Sample records for reducing cell numbers

  1. Limitations and possibilities of low cell number ChIP-seq

    PubMed Central

    2012-01-01

    Background Chromatin immunoprecipitation coupled with high-throughput DNA sequencing (ChIP-seq) offers high resolution, genome-wide analysis of DNA-protein interactions. However, current standard methods require abundant starting material in the range of 1–20 million cells per immunoprecipitation, and remain a bottleneck to the acquisition of biologically relevant epigenetic data. Using a ChIP-seq protocol optimised for low cell numbers (down to 100,000 cells / IP), we examined the performance of the ChIP-seq technique on a series of decreasing cell numbers. Results We present an enhanced native ChIP-seq method tailored to low cell numbers that represents a 200-fold reduction in input requirements over existing protocols. The protocol was tested over a range of starting cell numbers covering three orders of magnitude, enabling determination of the lower limit of the technique. At low input cell numbers, increased levels of unmapped and duplicate reads reduce the number of unique reads generated, and can drive up sequencing costs and affect sensitivity if ChIP is attempted from too few cells. Conclusions The optimised method presented here considerably reduces the input requirements for performing native ChIP-seq. It extends the applicability of the technique to isolated primary cells and rare cell populations (e.g. biobank samples, stem cells), and in many cases will alleviate the need for cell culture and any associated alteration of epigenetic marks. However, this study highlights a challenge inherent to ChIP-seq from low cell numbers: as cell input numbers fall, levels of unmapped sequence reads and PCR-generated duplicate reads rise. We discuss a number of solutions to overcome the effects of reducing cell number that may aid further improvements to ChIP performance. PMID:23171294

  2. Escherichia coli growth under modeled reduced gravity

    NASA Technical Reports Server (NTRS)

    Baker, Paul W.; Meyer, Michelle L.; Leff, Laura G.

    2004-01-01

    Bacteria exhibit varying responses to modeled reduced gravity that can be simulated by clino-rotation. When Escherichia coli was subjected to different rotation speeds during clino-rotation, significant differences between modeled reduced gravity and normal gravity controls were observed only at higher speeds (30-50 rpm). There was no apparent affect of removing samples on the results obtained. When E. coli was grown in minimal medium (at 40 rpm), cell size was not affected by modeled reduced gravity and there were few differences in cell numbers. However, in higher nutrient conditions (i.e., dilute nutrient broth), total cell numbers were higher and cells were smaller under reduced gravity compared to normal gravity controls. Overall, the responses to modeled reduced gravity varied with nutrient conditions; larger surface to volume ratios may help compensate for the zone of nutrient depletion around the cells under modeled reduced gravity.

  3. Poly(ADP-ribose) polymerase-1 (Parp-1)-deficient mice demonstrate abnormal antibody responses

    PubMed Central

    Ambrose, Helen E; Willimott, Shaun; Beswick, Richard W; Dantzer, Françoise; de Murcia, Josiane Ménissier; Yelamos, José; Wagner, Simon D

    2009-01-01

    Poly(ADP-ribosylation) of acceptor proteins is an epigenetic modification involved in DNA strand break repair, recombination and transcription. Here we provide evidence for the involvement of poly(ADP-ribose) polymerase-1 (Parp-1) in antibody responses. Parp-1−/− mice had increased numbers of T cells and normal numbers of total B cells. Marginal zone B cells were mildly reduced in number, and numbers of follicular B cells were preserved. There were abnormal levels of basal immunoglobulins, with reduced levels of immunoglobulin G2a (IgG2a) and increased levels of IgA and IgG2b. Analysis of specific antibody responses showed that T cell-independent responses were normal but T cell-dependent responses were markedly reduced. Germinal centres were normal in size and number. In vitro purified B cells from Parp-1−/− mice proliferated normally and showed normal IgM secretion, decreased switching to IgG2a but increased IgA secretion. Collectively our results demonstrate that Parp-1 has essential roles in normal T cell-dependent antibody responses and the regulation of isotype expression. We speculate that Parp-1 forms a component of the protein complex involved in resolving the DNA double-strand breaks that occur during class switch recombination. PMID:18778284

  4. Incomplete inhibition of HIV infection results in more HIV infected lymph node cells by reducing cell death

    PubMed Central

    Cele, Sandile; Ferreira, Isabella Markham; Young, Andrew C; Karim, Farina; Madansein, Rajhmun; Dullabh, Kaylesh J; Chen, Chih-Yuan; Buckels, Noel J; Ganga, Yashica; Khan, Khadija; Boulle, Mikael; Lustig, Gila; Neher, Richard A

    2018-01-01

    HIV has been reported to be cytotoxic in vitro and in lymph node infection models. Using a computational approach, we found that partial inhibition of transmissions of multiple virions per cell could lead to increased numbers of live infected cells. If the number of viral DNA copies remains above one after inhibition, then eliminating the surplus viral copies reduces cell death. Using a cell line, we observed increased numbers of live infected cells when infection was partially inhibited with the antiretroviral efavirenz or neutralizing antibody. We then used efavirenz at concentrations reported in lymph nodes to inhibit lymph node infection by partially resistant HIV mutants. We observed more live infected lymph node cells, but with fewer HIV DNA copies per cell, relative to no drug. Hence, counterintuitively, limited attenuation of HIV transmission per cell may increase live infected cell numbers in environments where the force of infection is high. PMID:29555018

  5. Human bone marrow-derived clonal mesenchymal stem cells inhibit inflammation and reduce acute pancreatitis in rats.

    PubMed

    Jung, Kyung Hee; Song, Sun U; Yi, Tacghee; Jeon, Myung-Shin; Hong, Sang-Won; Zheng, Hong-Mei; Lee, Hee-Seung; Choi, Myung-Joo; Lee, Don-Haeng; Hong, Soon-Sun

    2011-03-01

    Acute pancreatitis (AP) has a high mortality rate; repetitive AP induces chronic AP and pancreatic adenocarcinoma. Mesenchymal stem cells (MSCs) have immunoregulatory effects and reduce inflammation. We developed a protocol to isolate human bone marrow-derived clonal MSCs (hcMSCs) from bone marrow aspirate and investigated the effects of these cells in rat models of mild and severe AP. Mild AP was induced in Sprague-Dawley rats by 3 intraperitoneal injections of cerulein (100 μg/kg), given at 2-hour intervals; severe AP was induced by intraparenchymal injection of 3% sodium taurocholate solution. hcMSCs were labeled with CM-1,1'-dioctadecyl-3,3,3'-tetramethylindo-carbocyanine perchloride and administered to rats through the tail vein. hcMSCs underwent self-renewal and had multipotent differentiation capacities and immunoregulatory functions. Greater numbers of infused hcMSCs were detected in pancreas of rats with mild and severe AP than of control rats. Infused hcMSCs reduced acinar-cell degeneration, pancreatic edema, and inflammatory cell infiltration in each model of pancreatitis. The hcMSCs reduced expression of inflammation mediators and cytokines in rats with mild and severe AP. hcMSCs suppressed the mixed lymphocyte reaction and increased expression of Foxp3(+) (a marker of regulatory T cells) in cultured rat lymph node cells. Rats with mild or severe AP that were given infusions of hcMSCs had reduced numbers of CD3(+) T cells and increased expression of Foxp3(+) in pancreas tissues. hcMSCs reduced inflammation and damage to pancreatic tissue in a rat model of AP; they reduced levels of cytokines and induced numbers of Foxp3(+) regulatory T cells. hcMSCs might be developed as a cell therapy for pancreatitis. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.

  6. Establishment of a long-term spiral ganglion neuron culture with reduced glial cell number: Effects of AraC on cell composition and neurons.

    PubMed

    Schwieger, Jana; Esser, Karl-Heinz; Lenarz, Thomas; Scheper, Verena

    2016-08-01

    Sensorineural deafness is mainly caused by damage to hair cells and degeneration of the spiral ganglion neurons (SGN). Cochlear implants can functionally replace lost hair cells and stimulate the SGN electrically. The benefit from cochlear implantation depends on the number and excitability of these neurons. To identify potential therapies for SGN protection, in vitro tests are carried out on spiral ganglion cells (SGC). A glial cell-reduced and neuron-enhanced culture of neonatal rat SGC under mitotic inhibition (cytarabine (AraC)) for up to seven days is presented. Serum containing and neurotrophin-enriched cultures with and without AraC-addition were analyzed after 4 and 7 days. The total number of cells was significantly reduced, while the proportion of neurons was greatly increased by AraC-treatment. Cell type-specific labeling demonstrated that nearly all fibroblasts and most of the glial cells were removed. Neither the neuronal survival, nor the neurite outgrowth or soma diameter were negatively affected. Additionally neurites remain partly free of surrounding non-neuronal cells. Recent culture conditions allow only for short-term cultivation of neonatal SGC and lack information on the influence of non-neuronal cells on SGN and of direct contact of neurites with test-materials. AraC-addition reduces the number of non-neuronal cells and increases the ratio of SGN in culture, without negative impact on neuronal viability. This treatment allows longer-term cultivation of SGC and provides deeper insight into SGN-glial cell interaction and the attachment of neurites on test-material surfaces. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Reduced mtDNA copy number increases the sensitivity of tumor cells to chemotherapeutic drugs.

    PubMed

    Mei, H; Sun, S; Bai, Y; Chen, Y; Chai, R; Li, H

    2015-04-02

    Many cancer drugs are toxic to cells by activating apoptotic pathways. Previous studies have shown that mitochondria have key roles in apoptosis in mammalian cells, but the role of mitochondrial DNA (mtDNA) copy number variation in the pathogenesis of tumor cell apoptosis remains largely unknown. We used the HEp-2, HNE2, and A549 tumor cell lines to explore the relationship between mtDNA copy number variation and cell apoptosis. We first induced apoptosis in three tumor cell lines and one normal adult human skin fibroblast cell line (HSF) with cisplatin (DDP) or doxorubicin (DOX) treatment and found that the mtDNA copy number significantly increased in apoptotic tumor cells, but not in HSF cells. We then downregulated the mtDNA copy number by transfection with shRNA-TFAM plasmids or treatment with ethidium bromide and found that the sensitivity of tumor cells to DDP or DOX was significantly increased. Furthermore, we observed that levels of reactive oxygen species (ROS) increased significantly in tumor cells with lower mtDNA copy numbers, and this might be related to a low level of antioxidant gene expression. Finally, we rescued the increase of ROS in tumor cells with lipoic acid or N-acetyl-L-cysteine and found that the apoptosis rate decreased. Our studies suggest that the increase of mtDNA copy number is a self-protective mechanism of tumor cells to prevent apoptosis and that reduced mtDNA copy number increases ROS levels in tumor cells, increases the tumor cells' sensitivity to chemotherapeutic drugs, and increases the rate of apoptosis. This research provides evidence that mtDNA copy number variation might be a promising new therapeutic target for the clinical treatment of tumors.

  8. Genetic Basis for Developmental Homeostasis of Germline Stem Cell Niche Number: A Network of Tramtrack-Group Nuclear BTB Factors

    PubMed Central

    Chalvet, Fabienne; Netter, Sophie; Dos Santos, Nicolas; Poisot, Emilie; Paces-Fessy, Mélanie; Cumenal, Delphine; Peronnet, Frédérique; Pret, Anne-Marie; Théodore, Laurent

    2012-01-01

    The potential to produce new cells during adult life depends on the number of stem cell niches and the capacity of stem cells to divide, and is therefore under the control of programs ensuring developmental homeostasis. However, it remains generally unknown how the number of stem cell niches is controlled. In the insect ovary, each germline stem cell (GSC) niche is embedded in a functional unit called an ovariole. The number of ovarioles, and thus the number of GSC niches, varies widely among species. In Drosophila, morphogenesis of ovarioles starts in larvae with the formation of terminal filaments (TFs), each made of 8–10 cells that pile up and sort in stacks. TFs constitute organizers of individual germline stem cell niches during larval and early pupal development. In the Drosophila melanogaster subgroup, the number of ovarioles varies interspecifically from 8 to 20. Here we show that pipsqueak, Trithorax-like, batman and the bric-à-brac (bab) locus, all encoding nuclear BTB/POZ factors of the Tramtrack Group, are involved in limiting the number of ovarioles in D. melanogaster. At least two different processes are differentially perturbed by reducing the function of these genes. We found that when the bab dose is reduced, sorting of TF cells into TFs was affected such that each TF contains fewer cells and more TFs are formed. In contrast, psq mutants exhibited a greater number of TF cells per ovary, with a normal number of cells per TF, thereby leading to formation of more TFs per ovary than in the wild type. Our results indicate that two parallel genetic pathways under the control of a network of nuclear BTB factors are combined in order to negatively control the number of germline stem cell niches. PMID:23185495

  9. Culture promotes transfer of thyroid epithelial cell hyperplasia and proliferation by reducing regulatory T cell numbers.

    PubMed

    Kayes, Timothy D; Braley-Mullen, Helen

    2013-01-01

    IFN-γ(-/-) NOD.H-2h4 mice develop a spontaneous autoimmune thyroid disease, thyroid epithelial cell hyperplasia and proliferation (TEC H/P) when given NaI in their water for 7+ mo. TEC H/P can be transferred to IFN-γ(-/-) SCID mice by splenocytes from mice with severe (4-5+) disease, and transfer of TEC H/P is improved when splenocytes are cultured prior to transfer. Older (9+ mo) IFN-γ(-/-) NOD.H-2h4 mice have elevated numbers of FoxP3(+) T reg cells, up to 2-fold greater than younger (2 mo) mice. During culture, the number of T reg decreases and this allows the improved transfer of TEC H/P. Co-culture with IL-2 prior to transfer prevents the decrease of T reg and improves their in vitro suppressive ability resulting in reduced TEC H/P in recipient mice. Therefore, culturing splenocytes improves transfer of TEC H/P by reducing the number of T reg and IL-2 inhibits transfer by preserving T reg number and function. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Flt3 Ligand Regulates the Development of Innate Lymphoid Cells in Fetal and Adult Mice.

    PubMed

    Baerenwaldt, Anne; von Burg, Nicole; Kreuzaler, Matthias; Sitte, Selina; Horvath, Edit; Peter, Annick; Voehringer, David; Rolink, Antonius G; Finke, Daniela

    2016-03-15

    Flt3 ligand (Flt3L) promotes survival of lymphoid progenitors in the bone marrow and differentiation of dendritic cells (DCs), but its role in regulating innate lymphoid cells (ILCs) during fetal and adult life is not understood. By using Flt3L knockout and transgenic mice, we demonstrate that Flt3L controls ILC numbers by regulating the pool of α4β7(-) and α4β7(+) lymphoid tissue inducer cell progenitors in the fetal liver and common lymphoid progenitors in the bone marrow. Deletion of flt3l severely reduced the number of fetal liver progenitors and lymphoid tissue inducer cells in the neonatal intestine, resulting in impaired development of Peyer's patches. In the adult intestine, NK cells and group 2 and 3 ILCs were severely reduced. This effect occurred independently of DCs as ILC numbers were normal in mice in which DCs were constitutively deleted. Finally, we could show that administration of Flt3L increased the number of NKp46(-) group 3 ILCs in wild-type and even in Il7(-/-) mice, which generally have reduced numbers of ILCs. Taken together, Flt3L significantly contributes to ILC and Peyer's patches development by targeting lymphoid progenitor cells during fetal and adult life. Copyright © 2016 by The American Association of Immunologists, Inc.

  11. Hormonal Regulation of Dendritic Cell Differentiation in the Thymus.

    PubMed

    Shirshev, S V; Orlova, E G; Loginova, O A; Nekrasova, I V; Gorbunova, O L; Maslennikova, I L

    2018-06-19

    We studied the effect of hormones estriol, ghrelin, kisspeptin, and chorionic gonadotropin in concentrations corresponding to their content in the peripheral blood in each trimester of pregnancy on the expression of membrane molecules on myeloid and plasmacytoid dendritic cells of the thymus. It was found that thymic myeloid dendritic cells are sensitive to the action of estriol and kisspeptin. Estriol in a concentration of the first trimester of pregnancy reduces the number of myeloid dendritic cells expressing receptor for thymic stromal lymphopoietin (CD11c+TSLP-R + ) and inhibitory molecule B7-H3 (CD11c + CD276 + ). In contrast to estriol, kisspeptin regulates the processes of differentiation of thymic myeloid dendritic cells in concentrations typical of the second-third trimesters and reduced their total number (CD11c + ) and the number of cells expressing TSLP-R (CD11c + TSLP-R + ). Estriol and kisspeptin do not affect the total number of plasmacytoid dendritic cells (CD303 + ) and expression of TSLP-R and CD276 by these cells. Ghrelin and chorionic gonadotropin in the studied concentrations had no significant effect on the total number of thymic myeloid and plasmacytoid dendritic cells and on the expression of membrane molecules of TSLP-R and CD276.

  12. Sodium meta-arsenite prevents the development of autoimmune diabetes in NOD mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Y.S.; Kim, D.; Lee, E.K.

    Sodium meta-arsenite (SA) is an orally available arsenic compound. We investigated the effects of SA on the development of autoimmune type 1 diabetes. Female non-obese diabetic (NOD) mice were orally intubated with SA (5 mg/kg/day) from 8 weeks of age for 8 weeks. The cumulative incidence of diabetes was monitored until 30 weeks of age, islet histology was examined, and lymphocytes including T cells, B cells, CD4+ IFN-γ+ cells, CD8+ IFN-γ+ cells, CD4+ IL-4+ cells, and regulatory T cells were analyzed. We also investigated the diabetogenic ability of splenocytes using an adoptive transfer model and the effect of SA onmore » the proliferation, activation, and expression of glucose transporter 1 (Glut1) in splenocytes treated with SA in vitro and splenocytes isolated from SA-treated mice. SA treatment decreased the incidence of diabetes and delayed disease onset. SA treatment reduced the infiltration of immunocytes in islets, and splenocytes from SA-treated mice showed a reduced ability to transfer diabetes. The number of total splenocytes and T cells and both the number and the proportion of CD4+ IFN-γ+ and CD8+ IFN-γ+ T cells in the spleen were significantly reduced in SA-treated NOD mice compared with controls. The number, but not the proportion, of regulatory T cells was decreased in SA-treated NOD mice. Treatment with SA either in vitro or in vivo inhibited proliferation of splenocytes. In addition, the expression of Glut1 and phosphorylated ERK1/2 was decreased by SA treatment. These results suggest that SA reduces proliferation and activation of T cells, thus preventing autoimmune diabetes in NOD mice. - Highlights: • SA prevents the development of diabetes and delays the age of onset in NOD mice. • SA decreases the number but not the proportion of T lymphocytes in NOD mice. • SA reduces IFN-γ-producing T lymphocytes in NOD mice. • SA reduces proliferation and activation of T lymphocytes in vitro and in vivo. • SA reduces the expression of glucose transporter 1 (Glut1) in splenocytes.« less

  13. Modulation of Mitochondrial DNA Copy Number to Induce Hepatocytic Differentiation of Human Amniotic Epithelial Cells.

    PubMed

    Vaghjiani, Vijesh; Cain, Jason E; Lee, William; Vaithilingam, Vijayaganapathy; Tuch, Bernard E; St John, Justin C

    2017-10-15

    Mitochondrial deoxyribonucleic acid (mtDNA) copy number is tightly regulated during pluripotency and differentiation. There is increased demand of cellular adenosine triphosphate (ATP) during differentiation for energy-intensive cell types such as hepatocytes and neurons to meet the cell's functional requirements. During hepatocyte differentiation, mtDNA copy number should be synchronously increased to generate sufficient ATP through oxidative phosphorylation. Unlike bone marrow mesenchymal cells, mtDNA copy number failed to increase by 28 days of differentiation of human amniotic epithelial cells (hAEC) into hepatocyte-like cells (HLC) despite their expression of some end-stage hepatic markers. This was due to higher levels of DNA methylation at exon 2 of POLGA, the mtDNA-specific replication factor. Treatment with a DNA demethylation agent, 5-azacytidine, resulted in increased mtDNA copy number, reduced DNA methylation at exon 2 of POLGA, and reduced hepatic gene expression. Depletion of mtDNA followed by subsequent differentiation did not increase mtDNA copy number, but reduced DNA methylation at exon 2 of POLGA and increased expression of hepatic and pluripotency genes. We encapsulated hAEC in barium alginate microcapsules and subsequently differentiated them into HLC. Encapsulation resulted in no net increase of mtDNA copy number but a significant reduction in DNA methylation of POLGA. RNAseq analysis showed that differentiated HLC express hepatocyte-specific genes but also increased expression of inflammatory interferon genes. Differentiation in encapsulated cells showed suppression of inflammatory genes as well as increased expression of genes associated with hepatocyte function pathways and networks. This study demonstrates that an increase in classical hepatic gene expression can be achieved in HLC through encapsulation, although they fail to effectively regulate mtDNA copy number.

  14. Presequence-Independent Mitochondrial Import of DNA Ligase Facilitates Establishment of Cell Lines with Reduced mtDNA Copy Number

    PubMed Central

    Spadafora, Domenico; Kozhukhar, Natalia; Alexeyev, Mikhail F.

    2016-01-01

    Due to the essential role played by mitochondrial DNA (mtDNA) in cellular physiology and bioenergetics, methods for establishing cell lines with altered mtDNA content are of considerable interest. Here, we report evidence for the existence in mammalian cells of a novel, low- efficiency, presequence-independent pathway for mitochondrial protein import, which facilitates mitochondrial uptake of such proteins as Chlorella virus ligase (ChVlig) and Escherichia coli LigA. Mouse cells engineered to depend on this pathway for mitochondrial import of the LigA protein for mtDNA maintenance had severely (up to >90%) reduced mtDNA content. These observations were used to establish a method for the generation of mouse cell lines with reduced mtDNA copy number by, first, transducing them with a retrovirus encoding LigA, and then inactivating in these transductants endogenous Lig3 with CRISPR-Cas9. Interestingly, mtDNA depletion to an average level of one copy per cell proceeds faster in cells engineered to maintain mtDNA at low copy number. This makes a low-mtDNA copy number phenotype resulting from dependence on mitochondrial import of DNA ligase through presequence-independent pathway potentially useful for rapidly shifting mtDNA heteroplasmy through partial mtDNA depletion. PMID:27031233

  15. Stacking Oxygen-Separation Cells

    NASA Technical Reports Server (NTRS)

    Schroeder, James E.

    1991-01-01

    Simplified configuration and procedure developed for assembly of stacks of solid-electrolyte cells separating oxygen from air electrochemically. Reduces number of components and thus reduces probability of such failures as gas leaks, breakdown of sensitive parts, and electrical open or short circuits. Previous, more complicated version of cell described in "Improved Zirconia Oxygen-Separation Cell" (NPO-16161).

  16. A model of immunomodulatory for dengue infection mm

    NASA Astrophysics Data System (ADS)

    Zulfa, Annisa; Handayani, Dewi; Nuraini, Nuning

    2018-03-01

    An immunomodulatory model for dengue infection is constructed in this paper. This study focuses on T-cell compartments and B cells that are immune cells involved in the dengue infection process. Dengue virus-infected monocyte cells release interferons to signal T-cells to activate B-cells and produce antibodies. Immunomodulator acts as a treatment control and aims to increase the numbers of antibodies so it is expected to reduce the number of infected monocyte cells by dengue virus. Numerical simulation shows that the greater the rate of f (t) the immune cells will be stimulated to suppress the number of infected cells.

  17. Aggregatibacter actinomycetemcomitans regulates the expression of integrins and reduces cell adhesion via integrin α5 in human gingival epithelial cells.

    PubMed

    Kochi, Shinsuke; Yamashiro, Keisuke; Hongo, Shoichi; Yamamoto, Tadashi; Ugawa, Yuki; Shimoe, Masayuki; Kawamura, Mari; Hirata-Yoshihara, Chiaki; Ideguchi, Hidetaka; Maeda, Hiroshi; Takashiba, Shogo

    2017-12-01

    Gingival epithelial cells form a physiological barrier against bacterial invasion. Excessive bacterial invasion destroys the attachment between the tooth surface and the epithelium, resulting in periodontitis. Integrins play a significant role in cell attachment; therefore, we hypothesized that bacterial infection might decrease the expressions of these integrins in gingival epithelial cells, resulting in reduced cell adhesion. Immortalized human gingival epithelial cells were co-cultured with Aggregatibacter actinomycetemcomitans Y4 (Aa Y4), and the gene expression levels of IL-8, proliferating cell nuclear antigen (PCNA), and integrins (α2, α3, α5, β4, and β6) were measured using quantitative reverse transcription polymerase chain reaction. Expression of PCNA and integrins, except integrin α5, was significantly downregulated, while expression of IL-8 and integrin α5 was significantly upregulated in the cells co-cultured with Aa Y4. The number of adherent cells significantly decreased when co-cultured with Aa Y4, as determined using cell adhesion assays. In the cells co-cultured with Aa Y4 and an integrin α5 neutralizing antibody, there was no effect on the expression of IL-8 and PCNA, while the expressions of integrins α2, α3, β4, and β6, and the number of adherent cells did not decrease. The number of invading bacteria in the cells was reduced in the presence of the antibody and increased in the presence of TLR2/4 inhibitor. Therefore, integrin α5 might be involved in Aa Y4 invasion into gingival epithelial cells, and the resulting signal transduction cascade reduces cell adhesion by decreasing the expression of integrins, while the TLR2/4 signaling cascade regulates IL-8 expression.

  18. Role of myometrial activity in sperm transport through the genital tract and in fertilization in sows.

    PubMed

    Langendijk, P; Bouwman, E G; Kidson, A; Kirkwood, R N; Soede, N M; Kemp, B

    2002-05-01

    The effects of stimulation and suppression of uterine contractility at about the time of insemination on sperm distribution and fertilization in multiparous sows are described. For assessment of fertilization, sows were inseminated about 28 h before (synchronized) ovulation and killed at day 5 after ovulation (n = 53). For assessment of sperm distribution, sows were inseminated about 20 h before expected ovulation and were killed 12 h later (n = 26). At 10 min before insemination, sows received an intrauterine infusion of one of three solutions: (i) saline (control); (ii) 0.60 mg clenbuterol hydrochloride to suppress contractility; or (iii) 1 mg cloprostenol to stimulate contractility. Both clenbuterol and cloprostenol reduced median fertilization rate (P < 0.05) and median number of accessory sperm cells (P < 0.05). Distribution of sperm cells was also affected by treatments. Clenbuterol increased, and cloprostenol decreased, the number of sperm cells (P < 0.05) in the proximal 20 cm of the uterine horn and in the uterotubal junction. In addition, clenbuterol tended to increase and cloprostenol tended to decrease the number of sperm cells in the isthmus, although these effects were not significant. However, relative to the number of sperm cells in the uterus, clenbuterol treatment reduced the number of sperm cells in the uterotubal junction and oviduct, in contrast to cloprostenol. Cloprostenol increased the reflux of semen during insemination. It is hypothesized that suppression of uterine contractility increases transuterine transport time, reducing the ability of sperm cells to enter the uterotubal junction and the oviduct. Stimulation of uterine contractility above a certain level probably increases reflux and impedes transuterine transport of sufficient numbers of sperm cells.

  19. The Number of Point Mutations in Induced Pluripotent Stem Cells and Nuclear Transfer Embryonic Stem Cells Depends on the Method and Somatic Cell Type Used for Their Generation.

    PubMed

    Araki, Ryoko; Mizutani, Eiji; Hoki, Yuko; Sunayama, Misato; Wakayama, Sayaka; Nagatomo, Hiroaki; Kasama, Yasuji; Nakamura, Miki; Wakayama, Teruhiko; Abe, Masumi

    2017-05-01

    Induced pluripotent stem cells hold great promise for regenerative medicine but point mutations have been identified in these cells and have raised serious concerns about their safe use. We generated nuclear transfer embryonic stem cells (ntESCs) from both mouse embryonic fibroblasts (MEFs) and tail-tip fibroblasts (TTFs) and by whole genome sequencing found fewer mutations compared with iPSCs generated by retroviral gene transduction. Furthermore, TTF-derived ntESCs showed only a very small number of point mutations, approximately 80% less than the number observed in iPSCs generated using retrovirus. Base substitution profile analysis confirmed this greatly reduced number of point mutations. The point mutations in iPSCs are therefore not a Yamanaka factor-specific phenomenon but are intrinsic to genome reprogramming. Moreover, the dramatic reduction in point mutations in ntESCs suggests that most are not essential for genome reprogramming. Our results suggest that it is feasible to reduce the point mutation frequency in iPSCs by optimizing various genome reprogramming conditions. We conducted whole genome sequencing of ntES cells derived from MEFs or TTFs. We thereby succeeded in establishing TTF-derived ntES cell lines with far fewer point mutations. Base substitution profile analysis of these clones also indicated a reduced point mutation frequency, moving from a transversion-predominance to a transition-predominance. Stem Cells 2017;35:1189-1196. © 2017 AlphaMed Press.

  20. Effect of hyperglycemia on the number of CD117+ progenitor cells and their differentiation toward endothelial progenitor cells in young and old ages.

    PubMed

    Pierpaoli, Elisa; Moresi, Raffaella; Orlando, Fiorenza; Malavolta, Marco; Provinciali, Mauro

    2016-10-01

    Dysfunction of endothelial progenitor cells (EPCs) has been reported either in aging or diabetes, though the influence of an "old" environment on numerical and functional changes of diabetes associated EPCs is not known. We evaluated the effect of both aging and early stage of streptozotocin-induced diabetes on the number of bone marrow-derived CD117 + progenitor cells, and on their differentiation in vitro toward EPCs. The phenotype of progenitor cells and the uptake of acetylated-low density lipoprotein (Ac-LDL) were evaluated after cell culture in VEGF, FGF-1, and IGF-1 supplemented medium. Hyperglycemia similarly reduced the number of CD117 + cells both in young and old mice. CD117 + cells from young mice differentiated better than those from old animals "in vitro", with a greater reduction of CD117 + cells and an higher increase of CD184 + VEGFR-2 + cells. In diabetic mice, in vitro CD117 + cells differentiation was significantly reduced in young animals. Diabetes did not impact on the scarce differentiation of CD117 + cells from old mice. Hyperglycemia reduced the uptake of acLDL by EPCs greatly in young than in old mice. These findings indicate that part of the EPCs functional alterations induced by hyperglicemia in young mice are observed in normal aged mice. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Low power test architecture for dynamic read destructive fault detection in SRAM

    NASA Astrophysics Data System (ADS)

    Takher, Vikram Singh; Choudhary, Rahul Raj

    2018-06-01

    Dynamic Read Destructive Fault (dRDF) is the outcome of resistive open defects in the core cells of static random-access memories (SRAMs). The sensitisation of dRDF involves either performing multiple read operations or creation of number of read equivalent stress (RES), on the core cell under test. Though the creation of RES is preferred over the performing multiple read operation on the core cell, cell dissipates more power during RES than during the read or write operation. This paper focuses on the reduction in power dissipation by optimisation of number of RESs, which are required to sensitise the dRDF during test mode of operation of SRAM. The novel pre-charge architecture has been proposed in order to reduce the power dissipation by limiting the number of RESs to an optimised number of two. The proposed low power architecture is simulated and analysed which shows reduction in power dissipation by reducing the number of RESs up to 18.18%.

  2. Formaldehyde exposure impairs the function and differentiation of NK cells.

    PubMed

    Kim, Eun-Mi; Lee, Hwa-Youn; Lee, Eun-Hee; Lee, Ki-Mo; Park, Min; Ji, Kon-Young; Jang, Ji-Hun; Jeong, Yun-Hwa; Lee, Kwang-Ho; Yoon, Il-Joo; Kim, Su-Man; Jeong, Moon-Jin; Kim, Kwang Dong; Kang, Hyung-Sik

    2013-11-25

    We investigated the cytotoxic effects of formaldehyde (FA) on lymphocytes. FA-exposed mice showed a profound reduction not only in the number of natural killer (NK) cells but also in the expression of NK cell-specific receptors, but these mice did not exhibit decreases in the numbers of T or B lymphocytes. FA exposure also induced decreases in NK cytolytic activity and in the expression of NK cell-associated genes, such as IFN-γ, perforin and CD122. To determine the effect of FA on tumorigenicity, C57BL/6 mice were subcutaneously injected with B16F10 melanoma cells after FA exposure. The mass of the B16F10 tumor and the concentration of extravascular polymorphonuclear leukocytes were greater than those in unexposed tumor-bearing control mice. The number and cytolytic activity of NK cells were also reduced in B16F10 tumor-bearing mice exposed to FA. To determine how FA reduces the NK cell number, NK precursor (pNK) cells were treated with FA, and the differentiation status of the NK cells was analyzed. NK cell differentiation was impaired by FA treatment in a concentration-dependent manner. These findings indicate that FA exposure may promote tumor progression by impairing NK cell function and differentiation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. Repetitive Convulsant-Induced Seizures Reduce the Number But Not Precision of Hippocampal Place Cells

    PubMed Central

    Hangya, Balázs; Fox, Steven E.

    2012-01-01

    Repetitive one-per-day seizures induced in otherwise normal rats by the volatile convulsant flurothyl decrease the accuracy of locating a hidden goal without changing the mean location of goal selection. We now show that an 8-d series of such seizures degrades the spatial signal carried by the firing of hippocampal pyramidal cells and specifically reduces the information conveyed by the place cell subset of pyramidal cells. This degradation and a concomitant slowing of the hippocampal theta rhythm occur over time courses parallel to the development of the behavioral deficit and plausibly account for the impairment. The details of how pyramidal cell discharge weakens are, however, unexpected. Rather than a reduction in the precision of location-specific firing distributed evenly over all place cells, the number of place cells decreases with seizure number, although the remaining place cells remain quite intact. Thus, with serial seizures there is a cell-specific conversion of robust place cells to sporadically firing (<0.1 spike/s) “low-rate” cells as opposed to gradual loss of place cell resolution. This transformation occurs in the absence of significant changes in the discharge rate of hippocampal interneurons, suggesting that the decline in the number of place cells is not a simple matter of increased inhibitory tone. The cumulative transformation of place cells to low-rate cells by repetitive seizures may reflect a homeostatic, negative-feedback process. PMID:22442080

  4. Repetitive convulsant-induced seizures reduce the number but not precision of hippocampal place cells.

    PubMed

    Lin, Hai; Hangya, Balázs; Fox, Steven E; Muller, Robert U

    2012-03-21

    Repetitive one-per-day seizures induced in otherwise normal rats by the volatile convulsant flurothyl decrease the accuracy of locating a hidden goal without changing the mean location of goal selection. We now show that an 8-d series of such seizures degrades the spatial signal carried by the firing of hippocampal pyramidal cells and specifically reduces the information conveyed by the place cell subset of pyramidal cells. This degradation and a concomitant slowing of the hippocampal theta rhythm occur over time courses parallel to the development of the behavioral deficit and plausibly account for the impairment. The details of how pyramidal cell discharge weakens are, however, unexpected. Rather than a reduction in the precision of location-specific firing distributed evenly over all place cells, the number of place cells decreases with seizure number, although the remaining place cells remain quite intact. Thus, with serial seizures there is a cell-specific conversion of robust place cells to sporadically firing (<0.1 spike/s) "low-rate" cells as opposed to gradual loss of place cell resolution. This transformation occurs in the absence of significant changes in the discharge rate of hippocampal interneurons, suggesting that the decline in the number of place cells is not a simple matter of increased inhibitory tone. The cumulative transformation of place cells to low-rate cells by repetitive seizures may reflect a homeostatic, negative-feedback process.

  5. Effect of chlorphenesin on localized hemolysis in gel assay.

    PubMed

    Fukui, G M; Berger, F M; Chandlee, G C; Goldenbaum, E G

    1968-10-01

    Chlorphenesin, a simple glycerol ether, when added to Jerne plates greatly reduced the number of hemolytic plaques. This effect appeared to be related to dose, and was clearly demonstrable with antibody-forming spleen cells from mice that had been immunized either with sheep red blood cells or with penicillin G conjugated with Keyhole limpet hemocyanin. Chlorphenesin did not affect the antigen, destroy complement, or interfere with the interaction of complement and the antigen-antibody complexes. Incubation of spleen cell suspensions with chlorphenesin prior to plating was more effective in reducing the number of plaques than was addition of the substance to the plates. It may act by reducing the ability of antibodies to react with antigens or by affecting the release of antibodies from the spleen cells.

  6. Effect of Chlorphenesin on Localized Hemolysis in Gel Assay

    PubMed Central

    Fukui, G. M.; Berger, F. M.; Chandlee, G. C.; Goldenbaum, E. G.

    1968-01-01

    Chlorphenesin, a simple glycerol ether, when added to Jerne plates greatly reduced the number of hemolytic plaques. This effect appeared to be related to dose, and was clearly demonstrable with antibody-forming spleen cells from mice that had been immunized either with sheep red blood cells or with penicillin G conjugated with Keyhole limpet hemocyanin. Chlorphenesin did not affect the antigen, destroy complement, or interfere with the interaction of complement and the antigen-antibody complexes. Incubation of spleen cell suspensions with chlorphenesin prior to plating was more effective in reducing the number of plaques than was addition of the substance to the plates. It may act by reducing the ability of antibodies to react with antigens or by affecting the release of antibodies from the spleen cells. PMID:5685993

  7. Numerical analysis of a dielectrophoresis field-flow fractionation device for the separation of multiple cell types.

    PubMed

    Shamloo, Amir; Kamali, Ali

    2017-10-01

    In this study, a dielectrophoresis field-flow fractionation device was analyzed using a numerical simulation method and the behaviors of a set of different cells were investigated. By reducing the alternating current frequency of the electrodes from the value used in the original setup configuration and increasing the number of exit channels, total discrimination in cell trajectories and subsequent separation of four cell types were achieved. Cells were differentiated based on their size and dielectric response that are represented in their real part of Clausius-Mossotti factor at different frequencies. A number of novel designs were also proposed based on the original setup configuration. It was seen that by reducing the length of the main channel and the number of electrodes at low frequencies and not changing the inlet flow velocities, cell separation was still achieved successfully, although with a slightly larger electrode voltage. The shorter main channel decreased the residence time for the cells on the chip and also reduced the overall size of the device-these were improvements over the original design. The obtained results can be used to analyze other cell types by knowing their size and dielectric properties to design geometries that can ensure separation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Acrylamide affects proliferation and differentiation of the neural progenitor cell line C17.2 and the neuroblastoma cell line SH-SY5Y.

    PubMed

    Attoff, K; Kertika, D; Lundqvist, J; Oredsson, S; Forsby, A

    2016-09-01

    Acrylamide is a well-known neurotoxic compound and people get exposed to the compound by food consumption and environmental pollutants. Since acrylamide crosses the placenta barrier, the fetus is also being exposed resulting in a risk for developmental neurotoxicity. In this study, the neural progenitor cell line C17.2 and the neuroblastoma cell line SH-SY5Y were used to study proliferation and differentiation as alerting indicators for developmental neurotoxicity. For both cell lines, acrylamide reduced the number of viable cells by reducing proliferation and inducing cell death in undifferentiated cells. Acrylamide concentrations starting at 10fM attenuated the differentiation process in SH-SY5Y cells by sustaining cell proliferation and neurite outgrowth was reduced at concentrations from 10pM. Acrylamide significantly reduced the number of neurons starting at 1μM and altered the ratio between the different phenotypes in differentiating C17.2 cell cultures. Ten micromolar of acrylamide also reduced the expression of the neuronal and astrocyte biomarkers. Although the neurotoxic concentrations in the femtomolar range seem to be specific for the SH-SY5Y cell line, the fact that micromolar concentrations of acrylamide seem to attenuate the differentiation process in both cell lines raises the interest to further investigations on the possible developmental neurotoxicity of acrylamide. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. In vivo stem cell transplantation using reduced cell numbers.

    PubMed

    Tsutsui, Takeo W

    2015-01-01

    Dental pulp stem cell (DPSC) characterization is essential for regeneration of a dentin/pulp like complex in vivo. This is especially important for identifying the potential of DPSCs to function as stem cells. Previously reported DPSC transplantation methods have used with huge numbers of cells, along with hydroxyapatite/tricalcium phosphate (HA/TCP), gelatin and fibrin, and collagen scaffolds. This protocol describe a transplantation protocol that uses fewer cells and a temperature-responsive cell culture dish.

  10. Differential Regulation of Mouse B Cell Development by Transforming Growth Factor β1

    PubMed Central

    Kaminski, Denise A.; Letterio, John J.; Burrows, Peter D.

    2002-01-01

    Transforming growth factor β (TGFβ) can inhibit the in vitro proliferation, survival and differentiation of B cell progenitors, mature B lymphocytes and plasma cells. Here we demonstrate unexpected, age-dependent reductions in the bone marrow (BM) B cell progenitors and immature B cells in TGFβ1-/- mice. To evaluate TGFβ responsiveness during normal B lineage development, cells were cultured in interleukin 7 (IL7)±TGFβ. Picomolar doses of TGFβ1 reduced pro-B cell recoveries at every timepoint. By contrast, the pre-B cells were initially reduced in number, but subsequently increased compared to IL7 alone, resulting in a 4-fold increase in the growth rate for the pre-B cell population. Analysis of purified BM sub-populations indicated that pro-B cells and the earliest BP1- pre-B cells were sensitive to the inhibitory effects of TGFβ1. However, the large BP1+ pre-B cells, although initially reduced, were increased in number at days 5 and 7 of culture. These results indicate that TGFβ1 is important for normal B cell development in vivo, and that B cell progenitors are differentially affected by the cytokine according to their stage of differentiation. PMID:12739785

  11. Reduced cell number in the hindgut epithelium disrupts hindgut left-right asymmetry in a mutant of pebble, encoding a RhoGEF, in Drosophila embryos.

    PubMed

    Nakamura, Mitsutoshi; Matsumoto, Kenjiroo; Iwamoto, Yuta; Muguruma, Takeshi; Nakazawa, Naotaka; Hatori, Ryo; Taniguchi, Kiichiro; Maeda, Reo; Matsuno, Kenji

    2013-02-01

    Animals often show left-right (LR) asymmetry in their body structures. In some vertebrates, the mechanisms underlying LR symmetry breaking and the subsequent signals responsible for LR asymmetric development are well understood. However, in invertebrates, the molecular bases of these processes are largely unknown. Therefore, we have been studying the genetic pathway of LR asymmetric development in Drosophila. The embryonic gut is the first organ that shows directional LR asymmetry during Drosophila development. We performed a genetic screen to identify mutations affecting LR asymmetric development of the embryonic gut. From this screen, we isolated pebble (pbl), which encodes a homolog of a mammalian RhoGEF, Ect2. The laterality of the hindgut was randomized in embryos homozygous for a null mutant of pbl. Pbl is a multi-functional protein required for cytokinesis and the epithelial-to-mesenchymal transition in Drosophila. Consistent with Pbl's role in cytokinesis, we found reduced numbers of cells in the hindgut epithelium in pbl homozygous embryos. The specific expression of pbl in the hindgut epithelium, but not in other tissues, rescued the LR defects and reduced cell number in embryonic pbl homozygotes. Embryos homozygous for string (stg), a mutant that reduces cell number through a different mechanism, also showed LR defects of the hindgut. However, the reduction in cell number in the pbl mutants was not accompanied by defects in the specification of hindgut epithelial tissues or their integrity. Based on these results, we speculate that the reduction in cell number may be one reason for the LR asymmetry defect of the pbl hindgut, although we cannot exclude contributions from other functions of Pbl, including regulation of the actin cytoskeleton through its RhoGEF activity. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  12. BMS 493 Modulates Retinoic Acid-Induced Differentiation During Expansion of Human Hematopoietic Progenitor Cells for Islet Regeneration.

    PubMed

    Elgamal, Ruth M; Bell, Gillian I; Krause, Sarah C T; Hess, David A

    2018-06-06

    Cellular therapies are emerging as a novel treatment strategy for diabetes. Thus, the induction of endogenous islet regeneration in situ represents a feasible goal for diabetes therapy. Umbilical cord blood-derived hematopoietic progenitor cells (HPCs), isolated by high aldehyde dehydrogenase activity (ALDH hi ), have previously been shown to reduce hyperglycemia after intrapancreatic (iPan) transplantation into streptozotocin (STZ)-treated nonobese diabetic (NOD)/severe combined immunodeficiency (SCID) mice. However, these cells are rare and require ex vivo expansion to reach clinically applicable numbers for human therapy. Therefore, we investigated whether BMS 493, an inverse retinoic acid receptor agonist, could prevent retinoic acid-induced differentiation and preserve islet regenerative functions during expansion. After 6-day expansion, BMS 493-treated cells showed a twofold increase in the number of ALDH hi cells available for transplantation compared with untreated controls. Newly expanded ALDH hi cells showed increased numbers of CD34 and CD133-positive cells, as well as a reduction in CD38 expression, a marker of hematopoietic cell differentiation. BMS 493-treated cells showed similar hematopoietic colony-forming capacity compared with untreated cells, with ALDH hi subpopulations producing more colonies than low aldehyde dehydrogenase activity subpopulations for expanded cells. To determine if the secreted proteins of these cells could augment the survival and/or proliferation of β-cells in vitro, conditioned media (CM) from cells expanded with or without BMS 493 was added to human islet cultures. The total number of proliferating β-cells was increased after 3- or 7-day culture with CM generated from BMS 493-treated cells. In contrast to freshly isolated ALDH hi cells, 6-day expansion with or without BMS 493 generated progeny that were unable to reduce hyperglycemia after iPan transplantation into STZ-treated NOD/SCID mice. Further strategies to reduce retinoic acid differentiation during HPC expansion is required to expand ALDH hi cells without the loss of islet regenerative functions.

  13. ROS-dependent Atg4 upregulation mediated autophagy plays an important role in Cd-induced proliferation and invasion in A549 cells.

    PubMed

    Lv, Wei; Sui, Linlin; Yan, Xiaona; Xie, Huaying; Jiang, Liping; Geng, Chengyan; Li, Qiujuan; Yao, Xiaofeng; Kong, Ying; Cao, Jun

    2018-01-05

    Cadmium (Cd) is a toxic heavy metal that is widely used in industry and agriculture. In this study the role of autophagy in Cd-induced proliferation, migration and invasion was investigated in A549 cells. Exposure to Cd (2 μM) significantly increased reactive oxygen species (ROS) production, induced autophagy and enhanced cell growth, migration and invasion in A549 cells. Western blot analysis showed that the expression of autophagy-related proteins, LC3-II, Beclin-1 and Atg4 and invasion-related protein MMP-9 were upregulated in Cd-treated cells. N-acetyl cysteine (NAC) markedly prevented Cd-induced proliferation of A549 cells and the increasing protein level of LC3-II and Atg4. Blocking Atg4 expression by siRNA strongly reduced Beclin-1 and LC3-II protein expression and the number of autophagosome positive cells induced by Cd. Furthermore, Atg4 siRNA increased the number of cells at G0/G1 phase, reduced the number of S and G2/M phase cells, and inhibited Cd-induced cell growth significantly compared with that of Cd-treated Control siRNA cells. 3-MA pretreatment increased the percentage of G0/G1 phase cells, decreased S phase and G2/M phase percentage, and inhibited Cd-induced cell growth remarkably compared with that of only Cd-treated cells. Knocking down Atg4 reduced the number of cells that migrated and invaded through the Matrigel matrix significantly and led to a significant decrease of MMP-9 expression. In addition, in lung tissues of Cd-treated BALB/c mice, the increased expression of LC3-II, Beclin-1 and Atg4 were observed. Taken together, our results demonstrated that ROS-dependent Atg4-mediated autophagy plays an important role in Cd-induced cell growth, migration and invasion in A549 cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. [Private umbilical cord blood banking does not reduce the number of samples for scientific stem cell research].

    PubMed

    Jacobs, V R; Niemeyer, M; Gottschalk, N; Schneider, K T; Kiechle, M

    2005-12-01

    Private umbilical cord blood (UCB) banking after delivery has increased over the last decade. For adult/somatic stem cell research UCB is an essential source of stem cells and researchers question if the number of UCB samples for research might be reduced by private banking. A survey among seven private blood banks in Germany and analysis and comparison of the number of UCB samples donated for research within the STEMMAT project with private blood banking were performed from 03/2003 to 06/2005 at the Frauenklinik (OB/GYN), Technical University Munich, Germany. Within 27.5 months 1,551 UCB samples were collected for research purposes; the effective recruitment rate was higher than expectations at an effective 66.2 %. Private UCB banking [n = 24] was distributed among three cord blood banks [n = 16, 6 and 4]. The rate of private blood banking was 0.99 % for all deliveries, thus reducing the effective rate for research purpose by only 1.5 %. Under the assumption of active and successful recruitment of scientific UCB samples, private blood banking does not significantly reduce this rate and therefore is a negligible rival in the competition for sufficient numbers of UCB samples for research.

  15. Kif3a Controls Murine Nephron Number Via GLI3 Repressor, Cell Survival, and Gene Expression in a Lineage-Specific Manner

    PubMed Central

    Chi, Lijun; Galtseva, Alevtina; Chen, Lin; Mo, Rong; Hui, Chi-chung; Rosenblum, Norman D.

    2013-01-01

    The primary cilium is required during early embryo patterning, epithelial tubulogenesis, and growth factor-dependent signal transduction. The requirement for primary cilia during renal epithelial-mesenchymal tissue interactions that give rise to nephrons is undefined. Here, we used Cre-mediated recombination to generate mice with Kif3a deficiency targeted to the ureteric and/or metanephric mesenchyme cell lineages in the embryonic kidney. Gradual loss of primary cilia in either lineage leads to a phenotype of reduced nephron number. Remarkably, in addition to cyst formation, loss of primary cilia in the ureteric epithelial cell leads to decreased expression of Wnt11 and Ret and reduced ureteric branching. Constitutive expression of GLI3 repressor (Gli3Δ699/+) rescues these abnormalities. In embryonic metanephric mesenchyme cells, Kif3a deficiency limits survival of nephrogenic progenitor cells and expression of genes required for nephron formation. Together, our data demonstrate that Kif3a controls nephron number via distinct cell lineage-specific mechanisms. PMID:23762375

  16. Altered Distribution of Peripheral Blood Maturation-Associated B-Cell Subsets in Chronic Alcoholism.

    PubMed

    Almeida, Julia; Polvorosa, Maria Angeles; Gonzalez-Quintela, Arturo; Madruga, Ignacio; Marcos, Miguel; Pérez-Nieto, Maria Angeles; Hernandez-Cerceño, Maria Luisa; Orfao, Alberto; Laso, Francisco Javier

    2015-08-01

    Although decreased counts of peripheral blood (PB) B cells-associated with an apparently contradictory polyclonal hypergammaglobulinemia-have been reported in chronic alcoholism, no information exists about the specific subsets of circulating B cells altered and their relationship with antibody production. Here, we analyzed for the first time the distribution of multiple maturation-associated subpopulations of PB B cells in alcoholism and its potential relationship with the onset of liver disease. PB samples from 35 male patients-20 had alcoholic hepatitis (AH) and 15 chronic alcoholism without liver disease (AWLD)-were studied, in parallel to 19 male healthy donors (controls). The distribution of PB B-cell subsets (immature/regulatory, naïve, CD27(-) and CD27(+) memory B lymphocytes, and circulating plasmablasts of distinct immunoglobulin-Ig-isotypes) was analyzed by flow cytometry. Patients with AH showed significantly decreased numbers of total PB B lymphocytes (vs. controls and AWLD), at the expense of immature, memory, and, to a lesser extent, also naïve B cells. AWLD showed reduced numbers of immature and naïve B cells (vs. controls), but higher PB counts of plasmablasts (vs. the other 2 groups). Although PB memory B cells were reduced among the patients, the percentage of surface (s)IgA(+) cells (particularly CD27(-) /sIgA(+) cells) was increased in AH, whereas both sIgG(+) and sIgA(+) memory B cells were significantly overrepresented in AWLD versus healthy donors. Regarding circulating plasmablasts, patients with AH only showed significantly reduced counts of sIgG(+) cells versus controls. In contrast, the proportion of both sIgA(+) and sIgG(+) plasmablasts-from all plasmablasts-was reduced in AH and increased in AWLD (vs. the other 2 groups). AH and AWLD patients display a significantly reduced PB B-cell count, at the expense of decreased numbers of recently produced immature/regulatory B cells and naïve B cells, together with an increase in Ig-switched memory B lymphocytes and plasmablasts, particularly of IgA(+) cells. Copyright © 2015 by the Research Society on Alcoholism.

  17. Ibrutinib treatment improves T cell number and function in CLL patients.

    PubMed

    Long, Meixiao; Beckwith, Kyle; Do, Priscilla; Mundy, Bethany L; Gordon, Amber; Lehman, Amy M; Maddocks, Kami J; Cheney, Carolyn; Jones, Jeffrey A; Flynn, Joseph M; Andritsos, Leslie A; Awan, Farrukh; Fraietta, Joseph A; June, Carl H; Maus, Marcela V; Woyach, Jennifer A; Caligiuri, Michael A; Johnson, Amy J; Muthusamy, Natarajan; Byrd, John C

    2017-08-01

    Ibrutinib has been shown to have immunomodulatory effects by inhibiting Bruton's tyrosine kinase (BTK) and IL-2-inducible T cell kinase (ITK). The relative importance of inhibiting these 2 kinases has not been examined despite its relevance to immune-based therapies. Peripheral blood mononuclear cells from chronic lymphocytic leukemia (CLL) patients on clinical trials of ibrutinib (BTK/ITK inhibitor; n = 19) or acalabrutinib (selective BTK inhibitor; n = 13) were collected serially. T cell phenotype, immune function, and CLL cell immunosuppressive capacity were evaluated. Ibrutinib markedly increased CD4+ and CD8+ T cell numbers in CLL patients. This effect was more prominent in effector/effector memory subsets and was not observed with acalabrutinib. Ex vivo studies demonstrated that this may be due to diminished activation-induced cell death through ITK inhibition. PD-1 and CTLA-4 expression was significantly markedly reduced in T cells by both agents. While the number of Treg cells remained unchanged, the ratio of these to conventional CD4+ T cells was reduced with ibrutinib, but not acalabrutinib. Both agents reduced expression of the immunosuppressive molecules CD200 and BTLA as well as IL-10 production by CLL cells. Ibrutinib treatment increased the in vivo persistence of activated T cells, decreased the Treg/CD4+ T cell ratio, and diminished the immune-suppressive properties of CLL cells through BTK-dependent and -independent mechanisms. These features provide a strong rationale for combination immunotherapy approaches with ibrutinib in CLL and other cancers. ClinicalTrials.gov NCT01589302 and NCT02029443. Samples described here were collected per OSU-0025. The National Cancer Institute.

  18. A role for autophagic protein beclin 1 early in lymphocyte development.

    PubMed

    Arsov, Ivica; Adebayo, Adeola; Kucerova-Levisohn, Martina; Haye, Joanna; MacNeil, Margaret; Papavasiliou, F Nina; Yue, Zhenyu; Ortiz, Benjamin D

    2011-02-15

    Autophagy is a highly regulated and evolutionarily conserved process of cellular self-digestion. Recent evidence suggests that this process plays an important role in regulating T cell homeostasis. In this study, we used Rag1(-/-) (recombination activating gene 1(-/-)) blastocyst complementation and in vitro embryonic stem cell differentiation to address the role of Beclin 1, one of the key autophagic proteins, in lymphocyte development. Beclin 1-deficient Rag1(-/-) chimeras displayed a dramatic reduction in thymic cellularity compared with control mice. Using embryonic stem cell differentiation in vitro, we found that the inability to maintain normal thymic cellularity is likely caused by impaired maintenance of thymocyte progenitors. Interestingly, despite drastically reduced thymocyte numbers, the peripheral T cell compartment of Beclin 1-deficient Rag1(-/-) chimeras is largely normal. Peripheral T cells displayed normal in vitro proliferation despite significantly reduced numbers of autophagosomes. In addition, these chimeras had greatly reduced numbers of early B cells in the bone marrow compared with controls. However, the peripheral B cell compartment was not dramatically impacted by Beclin 1 deficiency. Collectively, our results suggest that Beclin 1 is required for maintenance of undifferentiated/early lymphocyte progenitor populations. In contrast, Beclin 1 is largely dispensable for the initial generation and function of the peripheral T and B cell compartments. This indicates that normal lymphocyte development involves Beclin 1-dependent, early-stage and distinct, Beclin 1-independent, late-stage processes.

  19. Altered status of CD4(+)CD25(+) regulatory T cells in patients with acute coronary syndromes.

    PubMed

    Mor, Adi; Luboshits, Galia; Planer, David; Keren, Gad; George, Jacob

    2006-11-01

    Considerable evidence supports the role of innate and adaptive immunity in the progression and destabilization of the atheromatous plaque. Naturally occurring CD4(+)CD25(+) regulatory T cells (Tregs) are a subpopulation of lymphocytes that are capable of suppressing the progression of experimental autoimmune disorders. We have hypothesized that peripheral numbers and function of Tregs would be deranged in patients with acute coronary syndromes (ACS). Peripheral numbers of Tregs were evaluated by FACS employing labelled antibodies to CD4 and CD25. Functional suppressive properties of Tregs were assayed by establishing a triple-cell culture in which purified Tregs were incubated with irradiated antigen-presenting cells and anti-CD3-activated responder T cells. Proliferation in the presence or absence of oxidized LDL (oxLDL) was evaluated by thymidine incorporation. mRNA and protein content of foxp3, a master transcriptional regulator of Tregs, were determined for all subjects. Patients with ACS exhibited significantly reduced numbers of peripheral Tregs as compared with patients with stable angina and normal coronary artery subjects. Moreover, oxLDL induced a more profound reduction in Treg numbers in patients with ACS. Tregs in ACS patients were significantly compromised as their ability to suppress responder CD4(+)CD25(-) T-cell proliferation was attenuated. mRNA and protein content of foxp3 were significantly reduced in purified Tregs obtained from patients with ACS. In patients with ACS, naturally occurring CD4(+)CD25(+) Treg numbers are reduced and their functional properties compromised. These findings may aid in understanding the mechanisms leading to culprit plaque associated T-cell activation in patients with ACS.

  20. Serotonin-producing enterochromaffin (EC) cells of gastrointestinal mucosa in dexamethasone-treated rats.

    PubMed

    Glisić, Radmila; Koko, Vesna; Todorović, Vera; Drndarević, Neda; Cvijić, Gordana

    2006-09-11

    The aim of our study was to investigate the morphological, immunohistochemical and ultrastructural changes of rat serotonin-producing enterochromaffin (EC) cells of gastrointestinal mucosa in dexamethasone-treated rats (D). After 12-daily intraperitoneal administration of 2 mg/kg dexamethasone, rats developed diabetes similar to human diabetes type 2. Stomach, small and large intestines were examined. Large serotonin positive EC cells appeared in the corpus mucosa epithelium of D group of rats, although these cells were not present in control (C) rats. Both volume fraction and the number of EC cells per mm(2) of mucosa were significantly increased only in the duodenum. However, the number of EC cells per circular sections of both antrum and small intestine was increased, but reduced both in the ascending and descending colon in D group. The dexamethasone treatment caused a strong reduction in number of granules in the antral EC cells, while it was gradually increased beginning from the jejunum to descending colon. The mean granular content was reduced in the antral EC cells but increased in the jejunal EC cells in D group. In conclusion, the present study showed that morphological changes in gut serotonin-producing EC cells occurred in diabetic rats.

  1. Inhibition of metastatic tumor growth in mouse lung by repeated administration of polyethylene glycol-conjugated catalase: quantitative analysis with firefly luciferase-expressing melanoma cells.

    PubMed

    Hyoudou, Kenji; Nishikawa, Makiya; Umeyama, Yukari; Kobayashi, Yuki; Yamashita, Fumiyoshi; Hashida, Mitsuru

    2004-11-15

    To develop a novel and effective approach to inhibit tumor metastasis based on controlled delivery of catalase, we first evaluated the characteristics of the disposition and proliferation of tumor cells. Then, we examined the effects of polyethylene glycol-conjugated catalase (PEG-catalase) on tumor metastasis. On the basis of the results obtained, PEG-catalase was repetitively administered to completely suppress the growth of tumor cells. Murine melanoma B16-BL6 cells were stably transfected with firefly luciferase gene to obtain B16-BL6/Luc cells. These cells were injected intravenously into syngeneic C57BL/6 mice. PEG-catalase was injected intravenously, and the effect was evaluated by measuring the luciferase activity as the indicator of the number of tumor cells. At 1 hour after injection of B16-BL6/Luc cells, 60 to 90% of the injected cells were recovered in the lung. The numbers decreased to 2 to 4% at 24 hours, then increased. An injection of PEG-catalase just before inoculation significantly reduced the number of tumor cells at 24 hours. Injection of PEG-catalase at 1 or 3 days after inoculation was also effective in reducing the cell numbers. Daily dosing of PEG-catalase greatly inhibited the proliferation and the number assayed at 14 days after inoculation was not significantly different from the minimal number observed at 1 day, suggesting that the growth had been markedly suppressed by the treatment. These findings indicate that sustained catalase activity in the blood circulation can prevent the multiple processes of tumor metastasis in the lung, which could lead to a state of tumor dormancy.

  2. Expression of genomic AtCYCD2;1 in Arabidopsis induces cell division at smaller cell sizes: implications for the control of plant growth.

    PubMed

    Qi, Ruhu; John, Peter Crook Lloyd

    2007-07-01

    The Arabidopsis (Arabidopsis thaliana) CYCD2;1 gene introduced in genomic form increased cell formation in the Arabidopsis root apex and leaf, while generating full-length mRNA, raised CDK/CYCLIN enzyme activity, reduced G1-phase duration, and reduced size of cells at S phase and division. Other cell cycle genes, CDKA;1, CYCLIN B;1, and the cDNA form of CYCD2;1 that produced an aberrantly spliced mRNA, produced smaller or zero increases in CDK/CYCLIN activity and did not increase the number of cells formed. Plants with a homozygous single insert of genomic CYCD2;1 grew with normal morphology and without accelerated growth of root or shoot, not providing evidence that cell formation or CYCLIN D2 controls growth of postembryonic vegetative tissues. At the root apex, cells progressed normally from meristem to elongation, but their smaller size enclosed less growth and a 40% reduction in final size of epidermal and cortical cells was seen. Smaller elongated cell size inhibited endoreduplication, indicating a cell size requirement. Leaf cells were also smaller and more numerous during proliferation and epidermal pavement and palisade cells attained 59% and 69% of controls, whereas laminas reached normal size. Autonomous control of expansion was therefore not evident in abundant cell types that formed tissues of root or leaf. Cell size was reduced by a greater number formed in a tissue prior to cell and tissue expansion. Initiation and termination of expansion did not correlate with cell dimension or number and may be determined by tissue-wide signals acting across cellular boundaries.

  3. Effect of sulfate and nitrate on acetate conversion by anaerobic microorganisms in a freshwater sediment.

    PubMed

    Scholten, Johannes C M; Bodegom, Peter M; Vogelaar, Jaap; Ittersum, Alexander; Hordijk, Kees; Roelofsen, Wim; Stams, Alfons J M

    2002-12-01

    Acetate is quantitatively the most important substrate for methane production in a freshwater sediment in The Netherlands. In the presence of alternative electron acceptors the conversion of acetate by methanogens was strongly inhibited. By modelling the results, obtained in experiments with and without (13)C-labelled acetate, we could show that the competition for acetate between methanogens and sulfate reducers is the main cause of inhibition of methanogenesis in the sediment. Although nitrate led to a complete inhibition of methanogenesis, acetate-utilising nitrate-reducing bacteria hardly competed with methanogens for the available acetate in the presence of nitrate. Most-probable-number enumerations showed that methanogens (2x10(8) cells cm(-3) sediment) and sulfate reducers (2x10(8) cells cm(-3) sediment) were the dominant acetate-utilising organisms in the sediment, while numbers of acetate-utilising nitrate reducers were very low (5x10(5) cells cm(-3) sediment). However, high numbers of sulfide-oxidising nitrate reducers were detected. Denitrification might result in the formation of toxic products. We speculate that the accumulation of low concentrations of NO (<0.2 mM) may result in an inhibition of methanogenesis.

  4. Rosuvastatin reduces atherosclerotic lesions and promotes progenitor cell mobilisation and recruitment in apolipoprotein E knockout mice.

    PubMed

    Schroeter, Marco R; Humboldt, Tim; Schäfer, Katrin; Konstantinides, Stavros

    2009-07-01

    Statins enhance incorporation of bone marrow-derived cells into experimental neointimal lesions. However, the contribution of progenitor cells to progression of spontaneous atherosclerotic plaques, and the possible modulatory role of statins in this process, remain poorly understood. We compared the effects of rosuvastatin (1 and 10mg/kg BW) and pravastatin (10mg/kg) on progenitor cell mobilisation, recruitment into atherosclerotic plaques, and lesion growth. Statins were administered over 8 weeks to apolipoprotein E knockout mice on atherogenic diet. In addition, mice were lethally irradiated, followed by transplantation of bone marrow from LacZ transgenic mice. Rosuvastatin reduced lesion area and intima-to-media ratio at the brachiocephalic artery compared to vehicle, while both parameters were not significantly altered by pravastatin. Rosuvastatin also augmented endothelialisation (P<0.05) and reduced the smooth muscle cells (SMC) content (P=0.042) of lesions. Numbers of c-kit, sca-1 and flk-1, sca-1 double-positive progenitor cells were significantly increased in rosuvastatin compared to control-treated mice, both in the bone marrow and the peripheral blood. Similarly, the number of spleen-derived acLDL, lectin double-positive progenitor cells (P=0.001) and colony-forming units (P=0.0104) was significantly increased in mice treated with rosuvastatin compared to vehicle alone. In the bone marrow, increased Akt and p42/44 MAP kinase phosphorylation and upregulated SDF1alpha mRNA expression were observed. Importantly, rosuvastatin treatment also increased the plasma levels of c-kit ligand (P=0.003), and the number of c-kit-positive cells within atherosclerotic lesions (P=0.041). Our findings suggest that rosuvastatin reduces the size of atherosclerotic plaques, and this effect appears to involve progenitor cell mobilisation and recruitment into vascular lesions.

  5. High Intensity Interval Training Increases Natural Killer Cell Number and Function in Obese Breast Cancer-challenged Mice and Obese Women.

    PubMed

    Barra, Nicole G; Fan, Isabella Y; Gillen, Jenna B; Chew, Marianne; Marcinko, Katarina; Steinberg, Gregory R; Gibala, Martin J; Ashkar, Ali A

    2017-12-01

    High intensity interval training (HIIT) boosts natural killer (NK) cell number and activity in normal weight breast cancer patients; however, whether this occurs in obese individuals is not well established. The goal of this study was to determine whether HIIT effectively boosts NK cells as a therapeutic strategy against breast cancer in an obese mouse model and in overweight/obese women. Diet induced female C57Bl/6 obese mice were assigned to undergo HIIT for four weeks or remain sedentary. Female participants were subjected to a six weeks HIIT protocol. HIIT mice acclimatized to treadmill running were subsequently injected with 5 × 10 5 polyoma middle T (MT) breast cancer cells intravenously. NK cell number and activation were monitored using flow cytometry, and tumor burden or lipid content evaluated from histological lung and liver tissues, respectively. In both mice and humans, circulating NK cell number and activation (CD3-NK1.1+CD27+ and CD3-CD56+, respectively) markedly increased immediately after HIIT. HIIT obese mice had reduced lung tumor burden compared to controls following MT challenge, and had diminished hepatic lipid deposition despite minimal body weight loss. Our findings demonstrate that HIIT can benefit obese individuals by enhancing NK cell number and activity, reducing tumor burden, and enhancing metabolic health.

  6. High Intensity Interval Training Increases Natural Killer Cell Number and Function in Obese Breast Cancer-challenged Mice and Obese Women

    PubMed Central

    Barra, Nicole G.; Fan, Isabella Y.; Gillen, Jenna B.; Chew, Marianne; Marcinko, Katarina; Steinberg, Gregory R.; Gibala, Martin J.; Ashkar, Ali A.

    2017-01-01

    High intensity interval training (HIIT) boosts natural killer (NK) cell number and activity in normal weight breast cancer patients; however, whether this occurs in obese individuals is not well established. The goal of this study was to determine whether HIIT effectively boosts NK cells as a therapeutic strategy against breast cancer in an obese mouse model and in overweight/obese women. Diet induced female C57Bl/6 obese mice were assigned to undergo HIIT for four weeks or remain sedentary. Female participants were subjected to a six weeks HIIT protocol. HIIT mice acclimatized to treadmill running were subsequently injected with 5 × 105 polyoma middle T (MT) breast cancer cells intravenously. NK cell number and activation were monitored using flow cytometry, and tumor burden or lipid content evaluated from histological lung and liver tissues, respectively. In both mice and humans, circulating NK cell number and activation (CD3−NK1.1+CD27+ and CD3−CD56+, respectively) markedly increased immediately after HIIT. HIIT obese mice had reduced lung tumor burden compared to controls following MT challenge, and had diminished hepatic lipid deposition despite minimal body weight loss. Our findings demonstrate that HIIT can benefit obese individuals by enhancing NK cell number and activity, reducing tumor burden, and enhancing metabolic health. PMID:29302585

  7. Posttherapy suppression of genital herpes simplex virus (HSV) recurrences and enhancement of HSV-specific T-cell memory by imiquimod in guinea pigs.

    PubMed Central

    Harrison, C J; Miller, R L; Bernstein, D I

    1994-01-01

    Imiquimod, an immunomodulator with no direct in vitro antiviral activity, has in vivo anti-herpesvirus activity by inducing interferon and enhancing other only partially defined immune responses. Imiquimod treatment of primary genital herpes simplex virus (HSV) infection in guinea pigs reduces the level of genital disease by 90%. We further investigated its utility as suppressive therapy of recurrent disease in animals that had recently recovered from primary genital HSV-2 disease. Imiquimod administered intravaginally once per day for 5 days reduced the number of recurrences only during treatment, while a 21-day regimen reduced the number of recurrences for 8 weeks. For the entire 10 weeks of observation, overall numbers of recurrences were reduced 67% by the 21-day imiquimod treatment (P < 0.0001). Latent HSV in ganglia was not affected by either regimen. Increased circulating alpha interferon activity was observed during therapy with both regimens. Interferon levels rapidly returned to baseline with cessation of treatment. Posttreatment, 5-day imiquimod treatment did not provide clinical benefit or enhancement of cell-mediated or cytokine responses. Twenty-one-day imiquimod treatment reduced both the number of clinical recurrences and levels of HSV antibody for 5 to 6 weeks posttreatment compared with the placebo. Additionally, 21-day imiquimod treatment enhanced HSV antigen-specific interleukin 2 production and proliferative responses by mononuclear cells (P < 0.001) for 4 weeks after treatment. Twenty-one-day imiquimod therapy suppressed recurrent HSV genital disease during and for weeks after therapy, enhanced memory-dependent cytokine and T-cell responses, and reduced the level of antibody responses. PMID:7811019

  8. Gardos pathway to sickle cell therapies?

    PubMed

    Joiner, Clinton H

    2008-04-15

    In this issue of Blood, Ataga and colleagues report that treatment of sickle cell disease patients with senicapoc, a Gardos channel inhibitor, reduces the number of dehydrated cells, increases hemoglobin levels, and diminishes hemolysis.

  9. Reduced response to Epstein–Barr virus antigens by T-cells in systemic lupus erythematosus patients

    PubMed Central

    Draborg, Anette Holck; Jacobsen, Søren; Westergaard, Marie; Mortensen, Shila; Larsen, Janni Lisander; Houen, Gunnar; Duus, Karen

    2014-01-01

    Objective Epstein–Barr virus (EBV) has for long been associated with systemic lupus erythematosus (SLE). In this study, we investigated the levels of latent and lytic antigen EBV-specific T-cells and antibodies in SLE patients. Methods T cells were analyzed by flow cytometry and antibodies were analyzed by enzyme-linked immunosorbent assay. Results SLE patients showed a significantly reduced number of activated (CD69) T-cells upon ex vivo stimulation with EBV nuclear antigen (EBNA) 1 or EBV early antigen diffuse (EBV-EA/D) in whole blood samples compared with healthy controls. Also, a reduced number of T-cells from SLE patients were found to produce interferon-γ upon stimulation with these antigens. Importantly, responses to a superantigen were normal in SLE patients. Compared with healthy controls, SLE patients had fewer EBV-specific T-cells but higher titres of antibodies against EBV. Furthermore, an inverse correlation was revealed between the number of lytic antigen EBV-specific T-cells and disease activity of the SLE patients, with high-activity SLE patients having fewer T-cells than low-activity SLE patients. Conclusions These results indicate a limited or a defective EBV-specific T-cell response in SLE patients, which may suggest poor control of EBV infection in SLE with an immune reaction shift towards a humoral response in an attempt to control viral reactivation. A role for decreased control of EBV as a contributing agent in the development or exacerbation of SLE is proposed. PMID:25396062

  10. Ibrutinib treatment improves T cell number and function in CLL patients

    PubMed Central

    Long, Meixiao; Do, Priscilla; Mundy, Bethany L.; Gordon, Amber; Lehman, Amy M.; Maddocks, Kami J.; Cheney, Carolyn; Jones, Jeffrey A.; Flynn, Joseph M.; Andritsos, Leslie A.; Fraietta, Joseph A.; June, Carl H.; Maus, Marcela V.; Woyach, Jennifer A.; Caligiuri, Michael A.; Johnson, Amy J.

    2017-01-01

    BACKGROUND. Ibrutinib has been shown to have immunomodulatory effects by inhibiting Bruton’s tyrosine kinase (BTK) and IL-2–inducible T cell kinase (ITK). The relative importance of inhibiting these 2 kinases has not been examined despite its relevance to immune-based therapies. METHODS. Peripheral blood mononuclear cells from chronic lymphocytic leukemia (CLL) patients on clinical trials of ibrutinib (BTK/ITK inhibitor; n = 19) or acalabrutinib (selective BTK inhibitor; n = 13) were collected serially. T cell phenotype, immune function, and CLL cell immunosuppressive capacity were evaluated. RESULTS. Ibrutinib markedly increased CD4+ and CD8+ T cell numbers in CLL patients. This effect was more prominent in effector/effector memory subsets and was not observed with acalabrutinib. Ex vivo studies demonstrated that this may be due to diminished activation-induced cell death through ITK inhibition. PD-1 and CTLA-4 expression was significantly markedly reduced in T cells by both agents. While the number of Treg cells remained unchanged, the ratio of these to conventional CD4+ T cells was reduced with ibrutinib, but not acalabrutinib. Both agents reduced expression of the immunosuppressive molecules CD200 and BTLA as well as IL-10 production by CLL cells. CONCLUSIONS. Ibrutinib treatment increased the in vivo persistence of activated T cells, decreased the Treg/CD4+ T cell ratio, and diminished the immune-suppressive properties of CLL cells through BTK-dependent and -independent mechanisms. These features provide a strong rationale for combination immunotherapy approaches with ibrutinib in CLL and other cancers. TRIAL REGISTRATION. ClinicalTrials.gov NCT01589302 and NCT02029443. Samples described here were collected per OSU-0025. FUNDING. The National Cancer Institute. PMID:28714866

  11. Cigarette smoke suppresses Bik to cause epithelial cell hyperplasia and mucous cell metaplasia.

    PubMed

    Mebratu, Yohannes A; Schwalm, Kurt; Smith, Kevin R; Schuyler, Mark; Tesfaigzi, Yohannes

    2011-06-01

    Aberrant regulation of airway epithelial cell numbers in airways leads to increased mucous secretions in chronic lung diseases such as chronic bronchitis. Because the Bcl-2 family of proteins is crucial for airway epithelial homeostasis, identifying the players that reduce cigarette smoke (CS)-induced mucous cell metaplasia can help to develop effective therapies. To identify the Bcl-2 family of proteins that play a role in reducing CS-induced mucous cell metaplasia. We screened for dysregulated expression of the Bcl-2 family members. We identified Bik to be significantly reduced in bronchial brushings of patients with chronic epithelial cell hyperplasia compared with nondiseased control subjects. Reduced Bik but increased MUC5AC mRNA levels were also detected when normal human airway epithelial cells (HAECs) were exposed to CS or when autopsy tissues from former smokers with and without chronic bronchitis were compared. Similarly, exposure of C57Bl/6 mice to CS resulted in increased numbers of epithelial and mucous cells per millimeter of basal lamina, along with reduced Bik but increased Muc5ac expression, and this change was sustained even when mice were allowed to recover in filtered air for 8 weeks. Restoring Bik expression significantly suppressed CS-induced mucous cell metaplasia in differentiated primary HAEC cultures and in airways of mice in vivo. Bik blocked nuclear translocation of phospho-ERK1/2 to induce apoptosis of HAECs. The conserved Leu61 within Bik and ERK1/2 activation were essential to induce cell death in hyperplastic mucous cells. These studies show that CS suppresses Bik expression to block airway epithelia cell death and thereby increases epithelial cell hyperplasia in chronic bronchitis.

  12. Cigarette Smoke Suppresses Bik To Cause Epithelial Cell Hyperplasia and Mucous Cell Metaplasia

    PubMed Central

    Mebratu, Yohannes A.; Schwalm, Kurt; Smith, Kevin R.; Schuyler, Mark; Tesfaigzi, Yohannes

    2011-01-01

    Rationale: Aberrant regulation of airway epithelial cell numbers in airways leads to increased mucous secretions in chronic lung diseases such as chronic bronchitis. Because the Bcl-2 family of proteins is crucial for airway epithelial homeostasis, identifying the players that reduce cigarette smoke (CS)-induced mucous cell metaplasia can help to develop effective therapies. Objectives: To identify the Bcl-2 family of proteins that play a role in reducing CS-induced mucous cell metaplasia. Methods: We screened for dysregulated expression of the Bcl-2 family members. Measurements and Main Results: We identified Bik to be significantly reduced in bronchial brushings of patients with chronic epithelial cell hyperplasia compared with nondiseased control subjects. Reduced Bik but increased MUC5AC mRNA levels were also detected when normal human airway epithelial cells (HAECs) were exposed to CS or when autopsy tissues from former smokers with and without chronic bronchitis were compared. Similarly, exposure of C57Bl/6 mice to CS resulted in increased numbers of epithelial and mucous cells per millimeter of basal lamina, along with reduced Bik but increased Muc5ac expression, and this change was sustained even when mice were allowed to recover in filtered air for 8 weeks. Restoring Bik expression significantly suppressed CS-induced mucous cell metaplasia in differentiated primary HAEC cultures and in airways of mice in vivo. Bik blocked nuclear translocation of phospho-ERK1/2 to induce apoptosis of HAECs. The conserved Leu61 within Bik and ERK1/2 activation were essential to induce cell death in hyperplastic mucous cells. Conclusions: These studies show that CS suppresses Bik expression to block airway epithelia cell death and thereby increases epithelial cell hyperplasia in chronic bronchitis. PMID:21317312

  13. A Critical Role for CD200R Signaling in Limiting the Growth and Metastasis of CD200+ Melanoma.

    PubMed

    Liu, Jin-Qing; Talebian, Fatemeh; Wu, Lisha; Liu, Zhihao; Li, Ming-Song; Wu, Laichu; Zhu, Jianmin; Markowitz, Joseph; Carson, William E; Basu, Sujit; Bai, Xue-Feng

    2016-08-15

    CD200 is a cell surface glycoprotein that functions through engaging CD200R on cells of the myeloid lineage and inhibits their functions. Expression of CD200 was implicated in a variety of human cancer cells, including melanoma cells; however, its roles in tumor growth and immunity are not clearly understood. In this study, we used CD200R-deficient mice and the B16 tumor model to evaluate this issue. We found that CD200R-deficient mice exhibited accelerated growth of CD200(+), but not CD200(-), B16 tumors. Strikingly, CD200R-deficient mice receiving CD200(+) B16 cells i.v. exhibited massive tumor growth in multiple organs, including liver, lung, kidney, and peritoneal cavity, whereas the growth of the same tumors in wild-type mice was limited. CD200(+) tumors grown in CD200R-deficient mice contained higher numbers of CD11b(+)Ly6C(+) myeloid cells, exhibited increased expression of VEGF and HIF1α genes with increased angiogenesis, and showed significantly reduced infiltration of CD4(+) and CD8(+) T cells, presumably as the result of reduced expression of T cell chemokines, such as CXCL9 and CXCL16. The liver from CD200R-deficient mice, under metastatic growth of CD200(+) tumors, contained significantly increased numbers of CD11b(+)Gr1(-) myeloid cells and Foxp3(+) regulatory T cells and reduced numbers of NK cells. Liver T cells also had a reduced capacity to produce IFN-γ or TNF-α. Taken together, we revealed a critical role for CD200R signaling in limiting the growth and metastasis of CD200(+) tumors. Thus, targeting CD200R signaling may potentially interfere with the metastatic growth of CD200(+) tumors, like melanoma. Copyright © 2016 by The American Association of Immunologists, Inc.

  14. Solar-simulating irradiation of the skin of human subjects in vivo produces Langerhans cell responses distinct from irradiation ex vivo and in vitro.

    PubMed

    Laihia, J K; Jansen, C T

    2000-08-01

    It has been postulated that Langerhans cells (LC) provide tolerogenic signals in the local impairment of cutaneous immune functions and antigen-specific tolerance induced by UV radiation. Studies in vitro and ex vivo have indicated that UV radiation may down-regulate the expression of costimulatory molecules on LC, leading to reduced antigen-presenting function. In contrast, we recently observed an up-regulatory stage in the number of human epidermal LC with induced expression of B7 costimulatory molecules 12-24 h after solar-simulating UV radiation (SSR) in vivo. To examine the apparent discrepancy between the observed human LC responses in vitro, ex vivo and in vivo, we compared the three protocols in a parallel fashion. The intact skin as well as skin explants and epidermal cell suspensions from the same individuals were irradiated with a single erythematogenic dose of SSR. The expression of cell surface markers in the epidermal cells was analysed with flow cytometry 24 h later. The number of CD1a+/HLA-DR+ LC increased post-SSR in vivo by a factor of 2.8+/-0.4, whereas in irradiated skin explants ex vivo or in cell suspensions in vitro, reduced numbers were seen. HLA-DR expression intensities were found to have increased on DR+ and CD1a+/DR+ cells in vivo. Similarly, SSR induced B7-2 (CD86) expression in CD1a+ cells significantly in vivo (P=0.031) but reduced the expression ex vivo or in vitro. We conclude that the early up-regulatory stage of human LC number and membrane markers, recorded at 24 h after a single exposure to SSR, is exclusively an in vivo phenomenon.

  15. Drosophila's contribution to stem cell research.

    PubMed

    Singh, Gyanesh

    2015-01-01

    The discovery of Drosophila stem cells with striking similarities to mammalian stem cells has brought new hope for stem cell research. Recent developments in Drosophila stem cell research is bringing wider opportunities for contemporary stem cell biologists. In this regard, Drosophila germ cells are becoming a popular model of stem cell research. In several cases, genes that controlled Drosophila stem cells were later discovered to have functional homologs in mammalian stem cells. Like mammals, Drosophila germline stem cells (GSCs) are controlled by both intrinsic as well as external signals. Inside the Drosophila testes, germline and somatic stem cells form a cluster of cells (the hub). Hub cells depend on JAK-STAT signaling, and, in absence of this signal, they do not self-renew. In Drosophila, significant changes occur within the stem cell niche that contributes to a decline in stem cell number over time. In case of aging Drosophila, somatic niche cells show reduced DE-cadherin and unpaired (Upd) proteins. Unpaired proteins are known to directly decrease stem cell number within the niches, and, overexpression of upd within niche cells restored GSCs in older males also . Stem cells in the midgut of Drosophila are also very promising. Reduced Notch signaling was found to increase the number of midgut progenitor cells. On the other hand, activation of the Notch pathway decreased proliferation of these cells. Further research in this area should lead to the discovery of additional factors that regulate stem and progenitor cells in Drosophila.

  16. Drosophila's contribution to stem cell research

    PubMed Central

    Singh, Gyanesh

    2016-01-01

    The discovery of Drosophila stem cells with striking similarities to mammalian stem cells has brought new hope for stem cell research. Recent developments in Drosophila stem cell research is bringing wider opportunities for contemporary stem cell biologists. In this regard, Drosophila germ cells are becoming a popular model of stem cell research. In several cases, genes that controlled Drosophila stem cells were later discovered to have functional homologs in mammalian stem cells. Like mammals, Drosophila germline stem cells (GSCs) are controlled by both intrinsic as well as external signals. Inside the Drosophila testes, germline and somatic stem cells form a cluster of cells (the hub). Hub cells depend on JAK-STAT signaling, and, in absence of this signal, they do not self-renew. In Drosophila, significant changes occur within the stem cell niche that contributes to a decline in stem cell number over time. In case of aging Drosophila, somatic niche cells show reduced DE-cadherin and unpaired (Upd) proteins. Unpaired proteins are known to directly decrease stem cell number within the niches, and, overexpression of upd within niche cells restored GSCs in older males also . Stem cells in the midgut of Drosophila are also very promising. Reduced Notch signaling was found to increase the number of midgut progenitor cells. On the other hand, activation of the Notch pathway decreased proliferation of these cells. Further research in this area should lead to the discovery of additional factors that regulate stem and progenitor cells in Drosophila. PMID:26180635

  17. [Response of HeLa cells to mitomycine C. III. The analysis of nucleoli of mother and daughter cells].

    PubMed

    Petrov, Iu P; Neguliaev, Iu A; Tsupkina, N V

    2014-01-01

    The comparative analysis of the number of nucleoli in cells of the established HeLa-M line was carried out before and after exposure to mitomycin C in a concentration of 10 μg/ml for 2 h. Using time-lapse microscopy, nucleoli in mother and their respective daughter cells were computed. It has been shown that the average number of nucleoli per cell is generally higher in daughter cells than in mother cells, and a standard deviation, on the contrary, decreases. An average number of nucleoli in daughter cells, whose mother cells had been treated with mitomycin C, was higher than in corresponding cells of control group. The separate analysis has been performed for the cells having from 1 to 4 nucleoli. Nonrandom complete coincidence of the number of nucleoli in mather and daughter cells has been typicaly shown for about 1/7 of the total cell population. Mitomycin C reduces this value of about 1.5 times.

  18. Applications of remote sensing, volume 1

    NASA Technical Reports Server (NTRS)

    Landgrebe, D. A. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. ECHO successfully exploits the redundancy of states characteristics of sampled imagery of ground scenes to achieve better classification accuracy, reduce the number of classifications required, and reduce the variability of classification results. The information required to produce ECHO classifications are cell size, cell homogeneity, cell-to-field annexation parameters, input data, and a class conditional marginal density statistics deck.

  19. Effect of Citrus bergamia juice on human neuroblastoma cells in vitro and in metastatic xenograft models.

    PubMed

    Navarra, M; Ursino, M R; Ferlazzo, N; Russo, M; Schumacher, U; Valentiner, U

    2014-06-01

    Neuroblastoma is the most common extracranial pediatric solid tumor with poor prognosis in children with disseminated stage of disease. A number of studies show that molecules largely distributed in commonly consumed fruits and vegetables may have anti-tumor activity. In this study we evaluate the effect of Citrus bergamia (bergamot) juice (BJ) in vitro and in a spontaneous metastatic neuroblastoma SCID mouse model. Qualitative and quantitative characterizations of BJ flavonoid fractions were performed by RP-HPLC/PDA/MS. We show that BJ significantly affects SK-N-SH and LAN-1 cell proliferation in vitro, but fails to reduce primary tumor weight in vivo. Moreover, BJ reduced cell adhesiveness and invasion of LAN-1 and SK-N-SH cells in vitro and the number of pulmonary metastases under consideration of the number of tumor cells in the blood in mice inoculated with LAN-1 cells in vivo. These effects without any apparent sign of systemic toxicity confirm the potential clinical interest of BJ and lay the basis for further investigation in cancer. Copyright © 2014. Published by Elsevier B.V.

  20. Suppression of lymphocyte proliferation by marijuana components is related to cell number and cell source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, T.; Pross, S.; Newton, C.

    Conflicting reports have appeared concerning the effect of marijuana components on immune responsiveness. The authors have observed that the effect of cannabinoids on lymphocyte proliferation varied with both the concentration of the drug and the mitogen used. They now report that at a constant concentration of drug, the cannabinoid effect varied from no effect to suppression depending upon the number of cells in culture and the organ source of the cells. Dispersed cell suspensions of mouse lymph node, spleen, and thymus were prepared and cultured at varying cell numbers with either delta-9-tetrahydrocannabinol or 11-hydroxy-delta-9-tetrahydrocannabinol and various mitogens. Lymphocyte proliferation wasmore » analyzed by /sup 3/H-thymidine incorporation. T-lymphocyte mitogen responses in cultures containing high cell numbers were unaffected by the cannabinoids but as cell numbers were reduced a suppression of the response was observed. Furthermore, thymus cells were considerably more susceptible to cannabinoid suppression than cells from either lymph node or spleen. These results suggest that certain lymphocyte subpopulations are more sensitive to cannabinoid suppression and that in addition to drug concentration other variables such as cell number and cell source must be considered when analyzing cannabinoid effects.« less

  1. Hippocampal cell proliferation regulation by repeated stress and antidepressants.

    PubMed

    Chen, Hu; Pandey, Ghanshyam N; Dwivedi, Yogesh

    2006-06-26

    A recent hypothesis suggests reduced hippocampal neurogenesis in depression. Here, we examined cell proliferation in the dentate gyrus and the subventricular zone of rats given repeated stress, a paradigm that prolongs learned helplessness behavior, and whether antidepressants modulate the learned helplessness-associated altered cell proliferation. Decreased cell proliferation, number of clusters, and cells/cluster were noted in the dentate gyrus, but not in the subventricular zone, of learned helplessness rats. Both fluoxetine and desipramine reversed the learned helplessness behavior and increased the cell proliferation and the number of clusters in learned helplessness rats; only fluoxetine did so significantly. Both fluoxetine and desipramine significantly increased the number of cells/cluster. Our results suggest modified hippocampal neurogenesis in prolonged depression and in the mechanism of antidepressant action.

  2. Correction of the Abnormal Trafficking of Primary Myelofibrosis CD34+ Cells by Treatment with Chromatin Modifying Agents

    PubMed Central

    Wang, Xiaoli; Zhang, Wei; Ishii, Takefumi; Sozer, Selcuk; Wang, Jiapeng; Xu, Mingjiang; Hoffman, Ronald

    2011-01-01

    The abnormal trafficking of CD34+ cells is a unique characteristic of primary myelofibrosis (PMF). We have further studied the behavior of PMF CD34+ cells by examining their homing to the marrow and the spleens of NOD/SCID mice. Following the infusion of PMF and normal G-CSF mobilized peripheral blood (mPB) CD34+ cells into NOD/SCID mice, reduced numbers of PMF CD34+ cells and CFU-GM as compared to mPB were detected in the marrow of these mice while similar numbers of PMF and mPB CD34+ cells and CFU-GM homed to their spleens. The abnormal homing of PMF CD34+ cells was associated with reduced expression of CXCR4, but was not related to the presence of JAK2V617F. The sequential treatment of PMF CD34+ cell with the chromatin modifying agents, 5-aza-2'-deoxycytidine (5azaD) and trichostatin A (TSA) but not treatment with small molecule inhibitors of JAK2 resulted in the generation of increased numbers of CD34+CXCR4+ cells which was accompanied by enhanced homing of PMF CD34+ cells to the marrow but not the spleens of NOD/SCID mice. Following 5azaD/TSA treatment JAK2V617F negative PMF hematopoietic progenitor cells preferentially homed to the marrow but not the spleens of recipient mice. Our data suggest that PMF CD34+ cells are characterized by a reduced ability to home to the marrow but not the spleens of NOD/SCID mice and that this homing defect can be corrected by sequential treatment with chromatin modifying agents. PMID:19752087

  3. Coupling between the basic replicon and the Kis-Kid maintenance system of plasmid R1: modulation by Kis antitoxin levels and involvement in control of plasmid replication.

    PubMed

    López-Villarejo, Juan; Lobato-Márquez, Damián; Díaz-Orejas, Ramón

    2015-02-05

    kis-kid, the auxiliary maintenance system of plasmid R1 and copB, the auxiliary copy number control gene of this plasmid, contribute to increase plasmid replication efficiency in cells with lower than average copy number. It is thought that Kis antitoxin levels decrease in these cells and that this acts as the switch that activates the Kid toxin; activated Kid toxin reduces copB-mRNA levels and this increases RepA levels that increases plasmid copy number. In support of this model we now report that: (i) the Kis antitoxin levels do decrease in cells containing a mini-R1 plasmid carrying a repA mutation that reduces plasmid copy number; (ii) kid-dependent replication rescue is abolished in cells in which the Kis antitoxin levels or the CopB levels are increased. Unexpectedly we found that this coordination significantly increases both the copy number of the repA mutant and of the wt mini-R1 plasmid. This indicates that the coordination between plasmid replication functions and kis-kid system contributes significantly to control plasmid R1 replication.

  4. Coupling between the Basic Replicon and the Kis-Kid Maintenance System of Plasmid R1: Modulation by Kis Antitoxin Levels and Involvement in Control of Plasmid Replication

    PubMed Central

    López-Villarejo, Juan; Lobato-Márquez, Damián; Díaz-Orejas, Ramón

    2015-01-01

    kis-kid, the auxiliary maintenance system of plasmid R1 and copB, the auxiliary copy number control gene of this plasmid, contribute to increase plasmid replication efficiency in cells with lower than average copy number. It is thought that Kis antitoxin levels decrease in these cells and that this acts as the switch that activates the Kid toxin; activated Kid toxin reduces copB-mRNA levels and this increases RepA levels that increases plasmid copy number. In support of this model we now report that: (i) the Kis antitoxin levels do decrease in cells containing a mini-R1 plasmid carrying a repA mutation that reduces plasmid copy number; (ii) kid-dependent replication rescue is abolished in cells in which the Kis antitoxin levels or the CopB levels are increased. Unexpectedly we found that this coordination significantly increases both the copy number of the repA mutant and of the wt mini-R1 plasmid. This indicates that the coordination between plasmid replication functions and kis-kid system contributes significantly to control plasmid R1 replication. PMID:25664511

  5. Effects of Tacrolimus or Sirolimus on the adhesion of vascular wall cells: Controlled in-vitro comparison study.

    PubMed

    Krüger-Genge, A; Hiebl, B; Franke, R P; Lendlein, A; Jung, F

    2017-01-01

    In drug eluting stents the cytostatic drugs Sirolimus or Tacrolimus are used to inhibit blood vessel restenosis by limiting the proliferation of smooth muscle cells. However, the cytostatic activity of both drugs was shown to be not cell specific and could also affect the stent endothelialisation, respectively. Currently, only limited in vitro data are available about the impact of Sirolimus and Tacrolimus on endothelial cell proliferation over a broad concentration range. To answer this question the following study was performed.Commercially obtained HUVEC were expanded with DMEM cell culture medium (GIBCO, Germany) supplemented with 5 vol% fetal calf serum on non-coated regular polystyrene-based 24-multiwell plates. For drug testings 2×104 cells/cm2 were seeded and grown for 24 h until 30-40% of the multiwell surfaces were covered and then exposed to Sirolimus (1.0×10-11 - 1.0×10-5 mol/l) or Tacrolimus (2.0×10-8 - 6.2×10-5 mol/l), both dissolved in DMSO. 12, 24 and 48 h after adding the drugs cell numbers per area were quantified by counting the cells in six wells with four fields of view per well, representing 0.6 mm2, using a confocal laser microscope.After 48 h of cell growth in the drug-free cell culture medium, the HUVEC number increased from 2.0×104 to 3.55×104 cells/cm2 (mean cell doubling time: 53.6 h, n = 6). At lower concentrations (≤2.0×10-6 mol/l) Tacrolimus reduced the number of adherent HUVEC significantly less than Sirolimus (p < 0.05). However, at higher concentrations (≥2.07×10-5 mol/l) the effect of Tacrolimus on the number of adherent endothelial cells was significantly greater than that of Sirolimus (p < 0.05). At the highest concentration applied (6.22×10-5 mol/l), Tacrolimus induced detachment of all HUVECs within 12 h after drug application. The number of adherent HUVEC decreased only slightly (about 9%) after Sirolimus application at the highest concentration (1.09×10-5 mol/l).These data show that in a non-flow model the cytostatic drug Tacrolimus reduced the number of adherent endothelial cells less than Sirolimus, as long as the drug concentration did not surpass 10-6 mol/l. At the limits of solubility, Sirolimus (1×10-5 mol/l) reduced the number of adherent endothelial cells less than Tacrolimus (6×10-5 mol/l), which induced detachment of endothelial cells.

  6. The mast cell stabilizer sodium cromoglycate reduces histamine release and status epilepticus-induced neuronal damage in the rat hippocampus.

    PubMed

    Valle-Dorado, María Guadalupe; Santana-Gómez, César Emmanuel; Orozco-Suárez, Sandra Adela; Rocha, Luisa

    2015-05-01

    Experiments were designed to evaluate changes in the histamine release, mast cell number and neuronal damage in hippocampus induced by status epilepticus. We also evaluated if sodium cromoglycate, a stabilizer of mast cells with a possible stabilizing effect on the membrane of neurons, was able to prevent the release of histamine, γ-aminobutyric acid (GABA) and glutamate during the status epilepticus. During microdialysis experiments, rats were treated with saline (SS-SE) or sodium cromoglycate (CG-SE) and 30 min later received the administration of pilocarpine to induce status epilepticus. Twenty-four hours after the status epilepticus, the brains were used to determine the neuronal damage and the number of mast cells in hippocampus. During the status epilepticus, SS-SE group showed an enhanced release of histamine (138.5%, p = 0.005), GABA (331 ± 91%, p ≤ 0.001) and glutamate (467%, p ≤ 0.001), even after diazepam administration. One day after the status epilepticus, SS-SE group demonstrated increased number of mast cells in Stratum pyramidale of CA1 (88%, p < 0.001) and neuronal damage in dentate gyrus, CA1 and CA3. In contrast to SS-SE group, rats from the CG-SE group showed increased latency to the establishment of the status epilepticus (p = 0.048), absence of wet-dog shakes, reduced histamine (but not GABA and glutamate) release, lower number of mast cells (p = 0.008) and reduced neuronal damage in hippocampus. Our data revealed that histamine, possibly from mast cells, is released in hippocampus during the status epilepticus. This effect may be involved in the subsequent neuronal damage and is diminished with sodium cromoglycate pretreatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Morphine Modulates Adult Neurogenesis and Contextual Memory by Impeding the Maturation of Neural Progenitors.

