Deforestation effects on Amazon forest resilience
NASA Astrophysics Data System (ADS)
Zemp, D. C.; Schleussner, C.-F.; Barbosa, H. M. J.; Rammig, A.
2017-06-01
Through vegetation-atmosphere feedbacks, rainfall reductions as a result of Amazon deforestation could reduce the resilience on the remaining forest to perturbations and potentially lead to large-scale Amazon forest loss. We track observation-based water fluxes from sources (evapotranspiration) to sinks (rainfall) to assess the effect of deforestation on continental rainfall. By studying 21st century deforestation scenarios, we show that deforestation can reduce dry season rainfall by up to 20% far from the deforested area, namely, over the western Amazon basin and the La Plata basin. As a consequence, forest resilience is systematically eroded in the southwestern region covering a quarter of the current Amazon forest. Our findings suggest that the climatological effects of deforestation can lead to permanent forest loss in this region. We identify hot spot regions where forest loss should be avoided to maintain the ecological integrity of the Amazon forest.
Systematic Anomalies in Rainfall Intensity Estimates Over the Continental U.S.
NASA Technical Reports Server (NTRS)
Amitai, Eyal; Petersen, Walter Arthur; Llort, Xavier; Vasiloff, Steve
2010-01-01
Rainfall intensities during extreme events over the continental U.S. are compared for several advanced radar products. These products include: 1) TRMM spaceborne radar (PR) near surface estimates; 2) NOAA Next-Generation Quantitative Precipitation Estimation (QPE) very high-resolution (1 km) radar-only national mosaics (Q2); 3) very high-resolution instantaneous gauge adjusted radar national mosaics, which we have developed by applying gauge correction on the Q2 instantaneous radar-only products; and 4) several independent C-band dual-polarimetric radar-estimated rainfall samples collected with the ARMOR radar in northern Alabama. Though accumulated rainfall amounts are often similar, we find the satellite and the ground radar rain rate pdfs to be quite different. PR pdfs are shifted towards lower rain rates, implying a much larger stratiform/convective rain ratio than do ground radar products. The shift becomes more evident during strong continental convective storms and much less during tropical storms. Resolving the continental/maritime regime behavior and other large discrepancies between the products presents an important challenge. A challenge to improve our understanding of the source of the discrepancies, to determine the uncertainties of the estimates, and to improve remote-sensing estimates of precipitation in general.
Factors governing the total rainfall yield from continental convective clouds
NASA Technical Reports Server (NTRS)
Rosenfeld, Daniel; Gagin, Abraham
1989-01-01
Several important factors that govern the total rainfall from continental convective clouds were investigated by tracking thousands of convective cells in Israel and South Africa. The rainfall volume yield (Rvol) of the individual cells that build convective rain systems has been shown to depend mainly on the cloud-top height. There is, however, considerable variability in this relationship. The following factors that influence the Rvol were parameterized and quantitatively analyzed: (1) cloud base temperature, (2)atmospheric instability, and (3) the extent of isolation of the cell. It is also shown that a strong low level forcing increases the duration of Rvol of clouds reaching the same vertical extent.
Passive microwave remote sensing of rainfall with SSM/I: Algorithm development and implementation
NASA Technical Reports Server (NTRS)
Ferriday, James G.; Avery, Susan K.
1994-01-01
A physically based algorithm sensitive to emission and scattering is used to estimate rainfall using the Special Sensor Microwave/Imager (SSM/I). The algorithm is derived from radiative transfer calculations through an atmospheric cloud model specifying vertical distributions of ice and liquid hydrometeors as a function of rain rate. The algorithm is structured in two parts: SSM/I brightness temperatures are screened to detect rainfall and are then used in rain-rate calculation. The screening process distinguishes between nonraining background conditions and emission and scattering associated with hydrometeors. Thermometric temperature and polarization thresholds determined from the radiative transfer calculations are used to detect rain, whereas the rain-rate calculation is based on a linear function fit to a linear combination of channels. Separate calculations for ocean and land account for different background conditions. The rain-rate calculation is constructed to respond to both emission and scattering, reduce extraneous atmospheric and surface effects, and to correct for beam filling. The resulting SSM/I rain-rate estimates are compared to three precipitation radars as well as to a dynamically simulated rainfall event. Global estimates from the SSM/I algorithm are also compared to continental and shipboard measurements over a 4-month period. The algorithm is found to accurately describe both localized instantaneous rainfall events and global monthly patterns over both land and ovean. Over land the 4-month mean difference between SSM/I and the Global Precipitation Climatology Center continental rain gauge database is less than 10%. Over the ocean, the mean difference between SSM/I and the Legates and Willmott global shipboard rain gauge climatology is less than 20%.
NASA Astrophysics Data System (ADS)
Selker, J. S.; Higgins, C. W.; Tai, L. C. M.
2014-12-01
The linkage between large-scale manipulation of land cover and resulting patterns of precipitation has been a long-standing problem. For example, what is the impact of the Columbia River project's 2,700 km^2 irrigated area (applying approximately 300 m^3/s) on the down-wind continental rainfall in North America? Similarly, can we identify places on earth where planting large-scale runoff-reducing forests might increase down-wind precipitation, thus leading to magnified carbon capture? In this talk we present an analytical Lagrangian framework for the prediction of incremental increases in down-wind precipitation due to land surface evaporation and transpiration. We compare these predictions to recently published rainfall recycling values from the literature. Focus is on the Columbia basin (Pacific Northwest of hte USA), with extensions to East Africa. We further explore the monitoring requirements for verification of any such impact, and see if the planned TAHMO African Observatory (TAHMO.org) has the potential to document any such processes over the 25-year and 1,000 km scales.
NASA Astrophysics Data System (ADS)
Luitel, B. N.; Villarini, G.; Vecchi, G. A.
2014-12-01
When we talk about tropical cyclones (TCs), the first things that come to mind are strong winds and storm surge affecting the coastal areas. However, according to the Federal Emergency Management Agency (FEMA) 59% of the deaths caused by TCs since 1970 is due to fresh water flooding. Heavy rainfall associated with TCs accounts for 13% of heavy rainfall events nationwide for the June-October months, with this percentage being much higher if the focus is on the eastern and southern United States. This study focuses on the evaluation of precipitation associated with the North Atlantic TCs that affected the continental United States over the period 2007 - 2012. We evaluate the rainfall associated with these TCs using four satellite based rainfall products: Tropical Rainfall Measuring Mission - Multi-satellite Precipitation Analysis (TMPA; both real-time and research version); Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN); Climate Prediction Center (CPC) MORPHing technique (CMORPH). As a reference data we use gridded rainfall provided by CPC (Daily US Unified Gauge-Based Analysis of Precipitation). Rainfall fields from each of these satellite products are compared to the reference data, providing valuable information about the realism of these products in reproducing the rainfall associated with TCs affecting the continental United States. In addition to the satellite products, we evaluate the forecasted rainfall produced by five state-of-the-art numerical weather prediction (NWP) models: European Centre for Medium-Range Weather Forecasts (ECMWF), UK Met Office (UKMO), National Centers for Environmental Prediction (NCEP), China Meteorological Administration (CMA), and Canadian Meteorological Center (CMC). The skill of these models in reproducing TC rainfall is quantified for different lead times, and discussed in light of the performance of the satellite products.
South Asian summer monsoon breaks: Process-based diagnostics in HIRHAM5
NASA Astrophysics Data System (ADS)
Hanf, Franziska S.; Annamalai, H.; Rinke, Annette; Dethloff, Klaus
2017-05-01
This study assesses the ability of a high-resolution downscaling simulation with the regional climate model (RCM) HIRHAM5 in capturing the monsoon basic state and boreal summer intraseasonal variability (BSISV) over South Asia with focus on moist and radiative processes during 1979-2012. A process-based vertically integrated moist static energy (MSE) budget is performed to understand the model's fidelity in representing leading processes that govern the monsoon breaks over continental India. In the climatology (June-September) HIRHAM5 simulates a dry bias over central India in association with descent throughout the free troposphere. Sources of dry bias are interpreted as (i) near-equatorial Rossby wave response forced by excess rainfall over the southern Bay of Bengal promotes anomalous descent to its northwest and (ii) excessive rainfall over near-equatorial Arabian Sea and Bay of Bengal anchor a "local Hadley-type" circulation with descent anomalies over continental India. Compared with observations HIRHAM5 captures the leading processes that account for breaks, although with generally reduced amplitudes over central India. In the model too, anomalous dry advection and net radiative cooling are responsible for the initiation and maintenance of breaks, respectively. However, weaker contributions of all adiabatic MSE budget terms, and an inconsistent relationship between negative rainfall anomalies and radiative cooling reveals shortcomings in HIRHAM5's moisture-radiation interaction. Our study directly implies that process-based budget diagnostics are necessary, apart from just checking the northward propagation feature to examine RCM's fidelity to simulate BSISV.
Climatological determinants of woody cover in Africa.
Good, Stephen P; Caylor, Kelly K
2011-03-22
Determining the factors that influence the distribution of woody vegetation cover and resolving the sensitivity of woody vegetation cover to shifts in environmental forcing are critical steps necessary to predict continental-scale responses of dryland ecosystems to climate change. We use a 6-year satellite data record of fractional woody vegetation cover and an 11-year daily precipitation record to investigate the climatological controls on woody vegetation cover across the African continent. We find that-as opposed to a relationship with only mean annual rainfall-the upper limit of fractional woody vegetation cover is strongly influenced by both the quantity and intensity of rainfall events. Using a set of statistics derived from the seasonal distribution of rainfall, we show that areas with similar seasonal rainfall totals have higher fractional woody cover if the local rainfall climatology consists of frequent, less intense precipitation events. Based on these observations, we develop a generalized response surface between rainfall climatology and maximum woody vegetation cover across the African continent. The normalized local gradient of this response surface is used as an estimator of ecosystem vegetation sensitivity to climatological variation. A comparison between predicted climate sensitivity patterns and observed shifts in both rainfall and vegetation during 2009 reveals both the importance of rainfall climatology in governing how ecosystems respond to interannual fluctuations in climate and the utility of our framework as a means to forecast continental-scale patterns of vegetation shifts in response to future climate change.
MECO Warming Changes Continental Rainfall Patterns in Eocene Western North America
NASA Astrophysics Data System (ADS)
Methner, K.; Mulch, A.; Fiebig, J.; Wacker, U.; Gerdes, A.; Graham, S. A.; Chamberlain, C. P.
2016-12-01
Eocene hyperthermals represent temperature extremes superimposed on an existing warm climate. They dramatically affected the marine and terrestrial biosphere, but still remain among the most enigmatic phenomena of Cenozoic climate dynamics. To evaluate the impacts of global warm periods on terrestrial temperature and rainfall records in continental interiors, we sampled a suite of middle Eocene ( 40 Ma) paleosols from a high-elevation mammal fossil locality in the hinterland of the North American Cordillera (Sage Creek Basin, Montana, USA) and integrated laser ablation U-Pb dating of pedogenic carbonate, stable isotope (δ18O) and clumped isotope temperature (Δ47) records. Δ47 temperature data of soil carbonates progressively increase from 23 °C ±3 °C to peak temperatures of 32 °C ±3 °C and subsequently drop to 21 °C ±2 °C and delineate a rapid +9/-11 °C temperature excursion in the paleosol record. This hyperthermal event is accompanied by large and rapid shifts towards low δ18O values and reduced pedogenic CaCO3 contents. U-Pb geochronology of the paleosol carbonate confirms a middle Eocene age for soil carbonate formation (39.5 ±1.4 Ma and 40.1 ±0.8 Ma). Based on U-Pb geochronology, magneto- and biostratigraphy we suggest that the recorded Δ47 temperature excursion reflects peak warming during the Middle Eocene Climatic Optimum (MECO). The MECO in continental western North America appears to be characterized by warmer and wetter (sub-humid) conditions in this high-elevation site. Shifts in δ18O values of precipitation and pedogenic CaCO3 contents parallel temperature changes and require modification of mid-latitude rainfall patterns, indicating a profound impact of the MECO on the hydrological cycle and consequently on atmospheric circulation patterns in the hinterland of the North American Cordillera.
A simple lightning assimilation technique for improving ...
Convective rainfall is often a large source of error in retrospective modeling applications. In particular, positive rainfall biases commonly exist during summer months due to overactive convective parameterizations. In this study, lightning assimilation was applied in the Kain-Fritsch (KF) convective scheme to improve retrospective simulations using the Weather Research and Forecasting (WRF) model. The assimilation method has a straightforward approach: force KF deep convection where lightning is observed and, optionally, suppress deep convection where lightning is absent. WRF simulations were made with and without lightning assimilation over the continental United States for July 2012, July 2013, and January 2013. The simulations were evaluated against NCEP stage-IV precipitation data and MADIS near-surface meteorological observations. In general, the use of lightning assimilation considerably improves the simulation of summertime rainfall. For example, the July 2012 monthly averaged bias of 6 h accumulated rainfall is reduced from 0.54 to 0.07 mm and the spatial correlation is increased from 0.21 to 0.43 when lightning assimilation is used. Statistical measures of near-surface meteorological variables also are improved. Consistent improvements also are seen for the July 2013 case. These results suggest that this lightning assimilation technique has the potential to substantially improve simulation of warm-season rainfall in retrospective WRF applications. The
A Simple Lightning Assimilation Technique For Improving ...
