures. This defect could explain, at least in part, the small size of the plaques generated by the MVM-NES22 mutant when assayed on mouse indicator cells. Altogether, our data indicate that the interaction of MVMp NS2 proteins with the nuclear export receptor Crm1 plays a critical role at a late stage of the parvovirus life cycle involved in release of progeny viruses.

  19. The NS2 Proteins of Parvovirus Minute Virus of Mice Are Required for Efficient Nuclear Egress of Progeny Virions in Mouse Cells

    PubMed Central

    Eichwald, Virginie; Daeffler, Laurent; Klein, Michèle; Rommelaere, Jean; Salomé, Nathalie

    2002-01-01

    The small nonstructural NS2 proteins of parvovirus minute virus of mice (MVMp) were previously shown to interact with the nuclear export receptor Crm1. We report here the analysis of two MVM mutant genomic clones generating NS2 proteins that are unable to interact with Crm1 as a result of amino acid substitutions within their nuclear export signal (NES) sequences. Upon transfection of human and mouse cells, the MVM-NES21 and MVM-NES22 mutant genomic clones were proficient in synthesis of the four virus-encoded proteins. While the MVM-NES22 clone was further able to produce infectious mutant virions, no virus could be recovered from cells transfected with the MVM-NES21 clone. Whereas the defect of MVM-NES21 appeared to be complex, the phenotype of MVM-NES22 could be traced back to a novel distinct NS2 function. Infection of mouse cells with the MVM-NES22 mutant led to stronger nuclear retention not only of the NS2 proteins but also of infectious progeny MVM particles. This nuclear sequestration correlated with a severe delay in the release of mutant virions in the medium and with prolonged survival of the infected cell populations compared with wild-type virus-treated cultures. This defect could explain, at least in part, the small size of the plaques generated by the MVM-NES22 mutant when assayed on mouse indicator cells. Altogether, our data indicate that the interaction of MVMp NS2 proteins with the nuclear export receptor Crm1 plays a critical role at a late stage of the parvovirus life cycle involved in release of progeny viruses. PMID:12239307

  20. Mutations in the conserved carboxy-terminal hydrophobic region of glycoprotein gB affect infectivity of herpes simplex virus.

    PubMed

    Wanas, E; Efler, S; Ghosh, K; Ghosh, H P

    1999-12-01

    Glycoprotein gB is the most highly conserved glycoprotein in the herpesvirus family and plays a critical role in virus entry and fusion. Glycoprotein gB of herpes simplex virus type 1 contains a hydrophobic stretch of 69 aa near the carboxy terminus that is essential for its biological activity. To determine the role(s) of specific amino acids in the carboxy-terminal hydrophobic region, a number of amino acids were mutagenized that are highly conserved in this region within the gB homologues of the family HERPESVIRIDAE: Three conserved residues in the membrane anchor domain, namely A786, A790 and A791, as well as amino acids G743, G746, G766, G770 and P774, that are non-variant in Herpesviridae, were mutagenized. The ability of the mutant proteins to rescue the infectivity of the gB-null virus, K082, in trans was measured by a complementation assay. All of the mutant proteins formed dimers and were incorporated in virion particles produced in the complementation assay. Mutants G746N, G766N, F770S and P774L showed negligible complementation of K082, whereas mutant G743R showed a reduced activity. Virion particles containing these four mutant glycoproteins also showed a markedly reduced rate of entry compared to the wild-type. The results suggest that non-variant residues in the carboxy-terminal hydrophobic region of the gB protein may be important in virus infectivity.

  1. Mouse Polyomavirus Enters Early Endosomes, Requires Their Acidic pH for Productive Infection, and Meets Transferrin Cargo in Rab11-Positive Endosomes

    PubMed Central

    Liebl, David; Difato, Francesco; Horníková, Lenka; Mannová, Petra; Štokrová, Jitka; Forstová, Jitka

    2006-01-01

    Mouse polyomavirus (PyV) virions enter cells by internalization into smooth monopinocytic vesicles, which fuse under the cell membrane with larger endosomes. Caveolin-1 was detected on monopinocytic vesicles carrying PyV particles in mouse fibroblasts and epithelial cells (33). Here, we show that PyV can be efficiently internalized by Jurkat cells, which do not express caveolin-1 and lack caveolae, and that overexpression of a caveolin-1 dominant-negative mutant in mouse epithelial cells does not prevent their productive infection. Strong colocalization of VP1 with early endosome antigen 1 (EEA1) and of EEA1 with caveolin-1 in mouse fibroblasts and epithelial cells suggests that the monopinocytic vesicles carrying the virus (and vesicles containing caveolin-1) fuse with EEA1-positive early endosomes. In contrast to SV40, PyV infection is dependent on the acidic pH of endosomes. Bafilomycin A1 abolished PyV infection, and an increase in endosomal pH by NH4Cl markedly reduced its efficiency when drugs were applied during virion transport towards the cell nucleus. The block of acidification resulted in the retention of a fraction of virions in early endosomes. To monitor further trafficking of PyV, we used fluorescent resonance energy transfer (FRET) to determine mutual localization of PyV VP1 with transferrin and Rab11 GTPase at a 2- to 10-nm resolution. Positive FRET between PyV VP1 and transferrin cargo and between PyV VP1 and Rab11 suggests that during later times postinfection (1.5 to 3 h), the virus meets up with transferrin in the Rab11-positive recycling endosome. These results point to a convergence of the virus and the cargo internalized by different pathways in common transitional compartments. PMID:16611921

  2. The herpes simplex virus 1 UL51 protein interacts with the UL7 protein and plays a role in its recruitment into the virion.

    PubMed

    Roller, Richard J; Fetters, Rachel

    2015-03-01

    The alphaherpesvirus UL51 protein is a tegument component that interacts with the viral glycoprotein E and functions at multiple steps in virus assembly and spread in epithelial cells. We show here that pUL51 forms a complex in infected cells with another conserved tegument protein, pUL7. This complex can form in the absence of other viral proteins and is largely responsible for recruitment of pUL7 to cytoplasmic membranes and into the virion tegument. Incomplete colocalization of pUL51 and pUL7 in infected cells, however, suggests that a significant fraction of the population of each protein is not complexed with the other and that they may accomplish independent functions. The ability of herpesviruses to spread from cell to cell in the face of an immune response is critical for disease and shedding following reactivation from latency. Cell-to-cell spread is a conserved ability of herpesviruses, and the identification of conserved viral genes that mediate this process will aid in the design of attenuated vaccines and of novel therapeutics. The conserved UL51 gene of herpes simplex virus 1 plays important roles in cell-to-cell spread and in virus assembly in the cytoplasm, both of which likely depend on specific interactions with other viral and cellular proteins. Here we identify one of those interactions with the product of another conserved herpesvirus gene, UL7, and show that formation of this complex mediates recruitment of UL7 to membranes and to the virion. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  3. Immediate Antiretroviral Therapy Reduces Risk of Infection-Related Cancer During Early HIV Infection.

    PubMed

    Borges, Álvaro H; Neuhaus, Jacqueline; Babiker, Abdel G; Henry, Keith; Jain, Mamta K; Palfreeman, Adrian; Mugyenyi, Peter; Domingo, Pere; Hoffmann, Christian; Read, Tim R H; Pujari, Sanjay; Meulbroek, Michael; Johnson, Margaret; Wilkin, Timothy; Mitsuyasu, Ronald

    2016-12-15

     In the Strategic Timing of Antiretroviral Treatment (START) study, immediate combination antiretroviral therapy (cART) initiation reduced cancer risk by 64%. We hypothesized that risk reduction was higher for infection-related cancer and determined by differences in CD4 cell counts and human immunodeficiency virus (HIV) RNA between the study arms.  Incident malignancies in START were categorized into infection-related and infection-unrelated cancer. We used Cox models to assess factors associated with both cancer categories. We used sequential adjustment for baseline covariates, cancer risk factors, and HIV-specific variables to investigate potential mediators of cancer risk reduction with immediate cART.  There were 14 cancers among persons randomized to immediate cART (6 infection-related and 8 infection-unrelated) and 39 cancers in the deferred arm (23 infection-related and 16 infection-unrelated); hazard ratios of immediate vs deferred cART initiation were 0.26 (95% confidence interval [CI], .11-.64) for infection-related and 0.49 (95% CI, .21-1.15) for infection-unrelated cancer. Independent predictors of infection-related cancer were older age, higher body mass index, low- to middle-income region, HIV RNA, and baseline CD8 cell count. Older age and baseline CD8 cell count were independent predictors of infection-unrelated cancer. Adjustment for latest HIV RNA level had little impact on the protective effect of immediate cART on infection-related cancer. Adjustment for latest HIV RNA level, but not for CD4 cell count or cancer risk factors, attenuated the effect of immediate cART on infection-unrelated cancer.  Immediate cART initiation significantly reduces risk of cancer. Although limited by small sample size, this benefit does not appear to be solely attributable to HIV RNA suppression and may be also mediated by other mechanisms. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights

  4. Protective Effect of Anti-Phosphatidylserine Antibody in a Guinea Pig Model of Advanced Hemorrhagic Arenavirus Infection.

    PubMed

    Thomas, John M; Thorpe, Philip E

    2017-01-01

    Host derived markers on virally infected cells or virions may provide targets for the generation of antiviral agents. Recently, we identified phosphatidylserine (PS) as a host marker of virions and virally-infected cells. Under normal physiological conditions, PS is maintained on the inner leaflet of the plasma membrane facing the cytosol. Following viral infection, activation or pre-apoptotic changes cause PS to become externalized. We have previously shown that bavituximab, a chimeric human-mouse antibody that binds PS complexed with β2-glycoprotein I (β2GP1), protected rodents against lethal Pichinde virus and cytomegalovirus infections. Here, we determined the antiviral activity of a fully human monoclonal antibody, PGN632, that directly binds to PS. Treatment with PGN632 protected 20% of guinea pigs with advanced infections of the hemorrhagic arenavirus, Pichinde, from death. Combining PGN632 with ribavirin improved the antiviral activity of both agents, such that the combination rescued 50% of animals from death. The major mechanisms of action of PGN632 appear to be opsonization of virus and antibody-dependent cellular cytotoxicity of virally-infected cells. PS-targeting agents may have utility in the treatment of viral diseases.

  5. Secondary metabolites in floral nectar reduce parasite infections in bumblebees

    PubMed Central

    Richardson, Leif L.; Adler, Lynn S.; Leonard, Anne S.; Andicoechea, Jonathan; Regan, Karly H.; Anthony, Winston E.; Manson, Jessamyn S.; Irwin, Rebecca E.

    2015-01-01

    The synthesis of secondary metabolites is a hallmark of plant defence against herbivores. These compounds may be detrimental to consumers, but can also protect herbivores against parasites. Floral nectar commonly contains secondary metabolites, but little is known about the impacts of nectar chemistry on pollinators, including bees. We hypothesized that nectar secondary metabolites could reduce bee parasite infection. We inoculated individual bumblebees with Crithidia bombi, an intestinal parasite, and tested effects of eight naturally occurring nectar chemicals on parasite population growth. Secondary metabolites strongly reduced parasite load, with significant effects of alkaloids, terpenoids and iridoid glycosides ranging from 61 to 81%. Using microcolonies, we also investigated costs and benefits of consuming anabasine, the compound with the strongest effect on parasites, in infected and uninfected bees. Anabasine increased time to egg laying, and Crithidia reduced bee survival. However, anabasine consumption did not mitigate the negative effects of Crithidia, and Crithidia infection did not alter anabasine consumption. Our novel results highlight that although secondary metabolites may not rescue survival in infected bees, they may play a vital role in mediating Crithidia transmission within and between colonies by reducing Crithidia infection intensities. PMID:25694627

  6. Encapsidation of Host RNAs by Cucumber Necrosis Virus Coat Protein during both Agroinfiltration and Infection.

    PubMed

    Ghoshal, Kankana; Theilmann, Jane; Reade, Ron; Maghodia, Ajay; Rochon, D'Ann

    2015-11-01

    Next-generation sequence analysis of virus-like particles (VLPs) produced during agroinfiltration of cucumber necrosis virus (CNV) coat protein (CP) and of authentic CNV virions was conducted to assess if host RNAs can be encapsidated by CNV CP. VLPs containing host RNAs were found to be produced during agroinfiltration, accumulating to approximately 1/60 the level that CNV virions accumulated during infection. VLPs contained a variety of host RNA species, including the major rRNAs as well as cytoplasmic, chloroplast, and mitochondrial mRNAs. The most predominant host RNA species encapsidated in VLPs were chloroplast encoded, consistent with the efficient targeting of CNV CP to chloroplasts during agroinfiltration. Interestingly, droplet digital PCR analysis showed that the CNV CP mRNA expressed during agroinfiltration was the most efficiently encapsidated mRNA, suggesting that the CNV CP open reading frame may contain a high-affinity site or sites for CP binding and thus contribute to the specificity of CNV RNA encapsidation. Approximately 0.09% to 0.7% of the RNA derived from authentic CNV virions contained host RNA, with chloroplast RNA again being the most prominent species. This is consistent with our previous finding that a small proportion of CNV CP enters chloroplasts during the infection process and highlights the possibility that chloroplast targeting is a significant aspect of CNV infection. Remarkably, 6 to 8 of the top 10 most efficiently encapsidated nucleus-encoded RNAs in CNV virions correspond to retrotransposon or retrotransposon-like RNA sequences. Thus, CNV could potentially serve as a vehicle for horizontal transmission of retrotransposons to new hosts and thereby significantly influence genome evolution. Viruses predominantly encapsidate their own virus-related RNA species due to the possession of specific sequences and/or structures on viral RNA which serve as high-affinity binding sites for the coat protein. In this study, we show, using

  7. [The maturation steps of human immunodeficiency virus and the role of proteolysis].

    PubMed

    Bukrinskaia, A G; Grigor'ev, V B; Korablina, E V; Gur'ev, E L; Vorkunova, G K

    2010-01-01

    HIV-1 virions are as immature noninfectious particles lacking a central core. Shortly after budding, virions temporally mature and acquire cores and infectious activity. The cause of maturation remains poorly studied. We have revealed that the virions produced early after infection following 24-36 hours, never mature and remain noninfectious, and only virions produced 48-72 hours after infection mature. The mature virions contain 3 times more genomic viral RNA than "early" virus. The "early" virions contain the same proteolytically cleaved Gag proteins as mature virions in contrast to the accepted version. The virus protease inhibitor Indinavir sulfate (IS) fully blocks infectivity when added early after infection. The early proteolysis of Gag precursor in the infected cells and inclusion into the virions of cellularly cleaved matrix protein (cMA) are shown in the IS-treated cells. cMA is associated with genomic viral RNA.

  8. Controlled conformational transitions in the MVM virion expose the VP1 N-terminus and viral genome without particle disassembly.

    PubMed

    Cotmore, S F; D'abramo, A M; Ticknor, C M; Tattersall, P

    1999-02-01

    Antisera were raised against peptides corresponding to the N-termini of capsid proteins VP1 and VP2 from the parvovirus minute virus of mice. Epitopes in the 142-amino-acid VP1-specific region were not accessible in the great majority of newly released viral particles, and sera directed against them failed to neutralize virus directly or deplete stocks of infectious virions. However, brief exposure to temperatures of 45 degreesC or more induced a conformational transition in a population of full virions, but not in empty viral particles, in which VP1-specific sequences became externally accessible. In contrast, the VP2 N-terminus was antibody-accessible in all full, but not empty, particles without prior treatment. An electrophoretic mobility shift assay, in which particles were heat-treated and/or preincubated with antibodies prior to electrophoresis, confirmed this pattern of epitope accessibility, showing that the heat-induced conformational transition produces a retarded form of virion that can be supershifted by incubation with VP1-specific sera. The proportion of virions undergoing transition increased with temperature, but at all temperatures up to 70 degreesC viral particles retained structure-specific antigenic determinants and remained essentially intact, without shedding individual polypeptide species or subunits. However, despite the apparent integrity of its protective coat, the genome became accessible to externally applied enzymes in an increasing proportion of virions through this temperature range, suggesting that the conformational transitions that expose VP1 likely also allow access to the genome. Heating particles to 80 degreesC or above finally induced disassembly to polypeptide monomers. Copyright 1999 Academic Press.

  9. Structural evolution of the P22-like phages: Comparison of Sf6 and P22 procapsid and virion architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parent, Kristin N.; Gilcrease, Eddie B.; Casjens, Sherwood R., E-mail: sherwood.casjens@path.utah.edu

    Coat proteins of tailed, dsDNA phages and in herpesviruses include a conserved core similar to the bacteriophage HK97 subunit. This core is often embellished with other domains such as the telokin Ig-like domain of phage P22. Eighty-six P22-like phages and prophages with sequenced genomes share a similar set of virion assembly genes and, based on comparisons of twelve viral assembly proteins (structural and assembly/packaging chaperones), these phages are classified into three groups (P22-like, Sf6-like, and CUS-3-like). We used cryo-electron microscopy and 3D image reconstruction to determine the structures of Sf6 procapsids and virions ({approx} 7 A resolution), and the structuremore » of the entire, asymmetric Sf6 virion (16-A resolution). The Sf6 coat protein is similar to that of P22 yet it has differences in the telokin domain and in its overall quaternary organization. Thermal stability and agarose gel experiments show that Sf6 virions are slightly less stable than those of P22. Finally, bacterial host outer membrane proteins A and C were identified in lipid vesicles that co-purify with Sf6 particles, but are not components of the capsid.« less

  10. Can intersectional innovations reduce hospital infection?

    PubMed

    Saint, S

    2017-02-01

    Preventing healthcare-associated infection remains an international priority given the clinical and economic consequences of this largely preventable patient safety harm. Whereas important strides have been made in preventing hospital infections over the past several decades, thorny issues remain, including how to consistently improve hand hygiene rates and further reduce device-related complications such as catheter-associated urinary tract infection. Rather than relying solely on directional innovations - incremental changes that continue to serve as the bedrock of scientific advancement - perhaps we should also search for 'intersectional innovations', which represent breakthrough discoveries that emanate from the intersection of often widely divergent disciplines. Several intersectional innovations that have the potential to greatly impact infection prevention efforts include human factors engineering, sociology, and engaging the senses. Indeed, Professor Edward Joseph Lister Lowbury, the namesake of this lecture, exemplified intersectional thinking in his own life, having been both an accomplished bacteriologist and poet. By incorporating approaches outside of traditional biomedical science we may hope to provide patients with the safe care they expect and deserve. Published by Elsevier Ltd.

  11. Persistence of Circulating Hepatitis C Virus Antigens-Specific Immune Complexes in Patients with Resolved HCV Infection.

    PubMed

    Hu, Ke-Qin; Cui, Wei

    2018-05-01

    Our recent study indicated the possible presence of detectable hepatitis C virus antigens (HCV-Ags) after denaturation of sera with resolved HCV (R-HCV) infection. The present study determined and characterized persistent HCV-Ags-specific immune complexes (ICs) in these patients. Sixty-eight sera with R-HCV and 34 with viremic HCV (V-HCV) infection were tested for free and IC-bound HCV-Ags using HCV-Ags enzyme immunoassay (EIA), the presence of HCV-Ags-specific ICs by immunoprecipitation and Western blot (IP-WB), HCV ICs containing HCV virions using IP and HCV RNA RT-PCR, and correlation of HCV ICs with clinical presentation in these patients. Using HCV-Ags EIA, we found 57.4% of sera with R-HCV infection were tested positive for bound, but not free HCV-Ags. Using pooled or individual anti-HCV E1/E2, cAg, NS3, NS4b, and/or NS5a to precipitate HCV-specific-Ags, we confirmed persistent HCV-Ags ICs specific to various HCV structural and non-structural proteins not only in V-HCV infection, but also in R-HCV infection. Using IP and HCV RNA PCR, we then confirmed the presence of HCV virions within circulating ICs in V-HCV, but not in R-HCV sera. Multivariable analysis indicated significant and independent associations of persistent circulating HCV-Ags-specific ICs with both age and the presence of cirrhosis in patients with R-HCV infection. Various HCV-Ag-specific ICs, but not virions, persist in 57.4% of patients who had spontaneous or treatment-induced HCV clearance for 6 months to 20 years. These findings enriched our knowledge on HCV pathogenesis and support further study on its long-term clinical relevance, such as extrahepatic manifestation, transfusion medicine, and hepatocarcinogenesis.

  12. Profound Amplification of Pathogenic Murine Polytropic Retrovirus Release from Coinfected Cells

    PubMed Central

    Rosenke, Kyle; Lavignon, Marc; Malik, Frank; Kolokithas, Angelo; Hendrick, Duncan; Virtaneva, Kimmo; Peterson, Karin

    2012-01-01

    Previous studies indicate that mice infected with mixtures of mouse retroviruses (murine leukemia viruses [MuLVs]) exhibit dramatically altered pathology compared to mice infected with individual viruses of the mixture. Coinoculation of the ecotropic virus Friend MuLV (F-MuLV) with Fr98, a polytropic MuLV, induced a rapidly fatal neurological disease that was not observed in infections with either virus alone. The polytropic virus load in coinoculated mice was markedly enhanced, while the ecotropic F-MuLV load was unchanged. Furthermore, pseudotyping of the polytropic MuLV genome within ecotropic virions was nearly complete in coinoculated mice. In an effort to better understand these phenomena, we examined mixed retrovirus infections by utilizing in vitro cell lines. Similar to in vivo mixed infections, the polytropic MuLV genome was extensively pseudotyped within ecotropic virions; polytropic virus release was profoundly elevated in coinfected cells, and the ecotropic virus release was unchanged. A reduced level of polytropic SU protein on the surfaces of coinfected cells was observed and correlated with a reduced level of nonpseudotyped polytropic virion release. Marked amplification and pseudotyping of the polytropic MuLV were also observed in mixed Fr98–F-MuLV infections of cell lines derived from the central nervous system (CNS), the target for Fr98 pathogenesis. Additional experiments indicated that pseudotyping contributed to the elevated polytropic virus titer by increasing the efficiency of packaging and release of the polytropic genomes within ecotropic virions. Mixed infections are the rule rather than the exception in retroviral infection, and the ability to examine them in vitro should facilitate a more thorough understanding of retroviral interactions in general. PMID:22514353

  13. The Antiviral Alkaloid Berberine Reduces Chikungunya Virus-Induced Mitogen-Activated Protein Kinase Signaling

    PubMed Central

    Thaa, Bastian; Amrun, Siti Naqiah; Simarmata, Diane; Rausalu, Kai; Nyman, Tuula A.; Merits, Andres; McInerney, Gerald M.; Ng, Lisa F. P.

    2016-01-01

    ABSTRACT Chikungunya virus (CHIKV) has infected millions of people in the tropical and subtropical regions since its reemergence in the last decade. We recently identified the nontoxic plant alkaloid berberine as an antiviral substance against CHIKV in a high-throughput screen. Here, we show that berberine is effective in multiple cell types against a variety of CHIKV strains, also at a high multiplicity of infection, consolidating the potential of berberine as an antiviral drug. We excluded any effect of this compound on virus entry or on the activity of the viral replicase. A human phosphokinase array revealed that CHIKV infection specifically activated the major mitogen-activated protein kinase (MAPK) signaling pathways extracellular signal-related kinase (ERK), p38 and c-Jun NH2-terminal kinase (JNK). Upon treatment with berberine, this virus-induced MAPK activation was markedly reduced. Subsequent analyses with specific inhibitors of these kinases indicated that the ERK and JNK signaling cascades are important for the generation of progeny virions. In contrast to specific MAPK inhibitors, berberine lowered virus-induced activation of all major MAPK pathways and resulted in a stronger reduction in viral titers. Further, we assessed the in vivo efficacy of berberine in a mouse model and measured a significant reduction of CHIKV-induced inflammatory disease. In summary, we demonstrate the efficacy of berberine as a drug against CHIKV and highlight the importance of the MAPK signaling pathways in the alphavirus infectious cycle. IMPORTANCE Chikungunya virus (CHIKV) is a mosquito-borne virus that causes severe and persistent muscle and joint pain and has recently spread to the Americas. No licensed drug exists to counter this virus. In this study, we report that the alkaloid berberine is antiviral against different CHIKV strains and in multiple human cell lines. We demonstrate that berberine collectively reduced the virus-induced activation of cellular mitogen

  14. Secondary metabolites in floral nectar reduce parasite infections in bumblebees.

    PubMed

    Richardson, Leif L; Adler, Lynn S; Leonard, Anne S; Andicoechea, Jonathan; Regan, Karly H; Anthony, Winston E; Manson, Jessamyn S; Irwin, Rebecca E

    2015-03-22

    The synthesis of secondary metabolites is a hallmark of plant defence against herbivores. These compounds may be detrimental to consumers, but can also protect herbivores against parasites. Floral nectar commonly contains secondary metabolites, but little is known about the impacts of nectar chemistry on pollinators, including bees. We hypothesized that nectar secondary metabolites could reduce bee parasite infection. We inoculated individual bumblebees with Crithidia bombi, an intestinal parasite, and tested effects of eight naturally occurring nectar chemicals on parasite population growth. Secondary metabolites strongly reduced parasite load, with significant effects of alkaloids, terpenoids and iridoid glycosides ranging from 61 to 81%. Using microcolonies, we also investigated costs and benefits of consuming anabasine, the compound with the strongest effect on parasites, in infected and uninfected bees. Anabasine increased time to egg laying, and Crithidia reduced bee survival. However, anabasine consumption did not mitigate the negative effects of Crithidia, and Crithidia infection did not alter anabasine consumption. Our novel results highlight that although secondary metabolites may not rescue survival in infected bees, they may play a vital role in mediating Crithidia transmission within and between colonies by reducing Crithidia infection intensities. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  15. Hepatitis C Virus-Induced Rab32 Aggregation and Its Implications for Virion Assembly.

    PubMed

    Pham, Tu M; Tran, Si C; Lim, Yun-Sook; Hwang, Soon B

    2017-02-01

    Hepatitis C virus (HCV) is highly dependent on cellular factors for viral propagation. Using high-throughput next-generation sequencing, we analyzed the host transcriptomic changes and identified 30 candidate genes which were upregulated in cell culture-grown HCV (HCVcc)-infected cells. Of these candidates, we selected Rab32 for further investigation. Rab32 is a small GTPase that regulates a variety of intracellular membrane-trafficking events in various cell types. In this study, we demonstrated that both mRNA and protein levels of Rab32 were increased in HCV-infected cells. Furthermore, we showed that HCV infection converted the predominantly expressed GTP-bound Rab32 to GDP-bound Rab32, contributing to the aggregation of Rab32 and thus making it less sensitive to cellular degradation machinery. In addition, GDP-bound Rab32 selectively interacted with HCV core protein and deposited core protein into the endoplasmic reticulum (ER)-associated Rab32-derived aggregated structures in the perinuclear region, which were likely to be viral assembly sites. Using RNA interference technology, we demonstrated that Rab32 was required for the assembly step but not for other stages of the HCV life cycle. Taken together, these data suggest that HCV may modulate Rab32 activity to facilitate virion assembly. Rab32, a member of the Ras superfamily of small GTPases, regulates various intracellular membrane-trafficking events in many cell types. In this study, we showed that HCV infection concomitantly increased Rab32 expression at the transcriptional level and altered the balance between GDP- and GTP-bound Rab32 toward production of Rab32-GDP. GDP-bound Rab32 selectively interacted with HCV core protein and enriched core in the ER-associated Rab32-derived aggregated structures that were probably necessary for viral assembly. Indeed, we showed that Rab32 was specifically required for the assembly of HCV. Collectively, our study identifies that Rab32 is a novel host factor essential

  16. Double gloving to reduce surgical cross-infection.

    PubMed

    Tanner, J; Parkinson, H

    2006-07-19

    The invasive nature of surgery, with its increased exposure to blood, means that during surgery there is a high risk of transfer of pathogens. Pathogens can be transferred through contact between surgical patients and the surgical team, resulting in post-operative or blood borne infections in patients or blood borne infections in the surgical team. Both patients and the surgical team need to be protected from this risk. This risk can be reduced by implementing protective barriers such as wearing surgical gloves. Wearing two pairs of surgical gloves, triple gloves, glove liners or cloth outer gloves, as opposed to one pair, is considered to provide an additional barrier and further reduce the risk of contamination. The primary objective of this review was to determine if additional glove protection reduces the number of surgical site or blood borne infections in patients or the surgical team. The secondary objective was to determine if additional glove protection reduces the number of perforations to the innermost pair of surgical gloves. The innermost gloves (next to skin) compared with the outermost gloves are considered to be the last barrier between the patient and the surgical team. We searched the Cochrane Wounds Group Specialised Register (January 2006), and the Cochrane Central Register of Controlled Trials (CENTRAL)(The Cochrane Library Issue 4, 2005). We also contacted glove manufacturing companies and professional organisations. Randomised controlled trials involving: single gloving, double gloving, triple gloving, glove liners, knitted outer gloves, steel weave outer gloves and perforation indicator systems. Both authors independently assessed the relevance and quality of each trial. Data was extracted by one author and cross checked for accuracy by the second author. Two trials were found which addressed the primary outcome, namely, surgical site infections in patients. Both trials reported no infections. Thirty one randomised controlled trials

  17. A plasma membrane localization signal in the HIV-1 envelope cytoplasmic domain prevents localization at sites of vesicular stomatitis virus budding and incorporation into VSV virions.

    PubMed

    Johnson, J E; Rodgers, W; Rose, J K

    1998-11-25

    Previous studies showed that the HIV-1 envelope (Env) protein was not incorporated into vesicular stomatitis virus (VSV) virions unless its cytoplasmic tail was replaced with that of the VSV glycoprotein (G). To determine whether the G tail provided a positive incorporation signal for Env, or if sequences in the Env tail prevented incorporation, we generated mutants of Env with its 150-amino-acid tail shortened to 29, 10, or 3 amino acids (Envtr mutants). Cells infected with VSV recombinants expressing these proteins or an Env-G tail hybrid showed similar amounts of Env protein at the surface. The Env-G tail hybrid or the Envtr3 mutant were incorporated at the highest levels into budding VSV virions. In contrast, the Envtr29 or Envtr10 mutants were incorporated poorly. These results defined a signal preventing incorporation within the 10 membrane-proximal amino acids of the Env tail. Confocal microscopy revealed that this signal functioned by causing localization of human immunodeficiency virus type 1 Env to plasma membrane domains distinct from the VSV budding sites, where VSV proteins were concentrated. Copyright 1998 Academic Press.

  18. Reducing nosocomial infections in neonatal intensive care.

    PubMed

    Rogers, Eileen; Alderdice, Fiona; McCall, Emma; Jenkins, John; Craig, Stanley

    2010-09-01

    Nosocomial infection is a common problem in neonatal intensive care. A pilot quality improvement initiative focussing on hand hygiene and aimed at reducing nosocomial infection in very low birth weight (VLBW) infants was introduced in five Neonatal Intensive Care Units. Line associated laboratory confirmed bloodstream infection (LCBSI) and ventilator associated pneumonia (VAP) were chosen as main outcome measures. In VLBW infants, the rate of line associated LCBSI per 1000 central venous catheter days fell by 24%. The rate of VAP per 1000 ventilator days in VLBW infants fell by 38%. Pre- and post-intervention questionnaires showed a statistically significant increase in use of alcohol-based gels and increased knowledge of hand hygiene.

  19. Cryo-Electron Tomography of Marburg Virus Particles and Their Morphogenesis within Infected Cells

    PubMed Central

    Kolesnikova, Larissa; Welsch, Sonja; Krähling, Verena; Davey, Norman; Parsy, Marie-Laure; Becker, Stephan; Briggs, John A. G.

    2011-01-01

    Several major human pathogens, including the filoviruses, paramyxoviruses, and rhabdoviruses, package their single-stranded RNA genomes within helical nucleocapsids, which bud through the plasma membrane of the infected cell to release enveloped virions. The virions are often heterogeneous in shape, which makes it difficult to study their structure and assembly mechanisms. We have applied cryo-electron tomography and sub-tomogram averaging methods to derive structures of Marburg virus, a highly pathogenic filovirus, both after release and during assembly within infected cells. The data demonstrate the potential of cryo-electron tomography methods to derive detailed structural information for intermediate steps in biological pathways within intact cells. We describe the location and arrangement of the viral proteins within the virion. We show that the N-terminal domain of the nucleoprotein contains the minimal assembly determinants for a helical nucleocapsid with variable number of proteins per turn. Lobes protruding from alternate interfaces between each nucleoprotein are formed by the C-terminal domain of the nucleoprotein, together with viral proteins VP24 and VP35. Each nucleoprotein packages six RNA bases. The nucleocapsid interacts in an unusual, flexible “Velcro-like” manner with the viral matrix protein VP40. Determination of the structures of assembly intermediates showed that the nucleocapsid has a defined orientation during transport and budding. Together the data show striking architectural homology between the nucleocapsid helix of rhabdoviruses and filoviruses, but unexpected, fundamental differences in the mechanisms by which the nucleocapsids are then assembled together with matrix proteins and initiate membrane envelopment to release infectious virions, suggesting that the viruses have evolved different solutions to these conserved assembly steps. PMID:22110401

  20. Vaccine Reduces HPV Infections in Young Men

    Cancer.gov

    An international randomized clinical trial has shown that the vaccine Gardasil can reduce the incidence of anogenital human papillomavirus (HPV) infections in young men 16 to 26 years of age at the time of vaccination.

  1. Capillarity-induced disassembly of virions in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Fan, Xiaobin; Barclay, J. Elaine; Peng, Wenchao; Li, Yang; Li, Xianyu; Zhang, Guoliang; Evans, David J.; Zhang, Fengbao

    2008-04-01

    Studying the transport and fate of viruses through nanochannels is of great importance. By using the nanochannel of a carbon nanotube (CNT) as an ideal model, we evaluated the possibility of capillarity-induced viral transport through a closely fitting nanochannel and explored the mechanisms involved. It is shown both experimentally and theoretically that Cowpea mosaic virus can enter CNTs by capillarity. However, when introduced into a nanotube the protein capsid may disassemble. During the initial capillary filling stage, anomalous needle-shaped high pressure exists in the centre of the nanotube's entrance. This high pressure, combining with the significant negative pressure within the nanotube, may account for the disassembly of the virions.

  2. Biological and molecular characterization of a putative new sobemovirus infecting Imperata cylindrica and maize in Africa.

    PubMed

    Sérémé, Drissa; Lacombe, Séverine; Konaté, Moumouni; Pinel-Galzi, Agnès; Traoré, Valentin Stanislas Edgar; Hébrard, Eugénie; Traoré, Oumar; Brugidou, Christophe; Fargette, Denis; Konaté, Gnissa

    2008-01-01

    A new virus was isolated from both the grass Imperata cylindrica and maize plants that had yellow mottle symptoms in Burkina Faso, West Africa. The virus has isometric particles ca. 32 nm in diameter. The experimental host range was restricted to Rottboellia exaltata. Virions were isolated from leaves of systemically infected maize plants. Koch's postulates were completed by mechanically inoculating uninfected Imperata or maize with either purified virus or sap from infected Imperata plants. Virion preparations were used to produce a specific polyclonal antiserum, and an enzyme-linked immunosorbent assay test was set up. The full genome of the virus was sequenced, and it comprised 4,547 nucleotides. Phylogenetic studies indicated that the virus is closely related to rice yellow mottle virus, a sobemovirus that infects monocotyledons in Africa, and is more distantly related to cocksfoot mottle virus, another sobemovirus that infects monocotyledons. Although the virus can infect R. exaltata experimentally, it differs from Rottboellia yellow mottle virus, a member of a tentative species of the genus Sobemovirus that also infects monocotyledons in Africa. Particle morphology, serological properties, genomic organization, and phylogenetic analysis are all consistent with assignment of the new virus to the genus Sobemovirus. The name Imperata yellow mottle virus is proposed.

  3. HIV Virions as Nanoscopic Test Tubes for Probing Oligomerization of the Integrase Enzyme

    PubMed Central

    2015-01-01

    Employing viruses as nanoscopic lipid-enveloped test tubes allows the miniaturization of protein–protein interaction (PPI) assays while preserving the physiological environment necessary for particular biological processes. Applied to the study of the human immunodeficiency virus type 1 (HIV-1), viral biology and pathology can also be investigated in novel ways, both in vitro as well as in infected cells. In this work we report on an experimental strategy that makes use of engineered HIV-1 viral particles, to allow for probing PPIs of the HIV-1 integrase (IN) inside viruses with single-molecule Förster resonance energy transfer (FRET) using fluorescent proteins (FP). We show that infectious fluorescently labeled viruses can be obtained and that the quantity of labels can be accurately measured and controlled inside individual viral particles. We demonstrate, with proper control experiments, the formation of IN oligomers in single viral particles and inside viral complexes in infected cells. Finally, we show a clear effect on IN oligomerization of small molecule inhibitors of interactions of IN with its natural human cofactor LEDGF/p75, corroborating that IN oligomer enhancing drugs are active already at the level of the virus and strongly suggesting the presence of a dynamic, enhanceable equilibrium between the IN dimer and tetramer in viral particles. Although applied to the HIV-1 IN enzyme, our methodology for utilizing HIV virions as nanoscopic test tubes for probing PPIs is generic, i.e., other PPIs targeted into the HIV-1, or PPIs targeted into other viruses, can potentially be studied with a similar strategy. PMID:24654558

  4. Infection reduces anti-predator behaviors in house finches.

    PubMed

    Adelman, James S; Mayer, Corinne; Hawley, Dana M

    2017-04-01

    Infectious diseases can cause host mortality through direct or indirect mechanisms, including altered behavior. Diminished anti-predator behavior is among the most-studied causes of indirect mortality during infection, particularly for systems in which a parasite's life-cycle requires transmission from prey to predator. Significantly less work has examined whether directly-transmitted parasites and pathogens also reduce anti-predator behaviors. Here we test whether the directly-transmitted bacterial pathogen, Mycoplasma gallisepticum (MG), reduces responses to predation-related stimuli in house finches ( Haemorhous mexicanus ). MG causes conjunctivitis and reduces survival among free-living finches, but rarely causes mortality in captivity, suggesting a role for indirect mechanisms. Wild-caught finches were individually housed in captivity and exposed to the following treatments: 1) visual presence of a stuffed, mounted predator (a Cooper's Hawk ( Accipiter cooperii )) or control object (a vase or a stuffed, mounted mallard duck ( Anas platyrhynchos )), 2) vocalizations of the same predator and non-predator, 3) approach of a researcher to enclosures, and 4) simulated predator attack (capture by hand). MG infection reduced anti-predator responses during visual exposure to a mounted predator and simulated predator attack, even for birds without detectable visual obstruction from conjunctivitis. However, MG infection did not significantly alter responses during human approach or audio playback. These results are consistent with the hypothesis that predation plays a role in MG-induced mortality in the wild, with reduced locomotion, a common form of sickness behavior for many taxa, as a likely mechanism. Our results therefore suggest that additional research on the role of sickness behaviors in predation could prove illuminating.

  5. Sensing of Porcine Reproductive and Respiratory Syndrome Virus-Infected Macrophages by Plasmacytoid Dendritic Cells

    PubMed Central

    García-Nicolás, Obdulio; Auray, Gaël; Sautter, Carmen A.; Rappe, Julie C. F.; McCullough, Kenneth C.; Ruggli, Nicolas; Summerfield, Artur

    2016-01-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) represents a macrophage (MØ)-tropic virus which is unable to induce interferon (IFN) type I in its target cells. Nevertheless, infected pigs show a short but prominent systemic IFN alpha (IFN-α) response. A possible explanation for this discrepancy is the ability of plasmacytoid dendritic cells (pDC) to produce IFN-α in response to free PRRSV virions, independent of infection. Here, we show that the highly pathogenic PRRSV genotype 1 strain Lena is unique in not inducing IFN-α production in pDC, contrasting with systemic IFN-α responses found in infected pigs. We also demonstrate efficient pDC stimulation by PRRSV Lena-infected MØ, resulting in a higher IFN-α production than direct stimulation of pDC by PRRSV virions. This response was strain-independent, required integrin-mediated intercellular contact, intact actin filaments in the MØ and was partially inhibited by an inhibitor of neutral sphingomyelinase. Although infected MØ-derived exosomes stimulated pDC, an efficient delivery of the stimulatory component was dependent on a tight contact between pDC and the infected cells. In conclusion, with this mechanism the immune system can efficiently sense PRRSV, resulting in production of considerable quantities of IFN-α. This is adding complexity to the immunopathogenesis of PRRSV infections, as IFN-α should alert the immune system and initiate the induction of adaptive immune responses, a process known to be inefficient during infection of pigs. PMID:27458429

  6. Infection of cells by Sindbis virus at low temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Gongbo; Hernandez, Raquel; Weninger, Keith

    2007-06-05

    Sindbis virus, which belongs to the family Togaviridae genus Alphavirus infects a variety of vertebrate and invertebrate cells. The initial steps of Sindbis virus infection involve attachment, penetration and uncoating. Two different pathways of infection have been proposed for Alphaviruses. One proposed mechanism involves receptor mediated virion endocytosis followed by membrane fusion triggered by endosome acidification. This virus-host membrane fusion model, well established by influenza virus, has been applied to other unrelated membrane-containing viruses including Alphaviruses. The other mechanism proposes direct penetration of the cell plasma membrane by the virus glycoproteins in the absence of membrane fusion. This alternate modelmore » is supported by both ultrastructural [Paredes, A.M., Ferreira, D., Horton, M., Saad, A., Tsuruta, H., Johnston, R., Klimstra, W., Ryman, K., Hernandez, R., Chiu, W., Brown, D.T., 2004. Conformational changes in Sindbis virions resulting from exposure to low pH and interactions with cells suggest that cell penetration may occur at the cell surface in the absence of membrane fusion. Virology 324(2), 373-386] and biochemical [Koschinski, A., Wengler, G., Wengler, G., and Repp, H., 2005. Rare earth ions block the ion pores generated by the class II fusion proteins of alphaviruses and allow analysis of the biological functions of these pores. J. Gen. Virol. 86(Pt. 12), 3311-3320] studies. We have examined the ability of Sindbis virus to infect Baby Hamster Kidney (BHK) cells at temperatures which block endocytosis. We have found that under these conditions Sindbis virus infects cells in a temperature- and time-dependent fashion.« less

  7. Localization of sweet potato chlorotic stunt virus (SPCSV) in synergic infection with potyviruses in sweet potato.

    PubMed

    Nome, Claudia Fernanda; Nome, Sergio Fernando; Guzmán, Fabiana; Conci, Luis; Laguna, Irma Graciela

    2007-01-01

    Among diseases reported worldwidely for sweet potato (Ipomoea batatas (L) Lam) crop, one of the most frequent is the Sweet potato virus disease (SPVD), caused by sweet potato chlorotic stunt virus (SPCSV) and sweet potato feathery mottle virus (SPFMV) co-infection. In Argentina, there exists the sweet potato chlorotic dwarf (SPCD), a sweet potato disease caused by triple co-infection with SPCSV, SPFMV and sweet potato mild speckling virus (SPMSV). Both diseases cause a synergism between the potyviruses (SPFMV and SPMSV) and the crinivirus (SPCSV). Up to date, studies carried out on the interaction among these three viruses have not described their localization in the infected tissues. In single infections, virions of the crinivirus genus are limited to the phloem while potyviral virions are found in most tissues of the infected plant. The purpose of this work was to localize the heat shock protein 70 homolog (HSP70h), a movement protein for genus crinivirus, of an Argentinean SPCSV isolate in its single infection and in its double and triple co-infection with SPFMV and SPMSV. The localization was made by in situ hybridization (ISH) for electron microscopy (EM) on ultrathin sections of sweet potato cv. Morada INTA infected tissues. The results demonstrated that viral RNA coding HSP70h is restricted to phloem cells during crinivirus single infection, while it was detected outside the phloem in infections combined with the potyviruses involved in chlorotic dwarf disease.

  8. Characteristics of polyomavirus BK (BKPyV) infection in primary human urothelial cells.

    PubMed

    Li, Ruomei; Sharma, Biswa Nath; Linder, Stig; Gutteberg, Tore Jarl; Hirsch, Hans H; Rinaldo, Christine Hanssen

    2013-05-25

    High-level polyomavirus BK (BKPyV) replication in urothelial cells is a hallmark of polyomavirus-associated hemorrhagic cystitis (PyVHC), a painful condition affecting bone marrow transplant recipients. In kidney transplant recipients, replication in tubular epithelial cells is associated with overt disease whereas high-level urothelial replication is clinically silent. We characterized BKPyV replication in primary human urothelial cells (HUCs) and compared it to replication in renal tubular epithelial cells (RPTECs). HUCs were easily infected, as shown by expression of T-antigens, VP1-3, and agnoprotein, and intranuclear virion production. Compared to RPTECs, progeny release was delayed by ≥24h and reduced. BKPyV-infected HUCs rounded up like "decoy cells" and detached without necrosis as shown by delayed cytokeratin-18 release, real-time viability monitoring and imaging. The data show that BKV infection of HUCs and RPTECs is significantly different and support the notion that PyVHC pathogenesis is not solely due to BKPyV replication, but likely requires urotoxic and immunological cofactors. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Infection reduces anti-predator behaviors in house finches

    PubMed Central

    Adelman, James S.; Mayer, Corinne; Hawley, Dana M.

    2017-01-01

    Infectious diseases can cause host mortality through direct or indirect mechanisms, including altered behavior. Diminished anti-predator behavior is among the most-studied causes of indirect mortality during infection, particularly for systems in which a parasite’s life-cycle requires transmission from prey to predator. Significantly less work has examined whether directly-transmitted parasites and pathogens also reduce anti-predator behaviors. Here we test whether the directly-transmitted bacterial pathogen, Mycoplasma gallisepticum (MG), reduces responses to predation-related stimuli in house finches (Haemorhous mexicanus). MG causes conjunctivitis and reduces survival among free-living finches, but rarely causes mortality in captivity, suggesting a role for indirect mechanisms. Wild-caught finches were individually housed in captivity and exposed to the following treatments: 1) visual presence of a stuffed, mounted predator (a Cooper’s Hawk (Accipiter cooperii)) or control object (a vase or a stuffed, mounted mallard duck (Anas platyrhynchos)), 2) vocalizations of the same predator and non-predator, 3) approach of a researcher to enclosures, and 4) simulated predator attack (capture by hand). MG infection reduced anti-predator responses during visual exposure to a mounted predator and simulated predator attack, even for birds without detectable visual obstruction from conjunctivitis. However, MG infection did not significantly alter responses during human approach or audio playback. These results are consistent with the hypothesis that predation plays a role in MG-induced mortality in the wild, with reduced locomotion, a common form of sickness behavior for many taxa, as a likely mechanism. Our results therefore suggest that additional research on the role of sickness behaviors in predation could prove illuminating. PMID:29242677

  10. Metam sodium reduces viability and infectivity of Eimeria oocysts.

    PubMed

    Fetterer, R H; Jenkins, M C; Miska, K B; Cain, G D

    2010-06-01

    Metam sodium (MS, sodium N-methyldithiocarbamate) is a widely used soil pesticide. Fumigation or chemical sterilization of poultry litter containing infectious oocysts could be an effective strategy to block the transmission of avian coccidia. In the current study, the effect of MS on the viability and infectivity of ocysts was investigated. The development of isolated, unsporulated oocysts of both Eimeria tenella and Eimeria maxima was inhibited, in a dose-related manner (IC(50) 8 to 14 microg/ml), by exposure to aqueous MS. Most treated oocysts failed to develop beyond early stages of sporulation. To determine the effect of MS on infectivity, isolated oocysts of E. tenella , Eimeria acervulina , and E. maxima were exposed for 24 hr to aqueous concentrations of MS ranging from 0 to 1,000 microg/ml. Treated oocysts were inoculated into chickens, and parameters of coccidiosis infection were compared to chickens inoculated with equal numbers of untreated oocysts. In a dose-related manner, MS significantly reduced the infectivity of oocysts with maximum effect observed at a dose of 300 microg/ml. When a mixture of oocysts containing 3 coccidian species was exposed to 300 microg/ml MS, from 0 to 24 hr, infectivity of oocysts was significantly reduced after a minimum of 12 hr of exposure. Treatment of aqueous slurries of litter samples obtained from commercial poultry houses, with 300 microg/ml MS for 24 hr, prevented the sporulation of eimerian oocysts in the litter samples relative to untreated control samples. The results indicate that MS could be used to reduce coccidial contamination of poultry litter.

  11. Transmission of Turnip yellows virus by Myzus persicae Is Reduced by Feeding Aphids on Double-Stranded RNA Targeting the Ephrin Receptor Protein

    PubMed Central

    Mulot, Michaël; Monsion, Baptiste; Boissinot, Sylvaine; Rastegar, Maryam; Meyer, Sophie; Bochet, Nicole; Brault, Véronique

    2018-01-01

    Aphid-transmitted plant viruses are a threat for major crops causing massive economic loss worldwide. Members in the Luteoviridae family are transmitted by aphids in a circulative and non-replicative mode. Virions are acquired by aphids when ingesting sap from infected plants and are transported through the gut and the accessory salivary gland (ASG) cells by a transcytosis mechanism relying on virus-specific receptors largely unknown. Once released into the salivary canal, virions are inoculated to plants, together with saliva, during a subsequent feeding. In this paper, we bring in vivo evidence that the membrane-bound Ephrin receptor (Eph) is a novel aphid protein involved in the transmission of the Turnip yellows virus (TuYV, Polerovirus genus, Luteoviridae family) by Myzus persicae. The minor capsid protein of TuYV, essential for aphid transmission, was able to bind the external domain of Eph in yeast. Feeding M. persicae on in planta- or in vitro-synthesized dsRNA targeting Eph-mRNA (dsRNAEph) did not affect aphid feeding behavior but reduced accumulation of TuYV genomes in the aphid's body. Consequently, TuYV transmission efficiency by the dsRNAEph-treated aphids was reproducibly inhibited and we brought evidence that Eph is likely involved in intestinal uptake of the virion. The inhibition of virus uptake after dsRNAEph acquisition was also observed for two other poleroviruses transmitted by M. persicae, suggesting a broader role of Eph in polerovirus transmission. Finally, dsRNAEph acquisition by aphids did not affect nymph production. These results pave the way toward an ecologically safe alternative of insecticide treatments that are used to lower aphid populations and reduce polerovirus damages. PMID:29593696

  12. Transmission of Turnip yellows virus by Myzus persicae Is Reduced by Feeding Aphids on Double-Stranded RNA Targeting the Ephrin Receptor Protein.

    PubMed

    Mulot, Michaël; Monsion, Baptiste; Boissinot, Sylvaine; Rastegar, Maryam; Meyer, Sophie; Bochet, Nicole; Brault, Véronique

    2018-01-01

    Aphid-transmitted plant viruses are a threat for major crops causing massive economic loss worldwide. Members in the Luteoviridae family are transmitted by aphids in a circulative and non-replicative mode. Virions are acquired by aphids when ingesting sap from infected plants and are transported through the gut and the accessory salivary gland (ASG) cells by a transcytosis mechanism relying on virus-specific receptors largely unknown. Once released into the salivary canal, virions are inoculated to plants, together with saliva, during a subsequent feeding. In this paper, we bring in vivo evidence that the membrane-bound Ephrin receptor (Eph) is a novel aphid protein involved in the transmission of the Turnip yellows virus (TuYV, Polerovirus genus, Luteoviridae family) by Myzus persicae . The minor capsid protein of TuYV, essential for aphid transmission, was able to bind the external domain of Eph in yeast. Feeding M. persicae on in planta - or in vitro -synthesized dsRNA targeting Eph -mRNA (dsRNA Eph ) did not affect aphid feeding behavior but reduced accumulation of TuYV genomes in the aphid's body. Consequently, TuYV transmission efficiency by the dsRNA Eph -treated aphids was reproducibly inhibited and we brought evidence that Eph is likely involved in intestinal uptake of the virion. The inhibition of virus uptake after dsRNA Eph acquisition was also observed for two other poleroviruses transmitted by M. persicae , suggesting a broader role of Eph in polerovirus transmission. Finally, dsRNA Eph acquisition by aphids did not affect nymph production. These results pave the way toward an ecologically safe alternative of insecticide treatments that are used to lower aphid populations and reduce polerovirus damages.

  13. Defining Hsp70 Subnetworks in Dengue Virus Replication Reveals Key Vulnerability in Flavivirus Infection

    PubMed Central

    Taguwa, Shuhei; Maringer, Kevin; Li, Xiaokai; Bernal-Rubio, Dabeiba; Rauch, Jennifer N.; Gestwicki, Jason E.; Andino, Raul; Fernandez-Sesma, Ana; Frydman, Judith

    2015-01-01

    Summary Viral protein homeostasis depends entirely on the machinery of the infected cell. Accordingly, viruses can illuminate the interplay between cellular proteostasis components and their distinct substrates. Here we define how the Hsp70 chaperone network mediates the dengue virus life cycle. Cytosolic Hsp70 isoforms are required at distinct steps of the viral cycle, including entry, RNA replication and virion biogenesis. Hsp70 function at each step is specified by nine distinct DNAJ cofactors. Of these, DnaJB11 relocalizes to virus-induced replication complexes to promote RNA synthesis, while DnaJB6 associates with capsid protein and facilitates virion biogenesis. Importantly, an allosteric Hsp70 inhibitor, JG40, potently blocks infection of different dengue serotypes in human primary blood cells without eliciting viral resistance or exerting toxicity to the host cells. JG40 also blocks replication of other medically-important flaviviruses including yellow fever, West Nile and Japanese encephalitis viruses. Thus, targeting host Hsp70 subnetworks provides a path for broad-spectrum antivirals. PMID:26582131

  14. A hantavirus causing hemorrhagic fever with renal syndrome requires gC1qR/p32 for efficient cell binding and infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Yun; Kwon, Young-Chan; Kim, Soo-In

    Hantaan virus (HTNV) is a pathogenic hantavirus that causes hemorrhagic fever with renal syndrome (HFRS). HTNV infection is mediated by {alpha}v{beta}3 integrin. We used protein blots of Vero E6 cell homogenates to demonstrate that radiolabeled HTNV virions bind to gC1qR/p32, the acidic 32-kDa protein known as the receptor for the globular head domain of complement C1q. RNAi-mediated suppression of gC1qR/p32 markedly reduced HTNV binding and infection in human lung epithelial A549 cells. Conversely, transient expression of either simian or human gC1qR/p32 rendered non-permissive CHO cells susceptible to HTNV infection. These results suggest an important role for gC1qR/p32 in HTNV infectionmore » and pathogenesis.« less

  15. Characterization of Mus musculus Papillomavirus 1 Infection In Situ Reveals an Unusual Pattern of Late Gene Expression and Capsid Protein Localization

    PubMed Central

    Handisurya, Alessandra; Day, Patricia M.; Thompson, Cynthia D.; Buck, Christopher B.; Pang, Yuk-Ying S.; Lowy, Douglas R.