    PubMed

    Zhang, Yue; Xu, Chi; Zheng, Hui; Loh, Horace H; Law, Ping-Yee

    2016-01-01

    The regulation of adult neurogenesis by opiates has been implicated in modulating different addiction cycles. At which neurogenesis stage opiates exert their action remains unresolved. We attempt to define the temporal window of morphine's inhibition effect on adult neurogenesis by using the POMC-EGFP mouse model, in which newborn granular cells (GCs) can be visualized between days 3-28 post-mitotic. The POMC-EGFP mice were trained under the 3-chambers conditioned place preference (CPP) paradigm with either saline or morphine. We observed after 4 days of CPP training with saline, the number of EGFP-labeled newborn GCs in sub-granular zone (SGZ) hippocampus significantly increased compared to mice injected with saline in their homecage. CPP training with morphine significantly decreased the number of EGFP-labeled GCs, whereas no significant difference in the number of EGFP-labeled GCs was observed with the homecage mice injected with the same dose of morphine. Using cell-type selective markers, we observed that morphine reduced the number of late stage progenitors and immature neurons such as Doublecortin (DCX) and βIII Tubulin (TuJ1) positive cells in the SGZ but did not reduce the number of early progenitors such as Nestin, SOX2, or neurogenic differentiation-1 (NeuroD1) positive cells. Analysis of co-localization between different cell markers shows that morphine reduced the number of adult-born GCs by interfering with differentiation of early progenitors, but not by inducing apoptosis. In addition, when NeuroD1 was over-expressed in DG by stereotaxic injection of lentivirus, it rescued the loss of immature neurons and prolonged the extinction of morphine-trained CPP. These results suggest that under the condition of CPP training paradigm, morphine affects the transition of neural progenitor/stem cells to immature neurons via a mechanism involving NeuroD1.

  8. Lethal Coinfection of Influenza Virus and Streptococcus pneumoniae Lowers Antibody Response to Influenza Virus in Lung and Reduces Numbers of Germinal Center B Cells, T Follicular Helper Cells, and Plasma Cells in Mediastinal Lymph Node

    PubMed Central

    Wu, Yuet; Lam, Kwok-Tai; Chow, Kin-Hung; Ho, Pak-Leung; Guan, Yi; Peiris, Joseph S. Malik

    2014-01-01

    ABSTRACT Secondary Streptococcus pneumoniae infection after influenza is a significant clinical complication resulting in morbidity and sometimes mortality. Prior influenza virus infection has been demonstrated to impair the macrophage and neutrophil response to the subsequent pneumococcal infection. In contrast, how a secondary pneumococcal infection after influenza can affect the adaptive immune response to the initial influenza virus infection is less well understood. Therefore, this study focuses on how secondary pneumococcal infection after influenza may impact the humoral immune response to the initial influenza virus infection in a lethal coinfection mouse model. Compared to mice infected with influenza virus alone, mice coinfected with influenza virus followed by pneumococcus had significant body weight loss and 100% mortality. In the lung, lethal coinfection significantly increased virus titers and bacterial cell counts and decreased the level of virus-specific IgG, IgM, and IgA, as well as the number of B cells, CD4 T cells, and plasma cells. Lethal coinfection significantly reduced the size and weight of spleen, as well as the number of B cells along the follicular developmental lineage. In mediastinal lymph nodes, lethal coinfection significantly decreased germinal center B cells, T follicular helper cells, and plasma cells. Adoptive transfer of influenza virus-specific immune serum to coinfected mice improved survival, suggesting the protective functions of anti-influenza virus antibodies. In conclusion, coinfection reduced the B cell response to influenza virus. This study helps us to understand the modulation of the B cell response to influenza virus during a lethal coinfection. IMPORTANCE Secondary pneumococcal infection after influenza virus infection is an important clinical issue that often results in excess mortality. Since antibodies are key mediators of protection, this study aims to examine the antibody response to influenza virus and demonstrates that lethal coinfection reduced the B cell response to influenza virus. This study helps to highlight the complexity of the modulation of the B cell response in the context of coinfection. PMID:25428873

  9. Dietary supplementation with zinc oxide decreases expression of the stem cell factor in the small intestine of weanling pigs.

    PubMed

    Ou, Deyuan; Li, Defa; Cao, Yunhe; Li, Xilong; Yin, Jingdong; Qiao, Shiyan; Wu, Guoyao

    2007-12-01

    Dietary supplementation with a high level of zinc oxide (ZnO) has been shown to reduce the incidence of diarrhea in weanling pigs, but the underlying mechanisms remain largely unknown. Intestinal-mucosal mast cells, whose maturation and proliferation is under the control of the stem cell factor (SCF), play an important role in the etiology of diarrhea by releasing histamine. The present study was conducted to test the novel hypothesis that supplementing ZnO to the diet for weanling piglets may inhibit SCF expression in the small intestine, thereby reducing the number of mast cells, histamine release, and diarrhea. In Experiment 1, 32 piglets (28 days of age) were weaned and fed diets containing 100 or 3000 mg zinc/kg (as ZnO) for 10 days (16 piglets per group). In Experiment 2, two groups of 28-day-old piglets (8 piglets per group) were fed the 100- or 3000-mg zinc/kg diet as in Experiment 1, except that they were pair-fed the same amounts of feed. Supplementation with a high level of ZnO reduced the incidence of diarrhea in weanling piglets. Dietary Zn supplementation reduced expression of the SCF gene at both mRNA and protein levels, the number of mast cells in the mucosa and submucosa of the small intestine and histamine release from mucosal mast cells. Collectively, our results indicate that dietary supplementation with ZnO inhibits SCF expression in the small intestine, leading to reductions in the number of mast cells and histamine release. These findings may have important implications for the prevention of weaning-associated diarrhea in piglets.

  10. High speed flow cytometric separation of viable cells

    DOEpatents

    Sasaki, D.T.; Van den Engh, G.J.; Buckie, A.M.

    1995-11-14

    Hematopoietic cell populations are separated to provide cell sets and subsets as viable cells with high purity and high yields, based on the number of original cells present in the mixture. High-speed flow cytometry is employed using light characteristics of the cells to separate the cells, where high flow speeds are used to reduce the sorting time.

  11. High speed flow cytometric separation of viable cells

    DOEpatents

    Sasaki, Dennis T.; Van den Engh, Gerrit J.; Buckie, Anne-Marie

    1995-01-01

    Hematopoietic cell populations are separated to provide cell sets and subsets as viable cells with high purity and high yields, based on the number of original cells present in the mixture. High-speed flow cytometry is employed using light characteristics of the cells to separate the cells, where high flow speeds are used to reduce the sorting time.

  12. Epidermal Growth Factor Removal or Tyrphostin AG1478 Treatment Reduces Goblet Cells & Mucus Secretion of Epithelial Cells from Asthmatic Children Using the Air-Liquid Interface Model.

    PubMed

    Parker, Jeremy C; Douglas, Isobel; Bell, Jennifer; Comer, David; Bailie, Keith; Skibinski, Grzegorz; Heaney, Liam G; Shields, Michael D

    2015-01-01

    Epithelial remodelling in asthma is characterised by goblet cell hyperplasia and mucus hypersecretion for which no therapies exist. Differentiated bronchial air-liquid interface cultures from asthmatic children display high goblet cell numbers. Epidermal growth factor and its receptor have been implicated in goblet cell hyperplasia. We hypothesised that EGF removal or tyrphostin AG1478 treatment of differentiating air-liquid interface cultures from asthmatic children would result in a reduction of epithelial goblet cells and mucus secretion. In Aim 1 primary bronchial epithelial cells from non-asthmatic (n = 5) and asthmatic (n = 5) children were differentiated under EGF-positive (10 ng/ml EGF) and EGF-negative culture conditions for 28 days. In Aim 2, cultures from a further group of asthmatic children (n = 5) were grown under tyrphostin AG1478, a tyrosine kinase inhibitor, conditions. All cultures were analysed for epithelial resistance, markers of differentiation using immunocytochemistry, ELISA for MUC5AC mucin secretion and qPCR for MUC5AC mRNA. In cultures from asthmatic children the goblet cell number was reduced in the EGF negative group (p = 0.01). Tyrphostin AG1478 treatment of cultures from asthmatic children had significant reductions in goblet cells at 0.2 μg/ml (p = 0.03) and 2 μg/ml (p = 0.003) as well as mucus secretion at 2 μg/ml (p = 0.04). We have shown in this preliminary study that through EGF removal and tyrphostin AG1478 treatment the goblet cell number and mucus hypersecretion in differentiating air-liquid interface cultures from asthmatic children is significantly reduced. This further highlights the epidermal growth factor receptor as a potential therapeutic target to inhibit goblet cell hyperplasia and mucus hypersecretion in asthma.

  13. Rat Muc4 (sialomucin complex) reduces binding of anti-ErbB2 antibodies to tumor cell surfaces, a potential mechanism for herceptin resistance.

    PubMed

    Price-Schiavi, Shari A; Jepson, Scott; Li, Peter; Arango, Maria; Rudland, Philip S; Yee, Lisa; Carraway, Kermit L

    2002-06-20

    Muc4 (also called sialomucin complex), the rat homolog of human MUC4, is a heterodimeric glycoprotein complex that consists of a peripheral O-glycosylated mucin subunit, ASGP-1, tightly but noncovalently linked to a N-glycosylated transmembrane subunit, ASGP-2. The complex is expressed in a number of normal, vulnerable epithelial tissues, including mammary gland, uterus, colon, cornea and trachea. Muc4/SMC is also overexpressed or aberrantly expressed on a number of human tumors including breast tumors. Overexpression of Muc4/SMC has been shown to block cell-cell and cell-matrix interactions, protect tumor cells from immune surveillance and promote metastasis. In addition, as a ligand for ErbB2, Muc4/SMC can potentiate phosphorylation of ErbB2 and potentially alter signals generated from this receptor. Using A375 human melanoma cells and MCF7 human breast adenocarcinoma cells stably transfected with tetracycline regulatable Muc4, we have investigated whether overexpression of Muc4/SMC can repress antibody binding to cell surface-expressed ErbB2. Overexpression of Muc4/SMC does not affect the level of ErbB2 expression in either cell line, but it does reduce binding of a number of anti-ErbB2 antibodies, including Herceptin. Interestingly, overexpression of ErbB2 does not block binding of other unrelated antibodies of the same isotype, suggesting that the reduction in ErbB2 antibody binding is due to complex formation of Muc4/SMC and ErbB2. Furthermore, capping of Muc4/SMC with anti-Muc4/SMC antibodies reduces antibody binding to ErbB2 instead of increasing binding, again suggesting that reduced antibody binding to ErbB2 is due to steric hindrance from complex formation of Muc4/SMC and ErbB2. Thus, overexpression of Muc4/SMC on tumor cells may have both prognostic and therapeutic relevance. Copyright 2002 Wiley-Liss, Inc.

  14. Leukopenia and altered hematopoietic activity in mice exposed to the abused inhalant, isobutyl nitrite.

    PubMed

    Soderberg, L S; Flick, J T; Barnett, J B

    1996-06-01

    Isobutyl nitrite is representative of a group of inhalants abused primarily by male homosexuals; abuse of this drug may be a risk factor for AIDS or Kaposi's sarcoma. Using a 14-day exposure regimen, we previously reported that inhaled isobutyl nitrite was immunotoxic to mice, severely compromising T-dependent antibody responses and cytotoxic T cell and macrophage tumoricidal activity. In addition, exposure to the inhalant dramatically reduced spleen cellularity. A single 45-minute inhalation exposure produced anemia in mice. In the present study, we examined the effects of subchronic exposure to the drug on peripheral blood cellularity and hematopoietic activity. Mice were exposed to 900 ppm isobutyl nitrite in an inhalation chamber for 45 minutes/day for 14 days. One day after the final exposure, the number of peripheral blood leukocytes was reduced by 32%; however, the number of erythrocytes was increased by 7%. This was accompanied by an apparent shift from myelopoiesis to erythropoiesis. The numbers of bone marrow and spleen burst-forming units-erythroid (BFU-E) were increased about two-fold, while the numbers of colony-forming units-granulocyte/macrophage (CFU-GM) were decreased by about half. Bone marrow stromal cells also had reductions in the production of myeloid colony-stimulating activity after subchronic exposure to the inhalant. In addition, the numbers of hematopoietic stem cells, colony-forming units-spleen (CFU-S), were reduced in both bone marrow and spleen. Peripheral blood erythrocyte and leukocyte counts returned to normal levels by 7 days after the final exposure, as did the number of BFU-E. The number of CFU-GM remained depressed, however, even after 7 days of recovery. These data suggest that repeated exposures nonspecifically depleted cells and that erythropoiesis was stimulated, apparently at the expense of myelopoiesis.

  15. Mitochondrial DNA copy numbers in pyramidal neurons are decreased and mitochondrial biogenesis transcriptome signaling is disrupted in Alzheimer's disease hippocampi.

    PubMed

    Rice, Ann C; Keeney, Paula M; Algarzae, Norah K; Ladd, Amy C; Thomas, Ravindar R; Bennett, James P

    2014-01-01

    Alzheimer's disease (AD) is the major cause of adult-onset dementia and is characterized in its pre-diagnostic stage by reduced cerebral cortical glucose metabolism and in later stages by reduced cortical oxygen uptake, implying reduced mitochondrial respiration. Using quantitative PCR we determined the mitochondrial DNA (mtDNA) gene copy numbers from multiple groups of 15 or 20 pyramidal neurons, GFAP(+) astrocytes and dentate granule neurons isolated using laser capture microdissection, and the relative expression of mitochondrial biogenesis (mitobiogenesis) genes in hippocampi from 10 AD and 9 control (CTL) cases. AD pyramidal but not dentate granule neurons had significantly reduced mtDNA copy numbers compared to CTL neurons. Pyramidal neuron mtDNA copy numbers in CTL, but not AD, positively correlated with cDNA levels of multiple mitobiogenesis genes. In CTL, but not in AD, hippocampal cDNA levels of PGC1α were positively correlated with multiple downstream mitobiogenesis factors. Mitochondrial DNA copy numbers in pyramidal neurons did not correlate with hippocampal Aβ1-42 levels. After 48 h exposure of H9 human neural stem cells to the neurotoxic fragment Aβ25-35, mtDNA copy numbers were not significantly altered. In summary, AD postmortem hippocampal pyramidal neurons have reduced mtDNA copy numbers. Mitochondrial biogenesis pathway signaling relationships are disrupted in AD, but are mostly preserved in CTL. Our findings implicate complex alterations of mitochondria-host cell relationships in AD.

  16. Somatic mutations and affinity maturation are impaired by excessive numbers of T follicular helper cells and restored by Treg cells or memory T cells.

    PubMed

    Preite, Silvia; Baumjohann, Dirk; Foglierini, Mathilde; Basso, Camilla; Ronchi, Francesca; Fernandez Rodriguez, Blanca M; Corti, Davide; Lanzavecchia, Antonio; Sallusto, Federica

    2015-11-01

    We previously reported that Cd3e-deficient mice adoptively transferred with CD4(+) T cells generate high numbers of T follicular helper (Tfh) cells, which go on to induce a strong B-cell and germinal center (GC) reaction. Here, we show that in this system, GC B cells display an altered distribution between the dark and light zones, and express low levels of activation-induced cytidine deaminase. Furthermore, GC B cells from Cd3e(-/-) mice accumulate fewer somatic mutations as compared with GC B cells from wild-type mice, and exhibit impaired affinity maturation and reduced differentiation into long-lived plasma cells. Reconstitution of Cd3e(-/-) mice with regulatory T (Treg) cells restored Tfh-cell numbers, GC B-cell numbers and B-cell distribution within dark and light zones, and the rate of antibody somatic mutations. Tfh-cell numbers and GC B-cell numbers and dynamics were also restored by pre-reconstitution of Cd3e(-/-) mice with Cxcr5(-/-) Treg cells or non-regulatory, memory CD4(+) T cells. Taken together, these findings underline the importance of a quantitatively regulated Tfh-cell response for an efficient and long-lasting serological response. © 2015 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. In vivo dendritic cell depletion reduces breeding efficiency, affecting implantation and early placental development in mice.

    PubMed

    Krey, Gesa; Frank, Pierre; Shaikly, Valerie; Barrientos, Gabriela; Cordo-Russo, Rosalia; Ringel, Frauke; Moschansky, Petra; Chernukhin, Igor V; Metodiev, Metodi; Fernández, Nelson; Klapp, Burghard F; Arck, Petra C; Blois, Sandra M

    2008-09-01

    Implantation of mammalian embryos into their mother's uterus ensures optimal nourishment and protection throughout development. Complex molecular interactions characterize the implantation process, and an optimal synchronization of the components of this embryo-maternal dialogue is crucial for a successful reproductive outcome. In the present study, we investigated the role of dendritic cells (DC) during implantation process using a transgenic mouse system (DTRtg) that allows transient depletion of CD11c+ cells in vivo through administration of diphtheria toxin. We observed that DC depletion impairs the implantation process, resulting in a reduced breeding efficiency. Furthermore, the maturity of uterine natural killer cells at dendritic cell knockout (DCKO) implantation sites was affected as well; as demonstrated by decreased perforin expression and reduced numbers of periodic-acid-Schiff (PAS)-positive cells. This was accompanied by disarrangements in decidual vascular development. In the present study, we were also able to identify a novel DC-dependent protein, phosphatidylinositol transfer protein beta (PITPbeta), involved in implantation and trophoblast development using a proteomic approach. Indeed, DCKO mice exhibited substantial anomalies in placental development, including hypocellularity of the spongiotrophoblast and labyrinthine layers and reduced numbers of trophoblast giant cells. Giant cells also down-regulated their expression of two characteristic markers of trophoblast differentiation, placental lactogen 1 and proliferin. In view of these findings, dendritic cells emerge as possible modulators in the orchestration of events leading to the establishment and maintenance of pregnancy.

  18. Interleukin-12 Therapy Reduces the Number of Immune Cells and Pathology in Lungs of Mice Infected with Mycobacterium tuberculosis

    PubMed Central

    Nolt, Dawn; Flynn, JoAnne L.

    2004-01-01

    Alternate modalities for the treatment of Mycobacterium tuberculosis are needed due to the rise in numbers of immunosuppressed individuals at risk for serious disease and the increasing prevalence of multidrug-resistant isolates. Interleukin-12 (IL-12) has been shown to improve immune responses against M. tuberculosis infection in both humans and mice. Previous studies using high-dose IL-12 in various disease models reported a paradoxical immunosuppression. We demonstrate here that exogenous administration of IL-12 for 8 weeks after an aerosolized low dose of M. tuberculosis results in increased survival and decreased pulmonary bacterial loads for CD4-T-cell-deficient mice, most likely due to an early increase in gamma interferon. IL-12 treatment did not impair or enhance the ability of the wild-type mice to control infection, as measured by bacterial numbers. Two novel findings are reported here regarding exogenous IL-12 therapy for M. tuberculosis infections: (i) IL-12 treatment resulted in decreased numbers of immune cells and reduced frequencies of lymphocytes (CD8+, CD4+, and NK cells) in the lungs of infected mice and (ii) IL-12 therapy reduced the pathology of M. tuberculosis-infected lungs, as granulomas were smaller and less numerous. These studies support an immunoregulatory role for IL-12 in tuberculosis. PMID:15102810

  19. Zoledronic Acid-Induced Expansion of γδ T Cells from Early-Stage Breast Cancer Patients: Effect of IL-18 on Helper NK Cells

    PubMed Central

    Sugie, Tomoharu; Murata-Hirai, Kaoru; Iwasaki, Masashi; Morita, Craig T.; Li, Wen; Okamura, Haruki; Minato, Nagahiro; Toi, Masakazu; Tanaka, Yoshimasa

    2013-01-01

    Human γδ T cells display potent cytotoxicity against various tumor cells pretreated with zoledronic acid (Zol). Zol has shown benefits when added to adjuvant endocrine therapy for patients with early-stage breast cancer or to standard chemotherapy for patients with multiple myeloma. Although γδ T cells may contribute to this additive effect, the responsiveness of γδ T cells from early-stage breast cancer patients has not been fully investigated. In this study, we determined the number, frequency, and responsiveness of Vγ2Vδ2 T cells from early- and late-stage breast cancer patients and examined the effect of IL-18 on their ex vivo expansion. The responsiveness of Vγ2Vδ2 T cells from patients with low frequencies of Vγ2Vδ2 T cells was significantly diminished. IL-18, however, enhanced ex vivo proliferative responses of Vγ2Vδ2 T cells and helper NK cells from patients with either low or high frequencies of Vγ2Vδ2 T cells. Treatment of breast cancer patients with Zol alone decreased the number of Vγ2Vδ2 T cells and reduced their ex vivo responsiveness. These results demonstrate that Zol can elicit immunological responses by γδ T cells from early-stage breast cancer patients but that frequent in vivo treatment reduces Vγ2Vδ2 T cell numbers and their responsiveness to stimulation. PMID:23151944

  20. Neuroprotection by GH against excitotoxic-induced cell death in retinal ganglion cells.

    PubMed

    Martínez-Moreno, Carlos G; Ávila-Mendoza, José; Wu, Yilun; Arellanes-Licea, Elvira Del Carmen; Louie, Marcela; Luna, Maricela; Arámburo, Carlos; Harvey, Steve

    2016-08-01

    Retinal growth hormone (GH) has been shown to promote cell survival in retinal ganglion cells (RGCs) during developmental waves of apoptosis during chicken embryonic development. The possibility that it might also against excitotoxicity-induced cell death was therefore examined in the present study, which utilized quail-derived QNR/D cells as an in vitro RGC model. QNR/D cell death was induced by glutamate in the presence of BSO (buthionine sulfoxamide) (an enhancer of oxidative stress), but this was significantly reduced (P<0.01) in the presence of exogenous recombinant chicken GH (rcGH). Similarly, QNR/D cells that had been prior transfected with a GH plasmid to overexpress secreted and non-secreted GH. This treatment reduced the number of TUNEL-labeled cells and blocked their release of lactate dehydrogenase (LDH). In a further experiment with dissected neuroretinal explants from ED (embryonic day) 10 embryos, rcGH treatment of the explants also reduced (P<0.01) the number of glutamate-BSO-induced apoptotic cells and blocked the explant release of LDH. This neuroprotective action was likely mediated by increased STAT5 phosphorylation and increased bcl-2 production, as induced by exogenous rcGH treatment and the media from GH-overexpressing QNR/D cells. As rcGH treatment and GH-overexpression cells also increased the content of IGF-1 and IGF-1 mRNA this neuroprotective action of GH is likely to be mediated, at least partially, through an IGF-1 mechanism. This possibility is supported by the fact that the siRNA knockdown of GH or IGF-1 significantly reduced QNR/D cell viability, as did the immunoneutralization of IGF-1. GH is therefore neuroprotective against excitotoxicity-induced RGC cell death by anti-apoptotic actions involving IGF-1 stimulation. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. In vivo and in vitro immunosuppressive effects of benzo[k]fluoranthene in female Balb/c mice.

    PubMed

    Jeon, Tae Won; Jin, Chun Hua; Lee, Sang Kyu; Lee, Dong Wook; Hyun, Sun Hee; Kim, Ghee Hwan; Jun, In Hye; Lee, Byung Mu; Yum, Young Na; Kim, Jun Kyou; Kim, Ok Hee; Jeong, Tae Cheon

    2005-12-10

    Although polycyclic aromatic hydrocarbons (PAHs) have been known to suppress immune responses, few studies have addressed the immunotoxicity of benzo[k]fluoranthene (B[k]F). In this study, we investigated the immunosuppression by B[k]F, both in vivo and in vitro, in female BALB/c mice. To assess the effects of B[k]F on humoral immunity as splenic antibody response to sheep red blood cells (SRBCs), B[k]F was given a single dose or once daily for 7 consecutive days po with 30, 60, and 120 micromol/kg. B[k]F reduced the number of antibody-forming cells (AFCs) in a dose-dependent manner. Subacute treatment with B[k]F caused weight increases in liver and decreases in spleen and thymus. The number of AFCs was dramatically decreased by B[k]F in a dose-dependent manner. In a subsequent study, mice were subacutely exposed to the same doses of B[k]F without an immunization with SRBCs, followed by splenic and thymic lymphocyte phenotypings using a flow cytometry and ex vivo mitogen-stimulated proliferation. B[k]F-exposed mice exhibited reduced splenic and thymic cellularity, decreased numbers of total T cells, CD4(+) cells, and CD8(+) cells in spleen, and immature CD4(+)CD8(+) cells, CD4(+)CD8(-) cells, and CD8(+)CD4(-) cells in thymus. The number of CD4(+) IL-2(+) cells was reduced by about 11%, 31%, and 53% following exposure of mice to 30, 60, and 120 micromol/kg of B[k]F, respectively. In the ex vivo lymphocyte proliferation assay, B[k]F inhibited splenocyte proliferation by LPS and Con A. In the in vitro mitogen-stimulated proliferation by untreated splenic suspensions, B[k]F only suppressed splenocyte proliferation to LPS. These results suggested that B[k]F-induced immunosuppression might be mediated, at least in part, through the IL-2 production, and caused by mechanisms associated with metabolic processes.

  2. Synergistic Protective Effects of Mitochondrial Division Inhibitor 1 and Mitochondria-Targeted Small Peptide SS31 in Alzheimer's Disease.

    PubMed

    Reddy, P Hemachandra; Manczak, Maria; Yin, XiangLing; Reddy, Arubala P

    2018-01-01

    The purpose of our study was to determine the synergistic protective effects of mitochondria-targeted antioxidant SS31 and mitochondria division inhibitor 1 (Mdivi1) in Alzheimer's disease (AD). Using biochemical methods, we assessed mitochondrial function by measuring the levels of hydrogen peroxide, lipid peroxidation, cytochrome c oxidase activity, mitochondrial ATP, and GTPase Drp1 enzymatic activity in mutant AβPP cells. Using biochemical methods, we also measured cell survival and apoptotic cell death. Amyloid-β (Aβ) levels were measured using sandwich ELISA, and using real-time quantitative RT-PCR, we assessed mtDNA (mtDNA) copy number in relation to nuclear DNA (nDNA) in all groups of cells. We found significantly reduced levels of Aβ40 and Aβ42 in mutant AβPP cells treated with SS31, Mdivi1, and SS31+Mdivi1, and the reduction of Aβ42 levels were much higher in SS31+Mdivi1 treated cells than individual treatments of SS31 and Mdivi1. The levels of mtDNA copy number and cell survival were significantly increased in SS31, Mdivi1, and SS31+Mdivi1 treated mutant AβPP cells; however, the increased levels of mtDNA copy number and cell survival were much higher in SS31+Mdivi1 treated cells than individual treatments of SS31 and Mdivi1. Mitochondrial dysfunction is significantly reduced in SS31, Mdivi1, and SS31+Mdivi1 treated mutant AβPP cells; however, the reduction is much higher in cells treated with both SS31+Mdvi1. Similarly, GTPase Drp1 activity is reduced in all treatments, but reduced much higher in SS31+Mdivi1 treated cells. These observations strongly suggest that combined treatment of SS31+Mdivi1 is effective than individual treatments of SS31 and Mdivi1. Therefore, we propose that combined treatment of SS31+Mdivi1 is a better therapeutic strategy for AD. Ours is the first study to investigate combined treatment of mitochondria-targeted antioxidant SS31 and mitochondrial division inhibitor 1 in AD neurons.

  3. Disease progression in recurrent glioblastoma patients treated with the VEGFR inhibitor axitinib is associated with increased regulatory T cell numbers and T cell exhaustion.

    PubMed

    Du Four, Stephanie; Maenhout, Sarah K; Benteyn, Daphné; De Keersmaecker, Brenda; Duerinck, Johnny; Thielemans, Kris; Neyns, Bart; Aerts, Joeri L

    2016-06-01

    Recurrent glioblastoma is associated with a poor overall survival. Antiangiogenic therapy results in a high tumor response rate but has limited impact on survival. Immunotherapy has emerged as an efficient treatment modality for some cancers, and preclinical evidence indicates that anti-VEGF(R) therapy can counterbalance the immunosuppressive tumor microenvironment. We collected peripheral blood mononuclear cells (PBMC) of patients with recurrent glioblastoma treated in a randomized phase II clinical trial comparing the effect of axitinib with axitinib plus lomustine and analyzed the immunophenotype of PBMC, the production of cytokines and expression of inhibitory molecules by circulating T cells. PBMC of 18 patients were collected at baseline and at 6 weeks after initiation of study treatment. Axitinib increased the number of naïve CD8(+) T cells and central memory CD4(+) and CD8(+) T cells and reduced the TIM3 expression on CD4(+) and CD8(+) T cells. Patients diagnosed with progressive disease on axitinib had a significantly increased number of regulatory T cells and an increased level of PD-1 expression on CD4(+) and CD8(+) T cells. In addition, reduced numbers of cytokine-producing T cells were found in progressive patients as compared to patients responding to treatment. Our results suggest that axitinib treatment in patients with recurrent glioblastoma has a favorable impact on immune function. At the time of acquired resistance to axitinib, we documented further enhancement of a preexisting immunosuppression. Further investigations on the role of axitinib as potential combination partner with immunotherapy are necessary.

  4. Brain Cancer Stem Cells Display Preferential Sensitivity to Akt Inhibition

    PubMed Central

    Eyler, Christine E.; Foo, Wen-Chi; LaFiura, Katherine M.; McLendon, Roger E.; Hjelmeland, Anita B.; Rich, Jeremy N.

    2009-01-01

    Malignant brain tumors are among the most lethal cancers, and conventional therapies are largely limited to palliation. Novel therapies targeted against specific molecular pathways may offer improved efficacy and reduced toxicity compared to conventional therapies, but initial clinical trials of molecular targeted agents in brain cancer therapy have been frequently disappointing. In brain tumors and other cancers, subpopulations of tumor cells have recently been characterized by their ability to self-renew and initiate tumors. Although these cancer stem cells, or tumor initiating cells, are often only present in small numbers in human tumors, mounting evidence suggests that cancer stem cells contribute to tumor maintenance and therapeutic resistance. Thus, the development of therapies that target cancer stem cell signal transduction and biologies may improve brain tumor patient survival. We now demonstrate that populations enriched for cancer stem cells are preferentially sensitive to an inhibitor of Akt, a prominent cell survival and invasion signaling node. Treatment with an Akt inhibitor more potently reduced the numbers of viable brain cancer stem cells relative to matched non-stem cancer cells associated with a preferential induction of apoptosis and a suppression of neurosphere formation. Akt inhibition also reduced the motility and invasiveness of all tumor cells but had a greater impact on cancer stem cell behaviors. Furthermore, inhibition of Akt activity in cancer stem cells increased survival of immunocompromised mice bearing human glioma xenografts in vivo. Together, these results suggest that Akt inhibitors may function as effective anti-cancer stem cell therapies. PMID:18802038

  5. Mycophenolate Mofetil Treatment of Systemic Sclerosis Reduces Myeloid Cell Numbers and Attenuates the Inflammatory Gene Signature in Skin.

    PubMed

    Hinchcliff, Monique; Toledo, Diana M; Taroni, Jaclyn N; Wood, Tammara A; Franks, Jennifer M; Ball, Michael S; Hoffmann, Aileen; Amin, Sapna M; Tan, Ainah U; Tom, Kevin; Nesbeth, Yolanda; Lee, Jungwha; Ma, Madeleine; Aren, Kathleen; Carns, Mary A; Pioli, Patricia A; Whitfield, Michael L

    2018-01-31

    Fewer than half of patients with systemic sclerosis demonstrate modified Rodnan skin score improvement during mycophenolate mofetil (MMF) treatment. To understand the molecular basis for this observation, we extended our prior studies and characterized molecular and cellular changes in skin biopsies from subjects with systemic sclerosis treated with MMF. Eleven subjects completed ≥24 months of MMF therapy. Two distinct skin gene expression trajectories were observed across six of these subjects. Three of the six subjects showed attenuation of the inflammatory signature by 24 months, paralleling reductions in CCL2 mRNA expression in skin and reduced numbers of macrophages and myeloid dendritic cells in skin biopsies. MMF cessation at 24 months resulted in an increased inflammatory score, increased CCL2 mRNA and protein levels, modified Rodnan skin score rebound, and increased numbers of skin myeloid cells in these subjects. In contrast, three other subjects remained on MMF >24 months and showed a persistent decrease in inflammatory score, decreasing or stable modified Rodnan skin score, CCL2 mRNA reductions, sera CCL2 protein levels trending downward, reduction in monocyte migration, and no increase in skin myeloid cell numbers. These data summarize molecular changes during MMF therapy that suggest reduction of innate immune cell numbers, possibly by attenuating expression of chemokines, including CCL2. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Optimal ex vivo expansion of neutrophils from PBSC CD34+ cells by a combination of SCF, Flt3-L and G-CSF and its inhibition by further addition of TPO.

    PubMed

    Tura, Olga; Barclay, G Robin; Roddie, Huw; Davies, John; Turner, Marc L

    2007-10-30

    Autologous mobilised peripheral blood stem cell (PBSC) transplantation is now a standard approach in the treatment of haematological diseases to reconstitute haematopoiesis following myeloablative chemotherapy. However, there remains a period of severe neutropenia and thrombocytopenia before haematopoietic reconstitution is achieved. Ex vivo expanded PBSC have been employed as an adjunct to unmanipulated HSC transplantation, but have tended to be produced using complex cytokine mixtures aimed at multilineage (neutrophil and megakaryocyte) progenitor expansion. These have been reported to reduce or abrogate neutropenia but have little major effect on thrombocytopenia. Selective megakaryocyte expansion has been to date ineffective in reducing thrombocytopenia. This study was implemented to evaluate neutrophil specific rather than multilineage ex vivo expansion of PBSC for specifically focusing on reduction or abrogation of neutropenia. CD34+ cells (PBSC) were enriched from peripheral blood mononuclear cells following G-CSF-mobilisation and cultured with different permutations of cytokines to determine optimal cytokine combinations and doses for expansion and functional differentiation and maturation of neutrophils and their progenitors. Results were assessed by cell number, morphology, phenotype and function. A simple cytokine combination, SCF + Flt3-L + G-CSF, synergised to optimally expand and mature neutrophil progenitors assessed by cell number, phenotype, morphology and function (superoxide respiratory burst measured by chemiluminescence). G-CSF appears mandatory for functional maturation. Addition of other commonly employed cytokines, IL-3 and IL-6, had no demonstrable additive effect on numbers or function compared to this optimal combination. Addition of TPO, commonly included in multilineage progenitor expansion for development of megakaryocytes, reduced the maturation of neutrophil progenitors as assessed by number, morphology and function (respiratory burst activity). Given that platelet transfusion support is available for autologous PBSC transplantation but granulocyte transfusion is generally lacking, and that multilineage expanded PBSC do not reduce thrombocytopenia, we suggest that instead of multilineage expansion selective neutrophil expansion based on this relatively simple cytokine combination might be prioritized for development for clinical use as an adjunct to unmanipulated PBSC transplantation to reduce or abrogate post-transplant neutropenia.

  7. ERK1 is important for Th2 differentiation and development of experimental asthma

    PubMed Central

    Goplen, Nicholas; Karim, Zunayet; Guo, Lei; Zhuang, Yonghua; Huang, Hua; Gorska, Magdalena M.; Gelfand, Erwin; Pagés, Gilles; Pouysségur, Jacques; Alam, Rafeul

    2012-01-01

    The ERK1/2 signaling pathway regulates a variety of T-cell functions. We observed dynamic changes in the expression of ERK1/2 during T-helper cell differentiation. Specifically, the expression of ERK1/2 was decreased and increased by IL-12 and IL-4, respectively. To address this subject further, we examined the specific role of ERK1 in Th2 differentiation and development of experimental asthma using ERK1−/− mice. ERK1−/− mice were unable to mount airway inflammation and hyperreactivity in two different models of asthma, acute and chronic. ERK1−/− mice had reduced expression of Th2 cytokines IL-4 and IL-5 but not IL-17A or IFN-γ. They had reduced levels of allergen-specific IgE and blood eosinophils. T cells from immunized ERK1−/− mice manifested reduced proliferation in response to the sensitizing allergen. ERK1−/− T cells had reduced and short-lived expression of JunB following TCR stimulation, which likely contributed to their impaired Th2 differentiation. Immunized ERK1−/− mice showed reduced numbers of CD44high CD4 T cells in the spleen. In vitro studies demonstrated that Th2 but not Th1 cells from ERK1−/− mice had reduced numbers of CD44high cells. Finally, CD4 T cells form ERK1−/− mice expressed higher levels of BIM under growth factor-deprived conditions and reduced Mcl-1 on stimulation. As a result, the survival of CD4 T cells, especially CD44high Th2 cells, was much reduced in ERK1−/− mice. We conclude that ERK1 plays a nonredundant role in Th2 differentiation and development of experimental asthma. ERK1 controls Th2 differentiation and survival through its effect on JunB and BIM, respectively.—Goplen, N., Karim, Z., Guo, L., Zhuang, Y., Huang, H., Gorska, M. M., Gelfand, E., Pagés, G., Pouysségur, J., Alam, R. ERK1 is important for Th2 differentiation and development of experimental asthma. PMID:22262639

  8. Antileukotriene Reverts the Early Effects of Inflammatory Response of Distal Parenchyma in Experimental Chronic Allergic Inflammation

    PubMed Central

    Gobbato, Nathália Brandão; de Souza, Flávia Castro Ribas; Fumagalli, Stella Bruna Napolitano; Lopes, Fernanda Degobbi Tenório Quirino dos Santos; Prado, Carla Máximo; Martins, Milton Arruda; Tibério, Iolanda de Fátima Lopes Calvo; Leick, Edna Aparecida

    2013-01-01

    Aims. Compare the effects of montelukast or dexamethasone in distal lung parenchyma and airway walls of guinea pigs (GP) with chronic allergic inflammation. Methods. GP have inhaled ovalbumin (OVA group-2x/week/4weeks). After the 4th inhalation, GP were treated with montelukast or dexamethasone. After 72 hours of the 7th inhalation, GP were anesthetised, and lungs were removed and submitted to histopathological evaluation. Results. Montelukast and dexamethasone treatments reduced the number of eosinophils in airway wall and distal lung parenchyma compared to OVA group (P < 0.05). On distal parenchyma, both treatments were effective in reducing RANTES, NF-κB, and fibronectin positive cells compared to OVA group (P < 0.001). Montelukast was more effective in reducing eotaxin positive cells on distal parenchyma compared to dexamethasone treatment (P < 0.001), while there was a more expressive reduction of IGF-I positive cells in OVA-D group (P < 0.001). On airway walls, montelukast and dexamethasone were effective in reducing IGF-I, RANTES, and fibronectin positive cells compared to OVA group (P < 0.05). Dexamethasone was more effective in reducing the number of eotaxin and NF-κB positive cells than Montelukast (P < 0.05). Conclusions. In this animal model, both treatments were effective in modulating allergic inflammation and remodeling distal lung parenchyma and airway wall, contributing to a better control of the inflammatory response. PMID:24151607

  9. Adalimumab (antitumour necrosis factor-α) treatment of hidradenitis suppurativa ameliorates skin inflammation: an in situ and ex vivo study.

    PubMed

    van der Zee, H H; Laman, J D; de Ruiter, L; Dik, W A; Prens, E P

    2012-02-01

    Hidradenitis suppurativa (HS) is a difficult-to-manage disease. Randomized controlled trials with antitumour necrosis factor (TNF)-α biologics have been conducted and in most studies disease activity was reduced. However, the mechanism of action in HS skin is so far unknown. To assess whether anti-TNF-α treatment affects in situ cytokine production and frequency of inflammatory cell populations in HS lesional skin. Nine patients with HS, participating in a larger placebo-controlled, double-blind phase IIb clinical trial on the efficacy and safety of adalimumab in patients with moderate to severe HS (M10-467), were randomized and treated for 16weeks. In a mechanism-of-action substudy, biopsies were obtained at fixed time points pre- and post-treatment. One part of the biopsy was cultured for 24h for cytokine release in the culture medium, while another part was used for in situ analysis. Secretion of cytokines, including interleukin (IL)-1β, CXCL9 [monokine induced by interferon-γ (MIG)], IL-10, IL-11, B-lymphocyte chemoattractant (BLC) and IL-17A, was significantly elevated in HS. Adalimumab treatment was associated with decreased production of cytokines in HS skin, especially IL-1β, CXCL9 (MIG) and BLC. Treatment significantly reduced the number of CD11c+,CD14+ and CD68+ cells in HS lesional skin. The numbers of CD3+ and CD4+ T cells, and CD20+ and CD138+ B cells were also reduced by adalimumab treatment. Adalimumab treatment inhibits important cytokines and inflammatory cell numbers in lesional HS skin, especially levels of IL-1β and numbers of inflammatory CD11c+ dendritic cells. © 2011 The Authors. BJD © 2011 British Association of Dermatologists.

  10. The production of glial cell line-derived neurotrophic factor by human sertoli cells is substantially reduced in sertoli cell-only testes.

    PubMed

    Singh, D; Paduch, D A; Schlegel, P N; Orwig, K E; Mielnik, A; Bolyakov, A; Wright, W W

    2017-05-01

    Do human Sertoli cells in testes that exhibit the Sertoli cell-only (SCO) phenotype produce substantially less glial cell line-derived neurotrophic factor (GDNF) than Sertoli cells in normal testes? In human SCO testes, both the amounts of GDNF mRNA per testis and the concentration of GDNF protein per Sertoli cell are markedly reduced as compared to normal testes. In vivo, GDNF is required to sustain the numbers and function of mouse spermatogonial stem cells (SSCs) and their immediate progeny, transit-amplifying progenitor spermatogonia. GDNF is expressed in the human testis, and the ligand-binding domain of the GDNF receptor, GFRA1, has been detected on human SSCs. The numbers and/or function of these stem cells are markedly reduced in some infertile men, resulting in the SCO histological phenotype. We determined the numbers of human spermatogonia per mm2 of seminiferous tubule surface that express GFRA1 and/or UCHL1, another marker of human SSCs. We measured GFRA1 mRNA expression in order to document the reduced numbers and/or function of SSCs in SCO testes. We quantified GDNF mRNA in testes of humans and mice, a species with GDNF-dependent SSCs. We also compared GDNF mRNA expression in human testes with normal spermatogenesis to that in testes exhibiting the SCO phenotype. As controls, we also measured transcripts encoding two other Sertoli cell products, kit ligand (KITL) and clusterin (CLU). Finally, we compared the amounts of GDNF per Sertoli cell in normal and SCO testes. Normal human testes were obtained from beating heart organ donors. Biopsies of testes from men who were infertile due to maturation arrest or the SCO phenotype were obtained as part of standard care during micro-testicular surgical sperm extraction. Cells expressing GFRA1, UCHL1 or both on whole mounts of normal human seminiferous tubules were identified by immunohistochemistry and confocal microscopy and their numbers were determined by image analysis. Human GDNF mRNA and GFRA1 mRNA were quantified by use of digital PCR and Taqman primers. Transcripts encoding mouse GDNF and human KITL, CLU and 18 S rRNA, used for normalization of data, were quantified by use of real-time PCR and Taqman primers. Finally, we used two independent methods, flow cytometric analysis of single cells and ELISA assays of homogenates of whole testis biopsies, to compare amounts of GDNF per Sertoli cell in normal and SCO testes. Normal human testes contain a large population of SSCs that express GFRA1, the ligand-binding domain of the GDNF receptor. In human SCO testes, GFRA1 mRNA was detected but at markedly reduced levels. Expression of GDNF mRNA and the amount of GDNF protein per Sertoli cell were also significantly reduced in SCO testes. These results were observed in multiple, independent samples, and the reduced amount of GDNF in Sertoli cells of SCO testes was demonstrated using two different analytical approaches. N/A. There currently are no approved protocols for the in vivo manipulation of human testis GDNF concentrations. Thus, while our data suggest that insufficient GDNF may be the proximal cause of some cases of human male infertility, our results are correlative in nature. We propose that insufficient GDNF expression may contribute to the infertility of some men with an SCO testicular phenotype. If their testes contain some SSCs, an approach that increases their testicular GDNF concentrations might expand stem cell numbers and possibly sperm production. This research was funded by the Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Centers for Translational Research in Reproduction and Infertility Program (NCTRI) Grant 1R01HD074542-04, as well as grants R01 HD076412-02 and P01 HD075795-02 and the U.S.-Israel Binational Science Foundation. Support for this research was also provided by NIH P50 HD076210, the Robert Dow Foundation, the Frederick & Theresa Dow Wallace Fund of the New York Community Trust and the Brady Urological Foundation. There are no competing interests. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doi, Keiko; Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka; Central Research Institute of Life Sciences for the Next Generation of Women Scientists, Fukuoka University, Fukuoka

    Highlights: Black-Right-Pointing-Pointer We generated Cd4-Cre-mediated T cell-specific Zfat-deficient mice. Black-Right-Pointing-Pointer Zfat-deficiency leads to reduction in the number of the peripheral T cells. Black-Right-Pointing-Pointer Impaired T cell receptor-mediated response in Zfat-deficient peripheral T cells. Black-Right-Pointing-Pointer Decreased expression of IL-7R{alpha}, IL-2R{alpha} and IL-2 in Zfat-deficient peripheral T cells. Black-Right-Pointing-Pointer Zfat plays critical roles in peripheral T cell homeostasis. -- Abstract: ZFAT, originally identified as a candidate susceptibility gene for autoimmune thyroid disease, has been reported to be involved in apoptosis, development and primitive hematopoiesis. Zfat is highly expressed in T- and B-cells in the lymphoid tissues, however, its physiological function in themore » immune system remains totally unknown. Here, we generated the T cell-specific Zfat-deficient mice and demonstrated that Zfat-deficiency leads to a remarkable reduction in the number of the peripheral T cells. Intriguingly, a reduced expression of IL-7R{alpha} and the impaired responsiveness to IL-7 for the survival were observed in the Zfat-deficient T cells. Furthermore, a severe defect in proliferation and increased apoptosis in the Zfat-deficient T cells following T cell receptor (TCR) stimulation was observed with a reduced IL-2R{alpha} expression as well as a reduced IL-2 production. Thus, our findings reveal that Zfat is a critical regulator in peripheral T cell homeostasis and its TCR-mediated response.« less

  12. Glass-(nAg, nCu) biocide coatings on ceramic oxide substrates.

    PubMed

    Esteban-Tejeda, Leticia; Malpartida, Francisco; Díaz, Luis Antonio; Torrecillas, Ramón; Rojo, Fernando; Moya, José Serafín

    2012-01-01

    The present work was focused on obtaining biocide coatings constituted by a glassy soda-lime matrix containing silver or copper nanoparticles on ceramic (alumina and zirconia based) substrates. Both glassy coatings showed a high biocide activity against Gram-, Gram+ bacteria and yeast, reducing cell numbers more than three logarithms. Silver nanoparticles had a significantly higher biocide activity than copper nanoparticles, since the lixiviation levels required to reduce cell numbers more than 3 logarithms was of almost 1-2 µg/cm(2) in the case of silver nanoparticles, and 10-15 µg/cm(2) for the copper nanoparticles.

  13. Improving outcome of trauma patients by implementing patient blood management.

    PubMed

    Füllenbach, Christoph; Zacharowski, Kai; Meybohm, Patrick

    2017-04-01

    Patient blood management aims to improve patient outcome and safety by reducing the number of unnecessary red blood cell transfusions and vitalizing patient-specific anemia reserves. While this is increasingly recognized as best clinical practice in elective surgery, the implementation in the setting of trauma is restrained because of typically nonelective (emergency) surgery and, in specific circumstances, allogeneic blood transfusions as life-saving therapy. Viscoelastic diagnostics allow a precise identification of trauma-induced coagulopathy. A coagulation factor concentrate-based therapy is increasingly recognized as a fast and effective concept to correct coagulopathy and minimize blood loss. Using smaller tubes has a great potential to reduce the severity of phlebotomy-induced anemia. Washed cell salvage may reduce the number of allogeneic blood transfusions. Intravenous iron (with or without erythropoietin) may result in an increase of hemoglobin levels and reduced red blood cell transfusion requirements. Although a restrictive transfusion strategy is recommended in general, a target hemoglobin level of 7-9 g/dl is recommended in acute bleeding patients. In the setting of trauma, options to avoid unnecessary blood loss and reduce blood transfusion are manifold. These are likely to improve safety and outcome of trauma patients while potentially reducing therapeutic costs.

  14. Levels of BDNF Impact Oligodendrocyte Lineage Cells Following a Cuprizone Lesion

    PubMed Central

    VonDran, Melissa W.; Singh, Harmandeep; Honeywell, Jean Z.; Dreyfus, Cheryl F.

    2011-01-01

    Previous work in culture has shown that basal forebrain (BF) oligodendrocyte (OLG) lineage cells respond to BDNF by increasing DNA synthesis and differentiation. Further, in the BF in vivo, reduced levels of BDNF as seen in BDNF +/− mice result in reduced numbers of NG2+ cells and deficits in myelin proteins throughout development and in the adult, suggesting that BDNF impacts the proliferating population of OLGs as well as differentiation in vivo. In this study, to investigate roles BDNF may play in the repair of a demyelinating lesion, the cuprizone model was used and the corpus callosum was examined. BDNF protein levels were reduced after cuprizone, suggesting that the demyelinating lesion, itself, elicits a decrease in BDNF. To analyze effects of a further reduction of BDNF on OLG lineage cells following cuprizone, BDNF +/− mice were evaluated. These mice exhibited a blunted increase in the NG2 response at 4 and 5 weeks of cuprizone. In addition, BDNF +/− mice exhibited decreased levels of myelin proteins during the demyelination and remyelination processes with no change in the total number of OLGs. These effects appear to be relatively specific to OLG lineage cells as comparable changes in CD11b+ microglia, GFAP+ astrocytes, and SMI32+ injured axons were not observed. These data indicate that BDNF may play a role following a demyelinating lesion, by regulating numbers of progenitors and the abilities of demyelinating and differentiating cells to express myelin proteins. PMID:21976503

  15. Gastrodin: an ancient Chinese herbal medicine as a source for anti-osteoporosis agents via reducing reactive oxygen species.

    PubMed

    Huang, Qiang; Shi, Jun; Gao, Bo; Zhang, Hong-Yang; Fan, Jing; Li, Xiao-Jie; Fan, Jin-Zhu; Han, Yue-Hu; Zhang, Jin-Kang; Yang, Liu; Luo, Zhuo-Jing; Liu, Jian

    2015-04-01

    Increased levels of reactive oxygen species (ROS) are a crucial pathogenic factor of osteoporosis. Gastrodin, isolated from the traditional Chinese herbal agent Gastrodia elata, is a potent antioxidant. We hypothesized that gastrodin demonstrates protective effects against osteoporosis by partially reducing reactive oxygen species in human bone marrow mesenchymal stem cells (hBMMSCs) and a macrophage cell line (RAW264.7 cells). We investigated gastrodin on osteogenic and adipogenic differentiation under oxidative stress in hBMMSCs. We also tested gastrodin on osteoclastic differentiation in RAW264.7 cells. Hydrogen peroxide (H2O2) was used to establish an oxidative cell injury model. Our results showed that gastrodin significantly promoted the proliferation of hBMMSCs, improved some osteogenic markers, reduced lipid generation and inhibited the mRNA expression of several adipogenic genes in hBMMSCs. Moreover, gastrodin reduced the number of osteoclasts, TRAP activity and the expression of osteoclast-specific genes in RAW264.7 cells. Gastrodin suppressed the production of reactive oxygen species in both hBMMSCs and RAW264.7 cells. In vivo, we established a murine ovariectomized (OVX) osteoporosis model. Our data revealed that gastrodin treatment reduced the activity of serum bone degradation markers, such as CTX-1 and TRAP. Importantly, it ameliorated the micro-architecture of trabecular bones. Gastrodin decreased osteoclast numbers in vivo by TRAP staining. To conclude, these results indicated that gastrodin shows protective effects against osteoporosis linking to a reduction in reactive oxygen species, suggesting that gastrodin may be useful in the prevention and treatment of osteoporosis. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Magnetic beads (Dynabead) toxicity to endothelial cells at high bead concentration: implication for tissue engineering of vascular prosthesis.

    PubMed

    Tiwari, A; Punshon, G; Kidane, A; Hamilton, G; Seifalian, A M

    2003-10-01

    Magnetic beads (Dynabeads) have been used for the purification of endothelial cells. One application for this procedure may be for single-stage seeding of bypass grafts. The number of endothelial cells (EC) isolated is crucial and therefore to increase the number of cells extracted, a higher number of Dynabeads per cell may need to be used. The effect of large numbers of CD31 Dynabeads on cell proliferation/metabolism is unknown. We undertook this study using CD31-coated Dynabeads and EC from human umbilical vein. EC were coated at concentrations of 4, 10, or 50 beads per cell. The cells were cultured for 6 days with control being normal EC. Cellular proliferation was assessed by trypsinization of cells and metabolism assessed with an Alamar blue viability assay. In a further experiment a compliant polyurethane graft was single-stage seeded with both coated Dynabeads and normal EC. The results showed that using a higher number of beads per cell resulted in a reduction in cell proliferation and a reduction in cell metabolism. The total number of Dynabeads-coated cells in culture compared to controls (%) by day 6 were 30.7 +/- 2.56, 41.3 +/- 9.8 and 59.2 +/- 7.3 for 50, 10, and 4 beads per cell, respectively. The corresponding results for Alamar blue were 43.7 +/- 1.2, 61.8 +/- 1.4, and 72.1 +/- 4.3. The seeded grafts showed reduced metabolism with the Dynabeads-coated EC. In conclusion, high numbers of beads per cell have a late detrimental effect on cell proliferation and metabolism. Therefore for single-stage seeding lower numbers of Dynabeads will need to be used with resultant reduction in the number of available EC.

  17. Using the Optical Fractionator to Estimate Total Cell Numbers in the Normal and Abnormal Developing Human Forebrain.

    PubMed

    Larsen, Karen B

    2017-01-01

    Human fetal brain development is a complex process which is vulnerable to disruption at many stages. Although histogenesis is well-documented, only a few studies have quantified cell numbers across normal human fetal brain growth. Due to the present lack of normative data it is difficult to gauge abnormal development. Furthermore, many studies of brain cell numbers have employed biased counting methods, whereas innovations in stereology during the past 20-30 years enable reliable and efficient estimates of cell numbers. However, estimates of cell volumes and densities in fetal brain samples are unreliable due to unpredictable shrinking artifacts, and the fragility of the fetal brain requires particular care in handling and processing. The optical fractionator design offers a direct and robust estimate of total cell numbers in the fetal brain with a minimum of handling of the tissue. Bearing this in mind, we have used the optical fractionator to quantify the growth of total cell numbers as a function of fetal age. We discovered a two-phased development in total cell numbers in the human fetal forebrain consisting of an initial steep rise in total cell numbers between 13 and 20 weeks of gestation, followed by a slower linear phase extending from mid-gestation to 40 weeks of gestation. Furthermore, we have demonstrated a reduced total cell number in the forebrain in fetuses with Down syndome at midgestation and in intrauterine growth-restricted fetuses during the third trimester.

  18. Prenatal and early postnatal NOAEL-dose clothianidin exposure leads to a reduction of germ cells in juvenile male mice

    PubMed Central

    YANAI, Shogo; HIRANO, Tetsushi; OMOTEHARA, Takuya; TAKADA, Tadashi; YONEDA, Naoki; KUBOTA, Naoto; YAMAMOTO, Anzu; MANTANI, Youhei; YOKOYAMA, Toshifumi; KITAGAWA, Hiroshi; HOSHI, Nobuhiko

    2017-01-01

    Neonicotinoids are pesticides used worldwide. They bind to insect nicotinic acetylcholine receptors (nAChRs) with high affinity. We previously reported that clothianidin (CTD), one of the latest neonicotinoids, reduced antioxidant expression and induced germ cell death in the adult testis of vertebrates. Here, we investigated the male reproductive toxicity of prenatal and early postnatal exposure to CTD, because it is likely that developmental exposure more severely affects the testis compared to adults due to the absence of the blood-testis barrier. Pregnant C57BL/6 mice were given water gel blended with CTD (0, 10 or 50 mg/kg/day; no-observed-adverse-effect-level [NOAEL for mice]: 47.2 mg/kg/day) between gestational day 1 and 14 days post-partum. We then examined the testes of male offspring at postnatal day 14. The testis weights and the numbers of germ cells per seminiferous tubule were decreased in the CTD-50 group, and abnormal tubules containing no germ cells appeared. Nevertheless, the apoptotic cell number and proliferative activity were not significantly different between the control and CTD-exposed groups. There were no significant differences in the androgen-related parameters, such as the Leydig cell volume per testis, the Sertoli cell number and the tubule diameter. The present study is the first demonstration that in utero and lactational exposures to CTD at around the NOAEL for mice reduce the germ cell number, but our findings suggest that these exposures do not affect steroidogenesis in Leydig cells during prenatal or early postnatal life. PMID:28579575

  19. The role of the thiol N-acetylcysteine in the prevention of tumor invasion and angiogenesis.

    PubMed

    Morini, M; Cai, T; Aluigi, M G; Noonan, D M; Masiello, L; De Flora, S; D'Agostini, F; Albini, A; Fassina, G

    1999-01-01

    We have extensively studied the effects of N-acetylcysteine (NAC), a cytoprotective drug that can prevent in vivo carcinogenesis. Here we review our findings NAC completely inhibits gelatinolytic activity of metalloproteases and chemotactic and invasive activities of tumor cells. In addition, NAC reduces the number of lung metastases when malignant murine melanoma cells are injected into nude mice. NAC treatment decreases the weight of primary tumors and produces a dose-related increase in tumor latency. Moreover, oral administration of NAC reduces the formation of spontaneous metastases. In experimental metastasis assays, we have found a synergistic reduction in the number of lung metastases after treatment with doxorubicin (DOX) and NAC in nude mice. In tumorigenicity and spontaneous metastasis assays, the combined administration of DOX and oral NAC again has shown synergistic effects on the frequency and weight of primary tumors and local recurrences and completely prevented the formation of lung metastases. The addition of NAC to endothelial cells strongly reduces their invasive activity in response to angiogenic stimuli. NAC inhibited the degradation and release of radiolabeled type IV collagen by activated endothelial cells, indicating that NAC blocks gelatinase activity. Oral administration of NAC reduces the angiogenic response induced by KS tumor cell products, confirming the ability of NAC to inhibit the invasive activity of endothelial cells in vivo and thereby blocking angiogenesis.

  20. Maximized Inter-Class Weighted Mean for Fast and Accurate Mitosis Cells Detection in Breast Cancer Histopathology Images.

    PubMed

    Nateghi, Ramin; Danyali, Habibollah; Helfroush, Mohammad Sadegh

    2017-08-14

    Based on the Nottingham criteria, the number of mitosis cells in histopathological slides is an important factor in diagnosis and grading of breast cancer. For manual grading of mitosis cells, histopathology slides of the tissue are examined by pathologists at 40× magnification for each patient. This task is very difficult and time-consuming even for experts. In this paper, a fully automated method is presented for accurate detection of mitosis cells in histopathology slide images. First a method based on maximum-likelihood is employed for segmentation and extraction of mitosis cell. Then a novel Maximized Inter-class Weighted Mean (MIWM) method is proposed that aims at reducing the number of extracted non-mitosis candidates that results in reducing the false positive mitosis detection rate. Finally, segmented candidates are classified into mitosis and non-mitosis classes by using a support vector machine (SVM) classifier. Experimental results demonstrate a significant improvement in accuracy of mitosis cells detection in different grades of breast cancer histopathological images.

  1. Pharmacological blockade of the fatty acid amide hydrolase (FAAH) alters neural proliferation, apoptosis and gliosis in the rat hippocampus, hypothalamus and striatum in a negative energy context

    PubMed Central

    Rivera, Patricia; Bindila, Laura; Pastor, Antoni; Pérez-Martín, Margarita; Pavón, Francisco J.; Serrano, Antonia; de la Torre, Rafael; Lutz, Beat; Rodríguez de Fonseca, Fernando; Suárez, Juan

    2015-01-01

    Endocannabinoids participate in the control of neurogenesis, neural cell death and gliosis. The pharmacological effect of the fatty acid amide hydrolase (FAAH) inhibitor URB597, which limits the endocannabinoid degradation, was investigated in the present study. Cell proliferation (phospho-H3+ or BrdU+ cells) of the main adult neurogenic zones as well as apoptosis (cleaved caspase-3+), astroglia (GFAP+), and microglia (Iba1+ cells) were analyzed in the hippocampus, hypothalamus and striatum of rats intraperitoneally treated with URB597 (0.3 mg/kg/day) at one dose/4-days resting or 5 doses (1 dose/day). Repeated URB597 treatment increased the plasma levels of the N-acylethanolamines oleoylethanolamide, palmitoylethanolamide and arachidonoylethanolamine, reduced the plasma levels of glucose, triglycerides and cholesterol, and induced a transitory body weight decrease. The hippocampi of repeated URB597-treated rats showed a reduced number of phospho-H3+ and BrdU+ subgranular cells as well as GFAP+, Iba1+ and cleaved caspase-3+ cells, which was accompanied with decreased hippocampal expression of the cannabinoid CB1 receptor gene Cnr1 and Faah. In the hypothalami of these rats, the number of phospho-H3+, GFAP+ and 3-weeks-old BrdU+ cells was specifically decreased. The reduced striatal expression of CB1 receptor in repeated URB597-treated rats was only associated with a reduced apoptosis. In contrast, the striatum of acute URB597-treated rats showed an increased number of subventricular proliferative, astroglial and apoptotic cells, which was accompanied with increased Faah expression. Main results indicated that FAAH inhibitor URB597 decreased neural proliferation, glia and apoptosis in a brain region-dependent manner, which were coupled to local changes in Faah and/or Cnr1 expression and a negative energy context. PMID:25870539

  2. Myo-inositol reduces β-catenin activation in colitis

    PubMed Central

    Bradford, Emily M; Thompson, Corey A; Goretsky, Tatiana; Yang, Guang-Yu; Rodriguez, Luz M; Li, Linheng; Barrett, Terrence A

    2017-01-01

    AIM To assess dietary myo-inositol in reducing stem cell activation in colitis, and validate pβ-cateninS552 as a biomarker of recurrent dysplasia. METHODS We examined the effects of dietary myo-inositol treatment on inflammation, pβ-cateninS552 and pAkt levels by histology and western blot in IL-10-/- and dextran sodium sulfate-treated colitic mice. Additionally, we assessed nuclear pβ-cateninS552 in patients treated with myo-inositol in a clinical trial, and in patients with and without a history of colitis-induced dysplasia. RESULTS In mice, pβ-cateninS552 staining faithfully reported the effects of myo-inositol in reducing inflammation and intestinal stem cell activation. In a pilot clinical trial of myo-inositol administration in patients with a history of low grade dysplasia (LGD), two patients had reduced numbers of intestinal stem cell activation compared to the placebo control patient. In humans, pβ-cateninS552 staining discriminated ulcerative colitis patients with a history of LGD from those with benign disease. CONCLUSION Enumerating crypts with increased numbers of pβ-cateninS552 - positive cells can be utilized as a biomarker in colitis-associated cancer chemoprevention trials. PMID:28811707

  3. Myo-inositol reduces β-catenin activation in colitis.

    PubMed

    Bradford, Emily M; Thompson, Corey A; Goretsky, Tatiana; Yang, Guang-Yu; Rodriguez, Luz M; Li, Linheng; Barrett, Terrence A

    2017-07-28

    To assess dietary myo-inositol in reducing stem cell activation in colitis, and validate pβ-catenin S552 as a biomarker of recurrent dysplasia. We examined the effects of dietary myo-inositol treatment on inflammation, pβ-catenin S552 and pAkt levels by histology and western blot in IL-10 -/- and dextran sodium sulfate-treated colitic mice. Additionally, we assessed nuclear pβ-catenin S552 in patients treated with myo-inositol in a clinical trial, and in patients with and without a history of colitis-induced dysplasia. In mice, pβ-catenin S552 staining faithfully reported the effects of myo-inositol in reducing inflammation and intestinal stem cell activation. In a pilot clinical trial of myo-inositol administration in patients with a history of low grade dysplasia (LGD), two patients had reduced numbers of intestinal stem cell activation compared to the placebo control patient. In humans, pβ-catenin S552 staining discriminated ulcerative colitis patients with a history of LGD from those with benign disease. Enumerating crypts with increased numbers of pβ-catenin S552 - positive cells can be utilized as a biomarker in colitis-associated cancer chemoprevention trials.

  4. Fitness variation in response to artificial selection for reduced cell area, cell number and wing area in natural populations of Drosophila melanogaster.

    PubMed

    Trotta, Vincenzo; Calboli, Federico C F; Ziosi, Marcello; Cavicchi, Sandro

    2007-08-16

    Genetically based body size differences are naturally occurring in populations of Drosophila melanogaster, with bigger flies in the cold. Despite the cosmopolitan nature of body size clines in more than one Drosophila species, the actual selective mechanisms controlling the genetic basis of body size variation are not fully understood. In particular, it is not clear what the selective value of cell size and cell area variation exactly is. In the present work we determined variation in viability, developmental time and larval competitive ability in response to crowding at two temperatures after artificial selection for reduced cell area, cell number and wing area in four different natural populations of D. melanogaster. No correlated effect of selection on viability or developmental time was observed among all selected populations. An increase in competitive ability in one thermal environment (18 degrees C) under high larval crowding was observed as a correlated response to artificial selection for cell size. Viability and developmental time are not affected by selection for the cellular component of body size, suggesting that these traits only depend on the contingent genetic makeup of a population. The higher larval competitive ability shown by populations selected for reduced cell area seems to confirm the hypothesis that cell area mediated changes have a relationship with fitness, and might be the preferential way to change body size under specific circumstances.

  5. A 10-aa-long sequence in SLP-76 upstream of the Gads binding site is essential for T cell development and function.

    PubMed

    Kumar, Lalit; Feske, Stefan; Rao, Anjana; Geha, Raif S

    2005-12-27

    The adapter SLP-76 is essential for T cell development and function. SLP-76 binds to the src homology 3 domain of Lck in vitro. This interaction depends on amino acids 185-194 of SLP-76. To examine the role of the Lck-binding region of SLP-76 in T cell development and function, SLP-76(-/-) mice were reconstituted with an SLP-76 mutant that lacks amino acids 185-194. Double and single positive thymocytes from reconstituted mice were severely reduced in numbers and exhibited impaired positive selection and increased apoptosis. Peripheral T cells were also reduced in numbers, exhibited impaired phospholipase C-gamma1 and Erk phosphorylation, and failed to flux calcium, secrete IL-2, and proliferate in response to T cell antigen receptor ligation. Delayed cutaneous hypersensitivity responses and Ab responses to T cell-dependent antigen were severely impaired. These results indicate that the Lck binding region of SLP-76 is essential for T cell antigen receptor signaling and normal T cell development and function.

  6. Coculture with endothelial cells reduces the population of cycling LeX neural precursors but increases that of quiescent cells with a side population phenotype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathieu, Celine; Fouchet, Pierre; Gauthier, Laurent R.

    2006-04-01

    Neural stem cell proliferation and differentiation are regulated by external cues from their microenvironment. As endothelial cells are closely associated with neural stem cell in brain germinal zones, we investigated whether endothelial cells may interfere with neurogenesis. Neural precursor cells (NPC) from telencephalon of EGFP mouse embryos were cocultured in direct contact with endothelial cells. Endothelial cells did not modify the overall proliferation and apoptosis of neural cells, albeit they transiently delayed spontaneous apoptosis. These effects appeared to be specific to endothelial cells since a decrease in proliferation and a raise in apoptosis were observed in cocultures with fibroblasts. Endothelialmore » cells stimulated the differentiation of NPC into astrocytes and into neurons, whereas they reduced differentiation into oligodendrocytes in comparison to adherent cultures on polyornithine. Determination of NPC clonogenicity and quantification of LeX expression, a marker for NPC, showed that endothelial cells decreased the number of cycling NPC. On the other hand, the presence of endothelial cells increased the number of neural cells having 'side population' phenotype, another marker reported on NPC, which we have shown to contain quiescent cells. Thus, we show that endothelial cells may regulate neurogenesis by acting at different level of NPC differentiation, proliferation and quiescence.« less

  7. Stability of Control Networks in Autonomous Homeostatic Regulation of Stem Cell Lineages.

    PubMed

    Komarova, Natalia L; van den Driessche, P

    2018-05-01

    Design principles of biological networks have been studied extensively in the context of protein-protein interaction networks, metabolic networks, and regulatory (transcriptional) networks. Here we consider regulation networks that occur on larger scales, namely the cell-to-cell signaling networks that connect groups of cells in multicellular organisms. These are the feedback loops that orchestrate the complex dynamics of cell fate decisions and are necessary for the maintenance of homeostasis in stem cell lineages. We focus on "minimal" networks that are those that have the smallest possible numbers of controls. For such minimal networks, the number of controls must be equal to the number of compartments, and the reducibility/irreducibility of the network (whether or not it can be split into smaller independent sub-networks) is defined by a matrix comprised of the cell number increments induced by each of the controlled processes in each of the compartments. Using the formalism of digraphs, we show that in two-compartment lineages, reducible systems must contain two 1-cycles, and irreducible systems one 1-cycle and one 2-cycle; stability follows from the signs of the controls and does not require magnitude restrictions. In three-compartment systems, irreducible digraphs have a tree structure or have one 3-cycle and at least two more shorter cycles, at least one of which is a 1-cycle. With further work and proper biological validation, our results may serve as a first step toward an understanding of ways in which these networks become dysregulated in cancer.

  8. Collaboration between tumor-specific CD4+ T cells and B cells in anti-cancer immunity.

    PubMed

    Guy, Thomas V; Terry, Alexandra M; Bolton, Holly A; Hancock, David G; Zhu, Erhua; Brink, Robert; McGuire, Helen M; Shklovskaya, Elena; Fazekas de St. Groth, Barbara

    2016-05-24

    The role of B cells and antibodies in anti-tumor immunity is controversial, with both positive and negative effects reported in animal models and clinical studies. We developed a murine B16.F10 melanoma model to study the effects of collaboration between tumor-specific CD4+ T cells and B cells on tumor control. By incorporating T cell receptor transgenic T cells and B cell receptor isotype switching B cells, we were able to track the responses of tumor-reactive T and B cells and the development of anti-tumor antibodies in vivo. In the presence of tumor-specific B cells, the number of tumor-reactive CD4+ T cells was reduced in lymphoid tissues and the tumor itself, and this correlated with poor tumor control. B cells had little effect on the Th1 bias of the CD4+ T cell response, and the number of induced FoxP3+ regulatory cells (iTregs) generated from within the original naive CD4+ T cell inoculum was unrelated to the degree of B cell expansion. In response to CD4+ T cell help, B cells produced a range of isotype-switched anti-tumor antibodies, principally IgG1, IgG2a/c and IgG2b. In the absence of CD4+ T cells, B cells responded to agonistic anti-CD40 administration by switching to production of IgG2a/c and, to a lesser extent, IgG1, IgG3, IgA and IgE, which reduced the number of lung metastases after i.v. tumor inoculation but had no effect on the growth of subcutaneous tumors.

  9. Distilled single-cell genome sequencing and de novo assembly for sparse microbial communities.

    PubMed

    Taghavi, Zeinab; Movahedi, Narjes S; Draghici, Sorin; Chitsaz, Hamidreza

    2013-10-01

    Identification of every single genome present in a microbial sample is an important and challenging task with crucial applications. It is challenging because there are typically millions of cells in a microbial sample, the vast majority of which elude cultivation. The most accurate method to date is exhaustive single-cell sequencing using multiple displacement amplification, which is simply intractable for a large number of cells. However, there is hope for breaking this barrier, as the number of different cell types with distinct genome sequences is usually much smaller than the number of cells. Here, we present a novel divide and conquer method to sequence and de novo assemble all distinct genomes present in a microbial sample with a sequencing cost and computational complexity proportional to the number of genome types, rather than the number of cells. The method is implemented in a tool called Squeezambler. We evaluated Squeezambler on simulated data. The proposed divide and conquer method successfully reduces the cost of sequencing in comparison with the naïve exhaustive approach. Squeezambler and datasets are available at http://compbio.cs.wayne.edu/software/squeezambler/.

  10. Quantitative Microbial Community Analysis of Three Different Sulfidic Mine Tailing Dumps Generating Acid Mine Drainage▿

    PubMed Central

    Kock, Dagmar; Schippers, Axel

    2008-01-01

    The microbial communities of three different sulfidic and acidic mine waste tailing dumps located in Botswana, Germany, and Sweden were quantitatively analyzed using quantitative real-time PCR (Q-PCR), fluorescence in situ hybridization (FISH), catalyzed reporter deposition-FISH (CARD-FISH), Sybr green II direct counting, and the most probable number (MPN) cultivation technique. Depth profiles of cell numbers showed that the compositions of the microbial communities are greatly different at the three sites and also strongly varied between zones of oxidized and unoxidized tailings. Maximum cell numbers of up to 109 cells g−1 dry weight were determined in the pyrite or pyrrhotite oxidation zones, whereas cell numbers in unoxidized tailings were significantly lower. Bacteria dominated over Archaea and Eukarya at all tailing sites. The acidophilic Fe(II)- and/or sulfur-oxidizing Acidithiobacillus spp. dominated over the acidophilic Fe(II)-oxidizing Leptospirillum spp. among the Bacteria at two sites. The two genera were equally abundant at the third site. The acidophilic Fe(II)- and sulfur-oxidizing Sulfobacillus spp. were generally less abundant. The acidophilic Fe(III)-reducing Acidiphilium spp. could be found at only one site. The neutrophilic Fe(III)-reducing Geobacteraceae as well as the dsrA gene of sulfate reducers were quantifiable at all three sites. FISH analysis provided reliable data only for tailing zones with high microbial activity, whereas CARD-FISH, Q-PCR, Sybr green II staining, and MPN were suitable methods for a quantitative microbial community analysis of tailings in general. PMID:18586975

  11. Quantitative microbial community analysis of three different sulfidic mine tailing dumps generating acid mine drainage.

    PubMed

    Kock, Dagmar; Schippers, Axel

    2008-08-01

    The microbial communities of three different sulfidic and acidic mine waste tailing dumps located in Botswana, Germany, and Sweden were quantitatively analyzed using quantitative real-time PCR (Q-PCR), fluorescence in situ hybridization (FISH), catalyzed reporter deposition-FISH (CARD-FISH), Sybr green II direct counting, and the most probable number (MPN) cultivation technique. Depth profiles of cell numbers showed that the compositions of the microbial communities are greatly different at the three sites and also strongly varied between zones of oxidized and unoxidized tailings. Maximum cell numbers of up to 10(9) cells g(-1) dry weight were determined in the pyrite or pyrrhotite oxidation zones, whereas cell numbers in unoxidized tailings were significantly lower. Bacteria dominated over Archaea and Eukarya at all tailing sites. The acidophilic Fe(II)- and/or sulfur-oxidizing Acidithiobacillus spp. dominated over the acidophilic Fe(II)-oxidizing Leptospirillum spp. among the Bacteria at two sites. The two genera were equally abundant at the third site. The acidophilic Fe(II)- and sulfur-oxidizing Sulfobacillus spp. were generally less abundant. The acidophilic Fe(III)-reducing Acidiphilium spp. could be found at only one site. The neutrophilic Fe(III)-reducing Geobacteraceae as well as the dsrA gene of sulfate reducers were quantifiable at all three sites. FISH analysis provided reliable data only for tailing zones with high microbial activity, whereas CARD-FISH, Q-PCR, Sybr green II staining, and MPN were suitable methods for a quantitative microbial community analysis of tailings in general.

  12. An Image-Based Algorithm for Precise and Accurate High Throughput Assessment of Drug Activity against the Human Parasite Trypanosoma cruzi

    PubMed Central

    Moraes, Carolina Borsoi; Yang, Gyongseon; Kang, Myungjoo; Freitas-Junior, Lucio H.; Hansen, Michael A. E.

    2014-01-01

    We present a customized high content (image-based) and high throughput screening algorithm for the quantification of Trypanosoma cruzi infection in host cells. Based solely on DNA staining and single-channel images, the algorithm precisely segments and identifies the nuclei and cytoplasm of mammalian host cells as well as the intracellular parasites infecting the cells. The algorithm outputs statistical parameters including the total number of cells, number of infected cells and the total number of parasites per image, the average number of parasites per infected cell, and the infection ratio (defined as the number of infected cells divided by the total number of cells). Accurate and precise estimation of these parameters allow for both quantification of compound activity against parasites, as well as the compound cytotoxicity, thus eliminating the need for an additional toxicity-assay, hereby reducing screening costs significantly. We validate the performance of the algorithm using two known drugs against T.cruzi: Benznidazole and Nifurtimox. Also, we have checked the performance of the cell detection with manual inspection of the images. Finally, from the titration of the two compounds, we confirm that the algorithm provides the expected half maximal effective concentration (EC50) of the anti-T. cruzi activity. PMID:24503652

  13. The Rise of Allogeneic Natural Killer Cells As a Platform for Cancer Immunotherapy: Recent Innovations and Future Developments

    PubMed Central

    Veluchamy, John P.; Kok, Nina; van der Vliet, Hans J.; Verheul, Henk M. W.; de Gruijl, Tanja D.; Spanholtz, Jan

    2017-01-01

    Natural killer (NK) cells are critical immune effector cells in the fight against cancer. As NK cells in cancer patients are highly dysfunctional and reduced in number, adoptive transfer of large numbers of cytolytic NK cells and their potential to induce relevant antitumor responses are widely explored in cancer immunotherapy. Early studies from autologous NK cells have failed to demonstrate significant clinical benefit. In this review, the clinical benefits of adoptively transferred allogeneic NK cells in a transplant and non-transplant setting are compared and discussed in the context of relevant NK cell platforms that are being developed and optimized by various biotech industries with a special focus on augmenting NK cell functions. PMID:28620386

  14. Aneuploidy screening of embryonic stem cell clones by metaphase karyotyping and droplet digital polymerase chain reaction.

    PubMed

    Codner, Gemma F; Lindner, Loic; Caulder, Adam; Wattenhofer-Donzé, Marie; Radage, Adam; Mertz, Annelyse; Eisenmann, Benjamin; Mianné, Joffrey; Evans, Edward P; Beechey, Colin V; Fray, Martin D; Birling, Marie-Christine; Hérault, Yann; Pavlovic, Guillaume; Teboul, Lydia

    2016-08-05

    Karyotypic integrity is essential for the successful germline transmission of alleles mutated in embryonic stem (ES) cells. Classical methods for the identification of aneuploidy involve cytological analyses that are both time consuming and require rare expertise to identify mouse chromosomes. As part of the International Mouse Phenotyping Consortium, we gathered data from over 1,500 ES cell clones and found that the germline transmission (GLT) efficiency of clones is compromised when over 50 % of cells harbour chromosome number abnormalities. In JM8 cells, chromosomes 1, 8, 11 or Y displayed copy number variation most frequently, whilst the remainder generally remain unchanged. We developed protocols employing droplet digital polymerase chain reaction (ddPCR) to accurately quantify the copy number of these four chromosomes, allowing efficient triage of ES clones prior to microinjection. We verified that assessments of aneuploidy, and thus decisions regarding the suitability of clones for microinjection, were concordant between classical cytological and ddPCR-based methods. Finally, we improved the method to include assay multiplexing so that two unstable chromosomes are counted simultaneously (and independently) in one reaction, to enhance throughput and further reduce the cost. We validated a PCR-based method as an alternative to classical karyotype analysis. This technique enables laboratories that are non-specialist, or work with large numbers of clones, to precisely screen ES cells for the most common aneuploidies prior to microinjection to ensure the highest level of germline transmission potential. The application of this method allows early exclusion of aneuploid ES cell clones in the ES cell to mouse conversion process, thus improving the chances of obtaining germline transmission and reducing the number of animals used in failed microinjection attempts. This method can be applied to any other experiments that require accurate analysis of the genome for copy number variation (CNV).

  15. Effects of short-term dietary restriction and glutamine supplementation in vitro on the modulation of inflammatory properties.

    PubMed

    C de Oliveira, Dalila; Santos, Ed Wilson; Nogueira-Pedro, Amanda; Xavier, José Guilherme; Borelli, Primavera; Fock, Ricardo Ambrósio

    2018-04-01

    Dietary restriction (DR) is a nutritional intervention that exerts profound effects on biochemical and immunologic parameters, modulating some inflammatory properties. Glutamine (GLN) is a conditionally essential amino acid that can modulate inflammatory properties. However, there is a lack of data evaluating the effects of DR and GLN supplementation, especially in relation to inflammatory cytokine production and the expression of transcription factors such as nuclear factor (NF)-κB. We subjected 3-mo-old male Balb/c mice to DR by reducing their food intake by 30%. DR animals lost weight and showed reduced levels of serum triacylglycerols, glucose, cholesterol, and calcium as well as a reduction in bone density. Additionally, blood, peritoneal, and spleen cellularity were reduced, lowering the number of peritoneal F4/80- and CD86-positive cells and the total number of splenic CD4- and CD8-positive cells. The production of interleukin (IL)-10 and the expression of NF-κB in splenic cells were not affected by DR or by GLN supplementation. However, peritoneal macrophages from DR animals showed reduced IL-12 and tumor necrosis factor-α production and increased IL-10 production with reduced phosphorylation of NF-κB expression. Additionally, GLN was able to modulate cytokine production by peritoneal cells from the control group, although no effects were observed in cells from the DR group. DR induces biochemical and immunologic changes, in particular by reducing IL-12 and tumor necrosis factor-α production by macrophages and clearly upregulating IL-10 production, whereas GLN supplementation did not modify these parameters in cells from DR animals. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. The abolition of the protective effect of Pasteurella septica antiserum by iron compounds

    PubMed Central

    Bullen, J. J.; Wilson, A. B.; Cushnie, G. H.; Rogers, Henry J.

    1968-01-01

    Ferric ammonium citrate, haematin hydrochloride, soluble haematin, lysed mouse red cells and a variety of purified haemoglobins abolished the protective effect of Pasteurella septica antiserum in mice when the iron compounds were injected intraperitoneally with P. septica. Ferric ammonium citrate was less effective than haematin or lysed red cells when the dose of P. septica was reduced to less than 105. The ability of lysed red cells to abolish protection was greatly reduced if given 4 hours or more after infection. P. septica grew rapidly in unimmunized normal mice. In passively immunized mice the number of viable bacteria declined rapidly after infection. In passively immunized mice given haematin or lysed red cells the growth of bacteria was identical to that seen in unprotected normal mice. Large numbers of dead P. septica or carbon particles did not interfere with passive protection. PMID:5661980

  17. Human Mesenchymal Stem Cell Spheroids in Fibrin Hydrogels Exhibit Improved Cell Survival and Potential for Bone Healing

    PubMed Central

    Murphy, Kaitlin C.; Fang, Sophia Y.; Leach, J. Kent

    2014-01-01

    Mesenchymal stem cells (MSC) have great therapeutic potential for the repair of nonhealing bone defects due to their proliferative capacity, multilineage potential, trophic factor secretion, and lack of immunogenicity. However, a major barrier to the translation of cell-based therapies into clinical practice is ensuring their survival and function upon implantation into the defect site. We hypothesized that forming MSC into more physiologic 3-dimensional spheroids, rather than employing dissociated cells from 2-dimensional monolayer culture, would enhance their survival when exposed to a harsh microenvironment while maintaining their osteogenic potential. MSC spheroids were formed using the hanging drop method with increasing cell numbers. Compared to larger spheroids, the smallest spheroids which contained 15,000 cells exhibited increased metabolic activity, reduced apoptosis, and the most uniform distribution of proliferating cells. Spheroids were then entrapped in fibrin gels and cultured in serum-free media and 1% oxygen. Compared to identical numbers of dissociated MSC in fibrin gels, spheroids exhibited significantly reduced apoptosis and secreted up to 100-fold more VEGF. We also observed that fibrin gels containing spheroids and those containing an equivalent number of dissociated cells exhibited similar expression levels of early and late markers of osteogenic differentiation. These data demonstrate that MSC spheroids exhibit greater resistance to apoptosis and enhanced proangiogenic potential, while maintaining similar osteogenic potential to dissociated MSC entrapped in a clinically relevant biomaterial, supporting the use of MSC spheroids in cell-based approaches to bone repair. PMID:24781147

  18. Placement-aware decomposition of a digital standard cells library for double patterning lithography

    NASA Astrophysics Data System (ADS)

    Wassal, Amr G.; Sharaf, Heba; Hammouda, Sherif

    2012-11-01

    To continue scaling the circuit features down, Double Patterning (DP) technology is needed in 22nm technologies and lower. DP requires decomposing the layout features into two masks for pitch relaxation, such that the spacing between any two features on each mask is greater than the minimum allowed mask spacing. The relaxed pitches of each mask are then processed on two separate exposure steps. In many cases, post-layout decomposition fails to decompose the layout into two masks due to the presence of conflicts. Post-layout decomposition of a standard cells block can result in native conflicts inside the cells (internal conflict), or native conflicts on the boundary between two cells (boundary conflict). Resolving native conflicts requires a redesign and/or multiple iterations for the placement and routing phases to get a clean decomposition. Therefore, DP compliance must be considered in earlier phases, before getting the final placed cell block. The main focus of this paper is generating a library of decomposed standard cells to be used in a DP-aware placer. This library should contain all possible decompositions for each standard cell, i.e., these decompositions consider all possible combinations of boundary conditions. However, the large number of combinations of boundary conditions for each standard cell will significantly increase the processing time and effort required to obtain all possible decompositions. Therefore, an efficient methodology is required to reduce this large number of combinations. In this paper, three different reduction methodologies are proposed to reduce the number of different combinations processed to get the decomposed library. Experimental results show a significant reduction in the number of combinations and decompositions needed for the library processing. To generate and verify the proposed flow and methodologies, a prototype for a placement-aware DP-ready cell-library is developed with an optimized number of cell views.

  19. Accurate determination of lattice parameters based on Niggli reduced cell theory by using digitized electron diffraction micrograph.

    PubMed

    Yang, Yi; Cai, Canying; Lin, Jianguo; Gong, Lunjun; Yang, Qibin

    2017-05-01

    In this paper, we used Niggli reduced cell theory to determine lattice constants of a micro/nano crystal by using electron diffraction patterns. The Niggli reduced cell method enhanced the accuracy of lattice constant measurement obviously, because the lengths and the angles of lattice vectors of a primitive cell can be measured directly on the electron micrographs instead of a double tilt holder. With the aid of digitized algorithm and least square optimization by using three digitized micrographs, a valid reciprocal Niggli reduced cell number can be obtained. Thus a reciprocal and real Bravais lattices are acquired. The results of three examples, i.e., Mg 4 Zn 7 , an unknown phase (Precipitate phase in nickel-base superalloy) and Ba 4 Ti 13 O 30 showed that the maximum errors are 1.6% for lengths and are 0.3% for angles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Ion Implantation with in-situ Patterning for IBC Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graff, John W.

    2014-10-24

    Interdigitated back-side Contact (IBC) solar cells are the highest efficiency silicon solar cells currently on the market. Unfortunately the cost to produce these solar cells is also very high, due to the large number of processing steps required. Varian believes that only the combination of high efficiency and low cost can meet the stated goal of $1/Wp. The core of this program has been to develop an in-situ patterning capability for an ion implantation system capable of producing patterned doped regions for IBC solar cells. Such a patterning capable ion implanter can reduce the number of process steps required tomore » manufacture IBC cells, and therefore significantly reduce the cost. The present program was organized into three phases. Phase I was to select a patterning approach and determine the patterning requirements for IBC cells. Phase II consists of construction of a Beta ion implantation system containing in-situ patterning capability. Phase III consists of shipping and installation of the ion implant system in a customer factory where it will be tested and proven in a pilot production line.« less

  1. Ngn3+ endocrine progenitor cells control the fate and morphogenesis of pancreatic ductal epithelium

    PubMed Central

    Magenheim, Judith; Klein, Allon M.; Stanger, Ben Z.; Ashery-Padan, Ruth; Sosa-Pineda, Beatriz; Gu, Guoqiang; Dor, Yuval

    2013-01-01

    Summary During pancreas development, endocrine and exocrine cells arise from a common multipotent progenitor pool. How these cell fate decisions are coordinated with tissue morphogenesis is poorly understood. Here we have examined ductal morphology, endocrine progenitor cell fate and Notch signaling in Ngn3−/− mice, which do not produce islet cells. Ngn3 deficiency results in reduced branching and enlarged pancreatic duct-like structures, concomitant with Ngn3 promoter activation throughout the ductal epithelium and reduced Notch signaling. Conversely, forced generation of surplus endocrine progenitor cells causes reduced duct caliber and an excessive number of tip cells. Thus, endocrine progenitor cells normally provide a feedback signal to adjacent multipotent ductal progenitor cells that activates Notch signaling, inhibits further endocrine differentiation and promotes proper morphogenesis. These results uncover a novel layer of regulation coordinating pancreas morphogenesis and endocrine/exocrine differentiation, and suggest ways to enhance the yield of beta-cells from stem cells. PMID:21888903

  2. Reducing intratumour acute hypoxia through bevacizumab treatment, referring to the response of quiescent tumour cells and metastatic potential

    PubMed Central

    Masunaga, S; Liu, Y; Tanaka, H; Sakurai, Y; Suzuki, M; Kondo, N; Maruhashi, A; Ono, K

    2011-01-01

    Objectives The aim was to evaluate the influence of bevacizumab on intratumour oxygenation status and lung metastasis following radiotherapy, with specific reference to the response of quiescent (Q) cell populations within irradiated tumours. Methods B16-BL6 melanoma tumour-bearing C57BL/6 mice were continuously given 5-bromo-2-deoxyuridine (BrdU) to label all proliferating (P) cells. They received γ-ray irradiation following treatment with the acute hypoxia-releasing agent nicotinamide or local mild temperature hyperthermia (MTH) with or without the administration of bevacizumab under aerobic conditions or totally hypoxic conditions, achieved by clamping the proximal end of the tumours. Immediately after the irradiation, cells from some tumours were isolated and incubated with a cytokinesis blocker. The responses of the Q and total (P + Q) cell populations were assessed based on the frequency of micronuclei using immunofluorescence staining for BrdU. In the other tumour-bearing mice, macroscopic lung metastases were enumerated 17 days after irradiation. Results 3 days after bevacizumab administration, acute hypoxia-rich total cell population in the tumour showed a remarkably enhanced radiosensitivity to γ-rays, and the hypoxic fraction (HF) was reduced, even after MTH treatment. However, the hypoxic fraction was not reduced after nicotinamide treatment. With or without γ-ray irradiation, bevacizumab administration showed some potential to reduce the number of lung metastases as well as nicotinamide treatment. Conclusion Bevacizumab has the potential to reduce perfusion-limited acute hypoxia and some potential to cause a decrease in the number of lung metastases as well as nicotinamide. PMID:21586505

  3. Reduced Root Cortical Cell File Number Improves Drought Tolerance in Maize1[C][W][OPEN

    PubMed Central

    Chimungu, Joseph G.; Brown, Kathleen M.

    2014-01-01

    We tested the hypothesis that reduced root cortical cell file number (CCFN) would improve drought tolerance in maize (Zea mays) by reducing the metabolic costs of soil exploration. Maize genotypes with contrasting CCFN were grown under well-watered and water-stressed conditions in greenhouse mesocosms and in the field in the United States and Malawi. CCFN ranged from six to 19 among maize genotypes. In mesocosms, reduced CCFN was correlated with 57% reduction of root respiration per unit of root length. Under water stress in the mesocosms, genotypes with reduced CCFN had between 15% and 60% deeper rooting, 78% greater stomatal conductance, 36% greater leaf CO2 assimilation, and between 52% to 139% greater shoot biomass than genotypes with many cell files. Under water stress in the field, genotypes with reduced CCFN had between 33% and 40% deeper rooting, 28% lighter stem water oxygen isotope enrichment (δ18O) signature signifying deeper water capture, between 10% and 35% greater leaf relative water content, between 35% and 70% greater shoot biomass at flowering, and between 33% and 114% greater yield than genotypes with many cell files. These results support the hypothesis that reduced CCFN improves drought tolerance by reducing the metabolic costs of soil exploration, enabling deeper soil exploration, greater water acquisition, and improved growth and yield under water stress. The large genetic variation for CCFN in maize germplasm suggests that CCFN merits attention as a breeding target to improve the drought tolerance of maize and possibly other cereal crops. PMID:25355868

  4. Combined VEGFR and CTLA-4 blockade increases the antigen-presenting function of intratumoral DCs and reduces the suppressive capacity of intratumoral MDSCs

    PubMed Central

    Du Four, Stephanie; Maenhout, Sarah K; Niclou, Simone P; Thielemans, Kris; Neyns, Bart; Aerts, Joeri L

    2016-01-01

    Melanoma brain metastases (MBM) occur in 10% to 50% of melanoma patients. They are often associated with a high morbidity and despite the improvements in the treatment of advanced melanoma, including immunotherapy, patients with MBM still have a poor prognosis. Antiangiogenic treatment was shown to reduce the immunosuppressive tumor microenvironment. Therefore we investigated the effect of the combination of VEGFR- and CTLA-4 blockade on the immune cells within the tumor microenvironment. In this study we investigated the effect of the combination of axitinib, a TKI against VEGFR-1, -2 and -3, with therapeutic inhibition of CTLA-4 in subcutaneous and intracranial mouse melanoma models. The combination of axitinib with αCTLA-4 reduced tumor growth and increased survival in both intracranial and subcutaneous models. Investigation of the splenic immune cells showed an increased number of CD4+ and CD8+ T cells after combination treatment. Moreover, combination treatment increased the number of intratumoral dendritic cells (DCs) and monocytic myeloid-derived suppressor cells (moMDSCs). When these immune cell populations were sorted from the subcutaneous and intracranial tumors of mice treated with axitinib+αCTLA-4, we observed an increased antigen-presenting function of DCs and a reduced suppressive capacity of moMDSCs on a per cell basis. Our results suggest that the combination of antiangiogenesis and checkpoint inhibition can lead to an enhanced antitumor effect leading to increased survival. We found that this effect is in part due to an enhanced antitumor immune response generated by an increased antigen-presenting function of intratumoral DCs in combination with a reduced suppressive capacity of intratumoral moMDSCs. PMID:27904768

  5. Abnormalities in iNKT cells are associated with impaired ability of monocytes to produce IL-10 and suppress T-cell proliferation in sarcoidosis.

    PubMed

    Crawshaw, Anjali; Kendrick, Yvonne R; McMichael, Andrew J; Ho, Ling-Pei

    2014-07-01

    Sarcoidosis is a multisystem granulomatous disorder characterized by marked T-cell expansion of T helper 1 (Th1) cells. The cause of T-cell overactivity is unknown. We hypothesized that interleukin-10 (IL-10) production by a yet undefined cell type might be defective, resulting in loss of regulation of T-cell activity. Focusing on IL-10-producing monocytes, we first showed that monocytes isolated from the peripheral blood of corticosteroid-naïve sarcoidosis patients (n = 51) produced less IL-10 compared to controls, and were less able to suppress T-cell proliferation. In addition, monocytic IL-10 production correlated negatively with disease activity score. As invariant natural killer T (iNKT) cells are known to both interact with monocytes and be reduced in sarcoidosis patients, we then asked whether iNKT-specific defects might be responsible for this reduced IL-10 production. We found that greater numbers of circulating iNKT cells was associated with higher IL-10 production. Moreover, iNKT cells enhanced monocytic IL-10 production in vitro. Defective IL-10 production and T-cell suppression by sarcoidosis monocytes could be restored following their coculture with iNKT cells, in a CD1d- and cell contact-dependent process. We suggest that reduced iNKT-cell numbers in sarcoidosis may lead to impaired monocytic IL-10 production and unchecked T-cell expansion in sarcoidosis. These findings provide fresh insight into the mechanism of sarcoidosis disease, and interaction between iNKT cells and monocytes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Wireless Battery Management System of Electric Transport

    NASA Astrophysics Data System (ADS)

    Rahman, Ataur; Rahman, Mizanur; Rashid, Mahbubur

    2017-11-01

    Electric vehicles (EVs) are being developed and considered as the future transportation to reduce emission of toxic gas, cost and weight. The battery pack is one of the main crucial parts of the electric vehicle. The power optimization of the battery pack has been maintained by developing a two phase evaporative thermal management system which operation has been controlled by using a wireless battery management system. A large number of individual cells in a battery pack have many wire terminations that are liable for safety failure. To reduce the wiring problem, a wireless battery management system based on ZigBee communication protocol and point-to-point wireless topology has been presented. Microcontrollers and wireless modules are employed to process the information from several sensors (voltage, temperature and SOC) and transmit to the display devices respectively. The WBMS multistage charge balancing system offering more effective and efficient responses for several numbers of series connected battery cells. The concept of double tier switched capacitor converter and resonant switched capacitor converter is used for reducing the charge balancing time of the cells. The balancing result for 2 cells and 16 cells are improved by 15.12% and 25.3% respectively. The balancing results are poised to become better when the battery cells are increased.

