Rónavári, Andrea; Balázs, Margit; Tolmacsov, Péter; Molnár, Csaba; Kiss, István; Kukovecz, Ákos; Kónya, Zoltán
2016-05-15
Nanoscale zero-valent iron (NZVI) is increasingly used for reducing chlorinated organic contaminants in soil or groundwater. However, little is known about what impact the particles will have on the biochemical processes and the indigenous microbial communities. Nanoiron reactivity is affected by the structure and morphology of nanoparticles that complicates the applicability in bioremediation. In this study, the effect of precursors (ferrous sulfate and ferric chloride) and reducing agents (sodium dithionite and sodium borohydride) on the morphology and the reactivity of NZVIs was investigated. We also studied the impact of differently synthesized NZVIs on microbial community, which take part in reductive dechlorination. We demonstrated that both the applied iron precursor and the reducing agent had influence on the structure of the nanoparticles. Spherical nanoparticles with higher Fe(0) content (>90%) was observed by using sodium borohydride as reducing agent, while application of sodium dithionite as reducing agent resulted nanostructures with lower Fe(0) content (between 68,7 and 85,5%). To determine the influence of differently synthesized NZVIs on cell viability anaerobic enriched microcosm were used. NVZI was used in 0.1 g/L concentration in all batch experiments. Relative amount of Dehalococcoides, sulfate reducers (SRBs) and methanogens were measured by quantitative PCR. We found that the relative amount of Dehalococcoides slowly decreased in all experiments independently from the precursor and reducing agent, whereas the total amount of microbes increased. The only clear distinction was in relative amount of sulfate reducers which were higher in the presence of NZVIs synthesized from sodium dithionite. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lead recovery from waste CRT funnel glass by high-temperature melting process.
Hu, Biao; Hui, Wenlong
2018-02-05
In this research, a novel and effective process for waste CRT funnel glass treatment was developed. The key to this process is removal of lead from the CRT funnel glass by high-temperature melting process. Sodium carbonate powder was used as a fusion agent, sodium sulfide serves as a catalytic agent and carbon powder acts as reducing agent. Experimental results showed that lead recovery rate increased with an increase in the amount of added sodium carbonate, sodium sulfide, carbonate, temperature and holding time initially, and then reached a stable value. The maximum lead recovery rate was approximately 94%, when the optimum adding amount of sodium carbonate, sodium sulfide, carbonate, temperature and holding time were 25%, 8%, 3.6%, 1200°C and 120min, respectively. In the high-temperature melting process, lead silicate in the funnel glass was firstly reduced, and then removed. The glass slag can be made into sodium and potassium silicate by hydrolysis process. This study proposed a practical and economical process for recovery of lead and utilization of waste glass slag. Copyright © 2017 Elsevier B.V. All rights reserved.
A Simple Secondary Amine Synthesis: Reductive Amination Using Sodium Triacetoxyborohydride
NASA Astrophysics Data System (ADS)
Carlson, Merle W.; Ciszewski, James T.; Bhatti, Micah M.; Swanson, Wesley F.; Wilson, Anne M.
2000-02-01
We present a reductive amination experiment for a second-semester organic chemistry class. It utilizes an imine intermediate and sodium triacetoxyborohydride, a mild reducing agent. The progress of the reaction is followed by TLC as the starting materials (the aldehyde and primary amine), the imine intermediate, and the secondary amine product are visible under ultraviolet light. This experiment provides an introduction to the observation of intermediates, the synthesis of amines, and the concept of mild reducing agents.
The Removal of Cu (II) from Aqueous Solution using Sodium Borohydride as a Reducing Agent
NASA Astrophysics Data System (ADS)
Sithole, N. T.; Ntuli, F.; Mashifana, T.
2018-03-01
The removal and recovery of metals from wastewater has been a subject of significant importance due the negative impact these toxic metals have on human health and the environment as a result of water and soil pollution. Increased use of the metals and chemicals in the process industries has resulted in generation of large quantity of effluents that contains high level of toxic metals and other pollutants. The objective of this work was to recover of Cu in its elemental form as metallic powder from aqueous solution using NaBH4 as a reducing agent. Reductive precipitation was achieved in a batch reactor at 65°C using Cu powder as a seeding material. This study also investigated the effect of concentration of sodium borohydride (NaBH4) as a reducing agent. The amount of NaBH4 was varied based on mole ratios which are 1:1, 1:0.25 and 1:0.1 to recover Cu from synthetic wastewater. The results obtained showed that sodium borohydride is an effective reducing agent to recover Cu from wastewater. The optimum concentration of NaBH4 that gives the best results the 1:1 molar ratio with over 99% Cu removal.
Sodium thioglycollate enhances pollen germeination and pollen tube elongation in cruciferous species
Sodium thioglycollate is a reducing agent used in microbiological growth media to enhance the growth of anerobic, microaerophilic, and facultative organisms, and in eukaryotic tissue extraction buffers to inhibit damaging oxidative reactions. Sodium thioglycollate was added to a ...
Zamani, M; Sharifi Tehrani, A; Ali Abadi, A Alizadeh
2007-01-01
The aim of this research was to determine if the attacks of green mold on orange could be reduced by edible salts alone or in combination with biocontrol agent. For this purpose toxicity to Pantoea digitatum and practical use of sodium carbonate (SC), sodium bicarbonate (SBC) and potassium carbonate, and potassium bicarbonate alone or in combination with antagonistic bacteria (Pseudomonas fluorescens isolate PN, Bacillus subtilis isolate VHN, Pantoea agglomerans isolate CA) to control green mold were determined. All were fungistatic. SC and SBC were equal and superior to the other salts for control of green mold on oranges inoculated 6h before treatment and were chosen for subsequent trails under cold storage conditions. The biocontrol agents were found completely tolerant to 3% sodium bicarbonate and sodium carbonate at room temperature; although their culturability was reduced by > 1000-fold after 60 min in 1% other salt solutions. Satisfactory results were also obtained with the combined treatment for control of green mold. A significant increase in biocontrol activity of all isolate was observed when combined with sodium carbonate and sodium bicarbonate. The treatments comprising CA combined with SB was as effective as fungicide treatment. Thus, use of sodium bicarbonate treatment at 3% followed by the antagonist P. agglomerans CA could be an alternative to chemical fungicides for control of green mold on oranges.
1991-03-01
gram of —> Triton X-405 (70%) and 0.5 gram sodium lauryl sulfate . After a nitrogen -3- /- „, y-iu/iouitj Cod*s Avail and/oh ’t , • Special...period of several hours and d) using a redox system comprising of additional persulfate and a reducing agent such as sodium bisulfite or sodium
Matias, M S; Melegari, S P; Vicentini, D S; Matias, W G; Ricordel, C; Hauchard, D
2015-08-15
Nanoscience is a field that has stood out in recent years. The accurate long-term health and environmental risks associated with these emerging materials are unknown. Therefore, this work investigated how to eliminate silver nanoparticles (AgNPs) from synthetic effluents by electrocoagulation (EC) due to the widespread use of this type of nanoparticle (NP) in industry and its potential inhibition power over microorganisms responsible for biological treatment in effluent treatment plants. Synthesized AgNPs were studied via four different routes by chemical reduction in aqueous solutions to simulate the chemical variations of a hypothetical industrial effluent, and efficiency conditions of the EC treatment were determined. All routes used silver nitrate as the source of silver ions, and two synthesis routes were studied with sodium citrate as a stabilizer. In route I, sodium citrate functioned simultaneously as the reducing agent and stabilizing agent, whereas route II used sodium borohydride as a reducing agent. Route III used D-glucose as the reducing agent and sodium pyrophosphate as the stabilizer; route IV used sodium pyrophosphate as the stabilizing agent and sodium borohydride as the reducing agent. The efficiency of the EC process of the different synthesized solutions was studied. For route I, after 85 min of treatment, a significant decrease in the plasmon resonance peak of the sample was observed, which reflects the efficiency in the mass reduction of AgNPs in the solution by 98.6%. In route II, after 12 min of EC, the absorbance results reached the detection limit of the measurement instrument, which indicates a minimum reduction of 99.9% of AgNPs in the solution. During the 4 min of treatment in route III, the absorbance intensities again reached the detection limit, which indicates a minimum reduction of 99.8%. In route IV, after 10 min of treatment, a minimum AgNP reduction of 99.9% was observed. Based on these results, it was possible to verify that the solutions containing citrate considerably increased the necessary times required to eliminate AgNPs from the synthesized effluent, whereas solutions free of this reagent showed better results on floc formation and, therefore, are best for the treatment. The elimination of AgNPs from effluents by EC proved effective for the studied routes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Future immunosuppressive agents in solid-organ transplantation.
Gabardi, Steven; Cerio, Jeffrey
2004-06-01
To review the pharmacology, pharmacokinetics, efficacy, and safety of mycophenolate sodium, everolimus, and FTY720. Clinical trials and abstracts evaluating mycophenolate sodium, everolimus, and FTY720 in solid-organ transplantation were considered for evaluation. English-language studies and published abstracts were selected for inclusion. Mycophenolate sodium has recently been approved by the Food and Drug Adminstration for marketing in the United States; everolimus and FTY720 are immunosuppressive agents that may soon be available in the United States. These agents have proven efficacy in reducing the incidence of acute rejection in solid-organ transplantation. Clinical trials have shown that these newer agents are relatively well tolerated. The most common adverse events associated with these agents were gastrointestinal and hematologic effects (mycophenolate sodium); hyperlipidemia, increased serum creatinine, and hematologic effects (everolimus): and gastrointestinal effects, headache, and bradycardia (FTY720). Mycophenolate sodium has been approved in some European countries and the United States. Everolimus has been approved in some European countries and a new drug application has been submitted to the Food and Drug Administration. FTY720 is currently in phase III clinical trials and submission to the Food and Drug Administration for approval is a few years away. The approval of these agents will furnish the transplant practitioner with even more options for immunosuppression.
21 CFR 172.824 - Sodium mono- and dimethyl naphthalene sulfonates.
Code of Federal Regulations, 2014 CFR
2014-04-01
... systems to reduce hardness and aid in sedimentation and coagulation by raising the pH for the efficient utilization of other coagulation materials. (2) As an anticaking agent in sodium nitrite at a level not in...
Synthesis and Biological Evaluation of Brain-Specific Anti-RNA Viral Agents
1990-03-31
water (200 iL). It was dried over sodium sulfate and the solvent was removed under reduced pressure. The resulting oil was dissolved in a minimum...The organic extracts were washed with NaHCO3 (2 x 200 mL), water (200 mL) and dried over sodium sulfate . The solvent was removed in vacuo and the...chloroform. The combined organic extracts were washed with 2 x 250 mL cold deionised water, dried ( sodium sulfate ) and removed under reduced pressure to
Karaca, Hakan; Pérez-Gago, María B; Taberner, Verònica; Palou, Lluís
2014-06-02
Common food preservative agents were evaluated in in vitro tests for their antifungal activity against Monilinia fructicola, the most economically important pathogen causing postharvest disease of stone fruits. Radial mycelial growth was measured in Petri dishes of PDA amended with three different concentrations of the agents (0.01-0.2%, v/v) after 7 days of incubation at 25 °C. Thirteen out of fifteen agents tested completely inhibited the radial growth of the fungus at various concentrations. Among them, ammonium carbonate, ammonium bicarbonate and sodium bicarbonate were the most effective while sodium acetate and sodium formate were the least effective. The effective agents and concentrations were tested as ingredients of hydroxypropyl methylcellulose (HPMC)-lipid edible coatings against brown rot disease on plums previously inoculated with M. fructicola (curative activity). 'Friar' and 'Larry Ann' plums were inoculated with the pathogen, coated with stable edible coatings about 24h later, and incubated at 20 °C and 90% RH. Disease incidence (%) and severity (lesion diameter) were determined after 4, 6, and 8 days of incubation and the 'area under the disease progress stairs' (AUDPS) was calculated. Coatings containing bicarbonates and parabens significantly reduced brown rot incidence in plums, but potassium sorbate, used at 1.0% in the coating formulation, was the most effective agent with a reduction rate of 28.6%. All the tested coatings reduced disease severity to some extent, but coatings containing 0.1% sodium methylparaben or sodium ethylparaben or 0.2% ammonium carbonate or ammonium bicarbonate were superior to the rest, with reduction rates of 45-50%. Overall, the results showed that most of the agents tested in this study had significant antimicrobial activity against M. fructicola and the application of selected antifungal edible coatings is a promising alternative for the control of postharvest brown rot in plums. Copyright © 2014 Elsevier B.V. All rights reserved.
PROCESS FOR THE SEPARATION OF HEAVY METALS
Gofman, J.W.; Connick, R.E.; Wahl, A.C.
1959-01-27
A method is presented for thc separation of plutonium from uranium and the fission products with which it is associated. The method is based on the fact that hexavalent plutonium forms an insoluble complex precipitate with sodium acetate, as does the uranyl ion, while reduced plutonium is not precipitated by sodium acetate. Several embodiments are shown, e.g., a solution containing plutonium and uranium in the hexavalent state may be contacted with sodium acetate causing the formation of a sodium uranyl acetate precipitate which carries the plutonium values while the fission products remain in solution. If the original solution is treated with a reducing agent, so that the plutonium is reduced while the uranium remains in the hexavalent state, and sodium and acetate ions are added, the uranium will precipitutc while the plutonium remains in solution effecting separation of the Pu from urarium.
Bektaş, İdris; Karaman, Şengül; Dıraz, Emel; Çelik, Mustafa
2016-12-01
Indigo blue is a natural dye used for thousands of years by civilizations to dye fabric blue and it is naturally obtained from Isatis tinctoria. I. tinctoria is not only used for extraction of indigo blue color but also used medicinally in Traditional Chinese Medicine because of its active compounds. Sodium dithionite (Na 2 S 2 O 4 ) is used in dye bath for indigo blue extraction, but this reducing agent and its derivatives are major pollutants of textile industry and subsequently have hazardous influences on public health. Herein, the present study was designed to obtain the high yield of natural indigo dye but with low possible toxic effect. In this context, genotoxic effects of particular combinations of natural dye solutions obtained from Isatis tinctoria subsp. tomentolla with Na 2 S 2 O 4 as reducing agent were investigated. Dye solutions were obtained using two different pH levels (pH 9 and 11) and three different concentrations of Na 2 S 2 O 4 (2.5, 5 and 10 mg/ml). In addition to the dye solutions and reducing agent, aqueous extracts of I. tinctoria were assessed for their genotoxicity on human lymphocytes. For in vitro testing of genotoxicity, chromosomal aberrations (CAs), sister chromatid exchanges (SCEs) and mitotic indexes (MI) assays were used. Accordingly, Na 2 S 2 O 4 caused significant increases in CA and SCE as well decrease in MI but the genotoxic effects of sodium dithionite were reduced with natural indigo dye. As a result, aqueous extracts of Isatis leaves removed the toxic effects of sodium dithionite and showed anti-genotoxic effect. For the optimal and desired quality but with less toxic effects of natural dye, 2.5 mg/ml (for wool yarn) and 5 mg/ml (for cotton yarn) of Na 2 S 2 O 4 doses were found to be the best doses for reduction in the dye bath at Ph 9.
NASA Astrophysics Data System (ADS)
Lalasari, Latifa Hanum; Andriyah, Lia; Arini, Tri; Firdiyono, F.
2018-04-01
Sodium stannate is an intermediate compound with the formula Na2SnO3. This compound is easily dissolved in water and has many applications in the electroplating industry, tin alloy production, and catalysts for organic synthesis. In this occasion was investigated the effect of temperature and the addition of reducing agent on making of sodium stannate phase from cassiterite by an alkaline roasting process using sodium carbonate (Na2CO3). Firstly, cassiterite was roasted at 700 °C for 3 hours and continued leaching process using 10% HCl solution at 110 °C for 2 hours. The cassiterite residue than was dried at 110 °C and mixed homogenously with a Na2CO3 decomposer at a mass ratio Na2CO3/cassiterite as 5:3 for the decomposition process. It was done by variation temperatures (300 °C, 700 °C, 800 °C, 870 °C, 900 °C) for 3 hours, variation times (3, 4, 5 hours) at a roasting temperature of 700 °C and addition of reducing agent such as sub-bituminous coal. The result of the experiment shows that cassiterite prepared by roasting and acid leaching process has the chemical composition as follows: 59.98% Sn, 22.58% O, 3.20% Ce, 3.15% La, 2.57% Nd, 1.67% Ti, 1.56% Fe, 1.24% P, 0.62% Ca and others. The Na2SnO3 phase begins to form at a roasting temperature of 870 °C for 3 hours. Although the roasting times was extended from 3 hours to 5 hours at 700 °C, the Na2SnO3 phase also has not yet formed. In other conditions, the addition of coal reducing agent to the roasting process would cause formations of Sn metal besides Na2SnO3 phase at 870 °C. At temperatures lower than 870 °C, the addition of coal only forms Sn metal, whereas the sodium stannate phase is not formed.
Process for making transition metal nitride whiskers
Bamberger, Carlos E.
1989-01-01
A process for making metal nitrides, particularly titanium nitride whiskers, using a cyanide salt as a reducing agent for a metal compound in the presence of an alkali metal oxide. Sodium cyanide, various titanates and titanium oxide mixed with sodium oxide react to provide titanium nitride whiskers that can be used as reinforcement to ceramic composites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hovanec, J.W.; Szafraniec, L.L.; Albizo, J.M.
1993-04-01
Standard decontaminant formulations, aqueous sodium hydroxide and aqueous sodium hypochlorite, were providing slow and incomplete results when used to decontaminate certain operating facilities at the Johnston Atoll Chemical Agent Disposal System and the Chemical Agent Disposal System (Utah). A study was undertaken to define the capabilities and limitations of using concentrated sodium hydroxide to decontaminate VX, the effect of adding hydrogen peroxide to the sodium hydroxide for the decontamination of VX, the efficacy of aqueous oxone for the decontamination of VX, and the efficacy of oxone in a water/1-methyl-2-pyrrolidinone (MP) mixture for the decontamination of HD. Using aqueous sodium hydroxidemore » alone was not desirable since the formation of toxic EA2192 could not be averted. However, the addition of hydrogen peroxide resulted in effective VX decontamination without EA2192 formation. Aqueous oxone was also found to be effective for both VX and HD. The incorporation of MP did little to improve HD dissolution and reacted with the oxone to reduce the effective usable life of the decontamination solution. Thus, the use of MP in HD decontamination was not recommended.« less
NASA Astrophysics Data System (ADS)
Zümreoglu-Karan, B.
2009-07-01
Preparation of gold nanoparticles, particularly gold nanorods, by wet chemistry processes involves gold seeds, an Au(III) salt, structure directing surfactants, and metal ion additives in the growth solution into which a weak reducing agent is added. The most commonly employed weak reducing agent is l-ascorbic acid (vitamin C) which is known to reduce many metal ions in the solution phase and form complexes with relatively low stability constants. A purple-gray gold-ascorbate compound, obtained from the reaction of sodium tetrachloroaurate(III) with sodium ascorbate, is now reported. The compound possesses the expected structural features of vitamin C-metal complexes as verified by its 13C CP-MAS NMR spectrum. A discussion is also presented on the possibility of gold-ascorbate complexation operating in gold nanoparticle formation.
Green Synthesis of Silver Nanoparticles Using Sodium Alginate and Lignosulphonic Acid Blends
NASA Astrophysics Data System (ADS)
Thakur, Amrita; Reddy, Giridhar
2017-08-01
A simple method based on the principles of green chemistry has been developed to synthesize stable silver nanoparticles (AgNP) for possible biomedical applications. Blend of sodium alginate (SA) and lignosulphonic acid (LS) prepared in the ratio of 80/20 mass percent respectively was used as reducing and stabilizing agent. This blend is biocompatible and has shown drug release ability under physiological conditions. Use of blend has an added advantage as LS has the ability to reduce silver while the blend matrix acts as a stabilizing agent. Effect of precursor concentration (AgNO3) and temperature was investigated. Progress of synthesis was monitored using UV-Vis spectroscopy. Higher temperature and lower silver nitrate concentration showed better synthesis of AgNP.
Process for making transition metal nitride whiskers
Bamberger, C.E.
1988-04-12
A process for making metal nitrides, particularly titanium nitride whiskers, using a cyanide salt as a reducing agent for a metal compound in the presence of an alkali metal oxide. Sodium cyanide, various titanates and titanium oxide mixed with sodium oxide react to provide titanium nitride whiskers that can be used as reinforcement to ceramic composites. 1 fig., 1 tab.
Leroy, Frédéric; de Vuyst, Luc
1999-01-01
The specific conditions in the batter of raw fermented sausages may reduce the efficiency of bacteriocin-producing starter cultures. In this work, using in vitro fermentation, we found that sodium chloride and sodium nitrite interfere with the growth of Lactobacillus sakei CTC 494, an organism which produces the antilisterial bacteriocin sakacin K. Because sakacin K production follows primary metabolite kinetics, a decrease in cell formation resulted in a decrease in sakacin K production as well. Sodium chloride dramatically influenced bacteriocin production by decreasing both biomass production and specific bacteriocin production. Sodium nitrite, however, had no effect on specific bacteriocin production and decreased bacteriocin production only because of its effect on cell growth. Moreover, sodium nitrite enhanced the toxic effect of lactic acid on bacterial growth. PMID:10583988
In Vitro Binding Capacity of Bile Acids by Defatted Corn Protein Hydrolysate
Kongo-Dia-Moukala, Jauricque Ursulla; Zhang, Hui; Irakoze, Pierre Claver
2011-01-01
Defatted corn protein was digested using five different proteases, Alcalase, Trypsin, Neutrase, Protamex and Flavourzyme, in order to produce bile acid binding peptides. Bile acid binding capacity was analyzed in vitro using peptides from different proteases of defatted corn hydrolysate. Some crystalline bile acids like sodium glycocholate, sodium cholate and sodium deoxycholate were individually tested using HPLC to see which enzymes can release more peptides with high bile acid binding capacity. Peptides from Flavourzyme defatted corn hydrolysate exhibited significantly (p < 0.05) stronger bile acid binding capacity than all others hydrolysates tested and all crystalline bile acids tested were highly bound by cholestyramine, a positive control well known as a cholesterol-reducing agent. The bile acid binding capacity of Flavourzyme hydrolysate was almost preserved after gastrointestinal proteases digestion. The molecular weight of Flavourzyme hydrolysate was determined and most of the peptides were found between 500–180 Da. The results showed that Flavourzyme hydrolysate may be used as a potential cholesterol-reducing agent. PMID:21541043
Tetrachloroethene degradation by reducing-agent enhanced Fe(II)/Fe(III) catalyzed percarbonate
NASA Astrophysics Data System (ADS)
Miao, Z.; Brusseau, M. L.; Lu, S.; Gu, X.; Yan, N.; Qiu, Z.; Sui, Q.
2015-12-01
This project investigated the effect of reducing agents on the degradation of tetrachloroethene(PCE) by Fe(II)/Fe(III) catalyzed sodium percarbonate (SPC). SPC possesses similar function as liquid H2O2, such that free H2O2 is released into solution when percarbonate is mixed with water. The addition of reducing agents, including hydroxylamine hydrochloride, sodium sulfite, ascorbic acid and sodium ascorbate, accelerated the Fe(III)/Fe(II) redoxcycle, leading to a relatively steady Fe(II) concentration and higher production of free radicals. This, in turn, resulted in enhanced PCE oxidation by SPC, with almost complete PCE removal obtained for appropriate Fe and SPC concentrations.The results of chemical probe tests, using nitrobenzene and carbon tetrachloride, demonstrated that HO● was the predominant radical in the system and that O2●-played a minor role. This was further confirmed by the results of electron paramagnetic resonance measurements and salicylic acid hydroxylationanalysis by high performance liquid chromatography(HPLC). PCE degradation decreased significantly with the addition of isopropanol, a strong HO● scavenger, supporting the hypothesis that HO● was primarily responsible for PCE degradation. It should be noted that the release of Cl- was slightly delayed in the first 20 mins, indicating that intermediate products were produced. However, gas chromatography mass spectrometry (GC/MS) analysis did not detect any chlorinated organic compound except PCE, indicating these intermediates were quickly degraded, which resulted in the complete conversion of PCE to CO2. In conclusion, the use of reducing agents to enhance Fe(II)/Fe(III) catalyzed SPC oxidation appears to be a promising approach for the rapid degradation of organic contaminants in groundwater.
Pietrasik, Z; Gaudette, N J; Johnston, S P
2017-07-01
The effects of high pressure processing (HPP; 600MPa for 3min at 8°C) on the quality and shelf life of reduced sodium naturally-cured wieners was studied. HPP did not negatively impact processing characteristics and assisted in extending shelf life of all wiener treatments up to a 12week storage period. At week 8, HPP wieners received higher acceptability scores, indicating HPP can effectively extend the sensory quality of products, including sodium reduced formulations containing natural forms of nitrite. Substitution of 50% NaCl with modified KCl had negative effect on textural characteristics of conventionally cured wieners but not those processed with celery powder as a source of nitrite. Celery powder favorably affected hydration of textural properties of wieners, and consumer acceptability of juiciness and texture was higher compared to nitrite. Sodium reduction, independent of curing agent, negatively impacted flavor acceptability, while only nitrite containing reduced sodium wieners scored significantly lower than both regular salt wieners for texture, juiciness and saltiness. Copyright © 2017 Elsevier Ltd. All rights reserved.
Combination could be another tool for bowel preparation?
Soh, Jae Seung; Kim, Kyung-Jo
2016-01-01
Optimal bowel preparation increases the cecal intubation rate and detection of neoplastic lesions while decreasing the procedural time and procedural-related complications. Although high-volume polyethylene glycol (PEG) solution is the most frequently used preparation for bowel cleansing, patients are often unwilling to take PEG solution due to its large volume, poor palatability, and high incidence of adverse events, such as abdominal bloating and nausea. Other purgatives include osmotic agents (e.g., sodium phosphate, magnesium citrate, and sodium sulfate), stimulant agents (e.g., senna, bisacodyl, and sodium picosulfate), and prokinetic agents (e.g., cisapride, mosapride, and itopride). A combination of PEG with an osmotic, stimulant, or prokinetic agent could effectively reduce the PEG solution volume and increase patients’ adherence. Some such solutions have been found in several published studies to not be inferior to PEG alone in terms of bowel cleansing quality. Although combination methods showed similar efficacy and safety, the value of these studies is limited by shortcomings in study design. New effective and well-tolerated combination preparations are required, in addition to rigorous new validated studies. PMID:26973388
Sensitivity and adaptability of methanogens to perchlorates: Implications for life on Mars
NASA Astrophysics Data System (ADS)
Kral, Timothy A.; Goodhart, Timothy H.; Harpool, Joshua D.; Hearnsberger, Christopher E.; McCracken, Graham L.; McSpadden, Stanley W.
2016-01-01
In 2008, the Mars Phoenix Lander discovered perchlorate at its landing site, and in 2012, the Curiosity rover confirmed the presence of perchlorate on Mars. The research reported here was designed to determine if certain methanogens could grow in the presence of three different perchlorate salt solutions. The methanogens tested were Methanothermobacter wolfeii, Methanosarcina barkeri, Methanobacterium formicicum and Methanococcus maripaludis. Media were prepared containing 0%, 0.5%, 1.0%, 2%, 5% and 10% wt/vol magnesium perchlorate, sodium perchlorate, or calcium perchlorate. Organisms were inoculated into their respective media followed by incubation at each organism's growth temperature. Methane production, commonly used to measure methanogen growth, was measured by gas chromatography of headspace gas samples. Methane concentrations varied with species and perchlorate salt tested. However, all four methanogens produced substantial levels of methane in the presence of up to 1.0% perchlorate, but not higher. The standard procedure for growing methanogens typically includes sodium sulfide, a reducing agent, to reduce residual molecular oxygen. However, the sodium sulfide may have been reducing the perchlorate, thus allowing for growth of the methanogens. To investigate this possibility, experiments were conducted where stainless steel nails were used instead of sodium sulfide as the reducing agent. Prior to the addition of perchlorate and inoculation, the nails were removed from the liquid medium. Just as in the prior experiments, the methanogens produced methane at comparable levels to those seen with sodium sulfide as the reductant, indicating that sodium sulfide did not reduce the perchlorate to any significant extent. Additionally, cells metabolizing in 1% perchlorate were transferred to 2%, cells metabolizing in 2% were transferred to 5%, and finally cells metabolizing in 5% were transferred to 10%. All four species produced methane at 2% and 5%, but not 10% indicating some success in adapting cells to concentrations higher than 1%. The results reported here indicate that the presence of perchlorate on Mars does not rule out the possible existence of methanogens.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vu, Thu Ha Thi, E-mail: ptntd2004@yahoo.fr; Tran, Thanh Thuy Thi, E-mail: tranthithanhthuygl@gmail.com; Le, Hong Ngan Thi
2016-01-15
Highlights: • Pt/rGO catalysts were successfully synthesized using either NaBH{sub 4} or ethylene glycol. • Synthesis using NaBH{sub 4} could improve electrocatalytic towards methanol oxidation of Pt/rGO catalyst. • 40%Pt/rGO synthesized using NaBH{sub 4} showed the best electrocatalytic performance. - Abstract: The synthesis processes of Platinum (Pt) on reduced graphene oxide (rGO) catalysts from graphene oxide (GO) using two reducing agents including sodium borohydride and ethylene glycol is reported. Structure and morphology of Pt/rGO catalysts are characterized by X-ray powder diffraction, transmission electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. Electrocatalytic methanol oxidation properties of these catalysts are evaluated bymore » cyclic voltammetry and chronoamperometry. The results show that catalyst synthesized using sodium borohydride has a higher metallic Pt content and an improved catalytic performance in comparison to catalyst synthesized using ethylene glycol. Moreover, effect of Pt loading amount on electrocatalytic methanol oxidation performance of catalysts synthesized using sodium borohydride is systematically investigated. The optimal Pt loading amount on graphene is determined to be 40%.« less
Gastric anti-ulcer and cytoprotective effect of selenium in rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parmar, N.S.; Tariq, M.; Ageel, A.M.
1988-01-01
Selenium, a trace element, in the form of sodium selenite has been studied for its ability to protect the gastric mucosa against the injuries caused by hypothermic restraint stress, aspirin, indomethacin, reserpine, dimaprit, and various other gastric mucosal-damaging (necrotizing) agents in rats. The results demonstrate that oral administration of sodium selenite produces a significant inhibition of the gastric mucosal damage induced by all the procedures used in this study. Selenium, in a nonantisecretory dose, produced a marked cytoprotective effect against all the necrotizing agents. The cytoprotective effect of selenium against the effects of 80% ethanol and 0.6 M HCl wasmore » significantly reversed by prior treatment with a dose of indomethacin that inhibits prostaglandin biosynthesis. These data indicate that sodium selenite inhibits the formation of these lesions by the mucosal generation of prostaglandins. The concentrations of nonprotein sulfhydryls (NP-SH) were significantly decreased in the gastric mucosa following the administration of necrotizing agents--80% ethanol and 0.6 M HCl. Treatment with sodium selenite, which significantly reduced the intensity of gastric lesions, did not replenish the reduced levels of gastric mucosal NP-SH, thus ruling out the mediation of its protective effect through sulfhydryls. The antisecretory effect of sodium selenite, which becomes evident only in the high dose of 20 mumol/kg, may be responsible for the inhibition of gastric lesions induced by aspirin, indomethacin, reserpine, and dimaprit. Our findings show that selenium possesses significant anti-ulcer and adaptive cytoprotective effects. However, further detailed studies are required to confirm these effects, to establish its mechanism(s) of action, and to determine its role in the prophylaxis and treatment of peptic ulcer disease.« less
Dergousova, Elena A.; Petrushanko, Irina Yu.; Klimanova, Elizaveta A.; Mitkevich, Vladimir A.; Ziganshin, Rustam H.; Lopina, Olga D.; Makarov, Alexander A.
2017-01-01
Sodium-potassium adenosine triphosphatase (Na,K-ATPase) creates a gradient of sodium and potassium ions necessary for the viability of animal cells, and it is extremely sensitive to intracellular redox status. Earlier we found that regulatory glutathionylation determines Na,K-ATPase redox sensitivity but the role of basal glutathionylation and other redox modifications of cysteine residues is not clear. The purpose of this study was to detect oxidized, nitrosylated, or glutathionylated cysteine residues in Na,K-ATPase, evaluate the possibility of removing these modifications and assess their influence on the enzyme activity. To this aim, we have detected such modifications in the Na,K-ATPase α1-subunit purified from duck salt glands and tried to eliminate them by chemical reducing agents and the glutaredoxin1/glutathione reductase enzyme system. Detection of cysteine modifications was performed using mass spectrometry and Western blot analysis. We have found that purified Na,K-ATPase α1-subunit contains glutathionylated, nitrosylated, and oxidized cysteines. Chemical reducing agents partially eliminate these modifications that leads to the slight increase of the enzyme activity. Enzyme system glutaredoxin/glutathione reductase, unlike chemical reducing agents, produces significant increase of the enzyme activity. At the same time, the enzyme system deglutathionylates native Na,K-ATPase to a lesser degree than chemical reducing agents. This suggests that the enzymatic reducing system glutaredoxin/glutathione reductase specifically affects glutathionylation of the regulatory cysteine residues of Na,K-ATPase α1-subunit. PMID:28230807
Alkaline Sodium Hypochlorite Irrigant and Its Chemical Interactions
Kahler, Bill; Walsh, Laurence J.
2017-01-01
Endodontic irrigating solutions may interact chemically with one another. This is important, because even when solutions are not admixed, they will come into contact with one another during an alternating irrigation technique, forming unwanted by-products, which may be toxic or irritant. Mixing or alternating irrigants can also reduce their ability to clean and disinfect the root canal system of teeth by changing their chemical structure with subsequent loss of the active agent, or by inducing precipitate formation in the root canal system. Precipitates occlude dental tubules, resulting in less penetration of antimicrobials and a loss of disinfection efficacy. Sodium hypochlorite is not only a very reactive oxidizing agent, but is also the most commonly used endodontic irrigant. As such, many interactions occurring between it and other irrigants, chelators and other antimicrobials, may occur. Of particular interest is the interaction between sodium hypochlorite and the chelators EDTA, citric acid and etidronate and between sodium hypochlorite and the antimicrobials chlorhexidine, alexidine, MTAD and octenisept. PMID:28961175
Method for mobilization of hazardous metal ions in soils
Dugan, Patrick R.; Pfister, Robert M.
1995-01-01
A microbial process for removing heavy metals such as bismuth, cadmium, lead, thorium, uranium and other transuranics from soils and sediments, utilizing indigenous, or isolates of indigenous, microorganisms and reducing agents, such as cysteine or sodium thioglycollate, or complexing agents such as the amino acid glycine, to effect the mobilization or release of the metals from the soil particles.
Noorafshan, A; Asadi-Golshan, R; Monjezi, S; Karbalay-Doust, S
2014-01-01
Sodium metabisulphite is used as an antioxidant agent in many pharmaceutical formulations. It is extensively used as a food preservative and disinfectant. It has been demonstrated that sulphite exposure can affect some organs. Curcumin, the main element of Curcuma longa, has been identified to have multiple protective properties. The present study extends the earlier works to quantitative evaluation of the effects of sulphite and curcumin on the heart structure using stereological methods. In this study, 28 rats were randomly divided into four experimental groups. The rats in groups I to IV received distilled water (group I), sodium metabisulphite (25 mg/ kg/day) (group II), curcumin (100 mg/kg/day) (group III), and sodium metabisulphite+curcumin (group IV), respectively, for 8 weeks. The left ventricle was subjected to stereological methods to estimate the quantitative parameters of the myocardium. A 20 % decrease was observed in the total volume of ventricular tissue in the sulphite-treated animals compared to the distilled water treatment (P < 0.02). Also, the volume and length of the capillaries were reduced by 43 % on average in the sulphite-treated rats in comparison to the distilled water-treated animals (P < 0.02). However, no significant change was seen in the mean and total volume of the myocardium and the cavity and diameter of the capillaries after sulphite ingestion. Treatment with curcumin did not protect the animals against the structural changes of the ventricle. Sulphite, as a preservative food agent, reduced the length and volume of the ventricular capillaries and curcumin could not protect them.
21 CFR 172.824 - Sodium mono- and dimethyl naphthalene sulfonates.
Code of Federal Regulations, 2012 CFR
2012-04-01
... intended for use in potable water systems to reduce hardness and aid in sedimentation and coagulation by raising the pH for the efficient utilization of other coagulation materials. (2) As an anticaking agent in...
21 CFR 172.824 - Sodium mono- and dimethyl naphthalene sulfonates.
Code of Federal Regulations, 2013 CFR
2013-04-01
... intended for use in potable water systems to reduce hardness and aid in sedimentation and coagulation by raising the pH for the efficient utilization of other coagulation materials. (2) As an anticaking agent in...
Improving the efficacy of RAAS blockade in patients with chronic kidney disease.
Lambers Heerspink, Hiddo J; de Borst, Martin H; Bakker, Stephan J L; Navis, Gerjan J
2013-02-01
Reduction of blood pressure and proteinuria by blockade of the renin-angiotensin-aldosterone system (RAAS) has been the cornerstone of renoprotective intervention for patients with chronic kidney disease (CKD) for many years. Despite the proven efficacy of RAAS blockade, however, the reduction in proteinuria is insufficient in many patients, and does not prevent further deterioration of renal function. Short-term studies have shown that a variety of treatment intensification strategies have a beneficial effect on blood pressure and proteinuria, including RAAS blockade using either dose escalation or multiple drugs, and restriction of dietary sodium. Large clinical trials have shown that RAAS blockade with multiple drugs does not improve patients' long-term renal or cardiovascular outcome. By contrast, two post-hoc analyses of landmark trials in nephrology show beneficial renal and cardiovascular effects from avoiding excessive dietary sodium intake during single-agent RAAS blockade therapy. The effects of dietary sodium restriction on renal or cardiovascular outcome still require prospective confirmation. However, current data support the implementation of lifestyle changes to reduce dietary sodium intake in combination with single-agent RAAS blockade, rather than dual-agent RAAS blockade, as a potent and feasible strategy to mitigate the burden of renal and cardiovascular disease in patients with CKD.
USDA-ARS?s Scientific Manuscript database
The emergence and spread of microorganisms with reduced susceptibility to antimicrobial agents is a major public health problem. Chlorine water has been widely used to reduce attached bacteria on the surface of food or for sanitizing the processing facilities. However, there are limited reports conc...
Zhang, Can; Liu, Wen-jun; Shi, Yun; An, Dai-zhi; Bai, Miao; Xu, Wen
2015-05-01
The quenching agents such as histidine, glycine, ascorbic acid, Tween-80, sodium sulfite and sodium hyposulfite are commonly used for quenching the residual disinfectant in water. In this paper, in order to select the optimal type and concentration range of quenching agents prior to the Limulus assays, the interference effects of each quenching agent at different concentrations on endotoxin detection were investigated by the Limulus assays of kinetic-turbidity. Our results identified that, as for 0-1.0% concentration of histidine, ascorbic acid, Tween-80, sodium sulfite (pH unadjusted and pH neutral), interference on the Limulus assays was existed. Hence, these quenching agents could not be applied as neutralizers prior to Limulus assays. Although, there was no interference on endotoxin detection for the glycine, a yellow color, developed by the quenching products of glycine and glutaric dialdehyde, contributed to false positive results. Hence, glycine should not be used as quenching agents in Limulus assays for samples containing glutaric dialdehyde. Compared with other quenching agents as histidine, glycine, ascorbic acid, Tween-80, sodium sulfite, 0-1.0% concentration of sodium hyposulfite elicited no obvious interference, while 1.0%-5.0% concentration of sodium hyposulfite illustrated exhibition effect for endotoxin detection. All in all, compared with other quenching agents as histidine, glycine, ascorbic acid, Tween-80 and sodium sulfite, sodium hyposulfite is suitable for quenching chemicals prior to endotoxin detection and less than 0.5% of concentration is allowable.
Conway, R M; Madigan, M C; Billson, F A; Penfold, P L
1998-10-01
Chemotherapy alone has largely been unsuccessful in controlling retinoblastoma growth, and has traditionally been limited in use as an alternative to irradiation for the treatment of retinoblastoma. Recently, clinical studies combining chemotherapy with local therapies, including radiotherapy, laser therapy or cryotherapy and in some cases, cyclosporine A, have been effective in treating retinoblastoma. Differentiating agents may also be combined with chemotherapy to enhance the action of cytotoxic drugs on tumor cell growth, although this approach has not been fully investigated in retinoblastoma. In this study, we evaluated the cytotoxic response of human retinoblastoma cell lines (Y79 and WERI-Rb1) to two chemotherapy agents commonly used in treating retinoblastoma, vincristine (VCR) and cisplatin (CDDP). Retinoblastoma cells have been shown to be sensitive to the differentiating agent sodium butyrate, and cell lines were also treated with a combination of VCR or CDDP with sodium butyrate, and the effects on retinoblastoma viability assessed. Both VCR and CDDP induced dose-dependent death of Y79 and WERI-Rb1 cells, accompanied by nuclear and cytoplasmic condensation and DNA laddering, features characteristic of apoptosis. Inhibitors of macromolecular synthesis, cycloheximide and actinomycin-D, significantly reduced VCR- and CDDP-induced apoptosis, although putative endonuclease inhibitors zinc sulphate and aurintricarboxylic acid had no apparent effect. Treatment with 0.5 mM or 1 mM sodium butyrate combined with VCR or CDDP significantly increased induction of apoptosis by these agents. This augmentation of chemotherapy-induced apoptosis may have implications for retinoblastoma therapy.
Method for mobilization of hazardous metal ions in soils
Dugan, P.R.; Pfister, R.M.
1995-06-27
A microbial process is revealed for removing heavy metals such as bismuth, cadmium, lead, thorium, uranium and other transuranics from soils and sediments. The method utilizes indigenous, or isolates of indigenous, microorganisms and reducing agents, such as cysteine or sodium thioglycollate, or complexing agents such as the amino acid glycine, to effect the mobilization or release of the metals from the soil particles. 5 figs.
Evaluation of nitrous oxide-oxygen and triclofos sodium as conscious sedative agents.
Subramaniam, Priya; Girish Babu, K L; Lakhotia, Disha
2017-01-01
Conscious sedation is used in the pediatric dentistry to reduce fear and anxiety in children and promote favorable treatment outcomes. To achieve them, the primary clinical need is for a well-tolerated, effective, and expedient analgesic and sedative agent that is safe to use. The aim of the present study was to evaluate the efficacy of nitrous oxide-oxygen and triclofos sodium as conscious sedative agents in 5-10-year-old children. Sixty children aged 5-10 years showing anxious, uncooperative, and apprehensive behavior were randomly divided and assigned into two groups (Groups A and B) such that Group A received 40% nitrous oxide-60% oxygen and Group B received triclofos sodium in the dose of 70 mg/kg body weight, given 30 min before the treatment procedure. During the whole course of sedation procedure, the response of the child was assessed using Houpt's behavior rating scale. The acceptance of route of drug administration by the patient and parent was also assessed. Data obtained were statistically evaluated using the Mann-Whitney U-test and Chi-square test. Children sedated with triclofos sodium were significantly more drowsy and disoriented compared to those sedated with nitrous oxide. The overall behavior of children in both the groups was similar. Good parental acceptance was observed for both the routes of administration. Patients accepted the oral route significantly better than inhalation route. Both nitrous oxide-oxygen and triclofos sodium were observed to be effective sedative agents, for successful and safe use in 5-10-year-old dental patients. Patients showed a good acceptance of the oral route compared to the inhalation route for sedation.
Brandt, H.L.
1962-02-20
A process is given for decanning fuel elements that consist of a uranium core, an intermediate section either of bronze, silicon, Al-Si, and uranium silicide layers or of lead, Al-Si, and uranium silicide layers around said core, and an aluminum can bonded to said intermediate section. The aluminum can is dissolved in a solution of sodium hydroxide (9 to 20 wt%) and sodium nitrate (35 to 12 wt %), and the layers of the intermediate section are dissolved in a boiling sodium hydroxide solution of a minimum concentration of 50 wt%. (AEC) A method of selectively reducing plutonium oxides and the rare earth oxides but not uranium oxides is described which comprises placing the oxides in a molten solvent of zinc or cadmium and then adding metallic uranium as a reducing agent. (AEC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jun; Sun, Kang; Ni, Lijuan
Our previous studies in mice revealed that two weeks short-term toxicity of sodium selenosulfate was significantly lower than that of sodium selenite, but selenium repletion efficacy of both compounds was equivalent. In addition, we showed that sodium selenosulfate reduced nephrotoxicity of cisplatin (CDDP) without compromising its anticancer activity, thus leading to a dramatic increase of cancer cure rate from 25% to 75%. Hydration has been used in clinical practice to reduce CDDP-induced nephrotoxicity, but it cannot mitigate CDDP-induced gastrointestinal toxicity. The present work investigated whether sodium selenosulfate is a potential preventive agent for the gastrointestinal toxicity. In tumor-bearing mice, sodiummore » selenosulfate was administered at a dose of 9.5 μmol/kg daily for 11 days, CDDP alone resulted in diarrhea by 88% on day 12, whereas the co-administration of CDDP and sodium selenosulfate dramatically reduced diarrhea to 6% (p < 0.0001). Such a prominent protective effect promoted us to evaluate the safety potential of long-term sodium selenosulfate application. Mice were administered with sodium selenosulfate or sodium selenite for 55 days at the doses of 12.7 and 19 μmol/kg. The low-dose sodium selenite caused growth suppression and hepatotoxicity which were aggravated by the high-dose, leading to 40% mortality rate, but no toxic symptoms were observed in the two sodium selenosulfate groups. Altogether these results clearly show that sodium selenosulfate at an innocuous dose can markedly prevent CDDP-induced gastrointestinal toxicity. -- Highlights: ►Cisplatin resulted in diarrhea in mice by 88%. ►i.p. selenosulfate at 9.5 μmol/kg daily for 11 days reduced diarrhea to 6%. ►i.p. selenosulfate at 19 μmol/kg daily for 55 days was not toxic. ►i.p. selenite at 19 μmol/kg daily for 55 days was lethal. ►Innocuous dose of selenosulfate greatly prevents cisplatin-induced diarrhea.« less
Role of Curing Agents in the Preservation of Shelf-stable Canned Meat Products1
Duncan, Charles L.; Foster, E. M.
1968-01-01
Experiments were conducted to gain a better understanding of the mechanism by which sodium chloride, sodium nitrate, and sodium nitrite supplement the action of heat in preserving canned cured meat products. Heated spores of putrefactive anaerobe 3679h were less tolerant of all three curing agents in the outgrowth medium than were unheated spores. When the curing agents were added to the heating menstruum, but not to the outgrowth medium, sodium chloride and sodium nitrate tended to protect the spores against heat injury, but sodium nitrite did not. When the spores were both heated and cultured in the presence of the curing agents: (i) nitrate and salt increased the apparent heat resistance at low concentrations (0.5 to 1%) but decreased it at concentrations of 2 to 4%; (ii) nitrite was markedly inhibitory, especially at pH 6.0. At the normal pH of canned luncheon meats (approximately 6.0), nitrite appears to be the chief preservative agent against spoilage by putrefactive anaerobes. PMID:5645422
Hajeb, P; Jinap, S
2012-06-13
An acidic solution containing mercury chelating agents to eliminate mercury in raw fish (mackerel) fillet was developed. The solution contained hydrochloric acid, sodium hydroxide, cysteine, EDTA, and NaCl. The optimum conditions for mercury reduction were achieved using response surface methodology (RSM) at cysteine concentration of 1.25%, EDTA of 275 mg/L, NaCl of 0.5%, pH of 3.75, and exposure time of 18 min. The optimized conditions produced a solution which can remove up to 91% mercury from raw fish fillet. Cysteine and EDTA were identified as potential chelating agents with the greatest potential for use. The solution can be employed in fish industries to reduce mercury in highly contaminated fish.
Antimicrobial activity of sodium hypochlorite in endodontics.
Mohammadi, Zahed; Shalavi, Sousan
2013-01-01
One of the major objectives in endodontic therapy is to disinfect the entire root canal system. This goal may be achieved using mechanical instrumenation and chemical irrigation in conjunrction with medication of the root canal between treatment sessions. Microorganisms and their by-products are considered to be the major cause of pulpal and periradicular patholic. In order to reduce or eliminate bacteria and popular tissue remnants, the use of various irrigation solution during treatment have been suggested. Sodium hypochlorite (NaOCI), the most common irrigant, is an excellent nonspecific proteolytic and antimicrobial agent. The purpose of this paper is to review the antimicrobial activity of sodium hypochlorite.
Shelate, Pragna; Dave, Divyang
2016-01-01
The objective of this work was design, characterization, and optimization of controlled drug delivery system containing antibiotic drug/s. Osmotic drug delivery system was chosen as controlled drug delivery system. The porous osmotic pump tablets were designed using Plackett-Burman and Box-Behnken factorial design to find out the best formulation. For screening of three categories of polymers, six independent variables were chosen for Plackett-Burman design. Osmotic agent sodium chloride and microcrystalline cellulose, pore forming agent sodium lauryl sulphate and sucrose, and coating agent ethyl cellulose and cellulose acetate were chosen as independent variables. Optimization of osmotic tablets was done by Box-Behnken design by selecting three independent variables. Osmotic agent sodium chloride, pore forming agent sodium lauryl sulphate, and coating agent cellulose acetate were chosen as independent variables. The result of Plackett-Burman and Box-Behnken design and ANOVA studies revealed that osmotic agent and pore former had significant effect on the drug release up to 12 hr. The observed independent variables were found to be very close to predicted values of most satisfactory formulation which demonstrates the feasibility of the optimization procedure in successful development of porous osmotic pump tablets containing antibiotic drug/s by using sodium chloride, sodium lauryl sulphate, and cellulose acetate as key excipients. PMID:27610247
Smith, Jodi D; Nicholson, Eric M; Greenlee, Justin J
2013-07-25
Prions demonstrate an unusual resistance to methods effective at inactivating conventional microorganisms. This has resulted in a very tangible and difficult infection control challenge to the medical and veterinary communities, as well as animal agriculture and related industries. Currently accepted practices of harsh chemical treatments such as prolonged exposure to sodium hydroxide or sodium hypochlorite, or autoclaving are not suitable in many situations. Less caustic and more readily applicable treatments to contaminated environments are therefore desirable. We recently demonstrated that exposure of the RML scrapie agent to a commercial product containing sodium percarbonate (SPC-P) with or without sodium dodecyl sulfate (SDS) rendered PrP(Sc) sensitive to proteinase K (PK), but did not eliminate infectivity. The current study was designed to evaluate the efficacy of a combinatorial approach to inactivating prions by exposing RML-positive brain homogenate to SPC-P and SDS followed by PK. Treated samples were evaluated for PrP(Sc)-immunoreactivity by western blot, and residual infectivity by mouse bioassay. Treatment of infected brain homogenate with SPC-P and SDS followed by PK exposure resulted in a 4-5 log10 reduction in infectivity when bioassayed in tga20 mice. This study demonstrates that exposure of the RML scrapie agent to SPC-P and SDS followed by PK markedly reduces, but does not eliminate infectivity. The results of this study encourage further investigation into whether consecutive or concomitant exposure to sodium percarbonate, SDS, and a protease may serve as a viable and non-caustic option for prion inactivation.
Zamani, M; Tehrani, A Sharifi; Ahmadzadeh, M; Abadi, A Alizadeh Ali
2006-01-01
Citrus green mold (Penicillium digitatum) causes economic losses. Chemical fungicides such as imazalil provide the primary means for controlling green mold decay of citrus fruits. Continuous use of fungicides has faced two major obstacles- increasing public concern regarding contamination of perishables with fungicidal residues, and proliferation of resistance in the pathogen populations. The aim of this research was to determine if the attacks of green mold on orange could be reduced by usage of biocontrol agent alone or in combination with low dosage of imazalil or sodium bicarbonate. Pseudomonas fluorescens isolate PN, P. fluorescens isolate PS and Trichoderma virens isolate TE were evaluated as potential biological agents for control of green mold of oranges caused by P. digitatum. Increasing concentration of SB decreased spore germination of P. digitatum. In laboratory tests, a cell suspension (10(8) cells per ml.) of bacterial strains reduced the incidence of green mold. On fruits surface biocontrol activity of antagonistic isolates was significantly increased when combined with low dosage of imazalil (500ppm) or sodium carbonate (5%). Effect of Trichoderma virens on controlling P. digitatum was better than others with or without these chemicals.
NASA Astrophysics Data System (ADS)
Asharani, I. V.; Thirumalai, D.; Sivakumar, A.
2017-11-01
Polyethylene glycol (PEG) core dendrimer encapsulated silver nanoparticles (AgNPs) were synthesized through normal chemical reduction method, where dendrimer acts as reducing and stabilizing agent. The encapsulated AgNPs were well characterized using TEM, DLS and XPS techniques. The synthesized AgNPs showed excellent catalytic activity towards the reduction of aromatic nitro compounds with sodium borohydride as reducing agent and the results substantiate that dendrimer encapsulated AgNPs can be an effective catalyst for the substituted nitro aromatic reduction reactions. Also the kinetics of different nitro compounds reductions was studied and presented.
A novel reverse osmosis membrane by ferrous sulfate assisted controlled oxidation of polyamide layer
NASA Astrophysics Data System (ADS)
Raval, Hiren D.; Raviya, Mayur R.; Gauswami, Maulik V.
2017-11-01
With growing desalination capacity, it is very important to evaluate the performance of thin film composite reverse osmosis (TFC RO) membrane in terms of energy consumption for desalination. There is a trade-off between salt rejection and water-flux of TFC RO membrane. This article presents a novel approach of analyzing the effect of mixture of an oxidizing agent sodium hypochlorite and a reducing agent ferrous sulfate on virgin TFC RO membrane. Experiments were carried out by varying the concentrations of both sodium hypochlorite and ferrous sulfate. The negative charge was induced on the membrane due to the treatment of combination of sodium hypochlorite and ferrous sulfate, thereby resulting in higher rejection of negative ions due to repulsive force. Membrane treated with 1000 mg l-1 sodium hypochlorite and 2000 mg l-1 ferrous sulfate showed the best salt rejection i.e. 96.23%. The characterization was carried out to understand the charge on the membrane surface by Zeta potential, morphology of membrane surface by scanning electron microscope (SEM), surface roughness features by atomic force microscope (AFM) and chemical structural changes by nuclear magnetic resonance (NMR) analysis.
Lowering Plasma Glucose Concentration by Inhibiting Renal Sodium-Glucose Co-Transport
Abdul-Ghani, Muhammad A; DeFronzo, Ralph A
2017-01-01
Maintaining normoglycaemia not only reduces the risk of diabetic microvascular complications but also corrects the metabolic abnormalities that contribute to the development and progression of hyperglycaemia (i.e. insulin resistance and beta-cell dysfunction). Progressive beta-cell failure, in addition to the multiple side effects associated with many current antihyperglycaemic agents (e.g., hypoglycaemia and weight gain) presents major obstacle to the achievement of the recommended goal of glycaemic control in patients with diabetes mellitus (DM). Thus, novel effective therapies are needed for optimal glucose control in subjects with DM. Recently, specific inhibitors of renal sodium glucose cotransporter 2 (SGLT2) have been developed to produce glucosuria and lower the plasma glucose concentration. Because of their unique mechanism of action (which is independent of the secretion and action of insulin), these agents are effective in lowering the plasma glucose concentration in all stages of DM and can be combined with all other antidiabetic agents. In this review, we summarize the available data concerning the mechanism of action, efficacy and safety of this novel class of antidiabetic agent. PMID:24690096
Method to directly radiolabel antibodies for diagnostic imaging and therapy
Thakur, Mathew L.
1994-01-01
The invention is a novel method and kit for directly radiolabeling proteins such as antibodies or antibody fragments for diagnostic and therapeutic purposes. The method comprises incubating a protein-containing solution with a solution of sodium ascorbate; adding a required quantity of reduced radionuclide to the incubated protein. A kit is also provided wherein the protein and/or reducing agents may be in lyophilized form.
Method to directly radiolabel antibodies for diagnostic imaging and therapy
Thakur, Mathew L.
1991-01-01
The invention is a novel method and kit for directly radiolabeling proteins such as antibodies or antibody fragments for diagnostic and therapeutic purposes. The method comprises incubating a protein-containing solution with a solution of sodium ascorbate; adding a required quantity of reduced radionuclide to the incubated protein. A kit is also provided wherein the protein and/or reducing agents may be in lyophilized form.
Sulphates for skin preservation--a novel approach to reduce tannery effluent salinity hazards.
Vankar, Padma S; Dwivedi, Ashish Kr
2009-04-15
In tanneries microorganisms are able to find environment suitable for their growth. Raw hide of buffalo and other animals like goat that are economically important, are an ideal source of nutrients for bacterial and fungal growth. In the past, preservatives like sodium chloride provided effective protection to fresh hides however the ill effect of their excessive use was not evaluated. But recently concern over potential ecological hazards has become more deliberate and sodium chloride features lot of disadvantages in agriculture as most of the tannery effluent is flown in agricultural fields in India. After rigorous laboratory experimentation on moisture content, SEM of hide, pure sodium sulphate as well as sodium sulphate in addition with sodium chloride (i.e. 10% w/w and 20% w/w) proved as most preferable option for curing of buffalo hide which gives effective preservation. Pollution load studies put forward sodium sulphate as an effective curing agent for buffalo hide to apply at industrial scale also.
Masking Vegetable Bitterness to Improve Palatability Depends on Vegetable Type and Taste Phenotype
2013-01-01
Consumption of dark green vegetables falls short of recommendations, in part, because of unpleasant bitterness. A laboratory-based study of 37 adults was used to determine bitter and hedonic responses to vegetables (asparagus, Brussels sprouts, kale) with bitter masking agents (1.33 M sodium acetate, 10 and 32 mM sodium chloride, and 3.2 mM aspartame) and then characterized by taste phenotype and vegetable liking. In repeated-measures ANOVA, aspartame was most effective at suppressing bitterness and improving hedonic responses for all sampled vegetables. Among the sodium salts, 32 mM sodium chloride decreased bitterness for kale and sodium acetate reduced bitterness across all vegetables with a tendency to increase liking for Brussels sprouts, as release from mixture suppression increased perceived sweetness. Participants were nearly equally divided into three 6-n-propylthiouracil (PROP) phenotype groups. Those tasting the least PROP bitterness (non-tasters) reported least vegetable bitterness, and the additives produced little change in vegetable liking. Aspartame persisted as the most effective bitter blocker for the PROP tasters (medium, supertasters), improving vegetable liking for the medium tasters but too much sweetness for supertasters. The sodium salts showed some bitter blocking for PROP tasters, particularly sodium acetate, without significant gains in vegetable liking. Via a survey, adults characterized as low vegetable likers reported greater increase in vegetable liking with the maskers than did vegetable likers. These results suggest that bitter masking agents (mainly sweeteners) can suppress bitterness to increase acceptance if they are matched to perceived vegetable bitterness or to self-reported vegetable disliking. PMID:23682306
Effect of both protective and reducing agents in the synthesis of multicolor silver nanoparticles
NASA Astrophysics Data System (ADS)
Rivero, Pedro Jose; Goicoechea, Javier; Urrutia, Aitor; Arregui, Francisco Javier
2013-02-01
In this paper, the influence of variable molar ratios between reducing and loading agents (1:100, 1:50, 1:20, 1:10, 1:5, 1:2, 1:1, 2:1) and between protective and loading agents (0.3:1, 0.75:1, 1.5:1, 3:1, 7.5:1, 30:1, 75:1) in the synthesis of silver nanoparticles by chemical reduction has been evaluated to obtain multicolor nanoparticles with a high stability in time. The protective agent poly(acrylic acid, sodium salt) (PAA) and reducing agent dimethylaminoborane (DMAB) play a key role in the formation of the resultant color. Evolution of the optical absorption bands of the silver nanoparticles as a function of PAA and DMAB molar ratios made it possible to confirm the presence of silver nanoparticles or clusters with a specific shape. The results reveal that a wide range of colors (violet, blue, green, brown, yellow, red, orange), sizes (from nanometer to micrometer), and shapes (cubic, rod, triangle, hexagonal, spherical) can be perfectly tuned by means of a fine control of the PAA and DMAB molar concentrations.
Characteristics and production of tantalum powders for solid-electrolyte capacitors
NASA Astrophysics Data System (ADS)
Yoon, Jae Sik; Kim, Byung Il
The effects of using K 2TaF 7 as the raw material and sodium as the reducing agent on the characteristics of tantalum powder are investigated. Batch-type metallothermic reduction (BTMR) is used to charge the reactor with the raw material and the reducing agent, and external continuous supply metallothermic reduction (ESMR) is used to supply the raw material and the reducing agent at a constant rate at the temperature of the reduction reaction. In the case of ESMR, the yield increases by several tens of percent because of the uniform reaction between the raw material and the reducing agent. It is possible to obtain a powder of over 99.5% purity. The powder particles obtained with BTMR are relatively large (4-6 μm) and have a coarse lamellar shape, while those prepared via ESMR are of uniform 1-2 μm size with a coral-like shape. Measurements of the electric properties show that the leakage current and the dielectric dissipation are low with higher reliability in ESMR than in BTMR, and the capacitance is 26,000 and 8400 CV for ESMR and in BTMR, respectively.
Guinard, Jean-Xavier; Myrdal Miller, Amy; Mills, Kelly; Wong, Thomas; Lee, Soh Min; Sirimuangmoon, Chirat; Schaefer, Sarah E; Drescher, Greg
2016-10-01
We tested the hypothesis that because of their flavor-enhancing properties, mushrooms could be used as a healthy substitute for meat and a mitigating agent for sodium (salt) reduction without reduction in sensory appeal among consumers. In a fully-randomized design for each product, 147 consumers evaluated blind two carne asada and six taco blend recipes in which beef had been partially substituted with mushrooms and/or salt had been reduced by 25%, for overall liking, liking of appearance, flavor, texture and mouth feel on the 9-point hedonic scale, and adequacy of level of saltiness, spiciness and moistness on 5-point just-about-right (JAR) scales. Overall consumer acceptance of the carne asada, and liking for its appearance, flavor and texture/mouth feel decreased significantly when half the steak was substituted with mushrooms. The taco blend recipes with full sodium were also liked more overall than those with 25% less sodium. But there was no significant difference in overall liking among the three full-salt recipes, nor among the three reduced-salt recipes, indicating that across the consumer population we tested, acceptance of the mushroom-containing recipes was on par with that of the 100% beef recipe. The preference mapping analysis of the overall liking ratings of the taco blends uncovered four preference segments, two of which, representing a majority of the consumers, gave higher acceptance scores to the mushroom-substituted recipes. Furthermore, the largest preference segment liked the full- and reduced-sodium recipes equally, and another liked the reduced-sodium recipes significantly more. This research demonstrates that through their flavor enhancing properties, mushrooms can be used successfully to substitute for beef and even possibly mitigate sodium reduction without significant change in acceptance for a majority of consumers. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dai, Lei; Nadeau, Ben; An, Xingye; Cheng, Dong; Long, Zhu; Ni, Yonghao
2016-01-01
Dual-function hydrogels, possessing both stimuli-responsive and self-healing properties, have recently attracted attention of both chemists and materials scientists. Here we report a new paradigm using natural polymer (guar gum, GG) and sodium borohydride (NaBH4), for the preparation of silver nanoparticles (AgNPs)-containing smart hydrogels in a simple, fast and economical way. NaBH4 performs as a reducing agent for AgNPs synthesis using silver nitrate (AgNO3) as the precursor. Meanwhile, sodium metaborate (NaBO2) (from NaBH4) behaves as a cross-linking agent between GG molecular chains. The AgNPs/GG hydrogels with excellent viscoelastic properties can be obtained within 3 min at room temperature without the addition of other cross-linkers. The resultant AgNPs/GG hydrogels are flowable and injectable, and they possess excellent pH/thermal responsive properties. Additionally, they exhibit rapid self-healing capacity. This work introduces a facile and scale-up way to prepare a class of hydrogels that can have great potential to biomedical and other industrial applications. PMID:27819289
Synergism of isothermal regimen and sodium succinate in experimental therapy of barbiturate coma.
Reinyuk, V L; Shefer, T V; Ivnitskii, Yu Yu
2006-07-01
In rats with experimental thiopental coma rectal temperature decreased by 9.4 degrees C, oxygen consumption 5-fold, and arteriovenous Po(2)gradient decreased 2-fold within 3 h; CO(2)accumulated in the blood and mixed type acidosis developed. Administration of sodium succinate under these conditions increased arteriovenous Po(2)gradient and reduced manifestations of metabolic acidosis. Maintenance of normal body temperature (warming) corrected primarily manifestations of respiratory acidosis. Each therapeutic agent reduced inhibition of O(2)consumption by 1/4; animal survival tended to increase from 42 to 50%. Combined use of these treatments potentiated the antiacidotic effect and increased survival to 92%. The authors conclude that hypothermia inhibits the therapeutic effect of succinate in barbiturate coma.
Sodium hypochlorite in endodontics: an update review.
Mohammadi, Zahed
2008-12-01
The major objective in root canal treatment is to disinfect the entire root canal system. This requires that the pulpal contents be eliminated as sources of infection. This goal may be accomplished using mechanical instrumentation and chemical irrigation, in conjunction with medication of the root canal between treatment sessions. Microorganisms and their by-products are considered to be the major cause of pulpal and periradicular pathosis. In order to reduce or eliminate bacteria and pulpal tissue remnants, various irrigation solutions have been suggested to be used during treatment. Sodium hypochlorite, an excellent non-specific proteolytic and antimicrobial agent, is the most common irrigation solution used during root canal therapy. The purpose of this paper was to review different aspects of sodium hypochlorite use in endodontics.
Tucker, Mark D [Albuquerque, NM
2011-09-20
A reduced weight decontamination formulation that utilizes a solid peracid compound (sodium borate peracetate) and a cationic surfactant (dodecyltrimethylammonium chloride) that can be packaged with all water removed. This reduces the packaged weight of the decontamination formulation by .about.80% (as compared to the "all-liquid" DF-200 formulation) and significantly lowers the logistics burden on the warfighter. Water (freshwater or saltwater) is added to the new decontamination formulation at the time of use from a local source.
Effect of six different peri-implantitis disinfection methods on in vivo human oral biofilm.
Gosau, Martin; Hahnel, Sebastian; Schwarz, Frank; Gerlach, Till; Reichert, Torsten E; Bürgers, Ralf
2010-08-01
The aim of this human in vivo pilot study was to evaluate the efficacy of six antimicrobial agents on the surface decontamination of an oral biofilm attached to titanium implants. For in vivo biofilm formation, we fixed titanium specimens to individual removable acrylic upper jaw splints (14 specimens in every splint), which were worn by four volunteers overnight for 12 h. The specimens were then treated with different antimicrobial agents for 1 min (Sodium hypochlorite, Hydrogen peroxide 3%, Chlorhexidingluconate 0.2%, Plax, Listerine, citric acid 40%). Afterwards, we quantified the total bacterial load and the viability of adhering bacteria by live or dead cell labelling in combination with fluorescence microscopy. The total bacterial load on the titanium surfaces was significantly higher after incubation in the control solution phosphate-buffered saline (PBS) than after disinfection in sodium hypochlorite, hydrogen peroxide, chlorhexidine, Plax, Listerine, and citric acid. Furthermore, a significantly lower ratio between dead and total adhering bacteria (bactericidal effect) was found after incubation in control PBS, Plax mouth rinse, and citric acid than after incubation in sodium hypochlorite, hydrogen peroxide, chlorhexidine, and Listerine. All tested antiseptics seem to be able to reduce the total amount of microorganisms accumulating on titanium surfaces. Furthermore, sodium hypochlorite, hydrogen peroxide, chlorhexidine, and Listerine showed a significant bactericidal effect against adhering bacteria.
Chemical agents for the control of plaque and plaque microflora: an overview.
Gaffar, A; Afflitto, J; Nabi, N
1997-10-01
This presentation provides an overview of the technologies available for the chemical control of plaque. It is generally accepted that the formation of dental plaque at the interfaces of tooth/gingiva is one of the major causes of gingival inflammation and dental caries. Several therapeutic approaches have been used to control dental plaque and supragingival infections. These include fluoride preparations such as stannous fluoride, oxygenating agents, anti-attachment agents, and cationic and non-cationic antibacterial agents. Among the fluoride preparations, stable stannous fluoride pastes and gels have been shown to reduce supragingival plaque, gingivitis, hypersensitivity and caries. The effect of the oxygenating agents on the supragingival plaque has been equivocal, but recent data indicate that a stable agent which provides sustained active oxygen release is effective in controlling plaque. A polymer, PVPA, which reduced attachment of bacteria to teeth was shown to significantly reduce plaque formation in humans. A new generation of antibacterials includes non-ionics such as triclosan, which in combination with a special polymer delivery system, has been shown to reduce plaque, gingivitis, supragingival calculus and dental caries in long-term studies conducted around the world. Unlike the first generation of agents, the triclosan/copolymer/sodium fluoride system is effective in long-term clinicals and does not cause staining of teeth, increase in calculus, or disturbance in the oral microbial ecology.
[Extravasation of chemotherapeutic agents: prevention and therapy].
Jordan, K; Grothe, W; Schmoll, H-J
2005-01-07
Based on the potential to cause local tissue injury drugs are classified as vesicant, irritant and non-irritant. The frequency of extravasation is considered to be between 0.6 % and 6 %. More frequently an inflammatory reaction is caused by thrombophlebitis or a local hypersensitivity reaction following chemotherapy administration rather than by an extravasation. A number of factors are known to increase the risk of extravasation. By the consideration of these risk factors preventive guidelines for the safe administration of chemotherapeutic agents have been published. Central venous devices significantly reduce the risk of extravasation. To date there are no generally approved treatment guidelines for the management of extravasations. Treatment is mostly empirical. Nevertheless some general measures are to be recommended: Firstly, aspiration of the extravasated fluids should be attempted. Furthermore local supportive care such as intermittent topical warming or cooling is at least palliative and to a certain degree reduces the extent of the injury. Beside these non pharmacological therapies the beneficial effects of Dimethylsulfoxid (DMSO) -- or Hyaluronidase-administration dependent on the type of paravasation have been proven. The use of sodium bicarbonate, sodium thiosulfate or corticosteroids is no longer recommended. In the case of extravasation rapid and correct management is crucial for the benefit of any treatment. Therefore, written guidelines for both the handling of cytotoxic agents and also the management of an extravasation should be present in all Departments where cytotoxic agents are administered. In addition to these guidelines an extravasation kit including all necessary materials and drugs to treat extravasations should be available.
Accelerating the degradation of green plant waste with chemical decomposition agents.
Kejun, Sun; Juntao, Zhang; Ying, Chen; Zongwen, Liao; Lin, Ruan; Cong, Liu
2011-10-01
Degradation of green plant waste is often difficult, and excess maturity times are typically required. In this study, we used lignin, cellulose and hemicellulose assays; scanning electron microscopy; infrared spectrum analysis and X-ray diffraction analysis to investigate the effects of chemical decomposition agents on the lignocellulose content of green plant waste, its structure and major functional groups and the mechanism of accelerated degradation. Our results showed that adding chemical decomposition agents to Ficus microcarpa var. pusillifolia sawdust reduced the contents of lignin by 0.53%-11.48% and the contents of cellulose by 2.86%-7.71%, and increased the contents of hemicellulose by 2.92%-33.63% after 24 h. With increasing quantities of alkaline residue and sodium lignosulphonate, the lignin content decreased. Scanning electron microscopy showed that, after F. microcarpa var. pusillifolia sawdust was treated with chemical decomposition agents, lignocellulose tube wall thickness increased significantlyIncreases of 29.41%, 3.53% and 34.71% were observed after treatment with NaOH, alkaline residue and sodium lignosulphonate, respectively. Infrared spectroscopy showed that CO and aromatic skeleton stretching absorption peaks were weakened and the C-H vibrational absorption peak from out-of-plane in positions 2 and 6 (S units) (890-900 cm(-1)) was strengthened after F. microcarpa var. pusillifolia sawdust was treated with chemical decomposition agents, indicating a reduction in lignin content. Several absorption peaks [i.e., C-H deformations (asymmetry in methyl groups, -CH(3)- and -CH(2)-) (1450-1460 cm(-1)); Aliphatic C-H stretching in methyl and phenol OH (1370-1380 cm(-1)); CO stretching (cellulose and hemicellulose) (1040-1060 cm(-1))] that indicate the presence of a chemical bond between lignin and cellulose was reduced, indicating that the chemical bond between lignin and cellulose had been partially broken. X-ray diffraction analysis showed that NaOH, alkaline residue and sodium lignosulphonate can reduce the relative crystallinity of lignocellulose in F. microcarpa var. pusillifolia by 2.64%, 13.24%, 12.44%, respectively. The C-H vibrational absorption peak from out-of-plane in positions 2 and 6 (S units) comes from the vibration of the sugar anomeric carbon. Because lignin is a phenolic, not carbohydrate polymer, the relative absorption intensity of this peak should be stronger at lower lignin contents. Compared to CK, the peak intensities increased in treatments T1, T5 and T9, indicating reduced lignin contents and increased sugar contents after CDA treatment. Copyright © 2011 Elsevier Ltd. All rights reserved.
Barman, Kalyan; Asrey, Ram; Pal, R K; Jha, S K; Sharma, Swati
2015-01-01
Sapburn injury in mango is regarded as the most serious problem as it reduces the aesthetic appeal and downgrade the fruit quality with considerable economic losses. For the control of sapburn injury, physiologically mature mango fruits of cv. Chausa were harvested along with 5-8 cm stalk attached. Immediately after harvesting, fruits were de-stemmed and treated with different desapping agent solutions [calcium hydroxide (1 %), sodium hydroxide (1 %), alum (0.5 and 1 %)] by dipping them for 5 min. In control fruits, the pedicels were removed and sap was allowed to spread freely over the fruit surface. After treatment application, fruits were air-dried and stored at ambient condition (30 ± 2 °C) for 12 days. Among the treatments, fruits desapped with sodium hydroxide (1 %) showed significantly lower (7.6-fold) sapburn injury followed by alum (0.5 %) treatment than control. Respiration and ethylene evolution rates were also significantly suppressed and delayed with sodium hydroxide (1 %) treatment. Fruit firmness and functional properties like, antioxidant capacity, total carotenoids and total phenolics content were also found higher in sodium hydroxide (1 %) treated fruits. Pectin methyl esterase and polygalacturonase enzyme activity were recorded higher in fruits of control and calcium hydroxide treatment however; it was suppressed by sodium hydroxide and alum treatments. Fruit quality parameters like color, total soluble solids, titratable acidity and total sugars content were found higher in calcium hydroxide and sodium hydroxide treated fruits than control and alum treated fruits.
Solid state neutron detector and method for use
Doty, F. Patrick; Zwieback, Ilya; Ruderman, Warren
2002-01-01
Crystals of lithium tetraborate or alpha-barium borate had been found to be neutron detecting materials. The crystals are prepared using known crystal growing techniques, wherein the process does not include the common practice of using a fluxing agent, such as sodium oxide or sodium fluoride, to reduce the melting temperature of the crystalline compound. Crystals prepared by this method can be sliced into thin single or polycrystalline wafers, or ground to a powder and prepared as a sintered compact or a print paste, and then configured with appropriate electronic hardware, in order to function as neutron detectors.