    2013-01-01

    Full-length genomic DNA of the recently identified laboratory mouse papillomavirus 1 (MusPV1) was synthesized in vitro and was used to establish and characterize a mouse model of papillomavirus pathobiology. MusPV1 DNA, whether naked or encapsidated by MusPV1 or human papillomavirus 16 (HPV 16) capsids, efficiently induced the outgrowth of papillomas as early as 3 weeks after application to abraded skin on the muzzles and tails of athymic NCr nude mice. High concentrations of virions were extracted from homogenized papillomatous tissues and were serially passaged for >10 generations. Neutralization by L1 antisera confirmed that infectious transmission was capsid mediated. Unexpectedly, the skin of the murine back was much less susceptible to virion-induced papillomas than the muzzle or tail. Although reporter pseudovirions readily transduced the skin of the back, infection with native MusPV1 resulted in less viral genome amplification and gene expression on the back, including reduced expression of the L1 protein and very low expression of the L2 protein, results that imply skin region-specific control of postentry aspects of the viral life cycle. Unexpectedly, L1 protein on the back was predominantly cytoplasmic, while on the tail the abundant L1 was cytoplasmic in the lower epithelial layers and nuclear in the upper layers. Nuclear localization of L1 occurred only in cells that coexpressed the minor capsid protein, L2. The pattern of L1 protein staining in the infected epithelium suggests that L1 expression occurs earlier in the MusPV1 life cycle than in the life cycle of high-risk HPV and that virion assembly is regulated by a previously undescribed mechanism. PMID:24067981

  16. Changes in the mitochondrial network during ectromelia virus infection of permissive L929 cells.

    PubMed

    Gregorczyk, Karolina P; Szulc-Dąbrowska, Lidia; Wyżewski, Zbigniew; Struzik, Justyna; Niemiałtowski, Marek

    2014-01-01

    Mitochondria are extremely important organelles in the life of a cell. Recent studies indicate that mitochondria also play a fundamental role in the cellular innate immune mechanisms against viral infections. Moreover, mitochondria are able to alter their shape continuously through fusion and fission. These tightly regulated processes are activated or inhibited under physiological or pathological (e.g. viral infection) conditions to help restore homeostasis. However, many types of viruses, such as orthopoxviruses, have developed various strategies to evade the mitochondrial-mediated antiviral innate immune responses. Moreover, orthopoxviruses exploit the mitochondria for their survival. Such viral activity has been reported during vaccinia virus (VACV) infection. Our study shows that the Moscow strain of ectromelia virus (ECTV-MOS), an orthopoxvirus, alters the mitochondrial network in permissive L929 cells. Upon infection, the branching structure of the mitochondrial network collapses and becomes disorganized followed by destruction of mitochondrial tubules during the late stage of infection. Small, discrete mitochondria co-localize with progeny virions, close to the cell membrane. Furthermore, clustering of mitochondria is observed around viral factories, particularly between the nucleus and viroplasm. Our findings suggest that ECTV-MOS modulates mitochondrial cellular distribution during later stages of the replication cycle, probably enabling viral replication and/or assembly as well as transport of progeny virions inside the cell. However, this requires further investigation.

  17. Occult infection related hepatitis B surface antigen variants showing lowered secretion capacity

    PubMed Central

    Kim, Hong; Lee, Seoung-Ae; Won, You-Sub; Lee, HyunJoo; Kim, Bum-Joon

    2015-01-01

    AIM: To elucidate the molecular mechanisms underlying hepatitis B virus (HBV) occult infection of genotype C. METHODS: A total of 10 types of hepatitis B surface antigen (HBsAg) variants from a Korean occult cohort were used. After a complete HBV genome plasmid mutated such that it does not express HBsAg and plasmid encoding, each HBsAg variant was transiently co-transfected into HuH-7 cells. The secretion capacity and intracellular expression of the HBV virions and HBsAgs in their respective variants were analyzed using real-time quantitative polymerase chain reaction assays and commercial HBsAg enzyme-linked immunosorbent assays, respectively. RESULTS: All variants exhibited lower levels of HBsAg secretion into the medium compared with the wild type. In particular, in eight of the ten variants, very low levels of HBsAg secretion that were similar to the negative control were detected. In contrast, most variants (9/10) exhibited normal virion secretion capacities comparable with, or even higher than, the wild type. This provided new insight into the intrinsic nature of occult HBV infection, which leads to HBsAg sero-negativeness but has horizontal infectivity. Furthermore, most variants generated higher reactive oxidative species production than the wild type. This finding provides potential links between occult HBV infection and liver disease progression. CONCLUSION: The presently obtained data indicate that deficiency in the secretion capacity of HBsAg variants may have a pivotal function in the occult infections of HBV genotype C. PMID:25684944

  18. Garlic Organosulfur Compounds Reduce Inflammation and Oxidative Stress during Dengue Virus Infection

    PubMed Central

    Hall, Alex; Troupin, Andrea; Londono-Renteria, Berlin; Colpitts, Tonya M.

    2017-01-01

    Dengue virus (DENV) is a mosquito-borne flavivirus that causes significant global human disease and mortality. One approach to develop treatments for DENV infection and the prevention of severe disease is through investigation of natural medicines. Inflammation plays both beneficial and harmful roles during DENV infection. Studies have proposed that the oxidative stress response may be one mechanism responsible for triggering inflammation during DENV infection. Thus, blocking the oxidative stress response could reduce inflammation and the development of severe disease. Garlic has been shown to both reduce inflammation and affect the oxidative stress response. Here, we show that the garlic active compounds diallyl disulfide (DADS), diallyl sulfide (DAS) and alliin reduced inflammation during DENV infection and show that this reduction is due to the effects on the oxidative stress response. These results suggest that garlic could be used as an alternative treatment for DENV infection and for the prevention of severe disease development. PMID:28644404

  19. Patients' Hand Washing and Reducing Hospital-Acquired Infection.

    PubMed

    Haverstick, Stacy; Goodrich, Cara; Freeman, Regi; James, Shandra; Kullar, Rajkiran; Ahrens, Melissa

    2017-06-01

    Hand hygiene is important to prevent hospital-acquired infections. Patients' hand hygiene is just as important as hospital workers' hand hygiene. Hospital-acquired infection rates remain a concern across health centers. To improve patients' hand hygiene through the promotion and use of hand washing with soap and water, hand sanitizer, or both and improve patients' education to reduce hospital-acquired infections. In August 2013, patients in a cardiothoracic postsurgical step-down unit were provided with individual bottles of hand sanitizer. Nurses and nursing technicians provided hand hygiene education to each patient. Patients completed a 6-question survey before the intervention, at hospital discharge and 1, 2, and 3 months after the intervention. Hospital-acquired infection data were tracked monthly by infection prevention staff. Significant correlations were found between hand hygiene and rates of infection with vancomycin-resistant enterococci ( P = .003) and methicillin-resistant Staphylococcus aureus ( P = .01) after the intervention. After the implementation of hand hygiene interventions, rates of both infections declined significantly and patients reported more staff offering opportunities for and encouraging hand hygiene. This quality improvement project demonstrates that increased hand hygiene compliance by patients can influence infection rates in an adult cardiothoracic step-down unit. The decreased infection rates and increased compliance with hand hygiene among the patients may be attributed to the implementation of patient education and the increased accessibility and use of hand sanitizer. ©2017 American Association of Critical-Care Nurses.

  20. Heat shock protein 27 is involved in PCV2 infection in PK-15 cells.

    PubMed

    Liu, Jie; Zhang, Lili; Zhu, Xuejiao; Bai, Juan; Wang, Liming; Wang, Xianwei; Jiang, Ping

    2014-08-30

    Porcine circovirus type 2 (PCV2) has been identified as the etiologic agent which causing postweaning multisystemic wasting syndrome in swine farms in the world. Some quantitative proteomic studies showed that many proteins significantly changed in PCV2-infected cells. To explore the role of cellular chaperones during PCV2 infection, cytoprotective chaperone Hsp27 was analyzed in PCV2-infected PK-15 cells in this study. The results showed that Hsp27 could up-regulate and accumulate in phosphorylated forms in the nuclear zone during PCV2 replication. Suppression of Hsp27 phosphorylation with specific chemical inhibitors or downregulation of all forms of Hsp27 via RNA interference significantly reduced the virus replication. Meanwhile, over-expression of Hsp27 enhanced PCV2 genome replication and virion production. It indicated that Hsp27 was required for PCV2 production in PK-15 cells culture. It should be helpful for understanding the mechanism of replication and pathogenesis of PCV2 and development of novel antiviral therapies in the future. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Mechanism of Enhanced HIV Restriction by Virion Coencapsidated Cytidine Deaminases APOBEC3F and APOBEC3G.

    PubMed

    Ara, Anjuman; Love, Robin P; Follack, Tyson B; Ahmed, Khawaja A; Adolph, Madison B; Chelico, Linda

    2017-02-01

    The APOBEC3 (A3) enzymes, A3G and A3F, are coordinately expressed in CD4 + T cells and can become coencapsidated into HIV-1 virions, primarily in the absence of the viral infectivity factor (Vif). A3F and A3G are deoxycytidine deaminases that inhibit HIV-1 replication by inducing guanine-to-adenine hypermutation through deamination of cytosine to form uracil in minus-strand DNA. The effect of the simultaneous presence of both A3G and A3F on HIV-1 restriction ability is not clear. Here, we used a single-cycle infectivity assay and biochemical analyses to determine if coencapsidated A3G and A3F differ in their restriction capacity from A3G or A3F alone. Proviral DNA sequencing demonstrated that compared to each A3 enzyme alone, A3G and A3F, when combined, had a coordinate effect on hypermutation. Using size exclusion chromatography, rotational anisotropy, and in vitro deamination assays, we demonstrate that A3F promotes A3G deamination activity by forming an A3F/G hetero-oligomer in the absence of RNA which is more efficient at deaminating cytosines. Further, A3F caused the accumulation of shorter reverse transcripts due to decreasing reverse transcriptase efficiency, which would leave single-stranded minus-strand DNA exposed for longer periods of time, enabling more deamination events to occur. Although A3G and A3F are known to function alongside each other, these data provide evidence for an A3F/G hetero-oligomeric A3 with unique properties compared to each individual counterpart. The APOBEC3 enzymes APOBEC3F and APOBEC3G act as a barrier to HIV-1 replication in the absence of the HIV-1 Vif protein. After APOBEC3 enzymes are encapsidated into virions, they deaminate cytosines in minus-strand DNA, which forms promutagenic uracils that induce transition mutations or proviral DNA degradation. Even in the presence of Vif, footprints of APOBEC3-catalyzed deaminations are found, demonstrating that APOBEC3s still have discernible activity against HIV-1 in infected

  2. West Nile virus discriminates between DC-SIGN and DC-SIGNR for cellular attachment and infection.

    PubMed

    Davis, Carl W; Nguyen, Hai-Yen; Hanna, Sheri L; Sánchez, Melissa D; Doms, Robert W; Pierson, Theodore C

    2006-02-01

    The C-type lectins DC-SIGN and DC-SIGNR bind mannose-rich glycans with high affinity. In vitro, cells expressing these attachment factors efficiently capture, and are infected by, a diverse array of appropriately glycosylated pathogens, including dengue virus. In this study, we investigated whether these lectins could enhance cellular infection by West Nile virus (WNV), a mosquito-borne flavivirus related to dengue virus. We discovered that DC-SIGNR promoted WNV infection much more efficiently than did DC-SIGN, particularly when the virus was grown in human cell types. The presence of a single N-linked glycosylation site on either the prM or E glycoprotein of WNV was sufficient to allow DC-SIGNR-mediated infection, demonstrating that uncleaved prM protein present on a flavivirus virion can influence viral tropism under certain circumstances. Preferential utilization of DC-SIGNR was a specific property conferred by the WNV envelope glycoproteins. Chimeras between DC-SIGN and DC-SIGNR demonstrated that the ability of DC-SIGNR to promote WNV infection maps to its carbohydrate recognition domain. WNV virions and subviral particles bound to DC-SIGNR with much greater affinity than DC-SIGN. We believe this is the first report of a pathogen interacting more efficiently with DC-SIGNR than with DC-SIGN. Our results should lead to the discovery of new mechanisms by which these well-studied lectins discriminate among ligands.

  3. Inhibitory effect of the green tea molecule EGCG against dengue virus infection.

    PubMed

    Raekiansyah, Muhareva; Buerano, Corazon C; Luz, Mark Anthony D; Morita, Kouichi

    2018-06-01

    Dengue virus (DENV) infection is a major public health problem worldwide; however, specific antiviral drugs against it are not available. Hence, identifying effective antiviral agents for the prevention of DENV infection is important. In this study, we showed that the reportedly highly biologically active green-tea component epigallocatechin gallate (EGCG) inhibited dengue virus infection regardless of infecting serotype, but no or minimal inhibition was observed with other flaviviruses, including Japanese encephalitis virus, yellow fever virus, and Zika virus. EGCG exerted its antiviral effect mainly at the early stage of infection, probably by interacting directly with virions to prevent virus infection. Our results suggest that EGCG specifically targets DENV and might be used as a lead structure to develop an antiviral drug for use against the virus.

  4. A Haploid Genetic Screen Identifies Heparan Sulfate Proteoglycans Supporting Rift Valley Fever Virus Infection.

    PubMed

    Riblett, Amber M; Blomen, Vincent A; Jae, Lucas T; Altamura, Louis A; Doms, Robert W; Brummelkamp, Thijn R; Wojcechowskyj, Jason A

    2016-02-01

    Rift Valley fever virus (RVFV) causes recurrent insect-borne epizootics throughout the African continent, and infection of humans can lead to a lethal hemorrhagic fever syndrome. Deep mutagenesis of haploid human cells was used to identify host factors required for RVFV infection. This screen identified a suite of enzymes involved in glycosaminoglycan (GAG) biogenesis and transport, including several components of the cis-oligomeric Golgi (COG) complex, one of the central components of Golgi complex trafficking. In addition, disruption of PTAR1 led to RVFV resistance as well as reduced heparan sulfate surface levels, consistent with recent observations that PTAR1-deficient cells exhibit altered Golgi complex morphology and glycosylation defects. A variety of biochemical and genetic approaches were utilized to show that both pathogenic and attenuated RVFV strains require GAGs for efficient infection on some, but not all, cell types, with the block to infection being at the level of virion attachment. Examination of other members of the Bunyaviridae family for GAG-dependent infection suggested that the interaction with GAGs is not universal among bunyaviruses, indicating that these viruses, as well as RVFV on certain cell types, employ additional unidentified virion attachment factors and/or receptors. Rift Valley fever virus (RVFV) is an emerging pathogen that can cause severe disease in humans and animals. Epizootics among livestock populations lead to high mortality rates and can be economically devastating. Human epidemics of Rift Valley fever, often initiated by contact with infected animals, are characterized by a febrile disease that sometimes leads to encephalitis or hemorrhagic fever. The global burden of the pathogen is increasing because it has recently disseminated beyond Africa, which is of particular concern because the virus can be transmitted by widely distributed mosquito species. There are no FDA-licensed vaccines or antiviral agents with activity

  5. Three-dimensional visualization of the Autographa californica multiple nucleopolyhedrovirus occlusion-derived virion envelopment process gives new clues as to its mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Yang; Li, Kunpeng; Tang, Peiping

    2015-02-15

    Baculoviruses produce two virion phenotypes, occlusion-derived virion (ODV) and budded virion (BV). ODV envelopment occurs in the nucleus. Morphogenesis of the ODV has been studied extensively; however, the mechanisms underlying microvesicle formation and ODV envelopment in nuclei remain unclear. In this study, we used electron tomography (ET) together with the conventional electron microscopy to study the envelopment of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) ODV. Our results demonstrate that not only the inner but also the outer nuclear membrane can invaginate and vesiculate into microvesicles and that intranuclear microvesicles are the direct source of the ODV membrane. Five main events inmore » the ODV envelopment process are summarized, from which we propose a model to explain this process. - Highlights: • Both the inner and outer nuclear membranes could invaginate. • Both the inner and outer nuclear membranes could vesiculate into microvesicles. • Five main events in the ODV envelopment process are summarized. • A model is proposed to explain this ODV envelopment.« less

  6. Polypeptide Synthesis in Simian Virus 5-Infected Cells

    PubMed Central

    Peluso, Richard W.; Lamb, Robert A.; Choppin, Purnell W.

    1977-01-01

    Polypeptide synthesis in three different cell types infected with simian virus 5 has been examined using high-resolution polyacrylamide slab gel electrophoresis, and all of the known viral polypeptides have been identified above the host cell background. The polypeptides were synthesized in infected cells in unequal proportions, which are approximately the same as they are found in virions, suggesting that their relative rates of synthesis are controlled. The nucleocapsid polypeptide (NP) was the first to be detected in infected cells, and by 12 to 14 h the other virion structural polypeptides were identified, except for the polypeptides comprising the smaller glycoprotein (F). However, a glycosylated precursor (F0) with a molecular weight of 66,000 was found in each cell type, and pulse-chase experiments suggested that this precursor was cleaved to yield polypeptides F1 and F2. No other proteolytic processing was found. In addition to the structural polypeptides, the synthesis of five other polypeptides, designated I through V, has been observed in simian virus 5-infected cells. One of these (V), with a molecular weight of 24,000, was found in all cells examined and may be a nonstructural viral polypeptide. In contrast, there are polypeptides present in uninfected cells that correspond in size to polypeptides I through IV, and similar polypeptides have also been detected in increased amounts in cells infected with Sendai virus. These findings, and the fact that the synthesis of all four of these polypeptides is not increased in every cell type, suggest that they represent host polypeptides whose synthesis may be enhanced upon infection. When a high salt concentration was used to decrease host cell protein synthesis in infected cells, polypeptides IV and (to a lesser extent) I were synthesized in relatively greater amounts than other cellular polypeptides, as were the viral polypeptides. The possibility that these polypeptides may play some role in virus

  7. A slender tract of glycine residues is required for translocation of the VP2 protein N-terminal domain through the parvovirus MVM capsid channel to initiate infection.

    PubMed

    Castellanos, Milagros; Pérez, Rebeca; Rodríguez-Huete, Alicia; Grueso, Esther; Almendral, José M; Mateu, Mauricio G

    2013-10-01

    Viruses constitute paradigms to study conformational dynamics in biomacromolecular assemblies. Infection by the parvovirus MVM (minute virus of mice) requires a conformational rearrangement that involves the intracellular externalization through capsid channels of the 2Nt (N-terminal region of VP2). We have investigated the role in this process of conserved glycine residues in an extended glycine-rich tract located immediately after 2Nt. Based on the virus structure, residues with hydrophobic side chains of increasing volume were substituted for glycine residues 31 or 33. Mutations had no effect on capsid assembly or stability, but inhibited virus infectivity. All mutations, except those to alanine residues which had minor effects, impaired 2Nt externalization in nuclear maturing virions and in purified virions, to an extent that correlated with the side chain size. Different biochemical and biophysical analyses were consistent with this result. Importantly, all of the tested glycine residue replacements impaired the capacity of the virion to initiate infection, at ratios correlating with their restrictive effects on 2Nt externalization. Thus small residues within the evolutionarily conserved glycine-rich tract facilitate 2Nt externalization through the capsid channel, as required by this virus to initiate cell entry. The results demonstrate the exquisite dependence on geometric constraints of a biologically relevant translocation event in a biomolecular complex.

  8. Photosensitization is required for antiretroviral activity of hypericin

    NASA Astrophysics Data System (ADS)

    Carpenter, Susan; Tossberg, John; Kraus, George A.

    1991-06-01

    In a seminal series of papers, Meruelo and co-workers have described the potent antiretroviral effect of hypericin. Interestingly, hypericin was found to inhibit not only the production of infectious virus from chronically infected cells, but was also shown to directly inhibit reverse transcriptase activity of mature virions. The effect of hypericin on cells chronically infected with equine infectious anemia virus (EIAV), a retrovirus genetically related to HIV, is demonstrated. At concentrations of 10 (mu) g/ml, hypericin reduced production of infectious EIAV by 99.99 without causing obvious cytopathic effects. Interestingly, the results indicated that the antiretroviral activity of hypericin was wholly dependent on the presence of light. No decrease in viral infectivity was observed when hypericin and virus were incubated in the dark. Moreover, it appeared that light was an absolute requirement for the antiviral activity, as even high concentrations of hypericin (10 (mu) g/ml) were unable to reduce infectivity of as few as 100 infectious virions.

  9. Insights into Head-Tailed Viruses Infecting Extremely Halophilic Archaea

    PubMed Central

    Pietilä, Maija K.; Laurinmäki, Pasi; Russell, Daniel A.; Ko, Ching-Chung; Jacobs-Sera, Deborah; Butcher, Sarah J.

    2013-01-01

    Extremophilic archaea, both hyperthermophiles and halophiles, dominate in habitats where rather harsh conditions are encountered. Like all other organisms, archaeal cells are susceptible to viral infections, and to date, about 100 archaeal viruses have been described. Among them, there are extraordinary virion morphologies as well as the common head-tailed viruses. Although approximately half of the isolated archaeal viruses belong to the latter group, no three-dimensional virion structures of these head-tailed viruses are available. Thus, rigorous comparisons with bacteriophages are not yet warranted. In the present study, we determined the genome sequences of two of such viruses of halophiles and solved their capsid structures by cryo-electron microscopy and three-dimensional image reconstruction. We show that these viruses are inactivated, yet remain intact, at low salinity and that their infectivity is regained when high salinity is restored. This enabled us to determine their three-dimensional capsid structures at low salinity to a ∼10-Å resolution. The genetic and structural data showed that both viruses belong to the same T-number class, but one of them has enlarged its capsid to accommodate a larger genome than typically associated with a T=7 capsid by inserting an additional protein into the capsid lattice. PMID:23283946

  10. Requirement for an intact T-cell actin and tubulin cytoskeleton for efficient assembly and spread of human immunodeficiency virus type 1.

    PubMed

    Jolly, Clare; Mitar, Ivonne; Sattentau, Quentin J

    2007-06-01

    Human immunodeficiency virus type 1 (HIV-1) infection of CD4(+) T cells leads to the production of new virions that assemble at the plasma membrane. Gag and Env accumulate in the context of lipid rafts at the inner and outer leaflets of the plasma membrane, respectively, forming polarized domains from which HIV-1 buds. HIV-1 budding can result in either release of cell-free virions or direct cell-cell spread via a virological synapse (VS). The recruitment of Gag and Env to these plasma membrane caps in T cells is poorly understood but may require elements of the T-cell secretory apparatus coordinated by the cytoskeleton. Using fixed-cell immunofluorescence labeling and confocal microscopy, we observed a high percentage of HIV-1-infected T cells with polarized Env and Gag in capped, lipid raft-like assembly domains. Treatment of infected T cells with inhibitors of actin or tubulin remodeling disrupted Gag and Env compartmentalization within the polarized raft-like domains. Depolymerization of the actin cytoskeleton reduced Gag release and viral infectivity, and actin and tubulin inhibitors reduced Env incorporation into virions. Live- and fixed-cell confocal imaging and assay of de novo DNA synthesis by real-time PCR allowed quantification of HIV-1 cell-cell transfer. Inhibition of actin and tubulin remodeling in infected cells interfered with cell-cell spread across a VS and reduced new viral DNA synthesis. Based on these data, we propose that HIV-1 requires both actin and tubulin components of the T-cell cytoskeleton to direct its assembly and budding and to elaborate a functional VS.

  11. Defining Hsp70 Subnetworks in Dengue Virus Replication Reveals Key Vulnerability in Flavivirus Infection.

    PubMed

    Taguwa, Shuhei; Maringer, Kevin; Li, Xiaokai; Bernal-Rubio, Dabeiba; Rauch, Jennifer N; Gestwicki, Jason E; Andino, Raul; Fernandez-Sesma, Ana; Frydman, Judith

    2015-11-19

    Viral protein homeostasis depends entirely on the machinery of the infected cell. Accordingly, viruses can illuminate the interplay between cellular proteostasis components and their distinct substrates. Here, we define how the Hsp70 chaperone network mediates the dengue virus life cycle. Cytosolic Hsp70 isoforms are required at distinct steps of the viral cycle, including entry, RNA replication, and virion biogenesis. Hsp70 function at each step is specified by nine distinct DNAJ cofactors. Of these, DnaJB11 relocalizes to virus-induced replication complexes to promote RNA synthesis, while DnaJB6 associates with capsid protein and facilitates virion biogenesis. Importantly, an allosteric Hsp70 inhibitor, JG40, potently blocks infection of different dengue serotypes in human primary blood cells without eliciting viral resistance or exerting toxicity to the host cells. JG40 also blocks replication of other medically-important flaviviruses including yellow fever, West Nile and Japanese encephalitis viruses. Thus, targeting host Hsp70 subnetworks provides a path for broad-spectrum antivirals. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Viral erythrocytic necrosis: Some physiological consequences of infection in chum salmon (Oncorhynchus keta)

    USGS Publications Warehouse

    MacMillan, John R.; Mulcahy, Daniel M.; Landolt, Marsha L.

    1980-01-01

    Erythroid cells in chum salmon (Oncorhynchus keta) susceptible to infection with erythrocytic necrosis virus (ENV) were examined by light and electron microscopy. Cells of stages II, III, IV, V, and VI contained complete eyrthrocytic necrosis virions in the cytoplasm. Viruses closely resembling ENV were also detected in the nuclei of some erythroblasts. Some secondary consequences of ENV infection were a threefold greater mortality rate from vibriosis, a significantly decreased tolerance to oxygen depletion, and a decreased ability to regulate serum sodium and potassium in saltwater.

  13. Supplemental Perioperative Oxygen to Reduce Surgical Site Infection After High Energy Fracture Surgery

    DTIC Science & Technology

    2016-10-01

    AWARD NUMBER: W81XWH-12-1-0588 TITLE: Supplemental Perioperative Oxygen to Reduce Surgical Site Infection After High Energy Fracture Surgery...3. DATES COVERED (From - To) 30 Sep 2015 – 29 Sep 2016 30129/29/124. TITLE AND SUBTITLE Supplemental Perioperative Oxygen to Reduce Surgical Site...prospective randomized treatment trial investigating if supplemental perioperative oxygen use will reduce surgical site infection after surgery on fractures

  14. Intravirion cohesion of matrix protein M1 with ribonucleocapsid is a prerequisite of influenza virus infectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhirnov, O.P., E-mail: zhirnov@inbox.ru; Manykin, A.A.; Rossman, J.S.

    Influenza virus has two major structural modules, an external lipid envelope and an internal ribonucleocapsid containing the genomic RNA in the form of the ribonucleoprotein (RNP) complex, both of which are interlinked by the matrix protein M1. Here we studied M1-RNP cohesion within virus exposed to acidic pH in vitro. The effect of acidification was dependent on the cleavage of the surface glycoprotein HA. Acidic pH caused a loss of intravirion RNP-M1 cohesion and activated RNP polymerase activity in virus with cleaved HA (HA1/2) but not in the uncleaved (HA0) virus. The in vitro acidified HA1/2 virus rapidly lost infectivitymore » whereas the HA0 one retained infectivity, following activation by trypsin, suggesting that premature activation and release of the RNP is detrimental to viral infectivity. Rimantadine, an inhibitor of the M2 ion channel, was found to protect the HA1/2 virus interior against acidic disintegration, confirming that M2-dependent proton translocation is essential for the intravirion RNP release and suggesting that the M2 ion channel is only active in virions with cleaved HA. Acidic treatment of both HA0 and HA1/2 influenza viruses induces formation of spikeless bleb-like protrusion of ~25 nm in diameter on the surface of the virion, though only the HA1/2 virus was permeable to protons and permitted RNP release. It is likely that this bleb corresponds to the M2-enriched and M1-depleted focus arising from pinching off of the virus during the completion of budding. Cooperatively, the data suggest that the influenza virus has an asymmetric structure where the M1-mediated organization of the RNP inside the virion is a prerequisite for infectious entry into target cell. - Highlights: • The influenza A virus has a novel asymmetric internal structure. • The structure is largely maintained by M1-RNP cohesion within the virion. • This asymmetry plays an important role during viral entry, facilitating virus uncoating and the initiation of a

  15. Identification of a novel Lymantria dispar nucleopolyhedrovirus mutant that exhibits abnormal polyhedron formation and virion occlusion

    Treesearch

    James M. Slavicek; Melissa J. Mercer; Dana Pohlman; Mary Ellen Kelly; David S. Bischoff

    1998-01-01

    In previous studies on the formation of Lymantria dispar nuclear polyhedrosis virus (LdMNPV) few polyhedra (FP) mutants, several polyhedron formation mutants (PFM) were identified that appeared to be unique. These viral mutants are being characterized to investigate the processes of polyhedron formation and virion occlusion. Ld

  16. The p2 domain of human immunodeficiency virus type 1 Gag regulates sequential proteolytic processing and is required to produce fully infectious virions.

    PubMed

    Pettit, S C; Moody, M D; Wehbie, R S; Kaplan, A H; Nantermet, P V; Klein, C A; Swanstrom, R

    1994-12-01

    The proteolytic processing sites of the human immunodeficiency virus type 1 (HIV-1) Gag precursor are cleaved in a sequential manner by the viral protease. We investigated the factors that regulate sequential processing. When full-length Gag protein was digested with recombinant HIV-1 protease in vitro, four of the five major processing sites in Gag were cleaved at rates that differ by as much as 400-fold. Three of these four processing sites were cleaved independently of the others. The CA/p2 site, however, was cleaved approximately 20-fold faster when the adjacent downstream p2/NC site was blocked from cleavage or when the p2 domain of Gag was deleted. These results suggest that the presence of a C-terminal p2 tail on processing intermediates slows cleavage at the upstream CA/p2 site. We also found that lower pH selectively accelerated cleavage of the CA/p2 processing site in the full-length precursor and as a peptide primarily by a sequence-based mechanism rather than by a change in protein conformation. Deletion of the p2 domain of Gag results in released virions that are less infectious despite the presence of the processed final products of Gag. These findings suggest that the p2 domain of HIV-1 Gag regulates the rate of cleavage at the CA/p2 processing site during sequential processing in vitro and in infected cells and that p2 may function in the proper assembly of virions.

  17. Efficient Sensing of Infected Cells in Absence of Virus Particles by Blasmacytoid Dendritic Cells Is Blocked by the Viral Ribonuclease Erns

    PubMed Central

    Python, Sylvie; Gerber, Markus; Suter, Rolf; Ruggli, Nicolas; Summerfield, Artur

    2013-01-01

    Plasmacytoid dendritic cells (pDC) have been shown to efficiently sense HCV- or HIV-infected cells, using a virion-free pathway. Here, we demonstrate for classical swine fever virus, a member of the Flaviviridae, that this process is much more efficient in terms of interferon-alpha induction when compared to direct stimulation by virus particles. By employment of virus replicon particles or infectious RNA which can replicate but not form de novo virions, we exclude a transfer of virus from the donor cell to the pDC. pDC activation by infected cells was mediated by a contact-dependent RNA transfer to pDC, which was sensitive to a TLR7 inhibitor. This was inhibited by drugs affecting the cytoskeleton and membrane cholesterol. We further demonstrate that a unique viral protein with ribonuclease activity, the viral Erns protein of pestiviruses, efficiently prevented this process. This required intact ribonuclease function in intracellular compartments. We propose that this pathway of activation could be of particular importance for viruses which tend to be mostly cell-associated, cause persistent infection, and are non-cytopathogenic. PMID:23785283

  18. Urinary tract infections and reduced risk of bladder cancer in Los Angeles.

    PubMed

    Jiang, X; Castelao, J E; Groshen, S; Cortessis, V K; Shibata, D; Conti, D V; Yuan, J-M; Pike, M C; Gago-Dominguez, M

    2009-03-10

    We investigated the association between urinary tract infections (UTIs) and transitional cell carcinoma of the bladder in a population-based case-control study in Los Angeles covering 1586 cases and age-, gender-, and race-matched neighbourhood controls. A history of bladder infection was associated with a reduced risk of bladder cancer among women (odds ratio (OR), 0.66; 95% confidence interval (CI), 0.46-0.96). No effect was found in men, perhaps due to power limitations. A greater reduction in bladder cancer risk was observed among women with multiple infections (OR, 0.37; 95% CI, 0.18-0.78). Exclusion of subjects with a history of diabetes, kidney or bladder stones did not change the inverse association. A history of kidney infections was not associated with bladder cancer risk, but there was a weak association between a history of other UTIs and slightly increased risk among men. Our results suggest that a history of bladder infection is associated with a reduced risk of bladder cancer among women. Cytotoxicity from antibiotics commonly used to treat bladder infections is proposed as one possible explanation.

  19. Vaginal challenge with an SIV-based dual reporter system reveals that infection can occur throughout the upper and lower female reproductive tract.

    PubMed

    Stieh, Daniel J; Maric, Danijela; Kelley, Z L; Anderson, Meegan R; Hattaway, Holly Z; Beilfuss, Beth A; Rothwangl, Katharina B; Veazey, Ronald S; Hope, Thomas J

    2014-10-01

    The majority of new HIV infections occur in women as a result of heterosexual intercourse, overcoming multiple innate barriers to infection within the mucosa. However, the avenues through which infection is established, and the nature of bottlenecks to transmission, have been the source of considerable investigation and contention. Using a high dose of a single round non-replicating SIV-based vector containing a novel dual reporter system, we determined the sites of infection by the inoculum using the rhesus macaque vaginal transmission model. Here we show that the entire female reproductive tract (FRT), including the vagina, ecto- and endocervix, along with ovaries and local draining lymph nodes can contain transduced cells only 48 hours after inoculation. The distribution of infection shows that virions quickly disseminate after exposure and can access target cells throughout the FRT, with an apparent preference for infection in squamous vaginal and ectocervical mucosa. JRFL enveloped virions infect diverse CD4 expressing cell types, with T cells resident throughout the FRT representing the primary target. These findings establish a new perspective that the entire FRT is susceptible and virus can reach as far as the ovary and local draining lymph nodes. Based on these findings, it is essential that protective mechanisms for prevention of HIV acquisition must be present at protective levels throughout the entire FRT to provide complete protection.

  20. Environmental contaminant mixtures modulate in vitro influenza infection.

    PubMed

    Desforges, Jean-Pierre; Bandoro, Christopher; Shehata, Laila; Sonne, Christian; Dietz, Rune; Puryear, Wendy B; Runstadler, Jonathan A

    2018-09-01

    Environmental chemicals, particularly organochlorinated contaminants (OCs), are associated with a ranged of adverse health effects, including impairment of the immune system and antiviral immunity. Influenza A virus (IAV) is an infectious disease of major global public health concern and exposure to OCs can increase the susceptibility, morbidity, and mortality to disease. It is however unclear how pollutants are interacting and affecting the outcome of viral infections at the cellular level. In this study, we investigated the effects of a mixture of environmentally relevant OCs on IAV infectivity upon in vitro exposure in Madin Darby Canine Kidney (MDCK) cells and human lung epithelial cells (A549). Exposure to OCs reduced IAV infectivity in MDCK and A549 cells during both short (18-24h) and long-term (72h) infections at 0.05 and 0.5ppm, and effects were more pronounced in cells co-treated with OCs and IAV than pre-treated with OCs prior to IAV (p<0.001). Pre-treatment of host cells with OCs did not affect IAV cell surface attachment or entry. Visualization of IAV by transmission electron microscopy revealed increased envelope deformations and fewer intact virions during OC exposure. Taken together, our results suggest that disruption of IAV infection upon in vitro exposure to OCs was not due to host-cell effects influencing viral attachment and entry, but perhaps mediated by direct effects on viral particles or cellular processes involved in host-virus interactions. In vitro infectivity studies such as ours can shed light on the complex processes underlying host-pathogen-pollutant interactions. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Chronic hepatitis B infection and HBV DNA-containing capsids: Modeling and analysis

    NASA Astrophysics Data System (ADS)

    Manna, Kalyan; Chakrabarty, Siddhartha P.

    2015-05-01

    We analyze the dynamics of chronic HBV infection taking into account both uninfected and infected hepatocytes along with the intracellular HBV DNA-containing capsids and the virions. While previous HBV models have included either the uninfected hepatocytes or the intracellular HBV DNA-containing capsids, our model accounts for both these two populations. We prove the conditions for local and global stability of both the uninfected and infected steady states in terms of the basic reproduction number. Further, we incorporate a time lag in the model to encompass the intracellular delay in the production of the infected hepatocytes and find that this delay does not affect the overall dynamics of the system. The results for the model and the delay model are finally numerically illustrated.

  2. Differences in Env and Gag protein expression patterns and epitope availability in feline immunodeficiency virus infected PBMC compared to infected and transfected feline model cell lines.

    PubMed

    Roukaerts, Inge D M; Grant, Chris K; Theuns, Sebastiaan; Christiaens, Isaura; Acar, Delphine D; Van Bockstael, Sebastiaan; Desmarets, Lowiese M B; Nauwynck, Hans J

    2017-01-02

    Env and Gag are key components of the FIV virion that are targeted to the plasma membrane for virion assembly. They are both important stimulators and targets of anti-FIV immunity. To investigate and compare the expression pattern and antigenic changes of Gag and Env in various research models, infected PBMC (the natural FIV host cells) and GFox, and transfected CrFK were stained over time with various Env and Gag specific MAbs. In FIV infected GFox and PBMC, Env showed changes in epitope availability for antibody binding during processing and trafficking, which was not seen in transfected CrFK. Interestingly, epitopes exposed on intracellular Env and Env present on the plasma membrane of CrFK and GFox seem to be hidden on plasma membrane expressed Env of FIV infected PBMC. A kinetic follow up of Gag and Env expression showed a polarization of both Gag and Env expression to specific sites at the plasma membrane of PBMC, but not in other cell lines. In conclusion, mature trimeric cell surface expressed Env might be antigenically distinct from intracellular monomeric Env in PBMC and might possibly be unrecognizable by feline humoral immunity. In addition, Env expression is restricted to a small area on the plasma membrane and co-localizes with a large moiety of Gag, which may represent a preferred FIV budding site, or initiation of virological synapses with direct cell-to-cell virus transmission. Copyright © 2016. Published by Elsevier B.V.

  3. Bacteriophage M13 gene 2 protein. Increasing its yield in infected cells, and identification and localization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Norm S. -C.; Pratt, David

    M13 gene 2 protein, implicated in the introduction of single-strand nicks into double-stranded closed circular (RFI) DNA molecules, was previously found in only very small quantities in infected cells. We now find that the gene 2 protein can be readily identified and its yield can be increased manyfold if infections are carried out at high temperature with either a gene 2 temperature- sensitive mutant or with wild type M13. Mechanisms are suggested by which the increased yield could result from subnormal function of the protein in these infections. Under conditions of high yield, the gene 2 protein is found largelymore » in a rapidly sedimenting particulate fraction of unknown nature, where it constitutes as much as 36 percent of the leucine-labeled protein. The gene 2 protein can be readily solubilized from this particulate fraction with the ionic detergent sodium dodecyl sulfate (SDS) but no satisfactory solubilization method was found which keeps the protein in its native state. Attempts to demonstrate in vitro activity of the gene 2 protein, that is, nicking of M13 RFI DNA, were not successful. On the basis of SDS-polyacrylamide gel electrophoresis, we estimate that the gene 2 polypeptide has a molecular weight of approximately 40,000. In the course of the experiments on gene 2 protein, it was observed that the gene 3, as well as the gene 8, virion protein molecules were found predominantly in the cell inner membrane, supporting the idea that virion assembly is carried out there. The gene 4, nonvirion, protein also proved to be in the inner membrane, as would be expected if this protein plays a role in virion assembly.« less

  4. A Neuron-Specific Antiviral Mechanism Prevents Lethal Flaviviral Infection of Mosquitoes

    PubMed Central

    Xiao, Xiaoping; Zhang, Rudian; Pang, Xiaojing; Liang, Guodong; Wang, Penghua; Cheng, Gong

    2015-01-01

    Mosquitoes are natural vectors for many etiologic agents of human viral diseases. Mosquito-borne flaviviruses can persistently infect the mosquito central nervous system without causing dramatic pathology or influencing the mosquito behavior and lifespan. The mechanism by which the mosquito nervous system resists flaviviral infection is still largely unknown. Here we report that an Aedes aegypti homologue of the neural factor Hikaru genki (AaHig) efficiently restricts flavivirus infection of the central nervous system. AaHig was predominantly expressed in the mosquito nervous system and localized to the plasma membrane of neural cells. Functional blockade of AaHig enhanced Dengue virus (DENV) and Japanese encephalitis virus (JEV), but not Sindbis virus (SINV), replication in mosquito heads and consequently caused neural apoptosis and a dramatic reduction in the mosquito lifespan. Consistently, delivery of recombinant AaHig to mosquitoes reduced viral infection. Furthermore, the membrane-localized AaHig directly interfaced with a highly conserved motif in the surface envelope proteins of DENV and JEV, and consequently interrupted endocytic viral entry into mosquito cells. Loss of either plasma membrane targeting or virion-binding ability rendered AaHig nonfunctional. Interestingly, Culex pipien pallens Hig also demonstrated a prominent anti-flavivirus activity, suggesting a functionally conserved function for Hig. Our results demonstrate that an evolutionarily conserved antiviral mechanism prevents lethal flaviviral infection of the central nervous system in mosquitoes, and thus may facilitate flaviviral transmission in nature. PMID:25915054

  5. Enhancement of the Musca domestica hytrosavirus infection with orally delivered reducing agents.

    PubMed

    Boucias, D; Baniszewski, J; Prompiboon, P; Lietze, V; Geden, C

    2015-01-01

    House flies (Musca domestica L.) throughout the world are infected with the salivary gland hypertrophy virus MdSGHV (Hytrosaviridae). Although the primary route of infection is thought to be via ingestion, flies that are old enough to feed normally are resistant to infection per os, suggesting that the peritrophic matrix (PM) is a barrier to virus transmission. Histological examination of the peritrophic matrix of healthy flies revealed a multilaminate structure produced by midgut cells located near the proventriculus. SEM revealed the PM to form a confluent sheet surrounding the food bolus with pores/openings less than 10nm in diameter. TEM revealed the PM to be multilayered, varying in width from 350 to 900 nm, and generally thinner in male than in female flies. When flies were fed on the reducing agents dithiothetriol (DTT) or tris (2-caboxyethyl)phosphine hydrochloride (TCEP) for 48 h before per os exposure to the virus, infection rates increased 10- to 20-fold compared with flies that did not receive the reducing agent treatments. PM's from flies treated with DTT and TCEP displayed varying degrees of disruption, particularly in the outer layer, and lacked the electron-dense inner layer facing the ectoperitrophic space. Both drugs were somewhat toxic to the flies, resulting in>40% mortality at doses greater than 10mM (DTT) or 5 mM (TCEP). DTT increased male fly susceptibility (55.1% infected) more than that of females (7.8%), whereas TCEP increased susceptibility of females (42.9%) more than that of males (26.2%). The cause for the sex differences in response to oral exposure the reducing agents is unclear. Exposing flies to food treated with virus and the reducing agents at the same time, rather than pretreating flies with the drugs, had no effect on susceptibility to the virus. Presumably, the reducing agent disrupted the enveloped virus and acted as a viricidal agent. In summary, it is proposed that the reducing agents influence integrity of the PM barrier

  6. Herpes simplex virus glycoproteins gB and gH function in fusion between the virion envelope and the outer nuclear membrane.

    PubMed

    Farnsworth, Aaron; Wisner, Todd W; Webb, Michael; Roller, Richard; Cohen, Gary; Eisenberg, Roselyn; Johnson, David C

    2007-06-12

    Herpesviruses must traverse the nuclear envelope to gain access to the cytoplasm and, ultimately, to exit cells. It is believed that herpesvirus nucleocapsids enter the perinuclear space by budding through the inner nuclear membrane (NM). To reach the cytoplasm these enveloped particles must fuse with the outer NM and the unenveloped capsids then acquire a second envelope in the trans-Golgi network. Little is known about the process by which herpesviruses virions fuse with the outer NM. Here we show that a herpes simplex virus (HSV) mutant lacking both the two putative fusion glycoproteins gB and gH failed to cross the nuclear envelope. Enveloped virions accumulated in the perinuclear space or in membrane vesicles that bulged into the nucleoplasm (herniations). By contrast, mutants lacking just gB or gH showed only minor or no defects in nuclear egress. We concluded that either HSV gB or gH can promote fusion between the virion envelope and the outer NM. It is noteworthy that fusion associated with HSV entry requires the cooperative action of both gB and gH, suggesting that the two types of fusion (egress versus entry) are dissimilar processes.

  7. Improved Prefusion Stability, Optimized Codon Usage, and Augmented Virion Packaging Enhance the Immunogenicity of Respiratory Syncytial Virus Fusion Protein in a Vectored-Vaccine Candidate

    PubMed Central

    Liang, Bo; Ngwuta, Joan O.; Surman, Sonja; Kabatova, Barbora; Liu, Xiang; Lingemann, Matthias; Liu, Xueqiao; Yang, Lijuan; Herbert, Richard; Swerczek, Joanna; Chen, Man; Moin, Syed M.; Kumar, Azad; McLellan, Jason S.; Kwong, Peter D.; Graham, Barney S.; Collins, Peter L.

    2017-01-01

    available. We are developing a chimeric rB/HPIV3 vector expressing RSV F as a bivalent RSV/HPIV3 vaccine and have been evaluating means to increase RSV F immunogenicity. In this study, we evaluated the effects of improved stabilization of F in the pre-F conformation and of codon optimization resulting in reduced CpG content and greater pre-F expression. Reduced CpG content dampened the interferon response to infection, promoting higher replication and increased F expression. We demonstrate that improved pre-F stabilization and strategic manipulation of codon usage, together with efficient pre-F packaging into vector virions, significantly increased F immunogenicity in the bivalent RSV/HPIV3 vaccine. The improved immunogenicity included induction of increased titers of high-quality complement-independent antibodies with greater pre-F site Ø binding and greater protection against RSV challenge. PMID:28539444

  8. Reducing infection risk in implant-based breast-reconstruction surgery: challenges and solutions

    PubMed Central

    Ooi, Adrian SH; Song, David H

    2016-01-01

    Implant-based procedures are the most commonly performed method for postmastectomy breast reconstruction. While donor-site morbidity is low, these procedures are associated with a higher risk of reconstructive loss. Many of these are related to infection of the implant, which can lead to prolonged antibiotic treatment, undesired additional surgical procedures, and unsatisfactory results. This review combines a summary of the recent literature regarding implant-related breast-reconstruction infections and combines this with a practical approach to the patient and surgery aimed at reducing this risk. Prevention of infection begins with appropriate reconstructive choice based on an assessment and optimization of risk factors. These include patient and disease characteristics, such as smoking, obesity, large breast size, and immediate reconstructive procedures, as well as adjuvant therapy, such as radiotherapy and chemotherapy. For implant-based breast reconstruction, preoperative planning and organization is key to reducing infection. A logical and consistent intraoperative and postoperative surgical protocol, including appropriate antibiotic choice, mastectomy-pocket creation, implant handling, and considered acellular dermal matrix use contribute toward the reduction of breast-implant infections. PMID:27621667

  9. Suppression of human immunodeficiency virus replication by ascorbate in chronically and acutely infected cells.

    PubMed Central

    Harakeh, S; Jariwalla, R J; Pauling, L

    1990-01-01

    We have studied the action of ascorbate (vitamin C) on human immunodeficiency virus type 1 (HIV-1), the etiological agent clinically associated with AIDS. We report the suppression of virus production and cell fusion in HIV-infected T-lymphocytic cell lines grown in the presence of nontoxic concentrations of ascorbate. In chronically infected cells expressing HIV at peak levels, ascorbate reduced the levels of extracellular reverse transcriptase (RT) activity (by greater than 99%) and of p24 antigen (by 90%) in the culture supernatant. Under similar conditions, no detectable inhibitory effects on cell viability, host metabolic activity, and protein synthesis were observed. In freshly infected CD4+ cells, ascorbate inhibited the formation of giant-cell syncytia (by approximately 93%). Exposure of cell-free virus to ascorbate at 37 degrees C for 1 day had no effect on its RT activity or syncytium-forming ability. Prolonged exposure of virus (37 degrees C for 4 days) in the presence of ascorbate (100-150 micrograms/ml) resulted in the drop by a factor of 3-14 in RT activity as compared to a reduction by a factor of 25-172 in extracellular RT released from chronically infected cells. These results indicate that ascorbate mediates an anti-HIV effect by diminishing viral protein production in infected cells and RT stability in extracellular virions. Images PMID:1698293

  10. Mobilization of HIV Spread by Diaphanous 2 Dependent Filopodia in Infected Dendritic Cells

    PubMed Central

    Aggarwal, Anupriya; Iemma, Tina L.; Shih, Ivy; Newsome, Timothy P.; McAllery, Samantha; Cunningham, Anthony L.; Turville, Stuart G.

    2012-01-01

    Paramount to the success of persistent viral infection is the ability of viruses to navigate hostile environments en route to future targets. In response to such obstacles, many viruses have developed the ability of establishing actin rich-membrane bridges to aid in future infections. Herein through dynamic imaging of HIV infected dendritic cells, we have observed how viral high-jacking of the actin/membrane network facilitates one of the most efficient forms of HIV spread. Within infected DC, viral egress is coupled to viral filopodia formation, with more than 90% of filopodia bearing immature HIV on their tips at extensions of 10 to 20 µm. Live imaging showed HIV filopodia routinely pivoting at their base, and projecting HIV virions at µm.sec−1 along repetitive arc trajectories. HIV filopodial dynamics lead to up to 800 DC to CD4 T cell contacts per hour, with selection of T cells culminating in multiple filopodia tethering and converging to envelope the CD4 T-cell membrane with budding HIV particles. Long viral filopodial formation was dependent on the formin diaphanous 2 (Diaph2), and not a dominant Arp2/3 filopodial pathway often associated with pathogenic actin polymerization. Manipulation of HIV Nef reduced HIV transfer 25-fold by reducing viral filopodia frequency, supporting the potency of DC HIV transfer was dependent on viral filopodia abundance. Thus our observations show HIV corrupts DC to CD4 T cell interactions by physically embedding at the leading edge contacts of long DC filopodial networks. PMID:22685410

  11. Enhanced staphylolytic activity of the Staphylococcus aureus bacteriophage vB_SauS-phiIPLA88 HydH5 virion associated peptidoglycan hydrolase: fusions, deletions and synergy with LysH5

    USDA-ARS?s Scientific Manuscript database

    Virion-associated peptidoglycan hydrolases have a potential as antimicrobial agents due to their ability to lyse Gram positive bacteria on contact. In this work, our aim was to improve the lytic activity of HydH5, a virion associated peptidoglycan hydrolase from the Staphylococcus aureus bacteriopha...

  12. Quantitative real-time single particle analysis of virions.

    PubMed

    Heider, Susanne; Metzner, Christoph

    2014-08-01

    Providing information about single virus particles has for a long time been mainly the domain of electron microscopy. More recently, technologies have been developed-or adapted from other fields, such as nanotechnology-to allow for the real-time quantification of physical virion particles, while supplying additional information such as particle diameter concomitantly. These technologies have progressed to the stage of commercialization increasing the speed of viral titer measurements from hours to minutes, thus providing a significant advantage for many aspects of virology research and biotechnology applications. Additional advantages lie in the broad spectrum of virus species that may be measured and the possibility to determine the ratio of infectious to total particles. A series of disadvantages remain associated with these technologies, such as a low specificity for viral particles. In this review we will discuss these technologies by comparing four systems for real-time single virus particle analysis and quantification. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Novel Acylguanidine-Based Inhibitor of HIV-1

    PubMed Central

    Mwimanzi, Philip; Tietjen, Ian; Miller, Scott C.; Shahid, Aniqa; Cobarrubias, Kyle; Kinloch, Natalie N.; Baraki, Bemuluyigza; Richard, Jonathan; Finzi, Andrés; Fedida, David; Brumme, Zabrina L.

    2016-01-01

    ABSTRACT The emergence of transmissible HIV-1 strains with resistance to antiretroviral drugs highlights a continual need for new therapies. Here we describe a novel acylguanidine-containing compound, 1-(2-(azepan-1-yl)nicotinoyl)guanidine (or SM111), that inhibits in vitro replication of HIV-1, including strains resistant to licensed protease, reverse transcriptase, and integrase inhibitors, without major cellular toxicity. At inhibitory concentrations, intracellular p24Gag production was unaffected, but virion release (measured as extracellular p24Gag) was reduced and virion infectivity was substantially impaired, suggesting that SM111 acts at a late stage of viral replication. SM111-mediated inhibition of HIV-1 was partially overcome by a Vpu I17R mutation alone or a Vpu W22* truncation in combination with Env N136Y. These mutations enhanced virion infectivity and Env expression on the surface of infected cells in the absence and presence of SM111 but also impaired Vpu's ability to downregulate CD4 and BST2/tetherin. Taken together, our results support acylguanidines as a class of HIV-1 inhibitors with a distinct mechanism of action compared to that of licensed antiretrovirals. Further research on SM111 and similar compounds may help to elucidate knowledge gaps related to Vpu's role in promoting viral egress and infectivity. IMPORTANCE New inhibitors of HIV-1 replication may be useful as therapeutics to counteract drug resistance and as reagents to perform more detailed studies of viral pathogenesis. SM111 is a small molecule that blocks the replication of wild-type and drug-resistant HIV-1 strains by impairing viral release and substantially reducing virion infectivity, most likely through its ability to prevent Env expression at the infected cell surface. Partial resistance to SM111 is mediated by mutations in Vpu and/or Env, suggesting that the compound affects host/viral protein interactions that are important during viral egress. Further characterization of

  14. A soluble form of P74 can act as a per os infectivity factor to the autographa californica multiple nucleopolyhedrovirus

    USDA-ARS?s Scientific Manuscript database

    The baculovirus occlusion-derived virion (ODV) is required to spread virus infection among insect hosts via the per os route. The Autographa californica Multicapsid Nucleopolyhedrovirus (AcMNPV) P74 protein is an ODV envelope protein that is essential for ODVs to be infectious. P74 is anchored in ...

  15. PVP-SVM: Sequence-Based Prediction of Phage Virion Proteins Using a Support Vector Machine

    PubMed Central

    Manavalan, Balachandran; Shin, Tae H.; Lee, Gwang

    2018-01-01

    Accurately identifying bacteriophage virion proteins from uncharacterized sequences is important to understand interactions between the phage and its host bacteria in order to develop new antibacterial drugs. However, identification of such proteins using experimental techniques is expensive and often time consuming; hence, development of an efficient computational algorithm for the prediction of phage virion proteins (PVPs) prior to in vitro experimentation is needed. Here, we describe a support vector machine (SVM)-based PVP predictor, called PVP-SVM, which was trained with 136 optimal features. A feature selection protocol was employed to identify the optimal features from a large set that included amino acid composition, dipeptide composition, atomic composition, physicochemical properties, and chain-transition-distribution. PVP-SVM achieved an accuracy of 0.870 during leave-one-out cross-validation, which was 6% higher than control SVM predictors trained with all features, indicating the efficiency of the feature selection method. Furthermore, PVP-SVM displayed superior performance compared to the currently available method, PVPred, and two other machine-learning methods developed in this study when objectively evaluated with an independent dataset. For the convenience of the scientific community, a user-friendly and publicly accessible web server has been established at www.thegleelab.org/PVP-SVM/PVP-SVM.html. PMID:29616000

  16. PVP-SVM: Sequence-Based Prediction of Phage Virion Proteins Using a Support Vector Machine.

    PubMed

    Manavalan, Balachandran; Shin, Tae H; Lee, Gwang

    2018-01-01

    Accurately identifying bacteriophage virion proteins from uncharacterized sequences is important to understand interactions between the phage and its host bacteria in order to develop new antibacterial drugs. However, identification of such proteins using experimental techniques is expensive and often time consuming; hence, development of an efficient computational algorithm for the prediction of phage virion proteins (PVPs) prior to in vitro experimentation is needed. Here, we describe a support vector machine (SVM)-based PVP predictor, called PVP-SVM, which was trained with 136 optimal features. A feature selection protocol was employed to identify the optimal features from a large set that included amino acid composition, dipeptide composition, atomic composition, physicochemical properties, and chain-transition-distribution. PVP-SVM achieved an accuracy of 0.870 during leave-one-out cross-validation, which was 6% higher than control SVM predictors trained with all features, indicating the efficiency of the feature selection method. Furthermore, PVP-SVM displayed superior performance compared to the currently available method, PVPred, and two other machine-learning methods developed in this study when objectively evaluated with an independent dataset. For the convenience of the scientific community, a user-friendly and publicly accessible web server has been established at www.thegleelab.org/PVP-SVM/PVP-SVM.html.

  17. Diversity of phage infection types and associated terminology: the problem with 'Lytic or lysogenic'.

    PubMed

    Hobbs, Zack; Abedon, Stephen T

    2016-04-01

    Bacteriophages, or phages, are viruses of members of domain Bacteria. These viruses play numerous roles in shaping the diversity of microbial communities, with impact differing depending on what infection strategies specific phages employ. From an applied perspective, these especially are communities containing undesired or pathogenic bacteria that can be modified through phage-mediated bacterial biocontrol, that is, through phage therapy. Here we seek to categorize phages in terms of their infection strategies as well as review or suggest more descriptive, accurate or distinguishing terminology. Categories can be differentiated in terms of (1) whether or not virion release occurs (productive infections versus lysogeny, pseudolysogeny and/or the phage carrier state), (2) the means of virion release (lytic versus chronic release) and (3) the degree to which phages are genetically equipped to display lysogenic cycles (temperate versus non-temperate phages). We address in particular the use or overuse of what can be a somewhat equivocal phrase, 'Lytic or lysogenic', especially when employed as a means of distinguishing among phages types. We suggest that the implied dichotomy is inconsistent with both modern as well as historical understanding of phage biology. We consider, therefore, less ambiguous terminology for distinguishing between 'Lytic' versus 'Lysogenic' phage types. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Effectiveness and cost of failure mode and effects analysis methodology to reduce neurosurgical site infections.