  7. Different culture conditions affect the growth of human tendon stem/progenitor cells (TSPCs) within a mixed tendon cells (TCs) population.

    PubMed

    Viganò, M; Perucca Orfei, C; Colombini, A; Stanco, D; Randelli, P; Sansone, V; de Girolamo, L

    2017-12-01

    Tendon resident cells (TCs) are a mixed population made of terminally differentiated tenocytes and tendon stem/progenitor cells (TSPCs). Since the enrichment of progenitors proportion could enhance the effectiveness of treatments based on these cell populations, the interest on the effect of culture conditions on the TSPCs is growing. In this study the clonal selection and the culture in presence or absence of basic fibroblast growth factor (bFGF) were used to assess their influences on the stemness properties and phenotype specific features of tendon cells. Cells cultured with the different methods were analyzed in terms of clonogenic and differentiation abilities, stem and tendon specific genes expression and immunophenotype at passage 2 and passage 4. The clonal selection allowed to isolate cells with a higher multi-differentiation potential, but at the same time a lower proliferation rate in comparison to the whole population. Moreover, the clones express a higher amounts of stemness marker OCT4 and tendon specific transcription factor Scleraxis (SCX) mRNA, but a lower level of decorin (DCN). On the other hand, the number of cells obtained by clonal selection was extremely low and most of the clones were unable to reach a high number of passages in cultures. The presence of bFGF influences TCs morphology, enhance their proliferation rate and reduce their clonogenic ability. Interestingly, the expression of CD54, a known mesenchymal stem cell marker, is reduced in presence of bFGF at early passages. Nevertheless, bFGF does not affect the chondrogenic and osteogenic potential of TCs and the expression of tendon specific markers, while it was able to downregulate the OCT4 expression. This study showed that clonal selection enhance progenitors content in TCs populations, but the extremely low number of cells produced with this method could represent an insurmountable obstacle to its application in clinical approaches. We observed that the addition of bFGF to the culture medium promotes the maintenance of a higher number of differentiated cells, reducing the proportion of progenitors within the whole population. Overall our findings demonstrated the importance of the use of specific culture protocols to obtain tendon cells for possible clinical applications.

  8. Aged Garlic Extract Modifies Human Immunity.

    PubMed

    Percival, Susan S

    2016-02-01

    Garlic contains numerous compounds that have the potential to influence immunity. Immune cells, especially innate immune cells, are responsible for the inflammation necessary to kill pathogens. Two innate lymphocytes, γδ-T and natural killer (NK) cells, appear to be susceptible to diet modification. The purpose of this review was to summarize the influence of aged garlic extract (AGE) on the immune system. The author's laboratory is interested in AGE's effects on cell proliferation and activation and inflammation and to learn whether those changes might affect the occurrence and severity of colds and flu. Healthy human participants (n = 120), between 21 and 50 y of age, were recruited for a randomized, double-blind, placebo-controlled parallel-intervention study to consume 2.56 g AGE/d or placebo supplements for 90 d during the cold and flu season. Peripheral blood mononuclear cells were isolated before and after consumption, and γδ-T and NK cell function was assessed by flow cytometry. The effect on cold and flu symptoms was determined by using daily diary records of self-reported illnesses. After 45 d of AGE consumption, γδ-T and NK cells proliferated better and were more activated than cells from the placebo group. After 90 d, although the number of illnesses was not significantly different, the AGE group showed reduced cold and flu severity, with a reduction in the number of symptoms, the number of days participants functioned suboptimally, and the number of work/school days missed. These results suggest that AGE supplementation may enhance immune cell function and may be partly responsible for the reduced severity of colds and flu reported. The results also suggest that the immune system functions well with AGE supplementation, perhaps with less accompanying inflammation. This trial was registered at clinicaltrials.gov as NCT01390116. © 2016 American Society for Nutrition.

  9. Alterations in protein kinase C activity and processing during zinc-deficiency-induced cell death.

    PubMed

    Chou, Susan S; Clegg, Michael S; Momma, Tony Y; Niles, Brad J; Duffy, Jodie Y; Daston, George P; Keen, Carl L

    2004-10-01

    Protein kinases C (PKCs) are a family of serine/threonine kinases that are critical for signal transduction pathways involved in growth, differentiation and cell death. All PKC isoforms have four conserved domains, C1-C4. The C1 domain contains cysteine-rich finger-like motifs, which bind two zinc atoms. The zinc-finger motifs modulate diacylglycerol binding; thus, intracellular zinc concentrations could influence the activity and localization of PKC family members. 3T3 cells were cultured in zinc-deficient or zinc-supplemented medium for up to 32 h. Cells cultured in zinc-deficient medium had decreased zinc content, lowered cytosolic classical PKC activity, increased caspase-3 processing and activity, and reduced cell number. Zinc-deficient cytosols had decreased activity and expression levels of PKC-alpha, whereas PKC-alpha phosphorylation was not altered. Inhibition of PKC-alpha with Gö6976 had no effect on cell number in the zinc-deficient group. Proteolysis of the novel PKC family member, PKC-delta, to its 40-kDa catalytic fragment occurred in cells cultured in the zinc-deficient medium. Occurrence of the PKC-delta fragment in mitochondria was co-incident with caspase-3 activation. Addition of the PKC-delta inhibitor, rottlerin, or zinc to deficient medium reduced or eliminated proteolysis of PKC-delta, activated caspase-3 and restored cell number. Inhibition of caspase-3 processing by Z-DQMD-FMK (Z-Asp-Gln-Met-Asp-fluoromethylketone) did not restore cell number in the zinc-deficient group, but resulted in processing of full-length PKC-delta to a 56-kDa fragment. These results support the concept that intracellular zinc concentrations influence PKC activity and processing, and that zinc-deficiency-induced apoptosis occurs in part through PKC-dependent pathways.

  10. Prenatal administration of letrozole reduces SDN and SCN volume and cell number independent of partner preference in the male rat.

    PubMed

    Olvera-Hernández, Sandra; Tapia-Rodríguez, Miguel; Swaab, Dick F; Fernández-Guasti, Alonso

    2017-03-15

    During development, the exposure to testosterone, and its conversion to estradiol by an enzyme complex termed aromatase, appears to be essential in adult male rats for the expression of typical male sexual behavior and female-sex preference. Some hypothalamic areas are the supposed neural bases of sexual preference/orientation; for example, male-oriented rams have a reduced volume of the sexually dimorphic nucleus (oSDN), while in homosexual men this nucleus does not differ from that of heterosexual men. In contrast, homosexual men showed a larger number of vasopressinergic cells in the suprachiasmatic nucleus (SCN). Interestingly, male rats perinatally treated with an aromatase inhibitor, 1,4,6-androstatriene-3,17-dione (ATD), also showed bisexual preference and an increased number of vasopressinergic neurons in the SCN. However, this steroidal aromatase inhibitor has affinity for all three steroid receptors. Recently, we reported that the prenatal administration of the selective aromatase inhibitor, letrozole, produced a subpopulation of males with same-sex preference. The aim of this study was to compare the volume and number of cells of the SDN and SCN (the latter nucleus was immunohistochemically stained for vasopressin) between males treated with letrozole with same-sex preference, males treated with letrozole with female preference and control males with female preference. Results showed that all males prenatally treated with letrozole have a reduced volume and estimated cell number in the SDN and SCN, independent of their partner preference. These results indicate that the changes in these brain areas are not related to sexual preference, but rather to the effects of letrozole. The divergent results may be explained by species differences as well as by the critical windows during which the aromatase inhibitor was administered. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Macrophage function in murine allogeneic bone marrow radiation chimeras in the early phase after transplantation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roesler, J.; Baccarini, M.; Vogt, B.

    1989-08-01

    We tested several of the functions of macrophages (M phi) in the early phase after allogeneic bone marrow transfer to get information about this important aspect of the nonspecific immune system in the T-cell-deficient recipient. On days 3-5 after transfer, the number of M phi was reduced in the spleen, liver, lungs, and peritoneal cavity (Pe). The phagocytosis of sheep red blood cells (SRBC) by these M phi was normal or even enhanced, as in the case of Pe-M phi. Already on days 8-12 after transfer, the number of M phi in spleen and liver exceeded that of controls, whereasmore » the number was still reduced in lungs and Pe. We examined their ability to kill P815 tumor cells, to produce tumor necrosis factor-alpha (TNF alpha), to phagocytose SRBC, to produce reactive oxygen intermediates (ROI) in vitro and to kill Listeria monocytogenes in vivo. Most functions were normal and often even enhanced, depending on the organ origin, but the ability of Pe-M phi to produce ROI was reduced. Proliferative response to macrophage colony-stimulating factor (M-CSF) and killing of YAC-1 tumor cells revealed a high frequency of macrophage precursor cells in the spleen and liver and a high natural killer (NK) activity in the liver. Altogether, enhanced nonspecific immune function, especially preactivated M phi, may enable chimeras to survive attacks by opportunistic pathogens.« less

  12. γδ T-cell-deficient mice show alterations in mucin expression, glycosylation, and goblet cells but maintain an intact mucus layer

    PubMed Central

    Kober, Olivia I.; Ahl, David; Pin, Carmen; Holm, Lena; Carding, Simon R.

    2014-01-01

    Intestinal homeostasis is maintained by a hierarchy of immune defenses acting in concert to minimize contact between luminal microorganisms and the intestinal epithelial cell surface. The intestinal mucus layer, covering the gastrointestinal tract epithelial cells, contributes to mucosal homeostasis by limiting bacterial invasion. In this study, we used γδ T-cell-deficient (TCRδ−/−) mice to examine whether and how γδ T-cells modulate the properties of the intestinal mucus layer. Increased susceptibility of TCRδ−/− mice to dextran sodium sulfate (DSS)-induced colitis is associated with a reduced number of goblet cells. Alterations in the number of goblet cells and crypt lengths were observed in the small intestine and colon of TCRδ−/− mice compared with C57BL/6 wild-type (WT) mice. Addition of keratinocyte growth factor to small intestinal organoid cultures from TCRδ−/− mice showed a marked increase in crypt growth and in both goblet cell number and redistribution along the crypts. There was no apparent difference in the thickness or organization of the mucus layer between TCRδ−/− and WT mice, as measured in vivo. However, γδ T-cell deficiency led to reduced sialylated mucins in association with increased gene expression of gel-secreting Muc2 and membrane-bound mucins, including Muc13 and Muc17. Collectively, these data provide evidence that γδ T cells play an important role in the maintenance of mucosal homeostasis by regulating mucin expression and promoting goblet cell function in the small intestine. PMID:24503767

  13. γδ T-cell-deficient mice show alterations in mucin expression, glycosylation, and goblet cells but maintain an intact mucus layer.

    PubMed

    Kober, Olivia I; Ahl, David; Pin, Carmen; Holm, Lena; Carding, Simon R; Juge, Nathalie

    2014-04-01

    Intestinal homeostasis is maintained by a hierarchy of immune defenses acting in concert to minimize contact between luminal microorganisms and the intestinal epithelial cell surface. The intestinal mucus layer, covering the gastrointestinal tract epithelial cells, contributes to mucosal homeostasis by limiting bacterial invasion. In this study, we used γδ T-cell-deficient (TCRδ(-/-)) mice to examine whether and how γδ T-cells modulate the properties of the intestinal mucus layer. Increased susceptibility of TCRδ(-/-) mice to dextran sodium sulfate (DSS)-induced colitis is associated with a reduced number of goblet cells. Alterations in the number of goblet cells and crypt lengths were observed in the small intestine and colon of TCRδ(-/-) mice compared with C57BL/6 wild-type (WT) mice. Addition of keratinocyte growth factor to small intestinal organoid cultures from TCRδ(-/-) mice showed a marked increase in crypt growth and in both goblet cell number and redistribution along the crypts. There was no apparent difference in the thickness or organization of the mucus layer between TCRδ(-/-) and WT mice, as measured in vivo. However, γδ T-cell deficiency led to reduced sialylated mucins in association with increased gene expression of gel-secreting Muc2 and membrane-bound mucins, including Muc13 and Muc17. Collectively, these data provide evidence that γδ T cells play an important role in the maintenance of mucosal homeostasis by regulating mucin expression and promoting goblet cell function in the small intestine.

  14. Significance of manipulating tumour hypoxia and radiation dose rate in terms of local tumour response and lung metastatic potential, referring to the response of quiescent cell populations

    PubMed Central

    Masunaga, S; Matsumoto, Y; Kashino, G; Hirayama, R; Liu, Y; Tanaka, H; Sakurai, Y; Suzuki, M; Kinashi, Y; Maruhashi, A; Ono, K

    2010-01-01

    The purpose of this study was to evaluate the influence of manipulating intratumour oxygenation status and radiation dose rate on local tumour response and lung metastases following radiotherapy, referring to the response of quiescent cell populations within irradiated tumours. B16-BL6 melanoma tumour-bearing C57BL/6 mice were continuously given 5-bromo-2′-deoxyuridine (BrdU) to label all proliferating (P) cells. They received γ-ray irradiation at high dose rate (HDR) or reduced dose rate (RDR) following treatment with the acute hypoxia-releasing agent nicotinamide or local hyperthermia at mild temperatures (MTH). Immediately after the irradiation, cells from some tumours were isolated and incubated with a cytokinesis blocker. The responses of the quiescent (Q) and total (proliferating + Q) cell populations were assessed based on the frequency of micronuclei using immunofluorescence staining for BrdU. In other tumour-bearing mice, 17 days after irradiation, macroscopic lung metastases were enumerated. Following HDR irradiation, nicotinamide and MTH enhanced the sensitivity of the total and Q-cell populations, respectively. The decrease in sensitivity at RDR irradiation compared with HDR irradiation was slightly inhibited by MTH, especially in Q cells. Without γ-ray irradiation, nicotinamide treatment tended to reduce the number of lung metastases. With γ-rays, in combination with nicotinamide or MTH, especially the former, HDR irradiation decreased the number of metastases more remarkably than RDR irradiation. Manipulating both tumour hypoxia and irradiation dose rate have the potential to influence lung metastasis. The combination with the acute hypoxia-releasing agent nicotinamide may be more promising in HDR than RDR irradiation in terms of reducing the number of lung metastases. PMID:20739345

  15. MLH1 function is context dependent in colorectal cancers.

    PubMed

    Jackson, Thomas; Ahmed, Mohamed A H; Seth, Rashmi; Jackson, Darryl; Ilyas, Mohammad

    2011-02-01

    Loss of mismatch repair (MMR) function in sporadic colorectal cancer occurs most commonly because of inactivation of MLH1, and it causes an increase in mutation rate. However, it is uncertain whether loss of MMR alters any other cellular function. The aim of this study was to investigate the role of MMR in regulating cell numbers and apoptosis. MLH1 protein levels were manipulated by (a) cloning and forcibly expressing MLH1 in HCT116 (a cell line with MLH1 mutation) and RKO (a cell line with MLH1 silencing), and (b) knockdown of MLH1 in SW480 (a cell line with normal MMR function). Cell number and apoptotic bodies were measured in standard and 'high stress' (ie, after staurosporine exposure) conditions. Restoration of MLH1 function in HCT116 and RKO resulted in increased cell number (p<0.001 for both cell lines) and decreased numbers of floating apoptotic bodies (p<0.01 in HCT116) in standard culture conditions. However, on induction of apoptotic stress, restoration of MLH1 resulted in reduced cell numbers (p<0.005). Knockdown of MLH1 in SW480 had no effect on cell numbers or apoptosis. MLH1 function may be context dependent: in 'low stress' conditions it may act to inhibit apoptosis, while in 'high stress' conditions it may induce apoptosis. However, within the context of chromosomal instability, the effect of MLH1 on cell numbers is limited.

  16. Decreased SAP expression in T cells from patients with SLE contributes to early signaling abnormalities and reduced IL-2 production

    PubMed Central

    Karampetsou, Maria P.; Comte, Denis; Kis-Toth, Katalin; Terhorst, Cox; Kyttaris, Vasileios C.; Tsokos, George C.

    2016-01-01

    T cells from patients with systemic lupus erythematosus (SLE) display a number of functions including increased early signaling events following engagement of the T cell receptor (TCR). Signaling lymphocytic activation molecule family (SLAMF) cell surface receptors and the X-chromosome-defined signaling lymphocytic activation molecule-associated protein (SAP) adaptor are important in the development of several immunocyte lineages and modulating immune response. Here we present evidence that SAP protein levels are decreased in T cells and in their main subsets isolated from 32 women and 3 men with SLE independently of disease activity. In SLE T cells the SAP protein is also subject to increased degradation by a caspase-3. Forced expression of SAP in SLE T cells simultaneously heightened IL-2 production, calcium (Ca2+) responses and tyrosine phosphorylation of a number of proteins. Exposure of normal T cells to SLE serum IgG, known to contain anti-CD3/TCR antibodies, resulted in SAP downregulation. We conclude that SLE T cells display reduced levels of the adaptor protein SAP probably as a result of continuous T cell activation and degradation by caspase-3. Restoration of SAP levels in SLE T cells corrects the overexcitable lupus T cell phenotype. PMID:27183584

  17. SOX12: a novel potential target for acute myeloid leukaemia.

    PubMed

    Wan, Haixia; Cai, Jiayi; Chen, Fangyuan; Zhu, Jianyi; Zhong, Jihua; Zhong, Hua

    2017-02-01

    The role of SRY-related high-mobility-group box (SOX) 12 in leukaemia progression and haematopoiesis remains elusive. This study aimed to examine the expression and function of SOX12 in acute myeloid leukaemia (AML) using human myeloid leukaemia samples and the acute myeloid cell line THP1. Mononuclear cells were isolated from the bone marrow of AML patients and healthy donors. SOX12 expression in haematopoietic cells was evaluated by reverse transcription polymerase chain reaction (RT-PCR). SOX12 short hairpin RNAs (shRNAs) were transduced into THP1 cells, and gene knockdown was confirmed by quantitative RT-PCR and Western blot analysis. SOX12 was preferentially expressed in CD34 + cells in AML patients. The THP1 cells transduced with SOX12 shRNAs exhibited significantly reduced SOX12 expression and cell proliferation. SOX12 knockdown had no effect on apoptosis, but it induced cell cycle arrest at G1 phase and reduced the number of colonies. The transduced THP1 and primary AML cells were reconstituted in non-obese diabetic-severe combined immunodeficient (NOD/SCID) mice, and their numbers were significantly reduced 6-12 weeks after transplantation. The mRNA and protein levels of β-catenin were significantly diminished following SOX12 knockdown, accompanied by a decrease in TCF/Wnt activity. SOX12 may be involved in leukaemia progression by regulating the expression of β-catenin and then interfering with TCF/Wnt pathway, which may be a target for AML. © 2016 John Wiley & Sons Ltd.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagemaker, G.; Visser, T.P.; van Bekkum, D.W.

    alpha-Thalassemic heterozygous (Hbath/+) mice were used to investigate the possible selective advantage of transplanted normal (+/+) hemopoietic cells. Without conditioning by total-body irradiation (TBI), infusion of large numbers of normal bone marrow cells failed to correct the thalassemic peripheral blood phenotype. Since the recipients' stem cells are normal with respect to number and differentiation capacity, it was thought that the transplanted stem cells were not able to lodge, or that they were not stimulated to proliferate. Therefore, a nonlethal dose of TBI was given to temporarily reduce endogenous stem cell numbers and hemopoiesis. TBI doses of 2 or 3 Gymore » followed by infusion of normal bone marrow cells proved to be effective in replacing the thalassemic red cells by normal red cells, whereas a dose of 1 Gy was ineffective. It is concluded that cure of thalassemia by bone marrow transplantation does not necessarily require eradication of thalassemic stem cells. Consequently, the objectives of conditioning regimens for bone marrow transplantation of thalassemic patients (and possibly other nonmalignant hemopoietic disorders) should be reconsidered.« less

  19. Antiproliferative activity of pristimerin isolated from Maytenus ilicifolia (Celastraceae) in human HL-60 cells.

    PubMed

    Costa, Patricia Marçal da; Ferreira, Paulo Michel Pinheiro; Bolzani, Vanderlan da Silva; Furlan, Maysa; de Freitas Formenton Macedo Dos Santos, Vânia Aparecida; Corsino, Joaquim; de Moraes, Manoel Odorico; Costa-Lotufo, Letícia Veras; Montenegro, Raquel Carvalho; Pessoa, Cláudia

    2008-06-01

    Pristimerin has been shown to be cytotoxic to several cancer cell lines. In the present work, the cytotoxicity of pristimerin was evaluated in human tumor cell lines and in human peripheral blood mononuclear cells (PBMC). This work also examined the effects of pristimerin (0.4; 0.8 and 1.7 microM) in HL-60 cells, after 6, 12 and 24h of exposure. Pristimerin reduced the number of viable cells and increased number of non-viable cells in a concentration-dependent manner by tripan blue test showing morphological changes consistent with apoptosis. Nevertheless, pristimerin was not selective to cancer cells, since it inhibited PBMC proliferation with an IC50 of 0.88 microM. DNA synthesis inhibition assessed by 5-bromo-2'-deoxyuridine (BrdU) incorporation in HL-60 cells was 70% and 83% for the concentrations of 0.4 and 0.8 microM, respectively. Pristimerin (10 and 20 microM) was not able to inhibit topoisomerase I. In AO/EB (acridine orange/ethidium bromide) staining, all tested concentrations reduced the number of HL-60 viable cells, with the occurrence of necrosis and apoptosis in a concentration-dependent manner, results in agreement with trypan blue exclusion findings. The analysis of membrane integrity and internucleosomal DNA fragmentation by flow cytometry in the presence of pristimerin indicated that treated cells underwent apoptosis. The present data point to the importance of pristimerin as representative of an emerging class of potential anticancer chemicals, exhibiting an antiproliferative effect by inhibiting DNA synthesis and triggering apoptosis.

  20. Invariant Natural Killer T Cells are Reduced in Hereditary Hemochromatosis Patients.

    PubMed

    Maia, M L; Pereira, C S; Melo, G; Pinheiro, I; Exley, M A; Porto, G; Macedo, M F

    2015-01-01

    Invariant natural killer T (iNKT) cells are CD1d restricted-T cells that react to lipid antigens. iNKT cells were shown to be important in infection, autoimmunity and tumor surveillance. Alterations in the number and function of these cells were described in several pathological conditions including autoimmune and/or liver diseases. CD1d is critical for antigen presentation to iNKT cells, and its expression is increased in liver diseases. The liver is the major organ affected in Hereditary Hemochromatosis (HH), an autosomal recessive disorder caused by excessive iron absorption. Herein, we describe the study of iNKT cells of HH patients. Twenty-eight HH patients and 24 control subjects from Santo António Hospital, Porto, were included in this study. Patient's iron biochemical parameters (serum transferrin saturation and ferritin levels) and the liver function marker alanine transaminase (ALT) were determined at the time of study. Peripheral blood iNKT cells were analyzed by flow cytometry using an anti-CD3 antibody and the CD1d tetramer loaded with PBS57. We found a decrease in the percentage and number of circulating iNKT cells from HH patients when compared with control population independently of age. iNKT cell defects were more pronounced in untreated patients, relating with serum ferritin and transferrin saturation levels. No correlation was found with ALT, a marker of active liver dysfunction. Altogether, our results demonstrate that HH patients have reduced numbers of iNKT cells and that these are influenced by iron overload.

  1. In Vitro Evaluation of Biocompatibility of Uncoated Thermally Reduced Graphene and Carbon Nanotube-Loaded PVDF Membranes with Adult Neural Stem Cell-Derived Neurons and Glia

    PubMed Central

    Defteralı, Çağla; Verdejo, Raquel; Majeed, Shahid; Boschetti-de-Fierro, Adriana; Méndez-Gómez, Héctor R.; Díaz-Guerra, Eva; Fierro, Daniel; Buhr, Kristian; Abetz, Clarissa; Martínez-Murillo, Ricardo; Vuluga, Daniela; Alexandre, Michaël; Thomassin, Jean-Michel; Detrembleur, Christophe; Jérôme, Christine; Abetz, Volker; López-Manchado, Miguel Ángel; Vicario-Abejón, Carlos

    2016-01-01

    Graphene, graphene-based nanomaterials (GBNs), and carbon nanotubes (CNTs) are being investigated as potential substrates for the growth of neural cells. However, in most in vitro studies, the cells were seeded on these materials coated with various proteins implying that the observed effects on the cells could not solely be attributed to the GBN and CNT properties. Here, we studied the biocompatibility of uncoated thermally reduced graphene (TRG) and poly(vinylidene fluoride) (PVDF) membranes loaded with multi-walled CNTs (MWCNTs) using neural stem cells isolated from the adult mouse olfactory bulb (termed aOBSCs). When aOBSCs were induced to differentiate on coverslips treated with TRG or control materials (polyethyleneimine-PEI and polyornithine plus fibronectin-PLO/F) in a serum-free medium, neurons, astrocytes, and oligodendrocytes were generated in all conditions, indicating that TRG permits the multi-lineage differentiation of aOBSCs. However, the total number of cells was reduced on both PEI and TRG. In a serum-containing medium, aOBSC-derived neurons and oligodendrocytes grown on TRG were more numerous than in controls; the neurons developed synaptic boutons and oligodendrocytes were more branched. In contrast, neurons growing on PVDF membranes had reduced neurite branching, and on MWCNTs-loaded membranes oligodendrocytes were lower in numbers than in controls. Overall, these findings indicate that uncoated TRG may be biocompatible with the generation, differentiation, and maturation of aOBSC-derived neurons and glial cells, implying a potential use for TRG to study functional neuronal networks. PMID:27999773

  2. CXCR2 and CXCL4 regulate survival and self-renewal of hematopoietic stem/progenitor cells.

    PubMed

    Sinclair, Amy; Park, Laura; Shah, Mansi; Drotar, Mark; Calaminus, Simon; Hopcroft, Lisa E M; Kinstrie, Ross; Guitart, Amelie V; Dunn, Karen; Abraham, Sheela A; Sansom, Owen; Michie, Alison M; Machesky, Laura; Kranc, Kamil R; Graham, Gerard J; Pellicano, Francesca; Holyoake, Tessa L

    2016-07-21

    The regulation of hematopoietic stem cell (HSC) survival and self-renewal within the bone marrow (BM) niche is not well understood. We therefore investigated global transcriptomic profiling of normal human HSC/hematopoietic progenitor cells [HPCs], revealing that several chemokine ligands (CXCL1-4, CXCL6, CXCL10, CXCL11, and CXCL13) were upregulated in human quiescent CD34(+)Hoescht(-)Pyronin Y(-) and primitive CD34(+)38(-), as compared with proliferating CD34(+)Hoechst(+)Pyronin Y(+) and CD34(+)38(+) stem/progenitor cells. This suggested that chemokines might play an important role in the homeostasis of HSCs. In human CD34(+) hematopoietic cells, knockdown of CXCL4 or pharmacologic inhibition of the chemokine receptor CXCR2, significantly decreased cell viability and colony forming cell (CFC) potential. Studies on Cxcr2(-/-) mice demonstrated enhanced BM and spleen cellularity, with significantly increased numbers of HSCs, hematopoietic progenitor cell-1 (HPC-1), HPC-2, and Lin(-)Sca-1(+)c-Kit(+) subpopulations. Cxcr2(-/-) stem/progenitor cells showed reduced self-renewal capacity as measured in serial transplantation assays. Parallel studies on Cxcl4 demonstrated reduced numbers of CFC in primary and secondary assays following knockdown in murine c-Kit(+) cells, and Cxcl4(-/-) mice showed a decrease in HSC and reduced self-renewal capacity after secondary transplantation. These data demonstrate that the CXCR2 network and CXCL4 play a role in the maintenance of normal HSC/HPC cell fates, including survival and self-renewal. © 2016 by The American Society of Hematology.

  3. CXCR2 and CXCL4 regulate survival and self-renewal of hematopoietic stem/progenitor cells

    PubMed Central

    Sinclair, Amy; Park, Laura; Shah, Mansi; Drotar, Mark; Calaminus, Simon; Hopcroft, Lisa E. M.; Kinstrie, Ross; Guitart, Amelie V.; Dunn, Karen; Abraham, Sheela A.; Sansom, Owen; Michie, Alison M.; Machesky, Laura; Kranc, Kamil R.; Graham, Gerard J.; Pellicano, Francesca

    2016-01-01

    The regulation of hematopoietic stem cell (HSC) survival and self-renewal within the bone marrow (BM) niche is not well understood. We therefore investigated global transcriptomic profiling of normal human HSC/hematopoietic progenitor cells [HPCs], revealing that several chemokine ligands (CXCL1-4, CXCL6, CXCL10, CXCL11, and CXCL13) were upregulated in human quiescent CD34+Hoescht−Pyronin Y− and primitive CD34+38−, as compared with proliferating CD34+Hoechst+Pyronin Y+ and CD34+38+ stem/progenitor cells. This suggested that chemokines might play an important role in the homeostasis of HSCs. In human CD34+ hematopoietic cells, knockdown of CXCL4 or pharmacologic inhibition of the chemokine receptor CXCR2, significantly decreased cell viability and colony forming cell (CFC) potential. Studies on Cxcr2−/− mice demonstrated enhanced BM and spleen cellularity, with significantly increased numbers of HSCs, hematopoietic progenitor cell-1 (HPC-1), HPC-2, and Lin−Sca-1+c-Kit+ subpopulations. Cxcr2−/− stem/progenitor cells showed reduced self-renewal capacity as measured in serial transplantation assays. Parallel studies on Cxcl4 demonstrated reduced numbers of CFC in primary and secondary assays following knockdown in murine c-Kit+ cells, and Cxcl4−/− mice showed a decrease in HSC and reduced self-renewal capacity after secondary transplantation. These data demonstrate that the CXCR2 network and CXCL4 play a role in the maintenance of normal HSC/HPC cell fates, including survival and self-renewal. PMID:27222476

  4. High content image based analysis identifies cell cycle inhibitors as regulators of Ebola virus infection.

    PubMed

    Kota, Krishna P; Benko, Jacqueline G; Mudhasani, Rajini; Retterer, Cary; Tran, Julie P; Bavari, Sina; Panchal, Rekha G

    2012-09-25

    Viruses modulate a number of host biological responses including the cell cycle to favor their replication. In this study, we developed a high-content imaging (HCI) assay to measure DNA content and identify different phases of the cell cycle. We then investigated the potential effects of cell cycle arrest on Ebola virus (EBOV) infection. Cells arrested in G1 phase by serum starvation or G1/S phase using aphidicolin or G2/M phase using nocodazole showed much reduced EBOV infection compared to the untreated control. Release of cells from serum starvation or aphidicolin block resulted in a time-dependent increase in the percentage of EBOV infected cells. The effect of EBOV infection on cell cycle progression was found to be cell-type dependent. Infection of asynchronous MCF-10A cells with EBOV resulted in a reduced number of cells in G2/M phase with concomitant increase of cells in G1 phase. However, these effects were not observed in HeLa or A549 cells. Together, our studies suggest that EBOV requires actively proliferating cells for efficient replication. Furthermore, multiplexing of HCI based assays to detect viral infection, cell cycle status and other phenotypic changes in a single cell population will provide useful information during screening campaigns using siRNA and small molecule therapeutics.

  5. Decreased SAP Expression in T Cells from Patients with Systemic Lupus Erythematosus Contributes to Early Signaling Abnormalities and Reduced IL-2 Production.

    PubMed

    Karampetsou, Maria P; Comte, Denis; Kis-Toth, Katalin; Terhorst, Cox; Kyttaris, Vasileios C; Tsokos, George C

    2016-06-15

    T cells from patients with systemic lupus erythematosus (SLE) display a number of abnormalities, including increased early signaling events following engagement of the TCR. Signaling lymphocytic activation molecule family cell surface receptors and the X-chromosome-defined signaling lymphocytic activation molecule-associated protein (SAP) adaptor are important in the development of several immunocyte lineages and modulating the immune response. We present evidence that SAP protein levels are decreased in T cells and in their main subsets isolated from 32 women and three men with SLE, independent of disease activity. In SLE T cells, SAP protein is also subject to increased degradation by caspase-3. Forced expression of SAP in SLE T cells normalized IL-2 production, calcium (Ca(2+)) responses, and tyrosine phosphorylation of a number of proteins. Exposure of normal T cells to SLE serum IgG, known to contain anti-CD3/TCR Abs, resulted in SAP downregulation. We conclude that SLE T cells display reduced levels of the adaptor protein SAP, probably as a result of continuous T cell activation and degradation by caspase-3. Restoration of SAP levels in SLE T cells corrects the overexcitable lupus T cell phenotype. Copyright © 2016 by The American Association of Immunologists, Inc.

  6. The long-term effects of FSH and triiodothyronine administration during the pubertal period on Connexin 43 expression and spermatogenesis efficiency in adult rats.

    PubMed

    Marchlewska, Katarzyna; Slowikowska-Hilczer, Jolanta; Walczak-Jedrzejowska, Renata; Oszukowska, Elzbieta; Filipiak, Eliza; Kula, Krzysztof

    2015-04-01

    Follicle-stimulating hormone (FSH) and triiodothyronine (T3) are known regulatory factors of spermatogenesis initiation. Hyperstimulation of both hormones evokes regressional changes in connexin 43 expression and the seminiferous epithelium in young rats during testicular maturation. However, separate treatments with T3 reduce Sertoli cell number, which seems to be closely connected with the maturation of connexin 43 gap junctions. FSH elevates Sertoli cell number and function, but this effect may take place regardless of the presence of connexin 43-dependent intercellular communication. The aim of the study was to evaluate the later effects of such treatments. Newborn, male Wistar rats were divided randomly into experimental groups receiving daily subcutaneous injections of either 7.5 IU/animal FSH, or 100 mg/kg b.w. T3, or both substances or the same volume of vehicle (control group) until day 15 of life. The animals were sacrificed on day 50. Morphometric analysis and immunohistochemical reactions were performed using antibodies against Vimentin, Proliferating Cell Nuclear Antigen and Connexin 43 in the testis. Sertoli cell count, efficiency of spermatogenesis, and hormonal pattern were examined. Disturbances in the connexin 43 expression reduced the number of Sertoli cells, the efficiency of spermatogenesis and impaired endocrine function of testes in adult rats treated with FSH and T3 during puberty. Stimulation with FSH alone increased Sertoli cell number, but was associated with a negative effect on cell-to-cell connexin 43-dependent communication, with a consequential reduction of spermatogenesis efficiency. J. Exp. Zool. 323A: 256-265, 2015. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  7. Silymarin Protects Epidermal Keratinocytes from Ultraviolet Radiation-Induced Apoptosis and DNA Damage by Nucleotide Excision Repair Mechanism

    PubMed Central

    Katiyar, Santosh K.; Mantena, Sudheer K.; Meeran, Syed M.

    2011-01-01

    Solar ultraviolet (UV) radiation is a well recognized epidemiologic risk factor for melanoma and non-melanoma skin cancers. This observation has been linked to the accumulation of UVB radiation-induced DNA lesions in cells, and that finally lead to the development of skin cancers. Earlier, we have shown that topical treatment of skin with silymarin, a plant flavanoid from milk thistle (Silybum marianum), inhibits photocarcinogenesis in mice; however it is less understood whether chemopreventive effect of silymarin is mediated through the repair of DNA lesions in skin cells and that protect the cells from apoptosis. Here, we show that treatment of normal human epidermal keratinocytes (NHEK) with silymarin blocks UVB-induced apoptosis of NHEK in vitro. Silymarin reduces the amount of UVB radiation-induced DNA damage as demonstrated by reduced amounts of cyclobutane pyrimidine dimers (CPDs) and as measured by comet assay, and that ultimately may lead to reduced apoptosis of NHEK. The reduction of UV radiation-induced DNA damage by silymarin appears to be related with induction of nucleotide excision repair (NER) genes, because UV radiation-induced apoptosis was not blocked by silymarin in NER-deficient human fibroblasts. Cytostaining and dot-blot analysis revealed that silymarin repaired UV-induced CPDs in NER-proficient fibroblasts from a healthy individual but did not repair UV-induced CPD-positive cells in NER-deficient fibroblasts from patients suffering from xeroderma pigmentosum complementation-A disease. Similarly, immunohistochemical analysis revealed that silymarin did not reduce the number of UVB-induced sunburn/apoptotic cells in the skin of NER-deficient mice, but reduced the number of sunburn cells in their wild-type counterparts. Together, these results suggest that silymarin exert the capacity to reduce UV radiation-induced DNA damage and, thus, prevent the harmful effects of UV radiation on the genomic stability of epidermal cells. PMID:21731736

  8. Progranulin deficiency causes the retinal ganglion cell loss during development.

    PubMed

    Kuse, Yoshiki; Tsuruma, Kazuhiro; Mizoguchi, Takahiro; Shimazawa, Masamitsu; Hara, Hideaki

    2017-05-10

    Astrocytes are glial cells that support and protect neurons in the central nervous systems including the retina. Retinal ganglion cells (RGCs) are in contact with the astrocytes and our earlier findings showed the reduction of the number of cells in the ganglion cell layer in adult progranulin deficient mice. In the present study, we focused on the time of activation of the astrocytes and the alterations in the number of RGCs in the retina and optic nerve in progranulin deficient mice. Our findings showed that the number of Brn3a-positive cells was reduced and the expression of glial fibrillary acidic protein (GFAP) was increased in progranulin deficient mice. The progranulin deficient mice had a high expression of GFAP on postnatal day 9 (P9) but not on postnatal day 1. These mice also had a decrease in the number of the Brn3a-positive cells on P9. Taken together, these findings indicate that the absence of progranulin can affect the survival of RGCs subsequent the activation of astrocytes during retinal development.

  9. Hematology and immunology studies

    NASA Technical Reports Server (NTRS)

    Kimzey, S. L.

    1977-01-01

    A coordinated series of experiments were conducted to evaluate immunologic and hemotologic system responses of Skylab crewmen to prolonged space flights. A reduced PHA responsiveness was observed on recovery, together with a reduced number of T-cells, with both values returning to normal 3 to 5 days postflight. Subnormal red cell count, hemoglobin concentration, and hematocrit values also returned gradually to preflight limits. Most pronounced changes were found in the shape of red blood cells during extended space missions with a rapid reversal of these changes upon reentry into a normal gravitational environment.

  10. Apoptosis inhibitor of macrophage (AIM) reduces cell number in canine histiocytic sarcoma cell lines.

    PubMed

    Uchida, Mona; Saeki, Kohei; Maeda, Shingo; Tamahara, Satoshi; Yonezawa, Tomohiro; Matsuki, Naoaki

    2016-10-01

    Apoptosis inhibitor of macrophage (AIM) is initially reported to protect macrophages from apoptosis. In this study, we determined the effect of AIM on the macrophage-derived tumor, histiocytic sarcoma cell lines (HS) of dogs. Five HS and five other tumor cell lines were used. When recombinant canine AIM was applied to non-serum culture media, cell numbers of all the HS and two of other tumor cell lines decreased dose-dependently. The DNA fragmentation, TUNEL staining and flow cytometry tests revealed that AIM induced both of apoptosis and cell cycle arrest in the HS. Although AIM is known as an apoptosis inhibitor, these results suggest that a high dose of AIM could have an opposite function in HS and some tumor cell lines.

  11. Modifying the osteoblastic niche with zoledronic acid in vivo—Potential implications for breast cancer bone metastasis

    PubMed Central

    Haider, Marie-Therese; Holen, Ingunn; Dear, T. Neil; Hunter, Keith; Brown, Hannah K.

    2014-01-01

    Introduction Bone metastasis is the most common complication of advanced breast cancer. The associated cancer-induced bone disease is treated with bone-sparing agents like zoledronic acid. Clinical trials have shown that zoledronic acid also reduces breast cancer recurrence in bone; potentially by modifying the bone microenvironment surrounding disseminated tumour cells. We have characterised the early effects of zoledronic acid on key cell types of the metastatic niche in vivo, and investigated how these modify the location of breast tumour cells homing to bone. Methods Female mice were treated with a single, clinically achievable dose of zoledronic acid (100 μg/kg) or PBS. Bone integrity, osteoclast and osteoblast activity and number/mm trabecular bone on 1, 3, 5 and 10 days after treatment were assessed using μCT, ELISA (TRAP, PINP) and bone histomorphometry, respectively. The effect of zoledronic acid on osteoblasts was validated in genetically engineered mice with GFP-positive osteoblastic cells. The effects on growth plate cartilage were visualised by toluidine blue staining. For tumour studies, mice were injected i.c. with DID-labelled MDA-MB-231-NW1-luc2 breast cancer cells 5 days after zoledronic acid treatment, followed by assessment of tumour cell homing to bone and soft tissues by multiphoton microscopy, flow cytometry and ex vivo cultures. Results As early as 3 days after treatment, animals receiving zoledronic acid had significantly increased trabecular bone volume vs. control. This rapid bone effect was reflected in a significant reduction in osteoclast and osteoblast number/mm trabecular bone and reduced bone marker serum levels (day 3–5). These results were confirmed in mice expressing GFP in osteoblastic linage cells. Pre-treatment with zoledronic acid caused accumulation of an extra-cellular matrix in the growth plate associated with a trend towards preferential [1] homing of tumour cells to osteoblast-rich areas of bone, but without affecting the total number of tumour cells. The number of circulating tumour cells was reduced in ZOL treated animals. Conclusion A single dose of zoledronic acid caused significant changes in the bone area suggested to contain the metastatic niche. Tumour cells arriving in this modified bone microenvironment appeared to preferentially locate to osteoblast-rich areas, supporting that osteoblasts may be key components of the bone metastasis niche and therefore a potential therapeutic target in breast cancer. PMID:24971713

  12. The Electrosome: A Surface-Displayed Enzymatic Cascade in a Biofuel Cell’s Anode and a High-Density Surface-Displayed Biocathodic Enzyme

    PubMed Central

    Szczupak, Alon; Aizik, Dror; Moraïs, Sarah; Vazana, Yael; Barak, Yoav; Bayer, Edward A.; Alfonta, Lital

    2017-01-01

    The limitation of surface-display systems in biofuel cells to a single redox enzyme is a major drawback of hybrid biofuel cells, resulting in a low copy-number of enzymes per yeast cell and a limitation in displaying enzymatic cascades. Here we present the electrosome, a novel surface-display system based on the specific interaction between the cellulosomal scaffoldin protein and a cascade of redox enzymes that allows multiple electron-release by fuel oxidation. The electrosome is composed of two compartments: (i) a hybrid anode, which consists of dockerin-containing enzymes attached specifically to cohesin sites in the scaffoldin to assemble an ethanol oxidation cascade, and (ii) a hybrid cathode, which consists of a dockerin-containing oxygen-reducing enzyme attached in multiple copies to the cohesin-bearing scaffoldin. Each of the two compartments was designed, displayed, and tested separately. The new hybrid cell compartments displayed enhanced performance over traditional biofuel cells; in the anode, the cascade of ethanol oxidation demonstrated higher performance than a cell with just a single enzyme. In the cathode, a higher copy number per yeast cell of the oxygen-reducing enzyme copper oxidase has reduced the effect of competitive inhibition resulting from yeast oxygen consumption. This work paves the way for the assembly of more complex cascades using different enzymes and larger scaffoldins to further improve the performance of hybrid cells. PMID:28644390

  13. Interactions between IGF-I, estrogen receptor-α (ERα), and ERβ in regulating growth/apoptosis of MCF-7 human breast cancer cells.

    PubMed

    Mendoza, Rhone A; Enriquez, Marlene I; Mejia, Sylvia M; Moody, Emily E; Thordarson, Gudmundur

    2011-01-01

    Understanding of the interactions between estradiol (E₂) and IGF-I is still incomplete. Cell lines derived from the MCF-7 breast cancer cells were generated with suppressed expression of the IGF-I receptor (IGF-IR), termed IGF-IR.low cells, by stable transfection using small interfering RNA (siRNA) expression vector. Vector for control cells carried sequence generating noninterfering RNA. Concomitant with reduction in the IGF-IR levels, the IGF-IR.low cells also showed a reduction in estrogen receptor α (ERα) and progesterone receptor expressions, and an elevation in the expression of ERβ. The number of the IGF-IR.low cells was reduced in response to IGF-I and human GH plus epidermal growth factor, but E₂ did not cause an increase in the number of the IGF-IR.low cells compared to controls. The proliferation rate of IGF-IR.low cells was only reduced in response to E₂ compared to controls, whereas their basal and hormone-stimulated apoptosis rate was increased. Phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK) was increased in the IGF-IR.low cells after treatment with E₂, without affecting control cells. Furthermore, phosphorylation of the tumor suppressor protein p53 was elevated in the IGF-IR.low cells compared to the controls. In conclusion, suppressing IGF-IR expression decreased the level of ERα but increased the level of ERβ. Overall growth rate of the IGF-IR.low cells was reduced mostly through an increase in apoptosis without affecting proliferation substantially. We hypothesize that a decreased ERα:ERβ ratio triggered a rapid phosphorylation of p38 MAPK, which in turn phosphorylated the p53 tumor suppressor and accelerated apoptosis rate.

  14. Ceruloplasmin reduces the adhesion and scavenges superoxide during the interaction of activated polymorphonuclear leukocytes with endothelial cells.

    PubMed Central

    Broadley, C.; Hoover, R. L.

    1989-01-01

    The plasma protein, ceruloplasmin, has been implicated as an anti-inflammatory agent, although this property has not been demonstrated unequivocally in vivo. The role of this protein in an in vitro system of cultured endothelial cells and polymorphonuclear leukocytes (PMNs) was investigated. One of the initial steps in an inflammatory response is increased adhesion between PMNs and the endothelial lining of the blood vessels. The results showed that ceruloplasmin interferes with this process and reduces the number of phorbol myristate acetate-activated leukocytes that adhere to endothelium. Preincubation of either the activated PMNs or the endothelium with ceruloplasmin did not produce the same results, suggesting that the continuous presence of ceruloplasmin is required. During attachment PMNs become activated and release a variety of substances, including toxic oxygen species such as superoxide and hydrogen peroxide. In the in vitro system used in this study no injury occurred to the endothelial cells, as measured by 51Cr release, when activated PMNs were added with ceruloplasmin. The data show that ceruloplasmin reduced, in a dose dependent manner, the levels of superoxide produced by the activated PMNs, further supporting ceruloplasmin's previously reported role as a scavenger of superoxide. Ceruloplasmin also reduced the levels of superoxide when activated PMNs were in contact with endothelial cells. Although ceruloplasmin interfered with the copper-dependent scavenger enzyme, superoxide dismutase (SOD), in a cell-free system, ceruloplasmin had no effect on SOD in intact endothelial cells. These results suggest that ceruloplasmin may act as an anti-inflammatory agent by reducing the number of PMNs attaching to endothelium and by acting as an extracellular scavenger of superoxide. PMID:2552811

  15. Quercetin protects the retina by reducing apoptosis due to ischemia-reperfusion injury in a rat model.

    PubMed

    Arikan, Sedat; Ersan, Ismail; Karaca, Turan; Kara, Selcuk; Gencer, Baran; Karaboga, Ihsan; Hasan Ali, Tufan

    2015-01-01

    This study aimed to investigate the effect of quercetin on apoptotic cell death induced by ischemia-reperfusion (I/R) injury in the rat retina. Twenty-four rats were divided into four equal groups: control, ischemic, solvent, and quercetin. I/R injury was achieved by elevating the intraocular pressure above the perfusion pressure. Intraperitoneal injections of 20 mg/kg of quercetin and dimethyl sulfoxide (DMSO) were performed in the quercetin and solvent groups, respectively, immediately prior to I/R injury, and the researchers allowed for the retinas to be reperfused. Forty-eight hours after injury, the thicknesses of the retinal ganglion cell layer (RGCL), inner nuclear layer (INL), inner plexiform layer (IPL), outer plexiform layer (OPL), and outer nuclear layer (ONL) were measured in all groups. Moreover, the numbers of terminal deoxynucleotidyl transferase dUTP nick-end-labeled [TUNEL (+)] cells and caspase-3 (+) cells in both INL and ONL were evaluated in all groups. The administration of quercetin was found to reduce the thinning of all retinal layers. The mean thickness of INL in the quercetin and ischemic groups was 21 ± 5.6 µm and 16 ± 6.4 µm, respectively (P<0.05). Similarly, the mean thickness of ONL in the quercetin and ischemic groups was 50 ± 12.8 µm and 40 ± 8.7 µm, respectively (P<0.05). The antiapoptotic effect of quercetin in terms of reducing the numbers of both TUNEL (+) cells and caspase-3 (+) cells was significant in INL. The mean number of TUNEL (+) cells in INL in the ischemic and quercetin groups was 476.8 ± 45.6/mm2 and 238.72 ± 251/mm2, respectively (P<0.005). The mean number of caspase-3 (+) cells in INL of ischemic and quercetin groups was 633.6 ± 38.7/mm2 and 342.4 ± 36.1/mm2, respectively (P<0.001). The use of quercetin may be beneficial in the treatment of retinal I/R injury because of its antiapoptotic effect on the retinal layers, particularly in INL.

  16. Lenalidomide Synergistically Enhances the Effect of Dendritic Cell Vaccination in a Model of Murine Multiple Myeloma.

    PubMed

    Nguyen-Pham, Thanh-Nhan; Jung, Sung-Hoon; Vo, Manh-Cuong; Thanh-Tran, Huong-Thi; Lee, Youn-Kyung; Lee, Hyun-Ju; Choi, Nu-Ri; Hoang, My-Dung; Kim, Hyeoung-Joon; Lee, Je-Jung

    2015-10-01

    We investigated the efficacy of lenalidomide (LEN) in combination with dendritic cell (DC) vaccination in the MOPC-315 murine myeloma model. After tumor growth, LEN was injected intraperitoneally for 4 consecutive days in combination with DC vaccination. The combination of LEN and vaccination efficiently inhibited tumor growth compared with the single agents alone. A cytotoxic assay revealed that the anticancer effects of DC vaccination plus LEN involved not only generation of antigen-specific cytotoxic T lymphocytes but also NK cells. Vaccinated mice had reduced numbers of suppressor cells, including both myeloid-derived suppressor cells and regulatory T cells, in the spleen. The proportions of CD4+ and CD8+ T cells increased in the spleen, and a Th1 cytokine (interferon-γ) rather than a Th2 cytokine (interleukin-10) was synthesized in response to tumor antigens. LEN enhanced the innate immune response by modulating NK cell numbers and function. In addition, LEN reduced the production levels of angiogenesis-inducing factors in tumor-bearing mice. Together, these results suggest that a combination of LEN and DC vaccination may synergistically enhance anticancer immunity in the murine myeloma model, by inhibiting immunosuppressor cells and stimulating effector cells, as well as effectively polarizing the Th1/Th2 balance in favor of a Th1-specific immune response.

  17. Overexpression of Robo2 causes defects in the recruitment of metanephric mesenchymal cells and ureteric bud branching morphogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Jiayao; Medical College of NanKai University, Tianjin; Li, Qinggang

    2012-05-11

    Highlights: Black-Right-Pointing-Pointer Overexpression of Robo2 caused reduced UB branching and glomerular number. Black-Right-Pointing-Pointer Fewer MM cells surrounding the UB after overexpression of Robo2 in vitro. Black-Right-Pointing-Pointer No abnormal Epithelial Morphology of UB or apoptosis of mm cells in the kidney. Black-Right-Pointing-Pointer Overexpression of Robo2 affected MM cells migration and caused UB deficit. Black-Right-Pointing-Pointer The reduced glomerular number can also be caused by fewer MM cells. -- Abstract: Roundabout 2 (Robo2) is a member of the membrane protein receptor family. The chemorepulsive effect of Slit2-Robo2 signaling plays vital roles in nervous system development and neuron migration. Slit2-Robo2 signaling is also importantmore » for maintaining the normal morphogenesis of the kidney and urinary collecting system, especially for the branching of the ureteric bud (UB) at the proper site. Slit2 or Robo2 mouse mutants exhibit multilobular kidneys, multiple ureters, and dilatation of the ureter, renal pelvis, and collecting duct system, which lead to vesicoureteral reflux. To understand the effect of Robo2 on kidney development, we used microinjection and electroporation to overexpress GFP-Robo2 in an in vitro embryonic kidney model. Our results show reduced UB branching and decreased glomerular number after in vitro Robo2 overexpression in the embryonic kidneys. We found fewer metanephric mesenchymal (MM) cells surrounding the UB but no abnormal morphology in the branching epithelial UB. Meanwhile, no significant change in MM proliferation or apoptosis was observed. These findings indicate that Robo2 is involved in the development of embryonic kidneys and that the normal expression of Robo2 can help maintain proper UB branching and glomerular morphogenesis. Overexpression of Robo2 leads to reduced UB branching caused by fewer surrounding MM cells, but MM cell apoptosis is not involved in this effect. Our study demonstrates that overexpression of Robo2 by microinjection in embryonic kidneys is an effective approach to study the function of Robo2.« less

  18. Public release of optimization of metallization scheme for thin emitter wrap-through solar cells for higher efficiency, reduced precious metal costs, and reduced stress.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruby, Douglas Scott; Murphy, Brian; Meakin, David

    2008-08-01

    Back-contact crystalline-silicon photovoltaic solar cells and modules offer a number of advantages, including the elimination of grid shadowing losses, reduced cost through use of thinner silicon substrates, simpler module assembly, and improved aesthetics. While the existing edge tab method for interconnecting and stringing edge-connected back contact cells is acceptably straightforward and reliable, there are further gains to be exploited when you have both contact polarities on one side of the cell. In this work, we produce 'busbarless' emitter wrap-through solar cells that use 41% of the gridline silver (Ag) metallization mass compared to the edge tab design. Further, series resistancemore » power losses are reduced by extraction of current from more places on the cell rear, leading to a fill factor improvement of about 6% (relative) on the module level. Series resistance and current-generation losses associated with large rear bondpads and busbars are eliminated. Use of thin silicon (Si) wafers is enabled because of the reduced Ag metallization mass and by interconnection with conductive adhesives leading to reduced bow. The busbarless cell design interconnected with conductive adhesives passes typical International Electrotechnical Commission damp heat and thermal cycling test.« less

  19. Metabolomics of Small Numbers of Cells: Metabolomic Profiling of 100, 1000, and 10000 Human Breast Cancer Cells.

    PubMed

    Luo, Xian; Li, Liang

    2017-11-07

    In cellular metabolomics, it is desirable to carry out metabolomic profiling using a small number of cells in order to save time and cost. In some applications (e.g., working with circulating tumor cells in blood), only a limited number of cells are available for analysis. In this report, we describe a method based on high-performance chemical isotope labeling (CIL) nanoflow liquid chromatography mass spectrometry (nanoLC-MS) for high-coverage metabolomic analysis of small numbers of cells (i.e., ≤10000 cells). As an example, 12 C-/ 13 C-dansyl labeling of the metabolites in lysates of 100, 1000, and 10000 MCF-7 breast cancer cells was carried out using a new labeling protocol tailored to handle small amounts of metabolites. Chemical-vapor-assisted ionization in a captivespray interface was optimized for improving metabolite ionization and increasing robustness of nanoLC-MS. Compared to microflow LC-MS, the nanoflow system provided much improved metabolite detectability with a significantly reduced sample amount required for analysis. Experimental duplicate analyses of biological triplicates resulted in the detection of 1620 ± 148, 2091 ± 89 and 2402 ± 80 (n = 6) peak pairs or metabolites in the amine/phenol submetabolome from the 12 C-/ 13 C-dansyl labeled lysates of 100, 1000, and 10000 cells, respectively. About 63-69% of these peak pairs could be either identified using dansyl labeled standard library or mass-matched to chemical structures in human metabolome databases. We envisage the routine applications of this method for high-coverage quantitative cellular metabolomics using a starting material of 10000 cells. Even for analyzing 100 or 1000 cells, although the metabolomic coverage is reduced from the maximal coverage, this method can still detect thousands of metabolites, allowing the analysis of a large fraction of the metabolome and focused analysis of the detectable metabolites.

  20. Consumption of cranberry polyphenols enhances human γδ-T cell proliferation and reduces the number of symptoms associated with colds and influenza: a randomized, placebo-controlled intervention study.

    PubMed

    Nantz, Meri P; Rowe, Cheryl A; Muller, Catherine; Creasy, Rebecca; Colee, James; Khoo, Christina; Percival, Susan S

    2013-12-13

    Our main objective was to evaluate the ability of cranberry phytochemicals to modify immunity, specifically γδ-T cell proliferation, after daily consumption of a cranberry beverage, and its effect on health outcomes related to cold and influenza symptoms. The study was a randomized, double-blind, placebo-controlled, parallel intervention. Subjects drank a low calorie cranberry beverage (450 ml) made with a juice-derived, powdered cranberry fraction (n = 22) or a placebo beverage (n = 23), daily, for 10 wk. PBMC were cultured for six days with autologous serum and PHA-L stimulation. Cold and influenza symptoms were self-reported. The proliferation index of γδ-T cells in culture was almost five times higher after 10 wk of cranberry beverage consumption (p <0.001). In the cranberry beverage group, the incidence of illness was not reduced, however significantly fewer symptoms of illness were reported (p = 0.031). Consumption of the cranberry beverage modified the ex vivo proliferation of γδ-T cells. As these cells are located in the epithelium and serve as a first line of defense, improving their function may be related to reducing the number of symptoms associated with a cold and flu.

  1. Dietary supplementation with secoisolariciresinol diglycoside (SDG) reduces experimental metastasis of melanoma cells in mice.

    PubMed

    Li, D; Yee, J A; Thompson, L U; Yan, L

    1999-07-19

    We investigated the effect of dietary supplementation with secoisolariciresinol diglycoside (SDG), a lignan precursor isolated from flaxseed, on experimental metastasis of B16BL6 murine melanoma cells in C57BL/6 mice. Four diets were compared: a basal diet (control group) and the basal diet supplemented with SDG at 73, 147 or 293 micromol/kg (equivalent to SDG provided in the 2.5, 5 or 10% flaxseed diet). Mice were fed the diet for 2 weeks before and after an intravenous injection of 0.6 x 10(5) tumor cells. At necropsy, the number and size of tumors that formed in the lungs were determined. The median number of tumors in the control group was 62, and those in the SDG-supplemented groups were 38, 36 and 29, respectively. The last was significantly different from the control (P < 0.01). Dietary supplementation with SDG at 73, 147 and 293 micromol/kg also decreased tumor size (tumor cross-sectional area and volume) in a dose-dependent manner compared with the control values. These results show that SDG reduced pulmonary metastasis of melanoma cells and inhibited the growth of metastatic tumors that formed in the lungs. It is concluded that dietary supplementation with SDG reduces experimental metastasis of melanoma cells in mice.

  2. Sarcoidosis Th17 Cells are ESAT-6 Antigen Specific but Demonstrate Reduced IFN-γ Expression

    PubMed Central

    Richmond, Bradley W.; Ploetze, Kristen; Isom, Joan; Chambers-Harris, Isfahan; Braun, Nicole A.; Taylor, Thyneice; Abraham, Susamma; Mageto, Yolanda; Culver, Dan A.; Oswald-Richter, Kyra A.; Drake, Wonder P.

    2013-01-01

    Rationale Sarcoidosis is a granulomatous disease of unknown etiology. Many patients with sarcoidosis demonstrate antigen-specific immunity to mycobacterial virulence factors. Th-17 cells are crucial to the immune response in granulomatous inflammation, and have recently been shown to be present in greater numbers in the peripheral blood and bronchoalveolar lavage (BAL) fluid (BALF) of sarcoidosis patients than healthy controls. It is unclear whether Th-17 cells in sarcoidosis are specific for mycobacterial antigens, or whether they have similar functionality to control Th-17 cells. Methods Flow cytometry was used to determine the numbers of Th-17 cells present in the peripheral blood and BALF of patients with sarcoidosis, the percentage of Th-17 cells that were specific to the mycobacterial virulence factor ESAT-6, and as well as to assess IFN-γ expression in Th-17 cells following polyclonal stimulation. Results Patients with sarcoidosis had greater numbers of Th-17 cells in the peripheral blood and BALF than controls and produced significantly more extracellular IL-17A (p=0.03 and p=0.02, respectively). ESAT-6 specific Th-17 cells were present in both peripheral blood and BALF of sarcoidosis patients (p<0.001 and p=0.03, respectively). After polyclonal stimulation, Th-17 cells from sarcoidosis patients produced less IFN-γ than healthy controls. Conclusions Patients with sarcoidosis have mycobacterial antigen-specific Th-17 cells peripherally and in sites of active sarcoidosis involvement. Despite the Th1 immunophenotype of sarcoidosis immunology, the Th-17 cells have reduced IFN-γ expression, compared to healthy controls. This reduction in immunity may contribute to sarcoidosis pathogenesis. PMID:23073617

  3. Iron alters cell survival in a mitochondria-dependent pathway in ovarian cancer cells

    PubMed Central

    Bauckman, Kyle; Haller, Edward; Taran, Nicholas; Rockfield, Stephanie; Ruiz-Rivera, Abigail; Nanjundan, Meera

    2015-01-01

    The role of iron in the development of cancer remains unclear. We previously reported that iron reduces cell survival in a Ras/mitogen-activated protein kinase (MAPK)-dependent manner in ovarian cells; however, the underlying downstream pathway leading to reduced survival was unclear. Although levels of intracellular iron, ferritin/CD71 protein and reactive oxygen species did not correlate with iron-induced cell survival changes, we identified mitochondrial damage (via TEM) and reduced expression of outer mitochondrial membrane proteins (translocase of outer membrane: TOM20 and TOM70) in cell lines sensitive to iron. Interestingly, Ru360 (an inhibitor of the mitochondrial calcium uniporter) reversed mitochondrial changes and restored cell survival in HEY ovarian carcinoma cells treated with iron. Further, cells treated with Ru360 and iron also had reduced autophagic punctae with increased lysosomal numbers, implying cross-talk between these compartments. Mitochondrial changes were dependent on activation of the Ras/MAPK pathway since treatment with a MAPK inhibitor restored expression of TOM20/TOM70 proteins. Although glutathione antioxidant levels were reduced in HEY treated with iron, extracellular glutamate levels were unaltered. Strikingly, oxalomalate (inhibitor of aconitase, involved in glutamate production) reversed iron-induced responses in a similar manner to Ru360. Collectively, our results implicate iron in modulating cell survival in a mitochondria-dependent manner in ovarian cancer cells. PMID:25697096

  4. Microparticle Shedding by Erythrocytes, Monocytes and Vascular Smooth Muscular Cells Is Reduced by Aspirin in Diabetic Patients.

    PubMed

    Chiva-Blanch, Gemma; Suades, Rosa; Padró, Teresa; Vilahur, Gemma; Peña, Esther; Ybarra, Juan; Pou, Jose M; Badimon, Lina

    2016-07-01

    Diabetes mellitus is associated with an enhanced risk for cardiovascular disease and its prevalence is increasing. Diabetes induces metabolic stress on blood and vascular cells, promoting platelet activation and vascular dysfunction. The level of vascular cell activation can be measured by the number and phenotype of microparticles found in the circulation. The aim of this study was to investigate the effect of a platelet-inhibitory dose of aspirin on the number and type of microparticles shed to the circulation. Forty-three diabetic patients were enrolled in the study and received a daily dose of 100mg of aspirin for 10 days to cover the average platelet life-span in the circulation. Before and after the intervention period, circulating microparticles were characterized and quantified by flow cytometry. Type 1 diabetic patients had about twice the number of tissue factor-positive circulating microparticles (derived both from platelets and monocytes) and endothelial-derived E-selectin positive microparticles than type 2 diabetic patients. Aspirin therapy significantly inhibited platelets since cyclooxygenase 1 derived thromboxane generation levels were reduced by 99%. Microparticles derived from erythrocytes, activated monocytes, and smooth muscle cells were significantly reduced after 10 days of aspirin administration. These results indicate that: a) vascular and blood cells in type 1 diabetic patients are exposed to more sustained stress shown by their specific microparticle origin and levels; b) aspirin therapy inhibits vascular wall cell activation and microparticle shedding, and c) the effects of aspirin are similar in type 1 and 2 diabetes. Copyright © 2016 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  5. Effects of hydrocortisone treatment and whole-body irradiation on mouse lymphocyte stimulation in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruehl, H.; Vogt, W.; Ruehl, U.

    Whole-body gamma irradiation was found to reduce the number of nucleated cells in the thymus and the spleen of C57B1 mice to the same extent as hydrocortisone treatment. Equal numbers of thymus and spleen cells from either hydrocortisone-treated or irradiated e cultured and stimulated with various mitogens. An increased stimulation of DNA synthesis by PHA. Con A, and PWM was found in thymus and spleen cells after hydrocortisone treatment as well as after whole-body irradiation. In contrast, the response to LPS, known as a typical B- cell mitogen, was not affected by any of the procedures. (auth)

  6. Ubiquitin C-terminal hydrolase L-1 is essential for the early apoptotic wave of germinal cells and for sperm quality control during spermatogenesis.

    PubMed

    Kwon, Jungkee; Mochida, Keiji; Wang, Yu-Lai; Sekiguchi, Satoshi; Sankai, Tadashi; Aoki, Shunsuke; Ogura, Atsuo; Yoshikawa, Yasuhiro; Wada, Keiji

    2005-07-01

    Ubiquitination is required throughout all developmental stages of mammalian spermatogenesis. Ubiquitin C-terminal hydrolase (UCH) L1 is thought to associate with monoubiquitin to control ubiquitin levels. Previously, we found that UCHL1-deficient testes of gad mice have reduced ubiquitin levels and are resistant to cryptorchid stress-related injury. Here, we analyzed the function of UCHL1 during the first round of spermatogenesis and during sperm maturation, both of which are known to require ubiquitin-mediated proteolysis. Testicular germ cells in the immature testes of gad mice were resistant to the early apoptotic wave that occurs during the first round of spermatogenesis. TUNEL staining and cell quantitation demonstrated decreased germ cell apoptosis and increased numbers of premeiotic germ cells in gad mice between Postnatal Days 7 and 14. Expression of the apoptotic proteins TRP53, Bax, and caspase-3 was also significantly lower in the immature testes of gad mice. In adult gad mice, cauda epididymidis weight, sperm number in the epididymis, and sperm motility were reduced. Moreover, the number of defective spermatozoa was significantly increased; however, complete infertility was not detected. These data indicate that UCHL1 is required for normal spermatogenesis and sperm quality control and demonstrate the importance of UCHL1-dependent apoptosis in spermatogonial cell and sperm maturation.

  7. Interplay between mast cells, enterochromaffin cells, and sensory signaling in the aging human bowel.

    PubMed

    Yu, Y; Daly, D M; Adam, I J; Kitsanta, P; Hill, C J; Wild, J; Shorthouse, A; Grundy, D; Jiang, W

    2016-10-01

    Advanced age is associated with a reduction in clinical visceral pain perception. However, the underlying mechanisms remain largely unknown. Previous studies have suggested that an abnormal interplay between mast cells, enterochromaffin (EC) cells, and afferent nerves contribute to nociception in gastrointestinal disorders. The aim of this study was to investigate how aging affects afferent sensitivity and neuro-immune association in the human bowel. Mechanical and chemical sensitivity of human bowel afferents were examined by ex vivo afferent nerve recordings. Age-related changes in the density of mast cells, EC cells, sensory nerve terminals, and mast cell-nerve micro-anatomical association were investigated by histological and immune staining. Human afferents could be broadly classified into subpopulations displaying mechanical and chemical sensitivity, adaptation, chemo-sensitization, and recruitment. Interestingly human bowel afferent nerve sensitivity was attenuated with age. The density of substance P-immunoreactive (SP-IR) nerve varicosities was also reduced with age. In contrast, the density of ileal and colonic mucosal mast cells was increased with age, as was ileal EC cell number. An increased proportion of mast cells was found in close apposition to SP-IR nerves. Afferent sensitivity in human bowel was reduced with advancing age. Augmentation of mast cells and EC cell numbers and the mast cell-nerve association suggest a compensatory mechanism for sensory neurodegeneration. © 2016 The Authors. Neurogastroenterology & Motility Published by John Wiley & Sons Ltd.

  8. T cells establish and maintain CNS viral infection in HIV-infected humanized mice.

    PubMed

    Honeycutt, Jenna B; Liao, Baolin; Nixon, Christopher C; Cleary, Rachel A; Thayer, William O; Birath, Shayla L; Swanson, Michael D; Sheridan, Patricia; Zakharova, Oksana; Prince, Francesca; Kuruc, JoAnn; Gay, Cynthia L; Evans, Chris; Eron, Joseph J; Wahl, Angela; Garcia, J Victor

    2018-06-04

    The human brain is an important site of HIV replication and persistence during antiretroviral therapy (ART). Direct evaluation of HIV infection in the brains of otherwise healthy individuals is not feasible; therefore, we performed a large-scale study of bone marrow/liver/thymus (BLT) humanized mice as an in vivo model to study HIV infection in the brain. Human immune cells, including CD4+ T cells and macrophages, were present throughout the BLT mouse brain. HIV DNA, HIV RNA, and/or p24+ cells were observed in the brains of HIV-infected animals, regardless of the HIV isolate used. HIV infection resulted in decreased numbers of CD4+ T cells, increased numbers of CD8+ T cells, and a decreased CD4+/CD8+ T cell ratio in the brain. Using humanized T cell-only mice (ToM), we demonstrated that T cells establish and maintain HIV infection of the brain in the complete absence of human myeloid cells. HIV infection of ToM resulted in CD4+ T cell depletion and a reduced CD4+/CD8+ T cell ratio. ART significantly reduced HIV levels in the BLT mouse brain, and the immune cell populations present were indistinguishable from those of uninfected controls, which demonstrated the effectiveness of ART in controlling HIV replication in the CNS and returning cellular homeostasis to a pre-HIV state.

  9. Cell Number Regulator1 Affects Plant and Organ Size in Maize: Implications for Crop Yield Enhancement and Heterosis[C][W

    PubMed Central

    Guo, Mei; Rupe, Mary A.; Dieter, Jo Ann; Zou, Jijun; Spielbauer, Daniel; Duncan, Keith E.; Howard, Richard J.; Hou, Zhenglin; Simmons, Carl R.

    2010-01-01

    Genes involved in cell number regulation may affect plant growth and organ size and, ultimately, crop yield. The tomato (genus Solanum) fruit weight gene fw2.2, for instance, governs a quantitative trait locus that accounts for 30% of fruit size variation, with increased fruit size chiefly due to increased carpel ovary cell number. To expand investigation of how related genes may impact other crop plant or organ sizes, we identified the maize (Zea mays) gene family of putative fw2.2 orthologs, naming them Cell Number Regulator (CNR) genes. This family represents an ancient eukaryotic family of Cys-rich proteins containing the PLAC8 or DUF614 conserved motif. We focused on native expression and transgene analysis of the two maize members closest to Le-fw2.2, namely, CNR1 and CNR2. We show that CNR1 reduced overall plant size when ectopically overexpressed and that plant and organ size increased when its expression was cosuppressed or silenced. Leaf epidermal cell counts showed that the increased or decreased transgenic plant and organ size was due to changes in cell number, not cell size. CNR2 expression was found to be negatively correlated with tissue growth activity and hybrid seedling vigor. The effects of CNR1 on plant size and cell number are reminiscent of heterosis, which also increases plant size primarily through increased cell number. Regardless of whether CNRs and other cell number–influencing genes directly contribute to, or merely mimic, heterosis, they may aid generation of more vigorous and productive crop plants. PMID:20400678

  10. Effect of water stress on cotton leaves : I. An electron microscopic stereological study of the palisade cells.

    PubMed

    Berlin, J; Quisenberry, J E; Bailey, F; Woodworth, M; McMichael, B L

    1982-07-01

    Palisade cells from fully expanded leaves from irrigated and nonirrigated, field grown cotton (Gossypium hirsutum L. cv. Paymaster 266) were subjected to a microscopic examination to evaluate the effect of water stress on subcellular structures. The water potential difference between the two treatments was 13 bars at the time of sampling. The dimensions of the palisade cells and their density per unit leaf area were determined by light microscopy. Palisade cells from stressed plants had the same diameter, but were taller than their counterparts in irrigated plants. The density of the palisade cells was the same in both treatments as was the fractional volume of the intercellular space. It was concluded that the reduced leaf area observed in the stressed plants resulted primarily from a mitotic sensitivity to water stress. Further, expansion of palisade cells was not inhibited by the stress imposed in this study.Morphometric analysis of electron micrographs was used to evaluate the subcellular structure of palisade cells from nonstressed and stressed plants. The fractional volumes of cell walls, total cytoplasm, chloroplasts, starch granules, intrachloroplast bodies, mitochondria, peroxisomes, and central vacuoles were determined. The surface densities of grana and stroma lamellae, outer chloroplast membranes, mitochondrial cristae, endoplasmic reticulum and Golgi cisternae were also measured. The number of chloroplasts, mitochondria, and peroxisomes were determined. These data were expressed as actual volumes, areas, and numbers per palisade cell for each treatment. Palisade cells from stressed plants had thinner cell walls, larger central vacuoles and approximately the same amount of cytoplasm compared to cells from nonstressed plants. Within the cytoplasm, stressed plants had more but smaller chloroplasts with increased grana and stroma lamellae surfaces, larger mithchondria with reduced cristae surfaces, smaller peroxisomes and reduced membrane surfaces of endoplasmic reticulum and Golgi cisternae.

  11. Constitutive CD40L Expression on B Cells Prematurely Terminates Germinal Center Response and Leads to Augmented Plasma Cell Production in T Cell Areas

    PubMed Central

    Bolduc, Anna; Long, Eugene; Stapler, Dale; Cascalho, Marilia; Tsubata, Takeshi; Koni, Pandelakis A.; Shimoda, Michiko

    2013-01-01

    CD40/CD40L engagement is essential to T cell-dependent B cell proliferation and differentiation. However, the precise role of CD40 signaling through cognate T–B interaction in the generation of germinal center and memory B cells is still incompletely understood. To address this issue, a B cell-specific CD40L transgene (CD40LBTg) was introduced into mice with B cell-restricted MHC class II deficiency. Using this mouse model, we show that constitutive CD40L expression on B cells alone could not induce germinal center differentiation of MHC class II-deficient B cells after immunization with T cell-dependent Ag. Thus, some other MHC class II-dependent T cell-derived signals are essential for the generation of germinal center B cells in response to T cell-dependent Ag. In fact, CD40LBTg mice generated a complex Ag-specific IgG1 response, which was greatly enhanced in early, but reduced in late, primary response compared with control mice. We also found that the frequency of Ag-specific germinal center B cells in CD40LBTg mice was abruptly reduced 1 wk after immunization. As a result, the numbers of Ag-specific IgG1 long-lived plasma cells and memory B cells were reduced. By histology, large numbers of Ag-specific plasma cells were found in T cell areas adjacent to Ag-specific germinal centers of CD40LBTg mice, temporarily during the second week of primary response. These results indicate that CD40L expression on B cells prematurely terminated their ongoing germinal center response and produced plasma cells. Our results support the notion that CD40 signaling is an active termination signal for germinal center reaction. PMID:20505142

  12. Standardization of the CFU-GM assay: Advantages of plating a fixed number of CD34+ cells in collagen gels.

    PubMed

    Dobo, Irène; Pineau, Danielle; Robillard, Nelly; Geneviève, Frank; Piard, Nicole; Zandecki, Marc; Hermouet, Sylvie

    2003-10-01

    We investigated whether plating a stable amount of CD34(+) cells improves the CFU-GM assay. Data of CFU-GM assays performed with leukaphereses products in two transplant centers using a commercial collagen-based medium and unified CFU-GM scoring criteria were pooled and analyzed according to the numbers of CD34(+) cells plated. A first series of 113 CFU-GM assays was performed with a fixed number of mononuclear cells (i.e., a variable number of CD34(+) cells). In these cultures the CFU-GM/CD34 ratio varied according to the number of CD34(+) cells plated: median CFUGM/CD34 ratios were 1/6.2 to 1/6.6 for grafts containing <2% CD34(+) cells, vs. 1/10.2 for grafts containing > or =2% CD34(+) cells. The median CFU-GM/CD34 ratio also varied depending on pathology: 1/9.3 for multiple myeloma (MM), 1/6.8 for Hodgkin's disease (HD), 1/6.5 for non-Hodgkin lymphoma (NHL), and 1/4.5 for solid tumors (ST). A second series of 95 CFU-GM assays was performed with a fixed number of CD34(+) cells (220/ml). The range of median CFU-GM/CD34 ratios was narrowed to 1/7.0 to 1/5.2, and coefficients of variation for CFU-GM counts decreased by half to 38.1% (NHL), 36.1% (MM), 49.9% (HD), and 22.4% (ST). In addition, CFU-GM scoring was facilitated as the percentages of cultures with >50 CFU/GM/ml decreased from 6.7% to 43.8% when a variable number of CD34(+) cells was plated, to 4.5% to 16.7% when 220 CD34(+) cells/ml were plated. Hence, plating a fixed number of CD34(+) cells in collagen gels improves the CFU-GM assay by eliminating cell number-related variability and reducing pathology-related variability in colony growth.

  13. 6-Mercaptopurine-induced histopathological changes and xanthine oxidase expression in rat placenta.

    PubMed

    Taki, Kenji; Fukushima, Tamio; Ise, Ryota; Horii, Ikuo; Yoshida, Takemi

    2012-01-01

    The placenta secures the embryo and fetus to the endometrium and releases a variety of steroid and peptide hormones that convert the physiology of a female to that of a pregnant female. Chemical-induced alteration or deviation of placental function in the maternal and extraembryonic tissue can ultimately lead to pregnancy loss, congenital malformation and fetal death. The 6-mercaptopurine (6-MP), an anti-leukemic drug, is known to produce undesired effects on some organs, then the placenta/embryo toxicity of 6-MP was investigated in pregnant rats given 60 mg/kg with two intraperitoneal injections on gestation days (GD) 11 and 12. The rats were sacrificed and their placentas were collected on GD13 or 15. On GD15 small and limb-defected embryos were found in the 6-MP-treated rats. Placental weights were significantly reduced on GD15, as well as a reduced number of cells was detected in the labyrinth zone with both the labyrinth and basal zones having thinned. Cleaved caspase-3-positive cells increased in number in the labyrinth zone, while in the basal zone, glycogen cells reduced with cytolysis. The number of spongiotrophoblasts and trophoblastic giant cells also increased by 6-MP treatment. The 6-MP-treatment resulted in the increased xanthine oxidase (Xdh) expression in the placenta, which gene is related to the ischemic condition of tissues. These data suggest that apoptosis of the labyrinth zone cells may lead to decreased materno-fetal exchange. Moreover, subsequent ischemia in the placental tissue may occur and induce Xdh expression.

  14. Phenotypic differences in leucocyte populations among healthy preterm and full-term newborns.

    PubMed

    Quinello, C; Silveira-Lessa, A L; Ceccon, M E J R; Cianciarullo, M A; Carneiro-Sampaio, M; Palmeira, P

    2014-07-01

    The immune system of neonates has been considered functionally immature, and due to their high susceptibility to infections, the aim of this study was to analyse the phenotypic differences in leucocyte populations in healthy preterm and full-term newborns. We evaluated the absolute numbers and frequencies of dendritic cells (DCs) and DC subsets, monocytes and T and B lymphocytes and subsets in the cord blood of healthy moderate and very preterm (Group 1), late preterm (Group 2) and full-term (Group 3) newborns and in healthy adults, as controls, by flow cytometry. The analyses revealed statistically higher absolute cell numbers in neonates compared with adults due to the characteristic leucocytosis of neonates. We observed a lower frequency of CD80(+) myeloid and plasmacytoid DCs in Group 1 and reduced expression of TLR-4 on myeloid DCs in all neonates compared with adults. TLR-2(+) monocytes were reduced in Group 1 compared with Groups 2 and 3, and TLR-4(+) monocytes were reduced in Groups 1 and 2 compared with Group 3. The frequencies and numbers of naïve CD4(+) T and CD19(+) B cells were higher in the three groups of neonates compared with adults, while CD4(+) effector and effector memory T cells and CD19(+) memory B cells were elevated in adults compared with neonates, as expected. Our study provides reference values for leucocytes in cord blood from term and preterm newborns, which may facilitate the identification of immunological deficiencies in protection against extracellular pathogens. © 2014 John Wiley & Sons Ltd.

  15. Effects of blocking developmental cell death on sexually dimorphic calbindin cell groups in the preoptic area and bed nucleus of the stria terminalis

    PubMed Central

    2012-01-01

    Background Calbindin-D28 has been used as a marker for the sexually dimorphic nucleus of the preoptic area (SDN-POA). Males have a distinct cluster of calbindin-immunoreactive (ir) cells in the medial preoptic area (CALB-SDN) that is reduced or absent in females. However, it is not clear whether the sex difference is due to the absolute number of calbindin-ir cells or to cell position (that is, spread), and the cellular mechanisms underlying the sex difference are not known. We examined the number of cells in the CALB-SDN and surrounding regions of C57Bl/6 mice and used mice lacking the pro-death gene, Bax, to test the hypothesis that observed sex differences are due to cell death. Methods Experiment 1 compared the number of cells in the CALB-SDN and surrounding regions in adult males, females, and females injected with estradiol benzoate on the day of birth. In experiment 2, cell number in the CALB-SDN and adjacent regions were compared in wild-type and Bax knockout mice of both sexes. In addition, calbindin-ir cells were quantified within the principal nucleus of the bed nucleus of the stria terminalis (BNSTp), a nearby region that is larger in males due to Bax-dependent cell death. Results Males had more cells in the CALB-SDN as well as in surrounding regions than did females, and estradiol treatment of females at birth masculinized both measures. Bax deletion had no effect on cell number in the CALB-SDN or surrounding regions but increased calbindin-ir cell number in the BNSTp. Conclusions The sex difference in the CALB-SDN of mice results from an estrogen-dependent difference in cell number with no evidence found for greater spread of cells in females. Blocking Bax-dependent cell death does not prevent sex differences in calbindin-ir cell number in the BNST or CALB-SDN but increases calbindin-ir cell number in the BNSTp of both sexes. PMID:22336348

  16. Effects of blocking developmental cell death on sexually dimorphic calbindin cell groups in the preoptic area and bed nucleus of the stria terminalis.

    PubMed

    Gilmore, Richard F; Varnum, Megan M; Forger, Nancy G

    2012-02-15

    Calbindin-D28 has been used as a marker for the sexually dimorphic nucleus of the preoptic area (SDN-POA). Males have a distinct cluster of calbindin-immunoreactive (ir) cells in the medial preoptic area (CALB-SDN) that is reduced or absent in females. However, it is not clear whether the sex difference is due to the absolute number of calbindin-ir cells or to cell position (that is, spread), and the cellular mechanisms underlying the sex difference are not known. We examined the number of cells in the CALB-SDN and surrounding regions of C57Bl/6 mice and used mice lacking the pro-death gene, Bax, to test the hypothesis that observed sex differences are due to cell death. Experiment 1 compared the number of cells in the CALB-SDN and surrounding regions in adult males, females, and females injected with estradiol benzoate on the day of birth. In experiment 2, cell number in the CALB-SDN and adjacent regions were compared in wild-type and Bax knockout mice of both sexes. In addition, calbindin-ir cells were quantified within the principal nucleus of the bed nucleus of the stria terminalis (BNSTp), a nearby region that is larger in males due to Bax-dependent cell death. Males had more cells in the CALB-SDN as well as in surrounding regions than did females, and estradiol treatment of females at birth masculinized both measures. Bax deletion had no effect on cell number in the CALB-SDN or surrounding regions but increased calbindin-ir cell number in the BNSTp. The sex difference in the CALB-SDN of mice results from an estrogen-dependent difference in cell number with no evidence found for greater spread of cells in females. Blocking Bax-dependent cell death does not prevent sex differences in calbindin-ir cell number in the BNST or CALB-SDN but increases calbindin-ir cell number in the BNSTp of both sexes.

  17. Reduced numbers of circulating group 2 innate lymphoid cells in patients with common variable immunodeficiency.

    PubMed

    Geier, Christoph B; Kraupp, Sophie; Bra, David; Eibl, Martha M; Farmer, Jocelyn R; Csomos, Krisztian; Walter, Jolan E; Wolf, Hermann M

    2017-11-01

    Recent studies identified an emerging role of group 2 and 3 innate lymphoid cells (ILCs) as key players in the generation of T-dependent and T-independent antibody production. In this retrospective case-control study, CD117 + ILCs (including the majority of ILC2 and ILC3) were reduced in patients with common variable immunodeficiency (CVID). The reduction in CD117 + ILCs was distinctive to CVID and could not be observed in patients with X-linked agammaglobulinemia. Patients with a more pronounced reduction in CD117 + ILC numbers showed significantly lower numbers of peripheral MZ-like B cells and an increased prevalence of chronic, non-infectious enteropathy. Subsequent phenotyping of ILC subsets in CVID revealed that the reduction in CD117 + ILC numbers is due to a reduction in ILC2 numbers. In vitro expansion of CVID ILC2 in response to IL-2, IL-7, IL-25 and IL-33 was impaired. Furthermore, upregulation of MHCII and IL-2RA in response to IL-2, IL-7, IL-25 and IL-33 was impaired in CVID ILC2. Thus, our results indicate a dysregulation of ILC subsets with a reduction in ILC2 numbers in CVID, however, further studies are needed to explore whether ILC abnormalities are a primary finding or secondary to disease complications encountered in CVID. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. An Interleukin-33-Mast Cell-Interleukin-2 Axis Suppresses Papain-Induced Allergic Inflammation by Promoting Regulatory T Cell Numbers.

    PubMed

    Morita, Hideaki; Arae, Ken; Unno, Hirotoshi; Miyauchi, Kousuke; Toyama, Sumika; Nambu, Aya; Oboki, Keisuke; Ohno, Tatsukuni; Motomura, Kenichiro; Matsuda, Akira; Yamaguchi, Sachiko; Narushima, Seiko; Kajiwara, Naoki; Iikura, Motoyasu; Suto, Hajime; McKenzie, Andrew N J; Takahashi, Takao; Karasuyama, Hajime; Okumura, Ko; Azuma, Miyuki; Moro, Kazuyo; Akdis, Cezmi A; Galli, Stephen J; Koyasu, Shigeo; Kubo, Masato; Sudo, Katsuko; Saito, Hirohisa; Matsumoto, Kenji; Nakae, Susumu

    2015-07-21

    House dust mite-derived proteases contribute to allergic disorders in part by disrupting epithelial barrier function. Interleukin-33 (IL-33), produced by lung cells after exposure to protease allergens, can induce innate-type airway eosinophilia by activating natural helper (NH) cells, a member of group 2 innate lymphoid cells (ILC2), to secrete Th2 type-cytokines. Because IL-33 also can induce mast cells (MCs) to secrete Th2 type-cytokines, MCs are thought to cooperate with NH cells in enhancing protease or IL-33-mediated innate-type airway eosinophilia. However, we found that MC-deficient Kit(W-sh/W-sh) mice exhibited exacerbated protease-induced lung inflammation associated with reduced numbers of regulatory T (Treg) cells. Moreover, IL-2 produced by IL-33-stimulated MCs promoted expansion of numbers of Treg cells, thereby suppressing development of papain- or IL-33-induced airway eosinophilia. We have thus identified a unique anti-inflammatory pathway that can limit induction of innate-type allergic airway inflammation mediated by NH cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Thin film solar cell configuration and fabrication method

    DOEpatents

    Menezes, Shalini

    2009-07-14

    A new photovoltaic device configuration based on an n-copper indium selenide absorber and a p-type window is disclosed. A fabrication method to produce this device on flexible or rigid substrates is described that reduces the number of cell components, avoids hazardous materials, simplifies the process steps and hence the costs for high volume solar cell manufacturing.

  20. Exercise in Adulthood after Irradiation of the Juvenile Brain Ameliorates Long-Term Depletion of Oligodendroglial Cells.

    PubMed

    Bull, Cecilia; Cooper, Christiana; Lindahl, Veronica; Fitting, Sylvia; Persson, Anders I; Grandér, Rita; Alborn, Ann-Marie; Björk-Eriksson, Thomas; Kuhn, H Georg; Blomgren, Klas

    2017-10-01

    Cranial radiation severely affects brain health and function, including glial cell production and myelination. Recent studies indicate that voluntary exercise has beneficial effects on oligodendrogenesis and myelination. Here, we hypothesized that voluntary running would increase oligodendrocyte numbers in the corpus callosum after irradiation of the juvenile mouse brain. The brains of C57Bl/6J male mice were 6 Gy irradiated on postnatal day 9 during the main gliogenic developmental phase, resulting in a loss of oligodendrocyte precursor cells. Upon adulthood, the mice were injected with bromodeoxyuridine and allowed to exercise on a running wheel for four weeks. Cell proliferation and survival, Ascl1 + oligodendrocyte precursor and Olig2 + oligodendrocyte cell numbers as well as CC1 + mature oligodendrocytes were quantified using immunohistology. Radiation induced a reduction in the number of Olig2 + oligodendrocytes by nearly 50% without affecting production or survival of new Olig2 + cells. Ascl1 + cells earlier in the oligodendroglial cell lineage were also profoundly affected, with numbers reduced by half. By three weeks of age, Olig2 + cell numbers had not recovered, and this was paralleled by a volumetric loss in the corpus callosum. The deficiency of Olig2 + oligodendrocytes persisted into adulthood. Additionally, the depletion of Ascl1 + progenitor cells was irreversible, and was even more pronounced at 12 weeks postirradiation compared to day 2 postirradiation. Furthermore, the overall number of CC1 + mature oligodendrocytes decreased by 28%. The depletion of Olig2 + cells in irradiated animals was reversed by 4 weeks of voluntary exercise. Moreover, voluntary exercise also increased the number of Ascl1 + progenitor cells in irradiated animals. Taken together, these results demonstrate that exercise in adulthood significantly ameliorates the profound and long-lasting effects of moderate exposure to immature oligodendrocytes during postnatal development.

  1. The Spleen Is an Ideal Site for Inducing Transplanted Islet Graft Expansion in Mice

    PubMed Central

    Takahashi, Hiroyuki; Kodama, Shohta

    2017-01-01

    Alternative islet transplantation sites have the potential to reduce the marginal number of islets required to ameliorate hyperglycemia in recipients with diabetes. Previously, we reported that T cell leukemia homeobox 1 (Tlx1)+ stem cells in the spleen effectively regenerated into insulin-producing cells in the pancreas of non-obese diabetic mice with end-stage disease. Thus, we investigated the spleen as a potential alternative islet transplantation site. Streptozotocin-induced diabetic C57BL/6 mice received syngeneic islets into the portal vein (PV), beneath the kidney capsule (KC), or into the spleen (SP). The marginal number of islets by PV, KC, or SP was 200, 100, and 50, respectively. Some plasma inflammatory cytokine levels in the SP group were significantly lower than those of the PV group after receiving a marginal number of islets, indicating reduced inflammation in the SP group. Insulin contents were increased 280 days after islet transplantation compared with those immediately following transplantation (p<0.05). Additionally, Tlx1-related genes, including Rrm2b and Pla2g2d, were up-regulated, which indicates that islet grafts expanded in the spleen. The spleen is an ideal candidate for an alternative islet transplantation site because of the resulting reduced inflammation and expansion of the islet graft. PMID:28135283

  2. Regulation of Th1 cells and experimental autoimmune encephalomyelitis (EAE) by glycogen synthase kinase-3

    PubMed Central

    Beurel, Eléonore; Kaidanovich-Beilin, Oksana; Yeh, Wen-I; Song, Ling; Palomo, Valle; Michalek, Suzanne M.; Woodgett, James R.; Harrington, Laurie E.; Eldar-Finkelman, Hagit; Martinez, Ana; Jope, Richard S.

    2013-01-01

    Experimental autoimmune encephalomyelitis (EAE) is a rodent model of multiple sclerosis (MS), a debilitating autoimmune disease of the central nervous system, for which only limited therapeutic interventions are available. Since MS is mediated in part by autoreactive T cells, particularly Th17 and Th1 cells, in the present study, we tested if inhibitors of glycogen synthase kinase-3 (GSK3), previously reported to reduce Th17 cell generation, also alter Th1 cell production or ameliorate EAE. GSK3 inhibitors were found to impede the production of Th1 cells by reducing STAT1 activation. Molecularly reducing the expression of either of the two GSK3 isoforms demonstrated that Th17 cell production was sensitive to reduced levels of GSK3β, and Th1 cell production was inhibited in GSK3α-deficient cells. Administration of the selective GSK3 inhibitors TDZD-8, VP2.51, VP0.7, or L803-mts, significantly reduced the clinical symptoms of MOG35-55-induced EAE in mice, nearly eliminating the chronic progressive phase, and reduced the number of Th17 and Th1 cells in the spinal cord. Administration of TDZD-8 or L803-mts after the initial disease episode ameliorated clinical symptoms in a relapsing/remitting model of PLP139-151-induced EAE. Furthermore, deletion of GSK3β specifically in T cells was sufficient to ameliorate MOG35-55-induced EAE. These results demonstrate isoform-selective effects of GSK3 on T cell generation, therapeutic effects of GSK3 inhibitors in EAE, and that GSK3 inhibition in T cells is sufficient to reduce the severity of EAE, suggesting that GSK3 may be a feasible target for developing new therapeutic interventions for MS. PMID:23606540

  3. Plaquing procedure for infectious hematopoietic necrosis virus

    USGS Publications Warehouse

    Burke, J.A.; Mulcahy, D.

    1980-01-01

    A single overlay plaque assay was designed and evaluated for infectious hematopoietic necrosis virus. Epithelioma papillosum carpio cells were grown in normal atmosphere with tris(hydroxymethyl)aminomethane- or HEPES (N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid)-buffered media. Plaques were larger and formed more quickly on 1- to 3-day-old cell monolayers than on older monolayers. Cell culture medium with a 10% addition of fetal calf serum (MEM 10) or without serum (MEM 0) were the most efficient virus diluents. Dilution with phosphate-buffered saline, saline, normal broth, or deionized water reduced plaque numbers. Variations in the pH (7.0 to 8.0) of a MEM 0 diluent did not affect plaque numbers. Increasing the volume of viral inoculum above 0.15 ml (15- by 60-mm plate) decreased plaquing efficiency. Significantly more plaques occurred under gum tragacanth and methylcellulose than under agar or agarose overlays. Varying the pH (6.8 to 7.4) of methylcellulose overlays did not significantly change plaque numbers. More plaques formed under the thicker overlays of both methylcellulose and gum tragacanth. Tris(hydroxymethyl)aminomethane and HEPES performed equally well, buffering either medium or overlay. Plaque numbers were reduced when cells were rinsed after virus adsorption or less than 1 h was allowed for adsorption. Variation in adsorption time between 60 and 180 min did not change plaque numbers. The mean plaque formation time was 7 days at 16 degrees C. The viral dose response was linear when the standardized assay was used.

  4. Extracorporeal photopheresis reduces the number of mononuclear cells that produce pro-inflammatory cytokines, when tested ex-vivo.

    PubMed

    Bladon, John; Taylor, Peter

    2002-01-01

    Extracorporeal photopheresis (ECP) has been shown to be clinically effective in the treatment of many T cell-mediated conditions. ECP's mechanism of action includes the induction of apoptosis and the release of pro-inflammatory cytokines. Recently, we have observed early lymphoid apoptosis, detectable immediately post ECP. We were interested to determine what influence ECP has on pro-inflammatory cytokine secretion at this early pre-infusion stage. Samples from 6 cutaneous T cell lymphoma (CTCL) and 5 graft versus host disease (GvHD) patients were taken pre ECP and immediately post ECP, prior to re-infusion. Following separation, the PBMCs were added to a cell culture medium and stimulated with PMA, Ionomycin, and Brefeldin A for 6 hours. Using flow cytometry, intracellular cytokine expression of IFNgamma and TNFalpha was determined in the T cell population. The monocytes were evaluated for IL6, IFNgamma, IL12, and TNFalpha. For both patient groups, the number of IFNgamma-expressing T cells fell significantly at re-infusion, whilst both T cell- and monocyte-expressing TNFalpha levels were reduced at re-infusion. All other cytokines tested showed no significant change post ECP. For GvHD, pro-inflammatory cytokines have a pathological role. Their down-regulation may have a direct clinical benefit. However, the reduction in the number of IFNgamma- and TNFalpha-expressing mononuclear cells means, at this early stage, it is unlikely that these cytokines assist in the removal of the malignant Th2 cells present in CTCL. Copyright 2002 Wiley-Liss, Inc.

  5. Bacterial lysate increases the percentage of natural killer T cells in peripheral blood and alleviates asthma in children.

    PubMed

    Lu, Yanming; Li, Yaqin; Xu, Lingyun; Xia, Min; Cao, Lanfang

    2015-01-01

    To assess the efficacy of conventional treatment combined with bacterial lysate [OM-85 Broncho-Vaxom (BV)] in the prevention of asthma in children as well as its influence on the number of natural killer T (NKT) cells and their cytokine production. Sixty children diagnosed with asthma were divided into either a BV-treated group (with oral OM-85 BV) or a conventional inhaled corticosteroid (ICS) group. The numbers of NKT cells and CD4+ NKT cells were measured in the peripheral blood by flow cytometry. The levels of IFN-γ, IL-4, and IL-10 after the blood cells had been cultured with an NKT cell agonist were detected by ELISA. After therapy, asthma attacks were significantly decreased compared with before therapy in both groups. However, after therapy, respiratory tract infections were reduced compared with before therapy in the BV-treated group only. Additionally, the frequency of asthma attacks and use of antibiotics in the BV-treated group were lower than in the ICS group. With BV treatment, the numbers of peripheral blood NKT cells and CD4+ NKT cells were higher after therapy than before therapy. After therapy, the ratio of IFN-γ/IL-4 and IL-10 levels were increased in the BV-treated group, whereas IL-4 was reduced in the BV-treated group compared with the ICS group. BV combined with conventional asthma treatment can prevent recurrent respiratory tract infections and suppress the severity of asthma attacks, possibly by altering the rates and cytokines of NKT cells. © 2015 S. Karger AG, Basel

  6. Myenteric denervation differentially reduces enteroendocrine serotonin cell population in rats during postnatal development.