Xiao, Changting; Giacca, Adria; Lewis, Gary F
2009-11-01
Prolonged elevation of plasma nonesterified fatty acids (NEFA) induces insulin resistance and impairs pancreatic β-cell adaptation to insulin resistance. Studies in rodents suggest that inflammation may play a role in this "lipotoxicity." We studied the effects of sodium salicylate, an anti-inflammatory agent, on lipid-induced alterations in β-cell function and insulin sensitivity in six overweight and obese nondiabetic men. Each subject underwent four separate studies, 4-6 wk apart, in random order: 1) SAL, 1-wk placebo followed by intravenous (iv) infusion of saline for 48 h; 2) IH, 1-wk placebo followed by iv infusion of intralipid plus heparin for 48 h to raise plasma NEFA approximately twofold; 3) IH + SS, 1-wk sodium salicylate (4.5 g/day) followed by 48-h IH infusion; and 4) SS, 1-wk oral sodium salicylate followed by 48-h saline infusion. After 48-h saline or lipid infusion, insulin secretion and sensitivity were assessed by hyperglycemic clamp and euglycemic hyperinsulinemic clamp, respectively, in sequential order. Insulin sensitivity was reduced by lipid infusion (IH = 67% of SAL) and was not improved by salicylate (IH + SS = 56% of SAL). Lipid infusion also reduced the disposition index (P < 0.05), which was not prevented by sodium salicylate. Salicylate reduced insulin clearance. These data suggest that oral sodium salicylate at this dose impairs insulin clearance but does not ameliorate lipid-induced insulin resistance and β-cell dysfunction in overweight and obese nondiabetic men.
NASA Astrophysics Data System (ADS)
Khoirul Anas, Argo; Iman Prakoso, Nurcahyo; Sasvita, Dilla
2018-04-01
Surfactant (surface active agent) exhibit numerous interesting properties that enable their use as additional component in mobilising of residual oil from capillary pore after secondary recovery process using gas injection and water flooding. In this study, Sodium Lignosulfonate (SLS) surfactant was successfully synthesized by applying batch method using lignin from oil palm empty fruit bunches as precursor. Furthermore, its performance in reducing interfacial tension of crude oil and formation water colloidal system was compared with commercial available surfactant including Sodium Dodecyl Benzene Sulfonate (SDBS) and Sodium p-Toluene Sulfonate (SpTS). The synthesized SLS surfactant was characterized by using Fourier Transform Infrared (FTIR) spectroscopy. Meanwhile, its performance in reducing interfacial tension of crude oil and formation water colloidal system was analyzed by using compatibility test, phase behaviour analysis, and interfacial tension (IFT) measurement. The compatibility test shows that SLS, SDBS, and SpTS surfactants were compatible with formation water. In addition, the phase behaviour analysis shows that SLS surfactant was better than SpTS surfactant, while SDBS surfactant generates the highest performance proved by the best microemulsion formation resulted by SDBS. Furthermore, the optimum concentration of SLS, SDBS, and SpTS surfactants in reducing the interfacial tension of crude oil and formation water was 1.0%. The IFT measurement indicates that the performance of SLS with the value of 1.67 mN/m was also better than SpTS surfactant with the value of 3.59 mN/m. Meanwhile, SDBS surfactant shows the best performance with the IFT value of 0.47 mN/m.
An open-label study of sodium oxybate (Xyrem®) in spasmodic dysphonia
Rumbach, Anna F.; Blitzer, Andrew; Frucht, Steven J.; Simonyan, Kristina
2016-01-01
Objective Spasmodic dysphonia (SD) is a task-specific laryngeal dystonia that affects speech production. Co-occurring voice tremor (VT) often complicates the diagnosis and clinical management of SD. Treatment of SD and VT is largely limited to botulinum toxin injections into laryngeal musculature; other pharmacological options are not sufficiently developed. Study Design and Methods We conducted an open-label study in 23 SD and 22 SD/VT patients to examine the effects of sodium oxybate (Xyrem®), an oral agent with therapeutic effects similar to those of alcohol in these patients. Blinded randomized analysis of voice and speech samples assessed symptom improvement before and after drug administration. Results Sodium oxybate significantly improved voice symptoms (p = 0.001) primarily by reducing the number of SD-characteristic voice breaks and severity of VT. Sodium oxybate further showed a trend for improving VT symptoms (p = 0.03) in a subset of patients who received successful botulinum toxin injections for the management of their SD symptoms. The drug’s effects were observed approximately 30–40 min after its intake and lasted about 3.5–4 hours. Conclusion Our study demonstrated that sodium oxybate reduced voice symptoms in 82.2% of alcohol-responsive SD patients both with and without co-occurring VT. Our findings suggest that the therapeutic mechanism of sodium oxybate in SD and SD/VT may be linked to that of alcohol and as such sodium oxybate might be beneficial for alcohol-responsive SD and SD/VT patients. PMID:27808415
Primera-Pedrozo, Oliva M; Rodríguez, Gabriela Del Mar; Castellanos, Jorge; Felix-Rivera, Hilsamar; Resto, Oscar; Hernández-Rivera, Samuel P
2012-02-15
This work focused on establishing the parameters for enhancing the Raman signals of DNA and RNA constituents: nitrogenous bases, nucleosides and nucleotides, using metallic nanoparticles as surface enhanced Raman scattering substrates. Silver nanospheres were synthesized using sodium borohydride as a reducing agent and sodium citrate as a capping agent. The prepared nanoparticles had a surface plasmon band at ∼384nm and an average size of 12±3nm. The nanoparticles' surface charge was manipulated by changing the pH of the Ag colloidal suspensions in the range of 1-13. Low concentrations as 0.7μM were detected under the experimental conditions. The optimum pH values were: 7 for adenine, 9 for AMP, 5 for adenosine, 7 for dAMP and 11 for deoxyadenosine. Copyright © 2011 Elsevier B.V. All rights reserved.
Cucurbit[7]uril as a tool in the green synthesis of gold nanoparticles.
Premkumar, Thathan; Geckeler, Kurt E
2010-12-03
A simple, green, one-pot synthesis of gold nanoparticles was achieved through the reaction of an aqueous mixture of potassium tetrachloroaurate(III) and the macrocycle cucurbit[7]uril in the presence of sodium hydroxide at room temperature without introducing any kind of traditional reducing agents and/or external energy. The as-prepared gold nanoparticles showed catalytic activity for the reduction reaction of 4-nitrophenol in the presence of NaBH(4), which has been established by visual inspection and UV/Vis spectroscopy. This report is the first for the preparation of gold nanoparticles using cucurbit[7]uril in aqueous media through chemical reduction without employing conventional reducing agents and/or external energy.
Rouch, Jamie A; Burton, Bradley; Dabb, Alix; Brown, Vicky; Seung, Amy H; Kinsman, Katharine; Holdhoff, Matthias
2017-01-01
Purpose Hyperhydration and urinary alkalinization is implemented with all high-dose (HD)-methotrexate infusions to promote excretion and prevent precipitation of methotrexate in the renal tubules. Our institution utilized enteral alkalinizing agents (sodium bicarbonate tablets and sodium citrate/citric acid solution) to alkalinize the urine of patients receiving HD-methotrexate during a parenteral sodium bicarbonate and sodium acetate shortage. The purpose of this study is to establish the safety and efficacy of the enteral route for urine alkalinization. Methods A single-center, retrospective, cohort study was conducted comparing cycles of HD-methotrexate using enteral alkalinizing agents to parenteral sodium bicarbonate. The primary objective was to compare the time, in hours, from administration of first inpatient administered dose of alkalinizing agent to time of achieving goal urine pH. Secondary objectives evaluated total dose of sodium bicarbonate required to achieve goal urine pH, time from start of urine alkalinizing agent until time of achieving methotrexate level safe for discharge, and toxicities associated with methotrexate and the alkalinizing agents. Results A total of 118 patients were included in this study, equally divided into two cohorts based on parenteral versus enteral routes of administration. No statistical difference was determined between the two cohorts regarding time to goal urine pH (6.5 h versus 7.9 h, P = 0.051) or regarding time to methotrexate level deemed safe for discharge (63.5 h versus 62.5 h, p = 0.835). There were no significant differences in methotrexate-induced toxicities. Conclusion Our study found enteral routes of urine alkalinization to be a viable alternative to the traditional parenteral sodium bicarbonate, especially during parenteral sodium bicarbonate and acetate shortages.
Back, Ja Hoon; Cho, Wan Jin; Kim, Jun Ho; Park, Il Kyu; Kwon, Sung Won
2016-04-01
Postsurgical adhesion formation is a concern in every field of surgery. We evaluated the efficacy of hyaluronic acid/sodium alginate-based microparticle anti-adhesive agents (MP) for the prevention of postsurgical adhesion formation in a standardized rabbit model. To evaluate the anti-adhesion effect, a uterus-abdominal wall abrasion model was created in rabbits. On the surface of the injured uterus, an anti-adhesive agent, Interceed(®) or MP, was applied (positive control and study groups, respectively; n = 10 each). In another group of 10 animals, neither agent was applied (negative control group). The adhesion levels were graded 3 weeks after surgery. Acute and chronic toxicity was also evaluated. The grade of adhesion was significantly lower in the MP group than in the negative control and positive control groups. No evidence of acute or chronic toxicity induced by this material was found in blood and tissue analysis. MP shows potential as an effective novel type of resorbable biomaterial to reduce postoperative adhesion. The easy placement and handling of this material make the MP powder attractive as a tissue adhesion barrier.
For the first time, we report green chemistry approach using vitamin B2 in the synthesis of silver (Ag) and palladium (Pd), nanospheres, nanowires and nanorods at room temperature without using any harmful reducing agents, such as sodium borohydride (NaBH4) or hydroxylamine hydro...
Schenck, Frank J; Callery, Patrick; Gannett, Peter M; Daft, Jonathan R; Lehotay, Steven J
2002-01-01
Water-miscible solvents, such as acetone and acetonitrile, effectively extract both polar and nonpolar pesticide residues from nonfatty foods. The addition of sodium chloride to the resulting acetonitrile-water or acetone-water extract (salting out) results in the separation of the water from the organic solvent. However, the organic solvent layer (pesticide extract) still contains some residual water, which can adversely affect separation procedures that follow, such as solid-phase extraction and/or gas chromatography. Drying agents, such as sodium sulfate or magnesium sulfate, are used to remove the water from the organic extracts. In the present study, we used nuclear magnetic resonance spectroscopy to study the composition of the phases resulting from salting out and to compare the effectiveness of sodium sulfate and magnesium sulfate as drying agents. The study showed that considerable amounts of water remained in the organic phase after phase separation. Sodium sulfate was a relatively ineffective drying agent, removing little or no residual water from the organic solvent. Magnesium sulfate proved to be a much more effective drying agent.
Ozdemir, N; Ozalp, Y; Ozkan, Y
2000-01-01
In this study, the effects of surface-active agents in different types and concentrations, added into the coating solution, on release of model hydrophilic compound have been examined. For this purpose, the tablets, prepared with the use of methylene blue as a model substance, were coated by spray coating technique with cellulose acetate solution containing polyethylene glycol 400 as a plasticizer. In addition, cetylpyridinium chloride as cationic surface-active agent and sodium lauryl sulphate as anionic surface-active agent were added into coating solution in different concentrations. After creating a delivery orifice by a microdrill on the tablets, release of model hydrophilic compound was tested by the USP paddle method. The data obtained were evaluated according to the different kinetics and the mechanism of release from the preparations was examined. The surface properties of the coating material were investigated by scanning electron microscope taken before and after the contact with medium fluid, as well as the mechanical properties by tensile tests. In conclusion, it has been found that the cationic surface active agent, cetylpyridinium chloride reduced the lag time, observed during the release of model hydrophilic compound, as a result of its enhancing effect on wettability of tablets by reducing the contact angle between the medium fluid and the coating material. On the other hand, the anionic surface active agent, sodium lauryl sulphate has been inactivated possibly due to the interaction with model hydrophilic compound that has cationic properties and/or substances contained in membrane composition; thus, the lag time has not decreased and furthermore, a significant decrease in the delivery rate of model hydrophilic compound has been observed.
Bostanci, Seher; Kocyigit, Pelin; Gürgey, Erbak
2007-06-01
Chemical matricectomy is performed mainly by two agents: phenol and sodium hydroxide. Both agents have excellent cure rates, but there are no data about the comparison of postoperative healing periods. This study was designed to compare the postoperative morbidity rates of sodium hydroxide and phenol matricectomies. Forty-six patients with 154 ingrowing nail sides were treated with either sodium hydroxide or phenol matricectomy. In the postoperative period, the patients were evaluated for the duration and severity of pain, drainage, and peripheral tissue destruction; complete healing periods; and overall success rates. The incidence of pain was higher in the sodium hydroxide group on the first visit, on the second day, but all patients became pain-free after that. The incidence and duration of drainage and peripheral tissue destruction was significantly higher in the phenol group. The mean period for complete recovery was 10.8 days in the sodium hydroxide group, whereas it was 18.02 days in the phenol group. The overall success rates in the sodium hydroxide and phenol groups were found to be 95.1 and 95.8%, respectively. Both sodium hydroxide and phenol are effective agents giving high success rates, but sodium hydroxide causes less postoperative morbidity and provides faster recovery.
NASA Astrophysics Data System (ADS)
Almeida, T. S.; Palma, L. M.; Leonello, P. H.; Morais, C.; Kokoh, K. B.; De Andrade, A. R.
2012-10-01
The aim of this work was to perform a systematic study of the parameters that can influence the composition, morphology, and catalytic activity of PtSn/C nanoparticles and compare two different methods of nanocatalyst preparation, namely microwave-assisted heating (MW) and thermal decomposition of polymeric precursors (DPP). An investigation of the effects of the reducing and stabilizing agents on the catalytic activity and morphology of Pt75Sn25/C catalysts prepared by microwave-assisted heating was undertaken for optimization purposes. The effect of short-chain alcohols such as ethanol, ethylene glycol, and propylene glycol as reducing agents was evaluated, and the use of sodium acetate and citric acid as stabilizing agents for the MW procedure was examined. Catalysts obtained from propylene glycol displayed higher catalytic activity compared with catalysts prepared in ethylene glycol. Introduction of sodium acetate enhanced the catalytic activity, but this beneficial effect was observed until a critical acetate concentration was reached. Optimization of the MW synthesis allowed for the preparation of highly dispersed catalysts with average sizes lying between 2.0 and 5.0 nm. Comparison of the best catalyst prepared by MW with a catalyst of similar composition prepared by the polymeric precursors method showed that the catalytic activity of the material can be improved when a proper condition for catalyst preparation is achieved.
21 CFR 182.2729 - Sodium calcium aluminosilicate, hydrated.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium calcium aluminosilicate, hydrated. 182.2729... (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Anticaking Agents § 182.2729 Sodium calcium aluminosilicate, hydrated. (a) Product. Hydrated sodium calcium aluminosilicate (sodium calcium silicoaluminate...
21 CFR 182.2727 - Sodium aluminosilicate.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium aluminosilicate. 182.2727 Section 182.2727...) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Anticaking Agents § 182.2727 Sodium aluminosilicate. (a) Product. Sodium aluminosilicate (sodium silicoaluminate). (b) Tolerance. This substance is generally recognized as...
21 CFR 582.2729 - Hydrated sodium calcium aluminosilicate.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Hydrated sodium calcium aluminosilicate. 582.2729... Agents § 582.2729 Hydrated sodium calcium aluminosilicate. (a) Product. Hydrated sodium calcium aluminosilicate (sodium calcium silicoaluminate). (b) Tolerance. This substance is generally recognized as safe...
21 CFR 582.2729 - Hydrated sodium calcium aluminosilicate.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Hydrated sodium calcium aluminosilicate. 582.2729... Agents § 582.2729 Hydrated sodium calcium aluminosilicate. (a) Product. Hydrated sodium calcium aluminosilicate (sodium calcium silicoaluminate). (b) Tolerance. This substance is generally recognized as safe...
21 CFR 582.2729 - Hydrated sodium calcium aluminosilicate.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Hydrated sodium calcium aluminosilicate. 582.2729... Agents § 582.2729 Hydrated sodium calcium aluminosilicate. (a) Product. Hydrated sodium calcium aluminosilicate (sodium calcium silicoaluminate). (b) Tolerance. This substance is generally recognized as safe...
21 CFR 582.2729 - Hydrated sodium calcium aluminosilicate.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Hydrated sodium calcium aluminosilicate. 582.2729... Agents § 582.2729 Hydrated sodium calcium aluminosilicate. (a) Product. Hydrated sodium calcium aluminosilicate (sodium calcium silicoaluminate). (b) Tolerance. This substance is generally recognized as safe...
21 CFR 582.2729 - Hydrated sodium calcium aluminosilicate.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Hydrated sodium calcium aluminosilicate. 582.2729... Agents § 582.2729 Hydrated sodium calcium aluminosilicate. (a) Product. Hydrated sodium calcium aluminosilicate (sodium calcium silicoaluminate). (b) Tolerance. This substance is generally recognized as safe...
Extrusion foaming of protein-based thermoplastic and polyethylene blends
NASA Astrophysics Data System (ADS)
Gavin, Chanelle; Lay, Mark C.; Verbeek, Casparus J. R.
2016-03-01
Currently the extrusion foamability of Novatein® Thermoplastic Protein (NTP) is being investigated at the University of Waikato in collaboration with the Biopolymer Network Ltd (NZ). NTP has been developed from bloodmeal (>86 wt% protein), a co-product of the meat industry, by adding denaturants and plasticisers (tri-ethylene glycol and water) allowing it to be extruded and injection moulded. NTP alone does not readily foam when sodium bicarbonate is used as a chemical blowing agent as its extensional viscosity is too high. The thermoplastic properties of NTP were modified by blending it with different weight fractions of linear low density polyethylene (LLDPE) and polyethylene grafted maleic anhydride (PE-g-MAH) compatibiliser. Extrusion foaming was conducted in two ways, firstly using the existing water content in the material as the blowing agent and secondly by adding sodium bicarbonate. When processed in a twin screw extruder (L/D 25 and 10 mm die) the material readily expanded due to the internal moisture content alone, with a conditioned expansion ratio of up to ± 0.13. Cell structure was non-uniform exhibiting a broad range cell sizes at various stages of formation with some coalescence. The cell size reduced through the addition of sodium bicarbonate, overall more cells were observed and the structure was more uniform, however ruptured cells were also visible on the extrudate skin. Increasing die temperature and introducing water cooling reduced cell size, but the increased die temperature resulted in surface degradation.
Ma, Hongyue; Zhang, Junfeng; Jiang, Jiejun; Zhou, Jing; Xu, Huiqin; Zhan, Zhen; Wu, Qinan; Duan, Jinao
2012-03-01
Bufadienolides, known ligands of the sodium pump, have been shown to inhibit the proliferation of several cancer cell types. However, their development to date as anticancer agents has been impaired by a narrow therapeutic margin resulting from their potential to induce cardiotoxicity. In the present study, we examined the effects of bilirubin, an endogenous antioxidant, on the cardiotoxicity of bufadienolides (derived from toad venom) in guinea-pigs. The results showed that bufadienolides (8 mg/kg) caused ventricular arrhythmias, conduction block, cardiac dysfunction and death in guinea-pigs. Pretreatment with bilirubin (75 and 150 mg/kg) significantly prevented bufadienolide-induced premature ventricular complexes, ventricular tachycardia, ventricular fibrillation and death. Bilirubin also markedly improved the inhibition of cardiac contraction in bufadienolide-treated guinea-pigs as evidenced by increases in left ventricular systolic pressure and decreases in left ventricular diastolic pressure in vivo. Furthermore, bilirubin significantly reduced the intracellular sodium content ([Na(+)]( i )) in ex vivo bufadienolide-stimulated guinea-pig ventricular myocytes loaded with the sodium indicator Sodium Green. An antitumor study showed that bilirubin did not compromise the ability of bufadienolides to inhibit gastric cancer cell MGC-803 proliferation. These results suggested that bilirubin can attenuate bufadienolide-induced arrhythmias and cardiac dysfunction in guinea-pigs by reducing elevated [Na(+)]( i ) and may improve bufadienolide therapeutic index in cancer treatment.
An open-label study of sodium oxybate in Spasmodic dysphonia.
Rumbach, Anna F; Blitzer, Andrew; Frucht, Steven J; Simonyan, Kristina
2017-06-01
Spasmodic dysphonia (SD) is a task-specific laryngeal dystonia that affects speech production. Co-occurring voice tremor (VT) often complicates the diagnosis and clinical management of SD. Treatment of SD and VT is largely limited to botulinum toxin injections into laryngeal musculature; other pharmacological options are not sufficiently developed. Open-label study. We conducted an open-label study in 23 SD and 22 SD/VT patients to examine the effects of sodium oxybate (Xyrem), an oral agent with therapeutic effects similar to those of alcohol in these patients. Blinded randomized analysis of voice and speech samples assessed symptom improvement before and after drug administration. Sodium oxybate significantly improved voice symptoms (P = .001) primarily by reducing the number of SD-characteristic voice breaks and severity of VT. Sodium oxybate further showed a trend for improving VT symptoms (P = .03) in a subset of patients who received successful botulinum toxin injections for the management of their SD symptoms. The drug's effects were observed approximately 30 to 40 minutes after its intake and lasted about 3.5 to 4 hours. Our study demonstrated that sodium oxybate reduced voice symptoms in 82.2% of alcohol-responsive SD patients both with and without co-occurring VT. Our findings suggest that the therapeutic mechanism of sodium oxybate in SD and SD/VT may be linked to that of alcohol, and as such, sodium oxybate might be beneficial for alcohol-responsive SD and SD/VT patients. 4 Laryngoscope, 127:1402-1407, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.
NASA Astrophysics Data System (ADS)
Bao, Yun
During the production of nuclear weapon by the DOE, large amounts of liquid waste were generated and stored in millions of gallons of tanks at Savannah River, Hanford and INEEL sites. Typically, the waste contains large amounts of soluble NaOH, NaNO2 and NaNO3 and small amounts of soluble fission products, cladding materials and cleaning solution. Due to its high sodium content it has been called sodium bearing waste (SBW). We have formulated, tested and evaluated a new type of hydroceramic waste form specifically designed to solidify SBW. Hydroceramics can be made from an alumosilicate source such as metakaolin and NaOH solutions or the SBW itself. Under mild hydrothermal conditions, the mixture is transformed into a solid consisting of zeolites. This process leads to the incorporation of radionuclides into lattice sites and the cage structures of the zeolites. Hydroceramics have high strength and inherent stability in realistic geologic settings. The process of making hydroceramics from a series of SBWs was optimized. The results are reported in this thesis. Some SBWs containing relatively small amounts of NaNO3 and NaNO2 (SigmaNOx/Sigma Na<25 mol%) can be directly solidified with metakaolin. The remaining SBW having high concentrations of nitrate and nitrite (SigmaNOx/Sigma Na>25 mol%) require pretreatment since a zeolitic matrix such as cancrinite is unable to host more than 25 mol% nitrate/nitrite. Two procedures to denitrate/denitrite followed by solidification were developed. One is based on calcination in which a reducing agent such as sucrose and metakaolin have been chosen as a way of reducing nitrate and nitrite to an acceptable level. The resulting calcine can be solidified using additional metakaolin and NaOH to form a hydroceramic. As an alternate, a chemical denitration/denitrition process using Si and Al powders as the reducing agents, followed by adding metakaolin to the solution prepare a hydroceramic was also investigated. Si and Al not only are the reducing agents, but they also provide Si and Al species to make zeolites during the reducing process. Performance of the hydroceramics was documented using SEM microstructure and X-ray diffraction phase analysis, mechanical property and leaching tests (Product Consistency Test and ANSI/ANS-16.1 leaching test).
Sodium polystyrene sulfonate is used to treat hyperkalemia (increased amounts of potassium in the body). Sodium polystyrene sulfonate is in a class of medications called potassium-removing agents. It works by ...
Liu, Wei; Yin, Huiyong; Akazawa, Yoko Ogawa; Yoshida, Yasukazu; Niki, Etsuo; Porter, Ned A.
2010-01-01
The primary products from peroxidation of linoleate in biological tissues and fluids are the hydroperoxy octadecadienoates and the products normally assayed, after reduction of the hydroperoxides, are the corresponding hydroxy octadecadienoates (HODEs). The HODEs are found in tissues and fluids as a mixture of Z,E and E,E stereoisomers. Two regioisomeric sets of Z,E and E,E stereoisomers are normally observed with substitution at the 9 and 13 position of the 18-carbon chain. The Z,E/E,E product ratio has proved to be a useful means for assessing the reducing capacity of the medium undergoing peroxidation. The HODE Z,E/E,E product ratios previously reported for tissues such as liver and brain vary from 0.5 to 2.0 and plasma ratios are somewhat higher, between 2.0 and 3.0. The reported literature protocols for HODE assay in tissues involve homogenization, reduction with sodium borohydride in the presence of BHT, and ester hydrolysis with KOH to give the free HODEs. This is followed by either reverse-phase HPLC of the free acid HODEs or by conversion to TMS derivatives and GC/MS. When sodium borohydride is replaced in the protocol by triphenylphosphine, a gentler reducing agent, HODE Z,E/E,E product ratios are much higher and lower total HODEs levels of are found. It is proposed that inclusion of sodium borohydride in the isolation procedures leads to ex vivo reactions that are avoided if triphenylphosphine is used as the reducing agent. Modified protocols for HODE analyses (Tissue and Plasma Methods #2) are described that should be used for assays of tissues and fluids. PMID:20423158
Luther, Megan K; Mermel, Leonard A; LaPlante, Kerry L
2016-03-01
Results of a study of the activity of antibiotic lock solutions of vancomycin and telavancin against biofilm-forming strains of Staphylococcus epidermidis, Enterococcus faecalis, and Staphylococcus aureus are reported. An established in vitro central venous catheter model was used to evaluate lock solutions containing vancomycin (5 mg/mL) or telavancin (5 mg/mL), with and without preservative-containing heparin sodium (with 0.45% benzyl alcohol) 2500 units/mL, heparin, and 0.9% sodium chloride solution. Lock solutions were introduced after 24-hour bacterial growth in catheters incubated at 35 °C. After 72 hours of exposure to the lock solutions, catheters were drained, flushed, and cut into segments for quantification of colony-forming units. Against S. epidermidis, vancomycin and telavancin (with or without heparin) had similar activity. Against E. faecalis, vancomycin alone was more active than telavancin alone (p < 0.01). Against S. aureus, vancomycin plus heparin had activity similar to that of vancomycin alone; both lock agents had greater activity than telavancin (p < 0.02). The addition of heparin was associated with reduced activity of the vancomycin lock solution against S. epidermidis and E. faecalis (p < 0.01). Telavancin activity was not significantly changed with the addition of heparin. In a central venous catheter model, vancomycin and telavancin activity was similar in reducing biofilm-producing S. epidermidis. However, vancomycin was more active than telavancin against E. faecalis and S. aureus. None of the tested agents eradicated biofilm-forming strains. The addition of preservative-containing heparin sodium 2500 units/mL to vancomycin was associated with reduced activity against S. epidermidis and E. faecalis. Copyright © 2016 by the American Society of Health-System Pharmacists, Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Takarini, V.; Hasratiningsih, Z.; Karlina, E.; Febrida, R.; Asri, L. A. T. W.; Purwasasmita, BS
2017-02-01
Putty elastomeric material is a viscous, moldable material that can be used as a dental impression to record and duplicate the tooth structure. Commercially available putty materials are hardly found in the Indonesian market. The aim of this work is to develop an alternative putty dental material from glutinous rice with two different gelling agents; sodium alginate and bovine gelatine. A commercially putty material was used as a control. The length of time required for the putty materials to set (setting time) was evaluated with compression set test. The result showed that sodium alginate and bovine gelatine gelling agents resulted in moldable putty materials that comparable to the commercial product. Glutinous rice mixed with sodium alginate gelling agent demonstrated longer setting time (more than 1 hours) compared to bovine gelatine (6 minutes). These may occur due to heat treatment applied to the bovine gelatine, while sodium alginate mixture has a chemical reaction since CaCl2 crosslink agent had been added to the mixture. Glutinous rice with bovine gelatine mixture is a promising candidate to be used as a dental putty material.
Survey of Chemical Compounds Tested In Vitro against Rumen Protozoa for Possible Control of Bloat
Willard, F. L.; Kodras, Rudolph
1967-01-01
Over 170 chemical agents were screened for antiprotozoal action in bovine ruminal fluid. Compounds were tested at 0.1 and 0.05% concentrations. Tested compounds included inorganic compounds, antibiotics, biocides, neuromuscular agents, arsenicals, plant and animal hormones, antimalarials, surface-active agents, anthelmintics, and many others. The most active compounds were cupric sulfate, nickel sulfate, nitrofurazone, hydrogen peroxide, dodecyl sodium sulfate, pelargonic acid, iodoacetic acid, 1-diethylaminoethylamino-4-methylthiaxanthrone, sodium arsanilate, sodium arsenate, bismuth glycolyl arsanilate, 1-β-hydroxyethyl-2-methyl-5-nitroimidazole, and p-nitroaniline. Copper ion was not particularly effective against entodinia; nickel ion had no effect on holotrichs. Hydrogen peroxide and iodoacetic acid were effective at a concentration of 0.005%. Anionic surface-active agents were very effective, especially long-chain sulfates and phosphates. These antiprotozoal agents warrant further in vivo studies for possible use in treating or curing bloat in ruminants. PMID:6077407
Survey of chemical compounds tested in vitro against rumen protozoa for possible control of bloat.
Willard, F L; Kodras, R
1967-09-01
Over 170 chemical agents were screened for antiprotozoal action in bovine ruminal fluid. Compounds were tested at 0.1 and 0.05% concentrations. Tested compounds included inorganic compounds, antibiotics, biocides, neuromuscular agents, arsenicals, plant and animal hormones, antimalarials, surface-active agents, anthelmintics, and many others. The most active compounds were cupric sulfate, nickel sulfate, nitrofurazone, hydrogen peroxide, dodecyl sodium sulfate, pelargonic acid, iodoacetic acid, 1-diethylaminoethylamino-4-methylthiaxanthrone, sodium arsanilate, sodium arsenate, bismuth glycolyl arsanilate, 1-beta-hydroxyethyl-2-methyl-5-nitroimidazole, and p-nitroaniline. Copper ion was not particularly effective against entodinia; nickel ion had no effect on holotrichs. Hydrogen peroxide and iodoacetic acid were effective at a concentration of 0.005%. Anionic surface-active agents were very effective, especially long-chain sulfates and phosphates. These antiprotozoal agents warrant further in vivo studies for possible use in treating or curing bloat in ruminants.
Queiroz, Daher Antonio; Peçanha, Marcelo Massaroni; Neves, Ana Christina Claro; Frizzera, Fausto; Tonetto, Mateus Rodrigues; Silva-Concílio, Laís Regiane
2013-11-01
Dental impressions disinfection is important to reduce the risk of cross contamination but this process may produce dimensional distortions. Peracetic acid is a disinfectant agent with several favorable characteristics yet underutilized in Dentistry. The aim of this paper is to compare the dimensional stability of casts obtained from addition silicone and polyether impressions that were immersed for 10 minutes in a solution of 0.2% peracetic acid or 1% sodium hypochlorite. Sixty samples in type IV gypsum were produced after a master cast that simulated a full crown preparation of a maxillary premolar. Samples were divided in 6 groups (n = 10) according to the impression material and disinfection agent: Group AC--addition silicone control (without disinfectant); Group APA--addition silicone + 0.2% peracetic acid; Group AH--addition silicone + 1% sodium hypochlorite; Group PC--polyether control (without disinfectant); Group PPA--polyether + 0.2% peracetic acid; Group PH--polyether + 1% sodium hypochlorite. Cast height, base and top diameter were measured and a mean value was obtained for each sample and group all data was statistically analyzed (ANOVA, p < 0.05). There was not a significant statistical difference between addition silicone and polyether impressions regardless of the disinfectant materials. It can be concluded that disinfection with the proposed agents did not produce significant alterations of the impressions and the peracetic acid could be considered a reliable material to disinfect dental molds.
Influence of dispersing agents and solution conditions on the solubility of crude kaolin.
Zaman, Abbas A; Mathur, Sharad
2004-03-01
Experiments measuring the solubility of kaolin particles in terms of the concentration of aluminum and silicon ions in supernatant were carried out as a function of the pH of the slurry over a wide range of dosages of different dispersing agents varying from 0.5 to 12 mg/(g solids). The concentrations of the metal ions in supernatant were found to be strongly affected by the type and the dosage of the dispersants and pH of the solution. In this study, the mechanism of the reaction between the dispersing agents and kaolin particles was studied and the dissolution capacities of metal ions (aluminum and silicon) were identified from kaolin particles in the absence and presence of dispersing agents. The three anionic dispersing agents used were sodium polyacrylate (Na-PAA), sodium hexametaphosphate (Na-HMP), and sodium silicate (Na-silicate), based on the industrial application of these agents and their ability to produce a stable dispersion for this purpose.
Moghimipour, Eskandar; Salimi, Anayatollah; Rezaee, Saeed; Balack, Maryam; Handali, Somayeh
2014-05-01
Nitrofurantoin is a nitrofuran antibiotic that has been used for treatment of urinary tract against positive and negative bacteria. The aim of this study was to evaluate the effect of structural vehicles and flocculating agents on physical stability and rheological behavior of nitrofurantoin suspension. To formulate the suspensions, the effect of glycerin and polysorbate 80 as wetting agents was evaluated and their particle sizes were determined using the sieve method. Then to achieve controlled flocculation, sodium citrate and aluminum chloride were added. After choosing the suitable wetting and flocculating agents, structural vehicles such as sodium carboxyl methyl cellulose and Veegum were evaluated individually and in combination. In addition, the effect of sorbitol on density of continuous phase and some physical stability parameters such as sedimentation volume, degree of flocculation and ease of redispersion of the suspensions were evaluated. After incorporation of structural vehicles, the rheological properties of formulations were also determined to find their flow behavior. According to the results, glycerin (0.2%) and sodium citrate (0.3%) had the best effect on the suspension stability as wetting and flocculating agents, respectively. Rheological properties of formulations showed pseudoplastic behavior with some degree of thixotropy. In conclusion, the suspension containing Veegum 1%, sodium carboxy methyl cellulose 1%, glycerine 0.2%, sodium citrate 0.3% and sorbitol 20 % was chosen as the most physically stable formulation.
21 CFR 176.210 - Defoaming agents used in the manufacture of paper and paperboard.
Code of Federal Regulations, 2011 CFR
2011-04-01
... (soaps). Sorbitol (esters). Sulfuric acid (sulfated and sulfonated compounds). Triethanolamine (amides... sulfate. Sodium lignin sulfonate. Sodium 2-mercaptobenzothiazole. Sodium naphthalenesulfonic acid (3 mols...
21 CFR 176.210 - Defoaming agents used in the manufacture of paper and paperboard.
Code of Federal Regulations, 2010 CFR
2010-04-01
... (soaps). Sorbitol (esters). Sulfuric acid (sulfated and sulfonated compounds). Triethanolamine (amides... sulfate. Sodium lignin sulfonate. Sodium 2-mercaptobenzothiazole. Sodium naphthalenesulfonic acid (3 mols...
Peterson, Christine M; Lin, Michael; Pilgram, Thomas; Heiken, Jay P
2011-01-01
To compare the efficacy and patient tolerance of iohexol and meglumine sodium diatrizoate as oral contrast agents for computed tomography (CT). One hundred patients were randomly assigned to drink 1000 mL of either meglumine sodium diatrizoate or iohexol 350 before their abdominopelvic CT examination. The images were evaluated independently and in a blinded fashion by 2 radiologists who scored the extent and density of bowel opacification. Attenuation value measurements were obtained in representative areas of each gastrointestinal tract segment (stomach, duodenum, jejunum, ileum, and colon) by a research technologist. Patients' tolerance of the oral contrast agent was assessed through a questionnaire administered immediately after the CT and with a follow-up phone call 2 to 3 days later. For most of the bowel, there was no statistically significant difference in the extent or degree of opacification between the 2 contrast agents. Opacification of the ileum was better with iohexol. There was no statistically significant difference between the 2 agents in adverse effects. Patients had a small but statistically significant preference for the taste of iohexol. Iohexol 350 is a satisfactory oral contrast agent for abdominopelvic CT. It opacifies the gastrointestinal tract as well as meglumine sodium diatrizoate does, and patients prefer the taste of iohexol to that of diatrizoate.
Brar, Satinder K; Verma, M; Tyagi, R D; Valéro, J R; Surampalli, R Y
2006-08-01
Screening of different adjuvants, namely, suspending agents, phagostimulants, stickers, antimicrobial agents, and UV screens to develop aqueous biopesticidal suspensions of Bacillus thuringiensis (Bt) variety kurstaki HD-1 fermented broths, specifically, nonhydrolyzed sludge, hydrolyzed sludge, starch industry wastewater, and soya (commercial medium), were investigated. The selected suspending agents [20% (wt:vol)] included sorbitol, sodium monophosphate, and sodium metabisulfite with corresponding suspendibility of 74-92, 69-85, and 71-82%, respectively. Molasses [0.2% (wt:vol)] increased adherence by 84-90% for all fermented broths. The optimal phagostimulants [0.5% (wt:vol)], namely, soya and molasses, caused entomotoxicity increase of 3-13 and 7-13%, respectively. Sorbic and propionic acids showed high antimicrobial action [0.5% (wt:vol)], irrespective of fermentation medium. Sodium lignosulfonate, molasses, and Congo red, when used as UV screens [0.2% (wt:vol)], showed percent corresponding entomotoxicity losses of 3-5, 0.5-5 and 2-16, respectively. The Bt formulations, when exposed to UV radiation, showed higher half-lives (with and without UV screens) than the fermented broths or semisynthetic soya medium and commercial Bt formulation. UV screen-amended nonhydrolyzed, hydrolyzed, and starch industry wastewater formulations showed 1.3-1.5-fold higher half-lives than commercial Bt formulation. Thus, the recommended formulation comprises sorbitol, sodium monophosphate, sodium metabisulfite (suspending agents); molasses, soya flour (phagostimulants); molasses and skimmed milk powder (rainfasteners); sorbic and propionic acids (antimicrobial agents) and sodium lignosulfate; and molasses and Congo red (UV screens). These waste-based Bt formulations offer better UV resistance in comparison with commercial formulation.
21 CFR 181.34 - Sodium nitrite and potassium nitrite.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium nitrite and potassium nitrite. 181.34...-Sanctioned Food Ingredients § 181.34 Sodium nitrite and potassium nitrite. Sodium nitrite and potassium... fixatives and preservative agents, with or without sodium or potassium nitrate, in the curing of red meat...
21 CFR 181.34 - Sodium nitrite and potassium nitrite.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium nitrite and potassium nitrite. 181.34...-Sanctioned Food Ingredients § 181.34 Sodium nitrite and potassium nitrite. Sodium nitrite and potassium... fixatives and preservative agents, with or without sodium or potassium nitrate, in the curing of red meat...
Jun, Sang Hui; Cha, Song-Hyun; Kim, Jae-Hyun; Yoon, Minho; Cho, Seonho; Park, Youmie
2015-08-01
Silver nanoparticles (AgNPs) have been shown to be effective antibacterial agents against methicillin-resistant Staphylococcus aureus (MRSA). In this study, AgNPs were synthesized using Caesalpinia sappan extract as a reducing agent to convert Ag+ to AgNPs. Seven stabilizers (surfactants and polymers) were added during the reduction step to increase the colloidal stability and to enhance the antibacterial activity of the AgNPs. Spherical and amorphous particles were primarily observed, with estimated diameters ranging from 30.2 to 47.5 nm. X-ray diffraction confirmed the face centered cubic structures of the AgNPs. Among the employed stabilizers, the cationic surfactant cetyltrimethylammonium bromide (CTAB) exhibited the highest antibacterial activity against 19 strains of MRSA, followed by polyvinylpyrrolidone (PVP, average molecular weight of 10,000). In contrast, the anionic surfactants sodium dodecyl sulfate (SDS) and sodium dodecylbenzene sulfonate (NaDDBS) did not exhibit any significant antibacterial activity, suggesting that the cationic surfactant head group contributed to the higher antibacterial activity of the AgNPs against MRSA.
Parker, John C.
1969-01-01
It is known that bisulfite ions can selectively deplete red blood cells of 2,3-diphosphoglycerate (2,3-DPG). Studies of the effects of bisulfite on sodium-potassium permeability and metabolism were undertaken to clarify the physiologic role of the abundant quantities of 2,3-DPG in human erythrocytes. Treatment of cells with bisulfite results in a reversible increase in the passive permeability to Na and K ions. Metabolism of glucose to lactate is increased, with a rise in the intracellular ratio of fructose diphosphate to hexose monophosphate. Cell 2,3-DPG is quantitatively converted to pyruvate and inorganic phosphate. The permeability effects of bisulfite are countered by ethacrynic acid and by such oxidizing agents as pyruvate and methylene blue. Taken together, the results suggest that the effects on Na-K flux of bisulfite are related more to the reducing potential of this anion than to its capacity to deplete cells of 2,3-DPG. PMID:5765015
Sunlight-assisted synthesis of colloidal silver nanoparticles using chitosan as reducing agent
NASA Astrophysics Data System (ADS)
Susilowati, E.; Maryani; Ashadi
2018-04-01
The present study we explore an environmentally friendly colloidal silver nanoparticles preparation using chitosan as reducing agent and stabilizer. It develops a new strategy on preparation of silver nanoparticles through the gel phase using sodium hydroxide (NaOH) as accelerator reagent. Sunlight irradiation was employed to assisted reducing process of silver ions to silver nanoparticles. Localized surface plasmon resonance (LSPR) phenomenon of silver nanoparticles was investigated using UV-Vis spectrophotometer. The shape and size of silver particles were analyzed using TEM. The formation of silver nanoparticles was confirmed by the appearance of LSPR absorption peak at 396.0–412.0 nm. The absorption peak of LSPR were affected by NaOH amount, time of sulight irradiation and concentration of AgNO3. The produced silver nanoparticles were spherical with dominant size range of 5 to 8 nm as shown by TEM images. All colloidals were stable without any aggregation for 30 days after preparation.
Mizoguchi, T; Ishii, H
1980-06-01
Sulphate in sulphate ores, e.g., alunite, anglesite, barytes, chalcanthite, gypsum, manganese sulphate ore, is reduced to hydrogen sulphide by the hypophosphite-tin metal-CPA method, if a slight modification is made. Sulphide ores, e.g., galena, sphalerite, are quantitatively decomposed with CPA alone to give hydrogen sulphide. Suitable reducing agents must be used for the quantitative recovery of hydrogen sulphide from pyrite, nickel sulphide, cobalt sulphide and cadmium sulphide, or elemental sulphur is liberated. Iodide must be used in the decomposition of chalcopyrite; the copper sulphide is too stable to be decomposed by CPA alone. Molybdenite is not decomposed in CPA even if reducing agents are added. The pretreatment methods for the determination of sulphur in sulphur oxyacids and elemental sulphur have also been investigated.
Freezing points and small-scale deicing tests for salts of levulinic acid made from grain sorghum.
Ganjyal, G; Fang, Q; Hanna, M A
2007-11-01
Deicers from renewable resources are needed to overcome the disadvantages of using traditional deicers. Salts made from levulinic acid produced using grain sorghum as raw material were tested as road deicing agents. Freezing points of these salts viz., sodium levulinate, magnesium levulinate and calcium levulinate along with rock salt (sodium chloride) were determined according to American Society for Testing and Materials (ASTM) D 1177-94 standard at concentrations of 10, 20, 30 and 40 % w/w. There were significant differences among the freezing points of the salts. Freezing points for rock salt, sodium levulinate, calcium levulinate and magnesium levulinate, for different concentrations, were in the ranges of -6.6 to -20.5, -2.9 to -15.0, -2.1 to -7.8 and -1.5 to -6.5 degrees C, respectively. Deicing effectiveness of the salts of levulinic acid were investigated by conducting small-scale deicing tests with aqueous solutions of various salt concentrations (2%, 5% and 10%) in a laboratory freezer and by spraying the deicer on a graveled surface covered by ice and snow with the average temperature during the testing at -2.7 degrees C. Deicing capabilities of the three salts of levulinic acid differed. At -2.7 degrees C, all three salts caused melting of the ice. Among the different levulinates studied sodium levulinate was the most effective deicing agent. These salts of levulinates could be a viable replacement for traditional deicers and could help in reducing the disadvantages of traditional deicers.
Scheen, André J
2014-04-01
Inhibitors of sodium-glucose cotransporters type 2 (SGLT2) reduce hyperglycaemia by decreasing renal glucose threshold and thereby increasing urinary glucose excretion. They are proposed as a novel approach for the management of type 2 diabetes mellitus. They have proven their efficacy in reducing glycated haemoglobin, without inducing hypoglycaemia, as monotherapy or in combination with various other glucose-lowering agents, with the add-on value of promoting some weight loss and lowering arterial blood pressure. As they may be used concomitantly with many other drugs, we review the potential drug-drug interactions (DDIs) regarding the three leaders in the class (dapagliglozin, canagliflozin and empagliflozin). Most of the available studies were performed in healthy volunteers and have assessed the pharmacokinetic interferences with a single administration of the SGLT2 inhibitor. The exposure [assessed by peak plasma concentrations (Cmax) and area under the concentration-time curve (AUC)] to each SGLT2 inhibitor tested was not significantly influenced by the concomitant administration of other glucose-lowering agents or cardiovascular agents commonly used in patients with type 2 diabetes. Reciprocally, these medications did not influence the pharmacokinetic parameters of dapagliflozin, canagliflozin or empagliflozin. Some modest changes were not considered as clinically relevant. However, drugs that could specifically interfere with the metabolic pathways of SGLT2 inhibitors [rifampicin, inhibitors or inducers of uridine diphosphate-glucuronosyltransferase (UGT)] may result in significant changes in the exposure of SGLT2 inhibitors, as shown for dapagliflozin and canagliflozin. Potential DDIs in patients with type 2 diabetes receiving chronic treatment with an SGLT2 inhibitor deserve further attention, especially in individuals treated with several medications or in more fragile patients with hepatic and/or renal impairment.
High pressure-resistant nonincendive emulsion explosive
Ruhe, Thomas C.; Rao, Pilaka P.
1994-01-01
An improved emulsion explosive composition including hollow microspheres/bulking agents having high density and high strength. The hollow microspheres/bulking agents have true particle densities of about 0.2 grams per cubic centimeter or greater and include glass, siliceous, ceramic and synthetic resin microspheres, expanded minerals, and mixtures thereof. The preferred weight percentage of hollow microspheres/bulking agents in the composition ranges from 3.0 to 10.0 A chlorinated paraffin oil, also present in the improved emulsion explosive composition, imparts a higher film strength to the oil phase in the emulsion. The emulsion is rendered nonincendive by the production of sodium chloride in situ via the decomposition of sodium nitrate, a chlorinated paraffin oil, and sodium perchlorate. The air-gap sensitivity is improved by the in situ formation of monomethylamine perchlorate from dissolved monomethylamine nitrate and sodium perchlorate. The emulsion explosive composition can withstand static pressures to 139 bars and dynamic pressure loads on the order of 567 bars.
21 CFR 180.37 - Saccharin, ammonium saccharin, calcium saccharin, and sodium saccharin.
Code of Federal Regulations, 2014 CFR
2014-04-01
... intended for use as a sweetening agent only in special dietary foods, as follows: (1) In beverages, fruit... saccharin, for each expressed teaspoonful of sugar sweetening equivalency. (3) In processed foods, in... saccharin, calcium saccharin, and sodium saccharin may be safely used as sweetening agents in food in...
Mahboub, Farhang; Salehsaber, Fariba; Parnia, Fereydoon; Gharekhani, Vahedeh; Kananizadeh, Yousef; Taghizadeh, Mahsa
2017-01-01
Background. The aim of the present study was to evaluate the effect of Corega and 2.5% sodium hypochlorite cleansing agents on the shear and tensile bond strengths of GC soft liner to denture base. Methods. A total of 144 samples (72 samples for tensile and 72 for shear bond strength evaluations) were prepared. The samples in each group were subdivided into three subgroups in terms of the cleansing agent used (2.5% sodium hypochlorite, Corega and distilled water [control group]). All the samples were stored in distilled water, during which each sample was immersed for 15 minutes daily in sodium hypochlorite or Corega solutions. After 20 days the tensile and shear bond strengths were determined using a universal testing machine. In addition, a stereomicroscope was used to evaluate fracture modes. Data were analyzed with one-way ANOVA, using SPSS 16. Results. The results of post hoc Tukey tests showed significant differences in the mean tensile and shear bond strength values between the sodium hypochlorite group with Corega and control groups (P=0.001 for comparison of tensile bond strengths between the sodium hypochlorite and control groups, and P<0.001 for the comparison of tensile bond strengths between the sodium hypochlorite and Corega groups and the shear bond strengths between the sodium hypochlorite and Corega groups, and sodium hypochlorite and control groups).The majority of failures were cohesive in the control and Corega groups and cohesive/adhesive in the sodium hypochlorite group. Conclusion. Immersion of soft liners in Corega will result in longevity of soft liners compared to immersion in sodium hypochlorite solution and sodium hypochlorite solution significantly decreased the tensile and shear bond strengths compared to the control and Corega groups.
Mahboub, Farhang; Salehsaber, Fariba; Parnia, Fereydoon; Gharekhani, Vahedeh; Kananizadeh, Yousef; Taghizadeh, Mahsa
2017-01-01
Background. The aim of the present study was to evaluate the effect of Corega and 2.5% sodium hypochlorite cleansing agents on the shear and tensile bond strengths of GC soft liner to denture base. Methods. A total of 144 samples (72 samples for tensile and 72 for shear bond strength evaluations) were prepared. The samples in each group were subdivided into three subgroups in terms of the cleansing agent used (2.5% sodium hypochlorite, Corega and distilled water [control group]). All the samples were stored in distilled water, during which each sample was immersed for 15 minutes daily in sodium hypochlorite or Corega solutions. After 20 days the tensile and shear bond strengths were determined using a universal testing machine. In addition, a stereomicroscope was used to evaluate fracture modes. Data were analyzed with one-way ANOVA, using SPSS 16. Results. The results of post hoc Tukey tests showed significant differences in the mean tensile and shear bond strength values between the sodium hypochlorite group with Corega and control groups (P=0.001 for comparison of tensile bond strengths between the sodium hypochlorite and control groups, and P<0.001 for the comparison of tensile bond strengths between the sodium hypochlorite and Corega groups and the shear bond strengths between the sodium hypochlorite and Corega groups, and sodium hypochlorite and control groups).The majority of failures were cohesive in the control and Corega groups and cohesive/adhesive in the sodium hypochlorite group. Conclusion. Immersion of soft liners in Corega will result in longevity of soft liners compared to immersion in sodium hypochlorite solution and sodium hypochlorite solution significantly decreased the tensile and shear bond strengths compared to the control and Corega groups. PMID:29184635
Minimizing Hemodialysis Catheter Dysfunction: An Ounce of Prevention
Lee, Timmy; Lok, Charmaine; Vazquez, Miguel; Moist, Louise; Maya, Ivan; Mokrzycki, Michele
2012-01-01
The maintenance of tunneled catheter (TC) patency is critical for the provision of adequate hemodialysis in patients who are TC-dependent. TC dysfunction results in the need for costly and inconvenient interventions, and reduced quality of life. Since the introduction of TCs in the late 1980s, heparin catheter lock has been the standard prophylactic regimen for the prevention of TC dysfunction. More recently, alternative catheter locking agents have emerged, and in some cases have shown to be superior to heparin lock with respect to improving TC patency and reducing TC-associated infections. These include citrate, tissue plasminogen activator, and a novel agent containing sodium citrate, methylene blue, methylparaben, and propylparaben. In addition, prophylaxis using oral anticoagulants/antiplatelet agents, including warfarin, aspirin, ticlodipine, as well as the use of modified heparin-coated catheters have also been studied for the prevention of TC dysfunction with variable results. The use of oral anticoagulants and/or antiplatelet agents as primary or secondary prevention of TC dysfunction must be weighed against their potential adverse effects, and should be individualized for each patient. PMID:22518310
[Sodium Glucose Co-transporter Type 2 (SGLT2) Inhibitors in CKD].
Insalaco, Monica; Zanoli, Luca; Rastelli, Stefania; Lentini, Paolo; Rapisarda, Francesco; Fatuzzo, Pasquale; Castellino, Pietro; Granata, Antonio
2015-01-01
Among the new drugs used for the treatment of Diabetes Mellitus type 2, sodium-glucose cotransporter 2 (SGLT2) inhibitors represent a promising therapeutic option. Since their ability to lower glucose is proportional to GFR, their effect is reduced in patients with chronic kidney disease (CKD). The antidiabetic mechanism of these drugs is insulin-independent and, therefore, complimentary to that of others antihyperglicaemic agents. Moreover, SGLT2 inhibitors are able to reduce glomerular hyperfiltration, systemic and intraglomerular pressure and uric acid levels, with consequent beneficial effects on the progression of kidney disease in non diabetic patients as well. Only few studies have been performed to evaluate the effects of SGLT2 inhibitors in patients with CKD. Therefore, safety and efficacy of SGLT2 inhibitors should be better clarified in the setting of CKD. In this paper, we will review the use of SGLT2 inhibitors in diabetic patients, including those with CKD.
Moghimipour, Eskandar; Salimi, Anayatollah; Rezaee, Saeed; Balack, Maryam; Handali, Somayeh
2014-01-01
Background: Nitrofurantoin is a nitrofuran antibiotic that has been used for treatment of urinary tract against positive and negative bacteria. Objectives: The aim of this study was to evaluate the effect of structural vehicles and flocculating agents on physical stability and rheological behavior of nitrofurantoin suspension. Materials and Methods: To formulate the suspensions, the effect of glycerin and polysorbate 80 as wetting agents was evaluated and their particle sizes were determined using the sieve method. Then to achieve controlled flocculation, sodium citrate and aluminum chloride were added. After choosing the suitable wetting and flocculating agents, structural vehicles such as sodium carboxyl methyl cellulose and Veegum were evaluated individually and in combination. In addition, the effect of sorbitol on density of continuous phase and some physical stability parameters such as sedimentation volume, degree of flocculation and ease of redispersion of the suspensions were evaluated. After incorporation of structural vehicles, the rheological properties of formulations were also determined to find their flow behavior. Results: According to the results, glycerin (0.2%) and sodium citrate (0.3%) had the best effect on the suspension stability as wetting and flocculating agents, respectively. Rheological properties of formulations showed pseudoplastic behavior with some degree of thixotropy. Conclusions: In conclusion, the suspension containing Veegum 1%, sodium carboxy methyl cellulose 1%, glycerine 0.2%, sodium citrate 0.3% and sorbitol 20 % was chosen as the most physically stable formulation. PMID:24872937
Environmentally Sustainable Yellow Smoke Formulations for Use in the M194 Hand Held Signal
2012-06-10
of the pyrotechnic train through the system hardware, potassium chlorate (oxidizer) and the sugar (fuel, or reducing agent) engage in a reduction...1: Composition of M194 control formulation Ingredient Wt. % Function Potassium Chlorate 35.0 Oxidizer Sugar (sucrose) 20.0 Fuel Vat yellow...Experimental Section 1. Materials Potassium chlorate , potassium nitrate, sodium bicarbonate, stearic acid, and sugar were purchased from Hummel
Ulker, S.; Tok, D.; Kosay, S.; Oyman, S.
1991-01-01
The effects of commonly used intravenous anaesthetic agents ketamine, thiopental sodium and propofol on the caffeine-alone or halothane-plus-caffeine-induced muscle contractures were investigated to determine safety for use in patients susceptible to malignant hyperthermia (MH). The muscle strips from rat diaphragm were exposed to one of these anaesthetic agents prior to challenge with caffeine 8 mmol/l alone or halothane 3% plus caffeine 8 mmol/l together. None of the three agents induced contractures when added alone. Ketamine 100 mumol/l and thiopental sodium 300 mumol/l augmented neither caffeine-alone nor caffeine-with-halothane contractures significantly and these two agents appear to be safe for use in MH-susceptible patients. In contrast, propofol 150 mumol/l augmented these contractile responses significantly and may not be recommended for use in patients known to be susceptible to this anaesthetic complication. PMID:1742205
Geopolymer lightweight bricks manufactured from fly ash and foaming agent
NASA Astrophysics Data System (ADS)
Ibrahim, Wan Mastura Wan; Hussin, Kamarudin; Abdullah, Mohd Mustafa Al Bakri; Kadir, Aeslina Abdul
2017-04-01
This paper deals with the development of lightweight geopolymer bricks by using foaming agent and fly ash. The mix parameters analysed through a laboratory experiment with fix ratio of sodium silicate/sodium hydroxide solution mass ratio 2.5, fly ash/alkaline activator solution mass ratio 2.0, foaming agent/paste mass ratio 1:2 and molarity of sodium hydroxide solution used was 12M. Different curing temperature (Room Temperature, 60, 80) and foaming agent/water mass ratio (1:10 and 1:20) were studied. Compressive strength, density analysis, and water absorption has been investigated. The results show that the foamed geopolymer bricks with a lower foam/water mass ratio (1:10)and high curing temperature (80°C) leading to a better properties. Mixtures with a low density of around 1420 kg/m3 and a compressive strength of around 10 MPa were achieved.
St-Louis, Jean; Sicotte, Benoît; Beauséjour, Annie; Brochu, Michèle
2006-02-01
Lowering and increasing sodium intake in pregnant rats evoke opposite changes in renin-angiotensin-aldosterone system (RAAS) activity and are associated with alterations of blood volume expansion. As augmented uterine blood flow during gestation is linked to increased circulatory volume, we wanted to determine if low- and high-sodium intakes affect the mechanical properties and angiotensin II (AngII) responses of the uterine vasculature. Non-pregnant and pregnant rats received a normal sodium (0.22% Na+) diet. On the 15th day of gestation some animals were moved to a low-sodium (0.03%) diet, whereas others were given NaCl supplementation as beverage (saline, 0.9% or 1.8%) for 7 days. All rats were killed after 7 days of treatment (eve of parturition). Uterine arcuate arteries (>100 microm) were set up in wire myographs under a tension equivalent to 50 mmHg transmural pressure. The pregnancy-associated increase in diameter of the uterine arteries was significantly attenuated on the low-sodium diet and 1.8% NaCl supplementation. The arcuate arteries of non-pregnant rats on the low-sodium diet showed markedly increased responses to AngII and phenylephrine (Phe). Pregnancy also resulted in heightened responses to AngII and Phe that were significantly reduced for the former agent in rats on the low-sodium diet. Sodium supplementation of non-pregnant rats did not affect the reactivity of the uterine arteries to AngII, but significantly reduced the effect of Phe (1 micromol/l). High salt also significantly diminished the elevated responses to AngII in the arteries of pregnant animals. It was observed that altered sodium intake affects the mechanical and reactive properties of the uterine arcuate arteries more importantly in pregnant than in non-pregnant rats. Low-salt intake similarly affected the reactivity of the uterine arcuate arteries to AngII and Phe, whereas high-salt intake more specifically affected AngII responses. These results showed that perturbations of sodium intake have major impacts on the structure and functions of the uterine arterial circulation, indicating RAAS involvement in uterine vascular remodeling and function during gestation.
Are SGLT2 inhibitors reasonable antihypertensive drugs and renoprotective?
Lovshin, J A; Gilbert, R E
2015-06-01
By eliminating glucose in the urine, the sodium-glucose-linked cotransporter-2 (SGLT2) inhibitors act as osmotic diuretics to lower blood pressure in addition to reducing plasma glucose and assisting with weight loss. While not approved as antihypertensive agents, the ability of this new class of antihyperglycemic agents to lower blood pressure is not insubstantial, and while not used primarily for this indication, they may assist diabetic individuals in attaining currently recommended blood pressure targets. In addition to lowering systemic pressure, preclinical and exploratory human studies suggest that SGLT2 inhibitors may also lower intraglomerular pressure, potentially reducing the rate of GFR decline in patients with diabetic nephropathy. However, given the lack of clinically meaningful endpoint data, the use of SGLT2 inhibitors, primarily, as either antihypertensive or renoprotective agents would, at present, be premature. Fortunately, further insight will be garnered from large, randomized controlled trials that will assess the effects of various SGLT2 inhibitors on cardiovascular and renal outcomes.
The effect of a fluoride dentifrice containing an anticalculus agent on dental caries in children.
Lu, K H; Yen, D J; Zacherl, W A; Ruhlman, C D; Sturzenberger, O P; Lehnhoff, R W
1985-01-01
In this double-blind caries study, 1160 Taiwanese children (ages 8-15) completed a program using a test dentifrice containing 1.243 percent sodium fluoride and soluble pyrophosphates, or a control dentifrice without these agents. The average reduction of new carious tooth surfaces was 39 percent with the sodium fluoride dentifrice.
Formulation and optimisation of raft-forming chewable tablets containing H2 antagonist
Prajapati, Shailesh T; Mehta, Anant P; Modhia, Ishan P; Patel, Chhagan N
2012-01-01
Purpose: The purpose of this research work was to formulate raft-forming chewable tablets of H2 antagonist (Famotidine) using a raft-forming agent along with an antacid- and gas-generating agent. Materials and Methods: Tablets were prepared by wet granulation and evaluated for raft strength, acid neutralisation capacity, weight variation, % drug content, thickness, hardness, friability and in vitro drug release. Various raft-forming agents were used in preliminary screening. A 23 full-factorial design was used in the present study for optimisation. The amount of sodium alginate, amount of calcium carbonate and amount sodium bicarbonate were selected as independent variables. Raft strength, acid neutralisation capacity and drug release at 30 min were selected as responses. Results: Tablets containing sodium alginate were having maximum raft strength as compared with other raft-forming agents. Acid neutralisation capacity and in vitro drug release of all factorial batches were found to be satisfactory. The F5 batch was optimised based on maximum raft strength and good acid neutralisation capacity. Drug–excipient compatibility study showed no interaction between the drug and excipients. Stability study of the optimised formulation showed that the tablets were stable at accelerated environmental conditions. Conclusion: It was concluded that raft-forming chewable tablets prepared using an optimum amount of sodium alginate, calcium carbonate and sodium bicarbonate could be an efficient dosage form in the treatment of gastro oesophageal reflux disease. PMID:23580933
Formulation and optimisation of raft-forming chewable tablets containing H2 antagonist.
Prajapati, Shailesh T; Mehta, Anant P; Modhia, Ishan P; Patel, Chhagan N
2012-10-01
The purpose of this research work was to formulate raft-forming chewable tablets of H2 antagonist (Famotidine) using a raft-forming agent along with an antacid- and gas-generating agent. Tablets were prepared by wet granulation and evaluated for raft strength, acid neutralisation capacity, weight variation, % drug content, thickness, hardness, friability and in vitro drug release. Various raft-forming agents were used in preliminary screening. A 2(3) full-factorial design was used in the present study for optimisation. The amount of sodium alginate, amount of calcium carbonate and amount sodium bicarbonate were selected as independent variables. Raft strength, acid neutralisation capacity and drug release at 30 min were selected as responses. Tablets containing sodium alginate were having maximum raft strength as compared with other raft-forming agents. Acid neutralisation capacity and in vitro drug release of all factorial batches were found to be satisfactory. The F5 batch was optimised based on maximum raft strength and good acid neutralisation capacity. Drug-excipient compatibility study showed no interaction between the drug and excipients. Stability study of the optimised formulation showed that the tablets were stable at accelerated environmental conditions. It was concluded that raft-forming chewable tablets prepared using an optimum amount of sodium alginate, calcium carbonate and sodium bicarbonate could be an efficient dosage form in the treatment of gastro oesophageal reflux disease.
Sellimi, Sabrine; Benslima, Abdelkarim; Ksouda, Ghada; Montero, Veronique Barragan; Hajji, Mohamed; Nasri, Moncef
2017-10-21
Background Nitrite salts are still common additives in the meat industry. The present study provides a first approach on the employment of the lyophilized aqueous extract (WE) of the Tunisian seaweed Cystoseira barbata for the quality enhancement of turkey meat sausage. Methods WE was supplemented as a natural antioxidant agent to investigate its effectiveness in delaying lipid oxidation turkey meat sausages containing reduced amounts of sodium nitrites. Results On storage day 5, all concentrations of WE (0.01-0.4 %) reduced the meat lipid oxidation by approximately 36 %, as compared to the negative control containing only 80 mg/kg of meat of sodium nitrites as antioxidant. It was noted that within 15 days of refrigerated storage, a meat system containing 80 mg/kg of meat of sodium nitrites and 0.02 % and 0.04 % of WE had similar Thiobarbituric Acid Reactive Substances (TBARS) levels (19±1.32 and 17±1.12 µmol/kg of meat, respectively), which were comparable to the positive control containing sodium nitrites (150 mg/kg of meat) and 0.045 % vitamin C (18.46±1.27 µmol/kg of meat). In-depth, the metabolomic profiling using gas chromatography-mass spectrometry (GC/MS) and liquid chromatography-quadripole-time-of-flight-mass spectrometry (LC-QTOF-MS) analyses of the Tunisian seaweed C. barbata solvent extracts showed that the main active compounds were phenolic compounds, fatty acids and sterols. Conclusions Overall, the cold medium containing C. barbata lyophilized aqueous extrac, with strong antioxidant activity and antihypertensive properties, may open the way to the development of a natural quality enhancement strategy for new functional and ever healthier reduced nitrites meat sausages based on algae.
Studies on the Inhibition of Intestinal Absorption of Radioactive Strontium
Waldron-Edward, Deirdre; Paul, T. M.; Skoryna, Stanley C.
1964-01-01
A method is reported which permits selective suppression of absorption of radioactive strontium from ingested food material, permitting calcium to be available to the body. Studies were carried out by measuring bone uptake of Sr89 and Ca45 when various amounts of sodium alginate were fed with the diet. Long-term studies were made in which two different levels of radioactivity were used, to determine the pattern of Sr89 deposition with continuous intake of binding agent. It was found that administration of sodium alginate as a jelly overcomes the problem of constipation and effectively reduces Sr89 uptake, up to 83%. This fact represents a significant finding with respect to the use of the compound in human subjects. Addition of sodium alginate to drinking water is effective with low levels of Sr89 intake. This naturally occurring water-soluble macromolecular substance possesses several advantages in use for the suppression of absorption of radioactive strontium when compared with synthetic ion exchange resins: there is no disturbance of electrolyte balance; efficiency is not reduced by treatment over a prolonged period of time; and finally, the product is palatable. PMID:14222668
Natural Humic-Acid-Based Phototheranostic Agent.
Miao, Zhao-Hua; Li, Kai; Liu, Pei-Ying; Li, Zhenglin; Yang, Huanjie; Zhao, Qingliang; Chang, Manli; Yang, Qingzhu; Zhen, Liang; Xu, Cheng-Yan
2018-04-01
Humic acids, a major constituent of natural organic carbon resources, are naturally formed through the microbial biodegradation of animal and plant residues. Due to numerous physiologically active groups (phenol, carboxyl, and quinone), the biomedical applications of humic acid have been already investigated across different cultures for several centuries or even longer. In this work, sodium humate, the sodium salt of humic acid, is explored as phototheranostic agent for light-induced photoacoustic imaging and photothermal therapy based on intrinsic absorption in the near-infrared region. The purified colloidal sodium humate exhibits a high photothermal conversion efficiency up to 76.3%, much higher than that of the majority of state-of-the-art photothermal agents including gold nanorods, Cu 9 S 5 nanoparticles, antimonene quantum dots, and black phosphorus quantum dots, leading to obvious photoacoustic enhancement in vitro and in vivo. Besides, highly effective photothermal ablation of HeLa tumor is achieved through intratumoral injection. Impressively, sodium humate reveals ultralow toxicity at the cellular and animal levels. This work promises the great potential of humic acids as light-mediated theranostic agents, thus expanding the application scope of traditional humic acids in biomedical field. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, R.L.; Ashley, C.S.
1980-06-01
This report describes a comparative study on the effects of the anionic detergent sodium dodecyl sulfate and the chelating agent ethylenediaminetetraacetate on purified rotavirus SA-11 particles. Both chemicals readily inactivated rotavirus at quite low concentrations and under very mild conditions. In addition, both agents modified the viral capsid and prevented the adsorption of inactivated virions to cells. Capsid damage by ethylenediaminetetraacetate caused a shift in the densities of rotavirions from about l.35 to about 1.37 g/ml and a reduction in their sedimentation coefficients. Sodium dodcyl sulfate, on the other hand, did not detectably alter either of these physical properties ofmore » rotavirions. Both agents caused some alteration of the isoelectric points of the virions. Finally, analysis of rotavirus proteins showed that ethylenediaminetetraacetate caused the loss of two protein peaks from the electrophoretic pattern of virions but sodium dodecyl sulfate caused the loss of only one of these same protein peaks.« less
Torabian, Kian; Lezzar, Dalia; Piety, Nathaniel Z; George, Alex; Shevkoplyas, Sergey S
2017-09-20
Sickle cell anemia (SCA) is a genetic blood disorder that is particularly lethal in early childhood. Universal newborn screening programs and subsequent early treatment are known to drastically reduce under-five SCA mortality. However, in resource-limited settings, cost and infrastructure constraints limit the effectiveness of laboratory-based SCA screening programs. To address this limitation our laboratory previously developed a low-cost, equipment-free, point-of-care, paper-based SCA test. Here, we improved the stability and performance of the test by replacing sodium hydrosulfite (HS), a key reducing agent in the hemoglobin solubility buffer which is not stable in aqueous solutions, with sodium metabisulfite (MS). The MS formulation of the test was compared to the HS formulation in a laboratory setting by inexperienced users ( n = 3), to determine visual limit of detection (LOD), readout time, diagnostic accuracy, intra- and inter-observer agreement, and shelf life. The MS test was found to have a 10% sickle hemoglobin LOD, 21-min readout time, 97.3% sensitivity and 99.5% specificity for SCA, almost perfect intra- and inter-observer agreement, at least 24 weeks of shelf stability at room temperature, and could be packaged into a self-contained, distributable test kits comprised of off-the-shelf disposable components and food-grade reagents with a total cost of only $0.21 (USD).
Myrdal Miller, A; Mills, K; Wong, T; Drescher, G; Lee, S M; Sirimuangmoon, C; Schaefer, S; Langstaff, S; Minor, B; Guinard, J-X
2014-09-01
The effects of beef substitution with crimini or white mushrooms (Agaricus bisporus) on the flavor profiles of carne asada and beef taco blends were measured with a descriptive analysis panel. Sensory mitigation of sodium reduction through the incorporation of mushrooms was also investigated in the taco blends. The substitution of beef with mushrooms in the carne asada did not alter the overall flavor strength of the dish, but the incorporation of 50% or 80% ground mushroom in the beef taco blend did enhance its overall flavor as well as mushroom, veggie, onion, garlic and earthy flavors, and umami and sweet tastes. Overall flavor intensity of the 25% reduced-salt version of the 80% mushroom taco blend matched that of the full-salt versions of the 100% and 50% beef formulations, thus indicating that the substitution of 80% of the meat with mushrooms did mitigate the 25% sodium reduction in terms of the overall flavor impact of the dish, even if it did not quite compensate for the reduction in salty taste. This proof-of-concept study for the Healthy Flavors Research Initiative indicates that because of their flavor-enhancing umami principles, mushrooms can be used as a healthy substitute for meat and a mitigating agent for sodium reduction in meat-based dishes without loss of overall flavor. © 2014 Institute of Food Technologists®
SEPARATION OF RUTHENIUM FROM AQUEOUS SOLUTIONS
Callis, C.F.; Moore, R.L.
1959-09-01
>The separation of ruthenium from aqueous solutions containing uranium plutonium, ruthenium, and fission products is described. The separation is accomplished by providing a nitric acid solution of plutonium, uranium, ruthenium, and fission products, oxidizing plutonium to the hexavalent state with sodium dichromate, contacting the solution with a water-immiscible organic solvent, such as hexone, to extract plutonyl, uranyl, ruthenium, and fission products, reducing with sodium ferrite the plutonyl in the solvent phase to trivalent plutonium, reextracting from the solvent phase the trivalent plutonium, ruthenium, and some fission products with an aqueous solution containing a salting out agent, introducing ozone into the aqueous acid solution to oxidize plutonium to the hexavalent state and ruthenium to ruthenium tetraoxide, and volatizing off the ruthenium tetraoxide.
Nair, Bindu; Elmore, Amy R
2003-01-01
Sodium Sulfite, Ammonium Sulfite, Sodium Bisulfite, Potassium Bisulfite, Ammonium Bisulfite, Sodium Metabisulfite, and Potassium Metabisulfite are inorganic salts that function as reducing agents in cosmetic formulations. All except Sodium Metabisulfite also function as hair-waving/straightening agents. In addition, Sodium Sulfite, Potassium Sulfite, Sodium Bisulfite, and Sodium Metabisulfite function as antioxidants. Although Ammonium Sulfite is not in current use, the others are widely used in hair care products. Sulfites that enter mammals via ingestion, inhalation, or injection are metabolized by sulfite oxidase to sulfate. In oral-dose animal toxicity studies, hyperplastic changes in the gastric mucosa were the most common findings at high doses. Ammonium Sulfite aerosol had an acute LC(50) of >400 mg/m(3) in guinea pigs. A single exposure to low concentrations of a Sodium Sulfite fine aerosol produced dose-related changes in the lung capacity parameters of guinea pigs. A 3-day exposure of rats to a Sodium Sulfite fine aerosol produced mild pulmonary edema and irritation of the tracheal epithelium. Severe epithelial changes were observed in dogs exposed for 290 days to 1 mg/m(3) of a Sodium Metabisulfite fine aerosol. These fine aerosols contained fine respirable particle sizes that are not found in cosmetic aerosols or pump sprays. None of the cosmetic product types, however, in which these ingredients are used are aerosolized. Sodium Bisulfite (tested at 38%) and Sodium Metabisulfite (undiluted) were not irritants to rabbits following occlusive exposures. Sodium Metabisulfite (tested at 50%) was irritating to guinea pigs following repeated exposure. In rats, Sodium Sulfite heptahydrate at large doses (up to 3.3 g/kg) produced fetal toxicity but not teratogenicity. Sodium Bisulfite, Sodium Metabisulfite, and Potassium Metabisulfite were not teratogenic for mice, rats, hamsters, or rabbits at doses up to 160 mg/kg. Generally, Sodium Sulfite, Sodium Metabisulfite, and Potassium Metabisulfite were negative in mutagenicity studies. Sodium Bisulfite produced both positive and negative results. Clinical oral and ocular-exposure studies reported no adverse effects. Sodium Sulfite was not irritating or sensitizing in clinical tests. These ingredients, however, may produce positive reactions in dermatologic patients under patch test. In evaluating the positive genotoxicity data found with Sodium Bisulfite, the equilibrium chemistry of sulfurous acid, sulfur dioxide, bisulfite, sulfite, and metabisulfite was considered. This information, however, suggests that some bisulfite may have been present in genotoxicity tests involving the other ingredients and vice versa. On that basis, the genotoxicity data did not give a clear, consistent picture. In cosmetics, however, the bisulfite form is used at very low concentrations (0.03% to 0.7%) in most products except wave sets. In wave sets, the pH ranges from 8 to 9 where the sulfite form would predominate. Skin penetration would be low due to the highly charged nature of these particles and any sulfite that did penetrate would be converted to sulfate by the enzyme sulfate oxidase. As used in cosmetics, therefore, these ingredients would not present a genotoxicity risk. The Cosmetic Ingredient Review Expert Panel concluded that Sodium Sulfite, Potassium Sulfite, Ammonium Sulfite, Sodium Bisulfite, Ammonium Bisulfite, Sodium Metabisulfite, and Potassium Metabisulfite are safe as used in cosmetic formulations.
Chaudhury, M F; Skoda, S R; Sagel, A
2011-06-01
Spray-dried whole bovine blood and a sodium polyacrylate polymer gel as a bulking and solidifying agent are among the constituents of the current larval diet for mass rearing screwworm, Cochliomyia hominivorax (Coquerel) (Diptera: Calliphoridae). Locally available, inexpensive dietary materials could reduce rearing cost and address an uncertain commercial supply of spray-dried blood. We compared efficacy of diet prepared from fresh bovine blood after decoagulation with sodium citrate or ethylenediaminetetraacetic acid (EDTA) or after mechanical defibrination, with the diet containing spray-dried blood using either gel or cellulose fiber as the bulking and solidifying agent. Several life-history parameters were compared among insects reared on each of the blood and bulking agent diets combination. Diets containing citrated blood yielded the lightest larval and pupal weights and fewest pupae. EDTA-treated blood with the gel also caused reductions. EDTA-treated blood with fiber yielded screwworms that were heavier and more numerous than those from the diet with citrated blood but lighter than those from the control diet using spray-dried blood. A reduction in percentage of adults emerging from pupae occurred from diets with both bulking agents using citrated blood and the diet using EDTA mixed with the gel bulking agent. As a group, the cellulose-fiber diets performed better than the gel diets. Larval diet did not affect adult longevity, weight of the eggs deposited by the females that emerged or subsequent egg hatch. Parameter measurements of insects from both defibrinated blood diets were similar to those from the spray-dried blood diets, indicating that fresh, defibrinated bovine blood can successfully replace the dry blood in the screwworm rearing medium.