Convective rainfall is often a large source of error in retrospective modeling applications. In particular, positive rainfall biases commonly exist during summer months due to overactive convective parameterizations. In this study, lightning assimilation was applied in the Kain-Fritsch (KF) convective scheme to improve retrospective simulations using the Weather Research and Forecasting (WRF) model. The assimilation method has a straightforward approach: Force KF deep convection where lightning is observed and, optionally, suppress deep convection where lightning is absent. WRF simulations were made with and without lightning assimilation over the continental United States for July 2012, July 2013, and January 2013. The simulations were evaluated against NCEP stage-IV precipitation data and MADIS near-surface meteorological observations. In general, the use of lightning assimilation considerably improves the simulation of summertime rainfall. For example, the July 2012 monthly-averaged bias of 6-h accumulated rainfall is reduced from 0.54 mm to 0.07 mm and the spatial correlation is increased from 0.21 to 0.43 when lightning assimilation is used. Statistical measures of near-surface meteorological variables also are improved. Consistent improvements also are seen for the July 2013 case. These results suggest that this lightning assimilation technique has the potential to substantially improve simulation of warm-season rainfall in retrospective WRF appli
NASA Technical Reports Server (NTRS)
Hawk, Kelly Lynn; Eagleson, Peter S.
1992-01-01
The parameters of two stochastic models of point rainfall, the Bartlett-Lewis model and the Poisson rectangular pulses model, are estimated for each month of the year from the historical records of hourly precipitation at more than seventy first-order stations in the continental United States. The parameters are presented both in tabular form and as isopleths on maps. The Poisson rectangular pulses parameters are useful in implementing models of the land surface water balance. The Bartlett-Lewis parameters are useful in disaggregating precipitation to a time period shorter than that of existing observations. Information is also included on a floppy disk.
Rapid Middle Eocene temperature change in western North America
NASA Astrophysics Data System (ADS)
Methner, Katharina; Mulch, Andreas; Fiebig, Jens; Wacker, Ulrike; Gerdes, Axel; Graham, Stephan A.; Chamberlain, C. Page
2016-09-01
Eocene hyperthermals are among the most enigmatic phenomena of Cenozoic climate dynamics. These hyperthermals represent temperature extremes superimposed on an already warm Eocene climate and dramatically affected the marine and terrestrial biosphere, yet our knowledge of temperature and rainfall in continental interiors is still rather limited. We present stable isotope (δ18O) and clumped isotope temperature (Δ47) records from a middle Eocene (41 to 40 Ma) high-elevation mammal fossil locality in the North American continental interior (Montana, USA). Δ47 paleotemperatures of soil carbonates delineate a rapid +9/-11 °C temperature excursion in the paleosol record. Δ47 temperatures progressively increase from 23 °C ± 3 °C to peak temperatures of 32 °C ± 3 °C and subsequently drop by 11 °C. This hyperthermal event in the middle Eocene is accompanied by low δ18O values and reduced pedogenic carbonate concentrations in paleosols. Based on laser ablation U/Pb geochronology of paleosol carbonates in combination with magnetostratigraphy, biostratigraphy, stable isotope, and Δ47 evidence, we suggest that this pronounced warming event reflects the Middle Eocene Climatic Optimum (MECO) in western North America. The terrestrial expression of northern hemisphere MECO in western North America appears to be characterized by warmer and wetter (sub-humid) conditions, compared to the post-MECO phase. Large and rapid shifts in δ18O values of precipitation and pedogenic CaCO3 contents parallel temperature changes, indicating the profound impact of the MECO on atmospheric circulation and rainfall patterns in the western North American continental interior during this transient warming event.
NASA Technical Reports Server (NTRS)
Iguchi, Takamichi; Matsui, Toshihisa; Tokay, Ali; Kollias, Pavlos; Tao, Wei-Kuo
2012-01-01
A unique microphysical structure of rainfall is observed by the surface laser optical Particle Size and Velocity (Parsivel) disdrometers on 25 April 2011 during Midlatitude Continental Convective Clouds Experiment (MC3E). According to the systematic differences in rainfall rate and bulk effective droplet radius, the sampling data can be divided into two groups; the rainfall mostly from the deep convective clouds has relatively high rainfall rate and large bulk effective droplet radius, whereas the reverse is true for the rainfall from the shallow wrm clouds. The Weather Research and Forecasting model coupled with spectral bin microphysics (WRF-SBM) successfully reproduces the two distinct modes in the observed rainfall microphysical structure. The results show that the up-to-date model can demonstrate how the cloud physics and the weather condition on the day are involved in forming the unique rainfall characteristic.
NASA Astrophysics Data System (ADS)
Iguchi, Takamichi; Matsui, Toshihisa; Tokay, Ali; Kollias, Pavlos; Tao, Wei-Kuo
2012-12-01
A unique microphysical structure of rainfall is observed by the surface laser optical Particle Size and Velocity (Parsivel) disdrometers on 25 April 2011 during Midlatitude Continental Convective Clouds Experiment (MC3E). According to the systematic differences in rainfall rate and bulk effective droplet radius, the sampling data can be divided into two groups; the rainfall mostly from the deep convective clouds has relatively high rainfall rate and large bulk effective droplet radius, whereas the reverse is true for the rainfall from the shallow warm clouds. The Weather Research and Forecasting model coupled with spectral bin microphysics (WRF-SBM) successfully reproduces the two distinct modes in the observed rainfall microphysical structure. The results show that the up-to-date model can demonstrate how the cloud physics and the weather condition on the day are involved in forming the unique rainfall characteristic.
NASA Astrophysics Data System (ADS)
Uijlenhoet, R.; Leijnse, H.; Overeem, A.
2017-12-01
Accurate and timely surface precipitation measurements are crucial for water resources management, agriculture, weather prediction, climate research, as well as ground validation of satellite-based precipitation estimates. However, the majority of the land surface of the earth lacks such data, and in many parts of the world the density of surface precipitation gauging networks is even rapidly declining. This development can potentially be counteracted by using received signal level data from the enormous number of microwave links used worldwide in commercial cellular communication networks. Along such links, radio signals propagate from a transmitting antenna at one base station to a receiving antenna at another base station. Rain-induced attenuation and, subsequently, path-averaged rainfall intensity can be retrieved from the signal's attenuation between transmitter and receiver. We have previously shown how one such a network can be used to retrieve the space-time dynamics of rainfall for an entire country (The Netherlands, ˜35,500 km2), based on an unprecedented number of links (˜2,400) and a rainfall retrieval algorithm that can be applied in real time. This demonstrated the potential of such networks for real-time rainfall monitoring, in particular in those parts of the world where networks of dedicated ground-based rainfall sensors are often virtually absent. The presentation will focus on the potential for upscaling this technique to continental-scale rainfall monitoring in Europe. In addition, several examples of recent applications of this technique on other continents (South America, Africa, Asia and Australia) will be given.
NASA Astrophysics Data System (ADS)
Pulido-Velazquez, David; Collados-Lara, Antonio-Juan; Alcalá, Francisco J.
2017-04-01
This research proposes and applies a method to assess potential impacts of future climatic scenarios on aquifer rainfall recharge in wide and varied regions. The continental Spain territory was selected to show the application. The method requires to generate future series of climatic variables (precipitation, temperature) in the system to simulate them within a previously calibrated hydrological model for the historical data. In a previous work, Alcalá and Custodio (2014) used the atmospheric chloride mass balance (CMB) method for the spatial evaluation of average aquifer recharge by rainfall over the whole of continental Spain, by assuming long-term steady conditions of the balance variables. The distributed average CMB variables necessary to calculate recharge were estimated from available variable-length data series of variable quality and spatial coverage. The CMB variables were regionalized by ordinary kriging at the same 4976 nodes of a 10 km x 10 km grid. Two main sources of uncertainty affecting recharge estimates (given by the coefficient of variation, CV), induced by the inherent natural variability of the variables and from mapping were segregated. Based on these stationary results we define a simple empirical rainfall-recharge model. We consider that spatiotemporal variability of rainfall and temperature are the most important climatic feature and variables influencing potential aquifer recharge in natural regime. Changes in these variables can be important in the assessment of future potential impacts of climatic scenarios over spatiotemporal renewable groundwater resource. For instance, if temperature increases, actual evapotranspitration (EA) will increases reducing the available water for others groundwater balance components, including the recharge. For this reason, instead of defining an infiltration rate coefficient that relates precipitation (P) and recharge we propose to define a transformation function that allows estimating the spatial distribution of recharge (both average value and its uncertainty) from the difference in P and EA in each area. A complete analysis of potential short-term (2016-2045) future climate scenarios in continental Spain has been performed by considering different sources of uncertainty. It is based on the historical climatic data for the period 1976-2005 and the climatic models simulations (for the control [1976-2005] and future scenarios [2016-2045]) performed in the frame of the CORDEX EU project. The most pessimistic emission scenario (RCP8.5) has been considered. For the RCP8.5 scenario we have analyzed the time series generated by simulating with 5 Regional Climatic models (CCLM4-8-17, RCA4, HIRHAM5, RACMO22E, and WRF331F) nested to 4 different General Circulation Models (GCMs). Two different conceptual approaches (bias correction and delta change techniques) have been applied to generate potential future climate scenarios from these data. Different ensembles of obtained time series have been proposed to obtain more representative scenarios by considering all the simulations or only those providing better approximations to the historical statistics based on a multicriteria analysis. This was a step to analyze future potential impacts on the aquifer recharge by simulating them within a rainfall-recharge model. This research has been supported by the CGL2013-48424-C2-2-R (MINECO) and the PMAFI/06/14 (UCAM) projects.
Agricultural diversification as an important strategy for achieving food security in Africa.
Waha, Katharina; van Wijk, Mark T; Fritz, Steffen; See, Linda; Thornton, Philip K; Wichern, Jannike; Herrero, Mario
2018-03-31
Farmers in Africa have long adapted to climatic and other risks by diversifying their farming activities. Using a multi-scale approach, we explore the relationship between farming diversity and food security and the diversification potential of African agriculture and its limits on the household and continental scale. On the household scale, we use agricultural surveys from more than 28,000 households located in 18 African countries. In a next step, we use the relationship between rainfall, rainfall variability, and farming diversity to determine the available diversification options for farmers on the continental scale. On the household scale, we show that households with greater farming diversity are more successful in meeting their consumption needs, but only up to a certain level of diversity per ha cropland and more often if food can be purchased from off-farm income or income from farm sales. More diverse farming systems can contribute to household food security; however, the relationship is influenced by other factors, for example, the market orientation of a household, livestock ownership, nonagricultural employment opportunities, and available land resources. On the continental scale, the greatest opportunities for diversification of food crops, cash crops, and livestock are located in areas with 500-1,000 mm annual rainfall and 17%-22% rainfall variability. Forty-three percent of the African cropland lacks these opportunities at present which may hamper the ability of agricultural systems to respond to climate change. While sustainable intensification practices that increase yields have received most attention to date, our study suggests that a shift in the research and policy paradigm toward agricultural diversification options may be necessary. © 2018 The Authors Global Change Biology Published by John Wiley & Sons Ltd.
Extreme rainfall, vulnerability and risk: a continental-scale assessment for South America.
Vörösmarty, Charles J; Bravo de Guenni, Lelys; Wollheim, Wilfred M; Pellerin, Brian; Bjerklie, David; Cardoso, Manoel; D'Almeida, Cassiano; Green, Pamela; Colon, Lilybeth
2013-11-13
Extreme weather continues to preoccupy society as a formidable public safety concern bearing huge economic costs. While attention has focused on global climate change and how it could intensify key elements of the water cycle such as precipitation and river discharge, it is the conjunction of geophysical and socioeconomic forces that shapes human sensitivity and risks to weather extremes. We demonstrate here the use of high-resolution geophysical and population datasets together with documentary reports of rainfall-induced damage across South America over a multi-decadal, retrospective time domain (1960-2000). We define and map extreme precipitation hazard, exposure, affectedpopulations, vulnerability and risk, and use these variables to analyse the impact of floods as a water security issue. Geospatial experiments uncover major sources of risk from natural climate variability and population growth, with change in climate extremes bearing a minor role. While rural populations display greatest relative sensitivity to extreme rainfall, urban settings show the highest rates of increasing risk. In the coming decades, rapid urbanization will make South American cities the focal point of future climate threats but also an opportunity for reducing vulnerability, protecting lives and sustaining economic development through both traditional and ecosystem-based disaster risk management systems.
Rainfall prediction methodology with binary multilayer perceptron neural networks
NASA Astrophysics Data System (ADS)
Esteves, João Trevizoli; de Souza Rolim, Glauco; Ferraudo, Antonio Sergio
2018-05-01
Precipitation, in short periods of time, is a phenomenon associated with high levels of uncertainty and variability. Given its nature, traditional forecasting techniques are expensive and computationally demanding. This paper presents a soft computing technique to forecast the occurrence of rainfall in short ranges of time by artificial neural networks (ANNs) in accumulated periods from 3 to 7 days for each climatic season, mitigating the necessity of predicting its amount. With this premise it is intended to reduce the variance, rise the bias of data and lower the responsibility of the model acting as a filter for quantitative models by removing subsequent occurrences of zeros values of rainfall which leads to bias the and reduces its performance. The model were developed with time series from ten agriculturally relevant regions in Brazil, these places are the ones with the longest available weather time series and and more deficient in accurate climate predictions, it was available 60 years of daily mean air temperature and accumulated precipitation which were used to estimate the potential evapotranspiration and water balance; these were the variables used as inputs for the ANNs models. The mean accuracy of the model for all the accumulated periods were 78% on summer, 71% on winter 62% on spring and 56% on autumn, it was identified that the effect of continentality, the effect of altitude and the volume of normal precipitation, have an direct impact on the accuracy of the ANNs. The models have peak performance in well defined seasons, but looses its accuracy in transitional seasons and places under influence of macro-climatic and mesoclimatic effects, which indicates that this technique can be used to indicate the eminence of rainfall with some limitations.
NASA Astrophysics Data System (ADS)
Aharon, P.; Lambert, W.; Hellstrom, J.