    PubMed

    Hernandes, Luzmarina; Fernandes, Marilda da Cruz; Pereira, Lucieni Cristina Marques da Silva; Freitas, Priscila de; Gama, Patrícia; Alvares, Eliana Parisi

    2006-05-01

    The enteric nervous and enteroendocrine systems regulate different processes in the small intestine. Ablation of myenteric plexus with benzalkonium chloride (BAC) stimulates epithelial cell proliferation, whereas endocrine serotonin cells may inhibit the process. To evaluate the connection between the systems and the influence of myenteric plexus on serotoninergic cells in rats during postnatal development, the ileal plexus was partially removed with BAC. Rats were treated at 13 or 21 days and sacrificed after 15 days. The cell bodies of myenteric neurons were stained by beta NADH-diaphorase to detect the extension of denervation. The number of enteroendocrine cells in the ileum was estimated in crypts and villi in paraffin sections immunostained for serotonin. The number of neurons was reduced by 27.6 and 45% in rats treated on the 13th and 21st days, respectively. We tried to establish a correlation of denervation and the serotonin population according to the age of treatment. We observed a reduction of immunolabelled cells in the crypts of rats treated at 13 days, whereas this effect was seen in the villi of rats denervated at 21 days. These results suggest that the enteric nervous system might control the enteroendocrine cell population and this complex mechanism could be correlated to changes in cell proliferation.

  7. Single-cell lineage tracking analysis reveals that an established cell line comprises putative cancer stem cells and their heterogeneous progeny

    PubMed Central

    Sato, Sachiko; Rancourt, Ann; Sato, Yukiko; Satoh, Masahiko S.

    2016-01-01

    Mammalian cell culture has been used in many biological studies on the assumption that a cell line comprises putatively homogeneous clonal cells, thereby sharing similar phenotypic features. This fundamental assumption has not yet been fully tested; therefore, we developed a method for the chronological analysis of individual HeLa cells. The analysis was performed by live cell imaging, tracking of every single cell recorded on imaging videos, and determining the fates of individual cells. We found that cell fate varied significantly, indicating that, in contrast to the assumption, the HeLa cell line is composed of highly heterogeneous cells. Furthermore, our results reveal that only a limited number of cells are immortal and renew themselves, giving rise to the remaining cells. These cells have reduced reproductive ability, creating a functionally heterogeneous cell population. Hence, the HeLa cell line is maintained by the limited number of immortal cells, which could be putative cancer stem cells. PMID:27003384

  8. Tiotropium effects on airway inflammatory events in the cat as an animal model for acute cigarette smoke-induced lung inflammation.

    PubMed

    Kolahian, Saeed; Shahbazfar, Amir Ali; Tayefi-Nasrabadi, Hossein; Keyhanmanesh, Rana; Ansarin, Khalil; Ghasemi, Hamid; Rashidi, Amir Hossein; Gosens, Reinoud; Hanifeh, Mohsen

    2014-08-01

    Chronic obstructive pulmonary disease is an inflammatory lung disease mainly caused by tobacco smoke inhalation. Fifteen healthy adult male cats were categorized into 3 groups: (1) control group, (2) exposed to cigarette smoke (CS), and (3) exposed to CS treated with tiotropium. Increases in clinical signs and airway responsiveness in CS cats were found compared to control animals. The airway hyperresponsiveness and clinical signs were significantly attenuated by treatment with tiotropium. The CS-induced pulmonary release of interleukin-6, interleukin-8, monocyte chemotactic protein-1, and tumor necrosis factor alpha was reduced in the tiotropium group. Exposure to CS significantly increased total inflammatory cells number in bronchoalveolar lavage fluid, which was significantly attenuated by treatment with tiotropium. The number of macrophages, eosinophils and neutrophils and lymphocytes was increased after exposure to CS. Tiotropium significantly reduced the number of all these cells. Perivascular, peribronchiolar infiltration of inflammatory cells and Reid index increased in the CS group. Treatment with tiotropium significantly reduced these parameters to control level. Enhanced lipid peroxidation with concomitant reduction of antioxidants status was observed in the CS group. Tiotropium significantly reduced the serum, lung lavage, lung, and tracheal tissue lipid peroxides to near control levels. Tiotropium also decreased lung and tracheal protein leakage, and prevented the reduction of total antioxidant status in serum, lung lavage, lung and tracheal tissue of the CS group. Cigarette smoke increases airway responsiveness and inflammation in a cat model of CS induced lung inflammation. It can effectively be reduced by treatment with tiotropium.

  9. Age-Related Changes in Mouse Taste Bud Morphology, Hormone Expression, and Taste Responsivity

    PubMed Central

    Shin, Yu-Kyong; Cong, Wei-na; Cai, Huan; Kim, Wook; Maudsley, Stuart; Martin, Bronwen

    2012-01-01

    Normal aging is a complex process that affects every organ system in the body, including the taste system. Thus, we investigated the effects of the normal aging process on taste bud morphology, function, and taste responsivity in male mice at 2, 10, and 18 months of age. The 18-month-old animals demonstrated a significant reduction in taste bud size and number of taste cells per bud compared with the 2- and 10-month-old animals. The 18-month-old animals exhibited a significant reduction of protein gene product 9.5 and sonic hedgehog immunoreactivity (taste cell markers). The number of taste cells expressing the sweet taste receptor subunit, T1R3, and the sweet taste modulating hormone, glucagon-like peptide-1, were reduced in the 18-month-old mice. Concordant with taste cell alterations, the 18-month-old animals demonstrated reduced sweet taste responsivity compared with the younger animals and the other major taste modalities (salty, sour, and bitter) remained intact. PMID:22056740

  10. Age-related changes in mouse taste bud morphology, hormone expression, and taste responsivity.

    PubMed

    Shin, Yu-Kyong; Cong, Wei-na; Cai, Huan; Kim, Wook; Maudsley, Stuart; Egan, Josephine M; Martin, Bronwen

    2012-04-01

    Normal aging is a complex process that affects every organ system in the body, including the taste system. Thus, we investigated the effects of the normal aging process on taste bud morphology, function, and taste responsivity in male mice at 2, 10, and 18 months of age. The 18-month-old animals demonstrated a significant reduction in taste bud size and number of taste cells per bud compared with the 2- and 10-month-old animals. The 18-month-old animals exhibited a significant reduction of protein gene product 9.5 and sonic hedgehog immunoreactivity (taste cell markers). The number of taste cells expressing the sweet taste receptor subunit, T1R3, and the sweet taste modulating hormone, glucagon-like peptide-1, were reduced in the 18-month-old mice. Concordant with taste cell alterations, the 18-month-old animals demonstrated reduced sweet taste responsivity compared with the younger animals and the other major taste modalities (salty, sour, and bitter) remained intact.

  11. Combination of the angiotensin-converting enzyme inhibitor perindopril and the diuretic indapamide activate postnatal vasculogenesis in spontaneously hypertensive rats.

    PubMed

    You, Dong; Cochain, Clément; Loinard, Céline; Vilar, José; Mees, Barend; Duriez, Micheline; Lévy, Bernard I; Silvestre, Jean-Sébastien

    2008-06-01

    Cardiovascular risk factors are associated with reduction in both the number and function of vascular progenitor cells. We hypothesized that 1) hypertension abrogates postnatal vasculogenesis, and 2) antihypertensive treatment based on the combination of perindopril (angiotensin-converting enzyme inhibitor) and indapamide (diuretic) may counteract hypertension-induced alteration in progenitor cell-related effects. Postischemic neovascularization was significantly lower in untreated spontaneously hypertensive rats (SHRs) compared with Wistar Kyoto (WKY) rats (p < 0.05). Treatment of SHRs with perindopril and the combination of perindopril/indapamide reduced the blood pressure levels and normalized vessel growth in ischemic area. Cotreatment with perindopril and indapamide increased vascular endothelial growth factor and endothelial nitric-oxide synthase protein contents, two key proangiogenic factors. It is interesting to note that 14 days after bone marrow mononuclear cell (BM-MNC) transplantation, revascularization was significantly lower in ischemic SHRs receiving BM-MNCs isolated from SHRs compared with those receiving BM-MNCs isolated from WKY rats (p < 0.05). Alteration in proangiogenic potential of SHR BM-MNCs was probably related to the reduction in their ability to differentiate into endothelial progenitor cells in vitro. Furthermore, the number of circulating endothelial progenitor cells (EPCs) was reduced by 3.1-fold in SHRs compared with WKY rats (p < 0.001). Treatments with perindopril or perindopril/indapamide restored the ability of BM-MNCs to differentiate in vitro into EPCs, increased the number of circulating EPCs, and re-established BM-MNC proangiogenic effects. Therefore, hypertension is associated with a decrease in the number of circulating progenitor cells and in the BM-MNC proangiogenic potential, probably leading to vascular complications in this setting. The combination of perindopril and indapamide counteracts hypertension-induced alterations in progenitor cell-related effects and restores blood vessel growth.

  12. Macrophage-Inducible C-Type Lectin Mincle-Expressing Dendritic Cells Contribute to Control of Splenic Mycobacterium bovis BCG Infection in Mice

    PubMed Central

    Behler, Friederike; Maus, Regina; Bohling, Jennifer; Knippenberg, Sarah; Kirchhof, Gabriele; Nagata, Masahiro; Jonigk, Danny; Izykowski, Nicole; Mägel, Lavinia; Welte, Tobias; Yamasaki, Sho

    2014-01-01

    The macrophage-inducible C-type lectin Mincle has recently been identified to be a pattern recognition receptor sensing mycobacterial infection via recognition of the mycobacterial cell wall component trehalose-6′,6-dimycolate (TDM). However, its role in systemic mycobacterial infections has not been examined so far. Mincle-knockout (KO) mice were infected intravenously with Mycobacterium bovis BCG to mimic the systemic spread of mycobacteria under defined experimental conditions. After intravenous infection with M. bovis BCG, Mincle-KO mice responded with significantly higher numbers of mycobacterial CFU in spleen and liver, while reduced granuloma formation was observed only in the spleen. At the same time, reduced Th1 cytokine production and decreased numbers of gamma interferon-producing T cells were observed in the spleens of Mincle-KO mice relative to the numbers in the spleens of wild-type (WT) mice. The effect of adoptive transfer of defined WT leukocyte subsets generated from bone marrow cells of zDC+/DTR mice (which bear the human diphtheria toxin receptor [DTR] under the control of the classical dendritic cell-specific zinc finger transcription factor zDC) to specifically deplete Mincle-expressing classical dendritic cells (cDCs) but not macrophages after diphtheria toxin application on the numbers of splenic and hepatic CFU and T cell subsets was then determined. Adoptive transfer experiments revealed that Mincle-expressing splenic cDCs rather than Mincle-expressing macrophages contributed to the reconstitution of attenuated splenic antimycobacterial immune responses in Mincle-KO mice after intravenous challenge with BCG. Collectively, we show that expression of Mincle, particularly by cDCs, contributes to the control of splenic M. bovis BCG infection in mice. PMID:25332121

  13. Induction of Protective Immunity against Eimeria tenella, Eimeria maxima, and Eimeria acervulina Infections Using Dendritic Cell-Derived Exosomes

    PubMed Central

    Gallego, Margarita; Lee, Sung Hyen; Lillehoj, Hyun Soon; Quilez, Joaquin; Lillehoj, Erik P.; Sánchez-Acedo, Caridad

    2012-01-01

    This study describes a novel immunization strategy against avian coccidiosis using exosomes derived from Eimeria parasite antigen (Ag)-loaded dendritic cells (DCs). Chicken intestinal DCs were isolated and pulsed in vitro with a mixture of sporozoite-extracted Ags from Eimeria tenella, E. maxima, and E. acervulina, and the cell-derived exosomes were isolated. Chickens were nonimmunized or immunized intramuscularly with exosomes and subsequently noninfected or coinfected with E. tenella, E. maxima, and E. acervulina oocysts. Immune parameters compared among the nonimmunized/noninfected, nonimmunized/infected, and immunized/infected groups were the numbers of cells secreting Th1 cytokines, Th2 cytokines, interleukin-16 (IL-16), and Ag-reactive antibodies in vitro and in vivo readouts of protective immunity against Eimeria infection. Cecal tonsils, Peyer's patches, and spleens of immunized and infected chickens had increased numbers of cells secreting the IL-16 and the Th1 cytokines IL-2 and gamma interferon, greater Ag-stimulated proliferative responses, and higher numbers of Ag-reactive IgG- and IgA-producing cells following in vitro stimulation with the sporozoite Ags compared with the nonimmunized/noninfected and nonimmunized/infected controls. In contrast, the numbers of cells secreting the Th2 cytokines IL-4 and IL-10 were diminished in immunized and infected chickens compared with the nonimmunized/noninfected and the nonimmunized/infected controls. Chickens immunized with Ag-loaded exosomes and infected in vivo with Eimeria oocysts had increased body weight gains, reduced feed conversion ratios, diminished fecal oocyst shedding, lessened intestinal lesion scores, and reduced mortality compared with the nonimmunized/infected controls. These results suggest that successful field vaccination against avian coccidiosis using exosomes derived from DCs incubated with Ags isolated from Eimeria species may be possible. PMID:22354026

  14. Targeted deletion of c-Met in thymic epithelial cells leads to an autoimmune phenotype

    PubMed Central

    Su, Min; Hu, Rong; Song, Yinhong; Liu, Yalan; Lai, Laijun

    2017-01-01

    Hepatocyte growth factor (HGF) and its receptor c-Met signaling have been implicated in regulating various types of cells including epithelial cells. We have previously reported that c-Met is expressed by thymic epithelial cells (TECs), and that in vivo administration of hybrid cytokines containing IL-7 and the beta- or alpha-chain of HGF significantly increase the number of TECs. In order to study the role of c-Met signaling in TECs, we generated conditional knockout (cKO) mice in which c-Met was specifically deleted in TECs using a Foxn1-Cre transgene. We show here that c-Met deficiency in TECs results in age-progressive reduction in TEC number and reduced number of regulatory T cells. Consequently, c-Met TEC cKO mice displayed an autoimmune phenotype. Thus, c-Met signaling in TECs is important for the maintenance of TECs and immune self-tolerance. PMID:29363160

  15. Long-term type 1 diabetes influences haematopoietic stem cells by reducing vascular repair potential and increasing inflammatory monocyte generation in a murine model.

    PubMed

    Hazra, S; Jarajapu, Y P R; Stepps, V; Caballero, S; Thinschmidt, J S; Sautina, L; Bengtsson, N; Licalzi, S; Dominguez, J; Kern, T S; Segal, M S; Ash, J D; Saban, D R; Bartelmez, S H; Grant, M B

    2013-03-01

    We sought to determine the impact of long-standing type 1 diabetes on haematopoietic stem/progenitor cell (HSC) number and function and to examine the impact of modulating glycoprotein (GP)130 receptor in these cells. Wild-type, gp130(-/-) and GFP chimeric mice were treated with streptozotocin to induce type 1 diabetes. Bone marrow (BM)-derived cells were used for colony-formation assay, quantification of side population (SP) cells, examination of gene expression, nitric oxide measurement and migration studies. Endothelial progenitor cells (EPCs), a population of vascular precursors derived from HSCs, were compared in diabetic and control mice. Cytokines were measured in BM supernatant fractions by ELISA and protein array. Flow cytometry was performed on enzymatically dissociated retina from gfp(+) chimeric mice and used to assess BM cell recruitment to the retina, kidney and blood. BM cells from the 12-month-diabetic mice showed reduced colony-forming ability, depletion of SP-HSCs with a proportional increase in SP-HSCs residing in hypoxic regions of BM, decreased EPC numbers, and reduced eNos (also known as Nos3) but increased iNos (also known as Nos2) and oxidative stress-related genes. BM supernatant fraction showed increased cytokines, GP130 ligands and monocyte/macrophage stimulating factor. Retina, kidney and peripheral blood showed increased numbers of CD11b(+)/CD45(hi)/ CCR2(+)/Ly6C(hi) inflammatory monocytes. Diabetic gp130(-/-) mice were protected from development of diabetes-induced changes in their HSCs. The BM microenvironment of type 1 diabetic mice can lead to changes in haematopoiesis, with generation of more monocytes and fewer EPCs contributing to development of microvascular complications. Inhibition of GP130 activation may serve as a therapeutic strategy to improve the key aspects of this dysfunction.

  16. Zic deficiency in the cortical marginal zone and meninges results in cortical lamination defects resembling those in type II lissencephaly.

    PubMed

    Inoue, Takashi; Ogawa, Masaharu; Mikoshiba, Katsuhiko; Aruga, Jun

    2008-04-30

    The formation of the highly organized cortical structure depends on the production and correct placement of the appropriate number and types of neurons. The Zic family of zinc-finger transcription factors plays essential roles in regulating the proliferation and differentiation of neuronal progenitors in the medial forebrain and the cerebellum. Examination of the expression of Zic genes demonstrated that Zic1, Zic2, and Zic3 were expressed by the progenitor cells in the septum and cortical hem, the sites of generation of the Cajal-Retzius (CR) cells. Immunohistochemical studies have revealed that Zic proteins were abundantly expressed in the meningeal cells and that the majority of the CR cells distributed in the medial and dorsal cortex also expressed Zic proteins in the mid-late embryonic and postnatal cortical marginal zones. During embryonic cortical development, Zic1/Zic3 double-mutant and hypomorphic Zic2 mutant mice showed a reduction in the number of CR cells in the rostral cortex, whereas the cell number remained unaffected in the caudal cortex. These mutants also showed mislocalization of the CR cells and cortical lamination defects, resembling the changes noted in type II (cobblestone) lissencephaly, throughout the brain. In the Zic1/3 mutant, reduced proliferation of the meningeal cells was observed before the thinner and disrupted organization of the pial basement membrane (BM) with reduced expression of the BM components and the meningeal cell-derived secretory factor. These defects correlated with the changes in the end feet morphology of the radial glial cells. These findings indicate that the Zic genes play critical roles in cortical development through regulating the proliferation of meningeal cells and the pial BM assembly.

  17. Th17/T regulator cell balance and NK cell numbers in relation to psychosis liability and social stress reactivity.

    PubMed

    Counotte, J; Drexhage, H A; Wijkhuijs, J M; Pot-Kolder, R; Bergink, V; Hoek, H W; Veling, W

    2018-03-01

    Psychotic disorders are characterized by a deranged immune system, including altered number and function of Natural Killer (NK) and T cells. Psychotic disorders arise from an interaction between genetic vulnerability and exposure to environmental risk factors. Exposure to social adversity during early life is particularly relevant to psychosis risk and is thought to increase reactivity to subsequent minor daily social stressors. Virtual reality allows controlled experimental exposure to virtual social stressors. To investigate the interplay between social adversity during early life, cell numbers of NK cells and T helper subsets and social stress reactivity in relation to psychosis liability. Circulating numbers of Th1, Th2, Th17, T regulator and NK cells were determined using flow cytometry in 80 participants with low psychosis liability (46 healthy controls and 34 siblings) and 53 participants with high psychosis liability (14 ultra-high risk (UHR) patients and 39 recent-onset psychosis patients), with and without the experience of childhood trauma. We examined if cell numbers predicted subjective stress when participants were exposed to social stressors (crowdedness, hostility and being part of an ethnic minority) in a virtual reality environment. There were no significant group differences in Th1, Th2, Th17, T regulator and NK cell numbers between groups with a high or low liability for psychosis. However, in the high psychosis liability group, childhood trauma was associated with increased Th17 cell numbers (p = 0.028). Moreover, in the high psychosis liability group increased T regulator and decreased NK cell numbers predicted stress experience during exposure to virtual social stressors (p = 0.015 and p = 0.009 for T regulator and NK cells, respectively). A deranged Th17/T regulator balance and a reduced NK cell number are associated intermediate biological factors in the relation childhood trauma, psychosis liability and social stress reactivity. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Effect of Water Stress on Cotton Leaves 1

    PubMed Central

    Berlin, Jerry; Quisenberry, J. E.; Bailey, Franklin; Woodworth, Margaret; McMichael, B. L.

    1982-01-01

    Palisade cells from fully expanded leaves from irrigated and nonirrigated, field grown cotton (Gossypium hirsutum L. cv. Paymaster 266) were subjected to a microscopic examination to evaluate the effect of water stress on subcellular structures. The water potential difference between the two treatments was 13 bars at the time of sampling. The dimensions of the palisade cells and their density per unit leaf area were determined by light microscopy. Palisade cells from stressed plants had the same diameter, but were taller than their counterparts in irrigated plants. The density of the palisade cells was the same in both treatments as was the fractional volume of the intercellular space. It was concluded that the reduced leaf area observed in the stressed plants resulted primarily from a mitotic sensitivity to water stress. Further, expansion of palisade cells was not inhibited by the stress imposed in this study. Morphometric analysis of electron micrographs was used to evaluate the subcellular structure of palisade cells from nonstressed and stressed plants. The fractional volumes of cell walls, total cytoplasm, chloroplasts, starch granules, intrachloroplast bodies, mitochondria, peroxisomes, and central vacuoles were determined. The surface densities of grana and stroma lamellae, outer chloroplast membranes, mitochondrial cristae, endoplasmic reticulum and Golgi cisternae were also measured. The number of chloroplasts, mitochondria, and peroxisomes were determined. These data were expressed as actual volumes, areas, and numbers per palisade cell for each treatment. Palisade cells from stressed plants had thinner cell walls, larger central vacuoles and approximately the same amount of cytoplasm compared to cells from nonstressed plants. Within the cytoplasm, stressed plants had more but smaller chloroplasts with increased grana and stroma lamellae surfaces, larger mithchondria with reduced cristae surfaces, smaller peroxisomes and reduced membrane surfaces of endoplasmic reticulum and Golgi cisternae. Images Fig. 1 PMID:16662453

  19. Adenovirus-mediated Foxp3 expression in lung epithelial cells reduces airway inflammation in ovalbumin and cockroach-induced asthma model

    PubMed Central

    Park, Soojin; Chung, Hwan-Suck; Shin, Dasom; Jung, Kyung-Hwa; Lee, Hyunil; Moon, Junghee; Bae, Hyunsu

    2016-01-01

    Foxp3 is a master regulator of CD4+CD25+ regulatory T-cell (Treg) function and is also a suppressor of SKP2 and HER2/ErbB2. There are an increasing number of reports describing the functions of Foxp3 in cell types other than Tregs. In this context, we evaluated the functions of Foxp3 in ovalbumin- and cockroach-induced asthma models. Foxp3-EGFP-expressing adenovirus or EGFP control adenovirus was administered intratracheally (i.t.), followed by challenge with ovalbumin (OVA) or cockroach extract to induce asthma. Th2 cytokine and immune cell profiles of bronchoalveolar lavage fluid (BALF), as well as serum IgE levels, were analyzed. Histological analyses were also conducted to demonstrate the effects of Foxp3 expression on airway remodeling, goblet cell hyperplasia and inflammatory responses in the lung. Adenoviral Foxp3 was expressed only in lung epithelial cells, and not in CD4+ or CD8+ cells. BALF from Foxp3 gene-delivered mice showed significantly reduced numbers of total immune cells, eosinophils, neutrophils, macrophages and lymphocytes in response to cockroach allergen or OVA. In addition, Foxp3 expression in the lung reduced the levels of Th2 cytokines and IgE in BALF and serum, respectively. Moreover, histopathological analysis also showed that Foxp3 expression substantially inhibited eosinophil infiltration into the airways, goblet cell hyperplasia and smooth muscle cell hypertrophy. Furthermore, when Tregs were depleted by diphtheria toxin in Foxp3DTR mice, the anti-asthmatic functions of Foxp3 were not altered in OVA-challenged asthma models. In this study, our results suggest that Foxp3 expression in lung epithelial cells, and not in Tregs, inhibited OVA- and cockroach extract-induced asthma. PMID:27633092

  20. Aging increases microglial proliferation, delays cell migration, and decreases cortical neurogenesis after focal cerebral ischemia.

    PubMed

    Moraga, Ana; Pradillo, Jesús M; García-Culebras, Alicia; Palma-Tortosa, Sara; Ballesteros, Ivan; Hernández-Jiménez, Macarena; Moro, María A; Lizasoain, Ignacio

    2015-05-10

    Aging is not just a risk factor of stroke, but it has also been associated with poor recovery. It is known that stroke-induced neurogenesis is reduced but maintained in the aged brain. However, there is no consensus on how neurogenesis is affected after stroke in aged animals. Our objective is to determine the role of aging on the process of neurogenesis after stroke. We have studied neurogenesis by analyzing proliferation, migration, and formation of new neurons, as well as inflammatory parameters, in a model of cerebral ischemia induced by permanent occlusion of the middle cerebral artery in young- (2 to 3 months) and middle-aged mice (13 to 14 months). Aging increased both microglial proliferation, as shown by a higher number of BrdU(+) cells and BrdU/Iba1(+) cells in the ischemic boundary and neutrophil infiltration. Interestingly, aging increased the number of M1 monocytes and N1 neutrophils, consistent with pro-inflammatory phenotypes when compared with the alternative M2 and N2 phenotypes. Aging also inhibited (subventricular zone) SVZ cell proliferation by decreasing both the number of astrocyte-like type-B (prominin-1(+)/epidermal growth factor receptor (EGFR)(+)/nestin(+)/glial fibrillary acidic protein (GFAP)(+) cells) and type-C cells (prominin-1(+)/EGFR(+)/nestin(-)/Mash1(+) cells), and not affecting apoptosis, 1 day after stroke. Aging also inhibited migration of neuroblasts (DCX(+) cells), as indicated by an accumulation of neuroblasts at migratory zones 14 days after injury; consistently, aged mice presented a smaller number of differentiated interneurons (NeuN(+)/BrdU(+) and GAD67(+) cells) in the peri-infarct cortical area 14 days after stroke. Our data confirm that stroke-induced neurogenesis is maintained but reduced in aged animals. Importantly, we now demonstrate that aging not only inhibits proliferation of specific SVZ cell subtypes but also blocks migration of neuroblasts to the damaged area and decreases the number of new interneurons in the cortical peri-infarct area. Thus, our results highlight the importance of using aged animals for translation to clinical studies.

  1. A Novel Assay for Easy and Rapid Quantification of Helicobacter pylori Adhesion.

    PubMed

    Skindersoe, Mette E; Rasmussen, Lone; Andersen, Leif P; Krogfelt, Karen A

    2015-06-01

    Reducing adhesion of Helicobacter pylori to gastric epithelial cells could be a new way to counteract infections with this organism. We here present a novel method for quantification of Helicobacter pylori adhesion to cells. Helicobacter pylori is allowed to adhere to AGS or MKN45g cells in a 96-well microtiter plate. Then wells are added saponin, which lyses the cells without affecting the bacteria. After addition of alamarBlue(®) (resazurin) and 1- to 2-hour incubation, fluorescence measurements can be used to quantify the number of adherent bacteria. By use of the method, we demonstrate that adhesion of both a sabA and babA deletion mutant of H. pylori is significantly reduced compared to the wild type. The method offers a number of applications and may be used to compare the adherence potential of different strains of H. pylori to either cells or different materials or to screen for potential anti-adhesive compounds. The results presented here suggest that this easy and reproducible assay is well suited for quantitative investigation of H. pylori adhesion. © 2015 John Wiley & Sons Ltd.

  2. Effect of Aging on Periodontal Inflammation, Microbial Colonization, and Disease Susceptibility

    PubMed Central

    Wu, Y.; Dong, G.; Xiao, W.; Xiao, E.; Miao, F.; Syverson, A.; Missaghian, N.; Vafa, R.; Cabrera-Ortega, A.A.; Rossa, C.; Graves, D.T.

    2016-01-01

    Periodontitis is a chronic inflammatory disease induced by a biofilm that forms on the tooth surface. Increased periodontal disease is associated with aging. We investigated the effect of aging on challenge by oral pathogens, examining the host response, colonization, and osteoclast numbers in aged versus young mice. We also compared the results with mice with lineage-specific deletion of the transcription factor FOXO1, which reduces dendritic cell (DC) function. Periodontitis was induced by oral inoculation of Porphyromonas gingivalis and Fusobacterium nucleatum in young (4 to 5 mo) and aged (14 to 15 mo) mice. Aged mice as well as mice with reduced DC function had decreased numbers of DCs in lymph nodes, indicative of a diminished host response. In vitro studies suggest that reduced DC numbers in lymph nodes of aged mice may involve the effect of advanced glycation end products on DC migration. Surprisingly, aged mice but not mice with genetically altered DC function had greater production of antibody to P. gingivalis, greater IL-12 expression, and more plasma cells in lymph nodes following oral inoculation as compared with young mice. The greater adaptive immune response in aged versus young mice was linked to enhanced levels of P. gingivalis and reduced bacterial diversity. Thus, reduced bacterial diversity in aged mice may contribute to increased P. gingivalis colonization following inoculation and increased periodontal disease susceptibility, reflected by higher TNF levels and osteoclast numbers in the periodontium of aged versus young mice. PMID:26762510

  3. Effect of Aging on Periodontal Inflammation, Microbial Colonization, and Disease Susceptibility.

    PubMed

    Wu, Y; Dong, G; Xiao, W; Xiao, E; Miao, F; Syverson, A; Missaghian, N; Vafa, R; Cabrera-Ortega, A A; Rossa, C; Graves, D T

    2016-04-01

    Periodontitis is a chronic inflammatory disease induced by a biofilm that forms on the tooth surface. Increased periodontal disease is associated with aging. We investigated the effect of aging on challenge by oral pathogens, examining the host response, colonization, and osteoclast numbers in aged versus young mice. We also compared the results with mice with lineage-specific deletion of the transcription factor FOXO1, which reduces dendritic cell (DC) function. Periodontitis was induced by oral inoculation of Porphyromonas gingivalis and Fusobacterium nucleatum in young (4 to 5 mo) and aged (14 to 15 mo) mice. Aged mice as well as mice with reduced DC function had decreased numbers of DCs in lymph nodes, indicative of a diminished host response. In vitro studies suggest that reduced DC numbers in lymph nodes of aged mice may involve the effect of advanced glycation end products on DC migration. Surprisingly, aged mice but not mice with genetically altered DC function had greater production of antibody to P. gingivalis, greater IL-12 expression, and more plasma cells in lymph nodes following oral inoculation as compared with young mice. The greater adaptive immune response in aged versus young mice was linked to enhanced levels of P. gingivalis and reduced bacterial diversity. Thus, reduced bacterial diversity in aged mice may contribute to increased P. gingivalis colonization following inoculation and increased periodontal disease susceptibility, reflected by higher TNF levels and osteoclast numbers in the periodontium of aged versus young mice. © International & American Associations for Dental Research 2016.

  4. An age-related numerical and functional deficit in CD19(+) CD24(hi) CD38(hi) B cells is associated with an increase in systemic autoimmunity.

    PubMed

    Duggal, Niharika A; Upton, Jane; Phillips, Anna C; Sapey, Elizabeth; Lord, Janet M

    2013-10-01

    Autoimmunity increases with aging indicative of reduced immune tolerance, but the mechanisms involved are poorly defined. In recent years, subsets of B cells with immunoregulatory properties have been identified in murine models of autoimmune disorders, and these cells downregulate immune responses via secretion of IL10. In humans, immature transitional B cells with a CD19(+) CD24(hi) CD38(hi) phenotype have been reported to regulate immune responses via IL10 production. We found the frequency and numbers of CD19(+) CD24(hi) CD38(hi) cells were reduced in the PBMC pool with age. IL10 expression and secretion following activation via either CD40, or Toll-like receptors was also impaired in CD19(+) CD24(hi) CD38(hi) B cells from healthy older donors. When investigating the mechanisms involved, we found that CD19(+) CD24(hi) CD38(hi) B-cell function was compromised by age-related effects on both T cells and B cells: specifically, CD40 ligand expression was lower in CD4 T cells from older donors following CD3 stimulation, and signalling through CD40 was impaired in CD19(+) CD24(hi) CD38(hi) B cells from elders as evidenced by reduced phosphorylation (Y705) and activation of STAT3. However, there was no age-associated change in expression of costimulatory molecules CD80 and CD86 on CD19(+) CD24(hi) CD38(hi) cells, suggesting IL10-dependent immune suppression is impaired, but contact-dependent suppressive capacity is intact with age. Finally, we found a negative correlation between CD19(+) CD24(hi) CD38(hi) B-cell IL10 production and autoantibody (Rheumatoid factor) levels in older adults. We therefore propose that an age-related decline in CD19(+) CD24(hi) CD38(hi) B cell number and function may contribute towards the increased autoimmunity and reduced immune tolerance seen with aging. © 2013 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  5. Treatment of hypoxic-ischemic encephalopathy in mouse by transplantation of embryonic stem cell-derived cells.

    PubMed

    Ma, Jie; Wang, Yu; Yang, Jianhua; Yang, Min; Chang, Keun-A; Zhang, Linhua; Jiang, Feng; Li, Yi; Zhang, Zhonggong; Heo, Chaejeong; Suh, Yoo-Hun

    2007-07-01

    A 7-day-old hypoxic-ischemic encephalopathy (HIE) mouse model was used to study the effect of transplantation of embryonic stem (ES) cell-derived cells on the HIE. After the inducement in vitro, the ES cell-derived cells expressed Nestin and MAP-2, rather than GFAP mRNA. After transplantation, ES cell-derived cells can survive, migrate into the injury site, and specifically differentiate into neurons, showing improvement of the learning ability and memory of the HIE mouse at 8 months post-transplantation. The non-grafted HIE mouse brain showed typical pathological changes in the hippocampus and cerebral cortex, where the number of neurons was reduced, while in the cell graft group, number of the neurons increased in the same regions. Although further study is necessary to elucidate the precise mechanisms responsible for this functional recovery, we believe that ES cells have advantages for use as a donor source in HIE.

  6. Regional differences in cell loss associated with binge-like alcohol exposure during the first two trimesters equivalent in the rat.

    PubMed

    Maier, S E; West, J R

    2001-01-01

    Women who abuse alcohol during pregnancy may deliver offspring who could be diagnosed with fetal alcohol syndrome (FAS) or a less severe deficit involving cognitive and behavioral disorders. The severity of the deficits may involve the interaction of several known risk factors, such as alcohol consumption pattern or duration, the timing of alcohol consumption relative to critical windows of vulnerability, or the inherent differential vulnerability among the various brain regions to alcohol-induced brain injury. In this study, we explore the vulnerability of the different brain regions by making cell counts from multiple brain regions. Specifically, we used stereological cell-counting techniques to estimate the total cell numbers in the cerebellum (Purkinje and granule cells), olfactory bulb (mitral and granule cells), hippocampus (CA1 and CA3 cells), and dentate gyrus (granule cells). Groups of timed-pregnant Sprague-Dawley rats were assigned to one of five treatments: alcohol by intragastric intubation (2.25, 4.5, or 6.5 g/kg/day), nutritional control [pairfed and intubated=Pairfed) and intubated], and normal control (Chow). Treatments began on embryonic day 1 (E1) and continued through E20. On E33 (usually postnatal day 10), all offspring were perfused intracardially with saline followed by fixatives. Representative forebrains, cerebella, and olfactory bulb from each group were processed for cell counting. The optical dissector was used to obtain cell densities, while Cavalieri's principle was used to calculate the reference volume. The product of density and volume gave unbiased estimates of the total neuronal number within each brain region. Overall peak BACs (regardless of sampling day) for the three alcohol groups averaged 136, 290, and 422 mg/dl for the 2.25-, 4.5-, and 6.5-g/kg groups, respectively. The total number of cerebellar Purkinje cells was reduced in the 6.5-g/kg group relative to controls, while the total number of olfactory bulb mitral cells and hippocampal CA1 and CA3 pyramidal cells from all alcohol-treated groups was not different from controls. Total numbers of granule neurons were reduced in the cerebellum and olfactory bulb of offspring exposed to 4.5 or 6.5 g/kg/day, but granule cell numbers in the dentate gyrus were not affected by the prenatal alcohol treatment. Taken together with previous findings, these data demonstrate that prenatal alcohol exposure results in regional vulnerability of various brain structures and underscores the variability of deleterious effects of alcohol on brain development.

  7. Mitochondrial Respiration Is Reduced in Atherosclerosis, Promoting Necrotic Core Formation and Reducing Relative Fibrous Cap Thickness.

    PubMed

    Yu, Emma P K; Reinhold, Johannes; Yu, Haixiang; Starks, Lakshi; Uryga, Anna K; Foote, Kirsty; Finigan, Alison; Figg, Nichola; Pung, Yuh-Fen; Logan, Angela; Murphy, Michael P; Bennett, Martin

    2017-12-01

    Mitochondrial DNA (mtDNA) damage is present in murine and human atherosclerotic plaques. However, whether endogenous levels of mtDNA damage are sufficient to cause mitochondrial dysfunction and whether decreasing mtDNA damage and improving mitochondrial respiration affects plaque burden or composition are unclear. We examined mitochondrial respiration in human atherosclerotic plaques and whether augmenting mitochondrial respiration affects atherogenesis. Human atherosclerotic plaques showed marked mitochondrial dysfunction, manifested as reduced mtDNA copy number and oxygen consumption rate in fibrous cap and core regions. Vascular smooth muscle cells derived from plaques showed impaired mitochondrial respiration, reduced complex I expression, and increased mitophagy, which was induced by oxidized low-density lipoprotein. Apolipoprotein E-deficient (ApoE -/- ) mice showed decreased mtDNA integrity and mitochondrial respiration, associated with increased mitochondrial reactive oxygen species. To determine whether alleviating mtDNA damage and increasing mitochondrial respiration affects atherogenesis, we studied ApoE -/- mice overexpressing the mitochondrial helicase Twinkle (Tw + /ApoE -/- ). Tw + /ApoE -/- mice showed increased mtDNA integrity, copy number, respiratory complex abundance, and respiration. Tw + /ApoE -/- mice had decreased necrotic core and increased fibrous cap areas, and Tw + /ApoE -/- bone marrow transplantation also reduced core areas. Twinkle increased vascular smooth muscle cell mtDNA integrity and respiration. Twinkle also promoted vascular smooth muscle cell proliferation and protected both vascular smooth muscle cells and macrophages from oxidative stress-induced apoptosis. Endogenous mtDNA damage in mouse and human atherosclerosis is associated with significantly reduced mitochondrial respiration. Reducing mtDNA damage and increasing mitochondrial respiration decrease necrotic core and increase fibrous cap areas independently of changes in reactive oxygen species and may be a promising therapeutic strategy in atherosclerosis. © 2017 The Authors.

  8. A Study of the Correlation Between Dislocations and Diffusion Length in In(49)Ga(51)P Solar Cells

    DTIC Science & Technology

    2008-12-01

    method of depositing a monocrystalline film on a monocrystalline substrate, the variation in lattice constant is a measure of the structural...charge transport results in greater power generation, reducing the number of cells per panel , thereby reducing weight and volume requirements while... panel . 39 The line scan mode with a horizontal rotation imaged across the dislocation bands was seen in Figure 15, where as the line scan mode

  9. Role of Protein Kinase C Epsilon in Prostate Cancer and Metastasis

    DTIC Science & Technology

    2013-08-01

    detected by Western blot using an anti-Rac1 antibody. Depletion of PKCε with either #4 or #8 RNAi duplexed reduced Rac1 activation levels under serum ... serum deprivation condition was not abolished when PKCε was knocked down and therefore Rac1 activity was reduced. Although these results may implicate...medium supplemented with 10% serum . After different times the number of cells attached was quantified by MTT assay. (e) RWPE-1 cells were infected

  10. Distribution of culturable microorganisms in Fennoscandian Shield groundwater.

    PubMed

    Haveman, Shelley A; Pedersen, Karsten

    2002-02-01

    Microbial populations in 16 groundwater samples from six Fennoscandian Shield sites in Finland and Sweden were investigated. The average total cell number was 3.7x10(5) cells ml(-1), and there was no change in the mean of the total cell numbers to a depth of 1390 m. Culture media were designed based on the chemical composition of each groundwater sample and used successfully to culture anaerobic microorganisms from all samples between 65 and 1350 m depth. Between 0.0084 and 14.8% of total cells were cultured from groundwater samples. Sulfate-reducing bacteria, iron-reducing bacteria and heterotrophic acetogenic bacteria were cultured from groundwater sampled at 65-686 m depth in geographically distant sites. Different microbial populations were cultured from deeper, older and more saline groundwater from 863 to 1350 m depth. Principal component analysis of groundwater chemistry data showed that sulfate- and iron-reducing bacteria were not detected in the most saline groundwater. Iron-reducing bacteria and acetogens were cultured from deep groundwater that contained 0.35-3.5 mM sulfate, while methanogens and acetogens were cultured from deep sulfate-depleted groundwater. In one borehole from which autotrophic methanogens were cultured, dissolved inorganic carbon was enriched in (13)C compared to other Fennoscandian Shield groundwater samples, suggesting that autotrophs were active. It can be concluded that a diverse microbial community is present from the surface to over 1300 m depth in the Fennoscandian Shield.

  11. Inhibition of growth hormone receptor by Somavert reduces expression of GPER and prevents growth stimulation of triple-negative breast cancer by 17β-estradiol

    PubMed Central

    Girgert, Rainer; Emons, Günter; Gründker, Carsten

    2018-01-01

    Currently, conventional chemotherapy is the only treatment option for triple-negative breast cancers (TNBC) due to a lack of a unique target. In TNBC, a high expression of the membrane bound G protein-coupled estrogen receptor (GPER), correlates with a worse outcome. There is a potential for an association between growth hormone receptor (GHR) and GPER expression. To confirm this hypothesis, GHR was inhibited in TNBC cells with Somavert, and GPER expression levels, and the effect on signal transduction and proliferation induction in TNBC cells were analyzed. Proliferation of TNBC cells was measured using an Alamar-blue assay. Expression of GPER and activation of c-src and epidermal growth factor receptor (EGFR) by 17β-estradiol was analyzed by western blotting. Induction of c-fos, cyclin D1 and aromatase expression was determined by reverse transcription-semi-quantitative polymerase chain reaction. The expression of GPER was concentration- and time-dependently reduced by Somavert down to 46±7% (P<0.01) of the control. Furthermore, 17β-estradiol significantly increased the cell number of HCC1806 cells to 128±14% (P<0.05), and that of MDA-MB-453 cells to 115±3%. This increase in cell number was reduced to 103±11% in HCC1806 cells in which GPER expression was downregulated by Somavert, and to 102±3% in MDA-MB-453 cells. In addition, 17β-estradiol increased the activation of c-src in HCC1806 cells by 1.8-fold, and Somavert reduced p-src to 63% of control. In MDA-MB-453 cells src phosphorylation increased by 7-fold upon stimulation with estradiol, but after treatment with Somavert only a 4-fold increase was observed. Phosphorylation of EGFR was increased by 2.2-fold of control in HCC1806 cells by 17β-estradiol, and by 1.4-fold in MDA-MD-453 cells. Somavert completely prevented this activation. Induction of cyclin D1 and aromatase expression by 17β-estradiol was also prevented by Somavert. Somavert reduces GPER expression in triple negative breast cancer cells. Treatment with Somavert prevents induction of genes regulating proliferation by 17β-estradiol. Inhibition of GPER expression is a promising therapeutic intervention for TNBC. PMID:29805678

  12. Inhibition of growth hormone receptor by Somavert reduces expression of GPER and prevents growth stimulation of triple-negative breast cancer by 17β-estradiol.

    PubMed

    Girgert, Rainer; Emons, Günter; Gründker, Carsten

    2018-06-01

    Currently, conventional chemotherapy is the only treatment option for triple-negative breast cancers (TNBC) due to a lack of a unique target. In TNBC, a high expression of the membrane bound G protein-coupled estrogen receptor (GPER), correlates with a worse outcome. There is a potential for an association between growth hormone receptor (GHR) and GPER expression. To confirm this hypothesis, GHR was inhibited in TNBC cells with Somavert, and GPER expression levels, and the effect on signal transduction and proliferation induction in TNBC cells were analyzed. Proliferation of TNBC cells was measured using an Alamar-blue assay. Expression of GPER and activation of c-src and epidermal growth factor receptor (EGFR) by 17β-estradiol was analyzed by western blotting. Induction of c-fos, cyclin D1 and aromatase expression was determined by reverse transcription-semi-quantitative polymerase chain reaction. The expression of GPER was concentration- and time-dependently reduced by Somavert down to 46±7% (P<0.01) of the control. Furthermore, 17β-estradiol significantly increased the cell number of HCC1806 cells to 128±14% (P<0.05), and that of MDA-MB-453 cells to 115±3%. This increase in cell number was reduced to 103±11% in HCC1806 cells in which GPER expression was downregulated by Somavert, and to 102±3% in MDA-MB-453 cells. In addition, 17β-estradiol increased the activation of c-src in HCC1806 cells by 1.8-fold, and Somavert reduced p-src to 63% of control. In MDA-MB-453 cells src phosphorylation increased by 7-fold upon stimulation with estradiol, but after treatment with Somavert only a 4-fold increase was observed. Phosphorylation of EGFR was increased by 2.2-fold of control in HCC1806 cells by 17β-estradiol, and by 1.4-fold in MDA-MD-453 cells. Somavert completely prevented this activation. Induction of cyclin D1 and aromatase expression by 17β-estradiol was also prevented by Somavert. Somavert reduces GPER expression in triple negative breast cancer cells. Treatment with Somavert prevents induction of genes regulating proliferation by 17β-estradiol. Inhibition of GPER expression is a promising therapeutic intervention for TNBC.

  13. Vascular Ageing and Exercise: Focus on Cellular Reparative Processes.

    PubMed

    Ross, Mark D; Malone, Eva; Florida-James, Geraint

    2016-01-01

    Ageing is associated with an increased risk of developing noncommunicable diseases (NCDs), such as diabetes and cardiovascular disease (CVD). The increased risk can be attributable to increased prolonged exposure to oxidative stress. Often, CVD is preceded by endothelial dysfunction, which carries with it a proatherothrombotic phenotype. Endothelial senescence and reduced production and release of nitric oxide (NO) are associated with "vascular ageing" and are often accompanied by a reduced ability for the body to repair vascular damage, termed "reendothelialization." Exercise has been repeatedly shown to confer protection against CVD and diabetes risk and incidence. Regular exercise promotes endothelial function and can prevent endothelial senescence, often through a reduction in oxidative stress. Recently, endothelial precursors, endothelial progenitor cells (EPC), have been shown to repair damaged endothelium, and reduced circulating number and/or function of these cells is associated with ageing. Exercise can modulate both number and function of these cells to promote endothelial homeostasis. In this review we look at the effects of advancing age on the endothelium and these endothelial precursors and how exercise appears to offset this "vascular ageing" process.

  14. Evidence for reduced cancellous bone mass in the spontaneously hypertensive rat

    NASA Technical Reports Server (NTRS)

    Wang, T. M.; Hsu, J. F.; Jee, W. S.; Matthews, J. L.

    1993-01-01

    The histomorphometric changes in the proximal tibial metaphysis and epiphyseal growth plate and midtibial shaft of 26-week-old spontaneously hypertensive rats (SHR) compared with those of the corresponding normotensive Wistar-Kyoto (WKY) rats were studied. A decrease in body weight, growth plate thickness, and longitudinal growth rate of the proximal tibial epiphysis, trabecular bone volume, trabecular thickness and number, the number of osteoblasts and osteoprogenitor cells per millimeter square surface of the proximal tibial metaphysis, periosteal and endocortical apposition rate and bone formation rate of the tibial diaphysis were observed in the SHR. Additionally, systolic blood pressure, the number of osteoclasts per millimeter square surface and average number of nuclei per osteoclast of the proximal tibial metaphysis were significantly increased. Thus, osteoclastic activity is dominant over osteoblastic and chondroblastic activity in the SHR that results in a cancellous bone deficit in the skeleton. It will require additional work to ascertain the underlying cause for this condition as several factors in the SHR with a potential for causing this change are present, including elevated parathyroid hormone (PTH), depressed 1,25-(OH)2D3, low calcium absorption, reduced body weight (reduced loading) elevated blood pressure and possibly other direct cell differences in the mutant strain. At present elevated PTH and adaptation to underloading from reduced weight are postulated to be a likely cause, but additional studies are required to test this interpretation.

  15. Synergy between Rhizobium phaseoli and Acidithiobacillus ferrooxidans in the Bioleaching Process of Copper

    PubMed Central

    Zheng, Xuecheng; Li, Dongwei

    2016-01-01

    This study investigates the synergy of Rhizobium phaseoli and Acidithiobacillus ferrooxidans in the bioleaching process of copper. The results showed that additional R. phaseoli could increase leaching rate and cell number of A. ferrooxidans. When the initial cell number ratio between A. ferrooxidans and R. phaseoli was 2 : 1, A. ferrooxidans attained the highest final cell number of approximately 2 × 108 cells/mL and the highest copper leaching rate of 29%, which is 7% higher than that in the group with A. ferrooxidans only. R. phaseoli may use metabolized polysaccharides from A. ferrooxidans, and organic acids could chelate or precipitate harmful heavy metals to reduce their damage on A. ferrooxidans and promote its growth. Organic acids could also damage the mineral lattice to increase the leaching effect. PMID:26942203

  16. VGF expression by T lymphocytes in patients with Alzheimer's disease

    PubMed Central

    Glorius, Sarah; Dobrowolny, Henrik; Greiner-Bohl, Sabrina; Mawrin, Christian; Bommhardt, Ursula; Hartig, Roland; Bogerts, Bernhard; Busse, Mandy

    2015-01-01

    Secretion of VGF is increased in cerebrospinal fluid and blood in neurodegenerative disorders like Alzheimer's disease (AD) and VGF is a potential biomarker for these disorders. We have shown that VGF is expressed in peripheral T cells and is correlated with T cell survival and cytokine secretion. The frequency of VGF+CD3+ T cells increases with normal aging. We found an increased number of VGF-expressing T cells in patients with AD compared to aged healthy controls, which was associated with enhanced HbA1c levels in blood. Upon treatment with rivastigmine, T cell proliferation and VGF expression in AD patients decreased to the level found in controls. Moreover, rapamycin treatment in vitro reduced the number of VGF+CD3+ cells in AD patients to control levels. PMID:26142708

  17. Within and between Population Variation in Epidermal Club Cell Investment in a Freshwater Prey Fish: A Cautionary Tale for Evolutionary Ecologists

    PubMed Central

    Manek, Aditya K.; Ferrari, Maud C. O.; Pollock, Robyn J.; Vicente, Daniel; Weber, Lynn P.; Chivers, Douglas P.

    2013-01-01

    Many prey fishes possess large club cells in their epidermis. The role of these cells has garnered considerable attention from evolutionary ecologists. These cells likely form part of the innate immune system of fishes, however, they also have an alarm function, releasing chemical cues that serve to warn nearby conspecifics of danger. Experiments aimed at understanding the selection pressures leading to the evolution of these cells have been hampered by a surprisingly large intraspecific variation in epidermal club cell (ECC) investment. The goal of our current work was to explore the magnitude and nature of this variation in ECC investment. In a field survey, we documented large differences in ECC investment both within and between several populations of minnows. We then tested whether we could experimentally reduce variation in mean ECC number by raising fish under standard laboratory conditions for 4 weeks. Fish from different populations responded very differently to being held under standard laboratory conditions; some populations showed an increase in ECC investment while others remained unchanged. More importantly, we found some evidence that we could reduce within population variation in ECC investment through time, but could not reduce among-population variation in mean ECC investment. Given the large variation we observed in wild fish and our limited ability to converge mean cell number by holding the fish under standard conditions, we caution that future studies may be hard pressed to find subtle effects of various experimental manipulations; this will make elucidating the selection pressures leading to the evolution of the cells challenging. PMID:23469175

  18. Changes in ultrastructure and histochemistry of two red macroalgae strains of Kappaphycus alvarezii (Rhodophyta, Gigartinales), as a consequence of ultraviolet B radiation exposure.

    PubMed

    Schmidt, Eder Carlos; Scariot, Lidiane Angela; Rover, Ticiane; Bouzon, Zenilda Laurita

    2009-12-01

    Ultraviolet radiation (UVR) affects macroalgae in many important ways, including reduced growth rate, reduction of primary productivity and changes in cell biology and ultrastructure. Among red macroalgae, Kappaphycus alvarezii is of economic interest by its production of kappa carrageenan. Only a few reports have examined the changes in macroalgae ultrastructure and cell biology resulting from UVB radiation exposure. Therefore, we examined two strains of K. alvarezii (green and red) exposed to UVB for 3 h per day during 28 days and then processed them for histochemical and electron microscopy analysis. Reaction with Toluidine Blue showed an increase in the thickness of the cell wall and Periodic Acid-Schiff stain showed a decrease in the number of starch grains. UVBR also caused changes in the ultrastructure of cortical and subcortical cells, which included increased thickness of the cell wall and number of free ribosomes and plastoglobuli, reduced intracellular spaces, changes in the cell contour, and destruction of chloroplast internal organization. Based on these lines of evidence, it was evident by the ultrastructural changes observed that UVBR negatively affects intertidal macroalgae and, by extension, their economic viability.

  19. Increased numbers of preexisting memory CD8 T cells and decreased T-bet expression can restrain terminal differentiation of secondary effector and memory CD8 T cells.

    PubMed

    Joshi, Nikhil S; Cui, Weiguo; Dominguez, Claudia X; Chen, Jonathan H; Hand, Timothy W; Kaech, Susan M

    2011-10-15

    Memory CD8 T cells acquire effector memory cell properties after reinfection and may reach terminally differentiated, senescent states ("Hayflick limit") after multiple infections. The signals controlling this process are not well understood, but we found that the degree of secondary effector and memory CD8 T cell differentiation was intimately linked to the amount of T-bet expressed upon reactivation and preexisting memory CD8 T cell number (i.e., primary memory CD8 T cell precursor frequency) present during secondary infection. Compared with naive cells, memory CD8 T cells were predisposed toward terminal effector (TE) cell differentiation because they could immediately respond to IL-12 and induce T-bet, even in the absence of Ag. TE cell formation after secondary (2°) or tertiary infections was dependent on increased T-bet expression because T-bet(+/-) cells were resistant to these phenotypic changes. Larger numbers of preexisting memory CD8 T cells limited the duration of 2° infection and the amount of IL-12 produced, and consequently, this reduced T-bet expression and the proportion of 2° TE CD8 T cells that formed. Together, these data show that over repeated infections, memory CD8 T cell quality and proliferative fitness is not strictly determined by the number of serial encounters with Ag or cell divisions, but is a function of the CD8 T cell differentiation state, which is genetically controlled in a T-bet-dependent manner. This differentiation state can be modulated by preexisting memory CD8 T cell number and the intensity of inflammation during reinfection. These results have important implications for vaccinations involving prime-boost strategies.

  20. Effect of cryopreservation and in vitro culture of bovine fibroblasts on histone acetylation levels and in vitro development of hand-made cloned embryos

    USGS Publications Warehouse

    Chacon, L.; Gomez, M.C.; Jenkins, J.A.; Leibo, S.P.; Wirtu, G.; Dresser, B.L.; Pope, C.E.

    2011-01-01

    In this study, the relative acetylation levels of histone 3 in lysine 9 (H3K9ac) in cultured and cryopreserved bovine fibroblasts was measured and we determined the influence of the epigenetic status of three cultured (C1, C2 and C3) donor cell lines on the in vitro development of reconstructed bovine embryos. Results showed that cryopreservation did not alter the overall acetylation levels of H3K9 in bovine fibroblasts analysed immediately after thawing (frozen/thawed) compared with fibroblasts cultured for a period of time after thawing. However, reduced cleavage rates were noted in embryos reconstructed with fibroblasts used immediately after thawing. Cell passage affects the levels of H3K9ac in bovine fibroblasts, decreasing after P1 and donor cells with lower H3K9ac produced a greater frequency of embryo development to the blastocyst stage. Cryopreservation did not influence the total cell and ICM numbers, or the ICM/TPD ratios of reconstructed embryos. However, the genetic source of donor cells did influence the total number of cells and the trophectoderm cell numbers, and the cell passage influenced the total ICM cell numbers. ?? Copyright Cambridge University Press 2010.

  1. Cytoneme-mediated contact-dependent transport of the Drosophila decapentaplegic signaling protein.

    PubMed

    Roy, Sougata; Huang, Hai; Liu, Songmei; Kornberg, Thomas B

    2014-02-21

    Decapentaplegic (Dpp), a Drosophila morphogen signaling protein, transfers directly at synapses made at sites of contact between cells that produce Dpp and cytonemes that extend from recipient cells. The Dpp that cytonemes receive moves together with activated receptors toward the recipient cell body in motile puncta. Genetic loss-of-function conditions for diaphanous, shibire, neuroglian, and capricious perturbed cytonemes by reducing their number or only the synapses they make with cells they target, and reduced cytoneme-mediated transport of Dpp and Dpp signaling. These experiments provide direct evidence that cells use cytonemes to exchange signaling proteins, that cytoneme-based exchange is essential for signaling and normal development, and that morphogen distribution and signaling can be contact-dependent, requiring cytoneme synapses.

  2. Cytoneme-mediated contact-dependent transport of the Drosophila Decapentaplegic signaling protein

    PubMed Central

    Roy, Sougata; Huang, Hai; Liu, Songmei; Kornberg, Thomas B.

    2015-01-01

    Decapentaplegic (Dpp), a Drosophila morphogen signaling protein, transfers directly at synapes made at sites of contact between cells that produce Dpp and cytonemes that extend from recipient cells. The Dpp that cytonemes receive moves together with activated receptors toward the recipient cell body in motile puncta. Genetic loss-of-function conditions for diaphanous, shibire, neuroglian and capricious perturbed cytonemes by reducing their number or only the synapses they make with cells they target; and reduced cytoneme-mediated transport of Dpp and Dpp signaling. These experiments provide direct evidence that cells use cytonemes to exchange signaling proteins, that cytoneme-based exchange is essential for signaling and normal development, and that morphogen distribution and signaling can be contact-dependent, requiring cytoneme synapses. PMID:24385607

  3. Mast cells express 11β-hydroxysteroid dehydrogenase type 1: a role in restraining mast cell degranulation.

    PubMed

    Coutinho, Agnes E; Brown, Jeremy K; Yang, Fu; Brownstein, David G; Gray, Mohini; Seckl, Jonathan R; Savill, John S; Chapman, Karen E

    2013-01-01

    Mast cells are key initiators of allergic, anaphylactic and inflammatory reactions, producing mediators that affect vascular permeability, angiogenesis and fibrosis. Glucocorticoid pharmacotherapy reduces mast cell number, maturation and activation but effects at physiological levels are unknown. Within cells, glucocorticoid concentration is modulated by the 11β-hydroxysteroid dehydrogenases (11β-HSDs). Here we show expression and activity of 11β-HSD1, but not 11β-HSD2, in mouse mast cells with 11β-HSD activity only in the keto-reductase direction, regenerating active glucocorticoids (cortisol, corticosterone) from inert substrates (cortisone, 11-dehydrocorticosterone). Mast cells from 11β-HSD1-deficient mice show ultrastructural evidence of increased activation, including piecemeal degranulation and have a reduced threshold for IgG immune complex-induced mast cell degranulation. Consistent with reduced intracellular glucocorticoid action in mast cells, levels of carboxypeptidase A3 mRNA, a glucocorticoid-inducible mast cell-specific transcript, are lower in peritoneal cells from 11β-HSD1-deficient than control mice. These findings suggest that 11β-HSD1-generated glucocorticoids may tonically restrain mast cell degranulation, potentially influencing allergic, anaphylactic and inflammatory responses.

  4. Chemical Activation of the Hypoxia-Inducible Factor Reversibly Reduces Tendon Stem Cell Proliferation, Inhibits Their Differentiation, and Maintains Cell Undifferentiation.

    PubMed

    Menon, Alessandra; Creo, Pasquale; Piccoli, Marco; Bergante, Sonia; Conforti, Erika; Banfi, Giuseppe; Randelli, Pietro; Anastasia, Luigi

    2018-01-01

    Adult stem cell-based therapeutic approaches for tissue regeneration have been proposed for several years. However, adult stem cells are usually limited in number and difficult to be expanded in vitro, and they usually tend to quickly lose their potency with passages, as they differentiate and become senescent. Culturing stem cells under reduced oxygen tensions (below 21%) has been proposed as a tool to increase cell proliferation, but many studies reported opposite effects. In particular, cell response to hypoxia seems to be very stem cell type specific. Nonetheless, it is clear that a major role in this process is played by the hypoxia inducible factor (HIF), the master regulator of cell response to oxygen deprivation, which affects cell metabolism and differentiation. Herein, we report that a chemical activation of HIF in human tendon stem cells reduces their proliferation and inhibits their differentiation in a reversible and dose-dependent manner. These results support the notion that hypoxia, by activating HIF, plays a crucial role in preserving stem cells in an undifferentiated state in the "hypoxic niches" present in the tissue in which they reside before migrating in more oxygenated areas to heal a damaged tissue.

  5. Microenvironmental Regulation of Mammary Carcinogenesis

    DTIC Science & Technology

    2009-06-01

    cells, leukocytes 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18 . NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON...metastatic spread to sentinel LNs and increased primary tumor size13. Perhaps more significant, the ratio of CD4+ to CD8+ T cells or TH2 to TH1 cells...present in primary tumors, where CD4+ or TH2 cells are more frequent than CD8+ or TH1 cells, correlates with LN metastasis and reduced overall patient

  6. Rescue of the mature B cell compartment in BAFF-deficient mice by treatment with recombinant Fc-BAFF.

    PubMed

    Swee, Lee Kim; Tardivel, Aubry; Schneider, Pascal; Rolink, Antonius

    2010-06-15

    BAFF deficiency in mice impairs B cell development beyond the transitional stage 1 in the spleen and thus severely reduces the size of follicular and marginal zone B cell compartments. Moreover, humoral immune responses in these mice are dramatically impaired. We now addressed the question whether the decrease in mature B cell numbers and the reduced humoral immune responses in BAFF-deficient mice could be overcome by the injection of recombinant BAFF. We therefore engineered a recombinant protein containing the human IgG1 Fc moiety fused to receptor-binding domain of human BAFF (Fc-BAFF). At 1 week after the second injection of this fusion protein a complete rescue of the marginal zone B cell compartment and a 50% rescue of the follicular B cell compartment was observed. Moreover these mice mounted a T cell-dependent humoral immune response indistinguishable from wild-type mice. By day 14 upon arrest of Fc-BAFF treatment mature B cell numbers in the blood dropped by 50%, indicating that the life span of mature B cells in the absence of BAFF is 14 days or less. Collectively these findings demonstrate that injection of Fc-BAFF in BAFF-deficient mice results in a temporary rescue of a functional mature B cell compartment. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  7. Glioma Invasiveness Responds Variably to Irradiation in a Co-Culture Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, Jean L.; Haas-Kogan, Daphne A.; Department of Neurological Surgery, University of California-San Francisco, San Francisco, CA

    2007-11-01

    Purpose: We developed a co-culture system to quantitate the growth and invasion of human malignant gliomas into a background of confluent normal human astrocytes, then used this assay to assess independently the effects of irradiating both cell types on glioma invasion. Methods and Materials: Enhanced green fluorescent protein (EGFP)-labeled immortalized human astrocytes, human malignant glioma cells, or transformed human astrocytes were focally plated onto a confluent layer of normal human astrocytes, and the invasiveness of EGFP-labeled cells was scored after 96 h. To address the consequences of irradiation on glioma invasion, the invasiveness of irradiated glioma cell lines and irradiatedmore » astrocytic backgrounds was assessed. Fluorescence-activated cell sorting was used to quantitate the total number of EGFP-labeled cells. Results: Growth in the co-culture assay consistently reflected transformation states of the plated cells. Immortalized, but untransformed human astrocytes failed even to establish growth on confluent normal human astrocytes. In contrast, all malignant human glioma cell lines and transformed human astrocytes demonstrated various degrees of infiltration into the astrocytic bed. Irradiation failed to alter the invasiveness of U87, A172, and U373. A 1-Gy dose slightly reduced the invasiveness of U251 MG by 75% (p < 0.05 by one-way analysis of variance and post hoc Neuman-Keuls), without reducing total cell numbers. Independently irradiating the human astrocytic bed did not alter the invasiveness of nonirradiated U251, whereas the matrix metalloproteinase (MMP) inhibitor GM6001 reduced U251 invasiveness in the co-culture assay. Conclusions: Growth in the co-culture assay reflects the transformation status and provides a useful in vitro model for assessing invasiveness. Human glioma invasiveness in the co-culture model responds variably to single low-dose fractions. MMP activity promotes invasiveness in the co-culture model. Reduced invasiveness in irradiated U251 appears to be mediated by MMP-independent mechanisms.« less

  8. Sertoli cell androgen receptor expression regulates temporal fetal and adult Leydig cell differentiation, function, and population size.

    PubMed

    Hazra, Rasmani; Jimenez, Mark; Desai, Reena; Handelsman, David J; Allan, Charles M

    2013-09-01

    We recently created a mouse model displaying precocious Sertoli cell (SC) and spermatogenic development induced by SC-specific transgenic androgen receptor expression (TgSCAR). Here we reveal that TgSCAR regulates the development, function, and absolute number of Leydig cells (LCs). Total fetal and adult type LC numbers were reduced in postnatal and adult TgSCAR vs control testes, despite normal circulating LH levels. Normal LC to SC ratios found in TgSCAR testes indicate that SC androgen receptor (SCAR)-mediated activity confers a quorum-dependent relationship between total SC and LC numbers. TgSCAR enhanced LC differentiation, shown by elevated ratios of advanced to immature LC types, and reduced LC proliferation in postnatal TgSCAR vs control testes. Postnatal TgSCAR testes displayed up-regulated expression of coupled ligand-receptor transcripts (Amh-Amhr2, Dhh-Ptch1, Pdgfa-Pdgfra) for potential SCAR-stimulated paracrine pathways, which may coordinate LC differentiation. Neonatal TgSCAR testes displayed normal T and dihydrotestosterone levels despite differential changes to steroidogenic gene expression, with down-regulated Star, Cyp11a1, and Cyp17a1 expression contrasting with up-regulated Hsd3b1, Hsd17b3, and Srd5a1 expression. TgSCAR males also displayed elevated postnatal and normal adult serum testosterone levels, despite reduced LC numbers. Enhanced adult-type LC steroidogenic output was revealed by increased pubertal testicular T, dihydrotestosterone, 3α-diol and 3β-diol levels per LC and up-regulated steroidogenic gene (Nr5a1, Lhr, Cyp11a1, Cyp17a1, Hsd3b6, Srd5a1) expression in pubertal or adult TgSCAR vs control males, suggesting regulatory mechanisms maintain androgen levels independently of absolute LC numbers. Our unique gain-of-function TgSCAR model has revealed that SCAR activity controls temporal LC differentiation, steroidogenic function, and population size.

  9. Use of Adipose Derived Stem Cells to Treat Large Bone Defects

    DTIC Science & Technology

    2009-03-01

    and activates Sirt1 , which inhibit adipogenesis and induce apoptosis in adipocytes. This suggested that resveratrol could reduce the number of...5000 cells/cm2 with either growth media (GM) or osteogenic media (OM) consisting of GM supplemented with 1nM dexamethasone, 3mM beta-glycerophosphate

  10. Towards a Minimal Architecture for a Printable, Modular, and Robust Sensing Skin

    DTIC Science & Technology

    2014-04-27

    hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for...the total logic complexity and reduce sensor throughput. The final selection can be made to balance these effects given a specific application. Sensor...Company (TSMC)’s 65-nm GPLUSTC CMOS standard cells. Table II shows the number of gates (standard cells) and flip -flops generated for the given number of

  11. Clustering-based energy-saving algorithm in ultra-dense network

    NASA Astrophysics Data System (ADS)

    Huang, Junwei; Zhou, Pengguang; Teng, Deyang; Zhang, Renchi; Xu, Hao

    2017-06-01

    In Ultra-dense Networks (UDN), dense deployment of low power small base stations will cause serious small cells interference and a large amount of energy consumption. The purpose of this paper is to explore the method of reducing small cells interference and energy saving system in UDN, and we innovatively propose a sleep-waking-active (SWA) scheme. The scheme decreases the user outage causing by failure to detect users’ service requests, shortens the opening time of active base stations directly switching to sleep mode; we further proposes a Vertex Surrounding Clustering(VSC) algorithm, which first colours the small cells with the most strongest interference and next extends to the adjacent small cells. VSC algorithm can use the least colour to stain the small cell, reduce the number of iterations and promote the efficiency of colouring. The simulation results show that SWA scheme can effectively improve the system Energy Efficiency (EE), the VSC algorithm can reduce the small cells interference and optimize the users’ Spectrum Efficiency (SE) and throughput.

  12. A reason for intermittent fasting to suppress the awakening of dormant breast tumors.

    PubMed

    Lankelma, Jan; Kooi, Bob; Krab, Klaas; Dorsman, Josephine C; Joenje, Hans; Westerhoff, Hans V

    2015-01-01

    For their growth, dormant tumors, which lack angiogenesis may critically depend on gradients of nutrients and oxygen from the nearest blood vessel. Because for oxygen depletion the distance from the nearest blood vessel to depletion will generally be shorter than for glucose depletion, such tumors will contain anoxic living tumor cells. These cells are dangerous, because they are capable of inducing angiogenesis, which will "wake up" the tumor. Anoxic cells are dependent on anaerobic glucose breakdown for ATP generation. The local extracellular glucose concentration gradient is determined by the blood glucose concentration and by consumption by cells closer to the nearest blood vessel. The blood glucose concentration can be lowered by 20-40% during fasting. We calculated that glucose supply to the potentially hazardous anoxic cells can thereby be reduced significantly, resulting in cell death specifically of the anoxic tumor cells. We hypothesize that intermittent fasting will help to reduce the incidence of tumor relapse via reducing the number of anoxic tumor cells and tumor awakening. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. CellSort: a support vector machine tool for optimizing fluorescence-activated cell sorting and reducing experimental effort.

    PubMed

    Yu, Jessica S; Pertusi, Dante A; Adeniran, Adebola V; Tyo, Keith E J

    2017-03-15

    High throughput screening by fluorescence activated cell sorting (FACS) is a common task in protein engineering and directed evolution. It can also be a rate-limiting step if high false positive or negative rates necessitate multiple rounds of enrichment. Current FACS software requires the user to define sorting gates by intuition and is practically limited to two dimensions. In cases when multiple rounds of enrichment are required, the software cannot forecast the enrichment effort required. We have developed CellSort, a support vector machine (SVM) algorithm that identifies optimal sorting gates based on machine learning using positive and negative control populations. CellSort can take advantage of more than two dimensions to enhance the ability to distinguish between populations. We also present a Bayesian approach to predict the number of sorting rounds required to enrich a population from a given library size. This Bayesian approach allowed us to determine strategies for biasing the sorting gates in order to reduce the required number of enrichment rounds. This algorithm should be generally useful for improve sorting outcomes and reducing effort when using FACS. Source code available at http://tyolab.northwestern.edu/tools/ . k-tyo@northwestern.edu. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  14. Ammonium Inhibits Primary Root Growth by Reducing the Length of Meristem and Elongation Zone and Decreasing Elemental Expansion Rate in the Root Apex in Arabidopsis thaliana

    PubMed Central

    Gao, Kun; Chen, Fanjun; Yuan, Lixing; Mi, Guohua

    2013-01-01

    The inhibitory effect of ammonium on primary root growth has been well documented; however the underlying physiological and molecular mechanisms are still controversial. To avoid ammonium toxicity to shoot growth, we used a vertical two-layer split plate system, in which the upper layer contained nitrate and the lower layer contained ammonium. In this way, nitrogen status was maintained and only the apical part of the root system was exposed to ammonium. Using a kinematic approach, we show here that 1 mM ammonium reduces primary root growth, decreasing both elemental expansion and cell production. Ammonium inhibits the length of elongation zone and the maximum elemental expansion rate. Ammonium also decreases the apparent length of the meristem as well as the number of dividing cells without affecting cell division rate. Moreover, ammonium reduces the number of root cap cells but appears to affect neither the status of root stem cell niche nor the distal auxin maximum at the quiescent center. Ammonium also inhibits root gravitropism and concomitantly down-regulates the expression of two pivotal auxin transporters, AUX1 and PIN2. Insofar as ammonium inhibits root growth rate in AUX1 and PIN2 loss-of-function mutants almost as strongly as in wild type, we conclude that ammonium inhibits root growth and gravitropism by largely distinct pathways. PMID:23577185

  15. Microbiota-derived butyrate suppresses group 3 innate lymphoid cells in terminal ileal Peyer's patches.

    PubMed

    Kim, Sae-Hae; Cho, Byeol-Hee; Kiyono, Hiroshi; Jang, Yong-Suk

    2017-06-21

    The regional specialization of intestinal immune cells is affected by the longitudinal heterogeneity of environmental factors. Although the distribution of group 3 innate lymphoid cells (ILC3s) is well characterized in the lamina propria, it is poorly defined in Peyer's patches (PPs) along the intestine. Given that PP ILC3s are closely associated with mucosal immune regulation, it is important to characterize the regulatory mechanism of ILC3s. Here, we found that terminal ileal PPs of specific pathogen-free (SPF) mice have fewer NKp46 + ILC3s than jejunal PPs, while there was no difference in NKp46 + ILC3 numbers between terminal ileal and jejunal PPs in antibiotics (ABX)-treated mice. We also found that butyrate levels in the terminal ileal PPs of SPF mice were higher than those in the jejunal PPs of SPF mice and terminal ileal PPs of ABX-treated mice. The reduced number of NKp46 + ILC3s in terminal ileal PPs resulted in a decrease in Csf2 expression and, in turn, resulted in reduced regulatory T cells and enhanced antigen-specific T-cell proliferation. Thus, we suggest that NKp46 + ILC3s are negatively regulated by microbiota-derived butyrate in terminal ileal PPs and the reduced ILC3 frequency is closely associated with antigen-specific immune induction in terminal ileal PPs.

  16. Role of founder cell deficit and delayed neuronogenesis in microencephaly of the trisomy 16 mouse

    NASA Technical Reports Server (NTRS)

    Haydar, T. F.; Nowakowski, R. S.; Yarowsky, P. J.; Krueger, B. K.

    2000-01-01

    Development of the neocortex of the trisomy 16 (Ts16) mouse, an animal model of Down syndrome (DS), is characterized by a transient delay in the radial expansion of the cortical wall and a persistent reduction in cortical volume. Here we show that at each cell cycle during neuronogenesis, a smaller proportion of Ts16 progenitors exit the cell cycle than do control, euploid progenitors. In addition, the cell cycle duration was found to be longer in Ts16 than in euploid progenitors, the Ts16 growth fraction was reduced, and an increase in apoptosis was observed in both proliferative and postmitotic zones of the developing Ts16 neocortical wall. Incorporation of these changes into a model of neuronogenesis indicates that they are sufficient to account for the observed delay in radial expansion. In addition, the number of neocortical founder cells, i.e., precursors present just before neuronogenesis begins, is reduced by 26% in Ts16 mice, leading to a reduction in overall cortical size at the end of Ts16 neuronogenesis. Thus, altered proliferative characteristics during Ts16 neuronogenesis result in a delay in the generation of neocortical neurons, whereas the founder cell deficit leads to a proportional reduction in the overall number of neurons. Such prenatal perturbations in either the timing of neuron generation or the final number of neurons produced may lead to significant neocortical abnormalities such as those found in DS.

  17. Development of a co-culture of keratinocytes and immune cells for in vitro investigation of cutaneous sulfur mustard toxicity.

    PubMed

    Balszuweit, Frank; Menacher, Georg; Bloemeke, Brunhilde; Schmidt, Annette; Worek, Franz; Thiermann, Horst; Steinritz, Dirk

    2014-11-05

    Sulfur mustard (SM) is a chemical warfare agent causing skin blistering, ulceration and delayed wound healing. Inflammation and extrinsic apoptosis are known to have an important role in SM-induced cytotoxicity. As immune cells are involved in those processes, they may significantly modulate SM toxicity, but the extent of those effects is unknown. We adapted a co-culture model of immortalized keratinocytes (HaCaT) and immune cells (THP-1) and exposed this model to SM. Changes in necrosis, apoptosis and inflammation, depending on SM challenge, absence or presence and number of THP-1 cells were investigated. THP-1 were co-cultured for 24h prior to SM exposure in order to model SM effects on immune cells continuously present in the skin. Our results indicate that the presence of THP-1 strongly increased necrosis, apoptosis and inflammation. This effect was already significant when the ratio of THP-1 and HaCaT cells was similar to the ratio of Langerhans immune cells and keratinocytes in vivo. Any further increases in the number of THP-1 had only slight additional effects on SM-induced cytotoxicity. In order to assess the effects of immune cells migrating into skin areas damaged by SM, we added non-exposed THP-1 to SM-exposed HaCaT. Those THP-1 had only slight effects on SM-induced cytotoxicity. Notably, in HaCaT exposed to 300μM SM, necrosis and inflammation were slightly reduced by adding intact THP-1. This effect was dependent on the number of immune cells, steadily increasing with the number of unexposed THP-1 added. In summary, we have demonstrated that (a) the presented co-culture is a robust model to assess SM toxicity and can be used to test the efficacy of potential antidotes in vitro; (b) immune cells, damaged by SM strongly amplified cytotoxicity, (c) in contrast, unexposed THP-1 (simulating migration of immune cells into affected areas after exposure in vivo) had no pronounced adverse, but exhibited some protective effects. Thus, protecting immune cells from SM toxicity may help to reduce overall injury. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Adoptive Transfer of Engineered Rhesus Simian Immunodeficiency Virus-Specific CD8+ T Cells Reduces the Number of Transmitted/Founder Viruses Established in Rhesus Macaques

    PubMed Central

    Ayala, Victor I.; Trivett, Matthew T.; Barsov, Eugene V.; Jain, Sumiti; Piatak, Michael; Trubey, Charles M.; Alvord, W. Gregory; Chertova, Elena; Roser, James D.; Smedley, Jeremy; Komin, Alexander; Keele, Brandon F.; Ohlen, Claes

    2016-01-01

    ABSTRACT AIDS virus infections are rarely controlled by cell-mediated immunity, in part due to viral immune evasion and immunodeficiency resulting from CD4+ T-cell infection. One likely aspect of this failure is that antiviral cellular immune responses are either absent or present at low levels during the initial establishment of infection. To test whether an extensive, timely, and effective response could reduce the establishment of infection from a high-dose inoculum, we adoptively transferred large numbers of T cells that were molecularly engineered with anti-simian immunodeficiency virus (anti-SIV) activity into rhesus macaques 3 days following an intrarectal SIV inoculation. To measure in vivo antiviral activity, we assessed the number of viruses transmitted using SIVmac239X, a molecularly tagged viral stock containing 10 genotypic variants, at a dose calculated to transmit 12 founder viruses. Single-genome sequencing of plasma virus revealed that the two animals receiving T cells expressing SIV-specific T-cell receptors (TCRs) had significantly fewer viral genotypes than the two control animals receiving non-SIV-specific T cells (means of 4.0 versus 7.5 transmitted viral genotypes; P = 0.044). Accounting for the likelihood of transmission of multiple viruses of a particular genotype, the calculated means of the total number of founder viruses transmitted were 4.5 and 14.5 in the experimental and control groups, respectively (P = 0.021). Thus, a large antiviral T-cell response timed with virus exposure can limit viral transmission. The presence of strong, preexisting T-cell responses, including those induced by vaccines, might help prevent the establishment of infection at the lower-exposure doses in humans that typically transmit only a single virus. IMPORTANCE The establishment of AIDS virus infection in an individual is essentially a race between the spreading virus and host immune defenses. Cell-mediated immune responses induced by infection or vaccination are important contributors in limiting viral replication. However, in human immunodeficiency virus (HIV)/SIV infection, the virus usually wins the race, irreversibly crippling the immune system before an effective cellular immune response is developed and active. We found that providing an accelerated response by adoptively transferring large numbers of antiviral T cells shortly after a high-dose mucosal inoculation, while not preventing infection altogether, limited the number of individual viruses transmitted. Thus, the presence of strong, preexisting T-cell responses, including those induced by vaccines, might prevent infection in humans, where the virus exposure is considerably lower. PMID:27558423

  19. Adoptive Transfer of Engineered Rhesus Simian Immunodeficiency Virus-Specific CD8+ T Cells Reduces the Number of Transmitted/Founder Viruses Established in Rhesus Macaques.

    PubMed

    Ayala, Victor I; Trivett, Matthew T; Barsov, Eugene V; Jain, Sumiti; Piatak, Michael; Trubey, Charles M; Alvord, W Gregory; Chertova, Elena; Roser, James D; Smedley, Jeremy; Komin, Alexander; Keele, Brandon F; Ohlen, Claes; Ott, David E

    2016-11-01

    AIDS virus infections are rarely controlled by cell-mediated immunity, in part due to viral immune evasion and immunodeficiency resulting from CD4 + T-cell infection. One likely aspect of this failure is that antiviral cellular immune responses are either absent or present at low levels during the initial establishment of infection. To test whether an extensive, timely, and effective response could reduce the establishment of infection from a high-dose inoculum, we adoptively transferred large numbers of T cells that were molecularly engineered with anti-simian immunodeficiency virus (anti-SIV) activity into rhesus macaques 3 days following an intrarectal SIV inoculation. To measure in vivo antiviral activity, we assessed the number of viruses transmitted using SIVmac239X, a molecularly tagged viral stock containing 10 genotypic variants, at a dose calculated to transmit 12 founder viruses. Single-genome sequencing of plasma virus revealed that the two animals receiving T cells expressing SIV-specific T-cell receptors (TCRs) had significantly fewer viral genotypes than the two control animals receiving non-SIV-specific T cells (means of 4.0 versus 7.5 transmitted viral genotypes; P = 0.044). Accounting for the likelihood of transmission of multiple viruses of a particular genotype, the calculated means of the total number of founder viruses transmitted were 4.5 and 14.5 in the experimental and control groups, respectively (P = 0.021). Thus, a large antiviral T-cell response timed with virus exposure can limit viral transmission. The presence of strong, preexisting T-cell responses, including those induced by vaccines, might help prevent the establishment of infection at the lower-exposure doses in humans that typically transmit only a single virus. The establishment of AIDS virus infection in an individual is essentially a race between the spreading virus and host immune defenses. Cell-mediated immune responses induced by infection or vaccination are important contributors in limiting viral replication. However, in human immunodeficiency virus (HIV)/SIV infection, the virus usually wins the race, irreversibly crippling the immune system before an effective cellular immune response is developed and active. We found that providing an accelerated response by adoptively transferring large numbers of antiviral T cells shortly after a high-dose mucosal inoculation, while not preventing infection altogether, limited the number of individual viruses transmitted. Thus, the presence of strong, preexisting T-cell responses, including those induced by vaccines, might prevent infection in humans, where the virus exposure is considerably lower. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  20. Inhibition of c-Met reduces lymphatic metastasis in RIP-Tag2 transgenic mice

    PubMed Central

    Sennino, Barbara; Ishiguro-Oonuma, Toshina; Schriver, Brian J.; Christensen, James G.; McDonald, Donald M.

    2013-01-01

    Inhibition of vascular endothelial growth factor (VEGF) signaling can promote lymph node metastasis in preclinical models, but the mechanism is not fully understood, and successful methods of prevention have not been found. Signaling of hepatocyte growth factor (HGF) and its receptor c-Met can promote the growth of lymphatics and metastasis of some tumors. We sought to explore the contributions of c-Met signaling to lymph node metastasis after inhibition of VEGF signaling. In particular, we examined whether c-Met is upregulated in lymphatics in or near pancreatic neuroendocrine tumors in RIP-Tag2 transgenic mice and whether lymph node metastasis can be reduced by concurrent inhibition of VEGF and c-Met signaling. Inhibition of VEGF signaling by anti-VEGF antibody or sunitinib in mice from age 14 to 17 weeks was accompanied by more intratumoral lymphatics, more tumor cells inside lymphatics, and more lymph node metastases. Under these conditions, lymphatic endothelial cells - like tumor cells - had strong immunoreactivity for c-Met and phospho-c-Met. c-Met blockade by the selective inhibitor PF-04217903 significantly reduced metastasis to local lymph nodes. Together, these results indicate that inhibition of VEGF signaling in RIP-Tag2 mice upregulates c-Met expression in lymphatic endothelial cells, increases the number of intratumoral lymphatics and number of tumor cells within lymphatics, and promotes metastasis to local lymph nodes. Prevention of lymph node metastasis by PF-04217903 in this setting implicates c-Met signaling in tumor cell spread to lymph nodes. PMID:23576559

  1. Fibroblast Growth Factor 1 (FGFR1) Modulation Regulates Repair Capacity of Oligodendrocyte Progenitor Cells Following Chronic Demyelination

    PubMed Central

    Zhou, Yong-Xing; Pannu, Ravinder; Le, Tuan Q.; Armstrong, Regina C.

    2011-01-01

    The adult mammalian brain contains multiple populations of endogenous progenitor cell types. However, following CNS trauma or disease, the regenerative capacity of progenitor populations is typically insufficient and may actually be limited by non-permissive or inhibitory signals in the damaged parenchyma. Remyelination is the most effective and simplest regenerative process in the adult CNS yet is still insufficient following repeated or chronic demyelination. Our previous in vitro studies demonstrated that fibroblast growth factor receptor 1 (FGFR1) signaling inhibited oligodendrocyte progenitor (OP) differentiation into mature oligodendrocytes. Therefore, we questioned whether FGFR1 signaling may inhibit the capacity of OP cells to generate oligodendrocytes in a demyelinating disease model and whether genetically reducing FGFR1 signaling in oligodendrocyte lineage cells could enhance the capacity for remyelination. FGFR1 was found to be upregulated in the corpus callosum during cuprizone mediated demyelination and expressed on OP cells just prior to remyelination. Plp/CreERT:Fgfr1fl/flmice were administered tamoxifen to induce conditional Fgfr1 deletion in oligodendrocyte lineage cells. Tamoxifen administration during chronic demyelination resulted in reduced FGFR1 expression in OP cells. OP proliferation and population size were not altered one week after tamoxifen treatment. Tamoxifen was then administered during chronic demyelination and mice were given a six week recovery period without cuprizone in the chow. After the recovery period, OP numbers were reduced and the number of mature oligodendrocytes was increased, indicating an effect of FGFR1 reduction on OP differentiation. Importantly, tamoxifen administration in Plp/CreERT:Fgfr1fl/fl mice significantly promoted remyelination and axon integrity. These results demonstrate a direct effect of FGFR1 signaling in oligodendrocyte lineage cells as inhibiting the repair capacity of OP cells following chronic demyelination in the adult CNS. PMID:21854849

  2. Dehydroleucodine inhibits tumor growth in a preclinical melanoma model by inducing cell cycle arrest, senescence and apoptosis.

    PubMed

    Costantino, Valeria V; Lobos-Gonzalez, Lorena; Ibañez, Jorge; Fernandez, Dario; Cuello-Carrión, F Darío; Valenzuela, Manuel A; Barbieri, Manuel A; Semino, Silvana N; Jahn, Graciela A; Quest, Andrew F G; Lopez, Luis A

    2016-03-01

    Malignant melanoma represents the fastest growing public health risk of all cancer types worldwide. Several strategies and anti-cancer drugs have been used in an effort to improve treatments, but the development of resistance to anti-neoplastic drugs remains the major cause of chemotherapy failure in melanomas. Previously, we showed that the sesquiterpene lactone, dehydroleucodine (DhL), promotes the accumulation of DNA damage markers, such as H2AX and 53BP1, in human tumor cells. Also DhL was shown to trigger either cell senescence or apoptosis in a concentration-dependent manner in HeLa and MCF7 cells. Here, we evaluated the effects of DhL on B16F0 mouse melanoma cells in vitro and in a pre-clinical melanoma model. DhL inhibited the proliferation of B16F0 cells by inducing senescence or apoptosis in a concentration-dependent manner. Also, DhL reduced the expression of the cell cycle proteins cyclin D1 and B1 and the inhibitor of apoptosis protein, survivin. In melanomas generated by subcutaneous injection of B16F0 cells into C57/BL6 mice, the treatment with 20 mg DhL /Kg/day in preventive, simultaneous and therapeutic protocols reduced tumor volumes by 70%, 60% and 50%, respectively. DhL treatments reduced the number of proliferating, while increasing the number of senescent and apoptotic tumor cells. To estimate the long-term effects of DhL, a mathematical model was applied to fit experimental data. Extrapolation beyond experimental time points revealed that DhL administration following preventive and therapeutic protocols is predicted to be more effective than simultaneous treatments with DhL in restricting tumor growth. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. [Evaluation of immunotoxicity tests using cyclosporin A-treated rats: the International Collaborative Immunotoxicity Study II (cyclosporin A)].

    PubMed

    Ochiai, T; Naito, K; Murakami, O; Ohno, K; Sekita, K; Furuya, T; Kurokawa, Y; Matsumoto, K; Saito, Y; Hachisuka, A

    1993-01-01

    Immunotoxicological effects of cyclosporin A (CsA) were studied by enhanced histopathological and functional tests in rats. Male F344 rats were orally administered with CsA in doses of 0, 2.5, 10, and 40 mg/kg/day for 28 successive days. Hematological examination revealed that the CsA treatment brought about a marked dose-dependent decrease in the number of WBCs, which was attributed to a decrease in the number of lymphocytes. In the femoral bone marrow, a significant reduction in the number of nucleated cells was observed, which was attributed to a decrease in the number of lymphocytes and erythroblasts. Histopathologically, diminution of thymic medullas, appearance of tangible body macrophages in thymic cortices, and calcification and basophilic changes in kidneys were observed in the middle and high dose groups. Immunohistological examination with anti-rat T lymphocyte antibody showed a decrease in the number of T cells at the periarterial lymphatic sheaths in the spleens. As for the functional tests, CsA treatment remarkably reduced the PFC number even in the low dose group. The Con A response of spleen cells was decreased in the middle and high dose groups. The STM response was reduced only in the high dose group. The NK activity was little affected. Thus, in the CsA-treated F344 rats, the enhanced histopathological and some functional tests which were proposed by ICICIS, were found to be useful to detect damages to the immune system.

  4. Suppression of T cell-induced osteoclast formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karieb, Sahar; Fox, Simon W., E-mail: Simon.fox@plymouth.ac.uk

    2013-07-12

    Highlights: •Genistein and coumestrol prevent activated T cell induced osteoclast formation. •Anti-TNF neutralising antibodies prevent the pro-osteoclastic effect of activated T cells. •Phytoestrogens inhibit T cell derived TNF alpha and inflammatory cytokine production. •Phytoestrogens have a broader range of anti-osteoclastic actions than other anti-resorptives. -- Abstract: Inhibition of T cell derived cytokine production could help suppress osteoclast differentiation in inflammatory skeletal disorders. Bisphosphonates are typically prescribed to prevent inflammatory bone loss but are not tolerated by all patients and are associated with an increased risk of osteonecrosis of the jaw. In light of this other anti-resorptives such as phytoestrogens aremore » being considered. However the effect of phytoestrogens on T cell-induced osteoclast formation is unclear. The effect of genistein and coumestrol on activated T cell-induced osteoclastogenesis and cytokine production was therefore examined. Concentrations of genistein and coumestrol (10{sup −7} M) previously shown to directly inhibit osteoclast formation also suppressed the formation of TRAP positive osteoclast induced by con A activated T cells, which was dependent on inhibition of T cell derived TNF-α. While both reduced osteoclast formation their mechanism of action differed. The anti-osteoclastic effect of coumestrol was associated with a dual effect on con A induced T cell proliferation and activation; 10{sup −7} M coumestrol significantly reducing T cell number (0.36) and TNF-α (0.47), IL-1β (0.23) and IL-6 (0.35) expression, whereas genistein (10{sup −7} M) had no effect on T cell number but a more pronounced effect on T cell differentiation reducing expression of TNF-α (0.49), IL-1β (0.52), IL-6 (0.71) and RANKL (0.71). Phytoestrogens therefore prevent the pro-osteoclastic action of T cells suggesting they may have a role in the control of inflammatory bone loss.« less

  5. Reduced-intensity conditioning regimens before unrelated cord blood transplantation in adults with acute leukaemia and other haematological malignancies.

    PubMed

    Rocha, Vanderson; Mohty, Mohamad; Gluckman, Eliane; Rio, Bernard

    2009-06-01

    Cord blood is an unlimited source of haematopoietic stem cells for allogeneic haematopoietic stem cell transplants. During the past 5 years, the number of adults transplanted with cord blood cells from unrelated donors has exceeded the number of transplants in children, as a result of better definitions of cord blood unit choice, an increased number of cord blood units available for transplantation worldwide, comparable results of unrelated cord blood transplantation (UCBT) with human leukocyte antigen-matched unrelated bone marrow transplantation, the use of double cord blood transplantation and the use of UCBT after a reduced-intensity conditioning (RIC) regimen. In spite of the encouraging results of RIC UCBT in single-centre studies, the number of patients given this strategy is still limited and follow-up is still too short to draw definitive conclusions. Moreover, many questions remain to be answered such as: (1) the type of patients and disease populations that may benefit most from this strategy; (2) the best conditioning regimen to use; (3) the criteria of cord blood choice in this setting; and (4) factors predictive of outcomes after RIC UCBT. This paper will summarize some recent results of RIC UCBT for adults with haematological malignancies.

  6. Topology of the germ plasm and development of primordial germ cells in inverted amphibian eggs

    NASA Technical Reports Server (NTRS)

    Wakahara, M.; Neff, A. W.; Malacinski, G. M.

    1984-01-01

    Inverted Xenopus eggs have reduced numbers of primordial germ cells (PGCs). The extent of the reduction varies from spawning to spawning. Histologic examination revealed that PGC counts were lowest in inverted eggs which displayed the greatest amount of shift in the vegetal mass of large yolk platelets, although the germ plasm itself always remained localized in the egg's original vegetal hemisphere. Even at blastulation the germ plasm continued to be localized in the egg's original vegetal hemisphere. In many cases, however, it was confined to the periphery of the embryo, which probably accounts for the reduced PGC number in some tadpoles. In other cases it may have been dispersed and therefore not detectable in histologic analyses. Although the altered site of involution in inverted embryos did not influence PGC development, subsequent cell movement patterns apparently did. Those embryos which displayed the largest degree of pattern reversal at the tail-bud stage also exhibited the most extreme reduction in PGC numbers. A brief cold shock (4 degrees C, 10 min) prior to first cleavage leads to a further reduction in PGC numbers in inverted embryos, probably as a result of the displacement of the germ plasm away from its original vegetal pole location.

  7. Xylem phenology and wood production: resolving the chicken-or-egg dilemma.

    PubMed

    Lupi, Carlo; Morin, Hubert; Deslauriers, Annie; Rossi, Sergio

    2010-10-01

    Delays in the start of the growing season reduce the period available for growth and the amount of xylem production. However, a higher number of developing tracheids could prolong cell differentiation and, consequently, lengthen the growing season. The relationship between the amount and duration of cell production in the xylem remains an unresolved issue. The aim of this study was to resolve the chicken-or-egg causality dilemma about duration of growth and cell production through simple- and double-cause models. This was achieved by (1) analysing the intra-annual growth dynamics of the xylem in Picea mariana (Mill.) BSP during 2006-2009 in two contrasting sites of the boreal forest of Quebec, Canada, and (2) extracting the dates of onset and ending of xylem formation and the number of radial cells along the tree ring. A higher number of cells was linked to an earlier onset (r=0.74) and later ending (r=0.61) of cell differentiation. The absence of a relationship between the residuals of the onset and ending of xylogenesis (r(p)=-0.06) indicated that cell production influenced the correlation between the two phenophases of the xylem. These results demonstrated that a higher number of cells produced delay the ending of xylem maturation, so extending the duration of wood formation. © 2010 Blackwell Publishing Ltd.

  8. FADD and the NF-κB family member Bcl-3 regulate complementary pathways to control T-cell survival and proliferation

    PubMed Central

    Rangelova, Svetla; Kirschnek, Susanne; Strasser, Andreas; Häcker, Georg

    2008-01-01

    Fas-associated protein with death domain/mediator of receptor induced toxicity (FADD/MORT1) was first described as a transducer of death receptor signalling but was later recognized also to be important for proliferation of T cells. B-cell lymphoma 3 (Bcl-3) is a relatively little understood member of the nuclear factor (NF)-κB family of transcription factors. We recently found that Bcl-3 is up-regulated in T cells from mice where FADD function is blocked by a dominant negative transgene (FADD-DN). To understand the importance of this, we generated FADD-DN/bcl-3−/− mice. Here, we report that T cells from these mice show massive cell death and severely reduced proliferation in response to T-cell receptor (TCR) stimulation in vitro. Transgenic co-expression of Bcl-2 (FADD-DN/bcl-3−/−/vav-bcl-2 mice) rescued the survival but not the proliferation of T cells. FADD-DN/bcl-3−/− mice had normal thymocyte numbers but reduced numbers of peripheral T cells despite an increase in cycling T cells in vivo. However, activation of the classical NF-κB and extracellular regulated kinase (ERK) pathways and expression of interleukin (IL)-2 mRNA upon stimulation were normal in T cells from FADD-DN/bcl-3−/− mice. These data suggest that FADD and Bcl-3 regulate separate pathways that both contribute to survival and proliferation in mouse T cells. PMID:18557791

  9. Heterogeneous integration of adult-generated granule cells into the epileptic brain

    PubMed Central

    Murphy, Brian L.; Pun, Raymund Y.K.; Yin, Hulian; Faulkner, Christian R.; Loepke, Andreas W.; Danzer, Steve C.