    PubMed

    Hover, Alexander R; Sistrunk, William W; Cavagnol, Robert M; Scarrow, Alan; Finley, Phillip J; Kroencke, Audrey D; Walker, Judith L

    2014-01-01

    Mercy Hospital Springfield is a tertiary care facility with 32 000 discharges and 15 000 inpatient surgeries in 2011. From June 2009 through January 2011, a stable inpatient elective neurosurgery infection rate of 2.15% was observed. The failure mode and effects analysis (FMEA) methodology to reduce inpatient neurosurgery infections was utilized. Following FMEA implementation, overall elective neurosurgery infection rates were reduced to 1.51% and sustained through May 2012. Compared with baseline, the post-FMEA deep-space and organ infection rate was reduced by 41% (P = .052). Overall hospital inpatient clean surgery infection rates for the same time frame did not decrease to the same extent, suggesting a specific effect of the FMEA. The study team believes that the FMEA interventions resulted in 14 fewer expected infections, $270 270 in savings, a 168-day reduction in expected length of stay, and 22 fewer readmissions. Given the serious morbidity and cost of health care-associated infections, the study team concludes that FMEA implementation was clinically cost-effective. © 2013 by the American College of Medical Quality.

  19. HIV-1 replication in cell lines harboring INI1/hSNF5 mutations.

    PubMed

    Sorin, Masha; Yung, Eric; Wu, Xuhong; Kalpana, Ganjam V

    2006-08-31

    INI1/hSNF5 is a cellular protein that directly interacts with HIV-1 integrase (IN). It is specifically incorporated into HIV-1 virions. A dominant negative mutant derived from INI1 inhibits HIV-1 replication. Recent studies indicate that INI1 is associated with pre-integration and reverse transcription complexes that are formed upon viral entry into the target cells. INI1 also is a tumor suppressor, biallelically deleted/mutated in malignant rhabdoid tumors. We have utilized cell lines derived from the rhabdoid tumors, MON and STA-WT1, that harbor either null or truncating mutations of INI1 respectively, to assess the effect of INI1 on HIV-1 replication. We found that while HIV-1 virions produced in 293T cells efficiently transduced MON and STA-WT1 cells, HIV-1 particle production was severely reduced in both of these cells. Reintroduction of INI1 into MON and STA-WT1 significantly enhanced the particle production in both cell lines. HIV-1 particles produced in MON cells were reduced for infectivity, while those produced in STA-WT1 were not. Further analysis indicated the presence of INI1 in those virions produced from STA-WT1 but not from those produced from MON cells. HIV-1 produced in MON cells were defective for synthesis of early and late reverse transcription products in the target cells. Furthermore, virions produced in MON cells were defective for exogenous reverse transcriptase activity carried out using exogenous template, primer and substrate. Our results suggest that INI1-deficient cells exhibit reduced particle production that can be partly enhanced by re-introduction of INI1. Infectivity of HIV-1 produced in some but not all INI1 defective cells, is affected and this defect may correlate to the lack of INI1 and/or some other proteins in these virions. The block in early events of virion produced from MON cells appears to be at the stage of reverse transcription. These studies suggest that presence of INI1 or some other host factor in virions and

  20. NTCP-Reconstituted In Vitro HBV Infection System.

    PubMed

    Sun, Yinyan; Qi, Yonghe; Peng, Bo; Li, Wenhui

    2017-01-01

    Sodium taurocholate cotransporting polypeptide (NTCP) has been identified as a functional receptor for hepatitis B virus (HBV). Expressing human NTCP in human hepatoma HepG2 cells (HepG2-NTCP) renders these cells susceptible for HBV infection. The HepG2-NTCP stably transfected cell line provides a much-needed and easily accessible platform for studying the virus. HepG2-NTCP cells could also be used to identify chemicals targeting key steps of the virus life cycle including HBV covalent closed circular (ccc) DNA, and enable the development of novel antivirals against the infection.Many factors may contribute to the efficiency of HBV infection on HepG2-NTCP cells, with clonal differences among cell line isolates, the source of viral inoculum, and infection medium among the most critical ones. Here, we provide detailed protocols for efficient HBV infection of HepG2-NTCP cells in culture; generation and selection of single cell clones of HepG2-NTCP; production of infectious HBV virion stock through DNA transfection of recombinant plasmid that enables studying primary clinical HBV isolates; and assessing the infection with immunostaining of HBV antigens and Southern blot analysis of HBV cccDNA.

  1. Genetic variation of occult hepatitis B virus infection

    PubMed Central

    Zhu, Hui-Lan; Li, Xu; Li, Jun; Zhang, Zhen-Hua

    2016-01-01

    Occult hepatitis B virus infection (OBI), characterized as the persistence of hepatitis B virus (HBV) surface antigen (HBsAg) seronegativity and low viral load in blood or liver, is a special form of HBV infection. OBI may be related mainly to mutations in the HBV genome, although the underlying mechanism of it remains to be clarified. Mutations especially within the immunodominant “α” determinant of S protein are “hot spots” that could contribute to the occurrence of OBI via affecting antigenicity and immunogenicity of HBsAg or replication and secretion of virion. Clinical reports account for a large proportion of previous studies on OBI, while functional analyses, especially those based on full-length HBV genome, are rare. PMID:27053845

  2. Potential of the virion-associated peptidoglycan hydrolase HydH5 and its derivative fusion proteins in milk biopreservation

    USDA-ARS?s Scientific Manuscript database

    Bacteriophage lytic enzymes have recently attracted considerable interest as novel antimicrobials against Gram-positive bacteria. In this work, antimicrobial activity in milk of HydH5 [(a virion-associated peptidoglycan hydrolase (VAPGH) encoded by the Staphylococcus aureus bacteriophage vB_SauS-ph...

  3. Improving efficiency, reducing infection, and enhancing experience.

    PubMed

    Massa, Judith

    For health professionals to make an informed choice and tailor each bed bath to the individual needs of the patient, they must firstly understand the different bed bath options available, their impact on skin integrity, and any associated risks they may pose to the patient in terms of cross-infection. Only with this knowledge can health professionals determine the appropriate form and frequency of the bed bath. Specialist wipes offer significant improvements in skin care and a reduced risk of cross-infection, compared with the traditional soap and water bed bath. Use of these wipes also improves the efficiency of the process, which links to the Productive Ward Initiative and results in clinical staff (i.e. nursing staff, healthcare assistants) having more time available to undertake additional patient care activities. This product focus highlights the benefits of moving to a wipe-based bed bath method, and the significant efficiency savings that can be realized as a result.

  4. Two potential recombinant rabies vaccines expressing canine parvovirus virion protein 2 induce immunogenicity to canine parvovirus and rabies virus.

    PubMed

    Luo, Jun; Shi, Hehe; Tan, Yeping; Niu, Xuefeng; Long, Teng; Zhao, Jing; Tian, Qin; Wang, Yifei; Chen, Hao; Guo, Xiaofeng

    2016-08-17

    Both rabies virus (RABV) and canine parvovirus (CPV) cause lethal diseases in dogs. In this study, both high egg passage Flury (HEP-Flury) strains of RABV and recombinant RABV carrying double RABV glycoprotein (G) gene were used to express the CPV virion protein 2 (VP2) gene, and were designated rHEP-VP2 and, rHEP-dG-VP2 respectively. The two recombinant RABVs maintained optimal virus titration according to their viral growth kinetics assay compared with the parental strain HEP-Flury. Western blotting indicated that G protein and VP2 were expressed in vitro. The expression of VP2 in Crandell feline kidney cells post-infection by rHEP-VP2 and rHEP-dG-VP2 was confirmed by indirect immunofluorescence assay with antibody against VP2. Immunogenicity of recombinant rabies viruses was tested in Kunming mice. Both rHEP-VP2 and rHEP-dG-VP2 induced high levels of rabies antibody compared with HEP-Flury. Mice immunized with rHEP-VP2 and rHEP-dG-VP2 both had a high level of antibodies against VP2, which can protect against CPV infection. A challenge experiment indicated that more than 80% mice immunized with recombinant RABVs survived after infection of challenge virus standard 24 (CVS-24). Together, this study showed that recombinant RABVs expressing VP2 induced protective immune responses to RABV and CPV. Therefore, rHEP-VP2 and rHEP-dG-VP2 might be potential combined vaccines for RABV and CPV. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Complete cure of persistent virus infections by antiviral siRNAs.

    PubMed

    Saulnier, Aure; Pelletier, Isabelle; Labadie, Karine; Colbère-Garapin, Florence

    2006-01-01

    Small interfering RNAs (siRNAs) have been developed as antiviral agents for mammalian cells. The capacity of specific siRNAs to prevent virus infections has been demonstrated, and there is evidence that these new antiviral agents could have a partial therapeutic effect a few days after infection. We investigated the possibility of curing a persistent infection, several months after becoming established, using an in vitro model of persistent poliovirus (PV) infection in HEp-2 cells. Despite high virus titers and the presence of PV mutants, repeated treatment with a mixture of two siRNAs targeting both noncoding and coding regions, one of them in a highly conserved region, resulted in the complete cure of the majority of persistently infected cultures. No escape mutants emerged in treated cultures. The antiviral effect of specific siRNAs, consistent with a mechanism of RNA interference, correlated with a decrease in the amount of viral RNA, until its complete disappearance, resulting in cultures cured of virions and viral RNA.

  6. The enzymatic activity of CEM15/Apobec-3G is essential for the regulation of the infectivity of HIV-1 virion but not a sole determinant of its antiviral activity.

    PubMed

    Shindo, Keisuke; Takaori-Kondo, Akifumi; Kobayashi, Masayuki; Abudu, Aierken; Fukunaga, Keiko; Uchiyama, Takashi

    2003-11-07

    Human immunodeficiency virus, type 1 (HIV-1) Vif protein plays an essential role in the regulation of the infectivity of HIV-1 virion. Vif functions to counteract an anti-HIV-1 cellular factor in non-permissive cells, CEM15/Apobec-3G, which shares a cytidine deaminase motif. CEM15/Apobec-3G deaminates dC to dU in the minus strand DNA of HIV-1, resulting in G to A hypermutation in the plus strand DNA. In this study, we have done the mutagenesis analysis on two cytidine deaminase motifs in CEM15/Apobec-3G and examined their antiviral functions as well as the DNA editing activity. Point mutations in the C-terminal active site such as E259Q and C291A almost completely abrogated the antiviral function, while those in the N-terminal active site such as E67Q and C100A retained this activity to a lesser extent as compared with that of the wild type. The DNA editing activities of E67Q and E259Q mutants were both retained but impaired to the same extent. This indicates that the enzymatic activity of this protein is essential but not a sole determinant of the antiviral activity. Furthermore, all the deletion mutants tested in this study lost the antiviral activity because of the loss of the activity for dimerization, suggesting that the entire protein structure is necessary for the antiviral function.

  7. Iridovirus infections in farm-reared tropical ornamental fish.

    PubMed

    Paperna, I; Vilenkin, M; de Matos, A P

    2001-12-20

    A systemic viral infection in both gourami Trichogaster spp. and swordtail Xiphophorus hellerii and an outbreak of lymphocystis in scalare Pterophyllum scalarae and gourami are reported to have occurred in fish reared in ornamental fish farms in Israel. The systemic infection developed in endothelial cells that became hypertrophic and their contents were modified. The presence of such cells in light-microscopically examined stained smears and sections provides an initial indication for this systemic viral infection. Infection in gourami caused hemorrhagic dropsy. Transmission electron microscopic (TEM) images of iridovirus-like particles recovered from gouramies showed them to be 138 to 201 nm from vertex to vertex (v-v); those from swordtails were 170 to 188 nm v-v. TEM images of lymphocystis virions from scalare were 312 to 342 nm v-v and from gourami 292 to 341 nm v-v. Lymphocystis cells from the gourami were joined by a solid hyaline plate, which was lacking in the infection in scalare where the intercellular spaces between the lymphocystis cells consisted of loose connective tissue.

  8. Preoperative Antibiotics Do Not Reduce Postoperative Infections Following Needle-Localized Lumpectomy.

    PubMed

    Petersen, Lindsay; Carlson, Kjirsten; Kopkash, Katherine; Witt, Thomas; Madrigrano, Andrea

    2017-01-01

    Many surgeons routinely use a single preoperative prophylactic dose of an antibiotic prior to needle-localized lumpectomy, despite the lack of evidence that this practice reduces the rate of infection. The aim of this study is to determine if antibiotic administration reduces wound infection for needle-localized lumpectomy. A retrospective chart review of patients that underwent needle-localized lumpectomy from 2010 to 2012 was conducted. Data regarding patient demographics, comorbid conditions, medical history, operative details, and pathology were collected. Surgical infections requiring opening of the wound or treatment with antibiotics were documented if occurred during the first 3 months following surgery. Fisher's exact tests were used for statistical analyses. Two hundred and twenty patients were identified. Thirty-six percent (80/220) of patients received preoperative prophylactic antibiotics. The antibiotic and the nonantibiotic group were similar in age, body mass index, tobacco use, history of radiation, history of neo-adjuvant chemotherapy, duration of surgery, duration needle in place, and pathology. Two percent (4/220) of patients had wound infections. Two percent (3/140) of patients in the nonantibiotic group had infections, versus 1% (1/80) in the antibiotic group. In an analysis of patients that developed infections (n = 4) and patients that did not (n = 216), there was no statistically significant difference in patient demographic, duration of surgery, duration of time needle in place, or pathology. It is safe to omit the use of antibiotics prior to needle-localized lumpectomy and avoid the cost of the medication, patient adverse reactions, and increase in resistant organisms. © 2016 Wiley Periodicals, Inc.

  9. Double gloving to reduce surgical cross-infection.

    PubMed

    Tanner, J; Parkinson, H

    2002-01-01

    The invasive nature of surgery, with its increased exposure to blood, means that during surgery there is a high risk of transfer of pathogens. Pathogens can be transferred through contact between surgical patients and the surgical team, resulting in post-operative or blood borne infections in patients or blood borne infections in the surgical team. Both patients and the surgical team need to be protected from this risk. This risk can be reduced by implementing protective barriers such as wearing surgical gloves. Wearing two pairs of surgical gloves, as opposed to one pair, is considered to provide an additional barrier and further reduce the risk of contamination. The primary objective of this review was to determine if double gloving (wearing two pairs of gloves), rather than single gloving, reduces the number of post-operative or blood borne infections in surgical patients or blood borne infections in the surgical team. The secondary objective of this review was to determine if double gloving, rather than single gloving, reduces the number of perforations to the innermost pair of surgical gloves. The innermost gloves (next to skin) compared with the outermost gloves are considered to be the last barrier between the patient and the surgical team. The reviewers searched the Cochrane Wounds Group Specialised Trials Register, MEDLINE, CINAHL, EMBASE and the Cochrane Controlled Trials Register. Glove manufacturing companies and professional organisations were also contacted. Randomised controlled trials involving: single gloving, double gloving, glove liners or coloured puncture indicator systems. Both reviewers independently assessed the relevance and quality of each trial. Trials to be included were cross checked and authenticated by both reviewers. Data was extracted by one reviewer and cross checked for accuracy by the second reviewer. Two trials were found which addressed the primary outcome. A total of 18 randomised controlled trials which measured glove

  10. Psittacid herpesvirus 3 infection in the eclectus parrot (Eclectus roratus) in Australia.

    PubMed

    Gabor, M; Gabor, L J; Peacock, L; Srivastava, M; Rosenwax, A; Phalen, D

    2013-11-01

    Psittacid herpesvirus 3 (PsHV-3) has recently been implicated as the cause of a severe respiratory disease in Bourke's parrots (Neopsephotus bourkii) in the United States. In this report, the clinical manifestations and gross and microscopic lesions of PsHV-3 infection in 2 eclectus parrots (Eclectus roratus) in Australia are described. The presence of a PsHV-3 infection was confirmed by polymerase chain reaction amplification and sequencing of PsHV-3 DNA using degenerate and PsHV-3 primers. Electron microscopy of infected cells demonstrated the assembly of herpesvirus virions as well as intranuclear tubular structures. The detection of PsHV-3 in Australia in 2 eclectus parrots broadens the list of known affected species and confirms the presence of this virus in Australia.

  11. Ibogaine reduces organ colonization in murine systemic and gastrointestinal Candida albicans infections.

    PubMed

    Yordanov, M; Dimitrova, P; Patkar, S; Falcocchio, S; Xoxi, E; Saso, L; Ivanovska, N

    2005-07-01

    In the present study the effect of the indole alkaloid ibogaine on the in vitro lipolytic activity and adherence to epithelial cells of Candida albicans was investigated. The substance was administered intraperitoneally at a dose of 5 mg kg(-1) day(-1) in mice with disseminated and gastrointestinal C. albicans infections. Ibogaine significantly decreased the rate of mortality and the number of C. albicans c.f.u. recovered from the kidney, liver and spleen. Ibogaine interfered with the early stages of both disseminated and gastrointestinal C. albicans infections but did not reduce the number of C. albicans c.f.u. in the organs at the late phase of infections. The development of a specific immune response was not influenced by ibogaine, since the delayed-type hypersensitivity reaction to C. albicans and the production of interferon (IFN)-gamma were similar in control and ibogaine-treated mice. The combined use of amphotericin B plus ibogaine in the treatment of mice with gastrointestinal infection reduced organ colonization more strongly than each substance alone.

  12. Shedding of Ebola Virus Surface Glycoprotein Is a Mechanism of Self-regulation of Cellular Cytotoxicity and Has a Direct Effect on Virus Infectivity.

    PubMed

    Dolnik, Olga; Volchkova, Valentina A; Escudero-Perez, Beatriz; Lawrence, Philip; Klenk, Hans-Dieter; Volchkov, Viktor E

    2015-10-01

    The surface glycoprotein (GP) is responsible for Ebola virus (EBOV) attachment and membrane fusion during virus entry. Surface expression of highly glycosylated GP causes marked cytotoxicity via masking of a wide range of cellular surface molecules, including integrins. Considerable amounts of surface GP are shed from virus-infected cells in a soluble truncated form by tumor necrosis factor α-converting enzyme. In this study, the role of GP shedding was investigated using a reverse genetics approach by comparing recombinant viruses possessing amino acid substitutions at the GP shedding site. Virus with an L635V substitution showed a substantial decrease in shedding, whereas a D637V substitution resulted in a striking increase in the release of shed GP. Variations in shedding efficacy correlated with observed differences in the amounts of shed GP in the medium, GP present in virus-infected cells, and GP present on virions. An increase in shedding appeared to be associated with a reduction in viral cytotoxicity, and, vice versa, the virus that shed less was more cytotoxic. An increase in shedding also resulted in a reduction in viral infectivity, whereas a decrease in shedding efficacy enhanced viral growth characteristics in vitro. Differences in shedding efficacy and, as a result, differences in the amount of mature GP available for incorporation into budding virions did not equate to differences in overall release of viral particles. Likewise, data suggest that the resulting differences in the amount of mature GP on the cell surface led to variations in the GP content of released particles and, as a consequence, in infectivity. In conclusion, fine-tuning of the levels of EBOV GP expressed at the surface of virus-infected cells via GP shedding plays an important role in EBOV replication by orchestrating the balance between optimal virion GP content and cytotoxicity caused by GP. © The Author 2015. Published by Oxford University Press on behalf of the Infectious

  13. Extensive in silico analysis of Mimivirus coded Rab GTPase homolog suggests a possible role in virion membrane biogenesis.

    PubMed

    Zade, Amrutraj; Sengupta, Malavi; Kondabagil, Kiran

    2015-01-01

    Rab GTPases are the key regulators of intracellular membrane trafficking in eukaryotes. Many viruses and intracellular bacterial pathogens have evolved to hijack the host Rab GTPase functions, mainly through activators and effector proteins, for their benefit. Acanthamoeba polyphaga mimivirus (APMV) is one of the largest viruses and belongs to the monophyletic clade of nucleo-cytoplasmic large DNA viruses (NCLDV). The inner membrane lining is integral to the APMV virion structure. APMV assembly involves extensive host membrane modifications, like vesicle budding and fusion, leading to the formation of a membrane sheet that is incorporated into the virion. Intriguingly, APMV and all group I members of the Mimiviridae family code for a putative Rab GTPase protein. APMV is the first reported virus to code for a Rab GTPase (encoded by R214 gene). Our thorough in silico analysis of the subfamily specific (SF) region of Mimiviridae Rab GTPase sequences suggests that they are related to Rab5, a member of the group II Rab GTPases, of lower eukaryotes. Because of their high divergence from the existing three isoforms, A, B, and C of the Rab5-family, we suggest that Mimiviridae Rabs constitute a new isoform, Rab5D. Phylogenetic analysis indicated probable horizontal acquisition from a lower eukaryotic ancestor followed by selection and divergence. Furthermore, interaction network analysis suggests that vps34 (a Class III PI3K homolog, coded by APMV L615), Atg-8 and dynamin (host proteins) are recruited by APMV Rab GTPase during capsid assembly. Based on these observations, we hypothesize that APMV Rab plays a role in the acquisition of inner membrane during virion assembly.

  14. Human Gut-On-A-Chip Supports Polarized Infection of Coxsackie B1 Virus In Vitro

    PubMed Central

    Papafragkou, Efstathia; Weaver, James C.; Ferrante, Thomas C.; Bahinski, Anthony; Elkins, Christopher A.; Kulka, Michael; Ingber, Donald E.

    2017-01-01

    Analysis of enterovirus infection is difficult in animals because they express different virus receptors than humans, and static cell culture systems do not reproduce the physical complexity of the human intestinal epithelium. Here, using coxsackievirus B1 (CVB1) as a prototype enterovirus strain, we demonstrate that human enterovirus infection, replication and infectious virus production can be analyzed in vitro in a human Gut-on-a-Chip microfluidic device that supports culture of highly differentiated human villus intestinal epithelium under conditions of fluid flow and peristalsis-like motions. When CVB1 was introduced into the epithelium-lined intestinal lumen of the device, virions entered the epithelium, replicated inside the cells producing detectable cytopathic effects (CPEs), and both infectious virions and inflammatory cytokines were released in a polarized manner from the cell apex, as they could be detected in the effluent from the epithelial microchannel. When the virus was introduced via a basal route of infection (by inoculating virus into fluid flowing through a parallel lower ‘vascular’ channel separated from the epithelial channel by a porous membrane), significantly lower viral titers, decreased CPEs, and delayed caspase-3 activation were observed; however, cytokines continued to be secreted apically. The presence of continuous fluid flow through the epithelial lumen also resulted in production of a gradient of CPEs consistent with the flow direction. Thus, the human Gut-on-a-Chip may provide a suitable in vitro model for enteric virus infection and for investigating mechanisms of enterovirus pathogenesis. PMID:28146569

  15. Tetraodon nigroviridis as a nonlethal model of infectious spleen and kidney necrosis virus (ISKNV) infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu Xiaopeng; Huang Lichao; Weng Shaoping

    Infectious spleen and kidney necrosis virus (ISKNV) is the type species of the genus Megalocytivirus, family Iridoviridae. We have previously established a high mortality ISKNV infection model of zebrafish (Danio rerio). In this study, a nonlethal Tetraodon nigroviridis model of ISKNV infection was established. ISKNV infection did not cause lethal disease in Tetraodon but could infect almost all the organs of this species. Electron microscopy showed ISKNV particles were present in infected tissues. Immunofluorescence and quantitative real-time PCR analysis showed that nearly all the virions and infected cells were cleared at 14 d postinfection. The expression profiles of interferon-{gamma} andmore » tumor necrosis factor-{alpha} gene in response to ISKNV infection were significantly different in Tetraodon and zebrafish. The establishment of the nonlethal Tetraodon model of ISKNV infection can offer a valuable tool complementary to the zebrafish infection model for studying megalocytivirus disease, fish immune systems, and viral tropism.« less

  16. Membrane dynamics associated with viral infection.

    PubMed

    de Armas-Rillo, Laura; Valera, María-Soledad; Marrero-Hernández, Sara; Valenzuela-Fernández, Agustín

    2016-05-01

    Viral replication and spreading are fundamental events in the viral life cycle, accounting for the assembly and egression of nascent virions, events that are directly associated with viral pathogenesis in target hosts. These processes occur in cellular compartments that are modified by specialized viral proteins, causing a rearrangement of different cell membranes in infected cells and affecting the ER, mitochondria, Golgi apparatus, vesicles and endosomes, as well as processes such as autophagic membrane flux. In fact, the activation or inhibition of membrane trafficking and other related activities are fundamental to ensure the adequate replication and spreading of certain viruses. In this review, data will be presented that support the key role of membrane dynamics in the viral cycle, especially in terms of the assembly, egression and infection processes. By defining how viruses orchestrate these events it will be possible to understand how they successfully complete their route of infection, establishing viral pathogenesis and provoking disease. © 2015 The Authors Reviews in Medical Virology Published by John Wiley & Sons, Ltd.

  17. Breast reconstruction with tissue expanders: implementation of a standardized best-practices protocol to reduce infection rates.

    PubMed

    Khansa, Ibrahim; Hendrick, Russell G; Shore, Alison; Meyerson, Joseph; Yang, Maelee; Boehmler, James H

    2014-07-01

    Periprosthetic infection remains a frustrating and costly complication of breast reconstruction with tissue expanders. Although some specific steps have been previously shown to reduce periprosthetic infections, no comprehensive protocol addressing all aspects of preoperative, intraoperative, and postoperative patient management has been evaluated in the literature. The authors' goal was to evaluate the effectiveness of their protocol at reducing periprosthetic infections. A comprehensive, best-practices protocol was introduced and implemented in November of 2010. All patients undergoing breast reconstruction using tissue expanders at the authors' institution in the 5 years before the protocol, and in the 2 years after, were analyzed. Three hundred five patients underwent 456 tissue expander reconstructions in the 5 years before the protocol, and 198 patients underwent 313 reconstructions in the 2 years after. Significantly fewer patients developed periprosthetic infection after protocol (11.6 percent versus 18.4 percent; p=0.042), and the number of infected tissue expanders trended toward a decrease (9.3 percent versus 13.2 percent; p=0.097). On multivariate analysis, the protocol significantly reduced the odds of periprosthetic infection (OR, 0.45; p=0.022). Predictors of infection included obesity (OR, 2.01; p=0.045) and preoperative breast size larger than C cup (OR, 2.83; p=0.006). The authors' comprehensive, best-practices protocol allowed them to reduce the odds of tissue expander infections by 55 percent (OR, 0.45; p=0.022). The authors were able to identify several potential areas of improvement that may help them lower the rate of infection further in the future. Therapeutic, III.

  18. Hypothesis: Impregnated school uniforms reduce the incidence of dengue infections in school children.

    PubMed

    Wilder-Smith, A; Lover, A; Kittayapong, P; Burnham, G

    2011-06-01

    Dengue infection causes a significant economic, social and medical burden in affected populations in over 100 countries in the tropics and sub-tropics. Current dengue control efforts have generally focused on vector control but have not shown major impact. School-aged children are especially vulnerable to infection, due to sustained human-vector-human transmission in the close proximity environments of schools. Infection in children has a higher rate of complications, including dengue hemorrhagic fever and shock syndromes, than infections in adults. There is an urgent need for integrated and complementary population-based strategies to protect vulnerable children. We hypothesize that insecticide-treated school uniforms will reduce the incidence of dengue in school-aged children. The hypothesis would need to be tested in a community based randomized trial. If proven to be true, insecticide-treated school uniforms would be a cost-effective and scalable community based strategy to reduce the burden of dengue in children. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Spatial Relationships between Markers for Secretory and Endosomal Machinery in Human Cytomegalovirus-Infected Cells versus Those in Uninfected Cells▿†

    PubMed Central

    Das, Subhendu; Pellett, Philip E.

    2011-01-01

    Human cytomegalovirus (HCMV) induces extensive remodeling of the secretory apparatus to form the cytoplasmic virion assembly compartment (cVAC), where virion tegumentation and envelopment take place. We studied the structure of the cVAC by confocal microscopy to assess the three-dimensional distribution of proteins specifically associated with individual secretory organelles. In infected cells, early endosome antigen 1 (EEA1)-positive vesicles are concentrated at the center of the cVAC and, as previously seen, are distinct from structures visualized by markers for the endoplasmic reticulum, Golgi apparatus, and trans-Golgi network (TGN). EEA1-positive vesicles can be strongly associated with markers for recycling endosomes, to a lesser extent with markers associated with components of the endosomal sorting complex required for transport III (ESCRT III) machinery, and then with markers of late endosomes. In comparisons of uninfected and infected cells, we found significant changes in the structural associations and colocalization of organelle markers, as well as in net organelle volumes. These results provide new evidence that the HCMV-induced remodeling of the membrane transport apparatus involves much more than simple relocation and expansion of preexisting structures and are consistent with the hypothesis that the shift in identity of secretory organelles in HCMV-infected cells results in new functional profiles. PMID:21471245

  20. Precursor Forms of Vitamin D Reduce HIV-1 Infection In Vitro.

    PubMed

    Aguilar-Jimenez, Wbeimar; Villegas-Ospina, Simon; Gonzalez, Sandra; Zapata, Wildeman; Saulle, Irma; Garziano, Micaela; Biasin, Mara; Clerici, Mario; Rugeles, Maria T

    2016-12-15

    Although the anti-HIV-1 effects of vitamin D (VitD) have been reported, mechanisms behind such protection remain largely unexplored. The effects of two precursor forms (cholecalciferol/calciol at 0.01, 1 and 100 nM and calcidiol at 100 and 250 nM) on HIV-1 infection, immune activation, and gene expression were analyzed in vitro in cells of Colombian and Italian healthy donors. We quantified levels of released p24 by enzyme-linked immunosorbent assay, of intracellular p24 and cell-surface expression of CD38 and HLA-DR by flow cytometry, and mRNA expression of antiviral and immunoregulatory genes by real-time reverse transcription-polymerase chain reaction. Cholecalciferol decreased the frequency of HIV-1-infected p24CD4 T cells and levels of p24 in supernatants in a dose-dependent manner. Moreover, the CD4CD38HLA-DR and CD4CD38HLA-DR subpopulations were more susceptible to infection but displayed the greatest cholecalciferol-induced decreases in infection rate by an X4-tropic strain. Likewise, cholecalciferol at its highest concentration decreased the frequency of CD38HLA-DR but not of CD38HLA-DR T-cell subsets. Analyzing the effects of calcidiol, the main VitD source for immune cells and an R5-tropic strain as the most frequently transmitted virus, a reduction in HIV-1 productive infection was also observed. In addition, an increase in mRNA expression of APOBEC3G and PI3 and a reduction of TRIM22 and CCR5 expression, this latter positively correlated with p24 levels, was noted. VitD reduces HIV-1 infection in T cells possibly by inducing antiviral gene expression, reducing the viral co-receptor CCR5 and, at least at the highest cholecalciferol concentration, by promoting an HIV-1-restrictive CD38HLA-DR immunophenotype.

  1. Enhancing Resident Safety by Preventing Healthcare-Associated Infection: A National Initiative to Reduce Catheter-Associated Urinary Tract Infections in Nursing Homes

    PubMed Central

    Mody, Lona; Meddings, Jennifer; Edson, Barbara S.; McNamara, Sara E.; Trautner, Barbara W.; Stone, Nimalie D.; Krein, Sarah L.; Saint, Sanjay

    2015-01-01

    Preventing healthcare-associated infection (HAI) is a key contributor to enhancing resident safety in nursing homes. In 2013, the U.S. Department of Health and Human Services approved a plan to enhance resident safety by reducing HAIs in nursing homes, with particular emphasis on reducing indwelling catheter use and catheter-associated urinary tract infection (CAUTI). Lessons learned from a recent multimodal Targeted Infection Prevention program in a group of nursing homes as well as a national initiative to prevent CAUTI in over 950 acute care hospitals called “On the CUSP: STOP CAUTI” will now be implemented in nearly 500 nursing homes in all 50 states through a project funded by the Agency for Healthcare Research and Quality (AHRQ). This “AHRQ Safety Program in Long-Term Care: HAIs/CAUTI” will emphasize professional development in catheter utilization, catheter care and maintenance, and antimicrobial stewardship as well as promoting patient safety culture, team building, and leadership engagement. We anticipate that an approach integrating technical and socio-adaptive principles will serve as a model for future initiatives to reduce other infections, multidrug resistant organisms, and noninfectious adverse events among nursing home residents. PMID:25814630

  2. Reduced ERPs and theta oscillations underlie working memory deficits in Toxoplasma gondii infected seniors.

    PubMed

    Gajewski, Patrick D; Falkenstein, Michael; Hengstler, Jan G; Golka, Klaus

    2016-10-01

    Toxoplasma gondii is one of the most widespread infections in humans. Recent studies give evidence for memory deficits in infected older adults. To investigate working memory dysfunction in infected elderly, a double-blinded electrophysiological study was conducted. 84 persons derived from a sample of 131 healthy participants with the mean age of 70 years were assigned to two groups of 42 non-infected and 42 infected individuals. The outcome measures were behavioral performance, target and response-related ERPs, and time-frequency wavelets during performance in a n-back working-memory task. The infected individuals showed a reduced rate of detected targets and diminished P3b amplitude both in target-locked as well as response-locked data compared to the non-infected group. Time-frequency decomposition of the EEG-signals revealed lower evoked power in the theta frequency range in the target-locked as well as in the response-locked data in infected individuals. The reported effects were comparable with differences between healthy young and old adults described previously. Taking together, the reduced working-memory performance accompanied by an attenuated P3b and frontal theta activity may suggest neurotransmitter imbalance like dopamine and norepinephrine in T. gondii infected individuals. In face of a high prevalence of T. gondii infection and the increasing ratio of older population their accelerated memory decline may have substantial socioeconomic consequences. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Parvoviral Left-End Hairpin Ears Are Essential during Infection for Establishing a Functional Intranuclear Transcription Template and for Efficient Progeny Genome Encapsidation

    PubMed Central

    Li, Lei; Cotmore, Susan F.

    2013-01-01

    The 121-nucleotide left-end telomere of Minute Virus of Mice (MVM) can be folded into a Y-shaped hairpin with short axial ears that are highly conserved within genus Parvovirus. To explore their potential role(s) during infection, we constructed infectious plasmid clones that lacked one or other ear. Although these were nonviable when transfected into A9 cells, excision of the viral genome and DNA amplification appeared normal, and viral transcripts and proteins were expressed, but progeny virion production was minimal, supporting the idea of a potential role for the ears in genome packaging. To circumvent the absence of progeny that confounded further analysis of these mutants, plasmids were transfected into 293T cells both with and without an adenovirus helper construct, generating single bursts of progeny. These virions bound to A9 cells and were internalized but failed to initiate viral transcription, protein expression, or DNA replication. No defects in mutant virion stability or function could be detected in vitro. Significantly, mutant capsid gene expression and DNA replication could be rescued by coinfection with wild-type virions carrying a replication-competent, capsid-gene-replacement vector. To pinpoint where such complementation occurred, prior transfection of plasmids expressing only MVM nonstructural proteins was explored. NS1 alone, but not NS2, rescued transcription and protein expression from both P4 and P38 promoters, whereas NS1 molecules deleted for their C-terminal transactivation domain did not. These results suggest that the mutant virions reach the nucleus, uncoat, and are converted to duplex DNA but require an intact left-end hairpin structure to form the initiating transcription complex. PMID:23903839

  4. Topical Minocycline Effectively Decontaminates and Reduces Inflammation in Infected Porcine Wounds.

    PubMed

    Daly, Lauren Tracy; Tsai, David M; Singh, Mansher; Nuutila, Kristo; Minasian, Raquel A; Lee, Cameron C Y; Kiwanuka, Elizabeth; Hackl, Florian; Onderdonk, Andrew B; Junker, Johan P E; Eriksson, Elof; Caterson, Edward J

    2016-11-01

    Wound infection can impair postoperative healing. Topical antibiotics have potential to treat wound infection and inflammation and minimize the adverse effects associated with systemic antibiotics. Full-thickness porcine wounds were infected with Staphylococcus aureus. Using polyurethane wound enclosure devices, wounds were treated with topical 100 μg/ml minocycline, topical 1000 μg/ml minocycline, topical saline control, or 4 mg/kg intravenous minocycline. Bacteria were quantified in wound tissue and fluid obtained over 9 hours. Immunosorbent assays were used to analyze inflammatory marker concentrations. Minocycline's effect on in vitro migration and proliferation of human keratinocytes and fibroblasts was tested using scratch assays and metabolic assays, respectively. After 6 hours, 100 and 1000 μg/ml topical minocycline decreased bacteria in wound tissue to 3.5 ± 0.87 and 2.9 ± 2.3 log colony-forming units/g respectively, compared to 8.3 ± 0.9 log colony-forming units/g in control wounds (p < 0.001) and 6.9 ± 0.2 log colony-forming units/g in wounds treated with 4 mg/kg intravenous minocycline (p < 0.01). After 2 hours, topical minocycline reduced concentrations of the inflammatory cytokines interleukin-1β, interleukin-6, and tumor necrosis factor-α (p < 0.01), and inflammatory cell counts in wound tissue (p < 0.05). In noninfected wounds, topical minocycline significantly reduced interleukin-1β, interleukin-6, and inflammatory cell counts after 4 hours (p < 0.01). Matrix metalloproteinase-9 concentrations decreased after 1-hour treatment (p < 0.05). Keratinocyte and fibroblast in vitro functions were not adversely affected by 10 μg/ml minocycline or less. Topical minocycline significantly reduces bacterial burden and inflammation in infected wounds compared with wounds treated with intravenous minocycline or control wounds. Minocycline also decreases local inflammation independently of its antimicrobial effect.

  5. In-cell infection: a novel pathway for Epstein-Barr virus infection mediated by cell-in-cell structures

    PubMed Central

    Ni, Chao; Chen, Yuhui; Zeng, Musheng; Pei, Rongjuan; Du, Yong; Tang, Linquan; Wang, Mengyi; Hu, Yazhuo; Zhu, Hanyu; He, Meifang; Wei, Xiawei; Wang, Shan; Ning, Xiangkai; Wang, Manna; Wang, Jufang; Ma, Li; Chen, Xinwen; Sun, Qiang; Tang, Hong; Wang, Ying; Wang, Xiaoning

    2015-01-01

    Epstein-Barr virus (EBV) can infect both susceptible B lymphocytes and non-susceptible epithelial cells (ECs). Viral tropism analyses have revealed two intriguing means of EBV infection, either by a receptor-mediated infection of B cells or by a cell-to-cell contact-mediated infection of non-susceptible ECs. Herein, we report a novel “in-cell infection” mechanism for EBV infection of non-susceptible ECs through the formation of cell-in-cell structures. Epithelial CNE-2 cells were invaded by EBV-infected Akata B cells to form cell-in-cell structures in vitro. Such unique cellular structures could be readily observed in the specimens of nasopharyngeal carcinoma. Importantly, the formation of cell-in-cell structures led to the autonomous activation of EBV within Akata cells and subsequent viral transmission to CNE-2 cells, as evidenced by the expression of viral genes and the presence of virion particles in CNE-2 cells. Significantly, EBV generated from in-cell infected ECs displayed altered tropism with higher infection efficacy to both B cells and ECs. In addition to CNE-2 tumor cells, cell-in-cell structure formation could also mediate EBV infection of NPEC1-Bmi1 cells, an immortalized nasopharyngeal epithelial cell line. Furthermore, efficient infection by this mechanism involved the activation of the PI3K/AKT signaling pathway. Thus, our study identified “in-cell infection” as a novel mechanism for EBV infection. Given the diversity of virus-infected cells and the prevalence of cell-in-cell structures during chronic infection, we speculate that “in-cell infection” is likely a general mechanism for EBV and other viruses to infect non-susceptible ECs. PMID:25916549

  6. Reduced central line infection rates in children with leukemia following caregiver training

    PubMed Central

    Lo Vecchio, Andrea; Schaffzin, Joshua K.; Ruberto, Eliana; Caiazzo, Maria Angela; Saggiomo, Loredana; Mambretti, Daniela; Russo, Danila; Crispo, Sara; Continisio, Grazia Isabella; Dello Iacovo, Rossano; Poggi, Vincenzo; Guarino, Alfredo

    2016-01-01

    Abstract Infections are a leading cause of morbidity and mortality in children with acute leukemia. Central-line (CL) devices increase this population's risk of serious infections. Within the context of a quality improvement (QI) project, we tested the effect of caregiver education on CL management on the CL-associated bloodstream infection (CLABSI) rate among children with acute leukemia seen at a large referral center in Italy. The intervention consisted of 9 in-person sessions for education and practice using mannequins and children. One hundred and twenty caregivers agreed to participate in the initiative. One hundred and five (87.5%) completed the training, 5 (4.1%) withdrew after the first session, and 10 (8.3%) withdrew during practical sessions. After educational intervention, the overall CLABSI rate was reduced by 46% (from 6.86 to 3.70/1000 CL-days). CLABSI rate was lower in children whose caregivers completed the training (1.74/1000 CL-days, 95% CI 0.43–6.94) compared with those who did not receive any training (12.2/1000 CL-days, 95% CI 7.08–21.0, P < 0.05) or were in-training (3.96/1000 CL-days, 95% CI 1.98–7.91) at the time of infection. Caregiver training in CL management, applied within a multifaceted QI approach, reduced the rate of CLABSI in children with acute leukemia. Specific training and active involvement of caregivers in CL management may be effective to reduce CLABSI in high-risk children. PMID:27336888

  7. Theoretical benefits of mitogen applications for HIV-1 infections.

    PubMed

    Wimer, B M; Morris, R E

    1997-06-01

    Ideal treatment of HIV-1 infections should include an agent that can reverse the capacity of the virus to evade destruction by hiding in sanctuaries and by frequently mutating the epitopes it displays. The rapid proliferation of virions during the years of symptomatic quiescence obligates rapid replacement of CD4+ lymphocytes that leads to a gradual attrition of the T lymphocytes needed to control infections. In vitro evidences suggest that, given systematically, certain mitogenic lectins would interfere with HIV-1 invasion of CD4+ cells by blocking gp120 molecules on the viral membrane before activating T lymphocytes subsequent to binding with their Ti/CD3 molecules. The nonspecific nature of antiviral effector cells generated by this activation should circumvent HIV-1 mutations at the same time it reconstitutes depleted T lymphocytes, stimulates myelopoiesis, and reinforces resistance to malignancies and infections prevalent with the immunodeficiency state. Properly coordinating these effects with appropriate combinations of reverse transcriptase and protease inhibitors could theoretically expedite complete elimination of HIV in a timely fashion that shorten the required treatment duration and excludes the detrimental effects of virus mutations. The proper sequence of this treatment should be maximum reduction of the HIV-1 load with drug combinations, control of complicating infection by other means to reduce mitogen-induced tissue necrosis, and addition of systemic PHA-L4 administration regulated to maintain a 5-10 micrograms/mL serum concentration. The antiviral regimen should be continued an undetermined time beyond when HIV-1 is no longer detectable, and systemic L4 administration until satisfactory immunologic and hematologic competences are re-established. Partially-matched mitogen-activated adoptive leukocyte therapy might be additionally helpful.

  8. Importance of the short cytoplasmic domain of the feline immunodeficiency virus transmembrane glycoprotein for fusion activity and envelope glycoprotein incorporation into virions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Celma, Cristina C.P.; Paladino, Monica G.; Gonzalez, Silvia A.

    2007-09-30

    The mature form of the envelope (Env) glycoprotein of lentiviruses is a heterodimer composed of the surface (SU) and transmembrane (TM) subunits. Feline immunodeficiency virus (FIV) possesses a TM glycoprotein with a cytoplasmic tail of approximately 53 amino acids which is unusually short compared with that of the other lentiviral glycoproteins (more than 100 residues). To investigate the relevance of the FIV TM cytoplasmic domain to Env-mediated viral functions, we characterized the biological properties of a series of Env glycoproteins progressively shortened from the carboxyl terminus. All the mutant Env proteins were efficiently expressed in feline cells and processed intomore » the SU and TM subunits. Deletion of 5 or 11 amino acids from the TM C-terminus did not significantly affect Env surface expression, fusogenic activity or Env incorporation into virions, whereas removal of 17 or 23 residues impaired Env-mediated cell-to-cell fusion. Further truncation of the FIV TM by 29 residues resulted in an Env glycoprotein that was poorly expressed at the cell surface, exhibited only 20% of the wild-type Env fusogenic capacity and was inefficiently incorporated into virions. Remarkably, deletion of the TM C-terminal 35 or 41 amino acids restored or even enhanced Env biological functions. Indeed, these mutant Env glycoproteins bearing cytoplasmic domains of 18 or 12 amino acids were found to be significantly more fusogenic than the wild-type Env and were efficiently incorporated into virions. Interestingly, truncation of the TM cytoplasmic domain to only 6 amino acids did not affect Env incorporation into virions but abrogated Env fusogenicity. Finally, removal of the entire TM cytoplasmic tail or deletion of as many as 6 amino acids into the membrane-spanning domain led to a complete loss of Env functions. Our results demonstrate that despite its relatively short length, the FIV TM cytoplasmic domain plays an important role in modulating Env-mediated viral

  9. [Changes of lastids in virus-infected cells of the attraction-zone from Sarracenia purpurea L].

    PubMed

    Barckhaus, R H; Weinert, H

    1975-01-01

    Viruslike particles 300-350 nm long and 70 nm in diameter were found in ultrathin sections of attraction-zone from Sarracenia purpurea. Epidermal- and mesophyll cells contained the bacilliform particles. The membrane-bound particles-most virions occured within ER-like membranes-consisted of an outer coat 70-90 A thick, an inner membrane and an axial core. The plastids of infected cells in which virus particles were localized show morphologicals changes of the organells.

  10. VP24 Is a Chitin-Binding Protein Involved in White Spot Syndrome Virus Infection

    PubMed Central

    Li, Zaipeng; Han, Yali; Xu, Limei

    2015-01-01

    ABSTRACT Oral ingestion is the major route of infection for the white spot syndrome virus (WSSV). However, the mechanism by which virus particles in the digestive tract invade host cells is unknown. In the present study, we demonstrate that WSSV virions can bind to chitin through one of the major envelope proteins (VP24). Mutagenesis analysis indicated that amino acids (aa) 186 to 200 in the C terminus of VP24 were required for chitin binding. Moreover, the P-VP24186–200 peptide derived from the VP24 chitin binding region significantly inhibited the VP24-chitin interaction and the WSSV-chitin interaction, implying that VP24 participates in WSSV binding to chitin. Oral inoculation experiments showed that P-VP24186–200 treatment reduced the number of virus particles remaining in the digestive tract during the early stage of infection and greatly hindered WSSV proliferation in shrimp. These data indicate that binding of WSSV to chitin through the viral envelope protein VP24 is essential for WSSV per os infection and provide new ideas for preventing WSSV infection in shrimp farms. IMPORTANCE In this study, we show that WSSV can bind to chitin through the envelope protein VP24. The chitin-binding domain of VP24 maps to amino acids 186 to 200 in the C terminus. Binding of WSSV to chitin through the viral envelope protein VP24 is essential for WSSV per os infection. These findings not only extend our knowledge of WSSV infection but also provide new insights into strategies to prevent WSSV infection in shrimp farms. PMID:26512091

  11. Kinetics of CD4+ T cell repopulation of lymphoid tissues after treatment of HIV-1 infection.

    PubMed

    Zhang, Z Q; Notermans, D W; Sedgewick, G; Cavert, W; Wietgrefe, S; Zupancic, M; Gebhard, K; Henry, K; Boies, L; Chen, Z; Jenkins, M; Mills, R; McDade, H; Goodwin, C; Schuwirth, C M; Danner, S A; Haase, A T

    1998-02-03

    Potent combinations of antiretroviral drugs diminish the turnover of CD4+ T lymphocytes productively infected with HIV-1 and reduce the large pool of virions deposited in lymphoid tissue (LT). To determine to what extent suppression of viral replication and reduction in viral antigens in LT might lead correspondingly to repopulation of the immune system, we characterized CD4+ T lymphocyte populations in LT in which we previously had quantitated viral load and turnover of infected cells before and after treatment. We directly measured by quantitative image analysis changes in total CD4+ T cell counts, the CD45RA+ subset, and fractions of proliferating or apoptotic CD4+ T cells. Compared with normal controls, we documented decreased numbers of CD4+ T cells and increased proliferation and apoptosis. After treatment, proliferation returned to normal levels, and total CD4+ T and CD45RA+ cells increased. We discuss the effects of HIV-1 on this subset based on the concept that renewal mechanisms in the adult are operating at full capacity before infection and cannot meet the additional demand imposed by the loss of productively infected cells. The slow increases in the CD45RA+ CD4+ T cells are consistent with the optimistic conclusions that (i) renewal mechanisms have not been damaged irreparably even at relatively advanced stages of infection and (ii) CD4+ T cell populations can be partially restored by control of active replication without eradication of HIV-1.

  12. Nucleic Acid Polymers Are Active against Hepatitis Delta Virus Infection In Vitro.

    PubMed

    Beilstein, Frauke; Blanchet, Matthieu; Vaillant, Andrew; Sureau, Camille

    2018-02-15

    In this study, an in vitro infection model for the hepatitis delta virus (HDV) was used to evaluate the antiviral effects of phosphorothioate nucleic acid polymers (NAPs) and investigate their mechanism of action. The results show that NAPs inhibit HDV infection at concentrations less than 4 μM in cultures of differentiated human hepatoma cells. NAPs were shown to be active at viral entry but inactive postentry on HDV RNA replication. Inhibition was independent of the NAP nucleotide sequence but dependent on both size and amphipathicity of the polymer. NAP antiviral activity was effective against HDV virions bearing the main hepatitis B virus (HBV) immune escape substitutions (D144A and G145R) and was pangenomic with regard to HBV envelope proteins. Furthermore, similar to immobilized heparin, immobilized NAPs could bind HDV particles, suggesting that entry inhibition was due, at least in part, to preventing attachment of the virus to cell surface glycosaminoglycans. The results document NAPs as a novel class of antiviral compounds that can prevent HDV propagation. IMPORTANCE HDV infection causes the most severe form of viral hepatitis in humans and one of the most difficult to cure. Currently, treatments are limited to long-term administration of interferon at high doses, which provide only partial efficacy. There is thus an urgent need for innovative approaches to identify new antiviral against HDV. The significance of our study is in demonstrating that nucleic acid polymers (NAPs) are active against HDV by targeting the envelope of HDV virions. In an in vitro infection assay, NAP activity was recorded at concentrations less than 4 μM in the absence of cell toxicity. Furthermore, the fact that NAPs could block HDV at viral entry suggests their potential to control the spread of HDV in a chronically HBV-infected liver. In addition, NAP anti-HDV activity was pangenomic with regard to HBV envelope proteins and not circumvented by HBsAg substitutions associated

  13. Comparative Analysis of gO Isoforms Reveals that Strains of Human Cytomegalovirus Differ in the Ratio of gH/gL/gO and gH/gL/UL128-131 in the Virion Envelope

    PubMed Central

    Zhou, Momei; Yu, Qin; Wechsler, Anya

    2013-01-01

    Herpesvirus glycoprotein complex gH/gL provides a core entry function through interactions with the fusion protein gB and can also influence tropism through receptor interactions. The Epstein-Barr virus gH/gL and gH/gL/gp42 serve both functions for entry into epithelial and B cells, respectively. Human cytomegalovirus (HCMV) gH/gL can be bound by the UL128-131 proteins or gO. The phenotypes of gO and UL128-131 mutants suggest that gO-gH/gL interactions are necessary for the core entry function on all cell types, whereas the binding of UL128-131 to gH/gL likely relates to a distinct receptor-binding function for entry into some specific cell types (e.g., epithelial) but not others (e.g., fibroblasts and neurons). There are at least eight isoforms of gO that differ by 10 to 30% of amino acids, and previous analysis of two HCMV strains suggested that some isoforms of gO function like chaperones, disassociating during assembly to leave unbound gH/gL in the virion envelope, while others remain bound to gH/gL. For the current report, we analyzed the gH/gL complexes present in the virion envelope of several HCMV strains, each of which encodes a distinct gO isoform. Results indicate that all strains of HCMV contain stable gH/gL/gO trimers and gH/gL/UL128-131 pentamers and little, if any, unbound gH/gL. TR, TB40/e, AD169, and PH virions contained vastly more gH/gL/gO than gH/gL/UL128-131, whereas Merlin virions contained mostly gH/gL/UL128-131, despite abundant unbound gO remaining in the infected cells. Suppression of UL128-131 expression during Merlin replication dramatically shifted the ratio toward gH/gL/gO. These data suggest that Merlin gO is less efficient than other gO isoforms at competing with UL128-131 for binding to gH/gL. Thus, gO diversity may influence the pathogenesis of HCMV through effects on the assembly of the core versus tropism gH/gL complexes. PMID:23804643

  14. CLABSI Conversations: Lessons From Peer-to-Peer Assessments to Reduce Central Line-Associated Bloodstream Infections.

    PubMed

    Pham, Julius Cuong; Goeschel, Christine A; Berenholtz, Sean M; Demski, Renee; Lubomski, Lisa H; Rosen, Michael A; Sawyer, Melinda D; Thompson, David A; Trexler, Polly; Weaver, Sallie J; Weeks, Kristina R; Pronovost, Peter J

    2016-01-01

    A national collaborative helped many hospitals dramatically reduce central line-associated bloodstream infections (CLABSIs), but some hospitals struggled to reduce infection rates. This article describes the development of a peer-to-peer assessment process (CLABSI Conversations) and the practical, actionable practices we discovered that helped intensive care unit teams achieve a CLABSI rate of less than 1 infection per 1000 catheter-days for at least 1 year. CLABSI Conversations was designed as a learning-oriented process, in which a team of peers visited hospitals to surface barriers to infection prevention and to share best practices and insights from successful intensive care units. Common practices led to 10 recommendations: executive and board leaders communicate the goal of zero CLABSI throughout the hospital; senior and unit-level leaders hold themselves accountable for CLABSI rates; unit physicians and nurse leaders own the problem; clinical leaders and infection preventionists build infection prevention training and simulation programs; infection preventionists participate in unit-based CLABSI reduction efforts; hospital managers make compliance with best practices easy; clinical leaders standardize the hospital's catheter insertion and maintenance practices and empower nurses to stop any potentially harmful acts; unit leaders and infection preventionists investigate CLABSIs to identify root causes; and unit nurses and staff audit catheter maintenance policies and practices.

  15. Sorafenib Impedes Rift Valley Fever Virus Egress by Inhibiting Valosin-Containing Protein Function in the Cellular Secretory Pathway.