Rodnight, R.
1970-01-01
1. The effect of chemical agents on the turnover of the Na+-dependent bound phosphate and the simultaneous Na+-dependent hydrolysis of ATP by a membrane preparation from ox brain was studied at an ATP/protein ratio of 12.5pmol/μg. 2. The agents were added immediately after phosphorylation of the preparation in a medium containing 50mm-sodium chloride and 2.5μm-[γ-32P]ATP. 3. Concentrations of sodium chloride above 150mm, calcium chloride to 20mm and suramin to 1.4mm inhibited both phosphorylation and dephosphorylation and concomitantly slowed ATP hydrolysis. At 125mm-sodium chloride dephosphorylation and hydrolysis were slightly slowed without affecting phosphorylation. 4. Ethanol to 1.6m concentration inhibited dephosphorylation without affecting phosphorylation; the bound phosphate was increased and ATP hydrolysis slowed. 5. Ouabain to 4mm concentration partially inhibited ATP hydrolysis and caused a transient (1–2s) rise in bound phosphate followed by a rapid fall to a lower plateau value, which eventually declined to zero by the time ATP hydrolysis was complete. 6. Of the detergents examined Lubrol W, Triton X-100 and sodium deoxycholate had no significant effect on turnover. Sodium dodecyl sulphate and sodium decyl sulphate to 3.5mm and 20mm respectively completely inhibited turnover and ATP hydrolysis and stabilized the bound phosphate. PMID:4250238
Short communication: Reactivity of diacetyl with cleaning and sanitizing agents.
Rincon-Delgadillo, M I; Lopez-Hernandez, A; Rankin, S A
2013-01-01
Diacetyl is used to impart a buttery flavor to numerous food products such as sour cream, cottage cheese, vegetable oil-based spreads, baked goods, and beverages. Recent studies have linked exposure to high concentrations of diacetyl and the onset of bronchiolitis obliterans. Due to the reported risks that diacetyl may pose, many food companies have altered practices to reduce worker exposure to diacetyl, including the use of personal respirators, improved air handling systems, and adequate cleaning practices. Commonly used cleaning and sanitizing agents may be reactive with diacetyl; however, the efficacy of these chemicals has not been studied in detail and remains unclear. The objective of this work was to study the reaction chemistry of diacetyl with common industrial cleaning and sanitizing chemicals. The reactions were assessed at equimolar concentrations and analyzed by gas chromatography-mass spectrometry. Peroxyacetic acid was most reactive with diacetyl (95% reduction in diacetyl), followed by sodium hypochlorite (76% reduction), and hydrogen peroxide (26% reduction). Benzalkonium chloride (BAC) did not react with diacetyl. Acetic acid was detected as the main product of reactions of diacetyl with peroxyacetic acid, sodium hypochlorite, and hydrogen peroxide. 1,1-Dichloro-2-propanone and 1,1,1-trichloropropanone were also identified as volatile reaction products in the sodium hypochlorite reactions. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Processes for making dense, spherical active materials for lithium-ion cells
Kang, Sun-Ho [Naperville, IL; Amine, Khalil [Downers Grove, IL
2011-11-22
Processes are provided for making dense, spherical mixed-metal carbonate or phosphate precursors that are particularly well suited for the production of active materials for electrochemical devices such as lithium ion secondary batteries. Exemplified methods include precipitating dense, spherical particles of metal carbonates or metal phosphates from a combined aqueous solution using a precipitating agent such as ammonium hydrogen carbonate, sodium hydrogen carbonate, or a mixture that includes sodium hydrogen carbonate. Other exemplified methods include precipitating dense, spherical particles of metal phosphates using a precipitating agent such as ammonium hydrogen phosphate, ammonium dihydrogen phosphate, sodium phosphate, sodium hydrogen phosphate, sodium dihydrogen phosphate, or a mixture of any two or more thereof. Further provided are compositions of and methods of making dense, spherical metal oxides and metal phosphates using the dense, spherical metal precursors. Still further provided are electrodes and batteries using the same.
Decolonization in Prevention of Health Care-Associated Infections
Schweizer, Marin L.
2016-01-01
SUMMARY Colonization with health care-associated pathogens such as Staphylococcus aureus, enterococci, Gram-negative organisms, and Clostridium difficile is associated with increased risk of infection. Decolonization is an evidence-based intervention that can be used to prevent health care-associated infections (HAIs). This review evaluates agents used for nasal topical decolonization, topical (e.g., skin) decolonization, oral decolonization, and selective digestive or oropharyngeal decontamination. Although the majority of studies performed to date have focused on S. aureus decolonization, there is increasing interest in how to apply decolonization strategies to reduce infections due to Gram-negative organisms, especially those that are multidrug resistant. Nasal topical decolonization agents reviewed include mupirocin, bacitracin, retapamulin, povidone-iodine, alcohol-based nasal antiseptic, tea tree oil, photodynamic therapy, omiganan pentahydrochloride, and lysostaphin. Mupirocin is still the gold standard agent for S. aureus nasal decolonization, but there is concern about mupirocin resistance, and alternative agents are needed. Of the other nasal decolonization agents, large clinical trials are still needed to evaluate the effectiveness of retapamulin, povidone-iodine, alcohol-based nasal antiseptic, tea tree oil, omiganan pentahydrochloride, and lysostaphin. Given inferior outcomes and increased risk of allergic dermatitis, the use of bacitracin-containing compounds cannot be recommended as a decolonization strategy. Topical decolonization agents reviewed included chlorhexidine gluconate (CHG), hexachlorophane, povidone-iodine, triclosan, and sodium hypochlorite. Of these, CHG is the skin decolonization agent that has the strongest evidence base, and sodium hypochlorite can also be recommended. CHG is associated with prevention of infections due to Gram-positive and Gram-negative organisms as well as Candida. Conversely, triclosan use is discouraged, and topical decolonization with hexachlorophane and povidone-iodine cannot be recommended at this time. There is also evidence to support use of selective digestive decontamination and selective oropharyngeal decontamination, but additional studies are needed to assess resistance to these agents, especially selection for resistance among Gram-negative organisms. The strongest evidence for decolonization is for use among surgical patients as a strategy to prevent surgical site infections. PMID:26817630
Shamim, Daniah; Laskowski, Michael
2017-01-01
Tumor necrosis factor α (TNF-α) inhibitors have long been used as disease-modifying agents in immune disorders. Recently, research has shown a role of chronic neuroinflammation in the pathophysiology of neurodegenerative diseases such as Alzheimer disease, and interest has been generated in the use of anti-TNF agents and TNF-modulating agents for prevention and treatment. This article extensively reviewed literature on animal studies testing these agents. The results showed a role for direct and indirect TNF-α inhibition through agents such as thalidomide, 3,6-dithiothalidomide, etanercept, infliximab, exendin-4, sodium hydrosulfide, minocycline, imipramine, and atorvastatin. Studies were performed on mice, rats, and monkeys, with induction of neurodegenerative physiology either through the use of chemical agents or through the use of transgenic animals. Most of these agents showed an improvement in cognitive function as tested with the Morris water maze, and immunohistochemical and histopathological staining studies consistently showed better outcomes with these agents. Brains of treated animals showed significant reduction in pro-inflammatory TNF-α and reduced the burden of neurofibrillary tangles, amyloid precursor protein, and β-amyloid plaques. Also, recruitment of microglial cells in the central nervous system was significantly reduced through these drugs. These studies provide a clearer mechanistic understanding of the role of TNF-α modulation in Alzheimer disease. All studies in this review explored the use of these drugs as prophylactic agents to prevent Alzheimer disease through immune modulation of the TNF inflammatory pathway, and their success highlights the need for further research of these drugs as therapeutic agents. PMID:28811745
Shamim, Daniah; Laskowski, Michael
2017-01-01
Tumor necrosis factor α (TNF-α) inhibitors have long been used as disease-modifying agents in immune disorders. Recently, research has shown a role of chronic neuroinflammation in the pathophysiology of neurodegenerative diseases such as Alzheimer disease, and interest has been generated in the use of anti-TNF agents and TNF-modulating agents for prevention and treatment. This article extensively reviewed literature on animal studies testing these agents. The results showed a role for direct and indirect TNF-α inhibition through agents such as thalidomide, 3,6-dithiothalidomide, etanercept, infliximab, exendin-4, sodium hydrosulfide, minocycline, imipramine, and atorvastatin. Studies were performed on mice, rats, and monkeys, with induction of neurodegenerative physiology either through the use of chemical agents or through the use of transgenic animals. Most of these agents showed an improvement in cognitive function as tested with the Morris water maze, and immunohistochemical and histopathological staining studies consistently showed better outcomes with these agents. Brains of treated animals showed significant reduction in pro-inflammatory TNF-α and reduced the burden of neurofibrillary tangles, amyloid precursor protein, and β-amyloid plaques. Also, recruitment of microglial cells in the central nervous system was significantly reduced through these drugs. These studies provide a clearer mechanistic understanding of the role of TNF-α modulation in Alzheimer disease. All studies in this review explored the use of these drugs as prophylactic agents to prevent Alzheimer disease through immune modulation of the TNF inflammatory pathway, and their success highlights the need for further research of these drugs as therapeutic agents.
von Stein, Richard T.; Silver, Kristopher S.; Soderlund, David M.
2013-01-01
Sodium channel inhibitor (SCI) insecticides were discovered almost four decades ago but have only recently yielded important commercial products (eg., indoxacarb and metaflumizone). SCI insecticides inhibit sodium channel function by binding selectively to slow-inactivated (non-conducting) sodium channel states. Characterization of the action of SCI insecticides on mammalian sodium channels using both biochemical and electrophysiological approaches demonstrates that they bind at or near a drug receptor site, the "local anesthetic (LA) receptor." This mechanism and site of action on sodium channels differentiates SCI insecticides from other insecticidal agents that act on sodium channels. However, SCI insecticides share a common mode of action with drugs currently under investigation as anticonvulsants and treatments for neuropathic pain. In this paper we summarize the development of the SCI insecticide class and the evidence that this structurally diverse group of compounds have a common mode of action on sodium channels. We then review research that has used site-directed mutagenesis and heterologous expression of cloned mammalian sodium channels in Xenopus laevis oocytes to further elucidate the site and mechanism of action of SCI insecticides. The results of these studies provide new insight into the mechanism of action of SCI insecticides on voltage-gated sodium channels, the location of the SCI insecticide receptor, and its relationship to the LA receptor that binds therapeutic SCI agents. PMID:24072940
Improved pH buffering agent for sodium hypochlorite
NASA Technical Reports Server (NTRS)
Nash, J. R.; Veeder, L. N.
1969-01-01
Sodium citrate/citric acid was found to be an effective buffer for pH control when used with sodium hypochlorite. The mixture does not corrode aluminum. The buffer appears to form a type of conversion coating that may provide corrosion-resistant properties to aluminum in other applications.
21 CFR 176.200 - Defoaming agents used in coatings.
Code of Federal Regulations, 2011 CFR
2011-04-01
... alcohol tert-Butyl alcohol Butyl stearate Castor oil, sulfated, ammonium, potassium, or sodium salt Cetyl... palmitate Mineral oil Mustardseed oil, sulfated, ammonium, potassium, or sodium salt Myristyl alcohol... hydrocarbons As defined in § 178.3650 of this chapter. Oleic acid, sulfated, ammonium, potassium, or sodium...
21 CFR 176.200 - Defoaming agents used in coatings.
Code of Federal Regulations, 2010 CFR
2010-04-01
... alcohol tert-Butyl alcohol Butyl stearate Castor oil, sulfated, ammonium, potassium, or sodium salt Cetyl... palmitate Mineral oil Mustardseed oil, sulfated, ammonium, potassium, or sodium salt Myristyl alcohol... hydrocarbons As defined in § 178.3650 of this chapter. Oleic acid, sulfated, ammonium, potassium, or sodium...
He, Jiang-Chun; Zheng, Jian-Yong; Li, Xin; Yang, Ye; Zhang, Bo-Yang; Chen, Yu; Li, Xian-Feng; Liu, Ying-Ming; Cao, Yi; Zhao, Li; Li, Tian-Chang
2017-08-01
To evaluate the utility of transthoracic contrast echocardiography (cTTE) using vitamin B6 and sodium bicarbonate as contrast agents for diagnosing right-to-left shunt (RLS) caused by patent foramen ovale (PFO) compared to that of transesophageal echocardiography (TEE). We investigated 125 patients admitted to our neurology department with unexplained cerebral infarction and migraine. All patients underwent cTTE using vitamin B6 and sodium bicarbonate as contrast agents, after which they underwent transthoracic echocardiography. The Doppler signal was recorded during the Valsalva maneuver, and TEE examinations were performed. The feasibility, diagnostic sensitivity, and safety of cTTE and TEE for PFO recognition were compared. Evidence of PFO was found in 49 (39.20%) patients with cTTE, more than were detected with TEE (39, 31.20%) (χ 2 =5.0625, P=0.0244). cTTE had a sensitivity of 92.31% and a specificity of 84.88% for diagnosing PFO, showing high concordance with TEE for PFO recognition (κ=0.72). Further, results of a semi-quantitative evaluation of PFO-RLS by cTTE were better than those with TEE (Z=-2.011, P=0.044). No significant adverse reaction was discovered during cTTE examination. cTTE using vitamin B6 and sodium bicarbonate as contrast agents has relatively good sensitivity and specificity for diagnosing RLS caused by PFO when compared with those for TEE. Using vitamin B6 and sodium bicarbonate as contrast agents to perform cTTE is recommended for detecting and diagnosing the PFO due to its simplicity, non-invasive character, low cost, and high feasibility.
Microcomputed tomography evaluation of white spot lesion remineralization with various procedures.
Kucuk, Eyup Burak; Malkoc, Siddik; Demir, Abdullah
2016-09-01
The aim of this study was to use microcomputed tomography to evaluate the effects on white spot lesions of 3 remineralizing agents compared with artificial saliva (Inonu University, Malatya, Turkey). The agents were GC Tooth Mousse (GC International, Itabashi-ku, Tokyo, Japan), 50-ppm sodium fluoride solution (Inonu University, Malatya, Turkey), and Clinpro 5000 (3M ESPE Dental Products (St Paul, Minn). The experimental and control teeth were stored in artificial saliva. Forty-four extracted premolars were divided into 4 groups of 11 teeth each (3 experimental groups and 1 control group). After white spot lesions were created on the teeth, a remineralizing agent was applied. Microcomputed tomography scanning was performed at the following times: T0 (sound enamel), T1 (day 0, when the white spot lesion was formed), T2 (day 15), and T3 (day 30). Volume, depth, surface area, and mineral density changes of the white spot lesions were evaluated at different time points using CTAn software (SkyScan; Bruker, Kontich, Belgium). GC Tooth Mousse and Clinpro 5000 improved all measurements after 30 days. However, Clinpro 5000 was not as effective in reducing lesion depth as it was in the other parameters. The artificial saliva group and the 50-ppm sodium fluoride solution did not show significant effects in the regression of the white spot lesions at the end of the 30-day experiment. GC Tooth Mousse and Clinpro 5000 were more effective in remineralization of white spot lesions than sodium fluoride solution and artificial saliva. They can be preferred for use clinically. Microcomputed tomography is a novel and effective method that shows promise in accurately evaluating white spot lesions and remineralization. Copyright © 2016 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
New developments in the management of narcolepsy.
Abad, Vivien C; Guilleminault, Christian
2017-01-01
Narcolepsy is a life-long, underrecognized sleep disorder that affects 0.02%-0.18% of the US and Western European populations. Genetic predisposition is suspected because of narcolepsy's strong association with HLA DQB1*06-02, and genome-wide association studies have identified polymorphisms in T-cell receptor loci. Narcolepsy pathophysiology is linked to loss of signaling by hypocretin-producing neurons; an autoimmune etiology possibly triggered by some environmental agent may precipitate hypocretin neuronal loss. Current treatment modalities alleviate the main symptoms of excessive daytime somnolence (EDS) and cataplexy and, to a lesser extent, reduce nocturnal sleep disruption, hypnagogic hallucinations, and sleep paralysis. Sodium oxybate (SXB), a sodium salt of γ hydroxybutyric acid, is a first-line agent for cataplexy and EDS and may help sleep disruption, hypnagogic hallucinations, and sleep paralysis. Various antidepressant medications including norepinephrine serotonin reuptake inhibitors, selective serotonin reuptake inhibitors, and tricyclic antidepressants are second-line agents for treating cataplexy. In addition to SXB, modafinil and armodafinil are first-line agents to treat EDS. Second-line agents for EDS are stimulants such as methylphenidate and extended-release amphetamines. Emerging therapies include non-hypocretin-based therapy, hypocretin-based treatments, and immunotherapy to prevent hypocretin neuronal death. Non-hypocretin-based novel treatments for narcolepsy include pitolisant (BF2.649, tiprolisant); JZP-110 (ADX-N05) for EDS in adults; JZP 13-005 for children; JZP-386, a deuterated sodium oxybate oral suspension; FT 218 an extended-release formulation of SXB; and JNJ-17216498, a new formulation of modafinil. Clinical trials are investigating efficacy and safety of SXB, modafinil, and armodafinil in children. γ-amino butyric acid (GABA) modulation with GABA A receptor agonists clarithromycin and flumazenil may help daytime somnolence. Other drugs investigated include GABA B agonists (baclofen), melanin-concentrating hormone antagonist, and thyrotropin-releasing hormone agonists. Hypocretin-based therapies include hypocretin peptide replacement administered either through an intracerebroventricular route or intranasal route. Hypocretin neuronal transplant and transforming stem cells into hypothalamic neurons are also discussed in this article. Immunotherapy to prevent hypocretin neuronal death is reviewed.
New developments in the management of narcolepsy
Abad, Vivien C; Guilleminault, Christian
2017-01-01
Narcolepsy is a life-long, underrecognized sleep disorder that affects 0.02%–0.18% of the US and Western European populations. Genetic predisposition is suspected because of narcolepsy’s strong association with HLA DQB1*06-02, and genome-wide association studies have identified polymorphisms in T-cell receptor loci. Narcolepsy pathophysiology is linked to loss of signaling by hypocretin-producing neurons; an autoimmune etiology possibly triggered by some environmental agent may precipitate hypocretin neuronal loss. Current treatment modalities alleviate the main symptoms of excessive daytime somnolence (EDS) and cataplexy and, to a lesser extent, reduce nocturnal sleep disruption, hypnagogic hallucinations, and sleep paralysis. Sodium oxybate (SXB), a sodium salt of γ hydroxybutyric acid, is a first-line agent for cataplexy and EDS and may help sleep disruption, hypnagogic hallucinations, and sleep paralysis. Various antidepressant medications including norepinephrine serotonin reuptake inhibitors, selective serotonin reuptake inhibitors, and tricyclic antidepressants are second-line agents for treating cataplexy. In addition to SXB, modafinil and armodafinil are first-line agents to treat EDS. Second-line agents for EDS are stimulants such as methylphenidate and extended-release amphetamines. Emerging therapies include non-hypocretin-based therapy, hypocretin-based treatments, and immunotherapy to prevent hypocretin neuronal death. Non-hypocretin-based novel treatments for narcolepsy include pitolisant (BF2.649, tiprolisant); JZP-110 (ADX-N05) for EDS in adults; JZP 13-005 for children; JZP-386, a deuterated sodium oxybate oral suspension; FT 218 an extended-release formulation of SXB; and JNJ-17216498, a new formulation of modafinil. Clinical trials are investigating efficacy and safety of SXB, modafinil, and armodafinil in children. γ-amino butyric acid (GABA) modulation with GABAA receptor agonists clarithromycin and flumazenil may help daytime somnolence. Other drugs investigated include GABAB agonists (baclofen), melanin-concentrating hormone antagonist, and thyrotropin-releasing hormone agonists. Hypocretin-based therapies include hypocretin peptide replacement administered either through an intracerebroventricular route or intranasal route. Hypocretin neuronal transplant and transforming stem cells into hypothalamic neurons are also discussed in this article. Immunotherapy to prevent hypocretin neuronal death is reviewed. PMID:28424564
Cardiovascular effects of sodium glucose cotransporter 2 inhibitors
Cavaiola, Tricia Santos; Pettus, Jeremy
2018-01-01
As the first cardiovascular (CV) outcome trial of a glucose-lowering agent to demonstrate a reduction in the risk of CV events in patients with type 2 diabetes mellitus (T2DM), the EMPAgliflozin Removal of Excess Glucose: Cardiovascular OUTCOME Event Trial in Type 2 Diabetes Mellitus Patients (EMPA-REG OUTCOME®) trial, which investigated the sodium glucose cotransporter 2 (SGLT2) inhibitor empagliflozin, has generated great interest among health care professionals. CV outcomes data for another SGLT2 inhibitor, canagliflozin, have been published recently in the CANagliflozin CardioVascular Assessment Study (CANVAS) Program, as have CV data from the retrospective real-world study Comparative Effectiveness of Cardiovascular Outcomes in New Users of Sodium-Glucose Cotransporter-2 Inhibitors (CVD-REAL), which compared SGLT2 inhibitors with other classes of glucose-lowering drugs. This review discusses the results of these three studies and, with a focus on EMPA-REG OUTCOME, examines the possible mechanisms by which SGLT2 inhibitors may reduce CV risk in patients with T2DM. PMID:29695924
Measurements of alkali concentrations in an oxygen-natural gas-fired soda-lime-silica glass furnace
DOE Office of Scientific and Technical Information (OSTI.GOV)
S. G. Buckley; P. M. Walsh; D. w. Hahn
1999-10-18
Sodium species vaporized from melting batch and molten glass in tank furnaces are the principal agents of corrosion of superstructure refractory and main contributors to emissions of particulate matter from glass melting. The use of oxygen in place of air for combustion of natural gas reduces particulate emissions, but is thought to accelerate corrosion in some melting tanks. Methods for measuring sodium are under investigation as means for identifying the volatilization, transport, and deposition mechanisms and developing strategies for control. Three separate methods were used to measure the concentrations of sodium species at various locations in an oxygen-natural gas-fired soda-lime-silicamore » glass melting tank. Measurements were made inside the furnace using the absorption of visible light and in the flue duct using Laser-Induced Breakdown Spectroscopy (LIBS). Measurements in both the furnace and flue were also made by withdrawing and analyzing samples of the furnace gas.« less
Cardiovascular effects of sodium glucose cotransporter 2 inhibitors.
Cavaiola, Tricia Santos; Pettus, Jeremy
2018-01-01
As the first cardiovascular (CV) outcome trial of a glucose-lowering agent to demonstrate a reduction in the risk of CV events in patients with type 2 diabetes mellitus (T2DM), the EMPAgliflozin Removal of Excess Glucose: Cardiovascular OUTCOME Event Trial in Type 2 Diabetes Mellitus Patients (EMPA-REG OUTCOME ® ) trial, which investigated the sodium glucose cotransporter 2 (SGLT2) inhibitor empagliflozin, has generated great interest among health care professionals. CV outcomes data for another SGLT2 inhibitor, canagliflozin, have been published recently in the CANagliflozin CardioVascular Assessment Study (CANVAS) Program, as have CV data from the retrospective real-world study Comparative Effectiveness of Cardiovascular Outcomes in New Users of Sodium-Glucose Cotransporter-2 Inhibitors (CVD-REAL), which compared SGLT2 inhibitors with other classes of glucose-lowering drugs. This review discusses the results of these three studies and, with a focus on EMPA-REG OUTCOME, examines the possible mechanisms by which SGLT2 inhibitors may reduce CV risk in patients with T2DM.
Drakatos, Panagis; Lykouras, Dimosthenis; D'Ancona, Grainne; Higgins, Sean; Gildeh, Nadia; Macavei, Raluca; Rosenzweig, Ivana; Steier, Joerg; Williams, Adrian J; Muza, Rexford; Kent, Brian D; Leschziner, Guy
2017-07-01
Sodium oxybate is licensed in Europe for the treatment of narcolepsy with cataplexy in adults. The aim of this study was to assess the efficacy and safety of sodium oxybate in clinical practice in patients with narcolepsy and cataplexy refractory to other treatments. This was a retrospective single centre study including patients with severe narcolepsy with cataplexy refractory to other treatments, who were initiated on sodium oxybate between 2009 and 2015. Patients were allowed to be on other stimulants or/and anti-cataplectic agents. Epworth sleepiness scale (ESS) and weekly cataplexy events were recorded. Side effects (SEs) were recorded at every follow-up visit. 90 patients were prescribed sodium oxybate, with a total of 3116 patient-months of drug exposure. ESS and weekly cataplexy events were significantly reduced by sodium oxybate for all patients (ΔESS = 4.3 ± 4.4 and Δcataplexy = 21.8 ± 18.5 events/week; p < 0.0001, respectively). The required maintenance dose could not be predicted based upon gender, body mass index, or clinical factors. 60% of patients were able to reduce or come off other medications. Half of the patients experienced at least one SE, and 26.6% had to stop treatment due to limiting SEs. Nausea, mood swings and enuresis were the most commonly reported SEs. SEs that led to drug discontinuation, particularly psychosis, were associated with increasing age and were observed early after the initiation of the drug. Sodium oxybate provides a good clinical efficacy and acceptable safety profile in routine clinical practice for the treatment of patients suffering from narcolepsy with cataplexy. A quarter of patients experience SEs requiring withdrawal of the drug with older patients being more vulnerable to the more serious SEs. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Maximizing adhesion of auxin solutions to stem cuttings using sodium cellulose glycolate
USDA-ARS?s Scientific Manuscript database
Auxin solutions prepared with sodium cellulose glycolate (SCG; a thickening agent, also known as sodium carboxymethylcellulose) and applied to stem cuttings using a basal quick-dip extend the duration of exposure of cuttings to the auxin and have previously been shown to increase root number and/or ...
Li, P; Lee, K Y; Ren, X S; Chang, T M; Chey, W Y
1990-06-01
The effect of pancreatic proteases or juice on the sodium oleate-stimulated pancreatic secretion and plasma concentrations of secretin and cholecystokinin in anesthetized rats was investigated. Each rat received sodium oleate in a dose of 0.12 mmol.h-1 via a duodenal tube. Sodium oleate infusion significantly increased pancreatic secretion (volume and protein output) compared with the saline given the control group. The increase in pancreatic secretion paralleled significant elevations of plasma concentrations of secretin and cholecystokinin. To determine a possible role of pancreatic proteases on the responses induced by sodium oleate, saline, chymotrypsin, and trypsin, a combination of chymotrypsin and trypsin or pancreatic juice was infused into the duodenum. The pancreatic secretion was significantly reduced by pancreatic proteases or pancreatic juice, and the reduction paralleled the decreases in plasma concentrations of the two hormones. These agents suppressed both pancreatic secretion and plasma hormone levels in the following order of magnitude: (pancreatic juice or chymotrypsin + trypsin) greater than (trypsin) greater than (chymotrypsin). The reduction of pancreatic secretion by pancreatic proteases was reversed by intravenous administration of secretin and cholecystokinin in physiological doses. It is concluded that negative-feedback regulation of pancreatic secretion is operative in the intestinal phase in rats and that both secretin and cholecystokinin are involved in the regulation.
Antimicrobial activity of silver nanoparticles impregnated wound dressing
NASA Astrophysics Data System (ADS)
Shinde, V. V.; Jadhav, P. R.; Patil, P. S.
2013-06-01
In this work, silver nanoparticles were synthesized by simple wet chemical reduction method. The silver nitrate was reduced by Sodium borohydride used as reducing agent and Poly (vinyl pyrrolidone) (PVP) as stabilizing agent. The formation of silver nanoparticles was evaluated by UV-visible spectroscope and transmission electron microscope (TEM). Absorption spectrum consist two plasmon peaks at 410 and 668 nm revels the formation of anisotropic nanoparticles confirmed by TEM. The formation of silver nanoparticles was also evidenced by dynamic light scattering (DLS) study. DLS showed polydisperse silver nanoparticles with hydrodynamic size 32 nm. Protecting mechanism of PVP was manifested by FT-Raman study. Silver nanoparticles were impregnated into wound dressing by sonochemical method. The Kirby-Bauer disc diffusion methods were used for antimicrobial susceptibility testing. The antimicrobial activity of the samples has been tested against gram-negative bacterium Escherichia coli and gram-positive bacterium Staphylococcus aureus.
Li, Junye; Li, Xiaoyan; Wang, Lin; Hu, Qingping; Sun, Hongjian
2014-05-14
A benzyne cobalt complex, Co(η(2)-C6Cl4)(PMe3)3 (2), was generated from the reaction of hexachlorobenzene with 2 equiv. of Co(PMe3)4 through selective activation of two C-Cl bonds of hexachlorobenzene. Meanwhile, the byproduct CoCl2(PMe3)3 was also confirmed by IR spectra. The cobalt(II) complex, CoCl(C6Cl5)(PMe3)3 (1), as an intermediate in the formation of aryne complex 2, was also isolated by the reaction of hexachlorobenzene with the stoichiometric amount of Co(PMe3)4. Complex 2 could be obtained by the reaction of 1 with Co(PMe3)4. Under similar reaction conditions, the reaction of Ni(PMe3)4 with hexachlorobenzene afforded only a mono-(C-Cl) bond activation nickel(II) complex, NiCl(C6H5)(PMe3)2 (5). The expected benzyne nickel complex was not formed. The structures of complexes 2 and 5 were determined by X-ray single crystal diffraction. Successful selective hydrodechlorinations of hexachlorobenzene were studied and in the presence of Co(PMe3)4 or Ni(PMe3)4 as catalysts and sodium formate as a reducing agent pentachlorobenzene and 1,2,4,5-tetrachlorobenzene were obtained. The catalytic hydrodechlorination mechanism is proposed and discussed.
Immobilization of Candida antarctica lipase B by covalent attachment to green coconut fiber.
Brígida, Ana I S; Pinheiro, Alvaro D T; Ferreira, Andrea L O; Pinto, Gustavo A S; Gonçalves, Luciana R B
2007-04-01
The objective of this study was to covalently immobilize Candida antarctica type B lipase (CALB) onto silanized green coconut fibers. Variables known to control the number of bonds between enzyme and support were evaluated including contact time, pH, and final reduction with sodium borohydride. Optimal conditions for lipase immobilization were found to be 2 h incubation at both pH 7.0 and 10.0. Thermal stability studies at 60 degrees C showed that the immobilized lipase prepared at pH 10.0 (CALB-10) was 363-fold more stable than the soluble enzyme and 5.4-fold more stable than the biocatalyst prepared at pH 7.0 (CALB-7). CALB-7 was found to have higher specific activity and better stability when stored at 5 degrees C. When sodium borohydride was used as reducing agent on CALB-10 there were no improvement in storage stability and at 60 degrees C stability was reduced for both CALB-7 and CALB-10.
Immobilization of Candida antarctica Lipase B by Covalent Attachment to Green Coconut Fiber
NASA Astrophysics Data System (ADS)
Brígida, Ana I. S.; Pinheiro, Álvaro D. T.; Ferreira, Andrea L. O.; Pinto, Gustavo A. S.; Gonçalves, Luciana R. B.
The objective of this study was to covalently immobilize Candida antarctica type B lipase (CALB) onto silanized green coconut fibers. Variables known to control the number of bonds between enzyme and support were evaluated including contact time, pH, and final reduction with sodium borohydride. Optimal conditions for lipase immobilization were found to be 2h incubation at both pH 7.0 and 10.0. Thermal stability studies at 60°C showed that the immobilized lipase prepared at pH 10.0 (CALB-10) was 363-fold more stable than the soluble enzyme and 5.4-fold more stable than the biocatalyst prepared at pH 7.0 (CALB-7). CALB-7 was found to have higher specific activity and better stability when stored at 5°C. When sodium borohydride was used as reducing agent on CALB-10 there were no improvement in storage stability and at 60°C stability was reduced for both CALB-7 and CALB-10.
Sheen, Hyukho
2016-04-01
Proteins in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) sample buffer are difficult to quantitate due to SDS and reducing agents being in the buffer. Although acetone precipitation has long been used to clean up proteins from detergents and salts, previous studies showed that protein recovery from acetone precipitation varies from 50 to 100% depending on the samples tested. Here, this article shows that acetone precipitates proteins highly efficiently from SDS-PAGE sample buffer and that quantitative recovery is achieved in 5 min at room temperature. Moreover, precipitated proteins are resolubilized with urea/guanidine, rather than with SDS. Thus, the resolubilized samples are readily quantifiable with Bradford reagent without using SDS-compatible assays. Copyright © 2016 Elsevier Inc. All rights reserved.
Morsali, Damineh; Bechtold, David; Lee, Woojin; Chauhdry, Summen; Palchaudhuri, Upayan; Hassoon, Paula; Snell, Daniel M; Malpass, Katy; Piers, Thomas; Pocock, Jennifer; Roach, Arthur; Smith, Kenneth J
2013-04-01
Axonal degeneration is a major cause of permanent disability in the inflammatory demyelinating disease multiple sclerosis, but no therapies are known to be effective in axonal protection. Sodium channel blocking agents can provide effective protection of axons in the white matter in experimental models of multiple sclerosis, but the mechanism of action (directly on axons or indirectly via immune modulation) remains uncertain. Here we have examined the efficacy of two sodium channel blocking agents to protect white matter axons in two forms of experimental autoimmune encephalomyelitis, a common model of multiple sclerosis. Safinamide is currently in phase III development for use in Parkinson's disease based on its inhibition of monoamine oxidase B, but the drug is also a potent state-dependent inhibitor of sodium channels. Safinamide provided significant protection against neurological deficit and axonal degeneration in experimental autoimmune encephalomyelitis, even when administration was delayed until after the onset of neurological deficit. Protection of axons was associated with a significant reduction in the activation of microglia/macrophages within the central nervous system. To clarify which property of safinamide was likely to be involved in the suppression of the innate immune cells, the action of safinamide on microglia/macrophages was compared with that of the classical sodium channel blocking agent, flecainide, which has no recognized monoamine oxidase B activity, and which has previously been shown to protect the white matter in experimental autoimmune encephalomyelitis. Flecainide was also potent in suppressing microglial activation in experimental autoimmune encephalomyelitis. To distinguish whether the suppression of microglia was an indirect consequence of the reduction in axonal damage, or possibly instrumental in the axonal protection, the action of safinamide was examined in separate experiments in vitro. In cultured primary rat microglial cells activated by lipopolysaccharide, safinamide potently suppressed microglial superoxide production and enhanced the production of the anti-oxidant glutathione. The findings show that safinamide is effective in protecting axons from degeneration in experimental autoimmune encephalomyelitis, and that this effect is likely to involve a direct effect on microglia that can result in a less activated phenotype. Together, this work highlights the potential of safinamide as an effective neuroprotective agent in multiple sclerosis, and implicates microglia in the protective mechanism.
Gruss, H-J; Cockett, A; Leicester, R J
2012-01-01
With the availability of several bowel cleansing agents, physicians and hospitals performing colonoscopies will often base their choice of cleansing agent purely on acquisition cost. Therefore, an easy to use budget impact model has been developed and established as a tool to compare total colon preparation costs between different established bowel cleansing agents. The model was programmed in Excel and designed as a questionnaire evaluating information on treatment costs for a range of established bowel cleansing products. The sum of costs is based on National Health Service reference costs for bowel cleansing products. Estimations are made for savings achievable when using a 2-litre polyethylene glycol with ascorbate components solution (PEG+ASC) in place of other bowel cleansing solutions. Test data were entered into the model to confirm validity and sensitivity. The model was then applied to a set of audit cost data from a major hospital colonoscopy unit in the UK. Descriptive analysis of the test data showed that the main cost drivers in the colonoscopy process are the procedure costs and costs for bed days rather than drug acquisition costs, irrespective of the cleansing agent. Audit data from a colonoscopy unit in the UK confirmed the finding with a saving of £107,000 per year in favour of PEG+ASC when compared to sodium picosulphate with magnesium citrate solution (NaPic+MgCit). For every patient group the model calculated overall cost savings. This was irrespective of the higher drug expenditure associated with the use of PEG+ASC for bowel preparation. Savings were mainly realized through reduced costs for repeat colonoscopy procedures and associated costs, such as inpatient length of stay. The budget impact model demonstrated that the primary cost driver was the procedure cost for colonoscopy. Savings can be realized through the use of PEG+ASC despite higher drug acquisition costs relative to the comparator products. From a global hospital funding perspective, the acquisition costs of bowel preparations should not be used as the primary reason to select the preferred treatment agent, but should be part of the consideration, with an emphasis on the clinical outcome.
Influence of Surfactants and Fluoride against Enamel Erosion.
Zanatta, Rayssa Ferreira; Ávila, Daniele Mara da Silva; Miyamoto, Karen Mayumi; Torres, Carlos Rocha Gomes; Borges, Alessandra Bühler
2018-06-06
This study investigated the effect of surfactants associated with sodium fluoride (NaF) on enamel erosion prevention, using an erosion-remineralization in vitro model. Sodium lauryl sulfate (SLS), polysorbate 20 (P20), and cocoamidopropyl betaine (CAPB) were tested, at concentrations of 1.0 and 1.5%, and associated or not with NaF (275 ppm). The control groups were distilled water and the NaF solution. Bovine enamel samples (n = 12) were prepared and submitted to a 5-day cycling model: acid challenge (0.3% citric acid, pH 2.6, 4×/day), human saliva (2 h, 4×/day), and the treatment solutions (2 min, 2×/day). The protective potential of the agents against initial erosion was assessed by microhardness and the surface loss by profilometry. Enamel surface wettability was determined by goniometry, protein adsorption was measured by spectroscopy (FTIR), and the KOH-soluble fluoride was quantified. Goniometry showed that SLS and CAPB increased enamel wettability. No differences were found among the surfactants regarding protein adsorption. Microhardness showed that SLS reduced NaF protection. P20 (1 and 1.5%) and CAPB 1.5% presented a protective effect, but lower than the NaF solution. Profilometry showed that CAPB protected enamel, but no agent associated with NaF promoted a higher protection than the NaF solution alone. KOH-soluble fluoride analysis showed that all surfactants reduced the fluoride adsorption on the enamel surface. Therefore, the surfactants tested (except for P20) changed the enamel surface energy. The SLS decreased the protective potential of NaF on initial erosion, but no tested agent interfered with the protective effect of NaF on enamel erosive wear. © 2018 S. Karger AG, Basel.
Minimizing human infection from Escherichia coli O157:H7 using GUMBOS
Cole, Marsha R.; Li, Min; Jadeja, Ravirajsinh; El-Zahab, Bilal; Hayes, Daniel; Hobden, Jeffery A.; Janes, Marlene E.; Warner, Isiah M.
2013-01-01
Objectives Reduction in faecal shedding of Shiga toxin-producing enterohaemorrhagic Escherichia coli (EHEC) in food-producing animals is a viable strategy to minimize human disease initiated by exposure to these microorganisms. To this end, an intervention strategy involving the electrostatic hybridization of two commonly used anti-infective agents for veterinary practice (i.e. chlorhexidine and ampicillin) was evaluated to curtail EHEC-transmitted disease from ruminant sources. Chlorhexidine di-ampicillin is a novel group of uniform material based on organic salts (GUMBOS) with inherent in vitro antibacterial activity that comes from its parent antimicrobial ions, chlorhexidine and ampicillin. Methods Antibacterial activities for chlorhexidine diacetate, sodium ampicillin, chlorhexidine di-ampicillin and stoichiometrically equivalent 1 : 2 chlorhexidine diacetate : sodium ampicillin were assessed using the serial 2-fold dilution method and time–kill studies against seven isolates of E. coli O157:H7 and one non-pathogenic E. coli 25922. Further studies to investigate synergistic interactions of reacted and stoichiometrically equivalent unreacted antimicrobial agents at MICs and possible mechanisms were also investigated. Results Synergism and in vitro antibacterial activities against EHEC were observed in this study, which suggests chlorhexidine di-ampicillin could be a useful reagent in reducing EHEC transmission and minimizing EHEC-associated infections. Likewise, chlorhexidine di-ampicillin reduced HeLa cell toxicity as compared with chlorhexidine diacetate or the stoichiometric combination of antimicrobial agents. Further results suggest that the mechanisms of action of chlorhexidine di-ampicillin and chlorhexidine diacetate against E. coli O157:H7 are similar. Conclusions Reacting antimicrobial GUMBOS as indicated in this study may enhance the approach to current combination drug therapeutic strategies for EHEC disease control and prevention. PMID:23447139
Minimizing human infection from Escherichia coli O157:H7 using GUMBOS.
Cole, Marsha R; Li, Min; Jadeja, Ravirajsinh; El-Zahab, Bilal; Hayes, Daniel; Hobden, Jeffery A; Janes, Marlene E; Warner, Isiah M
2013-06-01
Reduction in faecal shedding of Shiga toxin-producing enterohaemorrhagic Escherichia coli (EHEC) in food-producing animals is a viable strategy to minimize human disease initiated by exposure to these microorganisms. To this end, an intervention strategy involving the electrostatic hybridization of two commonly used anti-infective agents for veterinary practice (i.e. chlorhexidine and ampicillin) was evaluated to curtail EHEC-transmitted disease from ruminant sources. Chlorhexidine di-ampicillin is a novel group of uniform material based on organic salts (GUMBOS) with inherent in vitro antibacterial activity that comes from its parent antimicrobial ions, chlorhexidine and ampicillin. Antibacterial activities for chlorhexidine diacetate, sodium ampicillin, chlorhexidine di-ampicillin and stoichiometrically equivalent 1 : 2 chlorhexidine diacetate : sodium ampicillin were assessed using the serial 2-fold dilution method and time-kill studies against seven isolates of E. coli O157:H7 and one non-pathogenic E. coli 25922. Further studies to investigate synergistic interactions of reacted and stoichiometrically equivalent unreacted antimicrobial agents at MICs and possible mechanisms were also investigated. Synergism and in vitro antibacterial activities against EHEC were observed in this study, which suggests chlorhexidine di-ampicillin could be a useful reagent in reducing EHEC transmission and minimizing EHEC-associated infections. Likewise, chlorhexidine di-ampicillin reduced HeLa cell toxicity as compared with chlorhexidine diacetate or the stoichiometric combination of antimicrobial agents. Further results suggest that the mechanisms of action of chlorhexidine di-ampicillin and chlorhexidine diacetate against E. coli O157:H7 are similar. Reacting antimicrobial GUMBOS as indicated in this study may enhance the approach to current combination drug therapeutic strategies for EHEC disease control and prevention.
Microwave-aided synthesis and applications of gold and nickel nanoporous metal foams
NASA Astrophysics Data System (ADS)
Lu, Zhifeng
In the field of nanoscience, nanoporous metal foams are a representative type of nanostructured materials, representing the ultimate form factor of a metal. They possess the hybrid properties of metal and nanoarchitectures, including the following properties such as good electrical and thermal conductivity, catalytic activity and high surface area, ultralow density, high strength-to-weight ratio. The outstanding properties bring the nanoporous metal foams to a wide range of applications, especially in the field of sensor system, energy storage and chemical catalyst. A new method of synthesis developed recently is presented for nanoporous metal foams of gold and nickel. The goal of this study is for the synthesis process of NMFs of and some applications in research and realistic life. Gold NMFs were produced by mixing gold chloride with ethylene glycol, ethanol, and reducing agent, and heating at 150 °C for 5 min with a CEM microwave. Both hydrazine and sodium borohydride were applied as the reducing agent for this redox reaction. Nickel NMFs were produced through the similar procedure with a little difference in the heating condition of 50 W, instead of 150 °C, with either hydrazine or sodium borohydride as the reducing agent. Gold NMFs were applied in surface-enhanced Raman spectroscopy (SERS) as a substrate. It is presented that with the presence of gold NMFs, the detection of the rhodamine 6G (R6G), a model analyte, can be enhanced significantly. The limit of detection for rhodamine 6G was found to be 5.2 x 10 -7 M in this research. Nickel NMFs was applied to degrade methyl orange (MO). An aqueous MO solution will turn nearly colorless after only 10 h of mixing with 0.025 g of nickel NMFs at room temperature under dark condition. In order to study the kinetics of the degradation reaction, MO solution with different initial concentration were used. This application of Ni NMFs is applicable as waste treatment of industrial water and to protect the environment.
Onyeji, C O; Adebayo, A S; Babalola, C P
1999-12-01
The need to develop chloroquine suppository formulations that yield optimal bioavailability of the drug has been emphasized. This study demonstrates the effects of incorporation of known absorption-enhancing agents (nonionic surfactants and sodium salicylate) on the in vitro release characteristics of chloroquine from polyethylene glycol (1000:4000, 75:25%, w/w) suppositories. The release rates were determined using a modification of the continuous flow bead-bed dissolution apparatus for suppositories. Results showed that the extent of drug release from suppositories containing any of three surfactants (Tween 20, Tween 80 and Brij 35) was 100%, whereas 88% release was obtained with control formulation (without enhancer) (P<0.05). However, Tween 20 was more effective than Brij 35 and Tween 80 in improving the drug release rate. There was a concentration-dependent effect with Tween 20, and 4% (w/w) of this surfactant was associated with the highest increase in the rate of drug release from the suppositories. Sodium salicylate at a concentration of 25% (w/w) also significantly enhanced the drug release rate, but a higher concentration of the adjuvant markedly reduced both the rate and extent of drug release. Combined incorporation of Tween 20 and sodium salicylate did not significantly modify (P0.05) the rate of drug release when compared to the effect of the more effective single agent. Due to their effects in improving the drug release profiles coupled with their intrinsic absorption-promoting properties, it is suggested that incorporation of 4% (w/w) Tween 20 and/or 25% (w/w) sodium salicylate in the composite polyethylene glycol chloroquine suppository formulations, may result in enhancement of rectal absorption of the drug. This necessitates an in vivo validation.
Jo, Sooyeon
2017-01-01
Lacosamide is an antiseizure agent that targets voltage-dependent sodium channels. Previous experiments have suggested that lacosamide is unusual in binding selectively to the slow-inactivated state of sodium channels, in contrast to drugs like carbamazepine and phenytoin, which bind tightly to fast-inactivated states. Using heterologously expressed human Nav1.7 sodium channels, we examined the state-dependent effects of lacosamide. Lacosamide induced a reversible shift in the voltage dependence of fast inactivation studied with 100-millisecond prepulses, suggesting binding to fast-inactivated states. Using steady holding potentials, lacosamide block was very weak at −120 mV (3% inhibition by 100 µM lacosamide) but greatly enhanced at −80 mV (43% inhibition by 100 µM lacosamide), where there is partial fast inactivation but little or no slow inactivation. During long depolarizations, lacosamide slowly (over seconds) put channels into states that recovered availability slowly (hundreds of milliseconds) at −120 mV. This resembles enhancement of slow inactivation, but the effect was much more pronounced at −40 mV, where fast inactivation is complete, but slow inactivation is not, than at 0 mV, where slow inactivation is maximal, more consistent with slow binding to fast-inactivated states than selective binding to slow-inactivated states. Furthermore, inhibition by lacosamide was greatly reduced by pretreatment with 300 µM lidocaine or 300 µM carbamazepine, suggesting that lacosamide, lidocaine, and carbamazepine all bind to the same site. The results suggest that lacosamide binds to fast-inactivated states in a manner similar to other antiseizure agents but with slower kinetics of binding and unbinding. PMID:28119481
Jo, Sooyeon; Bean, Bruce P
2017-04-01
Lacosamide is an antiseizure agent that targets voltage-dependent sodium channels. Previous experiments have suggested that lacosamide is unusual in binding selectively to the slow-inactivated state of sodium channels, in contrast to drugs like carbamazepine and phenytoin, which bind tightly to fast-inactivated states. Using heterologously expressed human Nav1.7 sodium channels, we examined the state-dependent effects of lacosamide. Lacosamide induced a reversible shift in the voltage dependence of fast inactivation studied with 100-millisecond prepulses, suggesting binding to fast-inactivated states. Using steady holding potentials, lacosamide block was very weak at -120 mV (3% inhibition by 100 µ M lacosamide) but greatly enhanced at -80 mV (43% inhibition by 100 µ M lacosamide), where there is partial fast inactivation but little or no slow inactivation. During long depolarizations, lacosamide slowly (over seconds) put channels into states that recovered availability slowly (hundreds of milliseconds) at -120 mV. This resembles enhancement of slow inactivation, but the effect was much more pronounced at -40 mV, where fast inactivation is complete, but slow inactivation is not, than at 0 mV, where slow inactivation is maximal, more consistent with slow binding to fast-inactivated states than selective binding to slow-inactivated states. Furthermore, inhibition by lacosamide was greatly reduced by pretreatment with 300 µ M lidocaine or 300 µ M carbamazepine, suggesting that lacosamide, lidocaine, and carbamazepine all bind to the same site. The results suggest that lacosamide binds to fast-inactivated states in a manner similar to other antiseizure agents but with slower kinetics of binding and unbinding. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.
... for you. Look for these words on labels: low-sodium, sodium-free, no salt added, sodium-reduced, ... for you. Look for these words on labels: low-sodium, sodium-free, no salt added, sodium-reduced, ...
Hu, Biao; Hui, Wenlong
2017-09-01
Waste cathode ray tube (CRT) funnel glass is the key and difficult points in waste electrical and electronic equipment (WEEE) disposal. In this paper, a novel and effective process for the detoxification and reutilization of waste CRT funnel glass was developed by generating lead sulfide precipitate via a high-temperature melting process. The central function in this process was the generation of lead sulfide, which gathered at the bottom of the crucible and was then separated from the slag. Sodium carbonate was used as a flux and reaction agent, and sodium sulfide was used as a precipitating agent. The experimental results revealed that the lead sulfide recovery rate initially increased with an increase in the amount of added sodium carbonate, the amount of sodium sulfide, the temperature, and the holding time and then reached an equilibrium value. The maximum lead sulfide recovery rate was approximately 93%, at the optimum sodium carbonate level, sodium sulfide level, temperature, and holding time of 25%, 8%, 1200°C, and 2h, respectively. The glass slag can be made into sodium and potassium silicate by hydrolysis in an environmental and economical process. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mattison, Christopher P; Desormeaux, Wendy A; Wasserman, Richard L; Yoshioka-Tarver, Megumi; Condon, Brian; Grimm, Casey C
2014-07-16
Cashew nut and other nut allergies can result in serious and sometimes life-threatening reactions. Linear and conformational epitopes within food allergens are important for immunoglobulin E (IgE) binding. Methods that disrupt allergen structure can lower IgE binding and lessen the likelihood of food allergy reactions. Previous structural and biochemical data have indicated that 2S albumins from tree nuts and peanuts are potent allergens, and that their structures are sensitive to strong reducing agents such as dithiothreitol. This study demonstrates that the generally regarded as safe (GRAS) compound sodium sulfite effectively disrupted the structure of the cashew 2S albumin, Ana o 3, in a temperature-dependent manner. This study also showed that sulfite is effective at disrupting the disulfide bond within the cashew legumin, Ana o 2. Immunoblotting and ELISA demonstrated that the binding of cashew proteins by rabbit IgG or IgE from cashew-allergic patients was markedly lowered following treatment with sodium sulfite and heating. The results indicate that incorporation of sodium sulfite, or other food grade reagents with similar redox potential, may be useful processing methods to lower or eliminate IgE binding to food allergens.
Spier, Franciela; Zavareze, Elessandra da Rosa; Marques e Silva, Ricardo; Elias, Moacir Cardoso; Dias, Alvaro Renato Guerra
2013-07-01
Few studies on starch modifications using different chemical agents are available in the literature, and no reports were found on the combined effect of oxidation and alkaline treatment of corn starch. Thus this work evaluated the physicochemical, pasting, morphological, cystallinity and thermal properties of chemically modified corn starch, after either the isolated or combined action of alkaline (sodium hydroxide) and oxidative (sodium hypochlorite) treatments. The highest values for the sum of carbonyl and carboxyl and enzymatic hydrolysis occurred in starches submitted to oxidative treatment at high active chlorine concentrations. The alkali treatment in isolation modified the pasting properties, reduced the paste temperature and increased the peak viscosity, breakdown, final viscosity and setback of starches. Starch modified by the action of sodium hypochlorite and hydroxide in combination presented more severe damage on granule surfaces. The results show that corn starch modified by the combined action of oxidative and alkaline treatments should be studied more, especially at the concentration limit of sodium hydroxide where gelatinization occurs. Under these conditions the effect of oxidation can be more intense and thus allow the production of starches with different properties and an increase in their industrial applications. © 2013 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Uttam, Vibha; Duchaniya, R. K.
2016-05-01
Now a days, corrosion studies are important for reducing the wastage of metals. The importance of corrosion studies is two folds i.e. first is economic, including the reduction of material losses resulting from the wasting away or sudden failure of materials and second is conservation Electroless process is an autocatalytic reduction method in which metallic ions are reduced in the solution. Nanocomposite coatings of Ni-P-TiO2 on mild steel are deposited by varying volume of TiO2 nano-powder by electroless method from Ni-P plating bath containing Nickel Sulphate as a source of nickel ions, sodium hypophosphite as the reducing agent, lactic acid as a complexing agents and TiO2 nano powder. Electroless Ni-P-TiO2 coating have been widely used in the chemical process industries, mechanical industries, electronic industries and chloroalkali industries due to their excellent corrosion with mechanical properties. In the present work, deposition of Ni-P alloy coating and Ni-P-TiO2 nanocomposited coatings were done on the mild steel and corrosion properties were studied with Potentio-dynamic polarization measurements method in 3.5 wt% sodium chloride solution. It showed in the experiments that Ni-P-TiO2 nanocomposited coating has better corrosion resistance as comparedthan Ni-P alloy coating. Morphological studies were done by field emission scanning electron microscopy (FESEM), energy-dispersive analysis of X-ray (EDAX) and X-ray diffraction (XRD). These studies confirmed the deposition of Ni-P alloy coating and Ni-P-TiO2 nanocomposited coating.
Efficacy of sodium dodecyl sulphate and natural extracts against E. coli biofilm.
Fink, Rok; Kulaš, Stefan; Oder, Martina
2018-05-02
The aim of this study was to determine and compare the efficacy of a standard cleaning agent, sodium dodecyl sulphate, and natural extracts from pomegranate peel grape skin and bay laurel leaf against E. coli biofilm. The biofilm was exposed for 10 minutes to three different concentrations of each tested compound. The results show that bay laurel leaf extract is the most efficient with 43% biofilm biomass reduction, followed by pomegranate peel extract (35%); sodium dodecyl sulphate and grape skin extract each have 30% efficacy. Our study demonstrated that natural extracts from selected plants have the same or even better efficacy against E. coli biofilm removal from surfaces than the tested classical cleaning agent do. All this indicates that natural plant extracts, which are acceptable from the health and environment points of view, can be potential substitutes for classical cleaning agents.
Purtuloğlu, Tark; Özdemir, Barbaros; Erdem, Murat; Deniz, Süleyman; Balkç, Adem; Ünlü, Gazi; Öznur, Taner
2013-03-01
To compare propofol and sodium thiopental as anesthetic agents for electroconvulsive therapy (ECT) in major depression with respect to clinical effect. Participants were composed of 96 patients with depression who were administered either propofol or sodium thiopental as an anesthetic agent for bilateral ECT. The Hamilton Depression Rating Scale was administered at baseline and after 6 treatments. Algorithm-based charge dosing was used. There was a statistically significant difference between the groups regarding postintervention Hamilton Depression Rating Scale score. The preintervention mean (SD) scores in the propofol group and the sodium thiopental group were 37.3 (2.2) and 36.7 (1.2), respectively. The postintervention mean (SD) scores in the propofol group and the sodium thiopental group were 10.7 (1.8) and 13.4 (3.3), respectively. No correlation was found between clinical response and age, weight, and body mass index. There was no association between the groups' seizure time and duration of recovery. In conclusion, propofol may improve major depressive disorder more than sodium thiopental in patients who are receiving ECT.
Doll, Stephanie; Woolum, Karen; Kumar, Krishan
2016-09-01
A simple and rapid nonradioactive iodide labeling/radiolabeling method for peptides, using an inexpensive oxidizing agent such as sodium hypochlorite and a cyclic peptide, cRGDyK (cyclo Arg-Gly-Asp-d-Tyr-Lys), was developed in this work. Labeling reaction was optimized by conducting experiments under variable ratios of the reagents, the reaction times, and the pH. The study demonstrated that radiolabeling of the cyclic peptide was fast and pH independent. Monoiodinated and di-iodinated cRGDyK were formed under all conditions and varied with the ratio of the reagents and the reaction time. Total percent of the iodinated cRGDyK (monoiodinated and di-iodinated cRGDyK) varied between 44 and 100 depending on the reaction conditions. Excess cyclic peptide over equal molar ratio of sodium iodide and sodium hypochlorite yielded in predominant amounts of monoiodinated cRGDyK, ie, >60% under 2:1:1 ratio and ~88% under 5:1:1 ratio of cRGDyK:sodium iodide:sodium hypochlorite. Copyright © 2016 John Wiley & Sons, Ltd.
Keyzer, Charlotte A; van Breda, G Fenna; Vervloet, Marc G; de Jong, Maarten A; Laverman, Gozewijn D; Hemmelder, Marc H; Janssen, Wilbert M T; Lambers Heerspink, Hiddo J; Kwakernaak, Arjan J; Bakker, Stephan J L; Navis, Gerjan; de Borst, Martin H
2017-04-01
Reduction of residual albuminuria during single-agent renin-angiotensin-aldosterone blockade is accompanied by improved cardiorenal outcomes in CKD. We studied the individual and combined effects of the vitamin D receptor activator paricalcitol (PARI) and dietary sodium restriction on residual albuminuria in CKD. In a multicenter, randomized, placebo (PLAC)-controlled, crossover trial, 45 patients with nondiabetic CKD stages 1-3 and albuminuria >300 mg/24 h despite ramipril at 10 mg/d and BP<140/90 mmHg were treated for four 8-week periods with PARI (2 μ g/d) or PLAC, each combined with a low-sodium (LS) or regular sodium (RS) diet. We analyzed the treatment effect by linear mixed effect models for repeated measurements. In the intention-to-treat analysis, albuminuria (geometric mean) was 1060 (95% confidence interval, 778 to 1443) mg/24 h during RS + PLAC and 990 (95% confidence interval, 755 to 1299) mg/24 h during RS + PARI ( P =0.20 versus RS + PLAC). LS + PLAC reduced albuminuria to 717 (95% confidence interval, 512 to 1005) mg/24 h ( P <0.001 versus RS + PLAC), and LS + PARI reduced albuminuria to 683 (95% confidence interval, 502 to 929) mg/24 h ( P <0.001 versus RS + PLAC). The reduction by PARI beyond the effect of LS was nonsignificant ( P =0.60). In the per-protocol analysis restricted to participants with ≥95% compliance with study medication, PARI did provide further albuminuria reduction ( P =0.04 LS + PARI versus LS + PLAC). Dietary adherence was good as reflected by urinary excretion of 174±64 mmol Na + per day in the combined RS groups and 108±61 mmol Na + per day in the LS groups ( P <0.001). In conclusion, moderate dietary sodium restriction substantially reduced residual albuminuria during fixed dose angiotensin-converting enzyme inhibition. The additional effect of PARI was small and nonsignificant. Copyright © 2017 by the American Society of Nephrology.
Keyzer, Charlotte A.; van Breda, G. Fenna; Vervloet, Marc G.; de Jong, Maarten A.; Laverman, Gozewijn D.; Hemmelder, Marc H.; Janssen, Wilbert M.T.; Lambers Heerspink, Hiddo J.; Kwakernaak, Arjan J.; Bakker, Stephan J.L.; Navis, Gerjan
2017-01-01
Reduction of residual albuminuria during single–agent renin-angiotensin-aldosterone blockade is accompanied by improved cardiorenal outcomes in CKD. We studied the individual and combined effects of the vitamin D receptor activator paricalcitol (PARI) and dietary sodium restriction on residual albuminuria in CKD. In a multicenter, randomized, placebo (PLAC)–controlled, crossover trial, 45 patients with nondiabetic CKD stages 1–3 and albuminuria >300 mg/24 h despite ramipril at 10 mg/d and BP<140/90 mmHg were treated for four 8-week periods with PARI (2 μg/d) or PLAC, each combined with a low-sodium (LS) or regular sodium (RS) diet. We analyzed the treatment effect by linear mixed effect models for repeated measurements. In the intention-to-treat analysis, albuminuria (geometric mean) was 1060 (95% confidence interval, 778 to 1443) mg/24 h during RS + PLAC and 990 (95% confidence interval, 755 to 1299) mg/24 h during RS + PARI (P=0.20 versus RS + PLAC). LS + PLAC reduced albuminuria to 717 (95% confidence interval, 512 to 1005) mg/24 h (P<0.001 versus RS + PLAC), and LS + PARI reduced albuminuria to 683 (95% confidence interval, 502 to 929) mg/24 h (P<0.001 versus RS + PLAC). The reduction by PARI beyond the effect of LS was nonsignificant (P=0.60). In the per-protocol analysis restricted to participants with ≥95% compliance with study medication, PARI did provide further albuminuria reduction (P=0.04 LS + PARI versus LS + PLAC). Dietary adherence was good as reflected by urinary excretion of 174±64 mmol Na+ per day in the combined RS groups and 108±61 mmol Na+ per day in the LS groups (P<0.001). In conclusion, moderate dietary sodium restriction substantially reduced residual albuminuria during fixed dose angiotensin–converting enzyme inhibition. The additional effect of PARI was small and nonsignificant. PMID:27856633
Measuring Sodium Chloride Contents of Aerosols
NASA Technical Reports Server (NTRS)
Sinha, M. P.; Friedlander, S. K.
1986-01-01
Amount of sodium chloride in individual aerosol particles measured in real time by analyzer that includes mass spectrometer. Analyzer used to determine mass distributions of active agents in therapeutic or diagnostic aerosols derived from saline solutions and in analyzing ocean spray. Aerosol particles composed of sodium chloride introduced into oven, where individually vaporized on hot wall. Vapor molecules thermally dissociated, and some of resulting sodium atoms ionized on wall. Ions leave oven in burst and analyzed by spectrometer, which is set to monitor sodium-ion intensity.
Deng, Aipeng; Kang, Xi; Zhang, Jing; Yang, Yang; Yang, Shulin
2017-09-01
The application of chitosan/β-sodium glycerophosphate (β-GP) thermosensitive hydrogel has been limited by the relatively slow gelation, weak mechanical resistance and poor cytocompatibility. In this study, sodium hydrogen carbonate (NaHCO 3 ) was applied with β-GP as gel agents to produce high-strength hydrogel. The hydrogels prepared with high NaHCO 3 concentration or more gel agents showed shorter gelation time, better thermostability, drastically enhanced resistance in compression. Meanwhile, the hydrogels presented obvious porous structures and excellent biocompatibility to HUVEC and NIH 3T3 cultured in vitro with higher NaHCO 3 concentration and moderate concentration of β-GP. Overall, appropriate concentration of β-GP combined with NaHCO 3 can be a good gel regent to improve properties of chitosan thermosensitive hydrogels. Copyright © 2017 Elsevier B.V. All rights reserved.
Neural control of renal tubular sodium reabsorption of the dog.
DiBona, G F
1978-04-01
The evidence supporting a role for direct neurogenic control of renal tubular sodium reabsorption is reviewed. Electron microscopic and fluorescence histochemical studies demonstrate adrenergic nerve terminals in direct contact with basement membranes of mammalian renal tubular epithelial cells. Low level direct or baroreceptor reflex stimulation of renal sympathetic nerves produces an increase in renal tubular sodium reabsorption without alterations in glomerular filtration rate, renal blood flow, or intrarenal distribution of blood flow. The antinatriuresis is prevented by prior treatment of the kidney with guanethidine or phenoxybenzamine. Possible indirect mediation of the antinatriuresis by other humoral agents known to be released from the kidney upon renal nerve stimulation (angiotensin II, prostaglandin) was excluded by experiments with appropriate blocking agents. Reflex diminutions in renal nerve activity (left atrial distention, stellate ganglion stimulation) produce a decrease in renal tubular sodium reabsorption independent of glomerular filtration rate or renal blood flow. The anatomically described adrenergic innervation of the renal tubules participates in the direct regulation of renal tubular sodium reabsorption.
Barbiturate euthanasia solution-induced tissue artifact in nonhuman primates.
Grieves, J L; Dick, E J; Schlabritz-Loutsevich, N E; Butler, S D; Leland, M M; Price, S E; Schmidt, C R; Nathanielsz, P W; Hubbard, G B
2008-06-01
Barbiturate euthanasia solutions are a humane and approved means of euthanasia. Overdosing causes significant tissue damage in a variety of laboratory animals. One hundred seventeen non-human primates (NHP) representing 7 species including 12 fetuses euthanized for humane and research reasons by various vascular routes with Euthasol, Sodium Pentobarbital, Fatal Plus, Beuthanasia D, or Euthanasia 5 were evaluated for euthanasia-induced tissue damage. Lungs and livers were histologically graded for hemolysis, vascular damage, edema, and necrosis. Severity of tissue damage was analyzed for differences on the basis of agent, age, sex, dose, and injection route. Severity of tissue damage was directly related to dose and the intracardiac injection route, but did not differ by species, sex, and agent used. When the recommended dose of agent was used, tissue damage was generally reduced, minimal, or undetectable. Barbiturate-induced artifacts in NHPs are essentially the same as in other laboratory species.
Microwave-Assisted Synthesis Cd Metal Hexagonal Nanosheets
NASA Astrophysics Data System (ADS)
Sun, Yidong; She, Houde; Bai, Wencai; Li, Liangshan; Zhou, Hua
2018-07-01
Sodium borohydride (NaBH4) as reducing agent, oleic acid (OA) as surfactant, deionized water as the dispersant, reducing cadmium nitrate (Cd(NO3)2 · 4H2O) can get Cd nanosheets by microwave method. Room temperature photoluminescence (PL) spectrum for Cd nanosheets recorded under xenon light wavelength of 325 nm exhibited obviously emission bands at 331, 379, and 390 nm. By analyzing the results of XRD and TEM, the nanosheets are thought as hexagonal phase and the size is about 20 nm. This synthesis performs in a lower temperature. Moreover our method is quite simple and the cost of the experiment is relatively lower.
Preparation of silver nanoparticles at low temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishra, Mini, E-mail: mishramini5@gmail.com; Chauhan, Pratima, E-mail: mangu167@yahoo.co.in
Silver from ancient time is used as antimicrobial agent in the bulk form but now with the advancement in nanotechnology silver in the form of nanoparticles shown potential effect against microbes which make us easy to fight with many diseases plants and animals. In this work silver nanoparticles were synthesized by chemical routes using sodium borohydride as reducing agent at low temperature. The particles were characterized through UV-Visible spectroscopy as well as X-Ray Diffraction. The UV-visible spectra of silver nanoparticles exhibited absorption at 425 cm; the crystallite size of the particles is between 19nm to 39nm. EDAX graph shows two peaksmore » of silver and oxygen. Water absorbed by silver nanoparticles was removed by the calcinations.« less
Madhu, Ks; Hegde, Swaroop; Mathew, Sylvia; Lata, DA; Bhandi, Shilpa H; N, Shruthi
2013-08-01
Non vital bleaching is simple, conservative procedure for esthetic correction of discolored endodontically treated teeth. The aim of this study was to determine and compare the amount of peroxide leakage from four different bleaching agents i.e superoxol, sodium perborate, combination of superoxol & sodium perborate and carbamide peroxide during intracoronal bleaching, as the safe and effective bleaching is the need of the hour. 50 extracted maxillary centrals were selected for the study. Following standardized protocol access, cleaning and shaping by step back technique and obturation was done using guttapercha and AH plus sealer. Access was sealed with Cavit G and outer root surface was coated with wax and nail varnish. The teeth were separated into crown and root and the root portion was placed in plastic tube containing distilled water for 7days.After incubation, 3mm of gutta-percha was removed below CEJ and 2mm glass ionomer cement base was placed. Grouped into five categories based on the bleaching agent placed in pulp chamber as -group1 (control)-distilled water, group 2-sodium perborate with distilled water , group 3- 30% hydrogen peroxide ,group 4-mixture of sodium perborate and 30% hydrogen peroxide and group 5-10% carbamide peroxide gel. Peroxide leakage was measured after 24hrs using ferrothiocyanate method and optical density using spectrophotometer. Statistical analysis of the data was conducted using ANOVA and multiple comparisons within the groups was done using BONFERRONI method (Post-Hoc tests). The results showed highest peroxide penetration from 30% hydrogen peroxide followed by mixture of sodium perborate with 30% hydrogen peroxide, mixture of sodium perborate with distilled water and least penetration from 10% carbamide peroxide gel. The results were statistically significant. Radicular peroxide leakage in 10% carbamide peroxide was significantly lower than the other tested bleaching agents making it a very safe alternative for intracoronal bleaching. How to cite this article: Madhu KS, Hegde S, Mathew S, Lata DA, Bhandi SH, Shruthi N. Comparison of Radicular Peroxide Leakage from four Commonly used Bleaching agents following Intracoronal Bleaching in Endodontically treated teeth - An In Vitro Study. J Int Oral Health 2013; 5(4):49-55.
Verluyten, Jurgen; Messens, Winy; De Vuyst, Luc
2003-07-01
Curvacin A is a listericidal bacteriocin produced by Lactobacillus curvatus LTH 1174, a strain isolated from fermented sausage. The response of this strain to an added curing agent (sodium nitrite) in terms of cell growth and bacteriocin production was investigated in vitro by laboratory fermentations with modified MRS broth. The strain was highly sensitive to nitrite; even a concentration of 10 ppm of curing agent inhibited its growth and both volumetric and specific bacteriocin production. A meat simulation medium containing 5 ppm of sodium nitrite was tested to investigate the influence of the gas phase on the growth and bacteriocin production of L. curvatus LTH 1174. Aerating the culture during growth had no effect on biomass formation, but the oxidative stress caused a higher level of specific bacteriocin production and led to a metabolic shift toward acetic acid production. Anaerobic conditions, on the other hand, led to an increased biomass concentration and less growth inhibition. Also, higher maximum volumetric bacteriocin activities and a higher level of specific bacteriocin production were obtained in the presence of sodium nitrite than in fermentations under aerobic conditions or standard conditions of air supply. These results indicate that the inhibitory effect of the curing agent is at least partially masked under anaerobic conditions.
Verluyten, Jurgen; Messens, Winy; De Vuyst, Luc
2003-01-01
Curvacin A is a listericidal bacteriocin produced by Lactobacillus curvatus LTH 1174, a strain isolated from fermented sausage. The response of this strain to an added curing agent (sodium nitrite) in terms of cell growth and bacteriocin production was investigated in vitro by laboratory fermentations with modified MRS broth. The strain was highly sensitive to nitrite; even a concentration of 10 ppm of curing agent inhibited its growth and both volumetric and specific bacteriocin production. A meat simulation medium containing 5 ppm of sodium nitrite was tested to investigate the influence of the gas phase on the growth and bacteriocin production of L. curvatus LTH 1174. Aerating the culture during growth had no effect on biomass formation, but the oxidative stress caused a higher level of specific bacteriocin production and led to a metabolic shift toward acetic acid production. Anaerobic conditions, on the other hand, led to an increased biomass concentration and less growth inhibition. Also, higher maximum volumetric bacteriocin activities and a higher level of specific bacteriocin production were obtained in the presence of sodium nitrite than in fermentations under aerobic conditions or standard conditions of air supply. These results indicate that the inhibitory effect of the curing agent is at least partially masked under anaerobic conditions. PMID:12839751
Effects of alpha-2 agonists on renal function in hypertensive humans.
Goldberg, M; Gehr, M
1985-01-01
Centrally acting adrenergic agonists, by decreasing peripheral adrenergic activity, are effective antihypertensive agents. The older agents, however, especially methyldopa, have been associated with weight gain, clinical edema, and antihypertensive tolerance when used as monotherapy. While acute studies in humans have demonstrated weight gain and sodium retention with clonidine and guanabenz, chronic administration results in a decrease in weight and plasma volume. The absence of chronic weight gain and of sodium retention could be the result of a counterbalance between hypotension-related antinatriuresis, secondary to a decrease in glomerular filtration rate and renal blood flow, and natriuretic activity, as a result of a decrease in renal sympathetic tone. Whereas natriuresis and water diuresis have been demonstrated in animals with acute clonidine or guanabenz administration, this has not been demonstrated in humans. Recent studies in which saline administration was used to precondition humans to a subsequent natriuretic stimulus (i.e., guanabenz-induced decreased renal adrenergic activity) resulted in stabilization of renal blood flow and natriuresis. Selective reduction renal sympathetic activity affecting salt and water transport may explain why guanabenz and probably also clonidine seem to be devoid of the sodium/fluid-retaining properties that are common with other antihypertensive agents. Because agents of this class have effects other than pure central alpha-2 agonism (such as alpha-1 activity), they might have confounding and counterbalancing side effects leading to sodium and water retention.
Parpia, Arti Sharma; Goldstein, Marc B; Arcand, JoAnne; Cho, France; L'Abbé, Mary R; Darling, Pauline B
2018-05-01
Sodium-reduced packaged food products are increasingly available to consumers; however, it is not clear whether they are suitable for inclusion in a potassium-reduced diet. For individuals with impaired renal potassium excretion caused by chronic kidney disease and for those taking certain medications that interfere with the rennin-angiotensin aldosterone axis, the need to limit dietary potassium is important in view of the risk for development of hyperkalemia and fatal cardiac arrhythmias. The primary objective of this study was to determine the impact of the reduction of sodium in packaged meat and poultry products (MPPs) on the content of potassium and phosphorus from food additives. This was a cross-sectional study comparing chemically analyzed MPPs (n=38, n=19 original, n=19 sodium-reduced), selected from the top three grocery chains in Canada, based on market share sales. All MPPs with a package label containing a reduced sodium content claim together with their non-sodium-reduced packaged MPP counterparts were selected for analysis. The protein, sodium, phosphorus, and potassium contents of sodium-reduced MPPs and the non-sodium-reduced (original) MPP counterparts were chemically analyzed according to the Association of Analytical Communities official methods 992.15 and 984.27 and compared by using a paired t test. The frequency of phosphorus and potassium additives appearing on the product labels' ingredient lists were compared between groups by using McNemar's test. Sodium-reduced MPPs (n=19) contained 44% more potassium (mg/100 g) than their non-sodium-reduced counterparts (n=19) (mean difference [95% CI): 184 [90-279]; P=0.001). The potassium content of sodium-reduced MPPs varied widely and ranged from 210 to 1,500 mg/100 g. Potassium-containing additives were found on the ingredient list in 63% of the sodium-reduced products and 26% of the non-sodium-reduced products (P=0.02). Sodium-reduced MPPs contained 38% less sodium (mg/100 g) than their non-sodium-reduced counterparts (mean difference [95% CI]: 486 [334-638]; P<0.001). The amounts of phosphorus and protein, as well as the frequency of phosphorus additives appearing on the product label ingredient list, did not significantly differ between the two groups. Potassium additives are frequently added to sodium-reduced MPPs in amounts that significantly contribute to the potassium load for patients with impaired renal handling of potassium caused by chronic kidney disease and certain medications. Patients requiring potassium restriction should be counseled to be cautious regarding the potassium content of sodium-reduced MPPs and encouraged to make food choices accordingly. Copyright © 2018 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.
He, Guang; Huq, Ashfia; Manthiram, Arumugam; ...