    2011-01-01

    The functional impact of adult-generated granule cells in the epileptic brain is unclear, with data supporting both protective and maladaptive roles. These conflicting findings could be explained if new granule cells integrate heterogeneously, with some cells taking neutral or adaptive roles, while others contribute to recurrent circuitry supporting seizures. Here, we tested this hypothesis by completing detailed morphological characterizations of age- and experience-defined cohorts of adult-generated granule cells from transgenic mice. The majority of newborn cells exposed to an epileptogenic insult exhibited reductions in dendritic spine number, suggesting reduced excitatory input to these cells. A significant subset, however, exhibited higher spine numbers. These latter cells tended to have enlarged cell bodies, long basal dendrites or both. Moreover, cells with basal dendrites received significantly more recurrent mossy fiber input through their apical dendrites, indicating that these cells are robustly integrated into the pathological circuitry of the epileptic brain. These data imply that newborn cells play complex – and potentially conflicting – roles in epilepsy. PMID:21209195

  10. Toxicity of copper oxide nanoparticles in lung epithelial cells exposed at the air-liquid interface compared with in vivo assessment.

    PubMed

    Jing, Xuefang; Park, Jae Hong; Peters, Thomas M; Thorne, Peter S

    2015-04-01

    The toxicity of spark-generated copper oxide nanoparticles (CuONPs) was evaluated in human bronchial epithelial cells (HBEC) and lung adenocarcinoma cells (A549 cells) using an in vitro air-liquid interface (ALI) exposure system. Dose-response results were compared to in vivo inhalation and instillation studies of CuONPs. Cells were exposed to filtered, particle-free clean air (controls) or spark-generated CuONPs. The number median diameter, geometric standard deviation and total number concentration of CuONPs were 9.2 nm, 1.48 and 2.27×10(7)particles/cm(3), respectively. Outcome measures included cell viability, cytotoxicity, oxidative stress and proinflammatory chemokine production. Exposure to clean air (2 or 4h) did not induce toxicity in HBEC or A549 cells. Compared with controls, CuONP exposures significantly reduced cell viability, increased lactate dehydrogenase (LDH) release and elevated levels of reactive oxygen species (ROS) and IL-8 in a dose-dependent manner. A549 cells were significantly more susceptible to CuONP effects than HBEC. Antioxidant treatment reduced CuONP-induced cytotoxicity. When dose was expressed per area of exposed epithelium there was good agreement of toxicity measures with murine in vivo studies. This demonstrates that in vitro ALI studies can provide meaningful data on nanotoxicity of metal oxides. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Decreased natural killer cell activity in atopic eczema.

    PubMed Central

    Hall, T J; Rycroft, R; Brostoff, J

    1985-01-01

    We have studied NK cell activity in atopic and non-atopic subjects using a standard 51Cr-release assay and K562 target cells. In atopics (AT) with allergic rhinitis and/or asthma, NK cell activity was similar to that in non-atopic (N) subjects, whilst patients with severe atopic eczema (AE) had depressed NK cell activity compared to AT or N subjects. In addition, circulating T-cell numbers and Con A responsiveness was decreased in AE, although neither parameter was correlated with decreased NK cell activity. However, decreased NK cell activity in atopic eczema was positively correlated with decreased numbers of Fc gamma + lymphocytes (P = 0.01) and decreased effector: target cell binding (P = 0.05), and negatively correlated with increased monocytes in AE (P = 0.09). AE NK cell activity was equally or more sensitive to the inhibitory effects of drugs such as dibutyryl cyclic AMP, prostaglandins (PG) D2,E2 and histamine. The relative percentage increase in NK cell activity by the interferon inducer poly I:C was similar in AE patients and controls. The results suggest that reduced numbers of circulating NK cells and pre-NK cells account for the depressed level of NK cell activity in subjects with severe atopic eczema. PMID:3876984

  12. Quantitative impact of thymic selection on Foxp3+ and Foxp3- subsets of self-peptide/MHC class II-specific CD4+ T cells.

    PubMed

    Moon, James J; Dash, Pradyot; Oguin, Thomas H; McClaren, Jennifer L; Chu, H Hamlet; Thomas, Paul G; Jenkins, Marc K

    2011-08-30

    It is currently thought that T cells with specificity for self-peptide/MHC (pMHC) ligands are deleted during thymic development, thereby preventing autoimmunity. In the case of CD4(+) T cells, what is unclear is the extent to which self-peptide/MHC class II (pMHCII)-specific T cells are deleted or become Foxp3(+) regulatory T cells. We addressed this issue by characterizing a natural polyclonal pMHCII-specific CD4(+) T-cell population in mice that either lacked or expressed the relevant antigen in a ubiquitous pattern. Mice expressing the antigen contained one-third the number of pMHCII-specific T cells as mice lacking the antigen, and the remaining cells exhibited low TCR avidity. In mice lacking the antigen, the pMHCII-specific T-cell population was dominated by phenotypically naive Foxp3(-) cells, but also contained a subset of Foxp3(+) regulatory cells. Both Foxp3(-) and Foxp3(+) pMHCII-specific T-cell numbers were reduced in mice expressing the antigen, but the Foxp3(+) subset was more resistant to changes in number and TCR repertoire. Therefore, thymic selection of self-pMHCII-specific CD4(+) T cells results in incomplete deletion within the normal polyclonal repertoire, especially among regulatory T cells.

  13. The loss of the kinases SadA and SadB results in early neuronal apoptosis and a reduced number of progenitors.

    PubMed

    Dhumale, Pratibha; Menon, Sindhu; Chiang, Joanna; Püschel, Andreas W

    2018-01-01

    The neurons that form the mammalian neocortex originate from progenitor cells in the ventricular (VZ) and subventricular zone (SVZ). Newborn neurons are multipolar but become bipolar during their migration from the germinal layers to the cortical plate (CP) by forming a leading process and an axon that extends in the intermediate zone (IZ). Once they settle in the CP, neurons assume a highly polarized morphology with a single axon and multiple dendrites. The AMPK-related kinases SadA and SadB are intrinsic factors that are essential for axon formation during neuronal development downstream of Lkb1. The knockout of both genes encoding Sad kinases (Sada and Sadb) results not only in a loss of axons but also a decrease in the size of the cortical plate. The defect in axon formation has been linked to a function of Sad kinases in the regulation of microtubule binding proteins. However, the causes for the reduced size of the cortical plate in the Sada-/-;Sadb-/- knockout remain to be analyzed in detail. Here we show that neuronal cell death is increased and the number of neural progenitors is decreased in the Sada-/-;Sadb-/- CP. The reduced number of progenitors is a non-cell autonomous defect since they do not express Sad kinases. These defects are restricted to the neocortex while the hippocampus remains unaffected.

  14. An oral form of methylglyoxal-bis-guanylhydrazone reduces monocyte activation and traffic to the dorsal root ganglia in a primate model of HIV-peripheral neuropathy.

    PubMed

    Lakritz, Jessica R; Yalamanchili, Samshita; Polydefkis, Michael J; Miller, Andrew D; McGrath, Michael S; Williams, Kenneth C; Burdo, Tricia H

    2017-08-01

    Peripheral neuropathy (PN) is a major comorbidity of HIV infection that is caused in part by chronic immune activation. HIV-PN is associated with infiltration of monocytes/macrophages to the dorsal root ganglia (DRG) causing neuronal loss and formation of Nageotte nodules. Here, we used an oral form of methylglyoxal-bis-guanylhydrazone (MGBG), a polyamine biosynthesis inhibitor, to specifically reduce activation of myeloid cells. MGBG is selectively taken up by monocyte/macrophages in vitro and inhibits HIV p24 expression and DNA viral integration in macrophages. Here, MGBG was administered to nine SIV-infected, CD8-depleted rhesus macaques at 21 days post-infection (dpi). An additional nine SIV-infected, CD8-depleted rhesus macaques were used as untreated controls. Cell traffic to tissues was measured by in vivo BrdU pulse labeling. MGBG treatment significantly diminished DRG histopathology and reduced the number of CD68+ and CD163+ macrophages in DRG tissue. The number of recently trafficked BrdU+ cells in the DRG was significantly reduced with MGBG treatment. Despite diminished DRG pathology, intraepidermal nerve fiber density (IENFD) did not recover after treatment with MGBG. These data suggest that MGBG alleviated DRG pathology and inflammation.

  15. Effects of a new bifunctional psoralen, 4,4',5'-trimethylazapsoralen and ultraviolet-A radiation on murine dendritic epidermal cells.

    PubMed

    Aubin, F; Alcalay, J; Dall'Acqua, F; Kripke, M L

    1990-06-01

    Although some psoralens are therapeutically active in the treatment of cutaneous hyperproliferative diseases when combined with UVA (320-400 nm) radiation, the toxic effects of these compounds have led physicians to seek new photochemotherapeutic agents. One such agent is 4,4',5'-trimethylazapsoralen (TMAP), a new bifunctional psoralen compound. We investigated the effects of repetitive treatments with TMAP plus UVA radiation on the number of dendritic immune cells in murine epidermis and on the induction of phototoxicity. Mice treated 3 times per week for 4 weeks with 129 microgram TMAP plus 10 kJ/m2 UVA radiation exhibited no gross or microscopic evidence of phototoxicity. During this treatment, the numbers of ATPase+, Ia+, and Thy-l+ dendritic epidermal cells were greatly reduced, and by the end of the treatment period, few dendritic immune cells could be detected. We conclude that morphological alterations of cutaneous immune cells can occur in the absence of overt phototoxicity, and that TMAP plus low-dose UVA radiation decreases the numbers of detectable Langerhans cells and Thy-1+ cells in murine skin.

  16. Survivin Modulates Squamous Cell Carcinoma-Derived Stem-Like Cell Proliferation, Viability and Tumor Formation in Vivo

    PubMed Central

    Lotti, Roberta; Palazzo, Elisabetta; Petrachi, Tiziana; Dallaglio, Katiuscia; Saltari, Annalisa; Truzzi, Francesca; Quadri, Marika; Puviani, Mario; Maiorana, Antonino; Marconi, Alessandra; Pincelli, Carlo

    2016-01-01

    Squamous Cell Carcinoma-derived Stem-like Cells (SCC-SC) originate from alterations in keratinocyte stem cells (KSC) gene expression and sustain tumor development, invasion and recurrence. Since survivin, a KSC marker, is highly expressed in SCC-SC, we evaluate its role in SCC-SC cell growth and SCC models. Survivin silencing by siRNA decreases clonal growth of SCC keratinocytes and viability of total, rapidly adhering (RAD) and non-RAD (NRAD) cells from primary SCC. Similarly, survivin silencing reduces the expression of stem cell markers (OCT4, NOTCH1, CD133, β1-integrin), while it increases the level of differentiation markers (K10, involucrin). Moreover, survivin silencing improves the malignant phenotype of SCC 3D-reconstruct, as demonstrated by reduced epidermal thickness, lower Ki-67 positive cell number, and decreased expression of MMP9 and psoriasin. Furthermore, survivin depletion by siRNA in RasG12V-IκBα-derived tumors leads to smaller tumor formation characterized by lower mitotic index and reduced expression of the tumor-associated marker HIF1α, VEGF and CD51. Therefore, our results indicate survivin as a key gene in regulating SCC cancer stem cell formation and cSCC development. PMID:26771605

  17. Dietary antioxidants and human cancer.

    PubMed

    Borek, Carmia

    2004-12-01

    Epidemiological studies show that a high intake of anti-oxidant-rich foods is inversely related to cancer risk. While animal and cell cultures confirm the anticancer effects of antioxidants, intervention trials to determine their ability to reduce cancer risk have been inconclusive, although selenium and vitamin E reduced the risk of some forms of cancer, including prostate and colon cancer, and carotenoids have been shown to help reduce breast cancer risk. Cancer treatment by radiation and anticancer drugs reduces inherent antioxidants and induces oxidative stress, which increases with disease progression. Vitamins E and C have been shown to ameliorate adverse side effects associated with free radical damage to normal cells in cancer therapy, such as mucositis and fibrosis, and to reduce the recurrence of breast cancer. While clinical studies on the effect of anti-oxidants in modulating cancer treatment are limited in number and size, experimental studies show that antioxidant vitamins and some phytochemicals selectively induce apoptosis in cancer cells but not in normal cells and prevent angiogenesis and metastatic spread, suggesting a potential role for antioxidants as adjuvants in cancer therapy.

  18. Attenuated atherosclerotic lesions in apoE-Fcγ chain-deficient hyperlipidemic mouse model is associated with inhibition of Th17 cells and promotion of Tregs1

    PubMed Central

    Pong Ng, Hang; Burris, Ramona L.; Nagarajan, Shanmugam

    2011-01-01

    Though the presence of anti-oxLDL IgG is well documented in clinical and animal studies, the role for FcγRs to the progression of atherosclerosis has not been studied in detail. In the present study, we investigated the role for activating FcγR in the progression of atherosclerosis using apoE-Fcγ chain double knockout (DKO) mice. Relative to apoE KO mice, arterial lesion formation was significantly decreased in apoE-Fcγ chain DKO mice. Bone marrow chimera studies showed reduced lesions in apoE KO mice receiving the bone marrow of apoE-Fcγ chain DKO mice. Compared to apoE KO mice, anti-oxLDL IgG1 (Th2) and IgG2a (Th1), IL-10, and IFN-γ secretion by activated T cells were increased in apoE-Fc γ chain DKO mice. These findings suggest that reduced atherosclerotic lesion in apoE-Fcγ chain DKO mice is not due to Th1/Th2 imbalance. Interestingly, number of Th17 cells and the secretion of IL-17 by activated CD4+ cells were decreased in apoE-Fcγ chain DKO mice. Notably, the number of T-regulatory cells, expression of mRNA, and secretion of TGF-β and IL-10 were increased in apoE-Fcγ chain DKO mice. Furthermore, secretions of IL-6 and STAT-3 phosphorylation essential for Th17 cell genesis were reduced in apoE-Fcγ chain DKO mice. Importantly, decrease in Th17 cells in apoE-Fcγ chain DKO mice was due to reduced IL-6 release by antigen presenting cells of apoE-Fcγ chain DKO mice. Collectively, our data suggest that activating FcγR promotes atherosclerosis by inducing Th17 response in the hyperlipidemic apoE KO mouse model. PMID:22043015

  19. Boron Affects Immune Function Through Modulation of Splenic T Lymphocyte Subsets, Cytokine Secretion, and Lymphocyte Proliferation and Apoptosis in Rats.

    PubMed

    Jin, Erhui; Li, Shenghe; Ren, Man; Hu, Qianqian; Gu, Youfang; Li, Kui

    2017-08-01

    This study demonstrated the mechanisms of boron effects in a rat model and provided a scientific basis for the rational of boron use. These findings were achieved by investigating the effects of boron (10, 20, 40, 80, 160, 320, and 640 mg/L in drinking water or 1.5, 3, 6, 12, 24, 48, and 96 mg/kg BW) on rat serum immunoglobulins (IgGs), splenic cytokines, lymphocyte subsets, as well as on lymphocyte proliferation and apoptosis. Addition of 20 (3) and 40 (6) mg/L (mg/kg BW) of boron to drinking water significantly increased rat serum IgG concentrations, splenic IFN-γ and IL-4 expression as well as the number of splenic CD3 + , CD4 + and proliferating cell nuclear antigen (PCNA) + cells. Supplementation of drinking water with 40 mg/L (6 mg/kg BW) boron also markedly increased splenic IL-2 expression and the CD4 + /CD8 + cell ratio and reduced splenic CD8 + cell number. Supplementation with 80 mg/L (12 mg/kg BW) boron significantly increased CD3 + and PCNA + cell numbers (P < 0.05) and decreased the IL-10 expression in the spleen. Addition of 320 (48) and 640 (96) mg/L (mg/kg BW) boron markedly reduced the serum IgG concentrations; splenic IL-2 and IL-10 expression; the number of CD3 + , CD4 + and PCNA + cells; and increased the number of splenic CD8 + and caspase-3 + cells and promoted caspase-3 expression in CD3 + cells. In conclusion, these findings suggest that the supplementation of rat drinking water with 20(3) and 40(6) mg/L (mg/kg BW) boron can markedly enhance humoral and cellular immune functions, while boron concentrations above 320 mg/L (48 mg/kg BW) can have an inhibitory effect or even toxicity on immune functions. These results exhibit a U-shaped response characteristic of low and high doses of boron supplementation on immune function and imply that proper boron supplementation in food for humans and animals could be used as an immunity regulator.

  20. Interactions between insulin-like growth factor-I, estrogen receptor-α (ERα) and ERβ in regulating growth/apoptosis of MCF-7 human breast cancer cells

    PubMed Central

    Mendoza, Rhone A.; Enriquez, Marlene I; Mejia, Sylvia M; Moody, Emily E; Thordarson, Gudmundur

    2011-01-01

    Understanding of the interactions between estradiol (E2) and insulin-like growth factor-I (IGF-I) is still incomplete. Cell lines derived from the MCF-7 breast cancer cells were generated with suppressed expression of the IGF-I receptor (IGF-IR), termed IGF-IR.low cells, by stable transfection using small interfering RNA (siRNA) expression vector. Vector for control cells carried sequence generating non-interfering RNA. Concomitant with reduction in the IGF-IR levels, the IGF-IR.low cells also showed a reduction in estrogen receptor α (ERα) and progesterone receptor expressions and an elevation in the expression of ERβ. The number of the IGF-IR.low cells was reduced in response to IGF-I and human growth hormone plus epidermal growth factor, but E2 did not cause increase in the number of the IGF-IR.low cells compared to controls. Proliferation rate of IGF-IR.low cells was only reduced in response to E2 compared to controls, whereas their basal and hormone stimulated apoptosis rate was increased. Phosphorylation of p38 mitogen activated protein kinase (p38 MAPK) was increased in the IGF-IR.low cells after treatment with E2, without affecting control cells. Further, phosphorylation of the tumor suppressor protein p53 was elevated in the IGF-IR.low cells compared to the controls. Summary, suppressing the IGF-IR expression decreased the level of ERα but increased the level of ERβ. Overall growth rate of the IGF-IR.low cells was reduced mostly through an increase in apoptosis without affecting proliferation substantially. We hypothesize that a decreased ERα:ERβ ratio triggered a rapid phosphorylation of p38 MAPK which in turn phosphorylated the p53 tumor suppressor and accelerated apoptosis rate. PMID:20974640

  1. EGY1 plays a role in regulation of endodermal plastid size and number that are involved in ethylene-dependent gravitropism of light-grown Arabidopsis hypocotyls.

    PubMed

    Guo, Di; Gao, Xiaorong; Li, Hao; Zhang, Tao; Chen, Gu; Huang, Pingbo; An, Lijia; Li, Ning

    2008-03-01

    Egy1 was isolated as an ethylene-dependent gravitropism-deficient Arabidopsis mutant. Molecular studies reveal that EGY1 gene encodes a 59-kDa plastid-targeted metalloprotease. It is actively expressed in hypocotyl tissue and targets to endodermal and cortex plastid. Its protein level is up-regulated by both ethylene and light. CAB protein accumulation and chlorophyll level is severely reduced in hypocotyls and endodermal cells, respectively. Sucrose is able to restore the severely reduced starch and lipid contents as well as the deficient endodermal plastid size found in light-grown egy1 hypocotyls yet it fails to rescue the reduced plastid number and chlorophyll level in egy1 endodermal cells. The loss-of-function egy1 mutation results in a smaller size (1.9 +/- 0.3 microm in diameter) and less number (5 +/- 1) of plastids in endodermal cells, which are nearly 50% of the wild-type. EGY1 is specially required for the development of full-size endodermal plastid in seedlings that are grown on sucrose-free media under light. It plays a direct role in controlling the light-induced chlorophyll production, grana formation and plastid replication in endodermal cell. However, it plays an indirect role in regulation of endodermal plastid size. It is likely that the ethylene-dependent gravitropism-deficient phenotype of egy1 hypocotyls may result from the smaller size and less number of endodermal plastids. Gravicurvature assays performed on ethylene-insensitive mutants, etr1-1, etr2-1, ers2-1, ein4-1 and ein2-5, have clearly demonstrated the necessary role for ethylene in vigorous gravitropism of light-grown hypocotyls. The degree of ethylene-dependent gravicurvature is positively correlated with the combined state of endodermal plastid mass and number. Neither ethylene nor EGY1-regulated full-size endodermal plastid is sufficient for promotion of vigorous hypocotyl gravitropism. Presence of 4 full-size plastids per endodermal cell together with ethylene pretreatment of hypocotyls becomes sufficient to trigger vigorous gravicurvature in light-grown seedlings. A model is therefore proposed to address the role of EGY1 in regulation of endodermal plastid size and number as well as the stimulatory effect of ethylene on hypocotyl gravitropism.

  2. Sourcing of an alternative pericyte-like cell type from peripheral blood in clinically relevant numbers for therapeutic angiogenic applications.

    PubMed

    Blocki, Anna; Wang, Yingting; Koch, Maria; Goralczyk, Anna; Beyer, Sebastian; Agarwal, Nikita; Lee, Michelle; Moonshi, Shehzahdi; Dewavrin, Jean-Yves; Peh, Priscilla; Schwarz, Herbert; Bhakoo, Kishore; Raghunath, Michael

    2015-03-01

    Autologous cells hold great potential for personalized cell therapy, reducing immunological and risk of infections. However, low cell counts at harvest with subsequently long expansion times with associated cell function loss currently impede the advancement of autologous cell therapy approaches. Here, we aimed to source clinically relevant numbers of proangiogenic cells from an easy accessible cell source, namely peripheral blood. Using macromolecular crowding (MMC) as a biotechnological platform, we derived a novel cell type from peripheral blood that is generated within 5 days in large numbers (10-40 million cells per 100 ml of blood). This blood-derived angiogenic cell (BDAC) type is of monocytic origin, but exhibits pericyte markers PDGFR-β and NG2 and demonstrates strong angiogenic activity, hitherto ascribed only to MSC-like pericytes. Our findings suggest that BDACs represent an alternative pericyte-like cell population of hematopoietic origin that is involved in promoting early stages of microvasculature formation. As a proof of principle of BDAC efficacy in an ischemic disease model, BDAC injection rescued affected tissues in a murine hind limb ischemia model by accelerating and enhancing revascularization. Derived from a renewable tissue that is easy to collect, BDACs overcome current short-comings of autologous cell therapy, in particular for tissue repair strategies.

  3. Sourcing of an Alternative Pericyte-Like Cell Type from Peripheral Blood in Clinically Relevant Numbers for Therapeutic Angiogenic Applications

    PubMed Central

    Blocki, Anna; Wang, Yingting; Koch, Maria; Goralczyk, Anna; Beyer, Sebastian; Agarwal, Nikita; Lee, Michelle; Moonshi, Shehzahdi; Dewavrin, Jean-Yves; Peh, Priscilla; Schwarz, Herbert; Bhakoo, Kishore; Raghunath, Michael

    2015-01-01

    Autologous cells hold great potential for personalized cell therapy, reducing immunological and risk of infections. However, low cell counts at harvest with subsequently long expansion times with associated cell function loss currently impede the advancement of autologous cell therapy approaches. Here, we aimed to source clinically relevant numbers of proangiogenic cells from an easy accessible cell source, namely peripheral blood. Using macromolecular crowding (MMC) as a biotechnological platform, we derived a novel cell type from peripheral blood that is generated within 5 days in large numbers (10–40 million cells per 100 ml of blood). This blood-derived angiogenic cell (BDAC) type is of monocytic origin, but exhibits pericyte markers PDGFR-β and NG2 and demonstrates strong angiogenic activity, hitherto ascribed only to MSC-like pericytes. Our findings suggest that BDACs represent an alternative pericyte-like cell population of hematopoietic origin that is involved in promoting early stages of microvasculature formation. As a proof of principle of BDAC efficacy in an ischemic disease model, BDAC injection rescued affected tissues in a murine hind limb ischemia model by accelerating and enhancing revascularization. Derived from a renewable tissue that is easy to collect, BDACs overcome current short-comings of autologous cell therapy, in particular for tissue repair strategies. PMID:25582709

  4. Three-terminal heterojunction bipolar transistor solar cell for high-efficiency photovoltaic conversion.

    PubMed

    Martí, A; Luque, A

    2015-04-22

    Here we propose, for the first time, a solar cell characterized by a semiconductor transistor structure (n/p/n or p/n/p) where the base-emitter junction is made of a high-bandgap semiconductor and the collector is made of a low-bandgap semiconductor. We calculate its detailed-balance efficiency limit and prove that it is the same one than that of a double-junction solar cell. The practical importance of this result relies on the simplicity of the structure that reduces the number of layers that are required to match the limiting efficiency of dual-junction solar cells without using tunnel junctions. The device naturally emerges as a three-terminal solar cell and can also be used as building block of multijunction solar cells with an increased number of junctions.

  5. Three-terminal heterojunction bipolar transistor solar cell for high-efficiency photovoltaic conversion

    PubMed Central

    Martí, A.; Luque, A.

    2015-01-01

    Here we propose, for the first time, a solar cell characterized by a semiconductor transistor structure (n/p/n or p/n/p) where the base–emitter junction is made of a high-bandgap semiconductor and the collector is made of a low-bandgap semiconductor. We calculate its detailed-balance efficiency limit and prove that it is the same one than that of a double-junction solar cell. The practical importance of this result relies on the simplicity of the structure that reduces the number of layers that are required to match the limiting efficiency of dual-junction solar cells without using tunnel junctions. The device naturally emerges as a three-terminal solar cell and can also be used as building block of multijunction solar cells with an increased number of junctions. PMID:25902374

  6. Generating Chimeric Mice by Using Embryos from Nonsuperovulated BALB/c Mice Compared with Superovulated BALB/c and Albino C57BL/6 Mice.

    PubMed

    Esmail, Michael Y; Qi, Peimin; Connor, Aurora Burds; Fox, James G; García, Alexis

    2016-01-01

    The reliable generation of high-percentage chimeras from gene-targeted C57BL/6 embryonic stem cells has proven challenging, despite optimization of cell culture and microinjection techniques. To improve the efficiency of this procedure, we compared the generation of chimeras by using 3 different inbred, albino host, embryo-generating protocols: BALB/cAnNTac (BALB/c) donor mice superovulated at 4 wk of age, 12-wk-old BALB/c donor mice without superovulation, and C57BL/6NTac-Tyr(tm1Arte) (albino B6) mice superovulated at 4 wk of age. Key parameters measured included the average number of injectable embryos per donor, the percentage of live pups born from the total number of embryos transferred to recipients, and the number of chimeric pups with high embryonic-stem-cell contribution by coat color. Although albino B6 donors produced significantly more injectable embryos than did BALB/c donors, 12-wk-old BALB/c donor produced high-percentage (at least 70%) chimeras more than 2.5 times as often as did albino B6 mice and 20 times more efficiently than did 4-wk-old BALB/c donors. These findings clearly suggest that 12-wk-old BALB/c mice be used as blastocyst donors to reduce the number of mice used to generate each chimera, reduce the production of low-percentage chimeras, and maximize the generation of high-percentage chimeras from C57BL/6 embryonic stem cells.

  7. Upregulation of GRAIL is associated with impaired CD4 T cell proliferation in sepsis.

    PubMed

    Aziz, Monowar; Yang, Weng-Lang; Matsuo, Shingo; Sharma, Archna; Zhou, Mian; Wang, Ping

    2014-03-01

    The loss of numbers and functionality of CD4 T cells is observed in sepsis; however, the mechanism remains elusive. Gene related to anergy in lymphocytes (GRAIL) is critical for the impairment of CD4 T cell proliferation. We therefore sought to examine the role of GRAIL in CD4 T cell proliferation during sepsis. Sepsis was induced in 10-wk-old male C57BL/6 mice by cecal ligation and puncture. Splenocytes were isolated and subjected to flow cytometry to determine CD4 T cell contents. CD4 T cell proliferation was assessed by CFSE staining, and the expression of GRAIL in splenocytes was measured by immunohistochemistry, real-time PCR, and flow cytometry. The expressions of IL-2 and early growth response-2 were determined by real-time PCR. As compared with shams, the numbers of CD4 T cells were significantly reduced in spleens. Septic CD4 T cells were less efficient in proliferation than shams. The IL-2 expression was significantly reduced, whereas the GRAIL expression was significantly increased in septic mice splenocytes as compared with shams. The small interfering RNA-mediated knockdown of GRAIL expression re-established the CD4 T cell proliferation ability ex vivo. Similarly, the treatment with recombinant murine IL-2 to the septic CD4 T cells restored their proliferation ability by downregulating GRAIL expression. Our findings reveal a novel association of the increased GRAIL expression with impaired CD4 T cell proliferation, implicating an emerging therapeutic tool in sepsis.

  8. Suppression of autophagy in osteocytes does not modify the adverse effects of glucocorticoids on cortical bone.

    PubMed

    Piemontese, Marilina; Onal, Melda; Xiong, Jinhu; Wang, Yiying; Almeida, Maria; Thostenson, Jeff D; Weinstein, Robert S; Manolagas, Stavros C; O'Brien, Charles A

    2015-06-01

    Glucocorticoid excess decreases bone mass and strength in part by acting directly on osteoblasts and osteocytes, but the mechanisms remain unclear. Macroautophagy (herein referred to as autophagy) is a lysosome-based recycling pathway that promotes the turnover of intracellular components and can promote cell function and survival under stressful conditions. Recent studies have shown that glucocorticoids stimulate autophagy in osteocytes, suggesting that autophagy may oppose the negative actions of glucocorticoids on this cell type. To address this possibility, we compared the impact of prednisolone administration on the skeletons of adult mice in which autophagy was suppressed in osteocytes, via deletion of Atg7 with a Dmp1-Cre transgene, to their control littermates. In control mice, prednisolone increased autophagic flux in osteocyte-enriched bone as measured by LC3 conversion, but this change did not occur in the mice lacking Atg7 in osteocytes. Nonetheless, prednisolone reduced femoral cortical thickness, increased cortical porosity, and reduced bone strength to similar extents in mice with and without autophagy in osteocytes. Prednisolone also suppressed osteoblast number and bone formation in the cancellous bone of control mice. As shown previously, Atg7 deletion in osteocytes reduced osteoblast number and bone formation in cancellous bone, but these parameters were not further reduced by prednisolone administration. In cortical bone, prednisolone elevated osteoclast number to a similar extent in both genotypes. Taken together, these results demonstrate that although glucocorticoids stimulate autophagy in osteocytes, suppression of autophagy in this cell type does not worsen the negative impact of glucocorticoids on the skeleton. Published by Elsevier Inc.

  9. Suppression of Autophagy in Osteocytes Does Not Modify the Adverse Effects of Glucocorticoids on Cortical Bone

    PubMed Central

    Piemontese, Marilina; Onal, Melda; Xiong, Jinhu; Wang, Yiying; Almeida, Maria; Thostenson, Jeff D.; Weinstein, Robert S.; Manolagas, Stavros C.; O’Brien, Charles A.

    2015-01-01

    Glucocorticoid excess decreases bone mass and strength in part by acting directly on osteoblasts and osteocytes, but the mechanisms remain unclear. Macroautophagy (herein referred to as autophagy) is a lysosome-based recycling pathway that promotes the turnover of intracellular components and can promote cell function and survival under stressful conditions. Recent studies have shown that glucocorticoids stimulate autophagy in osteocytes, suggesting that autophagy may oppose the negative actions of glucocorticoids on this cell type. To address this possibility, we compared the impact of prednisolone administration on the skeletons of adult mice in which autophagy was suppressed in osteocytes, via deletion of Atg7 with a Dmp1-Cre transgene, to their control littermates. In control mice, prednisolone increased autophagic flux in osteocyte-enriched bone as measured by LC3 conversion, but this change did not occur in the mice lacking Atg7 in osteocytes. Nonetheless, prednisolone reduced femoral cortical thickness, increased cortical porosity, and reduced bone strength to similar extents in mice with and without autophagy in osteocytes. Prednisolone also suppressed osteoblast number and bone formation in the cancellous bone of control mice. As shown previously, Atg7 deletion in osteocytes reduced osteoblast number and bone formation in cancellous bone, but these parameters were not further reduced by prednisolone administration. In cortical bone, prednisolone elevated osteoclast number to a similar extent in both genotypes. Taken together, these results demonstrate that although glucocorticoids stimulate autophagy in osteocytes, suppression of autophagy in this cell type does not worsen the negative impact of glucocorticoids on the skeleton. PMID:25700544

  10. A potential inhibitory function of draxin in regulating mouse trunk neural crest migration.

    PubMed

    Zhang, Sanbing; Su, Yuhong; Gao, Jinbao; Zhang, Chenbing; Tanaka, Hideaki

    2017-01-01

    Draxin is a repulsive axon guidance protein that plays important roles in the formation of three commissures in the central nervous system and dorsal interneuron 3 (dI3) in the chick spinal cord. In the present study, we report the expression pattern of mouse draxin in the embryonic mouse trunk spinal cord. In the presence of draxin, the longest net migration length of a migrating mouse trunk neural crest cell was significantly reduced. In addition, the relative number of apolar neural crest cells increased as the draxin treatment time increased. Draxin caused actin cytoskeleton rearrangement in the migrating trunk neural crest cells. Our data suggest that draxin may regulate mouse trunk neural crest cell migration by the rearrangement of cell actin cytoskeleton and by reducing the polarization activity of these cells subsequently.

  11. Marrow grafts from HLA-identical siblings for severe aplastic anemia: does limiting the number of transplanted marrow cells reduce the risk of chronic GvHD?

    PubMed

    Gallo, S; Woolfrey, A E; Burroughs, L M; Storer, B E; Flowers, M E D; Hari, P; Pulsipher, M A; Heimfeld, S; Kiem, H-P; Sandmaier, B M; Storb, R

    2016-12-01

    A total of 21 patients with severe aplastic anemia (SAA) underwent marrow transplantation from HLA-identical siblings following a standard conditioning regimen with cyclophosphamide (50 mg/kg/day × 4 days) and horse antithymocyte globulin (30 mg/kg/day × 3 days). Post-grafting immunosuppression consisted of a short course of methotrexate (MTX) combined with cyclosporine (CSP). The transplant protocol tested the hypothesis that the incidence of chronic GvHD could be reduced by limiting the marrow grafts to ⩽2.5 × 10 8 nucleated marrow cells/kg. None of the patients rejected the graft, all had sustained engraftment and all are surviving at a median of 4 (range 1-8) years after transplantation. Chronic GvHD developed in 16% of patients given ⩽2.5 × 10 8 nucleated marrow cells/kg. Post-grafting immunosuppression has been discontinued in 20 of the 21 patients. In conclusion, limiting the number of transplanted marrow cells may have resulted in minimal improvement in the incidence and severity of chronic GvHD.

  12. Therapeutic potential of the metabolic modulator phenformin in targeting the stem cell compartment in melanoma.

    PubMed

    Petrachi, Tiziana; Romagnani, Alessandra; Albini, Adriana; Longo, Caterina; Argenziano, Giuseppe; Grisendi, Giulia; Dominici, Massimo; Ciarrocchi, Alessia; Dallaglio, Katiuscia

    2017-01-24

    Melanoma is the most dangerous and treatment-resistant skin cancer. Tumor resistance and recurrence are due to the persistence in the patient of aggressive cells with stem cell features, the cancer stem cells (CSC). Recent evidences have shown that CSC display a distinct metabolic profile as compared to tumor bulk population: a promising anti-tumor strategy is therefore to target specific metabolic pathways driving CSC behavior. Biguanides (metformin and phenformin) are anti-diabetic drugs able to perturb cellular metabolism and displaying anti-cancer activity. However, their ability to target the CSC compartment in melanoma is not known. Here we show that phenformin, but not metformin, strongly reduces melanoma cell viability, growth and invasion in both 2D and 3D (spheroids) models. While phenformin decreases melanoma CSC markers expression and the levels of the pro-survival factor MITF, MITF overexpression fails to prevent phenformin effects. Phenformin significantly reduces cell viability in melanoma by targeting both CSC (ALDHhigh) and non-CSC cells and by significantly reducing the number of viable cells in ALDHhigh and ALDHlow-derived spheroids. Consistently, phenformin reduces melanoma cell viability and growth independently from SOX2 levels. Our results show that phenformin is able to affect both CSC and non-CSC melanoma cell viability and growth and suggests its potential use as anti-cancer therapy in melanoma.

  13. Therapeutic potential of the metabolic modulator phenformin in targeting the stem cell compartment in melanoma

    PubMed Central

    Albini, Adriana; Longo, Caterina; Argenziano, Giuseppe; Grisendi, Giulia; Dominici, Massimo; Ciarrocchi, Alessia; Dallaglio, Katiuscia

    2017-01-01

    Melanoma is the most dangerous and treatment-resistant skin cancer. Tumor resistance and recurrence are due to the persistence in the patient of aggressive cells with stem cell features, the cancer stem cells (CSC). Recent evidences have shown that CSC display a distinct metabolic profile as compared to tumor bulk population: a promising anti-tumor strategy is therefore to target specific metabolic pathways driving CSC behavior. Biguanides (metformin and phenformin) are anti-diabetic drugs able to perturb cellular metabolism and displaying anti-cancer activity. However, their ability to target the CSC compartment in melanoma is not known. Here we show that phenformin, but not metformin, strongly reduces melanoma cell viability, growth and invasion in both 2D and 3D (spheroids) models. While phenformin decreases melanoma CSC markers expression and the levels of the pro-survival factor MITF, MITF overexpression fails to prevent phenformin effects. Phenformin significantly reduces cell viability in melanoma by targeting both CSC (ALDHhigh) and non-CSC cells and by significantly reducing the number of viable cells in ALDHhigh and ALDHlow-derived spheroids. Consistently, phenformin reduces melanoma cell viability and growth independently from SOX2 levels. Our results show that phenformin is able to affect both CSC and non-CSC melanoma cell viability and growth and suggests its potential use as anti-cancer therapy in melanoma. PMID:28036292

  14. Effects of employing a 10B-carrier and manipulating intratumour hypoxia on local tumour response and lung metastatic potential in boron neutron capture therapy

    PubMed Central

    Masunaga, S; Sakurai, Y; Tanaka, H; Suzuki, M; Liu, Y; Kondo, N; Maruhashi, A; Kinashi, Y; Ono, K

    2012-01-01

    Objectives To evaluate the effects of employing a 10B-carrier and manipulating intratumour hypoxia on local tumour response and lung metastatic potential in boron neutron capture therapy (BNCT) by measuring the response of intratumour quiescent (Q) cells. Methods B16-BL6 melanoma tumour-bearing C57BL/6 mice were continuously given 5-bromo-2′-deoxyuridine (BrdU) to label all proliferating (P) cells. The tumours received reactor thermal neutron beam irradiation following the administration of a 10B-carrier [L-para-boronophenylalanine-10B (BPA) or sodium mercaptoundecahydrododecaborate-10B (BSH)] in combination with an acute hypoxia-releasing agent (nicotinamide) or mild temperature hyperthermia (MTH). Immediately after the irradiation, cells from some tumours were isolated and incubated with a cytokinesis blocker. The responses of the Q and total (P+Q) cell populations were assessed based on the frequency of micronuclei using immunofluorescence staining for BrdU. In other tumour-bearing mice, macroscopic lung metastases were enumerated 17 days after irradiation. Results BPA-BNCT increased the sensitivity of the total tumour cell population more than BSH-BNCT. However, the sensitivity of Q cells treated with BPA was lower than that of BSH-treated Q cells. With or without a 10B–carrier, MTH enhanced the sensitivity of the Q cell population. Without irradiation, nicotinamide treatment decreased the number of lung metastases. With irradiation, BPA-BNCT, especially in combination with nicotinamide treatment, showed the potential to reduce the number of metastases more than BSH-BNCT. Conclusion BSH-BNCT in combination with MTH improves local tumour control, while BPA-BNCT in combination with nicotinamide may reduce the number of lung metastases. PMID:22391496

  15. Different degrees of somatotroph ablation compromise pituitary growth hormone cell network structure and other pituitary endocrine cell types.

    PubMed

    Waite, Eleanor; Lafont, Chrystel; Carmignac, Danielle; Chauvet, Norbert; Coutry, Nathalie; Christian, Helen; Robinson, Iain; Mollard, Patrice; Le Tissier, Paul

    2010-01-01

    We have generated transgenic mice with somatotroph-specific expression of a modified influenza virus ion channel, (H37A)M2, leading to ablation of GH cells with three levels of severity, dependent on transgene copy number. GH-M2(low) mice grow normally and have normal-size pituitaries but 40-50% reduction in pituitary GH content in adult animals. GH-M2(med) mice have male-specific transient growth retardation and a reduction in pituitary GH content by 75% at 42 d and 97% by 100 d. GH-M2(high) mice are severely dwarfed with undetectable pituitary GH. The GH secretory response of GH-M2(low) and GH-M2(med) mice to GH-releasing peptide-6 and GHRH was markedly attenuated. The content of other pituitary hormones was affected depending on transgene copy number: no effect in GH-M2(low) mice, prolactin and TSH reduced in GH-M2(med) mice, and all hormones reduced in GH-M2(high) mice. The effect on non-GH hormone content was associated with increased macrophage invasion of the pituitary. Somatotroph ablation affected GH cell network organization with limited disruption in GH-M2(low) mice but more severe disruption in GH-M2(med) mice. The remaining somatotrophs formed tight clusters after puberty, which contrasts with GHRH-M2 mice with a secondary reduction in somatotrophs that do not form clusters. A reduction in pituitary beta-catenin staining was correlated with GH-M2 transgene copy number, suggesting M2 expression has an effect on cell-cell communication in somatotrophs and other pituitary cell types. GH-M2 transgenic mice demonstrate that differing degrees of somatotroph ablation lead to correlated secondary effects on cell populations and cellular network organization.

  16. Compound 49b Prevents Diabetes-Induced Apoptosis through Increased IGFBP-3 Levels

    PubMed Central

    Zhang, Qiuhua; Guy, Kimberly; Pagadala, Jayaprakash; Jiang, Youde; Walker, Robert J; Liu, Luhong; Soderland, Carl; Kern, Timothy S; Ferry, Robert; He, Hui; Yates, C. Ryan; Miller, Duane D; Steinle, Jena J

    2012-01-01

    Purpose. To determine whether Compound 49b, a novel PKA-activating drug, can prevent diabetic-like changes in the rat retina through increased insulin-like growth factor binding protein-3 (IGFBP-3) levels. Methods. For the cell culture studies, we used both human retinal endothelial cells (REC) and retinal Müller cells in either 5 mM (normal) or 25 mM (high) glucose. Cells were treated with 50 nM Compound 49b alone of following treatment with protein kinase A (PKA) siRNA or IGFBP-3 siRNA. Western blotting and ELISA analyses were done to verify PKA and IGFBP-3 knockdown, as well as to measure apoptotic markers. For animal studies, we used streptozotocin-treated rats after 2 and 8 months of diabetes. Some rats were treated topically with 1 mM Compound 49b. Analyses were done for retinal thickness, cell numbers in the ganglion cell layer, pericyte ghosts, and numbers of degenerate capillaries, as well as electroretinogram and heart morphology. Results. Compound 49b requires active PKA and IGFBP-3 to prevent apoptosis of REC. Compound 49b significantly reduced the numbers of degenerate capillaries and pericyte ghosts, while preventing the decreased retinal thickness and loss of cells in the ganglion cell layer. Compound 49b maintained a normal electroretinogram, with no changes in blood pressure, intraocular pressure, or heart morphological changes. Conclusions. Topical Compound 49b is able to prevent diabetic-like changes in the rat retina, without producing systemic changes. Compound 49b is able to prevent REC apoptosis through increasing IGFBP-3 levels, which are reduced in response to hyperglycemia. PMID:22467575

  17. Colon cancer proliferating desulfosinigrin in wasabi (Wasabia japonica).

    PubMed

    Weil, Marvin J; Zhang, Yanjun; Nair, Muraleedharan G

    2004-01-01

    A reduced incidence of different types of cancer has been linked to consumption of Brassica vegetables, and there is evidence that glucosinolates (GSLs) and their hydrolysis products play a role in reducing cancer risk. Wasabi (Wasabia japonica) and horseradish (Armoracia rusticana), both Brassica vegetables, are widely used condiments both in Japanese cuisine and in the United States. Desulfosinigrin (DSS) (1) was isolated from a commercially available wasabi powder and from fresh wasabi roots. Sinigrin (2) was isolated from horseradish roots. DSS and sinigrin were evaluated for their inhibitory effects on cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) enzymes, on lipid peroxidation, and on the proliferation of human colon (HCT-116), breast (MCF-7), lung (NCIH460), and central nervous system (CNS, SF-268) cancer cell lines. DSS did not inhibit COX enzymes or lipid peroxidation at 250 microg/ml. Sinigrin inhibited lipid peroxidation by 71% at 250 microg/ml. However, DSS promoted the growth of HCT-116 (colon) and NCI H460 (lung) human cancer cells as determined by the MTT assay in a concentration-dependent manner. At 3.72 microg/ml, a 27% increase in the number of viable human HCT-116 colon cancer cells was observed; the corresponding increases at 7.50 and 15 microg/ml were 42 and 69%, respectively. At 60 microg/ml, DSS doubled the number of HCT-16 colon cancer cells. For NCI H460 human lung cancer cells, DSS at 60 microg/ml increased the cell number by 20%. Sinigrin showed no proliferating effect on the tumor cells tested. This is the first report of the tumor cell-proliferating activity by a desulfoglucosinolate, the biosynthetic precursor of GSLs found in Brassica spp.

  18. Regulation of the expression of the cell-cycle gene ftsZ by DicF antisense RNA. Division does not require a fixed number of FtsZ molecules.

    PubMed

    Tétart, F; Bouché, J P

    1992-03-01

    We show that the 53-nucleotide RNA molecule encoded by gene dicF blocks cell division in Escherichia coli by inhibiting the translation of ftsZ mRNA. Such a role for dicF had been predicted on the basis of the complementarity of DicF RNA with the ribosome-binding region of the ftsZ mRNA. An analysis of ftsZ expression at its chromosomal locus, and of an ftsZ-lacZ translational fusion controlled by promoters ftsZ1p and ftsZ2p only, indicates that ftsZ is not autoregulated. Partial inhibition of FtsZ synthesis leads to increased cell size. However, the number of FtsZ molecules per cell can be reduced threefold without affecting the division rate significantly. Our results suggest that septation is not triggered by a fixed number of newly synthesized FtsZ molecules per cell.

  19. Lipophagy Contributes to Testosterone Biosynthesis in Male Rat Leydig Cells.

    PubMed

    Ma, Yi; Zhou, Yan; Zhu, Yin-Ci; Wang, Si-Qi; Ping, Ping; Chen, Xiang-Feng

    2018-02-01

    In recent years, autophagy was found to regulate lipid metabolism through a process termed lipophagy. Lipophagy modulates the degradation of cholesteryl esters to free cholesterol (FC), which is the substrate of testosterone biosynthesis. However, the role of lipophagy in testosterone production is unknown. To investigate this, primary rat Leydig cells and varicocele rat models were administered to inhibit or promote autophagy, and testosterone, lipid droplets (LDs), total cholesterol (TC), and FC were evaluated. The results demonstrated that inhibiting autophagy in primary rat Leydig cells reduced testosterone production. Further studies demonstrated that inhibiting autophagy increased the number and size of LDs and the level of TC, but decreased the level of FC. Furthermore, hypoxia promoted autophagy in Leydig cells. We found that short-term hypoxia stimulated testosterone secretion; however, the inhibition of autophagy abolished stimulated testosterone release. Hypoxia decreased the number and size of LDs in Leydig cells, but the changes could be largely rescued by blocking autophagy. In experimental varicocele rat models, the administration of autophagy inhibitors substantially reduced serum testosterone. These data demonstrate that autophagy contributes to testosterone biosynthesis at least partially through degrading intracellular LDs/TC. Our observations might reveal an autophagic regulatory mode regarding testosterone biosynthesis. Copyright © 2018 Endocrine Society.

  20. Dense encoding of natural odorants by ensembles of sparsely activated neurons in the olfactory bulb

    PubMed Central

    Gschwend, Olivier; Beroud, Jonathan; Vincis, Roberto; Rodriguez, Ivan; Carleton, Alan

    2016-01-01

    Sensory information undergoes substantial transformation along sensory pathways, usually encompassing sparsening of activity. In the olfactory bulb, though natural odorants evoke dense glomerular input maps, mitral and tufted (M/T) cells tuning is considered to be sparse because of highly odor-specific firing rate change. However, experiments used to draw this conclusion were either based on recordings performed in anesthetized preparations or used monomolecular odorants presented at arbitrary concentrations. In this study, we evaluated the lifetime and population sparseness evoked by natural odorants by capturing spike temporal patterning of neuronal assemblies instead of individual M/T tonic activity. Using functional imaging and tetrode recordings in awake mice, we show that natural odorants at their native concentrations are encoded by broad assemblies of M/T cells. While reducing odorant concentrations, we observed a reduced number of activated glomeruli representations and consequently a narrowing of M/T tuning curves. We conclude that natural odorants at their native concentrations recruit M/T cells with phasic rather than tonic activity. When encoding odorants in assemblies, M/T cells carry information about a vast number of odorants (lifetime sparseness). In addition, each natural odorant activates a broad M/T cell assembly (population sparseness). PMID:27824096

  1. Recovery from impaired muscle growth arises from prolonged postnatal accretion of myonuclei in Atrx mutant mice

    PubMed Central

    Yan, Keqin; Price-O’Dea, Tina

    2017-01-01

    Reduced muscle mass due to pathological development can occur through several mechanisms, including the loss or reduced proliferation of muscle stem cells. Muscle-specific ablation of the α-thalassemia mental retardation syndrome mutant protein, Atrx, in transgenic mice results in animals with a severely reduced muscle mass at three weeks of age; yet this muscle mass reduction resolves by adult age. Here, we explore the cellular mechanism underlying this effect. Analysis of Atrx mutant mice included testing for grip strength and rotorod performance. Muscle fiber length, fiber volume and numbers of myofiber-associated nuclei were determined from individual EDL or soleus myofibers isolated at three, five, or eight weeks. Myofibers from three week old Atrx mutant mice are smaller with fewer myofiber-associated nuclei and reduced volume compared to control animals, despite similar fiber numbers. Nonetheless, the grip strength of Atrx mutant mice was comparable to control mice when adjusted for body weight. Myofiber volume remained smaller at five weeks, becoming comparable to controls by 8 weeks of age. Concomitantly, increased numbers of myofiber-associated nuclei and Ki67+ myoblasts indicated that the recovery of muscle mass likely arises from the prolonged accretion of new myonuclei. This suggests that under disease conditions the muscle satellite stem cell niche can remain in a prolonged active state, allowing for the addition of a minimum number of myonuclei required to achieve a normal muscle size. PMID:29095838

  2. Addressable droplet microarrays for single cell protein analysis.

    PubMed

    Salehi-Reyhani, Ali; Burgin, Edward; Ces, Oscar; Willison, Keith R; Klug, David R

    2014-11-07

    Addressable droplet microarrays are potentially attractive as a way to achieve miniaturised, reduced volume, high sensitivity analyses without the need to fabricate microfluidic devices or small volume chambers. We report a practical method for producing oil-encapsulated addressable droplet microarrays which can be used for such analyses. To demonstrate their utility, we undertake a series of single cell analyses, to determine the variation in copy number of p53 proteins in cells of a human cancer cell line.

  3. Selenium Polysaccharide SPMP-2a from Pleurotus geesteranus Alleviates H2O2-Induced Oxidative Damage in HaCaT Cells

    PubMed Central

    Zhou, Cheng; Huang, Shoucheng

    2017-01-01

    Selenium- (Se-) enriched polysaccharide SPMP-2a was extracted and purified from Pleurotus geesteranus. SPMP-2a is a white flocculent polysaccharide and soluble in water, with a molecular weight of 3.32 × 104 Da. Fourier transform infrared spectroscopy spectral analysis indicated that it belongs to an acid Se polysaccharide with α-D-glucopyranoside bond. The effects of Se polysaccharide SPMP-2a in P. geesteranus against hydrogen peroxide- (H2O2-) induced oxidative damage in human keratinocytes (HaCaT) cells were evaluated further. Reduced cell viability and elevated apoptotic rates in H2O2-treated HaCaT cells were proven by MTT and flow cytometry assays. Hoechst 33342 staining revealed chromatin condensations in the nuclei of HaCaT cells. However, with the addition of SPMP-2a, cell viability improved, nuclear condensation declined, and cell apoptotic rates dropped significantly. Ultrastructural observation consistently revealed that treatments with SPMP-2a reduced the number of swollen and vacuolar mitochondria in the H2O2-treated cells compared with the controls. Furthermore, SPMP-2a increased the superoxide dismutase (SOD) and catalase (CAT) activities and reduced reactive oxygen species (ROS) content. Western blot analysis showed that SPMP-2a treatment effectively increased B-cell lymphoma 2 (Bcl-2) protein expression. Therefore, SPMP-2a could improve cellular antioxidant enzyme activities, reduce ROS levels, and increase Bcl-2 protein expression levels, thereby reducing cell apoptosis and protecting HaCaT cells from H2O2-induced oxidative damage. PMID:28293636

  4. Combined inhibition of autophagy and caspases fails to prevent developmental nurse cell death in the Drosophila melanogaster ovary.

    PubMed

    Peterson, Jeanne S; McCall, Kimberly

    2013-01-01

    During the final stages of Drosophila melanogaster oogenesis fifteen nurse cells, sister cells to the oocyte, degenerate as part of normal development. This process involves at least two cell death mechanisms, caspase-dependent cell death and autophagy, as indicated by apoptosis and autophagy markers. In addition, mutations affecting either caspases or autophagy partially reduce nurse cell removal, leaving behind end-stage egg chambers with persisting nurse cell nuclei. To determine whether apoptosis and autophagy work in parallel to degrade and remove these cells as is the case with salivary glands during pupariation, we generated mutants doubly affecting caspases and autophagy. We found no significant increase in either the number of late stage egg chambers containing persisting nuclei or in the number of persisting nuclei per egg chamber in the double mutants compared to single mutants. These findings suggest that there is another cell death mechanism functioning in the ovary to remove all nurse cell remnants from late stage egg chambers.

  5. Natural killer cells after altaïr mission

    NASA Astrophysics Data System (ADS)

    Konstantinova, I. V.; Rykova, M.; Meshkov, D.; Peres, C.; Husson, D.; Schmitt, D. A.

    Reduced in vitro NK cytotoxic activity have routinely been observed after both prolonged and short-term space flights. This study investigated the effects of space flight on NK cell functions, NK cell counts and the production of IL-2 and TNF by lymphocytes of French-Russian crew members. In the French cosmonaut, after 21 days space flight, the cytotoxic activity of NK cells, the capacity the NK cells to bind and lyse the individual target cells and the percentage of NK cells were decreased. In this cosmonaut a twofold reduction TNF production in cultures of lymphocytes stimulated with PMA and with the mixture of PHA and PMA was observed on the first day after landing. However, the activity of the production of TNF in 48-hour PHA-cultures of lymphocytes was unchanged and the biological activity of IL-2 was not reduced. The immunological examination did not detecte any substantial deviations from the norm in both russian cosmonauts after 197 days space flight. Various explanations for decreased cytotoxicity in cosmonauts after space flight can be proposed, and these include the defective function of NK cells and reduced numbers of circulating effector cells.

  6. Good manufacturing practice-compliant cell sorting and large-scale expansion of single KIR-positive alloreactive human natural killer cells for multiple infusions to leukemia patients.

    PubMed

    Siegler, Uwe; Meyer-Monard, Sandrine; Jörger, Simon; Stern, Martin; Tichelli, André; Gratwohl, Alois; Wodnar-Filipowicz, Aleksandra; Kalberer, Christian P

    2010-10-01

    Alloreactive natural killer (NK) cells are potent effectors of innate anti-tumor defense. The introduction of NK cell-based immunotherapy to current treatment options in acute myeloid leukemia (AML) requires NK cell products with high anti-leukemic efficacy optimized for clinical use. We describe a good manufacturing practice (GMP)-compliant protocol of large-scale ex vivo expansion of alloreactive NK cells suitable for multiple donor lymphocyte infusions (NK-DLI) in AML. CliniMACS-purified NK cells were cultured in closed air-permeable culture bags with certified culture medium and components approved for human use [human serum, interleukin (IL)-2, IL-15 and anti-CD3 antibody] and with autologous irradiated feeder cells. NK cells (6.0 ± 1.2 x 10(8)) were purified from leukaphereses (8.1 ± 0.8 L) of six healthy donors and cultured under GMP conditions. NK cell numbers increased 117.0 ± 20.0-fold in 19 days. To reduce the culture volume associated with expansion of bulk NK cells and to expand selectively the alloreactive NK cell subsets, GMP-certified cell sorting was introduced to obtain cells with single killer immunoglobulin-like receptor (KIR) specificities. The subsequent GMP-compliant expansion of single KIR+ cells was 268.3 ± 66.8-fold, with a contaminating T-cell content of only 0.006 ± 0.002%. The single KIR-expressing NK cells were cytotoxic against HLA-mismatched primary AML blasts in vitro and effectively reduced tumor cell load in vivo in NOD/SCID mice transplanted with human AML. The approach to generating large numbers of GMP-grade alloreactive NK cells described here provides the basis for clinical efficacy trials of NK-DLI to complement and advance therapeutic strategies against human AML.

  7. Leaky phenotype of X-linked agammaglobulinaemia in a Japanese family

    PubMed Central

    Kaneko, H; Kawamoto, N; Asano, T; Mabuchi, Y; Horikoshi, H; Teramoto, T; JIN-RONG; Matsui, E; Kondo, M; Fukao, T; Kasahara, K; Kondo, N

    2005-01-01

    X-linked agammaglobulinaemia (XLA) is an inherited immunodeficiency that is caused by a block in early B-cell differentiation. Whereas early B precursors in the bone marrow are present in substantial numbers, XLA-affected individuals have dramatically reduced numbers of circulating mature B cells, plasma cells and immunoglobulins of all isotypes. We report on a Japanese family with 3 XLA patients, in whom the serum immunoglobulin levels and number of B cells showed a significant difference among them in spite of harbouring the same splice donor site mutation in the BTK gene. We developed concise method for detection of this mutation, which is helpful for discovering the carrier. Patient 2 showed a significant serum immunoglobulin levels of all isotypes, including allergen-specific IgE. Expression of a normal and truncated size BTK gene was detected in patient 2′s peripheral blood mononuclear cells (PBMCs). Expression of BTK protein was also detected in some B cells. These results suggest that the leaky phenotype in patient 2 was caused in part by the expression of a normal BTK gene transcript. The increased frequency of infection with age expanded the number of B cells with normal BTK gene expression and produced the serum immunoglobulin, including IgE. PMID:15932514

  8. Decreased "ineffective erythropoiesis" preserves polycythemia in mice under long-term hypoxia.

    PubMed

    Harada, Tomonori; Tsuboi, Isao; Hirabayashi, Yukio; Kosaku, Kazuhiro; Naito, Michiko; Hara, Hiroyuki; Inoue, Tohru; Aizawa, Shin

    2015-05-01

    Hypoxia induces innumerable changes in humans and other animals, including an increase in peripheral red blood cells (polycythemia) caused by the activation of erythropoiesis mediated by increased erythropoietin (EPO) production. However, the elevation of EPO is limited and levels return to normal ranges under normoxia within 5-7 days of exposure to hypoxia, whereas polycythemia continues for as long as hypoxia persists. We investigated erythropoiesis in bone marrow and spleens from mouse models of long-term normobaric hypoxia (10 % O2) to clarify the mechanism of prolonged polycythemia in chronic hypoxia. The numbers of erythroid colony-forming units (CFU-E) in the spleen remarkably increased along with elevated serum EPO levels indicating the activation of erythropoiesis during the first 7 days of hypoxia. After 14 days of hypoxia, the numbers of CFU-E returned to normoxic levels, whereas polycythemia persisted for >140 days. Flow cytometry revealed a prolonged increase in the numbers of TER119-positive cells (erythroid cells derived from pro-erythroblasts through mature erythrocyte stages), especially the TER119 (high) CD71 (high) population, in bone marrow. The numbers of annexin-V-positive cells among the TER119-positive cells particularly declined under chronic hypoxia, suggesting that the numbers of apoptotic cells decrease during erythroid cell maturation. Furthermore, RT-PCR analysis showed that the RNA expression of BMP-4 and stem cell factor that reduces apoptotic changes during erythroid cell proliferation and maturation was increased in bone marrow under hypoxia. These findings indicated that decreased apoptosis of erythroid cells during erythropoiesis contributes to polycythemia in mice during chronic exposure to long-term hypoxia.

  9. Root graviresponsiveness and columella cell structure in carotenoid-deficient seedlings of Zea mays

    NASA Technical Reports Server (NTRS)

    Moore, R.; McClelen, C. E.

    1985-01-01

    Root graviresponsiveness in normal and carotenoid-deficient mutant seedlings of Zea mays was not significantly different. Columella cells in roots of mutant seedlings were characterized by fewer, smaller, and a reduced relative volume of plastids as compared to columella cells of normal seedlings. Plastids in columella cells of mutant seedlings possessed reduced amounts of starch. Although approximately 10 per cent of the columella cells in mutant seedlings lacked starch, their plastids were located at the bottom of the cell. These results suggest that (i) carotenoids are not necessary for root gravitropism, (ii) graviresponsiveness is not necessarily proportional to the size, number, or relative volume of plastids in columella cells, and (iii) sedimentation of plastids in columella cells may not result directly from their increased density due to starch content. Plastids in columella cells of normal and mutant seedlings were associated with bands of microtubule-like structures, suggesting that these structures may be involved in 'positioning' plastids in the cell.

  10. Leydig Cell Aging and Hypogonadism

    PubMed Central

    Beattie, M.C.; Adekola, L.; Papadopoulos, V.; Chen, H.; Zirkin, B.R.

    2015-01-01

    Leydig cell testosterone (T) production is reduced with age, resulting in reduced serum T levels (hypogonadism). A number of cellular changes have been identified in the steroidogenic pathway of aged Leydig cells that are associated with reduced T formation, including reductions in luteinizing hormone (LH)-stimulated cAMP production, the cholesterol transport proteins steroidogenic acute regulatory (STAR) protein and translocator protein (TSPO), and downstream steroidogenic enzymes of the mitochondria and smooth endoplasmic reticulum. Many of the changes in steroid formation that characterize aged Leydig cells can be elicited by the experimental alteration of the redox environment of young cells, suggesting that changes in the intracellular redox balance may cause reduced T production. Hypogonadism is estimated to affect about 5 million American men, including both aged and young. This condition has been linked to mood changes, worsening cognition, fatigue, depression, decreased lean body mass, reduced bone mineral density, increased visceral fat, metabolic syndrome, decreased libido, and sexual dysfunction. Exogenous T administration is now used widely to elevate serum T levels in hypogonadal men and thus to treat symptoms of hypogonadism. However, recent evidence suggests that men who take exogenous T may face increased risk of stroke, heart attack, and prostate tumorigenesis. Moreover, it is well established that administered T can have suppressive effects on LH, resulting in lower Leydig cell T production, reduced intratesticular T concentration, and reduced spermatogenesis. This makes exogenous T administration inappropriate for men who wish to father children. There are promising new approaches to increase serum T by directly stimulating Leydig cell T production rather than by exogenous T therapy, thus potentially avoiding some of its negative consequences. PMID:25700847

  11. Chemical Activation of the Hypoxia-Inducible Factor Reversibly Reduces Tendon Stem Cell Proliferation, Inhibits Their Differentiation, and Maintains Cell Undifferentiation

    PubMed Central

    Creo, Pasquale; Bergante, Sonia; Conforti, Erika; Banfi, Giuseppe

    2018-01-01

    Adult stem cell-based therapeutic approaches for tissue regeneration have been proposed for several years. However, adult stem cells are usually limited in number and difficult to be expanded in vitro, and they usually tend to quickly lose their potency with passages, as they differentiate and become senescent. Culturing stem cells under reduced oxygen tensions (below 21%) has been proposed as a tool to increase cell proliferation, but many studies reported opposite effects. In particular, cell response to hypoxia seems to be very stem cell type specific. Nonetheless, it is clear that a major role in this process is played by the hypoxia inducible factor (HIF), the master regulator of cell response to oxygen deprivation, which affects cell metabolism and differentiation. Herein, we report that a chemical activation of HIF in human tendon stem cells reduces their proliferation and inhibits their differentiation in a reversible and dose-dependent manner. These results support the notion that hypoxia, by activating HIF, plays a crucial role in preserving stem cells in an undifferentiated state in the “hypoxic niches” present in the tissue in which they reside before migrating in more oxygenated areas to heal a damaged tissue. PMID:29713352

  12. Depigmented-polymerised allergoids favour regulatory over effector T cells: enhancement by 1α, 25-dihydroxyvitamin D3.

    PubMed

    Urry, Zoe L; Richards, David F; Black, Cheryl; Morales, Maria; Carnés, Jerónimo; Hawrylowicz, Catherine M; Robinson, Douglas S

    2014-05-29

    Allergen immunotherapy (SIT) is the only treatment for allergic disease capable of modifying disease long term. To reduce the risk of anaphylaxis from SIT, allergen-extracts have been modified by polymerisation with glutaraldehyde to reduce IgE binding. It is suggested that these allergoid extracts also have reduced T cell activity, which could compromise clinical efficacy. Effective SIT is thought to act through regulatory T cells (Tregs) rather than activation of effector T cells. There is no published data on the activity of modified extracts on Tregs. We compared the capacity of modified (depigmented-polymerised) versus unmodified (native) allergen extracts of grass pollen and house dust mite to stimulate proliferation/cytokine production and to modulate Treg/effector T cell frequency in cultures of peripheral blood mononuclear cells (PBMC), from volunteers sensitised to both allergens in vitro. Depigmented-polymerised allergen extracts stimulated less proliferation of PBMC, and reduced effector cell numbers after 7 days in culture than did native extracts. However, the frequency of Foxp3+ Tregs in cultures were similar to those seen with native extract so that ratios of regulatory to effector T cells were significantly increased in cultures stimulated with depigmented-polymerised extracts. Addition of 1α, 25-dihydroxyvitamin D3 further favoured Treg, and reduced effector cytokine production, but not interleukin-10. Depigmented-polymerised allergen extracts appear to favour Treg expansion over activation of effector T cells and this may relate to their demonstrated efficacy and safety in SIT. 1α, 25-dihydroxyvitamin D3 further reduces effector T cell activation by allergen extracts and may be a useful adjuvant for SIT.

  13. Depigmented-polymerised allergoids favour regulatory over effector T cells: enhancement by 1α, 25-dihydroxyvitamin D3

    PubMed Central

    2014-01-01

    Background Allergen immunotherapy (SIT) is the only treatment for allergic disease capable of modifying disease long term. To reduce the risk of anaphylaxis from SIT, allergen-extracts have been modified by polymerisation with glutaraldehyde to reduce IgE binding. It is suggested that these allergoid extracts also have reduced T cell activity, which could compromise clinical efficacy. Effective SIT is thought to act through regulatory T cells (Tregs) rather than activation of effector T cells. There is no published data on the activity of modified extracts on Tregs. Results We compared the capacity of modified (depigmented-polymerised) versus unmodified (native) allergen extracts of grass pollen and house dust mite to stimulate proliferation/cytokine production and to modulate Treg/effector T cell frequency in cultures of peripheral blood mononuclear cells (PBMC), from volunteers sensitised to both allergens in vitro. Depigmented-polymerised allergen extracts stimulated less proliferation of PBMC, and reduced effector cell numbers after 7 days in culture than did native extracts. However, the frequency of Foxp3+ Tregs in cultures were similar to those seen with native extract so that ratios of regulatory to effector T cells were significantly increased in cultures stimulated with depigmented-polymerised extracts. Addition of 1α, 25-dihydroxyvitamin D3 further favoured Treg, and reduced effector cytokine production, but not interleukin-10. Conclusions Depigmented-polymerised allergen extracts appear to favour Treg expansion over activation of effector T cells and this may relate to their demonstrated efficacy and safety in SIT. 1α, 25-dihydroxyvitamin D3 further reduces effector T cell activation by allergen extracts and may be a useful adjuvant for SIT. PMID:24884430

  14. Lipocalin 2 functions as a negative regulator of red blood cell production in an autocrine fashion.

    PubMed

    Miharada, Ken-ichi; Hiroyama, Takashi; Sudo, Kazuhiro; Nagasawa, Toshiro; Nakamura, Yukio

    2005-11-01

    Members of the lipocalin protein family are typically small, secreted proteins that possess a variety of functions. Although the physiological role of lipocalin 2 remains to be fully elucidated, a few pivotal functions have recently been reported, e.g., regulation of the apoptosis of leukocytes. Unexpectedly, lipocalin 2 is abundantly expressed in erythroid progenitor cells. An in vitro culture experiment demonstrated that lipocalin 2 induces apoptosis and inhibits differentiation of erythroid progenitor cells. During acute anemia the expression of lipocalin 2 was reduced in erythroid cells by a feedback system. Furthermore, injection of recombinant lipocalin 2 into mice suffering from acute anemia retarded the recovery of red blood cell (RBC) numbers, suggesting the importance of reduced expression of lipocalin 2 for the efficient recovery of RBC numbers. These results indicate that lipocalin 2 suppresses RBC production in an autocrine fashion. Hence, anemia arising from pathological conditions, such as chronic inflammation, might be partly due to increased levels of lipocalin 2 secreted from expanded leukocytes and/or macrophages. Also, anemia arising from malignancies might be partly due to the abundant secretion of lipocalin 2 from tumor cells. Thus, lipocalin 2 may represent an attractive therapeutic target for anemia under certain pathological conditions.

  15. Novel functions for the RNA-binding protein ETR-1 in Caenorhabditis elegans reproduction and engulfment of germline apoptotic cell corpses

    PubMed Central

    Boateng, Ruby; Nguyen, Ken C.Q.; Hall, David H.; Golden, Andy; Allen, Anna K.

    2017-01-01

    RNA-binding proteins (RBPs) are essential regulators of gene expression that act through a variety of mechanisms to ensure the proper post-transcriptional regulation of their target RNAs. RBPs in multiple species have been identified as playing crucial roles during development and as having important functions in various adult organ systems, including the heart, nervous, muscle, and reproductive systems. ETR-1, a highly conserved ELAV-Type RNA-binding protein belonging to the CELF/Bruno protein family, has been previously reported to be involved in C. elegans muscle development. Animals depleted of ETR-1 have been previously characterized as arresting at the two-fold stage of embryogenesis. In this study, we show that ETR-1 is expressed in the hermaphrodite somatic gonad and germ line, and that reduction of ETR-1 via RNA interference (RNAi) results in reduced hermaphrodite fecundity. Detailed characterization of this fertility defect indicates that ETR-1 is required in both the somatic tissue and the germ line to ensure wild-type reproductive levels. Additionally, the ability of ETR-1 depletion to suppress the published WEE-1.3-depletion infertility phenotype is dependent on ETR-1 being reduced in the soma. Within the germline of etr-1(RNAi) hermaphrodite animals, we observe a decrease in average oocyte size and an increase in the number of germline apoptotic cell corpses as evident by an increased number of CED-1::GFP and acridine orange positive apoptotic germ cells. Transmission Electron Microscopy (TEM) studies confirm the significant increase in apoptotic cells in ETR-1-depleted animals, and reveal a failure of the somatic gonadal sheath cells to properly engulf dying germ cells in etr-1(RNAi) animals. Through investigation of an established engulfment pathway in C. elegans, we demonstrate that co-depletion of CED-1 and ETR-1 suppresses both the reduced fecundity and the increase in the number of apoptotic cell corpses observed in etr-1(RNAi) animals. Combined, this data identifies a novel role for ETR-1 in hermaphrodite gametogenesis and in the process of engulfment of germline apoptotic cell corpses. PMID:28648844

  16. Long-term administration of scopolamine interferes with nerve cell proliferation, differentiation and migration in adult mouse hippocampal dentate gyrus, but it does not induce cell death

    PubMed Central

    Yan, Bing Chun; Park, Joon Ha; Chen, Bai Hui; Cho, Jeong-Hwi; Kim, In Hye; Ahn, Ji Hyeon; Lee, Jae-Chul; Hwang, In Koo; Cho, Jun Hwi; Lee, Yun Lyul; Kang, Il-Jun; Won, Moo-Ho

    2014-01-01

    Long-term administration of scopolamine, a muscarinic receptor antagonist, can inhibit the survival of newly generated cells, but its effect on the proliferation, differentiation and migration of nerve cells in the adult mouse hippocampal dentate gyrus remain poorly understood. In this study, we used immunohistochemistry and western blot methods to weekly detect the biological behaviors of nerve cells in the hippocampal dentate gyrus of adult mice that received intraperitoneal administration of scopolamine for 4 weeks. Expression of neuronal nuclear antigen (NeuN; a neuronal marker) and Fluoro-Jade B (a marker for the localization of neuronal degeneration) was also detected. After scopolamine treatment, mouse hippocampal neurons did not die, and Ki-67 (a marker for proliferating cells)-immunoreactive cells were reduced in number and reached the lowest level at 4 weeks. Doublecortin (DCX; a marker for newly generated neurons)-immunoreactive cells were gradually shortened in length and reduced in number with time. After scopolamine treatment for 4 weeks, nearly all of the 5-bromo-2′-deoxyuridine (BrdU)-labeled newly generated cells were located in the subgranular zone of the dentate gyrus, but they did not migrate into the granule cell layer. Few mature BrdU/NeuN double-labeled cells were seen in the subgranular zone of the dentate gyrus. These findings suggest that long-term administration of scopolamine interferes with the proliferation, differentiation and migration of nerve cells in the adult mouse hippocampal dentate gyrus, but it does not induce cell death. PMID:25422633

  17. Cell cycle re-entry sensitizes podocytes to injury induced death.

    PubMed

    Hagen, Manuel; Pfister, Eva; Kosel, Andrea; Shankland, Stuart; Pippin, Jeffrey; Amann, Kerstin; Daniel, Christoph

    2016-07-17

    Podocytes are terminally differentiated renal cells, lacking the ability to regenerate by proliferation. However, during renal injury, podocytes re-enter into the cell cycle but fail to divide. Earlier studies suggested that re-entry into cell cycle results in loss of podocytes, but a direct evidence for this is lacking. Therefore, we established an in vitro model to test the consequences of re-entry into the cell cycle on podocyte survival. A mouse immortalized podocyte cell line was differentiated to non-permissive podocytes and stimulated with e.g. growth factors. Stimulated cells were analyzed for mRNA-expression or stained for cell cycle analysis using flow cytometry and immunocytofluorescence microscopy. After stimulation to re-entry into cell cycle, podocytes were stressed with puromycin aminonucleoside (PAN) and analyzed for survival. During permissive stage more than 40% of immortalized podocytes were in the S-phase. In contrast, S-phase in non-permissive differentiated podocytes was reduced to 5%. Treatment with b-FGF dose dependently induced re-entry into cell cycle increasing the number of podocytes in the S-phase to 10.7% at an optimal bFGF dosage of 10 ng/ml. Forty eight hours after stimulation with bFGF the number of bi-nucleated podocytes significantly increased. A secondary injury stimulus significantly reduced podocyte survival preferentially in bi-nucleated podocytes In conclusion, stimulation of podocytes using bFGF was able to induce re-entry of podocytes into the cell cycle and to sensitize the cells for cell death by secondary injuries. Therefore, this model is appropriate for testing new podocyte protective substances that can be used for therapy.

  18. Altered Hematopoiesis in Mice Lacking DNA Polymerase μ Is Due to Inefficient Double-Strand Break Repair

    PubMed Central

    Lucas, Daniel; Escudero, Beatriz; Ligos, José Manuel; Segovia, Jose Carlos; Estrada, Juan Camilo; Terrados, Gloria; Blanco, Luis; Samper, Enrique; Bernad, Antonio

    2009-01-01

    Polymerase mu (Polμ) is an error-prone, DNA-directed DNA polymerase that participates in non-homologous end-joining (NHEJ) repair. In vivo, Polμ deficiency results in impaired Vκ-Jκ recombination and altered somatic hypermutation and centroblast development. In Polμ−/− mice, hematopoietic development was defective in several peripheral and bone marrow (BM) cell populations, with about a 40% decrease in BM cell number that affected several hematopoietic lineages. Hematopoietic progenitors were reduced both in number and in expansion potential. The observed phenotype correlates with a reduced efficiency in DNA double-strand break (DSB) repair in hematopoietic tissue. Whole-body γ-irradiation revealed that Polμ also plays a role in DSB repair in non-hematopoietic tissues. Our results show that Polμ function is required for physiological hematopoietic development with an important role in maintaining early progenitor cell homeostasis and genetic stability in hematopoietic and non-hematopoietic tissues. PMID:19229323

  19. Cyclosporin A promotes mineralization by human cementoblastoma-derived cells in culture.

    PubMed

    Arzate, Higinio; Alvarez, Marco A; Narayanan, A Sampath

    2005-06-01

    The immunosuppressive drug cyclosporin A has been shown to induce cementum deposition in vivo in experimental animals. Using cementoblastoma-derived cells, we have studied whether this drug will be useful to study cementum mineralization and differentiation in vitro. Human cementoblastoma cells and gingival fibroblasts (controls) were cultured and treated with 0.5, 1.0 and 5.0 microg/ml of cyclosporin A. Cell proliferation was evaluated by MTT (tetrazolium) assay and cell number, and cell viability was assessed by trypan blue dye exclusion. Induction of mineralization was evaluated by alizarin red S staining to detect mineralized nodules and by reverse transcription-polymerase chain reaction (RT-PCR) to assess the expression of bone differentiation markers alkaline phosphatase, osteocalcin, bone sialoprotein and core-binding factor a1 (Cbfa1). Cyclosporin A at 5.0 microg/ml concentration reduced significantly the increase in the number of cementoblastoma cells. A dose-dependent increase in the number of mineralized nodules occurred in cultures of cementoblastoma-derived cells treated with cyclosporin A, and RT-PCR analyses showed significantly higher levels of expression of alkaline phosphatase, bone sialoprotein, type I collagen, matrix metalloproteinase-1, osteocalcin, osteopontin, and Cbfa1. Human gingival fibroblast proliferation and cell number were not affected. Mineralized nodules were not detected in gingival fibroblasts and bone specific proteins were not expressed. Presence of cyclosporin A during 14-day culture period appears to suppress the proliferation of cementoblastoma cells and induce the formation mineralized-like tissue by these cells.

  20. Proinflammatory T Cell Status Associated with Early Life Adversity.

    PubMed

    Elwenspoek, Martha M C; Hengesch, Xenia; Leenen, Fleur A D; Schritz, Anna; Sias, Krystel; Schaan, Violetta K; Mériaux, Sophie B; Schmitz, Stephanie; Bonnemberger, Fanny; Schächinger, Hartmut; Vögele, Claus; Turner, Jonathan D; Muller, Claude P

    2017-12-15

    Early life adversity (ELA) has been associated with an increased risk for diseases in which the immune system plays a critical role. The ELA immune phenotype is characterized by inflammation, impaired cellular immunity, and immunosenescence. However, data on cell-specific immune effects are largely absent. Additionally, stress systems and health behaviors are altered in ELA, which may contribute to the generation of the ELA immune phenotype. The present investigation tested cell-specific immune differences in relationship to the ELA immune phenotype, altered stress parameters, and health behaviors in individuals with ELA ( n = 42) and those without a history of ELA (control, n = 73). Relative number and activation status (CD25, CD69, HLA-DR, CD11a, CD11b) of monocytes, NK cells, B cells, T cells, and their main subsets were assessed by flow cytometry. ELA was associated with significantly reduced numbers of CD69 + CD8 + T cells ( p = 0.022), increased numbers of HLA-DR + CD4 and HLA-DR + CD8 T cells ( p < 0.001), as well as increased numbers of CD25 + CD8 + T cells ( p = 0.036). ELA also showed a trend toward higher numbers of CCR4 + CXCR3 - CCR6 + CD4 T cells. Taken together, our data suggest an elevated state of immune activation in ELA, in which particularly T cells are affected. Although several aspects of the ELA immune phenotype were related to increased activation markers, neither stress nor health-risk behaviors explained the observed group differences. Thus, the state of immune activation in ELA does not seem to be secondary to alterations in the stress system or health-risk behaviors, but rather a primary effect of early life programming on immune cells. Copyright © 2017 by The American Association of Immunologists, Inc.

  1. Kinetics of Epstein-Barr virus load and virus-specific CD8+ T cells in acute infectious mononucleosis.

    PubMed

    Hoshino, Yo; Nishikawa, Kazuo; Ito, Yoshinori; Kuzushima, Kiyotaka; Kimura, Hiroshi

    2011-03-01

    During the convalescent phase of acute infectious mononucleosis (AIM), Epstein-Barr virus (EBV) load shrinks rapidly in association with a rapid decline in the number of EBV-specific CD8(+) T cells. The actual contribution of EBV-specific CD8(+) T cells in reducing EBV load, however, is not known. To clarify the impact of EBV-specific CD8(+) T cells on the contraction of EBV load in AIM, we estimated half-lives of both EBV load and EBV-specific CD8(+) T cells. Blood was serially taken from five pediatric patients with AIM during the convalescent period, including the very early phase, and both EBV load and EBV-specific CD8(+) T cell numbers were assayed. EBV load declined rapidly (half-life 1.5 d) during the first 2 weeks after onset of symptoms. This half-life was seven-fold shorter than that reported for CD27(+) memory B cells. Subsequently, the EBV load declined much more slowly, with a half-life of 38.7 d. EBV-specific CD8(+) T cell numbers also declined concomitantly with the decrease in EBV load. The half-life of EBV-specific CD8(+) T cells during first 2 weeks was 2.9 d. The number of EBV-specific CD8(+) T cells and the rate of change of viral load correlated significantly (R(2) ≥ 0.8; p ≤ 0.02). The short half-life of EBV load, together with the strong correlation between the number of EBV-specific CD8(+) T cells and the rate of change of viral load indicates an active role for EBV-specific CD8(+) T cells in elimination of EBV in AIM. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Airway remodelling and inflammation in asthma are dependent on the extracellular matrix protein fibulin-1c.

    PubMed

    Liu, Gang; Cooley, Marion A; Nair, Prema M; Donovan, Chantal; Hsu, Alan C; Jarnicki, Andrew G; Haw, Tatt Jhong; Hansbro, Nicole G; Ge, Qi; Brown, Alexandra C; Tay, Hock; Foster, Paul S; Wark, Peter A; Horvat, Jay C; Bourke, Jane E; Grainge, Chris L; Argraves, W Scott; Oliver, Brian G; Knight, Darryl A; Burgess, Janette K; Hansbro, Philip M

    2017-12-01

    Asthma is a chronic inflammatory disease of the airways. It is characterized by allergic airway inflammation, airway remodelling, and airway hyperresponsiveness (AHR). Asthma patients, in particular those with chronic or severe asthma, have airway remodelling that is associated with the accumulation of extracellular matrix (ECM) proteins, such as collagens. Fibulin-1 (Fbln1) is an important ECM protein that stabilizes collagen and other ECM proteins. The level of Fbln1c, one of the four Fbln1 variants, which predominates in both humans and mice, is increased in the serum and airways fluids in asthma but its function is unclear. We show that the level of Fbln1c was increased in the lungs of mice with house dust mite (HDM)-induced chronic allergic airway disease (AAD). Genetic deletion of Fbln1c and therapeutic inhibition of Fbln1c in mice with chronic AAD reduced airway collagen deposition, and protected against AHR. Fbln1c-deficient (Fbln1c -/- ) mice had reduced mucin (MUC) 5 AC levels, but not MUC5B levels, in the airways as compared with wild-type (WT) mice. Fbln1c interacted with fibronectin and periostin that was linked to collagen deposition around the small airways. Fbln1c -/- mice with AAD also had reduced numbers of α-smooth muscle actin-positive cells around the airways and reduced airway contractility as compared with WT mice. After HDM challenge, these mice also had fewer airway inflammatory cells, reduced interleukin (IL)-5, IL-13, IL-33, tumour necrosis factor (TNF) and CXCL1 levels in the lungs, and reduced IL-5, IL-33 and TNF levels in lung-draining lymph nodes. Therapeutic targeting of Fbln1c reduced the numbers of GATA3-positive Th2 cells in the lymph nodes and lungs after chronic HDM challenge. Treatment also reduced the secretion of IL-5 and IL-13 from co-cultured dendritic cells and T cells restimulated with HDM extract. Human epithelial cells cultured with Fbln1c peptide produced more CXCL1 mRNA than medium-treated controls. Our data show that Fbln1c may be a therapeutic target in chronic asthma. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  3. Allelic Variation of Ets1 Does Not Contribute to NK and NKT Cell Deficiencies in Type 1 Diabetes Susceptible NOD Mice

    PubMed Central

    Jordan, Margaret A.; Poulton, Lynn D.; Fletcher, Julie M.; Baxter, Alan G.

    2009-01-01

    The NOD mouse is a well characterized model of type 1 diabetes that shares several of the characteristics of Ets1-deficient targeted mutant mice, viz: defects in TCR allelic exclusion, susceptibility to a lupus like disease characterized by IgM and IgG autoantibodies and immune complex-mediated glomerulonephritis, and deficiencies of NK and NKT cells. Here, we sought evidence for allelic variation of Ets1 in mice contributing to the NK and NKT cell phenotypes of the NOD strain. ETS1 expression in NK and NKT cells was reduced in NOD mice, compared to C57BL/6 mice. Although NKT cells numbers were significantly correlated with ETS1 expression in both strains, NKT cell numbers were not linked to the Ets1 gene in a first backcross from NOD to C57BL/6 mice. These results indicate that allelic variation of Ets1 did not contribute to variation in NKT cell numbers in these mice. It remains possible that a third factor not linked to the Ets1 locus controls both ETS1 expression and subsequently NK and NKT cell phenotypes. PMID:19806240

  4. Oxygen-Dependent Growth of the Sulfate-Reducing Bacterium Desulfovibrio oxyclinae in Coculture with Marinobacter sp. Strain MB in an Aerated Sulfate-Depleted Chemostat

    PubMed Central

    Sigalevich, Pavel; Cohen, Yehuda

    2000-01-01

    A chemostat coculture of the sulfate-reducing bacterium Desulfovibrio oxyclinae and the facultatively aerobic heterotroph Marinobacter sp. strain MB was grown for 1 week under anaerobic conditions at a dilution rate of 0.05 h−1. It was then exposed to an oxygen flux of 223 μmol min−1 by gassing the growth vessel with 5% O2. Sulfate reduction persisted under these conditions, though the amount of sulfate reduced decreased by 45% compared to the amount reduced during the initial anaerobic mode. After 1 week of growth under these conditions, sulfate was excluded from the incoming medium. The sulfate concentration in the growth vessel decreased exponentially from 4.1 mM to 2.5 μM. The coculture consumed oxygen effectively, and no residual oxygen was detected during either growth mode in which oxygen was supplied. The proportion of D. oxyclinae cells in the coculture as determined by in situ hybridization decreased from 86% under anaerobic conditions to 70% in the microaerobic sulfate-reducing mode and 34% in the microaerobic sulfate-depleted mode. As determined by the most-probable-number (MPN) method, the numbers of viable D. oxyclinae cells during the two microaerobic growth modes decreased compared to the numbers during the anaerobic growth mode. However, there was no significant difference between the MPN values for the two modes when oxygen was supplied. The patterns of consumption of electron donors and acceptors suggested that when oxygen was supplied in the absence of sulfate and thiosulfate, D. oxyclinae performed incomplete aerobic oxidation of lactate to acetate. This is the first observation of oxygen-dependent growth of a sulfate-reducing bacterium in the absence of either sulfate or thiosulfate. Cells harvested during the microaerobic sulfate-depleted stage and exposed to sulfate and thiosulfate in a respiration chamber were capable of anaerobic sulfate and thiosulfate reduction. PMID:11055958

  5. Neutrophils are important in early control of lung infection by Yersinia pestis.

    PubMed

    Laws, Thomas R; Davey, Martin S; Titball, Richard W; Lukaszewski, Roman

    2010-04-01

    In this paper we evaluate the role of neutrophils in pneumonic plague. Splenic neutrophils from naïve BALB/c mice were found to reduce numbers of culturable Yersinia pestis strain GB in suspension. A murine, BALB/c, intranasal model of pneumonic plague was used in conjunction with in vivo neutrophil ablation, using the GR-1 antibody. This treatment reduced neutrophil numbers without affecting other leukocyte numbers. Neutrophil ablated mice exhibited increased bacterial colonisation of the lung 24h post infection. Furthermore, exposure of Y. pestis to human neutrophils resulted in a 5-fold reduction in the number of viable bacterial cells, whereas, PBMCs had no effect. Crown Copyright 2010. Published by Elsevier SAS. All rights reserved.

  6. Tracking of Mesenchymal Stem Cells with Fluorescence Endomicroscopy Imaging in Radiotherapy-Induced Lung Injury

    NASA Astrophysics Data System (ADS)

    Perez, Jessica R.; Ybarra, Norma; Chagnon, Frederic; Serban, Monica; Lee, Sangkyu; Seuntjens, Jan; Lesur, Olivier; El Naqa, Issam

    2017-01-01

    Mesenchymal stem cells (MSCs) have potential for reducing inflammation and promoting organ repair. However, limitations in available techniques to track them and assess this potential for lung repair have hindered their applicability. In this work, we proposed, implemented and evaluated the use of fluorescence endomicroscopy as a novel imaging tool to track MSCs in vivo. MSCs were fluorescently labeled and injected into a rat model of radiation-induced lung injury via endotracheal (ET) or intravascular (IV) administration. Our results show that MSCs were visible in the lungs with fluorescence endomicroscopy. Moreover, we developed an automatic cell counting algorithm to quantify the number of detected cells in each condition. We observed a significantly higher number of detected cells in ET injection compared to IV and a slight increase in the mean number of detected cells in irradiated lungs compared to control, although the latter did not reach statistical significance. Fluorescence endomicroscopy imaging is a powerful new minimally invasive and translatable tool that can be used to track and quantify MSCs in the lungs and help assess their potential in organ repair.

  7. Retinoic Acid Improves Morphology of Cultured Peritoneal Mesothelial Cells from Patients Undergoing Dialysis

    PubMed Central

    Retana, Carmen; Sanchez, Elsa I.; Gonzalez, Sirenia; Perez-Lopez, Alejandro; Cruz, Armando; Lagunas-Munoz, Jesus; Alfaro-Cruz, Carmen; Vital-Flores, Socorro; Reyes, José L.

    2013-01-01

    Patients undergoing continuous ambulatory peritoneal dialysis are classified according to their peritoneal permeability as low transporter (low solute permeability) or High transporter (high solute permeability). Factors that determine the differences in permeability between them have not been fully disclosed. We investigated morphological features of cultured human peritoneal mesothelial cells from low or high transporter patients and its response to All trans retinoic Acid (ATRA, vitamin A active metabolite), as compared to non-uremic human peritoneal mesothelial cells. Control cells were isolated from human omentum. High or low transporter cells were obtained from dialysis effluents. Cells were cultured in media containing ATRA (0, 50, 100 or 200 nM). We studied length and distribution of microvilli and cilia (scanning electron microscopy), epithelial (cytokeratin, claudin-1, ZO-1 and occludin) and mesenchymal (vimentin and α-smooth muscle actin) transition markers by immunofluorescence and Western blot, and transforming growth factor β1 expression by Western blot. Low and high transporter exhibited hypertrophic cells, reduction in claudin-1, occludin and ZO-1 expression, cytokeratin and vimentin disorganization and positive α-smooth muscle actin label. Vimentin, α-smooth muscle actin and transforming growth factor- β1 were overexpressed in low transporter. Ciliated cells were diminished in low and high transporters. Microvilli number and length were severely reduced in high transporter. ATRA reduced hypertrophic cells number in low transporter. It also improved cytokeratin and vimentin organization, decreased vimentin and α-smooth muscle actin expression, and increased claudin 1, occludin and ZO-1 expression, in low and high transporter. In low transporter, ATRA reduced transforming growth factor-β1 expression. ATRA augmented percentage of ciliated cells in low and high transporter. It also augmented cilia length in high transporter. Alterations in structure, epithelial mesenchymal markers and transforming growth factor-β1expression were differential between low and high transporter. Beneficial effects of ATRA were improved human peritoneal mesothelial cells morphology tending to normalize structures. PMID:24223992

  8. Ursodeoxycholic acid inhibits the proliferation of colon cancer cells by regulating oxidative stress and cancer stem-like cell growth.

    PubMed

    Kim, Eun-Kyung; Cho, Jae Hee; Kim, EuiJoo; Kim, Yoon Jae

    2017-01-01

    The regulation of reactive oxygen species (ROS) exists as a therapeutic target for cancer treatments. Previous studies have shown that ursodeoxycholic acid (UDCA) suppresses the proliferation of colon cancer cells. The aim of this study was to evaluate the effect of UDCA upon the proliferation of colon cancer cells as a direct result of the regulation of ROS. Colon cancer cell lines (HT29 and HCT116) were treated with UDCA. The total number of cells and the number of dead cells were determined using cell counters. A fluorescein isothiocyanate-bromodeoxyuridine flow kit was used to analyze cell cycle variations. Upon exposure to UDCA, the protein levels of p27, p21, CDK2, CDK4 and CDK6 were determined using western blotting, and qRT-PCR was used to determine levels of mRNA. We preformed dichlorofluorescindiacetate (DCF-DA) staining to detect alteration of intracellular ROS using fluorescence activated cell sorting (FACS). Colon cancer stem-like cell lines were generated by tumorsphere culture and treated with UDCA for seven days. The total number of tumorspheres was determined using microscopy. We found that UDCA reduced the total number of colon cancer cells, but did not increase the number of dead cells. UDCA inhibited the G1/S and G2/M transition phases in colon cancer cells. UDCA induced expression of cell cycle inhibitors such as p27 and p21. However, it was determined that UDCA suppressed levels of CDK2, CDK4, and CDK6. UDCA regulated intracellular ROS generation in colon cancer cells, and induced activation of Erk1/2. Finally, UDCA inhibited formation of colon cancer stem-like cells. Our results indicate that UDCA suppresses proliferation through regulation of oxidative stress in colon cancer cells, as well as colon cancer stem-like cells.

  9. Ursodeoxycholic acid inhibits the proliferation of colon cancer cells by regulating oxidative stress and cancer stem-like cell growth

    PubMed Central

    Kim, EuiJoo

    2017-01-01

    Introduction The regulation of reactive oxygen species (ROS) exists as a therapeutic target for cancer treatments. Previous studies have shown that ursodeoxycholic acid (UDCA) suppresses the proliferation of colon cancer cells. The aim of this study was to evaluate the effect of UDCA upon the proliferation of colon cancer cells as a direct result of the regulation of ROS. Method Colon cancer cell lines (HT29 and HCT116) were treated with UDCA. The total number of cells and the number of dead cells were determined using cell counters. A fluorescein isothiocyanate-bromodeoxyuridine flow kit was used to analyze cell cycle variations. Upon exposure to UDCA, the protein levels of p27, p21, CDK2, CDK4 and CDK6 were determined using western blotting, and qRT-PCR was used to determine levels of mRNA. We preformed dichlorofluorescindiacetate (DCF-DA) staining to detect alteration of intracellular ROS using fluorescence activated cell sorting (FACS). Colon cancer stem-like cell lines were generated by tumorsphere culture and treated with UDCA for seven days. The total number of tumorspheres was determined using microscopy. Results We found that UDCA reduced the total number of colon cancer cells, but did not increase the number of dead cells. UDCA inhibited the G1/S and G2/M transition phases in colon cancer cells. UDCA induced expression of cell cycle inhibitors such as p27 and p21. However, it was determined that UDCA suppressed levels of CDK2, CDK4, and CDK6. UDCA regulated intracellular ROS generation in colon cancer cells, and induced activation of Erk1/2. Finally, UDCA inhibited formation of colon cancer stem-like cells. Conclusion Our results indicate that UDCA suppresses proliferation through regulation of oxidative stress in colon cancer cells, as well as colon cancer stem-like cells. PMID:28708871

  10. Effects of transplanted circulating endothelial progenitor cells and platelet microparticles in atherosclerosis development.