    PubMed

    Brahms, Ashwini; Mudhasani, Rajini; Pinkham, Chelsea; Kota, Krishna; Nasar, Farooq; Zamani, Rouzbeh; Bavari, Sina; Kehn-Hall, Kylene

    2017-11-01

    There is an urgent need for therapeutic development to combat infections caused by Rift Valley fever virus (RVFV), which causes devastating disease in both humans and animals. In an effort to repurpose drugs for RVFV treatment, our previous studies screened a library of FDA-approved drugs. The most promising candidate identified was the hepatocellular and renal cell carcinoma drug sorafenib. Mechanism-of-action studies indicated that sorafenib targeted a late stage in virus infection and caused a buildup of virions within cells. In addition, small interfering RNA (siRNA) knockdown studies suggested that nonclassical targets of sorafenib are important for the propagation of RVFV. Here we extend our previous findings to identify the mechanism by which sorafenib inhibits the release of RVFV virions from the cell. Confocal microscopy imaging revealed that glycoprotein Gn colocalizes and accumulates within the endoplasmic reticulum (ER) and the transport of Gn from the Golgi complex to the host cell membrane is reduced. Transmission electron microscopy demonstrated that sorafenib caused virions to be present inside large vacuoles inside the cells. p97/valosin-containing protein (VCP), which is involved in membrane remodeling in the secretory pathway and a known target of sorafenib, was found to be important for RVFV egress. Knockdown of VCP resulted in decreased RVFV replication, reduced Gn Golgi complex localization, and increased Gn ER accumulation. The intracellular accumulation of RVFV virions was also observed in cells transfected with siRNA targeting VCP. Collectively, these data indicate that sorafenib causes a disruption in viral egress by targeting VCP and the secretory pathway, resulting in a buildup of virions within dilated ER vesicles. IMPORTANCE In humans, symptoms of RVFV infection mainly include a self-limiting febrile illness. However, in some cases, infected individuals can also experience hemorrhagic fever, neurological disorders, liver failure, and

  16. Reducing HIV infection in people who inject drugs is impossible without targeting recently-infected subjects

    PubMed Central

    Vasylyeva, Tetyana I.; Friedman, Samuel R.; Lourenco, Jose; Gupta, Sunetra; Hatzakis, Angelos; Pybus, Oliver G.; Katzourakis, Aris; Smyrnov, Pavlo; Karamitros, Timokratis; Paraskevis, Dimitrios; Magiorkinis, Gkikas

    2016-01-01

    Objective: Although our understanding of viral transmission among people who inject drugs (PWID) has improved, we still know little about when and how many times each injector transmits HIV throughout the duration of infection. We describe HIV dynamics in PWID to evaluate which preventive strategies can be efficient. Design: Due to the notably scarce interventions, HIV-1 spread explosively in Russia and Ukraine in 1990s. By studying this epidemic between 1995 and 2005, we characterized naturally occurring transmission dynamics of HIV among PWID. Method: We combined publicly available HIV pol and env sequences with prevalence estimates from Russia and Ukraine under an evolutionary epidemiology framework to characterize HIV transmissibility between PWID. We then constructed compartmental models to simulate HIV spread among PWID. Results: In the absence of interventions, each injector transmits on average to 10 others. Half of the transmissions take place within 1 month after primary infection, suggesting that the epidemic will expand even after blocking all the post–first month transmissions. Primary prevention can realistically target the first month of infection, and we show that it is very efficient to control the spread of HIV-1 in PWID. Treating acutely infected on top of primary prevention is notably effective. Conclusion: As a large proportion of transmissions among PWID occur within 1 month after infection, reducing and delaying transmissions through scale-up of harm reduction programmes should always form the backbone of HIV control strategies in PWID. Growing PWID populations in the developing world, where primary prevention is scarce, constitutes a public health time bomb. PMID:27824626

  17. Ectromelia virus inhibitor of complement enzymes protects intracellular mature virus and infected cells from mouse complement.

    PubMed

    Moulton, Elizabeth A; Bertram, Paula; Chen, Nanhai; Buller, R Mark L; Atkinson, John P

    2010-09-01

    Poxviruses produce complement regulatory proteins to subvert the host's immune response. Similar to the human pathogen variola virus, ectromelia virus has a limited host range and provides a mouse model where the virus and the host's immune response have coevolved. We previously demonstrated that multiple components (C3, C4, and factor B) of the classical and alternative pathways are required to survive ectromelia virus infection. Complement's role in the innate and adaptive immune responses likely drove the evolution of a virus-encoded virulence factor that regulates complement activation. In this study, we characterized the ectromelia virus inhibitor of complement enzymes (EMICE). Recombinant EMICE regulated complement activation on the surface of CHO cells, and it protected complement-sensitive intracellular mature virions (IMV) from neutralization in vitro. It accomplished this by serving as a cofactor for the inactivation of C3b and C4b and by dissociating the catalytic domain of the classical pathway C3 convertase. Infected murine cells initiated synthesis of EMICE within 4 to 6 h postinoculation. The levels were sufficient in the supernatant to protect the IMV, upon release, from complement-mediated neutralization. EMICE on the surface of infected murine cells also reduced complement activation by the alternative pathway. In contrast, classical pathway activation by high-titer antibody overwhelmed EMICE's regulatory capacity. These results suggest that EMICE's role is early during infection when it counteracts the innate immune response. In summary, ectromelia virus produced EMICE within a few hours of an infection, and EMICE in turn decreased complement activation on IMV and infected cells.

  18. [Ultrastructural observation related to cell-to-cell movement and long-distance systemic transport on the hosts infected with BBWV 2].

    PubMed

    Hong, Jian; Wang, Wei-Bing; Zhou, Xue-Ping; Hu, Dong-Wei

    2006-06-01

    The alteration of ultrastructure in Pisum sativum and Vicia faba leaf cells infected with B935 isolate of BBWV 2 were investigated by electron microscopy, immunogold-labeling technique. The results showed that the membranous proliferation, virus-formed crystals and tubular structures were found in leaf cells of two hosts. At early stages of infection, the tubules containing virus-like particles associate with plasmodesmata in mesophyll cell. Immunogold particles anti-BBWV 2 were localized to the plasmodesmata modified by tubules passing through them. The membranous proliferation and virus-formed tubules were also found in the parenchyma cells, companion cells and transfer cells of vascular bundle. Some virus-like particles located within sieve tube can be labeled immunogold particles anti-BBWV 2. These suggest that BBWV 2, similar CPMV, produce tubules extending into the plasmodesmata. Virions assembled in the cytoplasm are escorted to the tubular structures through interactions with their MP and are then transported to the adjacent cell. Many 160 nm in diameter virus-formed tubules in the cytoplasm, as a special aggregate, not directly relate to cell-to-cell movement; Intact virions are long-distance sustemic transported possibly through sieve elements.

  19. Kinetics of CD4+ T cell repopulation of lymphoid tissues after treatment of HIV-1 infection

    PubMed Central

    Zhang, Zhi-Qiang; Notermans, Daan W.; Sedgewick, Gerald; Cavert, Winston; Wietgrefe, Stephen; Zupancic, Mary; Gebhard, Kristin; Henry, Keith; Boies, Lawrence; Chen, Zongming; Jenkins, Marc; Mills, Roger; McDade, Hugh; Goodwin, Carolyn; Schuwirth, Caspar M.; Danner, Sven A.; Haase, Ashley T.

    1998-01-01

    Potent combinations of antiretroviral drugs diminish the turnover of CD4+ T lymphocytes productively infected with HIV-1 and reduce the large pool of virions deposited in lymphoid tissue (LT). To determine to what extent suppression of viral replication and reduction in viral antigens in LT might lead correspondingly to repopulation of the immune system, we characterized CD4+ T lymphocyte populations in LT in which we previously had quantitated viral load and turnover of infected cells before and after treatment. We directly measured by quantitative image analysis changes in total CD4+ T cell counts, the CD45RA+ subset, and fractions of proliferating or apoptotic CD4+ T cells. Compared with normal controls, we documented decreased numbers of CD4+ T cells and increased proliferation and apoptosis. After treatment, proliferation returned to normal levels, and total CD4+ T and CD45RA+ cells increased. We discuss the effects of HIV-1 on this subset based on the concept that renewal mechanisms in the adult are operating at full capacity before infection and cannot meet the additional demand imposed by the loss of productively infected cells. The slow increases in the CD45RA+ CD4+ T cells are consistent with the optimistic conclusions that (i) renewal mechanisms have not been damaged irreparably even at relatively advanced stages of infection and (ii) CD4+ T cell populations can be partially restored by control of active replication without eradication of HIV-1. PMID:9448301

  20. Potato leafroll virus structural proteins manipulate overlapping, yet distinct protein interaction networks during infection.

    PubMed

    DeBlasio, Stacy L; Johnson, Richard; Sweeney, Michelle M; Karasev, Alexander; Gray, Stewart M; MacCoss, Michael J; Cilia, Michelle

    2015-06-01

    Potato leafroll virus (PLRV) produces a readthrough protein (RTP) via translational readthrough of the coat protein amber stop codon. The RTP functions as a structural component of the virion and as a nonincorporated protein in concert with numerous insect and plant proteins to regulate virus movement/transmission and tissue tropism. Affinity purification coupled to quantitative MS was used to generate protein interaction networks for a PLRV mutant that is unable to produce the read through domain (RTD) and compared to the known wild-type PLRV protein interaction network. By quantifying differences in the protein interaction networks, we identified four distinct classes of PLRV-plant interactions: those plant and nonstructural viral proteins interacting with assembled coat protein (category I); plant proteins in complex with both coat protein and RTD (category II); plant proteins in complex with the RTD (category III); and plant proteins that had higher affinity for virions lacking the RTD (category IV). Proteins identified as interacting with the RTD are potential candidates for regulating viral processes that are mediated by the RTP such as phloem retention and systemic movement and can potentially be useful targets for the development of strategies to prevent infection and/or viral transmission of Luteoviridae species that infect important crop species. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Analysis of the structure of fish lymphocystis disease virions from skin tumours of pleuronectes.

    PubMed

    Samalecos, C P

    1986-01-01

    Virions of fish lymphocystis disease (FLDV) from tumour-carrying-fishes (flounder, dab, plaice and gurnard) collected in the North Sea were isolated directly from the tumours and purified by sucrose and subsequent caesium chloride gradient centrifugation. They were studied by electron microscopy using embedding methods, negative staining and using metal shadowing methods. Tumours of dermal connective fish tissue showed particles with hexagonal outlines. Occasionally, an "empty structure" was observed. Subunits of the virus membrane were identified after 3 per cent phosphotungstic acid (PTA) or 0.2 per cent Ruthenium red (RR) staining. FLDV measures 199-227 nm in diameter.

  2. Linear viral load increase of a single HPV-type in women with multiple HPV infections predicts progression to cervical cancer.

    PubMed

    Depuydt, Christophe E; Thys, Sofie; Beert, Johan; Jonckheere, Jef; Salembier, Geert; Bogers, Johannes J

    2016-11-01

    Persistent high-risk human papillomavirus (HPV) infection is strongly associated with development of high-grade cervical intraepithelial neoplasia or cancer (CIN3+). In single type infections, serial type-specific viral-load measurements predict the natural history of the infection. In infections with multiple HPV-types, the individual type-specific viral-load profile could distinguish progressing HPV-infections from regressing infections. A case-cohort natural history study was established using samples from untreated women with multiple HPV-infections who developed CIN3+ (n = 57) or cleared infections (n = 88). Enriched cell pellet from liquid based cytology samples were subjected to a clinically validated real-time qPCR-assay (18 HPV-types). Using serial type-specific viral-load measurements (≥3) we calculated HPV-specific slopes and coefficient of determination (R(2) ) by linear regression. For each woman slopes and R(2) were used to calculate which HPV-induced processes were ongoing (progression, regression, serial transient, transient). In transient infections with multiple HPV-types, each single HPV-type generated similar increasing (0.27copies/cell/day) and decreasing (-0.27copies/cell/day) viral-load slopes. In CIN3+, at least one of the HPV-types had a clonal progressive course (R(2)  ≥ 0.85; 0.0025copies/cell/day). In selected CIN3+ cases (n = 6), immunostaining detecting type-specific HPV 16, 31, 33, 58 and 67 RNA showed an even staining in clonal populations (CIN3+), whereas in transient virion-producing infections the RNA-staining was less in the basal layer compared to the upper layer where cells were ready to desquamate and release newly-formed virions. RNA-hybridization patterns matched the calculated ongoing processes measured by R(2) and slope in serial type-specific viral-load measurements preceding the biopsy. In women with multiple HPV-types, serial type-specific viral-load measurements predict the natural history of the

  3. Use of a patient hand hygiene protocol to reduce hospital-acquired infections and improve nurses' hand washing.

    PubMed

    Fox, Cherie; Wavra, Teresa; Drake, Diane Ash; Mulligan, Debbie; Bennett, Yvonne Pacheco; Nelson, Carla; Kirkwood, Peggy; Jones, Louise; Bader, Mary Kay

    2015-05-01

    Critically ill patients are at marked risk of hospital-acquired infections, which increase patients' morbidity and mortality. Registered nurses are the main health care providers of physical care, including hygiene to reduce and prevent hospital-acquired infections, for hospitalized critically ill patients. To investigate a new patient hand hygiene protocol designed to reduce hospital-acquired infection rates and improve nurses' hand-washing compliance in an intensive care unit. A preexperimental study design was used to compare 12-month rates of 2 common hospital-acquired infections, central catheter-associated bloodstream infection and catheter-associated urinary tract infection, and nurses' hand-washing compliance measured before and during use of the protocol. Reductions in 12-month infection rates were reported for both types of infections, but neither reduction was statistically significant. Mean 12-month nurse hand-washing compliance also improved, but not significantly. A hand hygiene protocol for patients in the intensive care unit was associated with reductions in hospital-acquired infections and improvements in nurses' hand-washing compliance. Prevention of such infections requires continuous quality improvement efforts to monitor lasting effectiveness as well as investigation of strategies to eliminate these infections. ©2015 American Association of Critical-Care Nurses.

  4. Persistent Infection of Human Fetal Endothelial Cells with Rubella Virus

    PubMed Central

    Perelygina, Ludmila; Zheng, Qi; Metcalfe, Maureen; Icenogle, Joseph

    2013-01-01

    Cardiovascular abnormalities are the leading cause of neonatal death among patients with congenital rubella syndrome (CRS). Although persistence of rubella virus (RV) in fetal endothelium has been repeatedly suggested as a possible cause of cardiovascular birth defects, evidence of the permissiveness of fetal endothelial cells to RV is lacking. In this study we evaluated the ability of RV to infect and persist in primary fetal endothelial cells derived from human umbilical vein (HUVEC). We found that wild type (wt) low passage clinical RV productively infected HUVEC cultures without producing cytopathology or ultrastructural changes. RV did not inhibit host cell protein synthesis, cell proliferation, or interfere with the cell cycle. Persistently infected cultures were easily established at low and high multiplicities of infection (MOI) with both laboratory and wt clinical RV strains. However, synchronous infections of entire HUVEC monolayers were only observed with clinical RV strains. The release of infectious virions into media remained at consistently high levels for several subcultures of infected HUVEC. The results indicate that macrovascular fetal endothelial cells are highly permissive to RV and allow slow persistent RV replication. The findings provide more evidence for the suggestion that vascular pathologies in CRS are triggered by persistent rubella virus infection of the endothelium. PMID:23940821

  5. Evidence for biphasic uncoating during HIV-1 infection from a novel imaging assay

    PubMed Central

    2013-01-01

    Background Uncoating of the HIV-1 core plays a critical role during early post-fusion stages of infection but is poorly understood. Microscopy-based assays are unable to easily distinguish between intact and partially uncoated viral cores. Results In this study, we used 5-ethynyl uridine (EU) to label viral-associated RNA during HIV production. At early time points after infection with EU-labeled virions, the viral-associated RNA was stained with an EU-specific dye and was detected by confocal microscopy together with viral proteins. We observed that detection of the viral-associated RNA was specific for EU-labeled virions, was detected only after viral fusion with target cells, and occurred after an initial opening of the core. In vitro staining of cores showed that the opening of the core allowed the small molecule dye, but not RNase A or antibodies, inside. Also, staining of the viral-associated RNA, which is co-localized with nucleocapsid, decays over time after viral infection. The decay rate of RNA staining is dependent on capsid (CA) stability, which was altered by CA mutations or a small molecule inducer of HIV-1 uncoating. While the staining of EU-labeled RNA was not affected by inhibition of reverse transcription, the kinetics of core opening of different CA mutants correlated with initiation of reverse transcription. Analysis of the E45A CA mutant suggests that initial core opening is independent of complete capsid disassembly. Conclusions Taken together, our results establish a novel RNA accessibility-based assay that detects an early event in HIV-1 uncoating and can be used to further define this process. PMID:23835323

  6. Feline immunodeficiency virus envelope glycoproteins antagonize tetherin through a distinctive mechanism that requires virion incorporation.

    PubMed

    Morrison, James H; Guevara, Rebekah B; Marcano, Adriana C; Saenz, Dyana T; Fadel, Hind J; Rogstad, Daniel K; Poeschla, Eric M

    2014-03-01

    BST2/tetherin inhibits the release of enveloped viruses from cells. Primate lentiviruses have evolved specific antagonists (Vpu, Nef, and Env). Here we characterized tetherin proteins of species representing both branches of the order Carnivora. Comparison of tiger and cat (Feliformia) to dog and ferret (Caniformia) genes demonstrated that the tiger and cat share a start codon mutation that truncated most of the tetherin cytoplasmic tail early in the Feliformia lineage (19 of 27 amino acids, including the dual tyrosine motif). Alpha interferon (IFN-α) induced tetherin and blocked feline immunodeficiency virus (FIV) replication in lymphoid and nonlymphoid feline cells. Budding of bald FIV and HIV particles was blocked by carnivore tetherins. However, infectious FIV particles were resistant, and spreading FIV replication was uninhibited. Antagonism mapped to the envelope glycoprotein (Env), which rescued FIV from carnivore tetherin restriction when expressed in trans but, in contrast to known antagonists, did not rescue noncognate particles. Also unlike the primate lentiviral antagonists, but similar to the Ebola virus glycoprotein, FIV Env did not reduce intracellular or cell surface tetherin levels. Furthermore, FIV-enveloped FIV particles actually required tetherin for optimal release from cells. The results show that FIV Envs mediate a distinctive tetherin evasion. Well adapted to a phylogenetically ancient tetherin tail truncation in the Felidae, it requires functional virion incorporation of Env, and it shields the budding particle without downregulating plasma membrane tetherin. Moreover, FIV has evolved dependence on this protein: particles containing FIV Env need tetherin for optimal release from the cell, while Env(-) particles do not. HIV-1 antagonizes the restriction factor tetherin with the accessory protein Vpu, while HIV-2 and the filovirus Ebola use their envelope (Env) glycoproteins for this purpose. It turns out that the FIV tetherin antagonist is

  7. Feline Immunodeficiency Virus Envelope Glycoproteins Antagonize Tetherin through a Distinctive Mechanism That Requires Virion Incorporation

    PubMed Central

    Guevara, Rebekah B.; Marcano, Adriana C.; Saenz, Dyana T.; Fadel, Hind J.; Rogstad, Daniel K.

    2014-01-01

    ABSTRACT BST2/tetherin inhibits the release of enveloped viruses from cells. Primate lentiviruses have evolved specific antagonists (Vpu, Nef, and Env). Here we characterized tetherin proteins of species representing both branches of the order Carnivora. Comparison of tiger and cat (Feliformia) to dog and ferret (Caniformia) genes demonstrated that the tiger and cat share a start codon mutation that truncated most of the tetherin cytoplasmic tail early in the Feliformia lineage (19 of 27 amino acids, including the dual tyrosine motif). Alpha interferon (IFN-α) induced tetherin and blocked feline immunodeficiency virus (FIV) replication in lymphoid and nonlymphoid feline cells. Budding of bald FIV and HIV particles was blocked by carnivore tetherins. However, infectious FIV particles were resistant, and spreading FIV replication was uninhibited. Antagonism mapped to the envelope glycoprotein (Env), which rescued FIV from carnivore tetherin restriction when expressed in trans but, in contrast to known antagonists, did not rescue noncognate particles. Also unlike the primate lentiviral antagonists, but similar to the Ebola virus glycoprotein, FIV Env did not reduce intracellular or cell surface tetherin levels. Furthermore, FIV-enveloped FIV particles actually required tetherin for optimal release from cells. The results show that FIV Envs mediate a distinctive tetherin evasion. Well adapted to a phylogenetically ancient tetherin tail truncation in the Felidae, it requires functional virion incorporation of Env, and it shields the budding particle without downregulating plasma membrane tetherin. Moreover, FIV has evolved dependence on this protein: particles containing FIV Env need tetherin for optimal release from the cell, while Env− particles do not. IMPORTANCE HIV-1 antagonizes the restriction factor tetherin with the accessory protein Vpu, while HIV-2 and the filovirus Ebola use their envelope (Env) glycoproteins for this purpose. It turns out that the FIV

  8. Using experimental human influenza infections to validate a viral dynamic model and the implications for prediction.

    PubMed

    Chen, S C; You, S H; Liu, C Y; Chio, C P; Liao, C M

    2012-09-01

    The aim of this work was to use experimental infection data of human influenza to assess a simple viral dynamics model in epithelial cells and better understand the underlying complex factors governing the infection process. The developed study model expands on previous reports of a target cell-limited model with delayed virus production. Data from 10 published experimental infection studies of human influenza was used to validate the model. Our results elucidate, mechanistically, the associations between epithelial cells, human immune responses, and viral titres and were supported by the experimental infection data. We report that the maximum total number of free virions following infection is 10(3)-fold higher than the initial introduced titre. Our results indicated that the infection rates of unprotected epithelial cells probably play an important role in affecting viral dynamics. By simulating an advanced model of viral dynamics and applying it to experimental infection data of human influenza, we obtained important estimates of the infection rate. This work provides epidemiologically meaningful results, meriting further efforts to understand the causes and consequences of influenza A infection.

  9. Reduced growth in wild juvenile sockeye salmon Oncorhynchus nerka infected with sea lice.

    PubMed

    Godwin, S C; Dill, L M; Krkošek, M; Price, M H H; Reynolds, J D

    2017-07-01

    Daily growth rings were examined in the otoliths of wild juvenile sockeye salmon Oncorhynchus nerka to determine whether infection by ectoparasitic sea lice Caligus clemensi and Lepeophtheirus salmonis was associated with reduced host body growth, an important determinant of survival. Over 98% of the sea lice proved to be C. clemensi and the fish that were highly infected grew more slowly than uninfected individuals. Larger fish also grew faster than smaller fish. Finally, there was evidence of an interaction between body size and infection status, indicating the potential for parasite-mediated growth divergence. © 2017 The Fisheries Society of the British Isles.

  10. Progesterone-Based Contraceptives Reduce Adaptive Immune Responses and Protection against Sequential Influenza A Virus Infections.

    PubMed

    Hall, Olivia J; Nachbagauer, Raffael; Vermillion, Meghan S; Fink, Ashley L; Phuong, Vanessa; Krammer, Florian; Klein, Sabra L

    2017-04-15

    In addition to their intended use, progesterone (P4)-based contraceptives promote anti-inflammatory immune responses, yet their effects on the outcome of infectious diseases, including influenza A virus (IAV) infection, are rarely evaluated. To evaluate their impact on immune responses to sequential IAV infections, adult female mice were treated with placebo or one of two progestins, P4 or levonorgestrel (LNG), and infected with a mouse-adapted H1N1 (maH1N1) virus. Treatment with P4 or LNG reduced morbidity but had no effect on pulmonary virus titers during primary H1N1 infection compared to placebo treatment. In serum and bronchoalveolar lavage fluid, total anti-IAV IgG and IgA titers and virus-neutralizing antibody titers but not hemagglutinin stalk antibody titers were lower in progestin-treated mice than placebo-treated mice. Females were challenged 6 weeks later with either an maH1N1 drift variant (maH1N1dv) or maH3N2 IAV. The level of protection following infection with the maH1N1dv was similar among all groups. In contrast, following challenge with maH3N2, progestin treatment reduced survival as well as the numbers and activity of H1N1- and H3N2-specific memory CD8 + T cells, including tissue-resident cells, compared with placebo treatment. In contrast to primary IAV infection, progestin treatment increased the titers of neutralizing and IgG antibodies against both challenge viruses compared with those achieved with placebo treatment. While the immunomodulatory properties of progestins protected immunologically naive female mice from the severe outcomes from IAV infection, it made them more susceptible to secondary challenge with a heterologous IAV, despite improving their antibody responses against a secondary IAV infection. Taken together, the immunomodulatory effects of progestins differentially regulate the outcome of infection depending on exposure history. IMPORTANCE The impact of hormone-based contraceptives on the outcome of infectious diseases

  11. Nosema ceranae Can Infect Honey Bee Larvae and Reduces Subsequent Adult Longevity.

    PubMed

    Eiri, Daren M; Suwannapong, Guntima; Endler, Matthew; Nieh, James C

    2015-01-01

    Nosema ceranae causes a widespread disease that reduces honey bee health but is only thought to infect adult honey bees, not larvae, a critical life stage. We reared honey bee (Apis mellifera) larvae in vitro and provide the first demonstration that N. ceranae can infect larvae and decrease subsequent adult longevity. We exposed three-day-old larvae to a single dose of 40,000 (40K), 10,000 (10K), zero (control), or 40K autoclaved (control) N. ceranae spores in larval food. Spores developed intracellularly in midgut cells at the pre-pupal stage (8 days after egg hatching) of 41% of bees exposed as larvae. We counted the number of N. ceranae spores in dissected bee midguts of pre-pupae and, in a separate group, upon adult death. Pre-pupae exposed to the 10K or 40K spore treatments as larvae had significantly elevated spore counts as compared to controls. Adults exposed as larvae had significantly elevated spore counts as compared to controls. Larval spore exposure decreased longevity: a 40K treatment decreased the age by which 75% of adult bees died by 28%. Unexpectedly, the low dose (10K) led to significantly greater infection (1.3 fold more spores and 1.5 fold more infected bees) than the high dose (40K) upon adult death. Differential immune activation may be involved if the higher dose triggered a stronger larval immune response that resulted in fewer adult spores but imposed a cost, reducing lifespan. The impact of N. ceranae on honey bee larval development and the larvae of naturally infected colonies therefore deserve further study.

  12. Avian influenza viruses that cause highly virulent infections in humans exhibit distinct replicative properties in contrast to human H1N1 viruses

    NASA Astrophysics Data System (ADS)

    Simon, Philippe F.; de La Vega, Marc-Antoine; Paradis, Éric; Mendoza, Emelissa; Coombs, Kevin M.; Kobasa, Darwyn; Beauchemin, Catherine A. A.

    2016-04-01

    Avian influenza viruses present an emerging epidemiological concern as some strains of H5N1 avian influenza can cause severe infections in humans with lethality rates of up to 60%. These have been in circulation since 1997 and recently a novel H7N9-subtyped virus has been causing epizootics in China with lethality rates around 20%. To better understand the replication kinetics of these viruses, we combined several extensive viral kinetics experiments with mathematical modelling of in vitro infections in human A549 cells. We extracted fundamental replication parameters revealing that, while both the H5N1 and H7N9 viruses replicate faster and to higher titers than two low-pathogenicity H1N1 strains, they accomplish this via different mechanisms. While the H7N9 virions exhibit a faster rate of infection, the H5N1 virions are produced at a higher rate. Of the two H1N1 strains studied, the 2009 pandemic H1N1 strain exhibits the longest eclipse phase, possibly indicative of a less effective neuraminidase activity, but causes infection more rapidly than the seasonal strain. This explains, in part, the pandemic strain’s generally slower growth kinetics and permissiveness to accept mutations causing neuraminidase inhibitor resistance without significant loss in fitness. Our results highlight differential growth properties of H1N1, H5N1 and H7N9 influenza viruses.

  13. Interleukin-21 combined with ART reduces inflammation and viral reservoir in SIV-infected macaques

    PubMed Central

    Micci, Luca; Ryan, Emily S.; Fromentin, Rémi; Bosinger, Steven E.; Harper, Justin L.; He, Tianyu; Paganini, Sara; Easley, Kirk A.; Chahroudi, Ann; Benne, Clarisse; Gumber, Sanjeev; McGary, Colleen S.; Rogers, Kenneth A.; Deleage, Claire; Lucero, Carissa; Byrareddy, Siddappa N.; Apetrei, Cristian; Estes, Jacob D.; Lifson, Jeffrey D.; Piatak, Michael; Chomont, Nicolas; Villinger, Francois; Silvestri, Guido; Brenchley, Jason M.; Paiardini, Mirko

    2015-01-01

    Despite successful control of viremia, many HIV-infected individuals given antiretroviral therapy (ART) exhibit residual inflammation, which is associated with non–AIDS-related morbidity and mortality and may contribute to virus persistence during ART. Here, we investigated the effects of IL-21 administration on both inflammation and virus persistence in ART-treated, SIV-infected rhesus macaques (RMs). Compared with SIV-infected animals only given ART, SIV-infected RMs given both ART and IL-21 showed improved restoration of intestinal Th17 and Th22 cells and a more effective reduction of immune activation in blood and intestinal mucosa, with the latter maintained through 8 months after ART interruption. Additionally, IL-21, in combination with ART, was associated with reduced levels of SIV RNA in plasma and decreased CD4+ T cell levels harboring replication-competent virus during ART. At the latest experimental time points, which were up to 8 months after ART interruption, plasma viremia and cell-associated SIV DNA levels remained substantially lower than those before ART initiation in IL-21–treated animals but not in controls. Together, these data suggest that IL-21 supplementation of ART reduces residual inflammation and virus persistence in a relevant model of lentiviral disease and warrants further investigation as a potential intervention for HIV infection. PMID:26551680

  14. Merkel Cell Polyomavirus Infection of Animal Dermal Fibroblasts.

    PubMed

    Liu, Wei; Krump, Nathan A; MacDonald, Margo; You, Jianxin

    2018-02-15

    Merkel cell polyomavirus (MCPyV) is the first polyomavirus to be associated with human cancer. Mechanistic studies attempting to fully elucidate MCPyV's oncogenic mechanisms have been hampered by the lack of animal models for MCPyV infection. In this study, we examined the ability of MCPyV-GFP pseudovirus (containing a green fluorescent protein [GFP] reporter construct), MCPyV recombinant virions, and several MCPyV chimeric viruses to infect dermal fibroblasts isolated from various model animals, including mouse ( Mus musculus ), rabbit ( Oryctolagus cuniculus ), rat ( Rattus norvegicus ), chimpanzee ( Pan troglodytes ), rhesus macaque ( Macaca mulatta ), patas monkey ( Erythrocebus patas ), common woolly monkey ( Lagothrix lagotricha ), red-chested mustached tamarin ( Saguinus labiatus ), and tree shrew ( Tupaia belangeri ). We found that MCPyV-GFP pseudovirus was able to enter the dermal fibroblasts of all species tested. Chimpanzee dermal fibroblasts were the only type that supported vigorous MCPyV gene expression and viral replication, and they did so to a level beyond that of human dermal fibroblasts. We further demonstrated that both human and chimpanzee dermal fibroblasts produce infectious MCPyV virions that can successfully infect new cells. In addition, rat dermal fibroblasts supported robust MCPyV large T antigen expression after infection with an MCPyV chimeric virus in which the entire enhancer region of the MCPyV early promoter has been replaced with the simian virus 40 (SV40) analog. Our results suggest that viral transcription and/or replication events represent the major hurdle for MCPyV cross-species transmission. The capacity of rat dermal fibroblasts to support MCPyV early gene expression suggests that the rat is a candidate model organism for studying viral oncogene function during Merkel cell carcinoma (MCC) oncogenic progression. IMPORTANCE MCPyV plays an important role in the development of a highly aggressive form of skin cancer, Merkel

  15. Daily corticosteroids reduce infection-associated relapses in frequently relapsing nephrotic syndrome: a randomized controlled trial.

    PubMed

    Gulati, Ashima; Sinha, Aditi; Sreenivas, Vishnubhatla; Math, Aparna; Hari, Pankaj; Bagga, Arvind

    2011-01-01

    Relapses of nephrotic syndrome often follow minor infections, commonly of the upper respiratory tract. Daily administration of maintenance prednisolone during intercurrent infections was examined to determine whether the treatment reduces relapse rates in children with frequently relapsing nephrotic syndrome. In a randomized controlled trial (nonblind, parallel group, tertiary-care hospital), 100 patients with idiopathic, frequently relapsing nephrotic syndrome eligible for therapy with prolonged low-dose, alternate-day prednisolone with or without levamisole were randomized to either receive their usual dose of alternate-day prednisolone daily for 7 days during intercurrent infections (intervention group) or continue alternate-day prednisolone (controls). Primary outcome was assessed by comparing the rates of infection-associated relapses at 12-month follow-up. Secondary outcomes were the frequency of infections and the cumulative amount of prednisolone received in both groups. Patients in the intervention group showed significantly lower infection-associated (rate difference, 0.7 episodes/patient per year; 95% confidence intervals [CI] 0.3, 1.1) and lower total relapse rates (0.9 episodes/patient per year, 95% CI 0.4, 1.4) without increase in steroid toxicity. Poisson regression, adjusted for occurrence of infections, showed that daily administration of prednisolone during infections independently resulted in 59% reduction in frequency of relapses (rate ratio, 0.41; 95% CI 0.3, 0.6). For every six patients receiving this intervention, one showed a reduction of relapse frequency to less than three per year. Daily administration of maintenance doses of prednisolone, during intercurrent infections, significantly reduces relapse rates and the proportion of children with frequently relapsing nephrotic syndrome.

  16. Cell-free HTLV-1 infects dendritic cells leading to transmission and transformation of CD4(+) T cells.

    PubMed

    Jones, Kathryn S; Petrow-Sadowski, Cari; Huang, Ying K; Bertolette, Daniel C; Ruscetti, Francis W

    2008-04-01

    Cell-free human T-lymphotropic virus type 1 (HTLV-1) virions are poorly infectious in vitro for their primary target cells, CD4(+) T cells. Here, we show that HTLV-1 can efficiently infect myeloid and plasmacytoid dendritic cells (DCs). Moreover, DCs exposed to HTLV-1, both before and after being productively infected, can rapidly, efficiently and reproducibly transfer virus to autologous primary CD4(+) T cells. This DC-mediated transfer of HTLV-1 involves heparan sulfate proteoglycans and neuropilin-1 and results in long-term productive infection and interleukin-2-independent transformation of the CD4(+) T cells. These studies, along with observations of HTLV-1-infected DCs in the peripheral blood of infected individuals, indicate that DCs have a central role in HTLV-1 transmission, dissemination and persistence in vivo. In addition to altering the current paradigm concerning how HTLV-1 transmission occurs, these studies suggest that impairment of DC function after HTLV-1 infection plays a part in pathogenesis.

  17. Comparison of the Virion Polymerase of Reovirus with the Enzyme Purified from Reovirus-Infected Cells

    PubMed Central

    Gomatos, Peter J.

    1970-01-01

    Reovirus has in its protein coat an enzyme which catalyzes the net synthesis of the three size classes of virus-specific, single-stranded ribonucleic acid (RNA). For synthesis of 24, 19, and 14S single-stranded RNA, Mn++ was the preferred divalent cation, and ammonium sulfate at an optimal concentration of 4.2% of saturation was an absolute requirement. During synthesis, the parental double-stranded RNA was conserved in the viral core and the newly synthesized completed RNA chains were released as free RNA. The viral cores synthesizing RNA had properties consistent with the presence of nascent RNA on their outer surface. The enzyme-template complex from the infected cells described in an earlier paper was comprised of viral cores already active in the in vivo synthesis of single-stranded RNA. This pool of viral cores was newly made during infection, and exponential increase in the number of particles in this pool, as detected by the increase in enzymatic activity, occurred 2 hr earlier than that in mature virus. PMID:5483438

  18. Repurposing Hsp104 to antagonize seminal amyloid and counter HIV infection

    PubMed Central

    Castellano, Laura M.; Bart, Stephen M.; Holmes, Veronica M.; Weissman, Drew; Shorter, James

    2015-01-01

    Naturally occurring proteolytic fragments of prostatic acid phosphatase (PAP248-286 and PAP85-120) and semenogelins (SEM1 and 2) form amyloid fibrils in seminal fluid, which capture HIV virions and promote infection. For example, PAP248-286 fibrils, termed SEVI (Semen derived Enhancer of Viral Infection), can potentiate HIV infection by several orders of magnitude. Here, we design three disruptive technologies to rapidly antagonize seminal amyloid by repurposing Hsp104, an amyloid-remodeling nanomachine from yeast. First, Hsp104 and an enhanced engineered variant, Hsp104A503V, directly remodel SEVI and PAP85-120 fibrils into non-amyloid forms. Second, we elucidate catalytically inactive Hsp104 scaffolds that do not remodel amyloid structure, but cluster SEVI, PAP85-120, and SEM1(45-107) fibrils into larger assemblies. Third, we modify Hsp104 to interact with the chambered protease ClpP, which enables coupled remodeling and degradation to irreversibly clear SEVI and PAP85-120 fibrils. Each strategy diminished the ability of seminal amyloid to promote HIV infection and could have therapeutic utility. PMID:26256479

  19. Reduced Rift Valley fever virus infection rates in mosquitoes associated with pledget feedings.

    PubMed

    Turell, M J

    1988-12-01

    Infection rates were compared in Culex pipiens and Aedes taeniorhynchus after they fed on Rift Valley fever (RVF) viremic hamsters or ingested similar doses of RVF virus from blood-soaked pledgets. Infection rates were significantly lower for mosquitoes that ingested virus from a pledget than for those that ingested similar doses from viremic hamsters. The method used to prevent normal clot formation for the pledget feedings (i.e., defibrination by shaking with glass beads or addition of heparin) did not affect subsequent infection rates. Both inhibition of normal clot formation and freezing of virus after it had last been propagated were associated with significantly reduced infection rates with the pledget feedings. Laboratory studies using artificial feeding techniques may not give reliable estimates of the vector competence of mosquitoes for arboviruses.

  20. Selective pre-priming of HA-specific CD4 T cells restores immunological reactivity to HA on heterosubtypic influenza infection.

    PubMed

    Alam, Shabnam; Chan, Cory; Qiu, Xing; Shannon, Ian; White, Chantelle L; Sant, Andrea J; Nayak, Jennifer L

    2017-01-01

    A hallmark of the immune response to influenza is repeated encounters with proteins containing both genetically conserved and variable components. Therefore, the B and T cell repertoire is continually being remodeled, with competition between memory and naïve lymphocytes. Our previous work using a mouse model of secondary heterosubtypic influenza infection has shown that this competition results in a focusing of CD4 T cell response specificity towards internal virion proteins with a selective decrease in CD4 T cell reactivity to the novel HA epitopes. Strikingly, this shift in CD4 T cell specificity was associated with a diminished anti-HA antibody response. Here, we sought to determine whether the loss in HA-specific reactivity that occurs as a consequence of immunological memory could be reversed by selectively priming HA-specific CD4 T cells prior to secondary infection. Using a peptide-based priming strategy, we found that selective expansion of the anti-HA CD4 T cell memory repertoire enhanced HA-specific antibody production upon heterosubtypic infection. These results suggest that the potentially deleterious consequences of repeated exposure to conserved influenza internal virion proteins could be reversed by vaccination strategies that selectively arm the HA-specific CD4 T cell compartment. This could be a potentially useful pre-pandemic vaccination strategy to promote accelerated neutralizing antibody production on challenge with a pandemic influenza strain that contains few conserved HA epitopes.

  1. Assembly, maturation and three-dimensional helical structure of the teratogenic rubella virus

    PubMed Central

    Mangala Prasad, Vidya

    2017-01-01

    Viral infections during pregnancy are a significant cause of infant morbidity and mortality. Of these, rubella virus infection is a well-substantiated example that leads to miscarriages or severe fetal defects. However, structural information about the rubella virus has been lacking due to the pleomorphic nature of the virions. Here we report a helical structure of rubella virions using cryo-electron tomography. Sub-tomogram averaging of the surface spikes established the relative positions of the viral glycoproteins, which differed from the earlier icosahedral models of the virus. Tomographic analyses of in vitro assembled nucleocapsids and virions provide a template for viral assembly. Comparisons of immature and mature virions show large rearrangements in the glycoproteins that may be essential for forming the infectious virions. These results present the first known example of a helical membrane-enveloped virus, while also providing a structural basis for its assembly and maturation pathway. PMID:28575072

  2. Assembly, maturation and three-dimensional helical structure of the teratogenic rubella virus.

    PubMed

    Mangala Prasad, Vidya; Klose, Thomas; Rossmann, Michael G

    2017-06-01

    Viral infections during pregnancy are a significant cause of infant morbidity and mortality. Of these, rubella virus infection is a well-substantiated example that leads to miscarriages or severe fetal defects. However, structural information about the rubella virus has been lacking due to the pleomorphic nature of the virions. Here we report a helical structure of rubella virions using cryo-electron tomography. Sub-tomogram averaging of the surface spikes established the relative positions of the viral glycoproteins, which differed from the earlier icosahedral models of the virus. Tomographic analyses of in vitro assembled nucleocapsids and virions provide a template for viral assembly. Comparisons of immature and mature virions show large rearrangements in the glycoproteins that may be essential for forming the infectious virions. These results present the first known example of a helical membrane-enveloped virus, while also providing a structural basis for its assembly and maturation pathway.

  3. Reduced susceptibility to penicillin among pneumococci causing invasive infection in children - Canada, 1991 to 1998

    PubMed Central

    Scheifele, David; Halperin, Scott; Pelletier, Louise; Talbot, James; Lovgren, Marguerite; Vaudry, Wendy; Jadavji, Taj; Law, Barbara; MacDonald, Noni; Gold, Ron; Wang, Elaine; Mills, Elaine; Lebel, Marc; Déry, Pierre; Morris, Rob

    2001-01-01

    OBJECTIVE: To determine, over time, the rate and serotypes of pneumococci with reduced penicillin susceptibility obtained from children with invasive infection. DESIGN: Active, hospital-based, multicentre surveillance spanning from 1991 to 1998. SETTING: Eleven Canadian tertiary care paediatric facilities located from coast to coast. POPULATION STUDIED: 1847 children with invasive pneumococcal infection whose isolates (from a normally sterile site) were available for serotyping and standardized testing for penicillin susceptibility at the National Centre for Streptococcus. MAIN RESULTS: The prevalence of reduced penicillin susceptibility increased from 2.5% of 197 cases in 1991 to 13.0% of 276 cases in 1998. In the latter year, 8.7% of isolates had intermediate level resistance, and 4.3% had high level resistance. Since they were first detected in 1992, strains with high level resistance have been encountered only sporadically at most centres, but by 1998, all centres but two had encountered examples. Of 40 isolates with high level resistance and 101 isolates with intermediate level resistance, serotypes matched those included in new seven-valent conjugate vaccines for children in 97.5% and 79.2% of cases, respectively. CONCLUSIONS: Pneumococci with reduced susceptibility to penicillin are increasing in frequency across Canada among children with invasive infection. The Immunization Monitoring Program, Active data indicate that new conjugate vaccines could help to curb infections due to pneumococci with reduced susceptibility to penicillin but are unlikely to control completely the problem of antibiotic resistance. PMID:18159346

  4. Vaccinia Virus Mutations in the L4R Gene Encoding a Virion Structural Protein Produce Abnormal Mature Particles Lacking a Nucleocapsid

    PubMed Central

    Moussatche, Nissin; Condit, Richard C.

    2014-01-01

    ABSTRACT Electron micrographs from the 1960s revealed the presence of an S-shaped tubular structure in the center of the vaccinia virion core. Recently, we showed that packaging of virus transcription enzymes is necessary for the formation of the tubular structure, suggesting that the structure is equivalent to a nucleocapsid. Based on this study and on what is known about nucleocapsids of other viruses, we hypothesized that in addition to transcription enzymes, the tubular structure also contains the viral DNA and a structural protein as a scaffold. The vaccinia virion structural protein L4 stands out as the best candidate for the role of a nucleocapsid structural protein because it is abundant, it is localized in the center of the virion core, and it binds DNA. In order to gain more insight into the structure and relevance of the nucleocapsid, we analyzed thermosensitive and inducible mutants in the L4R gene. Using a cryo-fixation method for electron microscopy (high-pressure freezing followed by freeze-substitution) to preserve labile structures like the nucleocapsid, we were able to demonstrate that in the absence of functional L4, mature particles with defective internal structures are produced under nonpermissive conditions. These particles do not contain a nucleocapsid. In addition, the core wall of these virions is abnormal. This suggests that the nucleocapsid interacts with the core wall and that the nucleocapsid structure might be more complex than originally assumed. IMPORTANCE The vaccinia virus nucleocapsid has been neglected since the 1960s due to a lack of electron microscopy techniques to preserve this labile structure. With the advent of cryo-fixation techniques, like high-pressure freezing/freeze-substitution, we are now able to consistently preserve and visualize the nucleocapsid. Because vaccinia virus early transcription is coupled to the viral core structure, detailing the structure of the nucleocapsid is indispensable for determining the

  5. Does improving surface cleaning and disinfection reduce health care-associated infections?

    PubMed

    Donskey, Curtis J

    2013-05-01

    Contaminated environmental surfaces provide an important potential source for transmission of health care-associated pathogens. In recent years, a variety of interventions have been shown to be effective in improving cleaning and disinfection of surfaces. This review examines the evidence that improving environmental disinfection can reduce health care-associated infections. Published by Mosby, Inc.

  6. Hand hygiene to reduce community transmission of influenza and acute respiratory tract infection: a systematic review

    PubMed Central

    Warren‐Gash, Charlotte; Fragaszy, Ellen; Hayward, Andrew C.

    2012-01-01

    Please cite this paper as: Warren‐Gash et al. (2012) Hand hygiene to reduce community transmission of influenza and acute respiratory tract infection: a systematic review. Influenza and Other Respiratory Viruses DOI: 10.1111/irv.12015. Hand hygiene may be associated with modest protection against some acute respiratory tract infections, but its specific role in influenza transmission in different settings is unclear. We aimed to review evidence that improving hand hygiene reduces primary and secondary transmission of (i) influenza and (ii) acute respiratory tract infections in community settings. We searched Medline, Embase, Global Health and Cochrane databases up to 13 February 2012 for reports in any language of original research investigating the effect of hand hygiene on influenza or acute respiratory tract infection where aetiology was unspecified in community settings including institutions such as schools, and domestic residences. Data were presented and quality rated across outcomes according to the Grading of Recommendations Assessment, Development and Evaluation system. Sixteen articles met inclusion criteria. There was moderate to low‐quality evidence of a reduction in both influenza and respiratory tract infection with hand hygiene interventions in schools, greatest in a lower–middle‐income setting. There was high‐quality evidence of a small reduction in respiratory infection in childcare settings. There was high‐quality evidence for a large reduction in respiratory infection with a hand hygiene intervention in squatter settlements in a low‐income setting. There was moderate‐ to high‐quality evidence of no effect on secondary transmission of influenza in households that had already experienced an index case. While hand hygiene interventions have potential to reduce transmission of influenza and acute respiratory tract infections, their effectiveness varies depending on setting, context and compliance. PMID:23043518

  7. Riboflavin and ultraviolet light reduce the infectivity of Babesia microti in whole blood.

    PubMed

    Tonnetti, Laura; Thorp, Aaron M; Reddy, Heather L; Keil, Shawn D; Goodrich, Raymond P; Leiby, David A

    2013-04-01

    Babesia microti is the parasite most frequently transmitted by blood transfusion in the United States. Previous work demonstrated the efficacy of riboflavin (RB) and ultraviolet (UV) light to inactivate B.microti in apheresis plasma and platelet units. In this study we investigated the effectiveness of RB and UV light to reduce the levels of B.microti in whole blood (WB). WB units were spiked with B. microti-infected hamster blood. Spearman-Karber methods were used to calculate infectivity of each sample in terms of hamster infectious dose 50% (HID50 ) value. After RB addition, the units were illuminated with 80 J/mLRBC UV light. Two samples were collected: one before illumination and one after illumination. The samples were serially diluted and dilutions injected into a group of five naive hamsters. Four weeks postinoculation (PI), blood was collected from the animals and evaluated by microscopic observation. One pilot study showed a good dose response in the animals and demonstrated that sample infectivity could be calculated in terms of an HID50 . Three additional replicates were performed in the same manner as the pilot study, but with fewer dilutions. Infectivity values were consistent between the experiments and were used to calculate log reduction. The posttreatment reduction of B. microti for all the experiments was more than 5 log. The data collected indicate that use of RB and UV is able to decrease the parasite load in WB units thus reducing the risk of transfusion-transmitted B. microti from blood components containing B. microti-infected RBCs. © 2012 American Association of Blood Banks.

  8. Lytic activity of the virion-associated peptidoglycan hydrolase HydH5 of staphylococcus aureus bacteriophage vB_SauS-phiIPLA88

    USDA-ARS?s Scientific Manuscript database

    Staphylococcus aureus bacteriophage vB_SauS-phiIPLA88 (phiIPLA88) contains a virion-associated muralytic enzyme (HydH5) encoded by orf58, which is located in the morphogenetic module. Comparative bioinformatic analysis revealed that HydH5 significantly resembled other peptidoglycan hydrolases encode...

  9. Tetherin/BST-2 promotes dendritic cell activation and function during acute retrovirus infection

    PubMed Central

    Li, Sam X.; Barrett, Bradley S.; Guo, Kejun; Kassiotis, George; Hasenkrug, Kim J.; Dittmer, Ulf; Gibbert, Kathrin; Santiago, Mario L.

    2016-01-01

    Tetherin/BST-2 is a host restriction factor that inhibits retrovirus release from infected cells in vitro by tethering nascent virions to the plasma membrane. However, contradictory data exists on whether Tetherin inhibits acute retrovirus infection in vivo. Previously, we reported that Tetherin-mediated inhibition of Friend retrovirus (FV) replication at 2 weeks post-infection correlated with stronger natural killer, CD4+ T and CD8+ T cell responses. Here, we further investigated the role of Tetherin in counteracting retrovirus replication in vivo. FV infection levels were similar between wild-type (WT) and Tetherin KO mice at 3 to 7 days post-infection despite removal of a potent restriction factor, Apobec3/Rfv3. However, during this phase of acute infection, Tetherin enhanced myeloid dendritic cell (DC) function. DCs from infected, but not uninfected, WT mice expressed significantly higher MHC class II and the co-stimulatory molecule CD80 compared to Tetherin KO DCs. Tetherin-associated DC activation during acute FV infection correlated with stronger NK cell responses. Furthermore, Tetherin+ DCs from FV-infected mice more strongly stimulated FV-specific CD4+ T cells ex vivo compared to Tetherin KO DCs. The results link the antiretroviral and immunomodulatory activity of Tetherin in vivo to improved DC activation and MHC class II antigen presentation. PMID:26846717

  10. Tetherin/BST-2 promotes dendritic cell activation and function during acute retrovirus infection.

    PubMed

    Li, Sam X; Barrett, Bradley S; Guo, Kejun; Kassiotis, George; Hasenkrug, Kim J; Dittmer, Ulf; Gibbert, Kathrin; Santiago, Mario L

    2016-02-05

    Tetherin/BST-2 is a host restriction factor that inhibits retrovirus release from infected cells in vitro by tethering nascent virions to the plasma membrane. However, contradictory data exists on whether Tetherin inhibits acute retrovirus infection in vivo. Previously, we reported that Tetherin-mediated inhibition of Friend retrovirus (FV) replication at 2 weeks post-infection correlated with stronger natural killer, CD4+ T and CD8+ T cell responses. Here, we further investigated the role of Tetherin in counteracting retrovirus replication in vivo. FV infection levels were similar between wild-type (WT) and Tetherin KO mice at 3 to 7 days post-infection despite removal of a potent restriction factor, Apobec3/Rfv3. However, during this phase of acute infection, Tetherin enhanced myeloid dendritic cell (DC) function. DCs from infected, but not uninfected, WT mice expressed significantly higher MHC class II and the co-stimulatory molecule CD80 compared to Tetherin KO DCs. Tetherin-associated DC activation during acute FV infection correlated with stronger NK cell responses. Furthermore, Tetherin+ DCs from FV-infected mice more strongly stimulated FV-specific CD4+ T cells ex vivo compared to Tetherin KO DCs. The results link the antiretroviral and immunomodulatory activity of Tetherin in vivo to improved DC activation and MHC class II antigen presentation.

  11. DNA Polymerase in Virions of a Reptilian Type C Virus

    PubMed Central

    Twardzik, Daniel R.; Papas, Takis S.; Portugal, Frank H.

    1974-01-01

    A study was made of the DNA polymerase of reptilian type C virus isolated from Russell's viper spleen cells. Simultaneous detection experiments demonstrated the presence of 70S RNA and RNA-dependent DNA polymerase activity in reptilian type C virions. The endogenous activity was dependent on the addition of all four deoxynucleotide triphosphates and demonstrated an absolute requirement for a divalent cation. The reptilian viral DNA polymerase elutes from phosphocellulose at 0.22 M salt. In this respect, it is similar to the avian (avian myeloblastosis virus; AMV) viral enzyme but is different from the mammalian (Rauscher leukemia virus; RLV) viral enzyme which elutes at 0.4 M salt. The molecular weight of the viper DNA polymerase as estimated from glycerol gradient centrifugation is 109,000. It is a smaller enzyme than the AMV DNA polymerase (180,000 daltons) and somewhat larger than the RLV enzyme (70,000 daltons). A comparison of other properties of the type C reptilian DNA polymerase with the enzyme found in other type C oncogenic viruses is made. PMID:4129837

  12. Low-energy electron holographic imaging of individual tobacco mosaic virions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Longchamp, Jean-Nicolas, E-mail: longchamp@physik.uzh.ch; Latychevskaia, Tatiana; Escher, Conrad

    2015-09-28

    Modern structural biology relies on Nuclear Magnetic Resonance (NMR), X-ray crystallography, and cryo-electron microscopy for gaining information on biomolecules at nanometer, sub-nanometer, or atomic resolution. All these methods, however, require averaging over a vast ensemble of entities, and hence knowledge on the conformational landscape of an individual particle is lost. Unfortunately, there are now strong indications that even X-ray free electron lasers will not be able to image individual molecules but will require nanocrystal samples. Here, we show that non-destructive structural biology of single particles has now become possible by means of low-energy electron holography. As an example, individual tobaccomore » mosaic virions deposited on ultraclean freestanding graphene are imaged at 1 nm resolution revealing structural details arising from the helical arrangement of the outer protein shell of the virus. Since low-energy electron holography is a lens-less technique and since electrons with a deBroglie wavelength of approximately 1 Å do not impose radiation damage to biomolecules, the method has the potential for Angstrom resolution imaging of single biomolecules.« less

  13. Preoperative oral antibiotics reduce surgical site infection following elective colorectal resections.

    PubMed

    Cannon, Jamie A; Altom, Laura K; Deierhoi, Rhiannon J; Morris, Melanie; Richman, Joshua S; Vick, Catherine C; Itani, Kamal M F; Hawn, Mary T

    2012-11-01

    Surgical site infection is a major cause of morbidity after colorectal resections. Despite evidence that preoperative oral antibiotics with mechanical bowel preparation reduce surgical site infection rates, the use of oral antibiotics is decreasing. Currently, the administration of oral antibiotics is controversial and considered ineffective without mechanical bowel preparation. The aim of this study is to examine the use of mechanical bowel preparation and oral antibiotics and their relationship to surgical site infection rates in a colorectal Surgical Care Improvement Project cohort. This retrospective study used Veterans Affairs Surgical Quality Improvement Program preoperative risk and surgical site infection outcome data linked to Veterans Affairs Surgical Care Improvement Project and Pharmacy Benefits Management data. Univariate and multivariable models were performed to identify factors associated with surgical site infection within 30 days of surgery. This study was conducted in 112 Veterans Affairs hospitals. Included were 9940 patients who underwent elective colorectal resections from 2005 to 2009. The primary outcome measured was the incidence of surgical site infection. Patients receiving oral antibiotics had significantly lower surgical site infection rates. Those receiving no bowel preparation had similar surgical site infection rates to those who had mechanical bowel preparation only (18.1% vs 20%). Those receiving oral antibiotics alone had an surgical site infection rate of 8.3%, and those receiving oral antibiotics plus mechanical bowel preparation had a rate of 9.2%. In adjusted analysis, the use of oral antibiotics alone was associated with a 67% decrease in surgical site infection occurrence (OR=0.33, 95% CI 0.21-0.50). Oral antibiotics plus mechanical bowel preparation was associated with a 57% decrease in surgical site infection occurrence (OR=0.43, 95% CI 0.34-0.55). Timely administration of parenteral antibiotics (Surgical Care Improvement

  14. Leadership rounds to reduce health care-associated infections.

    PubMed

    Knobloch, Mary Jo; Chewning, Betty; Musuuza, Jackson; Rees, Susan; Green, Christopher; Patterson, Erin; Safdar, Nasia

    2018-03-01

    Evidence-based guidelines exist to reduce health care-associated infections (HAIs). Leadership rounds are one tool leaders can use to ensure compliance with guidelines, but have not been studied specifically for the reduction of HAIs. This study examines HAI leadership rounds at one facility. We explored unit-based HAI leadership rounds led by 2 hospital leaders at a large academic hospital. Leadership rounds were observed on 19 units, recorded, and coded to identify themes. Themes were linked to the Consolidated Framework for Implementation Research and used to guide interviews with frontline staff members. Staff members disclosed unit-specific problems and readily engaged in problem-solving with top hospital leaders. These themes appeared over 350 times within 22 rounds. Findings revealed that leaders used words that demonstrated fallibility and modeled curiosity, 2 factors associated with learning climate and psychologic safety. These 2 themes appeared 115 and 142 times, respectively. The flexible nature of the rounds appeared to be conducive for reflection and evaluation, which was coded 161 times. Each interaction between leaders and frontline staff can foster psychologic safety, which can lead to open problem-solving to reduce barriers to implementation. Discovering specific communication and structural factors that contribute to psychologic safety may be powerful in reducing HAIs. Published by Elsevier Inc.