2009-12-01
Moisture transport from the Gulf of Mexico (GOM) inland has a considerable influence on both regional and continental rainfall patterns. Recent episodes of drought in the Southeastern USA exposed the vulnerability of the regional infrastructure to climate changes and gave rise to inter-state “water wars”. In order to better understand the cause of these periodic droughts and their controlling climate factors we have initiated a study of stalagmites from the DeSoto Caverns (Alabama, USA) that intersect the moisture flow from GOM. Combination of unusually high growth rates (up to 2 mm/decade), prominent dark and light seasonal layers, pristine aragonite mineralogy, precise U/Th dates acquired from mg-size samples and tight sampling (n=195) afforded generation of biannual (δ18O and δ13C of exceptional clarity spanning the last 700 yrs. The stalagmite (DSSG1) top yields isotope values (δ18O=-5.5 per-mill VPDB; δ13C=-10.1 per-mill VPDB) that are in good agreement with the predicted equilibrium isotope values. The oxygen and carbon isotope records exhibit a number of alternating negative and positive phase changes of
Observed Land Impacts on Clouds, Water Vapor, and Rainfall at Continental Scales
NASA Technical Reports Server (NTRS)
Jin, Menglin; King, Michael D.
2005-01-01
How do the continents affect large-scale hydrological cycles? How important can one continent be to the climate system? To address these questions, 4-years of National Aeronautics and Space Administration (NASA) Terra Moderate Resolution Imaging Spectroradiometer (MODIS) observations, Tropical Rainfall Measuring Mission (TRMM) observations, and the Global Precipitation Climatology Project (GPCP) global precipitation analysis, were used to assess the land impacts on clouds, rainfall, and water vapor at continental scales. At these scales, the observations illustrate that continents are integrated regions that enhance the seasonality of atmospheric and surface hydrological parameters. Specifically, the continents of Eurasia and North America enhance the seasonality of cloud optical thickness, cirrus fraction, rainfall, and water vapor. Over land, both liquid water and ice cloud effective radii are smaller than over oceans primarily because land has more aerosol particles. In addition, different continents have similar impacts on hydrological variables in terms of seasonality, but differ in magnitude. For example, in winter, North America and Eurasia increase cloud optical thickness to 17.5 and 16, respectively, while in summer, Eurasia has much smaller cloud optical thicknesses than North America. Such different land impacts are determined by each continent s geographical condition, land cover, and land use. These new understandings help further address the land-ocean contrasts on global climate, help validate global climate model simulated land-atmosphere interactions, and help interpret climate change over land.
Soil Texture Mediates the Response of Tree Cover to Rainfall Intensity in African Savannas
NASA Astrophysics Data System (ADS)
Case, M. F.; Staver, A. C.
2017-12-01
Global circulation models predict widespread shifts in the frequency and intensity of rainfall, even where mean annual rainfall does not change. Resulting changes in soil moisture dynamics could have major consequences for plant communities and ecosystems, but the direction of potential vegetation responses can be challenging to predict. In tropical savannas, where tree and grasses coexist, contradictory lines of evidence have suggested that tree cover could respond either positively or negatively to less frequent, more intense rainfall. Here, we analyzed remote sensing data and continental-scale soils maps to examine whether soil texture or fire could explain heterogeneous responses of savanna tree cover to intra-annual rainfall variability across sub-Saharan Africa. We find that tree cover generally increases with mean wet-season rainfall, decreases with mean wet-season rainfall intensity, and decreases with fire frequency. However, soil sand content mediates these relationships: the response to rainfall intensity switches qualitatively depending on soil texture, such that tree cover decreases dramatically with less frequent, more intense rainfall on clay soils but increases with rainfall intensity on sandy soils in semi-arid savannas. We propose potential ecohydrological mechanisms for this heterogeneous response, and emphasize that predictions of savanna vegetation responses to global change should account for interactions between soil texture and changing rainfall patterns.
NASA Technical Reports Server (NTRS)
Tao, W.-K.; Lang, S.; Simpson, J.; Meneghini, R.; Halverson, J.; Johnson, R.; Adler, R.; Starr, David (Technical Monitor)
2002-01-01
NASA Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) derived rainfall information will be used to estimate the four-dimensional structure of global monthly latent heating and rainfall profiles over the global tropics from December 1997 to November 2000. Rainfall, latent heating and radar reflectivity structures between El Nino (DJF 1997-98) and La Nina (DJF 1998-99) will be examined and compared. The seasonal variation of heating over various geographic locations (i.e., oceanic vs continental, Indian ocean vs west Pacific, Africa vs S. America) will also be analyzed. In addition, the relationship between rainfall, latent heating (maximum heating level), radar reflectivity and SST is examined and will be presented in the meeting. The impact of random error and bias in stratiform percentage estimates from PR on latent heating profiles is studied and will also be presented in the meeting. Additional information is included in the original extended abstract.
Meteorological impact assessment of possible large scale irrigation in Southwest Saudi Arabia
NASA Astrophysics Data System (ADS)
Ter Maat, H. W.; Hutjes, R. W. A.; Ohba, R.; Ueda, H.; Bisselink, B.; Bauer, T.
2006-11-01
On continental to regional scales feedbacks between landuse and landcover change and climate have been widely documented over the past 10-15 years. In the present study we explore the possibility that also vegetation changes over much smaller areas may affect local precipitation regimes. Large scale (˜ 10 5 ha) irrigated plantations in semi-arid environments under particular conditions may affect local circulations and induce additional rainfall. Capturing this rainfall 'surplus' could then reduce the need for external irrigation sources and eventually lead to self-sustained water cycling. This concept is studied in the coastal plains in South West Saudi Arabia where the mountains of the Asir region exhibit the highest rainfall of the peninsula due to orographic lifting and condensation of moisture imported with the Indian Ocean monsoon and with disturbances from the Mediterranean Sea. We use a regional atmospheric modeling system (RAMS) forced by ECMWF analysis data to resolve the effect of complex surface conditions in high resolution (Δ x = 4 km). After validation, these simulations are analysed with a focus on the role of local processes (sea breezes, orographic lifting and the formation of fog in the coastal mountains) in generating rainfall, and on how these will be affected by large scale irrigated plantations in the coastal desert. The validation showed that the model simulates the regional and local weather reasonably well. The simulations exhibit a slightly larger diurnal temperature range than those captured by the observations, but seem to capture daily sea-breeze phenomena well. Monthly rainfall is well reproduced at coarse resolutions, but appears more localized at high resolutions. The hypothetical irrigated plantation (3.25 10 5 ha) has significant effects on atmospheric moisture, but due to weakened sea breezes this leads to limited increases of rainfall. In terms of recycling of irrigation gifts the rainfall enhancement in this particular setting is rather insignificant.
Extreme rainfall, vulnerability and risk: a continental-scale assessment for South America
Vorosmarty, Charles J.; de Guenni, Lelys Bravo; Wollheim, Wilfred M.; Pellerin, Brian A.; Bjerklie, David M.; Cardoso, Manoel; D'Almeida, Cassiano; Colon, Lilybeth
2013-01-01
Extreme weather continues to preoccupy society as a formidable public safety concern bearing huge economic costs. While attention has focused on global climate change and how it could intensify key elements of the water cycle such as precipitation and river discharge, it is the conjunction of geophysical and socioeconomic forces that shapes human sensitivity and risks to weather extremes. We demonstrate here the use of high-resolution geophysical and population datasets together with documentary reports of rainfall-induced damage across South America over a multi-decadal, retrospective time domain (1960–2000). We define and map extreme precipitation hazard, exposure, affectedpopulations, vulnerability and risk, and use these variables to analyse the impact of floods as a water security issue. Geospatial experiments uncover major sources of risk from natural climate variability and population growth, with change in climate extremes bearing a minor role. While rural populations display greatest relative sensitivity to extreme rainfall, urban settings show the highest rates of increasing risk. In the coming decades, rapid urbanization will make South American cities the focal point of future climate threats but also an opportunity for reducing vulnerability, protecting lives and sustaining economic development through both traditional and ecosystem-based disaster risk management systems.
Transfer of uncertainty of space-borne high resolution rainfall products at ungauged regions
NASA Astrophysics Data System (ADS)
Tang, Ling
Hydrologically relevant characteristics of high resolution (˜ 0.25 degree, 3 hourly) satellite rainfall uncertainty were derived as a function of season and location using a six year (2002-2007) archive of National Aeronautics and Space Administration (NASA)'s Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) precipitation data. The Next Generation Radar (NEXRAD) Stage IV rainfall data over the continental United States was used as ground validation (GV) data. A geostatistical mapping scheme was developed and tested for transfer (i.e., spatial interpolation) of uncertainty information from GV regions to the vast non-GV regions by leveraging the error characterization work carried out in the earlier step. The open question explored here was, "If 'error' is defined on the basis of independent ground validation (GV) data, how are error metrics estimated for a satellite rainfall data product without the need for much extensive GV data?" After a quantitative analysis of the spatial and temporal structure of the satellite rainfall uncertainty, a proof-of-concept geostatistical mapping scheme (based on the kriging method) was evaluated. The idea was to understand how realistic the idea of 'transfer' is for the GPM era. It was found that it was indeed technically possible to transfer error metrics from a gauged to an ungauged location for certain error metrics and that a regionalized error metric scheme for GPM may be possible. The uncertainty transfer scheme based on a commonly used kriging method (ordinary kriging) was then assessed further at various timescales (climatologic, seasonal, monthly and weekly), and as a function of the density of GV coverage. The results indicated that if a transfer scheme for estimating uncertainty metrics was finer than seasonal scale (ranging from 3-6 hourly to weekly-monthly), the effectiveness for uncertainty transfer worsened significantly. Next, a comprehensive assessment of different kriging methods for spatial transfer (interpolation) of error metrics was performed. Three kriging methods for spatial interpolation are compared, which are: ordinary kriging (OK), indicator kriging (IK) and disjunctive kriging (DK). Additional comparison with the simple inverse distance weighting (IDW) method was also performed to quantify the added benefit (if any) of using geostatistical methods. The overall performance ranking of the kriging methods was found to be as follows: OK=DK > IDW > IK. Lastly, various metrics of satellite rainfall uncertainty were identified for two large continental landmasses that share many similar Koppen climate zones, United States and Australia. The dependence of uncertainty as a function of gauge density was then investigated. The investigation revealed that only the first and second ordered moments of error are most amenable to a Koppen-type climate type classification in different continental landmasses.
Estimating probabilistic rainfall and food security outcomes for eastern and southern Africa
NASA Astrophysics Data System (ADS)
Verdin, J.; Funk, C.; Dettinger, M.; Brown, M.
2009-05-01
Since 1980, the number of undernourished people in eastern and southern Africa has more than doubled. Rural development stalled and rural poverty expanded during the 1990s. Population growth remains high, and declining per-capita agricultural capacity retards development. In September of 2008, Ethiopia, Kenya, Djibouti, and Somalia faced high or extreme conditions of food insecurity caused by repeated droughts and rapid food price inflation. In this talk we present research, performed for the US Agency for International Development on probabilistic projections of rainfall and food security trends for eastern and southern Africa. Analyses of station data and satellite-based estimates of precipitation have identified another problematic trend: main growing- season rainfall has diminished by ~15% in food-insecure countries clustered along the western rim of the Indian Ocean. Occurring during the main growing seasons in poor countries dependent on rain-fed agriculture, these declines constitute a long term danger to subsistence agricultural and pastoral livelihoods. Tracing moisture deficits upstream to an anthropogenically-induced warming Indian Ocean leads us to conclude that further rainfall declines are likely. We present analyses suggesting that warming in the central Indian Ocean disrupts onshore moisture transports, reducing continental rainfall. Thus, late 20th century Indian Ocean warming has probably already produced societally dangerous climate change by creating drought and social disruption in some of the world's most fragile food economies. We quantify the potential impacts of the observed precipitation and agricultural capacity trends by modeling millions of undernourished people as a function of rainfall, population, cultivated area, and seed and fertilizer use. Persistence of current trends may result in a 50% increase in undernourished people. On the other hand, modest increases in per-capita agricultural productivity could more than offset the observed precipitation declines. Increased investment in agricultural development would help mitigate climate change while decreasing rural poverty and vulnerability.
NASA Technical Reports Server (NTRS)
Funk, Chris; Dettinger, Michael D.; Brown, Molly E.; Michaelsen, Joel C.; Verdin, James P.; Barlow, Mathew; Howell, Andrew
2008-01-01
Since 1980, the number of undernourished people in eastern and southern Africa has more than doubled. Rural development stalled and rural poverty expanded during the 1990s. Population growth remains very high and declining per capita agricultural capacity retards progress towards Millennium Development goals. Analyses of in situ station data and satellite observations of precipitation identify another problematic trend. Main growing season rainfall receipts have diminished by approximately 15% in food insecure countries clustered along the western rim of the Indian Ocean. Occurring during the main growing seasons in poor countries dependent on rain fed agriculture, these declines are societally dangerous. Will they persist or intensify? Tracing moisture deficits upstream to an anthropogenically warming Indian Ocean leads us to conclude that further rainfall declines are likely. We present analyses suggesting that warming in the central Indian Ocean disrupts onshore moisture transports, reducing continental rainfall. Thus late 20th century anthropogenic Indian Ocean warming has probably already produced societally dangerous climate change by creating drought and social disruption in some of the world's most fragile food economies. We quantify the potential impacts of the observed precipitation and agricultural capacity trends by modeling millions of undernourished people as a function of rainfall, population, cultivated area, seed and fertilizer use. Persistence of current tendencies may result in a 50% increase in undernourished people. On the other hand, modest increases in per capita agricultural productivity could more than offset the observed precipitation declines. Investing in agricultural development can help mitigate climate change while decreasing rural poverty and vulnerability.
NASA Astrophysics Data System (ADS)
Torres, A. D.; Rasmussen, K. L.; Bodine, D. J.; Dougherty, E.