    PubMed

    Georgescu, Adriana; Alexandru, Nicoleta; Andrei, Eugen; Dragan, Emanuel; Cochior, Daniel; Dias, Sérgio

    2016-08-01

    Atherosclerosis is an inflammatory disease, in which risk factors such as hyperlipidemia and hypertension affect the arterial endothelium, resulting in dysfunction, cell damage or both. The number of circulating endothelial progenitor cells and microparticles provides invaluable outcome prediction for atherosclerosis disease. However, evidence for the therapeutic potential of endothelial progenitor cells and microparticles in atherosclerosis development is limited. Our study was designed to investigate the possible protective role of a cell therapy-based approach, using endothelial progenitor cells and the dual behaviour of circulating platelet microparticles, on atherosclerosis development in hypertensive-hypercholesterolemic hamster model. Consequently, control hamsters received four intravenous inoculations of: (1) 1×10(5) endothelial progenitor cells of healthy origins in one dose per month, during four months of diet-induced atherosclerosis, and after hypertensive-hypercholesterolemic diet for further four months; (2) in a second set of experiments, 1×10(5) endothelial progenitor cells of healthy origins or/and 1×10(5) platelet microparticles of atherosclerotic origins were inoculated every other month during hypertensive-hypercholesterolemic diet. Endothelial progenitor cell treatment had the following effects: (1) re-established plasmatic parameters: cholesterol and triglyceride concentrations, blood pressure, heart rate, cytokine and chemokine profiles, platelet microparticle pro-thrombotic activity and endothelial progenitor cell paracrine activity reflected by cytokine/chemokine detection; (2) reduced lipid, macrophage and microparticle accumulation in liver; (3) reduced atherosclerosis development, revealed by decreased lipid, macrophage and microparticle content of arterial wall; (4) induced the recruitment and incorporation of endothelial progenitor cells into liver and arterial wall; (5) improved arterial dysfunction by increasing contraction and relaxation; (6) reduced the protein expression of specific pro-inflammatory molecules in liver and arterial wall. Platelet microparticle transplantation aggravated the above-mentioned biomarkers and atherosclerosis process, which were partially reverted with co-inoculation of platelet microparticles and endothelial progenitor cells. With this study, we demonstrate in a hypertensive-hypercholesterolemic hamster model, that the endothelial progenitor cell-based therapy suppresses the development of atherosclerosis and reduces hepatic lipid and macrophage accumulation with the consequent alleviation of dyslipidaemia and hypertension. Our results support the notion that increasing the number of circulating endothelial progenitor cells by different ways could be a promising therapeutic tool for atherosclerosis. © 2016 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd.

  11. Granulocyte colony-stimulating factor mobilizes functional endothelial progenitor cells in patients with coronary artery disease.

    PubMed

    Powell, Tiffany M; Paul, Jonathan D; Hill, Jonathan M; Thompson, Michael; Benjamin, Moshe; Rodrigo, Maria; McCoy, J Philip; Read, Elizabeth J; Khuu, Hanh M; Leitman, Susan F; Finkel, Toren; Cannon, Richard O

    2005-02-01

    Endothelial progenitor cells (EPCs) that may repair vascular injury are reduced in patients with coronary artery disease (CAD). We reasoned that EPC number and function may be increased by granulocyte colony-stimulating factor (G-CSF) used to mobilize hematopoietic progenitor cells in healthy donors. Sixteen CAD patients had reduced CD34(+)/CD133(+) (0.0224+/-0.0063% versus 0.121+/-0.038% mononuclear cells [MNCs], P<0.01) and CD133(+)/VEGFR-2(+) cells, consistent with EPC phenotype (0.00033+/-0.00015% versus 0.0017+/-0.0006% MNCs, P<0.01), compared with 7 healthy controls. Patients also had fewer clusters of cells in culture, with out-growth consistent with mature endothelial phenotype (2+/-1/well) compared with 16 healthy subjects at high risk (13+/-4/well, P<0.05) or 14 at low risk (22+/-3/well, P<0.001) for CAD. G-CSF 10 microg/kg per day for 5 days increased CD34(+)/CD133(+) cells from 0.5+/-0.2/microL to 59.5+/-10.6/microL and CD133(+)/ VEGFR-2(+) cells from 0.007+/-0.004/microL to 1.9+/-0.6/microL (both P<0.001). Also increased were CD133(+) cells that coexpressed the homing receptor CXCR4 (30.4+/-8.3/microL, P<0.05). Endothelial cell-forming clusters in 10 patients increased to 27+/-9/well after treatment (P<0.05), with a decline to 9+/-4/well at 2 weeks (P=0.06). Despite reduced EPCs compared with healthy controls, patients with CAD respond to G-CSF with increases in EPC number and homing receptor expression in the circulation and endothelial out-growth in culture. Endothelial progenitor cells (EPCs) are reduced in coronary artery disease. Granulocyte colony-stimulating factor (CSF) administered to patients increased: (1) CD133+/VEGFR-2+ cells consistent with EPC phenotype; (2) CD133+ cells coexpressing the chemokine receptor CXCR4, important for homing of EPCs to ischemic tissue; and (3) endothelial cell-forming clusters in culture. Whether EPCs mobilized into the circulation will be useful for the purpose of initiating vascular growth and myocyte repair in coronary artery disease patients must be tested in clinical trials.

  12. Antral G-cell in gastrin and gastrin-cholecystokinin knockout animals.

    PubMed

    Friis-Hansen, Lennart; Wierup, Nils; Rehfeld, Jens F; Sundler, Frank

    2005-07-01

    The antral hormone gastrin is the key regulator of gastric acid secretion, mucosal growth and differentiation. Gastrin is synthesized in the endocrine G-cells in the antroduodenal mucosa. We have now examined the way in which the loss of gastrin alone or gastrin plus cholecystokinin (CCK) affects the antral G-cell. Immunohistochemistry, radioimmunoassay and quantitative real-time polymerase chain reaction techniques were employed to examine the expression of genes belonging to the G-cell secretory pathway in gastrin and gastrin-CCK knockout mice. Transmission electron microscopy was used to examine the ultrastructure of the G-cells. The number of G-cells increased but the secretory granules were few and abnormally small in the G-cells of both mouse models compared with wildtypes. Thus, gastrin is not necessary for the formation of G-cells as such but the lack of gastrin reduces the number and size of their secretory granules suggesting that gastrin is vital for the formation and/or maintenance of secretory granules in G-cells.

  13. Smoking and nonsmoking asthma: differences in clinical outcome and pathogenesis.

    PubMed

    Fattahi, Fatemeh; Hylkema, Machteld N; Melgert, Barbro N; Timens, Wim; Postma, Dirkje S; ten Hacken, Nick H T

    2011-02-01

    Cigarette smoking in asthma is frequently present and is associated with worsening of symptoms, accelerated lung-function decline, a higher frequency of hospital admissions, a higher degree of asthma severity, poorer asthma control and reduced responsiveness to corticosteroids. Furthermore, it is associated with reduced numbers of eosinophils and higher numbers of mast cells in the submucosa of the airway wall. Airway remodeling is increased as evidenced by increased epithelial thickness and goblet cell hyperplasia in smoking asthmatics. The pathogenesis responsible for smoking-induced changes in airway inflammation and remodeling in asthma is complex and largely unknown. The underlying mechanism of reduced corticosteroid responsiveness is also unknown. This article discusses differences between smoking and nonsmoking asthmatics regarding the clinical expression of asthma, lung function, response to corticosteroids, airway inflammation and remodeling processes. Possible pathogenetic mechanisms that may explain the links between cigarette smoking and changes in the clinical expression of asthma will be discussed, as well as the beneficial effects of smoking cessation.

  14. Misregulated progesterone secretion and impaired pregnancy in Cyp11a1 transgenic mice.

    PubMed

    Chien, Yu; Cheng, Wei-Cheng; Wu, Menq-Rong; Jiang, Si-Tse; Shen, Che-Kun James; Chung, Bon-chu

    2013-10-01

    Normal pregnancy is supported by increased levels of progesterone (P4), which is secreted from ovarian luteal cells via enzymatic steps catalyzed by P450scc (CYP11A1) and HSD3B. The development and maintenance of corpora lutea during pregnancy, however, are less well understood. Here we used Cyp11a1 transgenic mice to delineate the steps of luteal cell differentiation during pregnancy. Cyp11a1 in a bacterial artificial chromosome was injected into mouse embryos to generate transgenic mice with transgene expression that recapitulated endogenous Cyp11a1 expression. Cyp11a1 transgenic females displayed reduced pregnancy rate, impaired implantation and placentation, and decreased litter size in utero, although they produced comparable numbers of blastocysts. The differentiation of transgenic luteal cells was delayed during early pregnancy as shown by the delayed activation of genes involved in steroidogenesis and cholesterol availability. Luteal cell mitochondria were elongated, and their numbers were reduced, with morphology and numbers similar to those observed in granulosa cells. Transgenic luteal cells accumulated lipid droplets and secreted less progesterone during early pregnancy. The progesterone level returned to normal on gestation day 9 but was not properly withdrawn at term, leading to delayed stillbirth. P4 supplementation rescued the implantation rates but not the ovarian defects. Thus, overexpression of Cyp11a1 disrupts normal development of the corpus luteum, leading to progesterone insufficiency during early pregnancy. Misregulation of the progesterone production in Cyp11a1 transgenic mice during pregnancy resulted in aberrant implantation, anomalous placentation, and delayed parturition.

  15. Tumour T1 changes in vivo are highly predictive of response to chemotherapy and reflect the number of viable tumour cells – a preclinical MR study in mice

    PubMed Central

    2014-01-01

    Background Effective chemotherapy rapidly reduces the spin–lattice relaxation of water protons (T1) in solid tumours and this change (ΔT1) often precedes and strongly correlates with the eventual change in tumour volume (TVol). To understand the biological nature of ΔT1, we have performed studies in vivo and ex vivo with the allosteric mTOR inhibitor, everolimus. Methods Mice bearing RIF-1 tumours were studied by magnetic resonance imaging (MRI) to determine TVol and T1, and MR spectroscopy (MRS) to determine levels of the proliferation marker choline and levels of lipid apoptosis markers, prior to and 5 days (endpoint) after daily treatment with vehicle or everolimus (10 mg/kg). At the endpoint, tumours were ablated and an entire section analysed for cellular and necrotic quantification and staining for the proliferation antigen Ki67 and cleaved-caspase-3 as a measure of apoptosis. The number of blood-vessels (BV) was evaluated by CD31 staining. Mice bearing B16/BL6 melanoma tumours were studied by MRI to determine T1 under similar everolimus treatment. At the endpoint, cell bioluminescence of the tumours was measured ex vivo. Results Everolimus blocked RIF-1 tumour growth and significantly reduced tumour T1 and total choline (Cho) levels, and increased polyunsaturated fatty-acids which are markers of apoptosis. Immunohistochemistry showed that everolimus reduced the %Ki67+ cells but did not affect caspase-3 apoptosis, necrosis, BV-number or cell density. The change in T1 (ΔT1) correlated strongly with the changes in TVol and Cho and %Ki67+. In B16/BL6 tumours, everolimus also decreased T1 and this correlated with cell bioluminescence; another marker of cell viability. Receiver-operating-characteristic curves (ROC) for everolimus on RIF-1 tumours showed that ΔT1 had very high levels of sensitivity and specificity (ROCAUC = 0.84) and this was confirmed for the cytotoxic patupilone in the same tumour model (ROCAUC = 0.97). Conclusion These studies suggest that ΔT1 is not a measure of cell density but reflects the decreased number of remaining viable and proliferating tumour cells due to perhaps cell and tissue destruction releasing proteins and/or metals that cause T1 relaxation. ΔT1 is a highly sensitive and specific predictor of response. This MRI method provides the opportunity to stratify a patient population during tumour therapy in the clinic. PMID:24528602

  16. Daclizumab in active relapsing multiple sclerosis (CHOICE study): a phase 2, randomised, double-blind, placebo-controlled, add-on trial with interferon beta.

    PubMed

    Wynn, Daniel; Kaufman, Michael; Montalban, Xavier; Vollmer, Timothy; Simon, Jack; Elkins, Jacob; O'Neill, Gilmore; Neyer, Lauri; Sheridan, James; Wang, Chungchi; Fong, Alice; Rose, John W

    2010-04-01

    Daclizumab, a humanised monoclonal antibody, reduced multiple sclerosis disease activity in previous non-randomised studies. We aimed to assess whether daclizumab reduces disease activity in patients with active relapsing multiple sclerosis who are receiving interferon beta treatment. We did a phase 2, randomised, double-blind, placebo-controlled study at 51 centres in the USA, Canada, Germany, Italy, and Spain. Patients with active relapsing multiple sclerosis who were taking interferon beta were randomly assigned to receive add-on subcutaneous daclizumab 2 mg/kg every 2 weeks (interferon beta and high-dose daclizumab group), daclizumab 1 mg/kg every 4 weeks (interferon beta and low-dose daclizumab group), or interferon beta and placebo for 24 weeks. The randomisation scheme was generated by Facet Biotech. All patients and assessors were masked to treatment with the exception of Facet Biotech bioanalysts who prepared data for the data safety monitoring board or generated pharmacokinetic or pharmacodynamic data, a drug accountability auditor, and the site pharmacist. The primary endpoint was total number of new or enlarged gadolinium contrast-enhancing lesions measured on brain MRI scans every 4 weeks between weeks 8 and 24. Effects of daclizumab on prespecified subsets of lymphocytes and quantitative T-cell proliferative response were assessed in an exploratory pharmacodynamic substudy. Analysis was by intention to treat. This trial is registered with ClinicalTrials.gov, number NCT00109161. From May, 2005, to March, 2006, 288 patients were assessed for eligibility, and 230 were randomly assigned to receive interferon beta and high-dose daclizumab (n=75), interferon beta and low-dose daclizumab (n=78), or interferon beta and placebo (n=77). The adjusted mean number of new or enlarged gadolinium contrast-enhancing lesions was 4.75 in the interferon beta and placebo group compared with 1.32 in the interferon beta and high-dose daclizumab group (difference 72%, 95% CI 34% to 88%; p=0.004) and 3.58 in the interferon beta and low-dose daclizumab group (25%, -76% to 68%; p=0.51). In the pharmacodynamic substudy, daclizumab was not associated with significant changes in absolute numbers of T cells, B cells, or natural killer cells, or T-cell proliferative response compared with interferon beta alone. The number of CD56(bright) natural killer cells was seven to eight times higher in both daclizumab groups than in the interferon beta and placebo group (interferon beta and low-dose daclizumab group p=0.002; interferon beta and high-dose daclizumab group p<0.0001). Common adverse events were equally distributed across groups. Add-on daclizumab treatment reduced the number of new or enlarged gadolinium contrast-enhancing lesions compared with interferon beta alone and might reduce multiple sclerosis disease activity to a greater extent than interferon beta alone. Facet Biotech and Biogen Idec. 2010 Elsevier Ltd. All rights reserved.

  17. Prevention of Lung Carcinogenesis by Suppressing Pathogenic CD4 T Cells

    DTIC Science & Technology

    2017-05-01

    intestinal inflammation by reducing TH17 cells and preserving group 3 innate lymphoid cells . Nat Med, 2016. 22(3): p. 319-23.   ...stable population of YFP+  cells  similar  to  innate  IL‐17–producing  cells  (e.g., γδ T  cells ) during acute infection (Fig.2) , which is in sharp contrast...AWARD NUMBER: W81XWH-16-1-0100 TITLE: Prevention of Lung Carcinogenesis by Suppressing Pathogenic CD4 T Cells PRINCIPAL INVESTIGATOR: Seon Hee

  18. Concentrator hot-spot testing, phase 1

    NASA Technical Reports Server (NTRS)

    Gonzalez, C. C.

    1987-01-01

    Results of a study to determine the hot-spot susceptibility of concentrator cells, to provide a hot-spot qualification test for concentrator modules, and to provide guidelines for reducing hot-spot susceptibility are presented. Hot-spot heating occurs in a photovoltaic module when the short-circuit current of a cell is lower than the string operating current forcing the cell into reverse bias with a concurrent power dissipation. Although the basis for the concentrator module hot-spot qualification test is the test developed for flat-plate modules, issues, such as providing cell illumination, introduce additional complexities into the testing procedure. The same general guidelines apply for protecting concentrator modules from hot-spot stressing as apply to flat-plate modules. Therefore, recommendations are made on the number of bypass diodes required per given number of series cells per module or source circuit. In addition, a new method for determining the cell temperature in the laboratory or in the field is discussed.

  19. The significance of gallstones in children with sickle cell anemia.

    PubMed Central

    Alexander-Reindorf, C.; Nwaneri, R. U.; Worrell, R. G.; Ogbonna, A.; Uzoma, C.

    1990-01-01

    Infection is the most common cause of high morbidity, hospitalization, and mortality in children with sickle cell anemia. In this study of pediatric sickle cell anemia patients, aged 1 to 19, we explore the hypothesis that gallstones (usually pigment stones) create a nidus of infection, predisposing the affected patients to high morbidity. Our study involved 86 children with sickle cell anemia at the Howard University Center for Sickle Cell Disease, who had been followed at the clinic for a total of 602 patient years. Review of their records revealed that patients with gallstones had a mean number of 10.24 hospitalizations and 25.35 ambulatory visits; those without gallstones had a mean number of only 4.26 hospitalizations and 13.41 ambulatory visits. In children with sickle cell anemia and gallstones, elective cholecystectomy (or, in the future, cholelithotripsy) could reduce the high morbidity caused by infection. PMID:2213913

  20. Acetogenic and Sulfate-Reducing Bacteria Inhabiting the Rhizoplane and Deep Cortex Cells of the Sea Grass Halodule wrightii†

    PubMed Central

    Küsel, Kirsten; Pinkart, Holly C.; Drake, Harold L.; Devereux, Richard

    1999-01-01

    Recent declines in sea grass distribution underscore the importance of understanding microbial community structure-function relationships in sea grass rhizospheres that might affect the viability of these plants. Phospholipid fatty acid analyses showed that sulfate-reducing bacteria and clostridia were enriched in sediments colonized by the sea grasses Halodule wrightii and Thalassia testudinum compared to an adjacent unvegetated sediment. Most-probable-number analyses found that in contrast to butyrate-producing clostridia, acetogens and acetate-utilizing sulfate reducers were enriched by an order of magnitude in rhizosphere sediments. Although sea grass roots are oxygenated in the daytime, colorimetric root incubation studies demonstrated that acetogenic O-demethylation and sulfidogenic iron precipitation activities were tightly associated with washed, sediment-free H. wrightii roots. This suggests that the associated anaerobes are able to tolerate exposure to oxygen. To localize and quantify the anaerobic microbial colonization, root thin sections were hybridized with newly developed 33P-labeled probes that targeted (i) low-G+C-content gram-positive bacteria, (ii) cluster I species of clostridia, (iii) species of Acetobacterium, and (iv) species of Desulfovibrio. Microautoradiography revealed intercellular colonization of the roots by Acetobacterium and Desulfovibrio species. Acetogenic bacteria occurred mostly in the rhizoplane and outermost cortex cell layers, and high numbers of sulfate reducers were detected on all epidermal cells and inward, colonizing some 60% of the deepest cortex cells. Approximately 30% of epidermal cells were colonized by bacteria that hybridized with an archaeal probe, strongly suggesting the presence of methanogens. Obligate anaerobes within the roots might contribute to the vitality of sea grasses and other aquatic plants and to the biogeochemistry of the surrounding sediment. PMID:10543830

  1. Cellular and Hormonal Disruption of Fetal Testis Development in Sheep Reared on Pasture Treated with Sewage Sludge

    PubMed Central

    Paul, Catriona; Rhind, Stewart M.; Kyle, Carol E.; Scott, Hayley; McKinnell, Chris; Sharpe, Richard M.

    2005-01-01

    The purpose of this study was to evaluate whether experimental exposure of pregnant sheep to a mixture of environmental chemicals added to pasture as sewage sludge (n = 9 treated animals) exerted effects on fetal testis development or function; application of sewage sludge was undertaken so as to maximize exposure of the ewes to its contents. Control ewes (n = 9) were reared on pasture treated with an equivalent amount of inorganic nitrogenous fertilizer. Treatment had no effect on body weight of ewes, but it reduced body weight by 12–15% in male (n = 12) and female (n = 8) fetuses on gestation day 110. In treated male fetuses (n = 11), testis weight was significantly reduced (32%), as were the numbers of Sertoli cells (34% reduction), Leydig cells (37% reduction), and gonocytes (44% reduction), compared with control fetuses (n = 8). Fetal blood levels of testosterone and inhibin A were also reduced (36% and 38%, respectively) in treated compared with control fetuses, whereas blood levels of luteinizing hormone and follicle-stimulating hormone were unchanged. Based on immunoexpression of anti-Müllerian hormone, cytochrome P450 side chain cleavage enzyme, and Leydig cell cytoplasmic volume, we conclude that the hormone changes in treated male fetuses probably result from the reduction in somatic cell numbers. This reduction could result from fetal growth restriction in male fetuses and/or from the lowered testosterone action; reduced immunoexpression of α-smooth muscle actin in peritubular cells and of androgen receptor in testes of treated animals supports the latter possibility. These findings indicate that exposure of the developing male sheep fetus to real-world mixtures of environmental chemicals can result in major attenuation of testicular development and hormonal function, which may have consequences in adulthood. PMID:16263515

  2. On a fundamental problem in radiation biology

    NASA Technical Reports Server (NTRS)

    Dugan, V.; Trujillo, R.

    1974-01-01

    Experimental evidence indicates that the radiation dose required to reduce a surviving population to a certain fraction of its original population is lower for vertebrate cells than for viruses. On the other hand, the number of ionizations per cell required to inactivate that cell is greater for vertebrate cells than for viruses. The apparent conflict between these two findings is investigated. It is found that the apparent contradiction is probably a result of the fractional power dependence of the radiation-dose value on the nucleic acid weight.

  3. White Nail Radio Transmitter: Billion Dollar Savings through Energy Efficiency

    DTIC Science & Technology

    2011-05-10

    increase efficiency and reduce overall energy consumption ashore by 50 percent CNO, Navy Energy Vision, P 10 White Nail Vision Your Cell Phone Cell...Estimated Total Number of transmitters 3,000,000 Estimated total power saved Watt 1,250,000,000 Cell Phone Transmitter Efficiency 1.25 Gigawatts saved...Greenhouse Gas Power 4 1 Energy Navy Use 7.3 Billion kWh White Nail Cell Phone Savings 11 Billion kWh One and a half times!!! Saves the output of four of

  4. Pivotal role of oxidative stress in tumor metastasis under diabetic conditions in mice.

    PubMed

    Ikemura, Mai; Nishikawa, Makiya; Kusamori, Kosuke; Fukuoka, Miho; Yamashita, Fumiyoshi; Hashida, Mitsuru

    2013-09-10

    Diabetic patients are reported to have a high incidence and mortality of cancer, but little is known about the linkage. In this study, we investigated whether high oxidative stress is involved in the acceleration of tumor metastasis in diabetic mice. Murine melanoma B16-BL6 cells stably labeled with firefly luciferase (B16-BL6/Luc) were inoculated into the tail vein of streptozotocin (STZ)-treated or untreated mice. A luciferase assay demonstrated that tumor cells were present largely in the lung of untreated mice, whereas large numbers of tumor cells were detected in both the lung and liver of STZ-treated mice. Repeated injections of polyethylene glycol-conjugated catalase (PEG-catalase), a long-circulating derivative, reduced the elevated fasting blood glucose levels and plasma lipoperoxide levels of STZ-treated mice, but had no significant effects on these parameters in untreated mice. In addition, the injections significantly reduced the number of tumor cells in the lung and liver in both untreated and STZ-treated mice. Culture of B16-BL6/Luc cells in medium containing over 45 mg/dl glucose hardly affected the proliferation of the cells, whereas the addition of plasma of STZ-treated mice to the medium significantly increased the number of cells. Plasma samples of STZ-treated mice receiving PEG-catalase exhibited no such effect on proliferation. These findings indicate that a hyperglycemia-induced increase in oxidative stress is involved in the acceleration of tumor metastasis, and the removal of systemic hydrogen peroxide by PEG-catalase can inhibit the progression of diabetic conditions and tumor metastasis in diabetes. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. The Poisson distribution and beyond: methods for microfluidic droplet production and single cell encapsulation.

    PubMed

    Collins, David J; Neild, Adrian; deMello, Andrew; Liu, Ai-Qun; Ai, Ye

    2015-09-07

    There is a recognized and growing need for rapid and efficient cell assays, where the size of microfluidic devices lend themselves to the manipulation of cellular populations down to the single cell level. An exceptional way to analyze cells independently is to encapsulate them within aqueous droplets surrounded by an immiscible fluid, so that reagents and reaction products are contained within a controlled microenvironment. Most cell encapsulation work has focused on the development and use of passive methods, where droplets are produced continuously at high rates by pumping fluids from external pressure-driven reservoirs through defined microfluidic geometries. With limited exceptions, the number of cells encapsulated per droplet in these systems is dictated by Poisson statistics, reducing the proportion of droplets that contain the desired number of cells and thus the effective rate at which single cells can be encapsulated. Nevertheless, a number of recently developed actively-controlled droplet production methods present an alternative route to the production of droplets at similar rates and with the potential to improve the efficiency of single-cell encapsulation. In this critical review, we examine both passive and active methods for droplet production and explore how these can be used to deterministically and non-deterministically encapsulate cells.

  6. Methylsulfonylmethane suppresses hepatic tumor development through activation of apoptosis

    PubMed Central

    Kim, Joo-Hyun; Shin, Hye-Jun; Ha, Hye-Lin; Park, Young-Ho; Kwon, Tae-Ho; Jung, Mi-Ra; Moon, Hyung-Bae; Cho, Eun-Sang; Son, Hwa-Young; Yu, Dae-Yeul

    2014-01-01

    AIM: To investigate the effect of methylsulfonylmethane (MSM), recently reported to have anti-cancer effects, in liver cancer cells and transgenic mice. METHODS: Three liver cancer cell lines, HepG2, Huh7-Mock and Huh7-H-rasG12V, were used. Cell growth was measured by Cell Counting Kit-8 and soft agar assay. Western blot analysis was used to detect caspases, poly (ADP-ribose) polymerase (PARP), and B-cell lymphoma 2 (Bcl-2) expressions. For in vivo study, we administered MSM to H-ras12V transgenic mice for 3 mo. RESULTS: MSM decreased the growth of HepG2, Huh7-Mock and Huh7-H-rasG12V cells in a dose-dependent manner. That was correlated with significantly increased apoptosis and reduced cell numbers in MSM treated cells. Cleaved caspase-8, cleaved caspase-3 and cleaved PARP were remarkably increased in the liver cancer cells treated with 500 mmol/L of MSM; however, Bcl-2 was slightly decreased in 500 mmol/L. Liver tumor development was greatly inhibited in the H-ras12V transgenic mice treated with MSM, compared to control, by showing reduced tumor size and number. Cleaved PARP was significantly increased in non-tumor treated with MSM compared to control. CONCLUSION: Liver injury was also significantly attenuated in the mice treated with MSM. Taken together, all the results suggest that MSM has anti-cancer effects through inducing apoptosis in liver cancer. PMID:24575169

  7. Characterization of Commercial Li-ion Cells in Pouch Format

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Judith

    2014-01-01

    The li-ion pouch design cells exhibit similar behavior under off-nominal conditions as those in metal cans that do not have the internal safety devices. Safety should be well characterized before batteries are designed. Some of the li-ion pouch cell designs studied in this program reacted most violently to overcharge conditions at the medium rates but were tolerant to overcharge at very low rates. Some pouch cell designs have higher tolerance to vacuum exposures than some others. A comparison of the pouch material itself does not show a correlation between this tolerance and the number of layers or composition of the pouch indicating that this is a property of the electrode stack design inside the pouch. Reduced pressure (8 to 10 psi) test environments show that the extent of capacity degradation under reduced pressure environments is much less than that observed under vacuum conditions. Lithium-ion Pouch format cells are not necessarily true polymer cells.

  8. Maternal Forced Swimming Reduces Cell Proliferation in the Postnatal Dentate Gyrus of Mouse Offspring

    PubMed Central

    Wasinski, Frederick; Estrela, Gabriel R.; Arakaki, Aline M.; Bader, Michael; Alenina, Natalia; Klempin, Friederike; Araújo, Ronaldo C.

    2016-01-01

    Physical exercise positively affects the metabolism and induces proliferation of precursor cells in the adult brain. Maternal exercise likewise provokes adaptations early in the offspring. Using a high-intensity swimming protocol that comprises forced swim training before and during pregnancy, we determined the effect of maternal swimming on the mouse offspring's neurogenesis. Our data demonstrate decreased proliferation in sublayers of the postnatal dentate gyrus in offspring of swimming mother at postnatal day (P) 8 accompanied with decreased survival of newly generated cells 4 weeks later. The reduction in cell numbers was predominantly seen in the hilus and molecular layer. At P35, the reduced amount of cells was also reflected by a decrease in the population of newly generated immature and mature neurons of the granule cell layer. Our data suggest that forced maternal swimming at high-intensity has a negative effect on the neurogenic niche development in postnatal offspring. PMID:27621701

  9. Orally administered fructose increases the numbers of peripheral lymphocytes reduced by exposure of mice to gamma or SPE-like proton radiation

    NASA Astrophysics Data System (ADS)

    Romero-Weaver, A. L.; Ni, J.; Lin, L.; Kennedy, A. R.

    2014-07-01

    Exposure of the whole body or a major portion of the body to ionizing radiation can result in Acute Radiation Sickness (ARS), which can cause symptoms that range from mild to severe, and include death. One of the syndromes that can occur during ARS is the hematopoietic syndrome, which is characterized by a reduction in bone marrow cells as well as the number of circulating blood cells. Doses capable of causing this syndrome can result from conventional radiation therapy and accidental exposure to ionizing radiation. It is of concern that this syndrome could also occur during space exploration class missions in which astronauts could be exposed to significant doses of solar particle event (SPE) radiation. Of particular concern is the reduction of lymphocytes and granulocytes, which are major components of the immune system. A significant reduction in their numbers can compromise the immune system, causing a higher risk for the development of infections which could jeopardize the success of the mission. Although there are no specific countermeasures utilized for the ARS resulting from exposure to space radiation(s), granulocyte colony-stimulating factor (G-CSF) has been proposed as a countermeasure for the low number of neutrophils caused by SPE radiation, but so far no countermeasure exists for a reduced number of circulating lymphocytes. The present study demonstrates that orally administered fructose significantly increases the number of peripheral lymphocytes reduced by exposure of mice to 2 Gy of gamma- or SPE-like proton radiation, making it a potential countermeasure for this biological end-point.

  10. Surgical Stress Abrogates Pre-Existing Protective T Cell Mediated Anti-Tumor Immunity Leading to Postoperative Cancer Recurrence

    PubMed Central

    Lansdell, Casey; Alkayyal, Almohanad A.; Baxter, Katherine E.; Angka, Leonard; Zhang, Jiqing; Tanese de Souza, Christiano; Stephenson, Kyle B.; Parato, Kelley; Bramson, Jonathan L.; Bell, John C.; Lichty, Brian D.; Auer, Rebecca C.

    2016-01-01

    Anti-tumor CD8+ T cells are a key determinant for overall survival in patients following surgical resection for solid malignancies. Using a mouse model of cancer vaccination (adenovirus expressing melanoma tumor-associated antigen (TAA)—dopachrome tautomerase (AdDCT) and resection resulting in major surgical stress (abdominal nephrectomy), we demonstrate that surgical stress results in a reduction in the number of CD8+ T cell that produce cytokines (IFNγ, TNFα, Granzyme B) in response to TAA. This effect is secondary to both reduced proliferation and impaired T cell function following antigen binding. In a prophylactic model, surgical stress completely abrogates tumor protection conferred by vaccination in the immediate postoperative period. In a clinically relevant surgical resection model, vaccinated mice undergoing a positive margin resection with surgical stress had decreased survival compared to mice with positive margin resection alone. Preoperative immunotherapy with IFNα significantly extends survival in surgically stressed mice. Importantly, myeloid derived suppressor cell (MDSC) population numbers and functional impairment of TAA-specific CD8+ T cell were altered in surgically stressed mice. Our observations suggest that cancer progression may result from surgery-induced suppression of tumor-specific CD8+ T cells. Preoperative immunotherapies aimed at targeting the prometastatic effects of cancer surgery will reduce recurrence and improve survival in cancer surgery patients. PMID:27196057

  11. Campylobacter jejuni induces transcytosis of commensal bacteria across the intestinal epithelium through M-like cells

    PubMed Central

    2010-01-01

    Background Recent epidemiological analyses have implicated acute Campylobacter enteritis as a factor that may incite or exacerbate inflammatory bowel disease (IBD) in susceptible individuals. We have demonstrated previously that C. jejuni disrupts the intestinal barrier function by rapidly inducing epithelial translocation of non-invasive commensal bacteria via a transcellular lipid raft-mediated mechanism ('transcytosis'). To further characterize this mechanism, the aim of this current study was to elucidate whether C. jejuni utilizes M cells to facilitate transcytosis of commensal intestinal bacteria. Results C. jejuni induced translocation of non-invasive E. coli across confluent Caco-2 epithelial monolayers in the absence of disrupted transepithelial electrical resistance or increased permeability to a 3 kDa dextran probe. C. jejuni-infected monolayers displayed increased numbers of cells expressing the M cell-specific marker, galectin-9, reduced numbers of enterocytes that stained with the absorptive enterocyte marker, Ulex europaeus agglutinin-1, and reduced activities of enzymes typically associated with absorptive enterocytes (namely alkaline phosphatase, lactase, and sucrase). Furthermore, in Campylobacter-infected monolayers, E. coli were observed to be internalized specifically within epithelial cells displaying M-like cell characteristics. Conclusion These data indicate that C. jejuni may utilize M cells to promote transcytosis of non-invasive bacteria across the intact intestinal epithelial barrier. This mechanism may contribute to the inflammatory immune responses against commensal intestinal bacteria commonly observed in IBD patients. PMID:21040540

  12. BTLA interaction with HVEM expressed on CD8(+) T cells promotes survival and memory generation in response to a bacterial infection.

    PubMed

    Steinberg, Marcos W; Huang, Yujun; Wang-Zhu, Yiran; Ware, Carl F; Cheroutre, Hilde; Kronenberg, Mitchell

    2013-01-01

    The B and T lymphocyte attenuator (BTLA) is an Ig super family member that binds to the herpes virus entry mediator (HVEM), a TNF receptor super family (TNFRSF) member. Engagement of BTLA by HVEM triggers inhibitory signals, although recent evidence indicates that BTLA also may act as an activating ligand for HVEM. In this study, we reveal a novel role for the BTLA-HVEM pathway in promoting the survival of activated CD8(+) T cells in the response to an oral microbial infection. Our data show that both BTLA- and HVEM-deficient mice infected with Listeria monocytogenes had significantly reduced numbers of primary effector and memory CD8(+) T cells, despite normal proliferation and expansion compared to controls. In addition, blockade of the BTLA-HVEM interaction early in the response led to significantly reduced numbers of antigen-specific CD8(+) T cells. HVEM expression on the CD8(+) T cells as well as BTLA expression on a cell type other than CD8(+) T lymphocytes, was required. Collectively, our data demonstrate that the function of the BTLA-HVEM pathway is not limited to inhibitory signaling in T lymphocytes, and instead, that BTLA can provide crucial, HVEM-dependent signals that promote survival of antigen activated CD8(+) T cell during bacterial infection.

  13. Preterm birth disrupts cerebellar development by affecting granule cell proliferation program and Bergmann glia.

    PubMed

    Iskusnykh, Igor Y; Buddington, Randal K; Chizhikov, Victor V

    2018-08-01

    Preterm birth is a leading cause of long-term motor and cognitive deficits. Clinical studies suggest that some of these deficits result from disruption of cerebellar development, but the mechanisms that mediate cerebellar abnormalities in preterm infants are largely unknown. Furthermore, it remains unclear whether preterm birth and precocious exposure to the ex-utero environment directly disrupt cerebellar development or indirectly by increasing the probability of cerebellar injury, including that resulting from clinical interventions and protocols associated with the care of preterm infants. In this study, we analyzed the cerebellum of preterm pigs delivered via c-section at 91% term and raised for 10 days, until term-equivalent age. The pigs did not receive any treatments known or suspected to affect cerebellar development and had no evidence of brain damage. Term pigs sacrificed at birth were used as controls. Immunohistochemical analysis revealed that preterm birth did not affect either size or numbers of Purkinje cells or molecular layer interneurons at term-equivalent age. The number of granule cell precursors and Bergmann glial fibers, however, were reduced in preterm pigs. Preterm pigs had reduced proliferation but not differentiation of granule cells. qRT-PCR analysis of laser capture microdissected external granule cell layer showed that preterm pigs had a reduced expression of Ccnd1 (Cyclin D1), Ccnb1 (Cyclin B1), granule cell master regulatory transcription factor Atoh1, and signaling molecule Jag1. In vitro rescue experiments identified Jag1 as a central granule cell gene affected by preterm birth. Thus, preterm birth and precocious exposure to the ex-utero environment disrupt cerebellum by modulating expression of key cerebellar developmental genes, predominantly affecting development of granule precursors and Bergmann glia. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Nε-(carboxymethyl) lysine-induced mitochondrial fission and mitophagy cause decreased insulin secretion from β-cells.

    PubMed

    Lo, Mei-Chen; Chen, Ming-Hong; Lee, Wen-Sen; Lu, Chin-I; Chang, Chuang-Rung; Kao, Shu-Huei; Lee, Horng-Mo

    2015-11-15

    Nε-(carboxymethyl) lysine-conjugated bovine serum albumin (CML-BSA) is a major component of advanced glycation end products (AGEs). We hypothesised that AGEs reduce insulin secretion from pancreatic β-cells by damaging mitochondrial functions and inducing mitophagy. Mitochondrial morphology and the occurrence of autophagy were examined in pancreatic islets of diabetic db/db mice and in the cultured CML-BSA-treated insulinoma cell line RIN-m5F. In addition, the effects of α-lipoic acid (ALA) on mitochondria in AGE-damaged tissues were evaluated. The diabetic db/db mouse exhibited an increase in the number of autophagosomes in damaged mitochondria and receptor for AGEs (RAGE). Treatment of db/db mice with ALA for 12 wk increased the number of mitochondria with well-organized cristae and fewer autophagosomes. Treatment of RIN-m5F cells with CML-BSA increased the level of RAGE protein and autophagosome formation, caused mitochondrial dysfunction, and decreased insulin secretion. CML-BSA also reduced mitochondrial membrane potential and ATP production, increased ROS and lipid peroxide production, and caused mitochondrial DNA deletions. Elevated fission protein dynamin-related protein 1 (Drp1) level and mitochondrial fragmentation demonstrated the unbalance of mitochondrial fusion and fission in CML-BSA-treated cells. Additionally, increased levels of Parkin and PTEN-induced putative kinase 1 protein suggest that fragmented mitochondria were associated with increased mitophagic activity, and ALA attenuated the CML-BSA-induced mitophage formation. Our study demonstrated that CML-BSA induced mitochondrial dysfunction and mitophagy in pancreatic β-cells. The findings from this study suggest that increased concentration of AGEs may damage β-cells and reduce insulin secretion. Copyright © 2015 the American Physiological Society.

  15. PbrmiR397a regulates lignification during stone cell development in pear fruit.

    PubMed

    Xue, Cheng; Yao, Jia-Long; Qin, Meng-Fan; Zhang, Ming-Yue; Allan, Andrew C; Wang, De-Fu; Wu, Jun

    2018-05-13

    Lignified stone cells substantially reduce fruit quality. Therefore, it is desirable to inhibit stone cell development by using genetic technologies. However, the molecular mechanisms regulating lignification are poorly understood in fruit stone cells. In this study, we have shown that microRNA (miR) miR397a regulates fruit cell lignification by inhibiting laccase (LAC) genes that encode key lignin biosynthesis enzymes. Transient overexpression of PbrmiR397a, which is the miR397a of Chinese pear (Pyrus bretschneideri), and simultaneous silencing of three LAC genes reduced the lignin content and stone cell number in pear fruit. A single nucleotide polymorphism (SNP) identified in the promoter of the PbrmiR397a gene was found to associate with low levels of fruit lignin, after analysis of the genome sequences of sixty pear varieties. This SNP created a TCA-element that responded to salicylic acid (SA) to induce gene expression as confirmed using a cell-based assay system. Furthermore, stable overexpression of PbrmiR397a in transgenic tobacco plants reduced the expression of target LAC genes and decreased the content of lignin but did not change the ratio of syringyl and guaiacyl lignin monomers. Consistent with reduction of lignin content, the transgenic plants showed fewer numbers of vessel elements and thinner secondary walls in the remaining elements compared to wild-type control plants. This study has advanced our understanding of the regulation of lignin biosynthesis and provided useful molecular genetic information for improving pear fruit quality. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  16. Increased numbers of pre-existing memory CD8 T cells and decreased T-bet expression can restrain terminal differentiation of secondary effector and memory CD8 T cells1

    PubMed Central

    Joshi, Nikhil S.; Cui, Weiguo; Dominguez, Claudia; Chen, Jonathan H.; Hand, Timothy W.; Kaech, Susan M.

    2011-01-01

    Memory CD8 T cells acquire TEM properties following reinfection, and may reach terminally differentiated, senescent states (“Hayflick limit”) after multiple infections. The signals controlling this process are not well understood, but we found that the degree of 2o effector and memory CD8 T cell differentiation was intimately linked to the amount of T-bet expressed upon reactivation and pre-existing memory CD8 T cell number (i.e., 1o memory CD8 T cell precursor frequency) present during secondary infection. Compared to naïve cells, memory CD8 T cells were predisposed towards terminal effector (TE) cell differentiation because they could immediately respond to IL-12 and induce T-bet, even in the absence of antigen. TE cell formation following 2o or 3o infections was dependent on increased T-bet expression because T-bet+/− cells were resistant to these phenotypic changes. Larger numbers of pre-existing memory CD8 T cells limited the duration of 2o infection and the amount of IL-12 produced, and consequently, this reduced T-bet expression and the proportion of 2o TE CD8 T cells that formed. Together, these data show that, over repeated infections, memory CD8 T cell quality and proliferative fitness is not strictly determined by the number of serial encounters with antigen or cell divisions, but is a function of the CD8 T cell differentiation state, which is genetically controlled in a T-bet-dependent manner. This differentiation state can be modulated by pre-existing memory CD8 T cell number and the intensity of inflammation during reinfection. These results have important implications for vaccinations involving prime-boost strategies. PMID:21930973

  17. Culture of Macrophage Colony-stimulating Factor Differentiated Human Monocyte-derived Macrophages.

    PubMed

    Jin, Xueting; Kruth, Howard S

    2016-06-30

    A protocol is presented for cell culture of macrophage colony-stimulating factor (M-CSF) differentiated human monocyte-derived macrophages. For initiation of experiments, fresh or frozen monocytes are cultured in flasks for 1 week with M-CSF to induce their differentiation into macrophages. Then, the macrophages can be harvested and seeded into culture wells at required cell densities for carrying out experiments. The use of defined numbers of macrophages rather than defined numbers of monocytes to initiate macrophage cultures for experiments yields macrophage cultures in which the desired cell density can be more consistently attained. Use of cryopreserved monocytes reduces dependency on donor availability and produces more homogeneous macrophage cultures.

  18. Plasma levels of endothelial and B-cell-derived microparticles are restored by fingolimod treatment in multiple sclerosis patients.

    PubMed

    Zinger, Anna; Latham, Sharissa L; Combes, Valery; Byrne, Scott; Barnett, Michael H; Hawke, Simon; Grau, Georges E

    2016-12-01

    No molecular marker can monitor disease progression and treatment efficacy in multiple sclerosis (MS). Circulating microparticles represent a potential snapshot of disease activity at the blood brain barrier. To profile plasma microparticles by flow cytometry in MS and determine how fingolimod could impact endothelial microparticles production. In non-treated MS patients compared to healthy and fingolimod-treated patients, endothelial microparticles were higher, while B-cell-microparticle numbers were lower. Fingolimod dramatically reduced tumour necrosis factor (TNF)-induced endothelial microparticle release in vitro. Fingolimod restored dysregulated endothelial and B-cell-microparticle numbers, which could serve as a biomarker in MS. © The Author(s), 2016.

  19. Intermuscular and perimuscular fat expansion in obesity correlates with skeletal muscle T cell and macrophage infiltration and insulin resistance

    PubMed Central

    Khan, Ilvira M.; Dai Perrard, Xiao-Yuan; Brunner, Gerd; Lui, Hua; Sparks, Lauren M.; Smith, Steven R.; Wang, Xukui; Shi, Zheng-Zheng; Lewis, Dorothy E.; Wu, Huaizhu; Ballantyne, Christie M.

    2015-01-01

    Background/Objectives Limited numbers of studies demonstrated obesity-induced macrophage infiltration in skeletal muscle (SM), but dynamics of immune cell accumulation and contribution of T cells to SM insulin resistance are understudied. Subjects/Methods T cells and macrophage markers were examined in SM of obese humans by RT-PCR. Mice were fed high-fat diet (HFD) for 2–24 weeks, and time course of macrophage and T cell accumulation was assessed by flow cytometry and quantitative RT-PCR. Extramyocellular adipose tissue (EMAT) was quantified by high-resolution micro-CT, and correlation to T cell number in SM was examined. CD11a−/− mice and C57BL/6 mice were treated with CD11a-neutralizing antibody to determine the role of CD11a in T cell accumulation in SM. To investigate the involvement JAK/STAT, the major pathway for T helper I (TH1) cytokine IFNγ? in SM and adipose tissue inflammation and insulin resistance, mice were treated with a JAK1/JAK2 inhibitor, baricitinib. Results Macrophage and T cells markers were upregulated in SM of obese compared with lean humans. SM of obese mice had higher expression of inflammatory cytokines, with macrophages increasing by 2 weeks on HFD and T cells increasing by 8 weeks. The immune cells were localized in EMAT. Micro-CT revealed that EMAT expansion in obese mice correlated with T cell infiltration and insulin resistance. Deficiency or neutralization of CD11a reduced T cell accumulation in SM of obese mice. T cells polarized into a proinflammatory TH1 phenotype, with increased STAT1 phosphorylation in SM of obese mice. In vivo inhibition of JAK/STAT pathway with baricitinib reduced T cell numbers and activation markers in SM and adipose tissue and improved insulin resistance in obese mice. Conclusions Obesity-induced expansion of EMAT in SM was associated with accumulation and proinflammatory polarization of T cells, which may regulate SM metabolic functions through paracrine mechanisms. Obesity-associated SM “adiposopathy” may thus play an important role in development of insulin resistance and inflammation. PMID:26041698

  20. STAT3 is a critical cell-intrinsic regulator of human unconventional T cell numbers and function

    PubMed Central

    Wilson, Robert P.; Ives, Megan L.; Rao, Geetha; Lau, Anthony; Payne, Kathryn; Kobayashi, Masao; Arkwright, Peter D.; Peake, Jane; Wong, Melanie; Adelstein, Stephen; Smart, Joanne M.; French, Martyn A.; Fulcher, David A.; Picard, Capucine; Bustamante, Jacinta; Boisson-Dupuis, Stephanie; Gray, Paul; Stepensky, Polina; Warnatz, Klaus; Freeman, Alexandra F.; Rossjohn, Jamie; McCluskey, James; Holland, Steven M.; Casanova, Jean-Laurent; Uzel, Gulbu; Ma, Cindy S.

    2015-01-01

    Unconventional T cells such as γδ T cells, natural killer T cells (NKT cells) and mucosal-associated invariant T cells (MAIT cells) are a major component of the immune system; however, the cytokine signaling pathways that control their development and function in humans are unknown. Primary immunodeficiencies caused by single gene mutations provide a unique opportunity to investigate the role of specific molecules in regulating human lymphocyte development and function. We found that individuals with loss-of-function mutations in STAT3 had reduced numbers of peripheral blood MAIT and NKT but not γδ T cells. Analysis of STAT3 mosaic individuals revealed that this effect was cell intrinsic. Surprisingly, the residual STAT3-deficient MAIT cells expressed normal levels of the transcription factor RORγt. Despite this, they displayed a deficiency in secretion of IL-17A and IL-17F, but were able to secrete normal levels of cytokines such as IFNγ and TNF. The deficiency in MAIT and NKT cells in STAT3-deficient patients was mirrored by loss-of-function mutations in IL12RB1 and IL21R, respectively. Thus, these results reveal for the first time the essential role of STAT3 signaling downstream of IL-23R and IL-21R in controlling human MAIT and NKT cell numbers. PMID:25941256

  1. Paneth and intestinal stem cells preserve their functional integrity during worsening of acute cellular rejection in small bowel transplantation.

    PubMed

    Pucci Molineris, M; Gonzalez Polo, V; Perez, F; Ramisch, D; Rumbo, M; Gondolesi, G E; Meier, D

    2018-04-01

    Graft survival after small bowel transplantation remains impaired due to acute cellular rejection (ACR), the leading cause of graft loss. Although it was shown that the number of enteroendocrine progenitor cells in intestinal crypts was reduced during mild ACR, no results of Paneth and intestinal stem cells localized at the crypt bottom have been shown so far. Therefore, we wanted to elucidate integrity and functionality of the Paneth and stem cells during different degrees of ACR, and to assess whether these cells are the primary targets of the rejection process. We compared biopsies from ITx patients with no, mild, or moderate ACR by immunohistochemistry and quantitative PCR. Our results show that numbers of Paneth and stem cells remain constant in all study groups, whereas the transit-amplifying zone is the most impaired zone during ACR. We detected an unchanged level of antimicrobial peptides in Paneth cells and similar numbers of Ki-67 + IL-22R + stem cells revealing cell functionality in moderate ACR samples. We conclude that Paneth and stem cells are not primary target cells during ACR. IL-22R + Ki-67 + stem cells might be an interesting target cell population for protection and regeneration of the epithelial monolayer during/after a severe ACR in ITx patients. © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.

  2. Simulated microgravity, Mars gravity, and 2g hypergravity affect cell cycle regulation, ribosome biogenesis, and epigenetics in Arabidopsis cell cultures.

    PubMed

    Kamal, Khaled Y; Herranz, Raúl; van Loon, Jack J W A; Medina, F Javier

    2018-04-23

    Gravity is the only component of Earth environment that remained constant throughout the entire process of biological evolution. However, it is still unclear how gravity affects plant growth and development. In this study, an in vitro cell culture of Arabidopsis thaliana was exposed to different altered gravity conditions, namely simulated reduced gravity (simulated microgravity, simulated Mars gravity) and hypergravity (2g), to study changes in cell proliferation, cell growth, and epigenetics. The effects after 3, 14, and 24-hours of exposure were evaluated. The most relevant alterations were found in the 24-hour treatment, being more significant for simulated reduced gravity than hypergravity. Cell proliferation and growth were uncoupled under simulated reduced gravity, similarly, as found in meristematic cells from seedlings grown in real or simulated microgravity. The distribution of cell cycle phases was changed, as well as the levels and gene transcription of the tested cell cycle regulators. Ribosome biogenesis was decreased, according to levels and gene transcription of nucleolar proteins and the number of inactive nucleoli. Furthermore, we found alterations in the epigenetic modifications of chromatin. These results show that altered gravity effects include a serious disturbance of cell proliferation and growth, which are cellular functions essential for normal plant development.

  3. Nanoparticles containing allotropes of carbon have genotoxic effects on glioblastoma multiforme cells

    PubMed Central

    Hinzmann, Mateusz; Jaworski, Sławomir; Kutwin, Marta; Jagiełło, Joanna; Koziński, Rafał; Wierzbicki, Mateusz; Grodzik, Marta; Lipińska, Ludwika; Sawosz, Ewa; Chwalibog, Andrè

    2014-01-01

    The carbon-based nanomaterial family consists of nanoparticles containing allotropes of carbon, which may have a number of interactions with biological systems. The objective of this study was to evaluate the toxicity of nanoparticles comprised of pristine graphene, reduced graphene oxide, graphene oxide, graphite, and ultradispersed detonation diamond in a U87 cell line. The scope of the work consisted of structural analysis of the nanoparticles using transmission electron microscopy, evaluation of cell morphology, and assessment of cell viability by Trypan blue assay and level of DNA fragmentation of U87 cells after 24 hours of incubation with 50 μg/mL carbon nanoparticles. DNA fragmentation was studied using single-cell gel electrophoresis. Incubation with nanoparticles containing the allotropes of carbon did not alter the morphology of the U87 cancer cells. However, incubation with pristine graphene and reduced graphene oxide led to a significant decrease in cell viability, whereas incubation with graphene oxide, graphite, and ultradispersed detonation diamond led to a smaller decrease in cell viability. The results of a comet assay demonstrated that pristine graphene, reduced graphene oxide, graphite, and ultradispersed detonation diamond caused DNA damage and were therefore genotoxic in U87 cells, whereas graphene oxide was not. PMID:24876774

  4. Semi-synthetic salinomycin analogs exert cytotoxic activity against human colorectal cancer stem cells.

    PubMed

    Klose, Johannes; Kattner, Sarah; Borgström, Björn; Volz, Claudia; Schmidt, Thomas; Schneider, Martin; Oredsson, Stina; Strand, Daniel; Ulrich, Alexis

    2018-01-01

    Salinomycin, a polyether antibiotic, is a well-known inhibitor of human cancer stem cells. Chemical modification of the allylic C20 hydroxyl of salinomycin has enabled access to synthetic analogs that display increased cytotoxic activity compared to the native structure. The aim of this study was to investigate the activity of a cohort of C20-O-acyl analogs of salinomycin on human colorectal cancer cell lines in vitro. Two human colorectal cancer cell lines (SW480 and SW620) were exposed to three C20-O-acylated analogs and salinomycin. The impact of salinomycin and its analogs on tumor cell number, migration, cell death, and cancer stem cell specifity was analyzed. Exposure of human colorectal cancer cells to the C20-O-acylated analogs of salinomycin resulted in reduced tumor cell number and impaired tumor cell migration at lower concentrations than salinomycin. When used at higher (micromolar) concentrations, these effects were accompanied by induction of apoptotic cell death. Salinomycin analogs further expose improved activity against cancer stem cells compared to salinomycin. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Light sensitivity of a one transistor-one capacitor memory cell when used as a micromirror actuator in projector applications

    NASA Astrophysics Data System (ADS)

    Huffman, James Douglas

    2001-11-01

    The most important issue facing the future business success of the Digital Micromirror Device or DMD™ produced by Texas Instruments is the cost of the actual device. As the business and consumer markets call for higher resolution displays, the array size will have to be increased to incorporate more pixels. The manufacturing costs associated with building these higher resolution displays follow an exponential relation with the number of pixels due to yield loss and reduced number of chips per silicon wafer. Each pixel is actuated by electrostatics that are provided by a memory cell that is built in the underlying silicon substrate. One way to decrease cost of the wafer is to change the memory cell architecture from a static random access configuration or SRAM to a dynamic random access configuration or DRAM. This change has the benefits of having fewer components per area and a lower metal density. This reduction in the component count and metal density has a dramatic effect on the yield of the memory array by reducing the particle sensitivity of the underlying cell. The main drawback to using a DRAM configuration in a display application is the light sensitivity of a charge storage device built in the silicon substrate. As the photons pass through the mechanical micromirrors and illuminate the DRAM cell, the effective electrostatic potential of the memory element used for the mirror actuation is reduced. This dissertation outlines the issues associated with the light sensitivity of a DRAM memory cell as the actuation element for a micromirror. The concept of charge depletion on a silicon capacitor due to recombination of photogenerated carriers is explored and experimentally verified. The effects of the reduced potential on the capacitor on the micromirror are also explored. Optical modeling is used to determine the incoming photon flux to determine the benefits of adding a charge recombination region as part of the DRAM memory cell. Several options are explored to reduce the effect of the incoming photons on the potential of the memory cell. The results will show that a 1T1C memory cell with N-type recombination regions and maximum light shielding is sufficient for a projector application.

  6. Natural killer cell function predicts severe infection in kidney transplant recipients.

    PubMed

    Dendle, Claire; Gan, Poh-Yi; Polkinghorne, Kevan R; Ngui, James; Stuart, Rhonda L; Kanellis, John; Thursky, Karin; Mulley, William R; Holdsworth, Stephen

    2018-04-30

    The aim of this study was to determine if natural killer cell number (CD3 - /CD16 ± /CD56 ± ) and cytotoxic killing function predicts severity and frequency of infection in kidney transplant recipients. A cohort of 168 kidney transplant recipients with stable graft function underwent assessment of natural killer cell number and functional killing capacity immediately prior to entry into this prospective study. Participants were followed for 2 years for development of severe infection, defined as hospitalization for infection. Area under receiver operating characteristic (AUROC) curves were used to evaluate the accuracy of natural killer cell number and function for predicting severe infection. Adjusted odds ratios were determined by logistic regression. Fifty-nine kidney transplant recipients (35%) developed severe infection and 7 (4%) died. Natural killer cell function was a better predictor of severe infection than natural killer cell number: AUROC 0.84 and 0.75, respectively (P = .018). Logistic regression demonstrated that after adjustment for age, transplant function, transplant duration, mycophenolate use, and increasing natural killer function (odds ratio [OR] 0.82, 95% confidence interval [CI] 0.74-0.90; P < .0001) but not natural killer number (OR 0.96, 95% CI 0.93-1.00; P = .051) remained significantly associated with a reduced likelihood of severe infection. Natural killer cell function predicts severe infection in kidney transplant recipients. © 2018 The American Society of Transplantation and the American Society of Transplant Surgeons.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pi, Min; Kapoor, Karan P.; Ye, Ruisong

    The possibility that G protein-coupled receptor family C member A (GPRC6A) is the osteocalcin (Ocn)-sensing G protein-coupled receptor that directly regulates pancreatic β-cell functions is controversial. In the current study, we found that Ocn and an Ocn-derived C-terminal hexapeptide directly activate GPRC6A-dependent ERK signaling in vitro. Computational models probe the structural basis of Ocn binding to GPRC6A and predict that the C-terminal hexapeptide docks to the extracellular side of the transmembrane domain of GPRC6A. Consistent with the modeling, mutations in the computationally identified binding pocket of GPRC6A reduced Ocn and C-terminal hexapeptide activation of this receptor. In addition, selective deletionmore » of Gprc6a in β-cells (Gprc6aβ-cell-cko) by crossing Gprc6aflox/flox mice with Ins2-Cre mice resulted in reduced pancreatic weight, islet number, insulin protein content, and insulin message expression. Both islet size and β-cell proliferation were reduced in Gprc6aβ-cell-cko compared with control mice. Gprc6aβ-cell-cko exhibited abnormal glucose tolerance, but normal insulin sensitivity. Islets isolated from Gprc6aβ-cell-cko mice showed reduced insulin simulation index in response to Ocn. These data establish the structural basis for Ocn direct activation of GPRC6A and confirm a role for GPRC6A in regulating β-cell proliferation and insulin secretion.« less

  8. Equivalent circuit-based analysis of CMUT cell dynamics in arrays.

    PubMed

    Oguz, H K; Atalar, Abdullah; Köymen, Hayrettin

    2013-05-01

    Capacitive micromachined ultrasonic transducers (CMUTs) are usually composed of large arrays of closely packed cells. In this work, we use an equivalent circuit model to analyze CMUT arrays with multiple cells. We study the effects of mutual acoustic interactions through the immersion medium caused by the pressure field generated by each cell acting upon the others. To do this, all the cells in the array are coupled through a radiation impedance matrix at their acoustic terminals. An accurate approximation for the mutual radiation impedance is defined between two circular cells, which can be used in large arrays to reduce computational complexity. Hence, a performance analysis of CMUT arrays can be accurately done with a circuit simulator. By using the proposed model, one can very rapidly obtain the linear frequency and nonlinear transient responses of arrays with an arbitrary number of CMUT cells. We performed several finite element method (FEM) simulations for arrays with small numbers of cells and showed that the results are very similar to those obtained by the equivalent circuit model.

  9. The suppression of aberrant crypt multiplicity in colonic tissue of 1,2-dimethylhydrazine-treated C57BL/6J mice by dietary flavone is associated with an increased expression of Krebs cycle enzymes.

    PubMed

    Winkelmann, Isabel; Diehl, Daniela; Oesterle, Doris; Daniel, Hannelore; Wenzel, Uwe

    2007-07-01

    Colorectal cancer is the second leading cause of cancer deaths worldwide with diet playing a prominent role in disease initiation and progression. Flavonoids are secondary plant compounds that are suggested as protective ingredients of a diet rich in fruits and vegetables. We here tested whether flavone, a flavonoid that proved to be an effective apoptosis inducer in colon cancer cells in culture, can affect the development of aberrant crypt foci (ACFs) in C57BL/6J mice in vivo when preneoplastic lesions were induced by the carcinogen 1,2-dimethylhydrazine (DMH). Flavone applied at either a low dose (15 mg/kg body wt per day) or a high dose (400 mg/kg body wt per day) reduced the numbers of ACFs significantly, independent of whether it was supplied simultaneously with the carcinogen (blocking group) or subsequent to the tumor induction phase (suppressing group). Proteome analysis performed in colonic tissue samples revealed that flavone treatment increased the expression of a number of Krebs cycle enzymes in the suppressing group and this was associated with reduced crypt multiplicity. It suggests that mitochondrial substrate oxidation is increased by flavone in colonic cells in vivo as already observed in HT-29 cells in vitro as the prime mechanism underlying tumor cell apoptosis induction by flavone. In conclusion, flavone reduces the number of ACFs in DMH-treated mice at doses that can be achieved for flavonoids by a diet rich in fruits and vegetables. Moreover, reduction in crypt multiplicity by flavone is most probably due to the preservation of a normal oxidative metabolism.

  10. Effects of exercise training on chronic inflammation in obesity : current evidence and potential mechanisms.

    PubMed

    You, Tongjian; Arsenis, Nicole C; Disanzo, Beth L; Lamonte, Michael J

    2013-04-01

    Chronic, systemic inflammation is an independent risk factor for several major clinical diseases. In obesity, circulating levels of inflammatory markers are elevated, possibly due to increased production of pro-inflammatory cytokines from several tissues/cells, including macrophages within adipose tissue, vascular endothelial cells and peripheral blood mononuclear cells. Recent evidence supports that adipose tissue hypoxia may be an important mechanism through which enlarged adipose tissue elicits local tissue inflammation and further contributes to systemic inflammation. Current evidence supports that exercise training, such as aerobic and resistance exercise, reduces chronic inflammation, especially in obese individuals with high levels of inflammatory biomarkers undergoing a longer-term intervention. Several studies have reported that this effect is independent of the exercise-induced weight loss. There are several mechanisms through which exercise training reduces chronic inflammation, including its effect on muscle tissue to generate muscle-derived, anti-inflammatory 'myokine', its effect on adipose tissue to improve hypoxia and reduce local adipose tissue inflammation, its effect on endothelial cells to reduce leukocyte adhesion and cytokine production systemically, and its effect on the immune system to lower the number of pro-inflammatory cells and reduce pro-inflammatory cytokine production per cell. Of these potential mechanisms, the effect of exercise training on adipose tissue oxygenation is worth further investigation, as it is very likely that exercise training stimulates adipose tissue angiogenesis and increases blood flow, thereby reducing hypoxia and the associated chronic inflammation in adipose tissue of obese individuals.

  11. Inflammation arising from obesity reduces taste bud abundance and inhibits renewal.

    PubMed

    Kaufman, Andrew; Choo, Ezen; Koh, Anna; Dando, Robin

    2018-03-01

    Despite evidence that the ability to taste is weakened by obesity and can be rescued with weight loss intervention, few studies have investigated the molecular effects of obesity on the taste system. Taste bud cells undergo continual turnover even in adulthood, exhibiting an average life span of only a few weeks, tightly controlled by a balance of proliferation and cell death. Recent data reveal that an acute inflammation event can alter this balance. We demonstrate that chronic low-grade inflammation brought on by obesity reduces the number of taste buds in gustatory tissues of mice-and is likely the cause of taste dysfunction seen in obese populations-by upsetting this balance of renewal and cell death.

  12. Rigor of cell fate decision by variable p53 pulses and roles of cooperative gene expression by p53

    PubMed Central

    Murakami, Yohei; Takada, Shoji

    2012-01-01

    Upon DNA damage, the cell fate decision between survival and apoptosis is largely regulated by p53-related networks. Recent experiments found a series of discrete p53 pulses in individual cells, which led to the hypothesis that the cell fate decision upon DNA damage is controlled by counting the number of p53 pulses. Under this hypothesis, Sun et al. (2009) modeled the Bax activation switch in the apoptosis signal transduction pathway that can rigorously “count” the number of uniform p53 pulses. Based on experimental evidence, here we use variable p53 pulses with Sun et al.’s model to investigate how the variability in p53 pulses affects the rigor of the cell fate decision by the pulse number. Our calculations showed that the experimentally anticipated variability in the pulse sizes reduces the rigor of the cell fate decision. In addition, we tested the roles of the cooperativity in PUMA expression by p53, finding that lower cooperativity is plausible for more rigorous cell fate decision. This is because the variability in the p53 pulse height is more amplified in PUMA expressions with more cooperative cases. PMID:27857606

  13. Single-Cell-Based Platform for Copy Number Variation Profiling through Digital Counting of Amplified Genomic DNA Fragments.

    PubMed

    Li, Chunmei; Yu, Zhilong; Fu, Yusi; Pang, Yuhong; Huang, Yanyi

    2017-04-26

    We develop a novel single-cell-based platform through digital counting of amplified genomic DNA fragments, named multifraction amplification (mfA), to detect the copy number variations (CNVs) in a single cell. Amplification is required to acquire genomic information from a single cell, while introducing unavoidable bias. Unlike prevalent methods that directly infer CNV profiles from the pattern of sequencing depth, our mfA platform denatures and separates the DNA molecules from a single cell into multiple fractions of a reaction mix before amplification. By examining the sequencing result of each fraction for a specific fragment and applying a segment-merge maximum likelihood algorithm to the calculation of copy number, we digitize the sequencing-depth-based CNV identification and thus provide a method that is less sensitive to the amplification bias. In this paper, we demonstrate a mfA platform through multiple displacement amplification (MDA) chemistry. When performing the mfA platform, the noise of MDA is reduced; therefore, the resolution of single-cell CNV identification can be improved to 100 kb. We can also determine the genomic region free of allelic drop-out with mfA platform, which is impossible for conventional single-cell amplification methods.

  14. Effectiveness of aromatherapy with light thai massage for cellular immunity improvement in colorectal cancer patients receiving chemotherapy.

    PubMed

    Khiewkhern, Santisith; Promthet, Supannee; Sukprasert, Aemkhea; Eunhpinitpong, Wichai; Bradshaw, Peter

    2013-01-01

    Patients with colorectal cancer are usually treated with chemotherapy, which reduces the number of blood cells, especially white blood cells, and consequently increases the risk of infections. Some research studies have reported that aromatherapy massage affects the immune system and improves immune function by, for example, increasing the numbers of natural killer cells and peripheral blood lymphocytes. However, there has been no report of any study which provided good evidence as to whether aromatherapy with Thai massage could improve the immune system in patients with colorectal cancer. The objectives of this study were to determine whether the use of aromatherapy with light Thai massage in patients with colorectal cancer, who have received chemotherapy, can result in improvement of the cellular immunity and reduce the severity of the common symptoms of side effects. Sixty-six patients with colorectal cancer in Phichit Hospital, Thailand, were enrolled in a single-blind, randomised-controlled trial. The intervention consisted of three massage sessions with ginger and coconut oil over a 1-week period. The control group received standard supportive care only. Assessments were conducted at pre-assessment and at the end of one week of massage or standard care. Changes from pre-assessment to the end of treatment were measured in terms of white blood cells, neutrophils, lymphocytes, CD4 and CD8 cells and the CD4/CD8 ratio and also the severity of self-rated symptom scores. The main finding was that after adjusting for pre-assessment values the mean lymphocyte count at the post-assessment was significantly higher (P=0.04) in the treatment group than in the controls. The size of this difference suggested that aromatherapy with Thai massage could boost lymphocyte numbers by 11%. The secondary outcomes were that at the post assessment the symptom severity scores for fatigue, presenting symptom, pain and stress were significantly lower in the massage group than in the standard care controls. Aromatherapy with light Thai massage can be beneficial for the immune systems of cancer patients who are undergoing chemotherapy by increasing the number of lymphocytes and can help to reduce the severity of common symptoms.

  15. Comparison of autogeneic and allogeneic natural killer cells immunotherapy on the clinical outcome of recurrent breast cancer

    PubMed Central

    Liang, Shuzhen; Xu, Kecheng; Niu, Lizhi; Wang, Xiaohua; Liang, Yingqing; Zhang, Mingjie; Chen, Jibing; Lin, Mao

    2017-01-01

    In the present study, we aimed to compare the clinical outcome of autogeneic and allogeneic natural killer (NK) cells immunotherapy for the treatment of recurrent breast cancer. Between July 2016 and February 2017, 36 patients who met the enrollment criteria were randomly assigned to two groups: autogeneic NK cells immunotherapy group (group I, n=18) and allogeneic NK cells immunotherapy group (group II, n=18). The clinical efficacy, quality of life, immune function, circulating tumor cell (CTC) level, and other related indicators were evaluated. We found that allogeneic NK cells immunotherapy has better clinical efficacy than autogeneic therapy. Moreover, allogeneic NK cells therapy improves the quality of life, reduces the number of CTCs, reduces carcinoembryonic antigen and cancer antigen 15-3 (CA15-3) expression, and significantly enhances immune function. To our knowledge, this is the first clinical trial to compare the clinical outcome of autogeneic and allogeneic NK cells immunotherapy for recurrent breast cancer. PMID:28894383

  16. Sonic hedgehog controls growth of external genitalia by regulating cell cycle kinetics

    PubMed Central

    Seifert, Ashley W.; Zheng, Zhengui; Ormerod, Brandi K.; Cohn, Martin J.

    2010-01-01

    During embryonic development, cells are instructed which position to occupy, they interpret these cues as differentiation programmes, and expand these patterns by growth. Sonic hedgehog (Shh) specifies positional identity in many organs; however, its role in growth is not well understood. In this study, we show that inactivation of Shh in external genitalia extends the cell cycle from 8.5 to 14.4 h, and genital growth is reduced by ∼75%. Transient Shh signalling establishes pattern in the genital tubercle; however, transcriptional levels of G1 cell cycle regulators are reduced. Consequently, G1 length is extended, leading to fewer progenitor cells entering S-phase. Cell cycle genes responded similarly to Shh inactivation in genitalia and limbs, suggesting that Shh may regulate growth by similar mechanisms in different organ systems. The finding that Shh regulates cell number by controlling the length of specific cell cycle phases identifies a novel mechanism by which Shh elaborates pattern during appendage development. PMID:20975695

  17. ROCK2 signaling is required to induce a subset of T follicular helper cells through opposing effects on STATs in autoimmune settings.

    PubMed

    Weiss, Jonathan M; Chen, Wei; Nyuydzefe, Melanie S; Trzeciak, Alissa; Flynn, Ryan; Tonra, James R; Marusic, Suzana; Blazar, Bruce R; Waksal, Samuel D; Zanin-Zhorov, Alexandra

    2016-07-19

    Rho-associated kinase 2 (ROCK2) determines the balance between human T helper 17 (TH17) cells and regulatory T (Treg) cells. We investigated its role in the generation of T follicular helper (TFH) cells, which help to generate antibody-producing B cells under normal and autoimmune conditions. Inhibiting ROCK2 in normal human T cells or peripheral blood mononuclear cells from patients with active systemic lupus erythematosus (SLE) decreased the number and function of TFH cells induced by activation ex vivo. Moreover, inhibition of ROCK2 activity decreased the abundance of the transcriptional regulator Bcl6 (B cell lymphoma 6) and increased that of Blimp1 by reducing the binding of signal transducer and activator of transcription 3 (STAT3) and increasing that of STAT5 to the promoters of the genes Bcl6 and PRDM1, respectively. In the MRL/lpr murine model of SLE, oral administration of the selective ROCK2 inhibitor KD025 resulted in a twofold reduction in the numbers of TFH cells and antibody-producing plasma cells in the spleen, as well as a decrease in the size of splenic germinal centers, which are the sites of interaction between TFH cells and B cells. KD025-treated mice showed a substantial improvement in both histological and clinical scores compared to those of untreated mice and had reduced amounts of Bcl6 and phosphorylated STAT3, as well as increased STAT5 phosphorylation. Together, these data suggest that ROCK2 signaling plays a critical role in controlling the development of TFH cells induced by autoimmune conditions through reciprocal regulation of STAT3 and STAT5 activation. Copyright © 2016, American Association for the Advancement of Science.

  18. Scalable microcarrier-based manufacturing of mesenchymal stem/stromal cells.

    PubMed

    de Soure, António M; Fernandes-Platzgummer, Ana; da Silva, Cláudia L; Cabral, Joaquim M S

    2016-10-20

    Due to their unique features, mesenchymal stem/stromal cells (MSC) have been exploited in clinical settings as therapeutic candidates for the treatment of a variety of diseases. However, the success in obtaining clinically-relevant MSC numbers for cell-based therapies is dependent on efficient isolation and ex vivo expansion protocols, able to comply with good manufacturing practices (GMP). In this context, the 2-dimensional static culture systems typically used for the expansion of these cells present several limitations that may lead to reduced cell numbers and compromise cell functions. Furthermore, many studies in the literature report the expansion of MSC using fetal bovine serum (FBS)-supplemented medium, which has been critically rated by regulatory agencies. Alternative platforms for the scalable manufacturing of MSC have been developed, namely using microcarriers in bioreactors, with also a considerable number of studies now reporting the production of MSC using xenogeneic/serum-free medium formulations. In this review we provide a comprehensive overview on the scalable manufacturing of human mesenchymal stem/stromal cells, depicting the various steps involved in the process from cell isolation to ex vivo expansion, using different cell tissue sources and culture medium formulations and exploiting bioprocess engineering tools namely microcarrier technology and bioreactors. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Testicular cell population dynamics following palmitine hydroxide treatment in male dogs.

    PubMed

    Gupta, R S; Dixit, V P

    1989-04-01

    Palmitine hydroxide isolated from the roots of Berberis chitria administered orally to dogs 30 mg/kg per day for 60 days brings about a consistent impairment of primary and secondary spermatocytes and elongated spermatids (Stages IV-VIII). The primary and secondary spermatocytes were reduced by 60 and 68%, respectively, and the elongated spermatids were decreased by 58%. The number of spermatogonia and Sertoli cells remained unaltered. The production of immature and mature Leydig cells decreased by 66% and 27%, respectively. Protein, sialic acid and glycogen content and acid phosphatase activity of testes and epididymides were lowered to varying extents. Testicular cholesterol was elevated significantly. Weights of the testes and epididymides were significantly reduced. The antispermatogenic action of palmitine hydroxide may be mediated by disturbances in Leydig cell function.

  20. Polyphenols from evening primrose ( Oenothera paradoxa ) defatted seeds induce apoptosis in human colon cancer Caco-2 cells.

    PubMed

    Gorlach, Sylwia; Wagner, Waldemar; Podsedek, Anna; Sosnowska, Dorota; Dastych, Jarosław; Koziołkiewicz, Maria

    2011-07-13

    Polyphenols extracted from evening primrose seeds (industrial waste product) were studied as apoptosis inducers in human colorectal adenocarcinoma Caco-2 and HT-29 cell lines and in rat normal intestinal IEC-6 cells. The extract dose-dependently inhibited the growth of Caco-2, HT-29, and IEC-6 cells. However, nuclear DNA fragmentation characteristic of apoptosis was observed only in Caco-2. After 72 h of incubation with the extract at 150 μM gallic acid equivalents (44.1 μg extract/mL), Caco-2 cell numbers decreased to 19% of control and 48.8% of the cells were identified by flow cytometry as apoptotic. Under the same conditions only 8% of HT-29 cells and 12.6% of IEC-6 cells exhibited hypodiploid DNA content. The effects of the extract and its fractions on phosphatidylserine exposure and cell membrane integrity were assessed by high content screening image cytometry. The fractions strongly and dose-dependently reduced Caco-2 cell numbers, whereas HT-29 and IEC-6 cells were affected to lesser extents.

  1. Leydig cell aging and hypogonadism.

    PubMed

    Beattie, M C; Adekola, L; Papadopoulos, V; Chen, H; Zirkin, B R

    2015-08-01

    Leydig cell testosterone (T) production is reduced with age, resulting in reduced serum T levels (hypogonadism). A number of cellular changes have been identified in the steroidogenic pathway of aged Leydig cells that are associated with reduced T formation, including reductions in luteinizing hormone (LH)-stimulated cAMP production, the cholesterol transport proteins steroidogenic acute regulatory (STAR) protein and translocator protein (TSPO), and downstream steroidogenic enzymes of the mitochondria and smooth endoplasmic reticulum. Many of the changes in steroid formation that characterize aged Leydig cells can be elicited by the experimental alteration of the redox environment of young cells, suggesting that changes in the intracellular redox balance may cause reduced T production. Hypogonadism is estimated to affect about 5 million American men, including both aged and young. This condition has been linked to mood changes, worsening cognition, fatigue, depression, decreased lean body mass, reduced bone mineral density, increased visceral fat, metabolic syndrome, decreased libido, and sexual dysfunction. Exogenous T administration is now used widely to elevate serum T levels in hypogonadal men and thus to treat symptoms of hypogonadism. However, recent evidence suggests that men who take exogenous T may face increased risk of stroke, heart attack, and prostate tumorigenesis. Moreover, it is well established that administered T can have suppressive effects on LH, resulting in lower Leydig cell T production, reduced intratesticular T concentration, and reduced spermatogenesis. This makes exogenous T administration inappropriate for men who wish to father children. There are promising new approaches to increase serum T by directly stimulating Leydig cell T production rather than by exogenous T therapy, thus potentially avoiding some of its negative consequences. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. EGFR-dependent signalling reduced and p38 dependent apoptosis required by Gallic acid in Malignant Mesothelioma cells.

    PubMed

    Demiroglu-Zergeroglu, Asuman; Candemir, Gulsife; Turhanlar, Ebru; Sagir, Fatma; Ayvali, Nurettin

    2016-12-01

    The unrestrained EGFR signalling contributes to malignant phenotype in a number of cancers including Malignant Mesotheliomas. Present study was designed to evaluate EGFR-dependent anti-proliferative and apoptotic effects of Gallic acid in transformed Mesothelial (MeT-5A) and Malignant Mesothelioma (SPC212) cells. Gallic acid reduced the viability of Malignant Mesothelioma cells in a concentration and time-dependent manner. However, viability of mesothelial cells reduced only at high concentration and longer time periods. Gallic acid restrained the activation of EGFR, ERK1/2 and AKT proteins and down regulated expression of Cyclin D and Bcl-2 genes, but upregulated the expression of p21 gene in EGF-induced SPC212 cells. GA-induced transitory G1 arrest and triggered mitochondrial and death receptor mediated apoptosis, which requires p38MAPK activation. The data provided here indicate that GA is able to inhibit EGFR dependent proliferation and survival signals and induces p38 pathway dependent apoptosis in Malignant Mesothelioma cells. On the basis of these experimental findings it is worthwhile to investigate further the biological activity of Gallic acid on other Mesothelioma cell lines harbouring aberrant EGFR signals. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  3. Quantitative determination of H2-utilizing acetogenic and sulfate-reducing bacteria and methanogenic archaea from digestive tract of different mammals.

    PubMed

    Morvan, B; Bonnemoy, F; Fonty, G; Gouet, P

    1996-03-01

    Total number of bacteria, cellulolytic bacteria, and H2-utilizing microbial populations (methanogenic archaea, acetogenic and sulfate-reducing bacteria) were enumerated in fresh rumen samples from sheep, cattle, buffaloes, deer, llamas, and caecal samples from horses. Methanogens and sulfate reducers were found in all samples, whereas acetogenes were not detected in some samples of each animal. Archaea methanogens were the largest H2-utilizing populations in all animals, and a correlation was observed between the numbers of methanogens and those of cellulolytic microorganisms. Higher counts of acetogens were found in horses and llamas (1 x 10(4) and 4 x 10(4) cells ml-1 respectively).

  4. Anorexia Reduces GFAP+ Cell Density in the Rat Hippocampus.

    PubMed

    Reyes-Haro, Daniel; Labrada-Moncada, Francisco Emmanuel; Varman, Durairaj Ragu; Krüger, Janina; Morales, Teresa; Miledi, Ricardo; Martínez-Torres, Ataúlfo

    2016-01-01

    Anorexia nervosa is an eating disorder observed primarily in young women. The neurobiology of the disorder is unknown but recently magnetic resonance imaging showed a volume reduction of the hippocampus in anorexic patients. Dehydration-induced anorexia (DIA) is a murine model that mimics core features of this disorder, including severe weight loss due to voluntary reduction in food intake. The energy supply to the brain is mediated by astrocytes, but whether their density is compromised by anorexia is unknown. Thus, the aim of this study was to estimate GFAP+ cell density in the main regions of the hippocampus (CA1, CA2, CA3, and dentate gyrus) in the DIA model. Our results showed that GFAP+ cell density was significantly reduced (~20%) in all regions of the hippocampus, except in CA1. Interestingly, DIA significantly reduced the GFAP+ cells/nuclei ratio in CA2 (-23%) and dentate gyrus (-48%). The reduction of GFAP+ cell density was in agreement with a lower expression of GFAP protein. Additionally, anorexia increased the expression of the intermediate filaments vimentin and nestin. Accordingly, anorexia increased the number of reactive astrocytes in CA2 and dentate gyrus more than twofold. We conclude that anorexia reduces the hippocampal GFAP+ cell density and increases vimentin and nestin expression.

  5. Anorexia Reduces GFAP+ Cell Density in the Rat Hippocampus

    PubMed Central

    Labrada-Moncada, Francisco Emmanuel; Varman, Durairaj Ragu; Krüger, Janina; Morales, Teresa; Miledi, Ricardo; Martínez-Torres, Ataúlfo

    2016-01-01

    Anorexia nervosa is an eating disorder observed primarily in young women. The neurobiology of the disorder is unknown but recently magnetic resonance imaging showed a volume reduction of the hippocampus in anorexic patients. Dehydration-induced anorexia (DIA) is a murine model that mimics core features of this disorder, including severe weight loss due to voluntary reduction in food intake. The energy supply to the brain is mediated by astrocytes, but whether their density is compromised by anorexia is unknown. Thus, the aim of this study was to estimate GFAP+ cell density in the main regions of the hippocampus (CA1, CA2, CA3, and dentate gyrus) in the DIA model. Our results showed that GFAP+ cell density was significantly reduced (~20%) in all regions of the hippocampus, except in CA1. Interestingly, DIA significantly reduced the GFAP+ cells/nuclei ratio in CA2 (−23%) and dentate gyrus (−48%). The reduction of GFAP+ cell density was in agreement with a lower expression of GFAP protein. Additionally, anorexia increased the expression of the intermediate filaments vimentin and nestin. Accordingly, anorexia increased the number of reactive astrocytes in CA2 and dentate gyrus more than twofold. We conclude that anorexia reduces the hippocampal GFAP+ cell density and increases vimentin and nestin expression. PMID:27579183

  6. Presence of a tumour-inhibiting factor (TIF) in sera from normal but not tumour-bearing mice.

    PubMed

    Kim, B S; Chin, D K

    1980-10-01

    Some plasmacytomas produce myeloma proteins with known antibody specificities and the secretion of these proteins by individual tumour cells can be determined using haemolytic plaque assay. After a 3 day culture of mouse plasmacytoma cells in medium containing 10% normal mouse serum, the number of plaques was reduced to less than 10% when compared to that of tumour cells incubated with either foetal calf serum or normal rabbit serum. However, tumour cells incubated with sera from mice bearing TEPC-15, McPC-603, or MOPC-315 plasmacytomas displayed control levels of plaques. The production of plaques paralleled the viability of tumour cells suggesting that the reduction of plaque formation is due to the decreased viable cell number. The tumour-inhibiting activity was recovered from the fraction of apparent molecular weight of 300,000-400,000 after a partial purification using an agarose (A 0.5 M) column. This fraction, however, did not suppress in vitro induction of antibody production. Kinetic experiments using sera obtained sequentially from individual mice receiving either TEPC-15 or MOPC-315 plasmacytomas further indicated that the tumour-inhibiting activity is severely reduced during a 2 week period after tumour inoculation. The inhibition of tumour cells did not appear to be specific since tumour cells of three plasmacytomas (TEPC-15, MOPC-167 and MOPC-315), a mastocytoma (P815) and a lymphoma (EL-4) displayed a similar susceptibility to normal serum.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gustafsson, Karin; Heffner, Garrett; Wenzel, Pamela L.

    The widely expressed adaptor protein Shb has previously been reported to contribute to T cell function due to its association with the T cell receptor and furthermore, several of Shb's known interaction partners are established regulators of blood cell development and function. In addition, Shb deficient embryonic stem cells displayed reduced blood cell colony formation upon differentiation in vitro. The aim of the current study was therefore to explore hematopoietic stem and progenitor cell function in the Shb knockout mouse. Shb deficient bone marrow contained reduced relative numbers of long-term hematopoietic stem cells (LT-HSCs) that exhibited lower proliferation rates. Despitemore » this, Shb knockout LT-HSCs responded promptly by entering the cell cycle in response to genotoxic stress by 5-fluorouracil treatment. In competitive LT-HSC transplantations, Shb null cells initially engrafted as well as the wild-type cells but provided less myeloid expansion over time. Moreover, Shb knockout bone marrow cells exhibited elevated basal activities of focal adhesion kinase/Rac1/p21-activated kinase signaling and reduced responsiveness to Stem Cell Factor stimulation. Consequently, treatment with a focal adhesion kinase inhibitor increased Shb knockout LT-HSC proliferation. The altered signaling characteristics thus provide a plausible mechanistic explanation for the changes in LT-HSC proliferation since these signaling intermediates have all been shown to participate in LT-HSC cell cycle control. In summary, the loss of Shb dependent signaling in bone marrow cells, resulting in elevated focal adhesion kinase activity and reduced proliferative responses in LT-HSCs under steady state hematopoiesis, confers a disadvantage to the maintenance of LT-HSCs over time. -- Highlights: • Shb is an adaptor protein operating downstream of tyrosine kinase receptors. • Shb deficiency reduces hematopoietic stem cell proliferation. • The proliferative effect of Shb occurs via increased focal adhesion kinase activity. • Shb is critical for the long-term maintenance of the hematopoietic stem cell pool.« less

  8. Epratuzumab modulates B-cell signaling without affecting B-cell numbers or B-cell functions in a mouse model with humanized CD22.

    PubMed

    Özgör, Lamia; Brandl, Carolin; Shock, Anthony; Nitschke, Lars

    2016-09-01

    Treatment of systemic lupus erythematosus patients with epratuzumab (Emab), a humanized monoclonal antibody targeting CD22, leads to moderately reduced B-cell numbers but does not completely deplete B cells. Emab appears to induce immunomodulation of B cells, but the exact mode of action has not been defined. In the present study, we aimed to understand the effects of Emab on B cells using a humanized mouse model (Huki CD22), in which the B cells express human instead of murine CD22. Emab administration to Huki CD22 mice results in rapid and long-lasting CD22 internalization. There was no influence on B-cell turnover, but B-cell apoptosis ex vivo was increased. Emab administration to Huki CD22 mice had no effect on B-cell numbers in several lymphatic organs, nor in blood. In vitro exposure of B cells from Huki CD22 mice to Emab resulted in decreased B-cell receptor (BCR) induced Ca(2+) mobilization, whereas B-cell proliferation after Toll-like receptor (TLR) stimulation was not affected. In addition, IL-10 production was slightly increased after TLR and anti-CD40 stimulation, whereas IL-6 production was unchanged. In conclusion, Emab appears to inhibit BCR signaling in a CD22-dependent fashion without strong influence on B-cell development and B-cell populations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. The role of exogenous neural stem cells transplantation in cerebral ischemic stroke.

    PubMed

    Chen, Lukui; Qiu, Rong; Li, Lushen; He, Dan; Lv, Haiqin; Wu, Xiaojing; Gu, Ning

    2014-11-01

    To observe the effects of neural stem cells (NSCs) transplantation in rats' striatum and subventricular zone (SVZ) in rat models of focal cerebral ischemia and reperfusion. Hippocampus was extracted from fetal rats with 14 days of gestation. Suspension culture was used to isolate and culture the rat's NSCs. A cerebral ischemia and reperfusion rat's model was made on the left side of the brain through occlusion of the left middle cerebral artery. Neurological signs were assessed by Zea Longa's five-grade scale, with scores 1, 2, and 3 used to determine the successful establishment of the rat's model. The NSCs were stereotaxically injected into the left striatum 24 hours after the successful rat's model was built. Rats were then randomly divided into 5 groups, namely, normal group, sham operation group, ischemia group, PBS transplantation group, and NSCs transplantation group, each of which was observed on day 3, day 7, and day 14. The ischemia-related neurological deficits were assessed by using a 7-point evaluation criterion. Forelimb injuries were evaluated in all rats using the foot-fault approach. Infarct size changes were observed through TTC staining and cell morphology and structure in the infarct region were investigated by Nissl staining. Apoptosis and apoptosis-positive cell counts were studied by Tunel assay. Expressions of double-labeling positive cells in the striatum and subventricular zone (SVZ) were observed by BrdU/NeuN and BrdU/GFAP fluorescent double-labeling method and the number of positive cells in the striatum and SVZ was counted. Results from the differently treated groups showed that right hemiplegia occurred in the ischemia group, PBS transplantation group, and NSCs transplantation group in varying degrees. Compared with the former two groups, there was least hemiplegia in the NSCs transplantation group. The TTC staining assay showed that rats in the NSCs transplantation group had smaller infarct volume than those from the PBS transplantation group. The Nissl dyeing showed that there was a large area of neuronal necrosis and apoptosis in the ischemia and PBS transplantation groups, and damage was mainly focused in the striatum. Degeneration and damage of nerve cells were significantly reduced in the NSCs transplantation group. The Tunel assay showed that the number of apoptosis-positive cells in the NSCs transplantation group was less than that in the PBS transplantation group at each time point. Double immunofluorescent labeling showed that the proliferation of endogenous neural stem cells began at the third day, reaching the peak at the 7th day, and was significantly reduced at the 14th day in the SVZ. The number of BrdU/NeuN increased significantly in the NSCs transplantation group compared to that in the PBS transplantation group (P < 0.05). The number of BrdU/GFAP decreased significantly in the NSCs transplantation group compared to that of PBS transplantation group (P < 0.05). The number of BrdU/GFAP-positive cells in the striatum was observed to be much more in the PBS transplantation group than in the NSCs transplantation group. Both neurological deficits and coordination capacity of rats with cerebral ischemia were significantly improved via transplantation of the neural stem cells. In conclusion, transplantation of neural stem cells can therefore possibly promote the differentiation of endogenous NSCs into neurons and reduce their differentiation towards glial cells. Transplantation of the neural stem cells may also change the ischemic microenvironment of striatum, possibly inhibiting the proliferation of glial cells.

  10. Anthocyanin Extracted from Black Soybean Seed Coats Prevents Autoimmune Arthritis by Suppressing the Development of Th17 Cells and Synthesis of Proinflammatory Cytokines by Such Cells, via Inhibition of NF-κB.

    PubMed

    Min, Hong Ki; Kim, Sung-Min; Baek, Seung-Ye; Woo, Jung-Won; Park, Jin-Sil; Cho, Mi-La; Lee, Jennifer; Kwok, Seung-Ki; Kim, Sae Woong; Park, Sung-Hwan

    2015-01-01

    Oxidative stress plays a role in the pathogenesis of rheumatoid arthritis (RA). Anthocyanin is a plant antioxidant. We investigated the therapeutic effects of anthocyanin extracted from black soybean seed coats (AEBS) in a murine model of collagen-induced arthritis (CIA) and human peripheral blood mononuclear cells (PBMCs) and explored possible mechanisms by which AEBS might exert anti-arthritic effects. CIA was induced in DBA/1J mice. Cytokine levels were measured via enzyme-linked immunosorbent assays. Joints were assessed in terms of arthritis incidence, clinical arthritis scores, and histological features. The extent of oxidative stress in affected joints was determined by measuring the levels of nitrotyrosine and inducible nitric oxide synthase. NF-κB activity was assayed by measuring the ratio of phosphorylated IκB to total IκB via Western blotting. Th17 cells were stained with antibodies against CD4, IL-17, and STAT3. Osteoclast formation was assessed via TRAP staining and measurement of osteoclast-specific mRNA levels. In the CIA model, AEBS decreased the incidence of arthritis, histological inflammation, cartilage scores, and oxidative stress. AEBS reduced the levels of proinflammatory cytokines in affected joints of CIA mice and suppressed NF-κB signaling. AEBS decreased Th17 cell numbers in spleen of CIA mice. Additionally, AEBS repressed differentiation of Th17 cells and expression of Th17-associated genes in vitro, in both splenocytes of naïve DBA/1J mice and human PBMCs. In vitro, the numbers of both human and mouse tartrate-resistant acid phosphatase+ (TRAP) multinucleated cells fell, in a dose-dependent manner, upon addition of AEBS. The anti-arthritic effects of AEBS were associated with decreases in Th17 cell numbers, and the levels of proinflammatory cytokines synthesized by such cells, mediated via suppression of NF-κB signaling. Additionally, AEBS suppressed osteoclastogenesis and reduced oxidative stress levels.

  11. Effects of nicotine exposure during prenatal or perinatal period on cell numbers in adult rat hippocampus and cerebellum: a stereology study.

    PubMed

    Chen, Wei-Jung A; King, Karen A; Lee, Ruby E; Sedtal, Christopher S; Smith, Andrew M

    2006-11-02

    Smoking during pregnancy poses a potential risk to unborn children. The present study examined the long-term effects of early nicotine exposure on the number of pyramidal and granule cells in the hippocampus, and Purkinje cells in the cerebellar vermis. The loss of neurons is the most severe form of brain injury with significant functional implications. In this study, rats were exposed to nicotine during either the prenatal (PRE) period or both the prenatal and early postnatal (PERI) period. It was hypothesized that nicotine treatment would result in long-term decreases in neuronal numbers, and that PERI treatment would be more detrimental to these cell populations than the PRE treatment. The results showed that neither PRE nor PERI nicotine exposure reduces the numbers of pyramidal, granule or Purkinje cells. Neither the regions where these cells reside, nor the cell densities were affected by nicotine. Although no significant cell loss was observed, the current nicotine exposure regimens may lead to alterations in cellular functions or cytoarchitectures. The present results in conjunction with previous reports showing significant cell loss from nicotine exposure during the brain growth spurt suggest that "patch-like" nicotine exposure during prenatal period may alter the sensitivity or the responsiveness of the developing brain to the injurious effects of nicotine during the most vulnerable stage of brain development - the brain growth spurt. Furthermore, the current stereology cell counting results are not in agreement with some reports in the literature, and this discrepancy may simply be a function of different cell counting techniques used.

  12. Cell cycle re-entry sensitizes podocytes to injury induced death

    PubMed Central

    Hagen, Manuel; Pfister, Eva; Kosel, Andrea; Shankland, Stuart; Pippin, Jeffrey; Amann, Kerstin; Daniel, Christoph

    2016-01-01

    ABSTRACT Podocytes are terminally differentiated renal cells, lacking the ability to regenerate by proliferation. However, during renal injury, podocytes re-enter into the cell cycle but fail to divide. Earlier studies suggested that re-entry into cell cycle results in loss of podocytes, but a direct evidence for this is lacking. Therefore, we established an in vitro model to test the consequences of re-entry into the cell cycle on podocyte survival. A mouse immortalized podocyte cell line was differentiated to non-permissive podocytes and stimulated with e.g. growth factors. Stimulated cells were analyzed for mRNA-expression or stained for cell cycle analysis using flow cytometry and immunocytofluorescence microscopy. After stimulation to re-entry into cell cycle, podocytes were stressed with puromycin aminonucleoside (PAN) and analyzed for survival. During permissive stage more than 40% of immortalized podocytes were in the S-phase. In contrast, S-phase in non-permissive differentiated podocytes was reduced to 5%. Treatment with b-FGF dose dependently induced re-entry into cell cycle increasing the number of podocytes in the S-phase to 10.7% at an optimal bFGF dosage of 10 ng/ml. Forty eight hours after stimulation with bFGF the number of bi-nucleated podocytes significantly increased. A secondary injury stimulus significantly reduced podocyte survival preferentially in bi-nucleated podocytes In conclusion, stimulation of podocytes using bFGF was able to induce re-entry of podocytes into the cell cycle and to sensitize the cells for cell death by secondary injuries. Therefore, this model is appropriate for testing new podocyte protective substances that can be used for therapy. PMID:27232327

  13. Rhinovirus Delays Cell Repolarization in a Model of Injured/Regenerating Human Airway Epithelium

    PubMed Central

    Faris, Andrea N.; Ganesan, Shyamala; Chattoraj, Asamanja; Chattoraj, Sangbrita S.; Comstock, Adam T.; Unger, Benjamin L.; Hershenson, Marc B.

    2016-01-01

    Rhinovirus (RV), which causes exacerbation in patients with chronic airway diseases, readily infects injured airway epithelium and has been reported to delay wound closure. In this study, we examined the effects of RV on cell repolarization and differentiation in a model of injured/regenerating airway epithelium (polarized, undifferentiated cells). RV causes only a transient barrier disruption in a model of normal (mucociliary-differentiated) airway epithelium. However, in the injury/regeneration model, RV prolongs barrier dysfunction and alters the differentiation of cells. The prolonged barrier dysfunction caused by RV was not a result of excessive cell death but was instead associated with epithelial-to-mesenchymal transition (EMT)-like features, such as reduced expression of the apicolateral junction and polarity complex proteins, E-cadherin, occludin, ZO-1, claudins 1 and 4, and Crumbs3 and increased expression of vimentin, a mesenchymal cell marker. The expression of Snail, a transcriptional repressor of tight and adherence junctions, was also up-regulated in RV-infected injured/regenerating airway epithelium, and inhibition of Snail reversed RV-induced EMT-like features. In addition, compared with sham-infected cells, the RV-infected injured/regenerating airway epithelium showed more goblet cells and fewer ciliated cells. Inhibition of epithelial growth factor receptor promoted repolarization of cells by inhibiting Snail and enhancing expression of E-cadherin, occludin, and Crumbs3 proteins, reduced the number of goblet cells, and increased the number of ciliated cells. Together, these results suggest that RV not only disrupts barrier function, but also interferes with normal renewal of injured/regenerating airway epithelium by inducing EMT-like features and subsequent goblet cell hyperplasia. PMID:27119973

  14. The mechanistic impact of CD22 engagement with epratuzumab on B cell function: Implications for the treatment of systemic lupus erythematosus.