2016-02-02
Vanadyl phosphates (VOPO 4) represent a class of attractive cathodes in lithium-ion batteries. However, the exploration of this type of materials in sodium-ion batteries is rare. Here, we report for the first time the synthesis of orthorhombic β-NaVOPO 4 by first chemically extracting lithium from beta-LiVOPO 4 and then inserting sodium into the obtained β-VOPO 4 by a microwave-assisted solvothermal process with NaI, which serves both as a reducing agent and sodium source. Intermediate Na xVOPO 4 compositions with x = 0.3, 0.5, and 0.8 have also been obtained by controlling the amount of NaI in the reaction mixture. Jointmore » Rietveld refinement of synchrotron X-ray diffraction (XRD) and neutron diffraction confirms that the fully sodiated β-NaVOPO 4 is isostructural with the lithium counterpart β-LiVOPO 4. Bond valence sum maps suggest that sodium ions possibly diffuse along the [010] direction in the lattice, similar to the ionic conduction pathway in β-LiVOPO 4. Although the initial discharge capacity is low due to the protons in the structure, it steadily increases with cycling with a long plateau at 3.3 V. As a result, ex situ XRD data of cycled β-VOPO 4 and β-NaVOPO 4 electrodes confirm the reversible reaction in sodium cells involving the V 4+/V 5+ redox couple.« less
Akcay, Merve; Sari, Saziye
2014-01-01
This study's purpose was to evaluate the success of calcium hydroxide (CH) and mineral trioxide aggregate (MTA) pulpotomies following the use of five percent sodium hypochlorite (NaOCl) as an antibacterial agent to clean the chamber prior to application of the pulpotomy agent. A total of 128 teeth were randomly divided into two pulpotomy groups (CH or MTA). The teeth in each pulpotomy group, CH and MTA, were further randomly divided into subgroups to receive either the NaOCl (experimental) or saline (control) cleaning agent prior to applying the pulpotomy agent. The treatments were followed clinically and radiographically for 12 months. The radiographic success rates were 84 percent for CH NaOCl, 74 percent for CH saline control, 97 percent for MTA NaOCl, and 100 percent for MTA saline control. There were no significant differences between the radiographic success rates in the CH and MTA subgroups (CH NaOCl-CH control and MTA NaOCl-MTA control); no significant differences were observed when comparing the CH NaOCl-MTA NaOCl groups and the CH NaOCl-MTA control groups. Use of sodium hypochlorite as an antibacterial agent prior to application of the pulpotomy agent improved the success of calcium hydroxide pulpotomies to equal the success of mineral trioxide aggregate pulpotomies for observation up to 12 months.
Effect of desensitizing agents on dentin permeability.
Ishihata, Hiroshi; Kanehira, Masafumi; Nagai, Tomoko; Finger, Werner J; Shimauchi, Hidetoshi; Komatsu, Masashi
2009-06-01
To investigate the in vitro efficacy of two dentin desensitizing products at reducing liquid permeability through human dentin discs. The tested hypothesis was that the products, in spite of different chemical mechanisms were not different at reducing or eliminating flow through dentin discs. Dentin slices (1 mm thick) were prepared from 16 extracted human third molars and their permeability was indirectly recorded in a split chamber model, using a chemiluminescence technique, after EDTA treatment (control), after soaking with albumin, and after desensitizer application. Two products were studied: MS Coat, a self-curing resin-containing oxalate product, and Gluma Desensitizer, a glutaraldehyde/HEMA-based agent without initiator. The dentin slices were mounted between an upper chamber, filled with an aqueous solution of 1% potassium ferricyanide and 0.3% hydrogen peroxide, and a lower chamber filled with 1% sodium hydroxide solution and 0.02% luminol. The upper solution was pressurized, and upon contact with the luminol solution a photochemical signal was generated and recorded as a measure of permeability throughout two consecutive pressurizing cycles at 2.5 and 13 kPa (26 and 133 cm H2O), respectively. The permeability of the control and albumin-soaked samples was similarly high. After application of the desensitizing agents, dentin permeability was reduced to virtually zero at both pressure levels (P < 0.001).
2015-01-01
The functionalized amino acid, lacosamide ((R)-2), and the α-aminoamide, safinamide ((S)-3), are neurological agents that have been extensively investigated and have displayed potent anticonvulsant activities in seizure models. Both compounds have been reported to modulate voltage-gated sodium channel activity. We have prepared a series of chimeric compounds, (R)-7–(R)-10, by merging key structural units in these two clinical agents, and then compared their activities with (R)-2 and (S)-3. Compounds were assessed for their ability to alter sodium channel kinetics for inactivation, frequency (use)-dependence, and steady-state activation and fast inactivation. We report that chimeric compounds (R)-7–(R)-10 in catecholamine A-differentiated (CAD) cells and embryonic rat cortical neurons robustly enhanced sodium channel inactivation at concentrations far lower than those required for (R)-2 and (S)-3, and that (R)-9 and (R)-10, unlike (R)-2 and (S)-3, produce sodium channel frequency (use)-dependence at low micromolar concentrations. We further show that (R)-7–(R)-10 displayed excellent anticonvulsant activities and pain-attenuating properties in the animal formalin model. Of these compounds, only (R)-7 reversed mechanical hypersensitivity in the tibial-nerve injury model for neuropathic pain in rats. PMID:25418676
Park, Ki Duk; Yang, Xiao-Fang; Dustrude, Erik T; Wang, Yuying; Ripsch, Matthew S; White, Fletcher A; Khanna, Rajesh; Kohn, Harold
2015-02-18
The functionalized amino acid, lacosamide ((R)-2), and the α-aminoamide, safinamide ((S)-3), are neurological agents that have been extensively investigated and have displayed potent anticonvulsant activities in seizure models. Both compounds have been reported to modulate voltage-gated sodium channel activity. We have prepared a series of chimeric compounds, (R)-7-(R)-10, by merging key structural units in these two clinical agents, and then compared their activities with (R)-2 and (S)-3. Compounds were assessed for their ability to alter sodium channel kinetics for inactivation, frequency (use)-dependence, and steady-state activation and fast inactivation. We report that chimeric compounds (R)-7-(R)-10 in catecholamine A-differentiated (CAD) cells and embryonic rat cortical neurons robustly enhanced sodium channel inactivation at concentrations far lower than those required for (R)-2 and (S)-3, and that (R)-9 and (R)-10, unlike (R)-2 and (S)-3, produce sodium channel frequency (use)-dependence at low micromolar concentrations. We further show that (R)-7-(R)-10 displayed excellent anticonvulsant activities and pain-attenuating properties in the animal formalin model. Of these compounds, only (R)-7 reversed mechanical hypersensitivity in the tibial-nerve injury model for neuropathic pain in rats.
Nakano, Hiroshi; Iseki, Ken; Ozawa, Akiko; Tominaga, Aya; Sadahiro, Ryoichi; Otani, Koichi
2014-03-01
A 69-year-old man was admitted to the emergency department 3 hours after ingestion of a bleaching agent containing hypochlorous acid and sodium hydroxide in a suicide attempt. Enhanced chest computed tomography scans taken on admission indicated an edematous esophagus and air bubbles in the mediastinum. He underwent endotracheal intubation and mechanical ventilation until day 9 because of laryngeal edema. On day 10, his endoscopy indicated diffuse reddish mucosal hyperemia, erosions, and lacerated mucosal lesions in the esophagus that were indicative of grade 2b corrosive esophagitis. Treatment with a proton pump inhibitor was initiated, with which the condition of the esophagus improved, and on day 44, a slight stricture of the upper part of the esophagus was observed. He was discharged on day 64 without any complaints. The ingestion of sodium hypochlorite induces corrosive esophagitis and acute phase of gastritis. Ingestion of any corrosive agent is known as a risk factor for esophagus cancer in the long-term. In such cases with esophageal stricture, esophagectomy is recommended for preventing esophagus cancer. Considering the age of the patient, however, he did not undergo esophagectomy.
Modified Graphene Oxide for Long Cycle Sodium-Ion Batteries
NASA Astrophysics Data System (ADS)
Shareef, Muhamed; Gunn, Harrison; Voigt, Victoria; Singh, Gurpreet
Hummer's process was modified to produce gram levels of 2-dimensional nanosheets of graphene oxide (GO) with varying degree of exfoliation and chemical functionalization. This was achieved by varying the weight ratios and reaction times of oxidizing agents used in the process. Based on Raman and Fourier transform infra red spectroscopy we show that potassium permanganate (KMnO4) is the key oxidizing agent while sodium nitrate (NaNO3) and sulfuric acid (H2SO4) play minor role during the exfoliation of graphite. Tested as working electrode in sodium-ion half-cell, the GO nanosheets produced using this optimized approach showed high rate capability and exceptionally high energy density of ~500 mAh/g for up to at least 100 cycles, which is among the highest reported for sodium/graphite electrodes. The average Coulombic efficiency was approximately 99 %. NSF Grant No. 1454151.
Pluronic Microemulsions as Nanoreservoirs for Extraction of Bupivacaine from Normal Saline
Varshney, Manoj; Morey, Timothy E.; Shah, Dinesh O.; Flint, Jason A.; Moudgil, Brij M.; Seubert, Christoph N.
2013-01-01
We hypothesized that custom-designed microemulsions would effectively scavenge compounds from bulk media. Pluronic-based oil-in-water microemulsions were synthesized that efficiently reduced the free concentration of the local anesthetic bupivacaine in 0.9% NaCl. Both the molecular nature and concentration of the constituents in the microemulsions significantly affected extraction efficiencies. Pluronic F127-based microemulsions extracted bupivacaine more efficiently than microemulsions synthesized using other Pluronic surfactants (L44, L62, L64, F77, F87, F88, P104). Extraction was markedly increased by addition of fatty acid sodium salts due to greater oil/water interface area, increased columbic interaction between bupivacaine and fatty acids sodium salt, and greater surface activity. These data suggest that oil-in-water microemulsions may be an effective agent to treat cardiotoxicity caused by bupivacaine or other lipophilic drugs. PMID:15099093
Zhu, Chengzhou; Shi, Qiurong; Fu, Shaofang; ...
2018-04-04
Delicately engineering well-defined noble metal aerogels with favorable structural and compositional features is of vital importance for wide applications. Here, we reported a one-pot and facile method for synthesizing core–shell PdPb@Pd hydrogels/aerogels with multiply-twinned grains and an ordered intermetallic phase using sodium hypophosphite as a multifunctional reducing agent. Due to the accelerated gelation kinetics induced by increased reaction temperature and the specific function of sodium hypophosphite, the formation of hydrogels can be completed within 4 h. As a result, owing to their unique porous structure and favorable geometric and electronic effects, the optimized PdPb@Pd aerogels exhibit enhanced electrochemical performance towardsmore » ethylene glycol oxidation with a mass activity of 5.8 times higher than Pd black.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Chengzhou; Shi, Qiurong; Fu, Shaofang
Delicately engineering well-defined noble metal aerogels with favorable structural and compositional features is of vital importance for wide applications. Here, we reported a one-pot and facile method for synthesizing core–shell PdPb@Pd hydrogels/aerogels with multiply-twinned grains and an ordered intermetallic phase using sodium hypophosphite as a multifunctional reducing agent. Due to the accelerated gelation kinetics induced by increased reaction temperature and the specific function of sodium hypophosphite, the formation of hydrogels can be completed within 4 h. As a result, owing to their unique porous structure and favorable geometric and electronic effects, the optimized PdPb@Pd aerogels exhibit enhanced electrochemical performance towardsmore » ethylene glycol oxidation with a mass activity of 5.8 times higher than Pd black.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cima, L; Pozza, F
1963-01-01
In mice of the SMZ strain the protective effect of various kinds of radioprotectant agents against the toxicity of the alkylating agent mechiorethamine (HN2) was investigated. HN2 was injected subcutaneously in doses of 6 mg/kg, corresponding to the LD/sub 99/6/. The most effective protective agent tested was the chelating agent Na diethyldithiocarbamate (DEDTC), which when injected intraperitoneally in doses of 335 mg/kg raised the 4-day survival rate to 90% from a control value of 20%. Other chelating agents were less effective, showing the specific action of the dithiocarbamate anion: tetraethylthiuram disulfide (disulfiram), 2-guanidinothiazolidone, and diethylamine. Moderately effective against the toxicitymore » of HN2 were (in decreasing order): reserpine, chlorpromazine, propylene glycol, malononitrile, glutathione, cysteamine, oxytocin, and Na ethylenediaminetatraacetate. Tryptamine was ineffective and cysteine augmented the toxicity of HN2. DEDTC did not modify the carcinostatic effect of HN2 against Ehrlich ascites tumor and thus, by markedly reducing the toxicity of HN2, enhances the therapeutic index of HN2 3 fold. The protective effect of DEDTC and the other radioprotectant agents against HN2 suggest that alkylating agents and ionizing radiation have analogous effects on tissue constituents. (H.H.D.)« less
Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
You, Ya; Yu, Xi -Qian; Yin, Ya -Xia
Owing to the worldwide abundance and low-cost of Na, room-temperature Na-ion batteries are emerging as attractive energy storage systems for large-scale grids. Increasing the Na content in cathode material is one of the effective ways to achieve high energy density. Prussian blue and its analogues (PBAs) are promising Na-rich cathode materials since they can theoretically store two Na ions per formula. However, increasing the Na content in PBAs cathode materials is a big challenge in the current. Here we show that sodium iron hexacyanoferrate with high Na content could be obtained by simply controlling the reducing agent and reaction atmospheremore » during synthesis. The Na content can reach as high as 1.63 per formula, which is the highest value for sodium iron hexacyanoferrate. This Na-rich sodium iron hexacyanoferrate demonstrates a high specific capacity of 150 mA h g -1 and remarkable cycling performance with 90% capacity retention after 200 cycles. Furthermore, the Na intercalation/de-intercalation mechanism is systematically studied by in situ Raman, X-ray diffraction and X-ray absorption spectroscopy analysis for the first time. As a result, the Na-rich sodium iron hexacyanoferrate could function as a plenteous Na reservoir and has great potential as a cathode material toward practical Na-ion batteries.« less
Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries
You, Ya; Yu, Xi -Qian; Yin, Ya -Xia; ...
2014-10-27
Owing to the worldwide abundance and low-cost of Na, room-temperature Na-ion batteries are emerging as attractive energy storage systems for large-scale grids. Increasing the Na content in cathode material is one of the effective ways to achieve high energy density. Prussian blue and its analogues (PBAs) are promising Na-rich cathode materials since they can theoretically store two Na ions per formula. However, increasing the Na content in PBAs cathode materials is a big challenge in the current. Here we show that sodium iron hexacyanoferrate with high Na content could be obtained by simply controlling the reducing agent and reaction atmospheremore » during synthesis. The Na content can reach as high as 1.63 per formula, which is the highest value for sodium iron hexacyanoferrate. This Na-rich sodium iron hexacyanoferrate demonstrates a high specific capacity of 150 mA h g -1 and remarkable cycling performance with 90% capacity retention after 200 cycles. Furthermore, the Na intercalation/de-intercalation mechanism is systematically studied by in situ Raman, X-ray diffraction and X-ray absorption spectroscopy analysis for the first time. As a result, the Na-rich sodium iron hexacyanoferrate could function as a plenteous Na reservoir and has great potential as a cathode material toward practical Na-ion batteries.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Guang; Huq, Ashfia; Manthiram, Arumugam
Vanadyl phosphates (VOPO 4) represent a class of attractive cathodes in lithium-ion batteries. However, the exploration of this type of materials in sodium-ion batteries is rare. Here, we report for the first time the synthesis of orthorhombic β-NaVOPO 4 by first chemically extracting lithium from beta-LiVOPO 4 and then inserting sodium into the obtained β-VOPO 4 by a microwave-assisted solvothermal process with NaI, which serves both as a reducing agent and sodium source. Intermediate Na xVOPO 4 compositions with x = 0.3, 0.5, and 0.8 have also been obtained by controlling the amount of NaI in the reaction mixture. Jointmore » Rietveld refinement of synchrotron X-ray diffraction (XRD) and neutron diffraction confirms that the fully sodiated β-NaVOPO 4 is isostructural with the lithium counterpart β-LiVOPO 4. Bond valence sum maps suggest that sodium ions possibly diffuse along the [010] direction in the lattice, similar to the ionic conduction pathway in β-LiVOPO 4. Although the initial discharge capacity is low due to the protons in the structure, it steadily increases with cycling with a long plateau at 3.3 V. As a result, ex situ XRD data of cycled β-VOPO 4 and β-NaVOPO 4 electrodes confirm the reversible reaction in sodium cells involving the V 4+/V 5+ redox couple.« less
Depletion Rate of Hydrogen Peroxide from Sodium Perborate Bleaching Agent.
Tran, Liliann; Orth, Rebecca; Parashos, Peter; Tao, Ying; Tee, Calvin W J; Thomas, Vineet Thenalil; Towers, Georgina; Truong, Diem Thuy; Vinen, Cynthia; Reynolds, Eric C
2017-03-01
Internal bleaching of discolored teeth uses sodium perborate reacting with water to form the active agent, hydrogen peroxide (H 2 O 2 ). Sodium perborate is replaced at varying time intervals depending on clinician preference and until esthetically acceptable results are achieved, but this is done without scientific basis. This study measured the depletion rate of hydrogen peroxide from sodium perborate as a bleaching agent. Two sodium perborate bleaching products (Odontobleach [Australian Dental Manufacturing, Kenmore Hills, Queensland, Australia] and Endosure Perborate Micro [Dentalife, Ringwood, Victoria, Australia]) and distilled deionized water mixtures at ratios of 25 μg/mL, 50 μg/mL, and 100 μg/mL were placed into sealed microtubes and incubated at 37°C. H 2 O 2 concentrations were measured at 23 time points over 4 weeks. Quantification of H 2 O 2 concentrations was obtained using a ferrothiocyanate oxidation reduction reaction followed by spectrophotometry readings. The H 2 O 2 concentration rapidly peaked within 27 hours and reached a plateau by about 3 days (75 hours). Low levels of H 2 O 2 were evident beyond 3 days and for at least 28 days. No significant differences were found between the 2 sodium perborate products. There was also no significant difference in the depletion rate between the different ratios. Based on the chemistry of H 2 O 2 depletion, the minimum replacement interval for the bleaching agent is 3 days. Frequent replacements of the perborate clinically may be unnecessary because of the continued presence of low H 2 O 2 levels for at least 28 days. Although these data cannot be extrapolated to the clinical situation, they set a baseline for further studies to address the many clinical variables influencing internal bleaching. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Lee, Jounghee; Park, Sohyun
2016-04-01
The sodium content of meals provided at worksite cafeterias is greater than the sodium content of restaurant meals and home meals. The objective of this study was to assess the relationships between sodium-reduction practices, barriers, and perceptions among food service personnel. We implemented a cross-sectional study by collecting data on perceptions, practices, barriers, and needs regarding sodium-reduced meals at 17 worksite cafeterias in South Korea. We implemented Chi-square tests and analysis of variance for statistical analysis. For post hoc testing, we used Bonferroni tests; when variances were unequal, we used Dunnett T3 tests. This study involved 104 individuals employed at the worksite cafeterias, comprised of 35 men and 69 women. Most of the participants had relatively high levels of perception regarding the importance of sodium reduction (very important, 51.0%; moderately important, 27.9%). Sodium reduction practices were higher, but perceived barriers appeared to be lower in participants with high-level perception of sodium-reduced meal provision. The results of the needs assessment revealed that the participants wanted to have more active education programs targeting the general population. The biggest barriers to providing sodium-reduced meals were use of processed foods and limited methods of sodium-reduced cooking in worksite cafeterias. To make the provision of sodium-reduced meals at worksite cafeterias more successful and sustainable, we suggest implementing more active education programs targeting the general population, developing sodium-reduced cooking methods, and developing sodium-reduced processed foods.
NASA Technical Reports Server (NTRS)
Williams, W. J.; Stuart, C. A.; Fortney, S. M.; Pietrzyk, R. A.; Chen, Y. M.; Whitson, P. A.
1994-01-01
Changes in sympathoadrenal function and cardiovascular deconditioning have long been recognized as a feature of the physiological adaptation to microgravity. The deconditioning process, coupled with altered hydration status, is thought to significantly contribute to orthostatic intolerance upon return to Earth gravity. The cardiovascular response to stimulation by sympathomimetic agents before, during, and after exposure to simulated microgravity was determined in healthy volunteers equilibrated on normal or high sodium diets in order to further the understanding of the deconditioning process.
Morcos, Peter N; Parrott, Neil; Banken, Ludger; Timpe, Carsten; Lindenberg, Marc; Guerini, Elena; Dall, Georgina; Bogman, Katrijn; Sturm, Carolina; Zeaiter, Ali; Martin-Facklam, Meret; Phipps, Alex
2017-05-01
The anaplastic lymphoma kinase (ALK) inhibitor alectinib is an effective treatment for ALK-positive non-small-cell lung cancer. This bioequivalence study evaluated the in vivo performance of test 3 formulations with the reduced wetting agent sodium lauryl sulfate (SLS) content. This randomized, 4-period, 4-sequence, crossover study compared alectinib (600 mg) as 25%, 12.5%, and 3% SLS hard capsule formulations with the reference 50% SLS clinical formulation in healthy subjects under fasted conditions (n = 49), and following a high-fat meal (n = 48). Geometric mean ratios and 90% confidence intervals (CIs) for C max , AUC 0-last , and AUC 0-∞ of alectinib, its major active metabolite, M4, and alectinib plus M4 were determined for the test formulations versus the reference formulation. Bioequivalence was concluded if the 90%CIs were within the 80% to 125% boundaries. The 25% SLS formulation demonstrated bioequivalence to the reference 50% SLS formulation for C max , AUC 0-last , and AUC 0-∞ of alectinib, M4, and alectinib plus M4 under both fasted and fed conditions. Further reductions in SLS content (12.5% and 3% SLS) did not meet the bioequivalence criteria. Cross-group comparisons showed an approximately 3-fold positive food effect. Reducing SLS to 25% resulted in a formulation that is bioequivalent to the current 50% SLS formulation used in alectinib pivotal trials. © 2016, The American College of Clinical Pharmacology.
Green reduction of graphene oxide by ascorbic acid
NASA Astrophysics Data System (ADS)
Khosroshahi, Zahra; Kharaziha, Mahshid; Karimzadeh, Fathallah; Allafchian, Alireza
2018-01-01
Graphene, a single layer of sp2-hybridized carbon atoms in a hexagonal (two-dimensional honey-comb) lattice, has attracted strong scientific and technological interest due to its novel and excellent optical, chemical, electrical, mechanical and thermal properties. The solution-processable chemical reduction of Graphene oxide (GO is considered as the most favorable method regarding mass production of graphene. Generally, the reduction of GO is carried out by chemical approaches using different reductants such as hydrazine and sodium borohydride. These components are corrosive, combustible and highly toxic which may be dangerous for personnel health and the environment. Hence, these reducing agents are not promising choice for reducing of graphene oxide (GO). As a consequence, it is necessary for further development and optimization of eco-friendly, natural reducing agent for clean and effective reduction of GO. Ascorbic acid, an eco-friendly and natural reducing agents, having a mild reductive ability and nontoxic property. So, the aim of this research was to green synthesis of GO with ascorbic acid. For this purpose, the required amount of NaOH and ascorbic acid were added to GO solution (0.5 mg/ml) and were heated at 95 °C for 1 hour. According to the X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and electrochemical results, GO were reduced with ascorbic acid like hydrazine with better electrochemical properties and ascorbic acid is an ideal substitute for hydrazine in the reduction of graphene oxide process.
Study of linear optical parameters of sodium sulphide nano-particles added ADP crystals
NASA Astrophysics Data System (ADS)
Kochuparampil, A. P.; Joshi, J. H.; Dixit, K. P.; Jethva, H. O.; Joshi, M. J.
2017-05-01
Ammonium Dihydrogen Phosphate (ADP) is one of the nonlinear optical crystals. It is having various applications like optical mixing, electro-optical modulator, harmonic generators, etc. Chalcogenide compounds are poorly soluble in water and difficult to add in the water soluble ADP crystals. The solubility of Chalcogenide compounds can be increased by synthesizing the nano-structured samples with suitable capping agent. In the present study sodium sulphide was added in to ADP to modify its linear optical parameters. Sodium sulphide nano particles were synthesized by co-precipitation technique using Ethylene diamine as capping agent followed by microwave irradiation. The powder XRD confirmed the nano-structured nature of sodium sulphide nano particles. The solubility of nanoparticles of sodium sulphide increased significantly in water compared to the bulk. Pure and Na2S added ADP crystals were grown by slow solvent evaporation method at room temperature. The presence of sodium in ADP was confirmed by AAS. The UV-Vis spectra were recorded for all crystals. Various optical parameters like, transmittance, energy band gap, extinction coefficient, refractive index, optical conductivity, etc. were evaluated. The electronic polarizibility of pure and doped crystals calculated from energy band gap. The effect of doping concentration was found on various parameters.
Cunneen, Thomas S; Conway, R Max; Madigan, Michele C
2009-04-01
To investigate the effects of mitomycin C and the histone deacetylase inhibitors sodium butyrate and trichostatin on the viability and growth of conjunctival melanoma cell lines and Tenon capsule fibroblasts. Cells were treated with a range of concentrations of sodium butyrate, trichostatin, and mitomycin C. The MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide) assays were performed 48 hours after treatment. Treated cells were stained with acridine orange/ethidium bromide to assess for cell death. Cell-cycle changes in histone deacetylase inhibitor-treated melanoma cells were quantified using flow cytometry. All agents induced dose-dependent cell death in the melanoma cell lines; however, sodium butyrate and trichostatin were relatively nontoxic to Tenon capsule fibroblasts. Acridine orange/ethidium bromide staining indicated that sodium butyrate and trichostatin induced apoptotic cell death. At low doses, sodium butyrate and trichostatin induced a G1 cell-cycle block in the melanoma cells. Sodium butyrate and trichostatin induced cell death in melanoma cells, comparable with mitomycin C, with minimal effect on Tenon capsule fibroblasts. In addition, they induced a G1 cell-cycle block. These findings support the need for further investigation into the in vivo efficacy of these agents.
Decolonization in Prevention of Health Care-Associated Infections.
Septimus, Edward J; Schweizer, Marin L
2016-04-01
Colonization with health care-associated pathogens such as Staphylococcus aureus, enterococci, Gram-negative organisms, and Clostridium difficile is associated with increased risk of infection. Decolonization is an evidence-based intervention that can be used to prevent health care-associated infections (HAIs). This review evaluates agents used for nasal topical decolonization, topical (e.g., skin) decolonization, oral decolonization, and selective digestive or oropharyngeal decontamination. Although the majority of studies performed to date have focused on S. aureus decolonization, there is increasing interest in how to apply decolonization strategies to reduce infections due to Gram-negative organisms, especially those that are multidrug resistant. Nasal topical decolonization agents reviewed include mupirocin, bacitracin, retapamulin, povidone-iodine, alcohol-based nasal antiseptic, tea tree oil, photodynamic therapy, omiganan pentahydrochloride, and lysostaphin. Mupirocin is still the gold standard agent for S. aureus nasal decolonization, but there is concern about mupirocin resistance, and alternative agents are needed. Of the other nasal decolonization agents, large clinical trials are still needed to evaluate the effectiveness of retapamulin, povidone-iodine, alcohol-based nasal antiseptic, tea tree oil, omiganan pentahydrochloride, and lysostaphin. Given inferior outcomes and increased risk of allergic dermatitis, the use of bacitracin-containing compounds cannot be recommended as a decolonization strategy. Topical decolonization agents reviewed included chlorhexidine gluconate (CHG), hexachlorophane, povidone-iodine, triclosan, and sodium hypochlorite. Of these, CHG is the skin decolonization agent that has the strongest evidence base, and sodium hypochlorite can also be recommended. CHG is associated with prevention of infections due to Gram-positive and Gram-negative organisms as well as Candida. Conversely, triclosan use is discouraged, and topical decolonization with hexachlorophane and povidone-iodine cannot be recommended at this time. There is also evidence to support use of selective digestive decontamination and selective oropharyngeal decontamination, but additional studies are needed to assess resistance to these agents, especially selection for resistance among Gram-negative organisms. The strongest evidence for decolonization is for use among surgical patients as a strategy to prevent surgical site infections. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Welliver, Mark; McDonough, John; Kalynych, Nicholas; Redfern, Robert
2008-01-01
Neuromuscular blockade, induced by neuromuscular blocking agents, has allowed prescribed immobility, improved surgical exposure, optimal airway management conditions, and facilitated mechanical ventilation. However, termination of the effects of neuromuscular blocking agents has, until now, remained limited. A novel cyclodextrin encapsulation process offers improved termination of the paralytic effects of aminosteroidal non-depolarizing neuromuscular blocking agents. Sugammadex sodium is the first in a new class of drug called selective relaxant binding agents. Currently, in clinical trials, sugammadex, a modified gamma cyclodextrin, has shown consistent and rapid termination of neuromuscular blockade with few side effects. The pharmacology of cyclodextrins in general and sugammadex in particular, together with the results of current clinical research are reviewed. The ability of sugammadex to terminate the action of neuromuscular blocking agents by direct encapsulation is compared to the indirect competitive antagonism of their effects by cholinesterase inhibitors. Also discussed are the clinical implications that extend beyond fast, effective reversal, including numerous potential perioperative benefits. PMID:19920893
[Basic Studies on the Stability of Flavored Oral Solutions of Rebamipide].
Yajima, Ryo; Imaoka, Futa; Wako, Tetsuya; Kuroda, Yuko; Matsumoto, Kazuaki; Kizu, Junko; Katayama, Shiro
2015-01-01
Stomatitis frequently occurs during chemotherapy and radiotherapy for cancer. Because of its pharmacological properties including anti-inflammatory activity and stimulatory effects on endogenous prostaglandin synthesis, rebamipide has been suggested as a potentially effective treatment against stomatitis. In the present study we tested the stability of oral rebamipide solutions prepared in our hospital pharmacy using sodium alginate as a thickener to increase retention of this agent in the oral cavity, and the addition of different flavoring mixtures intended for use in enteral diets to reduce the bitterness of rebamipide and sodium alginate. Samples of oral rebamipide solution prepared with 13 kinds of flavoring and sodium alginate were evaluated in terms of their appearance, redispersibility, pH, viscosity, and rebamipide content immediately after preparation and 1, 3, 7, and 10 days after storage at room temperature under ambient light or in a cool, dark place. After 10 days of storage, favorable stability was observed in four sample solutions supplemented with green apple, pineapple, yogurt, and tomato flavoring mixtures intended for use in Elental(®) diets. These oral solutions may have potential clinical application.
Janssen, Anke M; Kremer, Stefanie; van Stipriaan, Willeke L; Noort, Martijn W J; de Vries, Jeanne H M; Temme, Elisabeth H M
2015-10-01
Processed foods are major contributors to excessive sodium intake in Western populations. We investigated the effect of food reformulation on daily dietary sodium intake. To determine whether uninformed consumers accept reduced-sodium lunches and to determine the effect of consuming reduced-sodium lunches on 24-hour urinary sodium excretion. A single-blind randomized controlled pretest-posttest design with two parallel treatment groups was used. Participants chose foods in an experimental real-life canteen setting at the Restaurant of the Future in Wageningen, the Netherlands, from May 16 until July 1, 2011. After a run-in period with regular foods for both groups, the intervention group (n=36) consumed foods with 29% to 61% sodium reduction (some were partially flavor compensated). The control group (n=38) continued consuming regular foods. Outcomes for assessment of acceptance were the amount of foods consumed, energy and sodium intake, remembered food liking, and intensity of sensory aspects. Influence on daily dietary sodium intake was assessed by 24-hour urinary sodium excretion. Between and within-subject comparisons were assessed by analysis of covariance. Energy intake and amount consumed of each food category per lunch remained similar for both groups. Compared with the control group, the intervention group's sodium intake per lunch was significantly reduced by -1,093 mg (adjusted difference) (95% CI -1,285 to -901), equivalent to 43 mmol sodium. Remembered food liking, taste intensity, and saltiness were scored similarly for almost all of the reduced-sodium foods compared with the regular foods. After consuming reduced-sodium lunches, compared with the control group, intervention participants' 24-hour urinary sodium excretion was significantly lower by -40 mEq (adjusted difference) (95% CI -63 to -16) than after consuming regular lunches, and this reflects a decreased daily sodium intake of 1 g. Comparing the two treatment groups, consumption of reduced-sodium foods over a 3-week period was well accepted by the uninformed participants in an experimental real-life canteen setting. The reduced-sodium foods did not trigger compensation behavior during the remainder of the day in the intervention group compared with the control group, as reflected by 24-hour urinary sodium excretion. Therefore, offering reduced-sodium foods without explicitly informing consumers of the sodium reduction can contribute to daily sodium intake reduction. Copyright © 2015 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.
Lee, Jounghee; Park, Sohyun
2015-01-01
Objectives The sodium content of meals provided at worksite cafeterias is greater than the sodium content of restaurant meals and home meals. The objective of this study was to assess the relationships between sodium-reduction practices, barriers, and perceptions among food service personnel. Methods We implemented a cross-sectional study by collecting data on perceptions, practices, barriers, and needs regarding sodium-reduced meals at 17 worksite cafeterias in South Korea. We implemented Chi-square tests and analysis of variance for statistical analysis. For post hoc testing, we used Bonferroni tests; when variances were unequal, we used Dunnett T3 tests. Results This study involved 104 individuals employed at the worksite cafeterias, comprised of 35 men and 69 women. Most of the participants had relatively high levels of perception regarding the importance of sodium reduction (very important, 51.0%; moderately important, 27.9%). Sodium reduction practices were higher, but perceived barriers appeared to be lower in participants with high-level perception of sodium-reduced meal provision. The results of the needs assessment revealed that the participants wanted to have more active education programs targeting the general population. The biggest barriers to providing sodium-reduced meals were use of processed foods and limited methods of sodium-reduced cooking in worksite cafeterias. Conclusion To make the provision of sodium-reduced meals at worksite cafeterias more successful and sustainable, we suggest implementing more active education programs targeting the general population, developing sodium-reduced cooking methods, and developing sodium-reduced processed foods. PMID:27169011
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-30
... and other chronic illnesses; sodium consumption practices; motivation and barriers in reducing sodium... role of sodium in hypertension and other chronic illnesses; sodium consumption practices; motivation...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uttam, Vibha, E-mail: vibhauttam74@gmail.com; Duchaniya, R. K., E-mail: rkduchaniya.meta@mnit.ac.in
2016-05-06
Now a days, corrosion studies are important for reducing the wastage of metals. The importance of corrosion studies is two folds i.e. first is economic, including the reduction of material losses resulting from the wasting away or sudden failure of materials and second is conservation Electroless process is an autocatalytic reduction method in which metallic ions are reduced in the solution. Nanocomposite coatings of Ni-P-TiO{sub 2} on mild steel are deposited by varying volume of TiO{sub 2} nano-powder by electroless method from Ni-P plating bath containing Nickel Sulphate as a source of nickel ions, sodium hypophosphite as the reducing agent,more » lactic acid as a complexing agents and TiO{sub 2} nano powder. Electroless Ni-P-TiO{sub 2} coating have been widely used in the chemical process industries, mechanical industries, electronic industries and chloroalkali industries due to their excellent corrosion with mechanical properties. In the present work, deposition of Ni-P alloy coating and Ni-P-TiO{sub 2} nanocomposited coatings were done on the mild steel and corrosion properties were studied with Potentio-dynamic polarization measurements method in 3.5 wt% sodium chloride solution. It showed in the experiments that Ni-P-TiO{sub 2} nanocomposited coating has better corrosion resistance as comparedthan Ni-P alloy coating. Morphological studies were done by field emission scanning electron microscopy (FESEM), energy–dispersive analysis of X-ray (EDAX) and X-ray diffraction (XRD). These studies confirmed the deposition of Ni-P alloy coating and Ni-P-TiO{sub 2} nanocomposited coating.« less
Laboratory scale studies on removal of chromium from industrial wastes.
Baig, M A; Mir, Mohsin; Murtaza, Shazad; Bhatti, Zafar I
2003-05-01
Chromium being one of the major toxic pollutants is discharged from electroplating and chrome tanning processes and is also found in the effluents of dyes, paint pigments, manufacturing units etc. Chromium exists in aqueous systems in both trivalent (Cr(3+)) and hexavalent (Cr(6+)) forms. The hexavalent form is carcinogenic and toxic to aquatic life, whereas Cr(3+) is however comparatively less toxic. This study was undertaken to investigate the total chromium removal from industrial effluents by chemical means in order to achieve the Pakistan NEQS level of 1 mg/L by the methods of reduction and precipitation. The study was conducted in four phases. In phase I, the optimum pH and cost effective reducing agent among the four popular commercial chemicals was selected. As a result, pH of 2 was found to be most suitable and sodium meta bisulfate was found to be the most cost effective reducing agent respectively. Phase II showed that lower dose of sodium meta bisulfate was sufficient to obtain 100% efficiency in reducing Cr(6+) to Cr(3+), and it was noted that reaction time had no significance in the whole process. A design curve for reduction process was established which can act as a tool for treatment of industrial effluents. Phase III studies indicated the best pH was 8.5 for precipitation of Cr(3+) to chromium hydroxide by using lime. An efficiency of 100% was achievable and a settling time of 30 minutes produced clear effluent. Finally in Phase IV actual waste samples from chrome tanning and electroplating industries, when precipitated at pH of 12 gave 100% efficiency at a settling time of 30 minutes and confined that chemical means of reduction and precipitation is a feasible and viable solution for treating chromium wastes from industries.
Fabrication and performance of porous lithium sodium potassium niobate ceramic
NASA Astrophysics Data System (ADS)
Chen, Caifeng; Zhu, Yuan; Ji, Jun; Cai, Feixiang; Zhang, Youming; Zhang, Ningyi; Wang, Andong
2018-02-01
Porous lithium sodium potassium niobate (LNK) ceramic has excellent piezoelectric properties, chemical stability and great chemical compatibility. It has a good application potential in the field of biological bone substitute. In the paper, porous LNK ceramic was fabricated with egg albumen foaming agent by foaming method. Effects of preparation process of the porous LNK ceramic on density, phase structure, hole size and piezoelectric properties were researched and characterized. The results show that the influence factors of LNK solid content and foaming agent addition are closely relevant to properties of the porous LNK ceramic. When solid content is 65% and foaming agent addition is 30%, the porous LNK ceramic has uniform holes and the best piezoelectric properties.
Yu, Rosie Z; Geary, Richard S; Flaim, Joann D; Riley, Gina C; Tribble, Diane L; vanVliet, André A; Wedel, Mark K
2009-01-01
Mipomersen sodium (ISIS 301012) is a 20-mer phosphorothioate antisense oligonucleotide that is complementary to human apolipoprotein B-100 (apoB-100) messenger RNA and subsequently reduces translation of ApoB-100 protein, the major apolipoprotein of very low-density lipoprotein, intermediate-density lipoprotein and low-density lipoprotein (LDL). Mipomersen sodium is currently being studied in phase II/III clinical studies to determine its clinical utility as add-on therapy to HMG-CoA reductase inhibitors or other lipid-lowering agents in subjects with hypercholesterolaemia. The aim of this study was to characterize the pharmacokinetic interactions of mipomersen sodium with simvastatin and ezetimibe. Another aim was to evaluate the ability of mipomersen sodium to inhibit major cytochrome P450 (CYP) isoenzymes in vitro. In a phase I clinical study, ten healthy subjects per cohort received a single oral dose of simvastatin 40 mg or ezetimibe 10 mg followed by four 2-hour intravenous doses of mipomersen sodium 200 mg over an 8-day period, with simvastatin 40 mg or ezetimibe 10 mg being administered again with the last dose of mipomersen sodium. Mipomersen sodium pharmacokinetic profiles were assessed following the first dose (mipomersen sodium alone) and the last dose (mipomersen sodium in combination with simvastatin or ezetimibe). Plasma samples for measurement of simvastatin, simvastatin acid, and free and total ezetimibe concentrations were collected at various timepoints following their first and last oral dosing. A comparative pharmacokinetic analysis was performed to determine if there were any effects resulting from coadministration of mipomersen sodium with these lipid-lowering drugs. In addition to the clinical pharmacokinetic analysis, the ability of mipomersen sodium to inhibit the major CYP isoform enzymes (namely CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4) was evaluated in cryo-preserved human hepatocytes in vitro. The area under the plasma concentration-time curve (AUC) from 0 to 24 hours (AUC(24)), maximum plasma concentration and apparent elimination half-life values of mipomersen sodium were similar when administered alone and in combination with oral simvastatin or oral ezetimibe. The 90% confidence intervals of the geometric least squares means ratios (%Reference) of the mipomersen sodium AUC(24) values were 93.6, 107 when administered together with simvastatin, and 92.4, 111 when administered with ezetimibe. Therefore, there were no large deviations outside the default no-effect boundaries (80-125%) for total exposure (the AUC) of mipomersen sodium in combination with either simvastatin or ezetimibe. Similarly, large deviations outside the default no-effect boundaries were not observed for simvastatin, simvastatin acid, or free and total ezetimibe exposure in combination with mipomersen sodium. In cryo-preserved human hepatocytes, mipomersen sodium exhibited no cytotoxicity. Significant cell uptake was demonstrated by analysing cell-associated concentrations of mipomersen sodium. All evaluated enzyme activities had <10% inhibition at tested concentrations up to 800 microg/mL (approximately 100 micromol/L) of mipomersen sodium, and dose-dependent inhibition was not observed. Therefore, mipomersen sodium is not considered an inhibitor of CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4 enzyme activities. These data provide evidence that mipomersen sodium exhibits no clinically relevant pharmacokinetic interactions with the disposition and clearance of simvastatin or ezetimibe, and vice versa. Moreover, mipomersen sodium does not inhibit any of the major CYP enzymes that were evaluated. Taken together, the results from this study support the use of mipomersen sodium in combination with oral lipid-lowering agents.
Qin, Jiayang; Wang, Xiuwen; Zheng, Zhaojuan; Ma, Cuiqing; Tang, Hongzhi; Xu, Ping
2010-10-01
A sodium lactate tolerant mutant strain named Bacillus sp. Na-2 was obtained and applied to sodium hydroxide-based L-lactic acid (LA) production process. The influences of aeration and pH were investigated to further improve the resistance of strain Na-2 against sodium lactate stress and to obtain the most efficient L-LA production process. Although mild aeration was favorable for cell growth and L-LA production, vigorous aeration resulted in a metabolic shift from homolactic to mixed-acid/acetoin fermentation. Therefore, a two-stage aeration control strategy was employed. Optimum pH was found to be 6.0. A total of 106.0 g/l L-LA was produced in 30 h by Bacillus sp. Na-2 using sodium hydroxide as neutralizing agent. Productivity, conversion rate and optical purity were 3.53 g/l/h, 94% and 99.5%, respectively. The remarkable fermentation traits of Bacillus sp. Na-2 and the environment-friendly characteristics of NaOH-based process represent new insight for industrial scale production of L-LA. Copyright 2010 Elsevier Ltd. All rights reserved.
Neurogenic regulation of renal tubular sodium reabsorption.
DiBona, G F
1977-08-01
The evidence supporting a role for direct neurogenic control of renal tubular sodium reabsorption is reviewed. Electron microscopic and fluorescence histochemical studies have demonstrated adrenergic nerve terminals in direct contact with basement membranes of mammalian (rat, dog, and monkey) renal tubular epithelial cells. Low-level direct or baroreceptor reflex stimulation of renal sympathetic nerves produces an increase in renal tubular sodium reabsorption without alterations in glomerular filtration rate, renal blood flow, or intrarenal distribution of blood flow. Antinatriuresis was prevented by prior treatment of the kidney with guanethidine or phenoxybenzamine. Rat kidney micropuncture studies have localized a site of enhanced tubular sodium reabsorption to the proximal tubule. Possible indirect mediation of the antinatriuresis by other humoral agents known to be released from the kidney on renal nerve stimulation (angiotensin II, prostaglandin) was excluded by experiments with appropriate blocking agents. The possible effects of anesthesia and uncertainties about the completeness of surgical renal denervation and other tubular segmental sites of action are critically analyzed. The clinical implications of this mechanism in pathologic conditions of sodium and water retention are discussed and and a prospectus for future work is presented.
1976-05-01
since the platinum silicide and titanium metals also offer very low mobility to the alkaline ions, the BLSJ . is inert to sodium . Inversion and...gettering agents for sodium ions, thus making the cont&-nination far less mobile. The stability of the structural and electrical properties of the oxide...to be an effective barrier to sodium migration. In Beam Lead Sealed ,unction (BLSJ) devices, the silicon nitride seals the devices from sodium and
NASA Astrophysics Data System (ADS)
Erryani, Aprilia; Lestari, Franciska Pramuji; Annur, Dhyah; Kartika, Ika
2018-05-01
The role of blowing agent in the manufacture of porous metal alloys is very important to produce the desired pore. The thermal stability and speed of foam formation have an effect on the resulting pore structure. In porous metal alloys, uniformity of size and pore deployment are the main determinants of the resulting alloys. The coating process of calcium carbonate (CaCO3) has been done using Sodium trisilicate solution by sol-gel method. Foaming agent was pretreated by coating SiO2 passive layer on the surface of CaCO3. This coating aims to produce a more stable blowing agent so that the foaming process can produce a more uniform pore size. The microstructure of the SiO2 passive was observed using Scanning Electron Microscope (SEM) equipped by Energy Dispersive X-Ray Spectrometer (EDS) mapping. The results showed coating CaCO3 using sodium trisilicate was successfully done creating a passive layer of SiO2 on the surface of CaCO3. By the coating process, the thermal stability of coated CaCO3 increased compared to uncoated CaCO3.
NASA Astrophysics Data System (ADS)
Krafcik, Matthew J.; Erk, Kendra A.
Superabsorbent hydrogel particles show promise as internal curing agents for high performance concrete (HPC). These gels can absorb and release large volumes of water and offer a solution to the problem of self-dessication in HPC. However, the gels are sensitive to ions naturally present in concrete. This research connects swelling behavior with gel-ion interactions to optimize hydrogel performance for internal curing, reducing the chance of early-age cracking and increasing the durability of HPC. Four different hydrogels of poly(sodium-acrylate acrylamide) are synthesized and characterized with swelling tests in different salt solutions. Depending on solution pH, ionic character, and gel composition, diffrerent swelling behaviors are observed. As weight percent of acrylic acid increases, gels demonstrate higher swelling ratios in reverse osmosis water, but showed substantially decreased swelling when aqueous cations are present. Additionally, in multivalent cation solutions, overshoot peaks are present, whereby the gels have a peak swelling ratio but then deswell. Multivalent cations interact with deprotonated carboxylic acid groups, constricting the gel and expelling water. Mortar containing hydrogels showed reduced autogenous shrinkage and increased relative humidity.
Vanderford, Brett J; Mawhinney, Douglas B; Trenholm, Rebecca A; Zeigler-Holady, Janie C; Snyder, Shane A
2011-02-01
Proper collection and preservation techniques are necessary to ensure sample integrity and maintain the stability of analytes until analysis. Data from improperly collected and preserved samples could lead to faulty conclusions and misinterpretation of the occurrence and fate of the compounds being studied. Because contaminants of emerging concern, such as pharmaceuticals and personal care products (PPCPs) and steroids, generally occur in surface and drinking water at ng/L levels, these compounds in particular require such protocols to accurately assess their concentrations. In this study, sample bottle types, residual oxidant quenching agents, preservation agents, and hold times were assessed for 21 PPCPs and steroids in surface water and finished drinking water. Amber glass bottles were found to have the least effect on target analyte concentrations, while high-density polyethylene bottles had the most impact. Ascorbic acid, sodium thiosulfate, and sodium sulfite were determined to be acceptable quenching agents and preservation with sodium azide at 4 °C led to the stability of the most target compounds. A combination of amber glass bottles, ascorbic acid, and sodium azide preserved analyte concentrations for 28 days in the tested matrices when held at 4 °C. Samples without a preservation agent were determined to be stable for all but two of the analytes when stored in amber glass bottles at 4 °C for 72 h. Results suggest that if improper protocols are utilized, reported concentrations of target PPCPs and steroids may be inaccurate.
METHOD FOR SEPARATION OF PLUTONIUM FROM URANIUM AND FISSION PRODUCTS BY SOLVENT EXTRACTION
Seaborg, G.T.; Blaedel, W.J.; Walling, M.T. Jr.
1960-08-23
A process is given for separating from each other uranium, plutonium, and fission products in an aqueous nitric acid solution by the so-called Redox process. The plutonium is first oxidized to the hexavalent state, e.g., with a water-soluble dichromate or sodium bismuthate, preferably together with a holding oxidant such as potassium bromate. potassium permanganate, or an excess of the oxidizing agent. The solution is then contacted with a water-immiscible organic solvent, preferably hexone. whereby uranium and plutonium are extracted while the fission products remain in the aqueous solution. The separated organic phase is then contacted with an aqueous solution of a reducing agent, with or without a holding reductant (e.g., with a ferrous salt plus hydrazine or with ferrous sulfamate), whereby plutonium is reduced to the trivalent state and back- extracted into the aqueous solution. The uranium may finally be back-extracted from the organic solvent (e.g., with a 0.1 N nitric acid).
Synthesis and growth mechanism of sponge-like nickel using a hydrothermal method
NASA Astrophysics Data System (ADS)
Shao, Bin; Yin, Xueguo; Hua, Weidong; Ma, Yilong; Sun, Jianchun; Li, Chunhong; Chen, Dengming; Guo, Donglin; Li, Kejian
2018-05-01
Sponge-like nickel composed of micro-chains with a diameter of 1-5 μm was selectively synthesized by the hydrothermal method, using sodium hydroxide (NaOH) as the alkaline reagent, aqueous hydrazine as reducing agent and citric acid as a coordination agent. The time-dependent samples prepared at different NaOH concentrations were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectrometer (FTIR). The results showed that the agglomerates of nickel citrate hydrazine complex nanoplates were first precipitated and then reduced to prickly nickel micro-chains at a lower NaOH concentration, which played a role in the further formation of sponge-like nickel. Also, the probable growth mechanism of the sponge-like nickel was proposed. The magnetic properties of sponge-like nickel were studied using a vibrating sample magnetometer. The sponge-like nickel exhibited a ferromagnetic behavior with a saturation magnetization value of 43.8 emu g-1 and a coercivity value of 120.7 Oe.
Kurosaki, Eiji; Ogasawara, Hideaki
2013-07-01
Sodium-glucose cotransporter-2 (SGLT2) is expressed in the proximal tubules of the kidneys and plays a key role in renal glucose reabsorption. A novel class of antidiabetic medications, SGLT2-selective inhibitors attempt to improve glycemic control in diabetics by preventing glucose from being reabsorbed through SGLT2 and re-entering circulation. Ipragliflozin is an SGLT2 inhibitor in Phase 3 clinical development for the treatment of type 2 diabetes mellitus (T2DM). In this review, we summarize recent animal and human studies on ipragliflozin and other SGLT2 inhibitors including dapagliflozin, canagliflozin, empagliflozin, tofogliflozin, and luseogliflozin. These agents all show potent and selective SGLT2 inhibition in vitro and reduce blood glucose levels and HbA1c in both diabetic animal models and patients with T2DM. SGLT2 inhibitors offer several advantages over other classes of hypoglycemic agents. Due to their insulin-independent mode of action, SGLT2 inhibitors provide steady glucose control without major risk for hypoglycemia and may also reverse β-cell dysfunction and insulin resistance. Other favorable effects of SGLT2 inhibitors include a reduction in both body weight and blood pressure. SGLT2 inhibitors are safe and well tolerated and can easily be combined with other classes of antidiabetic medications to achieve tighter glycemic control. The long-term safety and efficacy of these agents are under evaluation. Copyright © 2013 Elsevier Inc. All rights reserved.
Active targeting of cancer cells using folic acid-conjugated platinum nanoparticles.
Teow, Yiwei; Valiyaveettil, Suresh
2010-12-01
Interaction of nanoparticles with human cells is an interesting topic for understanding toxicity and developing potential drug candidates. Water soluble platinum nanoparticles were synthesized via reduction of hexachloroplatinic acid using sodium borohydride in the presence of capping agents. The bioactivity of folic acid and poly(vinyl pyrrolidone) capped platinum nanoparticles (Pt-nps) has been investigated using commercially available cell lines. In the cell viability experiments, PVP-capped nanoparticles were found to be less toxic (>80% viability), whereas, folic acid-capped platinum nanoparticles showed a reduced viability down to 24% after 72 h of exposure at a concentration of 100 μg ml(-1) for MCF7 breast cancer cells. Such toxicity, combined with the possibility to incorporate functional organic molecules as capping agents, can be used for developing new drug candidates.
[Food processing industry--the salt shock to the consumers].
Doko Jelinić, Jagoda; Nola, Iskra Alexandra; Andabaka, Damir
2010-05-01
Industrial food production and processing is necessarily connected with the use of salt. Salt or sodium chloride is used as a preservative, spice, agent for color maintenance, texture, and to regulate fermentation by stopping the growth of bacteria, yeast and mold. Besides kitchen salt, other types of salt that also contain sodium are used in various technological processes in food preparing industry. Most of the "hidden" salt, 70%-75%, can be brought to the body by using industrial food, which, unfortunately, has been increasingly used due to the modern way of life. Bread and bakery products, meat products, various sauces, dried fish, various types of cheese, fast food, conserved vegetables, ready-made soups and food additives are the most common industrial foods rich in sodium. Many actions have been taken all over the world to restrict salt consumption. The World Health Organization recommends the upper limit of salt input of 5 g per day. These actions appeal to food industry to reduce the proportion of salt in their products. Besides lower salt addition during manufacture, food industry can use salt substitutes, in particular potassium chloride (KCl), in combination with additives that can mask the absence of salt, and flavor intensifiers that also enhance the product salinity. However, food industry is still quite resistant to reducing salt in their products for fear from losing profits.
Bosch-Marcé, M; Poo, J L; Jiménez, W; Bordas, N; Leivas, A; Morales-Ruiz, M; Muñoz, R M; Pérez, M; Arroyo, V; Rivera, F; Rodés, J
1999-04-01
kappa-Opioid receptor agonists (niravoline) or nonpeptide antidiuretic hormone (ADH) V2 receptor antagonists (OPC-31260) possess aquaretic activity in cirrhosis; however, there is no information concerning the effects induced by the chronic administration of these drugs under this condition. To compare the renal and hormonal effects induced by the long-term oral administration of niravoline, OPC-31260, or vehicle, urine volume, urinary osmolality, sodium excretion, and urinary excretion of aldosterone (ALD) and ADH were measured in basal conditions and for 10 days after the daily oral administration of niravoline, OPC-31260, or vehicle to cirrhotic rats with ascites and water retention. Creatinine clearance, serum osmolality, ADH mRNA expression, and systemic hemodynamics were also measured at the end of the study. Niravoline increased water excretion, peripheral resistance, serum osmolality, and sodium excretion and reduced creatinine clearance, ALD and ADH excretion, and mRNA expression of ADH. OPC-31260 also increased water metabolism and sodium excretion and reduced urinary ALD, although the aquaretic effect was only evident during the first 2 days, and no effects on serum osmolality, renal filtration, and systemic hemodynamics were observed. Therefore, both agents have aquaretic efficacy, but the beneficial therapeutic effects of the long-term oral administration of niravoline are more consistent than those of OPC-31260 in cirrhotic rats with ascites and water retention.
Kim, Ju-Sik; Park, Ji-Woon; Kim, Dae-Jung; Kim, Young-Ku; Lee, Jeong-Yun
2014-11-01
This study focused on the ability of aqueous anti-volatile-sulfur-compound (VSC) solutions to eliminate gaseous VSCs by direct contact in a sealed space to describe possible mode of action of anti-VSC agents. Twenty milliliters of each experimental solution, 0.16% sodium chlorite, 0.25% zinc chloride, 0.1% chlorhexidine and distilled water, was injected into a Teflon bag containing mixed VSCs, hydrogen sulfide, methyl mercaptan and dimethyl sulfide and mixed vigorously for 30 s. The VSC concentration was measured by gas chromatography before, immediately after, 30 min and 60 min after mixing. The sodium chlorite solution reduced the VSC concentration remarkably. After mixing, nearly all VSCs were eliminated immediately and no VSCs were detected at 30 and 60 min post-mixing. However, in the other solutions, the VSC concentration decreased by ∼30% immediately after mixing and there was no further decrease. The results suggest that sodium chlorite solution has the effect of eliminating gaseous VSCs directly. This must be because it can release chlorine dioxide gas which can react directly with gaseous VSCs. In the case of other solutions that have been proved to be effective to reduce halitosis clinically, it can be proposed that their anti-VSC effect is less likely due to the direct chemical elimination of gaseous VSCs in the mouth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zehtabi, Fatemeh; Dumont-Mackay, Vincent; Fatimi, Ahmed
PurposeTo compare the efficacy of an embolization agent with sclerosing properties (made of chitosan and sodium tetradecyl sulfate, CH–STS) with a similar embolization agent but without sclerosing properties (made of chitosan, CH) in treating endoleaks in a canine endovascular aneurysm repair model.MethodsTwo chitosan-based radiopaque hydrogels were prepared, one with STS and one without STS. Their rheological, injectability, and embolizing properties were assessed in vitro; afterwards, their efficacy in occluding endoleaks was compared in a canine bilateral aneurysm model reproducing type I endoleaks (n = 9 each). The primary endpoint was endoleak persistence at 3 or 6 months, assessed on a CT scan andmore » macroscopic examination. Secondary endpoints were the occurrence of stent-graft (SG) thrombosis, the evolution of the aneurysm mean diameter, as well as aneurysm healing and inflammation scores in pathology examinations.ResultsIn vitro experiments showed that both products gelled rapidly and presented initial storage moduli greater than 800 Pa, which increased with time. Both gels were compatible with microcatheter injection and occlude flow up to physiological pressure in vitro. In a type I endoleak model, the injection of CH–STS sclerosing gel tended to reduce the risk of occurrence of endoleaks, compared to CH non-sclerosing agent (2/9 vs. 6/9, p = 0.069). No case of SG thrombosis was observed. Moderate inflammation was found around both gels, with a comparable intensity score in both CH and CH–STS groups (2.6 ± 0.9 and 2.7 ± 0.9, respectively; p = 0.789).ConclusionsFlow occlusion combined with chemical endothelial denudation appears promising for the treatment of endoleaks.Level of EvidenceN/A.« less
Velasco, Antonio; Ramírez, Martha; Hernández, Sergio; Schmidt, Winfried; Revah, Sergio
2012-03-15
Single Cr(VI) reduction and coupled reduction/stabilization (R/S) processes were evaluated at pilot scale to determine their effectiveness to treat chromite ore processing residue (COPR). Sodium sulfide was used as the reducing agent and cement, gypsum and lime were tested as the stabilizing agents. The pilot experiments were performed in a helical ribbon blender mixer with batches of 250 kg of COPR and mixing time up to 30 min. Na2S/Cr(VI) mass ratios of 4.6, 5.7 and 6.8 were evaluated in the single reduction process to treat COPR with Cr(VI) concentration of ≈4.2 g/kg. The R/S process was tested with a Na2S/Cr(VI) mass ratio of 5.7 and including stabilizing agents not exceeding 5% (w/w(COPR)), to treat COPR with a Cr(VI) content of ≈5.1g/kg. The single reduction process with a ratio of 6.8, reached Cr(VI) reduction efficiencies up to 97.6% in the first days, however these values decreased to around 93% after 380 days of storage. At this point the total Cr level was around 12.5 mg/L. Cr(VI) removal efficiencies exceeding 96.5% were reached and maintained during 380 days when the coupled R/S process was evaluated. Total Cr levels lower than 5 mg/l were attained at the initials days in all R/S batch tested, however after 380 days, concentrations below the regulatory limit were only found with gypsum (2%) as single agent and with a blend of cement (4%) and lime (1%). These results indicated that the coupled R/S process is an excellent alternative to stabilize COPR. Copyright © 2011 Elsevier B.V. All rights reserved.
Chitapanarux, Imjai; Tungkasamit, Tharatorn; Petsuksiri, Janjira; Kannarunimit, Danita; Katanyoo, Kanyarat; Chakkabat, Chakkapong; Setakornnukul, Jiraporn; Wongsrita, Somying; Jirawatwarakul, Naruemon; Lertbusayanukul, Chawalit; Sripan, Patumrat; Traisathit, Patrinee
2018-03-01
The purpose of the study is to compare the efficacy of benzydamine HCl with sodium bicarbonate in the prevention of concurrent chemoradiation-induced oral mucositis in head and neck cancer patients. Sixty locally advanced head and neck cancer patients treated with high-dose radiotherapy concurrently with platinum-based chemotherapy were randomly assigned to receive either benzydamine HCl or sodium bicarbonate from the first day of treatment to 2 weeks after the completion of treatment. The total score for mucositis, based on the Oral Mucositis Assessment Scale (OMAS), was used for the assessment, conducted weekly during the treatment period and at the fourth week of the follow-up. Pain score, all prescribed medications, and tube feeding needs were also recorded and compared. The median of total OMAS score was statistically significant lower in patients who received benzydamine HCl during concurrent chemo-radiotherapy (CCRT) than in those who received sodium bicarbonate, (p value < 0.001). There was no difference in median pain score, (p value = 0.52). Nineteen percent of patients in sodium bicarbonate arm needed oral antifungal agents whereas none in the benzydamine HCl arm required such medications, (p value = 0.06). Tube feeding needs and the compliance of CCRT were not different between the two study arms. For patients undergoing high-dose radiotherapy concurrently with platinum-based chemotherapy, using benzydamine HCl mouthwash as a preventive approach was superior to basic oral care using sodium bicarbonate mouthwash in terms of reducing the severity of oral mucositis and encouraging trend for the less need of oral antifungal drugs.
Kadan, M; Doğanci, S; Yildirim, V; Özgür, G; Erol, G; Karabacak, K; Avcu, F
2015-10-01
The role of nitrates and nitric oxide on platelet functions has obtained an increasing attention with respect to their potential effects on cardiovascular disorders. In this study we aimed to analyze the effect of sodium nitrite on platelet functions in human platelets. This in vitro study was designed to show the effect of sodium nitrite on platelet functions in seven healthy volunteers. Blood samples were centrifuged to prepare platelet rich plasma and platelet poor plasma. Platelet rich plasma was diluted with the platelet poor plasma to have a final count of 300,000 ± 25,000 platelets. Platelet rich plasma was incubated with six different increasing doses (from 10 μM to 5 mM) of sodium nitrite for 1 hour at 37°C. Then stimulating agents including collagen (3 μg ml-1), adenosine diphosphate (10 μM), and epinephrine (10 μM) were added to the cuvette. Changes in light transmission were observed for 10 minutes. In addition spontaneous aggregation were performed in control group with all aggregating agents separately. Effect of sodium nitrite on agonist-induced platelet aggregation depends on the concentration of sodium nitrite. Compared with control group, agonist-induced platelet aggregations were significantly suppressed by sodium nitrite at the concentration of 5, 1.0 and 0.5 mM. Our results suggested that sodium nitrite has inhibitory effects in vitro on platelet aggregation in a dose-dependent manner.
Influence of surface treatment on shear bond strength of orthodontic brackets.
Brunharo, Ione Helena Vieira Portella; Fernandes, Daniel Jogaib; de Miranda, Mauro Sayão; Artese, Flavia
2013-01-01
The shear bond strength of orthodontic brackets bonded to micro-hybrid and micro-particulate resins under different surface treatment methods was assessed. Two hundred and eighty test samples were divided into 28 groups (n = 10), where 140 specimens were filled with Durafill micro-particulate resin and 140 with Charisma composite. In 140 samples, a coupling agent (silane) was applied. The surface treatment methods were: Phosphoric and hydrofluoric acid etching, sodium bicarbonate and aluminum oxide blasting, stone and burs. A Universal Instron Machine was used to apply an occlusal shear force directly to the resin composite bracket surface at a speed of 0.5 mm/min. The means were compared using analysis of variance and multivariate regression to assess the interaction between composites and surface treatment methods. Means and standard deviations for the groups were: Sodium bicarbonate jet 11.27 ± 2.78; burs 9.26 ± 3.01; stone 7.95 ± 3.67; aluminum oxide blasting 7.04 ± 3.21; phosphoric acid 5.82 ± 1.90; hydrofluoric acid 4.54 ± 2.87, and without treatment 2.75 ± 1.49. An increase of 1.94 MPa in shear bond strength was seen in Charisma groups. Silane agent application reduced the Charisma shear bond strength by 0.68 Mpa, but increased Durafill means for bicarbonate blasting (0.83), burs (0.98) and stone drilling (0.46). The sodium bicarbonate blasting, burs and stone drilling methods produced adequate shear bond strength and may be suitable for clinical use. The Charisma micro hybrid resin composite showed higher shear bond means than Durafill micro particle composite.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Chengzhou; Shi, Qiurong; Fu, Shaofang
2018-04-04
Delicately engineering the well-defined noble metal aerogels with favorable structural and compositional features is of vital importance for wide applications. Here, we reported one-pot and facile method for synthesizing core-shell PdPb@Pd hydrogels/aerogels with multiply-twinned grains and ordered intermetallic phase using sodium hypophosphite as a multifunctional reducing agent. Due to the accelerated gelation kinetics induced by increased reaction temperature and specific function of sodium hypophosphite, the formation of hydrogels can be completed within 4 hrs, far faster than the previous reports. Owe to their unique porous structure and favorable geometric and electronic effects, the optimized PdPb@Pd aerogels exhibit enhanced electrochemical performancemore » towards ethylene glycol oxidation with a mass activity of 5.8 times higher than Pd black.« less
NASA Astrophysics Data System (ADS)
Su, Chia Hung; Velusamy, Palaniyandi; Kumar, Govindarajan Venkat; Adhikary, Shritama; Pandian, Kannaiyan; Anbu, Periyasamy
2017-01-01
In the present study, a simple method to impregnate silver nanoparticles (AgNPs) into carboxymethyl cellulose (CMC) and sodium alginate (SA) is reported for the first time. Single step synthesis of carboxymethyl cellulose (CMC) and sodium alginate (SA) biopolymer protected silver nanoparticles (AgNPs) using aniline as a reducing agent under reflux conditions was investigated. The synthesized nanoparticles were characterized by UV-Vis spectrophotometry, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and field emission scanning electron microscopy (FESEM). The FESEM results of CMC@AgNPs and SA@AgNPs showed the formation of spherical nanoparticles sized 30-60 nm. Testing of the antibiofilm efficacy of the polymer protected AgNPs against different bacterial strains such as Klebsiella pneumoniae MTCC 4032 and Streptococcus pyogenes MTCC 1924 revealed that the biopolymer protected AgNPs had excellent antibiofilm activity.
NASA Astrophysics Data System (ADS)
Madan, Deepa; Zhao, Xingang; Ireland, Robert M.; Xiao, Derek; Katz, Howard E.
2017-08-01
This work demonstrates the use of sodium silica gel (Na-SG) particles as a reducing agent for n-type conjugated polymers to improve the conductivity and thermoelectric properties. Substantial increase in the electrical conductivity (σ, from 10-7 to 10-3 S/cm in air) was observed in two naphthalenetetracarboxylic diimide solution-processable n-type polymers, one of which was designed and synthesized in our lab. Systematic investigations of electrical conductivity were done by varying the weight percentage of Na-SG in the polymers. Additional evidence for the reduction process was obtained from electron spin resonance spectroscopy and control experiments involving nonreducing silica particles and non-electron-accepting polystyrene. The Seebeck coefficient S of the highest conductivity sample was measured and found to be in agreement with an empirical model. All the electrical conductivity and Seebeck coefficients measurements were performed in ambient atmosphere.
Safety of oral sulfates in rats and dogs contrasted with phosphate-induced nephropathy in rats.
Pelham, Russell W; Russell, Robert G; Padgett, Eric L; Reno, Frederick E; Cleveland, Mark vB
2009-01-01
An oral sulfate salt solution (OSS), under development as a bowel cleansing agent for colonoscopy in humans, is studied in rats and dogs. In rats, amaximumpractical oral OSS dose (5 g/kg/d) is compared with an oral sodium phosphate (OSP) solution, both at about 7 times the clinical dose. OSS induces the intended effects of loose stools and diarrhea. In rats, higher urine sodium and potassium accompany higher clearance rates, considered adaptive to the osmotic load of OSS. OSS for 28 days is well tolerated in rats and dogs. In contrast, OSP causes increased mortality, reduced body weight and food consumption, severe kidney tubular degeneration, and calcium phosphate deposition in rats. These are accompanied by mineralization in the stomach and aorta, along with cardiac and hepatic degeneration and necrosis. The greater safety margin of OSS over OSP at similarmultiples of the clinical dose indicates its suitability for human use.
Jevtovic-Todorovic, V; Wozniak, D F; Powell, S; Olney, J W
2001-09-21
N-Methyl-D-aspartate (NMDA) antagonists act by an anti-excitotoxic action to provide neuroprotection against acute brain injury, but these agents can also cause toxic effects. In low doses they induce reversible neuronal injury, but in higher doses they cause irreversible degeneration of cerebrocortical neurons. GABAmimetic drugs protect against the reversible neurotoxic changes in rat brain. Here we show that two GABAmimetic anesthetic agents--propofol and sodium thiopental--protect against the irreversible neurodegenerative reaction induced by the powerful NMDA antagonist, MK-801.
In vitro antioxidant activity of Valeriana officinalis against different neurotoxic agents.
Sudati, Jéssie Haigert; Fachinetto, Roselei; Pereira, Romaiana Picada; Boligon, Aline Augusti; Athayde, Margareth Linde; Soares, Felix Antunes; de Vargas Barbosa, Nilda Berenice; Rocha, João Batista Teixeira
2009-08-01
Valeriana officinalis L. (Valerian) is widely used as a traditional medicine to improve the quality of sleep. Although V. officinalis have been well documented as promising pharmacological agent; the exact mechanisms by which this plant act is still unknown. Limited literature data have indicated that V. officinalis extracts can exhibit antioxidant properties against iron in hippocampal neurons in vitro. However, there is no data available about the possible antioxidant effect of V. officinalis against other pro-oxidants in brain. In the present study, the protective effect of V. officinalis on lipid peroxidation (LPO) induced by different pro-oxidant agents with neuropathological importance was examined. Ethanolic extract of valerian (0-60 microg/ml) was tested against quinolinic acid (QA); 3-nitropropionic acid; sodium nitroprusside; iron sulfate (FeSO4) and Fe2+/EDTA induced LPO in rat brain homogenates. The effect of V. officinalis in deoxyribose degradation and reactive oxygen species (ROS) production was also investigated. In brain homogenates, V. officinalis inhibited thiobarbituric acid reactive substances induced by all pro-oxidants tested in a concentration dependent manner. Similarly, V. officinalis caused a significant decrease on the LPO in cerebral cortex and in deoxyribose degradation. QA-induced ROS production in cortical slices was also significantly reduced by V. officinalis. Our results suggest that V. officinalis extract was effective in modulating LPO induced by different pro-oxidant agents. These data may imply that V. officinalis extract, functioning as antioxidant agent, can be beneficial for reducing insomnia complications linked to oxidative stress.
Extraction of rare earth elements from low-grade Bauxite via precipitation reaction
NASA Astrophysics Data System (ADS)
Kusrini, E.; Nurani, Y.; Bahari, ZJ
2018-03-01
The aim of this research was to determine the optimum hydrometallurgical parameters to extract the rare earth elements (REE) from low-grade bauxite through acid leaching and precipitation reaction. REE or lanthanide recovery by a precipitation method with sodium sulphate and sodium phosphate as precipitation agents is reported where the effect of pH and recovery of REE are described. The metal composition of REE in low-grade bauxite after treatment were analyzed by ICP-OES. The total recovery values of REE elements at the first precipitation reaction using sodium sulphate as the precipitation agent at pH 3.5 showed ~68.2% of lanthanum, ~18.9% cerium, and ~7.8% yttrium. Lanthanum was the rare-earth element present at the highest concentration in the low-grade bauxite after the series treatments. An optimum pH of 3.5 for precipitation of rare-earth elements using sodium sulphate was demonstrated where this method is recommended for the extraction of REE elements from low-grade bauxite.
A Comprehensive Review of New Attachment Therapy.
1981-01-01
365 Forty percent potassium hydroxide was Once used, "neutralized" by hydrochloric acid. 4 1 Antiformin, a mixture of sodium hypochlorite , sodium ...biological agents, selected from a number of chemicals capable of dissociating or degrading endotoxins. 1 38 Sodium deoxycholate followed by human plasma...of humans led to resorption or exfoliation.1 9 2 The replantation of endodontically -prepared monkey teeth which had been treated with acid caused
Symposium on Toxic Substance Control: Decontamination, April 22 - 24, 1980, Columbus, Ohio.
1981-06-01
standard decontaminants is used. TABLE 1. Standard Chemical Decontaminants Decontaminant Agents Used On STB Blister and nerve agents DS-2 All chemical... agents M258 Kit Sodium Hydroxide, Ethanol, G-Series nerve agents Phenol, Water Chloramine B, ZnCI2, Blister ana V-Series Ethanol, Water nerve agents A...is a point source alarm that actively samples ambient air and reacts to low concentrations of nerve agents . The M-8 alarm detector also detects several
Araujo, Danilo Barral; Silva, Luciana Rodrigues; de Araujo, Roberto Paulo Correia
2010-01-01
Tooth whitening agents containing hydrogen peroxide and carbamide peroxide are used frequently in esthetic dental procedures. However, lesions on the enamel surface have been attributed to the action of these products. Using conventional procedures for separating and isolating biological structures, powdered enamel was obtained and treated with hydrogen peroxide, carbamide peroxide, and sodium bicarbonate, ingredients typically found in dentifrices. The enamel was exposed to different pH levels, and atomic emission spectrometry was used to determine calcium release rates. As the pH level increased, the rate of calcium release from enamel treated with dentifrices containing whitening agents decreased. Carbamide peroxide produced the lowest amount of decalcification, while sodium bicarbonate produced the highest release rates at all pH levels.
Development and evaluation of in situ gel of pregabalin
Madan, Jyotsana R; Adokar, Bhushan R; Dua, Kamal
2015-01-01
Aim and Background: Pregabalin (PRG), an analog of gamma-aminobutyric acid, reduces the release of many neurotransmitters, including glutamate, and noradrenaline. It is used for the treatment of epilepsy; simple and complex partial convulsion. The present research work aims to ensure a high drug absorption by retarding the advancement of PRG formulation through the gastrointestinal tract. The work aims to design a controlled release PRG formulation which is administered as liquid and further gels in the stomach and floats in gastric juice. Materials and Methods: In situ gelling formulations were prepared using sodium alginate, calcium chloride, sodium citrate, hydroxypropyl methylcellulose (HPMC) K100M, and sodium bicarbonate. The prepared formulations were evaluated for solution viscosity, drug content, in vitro gelling studies, gel strength, and in vitro drug release. The final formulation was optimized using a 32 full factorial design. Results: The formulation containing 2.5% w/v sodium alginate and 0.2% w/v calcium chloride were considered optimum since it showed minimum floating lag time (18 s), optimum viscosity (287.3 cps), and gel strength (4087.17 dyne/cm2). The optimized formulation follows Korsmeyer-Peppas kinetic model with n value 0.3767 representing Fickian diffusion mechanism of drug release. Conclusion: Floating in situ gelling system of PRG can be formulated using sodium alginate as a gelling polymer and calcium chloride as a complexing agent to control the drug release for about 12 h for the treatment of epilepsy. PMID:26682193
Yang, Jir-Jei; Yin, Jiu-Haw; Yang, Ding-I
2007-05-11
1,3-Bis(2-chloroethyl)-1-nitrosourea (BCNU) kills tumor cells via multiple actions including alkylation and carbamoylation. Previously, we have reported that formation of S-nitrosoglutathione (GSNO) in glioma cells overexpressing inducible nitric oxide synthase (iNOS) contributed to nitric oxide (NO)-dependent carbamoylating chemoresistance against BCNU. To further characterize the effects of NO on alkylating cytotoxicity, colony formation assay was applied to evaluate the effects of various NO donors on rat C6 glioma cells challenged with alkylating agents. We demonstrate that NO donors including GSNO, diethylamine NONOate (DEA/NO), and sodium nitroprusside (SNP) substantially reduced the extent of colony formation in glioma cells treated with alkylating agents, namely methyl methanesulfonate (MMS), N-methyl-N-nitrosourea (MNU), and N-ethyl-N-nitrosourea (ENU). Without alkylating agents these NO-releasing agents alone had no effects on clongenic potential of rat C6 glioma cells. Among these three NO donors used, the effectiveness in potentiating alkylating cytotoxicity is in the order of "GSNO>DEA/NO>SNP" when applied at the same dosages. GSNO also exerted similar synergistic actions reducing the extents of colony formation when co-administrated with 1,2-bis(methylsulfonyl)-1-(2-chloroethyl)-hydrazine (compound #1), another alkylating agent that mimics the chloroethylating action of BCNU. Together with our previous findings, we propose that NO donors may be used as adjunct chemotherapy with alkylating agents for such malignant brain tumors as glioblastoma multiforme (GBM). In contrast, production of NO as a result of iNOS induction, such as that occurring after surgical resection of brain tumors, may compromise the efficacy of carbamoylating chemotherapy.