2015-12-01
Plains Elevated Convection At Night (PECAN) was a large field campaign that studied nocturnal mesoscale convective systems (MCSs), convective initiation, bores, and low-level jets across the central plains in the United States. MCSs are responsible for over half of the warm-season precipitation across the central U.S. plains. The rainfall from deep convection of these systems over land have been observed to be underestimated by satellite radar rainfall-retrieval algorithms by as much as 40 percent. These algorithms have a strong dependence on the generally unmeasured rain drop-size distribution (DSD). During the campaign, our group measured rainfall DSDs, precipitation fall velocities, and total precipitation in the convective and stratiform regions of MCSs using Ott Parsivel optical laser disdrometers. The disdrometers were co-located with mobile pod units that measured temperature, wind, and relative humidity for quality control purposes. Data from the operational NEXRAD radar in LaCrosse, Wisconsin and space-based radar measurements from a Global Precipitation Measurement satellite overpass on July 13, 2015 were used for the analysis. The focus of this study is to compare DSD measurements from the disdrometers to radars in an effort to reduce errors in existing rainfall-retrieval algorithms. The error analysis consists of substituting measured DSDs into existing quantitative precipitation estimation techniques (e.g. Z-R relationships and dual-polarization rain estimates) and comparing these estimates to ground measurements of total precipitation. The results from this study will improve climatological estimates of total precipitation in continental convection that are used in hydrological studies, climate models, and other applications.
Funk, Chris; Dettinger, Michael D; Michaelsen, Joel C; Verdin, James P; Brown, Molly E; Barlow, Mathew; Hoell, Andrew
2008-08-12
Since 1980, the number of undernourished people in eastern and southern Africa has more than doubled. Rural development stalled and rural poverty expanded during the 1990s. Population growth remains very high, and declining per-capita agricultural capacity retards progress toward Millennium Development goals. Analyses of in situ station data and satellite observations of precipitation have identified another problematic trend: main growing-season rainfall receipts have diminished by approximately 15% in food-insecure countries clustered along the western rim of the Indian Ocean. Occurring during the main growing seasons in poor countries dependent on rain-fed agriculture, these declines are societally dangerous. Will they persist or intensify? Tracing moisture deficits upstream to an anthropogenically warming Indian Ocean leads us to conclude that further rainfall declines are likely. We present analyses suggesting that warming in the central Indian Ocean disrupts onshore moisture transports, reducing continental rainfall. Thus, late 20th-century anthropogenic Indian Ocean warming has probably already produced societally dangerous climate change by creating drought and social disruption in some of the world's most fragile food economies. We quantify the potential impacts of the observed precipitation and agricultural capacity trends by modeling "millions of undernourished people" as a function of rainfall, population, cultivated area, seed, and fertilizer use. Persistence of current tendencies may result in a 50% increase in undernourished people by 2030. On the other hand, modest increases in per-capita agricultural productivity could more than offset the observed precipitation declines. Investing in agricultural development can help mitigate climate change while decreasing rural poverty and vulnerability.
Funk, Chris; Dettinger, Michael D.; Michaelsen, Joel C.; Verdin, James P.; Brown, Molly E.; Barlow, Mathew; Hoell, Andrew
2008-01-01
Since 1980, the number of undernourished people in eastern and southern Africa has more than doubled. Rural development stalled and rural poverty expanded during the 1990s. Population growth remains very high, and declining per-capita agricultural capacity retards progress toward Millennium Development goals. Analyses of in situ station data and satellite observations of precipitation have identified another problematic trend: main growing-season rainfall receipts have diminished by ≈15% in food-insecure countries clustered along the western rim of the Indian Ocean. Occurring during the main growing seasons in poor countries dependent on rain-fed agriculture, these declines are societally dangerous. Will they persist or intensify? Tracing moisture deficits upstream to an anthropogenically warming Indian Ocean leads us to conclude that further rainfall declines are likely. We present analyses suggesting that warming in the central Indian Ocean disrupts onshore moisture transports, reducing continental rainfall. Thus, late 20th-century anthropogenic Indian Ocean warming has probably already produced societally dangerous climate change by creating drought and social disruption in some of the world's most fragile food economies. We quantify the potential impacts of the observed precipitation and agricultural capacity trends by modeling “millions of undernourished people” as a function of rainfall, population, cultivated area, seed, and fertilizer use. Persistence of current tendencies may result in a 50% increase in undernourished people by 2030. On the other hand, modest increases in per-capita agricultural productivity could more than offset the observed precipitation declines. Investing in agricultural development can help mitigate climate change while decreasing rural poverty and vulnerability. PMID:18685101
Which resilience of the continental rainfall-runoff chain?
NASA Astrophysics Data System (ADS)
Fraedrich, Klaus
2015-04-01
Processes along the continental rainfall-runoff chain are extremely variable over a wide range of time and space scales. A key societal question is the multiscale resilience of this chain. We argue that the adequate framework to tackle this question can be obtained by combining observations (ranging from minutes to decades) and minimalist concepts: (i) Rainfall exhibits 1/f-spectra if presented as binary events (tropics) and extrema world wide increase with duration according to Jennings' scaling law as simulated by a censored first-order autoregressive process representing vertical moisture fluxes. (ii) Runoff volatility (Yangtze) shows data collapse which, linked to an intra-annual 1/f-spectrum, is represented by a single function (Gumbel) not unlike physical systems at criticality, while short and long return times of extremes are Weibull-distributed. (iii) Soil moisture, interpreted by a biased coinflip Ansatz for rainfall events, provides an equation of state to the surface energy and water flux balances comprising Budyko's framework for quasi-stationary watershed analysis. (iv) Vegetation-greenness (NDVI), included as an active tracer extends Budyko's eco-hydrologic state space analysis, supplements the common geographical presentations, and it may be linked to a minimalist biodiversity concept. (v) Finally, attributions of change to external (or climate) and internal (or anthropogenic) causes are determined by eco-hydrologic state space trajectories using surface flux ratios of energy excess (loss by sensible heat over supply by net radiation) versus water excess (loss by discharge over gain by precipitation). Risk-estimates (by GCM-emulators) and possible policy advice mechanisms enter the outlook.
Stable Isotopic Composition of Precipitation from 2015-2016 Central Texas Rainfall Events
NASA Astrophysics Data System (ADS)
Maupin, C. R.; McChesney, C. L.; Roark, B.; Gorman, M. K.; Housson, A. L.
2016-12-01
Central Texas lies within the Southern Great Plains, a region where rainfall is of tremendous agricultural and associated socioeconomic importance. Paleoclimate records from speleothems in central Texas caves may assist in placing historical and recent drought and pluvial events in the context of natural variability. Effective interpretation of such records requires the nature and origin of variations in the meteoric δ18O signal transmitted from cloud to speleothem to be understood. Here we present a record of meteoric δ18O and δD from each individual precipitation event (δ18Op and δDp), collected by rain gauge in Austin, Texas, USA, from April 2015 through 2016. Backwards hybrid single-particle Lagrangian integrated trajectories (HYSPLITs) indicate the broader moisture source for each precipitation event during this time was the Gulf of Mexico. The local meteoric water line is within error of the global meteoric water line, suggesting minimal sourcing of evaporated continental vapor for precipitation. Total monthly rainfall followed the climatological pattern of a dual boreal spring and fall maximum, with highly variable event δ18Op and δDp values. Surface temperature during precipitation often exerts control over continental and mid latitude δ18Op values, but is not significantly correlated to study site δ18Op (p>0.10). Amount of rain falling during each precipitation event ("amount effect") explains a significant 18% of variance in δ18Op. We hypothesize that this relationship can be attributed to the following: 1) minimal recycling of continental water vapor during the study period; 2) the presence of synoptic conditions favoring intense boreal spring and fall precipitation, driven by a developing, and subsequently in-place, strong ENSO event coupled with a southerly flow from the open Gulf of Mexico; and 3) the meteorological nature of the predominant precipitating events over Texas during this time, mesoscale convective systems, which are known to produce an "amount effect" if effective in-storm downdraft-recycling is present. Continued rainfall monitoring and isotopic measurements are required to determine whether this relationship persists during years with synoptic conditions different from 2015-2016.
NASA Astrophysics Data System (ADS)
Guan, Kaiyu; Good, Stephen P.; Caylor, Kelly K.; Medvigy, David; Pan, Ming; Wood, Eric F.; Sato, Hisashi; Biasutti, Michela; Chen, Min; Ahlström, Anders; Xu, Xiangtao
2018-02-01
There is growing evidence of ongoing changes in the statistics of intra-seasonal rainfall variability over large parts of the world. Changes in annual total rainfall may arise from shifts, either singly or in a combination, of distinctive intra-seasonal characteristics -i.e. rainfall frequency, rainfall intensity, and rainfall seasonality. Understanding how various ecosystems respond to the changes in intra-seasonal rainfall characteristics is critical for predictions of future biome shifts and ecosystem services under climate change, especially for arid and semi-arid ecosystems. Here, we use an advanced dynamic vegetation model (SEIB-DGVM) coupled with a stochastic rainfall/weather simulator to answer the following question: how does the productivity of ecosystems respond to a given percentage change in the total seasonal rainfall that is realized by varying only one of the three rainfall characteristics (rainfall frequency, intensity, and rainy season length)? We conducted ensemble simulations for continental Africa for a realistic range of changes (-20% ~ +20%) in total rainfall amount. We find that the simulated ecosystem productivity (measured by gross primary production, GPP) shows distinctive responses to the intra-seasonal rainfall characteristics. Specifically, increase in rainfall frequency can lead to 28% more GPP increase than the same percentage increase in rainfall intensity; in tropical woodlands, GPP sensitivity to changes in rainy season length is ~4 times larger than to the same percentage changes in rainfall frequency or intensity. In contrast, shifts in the simulated biome distribution are much less sensitive to intra-seasonal rainfall characteristics than they are to total rainfall amount. Our results reveal three major distinctive productivity responses to seasonal rainfall variability—‘chronic water stress’, ‘acute water stress’ and ‘minimum water stress’ - which are respectively associated with three broad spatial patterns of African ecosystem physiognomy, i.e. savannas, woodlands, and tropical forests.
Cahoon, Lawrence B; Hanke, Marc H
2017-04-01
Aging wastewater collection and treatment systems have not received as much attention as other forms of infrastructure, even though they are vital to public health, economic growth, and environmental quality. Inflow and infiltration (I&I) are among potentially widespread problems facing central sewage collection and treatment systems, posing risks of sanitary system overflows (SSOs), system degradation, and water quality impairment, but remain poorly quantified. Whole-system analyses of I&I were conducted by regression analyses of system flow responses to rainfall and temperature for 93 wastewater treatment plants in 23 counties in eastern North Carolina, USA, a coastal plain region with high water tables and generally higher rainfalls than the continental interior. Statistically significant flow responses to rainfall were found in 92% of these systems, with 2-year average I&I values exceeding 10% of rainless system flow in over 40% of them. The effects of rainfall, which can be intense in this coastal region, have region-wide implications for sewer system performance and environmental management. The positive association between rainfall and excessive I&I parallels the effects of storm water runoff on water quality, in that excessive I&I can also drive SSOs, thus confounding water quality protection efforts.
Evaluating Satellite Rainfall Estimates for Agro-hydrological Applications in Africa
NASA Astrophysics Data System (ADS)
Senay, G. B.; Verdin, J. P.; Korecha, D.; Asfaw, A.
2004-12-01
Regional water balance techniques are used to monitor and forecast crop performance and flooding potentials around the world. In the last few years, satellite rainfall estimates (RFE) have become available at continental scales, which made it possible to develop operational regional water balance models for the monitoring of crops performance and flooding potentials in Africa and other regions of the world as part of an environmental early warning system . The accuracy of RFE in absolute terms and importantly as it relates to agricultural and hydrological applications have not been evaluated systematically. This study evaluated a subset of the Africa-wide RFE product by comparing station-rainfall data and RFE from 1996 to 2002 using over 100 rain-gauge stations from Ethiopia at a dekadal (~10-day) time step. The results showed a general under-estimation of RFE compared to station rainfall values. The correlation between station rainfall data and RFE varied highly from place to place and between seasons. On the other hand, the correlation improved significantly when comparison was made between RFE-derived crop water satisfaction index (WRSI) and station-rainfall-derived WRSI, indicating the usefulness of the RFE for agro-hydrological applications.
On interception modelling of a lowland coastal rainforest in northern Queensland, Australia
NASA Astrophysics Data System (ADS)
Wallace, Jim; McJannet, Dave
2006-10-01
SummaryRecent studies of the water balance of tropical rainforests in northern Queensland have revealed that large fractions of rainfall, up to 30%, are intercepted by the canopy and lost as evaporation. These loss rates are much higher than those reported for continental rainforests, for example, in the Amazon basin, where interception is around 9% of rainfall. Higher interception losses have been found in coastal and mountain rainforests and substantial advection of energy during rainfall is proposed to account for these results. This paper uses a process based model of interception to analyse the interception losses at Oliver Creek, a lowland coastal rainforest site in northern Queensland with a mean annual rainfall of 3952 mm. The observed interception loss of 25% of rainfall for the period August 2001 to January 2004 can be reproduced by the model with a suitable choice of the three key controlling variables, the canopy storage capacity, mean rainfall rate and mean wet canopy evaporation rate. Our analyses suggest that the canopy storage capacity of the Oliver Creek rainforest is between 3.0 and 3.5 mm, higher than reported for most other rainforests. Despite the high canopy capacity at our site, the interception losses can only be accounted for with energy advection during rainfall in the range 40-70% of the incident energy.