    PubMed

    Dörner, Thomas; Shock, Anthony; Goldenberg, David M; Lipsky, Peter E

    2015-12-01

    Epratuzumab is a B-cell-directed non-depleting monoclonal antibody that targets CD22. It is currently being evaluated in two phase 3 clinical trials in patients with systemic lupus erythematosus (SLE), a disease associated with abnormalities in B-cell function and activation. The mechanism of action of epratuzumab involves perturbation of the B-cell receptor (BCR) signalling complex and intensification of the normal inhibitory role of CD22 on the BCR, leading to reduced signalling and diminished activation of B cells. Such effects may result from down-modulation of CD22 upon binding by epratuzumab, as well as decreased expression of other proteins involved in amplifying BCR signalling capability, notably CD19. The net result is blunting the capacity of antigen engagement to induce B-cell activation. The functional consequences of epratuzumab binding to CD22 include diminished B-cell proliferation, effects on adhesion molecule expression, and B-cell migration, as well as reduced production of pro-inflammatory cytokines, such as IL-6 and TNF. Studies in patients treated with epratuzumab have revealed a number of pharmacodynamic effects that are linked to the mechanism of action (i.e., a loss of the target molecule CD22 from the B-cell surface followed by a modest reduction in peripheral B-cell numbers after prolonged therapy). Together, these data indicate that epratuzumab therapy affords a unique means to modulate BCR complex expression and signalling. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  15. High Cycle Life Cathode for High Voltage (5V) Lithium Ion Batteries

    DTIC Science & Technology

    2010-12-16

    lithium cobalt phosphate (LiCoPO4) that provides higher energy density (15% > LiFePO4 demonstrated, up to 40% greater with further R&D). •The invention...standard LiFePO4 • Higher voltage at cell level may reduce number of cells required for application • Easy and inexpensive method to prepare • Offers safety

  16. L-arginine enhances cell proliferation and reduces apoptosis in human endometrial RL95-2 cells

    USDA-ARS?s Scientific Manuscript database

    L-arginine is considered to be one of the most versatile amino acids due to the fact that it serves as a precursor for many important molecules in cellular physiology. When supplemented in the diet, L-arginine can increase the number of implantation sites in mice and rats, suggesting an effect at th...

  17. Neonatal isolation impairs neurogenesis in the dentate gyrus of the guinea pig.

    PubMed

    Rizzi, Simona; Bianchi, Patrizia; Guidi, Sandra; Ciani, Elisabetta; Bartesaghi, Renata

    2007-01-01

    In the current study we examined the effects of early isolation rearing on cell proliferation, survival and differentiation in the dentate gyrus of the guinea pig. Animals were assigned to either a standard (control) or an isolated environment a few days after birth (P5-P6), taking advantage of the precocious independence from maternal care of the guinea pig. On P14-P17 animals received one daily bromodeoxyuridine injection, to label dividing cells, and were sacrificed either on P18, to evaluate cell proliferation or on P45, to evaluate cell survival and differentiation. In P18 isolated animals we found a reduced cell proliferation (-35%) compared to controls and a lower expression of brain-derived neurotrophic factor (BDNF). Though in absolute terms P45 isolated animals had less surviving cells, they showed no differences in survival rate and phenotype percent distribution compared to controls. Looking at the location of the new neurons, we found that while in control animals 76% of them had migrated to the granule cell layer, in isolated animals only 55% of the new neurons had reached this layer. Examination of radial glia cells of P18 and P45 animals by vimentin immunohistochemistry showed that in isolated animals radial glia cells were reduced in density and had less and shorter processes. Granule cell count revealed that P45 isolated animals had less (-42%) granule cells than controls. Results show that isolation rearing reduces hippocampal cell proliferation, likely by reducing BDNF expression and hampers migration of the new neurons to the granule cell layer, likely by altering density/morphology of radial glia cells. The large reduction in granule cell number following isolation rearing emphasizes the role of environmental cues as relevant modulators of neurogenesis.

  18. Homojunction silicon solar cells doping by ion implantation

    NASA Astrophysics Data System (ADS)

    Milési, Frédéric; Coig, Marianne; Lerat, Jean-François; Desrues, Thibaut; Le Perchec, Jérôme; Lanterne, Adeline; Lachal, Laurent; Mazen, Frédéric

    2017-10-01

    Production costs and energy efficiency are the main priorities for the photovoltaic (PV) industry (COP21 conclusions). To lower costs and increase efficiency, we are proposing to reduce the number of processing steps involved in the manufacture of N-type Passivated Rear Totally Diffused (PERT) silicon solar cells. Replacing the conventional thermal diffusion doping steps by ion implantation followed by thermal annealing allows reducing the number of steps from 7 to 3 while maintaining similar efficiency. This alternative approach was investigated in the present work. Beamline and plasma immersion ion implantation (BLII and PIII) methods were used to insert n-(phosphorus) and p-type (boron) dopants into the Si substrate. With higher throughput and lower costs, PIII is a better candidate for the photovoltaic industry, compared to BL. However, the optimization of the plasma conditions is demanding and more complex than the beamline approach. Subsequent annealing was performed on selected samples to activate the dopants on both sides of the solar cell. Two annealing methods were investigated: soak and spike thermal annealing. Best performing solar cells, showing a PV efficiency of about 20%, was obtained using spike annealing with adapted ion implantation conditions.

  19. Fast computation of the electrolyte-concentration transfer function of a lithium-ion cell model

    NASA Astrophysics Data System (ADS)

    Rodríguez, Albert; Plett, Gregory L.; Trimboli, M. Scott

    2017-08-01

    One approach to creating physics-based reduced-order models (ROMs) of battery-cell dynamics requires first generating linearized Laplace-domain transfer functions of all cell internal electrochemical variables of interest. Then, the resulting infinite-dimensional transfer functions can be reduced by various means in order to find an approximate low-dimensional model. These methods include Padé approximation or the Discrete-Time Realization algorithm. In a previous article, Lee and colleagues developed a transfer function of the electrolyte concentration for a porous-electrode pseudo-two-dimensional lithium-ion cell model. Their approach used separation of variables and Sturm-Liouville theory to compute an infinite-series solution to the transfer function, which they then truncated to a finite number of terms for reasons of practicality. Here, we instead use a variation-of-parameters approach to arrive at a different representation of the identical solution that does not require a series expansion. The primary benefits of the new approach are speed of computation of the transfer function and the removal of the requirement to approximate the transfer function by truncating the number of terms evaluated. Results show that the speedup of the new method can be more than 3800.

  20. An Arg for Gly substitution at position 31 in the insulin receptor, linked to insulin resistance, inhibits receptor processing and transport.

    PubMed

    van der Vorm, E R; van der Zon, G C; Möller, W; Krans, H M; Lindhout, D; Maassen, J A

    1992-01-05

    In a patient with Leprechaunism, we have characterized a new mutation in the insulin receptor substituting Arg for Gly at position 31. The proband, the mother, and the maternal grandfather were heterozygous for the mutation. Fibroblasts of the proband show a strongly reduced number of high affinity insulin receptors on the cell surface, whereas fibroblasts of the healthy mother and grandfather show moderately reduced insulin receptor numbers. In the other family members neither the binding defect nor the Arg31 mutation was found. The Arg31-mutant receptor was overexpressed in Chinese hamster ovary cells. In these cells the mutant alpha beta-proreceptor was not proteolytically cleaved and no transport to the cell surface took place. The proreceptor was unable to bind insulin and to undergo autophosphorylation. In addition, the proreceptor was not recognized by monoclonal antibodies directed against conformation-dependent epitopes. These findings suggest that the Gly31 to Arg31 mutant is involved in the insulin receptor dysfunction seen in the Leprechaun patient. The mutation seems to alter the conformation of the receptor in such way that the transport of the proreceptor to the Golgi compartment, where proteolytical processing occurs, is inhibited.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Hyejin; Yoon, Min-Sik; Ryu, Kwon-Yul, E-mail: kyryu@uos.ac.kr

    Highlights: •Proliferation capacity of Ubc{sup −/−} FLCs was reduced during culture in vitro. •Ubc is required for proliferation of both hepatocytes and bipotent FLEPCs. •Bipotent FLEPCs exhibit highest Ubc transcription and proliferation capacity. •Cell types responsible for Ubc{sup −/−} fetal liver developmental defect were identified. -- Abstract: We have previously demonstrated that disruption of polyubiquitin gene Ubc leads to mid-gestation embryonic lethality most likely due to a defect in fetal liver development, which can be partially rescued by ectopic expression of Ub. In a previous study, we assessed the cause of embryonic lethality with respect to the fetal liver hematopoieticmore » system. We confirmed that Ubc{sup −/−} embryonic lethality could not be attributed to impaired function of hematopoietic stem cells, which raises the question of whether or not FLECs such as hepatocytes and bile duct cells, the most abundant cell types in the liver, are affected by disruption of Ubc and contribute to embryonic lethality. To answer this, we isolated FLCs from E13.5 embryos and cultured them in vitro. We found that proliferation capacity of Ubc{sup −/−} cells was significantly reduced compared to that of control cells, especially during the early culture period, however we did not observe the increased number of apoptotic cells. Furthermore, levels of Ub conjugate, but not free Ub, decreased upon disruption of Ubc expression in FLCs, and this could not be compensated for by upregulation of other poly- or mono-ubiquitin genes. Intriguingly, the highest Ubc expression levels throughout the entire culture period were observed in bipotent FLEPCs. Hepatocytes and bipotent FLEPCs were most affected by disruption of Ubc, resulting in defective proliferation as well as reduced cell numbers in vitro. These results suggest that defective proliferation of these cell types may contribute to severe reduction of fetal liver size and potentially mid-gestation lethality of Ubc{sup −/−} embryos.« less

  2. Infiltration of myeloid cells in the pregnant uterus is affected by heme oxygenase-1.

    PubMed

    Zhao, Hui; Kalish, Flora; Wong, Ronald J; Stevenson, David K

    2017-01-01

    Infiltrating myeloid cells in pregnant uteri play critical roles in the establishment of the placenta and maintenance of normal pregnancies. Their recruitment and proliferation are primarily mediated by the interactions of cytokines and chemokines secreted locally with their corresponding receptors. Heme oxygenase-1 (HO-1) has various physiologic properties that contribute to placental vascular development, with deficiencies in HO-1 associated with pregnancy disorders. Here, we investigated the effect of HO-1 on myeloid cell infiltration into pregnant uteri using a partial HO-1-deficient (Het, HO-1 +/- ) mouse model. With the use of flow cytometry, HO-1 was found predominantly expressed in circulating and uterine myeloid cells, specifically neutrophils and monocytes/macrophages. In pregnant Het uteri, the numbers of neutrophils and monocytes/macrophages were significantly reduced compared with pregnant wild-type (WT; HO-1 +/+ ) uteri. With the use of BrdU in vivo assays, HO-1 deficiency did not affect cell proliferation or blood cell populations. With the use of PCR arrays, gene expression of cytokines (Csf1, Csf3), chemokines (Ccl1, Ccl2, Ccl6, Ccl8, Ccl11, Ccl12, Cxcl4, Cxcl9, Cxcl12), and their receptors (Ccr1, Ccr2, Ccr3, Ccr5) were also reduced significantly in Het compared with pregnant WT uteri. Moreover, with the use of flow cytometry, myeloid CSF1R and CCR2 expression in blood and uteri from both pregnant and nonpregnant mice was characterized, and a deficiency in HO-1 significantly reduced CCR2 expression in infiltrating uterine monocytes/macrophages and dendritic cells (DCs). These data reveal that HO-1 regulates not only cytokine/chemokine production in pregnant uteri but also myeloid cell receptor numbers, suggesting a role of HO-1 in the recruitment and maintenance of myeloid cells in pregnant uteri and subsequent effects on placental vascular formation. © Society for Leukocyte Biology.

  3. Evidence for Osteocalcin Binding and Activation of GPRC6A in β-Cells

    DOE PAGES

    Pi, Min; Kapoor, Karan; Ye, Ruisong; ...

    2016-05-01

    The possibility that G protein-coupled receptor family C member A (GPRC6A) is the osteocalcin (Ocn)-sensing G protein-coupled receptor that directly regulates pancreatic β-cell functions is controversial. In the current study, we found that Ocn and an Ocn-derived C-terminal hexapeptide directly activate GPRC6A-dependent ERK signaling in vitro. Computational models probe the structural basis of Ocn binding to GPRC6A and predict that the C-terminal hexapeptide docks to the extracellular side of the transmembrane domain of GPRC6A. Consistent with the modeling, mutations in the computationally identified binding pocket of GPRC6A reduced Ocn and C-terminal hexapeptide activation of this receptor. In addition, selective deletionmore » of Gprc6a in β-cells (Gprc6a β-cell-cko) by crossing Gprc6a flox/flox mice with Ins2-Cre mice resulted in reduced pancreatic weight, islet number, insulin protein content, and insulin message expression. Both islet size and β-cell proliferation were reduced in Gprc6a β-cell-cko compared with control mice. Gprc6a β-cell-cko exhibited abnormal glucose tolerance, but normal insulin sensitivity. Islets isolated from Gprc6a β-cell-cko mice showed reduced insulin simulation index in response to Ocn. Here, these data establish the structural basis for Ocn direct activation of GPRC6A and confirm a role for GPRC6A in regulating β-cell proliferation and insulin secretion.« less

  4. Evidence for Osteocalcin Binding and Activation of GPRC6A in β-Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pi, Min; Kapoor, Karan; Ye, Ruisong

    The possibility that G protein-coupled receptor family C member A (GPRC6A) is the osteocalcin (Ocn)-sensing G protein-coupled receptor that directly regulates pancreatic β-cell functions is controversial. In the current study, we found that Ocn and an Ocn-derived C-terminal hexapeptide directly activate GPRC6A-dependent ERK signaling in vitro. Computational models probe the structural basis of Ocn binding to GPRC6A and predict that the C-terminal hexapeptide docks to the extracellular side of the transmembrane domain of GPRC6A. Consistent with the modeling, mutations in the computationally identified binding pocket of GPRC6A reduced Ocn and C-terminal hexapeptide activation of this receptor. In addition, selective deletionmore » of Gprc6a in β-cells (Gprc6a β-cell-cko) by crossing Gprc6a flox/flox mice with Ins2-Cre mice resulted in reduced pancreatic weight, islet number, insulin protein content, and insulin message expression. Both islet size and β-cell proliferation were reduced in Gprc6a β-cell-cko compared with control mice. Gprc6a β-cell-cko exhibited abnormal glucose tolerance, but normal insulin sensitivity. Islets isolated from Gprc6a β-cell-cko mice showed reduced insulin simulation index in response to Ocn. Here, these data establish the structural basis for Ocn direct activation of GPRC6A and confirm a role for GPRC6A in regulating β-cell proliferation and insulin secretion.« less

  5. Endogenous GABA and Glutamate Finely Tune the Bursting of Olfactory Bulb External Tufted Cells

    PubMed Central

    Hayar, Abdallah; Ennis, Matthew

    2008-01-01

    In rat olfactory bulb slices, external tufted (ET) cells spontaneously generate spike bursts. Although ET cell bursting is intrinsically generated, its strength and precise timing may be regulated by synaptic input. We tested this hypothesis by analyzing whether the burst properties are modulated by activation of ionotropic γ-aminobutyric acid (GABA) and glutamate receptors. Blocking GABAA receptors increased—whereas blocking ionotropic glutamate receptors decreased—the number of spikes/burst without changing the interburst frequency. The GABAA agonist (isoguvacine, 10 μM) completely inhibited bursting or reduced the number of spikes/burst, suggesting a shunting effect. These findings indicate that the properties of ET cell spontaneous bursting are differentially controlled by GABAergic and glutamatergic fast synaptic transmission. We suggest that ET cell excitatory and inhibitory inputs may be encoded as a change in the pattern of spike bursting in ET cells, which together with mitral/tufted cells constitute the output circuit of the olfactory bulb. PMID:17567771

  6. Endogenous GABA and glutamate finely tune the bursting of olfactory bulb external tufted cells.

    PubMed

    Hayar, Abdallah; Ennis, Matthew

    2007-08-01

    In rat olfactory bulb slices, external tufted (ET) cells spontaneously generate spike bursts. Although ET cell bursting is intrinsically generated, its strength and precise timing may be regulated by synaptic input. We tested this hypothesis by analyzing whether the burst properties are modulated by activation of ionotropic gamma-aminobutyric acid (GABA) and glutamate receptors. Blocking GABA(A) receptors increased--whereas blocking ionotropic glutamate receptors decreased--the number of spikes/burst without changing the interburst frequency. The GABA(A) agonist (isoguvacine, 10 microM) completely inhibited bursting or reduced the number of spikes/burst, suggesting a shunting effect. These findings indicate that the properties of ET cell spontaneous bursting are differentially controlled by GABAergic and glutamatergic fast synaptic transmission. We suggest that ET cell excitatory and inhibitory inputs may be encoded as a change in the pattern of spike bursting in ET cells, which together with mitral/tufted cells constitute the output circuit of the olfactory bulb.

  7. Factors for C-Kit Expression in Cardiac Outgrowth Cells and Human Heart Tissue.

    PubMed

    Matsushita, Satoshi; Minematsu, Kazuo; Yamamoto, Taira; Inaba, Hirotaka; Kuwaki, Kenji; Shimada, Akie; Yokoyama, Yasutaka; Amano, Atsushi

    2017-12-12

    We determined the factors associated with the expression of c-kit in the heart and the proliferation of c-kit-positive (c-kit pos ) cardiac stem cells among the outgrowth cells cultured from human cardiac explants.Samples of the right atrium (RA), left atrium (LA), and left ventricle obtained from patients during open-heart surgery were processed for cell culture of outgrowth cells and tissue analysis. The total number of growing cells and the population of c-kit pos cells were measured and compared with c-kit expression in native tissues and characteristics of the patients according to the region of the heart.We analyzed 452 samples from 334 patients. Atrial fibrillation (AF) in the patients reduced the number of outgrowth cells from the RA and LA, and aging was a co-factor for the LA. The c-kit pos population from the RA was associated with serum brain natriuretic peptide (BNP). C-kit expression in native tissue was also associated with BNP expression. However, we observed no relationship in expression between outgrowth cells and native tissue. In addition, the RA tissue provided the highest number of c-kit pos cells, and the left ventricle provided the lowest.C-kit was weakly expressed in response to damage. In addition, no correlation between outgrowth cells and native tissue was found for c-kit expression.

  8. Properties of kojic acid and curcumin: Assay on cell B16-F1

    NASA Astrophysics Data System (ADS)

    Sugiharto, Ariff, Arbakariya; Ahmad, Syahida; Hamid, Muhajir

    2016-03-01

    Ultra violet (UV) exposure and oxidative stress are casually linked to skin disorders. They can increase melanin synthesis, proliferation of melanocytes, and hyperpigmentation. It is possible that antioxidants or inhibitors may have a beneficial effect on skin health to reduce hyperpigmentation. In the last few years, a huge number of natural herbal extracts have been tested to reduce hyperpigmentation. The objective of this study was to determine and to compare of kojic acid and curcumin properties to viability cell B16-F1. In this study, our data showed that the viability of cell B16-F1 was 63.91% for kojic acid and 64.12% for curcumin at concentration 100 µg/ml. Further investigation assay of antioxidant activities, indicated that IC50 for kojic acid is 63.8 µg/ml and curcumin is 16.05 µg/ml. Based on the data, kojic acid and curcumin have potential antioxidant properties to reduce hyperpigmentation with low toxicity effect in cell B16-F1.

  9. 454 Pyrosequencing to Describe Microbial Eukaryotic Community Composition, Diversity and Relative Abundance: A Test for Marine Haptophytes

    PubMed Central

    Egge, Elianne; Bittner, Lucie; Andersen, Tom; Audic, Stéphane; de Vargas, Colomban; Edvardsen, Bente

    2013-01-01

    Next generation sequencing of ribosomal DNA is increasingly used to assess the diversity and structure of microbial communities. Here we test the ability of 454 pyrosequencing to detect the number of species present, and assess the relative abundance in terms of cell numbers and biomass of protists in the phylum Haptophyta. We used a mock community consisting of equal number of cells of 11 haptophyte species and compared targeting DNA and RNA/cDNA, and two different V4 SSU rDNA haptophyte-biased primer pairs. Further, we tested four different bioinformatic filtering methods to reduce errors in the resulting sequence dataset. With sequencing depth of 11000–20000 reads and targeting cDNA with Haptophyta specific primers Hap454 we detected all 11 species. A rarefaction analysis of expected number of species recovered as a function of sampling depth suggested that minimum 1400 reads were required here to recover all species in the mock community. Relative read abundance did not correlate to relative cell numbers. Although the species represented with the largest biomass was also proportionally most abundant among the reads, there was generally a weak correlation between proportional read abundance and proportional biomass of the different species, both with DNA and cDNA as template. The 454 sequencing generated considerable spurious diversity, and more with cDNA than DNA as template. With initial filtering based only on match with barcode and primer we observed 100-fold more operational taxonomic units (OTUs) at 99% similarity than the number of species present in the mock community. Filtering based on quality scores, or denoising with PyroNoise resulted in ten times more OTU99% than the number of species. Denoising with AmpliconNoise reduced the number of OTU99% to match the number of species present in the mock community. Based on our analyses, we propose a strategy to more accurately depict haptophyte diversity using 454 pyrosequencing. PMID:24069303

  10. Reduced Erg Dosage Impairs Survival of Hematopoietic Stem and Progenitor Cells.

    PubMed

    Xie, Ying; Koch, Mia Lee; Zhang, Xin; Hamblen, Melanie J; Godinho, Frank J; Fujiwara, Yuko; Xie, Huafeng; Klusmann, Jan-Henning; Orkin, Stuart H; Li, Zhe

    2017-07-01

    ERG, an ETS family transcription factor frequently overexpressed in human leukemia, has been implicated as a key regulator of hematopoietic stem cells. However, how ERG controls normal hematopoiesis, particularly at the stem and progenitor cell level, and how it contributes to leukemogenesis remain incompletely understood. Using homologous recombination, we generated an Erg knockdown allele (Erg kd ) in which Erg expression can be conditionally restored by Cre recombinase. Erg kd/kd animals die at E10.5-E11.5 due to defects in endothelial and hematopoietic cells, but can be completely rescued by Tie2-Cre-mediated restoration of Erg in these cells. In Erg kd/+ mice, ∼40% reduction in Erg dosage perturbs both fetal liver and bone marrow hematopoiesis by reducing the numbers of Lin - Sca-1 + c-Kit + (LSK) hematopoietic stem and progenitor cells (HSPCs) and megakaryocytic progenitors. By genetic mosaic analysis, we find that Erg-restored HSPCs outcompete Erg kd/+ HSPCs for contribution to adult hematopoiesis in vivo. This defect is in part due to increased apoptosis of HSPCs with reduced Erg dosage, a phenotype that becomes more drastic during 5-FU-induced stress hematopoiesis. Expression analysis reveals that reduced Erg expression leads to changes in expression of a subset of ERG target genes involved in regulating survival of HSPCs, including increased expression of a pro-apoptotic regulator Bcl2l11 (Bim) and reduced expression of Jun. Collectively, our data demonstrate that ERG controls survival of HSPCs, a property that may be used by leukemic cells. Stem Cells 2017;35:1773-1785. © 2017 AlphaMed Press.

  11. Drosophila mitochondrial transcription factor B1 modulates mitochondrial translation but not transcription or DNA copy number in Schneider cells.

    PubMed

    Matsushima, Yuichi; Adán, Cristina; Garesse, Rafael; Kaguni, Laurie S

    2005-04-29

    We report the cloning and molecular analysis of Drosophila mitochondrial transcription factor (d-mtTF) B1. An RNA interference (RNAi) construct was designed that reduces expression of d-mtTFB1 to 5% of its normal level in Schneider cells. In striking contrast with our previous study on d-mtTFB2, we found that RNAi knock-down of d-mtTFB1 does not change the abundance of specific mitochondrial RNA transcripts, nor does it affect the copy number of mitochondrial DNA. In a corollary manner, overexpression of d-mtTFB1 did not increase either the abundance of mitochondrial RNA transcripts or mitochondrial DNA copy number. Our data suggest that, unlike d-mtTFB2, d-mtTFB1 does not have a critical role in either transcription or regulation of the copy number of mitochondrial DNA. Instead, because we found that RNAi knockdown of d-mtTFB1 reduces mitochondrial protein synthesis, we propose that it serves its primary role in modulating translation. Our work represents the first study to document the role of mtTFB1 in vivo and establishes clearly functional differences between mtTFB1 and mtTFB2.

  12. Transfusion of cell saver salvaged blood in neonates and infants undergoing open heart surgery significantly reduces RBC and coagulant product transfusions and donor exposures: results of a prospective, randomized, clinical trial.

    PubMed

    Cholette, Jill M; Powers, Karen S; Alfieris, George M; Angona, Ronald; Henrichs, Kelly F; Masel, Debra; Swartz, Michael F; Daugherty, L Eugene; Belmont, Kevin; Blumberg, Neil

    2013-02-01

    To evaluate whether transfusion of cell saver salvaged, stored at the bedside for up to 24 hrs, would decrease the number of postoperative allogeneic RBC transfusions and donor exposures, and possibly improve clinical outcomes. Prospective, randomized, controlled, clinical trial. Pediatric cardiac intensive care unit. Infants weighing less than 20 kg (n = 106) presenting for cardiac surgery with cardiopulmonary bypass. Subjects were randomized to a cell saver transfusion group where cell saver blood was available for transfusion up to 24 hrs after collection, or to a control group. Cell saver subjects received cell saver blood for volume replacement and/or RBC transfusions. Control subjects received crystalloid or albumin for volume replacement and RBCs for anemia. Blood product transfusions, donor exposures, and clinical outcomes were compared between groups. Children randomized to the cell saver group had significantly fewer RBC transfusions (cell saver: 0.19 ± 0.44 vs. control: 0.75 ± 1.2; p = 0.003) and coagulant product transfusions in the first 48 hrs post-op (cell saver: 0.09 ± 0.45 vs. control: 0.62 ± 1.4; p = 0.013), and significantly fewer donor exposures (cell saver: 0.60 ± 1.4 vs. control: 2.3 ± 4.8; p = 0.019). This difference persisted over the first week post-op, but did not reach statistical significance (cell saver: 0.64 ± 1.24 vs. control: 1.1 ± 1.4; p = 0.07). There were no significant clinical outcome differences. Cell saver blood can be safely stored at the bedside for immediate transfusion for 24 hrs after collection. Administration of cell saver blood significantly reduces the number of RBC and coagulant product transfusions and donor exposures in the immediate postoperative period. Reduction of blood product transfusions has the potential to reduce transfusion-associated complications and decrease postoperative morbidity. Larger studies are needed to determine whether this transfusion strategy will improve clinical outcomes.

  13. Glutamine supplementation suppresses herpes simplex virus reactivation.

    PubMed

    Wang, Kening; Hoshino, Yo; Dowdell, Kennichi; Bosch-Marce, Marta; Myers, Timothy G; Sarmiento, Mayra; Pesnicak, Lesley; Krause, Philip R; Cohen, Jeffrey I

    2017-06-30

    Chronic viral infections are difficult to treat, and new approaches are needed, particularly those aimed at reducing reactivation by enhancing immune responses. Herpes simplex virus (HSV) establishes latency and reactivates frequently, and breakthrough reactivation can occur despite suppressive antiviral therapy. Virus-specific T cells are important to control HSV, and proliferation of activated T cells requires increased metabolism of glutamine. Here, we found that supplementation with oral glutamine reduced virus reactivation in latently HSV-1-infected mice and HSV-2-infected guinea pigs. Transcriptome analysis of trigeminal ganglia from latently HSV-1-infected, glutamine-treated WT mice showed upregulation of several IFN-γ-inducible genes. In contrast to WT mice, supplemental glutamine was ineffective in reducing the rate of HSV-1 reactivation in latently HSV-1-infected IFN-γ-KO mice. Mice treated with glutamine also had higher numbers of HSV-specific IFN-γ-producing CD8 T cells in latently infected ganglia. Thus, glutamine may enhance the IFN-γ-associated immune response and reduce the rate of reactivation of latent virus infection.

  14. Altered regulation of Fc gamma RII on aged follicular dendritic cells correlates with immunoreceptor tyrosine-based inhibition motif signaling in B cells and reduced germinal center formation.

    PubMed

    Aydar, Yüksel; Balogh, Péter; Tew, John G; Szakal, Andras K

    2003-12-01

    Aging is associated with reduced trapping of Ag in the form of in immune complexes (ICs) by follicular dendritic cells (FDCs). We postulated that this defect was due to altered regulation of IC trapping receptors. The level of FDC-M1, complement receptors 1 and 2, FcgammaRII, and FDC-M2 on FDCs was immunohistochemically quantitated in draining lymph nodes of actively immunized mice for 10 days after Ag challenge. Initially, FDC FcgammaRII levels were similar but by day 3 a drastic reduction in FDC-FcgammaRII expression was apparent in old mice. FDC-M2 labeling, reflecting IC trapping, was also reduced and correlated with a dramatic reduction in germinal center (GC) B cells as indicated by reduced GC size and number. Nevertheless, labeling of FDC reticula with FDC-M1 and anti-complement receptors 1 and 2 was preserved, indicating that FDCs were present. FDCs in active GCs normally express high levels of FcRs that are thought to bind Fc portions of Abs in ICs and minimize their binding to FcRs on B cells. Thus, cross-linking of B cell receptor and FcR via IC is minimized, thereby reducing signaling via the immunoreceptor tyrosine-based inhibition motif. Old FDCs taken at day 3, when they lack FcgammaRII, were incapable of preventing immunoreceptor tyrosine-based inhibition motif signaling in wild-type B cells but old FDCs stimulated B cells from FcgammaRIIB(-/-) mice to produce near normal levels of specific Ab. The present data support the concept that FcR are regulated abnormally on old FDCs. This abnormality correlates with a reduced IC retention and with a reduced capacity of FDCs to present ICs in a way that will activate GC B cells.

  15. Enteromegaly and cardiomegaly in Chagas disease

    PubMed Central

    Köberle, Fritz

    1963-01-01

    Chagas disease due to a trypanosome infection may lead to extensive destruction of ganglion cells in the peripheral autonomic system and may result in gross enlargement of the oesophagus, colon, and heart. From studies on nerve cell counts it is concluded that the number of ganglion cells in the oesophagus must be reduced to less than half to produce functional disturbances in the oesophagus and to one tenth to produce a megaoesophagus. Problems of terminology are discussed. PMID:14084752

  16. Mutant APP and Amyloid beta-induced defective autophagy, mitophagy, mitochondrial structural and functional changes and synaptic damage in hippocampal neurons from Alzheimer's disease.

    PubMed

    Reddy, P Hemachandra; Yin, XiangLin; Manczak, Maria; Kumar, Subodh; Jangampalli Adi, Pradeepkiran; Vijayan, Murali; Reddy, Arubala P

    2018-04-25

    The purpose of our study was to determine the toxic effects of hippocampal mutant APP and amyloid beta (Aβ) in human mutant APP (mAPP) cDNA transfected with primary mouse hippocampal neurons (HT22). Hippocampal tissues are the best source of studying learning and memory functions in patients with Alzheimer's disease (AD) and healthy controls. However, investigating immortalized hippocampal neurons that express AD proteins provide an excellent opportunity for drug testing. Using quantitative RT-PCR, immunoblotting & immunofluorescence, and transmission electron microscopy, we assessed mRNA and protein levels of synaptic, autophagy, mitophagy, mitochondrial dynamics, biogenesis, dendritic protein MAP2, and assessed mitochondrial number and length in mAPP-HT22 cells that express Swedish/Indiana mutations. Mitochondrial function was assessed by measuring the levels of hydrogen peroxide, lipid peroxidation, cytochrome c oxidase activity and mitochondrial ATP. Increased levels of mRNA and protein levels of mitochondrial fission genes, Drp1 and Fis1 and decreased levels fusion (Mfn1, Mfn2 and Opa1) biogenesis (PGC1α, NRF1, NRF2 & TFAM), autophagy (ATG5 & LC3BI, LC3BII), mitophagy (PINK1 & TERT, BCL2 & BNIPBL), synaptic (synaptophysin & PSD95) and dendritic (MAP2) genes were found in mAPP-HT22 cells relative to WT-HT22 cells. Cell survival was significantly reduced mAPP-HT22 cells. GTPase-Dp1 enzymatic activity was increased in mAPP-HT22 cells. Transmission electron microscopy revealed significantly increased mitochondrial numbers and reduced mitochondrial length in mAPP-HT22 cells. These findings suggest that hippocampal accumulation of mutant APP and Aβ is responsible for abnormal mitochondrial dynamics and defective biogenesis, reduced MAP2, autophagy, mitophagy and synaptic proteins & reduced dendritic spines and mitochondrial structural and functional changes in mutant APP hippocampal cells. These observations strongly suggest that accumulation of mAPP and Aβ causes mitochondrial, synaptic and autophagy/mitophagy abnormalities in hippocampal neurons, leading to neuronal dysfunction.

  17. The Spacelab 3 simulation: basis for a model of growth plate response in microgravity in the rat

    NASA Technical Reports Server (NTRS)

    Montufar-Solis, D.; Duke, P. J.; Morey-Holton, E.

    2001-01-01

    Data from Spacelab 3 (SL3) suggested that spaceflight significantly reduces the activity of the rat tibial growth plate. Animal processing after SL3 began twelve hours post-landing, so data reflect post-flight re-adaptation in addition to spaceflight effects. To determine if a twelve-hour period of weight bearing after seven days of unloading could affect the physes of spaceflown rats, the present study assessed the growth plate response to unloading with or without a reloading period. Rats were subjected to hind-limb suspension for seven days and then euthanized, with or without twelve hours of reloading. Activity of the growth plate was assessed by morphometric analysis. Rats suspended without reloading had reserve zone (RZ) height greater than controls, and shorter hypertrophy/calcification zone (HCZ) with fewer cells. The greater RZ was associated with a larger cell area, indicating a possible mitotic delay or secretion defect. Twelve hours of reloading decreased RZ height and cell number, and restored the number of cells in HCZ to control values, but the number of cells in the proliferative zone and height in HCZ were reduced. These results suggest the rebound response to preserve/restore skeletal function after a period of unloading involves an acceleration of growth associated with a decreased cell cycle time in PZ. Changes during the reloading period in this simulation support our hypothesis that the effects of spaceflight on SL3 growth plates were altered by changes that occurred post-landing. The similarities in response to unloading by suspension or during spaceflight are used to propose a model of growth plate response during spaceflight.

  18. Palladium-based Mass-Tag Cell Barcoding with a Doublet-Filtering Scheme and Single Cell Deconvolution Algorithm

    PubMed Central

    Zunder, Eli R.; Finck, Rachel; Behbehani, Gregory K.; Amir, El-ad D.; Krishnaswamy, Smita; Gonzalez, Veronica D.; Lorang, Cynthia G.; Bjornson, Zach; Spitzer, Matthew H.; Bodenmiller, Bernd; Fantl, Wendy J.; Pe’er, Dana; Nolan, Garry P.

    2015-01-01

    SUMMARY Mass-tag cell barcoding (MCB) labels individual cell samples with unique combinatorial barcodes, after which they are pooled for processing and measurement as a single multiplexed sample. The MCB method eliminates variability between samples in antibody staining and instrument sensitivity, reduces antibody consumption, and shortens instrument measurement time. Here, we present an optimized MCB protocol with several improvements over previously described methods. The use of palladium-based labeling reagents expands the number of measurement channels available for mass cytometry and reduces interference with lanthanide-based antibody measurement. An error-detecting combinatorial barcoding scheme allows cell doublets to be identified and removed from the analysis. A debarcoding algorithm that is single cell-based rather than population-based improves the accuracy and efficiency of sample deconvolution. This debarcoding algorithm has been packaged into software that allows rapid and unbiased sample deconvolution. The MCB procedure takes 3–4 h, not including sample acquisition time of ~1 h per million cells. PMID:25612231

  19. Efficient Manufacturing of Therapeutic Mesenchymal Stromal Cells Using the Quantum Cell Expansion System

    PubMed Central

    Hanley, Patrick J.; Mei, Zhuyong; Durett, April G.; Cabreira-Harrison, Marie da Graca; Klis, Mariola; Li, Wei; Zhao, Yali; Yang, Bing; Parsha, Kaushik; Mir, Osman; Vahidy, Farhaan; Bloom, Debra; Rice, R. Brent; Hematti, Peiman; Savitz, Sean I; Gee, Adrian P.

    2014-01-01

    Background The use of bone marrow-derived mesenchymal stromal cells (MSCs) as a cellular therapy for various diseases, such as graft-versus-host-disease, diabetes, ischemic cardiomyopathy, and Crohn's disease has produced promising results in early-phase clinical trials. However, for widespread application and use in later phase studies, manufacture of these cells needs to be cost effective, safe, and reproducible. Current methods of manufacturing in flasks or cell factories are labor-intensive, involve a large number of open procedures, and require prolonged culture times. Methods We evaluated the Quantum Cell Expansion system for the expansion of large numbers of MSCs from unprocessed bone marrow in a functionally closed system and compared the results to a flask-based method currently in clinical trials. Results After only two passages, we were able to expand a mean of 6.6×108 MSCs from 25 mL of bone marrow reproducibly. The mean expansion time was 21 days, and cells obtained were able to differentiate into all three lineages: chondrocytes, osteoblasts, and adipocytes. The Quantum was able to generate the target cell number of 2.0×108 cells in an average of 9-fewer days and in half the number of passages required during flask-based expansion. We estimated the Quantum would involve 133 open procedures versus 54,400 in flasks when manufacturing for a clinical trial. Quantum-expanded MSCs infused into an ischemic stroke rat model were therapeutically active. Discussion The Quantum is a novel method of generating high numbers of MSCs in less time and at lower passages when compared to flasks. In the Quantum, the risk of contamination is substantially reduced due to the substantial decrease in open procedures. PMID:24726657

  20. Association of Increased F4/80high Macrophages With Suppression of Serum-Transfer Arthritis in Mice With Reduced FLIP in Myeloid Cells.

    PubMed

    Huang, Qi-Quan; Birkett, Robert; Doyle, Renee E; Haines, G Kenneth; Perlman, Harris; Shi, Bo; Homan, Philip; Xing, Lianping; Pope, Richard M

    2017-09-01

    Macrophages are critical in the pathogenesis of rheumatoid arthritis (RA). We recently demonstrated that FLIP is necessary for the differentiation and/or survival of macrophages. We also showed that FLIP is highly expressed in RA synovial macrophages. This study was undertaken to determine if a reduction in FLIP in mouse macrophages reduces synovial tissue macrophages and ameliorates serum-transfer arthritis. Mice with Flip deleted in myeloid cells (Flip f/f LysM c/+ mice) and littermate controls were used. Arthritis was induced by intraperitoneal injection of K/BxN serum. Disease severity was evaluated by clinical score and change in ankle thickness, and joints were examined by histology and immunohistochemistry. Cells were isolated from the ankles and bone marrow of the mice and examined by flow cytometry, real-time quantitative reverse transcriptase-polymerase chain reaction, or Western blotting. In contrast to expectations, Flip f/f LysM c/+ mice developed more severe arthritis early in the clinical course, but peak arthritis was attenuated and the resolution phase more complete than in control mice. Prior to the induction of serum-transfer arthritis, the number of tissue-resident macrophages was reduced. On day 9 after arthritis induction, the number of F4/80 high macrophages in the joints of the Flip f/f LysM c/+ mice was not decreased, but increased. FLIP was reduced in the F4/80 high macrophages in the ankles of the Flip f/f LysM c/+ mice, while F4/80 high macrophages expressed an antiinflammatory phenotype in both the Flip f/f LysM c/+ and control mice. Our observations suggest that reducing FLIP in macrophages by increasing the number of antiinflammatory macrophages may be an effective therapeutic approach to suppress inflammation, depending on the disease stage. © 2017, American College of Rheumatology.

  1. Reduction in fluoride-induced genotoxicity in mouse bone marrow cells after substituting high fluoride-containing water with safe drinking water.

    PubMed

    Podder, Santosh; Chattopadhyay, Ansuman; Bhattacharya, Shelley

    2011-10-01

    Treatment of mice with 15 mg l(-1) sodium fluoride (NaF) for 30 days increased the number of cell death, chromosomal aberrations (CAs) and 'cells with chromatid breaks' (aberrant cells) compared with control. The present study was intended to determine whether the fluoride (F)-induced genotoxicity could be reduced by substituting high F-containing water after 30 days with safe drinking water, containing 0.1 mg F ions l(-1). A significant fall in percentage of CAs and aberrant cells after withdrawal of F-treatment following 30 days of safe water treatment in mice was observed which was highest after 90 days, although their levels still remained significantly high compared with the control group. This observation suggests that F-induced genotoxicity could be reduced by substituting high F-containing water with safe drinking water. Further study is warranted with different doses and extended treatment of safe water to determine whether the induced damages could be completely reduced or not. Copyright © 2011 John Wiley & Sons, Ltd.

  2. [Long-term expansion of multipotent mesenchymal stromal cells under reduced oxygen tension].

    PubMed

    Rylova, Iu V; Buravkova, L B

    2013-01-01

    We have shown that the decrease in oxygen tension in the culture medium of multipotent mesenchymal stromal cells (MMSCs) results in a short-term reduction in the proportion of CD73(+)-cells in the population, without effecting the number of cells expressing other constitutive surface markers (CD90 and CD105). In this case, the heterogeneity of the cell population declined: large spread cells disappeared. The proliferative activity of MMSCs significantly increased and remained stable in conditions in which the oxygen content was close to the tissue oxygen levels (5% O2). At lower oxygen concentration, proliferative activity of the cells gradually reduced from passages 3-4. The increase in proliferative activity was not accompanied by increased expression of telomerase gene indicateding the alsance of cell transformation. However, genome-wide analysis of MMSC gene expression level revealed changes in expression of cyclins (CCND2 and PCNA), regulatory subunit cyclin-dependent kinase (CKS2) and an inhibitor of cyclin-dependent kinase (CDKN2C), regulating the cell cycle, which is obviously facilitated the increase in the proliferative capacity of cells at lower oxygen tension.

  3. Infectious Complications after Umbilical Cord-Blood Transplantation from Unrelated Donors

    PubMed Central

    Montoro, Juan; Piñana, José Luis; Moscardó, Federico; Sanz, Jaime

    2016-01-01

    Umbilical cord-blood (UCB) is a well-recognized alternative source of stem cells for unrelated donor hematopoietic stem cell transplantation (HSCT). As compared with other stem cell sources from adult donors, it has the advantages of immediate availability of cells, absence of risk to the donor and reduced risk of graft-versus-host disease despite donor-recipient HLA disparity. However, the use of UCB is limited by the delayed post-transplant hematologic recovery due, at least in part, to the reduced number of hematopoietic cells in the graft and the delayed or incomplete immune reconstitution. As a result, severe infectious complications continue to be a leading cause of morbidity and mortality following UCB transplantation (UCBT). We will address the complex differences in the immune properties of UCB and review the incidence, characteristics, risk factors, and severity of bacterial, fungal and viral infectious complications in patients undergoing UCBT. PMID:27872731

  4. Metallothionein 2A affects the cell respiration by suppressing the expression of mitochondrial protein cytochrome c oxidase subunit II.

    PubMed

    Bragina, Olga; Gurjanova, Karina; Krishtal, Jekaterina; Kulp, Maria; Karro, Niina; Tõugu, Vello; Palumaa, Peep

    2015-06-01

    Metallothioneins (MT) are involved in a broad range of cellular processes and play a major role in protection of cells towards various stressors. Two functions of MTs, namely the maintaining of the homeostasis of transition metal ions and the redox balance, are directly linked to the functioning of mitochondria. Dyshomeostasis of MTs is often related with malfunctioning of mitochondria; however, the mechanism by which MTs affect the mitochondrial respiratory chain is still unknown. We demonstrated that overexpression of MT-2A in HEK cell line decreased the oxidative phosphorylation capacity of the cells. HEK cells overexpressing MT-2A demonstrated reduced oxygen consumption and lower cellular ATP levels. MT-2A did not affect the number of mitochondria, but reduced specifically the level of cytochrome c oxidase subunit II protein, which resulted in lower activity of the complex IV.

  5. Age-dependent acute interference with stem and progenitor cell proliferation in the hippocampus after exposure to 1800 MHz electromagnetic radiation.

    PubMed

    Xu, Falin; Bai, Qiongdan; Zhou, Kai; Ma, Li; Duan, Jiajia; Zhuang, Fangli; Xie, Cuicui; Li, Wenli; Zou, Peng; Zhu, Changlian

    2017-01-01

    To investigate the effects of exposure to an 1800 MHz electromagnetic field on cell death and cell proliferation in the developing brain, postnatal day 7 (P7) and P21 healthy Kunming mice were randomly assigned into the experimental and control groups. The experimental groups were exposed to an 1800 MHz electromagnetic field for 8 h daily for three consecutive days. The thymidine analog 5-bromo-2-deoxyuridine (BrdU) was injected intraperitoneally 1 h before each exposure session, and all animals were sacrificed 24 h after the last exposure. Cell death and proliferation markers were detected by immunohistochemistry in the dentate gyrus of the hippocampus. Electromagnetic exposure has no influence on cell death in the dentate gyrus of the hippocampus in P7 and P21 mice as indicated by active caspase-3 immunostaining and Fluoro-Jade labeling. The basal cell proliferation in the hippocampus was higher in P7 than in P21 mice as indicated by the number of cells labeled with BrdU and by immunohistochemical staining for phosphor-histone H3 (PHH3) and brain lipid-binding protein (BLBP). Electromagnetic exposure stimulated DNA synthesis in P7 neural stem and progenitor cells, but reduced cell division and the total number of stem cells in the hippocampus as indicated by increased BrdU labeling and reduced PHH3 and BLBP labeling compared to P7 control mice. There were no significant changes in cell proliferation in P21 mice after exposure to the electromagnetic field. These results indicate that interference with stem cell proliferation upon short-term exposure to an 1800 MHz electromagnetic field depends on the developmental stage of the brain.

  6. Acute Lung Injury Edema Fluid Decreases Net Fluid Transport across Human Alveolar Epithelial Type II Cells*

    PubMed Central

    Lee, Jae W.; Fang, Xiaohui; Dolganov, Gregory; Fremont, Richard D.; Bastarache, Julie A.; Ware, Lorraine B.; Matthay, Michael A.

    2009-01-01

    Most patients with acute lung injury (ALI) have reduced alveolar fluid clearance that has been associated with higher mortality. Several mechanisms may contribute to the decrease in alveolar fluid clearance. In this study, we tested the hypothesis that pulmonary edema fluid from patients with ALI might reduce the expression of ion transport genes responsible for vectorial fluid transport in primary cultures of human alveolar epithelial type II cells. Following exposure to ALI pulmonary edema fluid, the gene copy number for the major sodium and chloride transport genes decreased. By Western blot analyses, protein levels of αENaC, α1Na,K-ATPase, and cystic fibrosis transmembrane conductance regulator decreased as well. In contrast, the gene copy number for several inflammatory cytokines increased markedly. Functional studies demonstrated that net vectorial fluid transport was reduced for human alveolar type II cells exposed to ALI pulmonary edema fluid compared with plasma (0.02±0.05 versus 1.31±0.56 μl/cm2/h, p<0.02). An inhibitor of p38 MAPK phosphorylation (SB202190) partially reversed the effects of the edema fluid on net fluid transport as well as gene and protein expression of the main ion transporters. In summary, alveolar edema fluid from patients with ALI induced a significant reduction in sodium and chloride transport genes and proteins in human alveolar epithelial type II cells, effects that were associated with a decrease in net vectorial fluid transport across human alveolar type II cell monolayers. PMID:17580309

  7. The number of preproghrelin mRNA expressing cells is increased in mice with activity-based anorexia.

    PubMed

    François, Marie; Barde, Swapnali; Achamrah, Najate; Breton, Jonathan; do Rego, Jean-Claude; Coëffier, Moïse; Hökfelt, Tomas; Déchelotte, Pierre; Fetissov, Sergueï O

    2015-06-01

    Plasma levels of ghrelin, an orexigenic peptide, are increased during conditions of chronic starvation, such as in patients with anorexia nervosa. However, it is not known whether such increase can be related to the number of preproghrelin mRNA-expressing cells in the stomach, and if chronic starvation may activate a tentative central ghrelin production. In this work, in situ hybridization technique was used to analyze the presence and number of preproghrelin mRNA-expressing cells in the stomach and the hypothalamus of mice with activity-based anorexia (ABA) induced by the combination of running wheel activity with progressive, during 10 days, feeding-time restriction (FTR) and compared with sedentary FTR, ABA pair-fed (PF) and ad libitum-fed control mice. All food-restricted mice lost more than 20% of body weight. Body weight loss was similar in ABA and PF mice, but it was more pronounced than in FTR mice. Food intake was also lower in ABA than in FTR mice. Preproghrelin mRNA-expressing cells in the stomach were increased proportionally to the body weight loss in all food-restricted groups with the highest number in ABA mice. No preproghrelin mRNA-producing cells were detectable in the hypothalamus of either control or food-restricted mice. Thus, the increased number of gastric preproghrelin mRNA-producing cells during chronic starvation proportionally to the body weight loss and reduced food intake may underlie increased plasma ghrelin. Hyperactivity-induced anorexia appears to further increase the number of preproghrelin mRNA-producing cells in the stomach. No evidence was found for ghrelin expression in the hypothalamus, not even in any of the present experimental models. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Total numbers of neurons and glial cells in cortex and basal ganglia of aged brains with Down syndrome--a stereological study.

    PubMed

    Karlsen, Anna Schou; Pakkenberg, Bente

    2011-11-01

    The total numbers of neurons and glial cells in the neocortex and basal ganglia in adults with Down syndrome (DS) were estimated with design-based stereological methods, providing quantitative data on brains affected by delayed development and accelerated aging. Cell numbers, volume of regions, and densities of neurons and glial cell subtypes were estimated in brains from 4 female DS subjects (mean age 66 years) and 6 female controls (mean age 70 years). The DS subjects were estimated to have about 40% fewer neocortical neurons in total (11.1 × 10(9) vs. 17.8 × 10(9), 2p ≤ 0.001) and almost 30% fewer neocortical glial cells with no overlap to controls (12.8 × 10(9) vs. 18.2 × 10(9), 2p = 0.004). In contrast, the total number of neurons in the basal ganglia was the same in the 2 groups, whereas the number of oligodendrocytes in the basal ganglia was reduced by almost 50% in DS (405 × 10(6) vs. 816 × 10(6), 2p = 0.01). We conclude that trisomy 21 affects cortical structures more than central gray matter emphasizing the differential impairment of brain development. Despite concomitant Alzheimer-like pathology, the neurodegenerative outcome in a DS brain deviates from common Alzheimer disease.

  9. Studying the effects of nucleating agents on texture modification of puffed corn-fish snack.

    PubMed

    Shahmohammadi, Hamid Reza; Bakar, Jamilah; Rahman, Russly Abdul; Adzhan, Noranizan Mohd

    2014-02-01

    To improve textural attributes of puffed corn-fish snack, the effects of 1%, 1.5%, and 2% of calcium carbonate, magnesium silicate (talc), sodium bicarbonate as well as 5% and 10% of wheat bran (as the nucleating materials) on textural attributes were studied. Sensory evaluation, bulk density, expansion ratio, maximum force, and count peaks were measured using the Kramer test. The results showed that all of the additives except bran significantly enhanced the texture. Among them, talc at 0.5% was the best to enhance the density and expansion ratio. Effects of using 0.5% talc on puffed corn-fish snack microstructure were studied using scanning electron microscopy. The average cell diameter of 109 ± 48 μm and cell numbers per square centimeter of 67.4 for talc-treated products were obtained, while for nontalc-treated extrudates, average cell diameter of 798 ± 361 μm and cell numbers per square centimeter of 13.9 were found. Incorporation of 0.5% w/w of magnesium silicate reduced (7-fold) the average cell diameter while increased (4-fold) the cell number. © 2014 Institute of Food Technologists®

  10. Endothelial progenitor cells dysfunction and impaired tissue reparation: The missed link in diabetes mellitus development.

    PubMed

    Berezin, Alexander E

    Diabetes mellitus (DM) is considered a leading cause of premature cardiovascular (CV) mortality and morbidity in general population and in individuals with known CV disease. Recent animal and clinical studies have shown that reduced number and weak function of endothelial progenitor cells (EPCs) may not only indicate to higher CV risk, but contribute to the impaired heart and vessels reparation in patients with DM. Moreover, EPCs having a protective impact on the vasculature may mediate the functioning of other organs and systems. Therefore, EPCs dysfunction is probably promising target for DM treatment strategy, while the role of restoring of EPCs number and functionality in CV risk diminish and reduce of DM-related complications is not fully clear. The aim of the review is summary of knowledge regarding EPCs dysfunction in DM patients. Copyright © 2016 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  11. Random Signal Fluctuations Can Reduce Random Fluctuations in Regulated Components of Chemical Regulatory Networks

    NASA Astrophysics Data System (ADS)

    Paulsson, Johan; Ehrenberg, Måns

    2000-06-01

    Many intracellular components are present in low copy numbers per cell and subject to feedback control. We use chemical master equations to analyze a negative feedback system where species X and S regulate each other's synthesis with standard intracellular kinetics. For a given number of X-molecules, S-variation can be significant. We show that this signal noise does not necessarily increase X-variation as previously thought but, surprisingly, can be necessary to reduce it below a Poissonian limit. The principle resembles Stochastic Resonance in that signal noise improves signal detection.

  12. Engineered Autologous Stromal Cells for the Delivery of Kringle 5, a Potent Endothelial Cell Specific Inhibitor for Anti-Angiogenic Breast Cancer Therapy

    DTIC Science & Technology

    2006-08-01

    immune modulatory properties on blood -derived immune competent cells – in keeping with the observations made by others with angiostatin. To address...factor (vWF) antibody (Fig. 4B, left panel). The number (Fig. 4C) as well as the length (Fig. 4B, right panel) of blood vessels was significantly reduced...from heparinized human peripheral blood were assayed for cell- surface expression of the adhesion marker CD11b (Mac-1) by flow cytometry analysis, and

  13. Uric acid promotes an acute inflammatory response to sterile cell death in mice

    PubMed Central

    Kono, Hajime; Chen, Chun-Jen; Ontiveros, Fernando; Rock, Kenneth L.

    2010-01-01

    Necrosis stimulates inflammation, and this response is medically relevant because it contributes to the pathogenesis of a number of diseases. It is thought that necrosis stimulates inflammation because dying cells release proinflammatory molecules that are recognized by the immune system. However, relatively little is known about the molecular identity of these molecules and their contribution to responses in vivo. Here, we investigated the role of uric acid in the inflammatory response to necrotic cells in mice. We found that dead cells not only released intracellular stores of uric acid but also produced it in large amounts postmortem as nucleic acids were degraded. Using newly developed Tg mice that have reduced levels of uric acid either intracellularly and/or extracellularly, we found that uric acid depletion substantially reduces the cell death–induced inflammatory response. Similar results were obtained with pharmacological treatments that reduced uric acid levels either by blocking its synthesis or hydrolyzing it in the extracellular fluids. Importantly, uric acid depletion selectively inhibited the inflammatory response to dying cells but not to microbial molecules or sterile irritant particles. Collectively, our data identify uric acid as a proinflammatory molecule released from dying cells that contributes significantly to the cell death–induced inflammatory responses in vivo. PMID:20501947

  14. Whole body proton irradiation causes acute damage to bone marrow hematopoietic progenitor and stem cells in mice.

    PubMed

    Chang, Jianhui; Wang, Yingying; Pathak, Rupak; Sridharan, Vijayalakshmi; Jones, Tamako; Mao, Xiao Wen; Nelson, Gregory; Boerma, Marjan; Hauer-Jensen, Martin; Zhou, Daohong; Shao, Lijian

    2017-12-01

    Exposure to proton irradiation during missions in deep space can lead to bone marrow injury. The acute effects of proton irradiation on hematopoietic stem and progenitor cells remain undefined and thus were investigated. We exposed male C57BL/6 mice to 0.5 and 1.0 Gy proton total body irradiation (proton-TBI, 150 MeV) and examined changes in peripheral blood cells and bone marrow (BM) progenitors and LSK cells 2 weeks after exposure. 1.0 Gy proton-TBI significantly reduced the numbers of peripheral blood cells compared to 0.5 Gy proton-TBI and unirradiated animals, while the numbers of peripheral blood cell counts were comparable between 0.5 Gy proton-TBI and unirradiated mice. The frequencies and numbers of LSK cells and CMPs in BM of 0.5 and 1.0 Gy irradiated mice were decreased in comparison to those of normal controls. LSK cells and CMPs and their progeny exhibited a radiation-induced impairment in clonogenic function. Exposure to 1.0 Gy increased cellular apoptosis but not the production of reactive oxygen species (ROS) in CMPs two weeks after irradiation. LSK cells from irradiated mice exhibited an increase in ROS production and apoptosis. Exposure to proton-TBI can induce acute damage to BM progenitors and LSK cells.

  15. Optimal control on bladder cancer growth model with BCG immunotherapy and chemotherapy

    NASA Astrophysics Data System (ADS)

    Dewi, C.; Trisilowati

    2015-03-01

    In this paper, an optimal control model of the growth of bladder cancer with BCG (Basil Calmate Guerin) immunotherapy and chemotherapy is discussed. The purpose of this optimal control is to determine the number of BCG vaccine and drug should be given during treatment such that the growth of bladder cancer cells can be suppressed. Optimal control is obtained by applying Pontryagin principle. Furthermore, the optimal control problem is solved numerically using Forward-Backward Sweep method. Numerical simulations show the effectiveness of the vaccine and drug in controlling the growth of cancer cells. Hence, it can reduce the number of cancer cells that is not infected with BCG as well as minimize the cost of the treatment.

  16. CD24(hi)CD27(+) B cells from patients with allergic asthma have impaired regulatory activity in response to lipopolysaccharide.

    PubMed

    van der Vlugt, L E P M; Mlejnek, E; Ozir-Fazalalikhan, A; Janssen Bonas, M; Dijksman, T R; Labuda, L A; Schot, R; Guigas, B; Möller, G M; Hiemstra, P S; Yazdanbakhsh, M; Smits, H H

    2014-04-01

    Regulatory B cells have been identified that strongly reduce allergic and auto-immune inflammation in experimental models by producing IL-10. Recently, several human regulatory B-cell subsets with an impaired function in auto-immunity have been described, but there is no information on regulatory B cells in allergic asthma. In this study, the frequency and function of IL-10 producing B-cell subsets in allergic asthma were investigated. Isolated peripheral blood B cells from 13 patients with allergic asthma and matched healthy controls were analyzed for the expression of different regulatory B-cell markers. Next, the B cells were activated by lipopolysaccharide (LPS), CpG or through the B-cell receptor, followed by co-culture with endogenous memory CD4(+) T cells and house dust mite allergen DerP1. Lower number of IL-10 producing B cells were found in patients in response to LPS, however, this was not the case when B cells were activated through the B-cell receptor or by CpG. Further dissection showed that only the CD24(hi)CD27(+) B-cell subset was reduced in number and IL-10 production to LPS. In response to DerP1, CD4(+) T cells from patients co-cultured with LPS-primed total B cells produced less IL-10 compared to similar cultures from controls. These results are in line with the finding that sorted CD24(hi)CD27(+) B cells are responsible for the induction of IL-10(+) CD4(+) T cells. Taken together, these data indicate that CD24(hi)CD27(+) B cells from allergic asthma patients produce less IL-10 in response to LPS leading to a weaker IL-10 induction in T cells in response to DerP1, which may play a role in allergic asthma. © 2013 John Wiley & Sons Ltd.

  17. The dynamic relationship between cerebellar Purkinje cell simple spikes and the spikelet number of complex spikes

    PubMed Central

    Burroughs, Amelia; Wise, Andrew K.; Xiao, Jianqiang; Houghton, Conor; Tang, Tianyu; Suh, Colleen Y.; Lang, Eric J.

    2016-01-01

    Key points Purkinje cells are the sole output of the cerebellar cortex and fire two distinct types of action potential: simple spikes and complex spikes.Previous studies have mainly considered complex spikes as unitary events, even though the waveform is composed of varying numbers of spikelets.The extent to which differences in spikelet number affect simple spike activity (and vice versa) remains unclear.We found that complex spikes with greater numbers of spikelets are preceded by higher simple spike firing rates but, following the complex spike, simple spikes are reduced in a manner that is graded with spikelet number.This dynamic interaction has important implications for cerebellar information processing, and suggests that complex spike spikelet number may maintain Purkinje cells within their operational range. Abstract Purkinje cells are central to cerebellar function because they form the sole output of the cerebellar cortex. They exhibit two distinct types of action potential: simple spikes and complex spikes. It is widely accepted that interaction between these two types of impulse is central to cerebellar cortical information processing. Previous investigations of the interactions between simple spikes and complex spikes have mainly considered complex spikes as unitary events. However, complex spikes are composed of an initial large spike followed by a number of secondary components, termed spikelets. The number of spikelets within individual complex spikes is highly variable and the extent to which differences in complex spike spikelet number affects simple spike activity (and vice versa) remains poorly understood. In anaesthetized adult rats, we have found that Purkinje cells recorded from the posterior lobe vermis and hemisphere have high simple spike firing frequencies that precede complex spikes with greater numbers of spikelets. This finding was also evident in a small sample of Purkinje cells recorded from the posterior lobe hemisphere in awake cats. In addition, complex spikes with a greater number of spikelets were associated with a subsequent reduction in simple spike firing rate. We therefore suggest that one important function of spikelets is the modulation of Purkinje cell simple spike firing frequency, which has implications for controlling cerebellar cortical output and motor learning. PMID:27265808

  18. Near-limit flame structures at low Lewis number

    NASA Technical Reports Server (NTRS)

    Ronney, Paul D.

    1990-01-01

    The characteristics of premixed gas flames in mixtures with low Lewis numbers near flammability limits were studied experimentally using a low-gravity environment to reduce buoyant convection. The behavior of such flames was found to be dominated by diffusive-thermal instabilities. For sufficiently reactive mixtures, cellular structures resulting from these instabilities were observed and found to spawn new cells in regular patterns. For less reactive mixtures, cells formed shortly after ignition but did not spawn new cells; instead these cells evolved into a flame structure composed of stationary, apparently stable spherical flamelets. Experimental observations are found to be in qualitative agreement with elementary analytical models based on the interaction of heat release due to chemical reaction, differential diffusion of thermal energy and mass, flame front curvature, and volumetric heat losses due to gas and/or soot radiation.

  19. Murine Lupus Susceptibility Locus Sle1a Requires the Expression of two Subloci to Induce Inflammatory T Cells

    PubMed Central

    Cuda, Carla M.; Zeumer, Leilani; Sobel, Eric S.; Croker, Byron P.; Morel, Laurence

    2010-01-01

    The NZM2410-derived Sle1a lupus susceptibility locus induces activated autoreactive CD4+ T cells and reduces the number and function of Foxp3+ regulatory T cells. In this study, we first showed that Sle1a contributes to autoimmunity by increasing anti-nuclear antibody production when expressed on either NZB or NZW heterozygous genomes, and by enhancing the chronic graft vs. host disease response indicating an expansion of the autoreactive B cell pool. Screening two non-overlapping recombinants, the Sle1a.1 and Sle1a.2 intervals that cover the entire Sle1a locus, revealed that both Sle1a.1 and Sle1a.2 were necessary for the full Sle1a phenotype. Sle1a.1, and to a lesser extent Sle1a.2, significantly affected CD4+ T cell activation as well as Treg differentiation and function. Sle1a.2 also increased the production of autoreactive B cells. Since the Sle1a.1 and Sle1a.2 intervals contain only one and 15 known genes, respectively, this study considerably reduces the number of candidate genes responsible for the production of autoreactive T cells. These results also demonstrate that the Sle1 locus is an excellent model for the genetic architecture of lupus, in which a major obligate phenotype results from the co-expression of multiple genetic variants with individual weak effects. PMID:20445563

  20. An affordable method to obtain cultured endothelial cells from peripheral blood

    PubMed Central

    Bueno-Betí, Carlos; Novella, Susana; Lázaro-Franco, Macarena; Pérez-Cremades, Daniel; Heras, Magda; Sanchís, Juan; Hermenegildo, Carlos

    2013-01-01

    The culture of endothelial progenitor cells (EPC) provides an excellent tool to research on EPC biology and vascular regeneration and vasculogenesis. The use of different protocols to obtain EPC cultures makes it difficult to obtain comparable results in different groups. This work offers a systematic comparison of the main variables of most commonly used protocols for EPC isolation, culture and functional evaluation. Peripheral blood samples from healthy individuals were recovered and mononuclear cells were cultured. Different recovery and culture conditions were tested: blood volume, blood anticoagulant, coating matrix and percentage of foetal bovine serum (FBS) in culture media. The success of culture procedure, first colonies of endothelial cells appearance time, correlation with number of circulating EPC (cEPC) and functional comparison with human umbilical vein endothelial cells (HUVEC) were studied. The use of heparin, a minimum blood volume of 30 ml, fibronectin as a coating matrix and endothelial growing media-2 supplemented with 20% FBS increased the success of obtaining EPC cultures up to 80% of the processed samples while reducing EPC colony appearance mean time to a minimum of 13 days. Blood samples exhibiting higher cEPC numbers resulted in reduced EPC colony appearance mean time. Cells isolated by using this combination were endothelial cell-like EPCs morphological and phenotypically. Functionally, cultured EPC showed decreased growing and vasculogenic capacity when compared to HUVEC. Thus, above-mentioned conditions allow the isolation and culture of EPC with smaller blood volumes and shorter times than currently used protocols. PMID:24118735

  1. Low level laser therapy reduces acute lung inflammation in a model of pulmonary and extrapulmonary LPS-induced ARDS.

    PubMed

    Oliveira, Manoel Carneiro; Greiffo, Flávia Regina; Rigonato-Oliveira, Nicole Cristine; Custódio, Ricardo Wesley Alberca; Silva, Vanessa Roza; Damaceno-Rodrigues, Nilsa Regina; Almeida, Francine Maria; Albertini, Regiane; Lopes-Martins, Rodrigo Álvaro B; de Oliveira, Luis Vicente Franco; de Carvalho, Paulo de Tarso Camillo; Ligeiro de Oliveira, Ana Paula; Leal, Ernesto César P; Vieira, Rodolfo P

    2014-05-05

    The present study aimed to investigate the effects low level laser therapy (LLLT) in a LPS-induced pulmonary and extrapulmonary acute respiratory distress syndrome (ARDS) in BALB/c mice. Laser (830nm laser, 9J/cm(2), 35mW, 80s per point, 3 points per application) was applied in direct contact with skin, 1h after LPS administration. Mice were distributed in control (n=6; PBS), ARDS IT (n=7; LPS orotracheally 10μg/mouse), ARDS IP (n=7; LPS intra-peritoneally 100μg/mouse), ARDS IT+Laser (n=9; LPS intra-tracheally 10μg/mouse), ARDS IP+Laser (n=9; LPS intra-peritoneally 100μg/mouse). Twenty-four hours after last LPS administration, mice were studied for pulmonary inflammation by total and differential cell count in bronchoalveolar lavage (BAL), cytokines (IL-1beta, IL-6, KC and TNF-alpha) levels in BAL fluid and also by quantitative analysis of neutrophils number in the lung parenchyma. LLLT significantly reduced pulmonary and extrapulmonary inflammation in LPS-induced ARDS, as demonstrated by reduced number of total cells (p<0.001) and neutrophils (p<0.001) in BAL, reduced levels of IL-1beta, IL-6, KC and TNF-alpha in BAL fluid and in serum (p<0.001), as well as the number of neutrophils in lung parenchyma (p<0.001). LLLT is effective to reduce pulmonary inflammation in both pulmonary and extrapulmonary model of LPS-induced ARDS. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Inflammation arising from obesity reduces taste bud abundance and inhibits renewal

    PubMed Central

    Kaufman, Andrew; Choo, Ezen; Koh, Anna

    2018-01-01

    Despite evidence that the ability to taste is weakened by obesity and can be rescued with weight loss intervention, few studies have investigated the molecular effects of obesity on the taste system. Taste bud cells undergo continual turnover even in adulthood, exhibiting an average life span of only a few weeks, tightly controlled by a balance of proliferation and cell death. Recent data reveal that an acute inflammation event can alter this balance. We demonstrate that chronic low-grade inflammation brought on by obesity reduces the number of taste buds in gustatory tissues of mice—and is likely the cause of taste dysfunction seen in obese populations—by upsetting this balance of renewal and cell death. PMID:29558472

  3. Antenatal taurine reduces cerebral cell apoptosis in fetal rats with intrauterine growth restriction.

    PubMed

    Liu, Jing; Wang, Xiaofeng; Liu, Ying; Yang, Na; Xu, Jing; Ren, Xiaotun

    2013-08-15

    From pregnancy to parturition, Sprague-Dawley rats were daily administered a low protein diet to establish a model of intrauterine growth restriction. From the 12(th) day of pregnancy, 300 mg/kg rine was daily added to food until spontaneous delivery occurred. Brain tissues from normal neonatal rats at 6 hours after delivery, neonatal rats with intrauterine growth restriction, and neonatal rats with intrauterine growth restriction undergoing taurine supplement were obtained for further experiments. The terminal deoxyribonucleotidyl transferase (TdT)-mediated biotin-16-dUTP nick-end labeling assay revealed that the number of apoptotic cells in the brain tissue of neonatal rats with intrauterine growth restriction significantly increased. Taurine supplement in pregnant rats reduced cell apoptosis in brain tissue from neonatal rats with intrauterine growth restriction. nohistochemical staining revealed that taurine supplement increased glial cell line-derived neurotrophic factor expression and decreased caspase-3 expression in the cerebral cortex of intrauterine growth-restricted fetal rats. These results indicate that taurine supplement reduces cell apoptosis through the glial cell line-derived neurotrophic factor-caspase-3 signaling pathway, resulting in a protective effect on the intrauterine growth-restricted fetal rat brain.

  4. Antenatal taurine reduces cerebral cell apoptosis in fetal rats with intrauterine growth restriction

    PubMed Central

    Liu, Jing; Wang, Xiaofeng; Liu, Ying; Yang, Na; Xu, Jing; Ren, Xiaotun

    2013-01-01

    From pregnancy to parturition, Sprague-Dawley rats were daily administered a low protein diet to establish a model of intrauterine growth restriction. From the 12th day of pregnancy, 300 mg/kg rine was daily added to food until spontaneous delivery occurred. Brain tissues from normal neonatal rats at 6 hours after delivery, neonatal rats with intrauterine growth restriction, and neonatal rats with intrauterine growth restriction undergoing taurine supplement were obtained for further experiments. The terminal deoxyribonucleotidyl transferase (TdT)-mediated biotin-16-dUTP nick-end labeling assay revealed that the number of apoptotic cells in the brain tissue of neonatal rats with intrauterine growth restriction significantly increased. Taurine supplement in pregnant rats reduced cell apoptosis in brain tissue from neonatal rats with intrauterine growth restriction. nohistochemical staining revealed that taurine supplement increased glial cell line-derived neurotrophic factor expression and decreased caspase-3 expression in the cerebral cortex of intrauterine growth-restricted fetal rats. These results indicate that taurine supplement reduces cell apoptosis through the glial cell line-derived neurotrophic factor-caspase-3 signaling pathway, resulting in a protective effect on the intrauterine growth-restricted fetal rat brain. PMID:25206528

  5. Late stages of hematopoiesis and B cell lymphopoiesis are regulated by α-synuclein, a key player in Parkinson's disease.

    PubMed

    Xiao, Wenbin; Shameli, Afshin; Harding, Clifford V; Meyerson, Howard J; Maitta, Robert W

    2014-11-01

    α-Synuclein plays a crucial role in Parkinson's disease and dementias defined as synucleinopathies. α-Synuclein is expressed in hematopoietic and immune cells, but its functions in hematopoiesis and immune responses are unknown. We utilized α-synuclein(-/-) (KO) mice to investigate its role in hematopoiesis and B cell lymphopoiesis. We demonstrated hematologic abnormalities including mild anemia, smaller platelets, lymphopenia but relatively normal early hematopoiesis in KO mice compared to wild-type (WT) as measured in hematopoietic stem cells and progenitors of the different cell lineages. However, the absolute number of B220(+)IgM(+) B cells in bone marrow was reduced by 4-fold in KO mice (WT: 104±23×10(5) vs. KO: 27±5×10(5)). B cells were also reduced in KO spleens associated with effacement of splenic and lymph node architecture. KO mice showed reduced total serum IgG but no abnormality in serum IgM was noted. When KO mice were challenged with a T cell-dependent antigen, production of antigen specific IgG1 and IgG2b was abolished, but antigen specific IgM was not different from WT mice. Our study shows hematologic abnormalities including anemia and smaller platelets, reduced B cell lymphopoiesis and defects in IgG production in the absence of α-synuclein. This is the first report to show an important role of α-synuclein late in hematopoiesis, B cell lymphopoiesis and adaptive immune response. Copyright © 2014 Elsevier GmbH. All rights reserved.

  6. The Fate of Spermatogonial Stem Cells in the Cryptorchid Testes of RXFP2 Deficient Mice

    PubMed Central

    Ferguson, Lydia; How, Javier J.; Agoulnik, Alexander I.

    2013-01-01

    The environmental niche of the spermatogonial stem cell pool is critical to ensure the continued generation of the germ cell population. To study the consequences of an aberrant testicular environment in cryptorchidism we used a mouse model with a deletion of Rxfp2 gene resulting in a high intra-abdominal testicular position. Mutant males were infertile with the gross morphology of the cryptorchid testis progressively deteriorating with age. Few spermatogonia were identifiable in 12 month old cryptorchid testes. Gene expression analysis showed no difference between mutant and control testes at postnatal day 10. In three month old males a decrease in expression of spermatogonial stem cell (SSC) markers Id4, Nanos2, and Ret was shown. The direct counting of ID4+ cells supported a significant decrease of SSCs. In contrast, the expression of Plzf, a marker for undifferentiated and differentiating spermatogonia was not reduced, and the number of PLZF+ cells in the cryptorchid testis was higher in three month old testes, but equal to control in six month old mutants. The PLZF+ cells did not show a higher rate of apoptosis in cryptorchid testis. The expression of the Sertoli cell FGF2 gene required for SSC maintenance was significantly reduced in mutant testis. Based on these findings we propose that the deregulation of somatic and germ cell genes in the cryptorchid testis, directs the SSCs towards the differentiation pathway. This leads to a depletion of the SSC pool and an increase in the number of PLZF+ spermatogonial cells, which too, eventually decreases with the exhaustion of the stem cell pool. Such a dynamic suggests that an early correction of cryptorchidism is critical for the retention of the SSC pool. PMID:24098584

  7. Low concentrations of Rhodamine-6G selectively destroy tumor cells and improve survival of melanoma transplanted mice.

    PubMed

    Kutushov, M; Gorelik, O

    2013-01-01

    Rhodamine-6G is a fluorescent dye binding to mitochondria, thus reducing the intact mitochondria number and inhibiting mitochondrial metabolic activity. Resultantly, the respiratory chain functioning becomes blocked, the cell "suffocated" and eventually destroyed. Unlike normal cells, malignant cells demonstrate a priori reduced mitochondrial numbers and aberrant metabolism. Therefore, a turning point might exist, when Rhodamine-induced loss of active mitochondria would selectively destroy malignant, but spare normal cells. Various malignant vs. non-malignant cell lines were cultured with Rhodamine-6G at different concentrations. In addition, C57Bl mice were implanted with B16-F10 melanoma and treated with Rhodamine-6G at different dosage/time regimens. Viability and proliferation of cultured tumor cells were time and dose-dependently inhibited, up to 90%, by Rhodamine-6G, with profound histological signs of cell death. By contrast, inhibition of normal control cell proliferation hardly exceeded 15-17%. Melanoma-transplanted mice receiving Rhodamine-6G demonstrated prolonged survival, improved clinical parameters, inhibited tumor growth and metastases count, compared to their untreated counterparts. Twice-a-week 10-6M Rhodamine-6G regimen yielded the most prominent results. We conclude that malignant, but not normal, cells are selectively destroyed by low doses of Rhodamine-6G. In vivo, such treatment selectively suppresses tumor progression and dissemination, thus improving prognosis. We suggest that selective anti-tumor properties of Rhodamine-6G are based on unique physiologic differences in energy metabolism between malignant and normal cells. If found clinically relevant, low concentrations of Rhodamine-6G might be useful for replacing, or backing up, more aggressive nonselective chemotherapeutic compounds.

  8. Proinsulin atypical maturation and disposal induces extensive defects in mouse Ins2+/Akita β-cells.

    PubMed

    Yuan, Qingxin; Tang, Wei; Zhang, Xiaoping; Hinson, Jack A; Liu, Chao; Osei, Kwame; Wang, Jie

    2012-01-01

    Because of its low relative folding rate and plentiful manufacture in β-cells, proinsulin maintains a homeostatic balance of natively and plentiful non-natively folded states (i.e., proinsulin homeostasis, PIHO) through the integration of maturation and disposal processes. PIHO is susceptible to genetic and environmental influences, and its disorder has been critically linked to defects in β-cells in diabetes. To explore this hypothesis, we performed polymerase chain reaction (PCR), metabolic-labeling, immunoblotting, and histological studies to clarify what defects result from primary disorder of PIHO in model Ins2(+/Akita) β-cells. We used T antigen-transformed Ins2(+/Akita) and control Ins2(+/+) β-cells established from Akita and wild-type littermate mice. In Ins2(+/Akita) β-cells, we found no apparent defect at the transcriptional and translational levels to contribute to reduced cellular content of insulin and its precursor and secreted insulin. Glucose response remained normal in proinsulin biosynthesis but was impaired for insulin secretion. The size and number of mature insulin granules were reduced, but the size/number of endoplasmic reticulum, Golgi, mitochondrion, and lysosome organelles and vacuoles were expanded/increased. Moreover, cell death increased, and severe oxidative stress, which manifested as increased reactive oxygen species, thioredoxin-interacting protein, and protein tyrosine nitration, occurred in Ins2(+/Akita) β-cells and/or islets. These data show the first clear evidence that primary PIHO imbalance induces severe oxidative stress and impairs glucose-stimulated insulin release and β-cell survival as well as producing other toxic consequences. The defects disclosed/clarified in model Ins2(+/Akita) β-cells further support a role of the genetic and stress-susceptible PIHO disorder in β-cell failure and diabetes.

  9. Proinsulin Atypical Maturation and Disposal Induces Extensive Defects in Mouse Ins2+/Akita β-Cells

    PubMed Central

    Zhang, Xiaoping; Hinson, Jack A.; Liu, Chao; Osei, Kwame; Wang, Jie

    2012-01-01

    Because of its low relative folding rate and plentiful manufacture in β-cells, proinsulin maintains a homeostatic balance of natively and plentiful non-natively folded states (i.e., proinsulin homeostasis, PIHO) through the integration of maturation and disposal processes. PIHO is susceptible to genetic and environmental influences, and its disorder has been critically linked to defects in β-cells in diabetes. To explore this hypothesis, we performed polymerase chain reaction (PCR), metabolic-labeling, immunoblotting, and histological studies to clarify what defects result from primary disorder of PIHO in model Ins2+/Akita β-cells. We used T antigen-transformed Ins2+/Akita and control Ins2+/+ β-cells established from Akita and wild-type littermate mice. In Ins2+/Akita β-cells, we found no apparent defect at the transcriptional and translational levels to contribute to reduced cellular content of insulin and its precursor and secreted insulin. Glucose response remained normal in proinsulin biosynthesis but was impaired for insulin secretion. The size and number of mature insulin granules were reduced, but the size/number of endoplasmic reticulum, Golgi, mitochondrion, and lysosome organelles and vacuoles were expanded/increased. Moreover, cell death increased, and severe oxidative stress, which manifested as increased reactive oxygen species, thioredoxin-interacting protein, and protein tyrosine nitration, occurred in Ins2+/Akita β-cells and/or islets. These data show the first clear evidence that primary PIHO imbalance induces severe oxidative stress and impairs glucose-stimulated insulin release and β-cell survival as well as producing other toxic consequences. The defects disclosed/clarified in model Ins2+/Akita β-cells further support a role of the genetic and stress-susceptible PIHO disorder in β-cell failure and diabetes. PMID:22509386

  10. Review of status developments of high-efficiency crystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    Liu, Jingjing; Yao, Yao; Xiao, Shaoqing; Gu, Xiaofeng

    2018-03-01

    In order to further improve cell efficiency and reduce cost in achieving grid parity, a large number of PV manufacturing companies, universities and research institutes have been devoted to a variety of low-cost and high-efficiency crystalline Si solar cells. In this article, the cell structures, characteristics and efficiency progresses of several types of high-efficiency crystalline Si solar cells that have been in small scale production or are promising in mass production are presented, including passivated emitter rear cell, tunnel oxide passivated contact solar cell, interdigitated back contact cell, heterojunction with intrinsic thin-layer cell, and heterojunction solar cells with interdigitated back contacts. Both the industrialization status and future development trend of high-efficiency crystalline silicon solar cells are also pinpointed.

  11. Ternary complex factor SAP-1 is required for Erk-mediated thymocyte positive selection.

    PubMed

    Costello, Patrick S; Nicolas, Robert H; Watanabe, Yasuyuki; Rosewell, Ian; Treisman, Richard

    2004-03-01

    Thymocyte selection and differentiation requires extracellular signal-regulated kinase (Erk) signaling, but transcription factor substrates of Erk in thymocytes are unknown. We have characterized the function of SAP-1 (Elk4), an Erk-regulated transcription factor, in thymocyte development. Early thymocyte development was normal, but single-positive thymocyte and peripheral T cell numbers were reduced, reflecting a T cell-autonomous defect. T cell receptor-induced activation of SAP-1 target genes such as Egr1 was substantially impaired in double-positive thymocytes, although Erk activation was normal. Analysis of T cell receptor transgenes showed that positive selection was reduced by 80-90% in SAP-1-deficient mice; heterozygous mice showed a moderate defect. Negative selection was unimpaired. SAP-1 thus directly links Erk signaling to the transcriptional events required for thymocyte positive selection.

  12. M13-templated magnetic nanoparticles for targeted in vivo imaging of prostate cancer

    NASA Astrophysics Data System (ADS)

    Ghosh, Debadyuti; Lee, Youjin; Thomas, Stephanie; Kohli, Aditya G.; Yun, Dong Soo; Belcher, Angela M.; Kelly, Kimberly A.

    2012-10-01

    Molecular imaging allows clinicians to visualize the progression of tumours and obtain relevant information for patient diagnosis and treatment. Owing to their intrinsic optical, electrical and magnetic properties, nanoparticles are promising contrast agents for imaging dynamic molecular and cellular processes such as protein-protein interactions, enzyme activity or gene expression. Until now, nanoparticles have been engineered with targeting ligands such as antibodies and peptides to improve tumour specificity and uptake. However, excessive loading of ligands can reduce the targeting capabilities of the ligand and reduce the ability of the nanoparticle to bind to a finite number of receptors on cells. Increasing the number of nanoparticles delivered to cells by each targeting molecule would lead to higher signal-to-noise ratios and would improve image contrast. Here, we show that M13 filamentous bacteriophage can be used as a scaffold to display targeting ligands and multiple nanoparticles for magnetic resonance imaging of cancer cells and tumours in mice. Monodisperse iron oxide magnetic nanoparticles assemble along the M13 coat, and its distal end is engineered to display a peptide that targets SPARC glycoprotein, which is overexpressed in various cancers. Compared with nanoparticles that are directly functionalized with targeting peptides, our approach improves contrast because each SPARC-targeting molecule delivers a large number of nanoparticles into the cells. Moreover, the targeting ligand and nanoparticles could be easily exchanged for others, making this platform attractive for in vivo high-throughput screening and molecular detection.

  13. M13-templated magnetic nanoparticles for targeted in vivo imaging of prostate cancer.

    PubMed

    Ghosh, Debadyuti; Lee, Youjin; Thomas, Stephanie; Kohli, Aditya G; Yun, Dong Soo; Belcher, Angela M; Kelly, Kimberly A

    2012-10-01

    Molecular imaging allows clinicians to visualize the progression of tumours and obtain relevant information for patient diagnosis and treatment. Owing to their intrinsic optical, electrical and magnetic properties, nanoparticles are promising contrast agents for imaging dynamic molecular and cellular processes such as protein-protein interactions, enzyme activity or gene expression. Until now, nanoparticles have been engineered with targeting ligands such as antibodies and peptides to improve tumour specificity and uptake. However, excessive loading of ligands can reduce the targeting capabilities of the ligand and reduce the ability of the nanoparticle to bind to a finite number of receptors on cells. Increasing the number of nanoparticles delivered to cells by each targeting molecule would lead to higher signal-to-noise ratios and would improve image contrast. Here, we show that M13 filamentous bacteriophage can be used as a scaffold to display targeting ligands and multiple nanoparticles for magnetic resonance imaging of cancer cells and tumours in mice. Monodisperse iron oxide magnetic nanoparticles assemble along the M13 coat, and its distal end is engineered to display a peptide that targets SPARC glycoprotein, which is overexpressed in various cancers. Compared with nanoparticles that are directly functionalized with targeting peptides, our approach improves contrast because each SPARC-targeting molecule delivers a large number of nanoparticles into the cells. Moreover, the targeting ligand and nanoparticles could be easily exchanged for others, making this platform attractive for in vivo high-throughput screening and molecular detection.

  14. M13-templated magnetic nanoparticles for targeted in vivo imaging of prostate cancer

    PubMed Central

    Ghosh, Debadyuti; Lee, Youjin; Thomas, Stephanie; Kohli, Aditya G.; Yun, Dong Soo; Belcher, Angela M.; Kelly, Kimberly A.

    2014-01-01

    Molecular imaging allows clinicians to visualize the progression of tumours and obtain relevant information for patient diagnosis and treatment1. Owing to their intrinsic optical, electrical and magnetic properties, nanoparticles are promising contrast agents for imaging dynamic molecular and cellular processes such as protein-protein interactions, enzyme activity or gene expression2. Until now, nanoparticles have been engineered with targeting ligands such as antibodies and peptides to improve tumour specificity and uptake. However, excessive loading of ligands can reduce the targeting capabilities of the ligand3,4,5 and reduce the ability of the nanoparticle to bind to a finite number of receptors on cells6. Increasing the number of nanoparticles delivered to cells by each targeting molecule would lead to higher signal-to-noise ratios and improve image contrast. Here, we show that M13 filamentous bacteriophage can be used as a scaffold to display targeting ligands and multiple nanoparticles for magnetic resonance imaging of cancer cells and tumours in mice. Monodisperse iron oxide magnetic nanoparticles assemble along the M13 coat, and its distal end is engineered to display a peptide that targets SPARC glycoprotein, which is overexpressed in various cancers. Compared with nanoparticles that are directly functionalized with targeting peptides, our approach improves contrast because each SPARC-targeting molecule delivers a large number of nanoparticles into the cells. Moreover, the targeting ligand and nanoparticles could be easily exchanged for others, making this platform attractive for in vivo high-throughput screening and molecular detection. PMID:22983492

  15. Role of mannose-6-phosphate receptors in herpes simplex virus entry into cells and cell-to-cell transmission.

    PubMed Central

    Brunetti, C R; Burke, R L; Hoflack, B; Ludwig, T; Dingwell, K S; Johnson, D C

    1995-01-01

    Herpes simplex virus (HSV) glycoprotein D (gD) is essential for virus entry into cells, is modified with mannose-6-phosphate (M-6-P), and binds to both the 275-kDa M-6-P receptor (MPR) and the 46-kDa MPR (C. R. Brunetti, R. L. Burke, S. Kornfeld, W. Gregory, K. S. Dingwell, F. Masiarz, and D. C. Johnson, J. Biol. Chem. 269:17067-17074, 1994). Since MPRs are found on the surfaces of mammalian cells, we tested the hypothesis that MPRs could serve as receptors for HSV during virus entry into cells. A soluble form of the 275-kDa MPR, derived from fetal bovine serum, inhibited HSV plaques on monkey Vero cells, as did polyclonal rabbit anti-MPR antibodies. In addition, the number and size of HSV plaques were reduced when cells were treated with bovine serum albumin conjugated with pentamannose-phosphate (PM-PO4-BSA), a bulky ligand which can serve as a high-affinity ligand for MPRs. These data imply that HSV can use MPRs to enter cells; however, other molecules must also serve as receptors for HSV because a reasonable fraction of virus could enter cells treated with even the highest concentrations of these inhibitors. Consistent with the possibility that there are other receptors, HSV produced the same number of plaques on MPR-deficient mouse fibroblasts as were produced on normal mouse fibroblasts, but there was no inhibition with PM-PO4-BSA with either of these embryonic mouse cells. Together, these results demonstrate that HSV does not rely solely on MPRs to enter cells, although MPRs apparently play some role in virus entry into some cell types and, perhaps, act as one of a number of cell surface molecules that can facilitate entry. We also found that HSV produced small plaques on human fibroblasts derived from patients with pseudo-Hurler's polydystrophy, cells in which glycoproteins are not modified with M-6-P residues and yet production of infectious HSV particles was not altered in the pseudo-Hurler cells. In addition, HSV plaque size was reduced by PM-PO4-BSA; therefore, it appears that M-6-P residues and MPRs are required for efficient transmission of HSV between cells, a process which differs in some respects from entry of exogenous virus particles. PMID:7745699

  16. Minimal volume vitrification of epididymal spermatozoa results in successful in vitro fertilization and embryo development in mice

    PubMed Central

    Horta, Fabrizzio; Alzobi, Hamida; Jitanantawittaya, Sutthipat; Catt, Sally; Chen, Penny; Pangestu, Mulyoto; Temple-Smith, Peter

    2017-01-01

    This study compared three cryopreservation protocols on sperm functions, IVF outcomes, and embryo development. Epididymal spermatozoa cryopreserved using slow-cooling (18% w/v raffinose, RS-C) were compared with spermatozoa vitrified using 0.25 M sucrose (SV) or 18% w/v raffinose (RV). The motility, vitality, and DNA damage (TUNEL assay) of fresh control (FC) spermatozoa were compared with post-thawed or warmed RS-C, RV, and SV samples. Mouse oocytes (n = 267) were randomly assigned into three groups for insemination: RV (n = 102), RS-C (n = 86), and FC (n = 79). The number and the proportion of two-cell embryos and blastocysts from each treatment were assessed. Sperm motility (P < 0.01) and vitality (P < 0.05) were significantly reduced after vitrification compared with slow-cooled spermatozoa. However, DNA fragmentation was significantly reduced in spermatozoa vitrified using sucrose (15 ± 1.8% [SV] vs 26 ± 2.8% [RV] and 27 ± 1.2% [RS-C]; P < 0.01). Although the number of two-cell embryos produced by RS-C, RV, and FC spermatozoa was not significantly different, the number of blastocysts produced from two-cell embryos using RV spermatozoa was significantly higher than FC spermatozoa (P = 0.0053). This simple, small volume vitrification protocol and standard insemination method allows successful embryo production from small numbers of epididymal spermatozoa and may be applied clinically to circumvent the need for ICSI, which has the disadvantage of bypassing sperm selection. PMID:27427551

  17. Host cell reactivation of gamma-irradiated adenovirus 5 in human cell lines of varying radiosensitivity.

    PubMed Central

    Eady, J. J.; Peacock, J. H.; McMillan, T. J.

    1992-01-01

    DNA repair processes play an important role in the determination of radiation response in both normal and tumour cells. We have investigated one aspect of DNA repair in a number of human cell lines of varying radiosensitivity using the adenovirus 5 host cell reactivation assay (HCR). In this technique, gamma-irradiated virions are used to infect cells and the ability of the cellular repair systems to process this damage is assayed by a convenient immunoperoxidase method recognising viral structural antigen expression on the cell membrane 48 h after infection. Reduced HCR was exhibited by radioresistant HeLa cells and by a radiosensitive neuroblastoma cell line, HX142. In contrast, an ataxia telangiectasia cell line, AT5 BIVA, did not show reduced HCR. On the basis of these results we can make no general conclusions about the relevance of HCR to cellular radiosensitivity. We have extended these studies to determine whether our cell lines exhibited enhanced viral reactivation (ER) following a small priming dose of gamma-radiation given to the cells before viral infection. No evidence for this phenomenon was found either in normal or tumour cell lines. PMID:1637659

  18. Effects of caffeine on radiation-induced phenomena associated with cell- cycle traverse of mammalian cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walters, R.A.; Gurley, L.R.; Tobby, R.A.

    1974-02-01

    Caffeine induced a state of G/sub 1/ arrest when added to an exponentially growing culture of Chinese hamster cells (line CHO). In addition to its effect on cell-cycle traverse, caffeine ameliorated a number of the responses of cells to ionizing radiation. The duration of the division delay period following x-irradiation of caffeine-treated cells was reduced, and the magnitude of reduction was dependent on caffeine concentration. Cells irradiated during the DNA synthetic phase in the presence of caffeine were delayed less in their exit from S, measured autoradiographically, and the radiation-induced reduction of radioactive thymidine incorporation into DNA was lessened. Cellsmore » synchronized by isoleucine deprivation, while being generally less sensitive to the effects of ionizing radiation than mitotically synchronized cells, were equally responsive to the effects of caffeine. The x-rayinduced reduction of phosphorylation of lysine-rich histone F1 was less in caffeine-treated cells than in untreated cells. Finally, survival after irradiation was only slightly reduced in caffeinetreated cells. A possible role of cyclic AMP in cell-cycle traverse of irradiated cells is discussed. (auth)« less

  19. Minocycline Rescues from Zinc-Induced Nigrostriatal Dopaminergic Neurodegeneration: Biochemical and Molecular Interventions.

    PubMed

    Kumar, Vinod; Singh, Brajesh Kumar; Chauhan, Amit Kumar; Singh, Deepali; Patel, Devendra Kumar; Singh, Chetna

    2016-07-01

    Accumulation of zinc (Zn) in dopaminergic neurons is implicated in Parkinson's disease (PD), and microglial activation plays a critical role in toxin-induced Parkinsonism. Oxidative stress is accused in Zn-induced dopaminergic neurodegeneration; however, its connection with microglial activation is still not known. This study was undertaken to elucidate the role and underlying mechanism of microglial activation in Zn-induced nigrostriatal dopaminergic neurodegeneration. Male Wistar rats were treated intraperitoneally with/without zinc sulphate (20 mg/kg) in the presence/absence of minocycline (30 mg/kg), a microglial activation inhibitor, for 2-12 weeks. While neurobehavioral and biochemical indexes of PD and number of dopaminergic neurons were reduced, the number of microglial cells was increased in the substantia nigra of the Zn-exposed animals. Similarly, Zn elevated lipid peroxidation (LPO) and activities of superoxide dismutase (SOD) and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase; however, catalase activity was reduced. Besides, Zn increased an association of NADPH oxidase subunit p67(phox) with membrane, cytochrome c release from the mitochondria and cleavage of pro-caspase 3. Zn attenuated the expression of tyrosine hydroxylase (TH) and vesicular monoamine transporter-2 (VMAT-2) while augmented the expression of dopamine transporter (DAT) and heme oxygenase-1 (HO-1). Minocycline alleviated Zn-induced behavioural impairments, loss of TH-positive neurons, activated microglial cells and biochemical indexes and modulated the expression of studied genes/proteins towards normalcy. The results demonstrate that minocycline reduces the number of activated microglial cells and oxidative stress, which rescue from Zn-induced changes in the expression of monoamine transporter and nigrostriatal dopaminergic neurodegeneration.

  20. 22-Oxacalcitriol Prevents Progression of Peritoneal Fibrosis in a Mouse Model

    PubMed Central

    Hirose, Misaki; Nishino, Tomoya; Obata, Yoko; Nakazawa, Masayuki; Nakazawa, Yuka; Furusu, Akira; Abe, Katsushige; Miyazaki, Masanobu; Koji, Takehiko; Kohno, Shigeru

    2013-01-01

    ♦ Objective: Vitamin D plays an important role in calcium homeostasis and is used to treat secondary hyperparathyroidism among dialysis patients. The biologic activity of vitamin D and its analogs is mediated by vitamin D receptor (VDR), which is distributed widely throughout the body. Recent papers have revealed that low vitamin D levels are correlated with severe fibrosis in chronic diseases, including cystic fibrosis and hepatitis. The aim of the present study was to evaluate the protective effects of vitamin D against the progression of peritoneal fibrosis. ♦ Methods: Peritoneal fibrosis was induced by injection of chlorhexidine gluconate (CG) into the peritoneal cavity of mice every other day for 3 weeks. An analog of vitamin D, 22-oxacalcitriol (OCT), was administered subcutaneously daily from initiation of the CG injections. The peritoneal tissue was excised at 3 weeks. Changes in morphology were assessed by hematoxylin and eosin staining. Expression of VDR, alpha smooth muscle actin (as a marker of myofibroblasts), type III collagen, transforming growth factor β(TGF-β), phosphorylated Smad2/3, F4/80 (as a marker of macrophages), and monocyte chemoattractant protein-1 (MCP-1) was examined by immunohistochemistry. Southwestern histochemistry was used to detect activated nuclear factor κB (NF-κB). ♦ Results: In the CG-injected mice, immunohistochemical analysis revealed expression of VDR in mesothelial cells, myofibroblasts, and macrophages in the thickened submesothelial zone. Treatment with OCT significantly prevented peritoneal fibrosis and reduced the accumulation of type III collagen in CG-treated mice. Among the markers of fibrosis, the numbers of myofibroblasts, cells positive for TGF-β, and cells positive for phosphorylated Smad2/3 were significantly decreased in the OCT-treated group compared with the vehicle-treated group. Furthermore, OCT suppressed inflammatory mediators of fibrosis, as shown by the reduced numbers of activated NF-κB cells, macrophages, and MCP-1-expressing cells. ♦ Conclusions: Our results indicate that OCT attenuates peritoneal fibrosis, an effect accompanied by reduced numbers of myofibroblasts, infiltrating macrophages, and TGF-β-positive cells, suggesting that vitamin D has potential as a novel therapeutic agent for preventing peritoneal sclerosis. PMID:23032084

  1. Effects of oxyanions, natural organic matter, and bacterial cell numbers on the bioreduction of lepidocrocite ({gamma}-FeOOH) and the formation of secondary mineralization products.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Loughlin, E. J.; Gorski, C. A.; Scherer, M. M.