The effect of sodium hydroxide on drag reduction using banana peel as a drag reduction agent
NASA Astrophysics Data System (ADS)
Kaur, H.; Jaafar, A.
2018-02-01
Drag reduction is observed as reduced frictional pressure losses under turbulent flow conditions. Drag reduction agent such as polymers can be introduced to increase the flowrate of water flowing and reduce the water accumulation in the system. Currently used polymers are synthetic polymers, which will harm our environment in excessive use of accumulation. A more environmentally-friendly drag reduction agent such as the polymer derived from natural sources or biopolymer, is then required for such purpose. As opposed to the synthetic polymers, the potential of biopolymers as drag reduction agents, especially those derived from a local plant source are not extensively explored. The drag reduction of a polymer produced from a local plant source within the turbulent regime was explored and assessed in this study using a rheometer, where a reduced a torque produced was perceived as a reduction of drag. This method proposed is less time consuming and is more practical which is producing carboxymethylcellulose from the banana peel. The cellulose powder was converted to carboxymethylcellulose (CMC) by etherification process. The carboxymethylation reaction during the synthesizing process was then optimized against the reaction temperature, reaction time and solubility. The biopolymers were then rheologically characterized, where the viscoelastic effects and the normal stresses produced by these biopolymers were utilized to further relate and explain the drag reduction phenomena. The research was structured to focus on producing the biopolymer and to assess the drag reduction ability of the biopolymer produced. The rheological behavior of the biopolymers was then analyzed based on the ability of reducing drag. The results are intended to expand the currently extremely limited experimental database. Based on the results, the biopolymer works as a good DRA.
Synthesis and study of catalytic application of l-methionine protected gold nanoparticles
NASA Astrophysics Data System (ADS)
Raza, Akif; Javed, Safdar; Qureshi, Muhammad Zahid; khan, Muhammad Usman; Khan, Muhammad Saleem
2017-10-01
Gold nanoparticle is growing class of nanotechnology due to large number of uses. We synthesized stable l-methionine protected gold nanoparticles (AuNps) by in situ reduction of HAuCl4 using sodium borohydrate as reducing and l-methionine as stabilizing agent in an aqueous medium. Different parameters (pH, capping agent, precursor salt, and heating time) were optimized to see the effect on the size of particles. Double beam spectrophotometer was used to carry out the spectroscopic studies. It was observed that pH and concentration of reducing salt are deciding factors in controlling the size and morphology of AuNps. Scanning electron microscopy (SEM) verified the formation of AuNPs as predicted by UV-Vis spectra. The interaction of AuNPs with l-methionine was confirmed by Fourier Transform Infrared (FTIR). The reduction of 4-nitrophenol acted as standard of reaction to check the response of AuNps catalyst. Complete reduction of 4-nitrophenol was accomplished by AuNps sol in just 60 s. Fastest reduction rate was observed with smaller spherical particles. This study concluded that size and shape of AuNps can be monitored by controlling the pH, concentration of capping and reducing agent. It also provides an economical solution to aquatic environment in terms of time saving and use of small volume of catalytic solution for reduction of several other toxic organic pollutants.
SGLT2 inhibitors to control glycemia in type 2 diabetes mellitus: a new approach to an old problem.
Jabbour, Serge A
2014-01-01
Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a new class of antidiabetic agents with a novel insulin-independent mechanism of action. The SGLT2 is a transporter found in the proximal tubule of the kidney and is responsible for approximately 90% of renal glucose reabsorption. The SGLT2 inhibitors reduce reabsorption of glucose in the kidney, resulting in glucose excretion in the urine (50-90 g of ~180 g filtered by the kidneys daily), which in turn lowers plasma glucose levels in people with diabetes. The insulin-independent mechanism of action of SGLT2 inhibitors dictates that they are associated with a very low risk of hypoglycemia and can be used in patients with any degree of β-cell function or insulin sensitivity. Clinical trials have shown that SGLT2 inhibitors are effective at reducing blood glucose levels, body weight, and blood pressure when used as monotherapy or in combination with other antidiabetic agents in patients with type 2 diabetes mellitus. Treatment with SGLT2 inhibitors is generally well tolerated, although these agents have been associated with an increased incidence of genital infections. The SGLT2 inhibitors have become a valuable addition to the armory of drugs used to treat patients with type 2 diabetes mellitus, and several agents within the class are currently under investigation in phase III clinical trials.
Mazzola, Priscila G; Martins, Alzira MS; Penna, Thereza CV
2006-01-01
Background Purified water for pharmaceutical purposes must be free of microbial contamination and pyrogens. Even with the additional sanitary and disinfecting treatments applied to the system (sequential operational stages), Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas alcaligenes, Pseudomonas picketti, Flavobacterium aureum, Acinetobacter lowffi and Pseudomonas diminuta were isolated and identified from a thirteen-stage purification system. To evaluate the efficacy of the chemical agents used in the disinfecting process along with those used to adjust chemical characteristics of the system, over the identified bacteria, the kinetic parameter of killing time (D-value) necessary to inactivate 90% of the initial bioburden (decimal reduction time) was experimentally determined. Methods Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas alcaligenes, Pseudomonas picketti, Flavobacterium aureum, Acinetobacter lowffi and Pseudomonas diminuta were called in house (wild) bacteria. Pseudomonas diminuta ATCC 11568, Pseudomonas alcaligenes INCQS , Pseudomonas aeruginosa ATCC 15442, Pseudomonas fluorescens ATCC 3178, Pseudomonas picketti ATCC 5031, Bacillus subtilis ATCC 937 and Escherichia coli ATCC 25922 were used as 'standard' bacteria to evaluate resistance at 25°C against either 0.5% citric acid, 0.5% hydrochloric acid, 70% ethanol, 0.5% sodium bisulfite, 0.4% sodium hydroxide, 0.5% sodium hypochlorite, or a mixture of 2.2% hydrogen peroxide (H2O2) and 0.45% peracetic acid. Results The efficacy of the sanitizers varied with concentration and contact time to reduce decimal logarithmic (log10) population (n cycles). To kill 90% of the initial population (or one log10 cycle), the necessary time (D-value) was for P. aeruginosa into: (i) 0.5% citric acid, D = 3.8 min; (ii) 0.5% hydrochloric acid, D = 6.9 min; (iii) 70% ethanol, D = 9.7 min; (iv) 0.5% sodium bisulfite, D = 5.3 min; (v) 0.4% sodium hydroxide, D = 14.2 min; (vi) 0.5% sodium hypochlorite, D = 7.9 min; (vii) mixture of hydrogen peroxide (2.2%) plus peracetic acid (0.45%), D = 5.5 min. Conclusion The contact time of 180 min of the system with the mixture of H2O2+ peracetic acid, a total theoretical reduction of 6 log10 cycles was attained in the water purified storage tank and distribution loop. The contact time between the water purification system (WPS) and the sanitary agents should be reviewed to reach sufficient bioburden reduction (over 6 log10). PMID:16914053
1985-01-01
recommended agents include thiomersal, 9 glutaraldehyde, 2 7 alcohol, 11 and sodium hypochlorite . 2 8 -~ -p’ w~.-p iq -7- Frank and Pelleu27 found that sodium ...level by 99.9% after 15 minutes. They stated that sodium hypochlorite appears to be the solution of choice for sterilizing gutta-percha cones, with...Sporicidin an acceptable alternative. 28Senia et al. also found that 5.25% sodium hypochlorite killed B. subtilis spores after a one-minute immersion. In
Ahn, So-Hyun; Kwon, Jong Sook; Kim, Kyungmin; Kim, Hye-Kyeong
2017-07-27
High sodium intake increases the risk of cardiovascular disease. Given the importance of behavioral changes to reducing sodium intake, this study aims to investigate the stages of change and the differences in cognitive and behavioral characteristics by stage in Korean consumers. Adult participants ( N = 3892) completed a questionnaire on the stages of behavioral change, recognition of social efforts, outcome expectancy, barriers to practice, nutrition knowledge and dietary behaviors, and self-efficiency related to reduced sodium intake. The numbers of participants in each stage of behavioral change for reducing sodium intake was 29.5% in the maintenance stage, 19.5% in the action stage, and 51.0% in the preaction stage that included the precontemplation, contemplation, and preparation stages. Multiple logistic regression showed that the factors differentiating the three stages were recognizing a supportive social environment, perceived barriers to the practice of reducing sodium intake, and self-efficacy to be conscious of sodium content and to request less salt when eating out. Purchasing experience of sodium-reduced products for salty foods, knowledge of the recommended intake of salt and the difference between sodium and salt, and improving dietary habits of eating salted fish, processed food, and salty snacks were factors for being in the action stage versus the preaction stage. These findings suggest that tailored intervention according to the characteristics of each stage is helpful in reducing sodium intake.
Rainfall observations using dual-polarization radar coupled with a drop motion and evaporation model
NASA Astrophysics Data System (ADS)
Pallardy, Quinn
In the field of nanoscience, nanoporous metal foams are a representative type of nanostructured materials, representing the ultimate form factor of a metal. They possess the hybrid properties of metal and nanoarchitectures, including the following properties such as good electrical and thermal conductivity, catalytic activity and high surface area, ultralow density, high strength-to-weight ratio. The outstanding properties bring the nanoporous metal foams to a wide range of applications, especially in the field of sensor system, energy storage and chemical catalyst. A new method of synthesis developed recently is presented for nanoporous metal foams of gold and nickel. The goal of this study is for the synthesis process of NMFs of and some applications in research and realistic life. Gold NMFs were produced by mixing gold chloride with ethylene glycol, ethanol, and reducing agent, and heating at 150 °C for 5 min with a CEM microwave. Both hydrazine and sodium borohydride were applied as the reducing agent for this redox reaction. Nickel NMFs were produced through the similar procedure with a little difference in the heating condition of 50 W, instead of 150 °C, with either hydrazine or sodium borohydride as the reducing agent. Gold NMFs were applied in surface-enhanced Raman spectroscopy (SERS) as a substrate. It is presented that with the presence of gold NMFs, the detection of the rhodamine 6G (R6G), a model analyte, can be enhanced significantly. The limit of detection for rhodamine 6G was found to be 5.2 x 10 -7 M in this research. Nickel NMFs was applied to degrade methyl orange (MO). An aqueous MO solution will turn nearly colorless after only 10 h of mixing with 0.025 g of nickel NMFs at room temperature under dark condition. In order to study the kinetics of the degradation reaction, MO solution with different initial concentration were used. This application of Ni NMFs is applicable as waste treatment of industrial water and to protect the environment.
Development of crayfish bio-based plastic materials processed by small-scale injection moulding.
Felix, Manuel; Romero, Alberto; Cordobes, Felipe; Guerrero, Antonio
2015-03-15
Protein has been investigated as a source for biodegradable polymeric materials. This work evaluates the development of plastic materials based on crayfish and glycerol blends, processed by injection moulding, as a fully biodegradable alternative to conventional polymer-based plastics. The effect of different additives, namely sodium sulfite or bisulfite as reducing agents, urea as denaturing agent and L-cysteine as cross-linking agent, is also analysed. The incorporation of any additive always yields an increase in energy efficiency at the mixing stage, but its effect on the mechanical properties of the bioplastics is not so clear, and even dampened. The additive developing a greater effect is L-cysteine, showing higher Young's modulus values and exhibiting a remnant thermosetting potential. Thus, processing at higher temperature yields a remarkable increase in extensibility. This work illustrates the feasibility of crayfish-based green biodegradable plastics, thereby contributing to the search for potential value-added applications for this by-product. © 2014 Society of Chemical Industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Black, H.N.; Melton, L.L.
1966-01-04
A temporary plugging agent, fracturing fluid and/or channel sealing agent is introduced into a selected area of a formation. The water-gelled fluid agent contains sodium borate, sodium tetraborate, and borax. It also contains a chemical breaker such as benzotrichloride, benzylidene chloride, or benzyl chloride. The water-gelled fluid consists essentially of water and from about 1-3% by weight of water of a finely powdered water-soluble gum of the galactomannan class. The borate compound is included in an amount of about 10% by weight of the gum to delay the reaction with the gel and to form a rubbery jelly-like mass withmore » it. The fluid composition has a delaying solidifying action and after a given interval of time it forms a plug. After a predetermined time, acid is produced upon the hydrolysis of the breaker in the plug and removes the plug from the area.« less
Development of biodegradable foamlike materials based on casein and sodium montmorillonite clay
USDA-ARS?s Scientific Manuscript database
Biodegradable foamlike materials based on a naturally occurring polymer (casein protein) and sodium montmorillonite clay (Na+-MMT) were produced through a simple freeze-drying process. By utilizing DL-glyceraldehyde (GC) as a chemical cross-linking agent, the structural integrity of these new aeroge...
Hazard identification for human and ecological effects of sodium chloride road salt.
DOT National Transportation Integrated Search
2007-07-01
The New Hampshire Department of Environmental Services (DES) requested an evaluation of : the human and ecological risks associated with the application of sodium chloride (NaCl) road : salt to roadways. NaCl is the major de-icing agent used in NH to...
Extravasation of Noncytotoxic Drugs: A Review of the Literature.
Le, Ann; Patel, Samit
2014-07-01
Extravasation is a potential complication associated with intravenous therapy administration. Inadvertent leakage of medications with vesicant properties can cause severe tissue necrosis, which can lead to devastating long-term consequences. Recognizing potential agents is an essential step in mitigating the risk of extravasation. A literature search was carried out using PubMed with the following key words: extravasation, soft tissue injury, phlebitis, and infiltration, from January 1961 through January 2014. The publications were screened manually and reviewed to identify reports for medications that included synonyms of the International Nonproprietary Name, while excluding antineoplastic agents, radiographic contrast material, investigational or nonmarketed drugs, and animal data, to yield 70 articles. Furthermore, reference citations from publications were also reviewed for relevance and yielded 4 articles. We discovered 232 cases of extravasation involving 37 agents (in order of frequency): phenytoin, parenteral nutrition, calcium gluconate, potassium chloride, calcium chloride, dopamine, dextrose solutions, epinephrine, sodium bicarbonate, nafcillin, propofol, norepinephrine, mannitol, arginine, promethazine, vancomycin, tetracycline, dobutamine, vasopressin, sodium thiopental, acyclovir, amphotericin, ampicillin, cloxacillin, gentamicin, metronidazole, oxacillin, penicillin, amiodarone, albumin, furosemide, lipids, lorazepam, immunoglobulin, morphine, and sodium valproate. Potential properties contributing to extravasation include the following: pH, osmolarity, diluent, vasoactive properties, and inactive ingredients. Antidotes and supportive care agents used in the management of these cases of extravasation include hyaluronidase, phentolamine, terbutaline, topical anesthetics (such as lidocaine and prilocaine cream), topical antimicrobials (such as silver sulfadiazine and chlorhexidine), topical debridement agents (collagenase ointment), topical steroids, and topical vasodilators (nitroglycerin). Data on the management of noncytotoxic extravasations is sparse, consisting primarily of case reports and anecdotal evidence. Fortunately, this adverse outcome is preventable and identification of vesicant agents plays a pivotal role. The intent of this review is to provide a reference identifying noncytotoxic vesicants and the management of extravasations associated with specific agents. © The Author(s) 2014.
Maran, Bianca Medeiros; Vochikovski, Laína; de Andrade Hortkoff, Diego Rafael; Stanislawczuk, Rodrigo; Loguercio, Alessandro D; Reis, Alessandra
2018-05-01
Desensitizing agents are usually included in the composition of bleaching agents to reduce bleaching-induced tooth sensitivity (TS). This randomized clinical trial (RCT) evaluated the risk and intensity of TS and color change after at-home bleaching with a desensitizing-containing (3% potassium nitrate and 0.2% sodium fluoride) and desensitizing-free 10% carbamide peroxide (CP) gel (Whiteness Perfect, FGM). A triple-blind, within-person RCT was conducted on 60 caries-free adult patients. Each participant used the gel in a bleaching tray for 3 h daily for 21 days in both the upper and lower dental arches. The absolute risk and intensity of TS were assessed daily through the 0-10 VAS and NRS scale for 21 days. Color change was recorded using shade guides (Vita Classical and Vita Bleachedguide) and the Easyshade spectrophotometer at baseline, weekly and 30 days after the end of the bleaching. The risk and intensity of TS were evaluated by the McNemar and Wilcoxon Signed Rank tests, respectively. Color change (ΔSGU and ΔE) were evaluated by the Mann-Whitney test and a paired t-test, respectively (α = 0.05). No difference in the TS and color change was observed (p > 0.05). The incorporation of potassium nitrate and sodium fluoride in 10% carbamide peroxide at-home bleaching gel tested in this study did not reduce the TS and did not affect color change (RBR-4M6YR2). Copyright © 2018 Elsevier Ltd. All rights reserved.
Activation of autophagy by unfolded proteins during endoplasmic reticulum stress.
Yang, Xiaochen; Srivastava, Renu; Howell, Stephen H; Bassham, Diane C
2016-01-01
Endoplasmic reticulum stress is defined as the accumulation of unfolded proteins in the endoplasmic reticulum, and is caused by conditions such as heat or agents that cause endoplasmic reticulum stress, including tunicamycin and dithiothreitol. Autophagy, a major pathway for degradation of macromolecules in the vacuole, is activated by these stress agents in a manner dependent on inositol-requiring enzyme 1b (IRE1b), and delivers endoplasmic reticulum fragments to the vacuole for degradation. In this study, we examined the mechanism for activation of autophagy during endoplasmic reticulum stress in Arabidopsis thaliana. The chemical chaperones sodium 4-phenylbutyrate and tauroursodeoxycholic acid were found to reduce tunicamycin- or dithiothreitol-induced autophagy, but not autophagy caused by unrelated stresses. Similarly, over-expression of BINDING IMMUNOGLOBULIN PROTEIN (BIP), encoding a heat shock protein 70 (HSP70) molecular chaperone, reduced autophagy. Autophagy activated by heat stress was also found to be partially dependent on IRE1b and to be inhibited by sodium 4-phenylbutyrate, suggesting that heat-induced autophagy is due to accumulation of unfolded proteins in the endoplasmic reticulum. Expression in Arabidopsis of the misfolded protein mimics zeolin or a mutated form of carboxypeptidase Y (CPY*) also induced autophagy in an IRE1b-dependent manner. Moreover, zeolin and CPY* partially co-localized with the autophagic body marker GFP-ATG8e, indicating delivery to the vacuole by autophagy. We conclude that accumulation of unfolded proteins in the endoplasmic reticulum is a trigger for autophagy under conditions that cause endoplasmic reticulum stress. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.
Ait Ouarabi, Mohand; Antonaci, Paola; Boubenider, Fouad; Gliozzi, Antonio S; Scalerandi, Marco
2017-01-07
Alkaline solutions, such as sodium, potassium or lithium silicates, appear to be very promising as healing agents for the development of encapsulated self-healing concretes. However, the evolution of their mechanical and acoustic properties in time has not yet been completely clarified, especially regarding their behavior and related kinetics when they are used in the form of a thin layer in contact with a hardened cement matrix. This study aims to monitor, using linear and nonlinear ultrasonic methods, the evolution of a sodium silicate solution interacting with a cement matrix in the presence of localized cracks. The ultrasonic inspection via linear methods revealed that an almost complete recovery of the elastic and acoustic properties occurred within a few days of healing. The nonlinear ultrasonic measurements contributed to provide further insight into the kinetics of the recovery due to the presence of the healing agent. A good regain of mechanical performance was ascertained through flexural tests at the end of the healing process, confirming the suitability of sodium silicate as a healing agent for self-healing cementitious systems.
Cheng, Xingqun; Liu, Jinman; Li, Jiyao; Zhou, Xuedong; Wang, Lijiang; Liu, Jiquan; Xu, Xin
2017-02-01
This paper aimed to compare the mode of action of a stannous fluoride-containing toothpaste with a conventional sodium fluoride-containing toothpaste on anti-biofilm properties. A three-species biofilm model that consists of Streptococcus mutans, Streptococcus sanguinis and Porphyromonas gingivalis was established to compare the anti-biofilm properties of a stannous fluoride-containing toothpaste (CPH), a conventional sodium fluoride-containing toothpaste (CCP) and a negative control (PBS). The 48h biofilms were subjected to two-minute episodes of treatment with test agents twice a day for 5 consecutive days. Crystal violet staining and XTT assays were used to evaluate the biomass and viability of the treated biofilm. Live/dead staining and bacteria/extracellular polysaccharides (EPS) double-staining were used to visualize the biofilm structure and to quantify microbial/extracellular components of the treated biofilms. Species-specific fluorescent in situ hybridization and quantitative polymerase chain reaction (qPCR) were used to analyze microbial composition of the biofilms after treatment. The biomass and viability of the biofilms were significantly reduced after CPH toothpaste treatment. The inhibitory effect was further confirmed by the live/dead staining. The EPS amounts of the three-species biofilm were significantly reduced by CCP and CPH treatments, and CPH toothpaste demonstrated significant inhibition on EPS production. More importantly, CPH toothpaste significantly suppressed S. mutans and P. gingvalis, and enriched S. sanguinis in the three-species biofilm. In all experiments CPH had a significantly greater effect than CCP (p<0.05) and CCP had a greater effect than PBS (p<0.05). Stannous fluoride-containing toothpaste not only showed better inhibitory effect against oral microbial biofilm, but was also able to modulate microbial composition within multi-species biofilm compared with conventional sodium fluoride-containing toothpaste. Copyright © 2016 Elsevier Ltd. All rights reserved.
Light scattering measurement of sodium polyacrylate products
NASA Astrophysics Data System (ADS)
Lama, Nisha; Norwood, David; Boone, Steven; Massie-Boyer, Valerie
2015-03-01
In the presentation, we will describe the use of a multi-detector HPLC incorporating the DAWN EOS multi-angle laser light scattering (MALLS) detector to measure the properties such as molecular weight, RMS radius, contour and persistence length and polydispersity of sodium polyacrylate products. The samples of sodium polyacrylate are used in various industries as thickening agents, coating dispersants, artificial snow, laundry detergent and disposable diapers. Data and results obtained from the experiment will be presented.
1978-01-01
Beam Lead Sealed Junction (ELSJ) devices, the silicon nitride seals the devices from sodium and since the platinum silicide and titanium metals also...improve the surface stability of bipolar devices. These materials act as gettering agents for sodium ions, thus making the contamination far less...electric field, can cause appreciable device parameter instability. Silicon nitride has been shown to be an effective barrier to sodium migration. In
Yotsawimonwat, Songwut; Charumanee, Suporn; Kaewvichit, Sayam; Sirithunyalug, Jakkapan; Sirisa-Ard, Panee; Piyamongkol, Sirivipa; Siangwong, Kulthawat
2017-05-01
Irvingia malayana wax (IW) is majorly composed of esters of medium chain fatty acids. Its melting point is low and closed to the body temperature. This study aimed at investigating the potential of IW as a matrix-forming agent and evaluate the effect of soluble channeling agents on the release of diclofenac sodium (DS) from IW matrix tablets. The preformulation study by infrared spectroscopy and differential scanning calorimetry showed no incompatibility between IW and DS or soluble channeling agents, namely PEG 4000, PEG 6000 and lactose. IW retarded the release of DS from the matrix tablets more efficiently than carnauba wax due to its greater hydrophobicity and its ability to become partial molten wax at 37° C. Factors affecting the release of DS from IW matrix were drug concentrations, and types and concentrations of channeling agents. The release of DS significantly improved when DS concentration reached approximately 33%. The fast dissolving channeling agent, lactose, could enhance the drug release rate more effectively than PEG 4000 and PEG 6000, respectively. The linear relationship between the DS release rate and the concentration of the chosen channeling agent, PEG 6000, was found (r 2 =0.9866).
Brar, Gurlal Singh; Arora, Amandeep Singh; Khinda, Vineet Inder Singh; Kallar, Shiminder; Arora, Karuna
2017-01-01
Continuous balanced demineralization and remineralization are natural dynamic processes in enamel. If the balance is interrupted and demineralization process dominates, it may eventually lead to the development of carious lesions in enamel and dentine. Fluoride helps control decay by enhancing remineralization and altering the structure of the tooth, making the surface less soluble. One hundred and twenty sound human permanent incisors randomly and equally distributed into six groups as follows: Group I - Control, II - Sodium fluoride solution, III - Sodium fluoride gel, IV - Sodium fluoride varnish, V - Clinpro Tooth Crème (3M ESPE), and VI-GC Tooth Mousse Plus or MI Paste Plus. The samples were kept in artificial saliva for 12 months, and the topical fluoride agents were applied to the respective sample groups as per the manufacturer instructions. Scanning electron microscope (SEM) evaluation of all the samples after 6 and 12 months was made. Morphological changes on the enamel surface after application of fluoride in SEM revealed the presence of globular precipitate in all treated samples. Amorphous, globular, and crystalline structures were seen on the enamel surface of the treated samples. Clear differences were observed between the treated and untreated samples. Globular structures consisting of amorphous CaF2precipitates, which acted as a fluoride reservoir, were observed on the enamel surface after action of different sodium fluoride agents. CPP-ACPF (Tooth Mousse) and Tricalcium phosphate with fluoride (Clinpro tooth crème) are excellent delivery vehicles available in a slow release amorphous form to localize fluoride at the tooth surface.
The Baeyer-Villiger Oxidation with Trifluoroacetic Acid and Household Sodium Percarbonate
ERIC Educational Resources Information Center
Kjonaas, Richard A.; Clemons, Anthony E.
2008-01-01
A method for carrying out the Baeyer-Villiger oxidation of cyclopentanone to [delta]-valerolactone in a large-section introductory organic chemistry laboratory course is reported. The oxidizing agent is trifluoroperoxyacetic acid generated in situ from trifluoroacetic acid and household sodium percarbonate such as OxiClean, Oxi Magic, or…
NASA Astrophysics Data System (ADS)
Das, Subhajit; Bag, Braja Gopal; Basu, Ranadhir
2015-10-01
The bark extract of Abroma augusta Linn is rich in medicinally important phytochemicals including antioxidants and polyphenols. First one step green synthesis of gold nanoparticles (AuNPs) has been described utilizing the bark extract of Abroma augusta L. and chloroauric acid under very mild reaction conditions. The phytochemicals present in the bark extract acted both as a reducing as well as a stabilizing agent, and no additional stabilizing and capping agents were needed. Detailed characterizations of the stabilized AuNPs were carried out by surface plasmon resonance spectroscopy, high resolution transmission electron microscopy, and X-ray diffraction studies. The catalytic activity of the freshly synthesized gold nanoparticles has been demonstrated for the sodium borohydride reduction of 4-nitrophenol to 4-aminophenol, and the kinetics of the reduction reaction have been studied spectrophotometrically.
Ahn, So-hyun; Kwon, Jong Sook; Kim, Kyungmin; Kim, Hye-Kyeong
2017-01-01
High sodium intake increases the risk of cardiovascular disease. Given the importance of behavioral changes to reducing sodium intake, this study aims to investigate the stages of change and the differences in cognitive and behavioral characteristics by stage in Korean consumers. Adult participants (N = 3892) completed a questionnaire on the stages of behavioral change, recognition of social efforts, outcome expectancy, barriers to practice, nutrition knowledge and dietary behaviors, and self-efficiency related to reduced sodium intake. The numbers of participants in each stage of behavioral change for reducing sodium intake was 29.5% in the maintenance stage, 19.5% in the action stage, and 51.0% in the preaction stage that included the precontemplation, contemplation, and preparation stages. Multiple logistic regression showed that the factors differentiating the three stages were recognizing a supportive social environment, perceived barriers to the practice of reducing sodium intake, and self-efficacy to be conscious of sodium content and to request less salt when eating out. Purchasing experience of sodium-reduced products for salty foods, knowledge of the recommended intake of salt and the difference between sodium and salt, and improving dietary habits of eating salted fish, processed food, and salty snacks were factors for being in the action stage versus the preaction stage. These findings suggest that tailored intervention according to the characteristics of each stage is helpful in reducing sodium intake. PMID:28749441
Carniato, F; Bisio, C; Evangelisti, C; Psaro, R; Dal Santo, V; Costenaro, D; Marchese, L; Guidotti, M
2018-02-27
A class of heterogeneous catalysts based on commercial bentonite from natural origin, containing at least 80 wt% of montmorillonite clay, was designed to transform selectively and under mild conditions toxic organosulfur and organophosphorus chemical warfare agents into non-noxious products with a reduced impact on health and environment. The bentonite from the natural origin was modified by introducing iron species and acid sites in the interlayer space, aiming to obtain a sorbent with strong catalytic oxidising and hydrolytic properties. The catalytic performance of these materials was evaluated in the oxidative abatement of (2-chloroethyl)ethyl sulfide (CEES), a simulant of sulfur mustard, in the presence of aqueous hydrogen peroxide as an oxidant. A new decontamination formulation was, moreover, proposed and obtained by mixing sodium perborate, as a solid oxidant, to iron-bentonite catalysts. Solid-phase decontamination tests, performed on a cotton textile support contaminated with organosulfide and organophosphonate simulant agents revealed the good activity of the solid formulation, especially in the in situ detoxification of blistering agents. Tests carried out on the real blistering warfare agent, sulfur mustard (HD agent), showed that, thanks to the co-presence of the iron-based clay together with the solid oxidant component, a good decontamination of the test surface from the real warfare agent could be achieved (80% contaminant degradation, under ambient conditions, in 24 h).
Extinguishing agent for combustible metal fires
Riley, John F.; Stauffer, Edgar Eugene
1976-10-12
A low chloride extinguishing agent for combustible metal fires comprising from substantially 75 to substantially 94 weight percent of sodium carbonate as the basic fire extinguishing material, from substantially 1 to substantially 5 weight percent of a water-repellent agent such as a metal stearate, from substantially 2 to substantially 10 weight percent of a flow promoting agent such as attapulgus clay, and from substantially 3 to substantially 15 weight percent of a polyamide resin as a crusting agent.
Dai, Yumei; Normand, Mark D; Weiss, Jochen; Peleg, Micha
2010-03-01
The growth of four spoilage yeasts, Saccharomyces cerevisiae, Zygosaccharomyces bailii, Brettanomyces bruxellensis, and Brettanomyces naardenensis, was inhibited with three-agent (triplet) combinations of lauric arginate, cinnamic acid, and sodium benzoate or potassium sorbate. The inhibition efficacy was determined by monitoring the optical density of yeast cultures grown in microtiter plates for 7 days. The relationship between the optical density and the sodium benzoate and potassium sorbate concentrations followed a single-term exponential decay model. The critical effective concentration was defined as the concentration at which the optical density was 0.05, which became an efficacy criterion for the mixtures. Critical concentrations of sodium benzoate or potassium sorbate as a function of the lauric arginate and cinnamic acid concentrations were then fitted with an empirical model that mapped three-agent combinations of equal efficacy. The contours of this function are presented in tabulated form and as two- and three-dimensional plots. Triplet combinations were highly effective against all four spoilage yeasts at three practical pH levels, especially at pH 3.0. The triplet combinations were particularly effective for inhibiting growth of Z. bailii, and combinations containing potassium sorbate had synergistic activities. The equal efficacy concentration model also allowed tabulation of the cost of the various combinations of agents and identification of those most economically feasible.
Cheng, Jianjun; Xie, Siyu; Yin, Yuan; Feng, Xianmin; Wang, Shuai; Guo, Mingruo; Ni, Chunlei
2017-07-01
Polymerized whey protein-sodium tripolyphosphate can be induced to gel in an acidic environment provided during fermentation. The variety of thickening agent has an influence on texture that is an essential aspect of yogurt quality affecting consumer preference. Similar to polysaccharide stabilizers, the cold gelation properties of whey proteins can improve the body texture of yogurt products. Polymerized whey protein-sodium tripolyphosphate could be a favorable and interesting thickening agent for making set yogurt. The effects of whey protein isolate (WPI), heat-treated whey protein-sodium tripolyphosphate (WPI-STPP), heat-treated WPI and pectin on the storage properties and microstructure of yogurt were investigated. All samples were analyzed for syneresis, pH, titratable acidity, viscosity, texture profile and microstructure during storage. The results showed that incorporating heat-treated WPI-STPP had a significant impact on syneresis (32.22 ± 0.60), viscosity (10 956.67 ± 962.1) and hardness (209.24 ± 12.48) (p < 0.05) with uniform body texture. Yogurt fermented with modified WPI-STPP had higher levels of protein and better hardness compared with yogurt using pectin. The microstructure was observed to be a uniform and denser, complicated network. Heat-treated WPI-STPP may be useful for improving yogurt texture. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Sulphate removal from sodium sulphate-rich brine and recovery of barium as a barium salt mixture.
Vadapalli, Viswanath R K; Zvimba, John N; Mulopo, Jean; Motaung, Solly
2013-01-01
Sulphate removal from sodium sulphate-rich brine using barium hydroxide and recovery of the barium salts has been investigated. The sodium sulphate-rich brine treated with different dosages of barium hydroxide to precipitate barium sulphate showed sulphate removal from 13.5 g/L to less than 400 mg/L over 60 min using a barium to sulphate molar ratio of 1.1. The thermal conversion of precipitated barium sulphate to barium sulphide achieved a conversion yield of 85% using coal as both a reducing agent and an energy source. The recovery of a pure mixture of barium salts from barium sulphide, which involved dissolution of barium sulphide and reaction with ammonium hydroxide resulted in recovery of a mixture of barium carbonate (62%) and barium hydroxide (38%), which is a critical input raw material for barium salts based acid mine drainage (AMD) desalination technologies. Under alkaline conditions of this barium salt mixture recovery process, ammonia gas is given off, while hydrogen sulfide is retained in solution as bisulfide species, and this provides basis for ammonium hydroxide separation and recovery for reuse, with hydrogen sulfide also recoverable for further industrial applications such as sulfur production by subsequent stripping.
Sood, Ankur; Arora, Varun; Shah, Jyoti; Kotnala, R K; Jain, Tapan K
2017-11-01
In this paper we report synthesis of aqueous based gold coated iron oxide nanoparticles to integrate the localized surface plasma resonance (SPR) properties of gold and magnetic properties of iron oxide in a single system. Iron oxide-gold core shell nanoparticles were stabilized by attachment of thiolated sodium alginate to the surface of nanoparticles. Transmission electron microscope (TEM) micrograph presents an average elementary particle size of 8.1±2.1nm. High resolution TEM (HR-TEM) and X-ray photon spectroscopy further confirms the presence of gold shell around iron oxide core. Gold coating is responsible for reducing saturation magnetization (M s ) value from ~41emu/g to ~24emu/g - in thiolated sodium alginate stabilized gold coated iron oxide core-shell nanoparticles. The drug (curcumin) loading efficiency for the prepared nanocomposites was estimated to be around 7.2wt% (72μgdrug/mg nanoparticles) with encapsulation efficiency of 72.8%. Gold-coated iron oxide core-shell nanoparticles could be of immense importance in the field of targeted drug delivery along with capability to be used as contrast agent for MRI & CT. Copyright © 2017 Elsevier B.V. All rights reserved.
Iftikhar, A; Hasan, IJ; Sarfraz, M; Jafri, L; Ashraf, MA
2015-01-01
ABSTRACT Background: The present study was designed to evaluate the nephroprotective effect of the leaves of Aloe barbadensis against toxicity induced by diclofenac sodium in albino rabbits. Subjects and Method: Thirty-six healthy albino rabbits were randomly divided into six groups each with six animals. Group 1 served as the untreated control, group 2 was treated only with diclofenac sodium, group 3 with the nephroprotective drug silymarin and groups 4, 5, and 6 were treated with different doses of Aloe barbadensis, ie 200 mg/kg, 400 mg/kg and 600 mg/kg, respectively after being treated with diclofenac sodium. Blood samples were collected after every five days up to fifteen days. Haematological and histopathological parameters were determined by using diagnostic kits. Results: Results of haematological studies showed that use of the powder of Aloe barbadensis normalized the level of different factors eg, white blood cells (WBCs), red blood cells (RBCs), platelet count, packed cell volume (PCV), mean cell volume (MCV) and haemoglobin (Hb) values. Histopathological studies showed that Aloe barbadensis ameliorated pyknotic nuclei in the renal epithelial cells and reduced oxidative stress by increasing the level of catalase and decreasing malondialdehyde (MDA) level. Conclusion: These results have shown that Aloe barbadensis can normalize oxidative stress and can be used as an effective nephroprotective agent against drug-induced nephrotoxicity. PMID:27398602
Verluyten, Jurgen; Messens, Winy; De Vuyst, Luc
2004-01-01
Lactobacillus curvatus LTH 1174, a strain originating in fermented sausage, produces the antilisterial bacteriocin curvacin A. Its biokinetics of cell growth and bacteriocin production as a function of various concentrations of salt (sodium chloride) were investigated in vitro during laboratory fermentations using modified MRS medium. A model was set up to describe the effects of different NaCl concentrations on microbial behavior. Both cell growth and bacteriocin activity were affected by changes in the salt concentration. Sodium chloride clearly slowed down the growth of L. curvatus LTH 1174, but more importantly, it had a detrimental effect on specific curvacin A production (kB) and hence on overall bacteriocin activity. Even a low salt concentration (2%, wt/vol) decreased bacteriocin production, while growth was unaffected at this concentration. The inhibitory effect of NaCl was mainly due to its role as an aw-lowering agent. Further, it was clear that salt interfered with bacteriocin induction. Additionally, when 6% (wt/vol) sodium chloride was added, the minimum biomass concentration necessary to start the production of curvacin A (XB) was 0.90 g (cell dry mass) per liter. Addition of the cell-free culture supernatant or a protein solution as a source of induction factor resulted in a decrease in XB, an increase in kB, and hence an increase in the maximum attainable bacteriocin activity. PMID:15066822
Achieving the best bowel preparation for colonoscopy
Parra-Blanco, Adolfo; Ruiz, Alex; Alvarez-Lobos, Manuel; Amorós, Ana; Gana, Juan Cristóbal; Ibáñez, Patricio; Ono, Akiko; Fujii, Takahiro
2014-01-01
Bowel preparation is a core issue in colonoscopy, as it is closely related to the quality of the procedure. Patients often find that bowel preparation is the most unpleasant part of the examination. It is widely accepted that the quality of cleansing must be excellent to facilitate detecting neoplastic lesions. In spite of its importance and potential implications, until recently, bowel preparation has not been the subject of much study. The most commonly used agents are high-volume polyethylene glycol (PEG) electrolyte solution and sodium phosphate. There has been some confusion, even in published meta-analyses, regarding which of the two agents provides better cleansing. It is clear now that both PEG and sodium phosphate are effective when administered with proper timing. Consequently, the timing of administration is recognized as one of the central factors to the quality of cleansing. The bowel preparation agent should be administered, at least in part, a few hours in advance of the colonoscopy. Several low volume agents are available, and either new or modified schedules with PEG that usually improve tolerance. Certain adjuvants can also be used to reduce the volume of PEG, or to improve the efficacy of other agents. Other factors apart from the choice of agent can improve the quality of bowel cleansing. For instance, the effect of diet before colonoscopy has not been completely clarified, but an exclusively liquid diet is probably not required, and a low-fiber diet may be preferable because it improves patient satisfaction and the quality of the procedure. Some patients, such as diabetics and persons with heart or kidney disease, require modified procedures and certain precautions. Bowel preparation for pediatric patients is also reviewed here. In such cases, PEG remains the most commonly used agent. As detecting neoplasia is not the main objective with these patients, less intensive preparation may suffice. Special considerations must be made for patients with inflammatory bowel disease, including safety and diagnostic issues, so that the most adequate agent is chosen. Identifying neoplasia is one of the main objectives of colonoscopy with these patients, and the target lesions are often almost invisible with white light endoscopy. Therefore excellent quality preparation is required to find these lesions and to apply advanced methods such as chromoendoscopy. Bowel preparation for patients with lower gastrointestinal bleeding represents a challenge, and the strategies available are also reviewed here. PMID:25548470
Dermal Sensitization Potential of Niclosamide in Guinea Pigs
1988-09-01
al--3 sterile water, from the same lot as for DNCB stock solution, were used to prepare the dilutions of FCA. Sodium lauryl sulfate (SLS) was obtained...test agent was non- irritating, the area was pretreated with 10% sodium lauryl sulfate in petrolatum immediately after the clipping and shaving. The SLS...control combination was prepared by adding 0.25 ml of FCA stock to 4.75 ml of propylene glycol. Topical Induction and Challenge: The sodium lauryl
Review: the use of sodium hypochlorite in endodontics--potential complications and their management.
Spencer, H R; Ike, V; Brennan, P A
2007-05-12
Aqueous sodium hypochlorite (bleach) solution is widely used in dental practice during root canal treatment. Although it is generally regarded as being very safe, potentially severe complications can occur when it comes into contact with soft tissue. This paper discusses the use of sodium hypochlorite in dental treatment, reviews the current literature regarding hypochlorite complications, and considers the appropriate management for a dental practitioner when faced with a potentially adverse incident with this agent.
Goutziomitrou, Evangelia; Venetis, Christos A; Kolibianakis, Efstratios M; Bosdou, Julia K; Parlapani, Aggeliki; Grimbizis, Gregoris; Tarlatzis, Basil C
2015-12-01
Clinical outcomes of IVF cycles using propofol or thiopental sodium as anaesthetic agents for oocyte retrieval were compared. The primary outcome measure was fertilization rate per patient. One hundred and eighty patients undergoing ovarian stimulation with gonadotrophins and gonadotrophin-releasing hormone antagonists for IVF were randomized to receive either propofol (n = 90) or thiopental sodium (n = 90). No significant differences in baseline characteristics were present between the two groups. Overall fertilization rates were similar between propofol and thiopental sodium groups, respectively: median (IQR): 54.8 (29.2) versus 54.6 (29.7); fertilization rates for intracytoplasmic sperm injection only: median (IQR): 70 (50) versus 75 (50), respectively. For secondary outcome measures, time under anaesthesia was significantly increased in the thiopental sodium group: median (IQR): 12(5) versus 10 (4.5) min, P = 0.019 compared with the propofol group. Number of cumulus oocyte complexes retrieved [median (IQR): 7.1 (6.3) versus 6.5 (5.6)] did not differ significantly between the two groups. A non-significant difference in live birth rates per randomized patient of +4.4% (95% CI: -5.7 to +14.6) in favour of propofol was observed. Use of propofol compared with thiopental sodium for general anaesthesia during oocyte retrieval results in similar fertilization rates and IVF outcomes. Copyright © 2015 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
Effect of tooth bleaching agents on protein content and mechanical properties of dental enamel.
Elfallah, Hunida M; Bertassoni, Luiz E; Charadram, Nattida; Rathsam, Catherine; Swain, Michael V
2015-07-01
This study investigated the effect of two bleaching agents, 16% carbamide peroxide (CP) and 35% hydrogen peroxide (HP), on the mechanical properties and protein content of human enamel from freshly extracted teeth. The protein components of control and treated enamel were extracted and examined on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Marked reduction of the protein matrix and random fragmentation of the enamel proteins after bleaching treatments was found. The mechanical properties were analyzed with Vickers indentations to characterize fracture toughness, and nanoindentation to establish enamel hardness, elastic modulus and creep deformation. Results indicate that the hardness and elastic modulus of enamel were significantly reduced after treatment with CP and HP. After bleaching, the creep deformation at maximum load increased and the recovery upon unloading reduced. Crack lengths of CP and HP treated enamel were increased, while fracture toughness decreased. Additionally, the microstructures of fractured and indented samples were examined with field emission gun scanning electron microscopy (FEG-SEM) showing distinct differences in the fracture surface morphology between pre- and post-bleached enamel. In conclusion, tooth bleaching agents can produce detrimental effects on the mechanical properties of enamel, possibly as a consequence of damaging or denaturing of its protein components. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Vosoughhosseini, Sepideh; Lotfi, Mehrdad; Shahmoradi, Kaveh; Saghiri, Mohammad-Ali; Zand, Vahid; Mehdipour, Masoumeh; Ranjkesh, Bahram; Mokhtari, Hadi; Salemmilani, Amin; Doosti, Sirvan
2011-11-01
There is some evidence that the pH at the root surface is reduced by intracoronal placement of bleaching pastes, which is known to enhance osteoclastic activity. Therefore, it is recommended that a protective barrier be used over the canal filling to prevent leakage of bleaching agents. Glass-ionomer (GI) is commonly used as a coronal barrier before nonvital bleaching. Because mineral trioxide aggregate (MTA) creates high alkalinity after mixing with water, using MTA as a protective barrier over the canal filling may not only prevent leakage of bleaching agents and microorganisms, but may prevent cervical resorption. The aim of this study was to evaluate sealing ability of white mineral trioxide aggregate (WMTA) as a coronal barrier before nonvital bleaching. Root canals of one hundred thirty human maxillary incisors were instrumented and filled with gutta-percha without sealer. Gutta-percha was removed up to 3 mm below the cementoenamel junction (CEJ). The teeth were randomly divided into six experimental groups of 20 teeth each and two control groups of 5. In three experimental groups, WMTA was packed into the canal to the level of CEJ. In the remaining experimental groups, glass-ionomer (GI) was used as a coronal barrier. After a 24-hour incubation period, one of the following three bleaching agents was placed in the access cavity of each of the WMTA or GI groups. These three bleaching agents were 30% hydrogen peroxide, sodium perborate mixed with 30% hydrogen peroxide, and sodium perborate mixed with distilled water. The bleaching agents were replaced every 3 days for three times. In the positive controls, no coronal barrier was used. In the negative controls, all the tooth surfaces were covered by two layers of nail varnish. Microleakage was evaluated using protein leakage test. Statistical analyses were performed with the Kruskal-Wallis and Mann-Whitney tests. The experimental groups showed minimum leakage which was not significantly more than tha in the negative controls. There was no statistically significant difference in leakage between the experimental groups (p<0.05). This study indicated that different bleaching agents have no effect on sealing ability of WMTA.
Sodium and Potassium Fluxes in Isolated Barnacle Muscle Fibers
Brinley, F. J.
1968-01-01
Sodium and potassium influxes and outfluxes have been studied in single isolated muscle fibers from the giant barnacle both by microinjection and by external loading. The sodium influxes and outfluxes were 49 and 39 pmoles /cm2-sec (temperature = 15–16°C) respectively. The potassium influxes and outfluxes were 28 and 60 pmoles/cm2-sec (temperature = 13–16°C) respectively. Replacement of external sodium by lithium reduced sodium outflux by 67% but had no effect on potassium outflux. Removal of external potassum reduced the sodium outflux by 51% but had no effect on potassium outflux. External strophanthidin (10–30 µM) reduced sodium outflux by 80–90% and increased potassium outflux by 40% in normal fibers. The time constant for sodium exchange increased linearly with internal sodium concentration, as did the fraction of sodium outflux insensitive to a maximally inhibitory concentration of external strophanthidin in the range of 10 tO 80 mM internal sodium. The strophanthidin-sensitive component of sodium outflux could be related to the internal sodium concentration by the following empirical formula: See PDF for Equation PMID:5651768
Characteristics of environmental isolates of Legionella pneumophila. [Legionella
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orrison, L.H.; Cherry, W.B.; Fliermans, C.B.
1981-07-01
Thirty-eight cultures of Legionella pneumophila isolated from survace waters were characterized by their morphological, tinctorial, biochemical, and serological properties and by their ability to produce disease in guinea pigs. Their susceptibility to antimicrobial agents also was tested. When they were compared with clinical isolates, no important differences were found between cultures from the two sources. Sodium hippurate hydrolysis, gelatin liquefaction, pigment formation, and ..beta..-lactamase and alkaline phosphatase activity were useful in differentiating the four described species of Legionella. Hydrolysis of diacetylfluorescein and the inability to reduce nitrate help to distinguish Legionella species from other gram-negative bacterial rods.
Boros, Eric E; Thompson, James B; Katamreddy, Subba R; Carpenter, Andrew J
2009-05-01
A scale-up of diazaindoline 1 was achieved in four stages and 32% overall yield. The key step involved rapid reductive amination of aldehyde 8 with aniline 5 by sodium triacetoxyborohydride (STAB-H) and TFA followed by ring closure of intermediate amine 9 to compound 1 in the same pot. These reaction conditions were also applied to facile reductive aminations with anilines known to have little reactivity under STAB-H/AcOH conditions. Spectral data supported the tris(trifluoroacetoxy)borohydride anion (16) as the active reducing agent.
METHOD FOR REDUCING THE IMPURITY RESISTIVITY OF SODIUM
Post, R.F.; Taylor, C.E.
1963-08-13
The inherent resistivity of sodium, at cryogenic temperatures, can be reduced by clustering the impurity atoms within the crystal latiice structure of the sodium, thereby reducing the effective electron collision cross section and thus reducing the number of collisions between the electrons and such lattice imperfections. The clustering is effected by heating the sodium to a temperature approaching its melting point, and maintaining the temperature for a period of time ranging generally from two to six days. (AEC)
Archambault, Denis; Morin, Guylaine
1988-01-01
Several immunomodulator agents may influence the host immune system. Among them there are the adjuvants and the immunostimulant agents. In this paper, after a brief review of the mechanism of action of adjuvants, we have described the adjuvant and stimulant properties of muramyl-dipeptide, anaerobic corynebacteria and sodium diethyldithiocarbamate. PMID:17422948
NASA Astrophysics Data System (ADS)
Lyu, Xiao; Hu, Jingping; Foord, John S.; Wang, Qiang
2013-11-01
A novel electroless deposition method was demonstrated to prepare a platinum electrocatalyst on boron doped diamond (BDD) substrates without the need for pre-activation. This green method addresses the uniformity and particle size issues associated with electrodeposition and circumvents the pre-activation procedure which is necessary for conventional electroless deposition. The inert BDD substrate formed a galvanic couple with an iron wire, to overcome the activation barrier associated with conventional electroless deposition on diamond, leading to the formation of Pt nanoparticles on the electrode surface in a galvanic process coupled to a chemical process. When sodium hypophosphite was employed as the reducing agent to drive the electroless reaction Pt deposits which were contaminated with iron and phosphorus resulted. In contrast, the reducing agent ascorbic acid gave rise to high purity Pt nanoparticles. Optimal deposition conditions with respect to bath temperature, pH value and stabilizing additives are identified. Using this approach, high purity and uniformly distributed platinum nanoparticles are obtained on the diamond electrode surface, which demonstrate a high electrochemical activity towards methanol oxidation.
[The effects of sildenafil citrate on the isolated rat aorta: comparative in vitro study].
Ozbek, H; Güler, N; Aydin, S; Eryonucu, B; Bilge, M
2001-03-01
Sildenafil, an inhibitor of cGMP-specific phosphodiesterase 5 (PDE5), is currently being used as oral therapy for penile erectile dysfunction. The aim of this study was to investigate the relaxing effect of sildenafil on vascular tissue and compare it with the known vasodilatator agents, sodium nitroprusside and acetylcholine. Rat thoracic aorta samples were cut into rings, mounted on steel hooks, and immersed in aerated Krebs solution maintained at 37 degree C. Isometric responses were recorded by strain gauge transducers connected to a polygraph. Graded relaxations were induced using increasing concentrations of acetylcholine sodium nitroprusside and sildenafil. The agents all does-dependently relaxed rat aorta strips. The relaxing potential of sildenafil was found to be similar to sodium nitroprusside, but higher than acetylcholine. In the absence of regulatory mechanisms, sildenafil citrate has noticeable vasodilatatory effect in vitro.
Corcoran, M; Morris, D; De Lappe, N; O'Connor, J; Lalor, P; Dockery, P; Cormican, M
2014-02-01
Salmonellosis is the second most common cause of food-borne illness worldwide. Contamination of surfaces in food processing environments may result in biofilm formation with a risk of food contamination. Effective decontamination of biofilm-contaminated surfaces is challenging. Using the CDC biofilm reactor, the activities of sodium hypochlorite, sodium hydroxide, and benzalkonium chloride were examined against an early (48-h) and relatively mature (168-h) Salmonella biofilm. All 3 agents result in reduction in viable counts of Salmonella; however, only sodium hydroxide resulted in eradication of the early biofilm. None of the agents achieved eradication of mature biofilm, even at the 90-min contact time. Studies of activity of chemical disinfection against biofilm should include assessment of activity against mature biofilm. The difficulty of eradication of established Salmonella biofilm serves to emphasize the priority of preventing access of Salmonella to postcook areas of food production facilities.
Hyper alginate gel microbead formation by molecular diffusion at the hydrogel/droplet interface.
Hirama, Hirotada; Kambe, Taisuke; Aketagawa, Kyouhei; Ota, Taku; Moriguchi, Hiroyuki; Torii, Toru
2013-01-15
We report a simple method for forming monodispersed, uniformly shaped gel microbeads with precisely controlled sizes. The basis of our method is the placement of monodispersed sodium alginate droplets, formed by a microfluidic device, on an agarose slab gel containing a high-osmotic-pressure gelation agent (CaCl(2) aq.): (1) the droplets are cross-linked (gelated) due to the diffusion of the gelation agent from the agarose slab gel to the sodium alginate droplets and (2) the droplets simultaneously shrink to a fraction of their original size (<100 μm in diameter) due to the diffusion of water molecules from the sodium alginate droplets to the agarose slab gel. We verified the mass transfer mechanism between the droplet and the agarose slab gel. This method circumvents the limitations of gel microbead formation, such as the need to prepare microchannels of various sizes, microchannel clogging, and the deformation of the produced gel microbeads.
Rossi-Fedele, G; Prichard, J W; Steier, L; de Figueiredo, J A P
2013-06-01
Sodium hypochlorite (NaOCl) is recommended as an endodontic irrigant in view of its broad antimicrobial and tissue dissolution capacities. To enhance its penetration into inaccessible areas of root canals and to improve its overall effect, the addition of surface-active agents has been suggested. The aim of this investigation was to review the effect of the reduction of the surface tension on the performance of NaOCl in endodontics. A search was performed in the Medline electronic database (articles published up to 28 July 2012, in English) with the search terms and combinations as follows: 'sodium hypochlorite AND surface tension or interfacial force or interfacial tension or surface-active agent or amphiphilic agent or surface active agent or surfactant or tenside or detergent'. The purpose of this search was to identify publications that compared NaOCl alone and NaOCl modified with the addition of a surface-active agent in endodontics. A hand search of articles published online ('in-press' and 'early view'), and appearing in the reference list of the articles included, was further performed, using the same search criteria as the electronic search. The search identified 302 publications, of which 11 fulfilled the inclusion/exclusion criteria of the review. The evidence available suggests that surface-active agents improve the penetration of NaOCl in the main canal and have no effect on its pulp tissue dissolution ability. There are, however, insufficient data to enable a sound conclusion to be drawn regarding the effect of modifying NaOCl's surface tension on lubrication, antimicrobial and smear layer or debris removal abilities. © 2012 International Endodontic Journal.
1978-01-01
silicon nitride seals the devices from sodium and since the platinum silicide and titanium metals also offer very low mobility to the alkaline ions, the...of bipolar devices. These materials act as gettering agents for sodium ions, thus making the contamination far less mobile. The stability of the...parameter instability. Silicon nitride has been shown to be an effective barrier to sodium migration. In Beam Lead Sealed Junction (BLSJ) devices, the
Samiei, Mohammad; Janani, Maryam; Vahdati, Amin; Alemzadeh, Yalda; Bahari, Mahmoud
2017-01-01
The present study evaluated the element distribution in completely set calcium-enriched mixture (CEM) cement after application of 35% carbamide peroxide, 40% hydrogen peroxide and sodium perborate as commercial bleaching agents using an energy-dispersive x-ray microanalysis (EDX) system. The surface structure was also observed using the scanning electron microscope (SEM). Twenty completely set CEM cement samples, measuring 4×4 mm 2 , were prepared in the present in vitro study and randomly divided into 4 groups based on the preparation technique as follows: the control group; 35% carbamide peroxide group in contact for 30-60 min for 4 times; 40% hydrogen peroxide group with contact time of 15-20 min for 3 times; and sodium perborate group, where the powder and liquid were mixed and placed on CEM cement surface 4 times. Data were analyzed at a significance level of 0.05 through the one Way ANOVA and Tukey's post hoc tests. EDX showed similar element distribution of oxygen, sodium, calcium and carbon in CEM cement with the use of carbamide peroxide and hydroxide peroxide; however, the distribution of silicon was different ( P <0.05). In addition, these bleaching agents resulted in significantly higher levels of oxygen and carbon ( P <0.05) and a lower level of calcium ( P <0.05) compared to the control group. SEM of the control group showed plate-like and globular structure. Sodium perborate was similar to control group due to its weak oxidizing properties. Globular structures and numerous woodpecker holes were observed on the even surface on the carbamide peroxide group. The mean elemental distribution of completely set CEM cement was different when exposed to sodium perborate, carbamide peroxide and hydrogen peroxide.
NASA Astrophysics Data System (ADS)
Rahmawati, Della; Chandra, Mega; Santoso, Stefanus; Puteri, Maria Gunawan
2017-01-01
The essential oil of sweet orange, lemon, and key lime peel were analyzed for their antimicrobial activity. The antimicrobial activity of each citrus essential oil with different concentration was assessed using broth macro-dilution against Bacillus sp, Eschericia coli, Rhizopus stolonifer, and Botrytis sp which represented specific spoilage microorganism in tofu and fresh strawberry. Among all the citrus peel essential oils tested, lemon peel essential oil with 0.6% concentration showed significant activity as an antimicrobial agent against Escherichia coli and Bacillus sp. In other hand 1% of lemon peel essential oil is also considered to be the best concentration of inhibiting the Rhizopus Stolonifer and Botrytis sp. Lemon peel essential oil which has the highest antimicrobial activity was combined with two different kind of edible coating agents (cassava starch and sodium alginate) and was applied in both tofu and strawberry to observe whether it had possibility to decrease the degradation rate of tofu and strawberry. The addition of 0.6% and 1% lemon peel essential oil with each of edible coating agents was significantly able to reduce the degradation of tofu and fresh strawberry.
Gao, Jing; Ruan, Xinyong; Pan, Xinliang; Xu, Fenglei; Lei, Dapeng; Liu, Dayu
2005-08-01
To study the effect of sodium phenylbutyrate when it combined with agents used in induction chemotherapy on laryngeal carcinoma cells Hep-2 in vitro. MTT were used to examine the growth inhibition of Hep-2 cells treated by the combination of PB with 5-FU or CDDP in vitro. When 5-FU or CDDP combined with PB respectively, there was significantly difference between every two dose groups of the two agents or every dose group and control group ( P < 0.05). When the dosage of 5-FU or CDDP was definition,there was significantly difference between every two dose groups of PB ( P < 0.05). PB could enhance the cytotoxic effects of agents used in induction chemotherapy on laryngeal carcinoma cells Hep-2 in vitro, which showed the possibility in reinforcement the treatment effect and reduction the occurrence of the complication and toxic reaction of induction chemotherapy on laryngeal carcinoma.
SGLT2 Inhibitors: Glucotoxicity and Tumorigenesis Downstream the Renal Proximal Tubule?
Bertinat, Romina; Nualart, Francisco; Yáñez, Alejandro J
2016-08-01
At present, diabetes mellitus is the main cause of end-stage renal disease. Effective glycaemic management is the most powerful tool to delay the establishment of diabetic complications, such as diabetic kidney disease. Together with reducing blood glucose levels, new anti-diabetic agents are expected not only to control the progression but also to restore known defects of the diabetic kidney. Sodium-glucose co-transporter 2 (SGLT2) inhibitors are promising anti-diabetic agents that reduce hyperglycaemia by impairing glucose reabsorption in proximal tubule of the kidney and increasing glucosuria. SGLT2 inhibitors have shown to reduce glucotoxicity in isolated proximal tubule cells and also to attenuate expression of markers of overall kidney damage in experimental animal models of diabetes, but the actual renoprotective effect for downstream nephron segments is still unknown and deserves further attention. Here, we briefly discuss possible undesired effects of enhanced glucosuria and albuminuria in nephron segments beyond the proximal tubule after SGLT2 inhibitor treatment, offering new lines of research to further understand the renoprotective action of these anti-diabetic agents. Strategies blocking glucose reabsorption by renal proximal tubule epithelial cells (RPTEC) may be protective for RPTEC, but downstream nephron segments will still be exposed to high glucose and albumin levels through the luminal face. The actual effect of constant enhanced glucosuria over distal nephron segments remains to be established. J. Cell. Physiol. 231: 1635-1637, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Gobi, K; Vadivelu, V M
2015-01-01
Polyhydroxyalkanoate (PHA) recovery from aerobic granules was investigated using four cell digestion agents, namely, sodium hypochlorite, sodium hydroxide, acetone and sodium chloride. Simultaneously, the removal of extracellular polymeric substances (EPS) and its effect on PHA yield were investigated. The highest PHA recovery yield was obtained using sodium hypochlorite, accounting for 89% cell dry weight (CDW). The highest PHA was recovered after the sodium hypochlorite completely removed the EPS from the aerobic granules. The average molecular weight (Mw) of the PHA recovered using sodium hypochlorite was 5.31 × 10(5)g/mol with only 1.8% molecular weight degradation. The energy and duration analysis for PHA recovery revealed that the sodium hypochlorite method required the least amount of energy and time at 0.0561 MJ/g PHA and 26 h, respectively. The PHA that was recovered was a P3(HB-co-HV) co-polymer. Copyright © 2015 Elsevier Ltd. All rights reserved.
[Strengthening Effects of Sodium Salts on Washing Kerosene Contaminated Soil with Surfactants].
Huang, Zhao-lu; Chen, Quan-yuan; Zhou, Juan; Xie, Mo-han
2015-05-01
The impact of sodium salt on kerosene contaminated soil washing with surfactants was investigated. The results indicated that sodium silicate greatly enhanced the washing efficiency of SDS. Sodium tartrate can largely enhance the washing efficiency of SDBS and Brij35. Sodium salts can enhance the washing efficiency on kerosene contaminated with TX-100. No significant differences were observed between different sodium salts. Sodium salt of humic acid and sodium silicate had similar enhancement on kerosene contaminated soil washing with saponin. Sodium humate can be a better choice since its application can also improve soil quality. The enhancement of sodium silicate on kerosene contaminated soil washing with Tw-80 increased with the increase of Tw-80 dosage. However, the impact of sodium chloride and sodium tartrate was opposite to sodium silicate. Sodium salts can reduce surface tension and critical micelle concentration of ionic surfactants to enhance the washing. Sodium salts can also reduce re-adsorption of oil to soil with nonionic surfactants to enhance the washing. Kerosene contamination can increase the contact angle of soil, which indicated the increase of hydrophilicity of soil. Washing with surfactants can reduce the hydrophilicitiy of soil according to contact angle measurement, which indicated that kerosene contaminated soil remediation with surfactant can also benefit nutrient and water transportation in the contaminated soil.
Progress in the chemistry of chromium(V) doping agents used in polarized target materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krumpolc, M.; Hill, D.; Struhrmann, H.B.
1990-01-01
We wish to report progress in two areas of the chromium (V)-based doping agents: Two commonly used chromium (V) complexes, I and II, have been synthesized in perdeuterated form (i.e., all hydrogens replaced by deuterium). They are sodium bis(2-ethyl-2-deuteroxy-butyrato)oxochromate(V)monodeuterate, IV, (acronym EDBA-Cr(V)), and sodium bis(2-deuteroxy-2-methylpropionato)oxochromate(V), III, (acronym DMPA-Cr(V)). A synthetic route leading to the preparation of stable, chromium(III)-free solutions of chromium(V) in diols (1,2-ethanediol/ethylene glycol/and 1,2-propanediol/propylene glycol/) has been outlined.
Alkaline flooding for enhanced oil recovery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gittler, W.E.
1983-09-01
There are over 12 active projects of varying size using one of 3 major types of alkaline agents. These include sodium silicate, caustic soda, and soda ash. Among the largest pilots currently is the THUMS project in the Wilmington field, California. Plans called for the injection of a 4% weight concentration of sodium orthosilicate over a 60% PV. Through the first 3 yr, over 27 million bbl of chemicals have been injected. Gulf Oil is operating several alkaline floods, one of which is located off shore in the Quarantine Bay field, Louisiana. In this pilot, sodium hydroxide in a weightmore » concentration of 5 to 12% is being injected. Belco Petroleum Corp. has reported that their pilot operating in the Isenhour Unit in Wyoming is using a .5% weight concentration of soda ash in conjunction with a polymer. Other uses for alkaline agents in chemical flooding include the use of silicate as a preflush or sacrificial agent in micellar/polymer and surfactant recovery systems. In addition, caustic has been tested in the surface-mixed caustic emulsion process while orthosilicate has been tested in a recovery method known as mobility-controlled caustic floods.« less
Canadian initiatives to prevent hypertension by reducing dietary sodium.
Campbell, Norm R C; Willis, Kevin J; L'Abbe, Mary; Strang, Robert; Young, Eric
2011-08-01
Hypertension is the leading risk for premature death in the world. High dietary sodium is an important contributor to increased blood pressure and is strongly associated with other important diseases (e.g., gastric cancer, calcium containing kidney stones, osteoporosis, asthma and obesity). The average dietary sodium intake in Canada is approximately 3400 mg/day. It is estimated that 30% of hypertension, more than 10% of cardiovascular events and 1.4 billion dollars/year in health care expenses are caused by this high level of intake in Canada. Since 2006, Canada has had a focused and evolving effort to reduce dietary sodium based on actions from Non Governmental Organizations (NGO), and Federal and Provincial/Territorial Government actions. NGOs initiated Canadian sodium reduction programs by developing a policy statement outlining the health issue and calling for governmental, NGO and industry action, developing and disseminating an extensive health care professional education program including resources for patient education, developing a public awareness campaign through extensive media releases and publications in the lay press. The Federal Government responded by striking a Intersectoral Sodium Work Group to develop recommendations on how to implement Canada's dietary reference intake values for dietary sodium and by developing timelines and targets for foods to be reduced in sodium, assessing key research gaps with funding for targeted dietary sodium based research, developing plans for public education and for conducting evaluation of the program to reduce dietary sodium. While food regulation is a Federal Government responsibility Provincial and Territorial governments indicated reducing dietary sodium needed to be a priority. Federal and Provincial Ministers of Health have endorsed a target to reduce the average consumption of sodium to 2300 mg/day by 2016 and the Deputy Ministers of Health have tasked a joint committee to review the recommendations of the Sodium Work Group and report back to them.
Canadian Initiatives to Prevent Hypertension by Reducing Dietary Sodium
Campbell, Norm R. C.; Willis, Kevin J.; L’Abbe, Mary; Strang, Robert; Young, Eric
2011-01-01
Hypertension is the leading risk for premature death in the world. High dietary sodium is an important contributor to increased blood pressure and is strongly associated with other important diseases (e.g., gastric cancer, calcium containing kidney stones, osteoporosis, asthma and obesity). The average dietary sodium intake in Canada is approximately 3400 mg/day. It is estimated that 30% of hypertension, more than 10% of cardiovascular events and 1.4 billion dollars/year in health care expenses are caused by this high level of intake in Canada. Since 2006, Canada has had a focused and evolving effort to reduce dietary sodium based on actions from Non Governmental Organizations (NGO), and Federal and Provincial/Territorial Government actions. NGOs initiated Canadian sodium reduction programs by developing a policy statement outlining the health issue and calling for governmental, NGO and industry action, developing and disseminating an extensive health care professional education program including resources for patient education, developing a public awareness campaign through extensive media releases and publications in the lay press. The Federal Government responded by striking a Intersectoral Sodium Work Group to develop recommendations on how to implement Canada’s dietary reference intake values for dietary sodium and by developing timelines and targets for foods to be reduced in sodium, assessing key research gaps with funding for targeted dietary sodium based research, developing plans for public education and for conducting evaluation of the program to reduce dietary sodium. While food regulation is a Federal Government responsibility Provincial and Territorial governments indicated reducing dietary sodium needed to be a priority. Federal and Provincial Ministers of Health have endorsed a target to reduce the average consumption of sodium to 2300 mg/day by 2016 and the Deputy Ministers of Health have tasked a joint committee to review the recommendations of the Sodium Work Group and report back to them. PMID:22254122
Yu, Peng; Bao, Rui-Ying; Shi, Xiao-Jun; Yang, Wei; Yang, Ming-Bo
2017-01-02
Graphene hydrogel has shown greatly potentials in bone tissue engineering recently, but it is relatively weak in the practical use. Here we report a facile method to synthesize high strength composite graphene hydrogel. Graphene oxide (GO), hydroxyapatite (HA) nanoparticles (NPs) and chitosan (CS) self-assemble into a 3-dimensional hydrogel with the assistance of crosslinking agent genipin (GNP) for CS and reducing agent sodium ascorbate (NaVC) for GO simultaneously. The dense and oriented microstructure of the resulted composite gel endows it with high mechanical strength, high fixing capacity of HA and high porosity. These properties together with the good biocompatibility make the ternary composite gel a promising material for bone tissue engineering. Such a simultaneous crosslinking and reduction strategy can also be applied to produce a variety of 3D graphene-polymer based nanocomposites for biomaterials, energy storage materials and adsorbent materials. Copyright © 2016 Elsevier Ltd. All rights reserved.
Goszczyńska, Agata; Kwiecień, Halina; Fijałkowski, Karol
A series of novel Schiff bases and secondary amines were obtained in good yields, as a result of the reductive amination of alkyl 2-(2-formyl-4-nitrophenoxy)alkanoates with both aniline and 4-methoxyaniline under established mild reaction conditions. Sodium triacetoxyborohydride as well as hydrogen in the presence of palladium on carbon were used as efficient reducing agents of the Schiff bases, in both direct and stepwise reductive amination processes. The Schiff bases, amines, and amine hydrochlorides were designed as potential antibacterial agents, and structure-activity relationship could be established following in vitro assays against Gram-positive and Gram-negative bacteria. The minimal inhibitory concentration and zone of inhibition were also determined. In these tests, some of Schiff bases and secondary amine hydrochlorides showed moderate-to-good activity against Gram-positive bacteria, including S. aureus , M. luteus , and S. mutans .
Kinetics and Mechanisms of Chemical and Biological Agents Release from Biopolymeric Microcapsules.
Vinceković, Marko; Jurić, Slaven; Đermić, Edyta; Topolovec-Pintarić, Snježana
2017-11-08
Kinetics and mechanisms of copper cations and Trichoderma viride spores release from uncoated and chitosan coated alginate microcapsules were investigated. The gelation of a fixed amount of sodium alginate at different concentrations of copper ion solutions resulted in distinct kinetics and release mechanisms. The increase in copper cation concentration promoted, but the presence of the chitosan layer on the microcapsule surface and the increase in microcapsule size reduced the rate of active agent release. Fitting to simple Korsmeyer-Peppas empirical model revealed that the underlying release mechanism (Fickian diffusion or a combination of the diffusion and erosion mechanisms) depends on the copper cation concentration and presence of T. viride spores. The investigation pointed out that the proper selection of formulation variables helps in designing microcapsules with the desirable release of copper ions and T. viride for plant protection and nutrition.
Budhiraja, S; Singh, J
2005-12-01
This study evaluated the anesthetic effects of thiopental sodium, ketamine, and ether with concurrent administration of melatonin. The loss of righting reflex was taken to assess the onset of anesthesia. Melatonin (20 mg/kg, p.o.) potentiated the anesthetic effects of thiopental sodium (20 mg/kg, i.v.) and ketamine (50 mg/kg, i.p.). Melatonin pretreatment caused rapid onset of anesthesia after ketamine and thiopental sodium administration while the duration of action of these agents was prolonged. Melatonin failed to alter anesthetic effects of ether (2 mg/kg by open method) in rats. This study suggests that melatonin modulate mechanisms involved in induction of thiopental sodium and ketamine anesthesia. Copyright 2005 Prous Science. All rights reserved.
Kajwadkar, Ruma; Shin, Jae M; Lin, Guo-Hao; Fenno, J Christopher; Rickard, Alexander H; Kapila, Yvonne L
2017-06-01
Nisin, a broad-spectrum bacteriocin, has recently been highlighted for its biomedical applications. To date, no studies have examined the antimicrobial and antibiofilm properties of high-purity (>95%) nisin (nisin ZP) on Enterococcus faecalis and biofilms formed by this species. We hypothesize that nisin can inhibit E. faecalis and reduce biofilm biomass, and combinations of nisin and sodium hypochlorite (NaOCl) will enhance the antibiofilm properties against E. faecalis biofilms. Using broth cultures, disc diffusion assays, and biofilm assays, we examined the effects of nisin on various E. faecalis growth parameters and biofilm properties (biovolume, thickness, and roughness). Confocal microscopy was used in conjunction with Imaris and Comstat2 software (Kongens Lyngby, Copenhagen, Denmark) to measure and analyze the biofilm properties. Nisin significantly decreased the growth of planktonic E. faecalis dose dependently. The minimum inhibitory concentrations against E. faecalis strains OG-1 and ATCC 29212 were 15 and 50 μg/mL, and the minimum bactericidal concentrations were 150 and 200 μg/mL, respectively. A reduction in biofilm biovolume and thickness was observed for biofilms treated with nisin at ≥10 μg/mL for 10 minutes. In addition, the combination of nisin with low doses of NaOCl enhanced the antibiofilm properties of both antimicrobial agents. Nisin alone or in combination with low concentrations of NaOCl reduces the planktonic growth of E. faecalis and disrupts E. faecalis biofilm structure. Our results suggest that nisin has potential as an adjunctive endodontic therapeutic agent and as an alternative to conventional NaOCl irrigation. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Kim, Nam Hee
2015-01-01
The synergistic antimicrobial effects of phytic acid (PA), a natural extract from rice bran, plus sodium chloride against Escherichia coli O157:H7 were examined. Exposure to NaCl alone at concentrations up to 36% (wt/wt) for 5 min did not reduce bacterial populations. The bactericidal effects of PA alone were much greater than those of other organic acids (acetic, citric, lactic, and malic acids) under the same experimental conditions (P < 0.05). Combining PA and NaCl under conditions that yielded negligible effects when each was used alone led to marked synergistic effects. For example, whereas 0.4% PA or 3 or 4% NaCl alone had little or no effect on cell viability, combining the two completely inactivated both nonadapted and acid-adapted cells, reducing their numbers to unrecoverable levels (>7-log CFU/ml reduction). Flow cytometry confirmed that PA disrupted the cell membrane to a greater extent than did other organic acids, although the cells remained viable. The combination of PA and NaCl induced complete disintegration of the cell membrane. By comparison, none of the other organic acids acted synergistically with NaCl, and neither did NaCl-HCl solutions at the same pH values as the test solutions of PA plus NaCl. These results suggest that PA has great potential as an effective bacterial membrane-permeabilizing agent, and we show that the combination is a promising alternative to conventional chemical disinfectants. These findings provide new insight into the utility of natural compounds as novel antimicrobial agents and increase our understanding of the mechanisms underlying the antibacterial activity of PA. PMID:26637600
Kim, Nam Hee; Rhee, Min Suk
2016-02-15
The synergistic antimicrobial effects of phytic acid (PA), a natural extract from rice bran, plus sodium chloride against Escherichia coli O157:H7 were examined. Exposure to NaCl alone at concentrations up to 36% (wt/wt) for 5 min did not reduce bacterial populations. The bactericidal effects of PA alone were much greater than those of other organic acids (acetic, citric, lactic, and malic acids) under the same experimental conditions (P < 0.05). Combining PA and NaCl under conditions that yielded negligible effects when each was used alone led to marked synergistic effects. For example, whereas 0.4% PA or 3 or 4% NaCl alone had little or no effect on cell viability, combining the two completely inactivated both nonadapted and acid-adapted cells, reducing their numbers to unrecoverable levels (>7-log CFU/ml reduction). Flow cytometry confirmed that PA disrupted the cell membrane to a greater extent than did other organic acids, although the cells remained viable. The combination of PA and NaCl induced complete disintegration of the cell membrane. By comparison, none of the other organic acids acted synergistically with NaCl, and neither did NaCl-HCl solutions at the same pH values as the test solutions of PA plus NaCl. These results suggest that PA has great potential as an effective bacterial membrane-permeabilizing agent, and we show that the combination is a promising alternative to conventional chemical disinfectants. These findings provide new insight into the utility of natural compounds as novel antimicrobial agents and increase our understanding of the mechanisms underlying the antibacterial activity of PA. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Code of Federal Regulations, 2012 CFR
2012-07-01
... latest edition of the NFPA 2001 Standard for Clean Agent Fire Extinguishing Systems, for whichever... Systems.Sodium bicarbonate release in all settings should be targeted so that increased blood pH level... to be in environments protected by Envirogel with sodium bicarbonate additive extinguishing systems...