NASA Astrophysics Data System (ADS)
Chung, Ming-Chien; Tan, Chih-Hao; Chen, Mien-Min; Su, Tai-Wei
2013-04-01
Taiwan is an active mountain belt created by the oblique collision between the northern Luzon arc and the Asian continental margin. The inherent complexities of geological nature create numerous discontinuities through rock masses and relatively steep hillside on the island. In recent years, the increase in the frequency and intensity of extreme natural events due to global warming or climate change brought significant landslides. The causes of landslides in these slopes are attributed to a number of factors. As is well known, rainfall is one of the most significant triggering factors for landslide occurrence. In general, the rainfall infiltration results in changing the suction and the moisture of soil, raising the unit weight of soil, and reducing the shear strength of soil in the colluvium of landslide. The stability of landslide is closely related to the groundwater pressure in response to rainfall infiltration, the geological and topographical conditions, and the physical and mechanical parameters. To assess the potential susceptibility to landslide, an effective modeling of rainfall-induced landslide is essential. In this paper, a deterministic approach is adopted to estimate the critical rainfall threshold of the rainfall-induced landslide. The critical rainfall threshold is defined as the accumulated rainfall while the safety factor of the slope is equal to 1.0. First, the process of deterministic approach establishes the hydrogeological conceptual model of the slope based on a series of in-situ investigations, including geological drilling, surface geological investigation, geophysical investigation, and borehole explorations. The material strength and hydraulic properties of the model were given by the field and laboratory tests. Second, the hydraulic and mechanical parameters of the model are calibrated with the long-term monitoring data. Furthermore, a two-dimensional numerical program, GeoStudio, was employed to perform the modelling practice. Finally, the critical rainfall threshold of the slope can be obtained by the coupled analysis of rainfall, infiltration, seepage, and slope stability. Taking the slope located at 50k+650 on Tainan county road No 174 as an example, it located at Zeng-Wun river watershed in the southern Taiwan, is an active landslide due to typhoon events. Coordinates for the case study site are 194925, 2567208 (TWD97). The site was selected as the results of previous reports and geological survey. According to the Central Weather Bureau, the annual precipitation is about 2,450 mm, the highest monthly value is in August with 630 mm, and the lowest value is in November with 13 mm. The results show that the critical rainfall threshold of the study case is around 640 mm. It means that there should be alarmed when the accumulated rainfall over 640 mm. Our preliminary results appear to be useful for rainfall-induced landslide hazard assessments. The findings are also a good reference to establish an early warning system of landslides and develop strategies to prevent so much misfortune from happening in the future.
Watershed hydrology. Chapter 7.
Elons S. Verry; Kenneth N. Brooks; Dale S. Nichols; Dawn R. Ferris; Stephen D. Sebestyen
2011-01-01
Watershed hydrology is determined by the local climate, land use, and pathways of water flow. At the Marcell Experimental Forest (MEF), streamflow is dominated by spring runoff events driven by snowmelt and spring rains common to the strongly continental climate of northern Minnesota. Snowmelt and rainfall in early spring saturate both mineral and organic soils and...
Mechanisms for Diurnal Variability of Global Tropical Rainfall Observed from TRMM
NASA Technical Reports Server (NTRS)
Yang, Song; Smith, Eric A.
2004-01-01
The behavior and various controls of diurnal variability in tropical-subtropical rainfall are investigated using Tropical Rainfall Measuring Mission (TRMM) precipitation measurements retrieved from: (1) TRMM Microwave Imager (TMI), (2) Precipitation Radar (PR), and (3) TMI/PR Combined, standard level 2 algorithms for the 1998 annual cycle. Results show that the diurnal variability characteristics of precipitation are consistent for all three algorithms, providing assurance that TRMM retrievals are providing consistent estimates of rainfall variability. As anticipated, most ocean areas exhibit more rainfall at night, while over most land areas rainfall peaks during daytime ,however, various important exceptions are found. The dominant feature of the oceanic diurnal cycle is a rainfall maximum in late-evening/early-morning (LE-EM) hours, while over land the dominant maximum occurs in the mid- to late-afternoon (MLA). In conjunction with these maxima are pronounced seasonal variations of the diurnal amplitudes. Amplitude analysis shows that the diurnal pattern and its seasonal evolution are closely related to the rainfall accumulation pattern and its seasonal evolution. In addition, the horizontal distribution of diurnal variability indicates that for oceanic rainfall there is a secondary MLA maximum, co-existing with the LE-EM maximum, at latitudes dominated by large scale convergence and deep convection. Analogously, there is a preponderance for an LE-EM maximum over land, co-existing with the stronger MLA maximum, although it is not evident that this secondary continental feature is closely associated with the large scale circulation. The ocean results clearly indicate that rainfall diurnal variability associated with large scale convection is an integral part of the atmospheric general circulation.
Latent Heating Retrievals Using the TRMM Precipitation Radar: A Multi-Seasonal Study
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Lang, S.; Meneghini, R.; Halverson, J.; Johnson, R.; Simpson, J.; Einaudi, Franco (Technical Monitor)
2001-01-01
Rainfall is a key link in the hydrologic cycle and is a primary heat source for the atmosphere. The vertical distribution of latent heat release, which is accompanied by rainfall, modulates the large-scale circulations of the tropics and in turn can impact midlatitude weather. This latent heat release is a consequence of phase changes between vapor, liquid, and solid water. Present largescale weather and climate models can simulate latent heat release only crudely, thus reducing their confidence in predictions on both global and regional scales. This paper represents the first attempt to use NASA Tropical Rainfall Measuring Mission (TRMM) rainfall information to estimate the four-dimensional structure of global monthly latent heating profiles over the global tropics from December 1997 to October 2000. The Goddard Convective-Stratiform. Heating (CSH) algorithm and TRMM precipitation radar data are used for this study. We will examine and compare the latent heating structures between 1997-1998 (winter) ENSO and 1998-2000 (non-ENSO). We will also examine over the tropics. The seasonal variation of heating over various geographic locations (i.e., oceanic vs continental; Indian oceans vs west Pacific; Africa vs S. America) will be also examined and compared. In addition, we will examine the relationship between latent heating (max heating level) and SST. The period of interest also coincides with several TRMM field campaigns that recently occurred over the South China Sea in 1998 (SCSMEX), Brazil in 1999 (TRMM-LBA), and in the central Pacific in 1999 (KWAJEX). Sounding diagnosed Q1 budgets from these experiments could provide a means of validating the retrieved profiles of latent heating from the CSH algorithm.
Funk, Chris C.; Dettinger, Michael D.; Michaelsen, Joel C.; Verdin, James P.; Brown, Molly E.; Barlow, Mathew; Hoell, Andrew
2008-01-01
Since 1980, the number of undernourished people in eastern and southern Africa has more than doubled. Rural development stalled and rural poverty expanded during the 1990s. Population growth remains very high, and declining per-capita agricultural capacity retards progress toward Millennium Development goals. Analyses of in situ station data and satellite observations of precipitation have identified another problematic trend: main growing-season rainfall receipts have diminished by ???15% in food-insecure countries clustered along the western rim of the Indian Ocean. Occurring during the main growing seasons in poor countries dependent on rain-fed agriculture, these declines are societally dangerous. Will they persist or intensify? Tracing moisture deficits upstream to an anthropogenically warming Indian Ocean leads us to conclude that further rainfall declines are likely. We present analyses suggesting that warming in the central Indian Ocean disrupts onshore moisture transports, reducing continental rainfall. Thus, late 20th-century anthropogenic Indian Ocean warming has probably already produced societally dangerous climate change by creating drought and social disruption in some of the world's most fragile food economies. We quantify the potential impacts of the observed precipitation and agricultural capacity trends by modeling 'millions of undernourished people' as a function of rainfall, population, cultivated area, seed, and fertilizer use. Persistence of current tendencies may result in a 50% increase in undernourished people by 2030. On the other hand, modest increases in per-capita agricultural productivity could more than offset the observed precipitation declines. Investing in agricultural development can help mitigate climate change while decreasing rural poverty and vulnerability. ?? 2008 by The National Academy of Sciences of the USA.
Modeling of Flood Risk for the Continental United States
NASA Astrophysics Data System (ADS)
Lohmann, D.; Li, S.; Katz, B.; Goteti, G.; Kaheil, Y. H.; Vojjala, R.
2011-12-01
The science of catastrophic risk modeling helps people to understand the physical and financial implications of natural catastrophes (hurricanes, flood, earthquakes, etc.), terrorism, and the risks associated with changes in life expectancy. As such it depends on simulation techniques that integrate multiple disciplines such as meteorology, hydrology, structural engineering, statistics, computer science, financial engineering, actuarial science, and more in virtually every field of technology. In this talk we will explain the techniques and underlying assumptions of building the RMS US flood risk model. We especially will pay attention to correlation (spatial and temporal), simulation and uncertainty in each of the various components in the development process. Recent extreme floods (e.g. US Midwest flood 2008, US Northeast flood, 2010) have increased the concern of flood risk. Consequently, there are growing needs to adequately assess the flood risk. The RMS flood hazard model is mainly comprised of three major components. (1) Stochastic precipitation simulation module based on a Monte-Carlo analogue technique, which is capable of producing correlated rainfall events for the continental US. (2) Rainfall-runoff and routing module. A semi-distributed rainfall-runoff model was developed to properly assess the antecedent conditions, determine the saturation area and runoff. The runoff is further routed downstream along the rivers by a routing model. Combined with the precipitation model, it allows us to correlate the streamflow and hence flooding from different rivers, as well as low and high return-periods across the continental US. (3) Flood inundation module. It transforms the discharge (output from the flow routing) into water level, which is further combined with a two-dimensional off-floodplain inundation model to produce comprehensive flood hazard map. The performance of the model is demonstrated by comparing to the observation and published data. Output from the flood hazard model is used to drive a flood loss model that is coupled to a financial model.
Changing character of rainfall in eastern China, 1951-2007.
Day, Jesse A; Fung, Inez; Liu, Weihan
2018-02-27
The topography and continental configuration of East Asia favor the year-round existence of storm tracks that extend thousands of kilometers from China into the northwestern Pacific Ocean, producing zonally elongated patterns of rainfall that we call "frontal rain events." In spring and early summer (known as "Meiyu Season"), frontal rainfall intensifies and shifts northward during a series of stages collectively known as the East Asian summer monsoon. Using a technique called the Frontal Rain Event Detection Algorithm, we create a daily catalog of all frontal rain events in east China during 1951-2007, quantify their attributes, and classify all rainfall on each day as either frontal, resulting from large-scale convergence, or nonfrontal, produced by local buoyancy, topography, or typhoons. Our climatology shows that the East Asian summer monsoon consists of a series of coupled changes in frontal rain event frequency, latitude, and daily accumulation. Furthermore, decadal changes in the amount and distribution of rainfall in east China are overwhelmingly due to changes in frontal rainfall. We attribute the "South Flood-North Drought" pattern observed beginning in the 1980s to changes in the frequency of frontal rain events, while the years 1994-2007 witnessed an uptick in event daily accumulation relative to the rest of the study years. This particular signature may reflect the relative impacts of global warming, aerosol loading, and natural variability on regional rainfall, potentially via shifting the East Asian jet stream.
The Influence of the East Asian Winter Monsoon on Indonesian Rainfall During the Past 60,000 Years
NASA Astrophysics Data System (ADS)
Konecky, B. L.; Russell, J. M.; Vogel, H.; Bijaksana, S.; Huang, Y.
2013-12-01
The Indo-Pacific Warm Pool (IPWP) invigorates the oceanic-atmospheric circulation in the tropics, with far-reaching climate impacts that extend into the high latitudes. A growing number of deglacial proxy reconstructions from the Maritime Continent and its surrounding seas have revealed the importance of both high- and low-latitude climate processes to IPWP rainfall during the deglaciation and the Holocene. However, few records extend beyond the Last Glacial Maximum (LGM), making it difficult to assess regional rainfall characteristics and monsoon interactions under the glacial/interglacial boundary conditions of the Pleistocene. Proxy reconstructions of the oxygen and hydrogen isotopic composition of rainfall (δ18O/δDprecip) have proven useful in understanding millennial to orbital scale changes in the climate of the Maritime Continent, but the tendency for δ18O/δDprecip in this region to reflect regional and/or remote climate processes has highlighted the need to reconstruct δ18O/δDprecip alongside independent proxies for continental rainfall amount. Here we present a reconstruction of δDprecip using leaf wax compounds preserved in the sediments of Lake Towuti, Central Sulawesi, from 60,000 years before present (kyr BP) to today. Our δDprecip reconstruction provides a precipitation isotopic counterpart to multi-proxy geochemical reconstructions of surface hydrology and vegetation characteristics from the same sediment cores, enabling for the first time an independent assessment of both continental rainfall intensity and δDprecip from this region on glacial/interglacial timescales. We find that orbital-scale variations in δDprecip and rainfall intensity are strongly tied to the East Asian Winter Monsoon (EAWM), which is an important contributor to the band of convection over the Maritime Continent during austral summer. Unlike today, however, severely dry conditions in Central Sulawesi during the Last Glacial Maximum were accompanied by a strengthened EAWM and D-depleted precipitation. In contrast, wet conditions in Central Sulawesi during Marine Isotope Stage 3 (MIS3) and during the early Holocene occurred when the EAWM was weakened. These findings support previous inferences based on Australian data that glacial boundary conditions modified the relationship between the EAWM and the Australian-Indonesian Summer Monsoon (AISM). However, previously proposed mechanisms for this modified EAWM/AISM relationship are not sufficient to explain our observations in Indonesia, and must be expanded. We propose revisions to these mechanisms in order to explain observations of Indonesian rainfall and δDprecip. Our findings provide important context for the circulation patterns that drove rainfall variations in Central Sulawesi during the past 60 kyr, and help to reconcile some of the disagreements among late Pleistocene records of surface runoff and δ18O/δDprecip from the IPWP region.
Stable Isotope Anatomy of Tropical Cyclone Ita, North-Eastern Australia, April 2014
Munksgaard, Niels C.; Zwart, Costijn; Kurita, Naoyuki; Bass, Adrian; Nott, Jon; Bird, Michael I.