  15. Short-term glycemic control is effective in reducing surgical site infection in diabetic rats.

    PubMed

    Kroin, Jeffrey S; Buvanendran, Asokumar; Li, Jinyuan; Moric, Mario; Im, Hee-Jeong; Tuman, Kenneth J; Shafikhani, Sasha H

    2015-06-01

    Patients and animals with diabetes exhibit enhanced vulnerability to bacterial surgical infections. Despite multiple retrospective studies demonstrating the benefits associated with glycemic control in reducing bacterial infection after cardiac surgery, there are fewer guidelines on the use of glycemic control for noncardiac surgeries. In the current study, we investigated whether long-term (begun 2 weeks before surgery) or immediate (just before surgery) glycemic controls, continued postoperatively, can reduce surgical site infection in type 1 diabetic-induced rats. Rats were injected with streptozotocin to induce type 1 diabetes. Four groups of animals underwent surgery and thigh muscle Staphylococcus aureus bacteria challenge (1 × 10 colony forming units) at the time of surgery. Group 1 diabetic rats received insulin treatment just before surgery and continued until the end of study (short-term glycemic control group). Group 2 diabetic rats received insulin treatment 2 weeks before surgery and continued until the end of study (long-term glycemic control). Group 3 diabetic rats received no insulin treatment (no glycemic control group). Group 4 nondiabetic rats served as a healthy control group. Rats were euthanized at 3 or 6 days after surgery. Blood glucose and muscle bacterial burden were measured at 3 or 6 days after surgery. Glycemic control was achieved in both long- and short-term insulin-treated diabetic rats. Compared with untreated diabetic rats, the bacterial burden in muscle was significantly lower in both groups of glycemic controlled diabetic rats at 3 (all P < 0.003) and 6 (all P < 0.0001) days after surgery. A short-term glycemic control regimen, initiated just before surgery and bacterial exposure, was as effective in reducing surgical site infection as a long-term glycemic control in type 1 diabetic rats. These data suggest that immediately implementing glycemic control in type 1 diabetic surgical patients before undergoing noncardiac surgery

  16. Host Range Factor 1 from Lymantria dispar Nucleopolyhedrovirus (NPV) Is an Essential Viral Factor Required for Productive Infection of NPVs in IPLB-Ld652Y Cells Derived from L. dispar

    PubMed Central

    Ishikawa, Hiroki; Ikeda, Motoko; Felipe Alves, Cristiano A.; Thiem, Suzanne M.; Kobayashi, Michihiro

    2004-01-01

    Host range factor 1 (HRF-1) of Lymantria dispar multinucleocapsid nucleopolyhedrovirus promotes Autographa californica MNPV replication in nonpermissive Ld652Y cells derived from L. dispar. Here we demonstrate that restricted Hyphantria cunea NPV replication in Ld652Y cells was not due to apoptosis but was likely due to global protein synthesis arrest that could be restored by HRF-1. Our data also showed that HRF-1 promoted the production of progeny virions for two other baculoviruses, Bombyx mori NPV and Spodoptera exigua MNPV, whose replication in Ld652Y cells is limited to replication of viral DNA without successful production of infectious progeny virions. Thus, HRF-1 is an essential viral factor required for productive infection of NPVs in Ld652Y cells. PMID:15507661

  17. Host range factor 1 from Lymantria dispar Nucleopolyhedrovirus (NPV) is an essential viral factor required for productive infection of NPVs in IPLB-Ld652Y cells derived from L. dispar.

    PubMed

    Ishikawa, Hiroki; Ikeda, Motoko; Alves, Cristiano A Felipe; Thiem, Suzanne M; Kobayashi, Michihiro

    2004-11-01

    Host range factor 1 (HRF-1) of Lymantria dispar multinucleocapsid nucleopolyhedrovirus promotes Autographa californica MNPV replication in nonpermissive Ld652Y cells derived from L. dispar. Here we demonstrate that restricted Hyphantria cunea NPV replication in Ld652Y cells was not due to apoptosis but was likely due to global protein synthesis arrest that could be restored by HRF-1. Our data also showed that HRF-1 promoted the production of progeny virions for two other baculoviruses, Bombyx mori NPV and Spodoptera exigua MNPV, whose replication in Ld652Y cells is limited to replication of viral DNA without successful production of infectious progeny virions. Thus, HRF-1 is an essential viral factor required for productive infection of NPVs in Ld652Y cells.

  18. The schedule effect: can recurrent peak infections be reduced without vaccines, quarantines or school closings?

    PubMed

    Diedrichs, Danilo R; Isihara, Paul A; Buursma, Doeke D

    2014-02-01

    Using a basic, two transmission level seasonal SIR model, we introduce mathematical evidence for the schedule effect which asserts that major recurring peak infections can be significantly reduced by modification of the traditional school calendar. The schedule effect is observed first in simulated time histories of the infectious population. Schedules with higher average transmission rate may exhibit reduced peak infections. Splitting vacations changes the period of the oscillating transmission function and can confine limit cycles in the proportion susceptible/proportion infected phase plane. Numerical analysis of the phase plane shows the relationship between the transmission period and the maximum recurring infection peaks and period of the response. For certain transmission periods, this response may exhibit period-doubling and chaos, leading to increased peaks. Non-monotonic infectious response is also observed in conjunction with changing birth rate. We discuss how to take these effects into consideration to design an optimum school schedule with particular reference to a hypothetical developing world context. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Microplitis demolitor bracovirus genome segments vary in abundance and are individually packaged in virions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beck, Markus H.; Inman, Ross B.; Strand, Michael R.

    2007-03-01

    Polydnaviruses (PDVs) are distinguished by their unique association with parasitoid wasps and their segmented, double-stranded (ds) DNA genomes that are non-equimolar in abundance. Relatively little is actually known, however, about genome packaging or segment abundance of these viruses. Here, we conducted electron microscopy (EM) and real-time polymerase chain reaction (PCR) studies to characterize packaging and segment abundance of Microplitis demolitor bracovirus (MdBV). Like other PDVs, MdBV replicates in the ovaries of females where virions accumulate to form a suspension called calyx fluid. Wasps then inject a quantity of calyx fluid when ovipositing into hosts. The MdBV genome consists of 15more » segments that range from 3.6 (segment A) to 34.3 kb (segment O). EM analysis indicated that MdBV virions contain a single nucleocapsid that encapsidates one circular DNA of variable size. We developed a semi-quantitative real-time PCR assay using SYBR Green I. This assay indicated that five (J, O, H, N and B) segments of the MdBV genome accounted for more than 60% of the viral DNAs in calyx fluid. Estimates of relative segment abundance using our real-time PCR assay were also very similar to DNA size distributions determined from micrographs. Analysis of parasitized Pseudoplusia includens larvae indicated that copy number of MdBV segments C, B and J varied between hosts but their relative abundance within a host was virtually identical to their abundance in calyx fluid. Among-tissue assays indicated that each viral segment was most abundant in hemocytes and least abundant in salivary glands. However, the relative abundance of each segment to one another was similar in all tissues. We also found no clear relationship between MdBV segment and transcript abundance in hemocytes and fat body.« less

  20. Infection of Mouse Macrophages by Seasonal Influenza Viruses Can Be Restricted at the Level of Virus Entry and at a Late Stage in the Virus Life Cycle

    PubMed Central

    Londrigan, Sarah L.; Short, Kirsty R.; Ma, Joel; Gillespie, Leah; Rockman, Steven P.; Brooks, Andrew G.

    2015-01-01

    ABSTRACT Airway epithelial cells are susceptible to infection with seasonal influenza A viruses (IAV), resulting in productive virus replication and release. Macrophages (MΦ) are also permissive to IAV infection; however, virus replication is abortive. Currently, it is unclear how productive infection of MΦ is impaired or the extent to which seasonal IAV replicate in MΦ. Herein, we compared mouse MΦ and epithelial cells for their ability to support genomic replication and transcription, synthesis of viral proteins, assembly of virions, and release of infectious progeny following exposure to genetically defined IAV. We confirm that seasonal IAV differ in their ability to utilize cell surface receptors for infectious entry and that this represents one level of virus restriction. Following virus entry, we demonstrate synthesis of all eight segments of genomic viral RNA (vRNA) and mRNA, as well as seven distinct IAV proteins, in IAV-infected mouse MΦ. Although newly synthesized hemagglutinin (HA) and neuraminidase (NA) glycoproteins are incorporated into the plasma membrane and expressed at the cell surface, electron microscopy confirmed that virus assembly was defective in IAV-infected MΦ, defining a second level of restriction late in the virus life cycle. IMPORTANCE Seasonal influenza A viruses (IAV) and highly pathogenic avian influenza viruses (HPAI) infect macrophages, but only HPAI replicate productively in these cells. Herein, we demonstrate that impaired virus uptake into macrophages represents one level of restriction limiting infection by seasonal IAV. Following uptake, seasonal IAV do not complete productive replication in macrophages, representing a second level of restriction. Using murine macrophages, we demonstrate that productive infection is blocked late in the virus life cycle, such that virus assembly is defective and newly synthesized virions are not released. These studies represent an important step toward identifying host-encoded factors

  1. Infection of Mouse Macrophages by Seasonal Influenza Viruses Can Be Restricted at the Level of Virus Entry and at a Late Stage in the Virus Life Cycle.

    PubMed

    Londrigan, Sarah L; Short, Kirsty R; Ma, Joel; Gillespie, Leah; Rockman, Steven P; Brooks, Andrew G; Reading, Patrick C

    2015-12-01

    Airway epithelial cells are susceptible to infection with seasonal influenza A viruses (IAV), resulting in productive virus replication and release. Macrophages (MΦ) are also permissive to IAV infection; however, virus replication is abortive. Currently, it is unclear how productive infection of MΦ is impaired or the extent to which seasonal IAV replicate in MΦ. Herein, we compared mouse MΦ and epithelial cells for their ability to support genomic replication and transcription, synthesis of viral proteins, assembly of virions, and release of infectious progeny following exposure to genetically defined IAV. We confirm that seasonal IAV differ in their ability to utilize cell surface receptors for infectious entry and that this represents one level of virus restriction. Following virus entry, we demonstrate synthesis of all eight segments of genomic viral RNA (vRNA) and mRNA, as well as seven distinct IAV proteins, in IAV-infected mouse MΦ. Although newly synthesized hemagglutinin (HA) and neuraminidase (NA) glycoproteins are incorporated into the plasma membrane and expressed at the cell surface, electron microscopy confirmed that virus assembly was defective in IAV-infected MΦ, defining a second level of restriction late in the virus life cycle. Seasonal influenza A viruses (IAV) and highly pathogenic avian influenza viruses (HPAI) infect macrophages, but only HPAI replicate productively in these cells. Herein, we demonstrate that impaired virus uptake into macrophages represents one level of restriction limiting infection by seasonal IAV. Following uptake, seasonal IAV do not complete productive replication in macrophages, representing a second level of restriction. Using murine macrophages, we demonstrate that productive infection is blocked late in the virus life cycle, such that virus assembly is defective and newly synthesized virions are not released. These studies represent an important step toward identifying host-encoded factors that block

  2. STAT6 inhibitory peptide given during RSV infection of neonatal mice reduces exacerbated airway responses upon adult reinfection.

    PubMed

    Srinivasa, Bharat T; Restori, Katherine H; Shan, Jichuan; Cyr, Louis; Xing, Li; Lee, Soojin; Ward, Brian J; Fixman, Elizabeth D

    2017-02-01

    Respiratory syncytial virus (RSV)-related hospitalization during infancy is strongly associated with the subsequent development of asthma. Early life RSV infection results in a Th2-biased immune response, which is also typical of asthma. Murine models of neonatal RSV infection have been developed to examine the possible contribution of RSV-driven Th2 responses to the development of airway hyper-responsiveness later in childhood. We have investigated the ability of a cell-penetrating STAT6 inhibitory peptide (STAT6-IP), when delivered selectively during neonatal RSV infection, to modify pathogenesis induced upon secondary RSV reinfection of adults 6 wk later. Neonatal STAT6-IP treatment inhibited the development of airway hyper-responsiveness (AHR) and significantly reduced lung eosinophilia and collagen deposition in adult mice following RSV reinfection. STAT6-IP-treated, RSV-infected neonates had reduced levels of both IL-4 and alternatively activated macrophages (AAMs) in the lungs. Our findings suggest that targeting STAT6 activity at the time of early-life RSV infection may effectively reduce the risk of subsequent asthma development. © Society for Leukocyte Biology.

  3. Identification of a novel Lymantria dispar nucleopolyhedrovirus mutant that exhibits abnormal polyhedron formation and virion occlusion.

    PubMed

    Slavicek, J M; Mercer, M J; Pohlman, D; Kelly, M E; Bischoff, D S

    1998-07-01

    In previous studies on the formation of Lymantria dispar nuclear polyhedrosis virus (LdMNPV) few polyhedra (FP) mutants, several polyhedron formation mutants (PFM) were identified that appeared to be unique. These viral mutants are being characterized to investigate the processes of polyhedron formation and virion occlusion. LdMNPV isolate PFM-1 is one of these mutants, and is described in this report. Genetic techniques were used to determine if isolate PFM-1 contained a mutation in the polyhedrin or 25K FP gene. Wild-type viruses were recovered after coinfection of Ld652Y cells with isolate PFM-1 and a FP mutant, and with isolates PFM-1 and PFM-C (isolate PFM-C contains a mutation in the polyhedrin gene). These viruses were analyzed by genomic restriction endonuclease digestion and found to be chimeras of the original PFMs used in the coinfections. Marker rescue studies mapped the mutation in isolate PFM-1 to a genomic region that does not include the polyhedrin or 25K FP genes. Isolate PFM-1 produced approximately 14-fold fewer polyhedra than LdMNPV isolate A21-MPV, an isolate that produces wild-type levels of polyhedra, and approximately 2-fold more polyhedra compared to the FP isolate 122-2. Polyhedra generated by isolate PFM-1 were normal in size and shape but contained very few viral nucleocapsids. The same amount of budded virus (BV) was released from cells infected with isolates PFM-1 and A21-MPV. In contrast, isolate 122-2 yielded significantly more BV than isolates PFM-1 and A21-MPV.

  4. Infection Reduces Return-to-duty Rates for Soldiers with Type III Open Tibia Fractures

    DTIC Science & Technology

    2014-09-01

    Infection reduces return-to-duty rates for soldiers with Type III open tibia fractures Matthew A. Napierala, MD, Jessica C. Rivera, MD, Travis C... Type III open tibia fracture and tabulated the prevalence of infectious complications.We searched the Physical Evaluation Board database to determine...were not infected ( p 0.1407). Soldiers who experienced any type of infectious complication ( p 0.0470) and having osteomyelitis ( p 0.0335) had a lower

  5. Integrity of the Linker of Nucleoskeleton and Cytoskeleton Is Required for Efficient Herpesvirus Nuclear Egress.

    PubMed

    Klupp, Barbara G; Hellberg, Teresa; Granzow, Harald; Franzke, Kati; Dominguez Gonzalez, Beatriz; Goodchild, Rose E; Mettenleiter, Thomas C

    2017-10-01

    Herpesvirus capsids assemble in the nucleus, while final virion maturation proceeds in the cytoplasm. This requires that newly formed nucleocapsids cross the nuclear envelope (NE), which occurs by budding at the inner nuclear membrane (INM), release of the primary enveloped virion into the perinuclear space (PNS), and subsequent rapid fusion with the outer nuclear membrane (ONM). During this process, the NE remains intact, even at late stages of infection. In addition, the spacing between the INM and ONM is maintained, as is that between the primary virion envelope and nuclear membranes. The linker of nucleoskeleton and cytoskeleton (LINC) complex consists of INM proteins with a luminal SUN (Sad1/UNC-84 homology) domain connected to ONM proteins with a KASH (Klarsicht, ANC-1, SYNE homology) domain and is thought to be responsible for spacing the nuclear membranes. To investigate the role of the LINC complex during herpesvirus infection, we generated cell lines constitutively expressing dominant negative (dn) forms of SUN1 and SUN2. Ultrastructural analyses revealed a significant expansion of the PNS and the contiguous intracytoplasmic lumen, most likely representing endoplasmic reticulum (ER), especially in cells expressing dn-SUN2. After infection, primary virions accumulated in these expanded luminal regions, also very distant from the nucleus. The importance of the LINC complex was also confirmed by reduced progeny virus titers in cells expressing dn-SUN2. These data show that the intact LINC complex is required for efficient nuclear egress of herpesviruses, likely acting to promote fusion of primary enveloped virions with the ONM. IMPORTANCE While the viral factors for primary envelopment of nucleocapsids at the inner nuclear membrane are known to the point of high-resolution structures, the roles of cellular components and regulators remain enigmatic. Furthermore, the machinery responsible for fusion with the outer nuclear membrane is unsolved. We show here

  6. Cost-effectiveness of a quality improvement programme to reduce central line-associated bloodstream infections in intensive care units in the USA

    PubMed Central

    Herzer, Kurt R; Niessen, Louis; Constenla, Dagna O; Ward, William J; Pronovost, Peter J

    2014-01-01

    Objective To assess the cost-effectiveness of a multifaceted quality improvement programme focused on reducing central line-associated bloodstream infections in intensive care units. Design Cost-effectiveness analysis using a decision tree model to compare programme to non-programme intensive care units. Setting USA. Population Adult patients in the intensive care unit. Costs Economic costs of the programme and of central line-associated bloodstream infections were estimated from the perspective of the hospital and presented in 2013 US dollars. Main outcome measures Central line-associated bloodstream infections prevented, deaths averted due to central line-associated bloodstream infections prevented, and incremental cost-effectiveness ratios. Probabilistic sensitivity analysis was performed. Results Compared with current practice, the programme is strongly dominant and reduces bloodstream infections and deaths at no additional cost. The probabilistic sensitivity analysis showed that there was an almost 80% probability that the programme reduces bloodstream infections and the infections’ economic costs to hospitals. The opportunity cost of a bloodstream infection to a hospital was the most important model parameter in these analyses. Conclusions This multifaceted quality improvement programme, as it is currently implemented by hospitals on an increasingly large scale in the USA, likely reduces the economic costs of central line-associated bloodstream infections for US hospitals. Awareness among hospitals about the programme's benefits should enhance implementation. The programme's implementation has the potential to substantially reduce morbidity, mortality and economic costs associated with central line-associated bloodstream infections. PMID:25256190

  7. Cost-effectiveness of a quality improvement programme to reduce central line-associated bloodstream infections in intensive care units in the USA.

    PubMed

    Herzer, Kurt R; Niessen, Louis; Constenla, Dagna O; Ward, William J; Pronovost, Peter J

    2014-09-25

    To assess the cost-effectiveness of a multifaceted quality improvement programme focused on reducing central line-associated bloodstream infections in intensive care units. Cost-effectiveness analysis using a decision tree model to compare programme to non-programme intensive care units. USA. Adult patients in the intensive care unit. Economic costs of the programme and of central line-associated bloodstream infections were estimated from the perspective of the hospital and presented in 2013 US dollars. Central line-associated bloodstream infections prevented, deaths averted due to central line-associated bloodstream infections prevented, and incremental cost-effectiveness ratios. Probabilistic sensitivity analysis was performed. Compared with current practice, the programme is strongly dominant and reduces bloodstream infections and deaths at no additional cost. The probabilistic sensitivity analysis showed that there was an almost 80% probability that the programme reduces bloodstream infections and the infections' economic costs to hospitals. The opportunity cost of a bloodstream infection to a hospital was the most important model parameter in these analyses. This multifaceted quality improvement programme, as it is currently implemented by hospitals on an increasingly large scale in the USA, likely reduces the economic costs of central line-associated bloodstream infections for US hospitals. Awareness among hospitals about the programme's benefits should enhance implementation. The programme's implementation has the potential to substantially reduce morbidity, mortality and economic costs associated with central line-associated bloodstream infections. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  8. Cytoskeletal protein transformation in HIV-1-infected macrophage giant cells.

    PubMed

    Kadiu, Irena; Ricardo-Dukelow, Mary; Ciborowski, Pawel; Gendelman, Howard E

    2007-05-15

    The mechanisms linking HIV-1 replication, macrophage biology, and multinucleated giant cell formation are incompletely understood. With the advent of functional proteomics, the characterization, regulation, and transformation of HIV-1-infected macrophage-secreted proteins can be ascertained. To these ends, we performed proteomic analyses of culture fluids derived from HIV-1 infected monocyte-derived macrophages. Robust reorganization, phosphorylation, and exosomal secretion of the cytoskeletal proteins profilin 1 and actin were observed in conjunction with productive viral replication and giant cell formation. Actin and profilin 1 recruitment to the macrophage plasma membrane paralleled virus-induced cytopathicity, podosome formation, and cellular fusion. Poly-l-proline, an inhibitor of profilin 1-mediated actin polymerization, inhibited cytoskeletal transformations and suppressed, in part, progeny virion production. These data support the idea that actin and profilin 1 rearrangement along with exosomal secretion affect viral replication and cytopathicity. Such events favor the virus over the host cell and provide insights into macrophage defense mechanisms used to contain viral growth and how they may be affected during progressive HIV-1 infection.

  9. Glycolysis, Glutaminolysis, and Fatty Acid Synthesis Are Required for Distinct Stages of Kaposi's Sarcoma-Associated Herpesvirus Lytic Replication.

    PubMed

    Sanchez, Erica L; Pulliam, Thomas H; Dimaio, Terri A; Thalhofer, Angel B; Delgado, Tracie; Lagunoff, Michael

    2017-05-15

    Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent of Kaposi's sarcoma (KS). KSHV infection induces and requires multiple metabolic pathways, including the glycolysis, glutaminolysis, and fatty acid synthesis (FAS) pathways, for the survival of latently infected endothelial cells. To determine the metabolic requirements for productive KSHV infection, we induced lytic replication in the presence of inhibitors of different metabolic pathways. We found that glycolysis, glutaminolysis, and FAS are all required for maximal KSHV virus production and that these pathways appear to participate in virus production at different stages of the viral life cycle. Glycolysis and glutaminolysis, but not FAS, inhibit viral genome replication and, interestingly, are required for different early steps of lytic gene expression. Glycolysis is necessary for early gene transcription, while glutaminolysis is necessary for early gene translation but not transcription. Inhibition of FAS resulted in decreased production of extracellular virions but did not reduce intracellular genome levels or block intracellular virion production. However, in the presence of FAS inhibitors, the intracellular virions are noninfectious, indicating that FAS is required for virion assembly or maturation. KS tumors support both latent and lytic KSHV replication. Previous work has shown that multiple cellular metabolic pathways are required for latency, and we now show that these metabolic pathways are required for efficient lytic replication, providing novel therapeutic avenues for KS tumors. IMPORTANCE KSHV is the etiologic agent of Kaposi's sarcoma, the most common tumor of AIDS patients. KS spindle cells, the main tumor cells, all contain KSHV, mostly in the latent state, during which there is limited viral gene expression. However, a percentage of spindle cells support lytic replication and production of virus and these cells are thought to contribute to overall tumor formation. Our

  10. Glycolysis, Glutaminolysis, and Fatty Acid Synthesis Are Required for Distinct Stages of Kaposi's Sarcoma-Associated Herpesvirus Lytic Replication

    PubMed Central

    Sanchez, Erica L.; Pulliam, Thomas H.; Dimaio, Terri A.; Thalhofer, Angel B.; Delgado, Tracie

    2017-01-01

    ABSTRACT Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent of Kaposi's sarcoma (KS). KSHV infection induces and requires multiple metabolic pathways, including the glycolysis, glutaminolysis, and fatty acid synthesis (FAS) pathways, for the survival of latently infected endothelial cells. To determine the metabolic requirements for productive KSHV infection, we induced lytic replication in the presence of inhibitors of different metabolic pathways. We found that glycolysis, glutaminolysis, and FAS are all required for maximal KSHV virus production and that these pathways appear to participate in virus production at different stages of the viral life cycle. Glycolysis and glutaminolysis, but not FAS, inhibit viral genome replication and, interestingly, are required for different early steps of lytic gene expression. Glycolysis is necessary for early gene transcription, while glutaminolysis is necessary for early gene translation but not transcription. Inhibition of FAS resulted in decreased production of extracellular virions but did not reduce intracellular genome levels or block intracellular virion production. However, in the presence of FAS inhibitors, the intracellular virions are noninfectious, indicating that FAS is required for virion assembly or maturation. KS tumors support both latent and lytic KSHV replication. Previous work has shown that multiple cellular metabolic pathways are required for latency, and we now show that these metabolic pathways are required for efficient lytic replication, providing novel therapeutic avenues for KS tumors. IMPORTANCE KSHV is the etiologic agent of Kaposi's sarcoma, the most common tumor of AIDS patients. KS spindle cells, the main tumor cells, all contain KSHV, mostly in the latent state, during which there is limited viral gene expression. However, a percentage of spindle cells support lytic replication and production of virus and these cells are thought to contribute to overall tumor formation

  11. Infection of Polarized Cultures of Human Intestinal Epithelial Cells with Hepatitis A Virus: Vectorial Release of Progeny Virions through Apical Cellular Membranes

    PubMed Central

    Blank, Christian A.; Anderson, David A.; Beard, Michael; Lemon, Stanley M.

    2000-01-01

    Although hepatitis A virus (HAV) is typically transmitted by the fecal-oral route, little is known of its interactions with cells of the gastrointestinal tract. We studied the replication of HAV in polarized cultures of Caco-2 cells, a human cell line which retains many differentiated functions of small intestinal epithelial cells. Virus uptake was 30- to 40-fold more efficient when the inoculum was placed on the apical rather than the basolateral surface of these cells, suggesting a greater abundance of the cellular receptor for HAV on the apical surface. Infection proceeded without cytopathic effect and did not influence transepithelial resistance or the diffusion of inulin across cell monolayers. Nonetheless, there was extensive release of progeny virus, which occurred almost exclusively into apical supernatant fluids (36.4% ± 12.5% of the total virus yield compared with 0.23% ± 0.13% release into basolateral fluids). Brefeldin A caused a profound inhibition of HAV replication, but also selectively reduced apical release of virus. These results indicate that polarized human epithelial cell cultures undergo vectorial infection with HAV and that virus release is largely restricted to the apical membrane. Virus release occurs in the absence of cytopathic effect and may involve cellular vesicular transport mechanisms. PMID:10864660

  12. A Signature in HIV-1 Envelope Leader Peptide Associated with Transition from Acute to Chronic Infection Impacts Envelope Processing and Infectivity

    PubMed Central

    Asmal, Mohammed; Hellmann, Ina; Liu, Weimin; Keele, Brandon F.; Perelson, Alan S.; Bhattacharya, Tanmoy; Gnanakaran, S.; Daniels, Marcus; Haynes, Barton F.; Korber, Bette T.; Hahn, Beatrice H.; Shaw, George M.; Letvin, Norman L.

    2011-01-01

    Mucosal transmission of the human immunodeficiency virus (HIV) results in a bottleneck in viral genetic diversity. Gnanakaran and colleagues used a computational strategy to identify signature amino acids at particular positions in Envelope that were associated either with transmitted sequences sampled very early in infection, or sequences sampled during chronic infection. Among the strongest signatures observed was an enrichment for the stable presence of histidine at position 12 at transmission and in early infection, and a recurrent loss of histidine at position 12 in chronic infection. This amino acid lies within the leader peptide of Envelope, a region of the protein that has been shown to influence envelope glycoprotein expression and virion infectivity. We show a strong association between a positively charged amino acid like histidine at position 12 in transmitted/founder viruses with more efficient trafficking of the nascent envelope polypeptide to the endoplasmic reticulum and higher steady-state glycoprotein expression compared to viruses that have a non-basic position 12 residue, a substitution that was enriched among viruses sampled from chronically infected individuals. When expressed in the context of other viral proteins, transmitted envelopes with a basic amino acid position 12 were incorporated at higher density into the virus and exhibited higher infectious titers than did non-signature envelopes. These results support the potential utility of using a computational approach to examine large viral sequence data sets for functional signatures and indicate the importance of Envelope expression levels for efficient HIV transmission. PMID:21876761

  13. A New Age-Structured Multiscale Model of the Hepatitis C Virus Life-Cycle During Infection and Therapy With Direct-Acting Antiviral Agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quintela, Barbara de M.; Conway, Jessica M.; Hyman, James M.

    Here, the dynamics of hepatitis C virus (HCV) RNA during translation and replication within infected cells were added to a previous age-structured multiscale mathematical model of HCV infection and treatment. The model allows the study of the dynamics of HCV RNA inside infected cells as well as the release of virus from infected cells and the dynamics of subsequent new cell infections. The model was used to fit in vitro data and estimate parameters characterizing HCV replication. This is the first model to our knowledge to consider both positive and negative strands of HCV RNA with an age-structured multiscale modelingmore » approach. Using this model we also studied the effects of direct-acting antiviral agents (DAAs) in blocking HCV RNA intracellular replication and the release of new virions and fit the model to in vivo data obtained from HCV-infected subjects under therapy.« less

  14. A New Age-Structured Multiscale Model of the Hepatitis C Virus Life-Cycle During Infection and Therapy With Direct-Acting Antiviral Agents

    DOE PAGES

    Quintela, Barbara de M.; Conway, Jessica M.; Hyman, James M.; ...

    2018-04-04

    Here, the dynamics of hepatitis C virus (HCV) RNA during translation and replication within infected cells were added to a previous age-structured multiscale mathematical model of HCV infection and treatment. The model allows the study of the dynamics of HCV RNA inside infected cells as well as the release of virus from infected cells and the dynamics of subsequent new cell infections. The model was used to fit in vitro data and estimate parameters characterizing HCV replication. This is the first model to our knowledge to consider both positive and negative strands of HCV RNA with an age-structured multiscale modelingmore » approach. Using this model we also studied the effects of direct-acting antiviral agents (DAAs) in blocking HCV RNA intracellular replication and the release of new virions and fit the model to in vivo data obtained from HCV-infected subjects under therapy.« less

  15. Vaccination for the prevention of maternal and fetal infection with guinea pig cytomegalovirus.

    PubMed

    Bia, F J; Griffith, B P; Tarsio, M; Hsiung, G D

    1980-11-01

    Live guinea pig cytomegalovirus (CMV) vaccine was prepared after 11 serial passages in tissue culture; noninfectious envelope antigen vaccine was prepared by n-octyl glucoside treatment of CMV-derived dense bodies and virions. Hartley strain guinea pigs immunized with either vaccine were compared with guinea pigs inoculated with virulent, salivary gland-passaged CMV (approximating natural infection), with passively immunized animals, and with nonimmune controls. All vaccinated animals had neutralizing antibodies to CMV. After challenge with virulent CMV, animals previously inoculated with either tissue culture-passaged or virulent CMV were protected against acute viremia and death; pregnant animals previously inoculated with live CMV vaccine had lower incidences of viremia and generalized maternal and fetal infection. Envelope antigen-vaccinated and passively immunized pregnant animals showed acute viremia after similar challenge with virulent virus; however, infection was less generalized than that in control animals, and CMV was not isolated from the fetuses of these vaccinated mothers.

  16. So Near and Yet So Far: Harmonic Radar Reveals Reduced Homing Ability of Nosema Infected Honeybees

    PubMed Central

    Wolf, Stephan; McMahon, Dino P.; Lim, Ka S.; Pull, Christopher D.; Clark, Suzanne J.; Paxton, Robert J.; Osborne, Juliet L.

    2014-01-01

    Pathogens may gain a fitness advantage through manipulation of the behaviour of their hosts. Likewise, host behavioural changes can be a defence mechanism, counteracting the impact of pathogens on host fitness. We apply harmonic radar technology to characterize the impact of an emerging pathogen - Nosema ceranae (Microsporidia) - on honeybee (Apis mellifera) flight and orientation performance in the field. Honeybees are the most important commercial pollinators. Emerging diseases have been proposed to play a prominent role in colony decline, partly through sub-lethal behavioural manipulation of their hosts. We found that homing success was significantly reduced in diseased (65.8%) versus healthy foragers (92.5%). Although lost bees had significantly reduced continuous flight times and prolonged resting times, other flight characteristics and navigational abilities showed no significant difference between infected and non-infected bees. Our results suggest that infected bees express normal flight characteristics but are constrained in their homing ability, potentially compromising the colony by reducing its resource inputs, but also counteracting the intra-colony spread of infection. We provide the first high-resolution analysis of sub-lethal effects of an emerging disease on insect flight behaviour. The potential causes and the implications for both host and parasite are discussed. PMID:25098331

  17. Susceptibility to virus-cell fusion at the plasma membrane is reduced through expression of HIV gp41 cytoplasmic domains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malinowsky, Katharina; Department of Virology, University of Heidelberg, Im Neuenheimer Feld 324, D-69120 Heidelberg; Luksza, Julia

    2008-06-20

    The cytoplasmic tail of the HIV transmembrane protein plays an important role in viral infection. In this study we analyzed the role of retroviral cytoplasmic tails in modulating the cytoskeleton and interfering with virus-cell fusion. HeLaP4 cells expressing different HIV cytoplasmic tail constructs showed reduced acetylated tubulin levels whereas the cytoplasmic tail of MLV did not alter microtubule stability indicating a unique function for the lentiviral cytoplasmic tail. The effect on tubulin is mediated through the membrane proximal region of the HIV cytoplasmic tail and was independent of membrane localization. Site-directed mutagenesis identified three motifs in the HIV-2 cytoplasmic tailmore » required to effect the reduction in acetylated tubulin. Both the Yxx{phi} domain and amino acids 21 to 45 of the HIV-2 cytoplasmic tail need to be present to change the level of acetylated tubulin in transfected cells. T-cells stably expressing one HIV-2 cytoplasmic tail derived construct showed also a reduction in acetylated tubulin thus confirming the importance of this effect not only for HeLaP4 and 293T cells. Challenge experiments using transiently transfected HeLaP4 cells and T cells stably expressing an HIV cytoplasmic tail construct revealed both reduced virus-cell fusion and replication of HIV-1{sub NL4.3} compared to control cells. In the virus-cell fusion assay only virions pseudotyped with either HIV or MLV envelopes showed reduced fusion efficiency, whereas VSV-G pseudotyped virions where not affected by the expression of HIV derived cytoplasmic tail constructs, indicating that fusion at the plasma but not endosomal membrane is affected. Overexpression of human histone-deacetylase 6 (HDAC6) and constitutively active RhoA resulted in a reduction of acetylated tubulin and reduced virus-cell fusion as significant as that observed following expression of HIV cytoplasmic tail constructs. Inhibition of HDAC6 showed a strong increase in acetylated tubulin and

  18. Biliary Secretion of Quasi-Enveloped Human Hepatitis A Virus

    PubMed Central

    Hirai-Yuki, Asuka; Hensley, Lucinda; Whitmire, Jason K.

    2016-01-01

    ABSTRACT Hepatitis A virus (HAV) is an unusual picornavirus that is released from cells cloaked in host-derived membranes. These quasi-enveloped virions (eHAV) are the only particle type circulating in blood during infection, whereas only nonenveloped virions are shed in feces. The reason for this is uncertain. Hepatocytes, the only cell type known to support HAV replication in vivo, are highly polarized epithelial cells with basolateral membranes facing onto hepatic (blood) sinusoids and apical membranes abutting biliary canaliculi from which bile is secreted to the gut. To assess whether eHAV and nonenveloped virus egress from cells via vectorially distinct pathways, we studied infected polarized cultures of Caco-2 and HepG2-N6 cells. Most (>99%) progeny virions were released apically from Caco-2 cells, whereas basolateral (64%) versus apical (36%) release was more balanced with HepG2-N6 cells. Both apically and basolaterally released virions were predominantly enveloped, with no suggestion of differential vectorial release of eHAV versus naked virions. Basolateral to apical transcytosis of either particle type was minimal (<0.02%/h) in HepG2-N6 cells, arguing against this as a mechanism for differences in membrane envelopment of serum versus fecal virus. High concentrations of human bile acids converted eHAV to nonenveloped virions, whereas virus present in bile from HAV-infected Ifnar1−/− Ifngr1−/− and Mavs−/− mice banded over a range of densities extending from that of eHAV to that of nonenveloped virions. We conclude that nonenveloped virions shed in feces are derived from eHAV released across the canalicular membrane and stripped of membranes by the detergent action of bile acids within the proximal biliary canaliculus. PMID:27923925

  19. Modeling neutralization kinetics of HIV by broadly neutralizing monoclonal antibodies in genital secretions coating the cervicovaginal mucosa.

    PubMed

    McKinley, Scott A; Chen, Alex; Shi, Feng; Wang, Simi; Mucha, Peter J; Forest, M Gregory; Lai, Samuel K

    2014-01-01

    Eliciting broadly neutralizing antibodies (bnAb) in cervicovaginal mucus (CVM) represents a promising "first line of defense" strategy to reduce vaginal HIV transmission. However, it remains unclear what levels of bnAb must be present in CVM to effectively reduce infection. We approached this complex question by modeling the dynamic tally of bnAb coverage on HIV. This analysis introduces a critical, timescale-dependent competition: to protect, bnAb must accumulate at sufficient stoichiometry to neutralize HIV faster than virions penetrate CVM and reach target cells. We developed a model that incorporates concentrations and diffusivities of HIV and bnAb in semen and CVM, kinetic rates for binding (kon) and unbinding (koff) of select bnAb, and physiologically relevant thicknesses of CVM and semen layers. Comprehensive model simulations lead to robust conclusions about neutralization kinetics in CVM. First, due to the limited time virions in semen need to penetrate CVM, substantially greater bnAb concentrations than in vitro estimates must be present in CVM to neutralize HIV. Second, the model predicts that bnAb with more rapid kon, almost independent of koff, should offer greater neutralization potency in vivo. These findings suggest the fastest arriving virions at target cells present the greatest likelihood of infection. It also implies the marked improvements in in vitro neutralization potency of many recently discovered bnAb may not translate to comparable reduction in the bnAb dose needed to confer protection against initial vaginal infections. Our modeling framework offers a valuable tool to gaining quantitative insights into the dynamics of mucosal immunity against HIV and other infectious diseases.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burles, Kristin; Irwin, Chad R.; Burton, Robyn-Lee

    Currently, little is known about the ankyrin/F-box protein B4. Here, we report that B4R-null viruses exhibited reduced plaque size in tissue culture, and decreased ability to spread, as assessed by multiple-step growth analysis. Electron microscopy indicated that B4R-null viruses still formed mature and extracellular virions; however, there was a slight decrease of virions released into the media following deletion of B4R. Deletion of B4R did not affect the ability of the virus to rearrange actin; however, VACV811, a large vaccinia virus deletion mutant missing 55 open reading frames, had decreased ability to produce actin tails. Using ectromelia virus, a naturalmore » mouse pathogen, we demonstrated that virus devoid of EVM154, the B4R homolog, showed decreased spread to organs and was attenuated during infection. This initial characterization suggests that B4 may play a role in virus spread, and that other unidentified mediators of actin tail formation may exist in vaccinia virus. - Highlights: • B4R-null viruses show reduced plaque size, and decreased ability to spread. • B4R-null viruses formed mature and extracellular virions; and rearranged actin. • Virus devoid of EVM154, the B4R homolog, was attenuated during infection. • Initial characterization suggests that B4 may play a role in virus spread. • Unidentified mediators of actin tail formation may exist in vaccinia virus.« less

  1. Heat shock protein-90-beta facilitates enterovirus 71 viral particles assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Robert Y.L., E-mail: yuwang@mail.cgu.edu.tw; Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 333 Taiwan; Kuo, Rei-Lin

    2013-09-01

    Molecular chaperones are reported to be crucial for virus propagation, but are not yet addressed in Human Enterovirus 71 (EV71). Here we describe the specific association of heat shock protein-90-beta (Hsp90β), but not alpha form (Hsp90α), with EV71 viral particles by the co-purification with virions using sucrose density gradient ultracentrifugation, and by the colocalization with viral particles, as assessed by immunogold electron microscopy. The reduction of the Hsp90β protein using RNA interference decreased the correct assembly of viral particles, without affecting EV71 replication levels. Tracking ectopically expressed Hsp90β protein associated with EV71 virions revealed that Hsp90β protein was transmitted tomore » new host cells through its direct association with infectious viral particles. Our findings suggest a new antiviral strategy in which extracellular Hsp90β protein is targeted to decrease the infectivity of EV71 and other enteroviruses, without affecting the broader functions of this constitutively expressed molecular chaperone. - Highlights: • Hsp90β is associated with EV71 virion and is secreted with the release virus. • Hsp90β effects on the correct assembly of viral particles. • Viral titer of cultured medium was reduced in the presence of geldanamycin. • Viral titer was also reduced when Hsp90β was suppressed by siRNA treatment. • The extracellular Hsp90β was also observed in other RNA viruses-infected cells.« less

  2. Natural products that reduce rotavirus infectivity identified by a cell-based moderate-throughput screening assay.

    PubMed

    Shaneyfelt, Mark E; Burke, Anna D; Graff, Joel W; Jutila, Mark A; Hardy, Michele E

    2006-09-01

    There is widespread interest in the use of innate immune modulators as a defense strategy against infectious pathogens. Using rotavirus as a model system, we developed a cell-based, moderate-throughput screening (MTS) assay to identify compounds that reduce rotavirus infectivity in vitro, toward a long-term goal of discovering immunomodulatory agents that enhance innate responses to viral infection. A natural product library consisting of 280 compounds was screened in the assay and 15 compounds that significantly reduced infectivity without cytotoxicity were identified. Time course analysis of four compounds with previously characterized effects on inflammatory gene expression inhibited replication with pre-treatment times as minimal as 2 hours. Two of these four compounds, alpha-mangostin and 18-beta-glycyrrhetinic acid, activated NFkappaB and induced IL-8 secretion. The assay is adaptable to other virus systems, and amenable to full automation and adaptation to a high-throughput format. Identification of several compounds with known effects on inflammatory and antiviral gene expression that confer resistance to rotavirus infection in vitro suggests the assay is an appropriate platform for discovery of compounds with potential to amplify innate antiviral responses.

  3. Getting to Zero: Goal Commitment to Reduce Blood Stream Infections.

    PubMed

    McAlearney, Ann Scheck; Hefner, Jennifer L

    2016-08-01

    While preventing health care-associated infections (HAIs) can save lives and reduce health care costs, efforts designed to eliminate HAIs have had mixed results. Variability in contextual factors such as work culture and management practices has been suggested as a potential explanation for inconsistent results across organizations and interventions. We examine goal-setting as a factor contributing to program outcomes in eight hospitals focused on preventing central line-associated bloodstream infections (CLABSIs). We conducted qualitative case studies to compare higher- and lower-performing hospitals, and explored differences in contextual factors that might contribute to performance variation. We present a goal commitment framework that characterizes factors associated with successful CLABSI program outcomes. Across 194 key informant interviews, internal and external moderators and characteristics of the goal itself differentiated actors' goal commitment at higher- versus lower-performing hospitals. Our findings have implications for organizations struggling to prevent HAIs, as well as informing the broader goal commitment literature. © The Author(s) 2015.

  4. Extracellular ATP induces the rapid release of HIV-1 from virus containing compartments of human macrophages

    PubMed Central

    Graziano, Francesca; Desdouits, Marion; Garzetti, Livia; Podini, Paola; Alfano, Massimo; Rubartelli, Anna; Furlan, Roberto; Benaroch, Philippe; Poli, Guido

    2015-01-01

    HIV type 1 (HIV-1) infects CD4+ T lymphocytes and tissue macrophages. Infected macrophages differ from T cells in terms of decreased to absent cytopathicity and for active accumulation of new progeny HIV-1 virions in virus-containing compartments (VCC). For these reasons, infected macrophages are believed to act as “Trojan horses” carrying infectious particles to be released on cell necrosis or functional stimulation. Here we explored the hypothesis that extracellular ATP (eATP) could represent a microenvironmental signal potentially affecting virion release from VCC of infected macrophages. Indeed, eATP triggered the rapid release of infectious HIV-1 from primary human monocyte-derived macrophages (MDM) acutely infected with the CCR5-dependent HIV-1 strain. A similar phenomenon was observed in chronically infected promonocytic U1 cells differentiated to macrophage-like cells (D-U1) by costimulation with phorbol esters and urokinase-type plasminogen activator. Worthy of note, eATP did not cause necrotic, apoptotic, or pyroptotic cell death, and its effect on HIV-1 release was suppressed by Imipramine (an antidepressant agent known to inhibit microvesicle formation by interfering with membrane-associated acid sphingomyelinase). Virion release was not triggered by oxidized ATP, whereas the effect of eATP was inhibited by a specific inhibitor of the P2X7 receptor (P2X7R). Thus, eATP triggered the discharge of virions actively accumulating in VCC of infected macrophages via interaction with the P2X7R in the absence of significant cytopathicity. These findings suggest that the microvesicle pathway and P2X7R could represent exploitable targets for interfering with the VCC-associated reservoir of infectious HIV-1 virions in tissue macrophages. PMID:26056317

  5. Extracellular ATP induces the rapid release of HIV-1 from virus containing compartments of human macrophages.

    PubMed

    Graziano, Francesca; Desdouits, Marion; Garzetti, Livia; Podini, Paola; Alfano, Massimo; Rubartelli, Anna; Furlan, Roberto; Benaroch, Philippe; Poli, Guido

    2015-06-23

    HIV type 1 (HIV-1) infects CD4(+) T lymphocytes and tissue macrophages. Infected macrophages differ from T cells in terms of decreased to absent cytopathicity and for active accumulation of new progeny HIV-1 virions in virus-containing compartments (VCC). For these reasons, infected macrophages are believed to act as "Trojan horses" carrying infectious particles to be released on cell necrosis or functional stimulation. Here we explored the hypothesis that extracellular ATP (eATP) could represent a microenvironmental signal potentially affecting virion release from VCC of infected macrophages. Indeed, eATP triggered the rapid release of infectious HIV-1 from primary human monocyte-derived macrophages (MDM) acutely infected with the CCR5-dependent HIV-1 strain. A similar phenomenon was observed in chronically infected promonocytic U1 cells differentiated to macrophage-like cells (D-U1) by costimulation with phorbol esters and urokinase-type plasminogen activator. Worthy of note, eATP did not cause necrotic, apoptotic, or pyroptotic cell death, and its effect on HIV-1 release was suppressed by Imipramine (an antidepressant agent known to inhibit microvesicle formation by interfering with membrane-associated acid sphingomyelinase). Virion release was not triggered by oxidized ATP, whereas the effect of eATP was inhibited by a specific inhibitor of the P2X7 receptor (P2X7R). Thus, eATP triggered the discharge of virions actively accumulating in VCC of infected macrophages via interaction with the P2X7R in the absence of significant cytopathicity. These findings suggest that the microvesicle pathway and P2X7R could represent exploitable targets for interfering with the VCC-associated reservoir of infectious HIV-1 virions in tissue macrophages.

  6. Archaeal Haloarcula californiae Icosahedral Virus 1 Highlights Conserved Elements in Icosahedral Membrane-Containing DNA Viruses from Extreme Environments.

    PubMed

    Demina, Tatiana A; Pietilä, Maija K; Svirskaitė, Julija; Ravantti, Janne J; Atanasova, Nina S; Bamford, Dennis H; Oksanen, Hanna M

    2016-07-19

    Despite their high genomic diversity, all known viruses are structurally constrained to a limited number of virion morphotypes. One morphotype of viruses infecting bacteria, archaea, and eukaryotes is the tailless icosahedral morphotype with an internal membrane. Although it is considered an abundant morphotype in extreme environments, only seven such archaeal viruses are known. Here, we introduce Haloarcula californiae icosahedral virus 1 (HCIV-1), a halophilic euryarchaeal virus originating from salt crystals. HCIV-1 also retains its infectivity under low-salinity conditions, showing that it is able to adapt to environmental changes. The release of progeny virions resulting from cell lysis was evidenced by reduced cellular oxygen consumption, leakage of intracellular ATP, and binding of an indicator ion to ruptured cell membranes. The virion contains at least 12 different protein species, lipids selectively acquired from the host cell membrane, and a 31,314-bp-long linear double-stranded DNA (dsDNA). The overall genome organization and sequence show high similarity to the genomes of archaeal viruses in the Sphaerolipoviridae family. Phylogenetic analysis based on the major conserved components needed for virion assembly-the major capsid proteins and the packaging ATPase-placed HCIV-1 along with the alphasphaerolipoviruses in a distinct, well-supported clade. On the basis of its virion morphology and sequence similarities, most notably, those of its core virion components, we propose that HCIV-1 is a member of the PRD1-adenovirus structure-based lineage together with other sphaerolipoviruses. This addition to the lineage reinforces the notion of the ancient evolutionary links observed between the viruses and further highlights the limits of the choices found in nature for formation of a virion. Under conditions of extreme salinity, the majority of the organisms present are archaea, which encounter substantial selective pressure, being constantly attacked by

  7. Heme oxygenase-1 induction alters chemokine regulation and ameliorates human immunodeficiency virus-type-1 infection in lipopolysaccharide-stimulated macrophages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Zhao-Hua; Kumari, Namita; Nekhai, Sergei

    2013-06-07

    Highlights: •Lipopolysaccharide stimulation of heme oxygenase-1 (HO-1) ameliorated HIV-1 infection of primary human macrophages. •The partial protection by HO-1 against HIV infection was associated with induction of chemokines such as MIP1α and MIP1β. •This mechanism explains lipopolysaccharide-stimulated HO-1-mediated inhibition of HIV-1 infection of macrophages. -- Abstract: We have elucidated a putative mechanism for the host resistance against HIV-1 infection of primary human monocyte-derived macrophages (MDM) stimulated with lipopolysaccharide (LPS). We show that LPS-activated MDM both inhibited HIV-1 entry into the cells and were refractory to post-entry productive viral replication. LPS-treated cells were virtually negative for mature virions as revealed bymore » transmission electron microscopy. LPS activation of MDM markedly enhanced the expression of heme oxygenase-1 (HO-1), a potent inducible cytoprotective enzyme. Increased HO-1 expression was accompanied by elevated production of macrophage inflammatory chemokines (MIP1α and MIP1β) by LPS-activated MDM, significantly decreased surface chemokine receptor-5 (CCR-5) expression, and substantially reduced virus replication. Treatment of cells with HO-1 inhibitor SnPP IX (tin protoporphyrin IX) attenuated the LPS-mediated responses, HIV-1 replication and secretion of MIP1α, MIP1β, and LD78β chemokines with little change in surface CCR-5 expression. These results identify a novel role for HO-1 in the modulation of host immune response against HIV infection of MDM.« less

  8. Repurposing Hsp104 to Antagonize Seminal Amyloid and Counter HIV Infection.

    PubMed

    Castellano, Laura M; Bart, Stephen M; Holmes, Veronica M; Weissman, Drew; Shorter, James

    2015-08-20

    Naturally occurring proteolytic fragments of prostatic acid phosphatase (PAP248-286 and PAP85-120) and semenogelins (SEM1 and SEM2) form amyloid fibrils in seminal fluid, which capture HIV virions and promote infection. For example, PAP248-286 fibrils, termed SEVI (semen-derived enhancer of viral infection), can potentiate HIV infection by several orders of magnitude. Here, we design three disruptive technologies to rapidly antagonize seminal amyloid by repurposing Hsp104, an amyloid-remodeling nanomachine from yeast. First, Hsp104 and an enhanced engineered variant, Hsp104(A503V), directly remodel SEVI and PAP85-120 fibrils into non-amyloid forms. Second, we elucidate catalytically inactive Hsp104 scaffolds that do not remodel amyloid structure, but cluster SEVI, PAP85-120, and SEM1(45-107) fibrils into larger assemblies. Third, we modify Hsp104 to interact with the chambered protease ClpP, which enables coupled remodeling and degradation to irreversibly clear SEVI and PAP85-120 fibrils. Each strategy diminished the ability of seminal amyloid to promote HIV infection, and could have therapeutic utility. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Systematic Review of Interventions to Reduce Urinary Tract Infection in Nursing Home Residents

    PubMed Central

    Meddings, Jennifer; Saint, Sanjay; Krein, Sarah L.; Gaies, Elissa; Reichert, Heidi; Hickner, Andrew; McNamara, Sara; Mann, Jason D.; Mody, Lona

    2017-01-01

    BACKGROUND Urinary tract infections (UTIs) in nursing homes are common, costly, and morbid. PURPOSE Systematic literature review of strategies to reduce UTIs in nursing home residents DATA SOURCES Ovid MEDLINE, Cochrane Library, CINAHL, Web of Science and Embase through June 22, 2015. STUDY SELECTION Interventional studies with a comparison group reporting at least one outcome for: catheter-associated UTI (CAUTI), UTIs not identified as catheter-associated, bacteriuria, or urinary catheter use. DATA EXTRACTION Two authors abstracted study design, participant and intervention details, outcomes, and quality measures. DATA SYNTHESIS Of 5,794 records retrieved, 20 records describing 19 interventions were included: 8 randomized controlled trials, 10 pre-post non-randomized interventions, and 1 non-randomized intervention with concurrent controls. Quality (range 8-25, median 15) and outcome definitions varied greatly. Thirteen studies employed strategies to reduce catheter use or improve catheter care; nine studies employed general infection prevention strategies (e.g., improving hand hygiene, surveillance, contact precautions, reducing antibiotics). The nineteen studies reported 12 UTI outcomes, 9 CAUTI outcomes, 4 bacteriuria outcomes, and 5 catheter use outcomes. Five studies showed CAUTI reduction (1 significantly); nine studies showed UTI reduction (none significantly); 2 studies showed bacteriuria reduction (none significantly). Four studies showed reduced catheter use (1 significantly). LIMITATIONS Studies were often underpowered to assess statistical significance; none were pooled given variety of interventions and outcomes. CONCLUSIONS Several practices, often implemented in bundles, appear to reduce UTI or CAUTI in nursing home residents such as improving hand hygiene, reducing and improving catheter use, managing incontinence without catheters, and enhanced barrier precautions. PMID:28459908

  10. Systematic Review of Interventions to Reduce Urinary Tract Infection in Nursing Home Residents.

    PubMed

    Meddings, Jennifer; Saint, Sanjay; Krein, Sarah L; Gaies, Elissa; Reichert, Heidi; Hickner, Andrew; McNamara, Sara; Mann, Jason D; Mody, Lona

    2017-05-01

    Urinary tract infections (UTIs) in nursing homes are common, costly, and morbid. Systematic literature review of strategies to reduce UTIs in nursing home residents. Ovid MEDLINE, Cochrane Library, CINAHL, Web of Science and Embase through June 22, 2015. Interventional studies with a comparison group reporting at least 1 outcome for: catheter-associated UTI (CAUTI), UTIs not identified as catheter-associated, bacteriuria, or urinary catheter use. Two authors abstracted study design, participant and intervention details, outcomes, and quality measures. Of 5794 records retrieved, 20 records describing 19 interventions were included: 8 randomized controlled trials, 10 pre-post nonrandomized interventions, and 1 nonrandomized intervention with concurrent controls. Quality (range, 8-25; median, 15) and outcome definitions varied greatly. Thirteen studies employed strategies to reduce catheter use or improve catheter care; 9 studies employed general infection prevention strategies (eg, improving hand hygiene, surveillance, contact precautions, reducing antibiotics). The 19 studies reported 12 UTI outcomes, 9 CAUTI outcomes, 4 bacteriuria outcomes, and 5 catheter use outcomes. Five studies showed CAUTI reduction (1 significantly); 9 studies showed UTI reduction (none significantly); 2 studies showed bacteriuria reduction (none significantly). Four studies showed reduced catheter use (1 significantly). Studies were often underpowered to assess statistical significance; none were pooled given variety of interventions and outcomes. Several practices, often implemented in bundles, such as improving hand hygiene, reducing and improving catheter use, managing incontinence without catheters, and enhanced barrier precautions, appear to reduce UTI or CAUTI in nursing home residents. Journal of Hospital Medicine 2017;12:356-368. © 2017 Society of Hospital Medicine

  11. Dendritic cells efficiently transmit HIV to T Cells in a tenofovir and raltegravir insensitive manner

    PubMed Central

    Chang, Emery; Sigal, Alex

    2018-01-01

    Dendritic cell (DC)-to-T cell transmission is an example of infection in trans, in which the cell transmitting the virus is itself uninfected. During this mode of DC-to-T cell transmission, uninfected DCs concentrate infectious virions, contact T cells and transmit these virions to target cells. Here, we investigated the efficiency of DC-to-T cell transmission on the number of cells infected and the sensitivity of this type of transmission to the antiretroviral drugs tenofovir (TFV) and raltegravir (RAL). We observed activated monocyte-derived and myeloid DCs amplified T cell infection, which resulted in drug insensitivity. This drug insensitivity was dependent on cell-to-cell contact and ratio of DCs to T cells in coculture. DC-mediated amplification of HIV-1 infection was efficient regardless of virus tropism or origin. The DC-to-T cell transmission of the T/F strain CH077.t/2627 was relatively insensitive to TFV compared to DC-free T cell infection. The input of virus modulated the drug sensitivity of DC-to-T cell infection, but not T cell infection by cell-free virus. At high viral inputs, DC-to-T cell transmission reduced the sensitivity of infection to TFV. Transmission of HIV by DCs in trans may have important implications for viral persistence in vivo in environments, where residual replication may persist in the face of antiretroviral therapy. PMID:29293546

  12. Infectivity and RNA patterns as functions of high- and low-dilution passage of murine sarcoma-leukemia virus: evidence for autointerference within an oncornavirus population.