Code of Federal Regulations, 2013 CFR
2013-07-01
... latest edition of the NFPA 2001 Standard for Clean Agent Fire Extinguishing Systems, for whichever... Systems.Sodium bicarbonate release in all settings should be targeted so that increased blood pH level... to be in environments protected by Envirogel with sodium bicarbonate additive extinguishing systems...
Code of Federal Regulations, 2011 CFR
2011-07-01
... latest edition of the NFPA 2001 Standard for Clean Agent Fire Extinguishing Systems, for whichever... Systems.Sodium bicarbonate release in all settings should be targeted so that increased blood pH level... to be in environments protected by Envirogel with sodium bicarbonate additive extinguishing systems...
Code of Federal Regulations, 2014 CFR
2014-07-01
... latest edition of the NFPA 2001 Standard for Clean Agent Fire Extinguishing Systems, for whichever... Systems.Sodium bicarbonate release in all settings should be targeted so that increased blood pH level... to be in environments protected by Envirogel with sodium bicarbonate additive extinguishing systems...
21 CFR 172.490 - Yellow prussiate of soda.
Code of Federal Regulations, 2010 CFR
2010-04-01
... soda (sodium ferrocyanide decahydrate; Na4Fe(CN)6·10H2O contains a minimum of 99 percent by weight of sodium ferrocyanide decahydrate. (b) The additive is used or intended for use as an anticaking agent in... ferrocyanide. [42 FR 14491, Mar. 15, 1977, as amended at 58 FR 17098, Apr. 1, 1993] ...
21 CFR 172.490 - Yellow prussiate of soda.
Code of Federal Regulations, 2011 CFR
2011-04-01
... soda (sodium ferrocyanide decahydrate; Na4Fe(CN)6·10H2O contains a minimum of 99 percent by weight of sodium ferrocyanide decahydrate. (b) The additive is used or intended for use as an anticaking agent in... ferrocyanide. [42 FR 14491, Mar. 15, 1977, as amended at 58 FR 17098, Apr. 1, 1993] ...
Raza, Muhammad Akram; Kanwal, Zakia; Rauf, Anum; Sabri, Anjum Nasim; Riaz, Saira; Naseem, Shahzad
2016-01-01
Silver nanoparticles (AgNPs) of different shapes and sizes were prepared by solution-based chemical reduction routes. Silver nitrate was used as a precursor, tri-sodium citrate (TSC) and sodium borohydride as reducing agents, while polyvinylpyrrolidone (PVP) was used as a stabilizing agent. The morphology, size, and structural properties of obtained nanoparticles were characterized by scanning electron microscopy (SEM), UV-visible spectroscopy (UV-VIS), and X-ray diffraction (XRD) techniques. Spherical AgNPs, as depicted by SEM, were found to have diameters in the range of 15 to 90 nm while lengths of the edges of the triangular particles were about 150 nm. The characteristic surface plasmon resonance (SPR) peaks of different spherical silver colloids occurring in the wavelength range of 397 to 504 nm, whereas triangular particles showed two peaks, first at 392 nm and second at 789 nm as measured by UV-VIS. The XRD spectra of the prepared samples indicated the face-centered cubic crystalline structure of metallic AgNPs. The in vitro antibacterial properties of all synthesized AgNPs against two types of Gram-negative bacteria, Pseudomonas aeruginosa and Escherichia coli were examined by Kirby–Bauer disk diffusion susceptibility method. It was noticed that the smallest-sized spherical AgNPs demonstrated a better antibacterial activity against both bacterial strains as compared to the triangular and larger spherical shaped AgNPs. PMID:28335201
Worm-like micelles of CTAB and sodium salicylate under turbulent flow.
Rodrigues, Roberta K; da Silva, Marcelo A; Sabadini, Edvaldo
2008-12-16
Polymers with high molecular weight and worm-like micelles are drag-reducing agents under turbulent flow. However, in contrast to the polymeric systems, the worm-like micelles do not undergo mechanical degradation due to the turbulence, because their macromolecular structure can be spontaneously restored. This very favorable property, together with their drag-reduction capability, offer the possibility to use such worm-like micelles in heating and cooling systems to recirculate water while expending less energy. The formation, growth, and stability of worm-like micelles formed by cetyltrimethylammonium bromide (CTAB) and sodium salicylate (NaSal) were investigated using the self-fluorescence of salicylate ions and the ability of the giant micelles to promote hydrodynamic drag reduction under turbulent flow. The turbulence in solutions of CTAB-Sal was produced within the double-gap cell of a rotational rheometer. Detailed diagrams were obtained for different ratios of Sal and CTAB, which revealed transitions associated with the thermal stability of giant micelles under turbulent flow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Chengzhou; Shi, Qiurong; Fu, Shaofang
Delicately engineering the well-defined noble metal aerogels with favorable structural and compositional features is of vital importance for wide applications. Here, we reported one-pot and facile method for synthesizing core-shell PdPb@Pd hydrogels/aerogels with multiply-twinned grains and ordered intermetallic phase using sodium hypophosphite as a multifunctional reducing agent. Due to the accelerated gelation kinetics induced by increased reaction temperature and specific function of sodium hypophosphite, the formation of hydrogels can be completed within 4 hrs, far faster than the previous reports. Owe to their unique porous structure and favorable geometric and electronic effects, the optimized PdPb@Pd aerogels exhibit enhanced electrochemical performancemore » towards ethylene glycol oxidation with a mass activity of 5.8 times higher than Pd black.Core–shell PdPb@Pd aerogels with multiply-twinned grains and an ordered intermetallic phase was synthesized, which exhibited good electrocatalytic activity towards ethanol oxidation.« less
Triblock copolymer-mediated synthesis of catalytically active gold nanostructures
NASA Astrophysics Data System (ADS)
Santos, Douglas C.; de Souza, Viviane C.; Vasconcelos, Diego A.; Andrade, George R. S.; Gimenez, Iara F.; Teixeira, Zaine
2018-04-01
The design of nanostructures based on poly(ethylene oxide)-poly(propylene)-poly(ethylene oxide) (PEO-PPO-PEO) and metal nanoparticles is becoming an important research topic due to their multiple functionalities in different fields, including nanomedicine and catalysis. In this work, water-soluble gold nanoparticles have been prepared through a green aqueous synthesis method using Pluronic F127 as both reducing and stabilizing agents. The size dependence (varying from 2 to 70 nm) and stability of gold nanoparticles were systematically studied by varying some parameters of synthesis, which were the polymer concentration, temperature, and exposure to UV-A light, being monitored by UV-Vis spectroscopy and TEM. Also, an elaborated study regarding to the kinetic of formation (nucleation and growth) was presented. Finally, the as-prepared Pluronic-capped gold nanoparticles have shown excellent catalytic activity towards the reduction of 4-nitrophenol to 4-aminophenol with sodium borohydride, in which a higher catalytic performance was exhibited when compared with gold nanoparticles prepared by classical reduction method using sodium citrate. [Figure not available: see fulltext.
Inhibition of cyclooxygenase-independent platelet aggregation by sodium salicylate.
Violi, F; Alessandri, C; Praticò, D; Guzzo, A; Ghiselli, A; Balsano, F
1989-06-15
The effect of acetylsalicylic acid (ASA) on platelet aggregation (PA) and thromboxane A2 (TxA2) formation was investigated in vitro and ex vivo after 1 g or 300 mg ASA administration to healthy subjects. 50-100 microM ASA inhibited PA by single aggregating agent such as platelet aggregating factor (PAF) or epinephrine and reduced to less than or equal to 5% of control platelet TxB2 formation, but did not influence PA by epinephrine plus PAF. The latter was inhibited by increasing ASA concentration. In samples incubated with 100 microM ASA and stimulated with epinephrine plus PAF, PA could be inhibited by the addition of 100-300 microM sodium salicylate. After 300 mg-1 g ASA administration to healthy subjects, the inhibition of PA by epinephrine plus PAF was more marked by highest doses of ASA. This study suggests that aspirin inhibits PA with a cyclooxygenase-independent mechanism; this effect is mediated, at least in vitro, by salicylic acid.
Heise, Tim; Jordan, Jens; Wanner, Christoph; Heer, Martina; Macha, Sreeraj; Mattheus, Michaela; Lund, Søren S; Woerle, Hans J; Broedl, Uli C
2016-10-01
The goal of this study was to investigate the pharmacodynamic effects of co-administration of empagliflozin, a sodium glucose cotransporter 2 inhibitor, with diuretic agents. In a randomized, open-label cross-over study, 22 patients with type 2 diabetes mellitus received empagliflozin 25 mg for 5 days and either hydrochlorothiazide 25 mg for 4 days followed by hydrochlorothiazide 25 mg plus empagliflozin 25 mg for 5 days, or torasemide 5 mg for 4 days followed by torasemide 5 mg plus empagliflozin 25 mg for 5 days; 20 completed treatment. Food, fluid, and sodium intake were standardized for 3 days before and during treatment. At baseline, the median age of the treated patients was 56 years (range, 40-65 years), body mass index was 26.8 kg/m 2 (range, 20.1-34.4 kg/m 2 ), fasting plasma glucose was 8.6 mmol/L (range, 6.0-12.9 mmol/L), and glycosylated hemoglobin level was 7.6% (range, 7%-10%). Empagliflozin significantly increased 24-hour urinary glucose excretion and reduced fasting serum glucose levels. These effects were maintained after co-administration with either diuretic. Urinary sodium excretion did not significantly change with empagliflozin or diuretic administration alone, but seemed to increase compared with either diuretic alone when empagliflozin was co-administered with either diuretic. Plasma renin and serum aldosterone levels were unaltered with empagliflozin or torasemide alone, but tended to increase with hydrochlorothiazide alone, and tended to increase when empagliflozin was co-administered with a diuretic compared with either diuretic alone. Urinary volume did not increase with empagliflozin or diuretics alone, but increased when empagliflozin was co-administered with either diuretic. Empagliflozin alone for 5 days increased urinary glucose excretion but did not seem to have a relevant impact on urine volume or electrolytes. When empagliflozin was co-administered with a diuretic agent, urinary glucose excretion remained increased, and the renin-angiotensin system was activated. Clinicaltrials.gov identifier: NCT01276288. Copyright © 2016 Elsevier HS Journals, Inc. All rights reserved.
Jalili, M; Jinap, S; Son, R
2011-04-01
The effect of 18 different chemicals, which included acidic compounds (sulfuric acid, chloridric acid, phosphoric acid, benzoic acid, citric acid, acetic acid), alkaline compounds (ammonia, sodium bicarbonate, sodium hydroxide, potassium hydroxide, calcium hydroxide), salts (acetate ammonium, sodium bisulfite, sodium hydrosulfite, sodium chloride, sodium sulfate) and oxidising agents (hydrogen peroxide, sodium hypochlorite), on the reduction of aflatoxins B(1), B(2), G(1) and G(2) and ochratoxin A (OTA) was investigated in black and white pepper. OTA and aflatoxins were determined using HPLC after immunoaffinity column clean-up. Almost all of the applied chemicals showed a significant degree of reduction on mycotoxins (p < 0.05). The lowest and highest reduction of aflatoxin B(1), which is the most dangerous aflatoxin, was 20.5% ± 2.7% using benzoic acid and 54.5% ± 2.7% using sodium hydroxide. There was no significant difference between black and white peppers (p < 0.05).
Akchata, Suman; Lavanya, K; Shivanand, Bhushan
2017-01-01
Decontamination of various working surfaces with sodium pertechnetate minor spillage is essential for maintaining good radiation safety practices as well as for regulatory compliance. To observe the influences of decontaminating agents and swipe materials on different type of surfaces used in nuclear medicine laboratory work area wet spilled with 99m-technetium (99mTc) sodium pertechnetate. Lab-simulated working surface materials. Experimental study design. Direct decontamination method on dust-free lab simulated new working surfaces [stainless steel, polyvinyl chloride (PVC), Perspex, resin] using four decontaminating agents [tap water, soap water (SW), Radiacwash, and spirit] with four different swipe material [cotton, tissue paper (TP), Whatman paper (WP), adsorbent sheet (AS)] was taken 10 samples (n = 10) for each group. Parametric test two-way analysis of variance is used with significance level of 0.005, was used to evaluate statistical differences between different group of decontaminating agent and swipe material, and the results are expressed in mean ± SD. Decontamination factor is calculated after five cleaning for each group. A total of 160 samples result calculated using four decontaminating agent (tap water, SW, Radiacwash, and spirit), four swipe material (cotton, TP, WP, and AS) for commonly used surface (stainless steel, PVC, Perspex, resin) using direct method by 10 samples (n = 10) for each group. Tap water is the best decontaminating agent compared with SW, Radiac wash and spirit for the laboratory simulated stainless steel, PVC, and Perspex surface material, whereas in case of resin surface material, SW decontaminating agent is showing better effectiveness. Cotton is the best swipe material compared to WP-1, AS and TP for the stainless steel, PVC, Perspex, and resin laboratory simulated surface materials. Perspex and stainless steel are the most suitable and recommended laboratory surface material compared to PVC and resin in nuclear medicine. Radiacwash may show better result for 99mTc labelled product and other radionuclide contamination on the laboratory working surface area.
USDA-ARS?s Scientific Manuscript database
About 2 in 3 U.S. adults have pre-hypertension or hypertension increasing their risk of cardiovascular disease. Reducing sodium intake can decrease blood pressure and prevent hypertension. About 9 in 10 Americans consume excess sodium, >2300 mg daily. Voluntary sodium reduction standards for commerc...
Sodium intake among persons aged >=2 years – United States, 2013-2014
USDA-ARS?s Scientific Manuscript database
High sodium consumption can increase hypertension, a major risk factor for cardiovascular diseases. Reducing sodium intake can reduce blood pressure, and population-wide reductions of 40% over 10 years are projected to save at least 280,000 lives. Average U.S. sodium intake remains in excess of He...
McCook, John P; Dorogi, Peter L; Vasily, David B; Cefalo, Dustin R
2015-01-01
Background Inhibitors of hyaluronidase are potent agents that maintain hyaluronic acid homeostasis and may serve as anti-aging, anti-inflammatory, and anti-microbial agents. Sodium copper chlorophyllin complex is being used therapeutically as a component in anti-aging cosmeceuticals, and has been shown to have anti-hyaluronidase activity. In this study we evaluated various commercial lots of sodium copper chlorophyllin complex to identify the primary small molecule constituents, and to test various sodium copper chlorophyllin complexes and their small molecule analog compounds for hyaluronidase inhibitory activity in vitro. Ascorbate analogs were tested in combination with copper chlorophyllin complexes for potential additive or synergistic activity. Materials and methods For hyaluronidase activity assays, dilutions of test materials were evaluated for hydrolytic activity of hyaluronidase by precipitation of non-digested hyaluronate by measuring related turbidity at 595 nm. High-performance liquid chromatography and mass spectroscopy was used to analyze and identify the primary small molecule constituents in various old and new commercial lots of sodium copper chlorophyllin complex. Results The most active small molecule component of sodium copper chlorophyllin complex was disodium copper isochlorin e4, followed by oxidized disodium copper isochlorin e4. Sodium copper chlorophyllin complex and copper isochlorin e4 disodium salt had hyaluronidase inhibitory activity down to 10 µg/mL. The oxidized form of copper isochlorin e4 disodium salt had substantial hyaluronidase inhibitory activity at 100 µg/mL but not at 10 µg/mL. Ascorbate derivatives did not enhance the hyaluronidase inhibitory activity of sodium copper chlorophyllin. Copper isochlorin e4 analogs were always the dominant components of the small molecule content of the commercial lots tested; oxidized copper isochlorin e4 was found in increased concentrations in older compared to newer lots tested. Conclusion These results support the concept of using the hyaluronidase inhibitory activity of sodium copper chlorophyllin complex to increase the hyaluronic acid level of the dermal extracellular matrix for the improvement of the appearance of aging facial skin. PMID:26300653
McCook, John P; Dorogi, Peter L; Vasily, David B; Cefalo, Dustin R
2015-01-01
Inhibitors of hyaluronidase are potent agents that maintain hyaluronic acid homeostasis and may serve as anti-aging, anti-inflammatory, and anti-microbial agents. Sodium copper chlorophyllin complex is being used therapeutically as a component in anti-aging cosmeceuticals, and has been shown to have anti-hyaluronidase activity. In this study we evaluated various commercial lots of sodium copper chlorophyllin complex to identify the primary small molecule constituents, and to test various sodium copper chlorophyllin complexes and their small molecule analog compounds for hyaluronidase inhibitory activity in vitro. Ascorbate analogs were tested in combination with copper chlorophyllin complexes for potential additive or synergistic activity. For hyaluronidase activity assays, dilutions of test materials were evaluated for hydrolytic activity of hyaluronidase by precipitation of non-digested hyaluronate by measuring related turbidity at 595 nm. High-performance liquid chromatography and mass spectroscopy was used to analyze and identify the primary small molecule constituents in various old and new commercial lots of sodium copper chlorophyllin complex. The most active small molecule component of sodium copper chlorophyllin complex was disodium copper isochlorin e4, followed by oxidized disodium copper isochlorin e4. Sodium copper chlorophyllin complex and copper isochlorin e4 disodium salt had hyaluronidase inhibitory activity down to 10 µg/mL. The oxidized form of copper isochlorin e4 disodium salt had substantial hyaluronidase inhibitory activity at 100 µg/mL but not at 10 µg/mL. Ascorbate derivatives did not enhance the hyaluronidase inhibitory activity of sodium copper chlorophyllin. Copper isochlorin e4 analogs were always the dominant components of the small molecule content of the commercial lots tested; oxidized copper isochlorin e4 was found in increased concentrations in older compared to newer lots tested. These results support the concept of using the hyaluronidase inhibitory activity of sodium copper chlorophyllin complex to increase the hyaluronic acid level of the dermal extracellular matrix for the improvement of the appearance of aging facial skin.
Targeted Gold Nanoparticle Contrast Agent for Digital Breast Tomosynthesis and Computed Tomography
2012-03-01
bromopropionic acid (10 millimolar) was dissolved in acetonitrile (100 mL) , after which sodium azide (50 millimolar) was added to the solution. The mixture was...Transformation of the ionic X-ray contrast agent diatrizoate and related triiodinated benzoates by Trametes versicolor. Appl Environ Microbiol
Pesticide Spill Prevention and Management
2009-08-01
Gentrol IGR) Strong oxidizers. Imidacloprid Oxidizing agents. Lambda-cyhalothrin Oxidizing agents, alkalis, calcium hypochlorite. Malathion... Imidacloprid Sodium salt of diphacinone Methyl Azoxystrobin Use Hard Water Detergent for: Diquat Aluminum phosphide – NOTE: See special...Hydroprene, 9.0%, emulsifiable concentrate (Gentrol IGR) Imidacloprid (Maxforce Granular Fly Bait) Imidacloprid (Maxforce Fly Spot Bait
Influence of the bleaching interval on the luminosity of long-term discolored enamel-dentin discs.
Zaugg, Lucia K; Lenherr, Patrik; Zaugg, Judith B; Weiger, Roland; Krastl, Gabriel
2016-04-01
The aim of this study is to investigate the influence of changing the sodium perborate-tetrahydrate (PBS-4) at a 4-day interval versus no change after 16 days of internal bleaching. Two hundred and ten bovine enamel-dentin discs were discolored for 3.5 years with 14 different endodontic materials. All groups with a discoloring index of ∆E (mean) ≥ 5.5 were included in the present investigation: ApexCal (APCA), MTA white + blood (WMTA+BL), Portland cement + blood (PC+BL), blood (BL), MTA gray (GMTA), MTA gray + blood (GMTA+BL), Ledermix (LED), and triple antibiotic paste containing minocycline (3Mix). Fourteen specimens of each group were randomly assigned into two treatment groups: (1) no change of the PBS-4 (n = 7); (2) change of the PBS-4 every 4 days (n = 7). Color measurements were taken at 10 different time intervals and the L*a*b* values were recorded with a spectrophotometer (VITA Easyshade® compact). In the group 3Mix, significantly better results were achieved by changing the bleaching agent every 4 days (P = 0.0049; q = 0.04), while the group WMTA+BL indicated better results by no change of the bleaching agent (P = 0.0222, q = 0.09). All remaining groups showed no statistical difference between the two treatment procedures. Moderate discolorations can be successfully treated without changing the bleaching agent over a period of 16 days. Changing the sodium perborate-tetrahydrate every 4 days is preferred in case of severe discolored enamel-dentin discs only. This approach may offer a reduced number of clinical appointments and a secondary cost reduction to the patient.
Stockwell, Michelle Pirrie; Clulow, John; Mahony, Michael Joseph
2012-01-01
The amphibian chytrid fungus Batrachochytrium dendrobatidis is a recently emerged pathogen that causes the infectious disease chytridiomycosis and has been implicated as a contributing factor in the global amphibian decline. Since its discovery, research has been focused on developing various methods of mitigating the impact of chytridiomycosis on amphibian hosts but little attention has been given to the role of antifungal agents that could be added to the host's environment. Sodium chloride is a known antifungal agent used routinely in the aquaculture industry and this study investigates its potential for use as a disease management tool in amphibian conservation. The effect of 0-5 ppt NaCl on the growth, motility and survival of the chytrid fungus when grown in culture media and its effect on the growth, infection load and survivorship of infected Peron's tree frogs (Litoria peronii) in captivity, was investigated. The results reveal that these concentrations do not negatively affect the survival of the host or the pathogen. However, concentrations greater than 3 ppt significantly reduced the growth and motility of the chytrid fungus compared to 0 ppt. Concentrations of 1-4 ppt NaCl were also associated with significantly lower host infection loads while infected hosts exposed to 3 and 4 ppt NaCl were found to have significantly higher survival rates. These results support the potential for NaCl to be used as an environmentally distributed antifungal agent for the prevention of chytridiomycosis in susceptible amphibian hosts. However, further research is required to identify any negative effects of salt exposure on both target and non-target organisms prior to implementation.
Stockwell, Michelle Pirrie; Clulow, John; Mahony, Michael Joseph
2012-01-01
The amphibian chytrid fungus Batrachochytrium dendrobatidis is a recently emerged pathogen that causes the infectious disease chytridiomycosis and has been implicated as a contributing factor in the global amphibian decline. Since its discovery, research has been focused on developing various methods of mitigating the impact of chytridiomycosis on amphibian hosts but little attention has been given to the role of antifungal agents that could be added to the host's environment. Sodium chloride is a known antifungal agent used routinely in the aquaculture industry and this study investigates its potential for use as a disease management tool in amphibian conservation. The effect of 0–5 ppt NaCl on the growth, motility and survival of the chytrid fungus when grown in culture media and its effect on the growth, infection load and survivorship of infected Peron's tree frogs (Litoria peronii) in captivity, was investigated. The results reveal that these concentrations do not negatively affect the survival of the host or the pathogen. However, concentrations greater than 3 ppt significantly reduced the growth and motility of the chytrid fungus compared to 0 ppt. Concentrations of 1–4 ppt NaCl were also associated with significantly lower host infection loads while infected hosts exposed to 3 and 4 ppt NaCl were found to have significantly higher survival rates. These results support the potential for NaCl to be used as an environmentally distributed antifungal agent for the prevention of chytridiomycosis in susceptible amphibian hosts. However, further research is required to identify any negative effects of salt exposure on both target and non-target organisms prior to implementation. PMID:22590639
Formation of noble metal nanocrystals in the presence of biomolecules
NASA Astrophysics Data System (ADS)
Burt, Justin Lockheart
One of the most promising, yet least studied routes for producing biocompatible nanostructures involves synthesis in the presence of biomolecules. I hypothesized that globular proteins could provide a suitable framework to regulate the formation of noble metal nanocrystals. As proof of concept, I designed two novel synthesis protocols utilizing bovine serum albumin (BSA) protein to regulate the formation of gold nanocrystals. In the first case, the standard protocol for polyol reduction was modified by replacing ethylene glycol with glycerin, replacing synthetic polymers with BSA as protecting agent, and decreasing the reaction temperature. In the second case, the Brust-Schiffrin two-phase reduction was modified by replacing alkylthiols with BSA as protecting agent, which facilitated a strictly aqueous phase synthesis. Due to superior product yield and rapid reduction at room temperature, the aqueous protocol became the foundation for subsequent studies. I extended this approach to produce well-dispersed ˜2nm silver, gold, and platinum nanocrystals. Having demonstrated the feasibility of BSA-functionalized nanocrystals, some potential uses were explored. BSA-functionalized silver nanocrystals were employed in a broader study on the interaction of silver nanocrystals with HIV. BSA-functionalized gold nanocrystals were utilized for in vivo dosage of a contrast enhancing agent to bacteria. BSA-functionalized platinum nanocrystals were studied as hydrogenation catalysts. Since many intriguing uses for protein-functionalized nanocrystals involve incorporation into biosystems, I sought to enhance biocompatibility by using ascorbic acid as reducing agent. Initial experiments revealed elongated and branched nanocrystals. Such structures were not observed in previous synthesis protocols with BSA, so I hypothesized ascorbic acid was driving their formation. To test my assertion, I reduced ionic gold in an aqueous solution of ascorbic acid, thereby discovering a new method for producing multiply-branched gold nanocrystals. Two conditions were necessary to achieve multiply-branched structures: rapid kinetics, and strongly acidic pH. By exploiting ascorbic acid complexation with BSA to moderate reaction kinetics, and using sodium hydroxide to provide basic pH, the two conditions for branching were negated, and well-dispersed ˜2.5nm gold nanocrystals were obtained. This protocol represents a novel, environmentally benign approach to producing biocompatible nanocrystals, relying on proteins, ascorbic acid, sodium hydroxide, and water, all at ambient temperature.
Nadagouda, Mallikarjuna N.; Varma, Rajender S.
2008-01-01
Formore » the first time, we report green chemistry approach using vitamin B 2 in the synthesis of silver (Ag) and palladium (Pd), nanospheres, nanowires, and nanorods at room temperature without using any harmful reducing agents, such as sodium borohydride ( NaBH 4 ) or hydroxylamine hydrochloride and any special capping or dispersing agent. Vitamin B 2 was used as reducing agent as well as capping agent due to its high-water solubility, biodegradability, and low-toxicity compared with other reducing agents. The average particle size of nanoprticle was found to be Ag (average size 6.1 ± 0.1 nm) and Pd (average size 4.1 ± 0.1 nm) nanoparticles in ethylene glycol and Ag (average size 5.9 ± 0.1 nm, and average size 6.1 ± 0.1) nanoparticles in acetic acid and NMP, respectively. The formation of noble multiple shape nanostructures and their self assembly were dependent on the solvent employed for the preparation. When water was used as solvent media, Ag and Pd nanoparticles started to self-assemble into rod-like structures and in isopropanol Ag and Pd nanoparticles yielded wire-like structures with a thickness in the range of 10 to 20 nm and several hundred microns in length. In acetone and acetonitrile medium, the Ag and Pd nanoparticles are self-assembled into a regular pattern making nanorod structures with thicknesses ranging from 100 to 200 nm and lengths of a few microns. The so-synthesized nanostructures were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray (EDX) analysis, and UV spectroscopy. The ensuing Ag and Pd nanoparticles catalyzed the reactions of aniline and pyrrole to generate polyaniline and polypyrrole nanofibers and may find various technological and biological applications. This single-step greener approach is general and can be extended to other noble metals and transition metal oxides.« less
Sodium benzoate for treatment of hepatic encephalopathy.
Misel, Michael L; Gish, Robert G; Patton, Heather; Mendler, Michel
2013-04-01
Hepatic encephalopathy (HE) is a serious but usually reversible neuropsychiatric complication of cirrhosis, inborn errors of metabolism involving disorders of the urea cycle, and noncirrhotic portosystemic shunting that most commonly arises from a transjugular intrahepatic portosystemic shunting procedure. Symptoms can include alterations in cognitive function, neuromuscular activity, and consciousness, as well as sleep disorders and mood changes. HE is associated with significant morbidity and mortality and, if not properly treated, will lead to increased hospital admissions and healthcare costs. Although the standard therapies of lactulose and rifaximin (Xifaxan, Salix) are effective for most patients, these drugs may be associated with significant adverse effects and expense and, in some patients, inadequate therapeutic response. A need for adjunctive therapies exists. Drugs that target serum and tissue ammonia metabolism and elimination may be important adjuncts to drugs that reduce ammonia production and absorption from the gastrointestinal tract for patients with severe or persistent overt symptoms of HE. Sodium benzoate is an inexpensive adjunctive agent that can be used in addition to lactulose and rifaximin and may provide an option for some select patients with refractory HE who have failed to respond to standard therapies or who cannot afford them. Although sodium benzoate does not share the same adverse effect profiles of standard therapies for HE, its efficacy has not been well established. Given the significant dose-dependent sodium content of this therapy, it may not be appropriate for patients with significant fluid retention or kidney dysfunction.
Sodium Benzoate for Treatment of Hepatic Encephalopathy
Misel, Michael L.; Patton, Heather; Mendler, Michel
2013-01-01
Hepatic encephalopathy (HE) is a serious but usually reversible neuropsychiatric complication of cirrhosis, inborn errors of metabolism involving disorders of the urea cycle, and noncirrhotic portosystemic shunting that most commonly arises from a transjugular intrahepatic portosystemic shunting procedure. Symptoms can include alterations in cognitive function, neuromuscular activity, and consciousness, as well as sleep disorders and mood changes. HE is associated with significant morbidity and mortality and, if not properly treated, will lead to increased hospital admissions and healthcare costs. Although the standard therapies of lactulose and rifaximin (Xifaxan, Salix) are effective for most patients, these drugs may be associated with significant adverse effects and expense and, in some patients, inadequate therapeutic response. A need for adjunctive therapies exists. Drugs that target serum and tissue ammonia metabolism and elimination may be important adjuncts to drugs that reduce ammonia production and absorption from the gastrointestinal tract for patients with severe or persistent overt symptoms of HE. Sodium benzoate is an inexpensive adjunctive agent that can be used in addition to lactulose and rifaximin and may provide an option for some select patients with refractory HE who have failed to respond to standard therapies or who cannot afford them. Although sodium benzoate does not share the same adverse effect profiles of standard therapies for HE, its efficacy has not been well established. Given the significant dose-dependent sodium content of this therapy, it may not be appropriate for patients with significant fluid retention or kidney dysfunction. PMID:24711766
Radioprotection by metals: Selenium
NASA Astrophysics Data System (ADS)
Weiss, J. F.; Srinivasan, V.; Kumar, K. S.; Landauer, M. R.
The need exists for compounds that will protect individuals from high-dose acute radiation exposure in space and for agents that might be less protective but less toxic and longer acting. Metals and metal derivatives provide a small degree of radioprotection (dose reduction factor <= 1.2 for animal survival after whole-body irradiation). Emphasis is placed here on the radioprotective potential of selenium (Se). Both the inorganic salt, sodium selenite, and the organic Se compound, selenomethionine, enhance the survival of irradiated mice (60Co, 0.2 Gy/min) when injected IP either before (-24 hr and -1 hr) or shortly after (+15 min) radiation exposure. When administered at equitoxic doses (one-fourth LD10; selenomethionine = 4.0 mg/kg Se, sodium selenite = 0.8 mg/kg Se), both drugs enhanced the 30-day survival of mice irradiated at 9 Gy. Survival after 10-Gy exposure was significantly increased only after selenomethionine treatment. An advantage of selenomethionine is lower lethal and behavioral toxicity (locomotor activity depression) compared to sodium selenite, when they are administered at equivalent doses of Se. Sodium selenite administered in combination with WR-2721, S-2-(3-aminopropylamino)ethylphosphorothioic acid, enhances the radioprotective effect and reduces the lethal toxicity, but not the behavioral toxicity, of WR-2721. Other studies on radioprotection and protection against chemical carcinogens by different forms of Se are reviewed. As additional animal data and results from human chemoprevention trials become available, consideration also can be given to prolonged administration of Se compounds for protection against long-term radiation effects in space.
Sodium nitrate containing mixture for producing ceramic-glass-ceramic seal by microwave heating
Blake, R.D.; Meek, T.T.
1984-10-10
A mixture for, and method of using such a mixture, for producing a ceramic-glass-ceramic seal by the use of microwave energy are disclosed, wherein the mixture comprises a glass sealing material, a coupling agent, and an oxidizer. The seal produced exhibits greater strength due to its different microstructure. Sodium nitrate is the most preferred oxidizer.
Voltage-gated sodium channel as a target for metastatic risk reduction with re-purposed drugs
Koltai, Tomas
2015-01-01
Objective: To determine the exact role of sodium channel proteins in migration, invasion and metastasis and understand the possible anti-invasion and anti-metastatic activity of repurposed drugs with voltage gated sodium channel blocking properties. Material and methods: A review of the published medical literature was performed searching for pharmaceuticals used in daily practice, with inhibitory activity on voltage gated sodium channels. For every drug found, the literature was reviewed in order to define if it may act against cancer cells as an anti-invasion and anti-metastatic agent and if it was tested with this purpose in the experimental and clinical settings. Results: The following pharmaceuticals that fulfill the above mentioned effects, were found: phenytoin, carbamazepine, valproate, lamotrigine, ranolazine, resveratrol, ropivacaine, lidocaine, mexiletine, flunarizine, and riluzole. Each of them are independently described and analyzed. Conclusions: The above mentioned pharmaceuticals have shown anti-metastatic and anti-invasion activity and many of them deserve to be tested in well-planned clinical trials as adjunct therapies for solid tumors and as anti-metastatic agents. Antiepileptic drugs like phenytoin, carbamazepine and valproate and the vasodilator flunarizine emerged as particularly useful for anti-metastatic purposes. PMID:27408684
Crippa, José Alexandre; Hallak, Jaime Eduardo Cecílio; Abílio, Vanessa Costhek; de Lacerda, Acioly Luiz Tavares; Zuardi, Antonio Waldo
2015-01-01
Since most patients with schizophrenia do not respond properly to treatment, scientific effort has been driven to the development of new compounds acting on pharmacological targets beyond the dopaminergic system. Therefore, the aim is to review basic and clinical research findings from studies evaluating the effects of cannabidiol (CBD), an inhibitor of the reuptake and metabolism of anandamide and several other effects on nervous system, and sodium nitroprusside, a nitric oxide donor, on the prevention and treatment of psychosis. Animal and human research supports that CBD and sodium nitroprusside might be effective in the prevention and treatment of psychosis in general and especially in schizophrenia. The evidence available to date shows that CBD and sodium nitroprusside act in pathways associated with psychotic symptoms and that they may be important agents in the management of prodromal psychotic states and psychosis. This underscores the relevance of further research on the effects of these agents and others that mediate the activity of the cannabinoid system and of nitric oxide, as well as comparative studies of their antipsychotic effects and those of other antipsychotic drugs currently used to treat schizophrenia.
da Silva, Ligia V Antonia; Prinyawiwatkul, Witoon; King, Joan M; No, Hong Kyoon; Bankston, Joseph D; Ge, Beilei
2008-12-01
The microbial safety and quality of smoked blue catfish (Ictalurus furcatus) steaks treated with antimicrobials and antioxidants were examined during 6-week ambient storage. Five pre-smoking soaking treatments were applied: 25% NaCl and 1% ascorbic acid for 30 min or 1h, 3% sodium lactate with or without 5% rosemary extract for 30 min, and 5% sorbic acid alone for 30 min. After smoking, cooled catfish steaks were packed and analyzed at 0, 2, 4, and 6 weeks of ambient storage. Neither Listeria nor Salmonella was recovered from the smoked catfish steaks. Significant reductions (P<0.05) in total plate counts were observed in all treated samples, with those treated with 3% sodium lactate carrying the lowest microbial load. The rosemary extract-treated samples were the most stable against oxidation. All treated smoked catfish steaks had water activities less than 0.85; however, neither pH nor water activity changed significantly within each treatment group during storage (P> or 0.05). In conclusion, smoking/cooking effectively reduced microbial populations, and the use of antimicrobial agents and antioxidants, particularly 3% sodium lactate, could aid the control of microbial safety during storage, resulting in safe products for up to 6 weeks without refrigeration.
Jimenez, Veronica; Docampo, Roberto
2015-01-01
Summary We have identified a phosphate transporter (TcPho91) localized to the bladder of the contractile vacuole complex (CVC) of Trypanosoma cruzi, the etiologic agent of Chagas disease. TcPho91 has 12 transmembrane domains, an N-terminal regulatory SPX domain and an anion permease domain. Functional expression in Xenopus laevis oocytes followed by two-electrode voltage clamp showed that TcPho91 is a low affinity transporter with a Km for Pi in the millimolar range, and sodium-dependency. Epimastigotes overexpressing TcPho91-GFP have significantly higher levels of pyrophosphate (PPi) and short chain polyphosphate (polyP), suggesting accumulation of Pi in these cells. Moreover, when overexpressing parasites were maintained in a medium with low Pi, they grew at higher rates than control parasites. Only one allele of TcPho91 in the CL strain encodes for the complete open reading frame, while the other one is truncated encoding for only the N-terminal domain. Taking advantage of this characteristic, knockdown experiments were performed resulting in cells with reduced growth rate as well as a reduction in PPi and short-chain polyP levels. Our results indicate that TcPho91 is a phosphate sodium symporter involved in Pi homeostasis in T. cruzi. PMID:26031800
Biogenic synthesis of metallic nanoparticles and prospects toward green chemistry.
Adil, Syed Farooq; Assal, Mohamed E; Khan, Mujeeb; Al-Warthan, Abdulrahman; Siddiqui, Mohammed Rafiq H; Liz-Marzán, Luis M
2015-06-07
The immense importance of nanoparticles and their applications is a strong motivation for exploring new synthetic techniques. However, due to strict regulations that manage the potential environmental impacts greener alternatives for conventional synthesis are the focus of intense research. In the scope of this perspective, a concise discussion about the use of green reducing and stabilizing agents toward the preparation of metal nanoparticles is presented. Reports on the synthesis of noble metal nanoparticles using plant extracts, ascorbic acid and sodium citrate as green reagents are summarized and discussed, pointing toward an urgent need of understanding the mechanistic aspects of the involved reactions.
Vattimo, Maria deFátima Fernandes; dos Santos, Juliana Guareschi
2013-06-01
Radiological iodinated contrasts (IC) agents cause acute kidney injury (AKI). To evaluate the renoprotective effect of sodium bicarbonate (Bic) on renal function (creatinine clearance [Clcr], Jaffé, and Clcr mLmin -1 x100 g-1) and the oxidative profile (peroxide excretion, urinary peroxides, urinary malondialdehyde, FOX-2 expression, and thiobarbituric acid reactive substance [TBARS; nmol/mg Cr]) in rats treated with an IC agent. Adult male Wistar rats weighing 250-300 g were treated once daily for 5 days with one of the following treatments: saline (0.9%, 3 mL.kg-1xday-1 intraperitoneally [i.p.]), IC agent (sodium and meglumine ioxitalamate, 3 mL/kg, i.p.), Bic + Saline (3-mL/kg Bic, i.p., 1 h before and after saline treatment), and Bic + IC (3-ml/kg Bic, i.p., 1 h before and after the IC treatment). The IC agent induced AKI, and the antioxidant renoprotective effect of Bic was confirmed (Clcr/TBARS/urinary peroxide: saline group, 0.59+/- 0.03/0.11 +/-0.02/1.29+/- 0.24; Bic+Saline group, 0.58 +/-0.03/0.13+/- 0.02/1.32+/- 0.64; IC group, 0.22 +/- 0.02/0.19 +/- 0.02/4.77 +/- 0.24; Bic +Clgroup, 0.51+/- 0.04/0.13+/- 0.3/1.80+/- 0.04; p<0.05). The protective effect of Bic in the IC-induced AKI was confirmed; hence, Bic administration may be considered as a therapeutic option for patients undergoing IC-enhanced radiography.
Reduction of Campylobacter jejuni on chicken wings by chemical treatments.
Zhao, Tong; Doyle, Michael P
2006-04-01
Eight chemicals, including glycerol monolaurate, hydrogen peroxide, acetic acid, lactic acid, sodium benzoate, sodium chlorate, sodium carbonate, and sodium hydroxide, were tested individually or in combination for their ability to inactivate Campylobacter jejuni at 4 degrees C in suspension. Results showed that treatment for up to 20 min with 0.01% glycerol monolaurate, 0.1% sodium benzoate, 50 or 100 mM sodium chlorate, or 1% lactic acid did not substantially (< or = 0.5 log CFU/ml) reduce C. jejuni populations but that 0.1 and 0.2% hydrogen peroxide for 20 min reduced C. jejuni populations by ca. 2.0 and 4.5 log CFU/ml, respectively. By contrast, treatments with 0.5, 1.0, 1.5, and 2.0% acetic acid, 25, 50, and 100 mM sodium carbonate, and 0.05 and 0.1 N sodium hydroxide reduced C. jejuni populations by >5 log CFU/ml within 2 min. A combination of 0.5% acetic acid plus 0.05% potassium sorbate or 0.5% acetic acid plus 0.05% sodium benzoate reduced C. jejuni populations by >5 log CFU/ml within 1 min; however, substituting 0.5% lactic acid for 0.5% acetic acid was not effective, with a reduction of C. jejuni of <0.5 log CFU/ml. A combination of acidic calcium sulfate, lactic acid, ethanol, sodium dodecyl sulfate, and polypropylene glycol (ACS-LA) also reduced C. jejuni in suspension by >5 log CFU/ml within 1 min. All chemicals or chemical combinations for which there was a >5-log/ml reduction of C. jejuni in suspension were further evaluated for C. jejuni inactivation on chicken wings. Treatments at 4 degrees C of 2% acetic acid, 100 mM sodium carbonate, or 0.1 N sodium hydroxide for up to 45 s reduced C. jejuni populations by ca. 1.4, 1.6, or 3.5 log CFU/g, respectively. Treatment with ACS-LA at 4 degrees C for 15 s reduced C. jejuni by >5 log CFU/g to an undetectable level. The ACS-LA treatment was highly effective in chilled water at killing C. jejuni on chicken and, if recycled, may be a useful treatment in chill water tanks for poultry processors to reduce campylobacters on poultry skin after slaughter.
NASA Astrophysics Data System (ADS)
Sinha, Tanur; Ahmaruzzaman, M.; Sil, A. K.; Bhattacharjee, Archita
2014-10-01
In this article, a cleaner, greener, cheaper and environment friendly method for the generation of self assembled silver nanoparticles (Ag NPs) applying a simple irradiation technique using the aqueous extract of the fish scales (which is considered as a waste material) of Labeo rohita is described. Gelatin is considered as the major ingredient responsible for the reduction as well as stabilisation of the self assembled Ag NPs. The size and morphology of the individual Ag NPs can be tuned by controlling the various reaction parameters, such as temperature, concentration, and pH. Studies showed that on increasing concentration and pH Ag NPs size decreases, while on increasing temperature, Ag NPs size increases. The present process does not need any external reducing agent, like sodium borohydride or hydrazine or others and gelatin itself can play a dual role: a ‘reducing agent' and ‘stabilisation agent' for the formation of gelatin-Ag NPs colloidal dispersion. The synthesized Ag NPs were characterised by Ultraviolet-Visible spectroscopy (UV-Vis), Transmission electron microscopy (TEM) and Selected area electron diffraction (SAED) analyses. The synthesized Ag NPs was used to study the catalytic reduction of various aromatic nitro compounds in aqueous and three different micellar media. The hydrophobic and electrostatic interaction between the micelle and the substrate is responsible for the catalytic activity of the nanoparticles in micelle.
Pikal-Cleland, Katherine A; Cleland, Jeffrey L; Anchordoquy, Thomas J; Carpenter, John F
2002-09-01
Previous studies have established that the selective precipitation of a less soluble buffer component during freezing can induce a significant pH shift in the freeze concentrate. During freezing of sodium phosphate solutions, crystallization of the disodium salt can produce a pH decrease as great as 3 pH units which can dramatically affect protein stability. The objective of our study was to determine how the presence of glycine (0-500 mM), a commonly used bulking agent in pharmaceutical protein formulations, affects the pH changes normally observed during freezing in sodium phosphate buffer solutions and to determine whether these pH changes contribute to instability of model proteins in glycine/phosphate formulations. During freezing in sodium phosphate buffers, the presence of glycine significantly influenced the pH. Glycine at the lower concentrations (< or = 50 mM) suppressed the pH decrease normally observed during freezing in 10 and 100 mM sodium phosphate buffer, possibly by reducing the nucleation rate of salt and thereby decreasing the extent of buffer salt crystallization. The presence of glycine at higher concentration (> 100 mM) in the sodium phosphate buffer resulted in a more complete crystallization of the disodium salt as indicated by the frozen pH values closer to the equilibrium value (pH 3.6). Although high concentrations of glycine can facilitate more buffer salt crystallization and these pH shifts may prove to be potentially damaging to the protein, glycine, in its amorphous state, can also act to stabilize a protein via the preferential exclusion mechanism. Copyright 2002 Wiley-Liss Inc.
First-in-Man Demonstration of Direct Endothelin-Mediated Natriuresis and Diuresis
Hunter, Robert W.; Moorhouse, Rebecca; Farrah, Tariq E.; MacIntyre, Iain M.; Asai, Takae; Gallacher, Peter J.; Kerr, Debbie; Melville, Vanessa; Czopek, Alicja; Morrison, Emma E.; Ivy, Jess R.; Dear, James W.; Bailey, Matthew A.; Goddard, Jane; Webb, David J.
2017-01-01
Endothelin (ET) receptor antagonists are potentially novel therapeutic agents in chronic kidney disease and resistant hypertension, but their use is complicated by sodium and water retention. In animal studies, this side effect arises from ETB receptor blockade in the renal tubule. Previous attempts to determine whether this mechanism operates in humans have been confounded by the hemodynamic consequences of ET receptor stimulation/blockade. We aimed to determine the effects of ET signaling on salt transport in the human nephron by administering subpressor doses of the ET-1 precursor, big ET-1. We conducted a 2-phase randomized, double-blind, placebo-controlled crossover study in 10 healthy volunteers. After sodium restriction, subjects received either intravenous placebo or big ET-1, in escalating dose (≤300 pmol/min). This increased plasma concentration and urinary excretion of ET-1. Big ET-1 reduced heart rate (≈8 beats/min) but did not otherwise affect systemic hemodynamics or glomerular filtration rate. Big ET-1 increased the fractional excretion of sodium (from 0.5 to 1.0%). It also increased free water clearance and tended to increase the abundance of the sodium–potassium–chloride cotransporter (NKCC2) in urinary extracellular vesicles. Our protocol induced modest increases in circulating and urinary ET-1. Sodium and water excretion increased in the absence of significant hemodynamic perturbation, supporting a direct action of ET-1 on the renal tubule. Our data also suggest that sodium reabsorption is stimulated by ET-1 in the thick ascending limb and suppressed in the distal renal tubule. Fluid retention associated with ET receptor antagonist therapy may be circumvented by coprescribing potassium-sparing diuretics. PMID:28507171
Hyponatraemia: an audit of aged psychiatry patients taking SSRIs and SNRIs.
Giorlando, Francesco; Teister, Julia; Dodd, Seetal; Udina, Marc; Berk, Michael
2013-07-01
Hyponatraemia is a serious adverse event commonly reported in elderly people treated with serotonergic antidepressants. The mechanism, incidence and risk factors for antidepressant induced hyponatraemia are not fully understood. In a retrospective chart analysis, depressed patients aged >63 years were investigated for change in serum sodium levels between two time points, separated by a median period of 45.5 days, with the first specimen taken prior to treatment. Patients were grouped into three cohorts; treated with an SSRI or SNRI (n=77), treated with an antidepressant other than an SSRI or SNRI (n=54) and not treated with an antidepressant (n=128). For change in sodium level between measurements and total number of patients with hyponatraemia, there was no significant difference between cohorts. However, the rate of reduction of serum sodium levels between time points was significantly greater for SSRI and SNRI treated patients (p<0.001) and patients treated with other antidepressants (p=0.03) compared to patients not treated with antidepressants. Moreover, the distribution of values of change in serum sodium was skewed towards reduced serum sodium in patients treated with SSRI or SNRIs (skew -0.43) and patients treated with other antidepressants (skew -0.09) but not for patients without antidepressants (skew 0.25). These data suggest that antidepressant treatment is associated with hyponatraemia affecting a subgroup of individuals only. Generalised linear modelling showed that the risk of hyponatraemia increases with increased age, female gender, and particularly the antidepressant agents sertraline and escitalopram. The findings are of clinical significance as they demonstrate that hyponatraemia can occur rapidly with antidepressants, and SSRI/SNRI medications induce more rapid changes. They support the use of electrolyte monitoring early in antidepressant treatment in patients receiving antidepressants.
Is it safe to re-access sodium bicarbonate bottles for use in minor surgery?
Bjornson, Lindsay; Bucevska, Marija; Tilley, Peter; Verchere, Cynthia
2018-04-06
Sodium bicarbonate is added to lidocaine to reduce injection pain. In Canada, it is available in vials exceeding the injection volume 100-fold. These are single-use vials that should be disposed of after one access. Some surgeons re-use vials to reduce waste, potentially causing contamination. This study aims to review the safety of sodium bicarbonate and assess alternatives to current practice. Strains of Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, and Burkholderia cepacia were used to assess bacterial growth in vials of sodium bicarbonate. Each pathogen was inoculated into a vial for 14 days at room temperature. At several time points, 1 mL of solution was removed and diluted. One hundred microliters were transferred to blood agar plates and incubated at 35 °C. Colony counts were calculated, averaged and plotted onto a logarithmic graph. Colony counts of all strains fell below observational threshold after 7 days in sodium bicarbonate. Although all strains were reduced, bacteria can survive in sodium bicarbonate for several days, during which transmission may occur. Sodium bicarbonate vials should be treated as single-dose, as indicated by the manufacturers. To reduce waste, hospital pharmacies can repackage sodium bicarbonate into smaller vials or pre-alkalize lidocaine with sodium bicarbonate. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Harris, R.; Reimus, P. W.; Ware, D.; Williams, K.; Chu, D.; Perkins, G.; Migdissov, A. A.; Bonwell, C.
2017-12-01
Uranium is primarily mined for nuclear power production using an aqueous extraction technique called in-situ recovery (ISR). ISR can pollute groundwater with residual uranium and other heavy metals. Reverse osmosis and groundwater sweep are currently used to restore groundwater after ISR mining, but are not permanent solutions. Sodium dithionite is being tested as part of a method to more permanently restore groundwater after ISR mining at the Smith-Ranch Highland site in Wyoming. Sodium dithionite is a chemical reductant that can reduce sediments that were oxidized during ISR. The reduced sediments can reduce soluble uranium (VI) in the groundwater to insoluble uranium (IV). Laboratory studies that use sodium dithionite to treat sediments and waters from the site may help predict how it will behave during a field deployment. An aqueous batch experiment showed that sodium dithionite reduced uranium in post-mined untreated groundwater from 38 ppm to less than 1 ppm after 1 day. A sediment reduction batch experiment showed that sodium dithionite-treated sediments were capable of reducing uranium in post-mined untreated groundwater from 38 ppm to 2 ppm after 7 days. One column experiment is showing post-mined sodium dithionite-treated sediments are capable of reducing uranium in post-mined groundwater for over 30 pore volumes past the initial injection. While these results are promising for field deployments of sodium dithionite, another column experiment with sodium dithionite-treated sediments containing uranium rich organic matter is showing net production of uranium instead of uranium uptake. Sodium dithionite appears to liberate uranium from the organic matter. Another sediment reduction experiment is being conducted to further investigate this hypothesis. These experiments are helping guide plans for field deployments of sodium dithionite at uranium ISR mining sites.
Roberts, Byron N; Christini, David J
2011-10-01
Reperfusion injury results from pathologies of cardiac myocyte physiology that develop when previously ischemic myocardium experiences a restoration of normal perfusion. Events in the development of reperfusion injury begin with the restoration of a proton gradient upon reperfusion, which then allows the sodium-proton exchanger (NHE) to increase flux, removing protons from the intracellular space while importing sodium. The resulting sodium overload drives increased reverse-mode sodium-calcium exchanger (NCX) activity, creating a secondary calcium overload that has pathologic consequences. One of the attempts to reduce reperfusion-related damage, NHE inhibition, has shown little clinical benefit, and only when NHE inhibitors are given prior to reperfusion. In an effort to further understand why NHE inhibitors have been largely unsuccessful, we employed a new mathematical cardiomyocyte model that we developed for the study of ischemia and reperfusion. Using this model, we simulated 20 minutes of ischemia and 10 minutes of reperfusion, while also simulating NHE inhibition by reducing NHE flux in our model by varying amounts and at different time points. In our simulations, when NHE inhibition is applied at the onset of reperfusion, increasing the degree of inhibition increases the peak sodium and calcium concentrations, as well as reducing intracellular pH recovery. When inhibition was instituted at earlier time points, some modest improvements were seen, largely due to reduced sodium concentrations prior to reperfusion. Analysis of all sodium flux pathways suggests that the sodium-potassium pump (NaK) plays the largest role in exacerbated sodium overload during reperfusion, and that reduced NaK flux is largely the result of impaired pH recovery. While NHE inhibition does indeed reduce sodium influx through that exchanger, the resulting prolongation of intracellular acidosis paradoxically increases sodium overload, largely mediated by impaired NaK function.
Roberts, Byron N.; Christini, David J.
2011-01-01
Reperfusion injury results from pathologies of cardiac myocyte physiology that develop when previously ischemic myocardium experiences a restoration of normal perfusion. Events in the development of reperfusion injury begin with the restoration of a proton gradient upon reperfusion, which then allows the sodium-proton exchanger (NHE) to increase flux, removing protons from the intracellular space while importing sodium. The resulting sodium overload drives increased reverse-mode sodium-calcium exchanger (NCX) activity, creating a secondary calcium overload that has pathologic consequences. One of the attempts to reduce reperfusion-related damage, NHE inhibition, has shown little clinical benefit, and only when NHE inhibitors are given prior to reperfusion. In an effort to further understand why NHE inhibitors have been largely unsuccessful, we employed a new mathematical cardiomyocyte model that we developed for the study of ischemia and reperfusion. Using this model, we simulated 20 minutes of ischemia and 10 minutes of reperfusion, while also simulating NHE inhibition by reducing NHE flux in our model by varying amounts and at different time points. In our simulations, when NHE inhibition is applied at the onset of reperfusion, increasing the degree of inhibition increases the peak sodium and calcium concentrations, as well as reducing intracellular pH recovery. When inhibition was instituted at earlier time points, some modest improvements were seen, largely due to reduced sodium concentrations prior to reperfusion. Analysis of all sodium flux pathways suggests that the sodium-potassium pump (NaK) plays the largest role in exacerbated sodium overload during reperfusion, and that reduced NaK flux is largely the result of impaired pH recovery. While NHE inhibition does indeed reduce sodium influx through that exchanger, the resulting prolongation of intracellular acidosis paradoxically increases sodium overload, largely mediated by impaired NaK function. PMID:22028644
Moghimipour, Eskandar; Rezaee, Saeed; Salimi, Anayatollah; Asadi, Elham; Handali, Somayeh
2013-07-01
Ciprofloxacin is a fluoroquinolone and is used against a broad spectrum of gram-negative and gram-positive bacteria. The aim of the study is to investigate the effect of structural vehicles and other formulating factors on physical stability and rheological behavior of ciprofloxacin suspension. To formulate the suspensions, the effect of glycerin and polysorbate 80 as wetting agents was evaluated. Then to achieve controlled flocculation, different concentrations of sodium chloride and calcium chloride were added. After choosing suitable wetting and flocculating agents, structural vehicles such as sodium carboxyl methyl cellulose (NaCMC), hydroxypropylmethylcellulose (HPMC) and Veegum were evaluated. Physical stability parameters such as sedimentation volume, the degree of flocculation and the ease of redispersion of the suspensions and growth of crystals were evaluated. After incorporation of structural vehicles, the rheological properties of formulations containing were also studied to find out their rheological behavior. According to the results, suspension containing glycerin (0.2% w/v) and sodium chloride (0.05% w/v) as wetting agent and flocculating agent, respectively, were the most stable formulations regarding their F and N. Microscopic observations showed the growth of crystals in ciprofloxacin suspension in formulation without excipients and the minimum amount of crystal growth was seen in suspension containing NaCMC (0.25% w/v), Veegum (0.1% w/v) and NaCl (0.05% w/v). Rheological studies showed that almost all of the formulations had psuedoplastic behavior with different degree of thixotropy. The formulation containing NaCMC (0.25% w/v), Veegum (0.1% w/v) and NaCl (0.05% w/v) was the most stable formulation. It may be concluded that by altering the amount ratios of formulation factors, the best rheological behavior and the most proper thixotropy may be achieved.
Moghimipour, Eskandar; Rezaee, Saeed; Salimi, Anayatollah; Asadi, Elham; Handali, Somayeh
2013-01-01
Ciprofloxacin is a fluoroquinolone and is used against a broad spectrum of gram-negative and gram-positive bacteria. The aim of the study is to investigate the effect of structural vehicles and other formulating factors on physical stability and rheological behavior of ciprofloxacin suspension. To formulate the suspensions, the effect of glycerin and polysorbate 80 as wetting agents was evaluated. Then to achieve controlled flocculation, different concentrations of sodium chloride and calcium chloride were added. After choosing suitable wetting and flocculating agents, structural vehicles such as sodium carboxyl methyl cellulose (NaCMC), hydroxypropylmethylcellulose (HPMC) and Veegum were evaluated. Physical stability parameters such as sedimentation volume, the degree of flocculation and the ease of redispersion of the suspensions and growth of crystals were evaluated. After incorporation of structural vehicles, the rheological properties of formulations containing were also studied to find out their rheological behavior. According to the results, suspension containing glycerin (0.2% w/v) and sodium chloride (0.05% w/v) as wetting agent and flocculating agent, respectively, were the most stable formulations regarding their F and N. Microscopic observations showed the growth of crystals in ciprofloxacin suspension in formulation without excipients and the minimum amount of crystal growth was seen in suspension containing NaCMC (0.25% w/v), Veegum (0.1% w/v) and NaCl (0.05% w/v). Rheological studies showed that almost all of the formulations had psuedoplastic behavior with different degree of thixotropy. The formulation containing NaCMC (0.25% w/v), Veegum (0.1% w/v) and NaCl (0.05% w/v) was the most stable formulation. It may be concluded that by altering the amount ratios of formulation factors, the best rheological behavior and the most proper thixotropy may be achieved. PMID:24083201
Reducing Sodium in Foods: The Effect on Flavor
Liem, Djin Gie; Miremadi, Fatemeh; Keast, Russell S. J.
2011-01-01
Sodium is an essential micronutrient and, via salt taste, appetitive. High consumption of sodium is, however, related to negative health effects such as hypertension, cardiovascular diseases and stroke. In industrialized countries, about 75% of sodium in the diet comes from manufactured foods and foods eaten away from home. Reducing sodium in processed foods will be, however, challenging due to sodium’s specific functionality in terms of flavor and associated palatability of foods (i.e., increase of saltiness, reduction of bitterness, enhancement of sweetness and other congruent flavors). The current review discusses the sensory role of sodium in food, determinants of salt taste perception and a variety of strategies, such as sodium replacers (i.e., potassium salts) and gradual reduction of sodium, to decrease sodium in processed foods while maintaining palatability. PMID:22254117
Sudha, M L; Chetana, R; Reddy, S Yella
2014-12-01
The effect of microencapsulated fat powders on the rheological characteristics and quality of biscuits were studied and compared with the control native fat normally used in the biscuit industry. Commercial bakery fat was encapsulated using sodium caseinate or skimmed milk powder (SMP) and the fat content in the powders was in the range of 73 - 78 % for sodium caseinate, whereas it ranged between 57.5 and 61 % with SMP and the sugar content was in the range of 9.8 - 17.5 %. The rheological characteristics indicated that with high sodium caseinate and SMP, the doughs were more elastic. The TPA analysis showed that with increasing the casein content in the fat powder, the dough hardness increased, and the doughs were less cohesive. The quality of biscuits was comparable with lower amount of encapsulating agents. Powders with lower amount of agents had comparable benefits on the rheological characteristics of the dough and biscuit quality.
Electrical characterization of reduced graphene oxide (rGO) on organic thin film transistor (OTFT)
NASA Astrophysics Data System (ADS)
Musa, Nurhazwani; Halim, Nurul Farhanah Ab.; Ahmad, Mohd Noor; Zakaria, Zulkhairi; Hashim, Uda
2017-03-01
A green method and eco-friendly solution were used to chemically reduce graphene oxide (GO) to graphene using green reductant. In this study, graphene oxide (GO) were prepared by using Tours method. Then, reduced graphene oxides (rGO) were prepared by using three typical reduction agents: L-ascorbic acid (L-AA), formamidinesulfinic acid (FAS) and sodium sulfite (Na2SO3). The reduced materials were characterized by Fourier transform infrared spectroscopy (FTIR), Thermo gravimetric analysis (TGA) and X-ray diffraction (XRD). Graphene based organic thin film transistor (G-OTFT) was prepared by a spin coating and thermal evaporation technique. The electrical characterization of G-OTFT was analyzed by using semiconductor parameter analyzer (SPA). The G-OTFT devices show p-type semiconducting behaviour. This article focuses on the synthesis and reduction of graphene oxide using three different reductants in order to maximise its electrical conductivity. The rGO product demonstrated a good electrical conductivity performance with highly sensitivity sensor.
Takenaka, Tsuneo; Kishimoto, Miyako; Ohta, Mari; Tomonaga, Osamu; Suzuki, Hiromichi
2017-05-01
The effects of sodium-glucose co-transporter type 2 inhibitors on home blood pressure were examined in type 2 diabetes with nephropathy. The patients with diabetic nephropathy were screened from medical records in our hospitals. Among them, 52 patients who measured home blood pressure and started to take sodium-glucose co-transporter type 2 inhibitors were selected. Clinical parameters including estimated glomerular filtration rate, albuminuria and home blood pressure for 6 months were analysed. Sodium-glucose co-transporter type 2 inhibitors (luseogliflozin 5 mg/day or canagliflozin 100 mg/day) reduced body weight, HbA1c, albuminuria, estimated glomerular filtration rate and office blood pressure. Although sodium-glucose co-transporter type 2 inhibitors did not alter morning blood pressure, it reduced evening systolic blood pressure. Regression analyses revealed that decreases in evening blood pressure predicted decrements in albuminuria. The present data suggest that sodium-glucose co-transporter type 2 inhibitors suppress sodium overload during daytime to reduce evening blood pressure and albuminuria.
Effects of climate and corrosion on concrete behaviour
NASA Astrophysics Data System (ADS)
Ismail, Mohammad; Egba, Ernest Ituma
2017-11-01
Corrosion of steel is a damaging agent that reduces the functional and structural responsibilities of reinforced concrete structures. Accordingly, reinforced concrete members in the environments that are prone to concrete carbonation or chloride attack coupled with high temperature and relative humidity suffer from accelerated corrosion of reinforcing material. Also, literature proves that climate influences corrosion of concrete, and suggests investigation of impact of corrosion on concrete based on climate zone. Therefore, this paper presents the effects of climate and corrosion on concrete behavior, using bond strength of concrete as a case study. Concrete specimens were prepared form concrete mix that was infested with 3.5 kgm-3 of sodium chloride to accelerate corrosion. The specimens were cured sodium chloride solution 3.5% by weight of water for 28 days before placing them in the exposure conditions. Pull-out tests were conducted at time intervals for one year to measure the impact of exposure condition and corrosion on bond strength of concrete. The results show reduction of bond strength of concrete by 32%, 28% and 8% after one year of subjection of the specimens to the unsheltered natural climate, sheltered natural climate, and laboratory ambient environment respectively. The findings indicate that the climate influences corrosion, which reduces the interlocking bond between the reinforcing bar and the adjacent concrete.
Wang, Yunliang; Liu, Lijuan; Guo, Yi; Mao, Tangyou; Shi, Rui; Li, Junxiang
2017-08-01
The effects of indigo naturalis (IN), which is a traditional Chinese herbal formulation, have been clinically demonstrated in treating refractory ulcerative colitis (UC). The present study aimed to verify the effects and mechanisms of IN in experimental UC rats. A total of 48 male Sprague-Dawley rats were randomly divided into six groups: Chow, model, high-dose IN, medium-dose IN, low-dose IN and mesalazine (a bowel-specific aminosalicylate drug) groups. The models were administered 3.5% dextran sodium sulphate solution for 7 days. The treatment groups were administered IN or mesalazine and then sacrificed and sampled on day 8. Disease activity index (DAI), histological damage score (HDS) and myeloperoxidase (MPO) activity were used to evaluate the severity of UC. Colon and serum cytokines were detected using liquid-phase chip technology and the expression of occludin protein in colonic mucosa was assessed by immunohistochemistry and western blot analysis. The results indicated that the oral administration of IN may reduce DAI, HDS and MPO activity. IN also reduced the expression of inflammatory cytokines and increased the expression of colonic mucosal repair-related cytokines and occludin protein. These results highlight the potential of IN as a therapeutic agent for treating UC through its action of inflammation control and colonic mucosal damage repair.
21 CFR 180.37 - Saccharin, ammonium saccharin, calcium saccharin, and sodium saccharin.
Code of Federal Regulations, 2012 CFR
2012-04-01
... additive, calculated as saccharin, for each expressed teaspoonful of sugar sweetening equivalency. (3) In... safely used as sweetening agents in food in accordance with the following conditions, if the substitution... additives are used or intended for use as a sweetening agent only in special dietary foods, as follows: (1...
21 CFR 180.37 - Saccharin, ammonium saccharin, calcium saccharin, and sodium saccharin.
Code of Federal Regulations, 2011 CFR
2011-04-01
... additive, calculated as saccharin, for each expressed teaspoonful of sugar sweetening equivalency. (3) In... safely used as sweetening agents in food in accordance with the following conditions, if the substitution... additives are used or intended for use as a sweetening agent only in special dietary foods, as follows: (1...
21 CFR 180.37 - Saccharin, ammonium saccharin, calcium saccharin, and sodium saccharin.
Code of Federal Regulations, 2010 CFR
2010-04-01
... additive, calculated as saccharin, for each expressed teaspoonful of sugar sweetening equivalency. (3) In... safely used as sweetening agents in food in accordance with the following conditions, if the substitution... additives are used or intended for use as a sweetening agent only in special dietary foods, as follows: (1...
21 CFR 180.37 - Saccharin, ammonium saccharin, calcium saccharin, and sodium saccharin.
Code of Federal Regulations, 2013 CFR
2013-04-01
... additive, calculated as saccharin, for each expressed teaspoonful of sugar sweetening equivalency. (3) In... safely used as sweetening agents in food in accordance with the following conditions, if the substitution... additives are used or intended for use as a sweetening agent only in special dietary foods, as follows: (1...
Strategies to reduce sodium consumption: a food industry perspective.
Dötsch, Mariska; Busch, Johanneke; Batenburg, Max; Liem, Gie; Tareilus, Erwin; Mueller, Rudi; Meijer, Gert
2009-11-01
The global high prevalence of hypertension and cardiovascular disease has raised concerns regarding the sodium content of the foods which we consume. Over 75% of sodium intake in industrialized diets is likely to come from processed and restaurant foods. Therefore international authorities, such as the World Health Organisation, are encouraging the food industry to reduce sodium levels in their products. Significant sodium reduction is not without complications as salt plays an important role in taste, and in some products is needed also for preservation and processing. The most promising sodium reduction strategy is to adapt the preference of consumers for saltiness by reducing sodium in products in small steps. However, this is a time-consuming approach that needs to be applied industry-wide in order to be effective. Therefore the food industry is also investigating solutions that will maintain the same perceived salt intensity at lower sodium levels. Each of these has specific advantages, disadvantages, and time lines for implementation. Currently applied approaches are resulting in sodium reduction between 20-30%. Further reduction will require new technologies. Research into the physiology of taste perception and salt receptors is an emerging area of science that is needed in order to achieve larger sodium reductions.
Sulfanegen sodium treatment in a rabbit model of sub-lethal cyanide toxicity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brenner, Matthew, E-mail: mbrenner@uci.ed; Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California, Irvine, CA 92868; Kim, Jae G.
2010-11-01
The aim of this study is to investigate the ability of intramuscular and intravenous sulfanegen sodium treatment to reverse cyanide effects in a rabbit model as a potential treatment for mass casualty resulting from cyanide exposure. Cyanide poisoning is a serious chemical threat from accidental or intentional exposures. Current cyanide exposure treatments, including direct binding agents, methemoglobin donors, and sulfur donors, have several limitations. Non-rhodanese mediated sulfur transferase pathways, including 3-mercaptopyruvate sulfurtransferase (3-MPST) catalyze the transfer of sulfur from 3-MP to cyanide, forming pyruvate and less toxic thiocyanate. We developed a water-soluble 3-MP prodrug, 3-mercaptopyruvatedithiane (sulfanegen sodium), with the potentialmore » to provide a continuous supply of substrate for CN detoxification. In addition to developing a mass casualty cyanide reversal agent, methods are needed to rapidly and reliably diagnose and monitor cyanide poisoning and reversal. We use non-invasive technology, diffuse optical spectroscopy (DOS) and continuous wave near infrared spectroscopy (CWNIRS) to monitor physiologic changes associated with cyanide exposure and reversal. A total of 35 animals were studied. Sulfanegen sodium was shown to reverse the effects of cyanide exposure on oxyhemoglobin and deoxyhemoglobin rapidly, significantly faster than control animals when administered by intravenous or intramuscular routes. RBC cyanide levels also returned to normal faster following both intramuscular and intravenous sulfanegen sodium treatment than controls. These studies demonstrate the clinical potential for the novel approach of supplying substrate for non-rhodanese mediated sulfur transferase pathways for cyanide detoxification. DOS and CWNIRS demonstrated their usefulness in optimizing the dose of sulfanegen sodium treatment.« less
Does Replacing Sodium Excreted in Sweat Attenuate the Health Benefits of Physical Activity?
Turner, Martin J; Avolio, Alberto P
2016-08-01
International guidelines suggest limiting sodium intake to 86-100 mmol/day, but average intake exceeds 150 mmol/day. Participants in physical activities are, however, advised to increase sodium intake before, during and after exercise to ensure euhydration, replace sodium lost in sweat, speed rehydration and maintain performance. A similar range of health benefits is attributable to exercise and to reduction in sodium intake, including reductions in blood pressure (BP) and the increase of BP with age, reduced risk of stroke and other cardiovascular diseases, and reduced risk of osteoporosis and dementia. Sweat typically contains 40-60 mmol/L of sodium, leading to approximately 20-90 mmol of sodium lost in one exercise session with sweat rates of 0.5-1.5 L/h. Reductions in sodium intake of 20-90 mmol/day have been associated with substantial health benefits. Homeostatic systems reduce sweat sodium as low as 3-10 mmol/L to prevent excessive sodium loss. "Salty sweaters" may be individuals with high sodium intake who perpetuate their "salty sweat" condition by continual replacement of sodium excreted in sweat. Studies of prolonged high intensity exercise in hot environments suggest that sodium supplementation is not necessary to prevent hyponatremia during exercise lasting up to 6 hr. We examine the novel hypothesis that sodium excreted in sweat during physical activity offsets a significant fraction of excess dietary sodium, and hence may contribute part of the health benefits of exercise. Replacing sodium lost in sweat during exercise may improve physical performance, but may attenuate the long-term health benefits of exercise.
Ayyappan, Prathapan; Palayyan, Salin Raj; Kozhiparambil Gopalan, Raghu
2016-01-01
Due to a high rate of oxidative metabolic activity in the brain, intense production of reactive oxygen metabolite occurs, and the subsequent generation of free radicals is implicated in the pathogenesis of traumatic brain injury, epilepsy, and ischemia as well as chronic neurodegenerative diseases. In the present study, protective effects of polyphenol rich ethanolic extract of Boerhaavia diffusa (BDE), a neuroprotective edible medicinal plant against oxidative stress induced by different neurotoxic agents, were evaluated. BDE was tested against quinolinic acid (QA), 3-nitropropionic acid (NPA), sodium nitroprusside (SNP), and Fe (II)/EDTA complex induced oxidative stress in rat brain homogenates. QA, NPA, SNP, and Fe (II)/EDTA treatment caused an increased level of thiobarbituric acid reactive substances (TBARS) in brain homogenates along with a decline in the activities of antioxidant enzymes. BDE treatment significantly decreased the production of TBARS (p < .05) and increased the activities of antioxidant enzymes like catalase and superoxide dismutase along with increased concentration of non-enzymatic antioxidant, reduced glutathione (GSH). Similarly, BDE caused a significant decrease in the lipid peroxidation (LPO) in the cerebral cortex. Inhibitory potential of BDE against deoxyribose degradation (IC50 value 38.91 ± 0.12 μg/ml) shows that BDE can protect hydroxyl radical induced DNA damage in the tissues. Therefore, B. diffusa had high antioxidant potential that could inhibit the oxidative stress induced by different neurotoxic agents in brain. Since many of the neurological disorders are associated with free radical injury, these data may imply that B. diffusa, functioning as an antioxidant agent, may be beneficial for reducing various neurodegenerative complications.
Antman, Elliott M; Appel, Lawrence J; Balentine, Douglas; Johnson, Rachel K; Steffen, Lyn M; Miller, Emily Ann; Pappas, Antigoni; Stitzel, Kimberly F; Vafiadis, Dorothea K; Whitsel, Laurie
2014-06-24
A 2-day interactive forum was convened to discuss the current status and future implications of reducing sodium in the food supply and to identify opportunities for stakeholder collaboration. Participants included 128 stakeholders engaged in food research and development, food manufacturing and retail, restaurant and food service operations, regulatory and legislative activities, public health initiatives, healthcare, academia and scientific research, and data monitoring and surveillance. Presentation topics included scientific evidence for sodium reduction and public health policy recommendations; consumer sodium intakes, attitudes, and behaviors; food technologies and solutions for sodium reduction and sensory implications; experiences of the food and dining industries; and translation and implementation of sodium intake recommendations. Facilitated breakout sessions were conducted to allow for sharing of current practices, insights, and expertise. A well-established body of scientific research shows that there is a strong relationship between excess sodium intake and high blood pressure and other adverse health outcomes. With Americans getting >75% of their sodium from processed and restaurant food, this evidence creates mounting pressure for less sodium in the food supply. The reduction of sodium in the food supply is a complex issue that involves multiple stakeholders. The success of new technological approaches for reducing sodium will depend on product availability, health effects (both intended and unintended), research and development investments, quality and taste of reformulated foods, supply chain management, operational modifications, consumer acceptance, and cost. The conference facilitated an exchange of ideas and set the stage for potential collaboration opportunities among stakeholders with mutual interest in reducing sodium in the food supply and in Americans' diets. Population-wide sodium reduction remains a critically important component of public health efforts to promote cardiovascular health and prevent cardiovascular disease and will remain a priority for the American Heart Association. © 2014 American Heart Association, Inc.