2015-01-01
The isotope signatures registered in speleothems during tropical cyclones (TC) provides information about the frequency and intensity of past TCs but the precise relationship between isotopic composition and the meteorology of TCs remain uncertain. Here we present continuous δ18O and δ2H data in rainfall and water vapour, as well as in discrete rainfall samples, during the passage of TC Ita and relate the evolution in isotopic compositions to local and synoptic scale meteorological observations. High-resolution data revealed a close relationship between isotopic compositions and cyclonic features such as spiral rainbands, periods of stratiform rainfall and the arrival of subtropical and tropical air masses with changing oceanic and continental moisture sources. The isotopic compositions in discrete rainfall samples were remarkably constant along the ~450 km overland path of the cyclone when taking into account the direction and distance to the eye of the cyclone at each sampling time. Near simultaneous variations in δ18O and δ2H values in rainfall and vapour and a near-equilibrium rainfall-vapour isotope fractionation indicates strong isotopic exchange between rainfall and surface inflow of vapour during the approach of the cyclone. In contrast, after the passage of spiral rainbands close to the eye of the cyclone, different moisture sources for rainfall and vapour are reflected in diverging d-excess values. High-resolution isotope studies of modern TCs refine the interpretation of stable isotope signatures found in speleothems and other paleo archives and should aim to further investigate the influence of cyclone intensity and longevity on the isotopic composition of associated rainfall. PMID:25742628
Spacebased Observations of Oceanic Influence on the Annual Variation of South American Water Balance
NASA Technical Reports Server (NTRS)
Liu, W. Timothy; Xie, Xiaosu; Tang, Wenqing; Zlotnicki, Victor
2006-01-01
The mass change of South America (SA) continent measured by the Gravity Recovery and Climate Experiment (GRACE) imposes a constraint on the uncertainties in estimating the annual variation of rainfall measured by Tropical Rain Measuring Mission (TRMM) and ocean moisture influx derived from QuikSCAT data. The approximate balance of the mass change rate with the moisture influx less climatological river discharge, in agreement with the conservation principle, bolsters not only the credibility of the spacebased measurements, but supports the characterization of ocean's influence on the annual variation of continental water balance. The annual variation of rainfall is found to be in phase with the mass change rate in the Amazon and the La Plata basins, and the moisture advection across relevant segments of the Pacific and Atlantic coasts agrees with the annual cycle of rainfall in the two basins and the Andes mountains.
NASA Astrophysics Data System (ADS)
D'Onofrio, Donatella; von Hardenberg, Jost; Baudena, Mara
2017-04-01
Savannas occupy about a fifth of the global land surface and store approximately 15% of the terrestrial carbon. They also encompass about 85% of the global land area burnt annually. Along an increasing rainfall gradient, they are the intermediate biome between grassland and forest. Undergoing and predicted increasing temperature and CO2 concentration, modified precipitation regimes, as well as increasing land-use intensity, are expected to induce important shifts in savanna structure and in the distribution of grasslands, savannas and forests. Owing to the large extent and productivity of savanna biomes, these changes could have larger impacts on the global biogeochemical cycle and precipitation than for any other biome, thus influencing the vegetation-climate system. The dynamics of these biomes has been long studied, and the current theory postulates that while arid savannas are observed because of tree-water limitation, and competition with grasses, in mesic conditions savannas persist because a grass-fire feedback exists, which can maintain them as an alternatively stable state to closed forests. This feedback is reinforced by the different responses of savanna and forest tree type. In this context, despite their relevance, grasses and tree types have been studied mostly in small scale ecological studies, while continental analyses focused on total tree cover only. Here we analyze a recent MODIS product including explicitly the non-tree vegetation cover, allowing us to illustrate for the first time at continental scale the importance of grass cover and of tree-fire responses in determining the emergence of the different biomes. We analyze the relationships of woody and herbaceous cover with fire return time (all from MODIS satellite observations), rainfall annual average and seasonality (from TRMM satellite measurements), and we include tree phenology information, based on the ESA Global Land Cover map, also used to exclude areas with large anthropogenic land use. From this analysis we distinctively observe that tropical vegetation dynamics changes along a rainfall gradient more markedly than previously observed, in particular identifying three zones: (i) a dry region, where grasses are dominant and water-limited, and fires are rare; (ii) an intermediate rainfall range, where savanna with grass dominance is the predominant biome, maintained by frequent fires and rainfall seasonality; and (iii) a more humid area, where both savannas and forests can occur, as determined by the grass-fire feedback and the occurrence of different types of trees. The analysis of these important ecological processes can also be applied to the evaluation of Dynamic Global Vegetation Models, that currently have particular difficulties in simulating tropical vegetation.
NASA Technical Reports Server (NTRS)
Tao, W.-K.; Lang, S.; Simpson, J.; Meneghini, R.; Halverson, J.; Johnson, R.; Adler, R.
2003-01-01
NASA Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) derived rainfall information will be used to estimate the four-dimensional structure of global monthly latent heating and rainfall profiles over the global tropics from December 1997 to November 2000. Rainfall, latent heating and radar reflectivity structures between El Nino (DJF 1997-98) and La Nina (DJF 1998-99) will be examined and compared. The seasonal variation of heating over various geographic locations (i.e., oceanic vs continental, Indian ocean vs west Pacific, Africa vs. S. America ) will also be analyzed. In addition, the relationship between rainfall, latent heating (maximum heating level), radar reflectivity and SST is examined and will be presented in the meeting. The impact of random error and bias in stratiform percentage estimates from PR on latent heating profiles is studied and will also be presented in the meeting. The Goddard Cumulus Ensemble Model is being used to simulate various mesoscale convective systems that developed in different geographic locations. Specifically, the model estimated rainfall, radar reflectivity and latent heating profiles will be compared to observational data collected from TRMM field campaigns over the South China Sea in 1998 (SCSMEX), Brazil in 1999 (TRMM-LBA), and the central Pacific in 1999 (KWAJEX). Sounding diagnosed heating budgets and radar reflectivity from these experiments can provide the means to validate (heating product) as well as improve the GCE model. Review of other latent heating algorithms will be discussed in the workshop.
NASA Technical Reports Server (NTRS)
Tao, W.-K.; Lang, S.; Simpson, J.; Meneghini, R.; Halverson, J.; Johnson, R.; Adler, R.
2002-01-01
NASA Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) derived rainfall information will be used to estimate the four-dimensional structure of global monthly latent heating and rainfall profiles over the global tropics from December 1997 to November 2001. Rainfall, latent heating and radar reflectivity structures between El Nino (DE 1997-98) and La Nina (DJF 1998-99) will be examined and compared. The seasonal variation of heating over various geographic locations (i.e., oceanic vs continental, Indian ocean vs. west Pacific, Africa vs. S. America) will also be analyzed. In addition, the relationship between rainfall, latent heating (maximum heating level), radar reflectivity and SST is examined and will be presented in the meeting. The impact of random error and bias in strtaiform percentage estimates from PR on latent heating profiles is studied and will also be presented in the meeting. The Goddard Cumulus Ensemble Model is being used to simulate various mesoscale convective systems that developed in different geographic locations. Specifically, the model estimated rainfall, radar reflectivity and latent heating profiles will be compared to observational data collected from TRMM field campaigns over the South China Sea in 1998 (SCSMEX), Brazil in 1999 (TRMM-LBA), and the central Pacific in 1999 (KWAJEX). Sounding diagnosed heating budgets and radar reflectivity from these experiments can provide the means to validate (heating product) as well as improve the GCE model.
NASA Technical Reports Server (NTRS)
Tao, W.-K.; Lang, S.; Simpson, J.; Meneghini, R.; Halverson, J.; Johnson, R.; Adler, R.; Starr, David (Technical Monitor)
2002-01-01
NASA Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) derived rainfall information will be used to estimate the four-dimensional structure of global monthly latent heating and rainfall profiles over the global tropics from December 1997 to November 2000. Rainfall, latent heating and radar reflectivity structures between El Nino (DJF 1997-98) and La Nina (DJF 1998-99) will be examined and compared. The seasonal variation of heating over various geographic locations (i.e., oceanic vs continental, Indian ocean vs west Pacific, Africa vs S. America) will also be analyzed. In addition, the relationship between rainfall, latent heating (maximum heating level), radar reflectivity and SST is examined and will be presented in the meeting. The impact of random error and bias in stratiform percentage estimates from PR on latent heating profiles is studied and will also be presented in the meeting. The Goddard Cumulus Ensemble Model is being used to simulate various mesoscale convective systems that developed in different geographic locations. Specifically, the model estimated rainfall, radar reflectivity and latent heating profiles will be compared to observational data collected from TRMM field campaigns over the South China Sea in 1998 (SCSMEX), Brazil in 1999 (TRMM-LBA), and the central Pacific in 1999 (KWAJEX). Sounding diagnosed heating budgets and radar reflectivity from these experiments can provide the means to validate (heating product) as well as improve the GCE model.
NASA Technical Reports Server (NTRS)
Tao, W.-K.
2003-01-01
NASA Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) derived rainfall information will be used to estimate the four-dimensional structure of global monthly latent heating and rainfall profiles over the global tropics from December 1997 to November 2000. Rainfall, latent heating and radar reflectivity structures between El Nino (DJF 1997-98) and La Nina (DJF 1998-99) will be examined and compared. The seasonal variation of heating over various geographic locations (i.e., oceanic vs continental, Indian ocean vs west Pacific, Africa vs S. America) will also be analyzed. In addition, the relationship between rainfall, latent heating (maximum heating level), radar reflectivity and SST is examined and will be presented in the meeting. The impact of random error and bias in straitform percentage estimates from PR on latent heating profiles is studied and will also be presented in the meeting. The Goddard Cumulus Ensemble Model is being used to simulate various mesoscale convective systems that developed in different geographic locations. Specifically, the model estimated rainfall, radar reflectivity and latent heating profiles will be compared to observational data collected from TRMM field campaigns over the South China Sea in 1998 (SCSMXX), Brazil in 1999 (TRMM- LBA), and the central Pacific in 1999 (KWAJEX). Sounding diagnosed heating budgets and radar reflectivity from these experiments can provide the means to validate (heating product) as well as improve the GCE model.
Changing character of rainfall in eastern China, 1951–2007
NASA Astrophysics Data System (ADS)
Day, Jesse A.; Fung, Inez; Liu, Weihan
2018-03-01
The topography and continental configuration of East Asia favor the year-round existence of storm tracks that extend thousands of kilometers from China into the northwestern Pacific Ocean, producing zonally elongated patterns of rainfall that we call “frontal rain events.” In spring and early summer (known as “Meiyu Season”), frontal rainfall intensifies and shifts northward during a series of stages collectively known as the East Asian summer monsoon. Using a technique called the Frontal Rain Event Detection Algorithm, we create a daily catalog of all frontal rain events in east China during 1951–2007, quantify their attributes, and classify all rainfall on each day as either frontal, resulting from large-scale convergence, or nonfrontal, produced by local buoyancy, topography, or typhoons. Our climatology shows that the East Asian summer monsoon consists of a series of coupled changes in frontal rain event frequency, latitude, and daily accumulation. Furthermore, decadal changes in the amount and distribution of rainfall in east China are overwhelmingly due to changes in frontal rainfall. We attribute the “South Flood–North Drought” pattern observed beginning in the 1980s to changes in the frequency of frontal rain events, while the years 1994–2007 witnessed an uptick in event daily accumulation relative to the rest of the study years. This particular signature may reflect the relative impacts of global warming, aerosol loading, and natural variability on regional rainfall, potentially via shifting the East Asian jet stream.
Reduced precipitation over large water bodies in the Brazilian Amazon shown from TRMM data
NASA Astrophysics Data System (ADS)
Paiva, Rodrigo Cauduro Dias; Buarque, Diogo Costa; Clarke, Robin T.; Collischonn, Walter; Allasia, Daniel Gustavo
2011-02-01
Tropical Rainfall Measurement Mission (TRMM) data show lower rainfall over large water bodies in the Brazilian Amazon. Mean annual rainfall (P), number of wet days (rainfall > 2 mm) (W) and annual rainfall accumulated over 3-hour time intervals (P3hr) were computed from TRMM 3B42 data for 1998-2009. Reduced rainfall was marked over the Rio Solimões/Amazon, along most Amazon tributaries and over the Balbina reservoir. In a smaller test area, a heuristic argument showed that P and W were reduced by 5% and 6.5% respectively. Allowing for TRMM 3B42 spatial resolution, the reduction may be locally greater. Analyses of diurnal rainfall patterns showed that rainfall is lowest over large rivers during the afternoon, when most rainfall is convective, but at night and early morning the opposite occurs, with increased rainfall over rivers, although this pattern is less marked. Rainfall patterns reported from studies of smaller Amazonian regions therefore exist more widely.
Projected climate change impacts in rainfall erosivity over Brazil.
Almagro, André; Oliveira, Paulo Tarso S; Nearing, Mark A; Hagemann, Stefan
2017-08-15
The impacts of climate change on soil erosion may bring serious economic, social and environmental problems. However, few studies have investigated these impacts on continental scales. Here we assessed the influence of climate change on rainfall erosivity across Brazil. We used observed rainfall data and downscaled climate model output based on Hadley Center Global Environment Model version 2 (HadGEM2-ES) and Model for Interdisciplinary Research On Climate version 5 (MIROC5), forced by Representative Concentration Pathway 4.5 and 8.5, to estimate and map rainfall erosivity and its projected changes across Brazil. We estimated mean values of 10,437 mm ha -1 h -1 year -1 for observed data (1980-2013) and 10,089 MJ mm ha -1 h -1 year -1 and 10,585 MJ mm ha -1 h -1 year -1 for HadGEM2-ES and MIROC5, respectively (1961-2005). Our analysis suggests that the most affected regions, with projected rainfall erosivity increases ranging up to 109% in the period 2007-2040, are northeastern and southern Brazil. Future decreases of as much as -71% in the 2071-2099 period were estimated for the southeastern, central and northwestern parts of the country. Our results provide an overview of rainfall erosivity in Brazil that may be useful for planning soil and water conservation, and for promoting water and food security.