    PubMed

    Bondurant, M C; Hackett, A J; Schaffer, F L

    1973-05-01

    Heterogeneity of buoyant density and RNA content of virions of Moloney murine leukemia-sarcoma complex [MSV (MLV)] was the result of passage at low dilution. Heterogeneous stocks revealed two major RNA components in the population, with the smaller component, apparent mol wt 4 x 10(6) to 5 x 10(6), becoming predominant upon serial passage at low dilution. Concomitantly, infectivity titers of both MLV and MSV decreased upon serial passage at low dilution. MSV (MLV) passaged at high dilution retained high titers and a rather homogeneous high-molecular-weight RNA population characteristic of high-buoyant-density virions. Interference of both MLV and MSV replication was demonstrated by employing mixed inocula containing both low- and high-dilution passage stocks of MSV (MLV). In contrast to results with MSV (MLV), MLV freed of MSV by limit dilution did not show heterogeneity of buoyant density or of RNA when propagated at low dilution.

  13. Infectivity and RNA Patterns as Functions of High- and Low-Dilution Passage of Murine Sarcoma-Leukemia Virus: Evidence for Autointerference Within an Oncornavirus Population

    PubMed Central

    Bondurant, M. C.; Hackett, A. J.; Schaffer, F. L.

    1973-01-01

    Heterogeneity of buoyant density and RNA content of virions of Moloney murine leukemia-sarcoma complex [MSV (MLV)] was the result of passage at low dilution. Heterogeneous stocks revealed two major RNA components in the population, with the smaller component, apparent mol wt 4 × 106 to 5 × 106, becoming predominant upon serial passage at low dilution. Concomitantly, infectivity titers of both MLV and MSV decreased upon serial passage at low dilution. MSV (MLV) passaged at high dilution retained high titers and a rather homogeneous high-molecular-weight RNA population characteristic of high-buoyant-density virions. Interference of both MLV and MSV replication was demonstrated by employing mixed inocula containing both low- and high-dilution passage stocks of MSV (MLV). In contrast to results with MSV (MLV), MLV freed of MSV by limit dilution did not show heterogeneity of buoyant density or of RNA when propagated at low dilution. PMID:4350709

  14. Paramyxovirus Assembly and Budding: Building Particles that Transmit Infections

    PubMed Central

    Harrison, Megan S.; Sakaguchi, Takemasa; Schmitt, Anthony P.

    2010-01-01

    The paramyxoviruses define a diverse group of enveloped RNA viruses that includes a number of important human and animal pathogens. Examples include human respiratory syncytial virus and the human parainfluenza viruses, which cause respiratory illnesses in young children and the elderly; measles and mumps viruses, which have caused recent resurgences of disease in developed countries; the zoonotic Hendra and Nipah viruses, which have caused several outbreaks of fatal disease in Australia and Asia; and Newcastle disease virus, which infects chickens and other avian species. Like other enveloped viruses, paramyxoviruses form particles that assemble and bud from cellular membranes, allowing the transmission of infections to new cells and hosts. Here, we review recent advances that have improved our understanding of events involved in paramyxovirus particle formation. Contributions of viral matrix proteins, glycoproteins, nucleocapsid proteins, and accessory proteins to particle formation are discussed, as well as the importance of host factor recruitment for efficient virus budding. Trafficking of viral structural components within infected cells is described, together with mechanisms that allow for the selection of specific sites on cellular membranes for the coalescence of viral proteins in preparation of bud formation and virion release. PMID:20398786

  15. R5 HIV-1 envelope attracts dendritic cells to cross the human intestinal epithelium and sample luminal virions via engagement of the CCR5

    PubMed Central

    Cavarelli, Mariangela; Foglieni, Chiara; Rescigno, Maria; Scarlatti, Gabriella

    2013-01-01

    The gastrointestinal tract is a principal route of entry and site of persistence of human immunodeficiency virus type 1 (HIV-1). The intestinal mucosa, being rich of cells that are the main target of the virus, represents a primary site of viral replication and CD4+ T-cell depletion. Here, we show both in vitro and ex vivo that HIV-1 of R5 but not X4 phenotype is capable of selectively triggering dendritic cells (DCs) to migrate within 30 min between intestinal epithelial cells to sample virions and transfer infection to target cells. The engagement of the chemokine receptor 5 on DCs and the viral envelope, regardless of the genetic subtype, drive DC migration. Viruses penetrating through transient opening of the tight junctions likely create a paracellular gradient to attract DCs. The formation of junctions with epithelial cells may initiate a haptotactic process of DCs and at the same time favour cell-to-cell viral transmission. Our findings indicate that HIV-1 translocation across the intestinal mucosa occurs through the selective engagement of DCs by R5 viruses, and may guide the design of new prevention strategies. PMID:23606583

  16. Vaccinia virus protein A3 is required for the production of normal immature virions and for the encapsidation of the nucleocapsid protein L4

    PubMed Central

    Jesus, Desyree Murta; Moussatche, Nissin; McFadden, Baron D.; Nielsen, Casey Paulasue; D’Costa, Susan M.; Condit, Richard C.

    2015-01-01

    Maturation of the vaccinia virion is an intricate process that results in the organization of the viroplasm contained in immature virions into the lateral bodies, core wall and nucleocapsid observed in the mature particles. It is unclear how this organization takes place and studies with mutants are indispensable in understanding this process. By characterizing an inducible mutant in the A3L gene, we revealed that A3, an inner core wall protein, is important for formation of normal immature viruses and also for the correct localization of L4, a nucleocapsid protein. L4 did not accumulate in the viral factories in the absence of A3 and was not encapsidated in the particles that do not contain A3. These data strengthen our previously suggested hypothesis that A3 and L4 interact and that this interaction is critical for proper formation of the core wall and nucleocapsid. PMID:25765002

  17. African Swine Fever Virus NP868R Capping Enzyme Promotes Reovirus Rescue during Reverse Genetics by Promoting Reovirus Protein Expression, Virion Assembly, and RNA Incorporation into Infectious Virions

    PubMed Central

    Eaton, Heather E.; Kobayashi, Takeshi; Dermody, Terence S.; Johnston, Randal N.

    2017-01-01

    ABSTRACT Reoviruses, like many eukaryotic viruses, contain an inverted 7-methylguanosine (m7G) cap linked to the 5′ nucleotide of mRNA. The traditional functions of capping are to promote mRNA stability, protein translation, and concealment from cellular proteins that recognize foreign RNA. To address the role of mRNA capping during reovirus replication, we assessed the benefits of adding the African swine fever virus NP868R capping enzyme during reovirus rescue. C3P3, a fusion protein containing T7 RNA polymerase and NP868R, was found to increase protein expression 5- to 10-fold compared to T7 RNA polymerase alone while enhancing reovirus rescue from the current reverse genetics system by 100-fold. Surprisingly, RNA stability was not increased by C3P3, suggesting a direct effect on protein translation. A time course analysis revealed that C3P3 increased protein synthesis within the first 2 days of a reverse genetics transfection. This analysis also revealed that C3P3 enhanced processing of outer capsid μ1 protein to μ1C, a previously described hallmark of reovirus assembly. Finally, to determine the rate of infectious-RNA incorporation into new virions, we developed a new recombinant reovirus S1 gene that expressed the fluorescent protein UnaG. Following transfection of cells with UnaG and infection with wild-type virus, passage of UnaG through progeny was significantly enhanced by C3P3. These data suggest that capping provides nontraditional functions to reovirus, such as promoting assembly and infectious-RNA incorporation. IMPORTANCE Our findings expand our understanding of how viruses utilize capping, suggesting that capping provides nontraditional functions to reovirus, such as promoting assembly and infectious-RNA incorporation, in addition to enhancing protein translation. Beyond providing mechanistic insight into reovirus replication, our findings also show that reovirus reverse genetics rescue is enhanced 100-fold by the NP868R capping enzyme. Since

  18. Trypsin cleavage of the baculovirus occlusion-derived virus attachment protein P74 is prerequisite in per os infection.

    PubMed

    Slack, Jeffrey M; Lawrence, Susan D; Krell, Peter J; Arif, Basil M

    2008-10-01

    Baculovirus occlusion-derived virions (ODVs) contain a number of infectivity factors essential for the initiation of infection in larval midgut cells. Deletion of any of these factors neutralizes infectivity by the per os route. We have observed that P74 of the group I alphabaculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is N-terminally cleaved when a soluble form of the protein was incubated with insect midgut tissues under alkaline conditions and that cleavage was prevented by soybean trypsin inhibitor (SBTI). Presently, biological assays were carried out that suggest SBTI inhibits and trypsin enhances baculovirus per os infectivity. We developed a method to rescue per os infectivity of a P74 null virus involving co-transfection of viral DNA with a plasmid that transiently expresses p74. We used this plasmid rescue method to functionally characterize P74. A series of site-directed mutants were generated at the N terminus to evaluate if trypsin cleavage sites were necessary for function. Mutagenesis of R195, R196 and R199 compromised per os infectivity and rendered P74 resistant to midgut trypsin.

  19. Wolbachia infection reduces blood-feeding success in the dengue fever mosquito, Aedes aegypti.

    PubMed

    Turley, Andrew P; Moreira, Luciano A; O'Neill, Scott L; McGraw, Elizabeth A

    2009-09-15

    The mosquito Aedes aegypti was recently transinfected with a life-shortening strain of the endosymbiont Wolbachia pipientis (wMelPop) as the first step in developing a biocontrol strategy for dengue virus transmission. In addition to life-shortening, the wMelPop-infected mosquitoes also exhibit increased daytime activity and metabolic rates. Here we sought to quantify the blood-feeding behaviour of Wolbachia-infected females as an indicator of any virulence or energetic drain associated with Wolbachia infection. In a series of blood-feeding trials in response to humans, we have shown that Wolbachia-infected mosquitoes do not differ in their response time to humans, but that as they age they obtain fewer and smaller blood meals than Wolbachia-uninfected controls. Lastly, we observed a behavioural characteristic in the Wolbachia infected mosquitoes best described as a "bendy" proboscis that may explain the decreased biting success. Taken together the evidence suggests that wMelPop infection may be causing tissue damage in a manner that intensifies with mosquito age and that leads to reduced blood-feeding success. These behavioural changes require further investigation with respect to a possible physiological mechanism and their role in vectorial capacity of the insect. The selective decrease of feeding success in older mosquitoes may act synergistically with other Wolbachia-associated traits including life-shortening and viral protection in biocontrol strategies.

  20. A Combination Microbicide Gel Protects Macaques Against Vaginal Simian Human Immunodeficiency Virus-Reverse Transcriptase Infection, But Only Partially Reduces Herpes Simplex Virus-2 Infection After a Single High-Dose Cochallenge

    PubMed Central

    Hsu, Mayla; Aravantinou, Meropi; Menon, Radhika; Seidor, Samantha; Goldman, Daniel; Kenney, Jessica; Derby, Nina; Gettie, Agegnehu; Blanchard, James; Piatak, Michael; Lifson, Jeffrey D.; Fernández-Romero, Jose A.; Zydowsky, Thomas M.

    2014-01-01

    Abstract Herpes simplex virus-2 (HSV-2) infection increases HIV susceptibility. We previously established a rhesus macaque model of vaginal HSV-2 preexposure followed by cochallenge with HSV-2 and simian/human immunodeficiency virus-reverse transcriptase (SHIV-RT). Using this model, we showed that a gel containing the nonnucleoside reverse transcriptase inhibitor (NNRTI) MIV-150 in carrageenan (CG) reduced SHIV-RT infection. To evaluate the efficacy of new generation microbicides against both viruses, we first established dual infection after single vaginal cochallenge with SHIV-RT and HSV-2 in HSV-2-naive macaques. All animals (6/6) became HSV-2 infected, with 4/6 coinfected with SHIV-RT. In a control group cochallenged with SHIV-RT and UV-inactivated HSV-2, 2/4 became SHIV-RT infected, and none had detectable HSV-2. Low-level HSV-2-specific antibody and T cell responses were detected in some HSV-2-infected animals. To test a CG gel containing MIV-150 and zinc acetate (MZC), which provided naive animals full protection from SHIV-RT for at least 8 h, MZC (vs. CG) was applied daily for 14 days followed by cochallenge 8 h later. MZC prevented SHIV-RT infection (0/9 infected, p=0.04 vs. 3/6 in CG controls), but only reduced HSV-2 infection by 20% (6/9 infected vs. 5/6 in CG, p=0.6). In HSV-2-infected animals, none of the gel-treated animals seroconverted, and only the CG controls had measurable HSV-2-specific T cell responses. This study shows the promise of MZC to prevent immunodeficiency virus infection (even in the presence of HSV-2) and reduce HSV-2 infection after exposure to a high-dose inoculum. Additionally, it demonstrates the potential of a macaque coinfection model to evaluate broad-spectrum microbicides. PMID:24117013

  1. A combination microbicide gel protects macaques against vaginal simian human immunodeficiency virus-reverse transcriptase infection, but only partially reduces herpes simplex virus-2 infection after a single high-dose cochallenge.

    PubMed

    Hsu, Mayla; Aravantinou, Meropi; Menon, Radhika; Seidor, Samantha; Goldman, Daniel; Kenney, Jessica; Derby, Nina; Gettie, Agegnehu; Blanchard, James; Piatak, Michael; Lifson, Jeffrey D; Fernández-Romero, Jose A; Zydowsky, Thomas M; Robbiani, Melissa

    2014-02-01

    Herpes simplex virus-2 (HSV-2) infection increases HIV susceptibility. We previously established a rhesus macaque model of vaginal HSV-2 preexposure followed by cochallenge with HSV-2 and simian/human immunodeficiency virus-reverse transcriptase (SHIV-RT). Using this model, we showed that a gel containing the nonnucleoside reverse transcriptase inhibitor (NNRTI) MIV-150 in carrageenan (CG) reduced SHIV-RT infection. To evaluate the efficacy of new generation microbicides against both viruses, we first established dual infection after single vaginal cochallenge with SHIV-RT and HSV-2 in HSV-2-naive macaques. All animals (6/6) became HSV-2 infected, with 4/6 coinfected with SHIV-RT. In a control group cochallenged with SHIV-RT and UV-inactivated HSV-2, 2/4 became SHIV-RT infected, and none had detectable HSV-2. Low-level HSV-2-specific antibody and T cell responses were detected in some HSV-2-infected animals. To test a CG gel containing MIV-150 and zinc acetate (MZC), which provided naive animals full protection from SHIV-RT for at least 8 h, MZC (vs. CG) was applied daily for 14 days followed by cochallenge 8 h later. MZC prevented SHIV-RT infection (0/9 infected, p=0.04 vs. 3/6 in CG controls), but only reduced HSV-2 infection by 20% (6/9 infected vs. 5/6 in CG, p=0.6). In HSV-2-infected animals, none of the gel-treated animals seroconverted, and only the CG controls had measurable HSV-2-specific T cell responses. This study shows the promise of MZC to prevent immunodeficiency virus infection (even in the presence of HSV-2) and reduce HSV-2 infection after exposure to a high-dose inoculum. Additionally, it demonstrates the potential of a macaque coinfection model to evaluate broad-spectrum microbicides.

  2. Reduced Infectivity in Cattle for an Outer Membrane Protein Mutant of Anaplasma marginale

    PubMed Central

    Brayton, Kelly A.; Magunda, Forgivemore; Munderloh, Ulrike G.; Kelley, Karen L.; Barbet, Anthony F.

    2015-01-01

    Anaplasma marginale is the causative agent of anaplasmosis in cattle. Transposon mutagenesis of this pathogen using the Himar1 system resulted in the isolation of an omp10 operon insertional mutant referred to as the omp10::himar1 mutant. The work presented here evaluated if this mutant had morphological and/or growth rate defects compared to wild-type A. marginale. Results showed that the morphology, developmental cycle, and growth in tick and mammalian cell cultures are similar for the mutant and the wild type. Tick transmission experiments established that tick infection levels with the mutant were similar to those with wild-type A. marginale and that infected ticks successfully infected cattle. However, this mutant exhibited reduced infectivity and growth in cattle. The possibility of transforming A. marginale by transposon mutagenesis coupled with in vitro and in vivo assessment of altered phenotypes can aid in the identification of genes associated with virulence. The isolation of deliberately attenuated organisms that can be evaluated in their natural biological system is an important advance for the rational design of vaccines against this species. PMID:25595772

  3. Hand hygiene to reduce community transmission of influenza and acute respiratory tract infection: a systematic review.

    PubMed

    Warren-Gash, Charlotte; Fragaszy, Ellen; Hayward, Andrew C

    2013-09-01

    Hand hygiene may be associated with modest protection against some acute respiratory tract infections, but its specific role in influenza transmission in different settings is unclear. We aimed to review evidence that improving hand hygiene reduces primary and secondary transmission of (i) influenza and (ii) acute respiratory tract infections in community settings. We searched Medline, Embase, Global Health and Cochrane databases up to 13 February 2012 for reports in any language of original research investigating the effect of hand hygiene on influenza or acute respiratory tract infection where aetiology was unspecified in community settings including institutions such as schools, and domestic residences. Data were presented and quality rated across outcomes according to the Grading of Recommendations Assessment, Development and Evaluation system. Sixteen articles met inclusion criteria. There was moderate to low-quality evidence of a reduction in both influenza and respiratory tract infection with hand hygiene interventions in schools, greatest in a lower-middle-income setting. There was high-quality evidence of a small reduction in respiratory infection in childcare settings. There was high-quality evidence for a large reduction in respiratory infection with a hand hygiene intervention in squatter settlements in a low-income setting. There was moderate- to high-quality evidence of no effect on secondary transmission of influenza in households that had already experienced an index case. While hand hygiene interventions have potential to reduce transmission of influenza and acute respiratory tract infections, their effectiveness varies depending on setting, context and compliance. © 2012 John Wiley & Sons Ltd.

  4. Biliary Secretion of Quasi-Enveloped Human Hepatitis A Virus.

    PubMed

    Hirai-Yuki, Asuka; Hensley, Lucinda; Whitmire, Jason K; Lemon, Stanley M

    2016-12-06

    Hepatitis A virus (HAV) is an unusual picornavirus that is released from cells cloaked in host-derived membranes. These quasi-enveloped virions (eHAV) are the only particle type circulating in blood during infection, whereas only nonenveloped virions are shed in feces. The reason for this is uncertain. Hepatocytes, the only cell type known to support HAV replication in vivo, are highly polarized epithelial cells with basolateral membranes facing onto hepatic (blood) sinusoids and apical membranes abutting biliary canaliculi from which bile is secreted to the gut. To assess whether eHAV and nonenveloped virus egress from cells via vectorially distinct pathways, we studied infected polarized cultures of Caco-2 and HepG2-N6 cells. Most (>99%) progeny virions were released apically from Caco-2 cells, whereas basolateral (64%) versus apical (36%) release was more balanced with HepG2-N6 cells. Both apically and basolaterally released virions were predominantly enveloped, with no suggestion of differential vectorial release of eHAV versus naked virions. Basolateral to apical transcytosis of either particle type was minimal (<0.02%/h) in HepG2-N6 cells, arguing against this as a mechanism for differences in membrane envelopment of serum versus fecal virus. High concentrations of human bile acids converted eHAV to nonenveloped virions, whereas virus present in bile from HAV-infected Ifnar1 -/- Ifngr1 -/- and Mavs -/- mice banded over a range of densities extending from that of eHAV to that of nonenveloped virions. We conclude that nonenveloped virions shed in feces are derived from eHAV released across the canalicular membrane and stripped of membranes by the detergent action of bile acids within the proximal biliary canaliculus. HAV is a hepatotropic, fecally/orally transmitted picornavirus that can cause severe hepatitis in humans. Recent work reveals that it has an unusual life cycle. Virus is found in cell culture supernatant fluids in two mature, infectious forms: one

  5. On the dynamics of acute EBV infection and the pathogenesis of infectious mononucleosis

    PubMed Central

    Hadinoto, Vey; Shapiro, Michael; Greenough, Thomas C.; Sullivan, John L.; Luzuriaga, Katherine

    2008-01-01

    Memory B cells latently infected with Epstein-Barr virus (mBLats) in the blood disappear rapidly on presentation with acute symptomatic primary infection (acute infectious mononucleosis [AIM]). They undergo a simple exponential decay (average half-life: 7.5 ± 3.7 days) similar to that of normal memory B cells. The cytotoxic T lymphocyte (CTL) response to immediate early (IE) lytic antigens (CTLIEs) also decays over this time period, but no such correlation was observed for the CTL response to lytic or latent antigens or to the levels of virions shed into saliva. We have estimated the average half-life of CTLIEs to be 73 (± 23) days. We propose that cycles of infection and reactivation occur in the initial stages of infection that produce high levels of mBLats in the circulation. Eventually the immune response arises and minimizes these cycles leaving the high levels of mBLats in the blood to decay through simple memory B-cell homeostasis mechanisms. This triggers the cells to reactivate the virus whereupon most are killed by CTLIEs before they can release virus and infect new cells. The release of antigens caused by this large-scale destruction of infected cells may trigger the symptoms of AIM and be a cofactor in other AIM-associated diseases. PMID:17991806

  6. The zebrafish galectins Drgal1-L2 and Drgal3-L1 bind in vitro to the infectious hematopoietic necrosis virus (IHNV) glycoprotein and reduce viral adhesion to fish epithelial cells*

    PubMed Central

    Feng, Chiguang; González-Montalbán, Núria; Ravindran, Chinnarajan; Jackson, Shawn; de las Heras-Sánchez, Ana; Giomarelli, Barbara; Ahmed, Hafiz; Haslam, Stuart M.; Wu, Gang; Dell, Anne; Ammayappan, Arun; Vakharia, Vikram N.; Vasta, Gerardo R.

    2015-01-01

    The infectious hematopoietic necrosis virus (IHNV; Rhabdoviridae, Novirhabdovirus) infects teleost fish, such as salmon and trout, and is responsible for significant losses in the aquaculture industry and in wild fish populations. Although IHNV enters the host through the skin at the base of the fins, the viral adhesion and entry mechanisms are not fully understood. In recent years, evidence has accumulated in support of the key roles played by protein-carbohydrate interactions between host lectins secreted to the extracellular space and virion envelope glycoproteins in modulating viral adhesion and infectivity. In this study, we assessed in vitro the potential role(s) of zebrafish (Danio rerio) proto type galectin-1 (Drgal1-L2) and a chimera galectin-3 (Drgal3-L1) in IHNV adhesion to epithelial cells. Our results suggest that the extracellular Drgal1-L2 and Drgal3-L1 interact directly and in a carbohydrate-dependent manner with the IHNV glycosylated envelope and glycans on the epithelial cell surface, significantly reducing viral adhesion. PMID:26429411

  7. Drug Treatment Combined with BCG Vaccination Reduces Disease Reactivation in Guinea Pigs Infected with Mycobacterium tuberculosis

    PubMed Central

    Shang, Shaobin; Shanley, Crystal A.; Caraway, Megan L.; Orme, Eileen A.; Henao-Tamayo, Marcela; Hascall-Dove, Laurel; Ackart, David; Orme, Ian M.; Ordway, Diane J.; Basaraba, Randall J.

    2012-01-01

    Bacillus-Calmette-Guerin (BCG), the only human tuberculosis vaccine, primes a partially protective immune response against M. tuberculosis infection in humans and animals. In guinea pigs, BCG vaccination slows the progression of disease and reduces the severity of necrotic granulomas, which harbor a population of drug-tolerant bacilli. The objective of this study was to determine if reducing disease severity by BCG vaccination of guinea pigs prior to M. tuberculosis challenge enhanced the efficacy of combination drug therapy. At 20 days of infection, treatment of vaccinated and non-vaccinated animals with rifampin, isoniazid, and pyrizinamide (RHZ) was initiated for 4 or 8 weeks. On days 50, 80 and 190 of infection (10 weeks after drug were withdrawn), treatment efficacy was evaluated by quantifying clinical condition, bacterial loads, lesion severity, and dynamic changes in peripheral blood and lung leukocyte numbers by flow cytometry. In a separate, long-term survival study, treatment efficacy was evaluated by determining disease reactivation frequency post-mortem. BCG vaccination alone delayed pulmonary and extra-pulmonary disease progression, but failed to prevent dissemination of bacilli and the formation of necrotic granulomas. Drug therapy either alone or in combination with BCG, was more effective at lessening clinical disease and lesion severity compared to control animals or those receiving BCG alone. Fewer residual lesions in BCG vaccinated and drug treated animals, equated to a reduced frequency of reactivation disease and improvement in survival even out to 500 days of infection. The combining of BCG vaccination and drug therapy was more effective at resolving granulomas such that fewer animals had evidence of residual infection and thus less reactivation disease. PMID:22244979

  8. Ultraviolet-ozone treatment reduces levels of disease-associated prion protein and prion infectivity

    USGS Publications Warehouse

    Johnson, C.J.; Gilbert, P.; McKenzie, D.; Pedersen, J.A.; Aiken, Judd M.

    2009-01-01

    Background. Transmissible spongiform encephalopathies (TSEs) are a group of fatal neurodegenerative diseases caused by novel infectious agents referred to as prions. Prions appear to be composed primarily, if not exclusively, of a misfolded isoform of the cellular prion protein. TSE infectivity is remarkably stable and can resist many aggressive decontamination procedures, increasing human, livestock and wildlife exposure to TSEs. Findings. We tested the hypothesis that UV-ozone treatment reduces levels of the pathogenic prion protein and inactivates the infectious agent. We found that UV-ozone treatment decreased the carbon and prion protein content in infected brain homogenate to levels undetectable by dry-ashing carbon analysis or immunoblotting, respectively. After 8 weeks of ashing, UV-ozone treatment reduced the infectious titer of treated material by a factor of at least 105. A small amount of infectivity, however, persisted despite UV-ozone treatment. When bound to either montmorillonite clay or quartz surfaces, PrPTSE was still susceptible to degradation by UV-ozone. Conclusion. Our findings strongly suggest that UV-ozone treatment can degrade pathogenic prion protein and inactivate prions, even when the agent is associated with surfaces. Using larger UV-ozone doses or combining UV-ozone treatment with other decontaminant methods may allow the sterilization of TSE-contaminated materials. ?? 2009 Aiken et al; licensee BioMed Central Ltd.

  9. Vitamin E reduces hepatic fibrosis in mice with Schistosoma japonicum infection.

    PubMed

    Wang, Xuefeng; Zhang, Rongbo; Du, Jiuwei; Hu, Youying; Xu, Lifa; Lu, Jun; Ye, Song

    2012-02-01

    To investigate whether vitamin E protects against hepatic fibrosis in mice with Schistosoma japonicum infection, 24 pathogen-free Kunming mice were selected and randomly divided into four groups: control (uninfected, untreated), model (infected, untreated), low-dose intervention (infected, vitamin E-treated, 30 mg/g bodyweight/day) and high-dose intervention (infected, vitamin E-treated, 60 mg/g bodyweight/day). Mice were infected with Schistosoma japonicum by inoculating abdominal skin with snail hosts. The activities of malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT) were detected in hepatic tissue by colorimetry. The expression levels of laminin (LN), hyaluronic acid (HA), procollagen type Ⅲ (PC-III) and type Ⅳ collagen (IV-C) were detected in the serum by radioimmunoassay. Finally, areas and numbers of granulomas were assessed through histopathology 42 days following treatment. The results revealed that mean areas of granulomas were smaller in the low- and high-dose intervention groups compared to those in the model group. Furthermore, the higher dose of vitamin E resulted in smaller granulomas than the low dose. The levels of LN, HA, PC-III and IV-C in the serum were lower following vitamin E treatment than in the model group. By contrast, activity of SOD, GPx and CAT in hepatic tissue was higher following vitamin E treatment compared to the model group. The activity of MDA was lower in hepatic tissue following vitamin E treatment compared to the model group, but was higher compared to controls. In general, the higher dose of vitamin E affected measurements to a greater extent than the lower dose. In conclusion, vitamin E treatment may reduce the growth of granulomas, slowing the process of hepatic fibrosis, and this effect may be the result of the altered activity of the oxidation-reduction enzyme system.

  10. Immunization with L. sigmodontis Microfilariae Reduces Peripheral Microfilaraemia after Challenge Infection by Inhibition of Filarial Embryogenesis

    PubMed Central

    Ziewer, Sebastian; Hübner, Marc P.; Dubben, Bettina; Hoffmann, Wolfgang H.; Bain, Odile; Martin, Coralie; Hoerauf, Achim; Specht, Sabine

    2012-01-01

    Background Lymphatic filariasis and onchocerciasis are two chronic diseases mediated by parasitic filarial worms causing long term disability and massive socioeconomic problems. Filariae are transmitted by blood-feeding mosquitoes that take up the first stage larvae from an infected host and deliver it after maturation into infective stage to a new host. After closure of vector control programs, disease control relies mainly on mass drug administration with drugs that are primarily effective against first stage larvae and require many years of annual/biannual administration. Therefore, there is an urgent need for alternative treatment ways, i.e. other effective drugs or vaccines. Methodology/Principal Findings Using the Litomosoides sigmodontis murine model of filariasis we demonstrate that immunization with microfilariae together with the adjuvant alum prevents mice from developing high microfilaraemia after challenge infection. Immunization achieved 70% to 100% protection in the peripheral blood and in the pleural space and furthermore strongly reduced the microfilarial load in mice that remained microfilaraemic. Protection was associated with the impairment of intrauterine filarial embryogenesis and with local and systemic microfilarial-specific host IgG, as well as IFN-γ secretion by host cells from the site of infection. Furthermore immunization significantly reduced adult worm burden. Conclusions/Significance Our results present a tool to understand the immunological basis of vaccine induced protection in order to develop a microfilariae-based vaccine that reduces adult worm burden and prevents microfilaraemia, a powerful weapon to stop transmission of filariasis. PMID:22413031

  11. The Fc Region of an Antibody Impacts the Neutralization of West Nile Viruses in Different Maturation States

    PubMed Central

    Lee, Phong D.; Mukherjee, Swati; Edeling, Melissa A.; Dowd, Kimberly A.; Austin, S. Kyle; Manhart, Carolyn J.; Diamond, Michael S.; Fremont, Daved H.

    2013-01-01

    Flavivirus-infected cells secrete a structurally heterogeneous population of viruses because of an inefficient virion maturation process. Flaviviruses assemble as noninfectious, immature virions composed of trimers of envelope (E) and precursor membrane (prM) protein heterodimers. Cleavage of prM is a required process during virion maturation, although this often remains incomplete for infectious virus particles. Previous work demonstrated that the efficiency of virion maturation could impact antibody neutralization through changes in the accessibility of otherwise cryptic epitopes on the virion. In this study, we show that the neutralization potency of monoclonal antibody (MAb) E33 is sensitive to the maturation state of West Nile virus (WNV), despite its recognition of an accessible epitope, the domain III lateral ridge (DIII-LR). Comprehensive epitope mapping studies with 166 E protein DIII-LR variants revealed that the functional footprint of MAb E33 on the E protein differs subtly from that of the well-characterized DIII-LR MAb E16. Remarkably, aromatic substitutions at E protein residue 306 ablated the maturation state sensitivity of E33 IgG, and the neutralization efficacy of E33 Fab fragments was not affected by changes in the virion maturation state. We propose that E33 IgG binding on mature virions orients the Fc region in a manner that impacts subsequent antibody binding to nearby sites. This Fc-mediated steric constraint is a novel mechanism by which the maturation state of a virion modulates the efficacy of the humoral immune response to flavivirus infection. PMID:24109224

  12. A tale of tails: Sialidase is key to success in a model of phage therapy against K1-capsulated Escherichia coli.

    PubMed

    Bull, J J; Vimr, E R; Molineux, I J

    2010-03-01

    Prior studies treating mice infected with Escherichia coli O18:K1:H7 observed that phages requiring the K1 capsule for infection (K1-dep) were superior to capsule-independent (K1-ind) phages. We show that three K1-ind phages all have low fitness when grown on cells in serum whereas fitnesses of four K1-dep phages were high. The difference is serum-specific, as fitnesses in broth overlapped. Sialidase activity was associated with all K1-dep virions tested but no K1-ind virions, a phenotype supported by sequence analyses. Adding endosialidase to cells infected with K1-ind phage increased fitness in serum by enhancing productive infection after adsorption. We propose that virion sialidase activity is the primary determinant of high fitness on cells grown in serum, and thus in a mammalian host. Although the benefit of sialidase is specific to K1-capsulated bacteria, this study may provide a scientific rationale for selecting phages for therapeutic use in many systemic infections. Copyright 2009 Elsevier Inc. All rights reserved.

  13. Epstein-Barr Virus Infection of Polarized Epithelial Cells via the Basolateral Surface by Memory B Cell-Mediated Transfer Infection

    PubMed Central

    Shannon-Lowe, Claire; Rowe, Martin

    2011-01-01

    Epstein Barr virus (EBV) exhibits a distinct tropism for both B cells and epithelial cells. The virus persists as a latent infection of memory B cells in healthy individuals, but a role for infection of normal epithelial is also likely. Infection of B cells is initiated by the interaction of the major EBV glycoprotein gp350 with CD21 on the B cell surface. Fusion is triggered by the interaction of the EBV glycoprotein, gp42 with HLA class II, and is thereafter mediated by the core fusion complex, gH/gL/gp42. In contrast, direct infection of CD21-negative epithelial cells is inefficient, but efficient infection can be achieved by a process called transfer infection. In this study, we characterise the molecular interactions involved in the three stages of transfer infection of epithelial cells: (i) CD21-mediated co-capping of EBV and integrins on B cells, and activation of the adhesion molecules, (ii) conjugate formation between EBV-loaded B cells and epithelial cells via the capped adhesion molecules, and (iii) interaction of EBV glycoproteins with epithelial cells, with subsequent fusion and uptake of virions. Infection of epithelial cells required the EBV gH and gL glycoproteins, but not gp42. Using an in vitro model of normal polarized epithelia, we demonstrated that polarization of the EBV receptor(s) and adhesion molecules restricted transfer infection to the basolateral surface. Furthermore, the adhesions between EBV-loaded B cells and the basolateral surface of epithelial cells included CD11b on the B cell interacting with heparan sulphate moieties of CD44v3 and LEEP-CAM on epithelial cells. Consequently, transfer infection was efficiently mediated via CD11b-positive memory B cells but not by CD11b–negative naïve B cells. Together, these findings have important implications for understanding the mechanisms of EBV infection of normal and pre-malignant epithelial cells in vivo. PMID:21573183

  14. Parasites and a host's sense of smell: reduced chemosensory performance of fathead minnows (Pimephales promelas) infected with a monogenean parasite.

    PubMed

    Lari, Ebrahim; Goater, Cameron P; Cone, David K; Pyle, Greg G

    2017-05-01

    Parasites residing within the central nervous system of their hosts have the potential to reduce various components of host performance, but such effects are rarely evaluated. We assessed the olfactory acuity of fathead minnows (Pimephales promelas) infected experimentally with the monogenean Dactylogyrus olfactorius, the adults of which live within the host's olfactory chambers. Olfactory acuity was compared between infected and uninfected hosts by assessing electro-olfactography (EOG) neural responses to chemical stimuli that indicate the presence of food (L-alanine) or the presence of conspecifics (taurocholic acid). We also compared differences in gross morphology of the olfactory epithelium in infected and uninfected minnows. Differences in EOG responses between infected and uninfected minnows to both cue types were non-significant at 30 days post-exposure. By days 60 and 90, coincident with a two times increase in parasite intensity in the olfactory chambers, the EOG responses of infected minnows were 70-90% lower than controls. When infected fish were treated with a parasiticide (Prazipro), olfactory acuity returned to control levels by day 7 post-treatment. The observed reduction in olfactory acuity is best explained by the reduced density of cilia covering the olfactory chambers of infected fish, or by the concomitant increase in the density of mucous cells that cover the olfactory chambers. These morphological changes are likely due to the direct effects of attachment and feeding by individual worms or by indirect effects associated with host responses. Our results show that infection of a commonly occurring monogenean in fathead minnows reduces olfactory acuity. Parasite-induced interference with olfactory performance may reduce a fish's ability to detect, or respond to, chemical cues originating from food, predators, competitors or mates. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  15. Vectorial capacity of Aedes aegypti for dengue virus type 2 is reduced with co-infection of Metarhizium anisopliae.

    PubMed

    Garza-Hernández, Javier A; Rodríguez-Pérez, Mario A; Salazar, Ma Isabel; Russell, Tanya L; Adeleke, Monsuru A; de Luna-Santillana, Erik de J; Reyes-Villanueva, Filiberto

    2013-01-01

    Aedes aegypti, is the major dengue vector and a worldwide public health threat combated basically by chemical insecticides. In this study, the vectorial competence of Ae. aegypti co-infected with a mildly virulent Metarhizium anisopliae and fed with blood infected with the DENV-2 virus, was examined. The study encompassed three bioassays (B). In B1 the median lethal time (LT50) of Ae. aegypti exposed to M. anisopliae was determined in four treatments: co-infected (CI), single-fungus infection (SF), single-virus infection (SV) and control (C). In B2, the mortality and viral infection rate in midgut and in head were registered in fifty females of CI and in SV. In B3, the same treatments as in B1 but with females separated individually were tested to evaluate the effect on fecundity and gonotrophic cycle length. Survival in CI and SF females was 70% shorter than the one of those in SV and control. Overall viral infection rate in CI and SV were 76 and 84% but the mortality at day six post-infection was 78% (54% infected) and 6% respectively. Survivors with virus in head at day seven post-infection were 12 and 64% in both CI and SV mosquitoes. Fecundity and gonotrophic cycle length were reduced in 52 and 40% in CI compared to the ones in control. Fungus-induced mortality for the CI group was 78%. Of the survivors, 12% (6/50) could potentially transmit DENV-2, as opposed to 64% (32/50) of the SV group, meaning a 5-fold reduction in the number of infective mosquitoes. This is the first report on a fungus that reduces the vectorial capacity of Ae. aegypti infected with the DENV-2 virus.

  16. A Systematic Review of Interventions to Reduce Maternal Mortality among HIV-Infected Pregnant and Postpartum Women

    PubMed Central

    Holtz, Sara A.; Thetard, Rudi; Konopka, Sarah N.; Albertini, Jennifer; Amzel, Anouk; Fogg, Karen P.

    2015-01-01

    Background: In high-prevalence populations, HIV-related maternal mortality is high with increased mortality found among HIV-infected pregnant and postpartum women compared to their uninfected peers. The scale-up of HIV-related treatment options and broader reach of programming for HIV-infected pregnant and postpartum women is likely to have decreased maternal mortality. This systematic review synthesized evidence on interventions that have directly reduced mortality among this population. Methods: Studies published between January 1, 2003 and November 30, 2014 were searched using PubMed. Of the 1,373 records screened, 19 were included in the analysis. Results: Interventions identified through the review include antiretroviral therapy (ART), micronutrients (multivitamins, vitamin A, and selenium), and antibiotics. ART during pregnancy was shown to reduce mortality. Timing of ART initiation, duration of treatment, HIV disease status, and ART discontinuation after pregnancy influence mortality reduction. Incident pregnancy in women already on ART for their health appears not to have adverse consequences for the mother. Multivitamin use was shown to reduce disease progression while other micronutrients and antibiotics had no beneficial effect on maternal mortality. Conclusions: ART was the only intervention identified that decreased death in HIV-infected pregnant and postpartum women. The findings support global trends in encouraging initiation of lifelong ART for all HIV-infected pregnant and breastfeeding women (Option B+), regardless of their CD4+ count, as an important step in ensuring appropriate care and treatment. Global Health Implications: Maternal mortality is a rare event that highlights challenges in measuring the impact of interventions on mortality. Developing effective patient-centered interventions to reduce maternal morbidity and mortality, as well as corresponding evaluation measures of their impact, requires further attention by policy makers

  17. The composition of West Nile virus lipid envelope unveils a role of sphingolipid metabolism in flavivirus biogenesis.

    PubMed

    Martín-Acebes, Miguel A; Merino-Ramos, Teresa; Blázquez, Ana-Belén; Casas, Josefina; Escribano-Romero, Estela; Sobrino, Francisco; Saiz, Juan-Carlos

    2014-10-01

    West Nile virus (WNV) is an emerging zoonotic mosquito-borne flavivirus responsible for outbreaks of febrile illness and meningoencephalitis. The replication of WNV takes place on virus-modified membranes from the endoplasmic reticulum of the host cell, and virions acquire their envelope by budding into this organelle. Consistent with this view, the cellular biology of this pathogen is intimately linked to modifications of the intracellular membranes, and the requirement for specific lipids, such as cholesterol and fatty acids, has been documented. In this study, we evaluated the impact of WNV infection on two important components of cellular membranes, glycerophospholipids and sphingolipids, by mass spectrometry of infected cells. A significant increase in the content of several glycerophospholipids (phosphatidylcholine, plasmalogens, and lysophospholipids) and sphingolipids (ceramide, dihydroceramide, and sphingomyelin) was noticed in WNV-infected cells, suggesting that these lipids have functional roles during WNV infection. Furthermore, the analysis of the lipid envelope of WNV virions and recombinant virus-like particles revealed that their envelopes had a unique composition. The envelopes were enriched in sphingolipids (sphingomyelin) and showed reduced levels of phosphatidylcholine, similar to sphingolipid-enriched lipid microdomains. Inhibition of neutral sphingomyelinase (which catalyzes the hydrolysis of sphingomyelin into ceramide) by either pharmacological approaches or small interfering RNA-mediated silencing reduced the release of flavivirus virions as well as virus-like particles, suggesting a role of sphingomyelin-to-ceramide conversion in flavivirus budding and confirming the importance of sphingolipids in the biogenesis of WNV. Importance: West Nile virus (WNV) is a neurotropic flavivirus spread by mosquitoes that can infect multiple vertebrate hosts, including humans. There is no specific vaccine or therapy against this pathogen licensed for

  18. The Composition of West Nile Virus Lipid Envelope Unveils a Role of Sphingolipid Metabolism in Flavivirus Biogenesis

    PubMed Central

    Martín-Acebes, Miguel A.; Merino-Ramos, Teresa; Blázquez, Ana-Belén; Casas, Josefina; Escribano-Romero, Estela

    2014-01-01

    ABSTRACT West Nile virus (WNV) is an emerging zoonotic mosquito-borne flavivirus responsible for outbreaks of febrile illness and meningoencephalitis. The replication of WNV takes place on virus-modified membranes from the endoplasmic reticulum of the host cell, and virions acquire their envelope by budding into this organelle. Consistent with this view, the cellular biology of this pathogen is intimately linked to modifications of the intracellular membranes, and the requirement for specific lipids, such as cholesterol and fatty acids, has been documented. In this study, we evaluated the impact of WNV infection on two important components of cellular membranes, glycerophospholipids and sphingolipids, by mass spectrometry of infected cells. A significant increase in the content of several glycerophospholipids (phosphatidylcholine, plasmalogens, and lysophospholipids) and sphingolipids (ceramide, dihydroceramide, and sphingomyelin) was noticed in WNV-infected cells, suggesting that these lipids have functional roles during WNV infection. Furthermore, the analysis of the lipid envelope of WNV virions and recombinant virus-like particles revealed that their envelopes had a unique composition. The envelopes were enriched in sphingolipids (sphingomyelin) and showed reduced levels of phosphatidylcholine, similar to sphingolipid-enriched lipid microdomains. Inhibition of neutral sphingomyelinase (which catalyzes the hydrolysis of sphingomyelin into ceramide) by either pharmacological approaches or small interfering RNA-mediated silencing reduced the release of flavivirus virions as well as virus-like particles, suggesting a role of sphingomyelin-to-ceramide conversion in flavivirus budding and confirming the importance of sphingolipids in the biogenesis of WNV. IMPORTANCE West Nile virus (WNV) is a neurotropic flavivirus spread by mosquitoes that can infect multiple vertebrate hosts, including humans. There is no specific vaccine or therapy against this pathogen licensed

  19. Heterogeneity of envelope molecules expressed on primary human immunodeficiency virus type 1 particles as probed by the binding of neutralizing and nonneutralizing antibodies.

    PubMed

    Poignard, Pascal; Moulard, Maxime; Golez, Edwin; Vivona, Veronique; Franti, Michael; Venturini, Sara; Wang, Meng; Parren, Paul W H I; Burton, Dennis R

    2003-01-01

    Virion capture assays, in which immobilized antibodies (Abs) capture virus particles, have been used to suggest that nonneutralizing Abs bind effectively to human immunodeficiency virus type 1 (HIV-1) primary viruses. Here, we show that virion capture assays, under conditions commonly reported in the literature, give a poor indication of epitope expression on the surface of infectious primary HIV-1. First, estimation of primary HIV-1 capture by p24 measurements shows a very poor correlation with an estimation based on infectivity measurements. Second, virion capture appears to require relatively low Ab affinity for the virion, as shown by the ability of a monoclonal Ab to capture a wild-type and a neutralization escape variant virus equally well. Nevertheless, in a more interpretable competition format, it is shown that nonneutralizing anti-CD4 binding site (CD4bs) Abs compete with a neutralizing anti-CD4bs Ab (b12) for virus capture, suggesting that the nonneutralizing anti-CD4bs Abs are able to bind to the envelope species that is involved in virion capture in these experiments. However, the nonneutralizing anti-CD4bs Abs do not inhibit neutralization by b12 even at considerable excess. This suggests that the nonneutralizing Abs are unable to bind effectively to the envelope species required for virus infectivity. The results were obtained for three different primary virus envelopes. The explanation that we favor is that infectious HIV-1 primary virions can express two forms of gp120, an accessible nonfunctional form and a functional form with limited access. Binding to the nonfunctional form, which needs only to be present at relatively low density on the virion, permits capture but does not lead to neutralization. The expression of a nonfunctional but accessible form of gp120 on virions may contribute to the general failure of HIV-1 infection to elicit cross-neutralizing Abs and may represent a significant problem for vaccines based on viruses or virus

  20. Transcriptome analysis of the Spodoptera frugiperda ascovirus in vivo provides insights into how its apoptosis inhibitors and caspase promote increased synthesis of viral vesicles and virion progeny.

    PubMed

    Zaghloul, Heba; Hice, Robert; Arensburger, Peter; Federici, Brian A

    2017-09-27

    Ascoviruses are ds DNA viruses that attack caterpillars and differ from all other viruses by inducing nuclear lysis followed by cleavage of host cells into numerous anucleate vesicles in which virus replication continues as these grow in the blood. Ascoviruses are also unusual in that most encode apoptosis inhibitors and caspase or caspase-like proteins. A robust cell line to study the novel molecular biology of ascovirus replication in vitro is lacking. Therefore, we used strand-specific RNA-Seq to study transcription in vivo in third instars of Spodoptera frugiperda infected with the Spodoptera frugiperda ascovirus, a member of the type species, Spodoptera frugiperda ascovirus (SfAV-1a), sampling transcripts at different time points after infection. We targeted transcription of two types of SfAV-1a genes; first, 44 core genes that occur in several ascovirus species, and second, 26 genes predicted in silico to have metabolic functions likely involved in synthesizing viral vesicle membranes. Gene cluster analysis showed differences in temporal expression of SfAV-1a genes, enabling their assignment to three temporal classes; early, late and very late. Inhibitors of apoptosis (IAP-like proteins; ORF016, ORF025 and ORF074) were expressed early, whereas its caspase (ORF073) was expressed very late, which correlated with apoptotic events leading to viral vesicle formation. Expression analysis revealed that a Diedel gene homolog (ORF121), the only known "virokine," was highly expressed, implying this ascovirus protein helps evade innate host immunity. Lastly, single-nucleotide resolution of RNA-Seq data revealed 15 bicistronic and tricistronic messages along the genome, an unusual occurrence for large ds DNA viruses. IMPORTANCE Unlike all other DNA viruses, ascoviruses code for an executioner caspase, apparently involved in a novel cytopathology in which viral replication induces nuclear lysis followed by cell cleavage yielding numerous large anucleate viral vesicles

  1. Impact of reducing and oxidizing agents on the infectivity of Qβ phage and the overall structure of its capsid.

    PubMed

    Loison, Pauline; Majou, Didier; Gelhaye, Eric; Boudaud, Nicolas; Gantzer, Christophe

    2016-11-01

    Qβ phages infect Escherichia coli in the human gut by recognizing F-pili as receptors. Infection therefore occurs under reducing conditions induced by physiological agents (e.g. glutathione) or the intestinal bacterial flora. After excretion in the environment, phage particles are exposed to oxidizing conditions and sometimes disinfection. If inactivation does not occur, the phage may infect new hosts in the human gut through the oral route. During such a life cycle, we demonstrated that, outside the human gut, cysteines of the major protein capsid of Qβ phage form disulfide bonds. Disinfection with NaClO does not allow overoxidation to occur. Such oxidation induces inactivation rather by irreversible damage to the minor proteins. In the presence of glutathione, most disulfide bonds are reduced, which slightly increases the capacity of the phage to infect E. coli in vitro Such reduction is reversible and barely alters infectivity of the phage. Reduction of all disulfide bonds by dithiothreitol leads to complete capsid destabilization. These data provide new insights into how the phages are impacted by oxidizing-reducing conditions outside their host cell and raises the possibility of the intervention of the redox during life cycle of the phage. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Early harvest and ensilage of forage sorghum infected with ergot (Claviceps africana) reduces the risk of livestock poisoning.

    PubMed

    Blaney, B J; Ryley, M J; Boucher, B D

    2010-08-01

    Sorghum ergot produces dihydroergosine (DHES) and related alkaloids, which cause hyperthermia in cattle. Proportions of infected panicles (grain heads), leaves and stems were determined in two forage sorghum crops extensively infected 2 to 4 weeks prior to sampling and the panicles were assayed for DHES. Composite samples from each crop, plus a third grain variety crop, were coarsely chopped and half of each sealed in plastic buckets for 6 weeks to simulate ensilation. The worst-infected panicles contained up to 55 mg DHES/kg, but dilution reduced average concentrations of DHES in crops to approximately 1 mg/kg, a relatively safe level for cattle. Ensilation significantly (P = 0.043) reduced mean DHES concentrations from 0.85 to 0.46 mg/kg.

  3. Rotavirus Infections

    USDA-ARS?s Scientific Manuscript database

    The avian rotaviruses are members of the Reoviridae family, which is characterized by virions that contain 10-12 linear double-stranded RNA (dsRNA) segments. The Reoviridae consists of 15 genera which can be placed into two recognized subfamilies based upon the presence or absence of structural “tur...

  4. Does routine gowning reduce nosocomial infection and mortality rates in a neonatal nursery? A Singapore experience.

    PubMed

    Tan, S G; Lim, S H; Malathi, I

    1995-11-01

    A 1 year prospective study on routine gowning before entering a neonatal unit was conducted in a maternity hospital in Singapore. This study was done based on previous work by Donowitz, Haque and Chagla and Agbayani et al., as there have been no known studies done in Singapore. The aim of the study was to test the hypothesis that routine gowning before entering a neonatal nursery does not reduce nosocomial infection and mortality rate. A total of 212 neonates from the neonatal intensive care unit (NICU) and 1694 neonates from the neonatal special care unit (NSCU) were studied. Neonates admitted during the 1 year study were assigned to the gowning (control) and no routine gowning (trial) group on every alternate 2 months. The hospital infection control nurse provided data on nosocomial infection. The overall nosocomial infection rate in the NICU was 24% (25 of 104 admissions) during gowning periods compared to 16.6% (18 of 108 admissions) when plastic aprons were not worn before entry. In the NSCU, the overall infection rate was 1.5% (12 of 800 admissions) during gowning periods compared to 2.1% (19 of 894 admissions) when no gown was worn before entry. Results of the study found no significant differences in the incidences of nosocomial infection and mortality in the neonates. The cost of gowns used during the no routine gowning periods was S$2012.8 compared to S$3708 used during the routine gowning procedure. The investigators recommend that routine gowning before entering a neonatal unit is not essential and cost effective for the purpose of reducing infection. Rather the focus should be on adequate handwashing by all hospital personnel and visitors before handling neonates.

  5. Reduced itraconazole concentration and durations are successful in treating Batrachochytrium dendrobatidis infection in amphibians.

    PubMed

    Brannelly, Laura A

    2014-03-14

    Amphibians are experiencing the greatest decline of any vertebrate class and a leading cause of these declines is a fungal pathogen, Batrachochytrium dendrobatidis (Bd), which causes the disease chytridiomycosis. Captive assurance colonies are important worldwide for threatened amphibian species and may be the only lifeline for those in critical threat of extinction. Maintaining disease free colonies is a priority of captive managers, yet safe and effective treatments for all species and across life stages have not been identified. The most widely used chemotherapeutic treatment is itraconazole, although the dosage commonly used can be harmful to some individuals and species. We performed a clinical treatment trial to assess whether a lower and safer but effective dose of itraconazole could be found to cure Bd infections. We found that by reducing the treatment concentration from 0.01-0.0025% and reducing the treatment duration from 11-6 days of 5 min baths, frogs could be cured of Bd infection with fewer side effects and less treatment-associated mortality.

  6. A new class of highly potent, broadly neutralizing antibodies isolated from viremic patients infected with dengue virus.

    PubMed

    Dejnirattisai, Wanwisa; Wongwiwat, Wiyada; Supasa, Sunpetchuda; Zhang, Xiaokang; Dai, Xinghong; Rouvinski, Alexander; Jumnainsong, Amonrat; Edwards, Carolyn; Quyen, Nguyen Than Ha; Duangchinda, Thaneeya; Grimes, Jonathan M; Tsai, Wen-Yang; Lai, Chih-Yun; Wang, Wei-Kung; Malasit, Prida; Farrar, Jeremy; Simmons, Cameron P; Zhou, Z Hong; Rey, Felix A; Mongkolsapaya, Juthathip; Screaton, Gavin R

    2015-02-01

    Dengue is a rapidly emerging, mosquito-borne viral infection, with an estimated 400 million infections occurring annually. To gain insight into dengue immunity, we characterized 145 human monoclonal antibodies (mAbs) and identified a previously unknown epitope, the envelope dimer epitope (EDE), that bridges two envelope protein subunits that make up the 90 repeating dimers on the mature virion. The mAbs to EDE were broadly reactive across the dengue serocomplex and fully neutralized virus produced in either insect cells or primary human cells, with 50% neutralization in the low picomolar range. Our results provide a path to a subunit vaccine against dengue virus and have implications for the design and monitoring of future vaccine trials in which the induction of antibody to the EDE should be prioritized.