Corrosion-resistant fuel cladding allow for liquid metal fast breeder reactors
Brehm, Jr., William F.; Colburn, Richard P.
1982-01-01
An aluminide coating for a fuel cladding tube for LMFBRs (liquid metal fast breeder reactors) such as those using liquid sodium as a heat transfer agent. The coating comprises a mixture of nickel-aluminum intermetallic phases and presents good corrosion resistance to liquid sodium at temperatures up to 700.degree. C. while additionally presenting a barrier to outward diffusion of .sup.54 Mn.
Preparation and characterization of silver chloride nanoparticles as an antibacterial agent
NASA Astrophysics Data System (ADS)
Duong Trinh, Ngoc; Thanh Binh Nguyen, Thi; Hai Nguyen, Thanh
2015-12-01
Silver chloride nanoparticles were prepared by the precipitation reaction between silver nitrate and sodium chloride in an aqueous solution containing poly(vinyl alcohol) as a stabilizing agent. Different characteristics of the nanoparticles in suspension and in lyophilized powder such as size, morphology, chemical nature, interaction with stabilizing agent and photo-stability were investigated. Biological tests showed that the obtained silver chloride nanoparticles displayed antibacterial activities against Escherichia coli and Staphylococcus aureus.
Molecular modeling studies of interactions between sodium polyacrylate polymer and calcite surface
NASA Astrophysics Data System (ADS)
Ylikantola, A.; Linnanto, J.; Knuutinen, J.; Oravilahti, A.; Toivakka, M.
2013-07-01
The interactions between calcite pigment and sodium polyacrylate dispersing agent, widely used in papermaking as paper coating components, were investigated using classical force field and quantum chemical approaches. The objective was to understand interactions between the calcite surface and sodium polyacrylate polymer at 300 K using molecular dynamics simulations. A quantum mechanical ab initio Hartree-Fock method was also used to obtain detailed information about the sodium polyacrylate polymer structure. The effect of water molecules (moisture) on the interactions was also examined. Calculations showed that molecular weight, branching and the orientation of sodium polyacrylate polymers influence the interactions between the calcite surface and the polymer. The force field applied, and also water molecules, were found to have an impact on all systems studied. Ab initio Hartree-Fock calculations indicated that there are two types of coordination between sodium atoms and carboxylate groups of the sodium polyacrylate polymer, inter- and intra-carboxylate group coordination. In addition, ab initio Hartree-Fock calculations of the structure of the sodium polyacrylate polymer produced important information regarding interactions between the polymers and carboxylated styrene-butadiene latex particles.
Berry, G T; Bridges, N D; Nathanson, K L; Kaplan, P; Clancy, R R; Lichtenstein, G R; Spray, T L
1999-04-01
Lethal hyperammonemic coma has been reported in 2 adults after lung transplantation. It was associated with a massive elevation of brain glutamine levels, while plasma glutamine levels were normal or only slightly elevated. In liver tissue, glutamine synthetase activity was markedly reduced, and the histologic findings resembled those of Reye syndrome. The adequacy of therapy commonly used for inherited disorders of the urea cycle has not been adequately evaluated in patients with this form of secondary hyperammonemia. To determine whether hemodialysis, in conjunction with intravenous sodium phenylacetate, sodium benzoate, and arginine hydrochloride therapy, would be efficacious in a patient with hyperammonemic coma after solid-organ transplantation. Case report. A children's hospital. A 41-year-old woman with congenital heart disease developed a hyperammonemic coma with brain edema 19 days after undergoing a combined heart and lung transplantation. Ammonium was measured in plasma. Amino acids were quantitated in plasma and cerebrospinal fluid by column chromatography. The effectiveness of therapy was assessed by measuring plasma ammonium levels and intracranial pressure and performing sequential neurological examinations. The patient had the anomalous combination of increased cerebrospinal fluid and decreased plasma glutamine levels. To our knowledge, she is the first patient with this complication after solid-organ transplantation to survive after combined therapy with sodium phenylacetate, sodium benzoate, arginine hydrochloride, and hemodialysis. Complications of the acute coma included focal motor seizures, which were controlled with carbamazepine, and difficulty with short-term memory. The aggressive use of hemodialysis in conjunction with intravenous sodium phenylacetate, sodium benzoate, and arginine hydrochloride therapy may allow survival in patients after solid-organ transplantation. An acute acquired derangement in extra-central nervous system glutamine metabolism may play a role in the production of hyperammonemia in this illness that resembles Reye syndrome, and, as in other hyperammonemic disorders, the duration and degree of elevation of brain glutamine levels may be the important determining factors in responsiveness to therapy.
Niedergerke, R.; Orkand, R. K.
1966-01-01
1. The overshoot of the action potential of the frog's heart was reduced when external sodium chloride was replaced by sucrose. However, the potential decrement was only 17·3 mV for a 10-fold reduction of sodium as compared with 58 mV expected on the basis of the sodium hypothesis of excitation. 2. Replacement of up to 75% of the external sodium by choline did not reduce the overshoot, provided atropine was present in sufficient concentrations to suppress any parasympathomimetic action. 3. The maximum rate of rise of the action potential markedly declined in low sodium fluids whether sucrose or choline chloride was used to replace sodium chloride. 4. The maximum rate of rise was reduced to only a small extent when external sodium was replaced by lithium. 5. Increasing the intracellular sodium concentration in exchange for lost potassium caused overshoots to decline. The effects resembled those obtained in similar experiments with skeletal muscle fibres (Desmedt, 1953). 6. Action potentials occurring under certain conditions even in the presence of very low external sodium concentrations (≤ 5% normal) also declined in height when the intracellular sodium concentration was increased. 7. The behaviour of the action potential in low external sodium concentrations may be explained by an action of calcium on the excitable membrane. PMID:5921833
METHOD FOR THE RECOVERY AND PURIFICATION OF BERKELIUM
Hulet, E.K.
1959-10-20
A solvent extraction process is described for the separation of berkelium from a mixture of elements in the lanthanum and actinium series of the periodic table. In particular, the mixture of elements is dissolved in 1.0N nitric acid, and the resulting solution is extracted with n-tributyl phosphate containlng a stoichiometric excess of solid sodium bismuthate. The berkelium present in the nitric acid solution is oxidized to the IV oxidation state and is preferentially- extracted into the n-tributyl phosphate. The organic phase, containing berkelium in an oxidized state, is extracted with 0.1N hydrochloric acid solution containing a small quantity- of a reducing agent such as yvdrazine hydrochloride. The berkelium is reduced to the III oxidation state and is extracted into the aqueous phase. The berkelium is then recovered from the aqueous phase.
Study of the effects of Shockwaves on Nano fluids
NASA Astrophysics Data System (ADS)
Shreekhar; Akhil, Mohan; Ram, Sai; Gopaiah, Venkata; Koundinya, Sandeep; Nagaraja, S. R.
2018-02-01
Nanofluids are fluids with nanoparticles dispersed in them. Due to the presence of Nano particles, these fluids exhibit unique properties that can used in various applications such as heat exchangers and in medical fields. However, due to agglomeration, the size of these particle increases, reducing their efficiency. In order to break the agglomeration, we are passing shockwaves in the fluid. Shockwaves theoretically carry energy which can be used to break the agglomerating particles. In this paper, silver nanoparticles were synthesized using silver nitrate. Tri sodium citrate was used as the reducing agent. Shock waves were passed to the fluid containing silver Nano particles. The changes in the Nano fluid was measured by a UV-Vis Spectrophotometer. With each shock passed, the fluid’s absorbance and wavelength peak was measured and compared with Nano fluid without shock.
Potential of glyburide to reduce intracerebral edema in brain metastases.
Boggs, Drexell Hunter; Simard, J Marc; Steven, Andrew; Mehta, Minesh P
2014-04-01
Metastatic disease to the brain results in significant morbidity because of edema in the central nervous system. Current anti-edema therapies are either expensive or result in unwanted long-term side effects. Sulfonylurea receptor 1 (Sur1) is a transmembrane protein that, when activated in the central nervous system, allows for unregulated sodium influx into cells, a process that has been linked to cytotoxic edema formation in ischemic stroke, subarachnoid hemorrhage, spinal cord injury, traumatic brain injury, and, most recently, brain metastases. In this focused review, we explore preclinical data linking Sur1 channel formation to development of edema and reference evidence suggesting that the antidiabetic sulfonylurea drug glyburide (a Sur1 inhibitor) is an inexpensive and well-tolerated agent that can be clinically tested to reduce or prevent malignancy and/or treatment-associated edema.
Meuleman, Yvette; Ten Brinke, Lucia; Kwakernaak, Arjan J; Vogt, Liffert; Rotmans, Joris I; Bos, Willem Jan W; van der Boog, Paul J M; Navis, Gerjan; van Montfrans, Gert A; Hoekstra, Tiny; Dekker, Friedo W; van Dijk, Sandra
2015-08-01
Reducing sodium intake can prevent cardiovascular complications and further decline of kidney function in patients with chronic kidney disease. However, the vast majority of patients fail to reach an adequate sodium intake, and little is known about why they do not succeed. This study aims to identify perceived barriers and support strategies for reducing sodium intake among both patients with chronic kidney disease and health-care professionals. A purposive sample of 25 patients and 23 health-care professionals from 4 Dutch medical centers attended 8 focus groups. Transcripts were analyzed thematically and afterwards organized according to the phases of behavior change of self-regulation theory. Multiple themes emerged across different phases of behavior change, including the patients' lack of practical knowledge and intrinsic motivation, the maladaptive illness perceptions and refusal skills, the lack of social support and feedback regarding disease progression and sodium intake, and the availability of low-sodium foods. The results indicate the need for the implementation of support strategies that target specific needs of patients across the whole process of changing and maintaining a low-sodium diet. Special attention should be paid to supporting patients to set sodium-related goals, strengthening intrinsic motivation, providing comprehensive and practical information (e.g., about hidden salt in products), increasing social support, stimulating the self-monitoring of sodium intake and disease progression, and building a supportive patient-professional relationship that encompasses shared decision making and coaching. Moreover, global programs should be implemented to reduce sodium levels in processed foods, introduce sodium-related product labels, and increase consumer awareness.
Anaphylaxis due to thiopental sodium anesthesia.
Dolovich, J; Evans, S; Rosenbloom, D; Goodacre, R; Rafajac, F O
1980-01-01
Anaphylaxis due to an anesthetic is one type of cardiovascular emergency that can occur during general anesthesia. Anaphylactic reactions to muscle relaxants have been documented. Barbiturates, used as sedatives, are well known to produce cutaneous reactions, but anaphylaxis after their ingestion seems to be rare. Generalized allergic reactions to thiopental sodium during anesthesia are mentioned in the product monograph for Penthothal sodium, and rare case reports of anaphylactic reactions to infused thiopental have appeared, generally in the anesthesiology literature. Documentation of the immunologic responses to thiopental sodium has been limited to the demonstration of an allergic reaction to thiopental by skin testing in some cases. This report describes a woman who, after having tolerated thiopental sodium and other general anesthetics, became sensitive to this agent and had a severe acute reaction at the time of induction of general anesthesia. PMID:6167340
Iodine addition using triiodide solutions
NASA Technical Reports Server (NTRS)
Rutz, Jeffrey A.; Muckle, Susan V.; Sauer, Richard L.
1992-01-01
The study develops: a triiodide solution for use in preparing ground service equipment (GSE) water for Shuttle support, an iodine dissolution method that is reliable and requires minimal time and effort to prepare, and an iodine dissolution agent with a minimal concentration of sodium salt. Sodium iodide and hydriodic acid were both found to dissolve iodine to attain the desired GSE iodine concentrations of 7.5 +/- 2.5 mg/L and 25 +/- 5 mg/L. The 1.75:1 and 2:1 sodium iodide solutions produced higher iodine recoveries than the 1.2:1 hydriodic acid solution. A two-hour preparation time is required for the three sodium iodide solutions. The 1.2:1 hydriodic acid solution can be prepared in less than 5 min. Two sodium iodide stock solutions (2.5:1 and 2:1) were found to dissolve iodine without undergoing precipitation.
Sterility in male animals induced by injection of chemical agents into the vas deferens.
Freeman, C; Coffey, D S
1973-11-01
This study was undertaken to develop a simple non-surgical technic for achieving male sterility. The method induces obstruction in the vas deferens by injecting sclerosing chemical agents through the skin of the scrotum directly into the vas. Previous success in rats using 95% ethanol have been reported. This sutdy used 95% ethanol, 10% silver nitrate, 36% acetic acid, 3.6% formaldehyde, 3% sodium tetradecyl sulfate, 5% sodium morrhuate, 5% potassium permanganate, 3.6% formaldehyde in 90% ethanol, and for controls .9% sodium chloride. 25 or 50 mcl of the agent being tested was injected into each vas deferens of mature Sprague-Dawley rats. 2 weeks after treatment the rats were exposed to continuous mating. All of the rats treated with ethanol, silver nitrate, acetic acid, formaldehyde, and sodium tetradecyl sulfate have remained sterile for 8 months. 33% of those treated with potassium permanganate and 67% of those treated with sodium morrhuate have remained fertile. When the experiment was repeated in dogs using 95% ethanol, 10% silver nitrate, or 3.6% formaldehyde in 90% ethanol (100 or 500 mcl injected through the skin of the scrotum) the same obstructing sclerosis was found and a reduction in size of the vas was visible for approximately 2 cm. No sperm granulomas were found either grossly or microscopically. The method has not be used in humans but injections of methylene blue dye in alcohol have been made in several human autopsy specimens. The dye was contained within the sheath of the vas and penetrated the full thickness of the wall of the vas. The method is believed to be suitable for humans, would avoid post-surgical hemorrhage and infection, would require less equipment, and more rapid accomplishment and lower cost would follow if paramedical personnel could be taught the procudre in less developed countries for mass voluntary sterilizations. The results appear to be permanent. Surgical reversibility has not be determined.
1982-04-23
monolayer A + -t -10 2 where B = 4.01 x 10 cm A = 0.128 and = o/s The data of Rehfeld (17) for the adsorption of sodium dodecyl sulfate has also been...estimates of Aerosol OT and sodium dodecyl sulfate saturation adsorption at the inter- face can be made when the ¢ of the oil-water system and the i of the...Aerosol OT. For sodium dodecyl sulfate , a value of 37.6A2 would be obtained, slightly lower than the value of 43.9A2 obtained at the air surfactant
Formation of pyrophosphate on hydroxyapatite with thioesters as condensing agents
NASA Technical Reports Server (NTRS)
Weber, A. L.
1982-01-01
'Energy-rich' thioesters are shown to act as condensing agents in the formation of pyrophosphate on hydroxyapatite in the presence of water at ambient temperature. The yield of pyrophosphate based on thioester ranges from 2.5% to 11.4% and depends upon the pH and concentration of reactants. Reaction of 0.130 M hydroxyapatite suspended in a solution of 0.08 M sodium phosphate and 0.20 M imidazole hydrochloride (pH 7.0) with 0.10 M N,S-diacetylcysteamine for 6 days gives the highest yield of pyrophosphate (11.4%). Pyrophosphate formation requires the presence of hydroxyapatite, sodium phosphate and the thioester, N,S-diacetylcysteamine. The related thioester, N,S-diacetylcysteine, also yields pyrophosphate in reactions on hydroxyapatite.
[Dentinal hypersensitivity in periodontal disease. Aetiology Aetiology--management].
Andronikaki-Faldani, A; Kamma, I
1988-01-01
The exposure of dentine has a multifactoral aetiology and pain may frequently be elicited by a number of stimuli. Management of dentinal hypersensitivity tends to be empirical because of the lack of knowledge concerning the mechanism of pain transmission through dentine. Nevertheless, whichever theory proves to be correct, occlusion of dentinal tubules would appear an essential prerequisite for an effective desensitising agent. A large number of compounds as well as iontophoresis have been employed in the management of dentinal hypersensitivity. These desensitising agents are: sodium, fluoride, stannous fluoride, sodium monofluorophosphate, strontium chloride, calcium hydroxide, potassium nitrate, silver nitrate, formalin, corticosteroids, resins, varnishes and glass ionomers. The most effective of the compounds mentioned above, are fluorides used as gels, varnishes, mouthwashes or toothpastes, strontium chloride and potassium nitrate.
Effects of maleic acid and uranyl on mercurial diuresis in dogs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nigrovic, V.; Koechel, D.A.; Cafruny, E.J.
1973-01-01
The effects of two nephrotoxic agents were studied in anesthetized dogs undergoing mercurial diuresis. One of the agents, uranyl, accumulates in the kidneys when administered as the acetate salt but does not readily react with sulfhydryl groups. In acute experiments uranyl acetate in doses up to 5 ..mu..mol/kg produced no change in the urinary excretion of sodium or chloride. Uranyl acetate given before the injection of mercury(II) did not reduce the diuretic response to inorganic mercury. The other compound, maleic acid, accumulates in the kidneys and also reacts readily with sulfhydryl groups. The administration of small doses of maleic acidmore » did not change the excretion of sodium but it decreased the excretion of chloride. The administration of maleic acid either before or after the administration of mercury completely abolished the diuretic response. The inhibition occurred without significant changes in urinary pH. Diuretic responses to ethacrynic acid, furosemide, hydrochlorothiazide or acetazolamide were preserved in maleate-treated dogs. Both the lack of any effect of uranyl on mercurial diuresis and the specific inhibition of mercurial diuresis by maleic acid support the presently accepted view that the renal diuretic receptor for mercury(II) has at least one sulfhydryl binding site. Although the inhibition is ascribed to competition between mercury(II) and maleate for binding on the receptor, it is conceivable that the reduction in urinary chloride excretion produced by maleate may be responsible, in part, for refractoriness to mercury(II).« less
Reduction of erosive wear in situ by stannous fluoride-containing toothpaste.
Huysmans, M C D N J M; Jager, D H J; Ruben, J L; Unk, D E M F; Klijn, C P A H; Vieira, A M
2011-01-01
Stannous fluoride (SnF) has been suggested as a dental erosion-preventive agent. The aim of this single-centre, randomized, double-blind, in situ study was to evaluate the effect of toothpastes with SnF in the prevention of erosive enamel wear. A combined split-mouth (extra-oral water or toothpaste brushing) and crossover (type of toothpaste) set-up was used. Twelve volunteers wore palatal appliances containing human enamel samples. Three toothpastes were used, in three consecutive runs, in randomized order: two toothpastes containing SnF (coded M and PE) and one toothpaste containing only sodium fluoride (coded C). On day 1 of each run the appliances were worn for pellicle formation. On days 2-5 the samples were also brushed twice with a toothpaste-water slurry or only water (control). Erosion took place on days 2-5 extra-orally 3 times a day (5 min) in a citric acid solution (pH 2.3). Enamel wear depth was quantified by optical profilometry. The effect of toothpastes was tested using General Linear Modeling. Average erosive wear depth of control samples was 23 μm. Both SnF toothpastes significantly reduced erosive wear: M by 34% (SD 39%) and PE by 26% (SD 25%). The control toothpaste reduced erosive wear non-significantly by 7% (SD 20%). Both SnF-containing toothpastes significantly reduced erosive wear compared to the sodium fluoride toothpaste. We conclude that SnF-containing toothpastes are able to reduce erosive tooth wear in situ. Copyright © 2011 S. Karger AG, Basel.
Arikan, Hakki; Guler, Derya; Birdal, Gurdal; Nalcaci, Serdar; Aykut, Emre; Ozcan, Ceren; Irmak, Rahmi; Banzragch, Munkhtsetseg; Arzu, Velioglu
2013-07-01
Oral sodium phosphate-based laxatives are frequently used for bowel preparation or relief of constipation in some countries. However, these agents are not without risk. Small and clinical insignificant increments on serum phosphorus levels are observed in almost all individuals after use of oral sodium phosphate. Some patients are prone to severe hyperphosphatemia such as elders, those with chronic or acute renal disease and those with poor bowel motility. Severe hyperphosphatemia accompanied with hypocalcemia may be life-threatening in these patients. We present an 18-year-old woman with neuronal intestinal dysplasia who developed symptomatic and severe hyperphosphatemia after bowel preparation with oral sodium phosphate enema. Urgent hemodialysis was performed two times for severe hyperphosphatemia.
Arcand, JoAnne; Jefferson, Katherine; Schermel, Alyssa; Shah, Ferdeela; Trang, Susan; Kutlesa, Daniela; Lou, Wendy
2016-01-01
In 2010, as part of a national sodium reduction strategy, Canada published sodium reduction benchmark targets for packaged foods; however, no evaluation of this policy has occurred. The objective was to evaluate changes in the sodium content of packaged foods, identify categories reduced in sodium and determine the proportion meeting Health Canada’s sodium reduction benchmarks. This was a cross-sectional analysis of Canadian packaged foods in 2010 and 2013 (n=10,487 and n=15,394, respectively). Sodium content was obtained from the Nutrition Facts table. Overall, 16.2% of food categories had significantly reduced sodium levels. The greatest shifts in the distribution of sodium within food categories occurred in (mean ± standard deviation, mg/100g) imitation seafood (602±50 to 444±81, 26.2%, p=0.002), condiments (1309±790 to 1048±620, 19.9%, p=0.005), breakfast cereals (375±26 to 301±242, 19.7%, p=0.001), canned vegetables/legumes (269±156 to 217±180, 19.3%, p<0.001), plain chips (462±196 to 376±198, 18.6% p=0.004), hot cereals (453±141 to 385±155, 15.0%, p=0.011), meat analogues (612±226 to 524±177, 14.4%, p=0.003), canned condensed soup (291±62 to 250±57, 14.1%, p=0.003), and sausages and wieners (912±219 to 814±195, 10.7%, p=0.012). The proportion of foods meeting at least one of the three phases of the sodium reduction benchmark targets slightly increased (51.4% to 58.2%) and the proportion exceeding maximum benchmark levels decreased (25.2% to 20.8%). These data provide a critical evaluation of changes in sodium levels in the Canadian food supply. Although progress in reducing sodium in packaged foods is evident, the food industry needs to continue efforts in reducing the sodium in the foods they produce. PMID:27113326
Arcand, JoAnne; Jefferson, Katherine; Schermel, Alyssa; Shah, Ferdeela; Trang, Susan; Kutlesa, Daniela; Lou, Wendy; L'Abbe, Mary R
2016-06-01
In 2010, as part of a national sodium reduction strategy, Canada published sodium reduction benchmark targets for packaged foods; however, no evaluation of this policy has occurred. The objective was to evaluate changes in the sodium content of packaged foods, identify categories reduced in sodium, and determine the proportion meeting Health Canada's sodium reduction benchmarks. This was a cross-sectional analysis of Canadian packaged foods in 2010 and 2013 (n = 10 487 and n = 15 394, respectively). Sodium content was obtained from the Nutrition Facts table. Overall, 16.2% of food categories had significantly reduced sodium levels. The greatest shifts in the distribution of sodium within food categories occurred in imitation seafood (mean ± SD, mg/100 g; 602 ± 50 to 444 ± 81, 26.2%, p = 0.002), condiments (1309 ± 790 to 1048 ± 620, 19.9%, p = 0.005), breakfast cereals (375 ± 26 to 301 ± 242, 19.7%, p = 0.001), canned vegetables/legumes (269 ± 156 to 217 ± 180, 19.3%, p < 0.001), plain chips (462 ± 196 to 376 ± 198, 18.6% p = 0.004), hot cereals (453 ± 141 to 385 ± 155, 15.0%, p = 0.011), meat analogues (612 ± 226 to 524 ± 177, 14.4%, p = 0.003), canned condensed soup (291 ± 62 to 250 ± 57, 14.1%, p = 0.003), and sausages and wieners (912 ± 219 to 814 ± 195, 10.7%, p = 0.012). The proportion of foods meeting at least 1 of the 3 phases of the sodium reduction benchmark targets slightly increased (51.4% to 58.2%) and the proportion exceeding maximum benchmark levels decreased (25.2% to 20.8%). These data provide a critical evaluation of changes in sodium levels in the Canadian food supply. Although progress in reducing sodium in packaged foods is evident, the food industry needs to continue efforts in reducing the sodium in the foods they produce.
Propofol-sodium thiopental admixture reduces pain on injection.
Kau, Y C; Wu, R S; Cheng, K S
2000-03-01
Propofol injection associated with a high incidence of pain is well known. Propofol and sodium thiopental mixture has recently been reported to be used for cost saving and able to reduce pain on injection. This prospective, randomized, double blind trial was designed to compare the efficacy of different percentages of propofol and sodium thiopental mixture in minimizing propofol injection pain. 146 ASA class 1 patients were assigned to seven groups (pure propofol, pure sodium thiopental, and propofol premixed with 10%, 20%, 30%, 40%, and 50% of sodium thiopental). The intensity of pain was graded and recorded as severe, moderate, mild and no pain according to the response of the patients to the injection. The intensity of injection pain was significantly greater for pure propofol than the others while it was not significantly different among the other groups in comparison. Sodium thiopental, when added to propofol, can significantly reduce propofol injection pain. This attenuation effect was noted even with as low as 10 volume % of sodium thiopental.
Ayala, Carma; Gillespie, Cathleen; Cogswell, Molly; Keenan, Nora L; Merritt, Robert
2012-07-01
The authors estimated the prevalence of taking action to reduce intake related to actual sodium consumption among 2970 nonpregnant US adults 18 years and older with self-reported hypertension by using data from the National Health and Nutrition Examination Survey 1999-2004. Adjusted multiple linear regression assessed differences in mean sodium intake by action status. A total of 60.5% of hypertensive adults received advice to reduce sodium intake. Of this group, 83.7% took action to reduce sodium. Action to reduce sodium intake differed significantly by age, race/ethnicity, and use of an antihypertensive. The mean (±standard error) sodium intake among hypertensive adults was 3341±37 mg and differed by sex, age, race/ethnicity, education, and body mass index (P<.05), with the lowest intake among adults aged 65 years and older (2780±48 mg). Mean intake did not differ significantly by action status either overall or by subgroup except for one age category: among patients 65 years and older, mean intake was significantly lower among those who took action (2715±63 mg) than among those who did not (3401±206 mg; P=.0124). Regardless of action, mean intake was well above 1999-2004 recommendations for daily sodium intake and about twice as high as the current recommendation for hypertensive adults (1500 mg). © 2012 Wiley Periodicals, Inc.
Coulometric sodium chloride removal system with Nafion membrane for seawater sample treatment.
Grygolowicz-Pawlak, Ewa; Sohail, Manzar; Pawlak, Marcin; Neel, Bastien; Shvarev, Alexey; de Marco, Roland; Bakker, Eric
2012-07-17
Seawater analysis is one of the most challenging in the field of environmental monitoring, mainly due to disparate concentration levels between the analyte and the salt matrix causing interferences in a variety of analytical techniques. We propose here a miniature electrochemical sample pretreatment system for a rapid removal of NaCl utilizing the coaxial arrangement of an electrode and a tubular Nafion membrane. Upon electrolysis, chloride is deposited at the Ag electrode as AgCl and the sodium counterions are transported across the membrane. This cell was found to work efficiently at potentials higher than 400 mV in both stationary and flow injection mode. Substantial residual currents observed during electrolysis were found to be a result of NaCl back diffusion from the outer side of the membrane due to insufficient permselectivity of the Nafion membrane. It was demonstrated that the residual current can be significantly reduced by adjusting the concentration of the outer solution. On the basis of ion chromatography results, it was found that the designed cell used in flow injection electrolysis mode reduced the NaCl concentration from 0.6 M to 3 mM. This attempt is very important in view of nutrient analysis in seawater where NaCl is a major interfering agent. We demonstrate that the pretreatment of artificial seawater samples does not reduce the content of nitrite or nitrate ions upon electrolysis. A simple diffusion/extraction steady state model is proposed for the optimization of the electrolysis cell characteristics.
Dietary Sodium and Blood Pressure: How Low Should We Go?
Van Horn, Linda
2015-01-01
Sodium intake in the United States exceeds recommended amounts across all age, gender and ethnic groups. National dietary guidelines advocate reduced intake by at least 1,000mg per day or more, but whether there is population-wide benefit from further reductions to levels of 1500mg per day remains controversial. A brief review of current evidence-based dietary guidelines is provided and key prospective, randomized studies that report dietary and urinary sodium data are summarized. Dietary sources of sodium and eating patterns that offer nutritiously sound approaches to nutrient dense, reduced sodium intake are compared. No studies suggest that high sodium intake at the levels of the population's current diet is optimal. On the contrary, national and international evidence and systematic reviews consistently recommend reducing sodium intake overall, generally by 1000mg/day. Recommendations to reduce intakes to 2400mg/d are generally accepted as beneficial. Whether further reductions to 1500mg/d are useful, feasible and safe among specific subgroups in the population who are at increased risk of hypertension or stroke remains controversial and requires individualized consideration by patients and their health care providers. Copyright © 2015 Elsevier Inc. All rights reserved.
Inatsu, Yasuhiro; Bari, Md Latiful; Kawasaki, Susumu; Isshiki, Kenji; Kawamoto, Shinichi
2005-02-01
Efficacy of acidified sodium chlorite for reducing the population of Escherichia coli O157:H7 pathogens on Chinese cabbage leaves was evaluated. Washing leaves with distilled water could reduce the population of E. coli O157:H7 by approximately 1.0 log CFU/g, whereas treating with acidified chlorite solution could reduce the population by 3.0 log CFU/g without changing the leaf color. A similar level of reduction was achieved by washing with sodium chlorite solution containing various organic acids. However, acidified sodium chlorite in combination with a mild heat treatment reduced the population by approximately 4.0 log CFU/g without affecting the color, but it softened the leaves. Moreover, the efficacy of the washing treatment was similar at low (4 degrees C) and room (25 degrees C) temperatures, indicating that acidified sodium chloride solution could be useful as a sanitizer for surface washing of fresh produce.
Efficacy of chemical sterilization and storage conditions of gutta-percha cones.
da Motta, P G; de Figueiredo, C B; Maltos, S M; Nicoli, J R; Ribeiro Sobrinho, A P; Maltos, K L; Carvalhais, H P
2001-09-01
The objective of the present study was to assess the efficacy of 2.5% sodium hypochlorite and 2.2% glutaraldehyde ('Cidex') as sterilizing agents for gutta-percha cones. The efficacy of storage of gutta-percha cones in the presence or absence of paraformaldehyde was also evaluated. Gutta-percha cones artificially contaminated with a suspension of Bacillus stearothermophilus (ATCC/7953) were treated with either 2.2% glutaraldehyde for 10, 15, 30 and 60 min and 10 and 12 h, or 2.5% sodium hypochlorite for 5, 10 and 15 min. The cones were then incubated in thioglycollate medium for the determination of microbial growth. In parallel, additional sterile gutta-percha cones were stored in sealed containers with or without paraformaldehyde tablets for 30 days. The containers were opened 30 min a day and exposed to the environment of a functioning dental clinic. Twelve cones were removed weekly from the containers to determine whether contamination had occurred. The results showed that 2.5% sodium hypochlorite was effective after 5, 10 and 15 min, whereas 10 and 12 h contact with 2.2% glutaraldehyde was necessary to obtain sterilization. There was no contamination of the gutta-percha cones when stored with or without paraformaldehyde. Sodium hypochlorite (2.5%) and 2.2% glutaraldehyde ('Cidex') proved to be effective as sterilizing agents for gutta-percha cones, with sodium hypochlorite requiring shorter periods of use. No difference was observed between the two methods of cone storage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hovanec, J.W.; Albizo, J.M.; Henderson, V.D.
1994-08-01
The use of concentrated mixtures of hydrogen peroxide and sodium hydroxide for the chemical neutralization (detoxification) of VX has been examined. The reaction of VX in 4 N sodium hydroxide/11% hydrogen peroxide is rapid and exothermic. Care must be taken to avoid temperature increases which can induce peroxide decomposition. This can be done by controlling the addition of VX to the reaction. (Author).
Akchata, Suman; Lavanya, K; Shivanand, Bhushan
2017-01-01
Context: Decontamination of various working surfaces with sodium pertechnetate minor spillage is essential for maintaining good radiation safety practices as well as for regulatory compliance. Aim: To observe the influences of decontaminating agents and swipe materials on different type of surfaces used in nuclear medicine laboratory work area wet spilled with 99m-technetium (99mTc) sodium pertechnetate. Settings and Design: Lab-simulated working surface materials. Experimental study design. Materials and Methods: Direct decontamination method on dust-free lab simulated new working surfaces [stainless steel, polyvinyl chloride (PVC), Perspex, resin] using four decontaminating agents [tap water, soap water (SW), Radiacwash, and spirit] with four different swipe material [cotton, tissue paper (TP), Whatman paper (WP), adsorbent sheet (AS)] was taken 10 samples (n = 10) for each group. Statistical Analysis: Parametric test two-way analysis of variance is used with significance level of 0.005, was used to evaluate statistical differences between different group of decontaminating agent and swipe material, and the results are expressed in mean ± SD. Results: Decontamination factor is calculated after five cleaning for each group. A total of 160 samples result calculated using four decontaminating agent (tap water, SW, Radiacwash, and spirit), four swipe material (cotton, TP, WP, and AS) for commonly used surface (stainless steel, PVC, Perspex, resin) using direct method by 10 samples (n = 10) for each group. Conclusions: Tap water is the best decontaminating agent compared with SW, Radiac wash and spirit for the laboratory simulated stainless steel, PVC, and Perspex surface material, whereas in case of resin surface material, SW decontaminating agent is showing better effectiveness. Cotton is the best swipe material compared to WP-1, AS and TP for the stainless steel, PVC, Perspex, and resin laboratory simulated surface materials. Perspex and stainless steel are the most suitable and recommended laboratory surface material compared to PVC and resin in nuclear medicine. Radiacwash may show better result for 99mTc labelled product and other radionuclide contamination on the laboratory working surface area. PMID:28680198
Busari, Abdulwasiu A; Adejare, Abdullahi A; Shodipe, Abiodun F; Oduniyi, Oludaisi A; Ismail-Badmus, Khadijah B; Oreagba, Ibrahim A
2018-06-26
Cisplatin is an anti-cancer drug that causes nephrotoxicity and oxidative stress. Extracts of Nigella sativa is nephroprotective. Vitamin E is also a potent antioxidant. This study sought to determine a possible synergistic effect of administering the two agents prior to cisplatin use on nephrotoxicity and oxidative stress. 48 male Wistar rats were randomly divided into 6 groups of 8 rats each. Group I served as the control. Group II received cisplatin without any treatment for 6 days. Groups III, IV, V and VI received 100 mg/kg Nigella sativa (NS), 200 mg/kg NS, 100 mg/kg Vitamin E and 200 mg/kg NS+100 mg/kg Vitamin E respectively for 5 days prior to 6 days administration of cisplatin. On the last day of the experiment, all the animals were sacrificed and serum samples collected for analysis. Cisplatin administration caused a significant increase in creatinine level (p<0.01), urea level (p<0.01), sodium concentration and malondialdehyde level (p<0.001). Pre-administration with NS caused a significant reduction in creatinine level (p<0.001), urea level (p<0.001), sodium concentration (p<0.001) and malondialdehyde (p<0.01) level. Pre-administration with vitamin E caused a significant reduction in creatinine level (p<0.001), urea level (p<0.01), sodium concentration (p<0.001) and malondialdehyde level. They both also caused a significant increase in superoxide dismutase, reduced glutathione and catalase (CAT) levels. The combination of NS and vitamin E however did not show significant synergistic effects. These results suggest that even though pre-administration of the two agents protect against renal toxicity and oxidative stress, the effects are however not collaborative. © Georg Thieme Verlag KG Stuttgart · New York.
Polidori, C; Ciccocioppo, R; Epstein, A N; de Caro, G; Massi, M
1994-11-01
The present study investigated the effect of 24-h continuous ICV infusion of four different tachykinins on the enhanced need-free sodium intake induced by previous repeated sodium depletions in female rats. Female rats were employed because, in response to sodium depletions, they develop a higher need-free sodium intake than male rats. The following tachykinins were used: eledoisin, substance P (SP), [Sar9,Met(O2)11]SP and [Asp5,6,MePhe8]SP(5-11), also referred to as NH2-senktide, all at the same doses of 300 or 600 ng/h x 24 h. Food pellets, water, and 3% NaCl sodium solution were freely available. Eledoisin and NH2-senktide were more potent than SP in reducing the need-free sodium intake. On the other hand, [Sar9,Met(O2)11]SP had no effect. None of the tachykinins employed completely blocked the intake. Water intake was reduced, but this reduction was apparently a consequence of reduced intake of hypertonic sodium chloride solution, because at the same doses TKs did not inhibit water intake in a single-bottle test. Food intake remained unchanged at either dose used. These findings confirm previous studies in which pulse injection of the same drugs potently inhibited sodium intake. They also demonstrate that tachykinins endowed with high affinity for the NK3 receptor are the most potent in inhibiting sodium intake. Furthermore, these findings indicate that the tachykinins reduce the need-free sodium intake only during the infusion period, indicating that in these conditions they do not evoke either aversion for salt, or toxic consequences in the follow-up period.
Action of insecticidal N-alkylamides at site 2 of the voltage-sensitive sodium channel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ottea, J.A.; Payne, G.T.; Soderlund, D.M.
1990-08-01
Nine synthetic N-alkylamides were examined as inhibitors of the specific binding of ({sup 3}H)batrachotoxinin A 20{alpha}-benzoate (({sup 3}H)BTX-B) to sodium channels and as activators of sodium uptake in mouse brain synaptoneurosomes. In the presence of scorpion (Leiurus quinquestriatus) venom, the six insecticidal analogues were active as both inhibitors of ({sup 3}H)BTX-B binding and stimulators of sodium uptake. These findings are consistent with an action of these compounds at the alkaloid activator recognition site (site 2) of the voltage-sensitive sodium channel. The three noninsecticidal N-alkylamides also inhibited ({sup 3}H)BTX-B binding but were ineffective as activators of sodium uptake. Concentration-response studies revealedmore » that some of the insecticidal amides also enhanced sodium uptake through a second, high-affinity interaction that does not involve site 2, but this secondary effect does not appear to be correlated with insecticidal activity. The activities of N-alkylamides as sodium channel activators were influenced by the length of the alkenyl chain and the location of unsaturation within the molecule. These results further define the actions of N-alkylamides on sodium channels and illustrate the significance of the multiple binding domains of the sodium channel as target sites for insect control agents.« less
NASA Astrophysics Data System (ADS)
Arneli; Safitri, Z. F.; Pangestika, A. W.; Fauziah, F.; Wahyuningrum, V. N.; Astuti, Y.
2017-02-01
This research aims to study the influence of activating agents to produce rice husk based-carbon with high adsorption capacity and efficiency for either hazardous organic molecules or heavy metals which are unfriendly for the environment. Firstly, rice husk was burned by pyrolysis at different temperatures to produce rice husk-based carbon. To improve its ability as an adsorbent, carbon was treated with activating agents, namely, H3PO4 and KOH at room and high temperature (420 °C). The performance of carbon was then tested by contacting it with surfactant (SLS). Finally, the surfactant-modified active carbon was applied for chrome metal removal. The result shows that activation of carbon using phosphate acid (H3PO4) was more effective than potassium hydroxide (KOH) conducted at high temperature to adsorb sodium lauryl sulfate (SLS) and chrome metal with the adsorption capacity 1.50 mgg-1 and 0.375 mgg-1, respectively.
Adnan, Zaina
2017-09-01
The month of Ramadan represents a golden opportunity for better management of patients with diabetes not only during Ramadan month, but also through the entire year. Pre Ramadan period is crucial for evaluating and preparing patients with diabetes intending to Fast Ramadan. The risk stratification categories should take into consideration patients with diabetes having specific conditions such as nephrotic syndrome who are predisposed to thrombosis independent to their estimated glomerular filtration rate and glycated haemoglobin. Furthermore, population-specific conditions such as nomadic Bedouins living in remote areas should be considered as part of the very high risk category for fasting Ramadan. Published data regarding the use of sodium glucose co-transporter 2 inhibitors during Ramadan is very limited. Dapagliflozin was the only agent studied during Ramadan. Therefore, it is suggested to categorize this group of agents differently from other agents such as metformin and incretin based therapy studied vastly during Ramadan. Copyright © 2017 Elsevier B.V. All rights reserved.
Huber, Regina; Schoenlechner, Regine
2017-05-01
Fresh egg waffles are continuously baked in tunnel baking ovens in industrial scale. Waffles that partly or fully stick to the baking plates cause significant product loss and increased costs. The aim of this study was, therefore, to investigate the effect of different recipe ingredients on the sticking behavior of waffles. In this second part, ingredients investigated were different leavening agents (sodium acid pyrophosphate, ammonium bicarbonate, magnesium hydroxide carbonate, or monocalcium phosphate), different fat sources (rapeseed oil, cocos fat, butter, or margarine), and different water sources (tap water 12°dH and distilled water). Within the different types of fats, solid fats with high amount of short-chain fatty acids (cocos fat or butter) decreased the number of sticking waffles compared to liquid oils (rapeseed oil). Regarding leavening agents, magnesium hydroxide carbonate and ammonium bicarbonate were superior to sodium acid pyrophosphate or monocalcium phosphate. Between the two water sources, effects were small.
Enhanced Dissolution of Platinum Group Metals Using Electroless Iron Deposition Pretreatment
NASA Astrophysics Data System (ADS)
Taninouchi, Yu-ki; Okabe, Toru H.
2017-12-01
In order to develop a new method for efficiently recovering platinum group metals (PGMs) from catalyst scraps, the authors investigated an efficient dissolution process where the material was pretreated by electroless Fe deposition. When Rh-loaded alumina powder was kept in aqua regia at 313 K (40 °C) for 30 to 60 minutes, the Rh hardly dissolved. Meanwhile, after electroless Fe plating using a bath containing sodium borohydride and potassium sodium tartrate as the reducing and complexing agents, respectively, approximately 60 pct of Rh was extracted by aqua regia at 313 K (40 °C) after 30 minutes. Furthermore, when heat treatment was performed at 1200 K (927 °C) for 60 minutes in vacuum after electroless plating, the extraction of Rh approached 100 pct for the same leaching conditions. The authors also confirmed that the Fe deposition pretreatment enhanced the dissolution of Pt and Pd. These results indicate that an effective and environmentally friendly process for the separation and extraction of PGMs from catalyst scraps can be developed utilizing this Fe deposition pretreatment.
Peculiarities of Crystallization of the Restriction Endonuclease EcoRII
NASA Technical Reports Server (NTRS)
Karpove, Elizaveta; Pusey, M.arc L.
1998-01-01
Nucleases interfere with most standard molecular biology procedures. We have purified and crystallized the restriction endonuclease EcoRII, which belongs to the type II of restriction- modification enzyme, to study the protein crystallization process using a "non standard" macromolecule. A procedure for the purification of EcoRII was developed and 99% pure protein as determined by SDS PAGE electrophoresis obtained. Light scattering experiments were performed to assist in screening protein suitable crystallization conditions. The second virial coefficient was determined as a function of precipitating salt concentration, using sodium chloride, ammonium sulfate, and sodium sulfate. Small (maximum size approximately 0.2 mm) well shaped crystals have been obtained. Larger poorly formed crystals (ca 0.5 mm) have also been obtained, but we have been unable to mount them for diff-raction analysis due to their extreme fragility. Crystallization experiments with PEG have shown that using this precipitant, the best crystals are obtained from slightly over-saturated solutions. Use of higher precipitant concentration leads to dendritic crystal formation. EcoRII is difficult to solubilize and meticulous attention must be paid to the presence of reducing agents.
Pure keratin membrane and fibers from chicken feather.
Ma, Bomou; Qiao, Xue; Hou, Xiuliang; Yang, Yiqi
2016-08-01
In this research, keratin was extracted from the disposable chicken feather using l-cysteine as reducing agent. Then, it was re-dissolved in the sodium carbonate-sodium bicarbonate buffer, and the pure keratin membrane and fiber were fabricated by doctor-blade casting process and wet spinning method, respectively. Scanning electron microscopy (SEM), fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD) and thermogravimetric analysis (TGA) were used to characterize the chemical and physical properties of resulting powder, membrane and fiber. Compared with the raw chicken feather, the regenerated keratin materials retain its chemical structure and thermal stability, their relative crystallinity is a little different depend on the shaping method, which leads to the difference in moisture regain. The mechanical results show that tensile strength of the keratin membrane researches 3.5MPa, have potential application in biomedical fields. However, the keratin fiber presents low tenacity, i.e. 0.5cN/dtex, this problem should be solved in order to apply the new fiber in textile and material science. Copyright © 2016 Elsevier B.V. All rights reserved.
Zablocki, Jeff A; Elzein, Elfatih; Li, Xiaofen; Koltun, Dmitry O; Parkhill, Eric Q; Kobayashi, Tetsuya; Martinez, Ruben; Corkey, Britton; Jiang, Haibo; Perry, Thao; Kalla, Rao; Notte, Gregory T; Saunders, Oliver; Graupe, Michael; Lu, Yafan; Venkataramani, Chandru; Guerrero, Juan; Perry, Jason; Osier, Mark; Strickley, Robert; Liu, Gongxin; Wang, Wei-Qun; Hu, Lufei; Li, Xiao-Jun; El-Bizri, Nesrine; Hirakawa, Ryoko; Kahlig, Kris; Xie, Cheng; Li, Cindy Hong; Dhalla, Arvinder K; Rajamani, Sridharan; Mollova, Nevena; Soohoo, Daniel; Lepist, Eve-Irene; Murray, Bernard; Rhodes, Gerry; Belardinelli, Luiz; Desai, Manoj C
2016-10-03
Late sodium current (late I Na ) is enhanced during ischemia by reactive oxygen species (ROS) modifying the Na v 1.5 channel, resulting in incomplete inactivation. Compound 4 (GS-6615, eleclazine) a novel, potent, and selective inhibitor of late I Na , is currently in clinical development for treatment of long QT-3 syndrome (LQT-3), hypertrophic cardiomyopathy (HCM), and ventricular tachycardia-ventricular fibrillation (VT-VF). We will describe structure-activity relationship (SAR) leading to the discovery of 4 that is vastly improved from the first generation late I Na inhibitor 1 (ranolazine). Compound 4 was 42 times more potent than 1 in reducing ischemic burden in vivo (S-T segment elevation, 15 min left anteriorior descending, LAD, occlusion in rabbits) with EC 50 values of 190 and 8000 nM, respectively. Compound 4 represents a new class of potent late I Na inhibitors that will be useful in delineating the role of inhibitors of this current in the treatment of patients.
Study on the removal of iron impurities in methanesulfonic acid tin plating bath
NASA Astrophysics Data System (ADS)
Hou-li, LIU; Jian-Jun, CHEN; Hong-Liang, PAN
2018-03-01
This thesis investigated the the influence of sodium sulfite as reducing agent on the recovery rate of tin ion. The approach is that HZ016 type cation exchange resin was used to adsorb Sn2+ and Fe2+ in electroplated tin solution first. After adsorption, the resin was removed by sulfuric acid, which was added with NaOH to adjust pH value to form precipitation and separate tin. X-ray diffraction (XRD) and energy spectrum (EDS) method were used to analyze the composition of the precipitates adjusted by pH. The results show that when the mass ratio of resin to bath is 1:2, the adsorption efficiency of resin reaches 98.3% and 97.1% respectively, and the elution efficiency of tin and iron reaches 95.1% and 94% respectively when the mass ratio of resin to eluent sulfuric acid is 1:4. Sodium sulfite was added to increase the efficiency of tin recovery by 8.1%. EDS and XRD atlas showed that after pH regulation, the main composition of the filtration precipitation was the hydroxides of tin.
Uptake of 2, 4-Dichlorophenoxyacetic acid by Pseudomonas fluorescens
Wedemeyer, G.A.
1966-01-01
Factors influencing the uptake of the sodium salt of 2,4-dichlorophenoxyacetic acid (2,4-D), under conditions in which no net metabolism occurred, were investigated in an effort to determine both the significance of “nonmetabolic” uptake as a potential agent in reducing pesticide levels and the mechanisms involved. Uptake of 2,4-D was affected by pH, temperature, and the presence of other organic and inorganic compounds. Uptake was more pronounced at pH values less than 6, which implies that there may be some interaction between charged groups on the cell and the ionized carboxyl group of 2,4-D. Active transport, carriermediated diffusion, passive diffusion, and adsorption were considered as possible mechanisms. Though uptake was inhibited by glucose, sodium azide, and fluorodinitrobenzene (but not by uranylion), 2,4-D was not accumulated against a concentration gradient, a necessary consequence of an active transport system, nor was isotope counterflow found to occur. Thus, carrier-mediated diffusion was finally precluded, implying that uptake probably occurs by a two-step process: sorption onto the cell wall followed by passive diffusion into the cytoplasm.
Uptake of 2,4-dichlorophenoxyacetic acid by Pseudomonas fluorescens
Wedemeyer, Gary
1966-01-01
Factors influencing the uptake of the sodium salt of 2,4-dichlorophenoxyacetic acid (2,4-D), under conditions in which no net metabolism occurred, were investigated in an effort to determine both the significance of “non-metabolic” uptake as a potential agent in reducing pesticide levels and the mechanisms involved. Uptake of 2,4-D was affected by pH, temperature, and the presence of other organic and inorganic compounds. Uptake was more pronounced at pH values less than 6, which implies that there may be some interaction between charged groups on the cell and the ionized carboxyl group of 2,4-D. Active transport, carrier-mediated diffusion, passive diffusion, and adsorption were considered as possible mechanisms. Though uptake was inhibited by glucose, sodium azide, and fluorodinitrobenzene (but not by uranyl ion), 2,4-D was not accumulated against a concentration gradient, a necessary consequence of an active transport system, nor was isotope counterflow found to occur. Thus, carrier-mediated diffusion was finally precluded, implying that uptake probably occurs by a two-step process: sorption onto the cell wall followed by passive diffusion into the cytoplasm.
NASA Astrophysics Data System (ADS)
Whitacre, Ryan John
In the field of renewable materials, natural fiber composites demonstrate the capacity to be a viable structural material. When normalized by density, flax fiber mechanical properties are competitive with E-glass fibers. However, the hydrophilic nature of flax fibers reduces the interfacial bond strength with polymer thermosets, limiting composite mechanical properties. Corn zein protein was selected as a natural bio-based coupling agent because of its combination of hydrophobic and hydrophilic properties. Zein was deposited on the surface of flax, which was then processed into unidirectional composite. The mechanical properties of zein treated samples where measured and compared against commonly utilized synthetic treatments sodium hydroxide and silane which incorporate harsh chemicals. Fourier transform infrared spectroscopy, chemical analysis, and scanning electron microscopy were also used to determine analyze zein treatments. Results demonstrate the environmentally friendly zein treatment successfully increased tensile strength 8%, flexural strength 17%, and shear strength 30% compared to untreated samples.
Construction of a Hypervirulent and Specific Mycoinsecticide for Locust Control
Fang, Weiguo; Lu, Hsiao-Ling; King, Glenn F.; St. Leger, Raymond J.
2014-01-01
Locusts and grasshoppers (acridids) are among the worst pests of crops and grasslands worldwide. Metarhizium acridum, a fungal pathogen that specifically infects acridids, has been developed as a control agent but its utility is limited by slow kill time and greater expense than chemical insecticides. We found that expression of four insect specific neurotoxins improved the efficacy of M. acridum against acridids by reducing lethal dose, time to kill and food consumption. Coinoculating recombinant strains expressing AaIT1(a sodium channel blocker) and hybrid-toxin (a blocker of both potassium and calcium channels), produced synergistic effects, including an 11.5-fold reduction in LC50, 43% reduction in LT50 and a 78% reduction in food consumption. However, specificity was retained as the recombinant strains did not cause disease in non-acridids. Our results identify a repertoire of toxins with different modes of action that improve the utility of fungi as specific control agents of insects. PMID:25475694
Stojicic, Sonja; Zivkovic, Slavoljub; Qian, Wei; Zhang, Hui; Haapasalo, Markus
2010-09-01
Sodium hypochlorite is the most commonly used endodontic irrigant because of its antimicrobial and tissue-dissolving activity. The aim of this study was to evaluate and compare the effects of concentration, temperature, and agitation on the tissue-dissolving ability of sodium hypochlorite. In addition, a hypochlorite product with added surface active agent was compared with conventional hypochlorite solutions. Three sodium hypochlorite solutions from two different manufacturers in concentrations of 1%, 2%, 4%, and 5.8% were tested at room temperature, 37 degrees C, and 45 degrees C with and without agitation by ultrasonic and sonic energy and pipetting. Distilled and sterilized tap water was used as controls. Pieces of bovine muscle tissue (68 +/- 3 mg) were placed in 10 mL of each solution for five minutes. In selected samples, agitation was performed for one, two, or four 15-second periods per each minute. The tissue specimens were weighed before and after treatment, and the percentage of weight loss was calculated. The contact angle on dentin of the three solutions at concentrations of 1% and 5.8% was measured. Weight loss (dissolution) of the tissue increased almost linearly with the concentration of sodium hypochlorite. Higher temperatures and agitation considerably enhanced the efficacy of sodium hypochlorite. The effect of agitation on tissue dissolution was greater than that of temperature; continuous agitation resulted in the fastest tissue dissolution. Hypochlorite with added surface active agent had the lowest contact angle on dentin and was most effective in tissue dissolution in all experimental situations. Optimizing the concentration, temperature, flow, and surface tension can improve the tissue-dissolving effectiveness of hypochlorite even 50-fold. Copyright 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohd Zaheruddin, K., E-mail: zaheruddin@unimap.edu.my; Rahmat, A., E-mail: azmirahmat@unimap.edu.my; Shamsul, J. B., E-mail: sbaharin@unimap.edu.my
Cobalt-hydroxyapatite (Co-HA) composites was successfully prepared by simple electroless deposition process of Co on the surface of hydroxyapatite (HA) particles. Co deposition was carried out in an alkaline bath with sodium hypophosphite as a reducing agent. The electroless process was carried out without sensitization and activation steps. The deposition of Co onto HA was characterized by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The Co-HA composite powder was compacted and sintered at 1250°C. The Co particles were homogeneously dispersed in the HA matrix after sintering and the mechanical properties of composites was enhanced to 100 % with 3more » % wt Co and gradually decreased at higher Co content.« less
PROCESS FOR THE RECOVERY OF PLUTONIUM
Ritter, D.M.
1959-01-13
An improvement is presented in the process for recovery and decontamination of plutonium. The carrier precipitate containing plutonium is dissolved and treated with an oxidizing agent to place the plutonium in a hexavalent oxidation state. A lanthanum fluoride precipitate is then formed in and removed from the solution to carry undesired fission products. The fluoride ions in the reniaining solution are complexed by addition of a borate sueh as boric acid, sodium metaborate or the like. The plutonium is then reduced and carried from the solution by the formation of a bismuth phosphate precipitate. This process effects a better separation from unwanted flssion products along with conccntration of the plutonium by using a smaller amount of carrier.
Sodium efflux from voltage clamped squid giant axons.
Landowne, D
1977-01-01
1. The efflux of radioactive sodium was measured from squid axons during simultaneous voltage clamp experiments such that it was possible to determine the efflux of sodium associated with a measured voltage clamp current. 2. The extra efflux of sodium associated with voltage clamp pulses increased linearly with the magnitude of the depolarization above 40 mV. A 100 mV pulse of sufficient duration to produce all of the sodium current increased the rate constant of efflux by about 10(-6). 3. Application of 100 nM tetrodotoxin eliminated the sodium current and the extra efflux of radioactive sodium. 4. Cooling the axon increased the extra efflux/voltage clamp pulse slightly with a Q10 of 1/1-1. On the same axons cooling increased the integral of the sodium current with a Q10 of 1/1-4. 5. Replacing external sodium with Tris, dextrose or Mg-mannitol reduced the extra efflux of sodium by about 50%. The inward sodium current was replaced with an outward current as expected. 6. Replacing external sodium with lithium also reduced the extra efflux by about 50% but the currents seen in lithium were slightly larger than those in sodium. 7. The effect of replacing external sodium was not voltage dependent. Cooling reduced the effect so that there was less reduction of efflux on switching to Tris ASW in the cold than in the warm. 8. The extra efflux of sodium into sodium-free ASW is approximately the same as the integral of the sodium current. Adding external sodium produces a deviation from the independence principle such that there is more exchange of sodium than predicted. Such a deviation from prediction was noted by Hodgkin & Huxley (1952c). 9. Using the equations of Hodgkin & Huxley (1952c) modified to include the deviation from independence reported in this paper and its temperature dependence, one can predict the temperature dependence of the sodium efflux associated with action potentials and obtain much better agreement than is possibly without these phenomena. 10. This deviation from independence in the sodium fluxes is the type expected from some kind of mixing and binding of sodium within the membrane phase. PMID:856999
Lustosa, Ana Karina Marques Fortes; de Jesus Oliveira, Antônia Carla; Quelemes, Patrick Veras; Plácido, Alexandra; da Silva, Francilene Vieira; Oliveira, Irisdalva Sousa; de Almeida, Miguel Peixoto; Amorim, Adriany das Graças Nascimento; Delerue-Matos, Cristina; de Oliveira, Rita de Cássia Meneses; da Silva, Durcilene Alves; Eaton, Peter; de Almeida Leite, José Roberto de Souza
2017-11-12
Silver nanoparticles have been shown to possess considerable antibacterial activity, but in vivo applications have been limited due to the inherent, but low, toxicity of silver. On the other hand, silver nanoparticles could provide cutaneous protection against infection, due to their ability to liberate silver ions via a slow release mechanism, and their broad-spectrum antimicrobial action. Thus, in this work, we describe the development of a carboxymethyl cellulose-based hydrogel containing silver nanoparticles. The nanoparticles were prepared in the hydrogel in situ, utilizing two variants of cashew gum as a capping agent, and sodium borohydride as the reducing agent. This gum is non-toxic and comes from a renewable natural source. The particles and gel were thoroughly characterized through using rheological measurements, UV-vis spectroscopy, nanoparticles tracking analysis, and transmission electron microscopy analysis (TEM). Antibacterial tests were carried out, confirming antimicrobial action of the silver nanoparticle-loaded gels. Furthermore, rat wound-healing models were used and demonstrated that the gels exhibited improved wound healing when compared to the base hydrogel as a control. Thus, these gels are proposed as excellent candidates for use as wound-healing treatments.
Lustosa, Ana Karina Marques Fortes; de Jesus Oliveira, Antônia Carla; Quelemes, Patrick Veras; Plácido, Alexandra; da Silva, Francilene Vieira; Oliveira, Irisdalva Sousa; de Almeida, Miguel Peixoto; Amorim, Adriany das Graças Nascimento; Delerue-Matos, Cristina; de Oliveira, Rita de Cássia Meneses; da Silva, Durcilene Alves
2017-01-01
Silver nanoparticles have been shown to possess considerable antibacterial activity, but in vivo applications have been limited due to the inherent, but low, toxicity of silver. On the other hand, silver nanoparticles could provide cutaneous protection against infection, due to their ability to liberate silver ions via a slow release mechanism, and their broad-spectrum antimicrobial action. Thus, in this work, we describe the development of a carboxymethyl cellulose-based hydrogel containing silver nanoparticles. The nanoparticles were prepared in the hydrogel in situ, utilizing two variants of cashew gum as a capping agent, and sodium borohydride as the reducing agent. This gum is non-toxic and comes from a renewable natural source. The particles and gel were thoroughly characterized through using rheological measurements, UV-vis spectroscopy, nanoparticles tracking analysis, and transmission electron microscopy analysis (TEM). Antibacterial tests were carried out, confirming antimicrobial action of the silver nanoparticle-loaded gels. Furthermore, rat wound-healing models were used and demonstrated that the gels exhibited improved wound healing when compared to the base hydrogel as a control. Thus, these gels are proposed as excellent candidates for use as wound-healing treatments. PMID:29137157
Sodium-dependent magnesium uptake by ferret red cells.
Flatman, P W; Smith, L M
1991-01-01
1. Magnesium uptake can be measured in ferret red cells incubated in media containing more than 1 mM-magnesium. Uptake is substantially increased if the sodium concentration in the medium is reduced. 2. Magnesium uptake is half-maximally activated by 0.37 mM-external magnesium when the external sodium concentration is 5 mM. Increasing the external sodium concentration increases the magnesium concentration needed to activate the system. 3. Magnesium uptake is increased by reducing the external sodium concentration. Uptake is half-maximum at sodium concentrations of 17, 22 and 62 nM when the external magnesium concentrations are 2, 5 and 10 mM respectively. 4. Replacement of external sodium with choline does not affect the membrane potential of ferret red cells over a 45 min period. 5. Magnesium uptake from media containing 5 mM-sodium is inhibited by amiloride, quinidine and imipramine. It is not affected by ouabain or bumetanide. Vanadate stimulates magnesium uptake but has no effect on magnesium efflux. 6. When cell ATP content is reduced to 19 mumol (1 cell)-1 by incubating cells for 3 h with 2-deoxyglucose, magnesium uptake falls by 50% in the presence of 5 mM-sodium and is completely abolished in the presence of 145 mM-sodium. Some of the inhibition may be due to the increase in intracellular ionized magnesium concentration ([Mg2+]i) from 0.7 to 1.0 mM which occurs under these conditions. 7. Magnesium uptake can be driven against a substantial electrochemical gradient if the external sodium concentration is reduced sufficiently. 8. These findings are discussed in terms of several possible models for magnesium transport. It is concluded that the majority of magnesium uptake observed in low-sodium media is via sodium-magnesium antiport. A small portion of uptake is through a parallel leak pathway. It is believed that the antiport is responsible for maintaining [Mg2+]i below electrochemical equilibrium in these cells at physiological external sodium concentration. Thus in ferret red cells the direction of magnesium transport can be reversed by reversing the sodium gradient. PMID:1822527
Loxoprofen Sodium, a Non-Selective NSAID, Reduces Atherosclerosis in Mice by Reducing Inflammation.
Hamaguchi, Masahide; Seno, Takahiro; Yamamoto, Aihiro; Kohno, Masataka; Kadoya, Masatoshi; Ishino, Hidetaka; Ashihara, Eishi; Kimura, Shinya; Tsubakimoto, Yoshinori; Takata, Hiroki; Yoshikawa, Toshikazu; Maekawa, Taira; Kawahito, Yutaka
2010-09-01
Recently, it is suggested that the use of nonsteroidal anti-inflammatory drugs (NSAID) may contribute to the occurrence of cardiovascular events, while the formation of atherosclerotic lesions is related to inflammation. Loxoprofen sodium, a non-selective NSAID, becomes active after metabolism in the body and inhibits the activation of cyclooxygenase. We fed apoE(-/-) mice a western diet from 8 to 16 weeks of age and administered loxoprofen sodium. We measured atherosclerotic lesions at the aortic root. We examined serum levels of cholesterol and triglycerides with HPLC, platelet aggregation, and urinary prostaglandin metabolites with enzyme immune assay. Atherosclerotic lesion formation was reduced to 63.5% and 41.5% as compared to the control in male and female apoE(-/-) mice treated with loxoprofen sodium respectively. Urinary metabolites of prostaglandin E(2), F(1α), and thromboxane B(2), and platelet aggregation were decreased in mice treated with loxoprofen sodium. Serum levels of cholesterol and triglycerides were not changed. We conclude that loxoprofen sodium reduced the formation of early to intermediate atherosclerotic lesions at the proximal aorta in mice mediated by an anti-inflammatory effect.
CDC Vital Signs: Reducing Sodium in Children's Diets
... sodium options of your family's favorite foods. Request restaurant nutrition information to make lower sodium choices. Problem ... burritos and tacos; and soup. Processed foods and restaurant foods. Most sodium is already in food before ...
Bubble template synthesis of hollow gold nanoparticles and their applications as theranostic agents
NASA Astrophysics Data System (ADS)
Huang, Chienwen
Hollow gold nanoparticle with a sub-30nm polycrystalline shell and a 50 nm hollow core has been successfully synthesized through the reduction of sodium gold sulfite by electrochemically evolved hydrogen. Such hollow gold nanoparticles exhibit unique plasmonic properties. They strongly scatter and absorb near infrared light. In this thesis we seek to understand the formation mechanism of hollow gold nanoparticles in this new synthesis process and their plasmonic properties. Also, we explore their biomedical applications as theranostic agents (therapeutic and diagnostic imaging). A lithographically patterned electrode consisting of Ag stripes on a glass substrate was used to investigate the formation process of hollow gold nanoparticles. Ag stripes served as working electrode for electrochemically evolution of hydrogen, and adjacent glass areas provided supporting surface for hydrogen nanobubbles nucleation and growth. Hydrogen nanobubbles served as both templates and reducing agents to trigger the autocatalytic disproportionation reaction of sodium gold sulfite. The effects of applied potential and the additives in the electrolyte have been studied. It has been found that the size and size distribution of hollow gold nanoparticle are directly relative to the applied potential, i.e. the hydrogen evolution rate. It has also been found the addition of Ni2+ ions can greatly improve the size distribution of hollow gold nanoparticles that can be contributed to that the newly electrodeposited nickel metal can enhance the hydrogen evolution efficiency. Another additive, ethylenediamine (EDA) can suppress the autocatalytic reaction of gold sulfite to increase the stability of sodium gold sulfite electrolyte. To capture such electrochemically evolved hydrogen nanobubbles, and subsequently to generate hollow gold nanoparticles in large numbers, alumina membranes were placed on the top of the working electrode. Anodic alumina membrane consists of ~200 nm pores, which provides a large surface area for the formation of hydrogen nanobubbles. By this approach, the electroless reaction can be easily separated from the electrodeposition process, and hollow gold nanoparticles can be easily collected. Synthesized hollow gold nanoparticles exhibit unique plasmonic properties; the surface plasmon resonance (SPR) lies in the near infrared region (NIR). This is very different from the solid spherical gold nanoparticles. Three-dimensional finite difference time domain (FDTD) simulation was employed to study the plasmonic properties of hollow gold nanoparticles. It has been found that the red-shifts of SPR peaks are mainly caused by their surface roughness, and the hollow nature of these particles only plays a minor role. The surface roughness of hollow gold nanoparticles can be tuned by adjusting the pH of the electrolyte (from 6.0 to 7.0) by adding sodium sulfite. Different surface roughness (from smooth to very rough) can be readily obtained, and correspondingly, surface plasmon resonance (SPR) peaks red-shift from ~600 nm to ~750 nm. Using hollow gold nanoparticles as multifunctional agents for biomedical applications have been explored. Two kinds of agents have been constructed. It has been demonstrated that pegylated Raman dye encoded hollow gold nanoparticles, terms as Raman nanotags, can serve as both diagnostic imaging agents and photothermal therapy agents. When illuminated by near infrared light, the enhanced Raman signal makes the hollow gold nanoparticles to become optically detectable for biomedical imaging, and absorbed light rapidly heat up the hollow gold nanoparticles which can be used to photothermal ablation therapy. The cytotoxicity evaluation using [3H] thymidine incorporation method has shown non-toxicity of the Raman nanotags. The photothermal effects of hollow gold nanoparticles have been examined by two methods: (1) by embedding hollow gold nanoparticles in tissue-like phantom environment; (2) by recording infrared images as temperature increase. The results show that hollow gold nanoparticles are capable to generate sufficiency heat for photothermal therapy. To fully take advantage of the unique hollow core space of hollow gold nanoparticles, a facile route has been develop to trap Fe3O4 nanoparticles into the hollow gold nanoparticles to form Fe3O4/Au core/shell nanoparticles. Fe3O4/Au core/shell nanoparticles possess the desirable magnetic and plasmonic properties that can be used as magnetic resonance contrast (MRI) agents and photothermal therapy agents.
Study of electroless Ni-W-P alloy coating on martensitic stainless steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nikitasari, Arini, E-mail: arini-nikitasari@yahoo.com; Mabruri, Efendi, E-mail: efendi-lipi@yahoo.com
Electroless nickel phospor (Ni-P) is widely used in many industries due to their corrosion and wear resistance, coating uniformity, and ability to coat non-conductive surfaces. The unique properties of tungsten such as high hardness, higher melting point, lower coefficient of linear thermal expansion, and high tensile strength have created a lot of interest in developing ternary Ni-W-P alloys. This article presents the study of electroless Ni-W-P alloys coating using acid or alkaline bath on martensitic stainless steel. Nickel sulfate and sodium tungstate were used as nickel and tungsten sources, respectively, and sodium hypophosphite was used as a reducing agent. Acidmore » or alkaline bath refer to bath pH condition was adjusted by adding sulfuric acid. Martensitic stainless steel was immersed in Ni-W-P bath for 15, 30, and 60 minutes. The substrate of martensitic stainless steel was subjected to pre-treatment (polishing and cleaning) and activation prior to electroless plating. The plating characteristics were investigated for concentration ratio of nickel and hypophosphite (1:3), sodium tungstate concentration 0,1 M, immersion time (15 min, 30 min, 60 min), and bath condition (acid, alkaline). The electroless Ni-W-P plating was heat treated at 400°C for 1 hour. Deposits were characterized using scanning electron microscope (SEM) and corrosion measurement system (CMS).« less
Spier, Michele R; Siepmann, Francieli B; Staack, Larissa; Souza, Priscila Z; Kumar, Vikas; Medeiros, Adriane B P; Soccol, Carlos R
2016-10-02
The development of stable enzymes is a key issue in both the food and feed industries. Consequently, the aim of the current study is to evaluate the impact of various additives (sodium chloride, sodium citrate, mannitol, methylparaben, polyethylene glycol 3350, ethylenediaminetetraacetic acid disodium salt, and a serine protease inhibitor) on the stability of a mushroom phytase produced by solid-state cultivation and recovery. Also observed was the effect of the additives on microbial growth inhibition by monitoring both the change in optical density over 30 days of storage and proteolytic activity. Initially, eight experimental formulations were prepared along with a control. After screening, a 3(2) factorial design was applied to define suitable concentrations of the selected additives. Among the eight formulations tested, the formulation containing NaCl, PEG 3350, and methylparaben retained all of the initial phytase activity after 50 days of storage, with no detected interference from protease activity. Sodium citrate, a metal chelation agent, presented the unusual effect of reducing protease activity in the formulations. Although all formulations presented better phytase stability when compared to the control, NaCl and PEG were both able to prolong the stability of the enzyme activity and also to inhibit microbial growth during storage, making them favorable for application as food and feed additives.
Jimenez, Veronica; Docampo, Roberto
2015-09-01
We have identified a phosphate transporter (TcPho91) localized to the bladder of the contractile vacuole complex (CVC) of Trypanosoma cruzi, the etiologic agent of Chagas disease. TcPho91 has 12 transmembrane domains, an N-terminal regulatory SPX (named after SYG1, Pho81 and XPR1) domain and an anion permease domain. Functional expression in Xenopus laevis oocytes followed by two-electrode voltage clamp showed that TcPho91 is a low-affinity transporter with a Km for Pi in the millimolar range, and sodium-dependency. Epimastigotes overexpressing TcPho91-green fluorescent protein have significantly higher levels of pyrophosphate (PPi ) and short-chain polyphosphate (polyP), suggesting accumulation of Pi in these cells. Moreover, when overexpressing parasites were maintained in a medium with low Pi , they grew at higher rates than control parasites. Only one allele of TcPho91 in the CL strain encodes for the complete open reading frame, while the other one is truncated encoding for only the N-terminal domain. Taking advantage of this characteristic, knockdown experiments were performed resulting in cells with reduced growth rate as well as a reduction in PPi and short-chain polyP levels. Our results indicate that TcPho91 is a phosphate sodium symporter involved in Pi homeostasis in T. cruzi. © 2015 John Wiley & Sons Ltd.
Kobayashi, Morio; Tsutsui, Takeo W; Kobayashi, Tomoko; Ohno, Maki; Higo, Yukari; Inaba, Tomohiro; Tsutsui, Takeki
2013-01-01
To determine the adverse effects against human dental pulp tissue, the sensitivity of human dental pulp cells (D824 cells) to 18 chemical agents used for endodontic treatments in dentistry was examined. The cytotoxicity, as determined by a decrease in colony-forming ability of cells treated with the chemical agents, increased as the concentration increased. As a quantitative measure of the cytotoxic effect, LC(50), the concentration which induces a 50% lethality, was extrapolated from the concentration-response curves. The rank of the chemical agents according to their cytotoxic effect (LC(50)) was sodium arsenite > formaldehyde > hydrogen peroxide > zinc oxide > thymol ≈ iodoform ≈ eugenol > guaiacol > ethylenediaminetetraacetic acid ≈ iodine > procaine > lidocaine ≈ chloramphenicol ≈ m-cresol > calcium hydroxide ≈ sodium hypochlorite ≈ phenol ≈ p-phenolsulfonic acid. To compare the cytotoxicity and the levels of apoptosis and mRNA expression of five genes related to the function of dental pulp tissue, D824 cells treated with the LC(50) concentrations of chemical agents were assayed by the TUNEL method and quantitative reverse transcription polymerase chain reaction analysis, respectively. The inducibility of apoptotic cells and the level of mRNA expression of the genes varied with the chemical agents, indicating that both effects occurred independent of the rank of cytotoxic effect of the chemical agents. The results not only provide information concerning cytotoxicity of various chemical agents to human dental pulp cells, but also show an insight into the diversity of the pharmacodynamic action of the chemical agents.
Vital signs: sodium intake among U.S. school-aged children - 2009-2010.
Cogswell, Mary E; Yuan, Keming; Gunn, Janelle P; Gillespie, Cathleen; Sliwa, Sarah; Galuska, Deborah A; Barrett, Jan; Hirschman, Jay; Moshfegh, Alanna J; Rhodes, Donna; Ahuja, Jaspreet; Pehrsson, Pamela; Merritt, Robert; Bowman, Barbara A
2014-09-12
A national health objective is to reduce average U.S. sodium intake to 2,300 mg daily to help prevent high blood pressure, a major cause of heart disease and stroke. Identifying common contributors to sodium intake among children can help reduction efforts. Average sodium intake, sodium consumed per calorie, and proportions of sodium from food categories, place obtained, and eating occasion were estimated among 2,266 school-aged (6–18 years) participants in What We Eat in America, the dietary intake component of the National Health and Nutrition Examination Survey, 2009–2010. U.S. school-aged children consumed an estimated 3,279 mg of sodium daily with the highest total intake (3,672 mg/d) and intake per 1,000 kcal (1,681 mg) among high school–aged children. Forty-three percent of sodium came from 10 food categories: pizza, bread and rolls, cold cuts/cured meats, savory snacks, sandwiches, cheese, chicken patties/nuggets/tenders, pasta mixed dishes, Mexican mixed dishes, and soups. Sixty-five percent of sodium intake came from store foods, 13% from fast food/pizza restaurants, 5% from other restaurants, and 9% from school cafeteria foods. Among children aged 14–18 years, 16% of total sodium intake came from fast food/pizza restaurants versus 11% among those aged 6–10 years or 11–13 years (p<0.05). Among children who consumed a school meal on the day assessed, 26% of sodium intake came from school cafeteria foods. Thirty-nine percent of sodium was consumed at dinner, followed by lunch (29%), snacks (16%), and breakfast (15%). Sodium intake among school-aged children is much higher than recommended. Multiple food categories, venues, meals, and snacks contribute to sodium intake among school-aged children supporting the importance of populationwide strategies to reduce sodium intake. New national nutrition standards are projected to reduce the sodium content of school meals by approximately 25%–50% by 2022. Based on this analysis, if there is no replacement from other sources, sodium intake among U.S. school-aged children will be reduced by an average of about 75–150 mg per day and about 220–440 mg on days children consume school meals.