Mapping Shallow Landslide Slope Inestability at Large Scales Using Remote Sensing and GIS
NASA Astrophysics Data System (ADS)
Avalon Cullen, C.; Kashuk, S.; Temimi, M.; Suhili, R.; Khanbilvardi, R.
2015-12-01
Rainfall induced landslides are one of the most frequent hazards on slanted terrains. They lead to great economic losses and fatalities worldwide. Most factors inducing shallow landslides are local and can only be mapped with high levels of uncertainty at larger scales. This work presents an attempt to determine slope instability at large scales. Buffer and threshold techniques are used to downscale areas and minimize uncertainties. Four static parameters (slope angle, soil type, land cover and elevation) for 261 shallow rainfall-induced landslides in the continental United States are examined. ASTER GDEM is used as bases for topographical characterization of slope and buffer analysis. Slope angle threshold assessment at the 50, 75, 95, 98, and 99 percentiles is tested locally. Further analysis of each threshold in relation to other parameters is investigated in a logistic regression environment for the continental U.S. It is determined that lower than 95-percentile thresholds under-estimate slope angles. Best regression fit can be achieved when utilizing the 99-threshold slope angle. This model predicts the highest number of cases correctly at 87.0% accuracy. A one-unit rise in the 99-threshold range increases landslide likelihood by 11.8%. The logistic regression model is carried over to ArcGIS where all variables are processed based on their corresponding coefficients. A regional slope instability map for the continental United States is created and analyzed against the available landslide records and their spatial distributions. It is expected that future inclusion of dynamic parameters like precipitation and other proxies like soil moisture into the model will further improve accuracy.
An Innovative Method for Estimating Soil Retention at a ...
Planning for a sustainable future should include an accounting of services currently provided by ecosystems such as erosion control. Retention of soil improves fertility, increases water retention, and decreases sedimentation in streams and rivers. Landscapes patterns that facilitate these services could help reduce costs for flood control, dredging of reservoirs and waterways, while maintaining habitat for fish and other species important to recreational and tourism industries. Landscape scale geospatial data available for the continental United States was leveraged to estimate sediment erosion (RUSLE-based, Renard, et al. 1997) employing recent geospatial techniques of sediment delivery ratio (SDR) estimation (Cavalli, et al. 2013). The approach was designed to derive a quantitative approximation of the ecological services provided by vegetative cover, management practices, and other surface features with respect to protecting soils from the erosion processes of detachment, transport, and deposition. Quantities of soil retained on the landscape and potential erosion for multiple land cover scenarios relative to current (NLCD 2011) conditions were calculated for each calendar month, and summed to yield annual estimations at a 30-meter grid cell. Continental-scale data used included MODIS NDVI data (2000-2014) to estimate monthly USLE C-factors, gridded soil survey geographic (gSSURGO) soils data (annual USLE K factor), PRISM rainfall data (monthly USLE
Division and Brigade Stationing System: Installation Data Book.
1988-04-01
8217Division and Brigade Stationing Study: An Analysis of Environmental and Socioeconomic Effects (ESC, September 1987); Division and Brigade Stationing Study...composed of 0 partly decomposed moss, leaves , and twigs, matted together with many fine rootlets. In permafrost areas, destruction of this mat...maritime effect is seldom interrupted by drier and cooler continental air. Although rainfall averages about 48 inches a year, Y annual variation is large
Identification of deficiencies in seasonal rainfall simulated by CMIP5 climate models
NASA Astrophysics Data System (ADS)
Dunning, Caroline M.; Allan, Richard P.; Black, Emily
2017-11-01
An objective technique for analysing seasonality, in terms of regime, progression and timing of the wet seasons, is applied in the evaluation of CMIP5 simulations across continental Africa. Atmosphere-only and coupled integrations capture the gross observed patterns of seasonal progression and give mean onset/cessation dates within 18 days of the observational dates for 11 of the 13 regions considered. Accurate representation of seasonality over central-southern Africa and West Africa (excluding the southern coastline) adds credence for future projected changes in seasonality here. However, coupled simulations exhibit timing biases over the Horn of Africa, with the long rains 20 days late on average. Although both sets of simulations detect biannual rainfall seasonal cycles for East and Central Africa, coupled simulations fail to capture the biannual regime over the southern West African coastline. This is linked with errors in the Gulf of Guinea sea surface temperature (SST) and deficient representation of the SST/rainfall relationship.
Architectures for Rainfall Property Estimation From Polarimetric Radar
NASA Astrophysics Data System (ADS)
Collis, S. M.; Giangrande, S. E.; Helmus, J.; Troemel, S.
2014-12-01
Radars that transmit and receive signals in polarizations aligned both horizontal and vertical to the horizon collect a number of measurements. The relation both between these measurements and between measurements and desired microphysical quantities (such as rainfall rate) is complicated due to a number of scattering mechanisms. The result is that there ends up being an intractable number of often incompatible techniques for extracting geophysical insight. This presentation will discuss methods developed by the Atmospheric Measurement Climate (ARM) Research Facility to streamline the creation of application chains for retrieving rainfall properties for the purposes of fine scale model evaluation. By using a Common Data Model (CDM) approach and working in the popular open source Python scientific environment analysis techniques such as Linear Programming (LP) can be bought to bear on the task of retrieving insight from radar signals. This presentation will outline how we have used these techniques to detangle polarimetric phase signals, estimate a three-dimensional precipitation field and then objectively compare to cloud resolving model derived rainfall fields from the NASA/DoE Mid-Latitude Continental Convective Clouds Experiment (MC3E). All techniques show will be available, open source, in the Python-ARM Radar Toolkit (Py-ART).
Short-term rainfall: its scaling properties over Portugal
NASA Astrophysics Data System (ADS)
de Lima, M. Isabel P.
2010-05-01
The characterization of rainfall at a variety of space- and time-scales demands usually that data from different origins and resolution are explored. Different tools and methodologies can be used for this purpose. In regions where the spatial variation of rain is marked, the study of the scaling structure of rainfall can lead to a better understanding of the type of events affecting that specific area, which is essential for many engineering applications. The relevant factors affecting rain variability, in time and space, can lead to contrasting statistics which should be carefully taken into account in design procedures and decision making processes. One such region is Mainland Portugal; the territory is located in the transitional region between the sub-tropical anticyclone and the subpolar depression zones and is characterized by strong north-south and east-west rainfall gradients. The spatial distribution and seasonal variability of rain are particularly influenced by the characteristics of the global circulation. One specific feature is the Atlantic origin of many synoptic disturbances in the context of the regional geography (e.g. latitude, orography, oceanic and continental influences). Thus, aiming at investigating the statistical signature of rain events of different origins, resulting from the large number of mechanisms and factors affecting the rainfall climate over Portugal, scale-invariant analyses of the temporal structure of rain from several locations in mainland Portugal were conducted. The study used short-term rainfall time series. Relevant scaling ranges were identified and characterized that help clarifying the small-scale behaviour and statistics of this process.
Retention performance of green roofs in three different climate regions
NASA Astrophysics Data System (ADS)
Sims, Andrew W.; Robinson, Clare E.; Smart, Charles C.; Voogt, James A.; Hay, Geoffrey J.; Lundholm, Jeremey T.; Powers, Brandon; O'Carroll, Denis M.
2016-11-01
Green roofs are becoming increasingly popular for moderating stormwater runoff in urban areas. This study investigated the impact different climates have on the retention performance of identical green roofs installed in London Ontario (humid continental), Calgary Alberta (semi-arid, continental), and Halifax Nova Scotia (humid, maritime). Drier climates were found to have greater percent cumulative stormwater retention with Calgary (67%) having significantly better percent retention than both London (48%) and Halifax (34%). However, over the same study period the green roof in London retained the greatest depth of stormwater (598 mm), followed by the green roof in Halifax (471 mm) and then Calgary (411 mm). The impact of climate was largest for medium sized storms where the antecedent moisture condition (AMC) at the beginning of a rainfall event governs retention performance. Importantly AMC was a very good predictor of stormwater retention, with similar retention at all three sites for a given AMC, emphasizing that AMC is a relevant indicator of retention performance in any climate. For large rainfall events (i.e., >45 mm) green roof average retention ranged between 16% and 29% in all cities. Overall, drier climates have superior retention due to lower AMC in the media. However, moderate and wet climates still provide substantial total volume reduction benefits.
Relating Convective and Stratiform Rain to Latent Heating
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Lang, Stephen; Zeng, Xiping; Shige, Shoichi; Takayabu, Yukari
2010-01-01
The relationship among surface rainfall, its intensity, and its associated stratiform amount is established by examining observed precipitation data from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR). The results show that for moderate-high stratiform fractions, rain probabilities are strongly skewed toward light rain intensities. For convective-type rain, the peak probability of occurrence shifts to higher intensities but is still significantly skewed toward weaker rain rates. The main differences between the distributions for oceanic and continental rain are for heavily convective rain. The peak occurrence, as well as the tail of the distribution containing the extreme events, is shifted to higher intensities for continental rain. For rainy areas sampled at 0.58 horizontal resolution, the occurrence of conditional rain rates over 100 mm/day is significantly higher over land. Distributions of rain intensity versus stratiform fraction for simulated precipitation data obtained from cloud-resolving model (CRM) simulations are quite similar to those from the satellite, providing a basis for mapping simulated cloud quantities to the satellite observations. An improved convective-stratiform heating (CSH) algorithm is developed based on two sources of information: gridded rainfall quantities (i.e., the conditional intensity and the stratiform fraction) observed from the TRMM PR and synthetic cloud process data (i.e., latent heating, eddy heat flux convergence, and radiative heating/cooling) obtained from CRM simulations of convective cloud systems. The new CSH algorithm-derived heating has a noticeably different heating structure over both ocean and land regions compared to the previous CSH algorithm. Major differences between the new and old algorithms include a significant increase in the amount of low- and midlevel heating, a downward emphasis in the level of maximum cloud heating by about 1 km, and a larger variance between land and ocean in the new CSH algorithm.
NASA Astrophysics Data System (ADS)
Vidal, M. M.; De Souza, P.; De Mello, W. Z.; Damaceno, I.; Bourseau, L.; Rodrigues, R. D. A.; Mattos, B. B.
2017-12-01
Concentration of nutrients above natural levels are found even at remote or protected environments due to atmospheric transportation from biomass burning emissions, urban and industrial areas. This study evaluate N and P atmospheric deposition at the oceanic and continental slopes of Serra dos Órgãos mountain, which are influenced by the pollutants emission from the Metropolitan Region of Rio de Janeiro. Flux of dissolved forms of N and P were measured in three watersheds in headwaters of Piabanha basin, southeastern Brazil, to understand the dynamics of the biogeochemical processes of these elements, related to anthropic influences of atmospheric inputs and export via stream flow. Samples of bulk precipitation (weekly; n=47) and stream water (monthly; n=13) were collected along one year (Sept 2014 - Sept 2015). During that period the annual rainfall in the oceanic slope (2163 mm) was the double of the continental one. It is important to stress that the rainfall in the oceanic slope was 13 % and 28% in 2014/15, respectively, lower than the long term average. Atmospheric deposition of total dissolved nitrogen (TDN) on the oceanic and continental slopes were, respectively, 15 and 8.6 kg N ha-1 year-1. The TDN outputs by stream water were 5-7 times lower in oceanic slope and 28 times lower on the continental one. The relative contribution of dissolved organic nitrogen (DON; 65%-70%) was higher than the one of dissolved inorganic nitrogen (DIN; 30-35%) to TDN deposition. Atmospheric deposition of total dissolved phosphorus (TDP) in oceanic and continental slopes were 1.4 and 0.95 kg P ha-1 year-1. Dissolved Organic Phosphorus (DOP; 89-96%) was higher than the inorganic one (PO43-; 5-11%). TDP outputs were 2-4 times lower, regarding to atmospheric contribution. The contribution of DOP (73-77 %) was higher than DIP (23-27 %). Results show variations in quantities and forms of N and P species due to natural and anthropogenic processes which contribute to the cycling of these elements in the Serra dos Órgãos. TDN atmospheric contribution on oceanic slope, as well as the DON/DIN ratio, was higher than found on previous studies on the same area.The differences between inputs and outputs of N and P balance can be attributed to factors, including biogeochemical and physical processes, and to an underestimation of stream flows in annual scale.
NASA Astrophysics Data System (ADS)
Krämer, Stefan; Rohde, Sophia; Schröder, Kai; Belli, Aslan; Maßmann, Stefanie; Schönfeld, Martin; Henkel, Erik; Fuchs, Lothar
2015-04-01
The design of urban drainage systems with numerical simulation models requires long, continuous rainfall time series with high temporal resolution. However, suitable observed time series are rare. As a result, usual design concepts often use uncertain or unsuitable rainfall data, which renders them uneconomic or unsustainable. An expedient alternative to observed data is the use of long, synthetic rainfall time series as input for the simulation models. Within the project SYNOPSE, several different methods to generate synthetic rainfall data as input for urban drainage modelling are advanced, tested, and compared. Synthetic rainfall time series of three different precipitation model approaches, - one parametric stochastic model (alternating renewal approach), one non-parametric stochastic model (resampling approach), one downscaling approach from a regional climate model-, are provided for three catchments with different sewer system characteristics in different climate regions in Germany: - Hamburg (northern Germany): maritime climate, mean annual rainfall: 770 mm; combined sewer system length: 1.729 km (City center of Hamburg), storm water sewer system length (Hamburg Harburg): 168 km - Brunswick (Lower Saxony, northern Germany): transitional climate from maritime to continental, mean annual rainfall: 618 mm; sewer system length: 278 km, connected impervious area: 379 ha, height difference: 27 m - Friburg in Brisgau (southern Germany): Central European transitional climate, mean annual rainfall: 908 mm; sewer system length: 794 km, connected impervious area: 1 546 ha, height difference 284 m Hydrodynamic models are set up for each catchment to simulate rainfall runoff processes in the sewer systems. Long term event time series are extracted from the - three different synthetic rainfall time series (comprising up to 600 years continuous rainfall) provided for each catchment and - observed gauge rainfall (reference rainfall) according national hydraulic design standards. The synthetic and reference long term event time series are used as rainfall input for the hydrodynamic sewer models. For comparison of the synthetic rainfall time series against the reference rainfall and against each other the number of - surcharged manholes, - surcharges per manhole, - and the average surcharge volume per manhole are applied as hydraulic performance criteria. The results are discussed and assessed to answer the following questions: - Are the synthetic rainfall approaches suitable to generate high resolution rainfall series and do they produce, - in combination with numerical rainfall runoff models - valid results for design of urban drainage systems? - What are the bounds of uncertainty in the runoff results depending on the synthetic rainfall model and on the climate region? The work is carried out within the SYNOPSE project, funded by the German Federal Ministry of Education and Research (BMBF).