  7. Reducing the risk of HIV infection among South African sex workers: socioeconomic and gender barriers.

    PubMed Central

    Karim, Q A; Karim, S S; Soldan, K; Zondi, M

    1995-01-01

    OBJECTIVES. The social context within which women engaged in sex work at a popular truck stop in South Africa are placed at risk of human immunodeficiency virus (HIV) infection and the factors that influence their ability to reduce their risk were assessed. METHODS. Using qualitative and quantitative techniques, an elected sex worker from within the group collected all data. RESULTS. Given the various pressing needs for basic survival, the risk of HIV infection is viewed as one more burden imposed on these women by their lack of social, legal, and economic power. Violence, or the threat thereof, plays an important role in their disempowerment. In the few instances in which sex workers were able to insist on condom use, it resulted in a decrease in earnings, loss of clients, and physical abuse. CONCLUSIONS. Recommendations to reduce the sex workers' risk for HIV infection include negotiation and communication skills to enable them to persuade their clients to use condoms; development of strategies through which they can maximally use their group strength to facilitate unified action; and accessibility of protective methods they can use and control, such as intravaginal microbicides. PMID:7485664

  8. Reducing the risk of HIV infection among South African sex workers: socioeconomic and gender barriers.

    PubMed

    Karim, Q A; Karim, S S; Soldan, K; Zondi, M

    1995-11-01

    The social context within which women engaged in sex work at a popular truck stop in South Africa are placed at risk of human immunodeficiency virus (HIV) infection and the factors that influence their ability to reduce their risk were assessed. Using qualitative and quantitative techniques, an elected sex worker from within the group collected all data. Given the various pressing needs for basic survival, the risk of HIV infection is viewed as one more burden imposed on these women by their lack of social, legal, and economic power. Violence, or the threat thereof, plays an important role in their disempowerment. In the few instances in which sex workers were able to insist on condom use, it resulted in a decrease in earnings, loss of clients, and physical abuse. Recommendations to reduce the sex workers' risk for HIV infection include negotiation and communication skills to enable them to persuade their clients to use condoms; development of strategies through which they can maximally use their group strength to facilitate unified action; and accessibility of protective methods they can use and control, such as intravaginal microbicides.

  9. Reducing catheter-associated urinary tract infections: a quality-improvement initiative.

    PubMed

    Davis, Katherine Finn; Colebaugh, Ann M; Eithun, Benjamin L; Klieger, Sarah B; Meredith, Dennis J; Plachter, Natalie; Sammons, Julia Shaklee; Thompson, Allison; Coffin, Susan E

    2014-09-01

    Catheter-associated urinary tract infections (CAUTIs) are among the most common health care-associated infections in the United States, yet little is known about the prevention and epidemiology of pediatric CAUTIs. An observational study was conducted to assess the impact of a CAUTI quality improvement prevention bundle that included institution-wide standardization of and training on urinary catheter insertion and maintenance practices, daily review of catheter necessity, and rapid review of all CAUTIs. Poisson regression was used to determine the impact of the bundle on CAUTI rates. A retrospective cohort study was performed to describe the epidemiology of incident pediatric CAUTIs at a tertiary care children's hospital over a 3-year period (June 2009 to June 2012). Implementation of the CAUTI prevention bundle was associated with a 50% reduction in the mean monthly CAUTI rate (95% confidence interval: -1.28 to -0.12; P = .02) from 5.41 to 2.49 per 1000 catheter-days. The median monthly catheter utilization ratio remained unchanged; ∼90% of patients had an indication for urinary catheterization. Forty-four patients experienced 57 CAUTIs over the study period. Most patients with CAUTIs were female (75%), received care in the pediatric or cardiac ICUs (70%), and had at least 1 complex chronic condition (98%). Nearly 90% of patients who developed a CAUTI had a recognized indication for initial catheter placement. CAUTI is a common pediatric health care-associated infection. Implementation of a prevention bundle can significantly reduce CAUTI rates in children. Copyright © 2014 by the American Academy of Pediatrics.

  10. Elevated O3 and TYLCV Infection Reduce the Suitability of Tomato as a Host for the Whitefly Bemisia tabaci

    PubMed Central

    Cui, Hongying; Sun, Yucheng; Chen, Fajun; Zhang, Youjun; Ge, Feng

    2016-01-01

    The effects of elevated atmospheric ozone (O3) levels on herbivorous insects have been well studied, but little is known about the combined effects of elevated O3 and virus infection on herbivorous insect performance. Using open-top chambers in the field, we determined the effects of elevated O3 and Tomato yellow leaf curl virus (TYLCV) infection on wild-type (Wt) tomato and 35S tomato (jasmonic acid (JA) defense-enhanced genotype) in association with whitefly, Bemisia tabaci Gennadius biotype B. Elevated O3 and TYLCV infection, alone and in combination, significantly reduced the contents of soluble sugars and free amino acids, increased the contents of total phenolics and condensed tannins, and increased salicylic acid (SA) content and the expression of SA-related genes in leaves. The JA signaling pathway was upregulated by elevated O3, but downregulated by TYLCV infection and O3 + TYLCV infection. Regardless of plant genotype, elevated O3, TYLCV infection, or O3 + TYLCV infection significantly decreased B. tabaci fecundity and abundance. These results suggest that elevated O3 and TYLCV infection, alone and in combination, reduce the nutrients available for B. tabaci, increase SA content and SA-related gene expression, and increase secondary metabolites, resulting in decreases in fecundity and abundance of B. tabaci in both tomato genotypes. PMID:27916792

  11. Characterization of Nora Virus Structural Proteins via Western Blot Analysis.

    PubMed

    Ericson, Brad L; Carlson, Darby J; Carlson, Kimberly A

    2016-01-01

    Nora virus is a single stranded RNA picorna-like virus with four open reading frames (ORFs). The coding potentials of the ORFs are not fully characterized, but ORF3 and ORF4 are believed to encode the capsid proteins (VP3, VP4a, VP4b, and VP4c) comprising the virion. To determine the polypeptide composition of Nora virus virions, polypeptides from purified virus were compared to polypeptides detected in Nora virus infected Drosophila melanogaster. Nora virus was purified from infected flies and used to challenge mice for the production of antisera. ORF3, ORF4a, ORF4b, and ORF4c were individually cloned and expressed in E. coli; resultant recombinant proteins purified and were used to make monospecific antisera. Antisera were evaluated via Western blot against whole virus particles and Nora virus infected fly lysates. Viral purification yielded two particle types with densities of ~1.31 g/mL (empty particles) and ~1.33 g/mL (complete virions). Comparison of purified virus polypeptide composition to Nora virus infected D. melanogaster lysate showed the number of proteins in infected cell lysates is less than purified virus. Our results suggest the virion is composed of 6 polypeptides, VP3, VP4a, two forms of VP4b, and two forms of VP4c. This polypeptide composition is similar to other small RNA insect viruses.

  12. Characterization of Nora Virus Structural Proteins via Western Blot Analysis

    PubMed Central

    Ericson, Brad L.; Carlson, Darby J.

    2016-01-01

    Nora virus is a single stranded RNA picorna-like virus with four open reading frames (ORFs). The coding potentials of the ORFs are not fully characterized, but ORF3 and ORF4 are believed to encode the capsid proteins (VP3, VP4a, VP4b, and VP4c) comprising the virion. To determine the polypeptide composition of Nora virus virions, polypeptides from purified virus were compared to polypeptides detected in Nora virus infected Drosophila melanogaster. Nora virus was purified from infected flies and used to challenge mice for the production of antisera. ORF3, ORF4a, ORF4b, and ORF4c were individually cloned and expressed in E. coli; resultant recombinant proteins purified and were used to make monospecific antisera. Antisera were evaluated via Western blot against whole virus particles and Nora virus infected fly lysates. Viral purification yielded two particle types with densities of ~1.31 g/mL (empty particles) and ~1.33 g/mL (complete virions). Comparison of purified virus polypeptide composition to Nora virus infected D. melanogaster lysate showed the number of proteins in infected cell lysates is less than purified virus. Our results suggest the virion is composed of 6 polypeptides, VP3, VP4a, two forms of VP4b, and two forms of VP4c. This polypeptide composition is similar to other small RNA insect viruses. PMID:27298753

  13. Electronic hand hygiene monitoring as a tool for reducing health care-associated methicillin-resistant Staphylococcus aureus infection.

    PubMed

    Kelly, J William; Blackhurst, Dawn; McAtee, Wendy; Steed, Connie

    2016-08-01

    Electronic monitoring of hand hygiene compliance using the World Health Organization's My 5 Moments for Hand Hygiene is a new innovation that has not yet been shown to reduce hospital infections. We analyzed existing data from 23 inpatient units over a 33-month period and found a significant correlation between unit-specific improvements in electronic monitoring compliance and reductions in methicillin-resistant Staphylococcus aureus infection rates (r = -0.37, P < .001). Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  14. O-GlcNAc modification of the coat protein of the potyvirus Plum pox virus enhances viral infection.

    PubMed

    Pérez, José de Jesús; Udeshi, Namrata D; Shabanowitz, Jeffrey; Ciordia, Sergio; Juárez, Silvia; Scott, Cheryl L; Olszewski, Neil E; Hunt, Donald F; García, Juan Antonio

    2013-08-01

    O-GlcNAcylation is a dynamic protein modification which has been studied mainly in metazoans. We reported previously that an Arabidopsis thaliana O-GlcNAc transferase modifies at least two threonine residues of the Plum pox virus (PPV) capsid protein (CP). Now, six additional residues were shown to be involved in O-GlcNAc modification of PPV CP. CP O-GlcNAcylation was abolished in the PPV CP7-T/A mutant, in which seven threonines were mutated. PPV CP7-T/A infected Nicotiana clevelandii, Nicotiana benthamiana, and Prunus persica without noticeable defects. However, defects in infection of A. thaliana were readily apparent. In mixed infections of wild-type arabidopsis, the CP7-T/A mutant was outcompeted by wild-type virus. These results indicate that CP O-GlcNAcylation has a major role in the infection process. O-GlcNAc modification may have a role in virion assembly and/or stability as the CP of PPV CP7-T/A was more sensitive to protease digestion than that of the wild-type virus. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. R5 HIV-1 envelope attracts dendritic cells to cross the human intestinal epithelium and sample luminal virions via engagement of the CCR5.

    PubMed

    Cavarelli, Mariangela; Foglieni, Chiara; Rescigno, Maria; Scarlatti, Gabriella

    2013-05-01

    The gastrointestinal tract is a principal route of entry and site of persistence of human immunodeficiency virus type 1 (HIV-1). The intestinal mucosa, being rich of cells that are the main target of the virus, represents a primary site of viral replication and CD4(+) T-cell depletion. Here, we show both in vitro and ex vivo that HIV-1 of R5 but not X4 phenotype is capable of selectively triggering dendritic cells (DCs) to migrate within 30 min between intestinal epithelial cells to sample virions and transfer infection to target cells. The engagement of the chemokine receptor 5 on DCs and the viral envelope, regardless of the genetic subtype, drive DC migration. Viruses penetrating through transient opening of the tight junctions likely create a paracellular gradient to attract DCs. The formation of junctions with epithelial cells may initiate a haptotactic process of DCs and at the same time favour cell-to-cell viral transmission. Our findings indicate that HIV-1 translocation across the intestinal mucosa occurs through the selective engagement of DCs by R5 viruses, and may guide the design of new prevention strategies. Copyright © 2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO.

  16. Microsporidia infection impacts the host cell's cycle and reduces host cell apoptosis

    PubMed Central

    Higes, Mariano; Sagastume, Soledad; Juarranz, Ángeles; Dias-Almeida, Joyce; Budge, Giles E.; Meana, Aránzazu; Boonham, Neil

    2017-01-01

    Intracellular parasites can alter the cellular machinery of host cells to create a safe haven for their survival. In this regard, microsporidia are obligate intracellular fungal parasites with extremely reduced genomes and hence, they are strongly dependent on their host for energy and resources. To date, there are few studies into host cell manipulation by microsporidia, most of which have focused on morphological aspects. The microsporidia Nosema apis and Nosema ceranae are worldwide parasites of honey bees, infecting their ventricular epithelial cells. In this work, quantitative gene expression and histology were studied to investigate how these two parasites manipulate their host’s cells at the molecular level. Both these microsporidia provoke infection-induced regulation of genes involved in apoptosis and the cell cycle. The up-regulation of buffy (which encodes a pro-survival protein) and BIRC5 (belonging to the Inhibitor Apoptosis protein family) was observed after infection, shedding light on the pathways that these pathogens use to inhibit host cell apoptosis. Curiously, different routes related to cell cycle were modified after infection by each microsporidia. In the case of N. apis, cyclin B1, dacapo and E2F2 were up-regulated, whereas only cyclin E was up-regulated by N. ceranae, in both cases promoting the G1/S phase transition. This is the first report describing molecular pathways related to parasite-host interactions that are probably intended to ensure the parasite’s survival within the cell. PMID:28152065

  17. Microsporidia infection impacts the host cell's cycle and reduces host cell apoptosis.

    PubMed

    Martín-Hernández, Raquel; Higes, Mariano; Sagastume, Soledad; Juarranz, Ángeles; Dias-Almeida, Joyce; Budge, Giles E; Meana, Aránzazu; Boonham, Neil

    2017-01-01

    Intracellular parasites can alter the cellular machinery of host cells to create a safe haven for their survival. In this regard, microsporidia are obligate intracellular fungal parasites with extremely reduced genomes and hence, they are strongly dependent on their host for energy and resources. To date, there are few studies into host cell manipulation by microsporidia, most of which have focused on morphological aspects. The microsporidia Nosema apis and Nosema ceranae are worldwide parasites of honey bees, infecting their ventricular epithelial cells. In this work, quantitative gene expression and histology were studied to investigate how these two parasites manipulate their host's cells at the molecular level. Both these microsporidia provoke infection-induced regulation of genes involved in apoptosis and the cell cycle. The up-regulation of buffy (which encodes a pro-survival protein) and BIRC5 (belonging to the Inhibitor Apoptosis protein family) was observed after infection, shedding light on the pathways that these pathogens use to inhibit host cell apoptosis. Curiously, different routes related to cell cycle were modified after infection by each microsporidia. In the case of N. apis, cyclin B1, dacapo and E2F2 were up-regulated, whereas only cyclin E was up-regulated by N. ceranae, in both cases promoting the G1/S phase transition. This is the first report describing molecular pathways related to parasite-host interactions that are probably intended to ensure the parasite's survival within the cell.

  18. Discovery and targeted LC-MS/MS of purified polerovirus reveals differences in the virus-host interactome associated with altered aphid transmission.

    PubMed

    Cilia, Michelle; Peter, Kari A; Bereman, Michael S; Howe, Kevin; Fish, Tara; Smith, Dawn; Gildow, Fredrick; MacCoss, Michael J; Thannhauser, Theodore W; Gray, Stewart M

    2012-01-01

    Circulative transmission of viruses in the Luteoviridae, such as cereal yellow dwarf virus (CYDV), requires a series of precisely orchestrated interactions between virus, plant, and aphid proteins. Natural selection has favored these viruses to be retained in the phloem to facilitate acquisition and transmission by aphids. We show that treatment of infected oat tissue homogenate with sodium sulfite reduces transmission of the purified virus by aphids. Transmission electron microscopy data indicated no gross change in virion morphology due to treatments. However, treated virions were not acquired by aphids through the hindgut epithelial cells and were not transmitted when injected directly into the hemocoel. Analysis of virus preparations using nanoflow liquid chromatography coupled to tandem mass spectrometry revealed a number of host plant proteins co-purifying with viruses, some of which were lost following sodium sulfite treatment. Using targeted mass spectrometry, we show data suggesting that several of the virus-associated host plant proteins accumulated to higher levels in aphids that were fed on CYDV-infected plants compared to healthy plants. We propose two hypotheses to explain these observations, and these are not mutually exclusive: (a) that sodium sulfite treatment disrupts critical virion-host protein interactions required for aphid transmission, or (b) that host infection with CYDV modulates phloem protein expression in a way that is favorable for virus uptake by aphids. Importantly, the genes coding for the plant proteins associated with virus may be examined as targets in breeding cereal crops for new modes of virus resistance that disrupt phloem-virus or aphid-virus interactions.

  19. Discovery and Targeted LC-MS/MS of Purified Polerovirus Reveals Differences in the Virus-Host Interactome Associated with Altered Aphid Transmission

    PubMed Central

    Howe, Kevin; Fish, Tara; Smith, Dawn; Gildow, Fredrick; MacCoss, Michael J.; Thannhauser, Theodore W.; Gray, Stewart M.

    2012-01-01

    Circulative transmission of viruses in the Luteoviridae, such as cereal yellow dwarf virus (CYDV), requires a series of precisely orchestrated interactions between virus, plant, and aphid proteins. Natural selection has favored these viruses to be retained in the phloem to facilitate acquisition and transmission by aphids. We show that treatment of infected oat tissue homogenate with sodium sulfite reduces transmission of the purified virus by aphids. Transmission electron microscopy data indicated no gross change in virion morphology due to treatments. However, treated virions were not acquired by aphids through the hindgut epithelial cells and were not transmitted when injected directly into the hemocoel. Analysis of virus preparations using nanoflow liquid chromatography coupled to tandem mass spectrometry revealed a number of host plant proteins co-purifying with viruses, some of which were lost following sodium sulfite treatment. Using targeted mass spectrometry, we show data suggesting that several of the virus-associated host plant proteins accumulated to higher levels in aphids that were fed on CYDV-infected plants compared to healthy plants. We propose two hypotheses to explain these observations, and these are not mutually exclusive: (a) that sodium sulfite treatment disrupts critical virion-host protein interactions required for aphid transmission, or (b) that host infection with CYDV modulates phloem protein expression in a way that is favorable for virus uptake by aphids. Importantly, the genes coding for the plant proteins associated with virus may be examined as targets in breeding cereal crops for new modes of virus resistance that disrupt phloem-virus or aphid-virus interactions. PMID:23118947

  20. Production and characterization of monoclonal antibodies to budgerigar fledgling disease virus major capsid protein VP

    NASA Technical Reports Server (NTRS)

    Fattaey, A.; Lenz, L.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    Eleven hybridoma cell lines producing monoclonal antibodies (MAbs) against intact budgerigar fledgling disease (BFD) virions were produced and characterized. These antibodies were selected for their ability to react with BFD virions in an enzyme-linked immunosorbent assay. Each of these antibodies was reactive in the immunofluorescent detection of BFD virus-infected cells. These antibodies immunoprecipitated intact virions and specifically recognized the major capsid protein, VP1, of the dissociated virion. The MAbs were found to preferentially recognize native BFD virus capsid protein when compared with denatured virus protein. These MAbs were capable of detecting BFD virus protein in chicken embryonated cell-culture lysates by dot-blot analysis.

  1. Site-directed mutagenesis of Autographa californica nucleopolyhedrovirus (AcNPV) polyhedrin: effect on polyhedron structure.

    PubMed

    Bravo-Patiño, A; Ibarra, J E

    2000-01-01

    Amino acids Lys34, His36, and Phe37 were substituted by PCR-mediated, site-directed mutagenesis for three Trp's in the AcNPV polyhedrin sequence. Phase contrast microscopy revealed refringent, amorphous polyhedra in the nuclei of infected cells. Electron microscopy confirmed a great variation in form and size of the mutated polyhedra. Although crystallization of the mutated polyhedrin occurred, it was irregular within each polyhedron. Virion occlusion was also severely affected. Virions were partially occluded, or only one virion was occluded per polyhedron. Results suggest that the substitution of these three amino acids affected the morphology of polyhedra, the uniformity of crystallization within each polyhedron, and the virion occlusion.

  2. Reduced sTWEAK and Increased sCD163 Levels in HIV-Infected Patients: Modulation by Antiretroviral Treatment, HIV Replication and HCV Co-Infection

    PubMed Central

    Beltrán, Luis M.; García Morillo, José S.; Egido, Jesús; Noval, Manuel Leal; Ferrando-Martinez, Sara; Blanco-Colio, Luis M.; Genebat, Miguel; Villar, José R.; Moreno-Luna, Rafael; Moreno, Juan Antonio

    2014-01-01

    Background Patients infected with the human immunodeficiency virus (HIV) have an increased risk of cardiovascular disease due to increased inflammation and persistent immune activation. CD163 is a macrophage scavenger receptor that is involved in monocyte-macrophage activation in HIV-infected patients. CD163 interacts with TWEAK, a member of the TNF superfamily. Circulating levels of sTWEAK and sCD163 have been previously associated with cardiovascular disease, but no previous studies have fully analyzed their association with HIV. Objective The aim of this study was to analyze circulating levels of sTWEAK and sCD163 as well as other known markers of inflammation (hsCRP, IL-6 and sTNFRII) and endothelial dysfunction (sVCAM-1 and ADMA) in 26 patients with HIV before and after 48 weeks of antiretroviral treatment (ART) and 23 healthy subjects. Results Patients with HIV had reduced sTWEAK levels and increased sCD163, sVCAM-1, ADMA, hsCRP, IL-6 and sTNFRII plasma concentrations, as well as increased sCD163/sTWEAK ratio, compared with healthy subjects. Antiretroviral treatment significantly reduced the concentrations of sCD163, sVCAM-1, hsCRP and sTNFRII, although they remained elevated when compared with healthy subjects. Antiretroviral treatment had no effect on the concentrations of ADMA and sTWEAK, biomarkers associated with endothelial function. The use of protease inhibitors as part of antiretroviral therapy and the presence of HCV-HIV co-infection and/or active HIV replication attenuated the ART-mediated decrease in sCD163 plasma concentrations. Conclusion HIV-infected patients showed a proatherogenic profile characterized by increased inflammatory, immune-activation and endothelial-dysfunction biomarkers that partially improved after ART. HCV-HIV co-infection and/or active HIV replication enhanced immune activation despite ART. PMID:24594990

  3. Modelling the Course of an HIV Infection: Insights from Ecology and Evolution

    PubMed Central

    Alizon, Samuel; Magnus, Carsten

    2012-01-01

    The Human Immunodeficiency Virus (HIV) is one of the most threatening viral agents. This virus infects approximately 33 million people, many of whom are unaware of their status because, except for flu-like symptoms right at the beginning of the infection during the acute phase, the disease progresses more or less symptom-free for 5 to 10 years. During this asymptomatic phase, the virus slowly destroys the immune system until the onset of AIDS when opportunistic infections like pneumonia or Kaposi’s sarcoma can overcome immune defenses. Mathematical models have played a decisive role in estimating important parameters (e.g., virion clearance rate or life-span of infected cells). However, most models only account for the acute and asymptomatic latency phase and cannot explain the progression to AIDS. Models that account for the whole course of the infection rely on different hypotheses to explain the progression to AIDS. The aim of this study is to review these models, present their technical approaches and discuss the robustness of their biological hypotheses. Among the few models capturing all three phases of an HIV infection, we can distinguish between those that mainly rely on population dynamics and those that involve virus evolution. Overall, the modeling quest to capture the dynamics of an HIV infection has improved our understanding of the progression to AIDS but, more generally, it has also led to the insight that population dynamics and evolutionary processes can be necessary to explain the course of an infection. PMID:23202449

  4. Morphological changes in human neural cells following tick-borne encephalitis virus infection.

    PubMed

    Růzek, Daniel; Vancová, Marie; Tesarová, Martina; Ahantarig, Arunee; Kopecký, Jan; Grubhoffer, Libor

    2009-07-01

    Tick-borne encephalitis (TBE) is one of the leading and most dangerous human viral neuroinfections in Europe and north-eastern Asia. The clinical manifestations include asymptomatic infections, fevers and debilitating encephalitis that might progress into chronic disease or fatal infection. To understand TBE pathology further in host nervous systems, three human neural cell lines, neuroblastoma, medulloblastoma and glioblastoma, were infected with TBE virus (TBEV). The susceptibility and virus-mediated cytopathic effect, including ultrastructural and apoptotic changes of the cells, were examined. All the neural cell lines tested were susceptible to TBEV infection. Interestingly, the neural cells produced about 100- to 10,000-fold higher virus titres than the conventional cell lines of extraneural origin, indicating the highly susceptible nature of neural cells to TBEV infection. The infection of medulloblastoma and glioblastoma cells was associated with a number of major morphological changes, including proliferation of membranes of the rough endoplasmic reticulum and extensive rearrangement of cytoskeletal structures. The TBEV-infected cells exhibited either necrotic or apoptotic morphological features. We observed ultrastructural apoptotic signs (condensation, margination and fragmentation of chromatin) and other alterations, such as vacuolation of the cytoplasm, dilatation of the endoplasmic reticulum cisternae and shrinkage of cells, accompanied by a high density of the cytoplasm. On the other hand, infected neuroblastoma cells did not exhibit proliferation of membranous structures. The virions were present in both the endoplasmic reticulum and the cytoplasm. Cells were dying preferentially by necrotic mechanisms rather than apoptosis. The neuropathological significance of these observations is discussed.

  5. Trichomonas vaginalis infection induces vaginal CD4+ T-cell infiltration in a mouse model: a vaccine strategy to reduce vaginal infection and HIV transmission.

    PubMed

    Smith, Jeffrey D; Garber, Gary E

    2015-07-15

    Complications related to the diagnosis and treatment of Trichomonas vaginalis infection, as well as the association between T. vaginalis infection and increased transmission of and susceptibility to human immunodeficiency virus, highlight the need for alternative interventions. We tested a human-safe, aluminum hydroxide-adjuvanted whole-cell T. vaginalis vaccine for efficacy in a BALB/c mouse model of vaginal infection. A whole-cell T. vaginalis vaccine was administered subcutaneously to BALB/c mice, using a prime-boost vaccination schedule. CD4(+) T-cell infiltration in the murine vaginal tissue and local and systemic levels of immunoglobulins were measured at time points up to 4 weeks following infection. Vaccination reduced the incidence and increased the clearance of T. vaginalis infection and induced both systemic and local humoral immune responses. CD4(+) T cells were detected in vaginal tissues following intravaginal infection with T. vaginalis but were not seen in uninfected mice. The presence of CD4(+) T cells following T. vaginalis infection can potentially increase susceptibility to and transmission of human immunodeficiency virus. The vaccine induces local and systemic immune responses and confers significantly greater protection against vaginal infection than seen in unvaccinated mice (P < .005). These data support the potential for a human vaccine against T. vaginalis infection that could also influence the incidence of human immunodeficiency virus infection. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. HTLV-1 Tax-Specific CTL Epitope-Pulsed Dendritic Cell Therapy Reduces Proviral Load in Infected Rats with Immune Tolerance against Tax.

    PubMed

    Ando, Satomi; Hasegawa, Atsuhiko; Murakami, Yuji; Zeng, Na; Takatsuka, Natsuko; Maeda, Yasuhiro; Masuda, Takao; Suehiro, Youko; Kannagi, Mari

    2017-02-01

    Adult T cell leukemia/lymphoma (ATL), a CD4 + T cell malignancy with a poor prognosis, is caused by human T cell leukemia virus type 1 (HTLV-1) infection. High proviral load (PVL) is a risk factor for the progression to ATL. We previously reported that some asymptomatic carriers had severely reduced functions of CTLs against HTLV-1 Tax, the major target Ag. Furthermore, the CTL responses tended to be inversely correlated with PVL, suggesting that weak HTLV-1-specific CTL responses may be involved in the elevation of PVL. Our previous animal studies indicated that oral HTLV-1 infection, the major route of infection, caused persistent infection with higher PVL in rats compared with other routes. In this study, we found that Tax-specific CD8 + T cells were present, but not functional, in orally infected rats as observed in some human asymptomatic carriers. Even in the infected rats with immune unresponsiveness against Tax, Tax-specific CTL epitope-pulsed dendritic cell (DC) therapy reduced the PVL and induced Tax-specific CD8 + T cells capable of proliferating and producing IFN-γ. Furthermore, we found that monocyte-derived DCs from most infected individuals still had the capacity to stimulate CMV-specific autologous CTLs in vitro, indicating that DC therapy may be applicable to most infected individuals. These data suggest that peptide-pulsed DC immunotherapy will be useful to induce functional HTLV-1-specific CTLs and decrease PVL in infected individuals with high PVL and impaired HTLV-1-specific CTL responses, thereby reducing the risk of the development of ATL. Copyright © 2017 by The American Association of Immunologists, Inc.

  7. Pre-emptive intrathecal vancomycin therapy reduces external ventricular drain infection: a single centre retrospective case-control study.

    PubMed

    Fu, Richard Z; Anwar, Durria R; Laban, James T; Maratos, Eleni C; Minhas, Pawanjit S; Martin, Andrew J

    2017-02-01

    External ventricular drain (EVD)-related infection is a significant source of morbidity in neurosurgical patients. Recently, there has been a drive to adopt new catheters with bactericidal properties to reduce infection rates. We propose that the use of standard catheters combined with pre-emptive intrathecal vancomycin (ITV) 10 mg daily provides an effective alternative. Retrospective study of all patients with EVDs between 2010 and 2012, comparing infection rates in those who did and did not receive pre-emptive ITV. All EVDs were of the standard silicon catheter type. CSF infection was defined, as per Centre for Disease Control (CDC) guidelines, as clinical suspicion ± positive CSF gram stain/culture or leucocytosis. Infection rates were compared using Pearson's chi-squared test. 262 EVDs were included in the study, of which 111 were managed with pre-emptive ITV. The infection rate was 2.7% in the vancomycin group and 11.9% in the control group (p<.01). There were no cases of vancomycin-resistant infection in either group. The use of pre-emptive ITV is associated with a significantly lower EVD infection rate. This compares favourably with those reported in the literature for bactericidal catheters.

  8. MAIT cells are reduced in frequency and functionally impaired in human T lymphotropic virus type 1 infection: Potential clinical implications.

    PubMed

    Paquin-Proulx, Dominic; Greenspun, Benjamin C; Costa, Emanuela A S; Segurado, Aluisio C; Kallas, Esper G; Nixon, Douglas F; Leal, Fabio E

    2017-01-01

    HTLV-1 infection is associated with several inflammatory disorders, including the neurodegenerative condition HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). It is unclear why a minority of infected subjects develop HAM/TSP. The cellular immune response has been implicated in the development of inflammatory alterations in these patients; however the pathogenic mechanisms for disease progression remain unclear. Furthermore, HTLV-1-infected individuals have an increase incidence of Mycobacterium tuberculosis (Mtb) infection, suggesting that immunological defect are associated with HTLV-1 infection. Evidence suggests an important role for Mucosal-associated invariant T (MAIT) cells in the early control of Mtb infection. Chronic viral infections like HIV and HCV have been associated with decreased frequency and functionality of MAIT cells. We hypothesized that HTLV-1 infection is associated with similar perturbations in MAIT cells. We investigated MAIT cell frequency, phenotype, and function by flow cytometry in a cohort of 10 asymptomatic and 10 HAM/TSP HTLV-1 infected patients. We found that MAIT cells from HTLV-1-infected subjects were reduced and showed high co-expression of the activation markers CD38 and HLA-DR but normal levels of CCR6 and CD127. MAIT cells had a lower expression of the transcription factor PLZF in HAM/TSP patients. Unlike Tax-specific CD8+T cells, which are hyperfunctional, MAIT cells from HTLV-1-infected subjects had a poor IFNγ response following antigen stimulation. MAIT cell perturbations in HTLV-1 infection were not associated with HTLV-1 proviral load and MAIT cells were not infected by HTLV-1 in vivo. Rather, MAIT cells loss was associated with immune activation. Overall, our results do not support a role for MAIT cells in HAM/TSP pathogenesis but reduced numbers of MAIT cells, together with their poor functionality, could contribute to the increased susceptibility of HTLV-1-infected individuals to other infectious

  9. Generation of transgenic cattle expressing human β-defensin 3 as an approach to reducing susceptibility to Mycobacterium bovis infection.

    PubMed

    Su, Feng; Wang, Yongsheng; Liu, Guanghui; Ru, Kun; Liu, Xin; Yu, Yuan; Liu, Jun; Wu, Yongyan; Quan, Fusheng; Guo, Zekun; Zhang, Yong

    2016-03-01

    Bovine tuberculosis results from infection with Mycobacterium bovis, a member of the Mycobacterium tuberculosis family. Worldwide, M. bovis infections result in economic losses in the livestock industry; cattle production is especially hard-hit by this disease. Generating M. bovis-resistant cattle may potentially mitigate the impact of this disease by reducing M. bovis infections. In this study, we used transgenic somatic cell nuclear transfer to generate cattle expressing the gene encoding human β-defensin 3 (HBD3), which confers resistance to mycobacteria in vitro. We first generated alveolar epithelial cells expressing HBD3 under the control of the bovine MUC1 promoter, and confirmed that these cells secreted HBD3 and possessed anti-mycobacterial capacity. We then generated and identified transgenic cattle by somatic cell nuclear transfer. The cleavage and blastocyst formation rates of genetically modified embryos provided evidence that monoclonal transgenic bovine fetal fibroblast cells have an integral reprogramming ability that is similar to that of normal cells. Five genetically modified cows were generated, and their anti-mycobacterial capacities were evaluated. Alveolar epithelial cells and macrophages from these cattle expressed higher levels of HBD3 protein compared with non-transgenic cells and possessed effective anti-mycobacterial capacity. These results suggest that the overall risk of M. bovis infection in transgenic cattle is efficiently reduced, and support the development of genetically modified animals as an effective tool to reduce M. bovis infection. © 2016 Federation of European Biochemical Societies.

  10. Tetherin promotes the innate and adaptive cell-mediated immune response against retrovirus infection in vivo.

    PubMed

    Li, Sam X; Barrett, Bradley S; Heilman, Karl J; Messer, Ronald J; Liberatore, Rachel A; Bieniasz, Paul D; Kassiotis, George; Hasenkrug, Kim J; Santiago, Mario L

    2014-07-01

    Tetherin/BST-2 is a host restriction factor that could directly inhibit retroviral particle release by tethering nascent virions to the plasma membrane. However, the immunological impact of Tetherin during retrovirus infection remains unknown. We now show that Tetherin influences antiretroviral cell-mediated immune responses. In contrast to the direct antiviral effects of Tetherin, which are dependent on cell surface expression, the immunomodulatory effects are linked to the endocytosis of the molecule. Mice encoding endocytosis-competent C57BL/6 Tetherin exhibited lower viremia and pathology at 7 d postinfection with Friend retrovirus (FV) compared with mice encoding endocytosis-defective NZW/LacJ Tetherin. Notably, antiretroviral protection correlated with stronger NK cell responses. In addition, Friend retrovirus infection levels were significantly lower in wild-type C57BL/6 mice than in Tetherin knockout mice at 2 wk postinfection, and antiretroviral protection correlated with stronger NK cell and virus-specific CD8+ T cell responses. The results demonstrate that Tetherin acts as a modulator of the cell-mediated immune response against retrovirus infection in vivo.

  11. Incorporation of antigens from whole cell lysates and purified virions from MP12 into fluorescence microsphere immunoassays for the detection of antibodies against Rift Valley fever virus

    USDA-ARS?s Scientific Manuscript database

    Background: The purpose of this study was the development of multiplex fluorescence microsphere immunoassay (FMIA) for the detection of Rift Valley fever virus (RVFV) IgG and IgM antibodies by incorporation of antigens from whole cell lysates and purified virions from MP12. Methods and Findings: Vir...

  12. Arginine reduces Cryptosporidium parvum infection in undernourished suckling mice involving both nitric oxide synthase and arginase

    PubMed Central

    Castro, Ibraim C.; Oliveira, Bruna B.; Slowikowski, Jacek J.; Coutinho, Bruna P.; Siqueira, Francisco Júlio W.S.; Costa, Lourrany B.; Sevilleja, Jesus Emmanuel; Almeida, Camila A.; Lima, Aldo A.M.; Warren, Cirle A.; Oriá, Reinaldo B.; Guerrant, Richard L.

    2011-01-01

    Objective This study investigated the role of L-arginine supplementation to undernourished and Cryptosporidium parvum-infected suckling mice. Methods The following regimens were initiated on the 4th day of life and given subcutaneously daily: either 200mM of L-arginine or PBS for the C. parvum-infected controls. L-arginine-treated mice were grouped to receive either 20mM of NG-nitroarginine-methyl-ester (L-NAME) or PBS. Infected mice received orally 106 excysted-C. parvum oocysts on day 6 and were euthanized on day 14th at the infection peak. Results L-arginine improved weight gain compared to the untreated infected controls. L-NAME profoundly impaired body weight gain as compared to all other groups. Cryptosporidiosis was associated with ileal crypt hyperplasia, villus blunting, and inflammation. L-arginine improved mucosal histology following infection. L-NAME abrogated these arginine-induced improvements. Infected control mice showed an intense arginase expression, which was even greater with L-NAME. L-arginine reduced parasite burden, an effect that was reversed by L-NAME. C. parvum infection increased urine NO3-/NO2- concentration when compared to uninfected controls, which was increased by L-arginine supplementation, an effect that was also reversed by L-NAME. Conclusion These findings show a protective role of L-arginine during C. parvum infection in undernourished mice with involvement of arginase I and nitric oxide synthase enzymatic actions. PMID:22261576

  13. Ganetespib, an HSP90 inhibitor, kills Epstein-Barr virus (EBV)-infected B and T cells and reduces the percentage of EBV-infected cells in the blood.

    PubMed

    Shatzer, Amber; Ali, Mir A; Chavez, Mayra; Dowdell, Kennichi; Lee, Min-Jung; Tomita, Yusuke; El-Hariry, Iman; Trepel, Jane B; Proia, David A; Cohen, Jeffrey I

    2017-04-01

    HSP90 inhibitors have been shown to kill Epstein-Barr virus (EBV)-infected cells by reducing the level of EBV EBNA-1 and/or LMP1. We treated virus-infected cells with ganetespib, an HSP90 inhibitor currently being evaluated in multiple clinical trials for cancer and found that the drug killed EBV-positive B and T cells and reduced the level of both EBV EBNA-1 and LMP1. Treatment of cells with ganetespib also reduced the level of pAkt. Ganetespib delayed the onset of EBV-positive lymphomas and prolonged survival in SCID mice inoculated with one EBV-transformed B-cell line, but not another B-cell line. The former cell line showed lower levels of EBNA-1 after treatment with ganetespib in vitro. Treatment of a patient with T-cell chronic active EBV with ganetespib reduced the percentage of EBV-positive cells in the peripheral blood. These data indicate that HSP90 inhibitors may have a role in the therapy of certain EBV-associated diseases.

  14. Albumin reduces paracentesis-induced circulatory dysfunction and reduces death and renal impairment among patients with cirrhosis and infection: a systematic review and meta-analysis.

    PubMed

    Kwok, Chun Shing; Krupa, Lukasz; Mahtani, Ash; Kaye, Duncan; Rushbrook, Simon M; Phillips, Martin G; Gelson, William

    2013-01-01

    Studies have suggested that albumin has a value in cirrhotic patients undergoing paracentesis but its value in infection and sepsis is less clear. We planned to perform a meta-analysis of the risk of adverse outcomes in cirrhotic patients with and without albumin use. We searched MEDLINE and EMBASE in January 2013 for randomized studies of cirrhotic patients that reported the risk of adverse events and mortality with albumin and no albumin exposure. We performed random effects meta-analysis and assessed heterogeneity using the I² statistic. Our review included 16 studies covering 1,518 patients. The use of albumin in paracentesis was associated with significantly reduced risk of paracentesis-induced circulatory dysfunction (OR 0.26 95%, CI 0.08-0.93) and there was a nonsignificant difference in death, encephalopathy, hyponatraemia, readmission, and renal impairment. Compared to the other volume expanders, albumin use showed no difference in clinical outcomes. In cirrhotic patients with any infection, there was a significant reduction in mortality (OR 0.46 95%, CI 0.25-0.86) and renal impairment (OR 0.34 95%, CI 0.15-0.75) when albumin was used. The use of albumin in cirrhotic patients is valuable in patients with any infection and it reduces the risk of circulatory dysfunction among patients undergoing paracentesis.

  15. A proteomic perspective of inbuilt viral protein regulation: pUL46 tegument protein is targeted for degradation by ICP0 during herpes simplex virus type 1 infection.

    PubMed

    Lin, Aaron E; Greco, Todd M; Döhner, Katinka; Sodeik, Beate; Cristea, Ileana M

    2013-11-01

    Much like the host cells they infect, viruses must also regulate their life cycles. Herpes simples virus type 1 (HSV-1), a prominent human pathogen, uses a promoter-rich genome in conjunction with multiple viral trans-activating factors. Following entry into host cells, the virion-associated outer tegument proteins pUL46 and pUL47 act to increase expression of viral immediate-early (α) genes, thereby helping initiate the infection life cycle. Because pUL46 has gone largely unstudied, we employed a hybrid mass spectrometry-based approach to determine how pUL46 exerts its functions during early stages of infection. For a spatio-temporal characterization of pUL46, time-lapse microscopy was performed in live cells to define its dynamic localization from 2 to 24 h postinfection. Next, pUL46-containing protein complexes were immunoaffinity purified during infection of human fibroblasts and analyzed by mass spectrometry to investigate virus-virus and virus-host interactions, as well as post-translational modifications. We demonstrated that pUL46 is heavily phosphorylated in at least 23 sites. One phosphorylation site matched the consensus 14-3-3 phospho-binding motif, consistent with our identification of 14-3-3 proteins and host and viral kinases as specific pUL46 interactions. Moreover, we determined that pUL46 specifically interacts with the viral E3 ubiquitin ligase ICP0. We demonstrated that pUL46 is partially degraded in a proteasome-mediated manner during infection, and that the catalytic activity of ICP0 is responsible for this degradation. This is the first evidence of a viral protein being targeted for degradation by another viral protein during HSV-1 infection. Together, these data indicate that pUL46 levels are tightly controlled and important for the temporal regulation of viral gene expression throughout the virus life cycle. The concept of a structural virion protein, pUL46, performing nonstructural roles is likely to reflect a theme common to many viruses

  16. Horn fly larval survival in cattle dung is reduced by endophyte infection of tall fescue pasture.

    PubMed

    Parra, Leonardo; Mutis, Ana; Chacón, Manuel; Lizama, Marcelo; Rojas, Claudio; Catrileo, Adrián; Rubilar, Olga; Tortella, Gonzalo; Birkett, Michael A; Quiroz, Andrés

    2016-07-01

    The potential for using endophytic microorganisms in pest control has increased during the last 40 years. In this study, we investigated the impact of endophyte (Neotyphodium coenophialum) infection of cattle pasture upon the survival of the horn fly, Haematobia irritans, a major agricultural pest affecting livestock in many parts of the world. In laboratory assays, where cattle dung collected from endophyte-infected (E+) tall fescue cultivar K-31 was used as the oviposition substrate, larval development was significantly reduced compared with development on cattle dung from steers that grazed uninfected (E-) tall fescue. Furthermore, studies with cattle dung supplemented with the alkaloid fraction extracted from the endophytic fungi revealed significant larval mortality, and HPLC analysis identified two alkaloids, peramine and lolitrem B. The development of larvae was shown to be significantly reduced in field-collected cattle dung. These results suggest that part of the toxicity of alkaloids contained in endophytes is transferred to faecal matter, causing an increase in mortality of H. irritans. These data suggest that endophyte infection of cattle pasture, i.e. modified pasture management, can significantly affect horn fly development. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  17. Early respiratory infection is associated with reduced spirometry in children with cystic fibrosis.

    PubMed

    Ramsey, Kathryn A; Ranganathan, Sarath; Park, Judy; Skoric, Billy; Adams, Anne-Marie; Simpson, Shannon J; Robins-Browne, Roy M; Franklin, Peter J; de Klerk, Nick H; Sly, Peter D; Stick, Steve M; Hall, Graham L

    2014-11-15

    Pulmonary inflammation, infection, and structural lung disease occur early in life in children with cystic fibrosis. We hypothesized that the presence of these markers of cystic fibrosis lung disease in the first 2 years of life would be associated with reduced lung function in childhood. Lung function (forced expiratory volume in the first three-quarters of a second [FEV0.75], FVC) was assessed in individuals with cystic fibrosis diagnosed after newborn screening and healthy subjects during infancy (0-2 yr) and again at early school age (4-8 yr). Individuals with cystic fibrosis underwent annual bronchoalveolar lavage fluid examination, and chest computed tomography. We examined which clinical outcomes (pulmonary inflammation, infection, structural lung disease, respiratory hospitalizations, antibiotic prophylaxis) measured in the first 2 years of life were associated with reduced lung function in infants and young children with cystic fibrosis, using a mixed effects model. Children with cystic fibrosis (n = 56) had 8.3% (95% confidence interval [CI], -15.9 to -6.6; P = 0.04) lower FEV0.75 compared with healthy subjects (n = 18). Detection of proinflammatory bacterial pathogens (Pseudomonas aeruginosa, Staphylococcus aureus, Haemophilus influenzae, Aspergillus species, Streptococcus pneumoniae) in bronchoalveolar lavage fluid was associated with clinically significant reductions in FEV0.75 (ranging between 11.3 and 15.6%). The onset of lung disease in infancy, specifically the occurrence of lower respiratory tract infection, is associated with low lung function in young children with cystic fibrosis. Deficits in lung function measured in infancy persist into childhood, emphasizing the need for targeted therapeutic interventions in infancy to maximize functional outcomes later in life.

  18. Moderate physical exercise reduces parasitaemia and protects colonic myenteric neurons in mice infected with Trypanosoma cruzi

    PubMed Central

    Moreira, Neide M; Santos, Franciele d N; Toledo, Max Jean d O; Moraes, Solange M F d; Araujo, Eduardo J d A; Sant'Ana, Debora d M G; Araujo, Silvana M d

    2013-01-01

    This study evaluated the influence of moderate physical exercise on the myenteric neurons in the colonic intestinal wall of mice that had been infected with Trypanosoma cruzi. Parasitology and immunological aspects of the mice were considered. Forty-day-old male Swiss mice were divided into four groups: Trained Infected (TI), Sedentary Infected (SI), Trained Control (TC), and Sedentary Control (SC). The TC and TI were subjected to a moderate physical exercise program on a treadmill for 8 weeks. Three days after finishing exercise, the TI and SI groups were inoculated with 1,300 blood trypomastigotes of the Y strain-T. cruzi. After 75 days of infection results were obtained. Kruskal-Wallis or Analyze of variance (Tukey post hoc test) at 5% level of significance was performed. Moderate physical exercise reduced both the parasite peak (day 8 of infection) and total parasitemia compared with the sedentary groups (P < 0.05). This activity also contributed to neuronal survival (P < 0.05). Exercise caused neuronal hypertrophy (P < 0.05) and an increase in the total thickness of the intestinal wall (P < 0.05). The TI group exhibited an increase in the number of intraepithelial lymphocytes (P > 0.05). In trained animals, the number of goblet cells was reduced compared with sedentary animals (P < 0.05). Physical exercise prevented the formation of inflammatory foci in the TI group (P < 0.05) and increased the synthesis of TNF-α (P < 0.05) and TGF-β (P > 0.05). The present results demonstrated the benefits of moderate physical exercise, and reaffirmed the possibility of that it may contribute to improving clinical treatment in Chagas' disease patients. PMID:24205797

  19. Low dietary boron reduces parasite (nematoda) survival and alters cytokine profiles but the infection modifies liver minerals in mice.

    PubMed

    Bourgeois, Annie-Claude; Scott, Marilyn E; Sabally, Kebba; Koski, Kristine G

    2007-09-01

    Although boron (B) is an essential trace mineral, any interactions that it may have with gastrointestinal (GI) nematode infections are unknown. This study explored whether low dietary B would: 1) alter survival or reproduction of Heligmosomoides bakeri (Nematoda); 2) modify the resulting cytokine response to this parasitic infection; or 3) influence liver mineral concentrations in the infected host. Balb/c mice were fed either a low-B (0.2 microg B/g), marginal (2.0 microg B/g), or control (12.0 microg B/g) diet. Diets commenced 3 wk before a primary infection and were fed for 4 wk (primary infection protocol) and 8-9 wk (challenge infection protocol). Mice were killed 6 d post-primary infection (d6ppi), or dewormed then reinfected (challenge infection protocol) and killed 14 or 21 d post-challenge infection (d14pci or d21pci, respectively). Low and marginal dietary B intakes impaired survival of the parasite, reduced intestinal inflammation, and modulated a broad range of cytokines and chemokines despite similar liver B concentrations in diet groups. Compared with control mice, cytokine production was lower following low and marginal B intakes at d6ppi but was elevated at d21pci. Serum alkaline phosphatase was higher at d6ppi than at d14pci and d21pci. Compared with d14pci, liver zinc, iron, and B concentrations were reduced at d21pci when worm numbers were also lower, whereas concentrations of sodium, potassium, molybdenum, chromium, and sulfur were higher. This study shows that parasite survival and cytokine and inflammatory responses are modified by dietary B intake but indicates that a GI nematode infection alters liver mineral concentrations.

  20. Systematic Analysis of Intracellular Trafficking Motifs Located within the Cytoplasmic Domain of Simian Immunodeficiency Virus Glycoprotein gp41

    PubMed Central

    Postler, Thomas S.; Bixby, Jacqueline G.; Desrosiers, Ronald C.; Yuste, Eloísa

    2014-01-01

    Previous studies have shown that truncation of the cytoplasmic-domain sequences of the simian immunodeficiency virus (SIV) envelope glycoprotein (Env) just prior to a potential intracellular-trafficking signal of the sequence YIHF can strongly increase Env protein expression on the cell surface, Env incorporation into virions and, at least in some contexts, virion infectivity. Here, all 12 potential intracellular-trafficking motifs (YXXΦ or LL/LI/IL) in the gp41 cytoplasmic domain (gp41CD) of SIVmac239 were analyzed by systematic mutagenesis. One single and 7 sequential combination mutants in this cytoplasmic domain were characterized. Cell-surface levels of Env were not significantly affected by any of the mutations. Most combination mutations resulted in moderate 3- to 8-fold increases in Env incorporation into virions. However, mutation of all 12 potential sites actually decreased Env incorporation into virions. Variant forms with 11 or 12 mutated sites exhibited 3-fold lower levels of inherent infectivity, while none of the other single or combination mutations that were studied significantly affected the inherent infectivity of SIVmac239. These minor effects of mutations in trafficking motifs form a stark contrast to the strong increases in cell-surface expression and Env incorporation which have previously been reported for large truncations of gp41CD. Surprisingly, mutation of potential trafficking motifs in gp41CD of SIVmac316, which differs by only one residue from gp41CD of SIVmac239, effectively recapitulated the increases in Env incorporation into virions observed with gp41CD truncations. Our results indicate that increases in Env surface expression and virion incorporation associated with truncation of SIVmac239 gp41CD are not fully explained by loss of consensus trafficking motifs. PMID:25479017

  1. The herpes simplex virus 1 virion host shutoff protein enhances translation of viral late mRNAs by preventing mRNA overload.

    PubMed

    Dauber, Bianca; Saffran, Holly A; Smiley, James R

    2014-09-01

    We recently demonstrated that the virion host shutoff (vhs) protein, an mRNA-specific endonuclease, is required for efficient herpes simplex virus 1 (HSV-1) replication and translation of viral true-late mRNAs, but not other viral and cellular mRNAs, in many cell types (B. Dauber, J. Pelletier, and J. R. Smiley, J. Virol. 85:5363-5373, 2011, http://dx.doi.org/10.1128/JVI.00115-11). Here, we evaluated whether the structure of true-late mRNAs or the timing of their transcription is responsible for the poor translation efficiency in the absence of vhs. To test whether the highly structured 5' untranslated region (5'UTR) of the true-late gC mRNA is the primary obstacle for translation initiation, we replaced it with the less structured 5'UTR of the γ-actin mRNA. However, this mutation did not restore translation in the context of a vhs-deficient virus. We then examined whether the timing of transcription affects translation efficiency at late times. To this end, we engineered a vhs-deficient virus mutant that transcribes the true-late gene US11 with immediate-early kinetics (IEUS11-ΔSma). Interestingly, IEUS11-ΔSma showed increased translational activity on the US11 transcript at late times postinfection, and US11 protein levels were restored to wild-type levels. These results suggest that mRNAs can maintain translational activity throughout the late stage of infection if they are present before translation factors and/or ribosomes become limiting. Taken together, these results provide evidence that in the absence of the mRNA-destabilizing function of vhs, accumulation of viral mRNAs overwhelms the capacity of the host translational machinery, leading to functional exclusion of the last mRNAs that are made during infection. The process of mRNA translation accounts for a significant portion of a cell's energy consumption. To ensure efficient use of cellular resources, transcription, translation, and mRNA decay are tightly linked and highly regulated. However, during

  2. Cytomegalovirus infection and disease reduce 10-year cardiac allograft vasculopathy-free survival in heart transplant recipients.

    PubMed

    Johansson, Inger; Andersson, Rune; Friman, Vanda; Selimovic, Nedim; Hanzen, Lars; Nasic, Salmir; Nyström, Ulla; Sigurdardottir, Vilborg

    2015-12-24

    Cytomegalovirus (CMV) is associated with an increased risk of cardiac allograft vasculopathy (CAV), the major limiting factor for long-term survival after heart transplantation (HTx). The purpose of this study was to evaluate the impact of CMV infection during long-term follow-up after HTx. A retrospective, single-centre study analyzed 226 HTx recipients (mean age 45 ± 13 years, 78 % men) who underwent transplantation between January 1988 and December 2000. The incidence and risk factors for CMV infection during the first year after transplantation were studied. Risk factors for CAV were included in an analyses of CAV-free survival within 10 years post-transplant. The effect of CMV infection on the grade of CAV was analyzed. Survival to 10 years post-transplant was higher in patients with no CMV infection (69 %) compared with patients with CMV disease (55 %; p = 0.018) or asymptomatic CMV infection (54 %; p = 0.053). CAV-free survival time was higher in patients with no CMV infection (6.7 years; 95 % CI, 6.0-7.4) compared with CMV disease (4.2 years; CI, 3.2-5.2; p < 0.001) or asymptomatic CMV infection (5.4 years; CI, 4.3-6.4; p = 0.013). In univariate analysis, recipient age, donor age, coronary artery disease (CAD), asymptomatic CMV infection and CMV disease were significantly associated with CAV-free survival. In multivariate regression analysis, CMV disease, asymptomatic CMV infection, CAD and donor age remained independent predictors of CAV-free survival at 10 years post-transplant. CAV-free survival was significantly reduced in patients with CMV disease and asymptomatic CMV infection compared to patients without CMV infection. These findings highlight the importance of close monitoring of CMV viral load and appropriate therapeutic strategies for preventing asymptomatic CMV infection.

  3. Public perceptions of non-pharmaceutical interventions for reducing transmission of respiratory infection: systematic review and synthesis of qualitative studies

    PubMed Central

    2014-01-01

    Background Non-pharmaceutical public health interventions may provide simple, low-cost, effective ways of minimising the transmission and impact of acute respiratory infections in pandemic and non-pandemic contexts. Understanding what influences the uptake of non-pharmaceutical interventions such as hand and respiratory hygiene, mask wearing and social distancing could help to inform the development of effective public health advice messages. The aim of this synthesis was to explore public perceptions of non-pharmaceutical interventions that aim to reduce the transmission of acute respiratory infections. Methods Five online databases (MEDLINE, PsycINFO, CINAHL, EMBASE and Web of Science) were systematically searched. Reference lists of articles were also examined. We selected papers that used a qualitative research design to explore perceptions and beliefs about non-pharmaceutical interventions to reduce transmission of acute respiratory infections. We excluded papers that only explored how health professionals or children viewed non-pharmaceutical respiratory infection control. Three authors performed data extraction and assessment of study quality. Thematic analysis and components of meta-ethnography were adopted to synthesise findings. Results Seventeen articles from 16 studies in 9 countries were identified and reviewed. Seven key themes were identified: perceived benefits of non-pharmaceutical interventions, perceived disadvantages of non-pharmaceutical interventions, personal and cultural beliefs about infection transmission, diagnostic uncertainty in emerging respiratory infections, perceived vulnerability to infection, anxiety about emerging respiratory infections and communications about emerging respiratory infections. The synthesis showed that some aspects of non-pharmaceutical respiratory infection control (particularly hand and respiratory hygiene) were viewed as familiar and socially responsible actions to take. There was ambivalence about adopting

  4. Population-based biomedical sexually transmitted infection control interventions for reducing HIV infection.

    PubMed

    Ng, Brian E; Butler, Lisa M; Horvath, Tara; Rutherford, George W

    2011-03-16

    The transmission of sexually transmitted infections (STIs) is closely related to the sexual transmission of human immunodeficiency virus (HIV). Similar risk behaviours, such as frequent unprotected intercourse with different partners, place people at high risk of HIV and STIs, and there is clear evidence that many STIs increase the likelihood of HIV transmission. STI control, especially at the population or community level, may have the potential to contribute substantially to HIV prevention.This is an update of an existing Cochrane review. The review's search methods were updated and its inclusion and exclusion criteria modified so that the focus would be on one well-defined outcome. This review now focuses explicitly on population-based biomedical interventions for STI control, with change in HIV incidence being an outcome necessary for a study's inclusion. To determine the impact of population-based biomedical STI interventions on the incidence of HIV infection. We searched PubMed, EMBASE, the Cochrane Central Register of Controlled Trials (CENTRAL), Web of Science/Social Science, PsycINFO, and Literatura Latino Americana e do Caribe em Ciências da Saúde (LILACS), for the period of 1 January1980 - 16 August 2010. We initially identified 6003 articles and abstracts. After removing 776 duplicates, one author (TH) removed an additional 3268 citations that were clearly irrelevant. Rigorously applying the inclusion criteria, three authors then independently screened the remaining 1959 citations and abstracts. Forty-six articles were chosen for full-text scrutiny by two authors. Ultimately, four studies were included in the review.We also searched the Aegis database of conference abstracts, which includes the Conference on Retroviruses and Opportunistic Infections (CROI), the International AIDS Conference (IAC), and International AIDS Society Conference on HIV Pathogenesis, Treatment and Prevention (IAS) meetings from their inception dates (1993, 1985 and

  5. Dynamics of Dengue Virus (DENV)-Specific B Cells in the Response to DENV Serotype 1 Infections, Using Flow Cytometry With Labeled Virions.