    Microbial reduction of Fe(III) oxides results in the production of Fe(II) and may lead to the subsequent formation of Fe(II)-bearing secondary mineralization products including magnetite, siderite, vivianite, chukanovite (ferrous hydroxy carbonate (FHC)), and green rust; however, the factors controlling the formation of specific Fe(II) phases are often not well-defined. This study examined effects of (i) a range of inorganic oxyanions (arsenate, borate, molybdate, phosphate, silicate, and tungstate), (ii) natural organic matter (citrate, oxalate, microbial extracellular polymeric substances [EPS], and humic substances), and (iii) the type and number of dissimilatory iron-reducing bacteria on the bioreduction of lepidocrocite and formation of Fe(II)-bearingmore » secondary mineralization products. The bioreduction kinetics clustered into two distinct Fe(II) production profiles. 'Fast' Fe(II) production kinetics [19-24 mM Fe(II) d-1] were accompanied by formation of magnetite and FHC in the unamended control and in systems amended with borate, oxalate, gellan EPS, or Pony Lake fulvic acid or having 'low' cell numbers. Systems amended with arsenate, citrate, molybdate, phosphate, silicate, tungstate, EPS from Shewanella putrefaciens CN32, or humic substances derived from terrestrial plant material or with 'high' cell numbers exhibited comparatively slow Fe(II) production kinetics [1.8-4.0 mM Fe(II) d-1] and the formation of green rust. The results are consistent with a conceptual model whereby competitive sorption of more strongly bound anions blocks access of bacterial cells and reduced electron-shuttling compounds to sites on the iron oxide surface, thereby limiting the rate of bioreduction.« less

  2. Tauroursodeoxycholic acid (TUDCA) alleviates endoplasmic reticulum stress of nuclear donor cells under serum starvation.

    PubMed

    Zhang, Ying; Qu, Pengxiang; Ma, Xiaonan; Qiao, Fang; Ma, Yefei; Qing, Suzhu; Zhang, Yong; Wang, Yongsheng; Cui, Wei

    2018-01-01

    Serum starvation is a routine protocol for synchronizing nuclear donor cells to G0/G1 phase during somatic cell nuclear transfer (SCNT). However, abrupt serum deprivation can cause serious stress to the cells cultured in vitro, which might result in endoplasmic reticulum (ER) stress, chromosome damage, and finally reduce the success rate of SCNT. In the present study, the effects of tauroursodeoxycholic acid (TUDCA), an effective ER stress-relieving drug, on the nuclear donor cells under serum deprivation condition as well as following SCNT procedures were first assessed in the bovine. The results showed that TUDCA significantly reduced ER stress and cell apoptosis in those nuclear donor cells. Moreover, it significantly decreased the expression of Hdac1 and Dnmt1, and increased the level of H3K9 acetylation in nuclear donor cells compared with control group. SCNT reconstructed embryos cloned from TUDCA-treated donor cells showed significantly higher fusion, cleavage, blastocyst formation rate, total cell number in day 7 blastocysts, and lower apoptotic index than that from control group. In addition, the expression of Hdac1, Dnmt1 and Bax was significantly lower in blastocysts derived from TUDCA-treated donor cells than that from control group. In conclusion, TUDCA significantly reduced the ER stress of nuclear donor cells under serum starvation condition, and significantly improved the developmental competence of following SCNT reconstructed embryos when these TUDCA-treated cells were used as the nuclear donors.

  3. The effect of long-term lithium treatment of bipolar disorder on stem cells circulating in peripheral blood.

    PubMed

    Ferensztajn-Rochowiak, Ewa; Kucharska-Mazur, Jolanta; Samochowiec, Jerzy; Ratajczak, Mariusz Z; Michalak, Michal; Rybakowski, Janusz K

    2017-02-01

    To investigate the effect of long-term lithium treatment on very small embryonic-like stem cells (VSELs), haematopoietic stem cells (HSCs), mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs) circulating in peripheral blood (PB), in bipolar disorder (BD). The study included 15 BD patients (aged 55 ± 6 years) treated with lithium for 8-40 years (mean 16 years), 15 BD patients (aged 53 ± 7 years) with duration of illness >10 years, who had never received lithium, and 15 healthy controls (aged 50 ± 5 years). The VSELs, HSCs, MSCs and EPCs were measured by flow cytometric analysis. In BD subjects not taking lithium the number of CD34 +  VSELs was significantly higher, and MSCs and EPCs numerically higher, than in control subjects and the number of CD34 +  VSELs correlated with the duration of illness. In lithium-treated patients these values were similar to controls and the number of CD34 +  VSELs correlated negatively with the duration of lithium treatment and serum lithium concentration. Long-term treatment with lithium may suppress the activation of regenerative processes by reducing the number of VSELs circulating in PB. These cells, in BD patients not treated with lithium, may provide a new potential biological marker of the illness and its clinical progress.

  4. Use of direct fluorescence labeling and confocal microscopy to determine the biodistribution of two protein therapeutics, Cerezyme and Ceredase.

    PubMed

    Piepenhagen, Peter A; Vanpatten, Scott; Hughes, Heather; Waire, James; Murray, James; Andrews, Laura; Edmunds, Tim; O'Callaghan, Michael; Thurberg, Beth L

    2010-07-01

    Efficient targeting of therapeutic reagents to tissues and cell types of interest is critical to achieving therapeutic efficacy and avoiding unwanted side effects due to offtarget uptake. To increase assay efficiency and reduce the number of animals used per experiment during preclinical development, we used a combination of direct fluorescence labeling and confocal microscopy to simultaneously examine the biodistribution of two therapeutic proteins, Cerezyme and Ceredase, in the same animals. We show that the fluorescent tags do not interfere with protein uptake and localization. We are able to detect Cerezyme and Ceredase in intact cells and organs and demonstrate colocalization within target cells using confocal microscopy. In addition, the relative amount of protein internalized by different cell types can be quantified using cell type-specific markers and morphometric analysis. This approach provides an easy and straightforward means of assessing the tissue and cell type-specific biodistribution of multiple protein therapeutics in target organs using a minimal number of animals. (c) 2009 Wiley-Liss, Inc.

  5. Hot-spot qualification testing of concentrator modules

    NASA Technical Reports Server (NTRS)

    Gonzalez, C. C.; Sugimura, R. S.; Ross, R. G., Jr.

    1987-01-01

    Results of a study to determine the hot-spot susceptibility of concentrator cells, to provide a hot-spot qualification test for concentrator modules, and to provide guidelines for reducing hot-spot susceptibility are presented. Hot-spot heating occurs in a photovoltaic module when the short-circuit current of a cell is lower than the string operating current, forcing the cell into reverse bias with a concurrent power dissipation. Although the basis for the concentrator-module hot-spot qualification test is the test developed for flat-plate modules, issues such as providing cell illumination introduce additional complexities into the testing procedure. The results indicate that the same general guidelines apply to protecting concentrator modules from hot-spot stressing as apply to flat-plate modules, and recommendations are made on the number of bypass diodes required per given number of series cells per module or source circuit. A method for determining the cell temperature in the laboratory or in the field is discussed.

  6. Inhibition of tamoxifen's therapeutic benefit by tangeretin in mammary cancer.

    PubMed

    Depypere, H T; Bracke, M E; Boterberg, T; Mareel, M M; Nuytinck, M; Vennekens, K; Serreyn, R

    2000-09-01

    Tangeretin, a molecule present in citrus fruits and in certain 'natural' menopausal medications, is an effective tumour growth and invasion inhibitor in vitro of human MCF 7/6 breast cancer cells. However, when added to the drinking water of MCF 7/6 tumour-bearing mice it neutralises the beneficial tumour-suppressing effect of tamoxifen. Tangeretin reduces the number of natural killer cells. This may explain why the beneficial suppressive effect of tangeretin on MCF 7/6 cell proliferation in vitro is completely counteracted in vivo.

  7. Interaction of PDK1 with Phosphoinositides Is Essential for Neuronal Differentiation but Dispensable for Neuronal Survival

    PubMed Central

    Zurashvili, Tinatin; Cordón-Barris, Lluís; Ruiz-Babot, Gerard; Zhou, Xiangyu; Lizcano, Jose M.; Gómez, Nestor; Giménez-Llort, Lydia

    2013-01-01

    3-Phosphoinositide-dependent protein kinase 1 (PDK1) operates in cells in response to phosphoinositide 3-kinase activation and phosphatidylinositol-3,4,5-trisphosphate [PtdIns(3,4,5)P3] production by activating a number of AGC kinases, including protein kinase B (PKB)/Akt. Both PDK1 and PKB contain pleckstrin homology (PH) domains that interact with the PtdIns(3,4,5)P3 second messenger. Disrupting the interaction of the PDK1 PH domain with phosphoinositides by expressing the PDK1 K465E knock-in mutation resulted in mice with reduced PKB activation. We explored the physiological consequences of this biochemical lesion in the central nervous system. The PDK1 knock-in mice displayed a reduced brain size due to a reduction in neuronal cell size rather than cell number. Reduced BDNF-induced phosphorylation of PKB at Thr308, the PDK1 site, was observed in the mutant neurons, which was not rate limiting for the phosphorylation of those PKB substrates governing neuronal survival and apoptosis, such as FOXO1 or glycogen synthase kinase 3 (GSK3). Accordingly, the integrity of the PDK1 PH domain was not essential to support the survival of different embryonic neuronal populations analyzed. In contrast, PKB-mediated phosphorylation of PRAS40 and TSC2, allowing optimal mTORC1 activation and brain-specific kinase (BRSK) protein synthesis, was markedly reduced in the mutant mice, leading to impaired neuronal growth and differentiation. PMID:23275438

  8. Increased CD8 T-cell granzyme B in COPD is suppressed by treatment with low-dose azithromycin.

    PubMed

    Hodge, Sandra; Hodge, Greg; Holmes, Mark; Jersmann, Hubertus; Reynolds, Paul N

    2015-01-01

    Corticosteroid resistance in chronic obstructive pulmonary disease (COPD) is a major challenge. We have reported increased bronchial epithelial cell apoptosis and increased airway CD8 T-cell numbers in COPD. Apoptosis can be induced via the serine protease, granzyme B. However, glucocorticosteroids fail to adequately suppress granzyme B production by CD8 T cells. We previously showed that low-dose azithromycin reduced airways inflammation in COPD subjects and we hypothesized that it would also reduce granzyme B production by CD8 T cells. We administered 250 mg azithromycin daily for 5 days then twice weekly (total 12 weeks) to 11 COPD subjects (five current smokers; six ex-smokers) and assessed granzyme B in the airway (bronchoalveolar lavage), intra-epithelial compartment and peripheral blood, collected before and following administration of azithromycin. To then dissect the effects of on CD4 and CD8 T-cell subsets, we applied an in vitro assay and physiologically relevant concentrations of azithromycin (and, for comparison, n-acetyl cysteine) and stimulation of peripheral blood mononuclear cells from five healthy subjects with CD3/CD28 T-cell expander. T-cell granzyme B production in both airway and intra-epithelial compartments was reduced in COPD patients following 12 weeks of azithromycin treatment, with no significant effect in blood. Both azithromycin and n-acetyl cysteine suppressed CD4 T-cell granzyme B production, but only azithromycin was effective at reducing CD8+ T-cell granzyme B production in vitro. We provide further evidence for the application of low-dose azithromycin as an attractive adjunct treatment option for controlling epithelial cell apoptosis, abnormal airway repair and chronic inflammation in COPD. © 2014 Asian Pacific Society of Respirology.

  9. Dimethyl Fumarate Selectively Reduces Memory T Cells and Shifts the Balance between Th1/Th17 and Th2 in Multiple Sclerosis Patients.

    PubMed

    Wu, Qi; Wang, Qin; Mao, Guangmei; Dowling, Catherine A; Lundy, Steven K; Mao-Draayer, Yang

    2017-04-15

    Dimethyl fumarate (DMF; trade name Tecfidera) is an oral formulation of the fumaric acid ester that is Food and Drug Administration approved for treatment of relapsing-remitting multiple sclerosis. To better understand the therapeutic effects of Tecfidera and its rare side effect of progressive multifocal leukoencephalopathy, we conducted cross-sectional and longitudinal studies by immunophenotyping cells from peripheral blood (particularly T lymphocytes) derived from untreated and 4-6 and 18-26 mo Tecfidera-treated stable relapsing-remitting multiple sclerosis patients using multiparametric flow cytometry. The absolute numbers of CD4 and CD8 T cells were significantly decreased and the CD4/CD8 ratio was increased with DMF treatment. The proportions of both effector memory T cells and central memory T cells were reduced, whereas naive T cells increased in treated patients. T cell activation was reduced with DMF treatment, especially among effector memory T cells and effector memory RA T cells. Th subsets Th1 (CXCR3 + ), Th17 (CCR6 + ), and particularly those expressing both CXCR3 and CD161 were reduced most significantly, whereas the anti-inflammatory Th2 subset (CCR3 + ) was increased after DMF treatment. A corresponding increase in IL-4 and decrease in IFN-γ and IL-17-expressing CD4 + T cells were observed in DMF-treated patients. DMF in vitro treatment also led to increased T cell apoptosis and decreased activation, proliferation, reactive oxygen species, and CCR7 expression. Our results suggest that DMF acts on specific memory and effector T cell subsets by limiting their survival, proliferation, activation, and cytokine production. Monitoring these subsets could help to evaluate the efficacy and safety of DMF treatment. Copyright © 2017 by The American Association of Immunologists, Inc.

  10. The anti-tumor effect of the quinoline-3-carboxamide tasquinimod: blockade of recruitment of CD11b(+) Ly6C(hi) cells to tumor tissue reduces tumor growth.

    PubMed

    Deronic, Adnan; Tahvili, Sahar; Leanderson, Tomas; Ivars, Fredrik

    2016-07-11

    Previous work has demonstrated immunomodulatory, anti-tumor, anti-metastatic and anti-angiogenic effects of the small molecule quinoline-3-carboxamide tasquinimod in pre-clinical cancer models. To better understand the anti-tumor effects of tasquinimod in transplantable tumor models, we have evaluated the impact of the compound both on recruitment of myeloid cells to tumor tissue and on tumor-induced myeloid cell expansion as these cells are known to promote tumor development. Mice bearing subcutaneous 4 T1 mammary carcinoma tumors were treated with tasquinimod in the drinking water. A BrdU-based flow cytometry assay was utilized to assess the impact of short-term tasquinimod treatment on myeloid cell recruitment to tumors. Additionally, long-term treatment was performed to study the anti-tumor effect of tasquinimod as well as its effects on splenic myeloid cells and their progenitors. Myeloid cell populations were also immune-depleted by in vivo antibody treatment. Short-term tasquinimod treatment did not influence the proliferation of splenic Ly6C(hi) and Ly6G(hi) cells, but instead reduced the influx of Ly6C(hi) cells to the tumor. Treatment with tasquinimod for various periods of time after tumor inoculation revealed that the anti-tumor effect of this compound mainly operated during the first few days of tumor growth. Similar to tasquinimod treatment, antibody-mediated depletion of Ly6C(hi) cells within that same time frame, caused reduced tumor growth, thereby confirming a significant role for these cells in tumor development. Additionally, long-term tasquinimod treatment reduced the splenomegaly and expansion of splenic myeloid cells during a later phase of tumor development. In this phase, tasquinimod normalized the tumor-induced alterations in myeloerythroid progenitor cells in the spleen but had only limited impact on the same populations in the bone marrow. Our results indicate that tasquinimod treatment reduces tumor growth by operating early after tumor inoculation and that this effect is at least partially caused by reduced recruitment of Ly6C(hi) cells to tumor tissue. Long-term treatment also reduces the number of splenic myeloid cells and myeloerythroid progenitors, but these effects did not influence established rapidly growing tumors.

  11. Endothelial progenitor cells in mothers of low-birthweight infants: a link between defective placental vascularization and increased cardiovascular risk?

    PubMed

    King, Thomas F J; Bergin, David A; Kent, Etaoin M; Manning, Fiona; Reeves, Emer P; Dicker, Patrick; McElvaney, Noel G; Sreenan, Seamus; Malone, Fergal D; McDermott, John H

    2013-01-01

    Offspring birthweight is inversely associated with future maternal cardiovascular mortality, a relationship that has yet to be fully elucidated. Endothelial progenitor cells (EPCs) are thought to play a key role in vasculogenesis, and EPC numbers reflect cardiovascular risk. Our objective was to ascertain whether EPC number or function was reduced in mothers of low-birthweight infants. This was a prospective cohort study in a general antenatal department of a university maternity hospital. Twenty-three mothers of small for gestational age (SGA) infants (birthweight < 10th centile) and 23 mothers of appropriate for gestational age (AGA) infants (birthweight ≥ 10th centile) were recruited. Maternal EPC number and function, conventional cardiovascular risk markers, and cord blood adiponectin were measured. Median EPC count was lower (294 vs. 367, P = 0.005) and EPC migration was reduced (0.91 vs. 1.59, P < 0.001) in SGA compared with AGA infants, with no difference in EPC adhesion (0.221 vs. 0.284 fluorescence units, P = 0.257). Maternal triglyceride levels were higher in SGA than AGA infants (0.98 vs. 0.78 mmol/liter, P = 0.006), but there was no difference in cholesterol, glucose, insulin, glycosylated hemoglobin, adiponectin, or blood pressure. There was a moderate monotone (increasing) relationship between birthweight and umbilical cord blood adiponectin (r = 0.475, P = 0.005). Giving birth to an SGA infant was associated with lower maternal EPC number and reduced migratory function. Cord blood adiponectin was significantly correlated with birthweight.

  12. Lack of CD47 Impairs Bone Cell Differentiation and Results in an Osteopenic Phenotype in Vivo due to Impaired Signal Regulatory Protein α (SIRPα) Signaling*

    PubMed Central

    Koskinen, Cecilia; Persson, Emelie; Baldock, Paul; Stenberg, Åsa; Boström, Ingrid; Matozaki, Takashi; Oldenborg, Per-Arne; Lundberg, Pernilla

    2013-01-01

    Here, we investigated whether the cell surface glycoprotein CD47 was required for normal formation of osteoblasts and osteoclasts and to maintain normal bone formation activity in vitro and in vivo. In parathyroid hormone or 1α,25(OH)2-vitamin D3 (D3)-stimulated bone marrow cultures (BMC) from CD47−/− mice, we found a strongly reduced formation of multinuclear tartrate-resistant acid phosphatase (TRAP)+ osteoclasts, associated with reduced expression of osteoclastogenic genes (nfatc1, Oscar, Trap/Acp, ctr, catK, and dc-stamp). The production of M-CSF and RANKL (receptor activator of nuclear factor κβ ligand) was reduced in CD47−/− BMC, as compared with CD47+/+ BMC. The stromal cell phenotype in CD47−/− BMC involved a blunted expression of the osteoblast-associated genes osterix, Alp/Akp1, and α-1-collagen, and reduced mineral deposition, as compared with that in CD47+/+ BMC. CD47 is a ligand for SIRPα (signal regulatory protein α), which showed strongly reduced tyrosine phosphorylation in CD47−/− bone marrow stromal cells. In addition, stromal cells lacking the signaling SIRPα cytoplasmic domain also had a defect in osteogenic differentiation, and both CD47−/− and non-signaling SIRPα mutant stromal cells showed a markedly reduced ability to support osteoclastogenesis in wild-type bone marrow macrophages, demonstrating that CD47-induced SIRPα signaling is critical for stromal cell support of osteoclast formation. In vivo, femoral bones of 18- or 28-week-old CD47−/− mice showed significantly reduced osteoclast and osteoblast numbers and exhibited an osteopenic bone phenotype. In conclusion, lack of CD47 strongly impairs SIRPα-dependent osteoblast differentiation, deteriorate bone formation, and cause reduced formation of osteoclasts. PMID:23990469

  13. Halofuginone alleviates acute viral myocarditis in suckling BALB/c mice by inhibiting TGF-β1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xiao-Hua; Fu, Jia; Sun, Da-Qing, E-mail: daqingsuncd@163.com

    2016-04-29

    Viral myocarditis (VMC) is an inflammation of heart muscle in infants and young adolescents. This study explored the function of halofuginone (HF) in Coxsackievirus B3 (CVB3) -treated suckling mice. HF-treated animal exhibited higher survival rate, lower heart/body weight, and more decreased blood sugar concentration than CVB3 group. HF also reduced the expressions of interleukin(IL)-17 and IL-23 and the numbers of Th17 cells. Moreover, HF downregulated pro-inflammatory cytokine levels and increased anti-inflammatory cytokine levels. The expressions of transforming growth factor(TGF-β1) and nuclear factor kappa-light-chain-enhancer of activated B (NF-κB) p65/ tumor necrosis factor-α (TNF-α) proteins were decreased by HF as well. Finally,more » the overexpression of TGF-β1 counteracted the protection effect of HF in CVB3-treated suckling mice. In summary, our study suggests HF increases the survival of CVB3 suckling mice, reduces the Th17 cells and pro-inflammatory cytokine levels, and may through downregulation of the TGF-β1-mediated expression of NF-κB p65/TNF-α pathway proteins. These results offer a potential therapeutic strategy for the treatment of VMC. - Highlights: • Halofuginone (HF) increases the survival of suckling BALB/c mice infected with acute CVB3. • HF reduces the expression of Th17 cell markers (IL-17 and IL-23) and the number of CD4{sup +} IL17{sup +} cells. • Pro-inflammatory cytokines levels associated with myocarditis were reduced by HF in CVB3-treated suckling mice. • HF alleviates VMC via inhibition of TGF-β1-mediated NF-κB p65/TNF-α pathway.« less

  14. Large-scale Isolation of Highly Pure "Untouched" Regulatory T Cells in a GMP Environment for Adoptive Cell Therapy.

    PubMed

    Haase, Doreen; Puan, Kia Joo; Starke, Mireille; Lai, Tuck Siong; Soh, Melissa Yan Ling; Karunanithi, Iyswariya; San Luis, Boris; Poh, Tuang Yeow; Yusof, Nurhashikin; Yeap, Chun Hsien; Phang, Chew Yen; Chye, Willis Soon Yuan; Chan, Marieta; Koh, Mickey Boon Chai; Goh, Yeow Tee; Bertin-Maghit, Sebastien; Nardin, Alessandra; Ho, Liam Pock; Rotzschke, Olaf

    2015-01-01

    Adoptive cell therapy is an emerging treatment strategy for a number of serious diseases. Regulatory T (Treg) cells represent 1 cell type of particular interest for therapy of inflammatory conditions, as they are responsible for controlling unwanted immune responses. Initial clinical trials of adoptive transfer of Treg cells in patients with graft-versus-host disease were shown to be safe. However, obtaining sufficient numbers of highly pure and functional Treg cells with minimal contamination remains a challenge. We developed a novel approach to isolate "untouched" human Treg cells from healthy donors on the basis of negative selection using the surface markers CD49d and CD127. This procedure, which uses an antibody cocktail and magnetic beads for separation in an automated system (RoboSep), was scaled up and adapted to be compatible with good manufacturing practice conditions. With this setup we performed 9 Treg isolations from large-scale leukapheresis samples in a good manufacturing practice facility. These runs yielded sufficient numbers of "untouched" Treg cells for immediate use in clinical applications. The cell preparations consisted of viable highly pure FoxP3-positive Treg cells that were functional in suppressing the proliferation of effector T cells. Contamination with CD4 effector T cells was <10%. All other cell types did not exceed 2% in the final product. Remaining isolation reagents were reduced to levels that are considered safe. Treg cells isolated with this procedure will be used in a phase I clinical trial of adoptive transfer into leukemia patients developing graft-versus-host disease after stem cell transplantation.

  15. Prognostic Impact of PHIP Copy Number in Melanoma: Linkage to Ulceration

    PubMed Central

    Nosrati, Mehdi; Tong, Schuyler; Wu, Clayton; Thummala, Suresh; Dar, Altaf A.; Leong, Stanley P.L.; Cleaver, James E.; Sagebiel, Richard W.; Miller, James R.; Kashani-Sabet, Mohammed

    2013-01-01

    Ulceration is an important prognostic factor in melanoma whose biologic basis is poorly understood. Here we assessed the prognostic impact of pleckstrin homology domain-interacting protein (PHIP) copy number and its relationship to ulceration. PHIP copy number was determined using fluorescence in situ hybridization (FISH) in a tissue microarray cohort of 238 melanomas. Elevated PHIP copy number was associated with significantly reduced DMFS (P = 0.01) and DSS (P = 0.009) by Kaplan-Meier analyses. PHIP FISH scores were independently predictive of DMFS (P = 0.03) and DSS (P = 0.03). Increased PHIP copy number was an independent predictor of ulceration status (P = 0.04). The combined impact of increased PHIP copy number and tumor vascularity on ulceration status was highly significant (P< 0.0001). Stable suppression of PHIP in human melanoma cells resulted in significantly reduced glycolytic activity in vitro, with lower expression of LDH5, HIF1A, and VEGF, and was accompanied by reduced microvessel density in vivo. These results provide further support for PHIP as a molecular prognostic marker of melanoma, and reveal a significant linkage between PHIP levels and ulceration. Moreover, they suggest that ulceration may be driven by increased glycolysis and angiogenesis. PMID:24005052

  16. Vismodegib, an antagonist of hedgehog signaling, directly alters taste molecular signaling in taste buds.

    PubMed

    Yang, Hyekyung; Cong, Wei-Na; Yoon, Jeong Seon; Egan, Josephine M

    2015-02-01

    Vismodegib, a highly selective inhibitor of hedgehog (Hh) pathway, is an approved treatment for basal-cell carcinoma. Patients on treatment with vismodegib often report profound alterations in taste sensation. The cellular mechanisms underlying the alterations have not been studied. Sonic Hh (Shh) signaling is required for cell growth and differentiation. In taste buds, Shh is exclusively expressed in type IV taste cells, which are undifferentiated basal cells and the precursors of the three types of taste sensing cells. Thus, we investigated if vismodegib has an inhibitory effect on taste cell turnover because of its known effects on Hh signaling. We gavaged C57BL/6J male mice daily with either vehicle or 30 mg/kg vismodegib for 15 weeks. The gustatory behavior and immunohistochemical profile of taste cells were examined. Vismodegib-treated mice showed decreased growth rate and behavioral responsivity to sweet and bitter stimuli, compared to vehicle-treated mice. We found that vismodegib-treated mice had significant reductions in taste bud size and numbers of taste cells per taste bud. Additionally, vismodegib treatment resulted in decreased numbers of Ki67- and Shh-expressing cells in taste buds. The numbers of phospholipase Cβ2- and α-gustducin-expressing cells, which contain biochemical machinery for sweet and bitter sensing, were reduced in vismodegib-treated mice. Furthermore, vismodegib treatment resulted in reduction in numbers of T1R3, glucagon-like peptide-1, and glucagon-expressing cells, which are known to modulate sweet taste sensitivity. These results suggest that inhibition of Shh signaling by vismodegib treatment directly results in alteration of taste due to local effects in taste buds. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  17. Vismodegib, an antagonist of hedgehog signaling, directly alters taste molecular signaling in taste buds

    PubMed Central

    Yang, Hyekyung; Cong, Wei-na; Yoon, Jeong Seon; Egan, Josephine M

    2015-01-01

    Vismodegib, a highly selective inhibitor of hedgehog (Hh) pathway, is an approved treatment for basal-cell carcinoma. Patients on treatment with vismodegib often report profound alterations in taste sensation. The cellular mechanisms underlying the alterations have not been studied. Sonic Hh (Shh) signaling is required for cell growth and differentiation. In taste buds, Shh is exclusively expressed in type IV taste cells, which are undifferentiated basal cells and the precursors of the three types of taste sensing cells. Thus, we investigated if vismodegib has an inhibitory effect on taste cell turnover because of its known effects on Hh signaling. We gavaged C57BL/6J male mice daily with either vehicle or 30 mg/kg vismodegib for 15 weeks. The gustatory behavior and immunohistochemical profile of taste cells were examined. Vismodegib-treated mice showed decreased growth rate and behavioral responsivity to sweet and bitter stimuli, compared to vehicle-treated mice. We found that vismodegib-treated mice had significant reductions in taste bud size and numbers of taste cells per taste bud. Additionally, vismodegib treatment resulted in decreased numbers of Ki67- and Shh-expressing cells in taste buds. The numbers of phospholipase Cβ2- and α-gustducin-expressing cells, which contain biochemical machinery for sweet and bitter sensing, were reduced in vismodegib-treated mice. Furthermore, vismodegib treatment resulted in reduction in numbers of T1R3, glucagon-like peptide-1, and glucagon-expressing cells, which are known to modulate sweet taste sensitivity. These results suggest that inhibition of Shh signaling by vismodegib treatment directly results in alteration of taste due to local effects in taste buds. PMID:25354792

  18. Notch signaling deficiency underlies age-dependent depletion of satellite cells in muscular dystrophy

    PubMed Central

    Jiang, Chunhui; Wen, Yefei; Kuroda, Kazuki; Hannon, Kevin; Rudnicki, Michael A.; Kuang, Shihuan

    2014-01-01

    Duchenne muscular dystrophy (DMD) is a devastating disease characterized by muscle wasting, loss of mobility and death in early adulthood. Satellite cells are muscle-resident stem cells responsible for the repair and regeneration of damaged muscles. One pathological feature of DMD is the progressive depletion of satellite cells, leading to the failure of muscle repair. Here, we attempted to explore the molecular mechanisms underlying satellite cell ablation in the dystrophin mutant mdx mouse, a well-established model for DMD. Initial muscle degeneration activates satellite cells, resulting in increased satellite cell number in young mdx mice. This is followed by rapid loss of satellite cells with age due to the reduced self-renewal ability of mdx satellite cells. In addition, satellite cell composition is altered even in young mdx mice, with significant reductions in the abundance of non-committed (Pax7+ and Myf5−) satellite cells. Using a Notch-reporter mouse, we found that the mdx satellite cells have reduced activation of Notch signaling, which has been shown to be necessary to maintain satellite cell quiescence and self-renewal. Concomitantly, the expression of Notch1, Notch3, Jag1, Hey1 and HeyL are reduced in the mdx primary myoblast. Finally, we established a mouse model to constitutively activate Notch signaling in satellite cells, and show that Notch activation is sufficient to rescue the self-renewal deficiencies of mdx satellite cells. These results demonstrate that Notch signaling is essential for maintaining the satellite cell pool and that its deficiency leads to depletion of satellite cells in DMD. PMID:24906372

  19. GATA2 Deficiency and Epstein-Barr Virus Disease.

    PubMed

    Cohen, Jeffrey I

    2017-01-01

    GATA2 is a transcription factor that binds to the promoter of hematopoietic genes. Mutations in one copy of the gene are associated with haploinsufficiency and reduced levels of protein. This results in reduced numbers of several cell types important for immune surveillance including dendritic cells, monocytes, CD4, and NK cells, as well as impaired NK cell function. Recently, GATA2 has been associated with several different presentations of severe Epstein-Barr virus (EBV) disease including primary infection requiring repeated hospitalizations, chronic active EBV disease, EBV-associated hydroa vacciniforme with hemophagocytosis, and EBV-positive smooth muscle tumors. EBV was found predominantly in B cells in each of the cases in which it was studied, unlike most cases of chronic active EBV disease in which the virus is usually present in T or NK cells. The variety of EBV-associated diseases seen in patients with GATA2 deficiency suggest that additional forms of severe EBV disease may be found in patients with GATA2 deficiency in the future.

  20. Effects of selective type I and II adrenal steroid agonists on immune cell distribution.

    PubMed

    Miller, A H; Spencer, R L; hassett, J; Kim, C; Rhee, R; Ciurea, D; Dhabhar, F; McEwen, B; Stein, M

    1994-11-01

    Adrenal steroids exert their effects through two distinct adrenal steroid receptor subtypes; the high affinity type I, or mineralocorticoid, receptor and the lower affinity type II, or glucocorticoid, receptor. Adrenal steroids have well known effects on immune cell distribution, and although both type I and II receptors are expressed in immune cells and tissues, few data exist on the relative effects mediated through these two receptor subtypes. Accordingly, we administered selective type I and II adrenal steroid receptor agonists to young adult male Sprague-Dawley rats for 7 days and then measured immune cell distribution in the peripheral blood and spleen. Results were compared with those of similar studies using the naturally occurring glucocorticoid of the rat, corticosterone, which binds both type I and II receptors. The majority of the well characterized effects of adrenal steroids on peripheral blood immune cells (increased neutrophils and decreased lymphocytes and monocytes) were reproduced by the type II receptor agonist, RU28362. RU28362 decreased the numbers of all lymphocyte subsets [T-cells, B-cells, and natural killer (NK) cells] to very low absolute levels. The largest relative decrease (i.e. in percentage) was seen in B-cells, whereas NK cells exhibited the least relative decrease and actually showed a 2-fold increase in relative percentage during RU28362 treatment. Similar to RU28362, the type I receptor agonist, aldosterone, significantly reduced the number of lymphocytes and monocytes. In contrast to RU28362, however, aldosterone significantly decreased the number of neutrophils. Moreover, aldosterone decreased the number of T-helper cells and NK cells, while having no effect on the number of B-cells or T-suppressor/cytotoxic cells. Corticosterone at physiologically relevant concentrations had potent effects on immune cell distribution, which were indistinguishable from those of the type II receptor agonist, RU28362. Taken together, these results indicate that effects of adrenal steroids on immune cell distribution are dependent on the receptor subtype involved as well as the specific cell type targeted. These factors allow for varied and complex effects of adrenal steroids on the immune system under physiological conditions.

  1. Effect of Saponins of Albizia lebbeck (L.) Benth bark on the reproductive system of male albino rats.

    PubMed

    Gupta, R S; Chaudhary, Rakesh; Yadav, Rajesh K; Verma, Suresh K; Dobhal, M P

    2005-01-04

    Oral administration of saponins isolated from Albizia lebbeck bark at the dose level of 50 mg/kg/b.w. per day for 60 days to male rats brought about a significant decrease in the weights of testes, epididymides, seminal vesicle and ventral prostate. The production of round spermatid was reduced by 73.04% in Albizia lebbeck treated rats. The population of preleptotene spermatocytes and spermatogonia were reduced by 65.07% and 47.48% and secondary spermatocytes by 73.41%, respectively. Cross sectional surface area of Sertoli cells as well as the cell counts were found to be depleted significantly. Leydig cell nuclear area and number of mature Leydig cells were decreased by 57.47% and 54.42%, respectively. Sperm motility as well as sperm density were reduced significantly. Albizia lebbeck reduced the fertility of male rats by 100%. There were no significant changes in RBC and WBC count, haemoglobin, haematocrit and glucose in the blood and cholesterol, protein, triglyceride and phospholipid in the serum. The protein, glycogen and cholesterol contents of the testes, fructose in the seminal vesicle and protein in epididymides were significantly decreased. Histoarchitecture of the testes showed vacuolization at primary spermatocytes stage. Highly reduced seminiferous tubular diameter and increased intertubular space were also observed when compared to controls.

  2. Can deaths in police cells be prevented? Experience from Norway and death rates in other countries.

    PubMed

    Aasebø, Willy; Orskaug, Gunnar; Erikssen, Jan

    2016-01-01

    To describe the changes in death rates and causes of deaths in Norwegian police cells during the last 2 decades. To review reports on death rates in police cells that have been published in medical journals and elsewhere, and discuss the difficulties of comparing death rates between countries. Data on deaths in Norwegian police cells were collected retrospectively in 2002 and 2012 for two time periods: 1993-2001 (period 1) and 2003-2012 (period 2). Several databases were searched to find reports on deaths in police cells from as many countries as possible. The death rates in Norwegian police cells reduced significantly from 0.83 deaths per year per million inhabitants (DYM) in period 1 to 0.22 DYM in period 2 (p < 0.05). The most common cause of death in period 1 was alcohol intoxication including intracranial bleeding in persons with high blood alcohol levels, and the number declined from 16 persons in period 1 to 1 person in period 2 (p = 0.032). The median death rate in the surveyed Western countries was 0.44 DYM (range: 0.14-1.46 DYM). The number of deaths in Norwegian police cells reduced by about 75% over a period of approximately 10 years. This is probably mainly due to individuals with severe alcohol intoxication no longer being placed in police cells. However, there remain large methodology difficulties in comparing deaths rates between countries. Copyright © 2015 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  3. Myeloid-Derived Suppressor Cells Ameliorate Cyclosporine A-Induced Hypertension in Mice.

    PubMed

    Chiasson, Valorie L; Bounds, Kelsey R; Chatterjee, Piyali; Manandhar, Lochana; Pakanati, Abhinandan R; Hernandez, Marcos; Aziz, Bilal; Mitchell, Brett M

    2018-01-01

    The calcineurin inhibitor cyclosporine A (CsA) suppresses the immune system but promotes hypertension, vascular dysfunction, and renal damage. CsA decreases regulatory T cells and this contributes to the development of hypertension. However, CsA's effects on another important regulatory immune cell subset, myeloid-derived suppressor cells (MDSCs), is unknown. We hypothesized that augmenting MDSCs would ameliorate the CsA-induced hypertension and vascular and renal injury and dysfunction and that CsA reduces MDSCs in mice. Daily interleukin-33 treatment, which increased MDSC levels, completely prevented CsA-induced hypertension and vascular and renal toxicity. Adoptive transfer of MDSCs from control mice into CsA-treated mice after hypertension was established dose-dependently reduced blood pressure and vascular and glomerular injury. CsA treatment of aortas and kidneys isolated from control mice for 24 hours decreased relaxation responses and increased inflammation, respectively, and these effects were prevented by the presence of MDSCs. MDSCs also prevented the CsA-induced increase in fibronectin in microvascular and glomerular endothelial cells. Last, CsA dose-dependently reduced the number of MDSCs by inhibiting calcineurin and preventing cell proliferation, as other direct calcineurin signaling pathway inhibitors had the same dose-dependent effect. These data suggest that augmenting MDSCs can reduce the cardiovascular and renal toxicity and hypertension caused by CsA. © 2017 American Heart Association, Inc.

  4. The influence of the surgical wound on local tumor recurrence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, D.G.; Masterson, T.M.; Pace, R.

    1989-09-01

    Failure of a primary surgical treatment for cancer is often caused by recurrence of the tumor at the surgical site. The KHT mouse tumor system recapitulates this experience and provides a useful model to test strategies for reducing the incidence of local recurrence after surgical excision. There was an 82% local recurrence of the KHT tumor after surgery. A cell dilution assay indicated that it would require only 39 tumor cells injected into the wound site to result in the same (82%) incidence of tumors. This figure is in contrast to 340 cells required when the cells were injected intomore » an unwounded flank. With the B16 melanoma in C57B1 mice and the Meth A sarcoma in BALB/c mice, the number of cells necessary to induce a tumor (TD/50) was also significantly reduced when the cells were injected into a surgical wound rather than into nonwounded tissue. The difference in cell number was interpreted as the result of the presence of growth factors derived from the traumatized tissue and the inflammatory cells at the wound site. Neither a 5 nor a 15 Gy dose of x-radiation delivered to the wound site immediately after surgical excision of the KHT tumor resulted in a significant reduction in the incidence of local recurrences. When the same doses of x-radiation were given immediately after injecting 36 KHT cells into a wound, no tumors developed. This difference was believed to have resulted from the hypoxic condition in the wound site and the presence of residual clonogenic tumor cells in a nonproliferating (radioresistant) state.« less

  5. Imatinib and Nilotinib Off-Target Effects on Human NK Cells, Monocytes, and M2 Macrophages.

    PubMed

    Bellora, Francesca; Dondero, Alessandra; Corrias, Maria Valeria; Casu, Beatrice; Regis, Stefano; Caliendo, Fabio; Moretta, Alessandro; Cazzola, Mario; Elena, Chiara; Vinti, Luciana; Locatelli, Franco; Bottino, Cristina; Castriconi, Roberta

    2017-08-15

    Tyrosine kinase inhibitors (TKIs) are used in the clinical management of hematological neoplasms. Moreover, in solid tumors such as stage 4 neuroblastomas (NB), imatinib showed benefits that might depend on both on-target and immunological off-target effects. We investigated the effects of imatinib and nilotinib on human NK cells, monocytes, and macrophages. High numbers of monocytes died upon exposure to TKI concentrations similar to those achieved in patients. Conversely, NK cells were highly resistant to the TKI cytotoxic effect, were properly activated by immunostimulatory cytokines, and degranulated in the presence of NB cells. In NB, neither drug reduced the expression of ligands for activating NK receptors or upregulated that of HLA class I, B7-H3, PD-L1, and PD-L2, molecules that might limit NK cell function. Interestingly, TKIs modulated the chemokine receptor repertoire of immune cells. Acting at the transcriptional level, they increased the surface expression of CXCR4, an effect observed also in NK cells and monocytes of patients receiving imatinib for chronic myeloid leukemia. Moreover, TKIs reduced the expression of CXCR3 (in NK cells) and CCR1 (in monocytes). Monocytes also decreased the expression of M-CSFR, and low numbers of cells underwent differentiation toward macrophages. M0 and M2 macrophages were highly resistant to TKIs and maintained their phenotypic and functional characteristics. Importantly, also in the presence of TKIs, the M2 immunosuppressive polarization was reverted by TLR engagement, and M1-oriented macrophages fully activated autologous NK cells. Our results contribute to better interpreting the off-target efficacy of TKIs in tumors and to envisaging strategies aimed at facilitating antitumor immune responses. Copyright © 2017 by The American Association of Immunologists, Inc.

  6. mTOR is necessary for proper satellite cell activity and skeletal muscle regeneration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Pengpeng; Department of Animal Sciences, Purdue University, West Lafayette, IN 47907; Liang, Xinrong

    The serine/threonine kinase mammalian target of rapamycin (mTOR) is a key regulator of protein synthesis, cell proliferation and energy metabolism. As constitutive deletion of Mtor gene results in embryonic lethality, the function of mTOR in muscle stem cells (satellite cells) and skeletal muscle regeneration remains to be determined. In this study, we established a satellite cell specific Mtor conditional knockout (cKO) mouse model by crossing Pax7{sup CreER} and Mtor{sup flox/flox} mice. Skeletal muscle regeneration after injury was severely compromised in the absence of Mtor, indicated by increased number of necrotic myofibers infiltrated by Evans blue dye, and reduced number andmore » size of regenerated myofibers in the Mtor cKO mice compared to wild type (WT) littermates. To dissect the cellular mechanism, we analyzed satellite cell-derived primary myoblasts grown on single myofibers or adhered to culture plates. The Mtor cKO myoblasts exhibited defective proliferation and differentiation kinetics when compared to myoblasts derived from WT littermates. At the mRNA and protein levels, the Mtor cKO myoblasts expressed lower levels of key myogenic determinant genes Pax7, Myf5, Myod, Myog than did the WT myoblasts. These results suggest that mTOR is essential for satellite cell function and skeletal muscle regeneration through controlling the expression of myogenic genes. - Highlights: • Pax7{sup CreER} was used to delete Mtor gene in satellite cells. • Satellite cell specific deletion of Mtor impairs muscle regeneration. • mTOR is necessary for satellite cell proliferation and differentiation. • Deletion of Mtor leads to reduced expression of key myogenic genes.« less

  7. siRNA blocking the RAS signalling pathway and inhibits the growth of oesophageal squamous cell carcinoma in nude mice.

    PubMed

    Wang, Xinjie; Zheng, Yuling; Fan, Qingxia; Zhang, Xudong; Shi, Yonggang

    2014-12-01

    The aim of this study was to study RAS-siRNA blocking RAS pathway and suppressing cell growth in human oesophageal squamous cell carcinoma in nude mice. The methods in this study was to construct RAS-siRNA expression vector, establish 40 oesophageal squamous cell carcinoma xenograft animal models and divided them into five groups: control group, siRNA control group, RAS-siRNA group, paclitaxel group and RAS-siRNA and paclitaxel group. We observed tumour growth in nude mice, studied histology by HE staining, tumour growth inhibition by TUNEL assay and detected the RAS, MAPK and cyclin D1 protein expression by immunohistochemistry and western blot. We have obtained the following results: (i) successfully established animal models; (ii) nude mice in each group after treatment inhibited tumour volume was significantly reduced compared with the control group (p < 0.05); (iii) compared with the control group, the number of apoptotic cells were significantly increased in the siRNA control group and the RAS-siRNA group, and the number of apoptosis cells in the paclitaxel and RAS-siRNA group is significantly most than the paclitaxel group and RAS-siRNA group (p < 0.05); and (iv) after treatment, RAS, MAPK and cyclin D1 expression in five groups was decreasing gradually. After adding paclitaxel, the protein expression in the paclitaxel and RAS-siRNA group was significantly lower than that of paclitaxel group, negative control and paclitaxel group (p < 0.05). We therefore conclude that RAS-siRNA can block the RAS signal transduction pathway, reduce the activity of tumour cells, arrest tumour cell cycle, promote apoptosis, inhibit cell proliferation and increase tumour cell sensitivity to chemotherapeutic drugs. Copyright © 2014 John Wiley & Sons, Ltd.

  8. Impaired airway epithelial cell responses from children with asthma to rhinoviral infection.

    PubMed

    Kicic, A; Stevens, P T; Sutanto, E N; Kicic-Starcevich, E; Ling, K-M; Looi, K; Martinovich, K M; Garratt, L W; Iosifidis, T; Shaw, N C; Buckley, A G; Rigby, P J; Lannigan, F J; Knight, D A; Stick, S M

    2016-11-01

    The airway epithelium forms an effective immune and physical barrier that is essential for protecting the lung from potentially harmful inhaled stimuli including viruses. Human rhinovirus (HRV) infection is a known trigger of asthma exacerbations, although the mechanism by which this occurs is not fully understood. To explore the relationship between apoptotic, innate immune and inflammatory responses to HRV infection in airway epithelial cells (AECs) obtained from children with asthma and non-asthmatic controls. In addition, to test the hypothesis that aberrant repair of epithelium from asthmatics is further dysregulated by HRV infection. Airway epithelial brushings were obtained from 39 asthmatic and 36 non-asthmatic children. Primary cultures were established and exposed to HRV1b and HRV14. Virus receptor number, virus replication and progeny release were determined. Epithelial cell apoptosis, IFN-β production, inflammatory cytokine release and epithelial wound repair and proliferation were also measured. Virus proliferation and release was greater in airway epithelial cells from asthmatics but this was not related to the number of virus receptors. In epithelial cells from asthmatic children, virus infection dampened apoptosis, reduced IFN-β production and increased inflammatory cytokine production. HRV1b infection also inhibited wound repair capacity of epithelial cells isolated from non-asthmatic children and exaggerated the defective repair response seen in epithelial cells from asthmatics. Addition of IFN-β restored apoptosis, suppressed virus replication and improved repair of airway epithelial cells from asthmatics but did not reduce inflammatory cytokine production. Collectively, HRV infection delays repair and inhibits apoptotic processes in epithelial cells from non-asthmatic and asthmatic children. The delayed repair is further exaggerated in cells from asthmatic children and is only partially reversed by exogenous IFN-β. © 2016 John Wiley & Sons Ltd.

  9. Changes in human bone marrow fat content associated with changes in hematopoietic stem cell numbers and cytokine levels with aging

    PubMed Central

    Tuljapurkar, Sonal R; McGuire, Timothy R; Brusnahan, Susan K; Jackson, John D; Garvin, Kevin L; Kessinger, Margaret A; Lane, Judy T; O' Kane, Barbara J; Sharp, John G

    2011-01-01

    Hematological deficiencies increase with aging, including anemias, reduced responses to hematopoietic stress and myelodysplasias. This investigation tested the hypothesis that increased bone marrow (BM) fat content in humans with age was associated with decreased numbers of side population (SP) hematopoietic stem cells, and this decrease correlated with changes in cytokine levels. BM was obtained from the femoral head and trochanteric region of the femur removed at surgery for total hip replacement (N = 100 subjects). In addition, BM from cadavers (N = 36), with no evidence of hip disease, was evaluated for fat content. Whole trabecular marrow samples were ground in a sterile mortar and pestle, and cellularity and lipid content determined. Marrow cells were stained with Hoechst dye and SP profiles were acquired. Plasma levels of insulin-like growth factor (IGF)-1, stromal-derived factor (SDF)-1 and interleukin (IL)-6 were measured using ELISA. Fat content in the BM of human subjects and cadavers increased with age. The numbers of SP stem cells in BM as well as plasma IGF-1 and SDF-1 levels decreased in correlation with increased BM fat. IL-6 had no relationship to changes in marrow fat. These data suggest that increased BM fat may be associated with a decreased number of SP stem cells and IGF-1 and SDF-1 levels with aging. These data further raise a more general question as to the role of adipose cells in the regulation of tissue stem cells. PMID:21923862

  10. Zinc promotes proliferation and activation of myogenic cells via the PI3K/Akt and ERK signaling cascade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohashi, Kazuya, E-mail: asuno10k@yahoo.co.jp; Nagata, Yosuke, E-mail: cynagata@mail.ecc.u-tokyo.ac.jp; Wada, Eiji, E-mail: gacchu1@yahoo.co.jp

    2015-05-01

    Skeletal muscle stem cells named muscle satellite cells are normally quiescent but are activated in response to various stimuli, such as injury and overload. Activated satellite cells enter the cell cycle and proliferate to produce a large number of myogenic progenitor cells, and these cells then differentiate and fuse to form myofibers. Zinc is one of the essential elements in the human body, and has multiple roles, including cell growth and DNA synthesis. However, the role of zinc in myogenic cells is not well understood, and is the focus of this study. We first examined the effects of zinc onmore » differentiation of murine C2C12 myoblasts and found that zinc promoted proliferation, with an increased number of cells incorporating EdU, but inhibited differentiation with reduced myogenin expression and myotube formation. Furthermore, we used the C2C12 reserve cell model of myogenic quiescence to investigate the role of zinc on activation of myogenic cells. The number of reserve cells incorporating BrdU was increased by zinc in a dose dependent manner, with the number dramatically further increased using a combination of zinc and insulin. Akt and extracellular signal-regulated kinase (ERK) are downstream of insulin signaling, and both were phosphorylated after zinc treatment. The zinc/insulin combination-induced activation involved the phosphoinositide 3-kinase (PI3K)/Akt and ERK cascade. We conclude that zinc promotes activation and proliferation of myogenic cells, and this activation requires phosphorylation of PI3K/Akt and ERK as part of the signaling cascade. - Highlights: • Zinc has roles for promoting proliferation and inhibition differentiation of C2C12. • Zinc promotes activation of reserve cells. • Insulin and zinc synergize activation of reserve cells. • PI3K/Akt and ERK cascade affect zinc/insulin-mediated activation of reserve cells.« less

  11. Stirred suspension bioreactors as a novel method to enrich germ cells from pre-pubertal pig testis.

    PubMed

    Dores, C; Rancourt, D; Dobrinski, I

    2015-05-01

    To study spermatogonial stem cells the heterogeneous testicular cell population first needs to be enriched for undifferentiated spermatogonia, which contain the stem cell population. When working with non-rodent models, this step requires working with large numbers of cells. Available cell separation methods rely on differential properties of testicular cell types such as expression of specific cell surface proteins, size, density, or differential adhesion to substrates to separate germ cells from somatic cells. The objective of this study was to develop an approach that allowed germ cell enrichment while providing efficiency of handling large cell numbers. Here, we report the use of stirred suspension bioreactors (SSB) to exploit the adhesion properties of Sertoli cells to enrich cells obtained from pre-pubertal porcine testes for undifferentiated spermatogonia. We also compared the bioreactor approach with an established differential plating method and the combination of both: SSB followed by differential plating. After 66 h of culture, germ cell enrichment in SSBs provided 7.3 ± 1.0-fold (n = 9), differential plating 9.8 ± 2.4-fold (n = 6) and combination of both methods resulted in 9.1 ± 0.3-fold enrichment of germ cells from the initial germ cell population (n = 3). To document functionality of cells recovered from the bioreactor, we demonstrated that cells retained their functional ability to reassemble seminiferous tubules de novo after grafting to mouse hosts and to support spermatogenesis. These results demonstrate that the SSB allows enrichment of germ cells in a controlled and scalable environment providing an efficient method when handling large cell numbers while reducing variability owing to handling. © 2015 American Society of Andrology and European Academy of Andrology.

  12. Stirred suspension bioreactors as a novel method to enrich germ cells from pre-pubertal pig testis

    PubMed Central

    Dores, Camila; Rancourt, Derrick; Dobrinski, Ina

    2015-01-01

    To study spermatogonial stem cells the heterogeneous testicular cell population first needs to be enriched for undifferentiated spermatogonia, which contain the stem cell population. When working with non-rodent models, this step requires working with large numbers of cells. Available cell separation methods rely on differential properties of testicular cell types such as expression of specific cell surface proteins, size, density or differential adhesion to substrates to separate germ cells from somatic cells. The objective of this study was to develop an approach that allowed germ cell enrichment while providing efficiency of handling large cell numbers. Here we report the use of stirred suspension bioreactors to exploit the adhesion properties of Sertoli cells to enrich cells obtained from pre-pubertal porcine testes for undifferentiated spermatogonia. We also compared the bioreactor approach with an established differential plating method and the combination of both: stirred suspension bioreactor followed by differential plating. After 66 hours of culture, germ cell enrichment in stirred suspension bioreactors provided 7.3±1.0 fold (n=9), differential plating 9.8±2.4 fold (n=6) and combination of both methods resulted in 9.1±0.3 fold enrichment of germ cells from the initial germ cell population (n=3). To document functionality of cells recovered from the bioreactor, we demonstrated that cells retained their functional ability to reassemble seminiferous tubules de novo after grafting to mouse hosts and to support spermatogenesis. These results demonstrate that the stirred suspension bioreactor allows enrichment of germ cells in a controlled and scalable environment providing an efficient method when handling large cell numbers while reducing variability due to handling. PMID:25877677

  13. Survivin, a target to modulate the radiosensitivity of Ewing's sarcoma.

    PubMed

    Greve, B; Sheikh-Mounessi, F; Kemper, B; Ernst, I; Götte, M; Eich, H T

    2012-11-01

    Radiotherapy constitutes an essential element in the multimodal therapy of Ewing's sarcoma. Compared to other sarcomas, Ewing tumors normally show a good response to radiotherapy. However, there are consistently tumors with a radioresistant phenotype, and the underlying mechanisms are not known in detail. Here we investigated the association between survivin protein expression and the radiosensitivity of Ewing's sarcoma in vitro. An siRNA-based knockdown approach was used to investigate the influence of survivin expression on cell proliferation, double-strand break (DSB) induction and repair, apoptosis and colony-forming ability in four Ewing's sarcoma cell lines with and without irradiation. Survivin protein and mRNA were upregulated in all cell lines tested in a dose-dependent manner. As a result of survivin knockdown, STA-ET-1 cells showed reduced cell proliferation, an increased number of radiation-induced DSBs, and reduced repair. Apoptosis was increased by knockdown alone and increased further in combination with irradiation. Colony formation was significantly reduced by survivin knockdown in combination with irradiation. Survivin is a radiation-inducible protein in Ewing's sarcoma and its down-regulation sensitizes cells toward irradiation. Survivin knockdown in combination with radiation inhibits cell proliferation, repair, and colony formation significantly and increases apoptosis more than each single treatment alone. This might open new perspectives in the radiation treatment of Ewing's sarcoma.

  14. Genetic and pharmacologic inhibition of EPHA2 promotes apoptosis in NSCLC

    PubMed Central

    Amato, Katherine R.; Wang, Shan; Hastings, Andrew K.; Youngblood, Victoria M.; Santapuram, Pranav R.; Chen, Haiying; Cates, Justin M.; Colvin, Daniel C.; Ye, Fei; Brantley-Sieders, Dana M.; Cook, Rebecca S.; Tan, Li; Gray, Nathanael S.; Chen, Jin

    2014-01-01

    Genome-wide analyses determined previously that the receptor tyrosine kinase (RTK) EPHA2 is commonly overexpressed in non–small cell lung cancers (NSCLCs). EPHA2 overexpression is associated with poor clinical outcomes; therefore, EPHA2 may represent a promising therapeutic target for patients with NSCLC. In support of this hypothesis, here we have shown that targeted disruption of EphA2 in a murine model of aggressive Kras-mutant NSCLC impairs tumor growth. Knockdown of EPHA2 in human NSCLC cell lines reduced cell growth and viability, confirming the epithelial cell autonomous requirements for EPHA2 in NSCLCs. Targeting EPHA2 in NSCLCs decreased S6K1-mediated phosphorylation of cell death agonist BAD and induced apoptosis. Induction of EPHA2 knockdown within established NSCLC tumors in a subcutaneous murine model reduced tumor volume and induced tumor cell death. Furthermore, an ATP-competitive EPHA2 RTK inhibitor, ALW-II-41-27, reduced the number of viable NSCLC cells in a time-dependent and dose-dependent manner in vitro and induced tumor regression in human NSCLC xenografts in vivo. Collectively, these data demonstrate a role for EPHA2 in the maintenance and progression of NSCLCs and provide evidence that ALW-II-41-27 effectively inhibits EPHA2-mediated tumor growth in preclinical models of NSCLC. PMID:24713656

  15. Acute and chronic T cell dynamics in the livers of simian immunodeficiency virus-infected macaques.

    PubMed

    Ahsan, Muhammad H; Gill, Amy F; Lackner, Andrew A; Veazey, Ronald S

    2012-05-01

    The mucosal immune system, particularly the gastrointestinal tract, is critically involved in the pathogenesis of human immunodeficiency virus (HIV) infection. Since the liver drains most of the substances coming from the intestinal tract, it may also play a role in the pathogenesis of HIV infection. Here we examined the percentages and absolute numbers of T cell subsets in the liver in normal and simian immunodeficiency virus (SIV)-infected macaques. Most of the T cells in the liver were CD8(+) memory cells, and most of these had an effector memory (CD95(+) CD28(-)) phenotype. CD4(+) T cells constituted approximately 20% of the liver T cell population, but the vast majority of these were also memory (CD95(+)) CCR5(+) cells, suggesting they were potential targets for viral infection. After SIV infection, CD4(+) T cells were markedly reduced, and increased proliferation and absolute numbers of CD8(+) T cells were detected in the liver. These data suggest that the liver is a major source of antigenic stimulation for promoting CD8(+) T cells and possibly a source for early CD4(+) T cell infection and destruction.

  16. Acute and Chronic T Cell Dynamics in the Livers of Simian Immunodeficiency Virus-Infected Macaques

    PubMed Central

    Ahsan, Muhammad H.; Gill, Amy F.; Lackner, Andrew A.

    2012-01-01

    The mucosal immune system, particularly the gastrointestinal tract, is critically involved in the pathogenesis of human immunodeficiency virus (HIV) infection. Since the liver drains most of the substances coming from the intestinal tract, it may also play a role in the pathogenesis of HIV infection. Here we examined the percentages and absolute numbers of T cell subsets in the liver in normal and simian immunodeficiency virus (SIV)-infected macaques. Most of the T cells in the liver were CD8+ memory cells, and most of these had an effector memory (CD95+ CD28−) phenotype. CD4+ T cells constituted approximately 20% of the liver T cell population, but the vast majority of these were also memory (CD95+) CCR5+ cells, suggesting they were potential targets for viral infection. After SIV infection, CD4+ T cells were markedly reduced, and increased proliferation and absolute numbers of CD8+ T cells were detected in the liver. These data suggest that the liver is a major source of antigenic stimulation for promoting CD8+ T cells and possibly a source for early CD4+ T cell infection and destruction. PMID:22379078

  17. Sensory neurons do not induce motor neuron loss in a human stem cell model of spinal muscular atrophy.

    PubMed

    Schwab, Andrew J; Ebert, Allison D

    2014-01-01

    Spinal muscular atrophy (SMA) is an autosomal recessive disorder leading to paralysis and early death due to reduced SMN protein. It is unclear why there is such a profound motor neuron loss, but recent evidence from fly and mouse studies indicate that cells comprising the whole sensory-motor circuit may contribute to motor neuron dysfunction and loss. Here, we used induced pluripotent stem cells derived from SMA patients to test whether sensory neurons directly contribute to motor neuron loss. We generated sensory neurons from SMA induced pluripotent stem cells and found no difference in neuron generation or survival, although there was a reduced calcium response to depolarizing stimuli. Using co-culture of SMA induced pluripotent stem cell derived sensory neurons with control induced pluripotent stem cell derived motor neurons, we found no significant reduction in motor neuron number or glutamate transporter boutons on motor neuron cell bodies or neurites. We conclude that SMA sensory neurons do not overtly contribute to motor neuron loss in this human stem cell system.

  18. HTLV-1-induced leukotriene B4 secretion by T cells promotes T cell recruitment and virus propagation

    PubMed Central

    Percher, Florent; Curis, Céline; Pérès, Eléonore; Artesi, Maria; Rosewick, Nicolas; Jeannin, Patricia; Gessain, Antoine; Gout, Olivier; Mahieux, Renaud; Ceccaldi, Pierre-Emmanuel; Van den Broeke, Anne; Duc Dodon, Madeleine; Afonso, Philippe V.

    2017-01-01

    The human T-lymphotropic virus type 1 (HTLV-1) is efficiently transmitted through cellular contacts. While the molecular mechanisms of viral cell-to-cell propagation have been extensively studied in vitro, those facilitating the encounter between infected and target cells remain unknown. In this study, we demonstrate that HTLV-1-infected CD4 T cells secrete a potent chemoattractant, leukotriene B4 (LTB4). LTB4 secretion is dependent on Tax-induced transactivation of the pla2g4c gene, which encodes the cytosolic phospholipase A2 gamma. Inhibition of LTB4 secretion or LTB4 receptor knockdown on target cells reduces T-cell recruitment, cellular contact formation and virus propagation in vitro. Finally, blocking the synthesis of LTB4 in a humanized mouse model of HTLV-1 infection significantly reduces proviral load. This results from a decrease in the number of infected clones while their expansion is not impaired. This study shows the critical role of LTB4 secretion in HTLV-1 transmission both in vitro and in vivo. PMID:28639618

  19. TGF-β reduces DNA ds-break repair mechanisms to heighten genetic diversity and adaptability of CD44+/CD24- cancer cells.

    PubMed

    Pal, Debjani; Pertot, Anja; Shirole, Nitin H; Yao, Zhan; Anaparthy, Naishitha; Garvin, Tyler; Cox, Hilary; Chang, Kenneth; Rollins, Fred; Kendall, Jude; Edwards, Leyla; Singh, Vijay A; Stone, Gary C; Schatz, Michael C; Hicks, James; Hannon, Gregory J; Sordella, Raffaella

    2017-01-16

    Many lines of evidence have indicated that both genetic and non-genetic determinants can contribute to intra-tumor heterogeneity and influence cancer outcomes. Among the best described sub-population of cancer cells generated by non-genetic mechanisms are cells characterized by a CD44+/CD24- cell surface marker profile. Here, we report that human CD44+/CD24- cancer cells are genetically highly unstable because of intrinsic defects in their DNA-repair capabilities. In fact, in CD44+/CD24- cells, constitutive activation of the TGF-beta axis was both necessary and sufficient to reduce the expression of genes that are crucial in coordinating DNA damage repair mechanisms. Consequently, we observed that cancer cells that reside in a CD44+/CD24- state are characterized by increased accumulation of DNA copy number alterations, greater genetic diversity and improved adaptability to drug treatment. Together, these data suggest that the transition into a CD44+/CD24- cell state can promote intra-tumor genetic heterogeneity, spur tumor evolution and increase tumor fitness.

  20. Mutational analysis of the glycosylphosphatidylinositol (GPI) anchor pathway demonstrates that GPI-anchored proteins are required for cell wall biogenesis and normal hyphal growth in Neurospora crassa.

    PubMed

    Bowman, Shaun M; Piwowar, Amy; Al Dabbous, Mash'el; Vierula, John; Free, Stephen J

    2006-03-01

    Using mutational and proteomic approaches, we have demonstrated the importance of the glycosylphosphatidylinositol (GPI) anchor pathway for cell wall synthesis and integrity and for the overall morphology of the filamentous fungus Neurospora crassa. Mutants affected in the gpig-1, gpip-1, gpip-2, gpip-3, and gpit-1 genes, which encode components of the N. crassa GPI anchor biosynthetic pathway, have been characterized. GPI anchor mutants exhibit colonial morphologies, significantly reduced rates of growth, altered hyphal growth patterns, considerable cellular lysis, and an abnormal "cell-within-a-cell" phenotype. The mutants are deficient in the production of GPI-anchored proteins, verifying the requirement of each altered gene for the process of GPI-anchoring. The mutant cell walls are abnormally weak, contain reduced amounts of protein, and have an altered carbohydrate composition. The mutant cell walls lack a number of GPI-anchored proteins, putatively involved in cell wall biogenesis and remodeling. From these studies, we conclude that the GPI anchor pathway is critical for proper cell wall structure and function in N. crassa.

  1. Moles of a Substance per Cell Is a Highly Informative Dosing Metric in Cell Culture

    PubMed Central

    Wagner, Brett A.; Buettner, Garry R.

    2015-01-01

    Background The biological consequences upon exposure of cells in culture to a dose of xenobiotic are not only dependent on biological variables, but also the physical aspects of experiments e.g. cell number and media volume. Dependence on physical aspects is often overlooked due to the unrecognized ambiguity in the dominant metric used to express exposure, i.e. initial concentration of xenobiotic delivered to the culture medium over the cells. We hypothesize that for many xenobiotics, specifying dose as moles per cell will reduce this ambiguity. Dose as moles per cell can also provide additional information not easily obtainable with traditional dosing metrics. Methods Here, 1,4-benzoquinone and oligomycin A are used as model compounds to investigate moles per cell as an informative dosing metric. Mechanistic insight into reactions with intracellular molecules, differences between sequential and bolus addition of xenobiotic and the influence of cell volume and protein content on toxicity are also investigated. Results When the dose of 1,4-benzoquinone or oligomycin A was specified as moles per cell, toxicity was independent of the physical conditions used (number of cells, volume of medium). When using moles per cell as a dose-metric, direct quantitative comparisons can be made between biochemical or biological endpoints and the dose of xenobiotic applied. For example, the toxicity of 1,4-benzoquinone correlated inversely with intracellular volume for all five cell lines exposed (C6, MDA-MB231, A549, MIA PaCa-2, and HepG2). Conclusions Moles per cell is a useful and informative dosing metric in cell culture. This dosing metric is a scalable parameter that: can reduce ambiguity between experiments having different physical conditions; provides additional mechanistic information; allows direct comparison between different cells; affords a more uniform platform for experimental design; addresses the important issue of repeatability of experimental results, and could increase the translatability of information gained from in vitro experiments. PMID:26172833

  2. Umbilical cord CD71+ erythroid cells are reduced in neonates born to women in spontaneous preterm labor.

    PubMed

    Gomez-Lopez, Nardhy; Romero, Roberto; Xu, Yi; Miller, Derek; Unkel, Ronald; C MacKenzie, Tippi; Frascoli, Michela; Hassan, Sonia S

    2016-10-01

    Preterm neonates are highly susceptible to infection. Neonatal host defense against infection seems to be maintained by the temporal presence of immunosuppressive CD71+ erythroid cells. The aim of this study was to investigate whether umbilical cord CD71+ erythroid cells are reduced in neonates born to women who undergo spontaneous preterm labor/birth. Umbilical cord blood samples (n=155) were collected from neonates born to women who delivered preterm with (n=39) and without (n=12) spontaneous labor or at term with (n=82) and without (n=22) spontaneous labor. Time-matched maternal peripheral blood samples were also included (n=111). Mononuclear cells were isolated from these samples, and CD71+ erythroid cells were identified and quantified as CD3-CD235a+CD71+ cells by flow cytometry. (i) The proportion of CD71+ erythroid cells was 50-fold higher in cord blood than in maternal blood; (ii) a reduced number and frequency of umbilical cord CD71+ erythroid cells were found in neonates born to women who underwent spontaneous preterm labor compared to those born to women who delivered preterm without labor; (iii) umbilical cord CD71+ erythroid cells were fewer in neonates born to term pregnancies, regardless of the process of labor, than in those born to women who delivered preterm without labor; and (iv) no differences were seen in umbilical cord CD71+ erythroid cells between neonates born to women who underwent spontaneous preterm labor and those born to women who delivered at term with labor. Umbilical cord CD71+ erythroid cells are reduced in neonates born to women who had undergone spontaneous preterm labor. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  3. Regulatory CD8+CD122+ T-cells predominate in CNS after treatment of experimental stroke in male mice with IL-10-secreting B-cells

    PubMed Central

    Lapato, Andrew; Vandenbark, Arthur A.; Murphy, Stephanie J.; Saugstad, Julie A.; Offner, Halina

    2014-01-01

    Clinical stroke induces inflammatory processes leading to cerebral and splenic injury and profound peripheral immunosuppression. IL-10 expression is elevated during major CNS diseases and limits inflammation in the brain. Recent evidence demonstrated that transfer of IL-10+ B-cells reduced infarct volume in male C57BL/6J (wild-type, WT) recipient mice when given 24 h prior to or 4 h after middle cerebral artery occlusion (MCAO). The purpose of this study was to determine if passively transferred IL-10+ B-cells can exert therapeutic and immunoregulatory effects when injected 24 hours after MCAO induction in B-cell-sufficient male WT mice. The results demonstrated that IL-10+ B-cell treated mice had significantly reduced infarct volumes in the ipsilateral cortex and hemisphere and improved neurological deficits vs. Vehicle-treated control mice after 60 min occlusion and 96 h of reperfusion. The MCAO-protected B-cell recipient mice had less splenic atrophy and reduced numbers of activated, inflammatory T-cells, decreased infiltration of T-cells and a less inflammatory milieu in the ischemic hemispheres compared with Vehicle-treated control mice. These immunoregulatory changes occurred in concert with the predominant appearance of IL-10-secreting CD8+CD122+ Treg cells in both the spleen and the MCAO-affected brain hemisphere. This study for the first time demonstrates a major neuroprotective role for IL-10+ B-cells in treating MCAO in male WT mice at a time point well beyond the ~4 h tPA treatment window, leading to the generation of a dominant IL-10+CD8+CD122+ Treg population associated with spleen preservation and reduced CNS inflammation. PMID:25537181

  4. Secretory IgM Exacerbates Tumor Progression by Inducing Accumulations of MDSCs in Mice.

    PubMed

    Tang, Chih-Hang Anthony; Chang, Shiun; Hashimoto, Ayumi; Chen, Yi-Ju; Kang, Chang Won; Mato, Anthony R; Del Valle, Juan R; Gabrilovich, Dmitry I; Hu, Chih-Chi Andrew

    2018-06-01

    Chronic lymphocytic leukemia (CLL) cells can secrete immunoglobulin M. However, it is not clear whether secretory IgM (sIgM) plays a role in disease progression. We crossed the Eμ-TCL1 mouse model of CLL, in which the expression of human TCL1 oncogene was driven by the V(H) promoter-Ig(H)-Eμ enhancer, with MD4 mice whose B cells produced B-cell receptor (membrane-bound IgM) and sIgM with specificity for hen egg lysozyme (HEL). CLL cells that developed in these MD4/Eμ-TCL1 mice reactivated a parental Ig gene allele and secreted IgM, and did not recognize HEL. The MD4/Eμ-TCL1 mice had reduced survival, increased myeloid-derived suppressor cells (MDSC), and decreased numbers of T cells. We tested whether sIgM could contribute to the accumulation of MDSCs by crossing μS -/- mice, which could not produce sIgM, with Eμ-TCL1 mice. The μS -/- /Eμ-TCL1 mice survived longer than Eμ-TCL1 mice and developed decreased numbers of MDSCs which were less able to suppress proliferation of T cells. We targeted the synthesis of sIgM by deleting the function of XBP-1s and showed that targeting XBP-1s genetically or pharmacologically could lead to decreased sIgM, accompanied by decreased numbers and reduced functions of MDSCs in MD4/Eμ-TCL1 mice. Additionally, MDSCs from μS -/- mice grafted with Lewis lung carcinoma were inefficient suppressors of T cells, resulting in slower tumor growth. These results demonstrate that sIgM produced by B cells can upregulate the functions of MDSCs in tumor-bearing mice to aggravate cancer progression. In a mouse model of CLL, production of secretory IgM led to more MDSCs, fewer T cells, and shorter survival times for the mice. Thus, secretory IgM may aggravate the progression of this cancer. Cancer Immunol Res; 6(6); 696-710. ©2018 AACR . ©2018 American Association for Cancer Research.

  5. Curcumin inhibits cancer stem cell phenotypes in ex vivo models of colorectal liver metastases, and is clinically safe and tolerable in combination with FOLFOX chemotherapy

    PubMed Central

    James, Mark I.; Iwuji, Chinenye; Irving, Glen; Karmokar, Ankur; Higgins, Jennifer A.; Griffin-Teal, Nicola; Thomas, Anne; Greaves, Peter; Cai, Hong; Patel, Samita R.; Morgan, Bruno; Dennison, Ashley; Metcalfe, Matthew; Garcea, Giuseppe; Lloyd, David M.; Berry, David P.; Steward, William P.; Howells, Lynne M.; Brown, Karen

    2015-01-01

    In vitro and pre-clinical studies have suggested that addition of the diet-derived agent curcumin may provide a suitable adjunct to enhance efficacy of chemotherapy in models of colorectal cancer. However, the majority of evidence for this currently derives from established cell lines. Here, we utilised patient-derived colorectal liver metastases (CRLM) to assess whether curcumin may provide added benefit over 5-fluorouracil (5-FU) and oxaliplatin (FOLFOX) in cancer stem cell (CSC) models. Combination of curcumin with FOLFOX chemotherapy was then assessed clinically in a phase I dose escalation study. Curcumin alone and in combination significantly reduced spheroid number in CRLM CSC models, and decreased the number of cells with high aldehyde dehydrogenase activity (ALDHhigh/CD133−). Addition of curcumin to oxaliplatin/5-FU enhanced anti-proliferative and pro-apoptotic effects in a proportion of patient-derived explants, whilst reducing expression of stem cell-associated markers ALDH and CD133. The phase I dose escalation study revealed curcumin to be a safe and tolerable adjunct to FOLFOX chemotherapy in patients with CRLM (n = 12) at doses up to 2 grams daily. Curcumin may provide added benefit in subsets of patients when administered with FOLFOX, and is a well-tolerated chemotherapy adjunct. PMID:25979230

  6. Comparative Therapeutic Effects of Minocycline Treatment and Bone Marrow Mononuclear Cell Transplantation following Striatal Stroke

    PubMed Central

    Souza, Celice C.; da Silva, Michelle Castro; Lopes, Rosana Telma; Cardoso, Marcelo M.; Santos, Adriano Guimarães; dos Santos, Ijair Rogério

    2017-01-01

    We explored the comparative effects of minocycline treatment and intrastriatal BMMC transplantation after experimental striatal stroke in adult rats. Male Wistar adult rats were divided as follows: saline-treated (N = 5), minocycline-treated (N = 5), and BMMC-transplanted (N = 5) animals. Animals received intrastriatal microinjections of 80 pmol of endothelin-1 (ET-1). Behavioral tests were performed at 1, 3, and 7 days postischemia. Animals were treated with minocycline (50 mg/kg, i.p.) or intrastriatal transplants of 106 BMMCs at 24 h postischemia. Animals were perfused at 7 days after ischemic induction. Coronal sections were stained with cresyl violet for gross histopathological analysis and immunolabeled for the identification of neuronal bodies (NeuN), activated microglia/macrophages (ED1), and apoptotic cells (active caspase-3). BMMC transplantation and minocycline reduced the number of ED1+ cells (p < 0.05, ANOVA-Tukey), but BMMC afforded better results. Both treatments afforded comparable levels of neuronal preservation compared to control (p > 0.05). BMMC transplantation induced a higher decrease in the number of apoptotic cells compared to control and minocycline treatment. Both therapeutic approaches improved functional recovery in ischemic animals. The results suggest that BMMC transplantation is more effective in modulating microglial activation and reducing apoptotic cell death than minocycline, although both treatments are equally efficacious on improving neuronal preservation. PMID:28713482

  7. Comparative Therapeutic Effects of Minocycline Treatment and Bone Marrow Mononuclear Cell Transplantation following Striatal Stroke.

    PubMed

    Souza, Celice C; da Silva, Michelle Castro; Lopes, Rosana Telma; Cardoso, Marcelo M; de Souza, Lucas Lacerda; Santos, Adriano Guimarães; Dos Santos, Ijair Rogério; Franco, Edna C S; Gomes-Leal, Walace

    2017-01-01

    We explored the comparative effects of minocycline treatment and intrastriatal BMMC transplantation after experimental striatal stroke in adult rats. Male Wistar adult rats were divided as follows: saline-treated ( N = 5), minocycline-treated ( N = 5), and BMMC-transplanted ( N = 5) animals. Animals received intrastriatal microinjections of 80 pmol of endothelin-1 (ET-1). Behavioral tests were performed at 1, 3, and 7 days postischemia. Animals were treated with minocycline (50 mg/kg, i.p.) or intrastriatal transplants of 106 BMMCs at 24 h postischemia. Animals were perfused at 7 days after ischemic induction. Coronal sections were stained with cresyl violet for gross histopathological analysis and immunolabeled for the identification of neuronal bodies (NeuN), activated microglia/macrophages (ED1), and apoptotic cells (active caspase-3). BMMC transplantation and minocycline reduced the number of ED1+ cells ( p < 0.05, ANOVA-Tukey), but BMMC afforded better results. Both treatments afforded comparable levels of neuronal preservation compared to control ( p > 0.05). BMMC transplantation induced a higher decrease in the number of apoptotic cells compared to control and minocycline treatment. Both therapeutic approaches improved functional recovery in ischemic animals. The results suggest that BMMC transplantation is more effective in modulating microglial activation and reducing apoptotic cell death than minocycline, although both treatments are equally efficacious on improving neuronal preservation.

  8. Cigarette Smoke Inhibits Recruitment of Bone-Marrow-Derived Stem cells to The Uterus

    PubMed Central

    Zhou, Yuping; Gan, Ye; Taylor, Hugh S.

    2011-01-01

    Cigarette smoking leads to female infertility and a decreased incidence of endometriosis. Bone marrow derived stem cells are recruited to uterine endometrium and endometriosis. The effect of cigarette smoking on stem cell recruitment to any organ is uncharacterized. We hypothesized that bone marrow-derived mesenchymal stem cell recruitment to the uterus and differentiation would be diminished by cigarette smoke. We used human mesenchymal stem cells (hMSC) in vitro and a mouse model of cigarette smoke exposure. After myeloablation female C57BL/6J received bone marrow cells from males. Mice were exposed to room air or smoke from unfiltered cigarettes. Immunofluorescence and Y-FISH was performed on uterine sections. In vitro hMSCs were treated with 8-Br-cAMP to induce endometrial cell differentiation with or without cigarette smoke extract (CSE) and decidualization assessed morphologically and by prolactin expression. After 4 weeks the total number of Y-chromosome cells in the uterus was reduced by 68% in the smoke exposed mice. Both leukocytes and bone marrow derived endometrial cells were reduced by 60% and 73%, respectively. Differentiation of bone marrow derived cell to endometrial epithelial cells was reduced by 84%. hMSC treated with CSE failed to show cytological characteristics of decidualization. mRNA levels of the decidualization marker prolactin were decreased by 90% in CSE treated cells. Smoking inhibits both recruitment of bone marrow derived stem cells to uterus and stem cell differentiation. Inhibition of stem cells recruitment may be a general mechanism by which smoking leads to long term organ damage through inability to repair or regenerate multiple tissues. PMID:20955787

  9. Hesr1 and Hesr3 are essential to generate undifferentiated quiescent satellite cells and to maintain satellite cell numbers

    PubMed Central

    Fukada, So-ichiro; Yamaguchi, Masahiko; Kokubo, Hiroki; Ogawa, Ryo; Uezumi, Akiyoshi; Yoneda, Tomohiro; Matev, Miroslav M.; Motohashi, Norio; Ito, Takahito; Zolkiewska, Anna; Johnson, Randy L.; Saga, Yumiko; Miyagoe-Suzuki, Yuko; Tsujikawa, Kazutake; Takeda, Shin’ichi; Yamamoto, Hiroshi

    2011-01-01

    Satellite cells, which are skeletal muscle stem cells, divide to provide new myonuclei to growing muscle fibers during postnatal development, and then are maintained in an undifferentiated quiescent state in adult skeletal muscle. This state is considered to be essential for the maintenance of satellite cells, but their molecular regulation is unknown. We show that Hesr1 (Hey1) and Hesr3 (Heyl) (which are known Notch target genes) are expressed simultaneously in skeletal muscle only in satellite cells. In Hesr1 and Hesr3 single-knockout mice, no obvious abnormalities of satellite cells or muscle regenerative potentials are observed. However, the generation of undifferentiated quiescent satellite cells is impaired during postnatal development in Hesr1/3 double-knockout mice. As a result, myogenic (MyoD and myogenin) and proliferative (Ki67) proteins are expressed in adult satellite cells. Consistent with the in vivo results, Hesr1/3-null myoblasts generate very few Pax7+ MyoD– undifferentiated cells in vitro. Furthermore, the satellite cell number gradually decreases in Hesr1/3 double-knockout mice even after it has stabilized in control mice, and an age-dependent regeneration defect is observed. In vivo results suggest that premature differentiation, but not cell death, is the reason for the reduced number of satellite cells in Hesr1/3 double-knockout mice. These results indicate that Hesr1 and Hesr3 are essential for the generation of adult satellite cells and for the maintenance of skeletal muscle homeostasis. PMID:21989910

  10. Role of adaptive and innate immune cells in chronic fatigue syndrome/myalgic encephalomyelitis.

    PubMed

    Brenu, Ekua Weba; Huth, Teilah K; Hardcastle, Sharni L; Fuller, Kirsty; Kaur, Manprit; Johnston, Samantha; Ramos, Sandra B; Staines, Don R; Marshall-Gradisnik, Sonya M

    2014-04-01

    Perturbations in immune processes are a hallmark of a number of autoimmune and inflammatory disorders. Chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) is an inflammatory disorder with possible autoimmune correlates, characterized by reduced NK cell activity, elevations in regulatory T cells (Tregs) and dysregulation in cytokine levels. The purpose of this article is to examine innate and adaptive immune cell phenotypes and functional characteristics that have not been previously examined in CFS/ME patients. Thirty patients with CFS/ME and 25 non-fatigued controls were recruited for this study. Whole blood samples were collected from all participants for the assessment of cell phenotypes, functional properties, receptors, adhesion molecules, antigens and intracellular proteins using flow cytometric protocols. The cells investigated included NK cells, dendritic cells, neutrophils, B cells, T cells, γδT cells and Tregs. Significant changes were observed in B-cell subsets, Tregs, CD4(+)CD73(+)CD39(+) T cells, cytotoxic activity, granzyme B, neutrophil antigens, TNF-α and IFN-γ in the CFS/ME patients in comparison with the non-fatigued controls. Alterations in B cells, Tregs, NK cells and neutrophils suggest significant impairments in immune regulation in CFS/ME and these may have similarities to a number of autoimmune disorders.

  11. [Effect of cryopreservation on umbilical blood cells and its mechanism].

    PubMed

    Li, Xin; Chen, Fangping; Jiang, Tiebin; Wang, Erhua; Liu, Jing

    2013-07-01

    To evaluate the effect of cryopreservation on clonogenic ability and apoptosis rate of mono-nuclear cells and CD34+ cells in umbilical blood (UB), and to choose the index to present the freezing injury and optimize the cryopreservation of UB. The mono-nuclear cells (MNC) and CD34+ cells were separated from UB and frozen.After 30 days, they were thawed in warm water. Clonogenic capacity and clonogenic recovery before and after the cryopreservation was compared. We also used Annexin V-FITC-PI to investigate the apoptosis rate of the cells before and after the cryopreservation of these 2 types of cells. The number of colony forming unit-granulocyte/monocyte (CFU-GMs) was not changed after freezing and thawing in both MNCs and CD34+ cells, while the number of colony forming unit-granulocyte, erythrocyte, monocyte and megakaryocyte (CFU-GEMM) was obviously reduced after freezing in CD34+ cells. The 2 types of cryopreserved cells had certain degree of apoptosis before the cryopreservation. MNC-type cryopreservation increased the cells apoptosis a little, while CD34+-type cryopreservation increased more. The cells have certain degree of apoptosis before the cryopreservation. The freezing and thawing procedure does affect the early stage progenitor cells-CFU-GEMM in the CD34+- type cryopreserved cells in UB. The damage may be induced by the cell apoptosis.

  12. Pirfenidone and nintedanib modulate properties of fibroblasts and myofibroblasts in idiopathic pulmonary fibrosis.

    PubMed

    Lehtonen, Siri T; Veijola, Anniina; Karvonen, Henna; Lappi-Blanco, Elisa; Sormunen, Raija; Korpela, Saara; Zagai, Ulrika; Sköld, Magnus C; Kaarteenaho, Riitta

    2016-02-04

    Idiopathic pulmonary fibrosis (IPF) is an incurable lung disease with a poor prognosis. Fibroblasts and myofibroblasts are the key cells in the fibrotic process. Recently two drugs, pirfenidone and nintedanib, were approved for clinical use as they are able to slow down the disease progression. The mechanisms by which these two drugs act in in vitro cell systems are not known. The aim of this study was therefore to examine the effects of pirfenidone and nintedanib on fibroblasts and myofibroblasts structure and function established from patients with or without IPF. Stromal cells were collected and cultured from control lung (n = 4) or IPF (n = 7). The cells were treated with pirfenidone and/or nintedanib and the effect of treatment was evaluated by measuring cell proliferation, alpha smooth muscle actin (α-SMA) and fibronectin expression by Western analysis and/or immunoelectron microscopy, ultrastructural properties by transmission electron microscopy and functional properties by collagen gel contraction and invasion assays. Both pirfenidone and nintedanib reduced in vitro proliferation of fibroblastic cells in a dose dependent manner. The number of cells from control lung was reduced to 47 % (p = 0.04) and of IPF cells to 42 % (p = 0.04) by 1 mM pirfenidone and correspondingly to 67 % (p = 0.04) and 68 % (p = 0.04), by 1 μM nintedanib. If both drugs were used together, a further reduced proliferation was observed. Both pirfenidone and nintedanib were able to reduce the amount of α-SMA and the myofibroblastic appearance although the level of reduction was cell line dependent. In functional assays, the effect of both drugs was also variable. We conclude that the ultrastructure and function of fibroblasts and myofibroblasts are affected by pirfenidone and nintedanib. Combination of the drugs reduced cell proliferation more than either of them individually. Human lung derived cell culture systems represent a potential platform for screening and testing drugs for fibrotic diseases.

  13. WRKY13 acts in stem development in Arabidopsis thaliana.

    PubMed

    Li, Wei; Tian, Zhaoxia; Yu, Diqiu

    2015-07-01

    Stems are important for plants to grow erectly. In stems, sclerenchyma cells must develop secondary cell walls to provide plants with physical support. The secondary cell walls are mainly composed of lignin, xylan and cellulose. Deficiency of overall stem development could cause weakened stems. Here we prove that WRKY13 acts in stem development. The wrky13 mutants take on a weaker stem phenotype. The number of sclerenchyma cells, stem diameter and the number of vascular bundles were reduced in wrky13 mutants. Lignin-synthesis-related genes were repressed in wrky13 mutants. Chromatin immunoprecipitation assays proved that WRKY13 could directly bind to the promoter of NST2. Taken together, we proposed that WRKY13 affected the overall development of stem. Identification of the role of WRKY13 may help to resolve agricultural problems caused by weaker stems. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Voltage equalization of an ultracapacitor module by cell grouping using number partitioning algorithm

    NASA Astrophysics Data System (ADS)

    Oyarbide, E.; Bernal, C.; Molina, P.; Jiménez, L. A.; Gálvez, R.; Martínez, A.

    2016-01-01

    Ultracapacitors are low voltage devices and therefore, for practical applications, they need to be used in modules of series-connected cells. Because of the inherent manufacturing tolerance of the capacitance parameter of each cell, and as the maximum voltage value cannot be exceeded, the module requires inter-cell voltage equalization. If the intended application suffers repeated fast charging/discharging cycles, active equalization circuits must be rated to full power, and thus the module becomes expensive. Previous work shows that a series connection of several sets of paralleled ultracapacitors minimizes the dispersion of equivalent capacitance values, and also the voltage differences between capacitors. Thus the overall life expectancy is improved. This paper proposes a method to distribute ultracapacitors with a number partitioning-based strategy to reduce the dispersion between equivalent submodule capacitances. Thereafter, the total amount of stored energy and/or the life expectancy of the device can be considerably improved.

  15. Immunoexcitatory mechanisms in glioma proliferation, invasion and occasional metastasis

    PubMed Central

    Blaylock, Russell L.

    2013-01-01

    There is increasing evidence of an interaction between inflammatory cytokines and glutamate receptors among a number of neurological diseases including traumatic brain injuries, neurodegenerative diseases and central nervous system (CNS) infections. A number of recent studies have now suggested a strong relation between inflammatory mechanisms and excitatory cascades and these may play a role in glioma invasiveness and proliferation. Chronic inflammation appears to be a major initiating mechanism in most human cancers, involving cell-signaling pathways, which are responsible for cell cycling, cancer cell migration, invasion, tumor aggressiveness, and angiogenesis. It is less well appreciated that glutamate receptors also play a significant role in both proliferation and especially glioma invasion. There is some evidence that sustained elevations in glutamate may play a role in initiating certain cancers and new studies demonstrate an interaction between inflammation and glutamate receptors that may enhance tumor invasion and metastasis by affecting a number of cell-signaling mechanisms. These mechanisms are discussed in this paper as well as novel treatment options for reducing immune-glutamate promotion of cancer growth and invasion. PMID:23493580

  16. Comfrey (Symphytum Officinale. l.) and Experimental Hepatic Carcinogenesis: A Short-term Carcinogenesis Model Study

    PubMed Central

    Gomes, Maria Fernanda Pereira Lavieri; de Oliveira Massoco, Cristina; Xavier, José Guilherme

    2010-01-01

    Comfrey or Symphytum officinale (L.) (Boraginaceae) is a very popular plant used for therapeutic purposes. Since the 1980s, its effects have been studied in long-term carcinogenesis studies, in which Comfrey extract is administered at high doses during several months and the neoplastic hepatic lesions are evaluated. However, the literature on this topic is very poor considering the studies performed under short-term carcinogenesis protocols, such as the ‘resistant hepatocyte model’ (RHM). In these studies, it is possible to observe easily the phenomena related to the early phases of tumor development, since pre-neoplastic lesions (PNLs) rise in about 1–2 months of chemical induction. Herein, the effects of chronic oral treatment of rats with 10% Comfrey ethanolic extract were evaluated in a RHM. Wistar rats were sequentially treated with N-nitrosodiethylamine (ip) and 2-acetilaminofluorene (po), and submitted to hepatectomy to induce carcinogenesis promotion. Macroscopic/microscopic quantitative analysis of PNL was performed. Non-parametric statistical tests (Mann–Whitney and χ2) were used, and the level of significance was set at P ≤ 0.05. Comfrey treatment reduced the number of pre-neoplastic macroscopic lesions up to 1 mm (P ≤ 0.05), the percentage of oval cells (P = 0.0001) and mitotic figures (P = 0.007), as well as the number of Proliferating Cell Nuclear Antigen (PCNA) positive cells (P = 0.0001) and acidophilic pre-neoplastic nodules (P = 0.05). On the other hand, the percentage of cells presenting megalocytosis (P = 0.0001) and vacuolar degeneration (P = 0.0001) was increased. Scores of fibrosis, glycogen stores and the number of nucleolus organizing regions were not altered. The study indicated that oral treatment of rats with 10% Comfrey alcoholic extract reduced cell proliferation in this model. PMID:18955295

  17. Some karyological observations on plants grown in space

    NASA Technical Reports Server (NTRS)

    Krikorian, A. D.; Oconnor, S. A.

    1982-01-01

    Experiments were conducted to assess whether cell division in a plant root would be affected by prolonged exposure to microgravity. Root materials from sunflower, oat, and mung bean plants grown on STS-2 and STS-3 were utilized for the experiments. It is found that all oat, sunflower, and mung seedlings showed a reduced number of cells in division as they went through their first cell division cycle on earth when compared to their ground controls. A significant number of oat, mung, and sunflower plantlets exhibited random root orientation and the lack of strictly orthotropic growth of their shoot systems in the flight samples. In addition, it is found that the mung roots were apparently least affected in terms of their cytology despite the fact that their roots were often randomly oriented.

  18. Conditional deletion reveals a cell-autonomous requirement of SLP-76 for thymocyte selection.

    PubMed

    Maltzman, Jonathan S; Kovoor, Lisa; Clements, James L; Koretzky, Gary A

    2005-10-03

    The SH2 domain containing leukocyte phosphoprotein of 76 kD (SLP-76) is critical for pre-TCR-mediated maturation to the CD4+CD8+ double positive (DP) stage in the thymus. The absolute block in SLP-76null mice at the CD4-CD8-CD44-CD25+ (double-negative 3, DN3) stage has hindered our understanding of the role of this adaptor in alphabeta TCR-mediated signal transduction in primary thymocytes and peripheral T lymphocytes. To evaluate the requirements for SLP-76 in these events, we used a cre-loxP approach to generate mice that conditionally delete SLP-76 after the DN3 checkpoint. These mice develop DP thymocytes that express the alphabeta TCR on the surface, but lack SLP-76 at the genomic DNA and protein levels. The DP compartment has reduced cellularity in young mice and fails to undergo positive selection to CD4+ or CD8+ single positive (SP) cells in vivo or activation-induced cell death in vitro. A small number of CD4+SP thymocytes are generated, but these cells fail to flux calcium in response to an alphabeta TCR-generated signal. Peripheral T cells are reduced in number, lack SLP-76 protein, and have an abnormal surface phenotype. These studies show for the first time that SLP-76 is required for signal transduction through the mature alphabeta TCR in primary cells of the T lineage.

  19. SH2 domain containing leukocyte phosphoprotein of 76-kDa (SLP-76) feedback regulation of ZAP-70 microclustering.

    PubMed

    Liu, Hebin; Purbhoo, Marco A; Davis, Daniel M; Rudd, Christopher E

    2010-06-01

    T cell receptor (TCR) signaling involves CD4/CD8-p56lck recruitment of ZAP-70 to the TCR receptor, ZAP-70 phosphorylation of LAT that is followed by LAT recruitment of the GADS-SLP-76 complex. Back regulation of ZAP-70 by SLP-76 has not been documented. In this paper, we show that anti-CD3 induced ZAP-70 cluster formation is significantly reduced in the absence of SLP-76 (i.e., J14 cells) and in the presence of a mutant of SLP-76 (4KE) in Jurkat and primary T cells. Both the number of cells with clusters and the number of clusters per cell were reduced. This effect was not mediated by SLP-76 SH2 domain binding to ZAP-70 because SLP-76 failed to precipitate ZAP-70 and an inactivating SH2 domain mutation (i.e., R448L) on SLP-76 4KE did not reverse the inhibition of ZAP-70 clustering. Mutation of R448 on WT SLP-76 still supported ZAP-70 clustering. Intriguingly, by contrast, LAT clustering occurred normally in the absence of SLP-76, or the presence of 4KE SLP-76 indicating that this transmembrane adaptor can operate independently of ZAP-70-GADS-SLP-76. Our findings reconfigure the TCR signaling pathway by showing SLP-76 back-regulation of ZAP-70, an event that could ensure that signaling components are in balance for optimal T cell activation.

  20. The induction of menadione stress tolerance in the marine microalga, Dunaliella viridis, through cold pretreatment and modulation of the ascorbate and glutathione pools.

    PubMed

    Madadkar Haghjou, Maryam; Colville, Louise; Smirnoff, Nicholas

    2014-11-01

    The effect of cold pretreatment on menadione tolerance was investigated in the cells of the marine microalga, Dunaliella viridis. In addition, the involvement of ascorbate and glutathione in the response to menadione stress was tested by treating cell suspensions with l-galactono-1,4-lactone, an ascorbate precursor, and buthionine sulfoximine, an inhibitor of glutathione synthesis. Menadione was highly toxic to non cold-pretreated cells, and caused a large decrease in cell number. Cold pretreatment alleviated menadione toxicity and cold pretreated cells accumulated lower levels of reactive oxygen species, and had enhanced antioxidant capacity due to increased levels of β-carotene, reduced ascorbate and total glutathione compared to non cold-pretreated cells. Cold pretreatment also altered the response to l-galactono-1,4-lactone and buthionine sulfoximine treatments. Combined l-galactono-1,4-lactone and menadione treatment was lethal in non-cold pretreated cells, but in cold-pretreated cells it had a positive effect on cell numbers compared to menadione alone. Overall, exposure of Dunaliella cells to cold stress enhanced tolerance to subsequent oxidative stress induced by menadione. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

Top