2008-09-01
sodium carbonate, and extracted with 2-mL chloroform. The chloroform layer was analyzed for residual agent by Gas Chromatography /Atomic Emission...agent remaining on the panel. Solutions were analyzed by Gas Chromatography /Flame-Ionization Detector (GC/FID) to determine the amounts of agent...transferred to glass scintillation vials. A 100-µL aliquot of the DEP was diluted with 900-µL chloroform (1:10 dilution) in a Gas Chromatography
Lagori, Giuseppe; Fornaini, Carlo; Rocca, Jean-Paul; Merigo, Elisabetta
2017-06-01
One of the biggest challenges in endodontics is the complete disinfection of root canals. In addition to mechanical preparation, the technique traditionally also involves channel disinfection with other agents such as sodium hypochlorite, hydrogen peroxide, chlorhexidine, or a combination of these. Some bacterial species are particularly resistant to eradication. Using Enterococcus faecalis in this preliminary study, we tested the bactericidal effectiveness of the Fenton reaction and the photo-Fenton reaction using an LED light with a 400-nm wavelength. Discs of hydroxyapatite were incubated in brain-heart broth contaminated with Enterococcus faecalis. After 4days, they were decontaminated with different bactericidal agents, including some with proven and well-known efficacy (5% sodium hypochlorite and 3% hydrogen peroxide) and other treatments using solutions of 1.5% hydrogen peroxide and 0.15% iron gluconate (Fenton reaction) plus LED light at a Fluence of 4.0J/cm 2 (photo-Fenton reaction). The photo-Fenton reaction demonstrated comparable performance to that of sodium hypochlorite in eliminating Enterococcus faecalis. Copyright © 2017. Published by Elsevier B.V.
Halohydrination of epoxy resins using sodium halides as cationizing agents in MALDI-MS and DIOS-MS.
Watanabe, Takehiro; Kawasaki, Hideya; Kimoto, Takashi; Arakawa, Ryuichi
2008-12-01
Halohydrination of epoxy resins using sodium halides as cationizing agents in matrix-assisted laser desorption/ionization (MALDI) and desorption ionization on porous silicon mass spectrometry (DIOS-MS) were investigated. Different mass spectra were observed when NaClO(4) and NaI were used as the cationizing agents at the highest concentration of 10.0 mM, which is much higher than that normally used in MALDI-MS. MALDI mass spectra of epoxy resins using NaI revealed iodohydrination to occur as epoxy functions of the polymers. The halohydrination also occurred using NaBr, but not NaCl, due to the differences in their nucleophilicities. On the basis of the results of experiments using deuterated CD(3)OD as the solvent, the hydrogen atom source was probably ambient water or residual solvent, rather than being derived from matrices. Halohydrination also occurred with DIOS-MS in which no organic matrix was used; in addition, reduction of epoxy functions was observed with DIOS. NaI is a useful cationizing agent for changing the chemical form of epoxy resins due to iodohydrination and, thus, for identifying the presence of epoxy functions. Copyright (c) 2008 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Mou, Yongren; Kang, Ming; Liu, Min; Wang, Feng; Chen, Kexu; Sun, Rong
2017-06-01
In order to investigate the effect of amphiphilic additional agents on the morphology (particle shape, particle size and particle size distribution) and photoluminescence performance of calcium carbonate phosphor, the phosphors AA-CaCO3:Eu3+ (AA = glycerol or sodium dodecyl sulfate) were synthesized by the microwave-assisted co-precipitation method using glycerol (Gly) and sodium dodecyl sulfate (SDS) as amphiphilic additional agents (AA), respectively. The phase structure, morphology and luminescent properties of the as-synthesized samples were characterized by X-ray diffraction, scanning electron microscope, laser diffraction particle size analyzer and Fluorescence spectrophotometer, respectively. The results showed that the phase structure and morphology of AA-CaCO3:Eu3+ changed along with different types and amount of amphiphilic additional agents evidently. The particle size of Gly-CaCO3 decreased to 1.383 µm when the volume ratio reached 8:2 (Gly:H2O). Photoluminescence (PL) spectra show that all the AA-CaCO3:Eu3+ phosphors exhibit strong red emission peak originating from electric-dipole transition 5D0 → 7F2 (614 nm) of Eu3+ ions and the amphiphilic molecules (Gly and SDS) had a huge influence on photoluminescence intensity.
Jiang, Qing; Xu, Bin; Jia, Jing; Zhao, An; Zhao, Yu-Rou; Li, Ying-Ying; He, Na-Na; Guo, Can-Cheng
2014-08-15
A copper-catalyzed aerobic decarboxylative sulfonylation of alkenyl carboxylic acids with sodium sulfinates is developed. This study offers a new and expedient strategy for stereoselective synthesis of (E)-alkenyl sulfones that are widely present in biologically active natural products and therapeutic agents. Moreover, the transformation is proposed to proceed via a radical process and exhibits a broad substrate scope and good functional group tolerance.
Nasrollahzadeh, Mahmoud; Sajadi, S Mohammad; Rostami-Vartooni, Akbar; Alizadeh, Mohammad; Bagherzadeh, Mojtaba
2016-03-15
Through this manuscript the green synthesis of palladium nanoparticles supported on reduced graphene oxide (Pd NPs/RGO) under the mild conditions through reduction of the graphene oxide and Pd(2+) ions using barberry fruit extract as reducing and stabilizing agent is reported. The as-prepared Pd NPs/RGO was characterized by UV-vis spectroscopy, X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS). The Pd NPs/RGO could be used as an efficient and heterogeneous catalyst for reduction of nitroarenes using sodium borohydride in an environmental friendly medium. Excellent yields of products were obtained with a wide range of substrates and the catalyst was recycled multiple times without any significant loss of its catalytic activity. Copyright © 2015 Elsevier Inc. All rights reserved.
Zhou, Chengfeng; Jiang, Wei; Via, Brian K
2014-06-01
An effective approach to produce graphene quantum dots (GQDs) has been developed, which based on the cutting of graphene oxide (GO) powder into smaller pieces and being reduced by a green approach, using sodium polystyrene sulfonate (PSS) as a dispersant and l-ascorbic acid (l-AA) as the reducing agent, which is environmentally friendly. Then the as-prepared GQDs were further used for the detection of heavy metal ions Pb(2+). This kind of GQDs has greater solubility in water and is more biocompatible than GO that has been reduced by hydrazine hydrate. The few-layers of GQDs with defects and residual OH groups were shown to be particularly well suited for the determination of metal ions in the liquid phase using an electrochemical method, in which a remarkably low detection limit of 7×10(-9)M for Pb(2+) was achieved. Copyright © 2014 Elsevier B.V. All rights reserved.
Wang, Jianxu; Xia, Jicheng; Feng, Xinbin
2017-01-15
Screening of optimal chelating ligands which not only have high capacities to enhance plant uptake of mercury (Hg) from soil but also can decrease bioavailable Hg concentration in soil is necessary to establish a viable chemically-assisted phytoextraction. Therefore, Brassica juncea was exposed to historically Hg-contaminated soil (total Hg, 90 mg kg -1 ) to investigate the efficiency of seven chelating agents [ammonium thiosulphate, sodium thiosulphate, ammonium sulfate, ammonium chloride, sodium nitrate, ethylenediaminetetraacetic acid (EDTA), and sodium sulfite] at enhancing Hg phytoextraction; the leaching of bioavailable Hg caused by these chelating agents was also investigated. The Hg concentration in control (treated with double-distilled water) plant tissues was below 1 mg kg -1 . The remarkably higher Hg concentration was found in plants receiving ammonium thiosulphate and sodium sulfite treatments. The bioaccumulation factors and translocation factors of ammonium thiosulphate and sodium sulfite treatments were significantly higher than those of the other treatments. The more efficient uptake of Hg by plants upon treatment with ammonium thiosulphate and sodium sulfite compared to the other treatments might be explained by the formation of special Hg-thiosulphate complexes that could be preferentially taken up by the roots and transported in plant tissues. The application of sulfite significantly increased bioavailable Hg concentration in soil compared with that in initial soil and control soil, whereas ammonium thiosulphate significantly decreased bioavailable Hg concentration. The apparent decrease of bioavailable Hg in ammonium thiosulphate-treated soil compared with that in sodium sulfite-treated soil might be attributable to the unstable Hg-thiosulphate complexes formed between thiosulphate and Hg; they could react to produce less bioavailable Hg in the soil. The results of this study indicate that ammonium thiosulphate may be an optimal chelating ligand for phytoextraction due to its great potential to enhance Hg accumulation in plants while decreasing bioavailable Hg concentration in the soil. Copyright © 2016 Elsevier Ltd. All rights reserved.
Walsh, James K.; Hall-Porter, Janine M.; Griffin, Kara S.; Dodson, Ehren R.; Forst, Elizabeth H.; Curry, Denise T.; Eisenstein, Rhody D.; Schweitzer, Paula K.
2010-01-01
Study Objectives: To investigate whether enhancement of slow wave sleep (SWS) with sodium oxybate reduces the impact of sleep deprivation. Design: Double-blind, parallel group, placebo-controlled design Setting: Sleep research laboratory Participants: Fifty-eight healthy adults (28 placebo, 30 sodium oxybate), ages 18-50 years. Interventions: A 5-day protocol included 2 screening/baseline nights and days, 2 sleep deprivation nights, each followed by a 3-h daytime (08:00-11:00) sleep opportunity and a recovery night. Sodium oxybate or placebo was administered prior to each daytime sleep period. Multiple sleep latency test (MSLT), psychomotor vigilance test (PVT), Karolinska Sleepiness Scale (KSS), and Profile of Mood States were administered during waking hours. Measurements and Results: During daytime sleep, the sodium oxybate group had more SWS, more EEG spectral power in the 1-9 Hz range, and less REM. Mean MSLT latency was longer for the sodium oxybate group on the night following the first daytime sleep period and on the day following the second day sleep period. Median PVT reaction time was faster in the sodium oxybate group following the second day sleep period. The change from baseline in SWS was positively correlated with the change in MSLT and KSS. During recovery sleep the sodium oxybate group had less TST, SWS, REM, and slow wave activity (SWA) than the placebo group. Conclusions: Pharmacological enhancement of SWS with sodium oxybate resulted in a reduced response to sleep loss on measures of alertness and attention. In addition, SWS enhancement during sleep restriction appears to result in a reduced homeostatic response to sleep loss. Citation: Walsh JK; Hall-Porter JM; Griffin KS; Dodson ER; Forst EH; Curry DT; Eisenstein RD; Schweitzer PK. Enhancing slow wave sleep with sodium oxybate reduces the behavioral and physiological impact of sleep loss. SLEEP 2010;33(9):1217-1225. PMID:20857869
Combustion system processes leading to corrosive deposits
NASA Technical Reports Server (NTRS)
Stearns, C. A.; Kohl, F. J.; Rosner, D. E.
1981-01-01
Degradation of turbine engine hot gas path components by high temperature corrosion can usually be associated with deposits even though other factors may also play a significant role. The origins of the corrosive deposits are traceable to chemical reactions which take place during the combustion process. In the case of hot corrosion/sulfidation, sodium sulfate was established as the deposited corrosive agent even when none of this salt enters the engine directly. The sodium sulfate is formed during the combustion and deposition processes from compounds of sulfur contained in the fuel as low level impurities and sodium compounds, such as sodium chloride, ingested with intake air. In other turbine and power generation situations, corrosive and/or fouling deposits can result from such metals as potassium, iron, calcium, vanadium, magnesium, and silicon.
21 CFR 163.112 - Breakfast cocoa.
Code of Federal Regulations, 2011 CFR
2011-04-01
... ingredients. Ammonium, potassium, or sodium bicarbonate, carbonate, or hydroxide, or magnesium carbonate or oxide, used as such, or in aqueous solution; (2) Neutralizing agents. Phosphoric acid, citric acid and L...
Stattin, P; Karlberg, L; Damber, J E
1996-04-01
The long-term outcome of 106 patients treated for hydrocele with the sclerosing agent sodium tetradecyl sulphate was examined. In a questionnaire distributed at a mean time of 40 months after therapy 83/86 (96%) of the eligible patients responded and 95% of them were satisfied with the treatment and its long term results. The treatment associated pain was evaluated on a visual analogue scale (0-10) the mean pain score was found to be 1.8 and the mean duration of the pain 2.4 days. When all hydroceles were considered the overall success rate was 88%. Side-effects were minor apart from two patients (1.9%) with diabetes mellitus who had an intense inflammatory reaction necessitating orchidectomy after sclerotherapy.
Sodium-Glucose linked transporter 2 (SGLT2) inhibitors--fighting diabetes from a new perspective.
Angelopoulos, Theodoros P; Doupis, John
2014-06-01
Sodium-Glucose linked transporter 2 (SGLT2) inhibitors are a new family of antidiabetic pharmaceutical agents whose action is based on the inhibition of the glucose reabsorption pathway, resulting in glucosuria and a consequent reduction of the blood glucose levels, in patients with type 2 diabetes mellitus. Apart from lowering both fasting and postprandial blood glucose levels, without causing hypoglycemia, SGLT2 inhibitors have also shown a reduction in body weight and the systolic blood pressure. This review paper explores the renal involvement in glucose homeostasis providing also the latest safety and efficacy data for the European Medicines Agency and U.S. Food and Drug Administration approved SGLT2 inhibitors, looking, finally, into the future of this novel antidiabetic category of pharmaceutical agents.
Molecular structure, functionality and applications of oxidized starches: A review.
Vanier, Nathan Levien; El Halal, Shanise Lisie Mello; Dias, Alvaro Renato Guerra; da Rosa Zavareze, Elessandra
2017-04-15
During oxidation, the hydroxyl groups of starch molecules are first oxidized to carbonyl groups, then to carboxyl groups. The contents of the carbonyl and carboxyl groups in a starch molecule therefore indicate the extent of starch oxidation. The mechanisms of starch oxidation with different oxidizing agents, including sodium hypochlorite, hydrogen peroxide, ozone and sodium periodate, are described in this review. The effects of these oxidizing agents on the molecular, physicochemical, thermal, pasting and morphological properties of starch are described as well. In addition, the main industrial applications of oxidized starches are presented. The present review is important for understanding the effects of oxidation on starch properties, and this information may facilitate the development of novel oxidized starches for both food and non-food applications. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bruins, Maaike J.; Dötsch-Klerk, Mariska; Matthee, Joep; Kearney, Mary; van Elk, Kathelijn; Weber, Peter; Eggersdorfer, Manfred
2015-01-01
Hypertension is a major modifiable risk factor for cardiovascular disease and mortality, which could be lowered by reducing dietary sodium. The potential health impact of a product reformulation in the Netherlands was modelled, selecting packaged soups containing on average 25% less sodium as an example of an achievable product reformulation when implemented gradually. First, the blood pressure lowering resulting from sodium intake reduction was modelled. Second, the predicted blood pressure lowering was translated into potentially preventable incidence and mortality cases from stroke, acute myocardial infarction (AMI), angina pectoris, and heart failure (HF) implementing one year salt reduction. Finally, the potentially preventable subsequent lifetime Disability-Adjusted Life Years (DALYs) were calculated. The sodium reduction in soups might potentially reduce the incidence and mortality of stroke by approximately 0.5%, AMI and angina by 0.3%, and HF by 0.2%. The related burden of disease could be reduced by approximately 800 lifetime DALYs. This modelling approach can be used to provide insight into the potential public health impact of sodium reduction in specific food products. The data demonstrate that an achievable food product reformulation to reduce sodium can potentially benefit public health, albeit modest. When implemented across multiple product categories and countries, a significant health impact could be achieved. PMID:26393647
SGLT2 Inhibitors: Benefit/Risk Balance.
Scheen, André J
2016-10-01
Inhibitors of sodium-glucose cotransporters type 2 (SGLT2) reduce hyperglycemia by increasing urinary glucose excretion. They have been evaluated in patients with type 2 diabetes treated with diet/exercise, metformin, dual oral therapy or insulin. Three agents are available in Europe and the USA (canagliflozin, dapagliflozin, empagliflozin) and others are commercialized in Japan or in clinical development. SGLT2 inhibitors reduce glycated hemoglobin, with a minimal risk of hypoglycemia. They exert favorable effects beyond glucose control with consistent body weight, blood pressure, and serum uric acid reductions. Empagliflozin showed remarkable reductions in cardiovascular/all-cause mortality and in hospitalization for heart failure in patients with previous cardiovascular disease. Positive renal outcomes were also shown with empagliflozin. Mostly reported adverse events are genital mycotic infections, while urinary tract infections and events linked to volume depletion are rather rare. Concern about a risk of ketoacidosis and bone fractures has been recently raised, which deserves caution and further evaluation.
Kim, Bora; Kim, Jin Eun; Choi, Byung-Kook; Kim, Hyun-Soo
2015-01-01
Water chestnut (Trapa japonica Flerov.) is an annual aquatic plant. In the present study, we showed that the treatment of water chestnut extracted with boiling water resulted in a significant increase 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging activity and decrease the intracellular H2O2-induced accumulation of reactive oxygen species. In addition, water chestnut extract (WCE) inhibited lipopolysaccharide (LPS)-induced nitric oxide production and suppressed mRNA and protein expression of the inducible nitric oxide synthase gene. The cytokine array results showed that WCE inhibited inflammatory cytokine secretion. Also, WCE reduced tumor necrosis factor-α-and interleukin-6-induced nuclear factor-αB activity. Furthermore, during sodium lauryl sulfate (SLS)-induced irritation of human skin, WCE reduced SLS-induced skin erythema and improved barrier regeneration. These results indicate that WCE may be a promising topical anti-inflammatory agent. PMID:25593649
Health Professional Advice and Adult Action to Reduce Sodium Intake.
Jackson, Sandra L; Coleman King, Sallyann M; Park, Soyoun; Fang, Jing; Odom, Erika C; Cogswell, Mary E
2016-01-01
Excessive sodium intake is a key modifiable risk factor for hypertension and cardiovascular disease. Although 95% of U.S. adults exceed intake recommendations, knowledge is limited regarding whether doctor or health professional advice motivates patients to reduce intake. Our objectives were to describe the prevalence and determinants of taking action to reduce sodium, and to test whether receiving advice was associated with action. Analyses, conducted in 2014, used data from the 2013 Behavioral Risk Factor Surveillance System, a state-based telephone survey representative of non-institutionalized adults. Respondents (n=173,778) from 26 states, the District of Columbia, and Puerto Rico used the new optional sodium module. We estimated prevalence ratios (PRs) based on average marginal predictions, accounting for the complex survey design. Fifty-three percent of adults reported taking action to reduce sodium intake. Prevalence of action was highest among adults who received advice (83%), followed by adults taking antihypertensive medications, adults with diabetes, adults with kidney disease, or adults with a history of cardiovascular disease (range, 73%-75%), and lowest among adults aged 18-24 years (29%). Overall, 23% of adults reported receiving advice to reduce sodium intake. Receiving advice was associated with taking action (prevalence ratio=1.59; 95% CI=1.56, 1.61), independent of sociodemographic and health characteristics, although some disparities were observed across race/ethnicity and BMI categories. Our results suggest that more than half of U.S. adults in 26 states and two territories are taking action to reduce sodium intake, and doctor or health professional advice is strongly associated with action. Published by Elsevier Inc.
A 3T Sodium and Proton Composite Array Breast Coil
Kaggie, Joshua D.; Hadley, J. Rock; Badal, James; Campbell, John R.; Park, Daniel J.; Parker, Dennis L.; Morrell, Glen; Newbould, Rexford D.; Wood, Ali F.; Bangerter, Neal K.
2013-01-01
Purpose The objective of this study was to determine whether a sodium phased array would improve sodium breast MRI at 3T. The secondary objective was to create acceptable proton images with the sodium phased array in place. Methods A novel composite array for combined proton/sodium 3T breast MRI is compared to a coil with a single proton and sodium channel. The composite array consists of a 7-channel sodium receive array, a larger sodium transmit coil, and a 4-channel proton transceive array. The new composite array design utilizes smaller sodium receive loops than typically used in sodium imaging, uses novel decoupling methods between the receive loops and transmit loops, and uses a novel multi-channel proton transceive coil. The proton transceive coil reduces coupling between proton and sodium elements by intersecting the constituent loops to reduce their mutual inductance. The coil used for comparison consists of a concentric sodium and proton loop with passive decoupling traps. Results The composite array coil demonstrates a 2–5x improvement in SNR for sodium imaging and similar SNR for proton imaging when compared to a simple single-loop dual resonant design. Conclusion The improved SNR of the composite array gives breast sodium images of unprecedented quality in reasonable scan times. PMID:24105740
... causes the kidneys to eliminate unneeded water and sodium from the body into the urine, but reduces ... your meals, including advice for a reduced salt (sodium) diet and daily exercise program. Avoid potassium-containing ...
... causes the kidneys to eliminate unneeded water and sodium from the body into the urine but reduces ... your meals, including advice for a reduced-salt (sodium) diet and daily exercise program. Avoid potassium-containing ...
Antifungal activity of gold nanoparticles prepared by solvothermal method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmad, Tokeer, E-mail: tahmad3@jmi.ac.in; Wani, Irshad A.; Lone, Irfan H.
2013-01-15
Graphical abstract: Gold nanoparticles (7 and 15 nm) of very high surface area (329 and 269 m{sup 2}/g) have been successfully synthesized through solvothermal method by using tin chloride and sodium borohydride as reducing agents. As-prepared gold nanoparticles shows very excellent antifungal activity against Candida isolates and activity increases with decrease in the particle size. Display Omitted Highlights: ► Effect of reducing agents on the morphology of gold nanoparticles. ► Highly uniform and monodisperse gold nanoparticles (7 nm). ► Highest surface area of gold nanoparticles (329 m{sup 2/}g). ► Excellent antifungal activity of gold nanoparticles against Candida strains. -- Abstract:more » Gold nanoparticles have been successfully synthesized by solvothermal method using SnCl{sub 2} and NaBH{sub 4} as reducing agents. X-ray diffraction studies show highly crystalline and monophasic nature of the gold nanoparticles with face centred cubic structure. The transmission electron microscopic studies show the formation of nearly spherical gold nanoparticles of average size of 15 nm using SnCl{sub 2}, however, NaBH{sub 4} produced highly uniform, monodispersed and spherical gold nanoparticles of average grain size of 7 nm. A high surface area of 329 m{sup 2}/g for 7 nm and 269 m{sup 2}/g for 15 nm gold nanoparticles was observed. UV–vis studies assert the excitations over the visible region due to transverse and longitudinal surface plasmon modes. The gold nanoparticles exhibit excellent size dependant antifungal activity and greater biocidal action against Candida isolates for 7 nm sized gold nanoparticles restricting the transmembrane H{sup +} efflux of the Candida species than 15 nm sized gold nanoparticles.« less
Sodium hypochlorite with reduced surface tension does not improve in situ pulp tissue dissolution.
De-Deus, Gustavo; de Berredo Pinho, Marco André; Reis, Claudia; Fidel, Sandra; Souza, Erick; Zehnder, Matthias
2013-08-01
Sodium hypochlorite (NaOCl) solutions with added wetting agents are advertised to dissolve necrotic tissue in root canals faster than their counterparts without a lowered surface tension. This was tested in the current study, and the null hypothesis formulated was that there was no difference between a commercially available NaOCl solution with a lowered surface tension (Chlor-XTRA; Vista Dental Products, Racine, WI) and a counterpart containing the same amount of available chlorine without added wetting agents regarding the soft tissue that remains in oval-shaped canals after mechanical preparation and irrigation. Formerly vital extracted teeth (N = 44, 22 pairs) with similar anatomy were radiographically paired and chemomechanically prepared. In 1 tooth from each pair, a 5.25% NaOCl solution with reduced surface tension was used; in the other, a pure, technical-grade NaOCl solution of 5.25% was used. The percentage of remaining pulp tissue (PRPT) was histologically assessed in root cross-sections. The non-Gaussian raw data were subjected to Kruskal-Wallis and Mann-Whitney U tests to verify the respective effect of the cross-section level and solution on the PRPT. The relationship between the cross-section level and the PRPT was estimated by the Spearman correlation test. The alpha-type error was set at 5%. The cross-section level significantly influenced the PRPT (P < .05), whereas the PRPT was not influenced by the solution used (P > .05). A significant inverse correlation was found between the cross-section level and the PRPT (P < .05, r = -0.330). The lower the distance to the apex, the higher the PRPT regardless of the solution used. Contrary to the advertised statement, the dental solution with a reduced surface tension did not dissolve vital pulp tissue in oval root canals any better than a conventional NaOCl solution of similar strength. Closer to the apex, pulp tissue dissolution is less efficient irrespective of the solution. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Konfino, Jonatan; Mekonnen, Tekeshe A.; Coxson, Pamela G.; Ferrante, Daniel; Bibbins-Domingo, Kirsten
2013-01-01
Background Cardiovascular disease (CVD) is the leading cause of death in adults in Argentina. Sodium reduction policies targeting processed foods were implemented in 2011 in Argentina, but the impact has not been evaluated. The aims of this study are to use Argentina-specific data on sodium excretion and project the impact of Argentina’s sodium reduction policies under two scenarios - the 2-year intervention currently being undertaken or a more persistent 10 year sodium reduction strategy. Methods We used Argentina-specific data on sodium excretion by sex and projected the impact of the current strategy on sodium consumption and blood pressure decrease. We assessed the projected impact of sodium reduction policies on CVD using the Cardiovascular Disease (CVD) Policy Model, adapted to Argentina, modeling two alternative policy scenarios over the next decade. Results Our study finds that the initiative to reduce sodium consumption currently in place in Argentina will have substantial impact on CVD over the next 10 years. Under the current proposed policy of 2-year sodium reduction, the mean sodium consumption is projected to decrease by 319–387 mg/day. This decrease is expected to translate into an absolute reduction of systolic blood pressure from 0.93 mmHg to 1.81 mmHg. This would avert about 19,000 all-cause mortality, 13,000 total myocardial infarctions, and 10,000 total strokes over the next decade. A more persistent sodium reduction strategy would yield even greater CVD benefits. Conclusion The impact of the Argentinean initiative would be effective in substantially reducing mortality and morbidity from CVD. This paper provides evidence-based support to continue implementing strategies to reduce sodium consumption at a population level. PMID:24040085
Presidential Green Chemistry Challenge: 2001 Greener Synthetic Pathways Award
Presidential Green Chemistry Challenge 2001 award winners, Bayer Corporation and Bayer AG, developed a waste-free manufacturing process for sodium iminodisuccinate (Baypure CX), a biodegradable, nontoxic chelating agent.
One-pot synthesis of active copper-containing carbon dots with laccase-like activities
NASA Astrophysics Data System (ADS)
Ren, Xiangling; Liu, Jing; Ren, Jun; Tang, Fangqiong; Meng, Xianwei
2015-11-01
Herein, an effective strategy for designing a new type of nanozyme, blue fluorescent laccase mimics, is reported. Active copper-containing carbon dots (Cu-CDs) were synthesized through a simple, nontoxic and one-pot hydrothermal method, which showed favorable photoluminescence properties and good photostability under high-salt conditions or in a broad pH range (3.0-13.5). The Cu-CDs possessed intrinsic laccase-like activities and could catalyze the oxidation of the laccase substrate p-phenylenediamine (PPD) to produce a typical color change from colorless to brown. Poly(methacrylic acid sodium salt) (PMAA) not only was used as the carbon source and reducing agent, but also provided carboxyl groups to assist flocculation between Cu-CDs and polyacrylamide, which facilitated the removal of PPD. Importantly, the intrinsic fluorescence of the as-prepared Cu-CDs could indicate the presence of hydroquinone, one of the substrates of laccases, based on laccase mimics and fluorescence quenching.Herein, an effective strategy for designing a new type of nanozyme, blue fluorescent laccase mimics, is reported. Active copper-containing carbon dots (Cu-CDs) were synthesized through a simple, nontoxic and one-pot hydrothermal method, which showed favorable photoluminescence properties and good photostability under high-salt conditions or in a broad pH range (3.0-13.5). The Cu-CDs possessed intrinsic laccase-like activities and could catalyze the oxidation of the laccase substrate p-phenylenediamine (PPD) to produce a typical color change from colorless to brown. Poly(methacrylic acid sodium salt) (PMAA) not only was used as the carbon source and reducing agent, but also provided carboxyl groups to assist flocculation between Cu-CDs and polyacrylamide, which facilitated the removal of PPD. Importantly, the intrinsic fluorescence of the as-prepared Cu-CDs could indicate the presence of hydroquinone, one of the substrates of laccases, based on laccase mimics and fluorescence quenching. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04685h
Wang, Yunliang; Liu, Lijuan; Guo, Yi; Mao, Tangyou; Shi, Rui; Li, Junxiang
2017-01-01
The effects of indigo naturalis (IN), which is a traditional Chinese herbal formulation, have been clinically demonstrated in treating refractory ulcerative colitis (UC). The present study aimed to verify the effects and mechanisms of IN in experimental UC rats. A total of 48 male Sprague-Dawley rats were randomly divided into six groups: Chow, model, high-dose IN, medium-dose IN, low-dose IN and mesalazine (a bowel-specific aminosalicylate drug) groups. The models were administered 3.5% dextran sodium sulphate solution for 7 days. The treatment groups were administered IN or mesalazine and then sacrificed and sampled on day 8. Disease activity index (DAI), histological damage score (HDS) and myeloperoxidase (MPO) activity were used to evaluate the severity of UC. Colon and serum cytokines were detected using liquid-phase chip technology and the expression of occludin protein in colonic mucosa was assessed by immunohistochemistry and western blot analysis. The results indicated that the oral administration of IN may reduce DAI, HDS and MPO activity. IN also reduced the expression of inflammatory cytokines and increased the expression of colonic mucosal repair-related cytokines and occludin protein. These results highlight the potential of IN as a therapeutic agent for treating UC through its action of inflammation control and colonic mucosal damage repair. PMID:28781623
Holden, Christopher A; Yuan, Quan; Yeudall, W Andrew; Lebman, Deborah A; Yang, Hu
2010-02-02
Tumors frequently contain hypoxic regions that result from a shortage of oxygen due to poorly organized tumor vasculature. Cancer cells in these areas are resistant to radiation- and chemotherapy, limiting the treatment efficacy. Macrophages have inherent hypoxia-targeting ability and hold great advantages for targeted delivery of anticancer therapeutics to cancer cells in hypoxic areas. However, most anticancer drugs cannot be directly loaded into macrophages because of their toxicity. In this work, we designed a novel drug delivery vehicle by hybridizing macrophages with nanoparticles through cell surface modification. Nanoparticles immobilized on the cell surface provide numerous new sites for anticancer drug loading, hence potentially minimizing the toxic effect of anticancer drugs on the viability and hypoxia-targeting ability of the macrophage vehicles. In particular, quantum dots and 5-(aminoacetamido) fluorescein-labeled polyamidoamine dendrimer G4.5, both of which were coated with amine-derivatized polyethylene glycol, were immobilized to the sodium periodate-treated surface of RAW264.7 macrophages through a transient Schiff base linkage. Further, a reducing agent, sodium cyanoborohydride, was applied to reduce Schiff bases to stable secondary amine linkages. The distribution of nanoparticles on the cell surface was confirmed by fluorescence imaging, and it was found to be dependent on the stability of the linkages coupling nanoparticles to the cell surface.
Strategies to Reduce Dietary Sodium Intake
Cobb, Laura K; Appel, Lawrence J; Anderson, Cheryl A.M.
2013-01-01
Opinion Excess sodium intake has an important, if not predominant, role in the pathogenesis of elevated blood pressure, one of the most important modifiable determinants of cardiovascular disease (CVD). In the United States, almost 80% of sodium in the diet comes from packaged and restaurant foods. Given the current food environment, educational efforts such as clinician counseling are useful, but a comprehensive public health approach is necessary to achieve meaningful reductions in sodium intake. A successful approach includes several key strategies, which together will both promote positive decisions by individuals and change the context in which they make those decisions. The strategies include: (1) public education, (2) individual dietary counseling, (3) food labeling, (4) coordinated, voluntary industry sodium reduction, (5) government and private sector food procurement policies, and (6) FDA regulations, as recommended by the Institute of Medicine, to modify sodium’s generally regarded as safe (GRAS) status. Population-wide reduction in sodium intake has the potential to substantially reduce the public burden of preventable CVD and reduce health care costs. PMID:22580974
Sodium intake among U.S. school-aged children - United States, 2009-2010
USDA-ARS?s Scientific Manuscript database
A national health objective is to reduce average U.S. sodium intake to 2,300 mg daily to help prevent high blood pressure, a major cause of heart disease and stroke. Identifying common contributors to sodium intake among children can help reduction efforts. Average sodium intake, sodium consumed p...
Santiesteban-López, N Angélica; Rosales, Mónica; Palou, Enrique; López-Malo, Aurelio
2009-11-01
Escherichia coli ATCC 35218 growth response was evaluated after repetitive cultivation in stepwise increasing antimicrobial agent concentrations (potassium sorbate or sodium benzoate) to observe its adaptation process to high weak-acid concentrations. The effect of antimicrobial (potassium sorbate or sodium benzoate) concentration (0 to 7,000 ppm) was tested using laboratory media. Cells adapted at 1,000 ppm were inoculated in media containing the same concentration of the antimicrobial; after that, cells were transferred to media containing a higher concentration, followed by repetitive cultivations. In every case, viable cells were determined by surface plating every hour up to 48 h. Logarithmic representations of survival or growing fraction were modeled using the Gompertz equation. Adapted and nonadapted cells were analyzed for plasmid presence as well as phosphofructokinase and succinate dehydrogenase activity. Bacterial growth was observed after adaptation processes in media formulated up to 7,000 ppm of potassium sorbate or sodium benzoate. Analyses of variance demonstrated that no significant difference (P > 0.05) in lag time or growth rate was observed among adapted cells cultured in media containing the studied concentrations for each of the antimicrobials tested. These results suggest that E. coli can be adapted to high weak-acid concentrations if the exposure is performed under sublethal conditions. Furthermore, there was demonstrated inhibition of the enzymes phosphofructokinase and succinate dehydrogenase by action of sodium benzoate and potassium sorbate, respectively. E. coli adaptation to antimicrobial agents was not related to plasmid presence but appears to be due to other action mechanisms.
Oh, Mi-Hwa; Park, Beom-Young; Jo, Hyunji; Lee, Soomin; Lee, Heeyoung; Choi, Kyoung-Hee; Yoon, Yohan
2014-01-01
This study evaluated the effect of sodium diacetate and sodium lactate solutions for reducing the cell count of Pseudomonas spp. in frankfurters and hams. A mixture of Pseudomonas aeruginosa (NCCP10338, NCCP10250, and NCCP11229), and Pseudomonas fluorescens (KACC10323 and KACC10326) was inoculated on cooked frankfurters and ham. The inoculated samples were immersed into control (sterile distilled water), sodium diacetate (5 and 10%), sodium lactate (5 and 10%), 5% sodium diacetate + 5% sodium lactate, and 10% sodium diacetate + 10% sodium lactate for 0-10 min. Inoculated frankfurters and ham were also immersed into acidified (pH 3.0) solutions such as acidified sodium diacetate (5 and 10%), and acidified sodium lactate (5 and 10%) in addition to control (acidified distilled water) for 0-10 min. Total aerobic plate counts for Pseudomonas spp. were enumerated on Cetrimide agar. Significant reductions (ca. 2 Log CFU/g) in Pseudomonas spp. cells on frankfurters and ham were observed only for a combination treatment of 10% sodium lactate + 10% sodium diacetate. When the solutions were acidified to pH 3.0, the total reductions of Pseudomonas spp. were 1.5-4.0 Log CFU/g. The order of reduction amounts of Pseudomonas spp. cell counts was 10% sodium lactate > 5% sodium lactate ≥ 10% sodium diacetate > 5% sodium diacetate > control for frankfurters, and 10% sodium lactate > 5% sodium lactate > 10% sodium diacetate > 5% sodium diacetate > control for ham. The results suggest that using acidified food additive antimicrobials, as dipping solutions, should be useful in reducing Pseudomonas spp. on frankfurters and ham.
REDUCING TITANIUM TETRACHLORIDE WITH HIGH-SURFACE SODIUM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fleck, D.C.; Wong, M.M.; Baker, D.H. Jr.
1960-01-01
A method of using sodium for reducing titanium tetrachloride, developed to improve the extractive metallurgy of titunium, is described. Finely divided titanium metal, titanium lower chlorides, or a mixture thereof was produced in a continuous operation at temperatures between 105 and 205 deg C by the reaction of molten sodium and vaporized titanium tetrachloride in an agitated bed of finely divided inert solids (powdered sodium chloride or the reaction products). Composition of the product was controlled by varying the relative quantities of sodium and titanium tetrachloride used. A description of the operations and analytical data of the reaction products aremore » given. (auth)« less
Chen, Shih-Chieh; Huang, Shin-Yin; Lu, Chi-Yu; Hsu, Ya-Hung; Wang, Dean-Chuan
2014-09-01
The mechanisms underlying cardiovascular disease induced by arsenic exposure are not completely understood. The objectives of this study were to investigate whether arsenic-fed mice have an increased vascular leakage response to vasoactive agents and whether enhanced type-2 protein phosphatase (PP2A) activity is involved in mustard oil-induced leakage. ICR mice were fed water or sodium arsenite (20 mg/kg) for 4 or 8 weeks. The leakage response to vasoactive agents was quantified using the Evans blue (EB) technique or vascular labeling with carbon particles. Increased EB leakage and high density of carbon-labeled microvessels were detected in arsenic-fed mice treated with mustard oil. Histamine induced significantly higher vascular leakage in arsenic-fed mice than in water-fed mice. Pretreatment with the PP2A inhibitor okadaic acid or the neurokinin 1 receptor (NK1R) blocker RP67580 significantly reduced mustard oil-induced vascular leakage in arsenic-fed mice. The protein levels of PP2Ac and NK1R were similar in both groups. PP2A activity was significantly higher in the arsenic-fed mice compared with the control group. These findings indicate that microvessels generally respond to vasoactive agents, and that the increased PP2A activity is involved in mustard oil-induced vascular leakage in arsenic-fed mice. Arsenic may initiate endothelial dysfunction, resulting in vascular leakage in response to vasoactive agents.
Singh, Sachin Kumar; Srinivasan, K K; Singare, Dhananjay S; Gowthamarajan, K; Prakash, Dev
2012-11-01
Glyburide, a sulfonylurea derivative, widely used as hypoglycaemic agent. In the present study, an attempt has been made to investigate the most effective third component which can be used with hydroxylpropyl-β-cyclodextrin (HPβCd) to form a ternary complex with glyburide in order to enhance its dissolution rate, as well as reduce the amount of HPβCd used for formulating the binary complex with glyburide. Moreover, the objective of this study was also to develop a discriminatory dissolution media in order to discriminate the effect of the different solubilizing agents used for formulating the ternary complex system. Sodium lauryl sulphate, Poloxamer-188, Polyvinylpyrrolidone K-30, lactose and L-arginine were used to formulate ternary system along with HPβCd and glyburide. The ternary system formulated with glyburide:HPβCd:L-arginine in a proportion of 1:1:0.5 has shown the fastest dissolution rate when compared to other solubilizing agents. Unbuffered aqueous media with stirring speed 50 rpm has produced the most discriminatory dissolution profiles. The DSC thermograms and the powder X-ray analysis revealed the decrease in crystallinity of the drug. This was an indication of amorphous solid dispersion or molecular encapsulation of the drug into the cyclodextrin cavity.
Sodium ion pumps and hydrogen production in glutamate fermenting anaerobic bacteria.
Boiangiu, Clara D; Jayamani, Elamparithi; Brügel, Daniela; Herrmann, Gloria; Kim, Jihoe; Forzi, Lucia; Hedderich, Reiner; Vgenopoulou, Irini; Pierik, Antonio J; Steuber, Julia; Buckel, Wolfgang
2005-01-01
Anaerobic bacteria ferment glutamate via two different pathways to ammonia, carbon dioxide, acetate, butyrate and molecular hydrogen. The coenzyme B12-dependent pathway in Clostridium tetanomorphum via 3-methylaspartate involves pyruvate:ferredoxin oxidoreductase and a novel enzyme, a membrane-bound NADH:ferredoxin oxidoreductase. The flavin- and iron-sulfur-containing enzyme probably uses the energy difference between reduced ferredoxin and NADH to generate an electrochemical Na+ gradient, which drives transport processes. The other pathway via 2-hydroxyglutarate in Acidaminococcus fermentans and Fusobacterium nucleatum involves glutaconyl-CoA decarboxylase, which uses the free energy of decarboxylation to generate also an electrochemical Na+ gradient. In the latter two organisms, similar membrane-bound NADH:ferredoxin oxidoreductases have been characterized. We propose that in the hydroxyglutarate pathway these oxidoreductases work in the reverse direction, whereby the reduction of ferredoxin by NADH is driven by the Na+ gradient. The reduced ferredoxin is required for hydrogen production and the activation of radical enzymes. Further examples show that reduced ferredoxin is an agent, whose reducing energy is about 1 ATP 'richer' than that of NADH. Copyright 2005 S. Karger AG, Basel.
Multiply Reduced Oligofluorenes: Their Nature and Pairing with THF-Solvated Sodium Ions
Wu, Qin; Zaikowski, Lori; Kaur, Parmeet; ...
2016-07-01
Conjugated oligofluorenes are chemically reduced up to five charges in tetrahydrofuran solvent and confirmed with clear spectroscopic evidence. Stimulated by these experimental results, we have conducted a comprehensive computational study of the electronic structure and the solvation structure of representative oligofluorene anions with a focus on the pairing between sodium ions and these multianions. In addition, using density functional theory (DFT) methods and a solvation model of both explicit solvent molecules and implicit polarizable continuum, we first elucidate the structure of tightly solvated free sodium ions, and then explore the pairing of sodium ions either in contact with reduced oligofluorenesmore » or as solvent-separated ion pairs. Computed time-dependent-DFT absorption spectra are compared with experiments to assign the dominant ion pairing structure for each multianion. Computed ion pair binding energies further support our assignment. Lastly, the availability of different length and reducing level of oligofluorenes enables us to investigate the effects of total charge and charge density on the binding with sodium ions, and our results suggest both factors play important roles in ion pairing for small molecules. However, as the oligofluorene size grows, its charge density determines the binding strength with the sodium ion.« less
Loxoprofen Sodium, a Non-Selective NSAID, Reduces Atherosclerosis in Mice by Reducing Inflammation
Hamaguchi, Masahide; Seno, Takahiro; Yamamoto, Aihiro; Kohno, Masataka; Kadoya, Masatoshi; Ishino, Hidetaka; Ashihara, Eishi; Kimura, Shinya; Tsubakimoto, Yoshinori; Takata, Hiroki; Yoshikawa, Toshikazu; Maekawa, Taira; Kawahito, Yutaka
2010-01-01
Recently, it is suggested that the use of nonsteroidal anti-inflammatory drugs (NSAID) may contribute to the occurrence of cardiovascular events, while the formation of atherosclerotic lesions is related to inflammation. Loxoprofen sodium, a non-selective NSAID, becomes active after metabolism in the body and inhibits the activation of cyclooxygenase. We fed apoE−/− mice a western diet from 8 to 16 weeks of age and administered loxoprofen sodium. We measured atherosclerotic lesions at the aortic root. We examined serum levels of cholesterol and triglycerides with HPLC, platelet aggregation, and urinary prostaglandin metabolites with enzyme immune assay. Atherosclerotic lesion formation was reduced to 63.5% and 41.5% as compared to the control in male and female apoE−/− mice treated with loxoprofen sodium respectively. Urinary metabolites of prostaglandin E2, F1α, and thromboxane B2, and platelet aggregation were decreased in mice treated with loxoprofen sodium. Serum levels of cholesterol and triglycerides were not changed. We conclude that loxoprofen sodium reduced the formation of early to intermediate atherosclerotic lesions at the proximal aorta in mice mediated by an anti-inflammatory effect. PMID:20838569
Vieira, Rosimara Gonçalves Leite; Moraes, Thaís da Silva; Silva, Larissa de Oliveira; Bianchi, Thamires Chiquini; Veneziani, Rodrigo Cassio Sola; Ambrósio, Sérgio Ricardo; Bastos, Jairo Kenupp; Pires, Regina Helena; Martins, Carlos Henrique Gomes
2018-01-01
Patients submitted to hemodialysis therapy are more susceptible to infection, especially to infection by Gram-positive bacteria. Various research works have attempted to discover new antimicrobial agents from plant extracts and other natural products. The present study aimed to assess the antibacterial activities of Copaifera duckei , C. reticulata , and C. oblongifolia oleoresins; sodium hypochlorite; and peracetic acid against clinical and environmental isolates recovered from a Hemodialysis Unit. The Minimum Inhibitory Concentration and the Fractionated Inhibitory Concentration Index were determined; the ability of the tested compounds/extracts to inhibit biofilm formation was evaluated by calculating the MICB 50 and IC 50 . C. duckei was the most efficient among the assayed Copaifera species, and its oleoresin was more effective than peracetic acid and sodium hypochlorite. Copaifera oleoresins and disinfectants did not act synergistically at any of the tested combinations. Certain of C. duckei oleoresin, peracetic acid, and sodium hypochlorite concentrations inhibited biofilm formation and eradicated 50% of the biofilm population. C. duckei oleoresin is a potential candidate for disinfectant formulations. Based on these results and given the high incidence of multi-resistant bacteria in hemodialysis patients, it is imperative that new potential antibacterial agents like C. duckei oleoresin, which is active against Staphylococcus , be included in disinfectant formulations.
Flame resistant cellulose fiber insulation and process of preparing it
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quinto, M.J.
1979-11-06
This invention produces flame resistant cellulose fiber insulation, which will be referred to as CFI. The best flameproofing agents which have been used in the past are mixtures of boric acid and borax as the major portion of the mix and have been applied both as dry powders and sprayed from water dispersions. Boric acid is quite expensive as it is prepared from borax by the addition of acid and purification of the boric acid. In the present invention lower cost materials and process are obtained by applying a mixture of boric acid and borax which has been prepared bymore » adding acid, such as sulfuric acid, a mixture of sulfuric and phosphoric acid, and the like, to borax to transform a portion of the borax into boric acid. The reaction products, sodium sulfate, or a mixture of sodium sulfate and sodium phosphate in the case both acids are used, remain in the material applied to CFI. While they are not by themselves highly effective flameproofing agents, particularly sodium sulfate is not, they do add somewhat to flame resistance. In other words, wht elimination of the step of separating and/or purifying boric acid is eliminated without, however, eliminating its function. The product produced is as good a flame retarder when applied to CFI; in fact it is slightly better. Additionally there are great savings in cost.« less
Electrodeposition of amorphous ternary nickel-chromium-phosphorus alloy
Guilinger, Terry R.
1990-01-01
Amorphous ternary nickel-chromium-phosphorus alloys are electrodeposited from a bath comprising a nickel salt, a chromium salt, a phosphorus source such as sodium hypophosphite, a complexing agent for the nickel ions, supporting salts to increase conductivity, and a buffering agent. The process is carried out at about room temperature and requires a current density between about 20 to 40 A/dm.sup.2.
Liu, Zhao-min; Ho, Suzanne C.; Tang, Nelson; Chan, Ruth; Chen, Yu-ming; Woo, Jean
2014-01-01
Background Reducing salt intake in communities is one of the most effective and affordable public health strategies to prevent hypertension, stroke and renal disease. The present study aimed to determine the sodium intake in Hong Kong Chinese postmenopausal women and identify the major food sources contributing to sodium intake and urine excretion. Methods This was a cross-sectional study among 655 Chinese postmenopausal women with prehypertension who were screened for a randomized controlled trial. Data collection included 24 h urine collection for the measurement of sodium, potassium and creatinine, 3-day dietary records, anthropometric measures and questionnaire survey on demographic data and dietary habits. Results The average salt intake estimated from urinary excretion was 7.8±3.2 g/d with 82.1% women above WHO recommendation of 5 g/day. Food groups as soup (21.6%), rice and noodles (13.5%), baked cereals (12.3%), salted/preserved foods (10.8%), Chinese dim sum (10.2%) and sea foods (10.1%) were the major contributors of non-discretionary salt. Discretionary salt use in cooking made a modest contribution to overall intake. Vegetable and fruit intake, age, sodium intake from salted foods, sea foods and soup were the independent determinants of urinary sodium excretion. Conclusions Our data revealed a significant room for reduction of the sodium intake. Efforts to reduce sodium from diets in Hong Kong Chinese postmenopausal women should focus on both processed foods and discretionary salt during cooking. Sodium reduction in soup and increase in fruit intake would be potentially effective strategy for reducing sodium. PMID:25083775
Roig, Javier; Saiz, Maria L.; Galiano, Alicia; Trelis, Maria; Cantalapiedra, Fernando; Monteagudo, Carlos; Giner, Elisa; Giner, Rosa M.; Recio, M. C.; Bernal, Dolores; Sánchez-Madrid, Francisco; Marcilla, Antonio
2018-01-01
The complexity of the pathogenesis of inflammatory bowel disease (ulcerative colitis and Crohn’s disease) has led to the quest of empirically drug therapies, combining immunosuppressant agents, biological therapy and modulators of the microbiota. Helminth parasites have been proposed as an alternative treatment of these diseases based on the hygiene hypothesis, but ethical and medical problems arise. Recent reports have proved the utility of parasite materials, mainly excretory/secretory products as therapeutic agents. The identification of extracellular vesicles on those secreted products opens a new field of investigation, since they exert potent immunomodulating effects. To assess the effect of extracellular vesicles produced by helminth parasites to treat ulcerative colitis, we have analyzed whether extracellular vesicles produced by the parasitic helminth Fasciola hepatica can prevent colitis induced by chemical agents in a mouse model. Adult parasites were cultured in vitro and secreted extracellular vesicles were purified and used for immunizing both wild type C57BL/6 and RAG1-/- mice. Control and immunized mice groups were treated with dextran sulfate sodium 7 days after last immunization to promote experimental colitis. The severity of colitis was assessed by disease activity index and histopathological scores. Mucosal cytokine expression was evaluated by ELISA. The activation of NF-kB, COX-2, and MAPK were evaluated by immunoblotting. Administration of extracellular vesicles from F. hepatica ameliorates the pathological symptoms reducing the amount of pro-inflammatory cytokines and interfering with both MAPK and NF-kB pathways. Interestingly, the observed effects do not seem to be mediated by T-cells. Our results indicate that extracellular vesicles from parasitic helminths can modulate immune responses in dextran sulfate sodium (DSS)-induced colitis, exerting a protective effect that should be mediated by other cells distinct from B- and T-lymphocytes. PMID:29875750
Leong, Jasmine; Kasamatsu, Chinatsu; Ong, Evelyn; Hoi, Jia Tse; Loong, Mann Na
2016-05-01
This study examined the effects of sodium reduction and flavor enhancers on the sensory profile of two types of hawker foods commonly consumed in Singapore, namely chicken rice and mee soto broth. The 'difference-from-control' test was the method adopted in this study involving 24-29 trained panelists. Combinations included blind control, two levels of sodium reduction, and two levels of flavor enhancers in sodium-reduced recipes. In the sodium-reduced recipes, two levels of NaCl, 0.48% and 0.55%, for chicken rice, and 0.76% and 0.86% for mee soto (equivalent to 31% and 22% reduction in NaCl), were used. Monosodium glutamate (MSG) or Ajiplus (®) (a blend of MSG and nucleotides) at 0.20% and 0.40% were added to the recipes comprising a reduction of 40% in NaCl (equivalent to 31% and 22% reduction in sodium, respectively) compared with the control. It was found that the inclusion of MSG or Ajiplus (®) in 40% NaCl-reduced recipe resulted in a significant increase in perception of umami taste (P < 0.05) when compared to the control. By adding flavor enhancers into the 40%-reduced salt chicken rice recipes, the perception of saltiness was significantly increased when compared to 22% and 31% sodium reduced recipes. Similarly for mee soto broth, there was a significant increase in perception of chicken flavor, umami taste, mouthfeel sensation, and sweet taste (P < 0.05) with a decrease in the perception of sour and bitter taste when compared to control. By adding 0.40% MSG into the 40%-reduced salt recipes, the perception of saltiness was maintained when compared with control.
Sodium balance in hemodialysis therapy.
Kooman, Jeroen P; van der Sande, Frank; Leunissen, Karel; Locatelli, Francesco
2003-01-01
Water and sodium overload is the predominant factor in the pathogenesis of hypertension in dialysis patients. In many dialysis patients, dry weight is not reached because of an imbalance between the interdialytic accumulation of water and sodium and the brief and discontinuous nature of routine dialysis therapy. During dialysis, sodium is removed by convection and to a lesser degree by diffusion. However, with supraphysiologic dialysate sodium concentrations, diffusive influx from dialysate may occur, especially in patients with low predialytic plasma sodium concentrations. Measuring sodium removal during dialysis is difficult and hampered by the variability in conventional sodium measurements. Ionic mass removal by continuous measurement of conductivity in the dialysate ports appears to be a promising tool for the approximation of sodium removal during dialysis. While the beneficial effects of concomitant water and sodium removal on blood pressure control in dialysis patients are undisputed, it is less well known whether a change in hydrosodium balance solely by reducing dialysate sodium is beneficial. Considering the inherent dangers of such an approach (intradialytic hemodynamic instability), the beneficial effects of strict dietary sodium restriction appear to be of much larger clinical benefit. It has become possible to individualize dialysate sodium concentration by means of online measurements of plasma conductivity and adjustment of dialysate conductivity by feedback technologies. The clinical benefits of this approach deserve further study. Still, reducing dietary sodium intake remains the most important tool in improving blood control in dialysis patients.
Bourdeaux, Chris P; Brown, Jules M
2011-08-01
Hypertonic sodium chloride solutions are routinely used to control raised intracranial pressure (ICP) after traumatic brain injury but have the potential to cause a hyperchloremic metabolic acidosis. Sodium bicarbonate 8.4% has previously been shown to reduce ICP and we have therefore conducted a randomized controlled trial to compare these two solutions. Patients with severe traumatic brain injury were randomly allocated to receive an equiosmolar dose of either 100 ml of sodium chloride 5% or 85 ml of sodium bicarbonate 8.4% for each episode of intracranial hypertension. ICP and blood pressure were measured continuously. Arterial pCO(2), sodium, chloride, osmolality, and pH were measured at intervals. We studied 20 episodes of intracranial hypertension in 11 patients. Treatments with 8.4% sodium bicarbonate and 5% sodium chloride reduced raised ICP effectively with a significant fall in ICP from baseline at all time points (P < 0.001). There was no significant difference in ICP with time between those episodes treated with 5% sodium chloride or 8.4% sodium bicarbonate, P = 0.504. Arterial pH was raised after treatment with 8.4% sodium bicarbonate. An equiosmolar infusion of 8.4% sodium bicarbonate is as effective as 5% sodium chloride for reduction of raised ICP after traumatic brain injury when infused over 30 min.
NASA Technical Reports Server (NTRS)
Jordan, J.; Shannon, J. R.; Pohar, B.; Paranjape, S. Y.; Robertson, D.; Robertson, R. M.; Biaggioni, I.
1999-01-01
Supine hypertension, which is very common in patients with autonomic failure, limits the use of pressor agents and induces nighttime natriuresis. In 13 patients with severe orthostatic hypotension due to autonomic failure (7 women, 6 men, 72 +/- 3 yr) and supine hypertension, the effect of 30 mg nifedipine (n = 10) and 0.025 to 0.2 mg/h nitroglycerin patch (n = 11) on supine BP, renal sodium handling, and orthostatic tolerance was determined. Medications were given at 8 p.m.; patients stood up at 8 a.m. Nitroglycerin was removed at 6 a.m. Compared with placebo, nifedipine and nitroglycerin decreased systolic BP during the night by a maximum of 37 +/- 9 and 36 +/- 10 mmHg, respectively (P < 0.01). At 8 a.m., supine systolic BP was 23 +/- 7 mmHg lower with nifedipine than with placebo (P < 0.05), but was similar with nitroglycerin and placebo. Sodium excretion during the night was not reduced with nitroglycerin (0.13 +/- 0.02 mmol/mg creatinine [Cr] versus 0.15 +/- 0.03 mmol/mg Cr with placebo), but it was increased with nifedipine (0.35 +/- 0.06 mmol/mg Cr versus 0.13 +/- 0.02 mmol/mg Cr with placebo, P < 0.05). Nifedipine but not nitroglycerin worsened orthostatic hypotension in the morning. It is concluded that nifedipine and transdermal nitroglycerin are effective in controlling supine hypertension in patients with autonomic failure. However, nifedipine has a prolonged depressor effect and worsens orthostatic hypotension in the morning. The decrease in pressure natriuresis that would be expected with the substantial decrease in BP obtained with nitroglycerin and nifedipine may be offset by a direct effect of both drugs on renal sodium handling.
Yousefi, Reza; Ferdowsi, Leila; Tavaf, Zohreh; Sadeghian, Tanaz; Tamaddon, Ali M; Moghtaderi, Mozhgan; Pourpak, Zahra
2017-01-01
Milk has a potent reducing environment with an important quantity of sugar levels. In the current study β-casein was glycated in the presence of D-glucose and sodium cyanoborohydride as a reducing agent. Then, the reduced glucitol adduct of β-casein was used for the structural and functional analyses using different spectroscopic techniques. The results of fluorescence and far ultraviolet circular dichroism assessments suggest important structural alteration upon non-enzymatic glycation of β-casein. In addition, the chaperone activity, micellization properties and antioxidant activity of this protein were altered upon glucose modification. Also, as a result of reduced glycation, the allergenicity profile of this protein remained largely unchanged. Additional to its energetic and nutritional values, β-casein has important functional properties. The native structure of this protein is important to perform accurately its biological functions. Non-enzymatic glycation under reducing state was capable to alter both structural and functional aspects of β-casein. Due to effective reducing environment and significant quantity of reducing sugar of human milk, similar structural and functional alterations are most likely to occur upon reducing glycation of β-casein in vivo. Also, these changes might be even intensified during chronic hyperglycemia in diabetic mothers. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Inaugural Maximum Values for Sodium in Processed Food Products in the Americas.
Campbell, Norm; Legowski, Barbara; Legetic, Branka; Nilson, Eduardo; L'Abbé, Mary
2015-08-01
Reducing dietary salt/sodium is one of the most cost-effective interventions to improve population health. There are five initiatives in the Americas that independently developed targets for reformulating foods to reduce salt/sodium content. Applying selection criteria, recommended by the Pan American Health Organization (PAHO)/World Health Organization (WHO) Technical Advisory Group on Dietary Salt/Sodium Reduction, a consortium of governments, civil society, and food companies (the Salt Smart Consortium) agreed to an inaugural set of regional maximum targets (upper limits) for salt/sodium levels for 11 food categories, to be achieved by December 2016. Ultimately, to substantively reduce dietary salt across whole populations, targets will be needed for the majority of processed and pre-prepared foods. Cardiovascular and hypertension organizations are encouraged to utilize the regional targets in advocacy and in monitoring and evaluation of progress by the food industry. © 2015 Wiley Periodicals, Inc.
Bose, D.; Innes, I. R.
1973-01-01
1. Isometric contractions of cat splenic capsular smooth muscle in response to noradrenaline and histamine were recorded. 2. Removal of potassium from the bathing medium did not change the resting tension or the responsiveness to noradrenaline. Restoration of potassium inhibited responses to noradrenaline or histamine only if the muscles were stimulated with an agonist while in the K-free medium. 3. This inhibition of responses to the agonists due to potassium was reversed rapidly by removing the ion or reversed slowly by prolonged exposure to the ion. The inhibition was also blocked by procedures or agents which block the sodium pump (ouabain, substitution of NaCl by LiCl), inhibit active processes (low ambient temperature) or prevent intracellular accumulation of sodium (substitution of choline for sodium). 4. It is proposed that under special circumstances such as when there is an increase in internal sodium concentration, the sodium pump is probably electrogenic and causes relaxation when activated by external potassium. In the normal muscle the pump is probably electrically neutral. PMID:4777707
Duncan, Charles L.; Foster, E. M.
1968-01-01
The effects of meat-curing agents on germination and outgrowth of putrefactive anaerobe 3679h (PA 3679h) spores were studied in microcultures. Nitrite concentrations up to 0.06% at pH 6.0 or between 0.8 and 1% at pH 7.0 allowed emergence and elongation of vegetative cells but blocked cell division. The newly emerged cells then lysed. With more than 0.06% nitrite at pH 6.0 or more than 0.8 to 1% at pH 7.0, the spores lost refractility and swelled, but vegetative cells did not emerge. Even as much as 4% nitrite failed to prevent germination (complete loss of refractility) and swelling of the spores. Sodium chloride concentrations above 6% prevented complete germination (i.e., the spores retained a refractile core). In the presence of 3 to 6% sodium chloride, most of the spores germinated and produced vegetative cells, but cell division was often blocked. Sodium nitrate had no apparent effect on germination and outgrowth at concentrations up to 2%. Images Fig. 1 Fig. 2 Fig. 3 PMID:5645423
The use of sodium bicarbonate in oral hygiene products and practice.
Newbrun, E
1996-01-01
Early dentifrices contained natural ingredients, mostly in coarse particle form, and were quite abrasive. Salts, either sodium chloride, sodium bicarbonate, or a mixture of both, have also been used for tooth cleaning because of their ready availability and low cost. Because of both their relatively low intrinsic hardness and their high solubility, another advantage is low abrasivity. Their biggest disadvantage is a salty, unpalatable taste. Many modern dentifrices that contain sodium bicarbonate, either as the sole abrasive or one of several, disguise the saltiness with flavoring and sweetening agents. An almost inverse relationship exists between the percentage of baking soda in a dentifrice and its abrasivity. Sodium bicarbonate has no anticaries activity per se but is compatible with fluoride. In high concentrations, sodium bicarbonate is bactericidal against most periodontal pathogens. Most clinical studies have not found significant differences in periodontal response to baking soda as compared with other commercial dentifrices, probably because of its rapid clearance from the gingival sulcus. Sodium bicarbonate may not be the "magic bullet" for curing dental diseases, but its safety (if ingested), low abrasivity, low cost, and compatibility with fluoride make it a consummate dentifrice ingredient.
The use of sodium bicarbonate in oral hygiene products and practice.
Newbrun, E
1997-01-01
Early dentifrices contained natural ingredients, mostly in coarse particle form, and were quite abrasive. Salts, either sodium chloride, sodium bicarbonate, or a mixture of both, have also been used for tooth cleaning because of their ready availability and low cost. Because of both their relatively low intrinsic hardness and their high solubility, another advantage is low abrasivity. Their biggest disadvantage is a salty, unpalatable taste. Many modern dentifrices that contain sodium bicarbonate, either as the sole abrasive or one of several, disguise the saltiness with flavoring and sweetening agents. An almost inverse relationship exists between the percentage of baking soda in a dentifrice and its abrasivity. Sodium bicarbonate has no anticaries activity per se but is compatible with fluoride. In high concentrations, sodium bicarbonate is bactericidal against most periodontal pathogens. Most clinical studies have not found significant differences in periodontal response to baking soda as compared with other commercial dentifrices, probably because of its rapid clearance from the gingival sulcus. Sodium bicarbonate may not be the "magic bullet" for curing dental diseases, but its safety (if ingested), low abrasivity, low cost, and compatibility with fluoride make it a consummate dentifrice ingredient.
Johnston, Yvonne A; McFadden, Mary; Lamphere, Marissa; Buch, Karen; Stark, Beth; Salton, Judith Lynn
2014-01-01
The purpose of this article is to describe implementation of and lessons learned from the Broome County Sodium Reduction in Communities grocery store initiative. This pilot project was conducted in collaboration with a regional supermarket chain and endeavored to develop population-based strategies for reducing sodium intake. Key interventions included marketing strategies, taste test demonstrations, and a public media campaign. Project staff worked closely with corporate registered dietitian nutritionists, a nutrition specialist, and an advertising agency in its development and implementation. A social marketing approach was used to educate consumers about the hidden sources of dietary sodium, to raise awareness of the adverse health effects of excess sodium intake, to encourage consumers to read food labels, and to urge them to purchase food items lower in sodium. The lessons learned from this experience may be of assistance to other communities that seek to implement similar sodium-reduction strategies in the grocery store environment.
Cogswell, Mary E.; Fang, Jing; Coleman King, Sallyann M.; Merritt, Robert K.
2017-01-01
High blood pressure is a major risk factor for cardiovascular disease. The 2013 ACC/AHA Lifestyle Management Guideline recommends counseling pre-hypertensive and hypertensive patients to reduce sodium intake. Population sodium reduction efforts have been introduced in recent years, and dietary guidelines continued to emphasize sodium reduction in 2010 and 2015. The objective of this analysis was to determine changes in primary health care providers’ sodium-reduction attitudes and counseling between 2010 and 2015. Primary care internists, family/general practitioners, and nurse practitioners answered questions about sodium-related attitudes and counseling behaviors in DocStyles, a repeated cross-sectional web-based survey in the United States. Differences in responses between years were examined. In 2015, the majority (78%) of participants (n = 1,251) agreed that most of their patients should reduce sodium intake, and reported advising hypertensive (85%), and chronic kidney disease patients (71%), but not diabetic patients (48%) and African-American patients (43%) to consume less salt. Since 2010, the proportion of participants agreeing their patients should reduce sodium intake decreased while the proportion advising patients with these characteristics to consume less salt increased and the prevalence of specific types of advice declined. Changes in behaviors between surveys remained significant after adjusting for provider and practice characteristics. More providers are advising patients to consume less salt in 2015 compared to 2010; however, fewer agree their patients should reduce intake and counseling is not universally applied across patient groups at risk for hypertension. Further efforts and educational resources may be required to enable patient counseling about sodium reduction strategies. PMID:28531232
Wang, Ian J.
2018-01-01
Spatial heterogeneity in the strength or agents of selection can lead to geographic variation in ecologically important phenotypes. Many dendrobatid frogs sequester alkaloid toxins from their diets and often exhibit fixed mutations at NaV1.4, a voltage-gated sodium ion channel associated with alkaloid toxin resistance. Yet previous studies have noted an absence of resistance mutations in individuals from several species known to sequester alkaloid toxins, suggesting possible intraspecific variation for alkaloid resistance in these species. Toxicity and alkaloid profiles vary substantially between populations in several poison frog species (genus Dendrobates) and are correlated with variation in a suite of related traits such as aposematic coloration. If resistance mutations are costly, due to alterations of channel gating properties, we expect that low toxicity populations will have reduced frequencies and potentially even the loss of resistance alleles. Here, we examine whether intraspecific variation in toxicity in three dendrobatid frogs is associated with intraspecific variation in alleles conferring toxin resistance. Specifically, we examine two species that display marked variation in toxicity throughout their native ranges (Dendrobates pumilio and D. granuliferus) and one species with reduced toxicity in its introduced range (D. auratus). However, we find no evidence for population-level variation in alkaloid resistance at NaV1.4. In fact, contrary to previous studies, we found that alkaloid resistance alleles were not absent in any populations of these species. All three species exhibit fixed alkaloid resistance mutations throughout their ranges, suggesting that these mutations are maintained even when alkaloid sequestration is substantially reduced. PMID:29534110
Quan, Lei; Dong, Jie; Li, Yanjun; Zuo, Li
2012-06-01
This article is a report of a study to reduce the seasonal variation of blood pressure in patients on peritoneal dialysis through an intensive programme of nursing care. The seasonal variation of blood pressure is a common phenomenon in patients on maintenance dialysis. Whether or not this variation can be reduced through a given intervention is unknown. The programme of intensive nursing care including education on volume control, home blood pressure monitoring and intensified antihypertensive treatment, was implemented from December 2006. The blood pressure, fluid and sodium removal and defined daily doses of antihypertensive agents were measured at 1-monthly intervals and averagely quarterly for seasonal values for spring, summer, autumn and winter, respectively, before (December 2005-November 2006) and after intervention (December 2006-November 2007). A total of 76 clinically stable patients on peritoneal dialysis were enrolled and finally analysed. The mean age was 60·6 years, and dialysis duration was 23·2 months. Before intervention, there were important seasonal variations in systolic and diastolic blood pressure. After intensive nursing care was implemented, the seasonal variation of systolic blood pressure disappeared. The diastolic blood pressure still represented a season pattern, but the discrepancy between winter and summer decreased. There were no seasonal patterns of total fluid and sodium removal before and after intervention. Intensive nursing care reduced the seasonal variation of blood pressure in patients on peritoneal dialysis. These data provided an evidence for implementing nurse-centred interventions in this population. © 2011 Blackwell Publishing Ltd.
Physicochemical Approaches for the Remediation of Former Manufactured Gas Plant Tars
NASA Astrophysics Data System (ADS)
Hauswirth, S.; Miller, C. T.
2014-12-01
Former manufactured gas plant (FMGP) tars are one of the most challenging non-aqueous phase liquid (NAPL) contaminants to remediate due to their complex chemical composition, high viscosities, and ability to alter wettability. In this work, we investigate several in situ remediation techniques for the removal of tar from porous media. Batch and column experiments were conducted to test the effectiveness of mobilization, solubilization, and chemical oxidation remediation approaches. Alkaline (NaOH), surfactant (Triton X-100), and polymer (xanthan gum) agents were used in various combinations to reduce tar-water interfacial tension, increase flushing solution viscosity, and increase the solubilities of tar components. Base-activated sodium persulfate was used alone and in combination with surfactant to chemically oxidized tar components. The effectiveness of each method was assessed in terms of both removal of PAHs from the system and reduction of dissolved-phase effluent polycyclic aromatic hydrocarbon (PAH) concentrations. In column studies, alkaline-polymer (AP) and alkaline-surfactant-polymer (ASP) solutions efficiently mobilized 81-93% and 95-96% of residual PAHs, respectively, within two pore volumes. The impact of AP flushing on dissolved-phase PAH concentrations was relatively low; however, the concentrations of several low molar mass PAHs were significantly reduced after ASP flushing. Surfactant-polymer (SP) solutions removed over 99% of residual PAHs through a combination of mobilization and solubilization, and reduced the post-remediation, dissolved-phase total PAH concentration by 98.4-99.1%. Degradation of residual PAHs by base-activated sodium persulfate was relatively low (30-50%), and had little impact on dissolved-phase PAH concentrations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaHann, T.
ISU`s Center for Toxicology Research has been conducting toxicity testing of borocaptate sodium (BSH) to aid in assessing if proposed human studies of BSH are likely to be acceptably safe. This report describes BSH interactions with other biological agents.
21 CFR 172.846 - Sodium stearoyl lactylate.
Code of Federal Regulations, 2012 CFR
2012-04-01
...) As an emulsifier or stabilizer in liquid and solid edible fat-water emulsions intended for use as... finished edible fat-water emulsion. (4) As a formulation aid, processing aid, or surface-active agent in...
Propylparaben reduces the excitability of hippocampal neurons by blocking sodium channels.
Lara-Valderrábano, Leonardo; Rocha, Luisa; Galván, Emilio J
2016-12-01
Propylparaben (PPB) is an antimicrobial preservative widely used in food, cosmetics, and pharmaceutics. Virtual screening methodologies predicted anticonvulsant activity of PPB that was confirmed in vivo. Thus, we explored the effects of PPB on the excitability of hippocampal neurons by using standard patch clamp techniques. Bath perfusion of PPB reduced the fast-inactivating sodium current (I Na ) amplitude, causing a hyperpolarizing shift in the inactivation curve of the I Na, and markedly delayed the sodium channel recovery from the inactivation state. Also, PPB effectively suppressed the riluzole-sensitive, persistent sodium current (I NaP ). PPB perfusion also modified the action potential kinetics, and higher concentrations of PPB suppressed the spike activity. Nevertheless, the modulatory effects of PPB did not occur when PPB was internally applied by whole-cell dialysis. These results indicate that PPB reduces the excitability of CA1 pyramidal neurons by modulating voltage-dependent sodium channels. The mechanistic basis of this effect is a marked delay in the recovery from inactivation state of the voltage-sensitive sodium channels. Our results indicate that similar to local anesthetics and anticonvulsant drugs that act on sodium channels, PPB acts in a use-dependent manner. Copyright © 2016 Elsevier B.V. All rights reserved.
Morris, Michael J; Na, Elisa S; Johnson, Alan Kim
2010-04-01
Our laboratory has reported that manipulations that provoke a robust sodium appetite (e.g., sodium depletion, deoxycorticosterone acetate) decrease lateral hypothalamic self-stimulation (LHSS) reward if rats are denied access to hypertonic saline solutions. The following studies investigated the interaction between chronic sodium appetite and the renin-angiotensin-aldosterone system on LHSS reward. In Experiment 1, animals treated with the diuretic furosemide (20 mg/kg) when denied access to saline exhibited an increase in the current required to produce 50% of the maximum LHSS response rate (ECu50) 48 hr after extracellular volume depletion. Furosemide-depleted rats that were allowed to drink 0.3 M saline after depletion, or that were treated with the selective mineralocorticoid receptor (MR) antagonist spironolactone, which significantly reduced sodium appetite, did not show ECu50 changes. In Experiment 2 chronic intracerebroventricular administration of the selective MR antagonist RU 28318 (10 microg/microl/hr) prevented decreases in the ECu50 induced by deoxycorticosterone acetate-no salt treatment. We conclude that an unresolved sodium appetite will reduce responding for rewards and that experimental manipulations that reduce sodium appetite (e.g., access to saline or blockade of MR) decrease hedonic deficits.
Effects of sodium hydroxide (NaOH) solution concentration on fly ash-based lightweight geopolymer
NASA Astrophysics Data System (ADS)
Ibrahim, W. M. W.; Hussin, K.; Abdullah, M. M. A.; Kadir, A. A.; Deraman, L. M.
2017-09-01
In this study, the effects of NaOH concentration on properties of fly ash-based lightweight geopolymer were investigated. Lightweight geopolymer was produced using fly ash as source materials and synthetic foaming agents as air entraining agent. The alkaline solutions used in this study are combination of sodium hydroxide (NaOH) and sodium silicate (Na2SiO3) solution. Different molarities of NaOH solution (6M, 8M, 10M, 12M, and 14M) are taken for preparation of 50 x 50 x 50 mm cubes of lightweight geopolymer. The ratio of fly ash/alkaline solution, Na2SiO3/NaOH solution, foaming agent/water and foam/geopolymer paste were kept constant at 2.0, 2.5, 1:10 and 1:1 respectively. The samples were cured at 80°C for 24 hours and left at room temperature for tested at 7 days of ageing. Physical and mechanical properties such as density, water absorption, compressive strength and microstructure property were determined from the cube dried samples. The results show that the NaOH molarity had effects on the properties of lightweight geopolymer with the optimum NaOH molarity found is 12M due to the high strength of 15.6 MPa, lower water absorption (7.3%) and low density (1440 kg/m3). Microstructure analysis shows that the lightweight geopolymer contain some porous structure and unreacted fly ash particles remains.
Jackson, David S; Crockett, David F; Wolnik, Karen A
2006-07-01
Bleach (sodium hypochlorite) has been identified as the adulterant in a relatively large number of product tamperings that have been investigated by the Forensic Chemistry Center (FCC) of the U.S. Food and Drug Administration. In this work, household bleach was added to 23 different beverages at each of three levels. The impact of sodium hypochlorite on these beverages over a 13-day study period was evaluated using the following techniques: diphenylamine spot test for oxidizing agents, potassium iodide-starch test paper for oxidizing agents, pH, iodometric titration for quantitating hypochlorite, ion chromatography for chloride and chlorate quantitation, automated headspace sampling with gas chromatography-flame ionization detection (GC-FID) for determination of chloroform, and visual and organoleptic observations. This study has shown that hypochlorite is fragile when added to most common beverages and typically breaks down either partially or completely over time. In cases where a beverage is suspected of being adulterated with bleach but tests for hypochlorite are negative, it is still possible to characterize the product to demonstrate that the results are consistent with the addition of bleach. An adulterated product will give a positive test for oxidizing agents using the diphenylamine spot test. It is likely that the pH of the adulterated product will be higher than a control of that product. Ion chromatographic analysis shows elevated chloride and chlorate as compared with a control. And, chloroform may also be detected by GC-FID especially if the beverage that was adulterated contains citric acid.