    PubMed

    Woda, Marcia; Friberg, Heather; Currier, Jeffrey R; Srikiatkhachorn, Anon; Macareo, Louis R; Green, Sharone; Jarman, Richard G; Rothman, Alan L; Mathew, Anuja

    2016-10-01

    The development of reagents to identify and characterize antigen-specific B cells has been challenging. We recently developed Alexa Fluor-labeled dengue viruses (AF DENVs) to characterize antigen-specific B cells in the peripheral blood of DENV-immune individuals. In this study, we used AF DENV serotype 1 (AF DENV-1) together with AF DENV-2 on peripheral blood mononuclear cells (PBMCs) from children in Thailand with acute primary or secondary DENV-1 infections to analyze the phenotypes of antigen-specific B cells that reflected their exposure or clinical diagnosis. DENV serotype-specific and cross-reactive B cells were identified in PBMCs from all subjects. Frequencies of AF DENV(+) class-switched memory B cells (IgD(-)CD27(+) CD19(+) cells) reached up to 8% during acute infection and early convalescence. AF DENV-labeled B cells expressed high levels of CD27 and CD38 during acute infection, characteristic of plasmablasts, and transitioned into memory B cells (CD38(-)CD27(+)) at the early convalescent time point. There was higher activation of memory B cells early during acute secondary infection, suggesting reactivation from a previous DENV infection. AF DENVs reveal changes in the phenotype of DENV serotype-specific and cross-reactive B cells during and after natural DENV infection and could be useful in analysis of the response to DENV vaccination. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  6. Fatal columbid herpesvirus-1 infections in three species of Australian birds of prey.

    PubMed

    Phalen, D N; Holz, P; Rasmussen, L; Bayley, C

    2011-05-01

    We document columbid herpesvirus-1 (CoHV-1) infection in two barking owls (Ninox connivens), a powerful owl (Ninox strenua) and an Australian hobby (Falco longipennis). Antemortem signs of infection were non-specific and the birds either died soon after they were identified as ill or were found dead unexpectedly. Gross postmortem findings were also not specific. Microscopically, marked to massive splenic and hepatic necrosis with the presence of eosinophilic inclusion bodies in remaining splenocytes and hepatocytes was found in all birds. Herpesvirus virions were identified in liver sections from one of the boobook owls by electron microscopy. Using CoHV-1-specific primers and polymerase chain reaction, CoHV-1 DNA was amplified from tissue samples from all birds. A comparison of these sequences to previously reported sequences of CoHV-1 found them to be identical or to vary by a single base pair. These findings increase the number of known species of birds of prey that are susceptible to CoHV-1 infection and indicate that rock pigeons (Columbia livia) should not be included in the diet of captive Australian birds of prey. © 2011 The Authors. Australian Veterinary Journal © 2011 Australian Veterinary Association.

  7. The cold adapted and temperature sensitive influenza A/Ann Arbor/6/60 virus, the master donor virus for live attenuated influenza vaccines, has multiple defects in replication at the restrictive temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Winnie; Zhou, Helen; Kemble, George

    2008-10-25

    We have previously determined that the temperature sensitive (ts) and attenuated (att) phenotypes of the cold adapted influenza A/Ann Arbor/6/60 strain (MDV-A), the master donor virus for the live attenuated influenza A vaccines (FluMist), are specified by the five amino acids in the PB1, PB2 and NP gene segments. To understand how these loci control the ts phenotype of MDV-A, replication of MDV-A at the non-permissive temperature (39 deg. C) was compared with recombinant wild-type A/Ann Arbor/6/60 (rWt). The mRNA and protein synthesis of MDV-A in the infected MDCK cells were not significantly reduced at 39 deg. C during amore » single-step replication, however, vRNA synthesis was reduced and the nuclear-cytoplasmic export of viral RNP (vRNP) was blocked. In addition, the virions released from MDV-A infected cells at 39 deg. C exhibited irregular morphology and had a greatly reduced amount of the M1 protein incorporated. The reduced M1 protein incorporation and vRNP export blockage correlated well with the virus ts phenotype because these defects could be partially alleviated by removing the three ts loci from the PB1 gene. The virions and vRNPs isolated from the MDV-A infected cells contained a higher level of heat shock protein 70 (Hsp70) than those of rWt, however, whether Hsp70 is involved in thermal inhibition of MDV-A replication remains to be determined. Our studies demonstrate that restrictive replication of MDV-A at the non-permissive temperature occurs in multiple steps of the virus replication cycle.« less

  8. Supplemental Perioperative Oxygen to Reduce Surgical Site Infection after High Energy Fracture Surgery

    DTIC Science & Technology

    2017-10-01

    AWARD NUMBER: W81XWH-12-1-0588 TITLE: Supplemental Perioperative Oxygen to Reduce Surgical Site Infection after High- Energy Fracture Surgery...High- Energy Fracture Surgery 5a. CONTRACT NUMBER W81XWH-12-1-0588 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Robert V. O’Toole, MD...14 4 1. INTRODUCTION: The overall scope of this project is to address the treatment of high- energy military fractures, which has

  9. Toxoplasma gondii infection induces dendritic retraction in basolateral amygdala accompanied by reduced corticosterone secretion

    PubMed Central

    Mitra, Rupshi; Sapolsky, Robert Morris; Vyas, Ajai

    2013-01-01

    SUMMARY Pathological anxiety is thought to reflect a maladaptive state characterized by exaggerated fear. Naturally occurring perturbations that reduce fear can be crucial in the search for new treatments. The protozoan parasite Toxoplasma gondii invades rat brain and removes the fear that rats have of cat odors, a change believed to be parasitic manipulation of host behavior aimed at increasing parasite transmission. It is likely that mechanisms employed by T. gondii can be used as a heuristic tool to understand possible means of fear reduction in clinical settings. Male Long-Evans rats were infected with T. gondii and compared with sham-infected animals 8 weeks after infection. The amount of circulating plasma corticosterone and dendritic arborization of basolateral amygdala principal neurons were quantified. Previous studies have shown that corticosterone, acting within the basolateral amygdala, enhances the fear response to environmental stimuli. Here we show that T. gondii infection causes a dendritic retraction in basolateral amygdala neurons. Such dendritic retraction is accompanied by lower amounts of circulating corticosterone, both at baseline and when induced by an aversive cat odor. The concerted effects of parasitism on two pivotal physiological nodes of the fear response provide an animal model relevant to interactions between stress hormones and amygdalar plasticity. PMID:23104989

  10. Metagenomic-Based Screening and Molecular Characterization of Cowpea-Infecting Viruses in Burkina Faso.

    PubMed

    Palanga, Essowè; Filloux, Denis; Martin, Darren P; Fernandez, Emmanuel; Gargani, Daniel; Ferdinand, Romain; Zabré, Jean; Bouda, Zakaria; Neya, James Bouma; Sawadogo, Mahamadou; Traore, Oumar; Peterschmitt, Michel; Roumagnac, Philippe

    2016-01-01

    Cowpea, (Vigna unguiculata L. (Walp)) is an annual tropical grain legume. Often referred to as "poor man's meat", cowpea is one of the most important subsistence legumes cultivated in West Africa due to the high protein content of its seeds. However, African cowpea production can be seriously constrained by viral diseases that reduce yields. While twelve cowpea-infecting viruses have been reported from Africa, only three of these have so-far been reported from Burkina Faso. Here we use a virion-associated nucleic acids (VANA)-based metagenomics method to screen for the presence of cowpea viruses from plants collected from the three agro-climatic zones of Burkina Faso. Besides the three cowpea-infecting virus species which have previously been reported from Burkina Faso (Cowpea aphid borne mosaic virus [Family Potyviridae], the Blackeye cowpea mosaic virus-a strain of Bean common mosaic virus-[Family Potyviridae] and Cowpea mottle virus [Family Tombusviridae]) five additional viruses were identified: Southern cowpea mosaic virus (Sobemovirus genus), two previously uncharacterised polerovirus-like species (Family Luteoviridae), a previously uncharacterised tombusvirus-like species (Family Tombusviridae) and a previously uncharacterised mycotymovirus-like species (Family Tymoviridae). Overall, potyviruses were the most prevalent cowpea viruses (detected in 65.5% of samples) and the Southern Sudan zone of Burkina Faso was found to harbour the greatest degrees of viral diversity and viral prevalence. Partial genome sequences of the two novel polerovirus-like and tombusvirus-like species were determined and RT-PCR primers were designed for use in Burkina Faso to routinely detect all of these cowpea-associated viruses.

  11. Metagenomic-Based Screening and Molecular Characterization of Cowpea-Infecting Viruses in Burkina Faso

    PubMed Central

    Palanga, Essowè; Filloux, Denis; Martin, Darren P.; Fernandez, Emmanuel; Gargani, Daniel; Ferdinand, Romain; Zabré, Jean; Bouda, Zakaria; Neya, James Bouma; Sawadogo, Mahamadou; Traore, Oumar; Peterschmitt, Michel; Roumagnac, Philippe

    2016-01-01

    Cowpea, (Vigna unguiculata L. (Walp)) is an annual tropical grain legume. Often referred to as “poor man’s meat”, cowpea is one of the most important subsistence legumes cultivated in West Africa due to the high protein content of its seeds. However, African cowpea production can be seriously constrained by viral diseases that reduce yields. While twelve cowpea-infecting viruses have been reported from Africa, only three of these have so-far been reported from Burkina Faso. Here we use a virion-associated nucleic acids (VANA)-based metagenomics method to screen for the presence of cowpea viruses from plants collected from the three agro-climatic zones of Burkina Faso. Besides the three cowpea-infecting virus species which have previously been reported from Burkina Faso (Cowpea aphid borne mosaic virus [Family Potyviridae], the Blackeye cowpea mosaic virus—a strain of Bean common mosaic virus—[Family Potyviridae] and Cowpea mottle virus [Family Tombusviridae]) five additional viruses were identified: Southern cowpea mosaic virus (Sobemovirus genus), two previously uncharacterised polerovirus-like species (Family Luteoviridae), a previously uncharacterised tombusvirus-like species (Family Tombusviridae) and a previously uncharacterised mycotymovirus-like species (Family Tymoviridae). Overall, potyviruses were the most prevalent cowpea viruses (detected in 65.5% of samples) and the Southern Sudan zone of Burkina Faso was found to harbour the greatest degrees of viral diversity and viral prevalence. Partial genome sequences of the two novel polerovirus-like and tombusvirus-like species were determined and RT-PCR primers were designed for use in Burkina Faso to routinely detect all of these cowpea-associated viruses. PMID:27764211

  12. Megalocytivirus infection in cultured Nile tilapia Oreochromis niloticus.

    PubMed

    Subramaniam, Kuttichantran; Gotesman, Michael; Smith, Charlie E; Steckler, Natalie K; Kelley, Karen L; Groff, Joseph M; Waltzek, Thomas B

    2016-05-26

    Megalocytiviruses, such as infectious spleen and kidney necrosis virus (ISKNV), induce lethal systemic diseases in both ornamental and food fish species. In this study, we investigated an epizootic affecting Nile tilapia Oreochromis niloticus cultured in the US Midwest. Diseased fish displayed lethargy, gill pallor, and distension of the coelomic cavity due to ascites. Histopathological examination revealed a severe systemic abundance of intravascular megalocytes that were especially prominent in the gills, kidney, spleen, liver, and intestinal submucosa. Transmission electron microscopic examination revealed abundant intracytoplasmic polygonal virions consistent with iridovirus infection. Comparison of the full-length major capsid protein nucleotide sequences from a recent outbreak with a remarkably similar case that occurred at the same facility many years earlier revealed that both epizootics were caused by ISKNV. A comparison of this case with previous reports suggests that ISKNV may represent a greater threat to tilapia aquaculture than previously realized.

  13. Completely assembled virus particles detected by transmission electron microscopy in proximal and mid-axons of neurons infected with herpes simplex virus type 1, herpes simplex virus type 2 and pseudorabies virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang Jialing, E-mail: hjialing@mail.med.upenn.edu; Lazear, Helen M., E-mail: Hlazear@DOM.wustl.edu; Friedman, Harvey M., E-mail: hfriedma@mail.med.upenn.ed

    2011-01-05

    The morphology of alphaherpesviruses during anterograde axonal transport from the neuron cell body towards the axon terminus is controversial. Reports suggest that transport of herpes simplex virus type 1 (HSV-1) nucleocapsids and envelope proteins occurs in separate compartments and that complete virions form at varicosities or axon termini (subassembly transport model), while transport of a related alphaherpesvirus, pseudorabies virus (PRV) occurs as enveloped capsids in vesicles (assembled transport model). Transmission electron microscopy of proximal and mid-axons of primary superior cervical ganglion (SCG) neurons was used to compare anterograde axonal transport of HSV-1, HSV-2 and PRV. SCG cell bodies were infectedmore » with HSV-1 NS and 17, HSV-2 2.12 and PRV Becker. Fully assembled virus particles were detected intracellularly within vesicles in proximal and mid-axons adjacent to microtubules after infection with each virus, indicating that assembled virions are transported anterograde within axons for all three alphaherpesviruses.« less

  14. Characterization of a single-nucleocapsid nucleopolyhedrovirus of Thysanoplusia orichalcea L. (Lepidoptera: Noctuidae) from Indonesia.

    PubMed

    Cheng, X W; Carner, G R

    2000-05-01

    A single-nucleocapsid nucleopolyhedrovirus (NPV) isolated from Thysanoplusia orichalcea L. (Lepidoptera:Noctuidae) (ThorNPV) in Indonesia has tetrahedral occlusion bodies (OBs) with a width of 1. 22 microm (range = 0.803-1.931 microm). The length of the virion with an envelope averaged 0.29 and 0.23 microm without an envelope. ThorNPV was propagated in Pseudoplusia includens (Walker) and its authenticity was confirmed by sequence analysis of the polyhedrin gene of the ThorNPV produced in T. orichalcea and P. includens. Polyhedrin amino acid sequence analysis revealed that ThorNPV belongs to Group II of baculoviruses and is closely related to Trichoplusia ni single nucleocapsid NPV, sharing 97.6% sequence identity. Infectivity of ThorNPV against third instar P. includens was low, with a LD(50) value of 65,636 OBs/larva. Electron microscopy of infected tissues showed many polyhedra without virions embedded, which might explain the low virulence against P. includens. Differences in virion occlusion rates between individual cells in the same tissue suggested that the inoculum consisted of at least two variants that differed in the gene(s) controlling virion occlusion. In a host range test using the LD(50) value to P. includens against Spodoptera exigua, S. frugiperda, S. eridania, Anticarsia gemmatalis, Helicoverpa zea, Trichoplusia ni, and P. includens, P. includens was the only species infected. The virus infected primarily the fat body, tracheal epithelium, and hypodermis. The genomic size of the ThorNPV is 135 kb. Copyright 2000 Academic Press.

  15. Use of simulation-based education to reduce catheter-related bloodstream infections.

    PubMed

    Barsuk, Jeffrey H; Cohen, Elaine R; Feinglass, Joe; McGaghie, William C; Wayne, Diane B

    2009-08-10

    Simulation-based education improves procedural competence in central venous catheter (CVC) insertion. The effect of simulation-based education in CVC insertion on the incidence of catheter-related bloodstream infection (CRBSI) is unknown. The aim of this study was to determine if simulation-based training in CVC insertion reduces CRBSI. This was an observational education cohort study set in an adult intensive care unit (ICU) in an urban teaching hospital. Ninety-two internal medicine and emergency medicine residents completed a simulation-based mastery learning program in CVC insertion skills. Rates of CRBSI from CVCs inserted by residents in the ICU before and after the simulation-based educational intervention were compared over a 32-month period. There were fewer CRBSIs after the simulator-trained residents entered the intervention ICU (0.50 infections per 1000 catheter-days) compared with both the same unit prior to the intervention (3.20 per 1000 catheter-days) (P = .001) and with another ICU in the same hospital throughout the study period (5.03 per 1000 catheter-days) (P = .001). An educational intervention in CVC insertion significantly improved patient outcomes. Simulation-based education is a valuable adjunct in residency education.

  16. AABB Committee Report: reducing transfusion-transmitted cytomegalovirus infections.

    PubMed

    Heddle, Nancy M; Boeckh, Michael; Grossman, Brenda; Jacobson, Jessica; Kleinman, Steven; Tobian, Aaron A R; Webert, Kathryn; Wong, Edward C C; Roback, John D

    2016-06-01

    Transfusion-transmitted cytomegalovirus (TT-CMV) is often asymptomatic, but certain patient populations, such as very low birth weight neonates, fetuses requiring intrauterine transfusion, pregnant women, patients with primary immunodeficiencies, transplant recipients, and patients receiving chemotherapy or transplantation for malignant disease, may be at risk of life-threatening CMV infection. It is unclear whether leukoreduction of cellular blood components is sufficient to reduce TT-CMV or whether CMV serological testing adds additional benefit to leukoreduction. The AABB CMV Prevention Work Group commissioned a systematic review to address these issues and subsequently develop clinical practice guidelines. However, the data were of poor quality, and no studies of significant size have been performed for over a decade. Rather than creating guidelines of questionable utility, the Work Group (with approval of the AABB Board of Directors) voted to prepare this Committee Report. There is wide variation in practices of using leukoreduced components alone or combining CMV-serology and leukoreduction to prevent TT-CMV for at-risk patients. Other approaches may also be feasible to prevent TT-CMV, including plasma nucleic acid testing, pathogen inactivation, and patient blood management programs to reduce the frequency of inappropriate transfusions. It is unlikely that future large-scale clinical trials will be performed to determine whether leukoreduction, CMV-serology, or a combination of both is superior. Consequently, alternative strategies including pragmatic randomized controlled trials, registries, and collaborations for electronic data merging, nontraditional approaches to inform evidence, or development of a systematic approach to inform expert opinion may help to address the issue of CMV-safe blood components. © 2016 AABB.

  17. Preserved dendritic cell HLA-DR expression and reduced regulatory T cell activation in asymptomatic Plasmodium falciparum and P. vivax infection.

    PubMed

    Kho, Steven; Marfurt, Jutta; Noviyanti, Rintis; Kusuma, Andreas; Piera, Kim A; Burdam, Faustina H; Kenangalem, Enny; Lampah, Daniel A; Engwerda, Christian R; Poespoprodjo, Jeanne R; Price, Ric N; Anstey, Nicholas M; Minigo, Gabriela; Woodberry, Tonia

    2015-08-01

    Clinical illness with Plasmodium falciparum or Plasmodium vivax compromises the function of dendritic cells (DC) and expands regulatory T (Treg) cells. Individuals with asymptomatic parasitemia have clinical immunity, restricting parasite expansion and preventing clinical disease. The role of DC and Treg cells during asymptomatic Plasmodium infection is unclear. During a cross-sectional household survey in Papua, Indonesia, we examined the number and activation of blood plasmacytoid DC (pDC), CD141(+), and CD1c(+) myeloid DC (mDC) subsets and Treg cells using flow cytometry in 168 afebrile children (of whom 15 had P. falciparum and 36 had P. vivax infections) and 162 afebrile adults (of whom 20 had P. falciparum and 20 had P. vivax infections), alongside samples from 16 patients hospitalized with uncomplicated malaria. Unlike DC from malaria patients, DC from children and adults with asymptomatic, microscopy-positive P. vivax or P. falciparum infection increased or retained HLA-DR expression. Treg cells in asymptomatic adults and children exhibited reduced activation, suggesting increased immune responsiveness. The pDC and mDC subsets varied according to clinical immunity (asymptomatic or symptomatic Plasmodium infection) and, in asymptomatic infection, according to host age and parasite species. In conclusion, active control of asymptomatic infection was associated with and likely contingent upon functional DC and reduced Treg cell activation. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  18. Evaluation of the concentration and bioactivity of adenovirus vectors for gene therapy.

    PubMed Central

    Mittereder, N; March, K L; Trapnell, B C

    1996-01-01

    Development of adenovirus vectors as potential therapeutic agents for multiple applications of in vivo human gene therapy has resulted in numerous preclinical and clinical studies. However, lack of standardization of the methods for quantifying the physical concentration and functionally active fraction of virions in these studies has often made comparison between various studies difficult or impossible. This study was therefore carried out to define the variables for quantification of the concentration of adenovirus vectors. The methods for evaluation of total virion concentration included electron microscopy and optical absorbance. The methods for evaluation of the concentration of functional virions included detection of gene transfer (transgene transfer and expression) and the plaque assay on 293 cells. Enumeration of total virion concentration by optical absorbance was found to be a precise procedure, but accuracy was dependent on physical disruption of the virion to eliminate artifacts from light scattering and also on a correct value for the extinction coefficient. Both biological assays for enumerating functional virions were highly dependent on the assay conditions and in particular the time of virion adsorption and adsorption volume. Under optimal conditions, the bioactivity of the vector, defined as the fraction of total virions which leads to detected target cell infection, was determined to be 0.10 in the plaque assay and 0.29 in the gene transfer assay. This difference is most likely due to the fact that detection by gene transfer requires only measurement of levels of transgene expression in the infected cell whereas plaque formation is dependent on a series of biological events of much greater complexity. These results show that the exact conditions for determination of infectious virion concentration and bioactivity of recombinant adenovirus vectors are critical and must be standardized for comparability. These observations may be very useful in

  19. Long-Term Immunogenicity of an Inactivated Split-Virion 2009 Pandemic Influenza A H1N1 Virus Vaccine with or without Aluminum Adjuvant in Mice

    PubMed Central

    Xu, Wenting; Zheng, Mei; Zhou, Feng

    2015-01-01

    In 2009, a global epidemic of influenza A(H1N1) virus caused the death of tens of thousands of people. Vaccination is the most effective means of controlling an epidemic of influenza and reducing the mortality rate. In this study, the long-term immunogenicity of influenza A/California/7/2009 (H1N1) split vaccine was observed as long as 15 months (450 days) after immunization in a mouse model. Female BALB/c mice were immunized intraperitoneally with different doses of aluminum-adjuvanted vaccine. The mice were challenged with a lethal dose (10× 50% lethal dose [LD50]) of homologous virus 450 days after immunization. The results showed that the supplemented aluminum adjuvant not only effectively enhanced the protective effect of the vaccine but also reduced the immunizing dose of the vaccine. In addition, the aluminum adjuvant enhanced the IgG antibody level of mice immunized with the H1N1 split vaccine. The IgG level was correlated to the survival rate of the mice. Aluminum-adjuvanted inactivated split-virion 2009 pandemic influenza A H1N1 vaccine has good immunogenicity and provided long-term protection against lethal influenza virus challenge in mice. PMID:25589552

  20. The application of Lean Six Sigma methodology to reduce the risk of healthcare-associated infections in surgery departments.

    PubMed

    Montella, Emma; Di Cicco, Maria Vincenza; Ferraro, Anna; Centobelli, Piera; Raiola, Eliana; Triassi, Maria; Improta, Giovanni

    2017-06-01

    Nowadays, the monitoring and prevention of healthcare-associated infections (HAIs) is a priority for the healthcare sector. In this article, we report on the application of the Lean Six Sigma (LSS) methodology to reduce the number of patients affected by sentinel bacterial infections who are at risk of HAI. The LSS methodology was applied in the general surgery department by using a multidisciplinary team of both physicians and academics. Data on more than 20 000 patients who underwent a wide range of surgical procedures between January 2011 and December 2014 were collected to conduct the study using the departmental information system. The most prevalent sentinel bacteria were determined among the infected patients. The preintervention (January 2011 to December 2012) and postintervention (January 2013 to December 2014) phases were compared to analyze the effects of the methodology implemented. The methodology allowed the identification of variables that influenced the risk of HAIs and the implementation of corrective actions to improve the care process, thereby reducing the percentage of infected patients. The improved process resulted in a 20% reduction in the average number of hospitalization days between preintervention and control phases, and a decrease in the mean (SD) number of days of hospitalization amounted to 36 (15.68), with a data distribution around 3 σ. The LSS is a helpful strategy that ensures a significant decrease in the number of HAIs in patients undergoing surgical interventions. The implementation of this intervention in the general surgery departments resulted in a significant reduction in both the number of hospitalization days and the number of patients affected by HAIs. This approach, together with other tools for reducing the risk of infection (surveillance, epidemiological guidelines, and training of healthcare personnel), could be applied to redesign and improve a wide range of healthcare processes. © 2016 John Wiley & Sons, Ltd.

  1. Mixed Lineage Kinase 3 deficiency delays viral clearance in the lung and is associated with diminished influenza-induced cytopathic effect in infected cells

    PubMed Central

    Desmet, Emily A.; Hollenbaugh, Joseph A.; Sime, Patricia J.; Wright, Terry W.; Topham, David J.; Sant, Andrea J.; Takimoto, Toru; Dewhurst, Stephen; Maggirwar, Sanjay B.

    2010-01-01

    Influenza virus leads to acute respiratory disease resulting in seasonal epidemics and periodic pandemics. Little is known about the signaling events that regulate host defense to influenza. One particular pathway, the c-Jun amino-terminal kinase (JNK) cascade is activated following influenza infection and blocking JNK leads to enhanced viral replication. We hypothesize that Mixed Lineage Kinase 3 (MLK3), an upstream regulator of JNK, is involved in the host response to influenza. To test this, wild-type and MLK3−/− mice were infected with pathogenic strain of influenza A virus, A/PR/8/34 (PR8). Although, cellular and humoral immune responses were similar between wild-type and MLK3−/− hosts, the viral load in the lungs was comparatively higher in MLK3−/− mice at day 8 post infection. Consistent with this, MLK3−/− murine lung fibrobalsts had prolonged survival and increased virion production following infection compared to wild-type. These findings support a role for MLK3 in viral production during influenza infection. PMID:20185156

  2. A Novel Non-Replication-Competent Cytomegalovirus Capsid Mutant Vaccine Strategy Is Effective in Reducing Congenital Infection

    PubMed Central

    Choi, K. Yeon; Root, Matthew

    2016-01-01

    ABSTRACT Congenital cytomegalovirus (CMV) infection is a leading cause of mental retardation and deafness in newborns. The guinea pig is the only small animal model for congenital CMV infection. A novel CMV vaccine was investigated as an intervention strategy against congenital guinea pig cytomegalovirus (GPCMV) infection. In this disabled infectious single-cycle (DISC) vaccine strategy, a GPCMV mutant virus was used that lacked the ability to express an essential capsid gene (the UL85 homolog GP85) except when grown on a complementing cell line. In vaccinated animals, the GP85 mutant virus (GP85 DISC) induced an antibody response to important glycoprotein complexes considered neutralizing target antigens (gB, gH/gL/gO, and gM/gN). The vaccine also generated a T cell response to the pp65 homolog (GP83), determined via a newly established guinea pig gamma interferon enzyme-linked immunosorbent spot assay. In a congenital infection protection study, GP85 DISC-vaccinated animals and a nonvaccinated control group were challenged during pregnancy with wild-type GPCMV (105 PFU). The pregnant animals carried the pups to term, and viral loads in target organs of pups were analyzed. Based on live pup births in the vaccinated and control groups (94.1% versus 63.6%), the vaccine was successful in reducing mortality (P = 0.0002). Additionally, pups from the vaccinated group had reduced CMV transmission, with 23.5% infected target organs versus 75.9% in the control group. Overall, these preliminary studies indicate that a DISC CMV vaccine strategy has the ability to induce an immune response similar to that of natural virus infection but has the increased safety of a non-replication-competent virus, which makes this approach attractive as a CMV vaccine strategy. IMPORTANCE Congenital CMV infection is a leading cause of mental retardation and deafness in newborns. An effective vaccine against CMV remains an elusive goal despite over 50 years of CMV research. The guinea pig, with

  3. Direct transfer of viral and cellular proteins from varicella-zoster virus-infected non-neuronal cells to human axons.

    PubMed

    Grigoryan, Sergei; Yee, Michael B; Glick, Yair; Gerber, Doron; Kepten, Eldad; Garini, Yuval; Yang, In Hong; Kinchington, Paul R; Goldstein, Ronald S

    2015-01-01

    Varicella Zoster Virus (VZV), the alphaherpesvirus that causes varicella upon primary infection and Herpes zoster (shingles) following reactivation in latently infected neurons, is known to be fusogenic. It forms polynuclear syncytia in culture, in varicella skin lesions and in infected fetal human ganglia xenografted to mice. After axonal infection using VZV expressing green fluorescent protein (GFP) in compartmentalized microfluidic cultures there is diffuse filling of axons with GFP as well as punctate fluorescence corresponding to capsids. Use of viruses with fluorescent fusions to VZV proteins reveals that both proteins encoded by VZV genes and those of the infecting cell are transferred in bulk from infecting non-neuronal cells to axons. Similar transfer of protein to axons was observed following cell associated HSV1 infection. Fluorescence recovery after photobleaching (FRAP) experiments provide evidence that this transfer is by diffusion of proteins from the infecting cells into axons. Time-lapse movies and immunocytochemical experiments in co-cultures demonstrate that non-neuronal cells fuse with neuronal somata and proteins from both cell types are present in the syncytia formed. The fusogenic nature of VZV therefore may enable not only conventional entry of virions and capsids into axonal endings in the skin by classical entry mechanisms, but also by cytoplasmic fusion that permits viral protein transfer to neurons in bulk.

  4. Direct Transfer of Viral and Cellular Proteins from Varicella-Zoster Virus-Infected Non-Neuronal Cells to Human Axons

    PubMed Central

    Grigoryan, Sergei; Yee, Michael B; Glick, Yair; Gerber, Doron; Kepten, Eldad; Garini, Yuval; Yang, In Hong; Kinchington, Paul R.; Goldstein, Ronald S.

    2015-01-01

    Varicella Zoster Virus (VZV), the alphaherpesvirus that causes varicella upon primary infection and Herpes zoster (shingles) following reactivation in latently infected neurons, is known to be fusogenic. It forms polynuclear syncytia in culture, in varicella skin lesions and in infected fetal human ganglia xenografted to mice. After axonal infection using VZV expressing green fluorescent protein (GFP) in compartmentalized microfluidic cultures there is diffuse filling of axons with GFP as well as punctate fluorescence corresponding to capsids. Use of viruses with fluorescent fusions to VZV proteins reveals that both proteins encoded by VZV genes and those of the infecting cell are transferred in bulk from infecting non-neuronal cells to axons. Similar transfer of protein to axons was observed following cell associated HSV1 infection. Fluorescence recovery after photobleaching (FRAP) experiments provide evidence that this transfer is by diffusion of proteins from the infecting cells into axons. Time-lapse movies and immunocytochemical experiments in co-cultures demonstrate that non-neuronal cells fuse with neuronal somata and proteins from both cell types are present in the syncytia formed. The fusogenic nature of VZV therefore may enable not only conventional entry of virions and capsids into axonal endings in the skin by classical entry mechanisms, but also by cytoplasmic fusion that permits viral protein transfer to neurons in bulk. PMID:25973990

  5. HERMITAGE – A Randomized Controlled Trial to Reduce Sexually Transmitted Infections and HIV-risk Behaviors among HIV-infected Russian Drinkers

    PubMed Central

    Samet, Jeffrey H.; Raj, Anita; Cheng, Debbie M.; Blokhina, Elena; Bridden, Carly; Chaisson, Christine E.; Walley, Alexander Y.; Palfai, Tibor P.; Quinn, Emily K.; Zvartau, Edwin; Lioznov, Dmitry; Krupitsky, Evgeny

    2014-01-01

    Aims This study assessed the effectiveness of HERMITAGE (HIV’s Evolution in Russia - Mitigating Infection Transmission and Alcoholism in a Growing Epidemic), an adapted secondary HIV prevention intervention, compared with an attention control condition in decreasing sexually transmitted infections (STIs) and sex and drug risk behaviors among Russian HIV-infected heavy drinkers. Design We conducted a single-blinded, two-armed, randomized controlled trial with 12-month follow-up. Setting The study was conducted in St. Petersburg, Russia. Participants were recruited from four HIV and addiction clinical sites. The intervention was conducted at Botkin Infectious Disease Hospital. Participants HIV-infected persons with past 6-month risky sex and heavy alcohol consumption (n=700) were randomized to the HERMITAGE intervention (n=350) or an attention control condition (n=350). Intervention A Healthy Relationships Intervention stressing disclosure of HIV serostatus and condom use, adapted for a Russian clinical setting with two individual sessions and three small group sessions. Measurements The primary outcome was incident STI by laboratory test at 12-month follow-up. Secondary outcomes included change in unprotected sex and several alcohol and injection drug use (IDU) variables. Findings Participants had the following baseline characteristics: 59% male, mean age 30, 60% past year IDU, 15.4% prevalent STI and mean CD4 cell count 413/μl. Assessment occurred among 75% and 71% of participants at 6 and 12-months, respectively. STIs occurred in 20 subjects (8%) in the intervention group and 28 subjects (12%) in the control group at 12-month follow-up; logistic regression analyses found no significant difference between groups (adjusted odds ratio 0.69; 95% CI: 0.36-1.30; P=0.25). Both groups decreased unsafe behaviors, although no significant differences between groups were found. Conclusions The HERMITAGE HIV risk reduction intervention does not appear to reduce sexually

  6. Lack of effect of feeding citrus by-products in reducing Salmonella in experimentally infected weanling pigs

    USDA-ARS?s Scientific Manuscript database

    The objective of the current research was to determine if feeding citrus by-products D’Limonene (DL) and citrus molasses (MOL) would reduce the concentration and prevalence of Salmonella in weanling pigs experimentally infected with Salmonella Typhimurium. Twenty crossbred weanling pigs (avg. BW = ...

  7. Infection prevention practices in adult intensive care units in a large community hospital system after implementing strategies to reduce health care-associated, methicillin-resistant Staphylococcus aureus infections.

    PubMed

    Moody, Julia; Septimus, Edward; Hickok, Jason; Huang, Susan S; Platt, Richard; Gombosev, Adrijana; Terpstra, Leah; Avery, Taliser; Lankiewicz, Julie; Perlin, Jonathan B

    2013-02-01

    A range of strategies and approaches have been developed for preventing health care-associated infections. Understanding the variation in practices among facilities is necessary to improve compliance with existing programs and aid the implementation of new interventions. In 2009, HCA Inc administered an electronic survey to measure compliance with evidence-based infection prevention practices as well as identify variation in products or methods, such as use of special approach technology for central vascular catheters and ventilator care. Responding adult intensive care units (ICUs) were those considering participation in a clinical trial to reduce health care-associated infections. Responses from 99 ICUs in 55 hospitals indicated that many evidenced-based practices were used consistently, including methicillin-resistant Staphylococcus aureus (MRSA) screening and use of contact precautions for MRSA-positive patients. Other practices exhibited wide variability including discontinuation of precautions and use of antimicrobial technology or chlorhexidine patches for central vascular catheters. MRSA decolonization was not a predominant practice in ICUs. In this large, community-based health care system, there was substantial variation in the products and methods to reduce health care-associated infections. Despite system-wide emphasis on basic practices as a precursor to adding special approach technologies, this survey showed that these technologies were commonplace, including in facilities where improvement in basic practices was needed. Copyright © 2013 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  8. Interleukin-12 Therapy Reduces the Number of Immune Cells and Pathology in Lungs of Mice Infected with Mycobacterium tuberculosis

    PubMed Central

    Nolt, Dawn; Flynn, JoAnne L.

    2004-01-01

    Alternate modalities for the treatment of Mycobacterium tuberculosis are needed due to the rise in numbers of immunosuppressed individuals at risk for serious disease and the increasing prevalence of multidrug-resistant isolates. Interleukin-12 (IL-12) has been shown to improve immune responses against M. tuberculosis infection in both humans and mice. Previous studies using high-dose IL-12 in various disease models reported a paradoxical immunosuppression. We demonstrate here that exogenous administration of IL-12 for 8 weeks after an aerosolized low dose of M. tuberculosis results in increased survival and decreased pulmonary bacterial loads for CD4-T-cell-deficient mice, most likely due to an early increase in gamma interferon. IL-12 treatment did not impair or enhance the ability of the wild-type mice to control infection, as measured by bacterial numbers. Two novel findings are reported here regarding exogenous IL-12 therapy for M. tuberculosis infections: (i) IL-12 treatment resulted in decreased numbers of immune cells and reduced frequencies of lymphocytes (CD8+, CD4+, and NK cells) in the lungs of infected mice and (ii) IL-12 therapy reduced the pathology of M. tuberculosis-infected lungs, as granulomas were smaller and less numerous. These studies support an immunoregulatory role for IL-12 in tuberculosis. PMID:15102810

  9. Moderate physical exercise reduces parasitaemia and protects colonic myenteric neurons in mice infected with Trypanosoma cruzi.

    PubMed

    Moreira, Neide M; Santos, Franciele d N; Toledo, Max Jean d O; Moraes, Solange M F d; Araujo, Eduardo J d A; Sant'Ana, Debora d M G; Araujo, Silvana M d

    2013-12-01

    This study evaluated the influence of moderate physical exercise on the myenteric neurons in the colonic intestinal wall of mice that had been infected with Trypanosoma cruzi. Parasitology and immunological aspects of the mice were considered. Forty-day-old male Swiss mice were divided into four groups: Trained Infected (TI), Sedentary Infected (SI), Trained Control (TC), and Sedentary Control (SC). The TC and TI were subjected to a moderate physical exercise program on a treadmill for 8 weeks. Three days after finishing exercise, the TI and SI groups were inoculated with 1,300 blood trypomastigotes of the Y strain-T. cruzi. After 75 days of infection results were obtained. Kruskal-Wallis or Analyze of variance (Tukey post hoc test) at 5% level of significance was performed. Moderate physical exercise reduced both the parasite peak (day 8 of infection) and total parasitemia compared with the sedentary groups (P < 0.05). This activity also contributed to neuronal survival (P < 0.05). Exercise caused neuronal hypertrophy (P < 0.05) and an increase in the total thickness of the intestinal wall (P < 0.05). The TI group exhibited an increase in the number of intraepithelial lymphocytes (P > 0.05). In trained animals, the number of goblet cells was reduced compared with sedentary animals (P < 0.05). Physical exercise prevented the formation of inflammatory foci in the TI group (P < 0.05) and increased the synthesis of TNF-α (P < 0.05) and TGF-β (P > 0.05). The present results demonstrated the benefits of moderate physical exercise, and reaffirmed the possibility of that it may contribute to improving clinical treatment in Chagas' disease patients. © 2013 The Authors. International Journal of Experimental Pathology © 2013 International Journal of Experimental Pathology.

  10. Reducing the global burden of HTLV-1 infection: An agenda for research and action.

    PubMed

    Willems, Luc; Hasegawa, Hideki; Accolla, Roberto; Bangham, Charles; Bazarbachi, Ali; Bertazzoni, Umberto; Carneiro-Proietti, Anna Barbara de Freitas; Cheng, Hua; Chieco-Bianchi, Luigi; Ciminale, Vincenzo; Coelho-Dos-Reis, Jordana; Esparza, José; Gallo, Robert C; Gessain, Antoine; Gotuzzo, Eduardo; Hall, William; Harford, Joseph; Hermine, Olivier; Jacobson, Steven; Macchi, Beatrice; Macpherson, Calum; Mahieux, Renaud; Matsuoka, Masao; Murphy, Edward; Peloponese, Jean-Marie; Simon, Viviana; Tagaya, Yutaka; Taylor, Graham P; Watanabe, Toshiki; Yamano, Yoshihisa

    2017-01-01

    Even though an estimated 10-20 million people worldwide are infected with the oncogenic retrovirus, human T-lymphotropic virus type 1 (HTLV-1), its epidemiology is poorly understood, and little effort has been made to reduce its prevalence. In response to this situation, the Global Virus Network launched a taskforce in 2014 to develop new methods of prevention and treatment of HTLV-1 infection and promote basic research. HTLV-1 is the etiological agent of two life-threatening diseases, adult T-cell leukemia and HTLV-associated myelopathy/tropical spastic paraparesis, for which no effective therapy is currently available. Although the modes of transmission of HTLV-1 resemble those of the more familiar HIV-1, routine diagnostic methods are generally unavailable to support the prevention of new infections. In the present article, the Taskforce proposes a series of actions to expand epidemiological studies; increase research on mechanisms of HTLV-1 persistence, replication and pathogenesis; discover effective treatments; and develop prophylactic and therapeutic vaccines. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Albumin Reduces Paracentesis-Induced Circulatory Dysfunction and Reduces Death and Renal Impairment among Patients with Cirrhosis and Infection: A Systematic Review and Meta-Analysis

    PubMed Central

    Krupa, Lukasz; Mahtani, Ash; Kaye, Duncan; Rushbrook, Simon M.; Phillips, Martin G.

    2013-01-01

    Background. Studies have suggested that albumin has a value in cirrhotic patients undergoing paracentesis but its value in infection and sepsis is less clear. We planned to perform a meta-analysis of the risk of adverse outcomes in cirrhotic patients with and without albumin use. Methods. We searched MEDLINE and EMBASE in January 2013 for randomized studies of cirrhotic patients that reported the risk of adverse events and mortality with albumin and no albumin exposure. We performed random effects meta-analysis and assessed heterogeneity using the I2 statistic. Results. Our review included 16 studies covering 1,518 patients. The use of albumin in paracentesis was associated with significantly reduced risk of paracentesis-induced circulatory dysfunction (OR 0.26 95%, CI 0.08–0.93) and there was a nonsignificant difference in death, encephalopathy, hyponatraemia, readmission, and renal impairment. Compared to the other volume expanders, albumin use showed no difference in clinical outcomes. In cirrhotic patients with any infection, there was a significant reduction in mortality (OR 0.46 95%, CI 0.25–0.86) and renal impairment (OR 0.34 95%, CI 0.15–0.75) when albumin was used. Conclusion. The use of albumin in cirrhotic patients is valuable in patients with any infection and it reduces the risk of circulatory dysfunction among patients undergoing paracentesis. PMID:24222902

  12. Estimating the Stoichiometry of HIV Neutralization

    PubMed Central

    Magnus, Carsten; Regoes, Roland R.

    2010-01-01

    HIV-1 virions infect target cells by first establishing contact between envelope glycoprotein trimers on the virion's surface and CD4 receptors on a target cell, recruiting co-receptors, fusing with the cell membrane and finally releasing the genetic material into the target cell. Specific experimental setups allow the study of the number of trimer-receptor-interactions needed for infection, i.e., the stoichiometry of entry and also the number of antibodies needed to prevent one trimer from engaging successfully in the entry process, i.e., the stoichiometry of (trimer) neutralization. Mathematical models are required to infer the stoichiometric parameters from these experimental data. Recently, we developed mathematical models for the estimations of the stoichiometry of entry [1]. In this article, we show how our models can be extended to investigate the stoichiometry of trimer neutralization. We study how various biological parameters affect the estimate of the stoichiometry of neutralization. We find that the distribution of trimer numbers—which is also an important determinant of the stoichiometry of entry—influences the estimated value of the stoichiometry of neutralization. In contrast, other parameters, which characterize the experimental system, diminish the information we can extract from the data about the stoichiometry of neutralization, and thus reduce our confidence in the estimate. We illustrate the use of our models by re-analyzing previously published data on the neutralization sensitivity [2], which contains measurements of neutralization sensitivity of viruses with different envelope proteins to antibodies with various specificities. Our mathematical framework represents the formal basis for the estimation of the stoichiometry of neutralization. Together with the stoichiometry of entry, the stoichiometry of trimer neutralization will allow one to calculate how many antibodies are required to neutralize a virion or even an entire population of

  13. Human adenovirus serotype 12 virion precursors pMu and pVI are cleaved at amino-terminal and carboxy-terminal sites that conform to the adenovirus 2 endoproteinase cleavage consensus sequence.

    PubMed

    Freimuth, P; Anderson, C W

    1993-03-01

    The sequence of a 1158-base pair fragment of the human adenovirus serotype 12 (Ad12) genome was determined. This segment encodes the precursors for virion components Mu and VI. Both Ad12 precursors contain two sequences that conform to a consensus sequence motif for cleavage by the endoproteinase of adenovirus 2 (Ad2). Analysis of the amino terminus of VI and of the peptide fragments found in Ad12 virions demonstrated that these sites are cleaved during Ad12 maturation. This observation suggests that the recognition motif for adenovirus endoproteinases is highly conserved among human serotypes. The adenovirus 2 endoproteinase polypeptide requires additional co-factors for activity (C. W. Anderson, Protein Expression Purif., 1993, 4, 8-15). Synthetic Ad12 or Ad2 pVI carboxy-terminal peptides each permitted efficient cleavage of an artificial endoproteinase substrate by recombinant Ad2 endoproteinase polypeptide.

  14. Prevalence of Murine Helicobacter spp. Infection Is Reduced by Restocking Research Colonies with Helicobacter-Free Mice

    PubMed Central

    Lofgren, Jennifer LS; Esmail, Michael; Mobley, Melissa; McCabe, Amanda; Taylor, Nancy S; Shen, Zeli; Erdman, Susan; Hewes, Christine; Whary, Mark T; Fox, James G

    2012-01-01

    Most academic research colonies of mice are endemically infected with enterohepatic Helicobacter spp. (EHS). We evaluated EHS prevalence in surveillance mice before and after a 10-y period of requiring that imported mice be free of EHS by embryo transfer rederivation or purchase from approved vendors. In 2009, composite fecal samples from CD1 surveillance mice representing colony health in 57 rooms located in 6 facilities were evaluated for EHS infection by using PCR assays. Fecal samples were screened with primers designed to detect all known EHS, and positive samples were further assayed by using primers specific for H. hepaticus, H. bilis, H. rodentium, and H. typhlonicus. Most EHS were detected in surveillance mice within the first month of dirty bedding exposure, with prevalence ranging from 0% to 64% as monoinfections or, more commonly, infections with multiple EHS. Compared with 1999 prevalence data, EHS remained endemic in colonies importing the lowest number of EHS-free mice. EHS were absent or the prevalence was greatly reduced in colonies receiving the highest percentage of EHS-free mice. This study demonstrates that the management decision to require exclusive importation of EHS-free mice reduced EHS prevalence on an institutional scale without intensive labor and expense associated with other techniques or interference with research objectives. PMID:23043808

  15. Trypsin activation pathway of rotavirus infectivity.

    PubMed Central

    Arias, C F; Romero, P; Alvarez, V; López, S

    1996-01-01

    The infectivity of rotaviruses is increased by and most probably is dependent on trypsin treatment of the virus. This proteolytic treatment specifically cleaves VP4, the protein that forms the spikes on the surface of the virions, to polypeptides VP5 and VP8. This cleavage has been reported to occur in rotavirus SA114fM at two conserved, closely spaced arginine residues located at VP4 amino acids 241 and 247. In this work, we have characterized the VP4 cleavage products of rotavirus SA114S generated by in vitro treatment of the virus with increasing concentrations of trypsin and with proteases AspN and alpha-chymotrypsin. The VP8 and VP5 polypeptides were analyzed by gel electrophoresis and by Western blotting (immunoblotting) with antibodies raised to synthetic peptides that mimic the terminal regions of VP4 generated by the trypsin cleavage. It was shown that in addition to arginine residues 241 and 247, VP4 is cleaved at arginine residue 231. These three sites were found to have different susceptibilities to trypsin, Arg-241 > Arg-231 > Arg-247, with the enhancement of infectivity correlating with cleavage at Arg-247 rather than at Arg-231 or Arg-241. Proteases AspN and alpha-chymotrypsin cleaved VP4 at Asp-242 and Tyr-246, respectively, with no significant enhancement of infectivity, although this enhancement could be achieved by further treatment of the virus with trypsin. The VP4 end products of trypsin treatment were a homogeneous VP8 polypeptide comprising VP4 amino acids 1 to 231 and a heterogeneous VP5, which is formed by two polypeptide species (present at a ratio of approximately 1:5) as a result of cleavage at either Arg-241 or Arg-247. A pathway for the trypsin activation of rotavirus infectivity is proposed. PMID:8709201

  16. Human Cytomegalovirus nuclear egress and secondary envelopment are negatively affected in the absence of cellular p53

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuan, Man I; O’Dowd, John M.; Chughtai, Kamila

    2016-10-15

    Human Cytomegalovirus (HCMV) infection is compromised in cells lacking p53, a transcription factor that mediates cellular stress responses. In this study we have investigated compromised functional virion production in cells with p53 knocked out (p53KOs). Infectious center assays found most p53KOs released functional virions. Analysis of electron micrographs revealed modestly decreased capsid production in infected p53KOs compared to wt. Substantially fewer p53KOs displayed HCMV-induced infoldings of the inner nuclear membrane (IINMs). In p53KOs, fewer capsids were found in IINMs and in the cytoplasm. The deficit in virus-induced membrane remodeling within the nucleus of p53KOs was mirrored in the cytoplasm, withmore » a disproportionately smaller number of capsids re-enveloped. Reintroduction of p53 substantially recovered these deficits. Overall, the absence of p53 contributed to inhibition of the formation and function of IINMs and re-envelopment of the reduced number of capsids able to reach the cytoplasm. -- Highlights: •The majority of p53KO cells release fewer functional virions than wt cells. •Nucleocapsids do not efficiently exit the nucleus in p53KO cells. •Infoldings of the inner nuclear membrane are not efficiently formed in p53KO cells. •Cytoplasmic capsids are not efficiently re-enveloped in p53KO cells. •Reintroduction of p53 largely ameliorates these phenotypes.« less

  17. Reduced accumulation of defective viral genomes contributes to severe outcome in influenza virus infected patients.

    PubMed

    Vasilijevic, Jasmina; Zamarreño, Noelia; Oliveros, Juan Carlos; Rodriguez-Frandsen, Ariel; Gómez, Guillermo; Rodriguez, Guadalupe; Pérez-Ruiz, Mercedes; Rey, Sonia; Barba, Isabel; Pozo, Francisco; Casas, Inmaculada; Nieto, Amelia; Falcón, Ana

    2017-10-01

    Influenza A virus (IAV) infection can be severe or even lethal in toddlers, the elderly and patients with certain medical conditions. Infection of apparently healthy individuals nonetheless accounts for many severe disease cases and deaths, suggesting that viruses with increased pathogenicity co-circulate with pandemic or epidemic viruses. Looking for potential virulence factors, we have identified a polymerase PA D529N mutation detected in a fatal IAV case, whose introduction into two different recombinant virus backbones, led to reduced defective viral genomes (DVGs) production. This mutation conferred low induction of antiviral response in infected cells and increased pathogenesis in mice. To analyze the association between low DVGs production and pathogenesis in humans, we performed a genomic analysis of viruses isolated from a cohort of previously healthy individuals who suffered highly severe IAV infection requiring admission to Intensive Care Unit and patients with fatal outcome who additionally showed underlying medical conditions. These viruses were compared with those isolated from a cohort of mild IAV patients. Viruses with fewer DVGs accumulation were observed in patients with highly severe/fatal outcome than in those with mild disease, suggesting that low DVGs abundance constitutes a new virulence pathogenic marker in humans.

  18. Laboratory production in vivo of infectious human papillomavirus type 11.

    PubMed Central

    Kreider, J W; Howett, M K; Leure-Dupree, A E; Zaino, R J; Weber, J A

    1987-01-01

    Human papillomaviruses (HPV) induce among patients natural lesions which produce small amounts of virus. Infection of human cell cultures does not lead to the multiplication of virus, which also does not replicate in experimental animals. We have developed a unique system for the laboratory production of HPV type 11 (HPV-11). Fragments of human neonatal foreskin were infected with an extract of naturally occurring human vulvar condylomata and grafted beneath the renal capsule of athymic mice. Later (3 to 5 months), condylomatous cysts developed from those grafts. Nuclei of koilocytotic cells contained large amounts of capsid antigen and intranuclear virions. The experimentally induced condylomata were homogenized, and the virions were extracted and used to infect another generation of human foreskin grafts in athymic mice. The HPV-11 DNA content and infectivity of the natural and experimental condylomata were similar. Extracts of experimental condylomata were subjected to differential ultracentrifugation and sedimentation in CsCl density gradients. A single, opalescent band was visible at a density of 1.34 g/ml. It contained HPV virions with HPV-11 DNA. This report is the first demonstration of the laboratory production of an HPV. Images PMID:3027386

  19. Evaluation of oseltamivir prophylaxis regimens for reducing influenza virus infection, transmission and disease severity in a ferret model of household contact

    PubMed Central

    Oh, Ding Yuan; Lowther, Sue; McCaw, James M.; Sullivan, Sheena G.; Leang, Sook-Kwan; Haining, Jessica; Arkinstall, Rachel; Kelso, Anne; Mcvernon, Jodie; Barr, Ian G.; Middleton, Deborah; Hurt, Aeron C.

    2014-01-01

    Objectives The emergence of the pandemic influenza A(H1N1)pdm09 virus in 2009 saw a significant increase in the therapeutic and prophylactic use of neuraminidase inhibitors (NAIs) to mitigate the impact of this highly transmissible virus. Prior to the pandemic, many countries stockpiled NAIs and developed pandemic plans for the use of antiviral drugs, based on either treatment of high-risk individuals and/or prophylaxis of contacts. However, to date there has been a lack of in vivo models to test the efficacy of treatment or prophylaxis with NAIs, for influenza-infected individuals or exposed contacts, in a household setting. Methods A ferret model of household contact was developed to study the efficacy of different prophylaxis regimens in preventing infection in contact ferrets exposed to influenza A(H1N1)pdm09-infected index ferrets. Results Among the different prophylactic regimens, contact ferrets receiving oseltamivir prophylaxis twice daily showed better outcomes than those receiving oseltamivir once daily. Benefits included a significant delay in the time to secondary infection, lower weight loss and higher activity levels. The treatment of index ferrets at 36 h post-infection did not influence either secondary infection rates or clinical symptoms in exposed contact ferrets. Neither prophylaxis nor treatment prevented infection or reduced the duration of viral shedding, although clinical symptoms did improve in infected animals receiving prophylaxis. Conclusions Different oseltamivir prophylaxis regimens did not prevent infections, but consistently resulted in a reduction in symptoms in infected ferrets. However, oseltamivir prophylaxis failed to reduce viral titres, which warrants further investigation in humans. PMID:24840623

  20. Outcomes of a pilot hand hygiene randomized cluster trial to reduce communicable infections among US office-based employees.

    PubMed

    Stedman-Smith, Maggie; DuBois, Cathy L Z; Grey, Scott F; Kingsbury, Diana M; Shakya, Sunita; Scofield, Jennifer; Slenkovich, Ken

    2015-04-01

    To determine the effectiveness of an office-based multimodal hand hygiene improvement intervention in reducing self-reported communicable infections and work-related absence. A randomized cluster trial including an electronic training video, hand sanitizer, and educational posters (n = 131, intervention; n = 193, control). Primary outcomes include (1) self-reported acute respiratory infections (ARIs)/influenza-like illness (ILI) and/or gastrointestinal (GI) infections during the prior 30 days; and (2) related lost work days. Incidence rate ratios calculated using generalized linear mixed models with a Poisson distribution, adjusted for confounders and random cluster effects. A 31% relative reduction in self-reported combined ARI-ILI/GI infections (incidence rate ratio: 0.69; 95% confidence interval, 0.49 to 0.98). A 21% nonsignificant relative reduction in lost work days. An office-based multimodal hand hygiene improvement intervention demonstrated a substantive reduction in self-reported combined ARI-ILI/GI infections.