Topographic relationships for design rainfalls over Australia
NASA Astrophysics Data System (ADS)
Johnson, F.; Hutchinson, M. F.; The, C.; Beesley, C.; Green, J.
2016-02-01
Design rainfall statistics are the primary inputs used to assess flood risk across river catchments. These statistics normally take the form of Intensity-Duration-Frequency (IDF) curves that are derived from extreme value probability distributions fitted to observed daily, and sub-daily, rainfall data. The design rainfall relationships are often required for catchments where there are limited rainfall records, particularly catchments in remote areas with high topographic relief and hence some form of interpolation is required to provide estimates in these areas. This paper assesses the topographic dependence of rainfall extremes by using elevation-dependent thin plate smoothing splines to interpolate the mean annual maximum rainfall, for periods from one to seven days, across Australia. The analyses confirm the important impact of topography in explaining the spatial patterns of these extreme rainfall statistics. Continent-wide residual and cross validation statistics are used to demonstrate the 100-fold impact of elevation in relation to horizontal coordinates in explaining the spatial patterns, consistent with previous rainfall scaling studies and observational evidence. The impact of the complexity of the fitted spline surfaces, as defined by the number of knots, and the impact of applying variance stabilising transformations to the data, were also assessed. It was found that a relatively large number of 3570 knots, suitably chosen from 8619 gauge locations, was required to minimise the summary error statistics. Square root and log data transformations were found to deliver marginally superior continent-wide cross validation statistics, in comparison to applying no data transformation, but detailed assessments of residuals in complex high rainfall regions with high topographic relief showed that no data transformation gave superior performance in these regions. These results are consistent with the understanding that in areas with modest topographic relief, as for most of the Australian continent, extreme rainfall is closely aligned with elevation, but in areas with high topographic relief the impacts of topography on rainfall extremes are more complex. The interpolated extreme rainfall statistics, using no data transformation, have been used by the Australian Bureau of Meteorology to produce new IDF data for the Australian continent. The comprehensive methods presented for the evaluation of gridded design rainfall statistics will be useful for similar studies, in particular the importance of balancing the need for a continentally-optimum solution that maintains sufficient definition at the local scale.
Panagos, Panos; Ballabio, Cristiano; Borrelli, Pasquale; Meusburger, Katrin; Klik, Andreas; Rousseva, Svetla; Tadić, Melita Perčec; Michaelides, Silas; Hrabalíková, Michaela; Olsen, Preben; Aalto, Juha; Lakatos, Mónika; Rymszewicz, Anna; Dumitrescu, Alexandru; Beguería, Santiago; Alewell, Christine
2015-04-01
Rainfall is one the main drivers of soil erosion. The erosive force of rainfall is expressed as rainfall erosivity. Rainfall erosivity considers the rainfall amount and intensity, and is most commonly expressed as the R-factor in the USLE model and its revised version, RUSLE. At national and continental levels, the scarce availability of data obliges soil erosion modellers to estimate this factor based on rainfall data with only low temporal resolution (daily, monthly, annual averages). The purpose of this study is to assess rainfall erosivity in Europe in the form of the RUSLE R-factor, based on the best available datasets. Data have been collected from 1541 precipitation stations in all European Union (EU) Member States and Switzerland, with temporal resolutions of 5 to 60 min. The R-factor values calculated from precipitation data of different temporal resolutions were normalised to R-factor values with temporal resolutions of 30 min using linear regression functions. Precipitation time series ranged from a minimum of 5 years to a maximum of 40 years. The average time series per precipitation station is around 17.1 years, the most datasets including the first decade of the 21st century. Gaussian Process Regression (GPR) has been used to interpolate the R-factor station values to a European rainfall erosivity map at 1 km resolution. The covariates used for the R-factor interpolation were climatic data (total precipitation, seasonal precipitation, precipitation of driest/wettest months, average temperature), elevation and latitude/longitude. The mean R-factor for the EU plus Switzerland is 722 MJ mm ha(-1) h(-1) yr(-1), with the highest values (>1000 MJ mm ha(-1) h(-1) yr(-1)) in the Mediterranean and alpine regions and the lowest (<500 MJ mm ha(-1) h(-1) yr(-1)) in the Nordic countries. The erosivity density (erosivity normalised to annual precipitation amounts) was also the highest in Mediterranean regions which implies high risk for erosive events and floods. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Garratt, J. R.; Krummel, P. B.; Kowalczyk, E. A.
1993-06-01
Aspects of the mean monthly energy balance at continental surfaces are examined by appeal to the results of general circulation model (GCM) simulations, climatological maps of surface fluxes, and direct observations. Emphasis is placed on net radiation and evaporation for (i) five continental regions (each approximately 20°×150°) within Africa, Australia, Eurasia, South America, and the United States; (ii) a number of continental sites in both hemispheres. Both the mean monthly values of the local and regional fluxes and the mean monthly diurnal cycles of the local fluxes are described. Mostly, GCMs tend to overestimate the mean monthly levels of net radiation by about 15% -20% on an annual basis, for observed annual values in the range 50 to 100 Wm2. This is probably the result of several deficiencies, including (i) continental surface albedos being undervalued in a number of the models, resulting in overestimates of the net shortwave flux at the surface (though this deficiency is steadily being addressed by modelers); (ii) incoming shortwave fluxes being overestimated due to uncertainties in cloud schemes and clear-sky absorption; (iii) land-surface temperatures being under-estimated resulting in an underestimate of the outgoing longwave flux. In contrast, and even allowing for the poor observational base for evaporation, there is no obvious overall bias in mean monthly levels of evaporation determined in GCMS, with one or two exceptions. Rather, and far more so than with net radiation, there is a wide range in values of evaporation for all regions investigated. For continental regions and at times of the year of low to moderate rainfall, there is a tendency for the simulated evaporation to be closely related to the precipitation-this is not surprising. In contrast, for regions where there is sufficient or excessive rainfall, the evaporation tends to follow the behavior of the net radiation. Again, this is not surprising given the close relation between potential evaporation and net radiation, as discussed by Priestley and Taylor. Finally, the introduction into GCMs of an `improved' surface scheme (incorporating more realistic representations of soil and canopy processes and revised albedos) does tend to improve the calculations of both regional net radiation and evaporation.
NASA Astrophysics Data System (ADS)
Hauber, E.; Sassenroth, C.; De Vera, J.-P.; Schmitz, N.; Reiss, D.; Hiesinger, H.; Johnsson, A.
2017-09-01
Most studies using Antarctica as a Mars analogue have focused on the McMurdo Dry Valleys, which are among the coldest and driest places on Earth. However, other ice-free areas in continental Antarctica also display landforms that can inform the study of the possible geomorphic impact of water in a polar desert. Here we present a new analogue site in the interior of the Transantarctic Mountains in Northern Victoria Land. Gullies show unambiguous evidence for debris flows, and water tracks act as shallow subsurface pathways of water on top of the permafrost tale. Both processes are driven by meltwater from glacier ice and snow in an environ-ment which never experiences rainfall and in which the air temperatures probably never exceed 0°C.
Caso, Margarita; González-Abraham, Charlotte; Ezcurra, Exequiel
2007-01-01
Precipitation pulses are essential for the regeneration of drylands and have been shown to be related to oceanographic anomalies. However, whereas some studies report increased precipitation in drylands in northern Mexico during El Niño years, others report increased drought in the southern drylands. To elucidate the effect of oceanographic/atmospheric anomalies on moisture pulses along the whole Pacific coast of Mexico, we correlated the average Southern Oscillation Index values with total annual precipitation for 117 weather stations. We also analyzed this relationship for three separate rainfall signals: winter-spring, summer monsoon, and fall precipitation. The results showed a distinct but divergent seasonal pattern: El Niño events tend to bring increased rainfall in the Mexican northwest but tend to increase aridity in the ecosystems of the southern tropical Pacific slope. The analysis for the separated rainfall seasons showed that El Niño conditions produce a marked increase in winter rainfall above 22° latitude, whereas La Niña conditions tend to produce an increase in the summer monsoon-type rainfall that predominates in the tropical south. Because these dryland ecosystems are dependent on rainfall pulses for their renewal, understanding the complex effect of ocean conditions may be critical for their management in the future. Restoration ecology, grazing regimes, carrying capacities, fire risks, and continental runoff into the oceans could be predicted from oceanographic conditions. Monitoring the coupled atmosphere–ocean system may prove to be important in managing and mitigating the effects of large-scale climatic change on coastal drylands in the future. PMID:17563355
Climatological characteristics of raindrop size distributions within a topographically complex area
NASA Astrophysics Data System (ADS)
Suh, S.-H.; You, C.-H.; Lee, D.-I.
2015-04-01
Raindrop size distribution (DSD) characteristics within the complex area of Busan, Korea (35.12° N, 129.10° E) were studied using a Precipitation Occurrence Sensor System (POSS) disdrometer over a four-year period from 24 February 2001 to 24 December 2004. Average DSD parameters in Busan, a mid-latitude site, were compared with corresponding parameters recorded in the high-latitude site of Järvenpää, Finland. Mean values of median drop diameter (D0) and the shape parameter (μ) in Busan are smaller than those in Järvenpää, whereas the mean normalized intercept parameter (Nw) and rainfall rate (R) are higher in Busan. To analyze the climatological DSD characteristics in more detail, the entire period of recorded rainfall was divided into 10 categories with different temporal and spatial scales. When only convective rainfall was considered, mean Dm and Nw values for all these categories converged around a maritime cluster, except for rainfall associated with typhoons. The convective rainfall of a typhoon showed much smaller Dm and larger Nw compared with the other rainfall categories. In terms of diurnal DSD variability, we observe maritime (continental) precipitation during the daytime (DT) (nighttime, NT), which likely results from sea (land) breeze identified through wind direction analysis. These features also appeared in the seasonal diurnal distribution. The DT and NT Probability Density Function (PDF) during the summer was similar to the PDF of the entire study period. However, the DT and NT PDF during the winter season displayed an inverse distribution due to seasonal differences in wind direction.
NASA Astrophysics Data System (ADS)
Ranasinghage, P. N.; Nanayakkara, N. U.; Kodithuwakku, S.; Siriwardana, S.; Luo, C.; Fenghua, Z.
2016-12-01
Indian monsoon plays a vital role in determining climate events happening in the Asian region. There is no sufficient work in Sri Lanka to fully understand how the summer monsoonal variability affected Sri Lanka during the quaternary. Sri Lanka is situated at an ideal location with a unique geography to isolate Indian summer monsoon record from iris counterpart, Indian winter monsoon. Therefore, this study was carried out to investigate its variability and understand the forcing factors. For this purpose a 1.82 m long gravity core, extracted from western continental shelf off Colombo, Sri Lanka by Shiyan 1 research vessel, was used. Particle size, chemical composition and colour reflectance were measured using laser particle size analyzer at 2 cm resolution, X-Ray Fluorescence spectrometer (XRF) at 2 cm resolution, and color spectrophotometer at 1 cm resolution respectively. Radio carbon dating of foraminifera tests by gas bench technique yielded the sediment age. Finally, principal component analysis (PCA) of XRF and color reflectance (DSR) data was performed to identify groups of correlating elements and mineralogical composition of sediments. Particle size results indicate that Increasing temperature and strengthening monsoonal rainfall after around 18000 yrs BP, at the end of last glacial period, enhanced chemical weathering over physical weathering. Proxies for terrestrial influx (XRF PC1, DSR PC1) and upwelling and nutrient supply driven marine productivity (XRF PC3 and DSR PC2) indicate that strengthening of summer monsoon started around 15000 yrs BP and maximized around 8000-10000 yrs BP after a short period of weakening during Younger Dryas (around 11000 yrs BP). The 8.2 cold event was recorded as a period of low terrestrial influx indicating weakening of rainfall. After that terrestrial input was low till around 2000 yrs BP indicating decrease in rainfall. However, marine productivity remained increasing throughout the Holocene indicating an increase in monsoonal driven upwelling. Authors recorded similar increase in monsoonal wind strength during the late Holocene, with no increase in rainfall in another sediment core extracted from the western continental shelf of Sri Lanka.
Piper, D.J.W.; Normark, W.R.
1989-01-01
Late Cenozoic sedimentation from four varied sites on the continental slopes off southeastern Canada has been analysed using high-resolution airgun multichannel seismic profiles, supplemented with some single channel data. Biostratigraphic ties are available to exploratory wells at three of the sites. Uniform, slow accumulation of hemipelagic sediments was locally terminated by the late Miocene sea-level lowering, which is also reflected in changes in foraminiferan faunas on the continental shelf. Data are very limited for the early Pliocene but suggest a return to slow hemipelagic sedimentation. At the beginning of the late Pliocene, there was a change in sedimentation style marked by a several-fold increase in accumulation rates and cutting of slope valleys. This late Pliocene cutting of slope valleys corresponds to the onset of late Cenozoic growth of the Laurentian Fan and the initiation of turbidite sedimentation on the Sohm Abyssal Plain. Although it corresponds to a time of sea-level lowering, the contrast with the late Miocene lowstand indicates that there must also have been a change in sediment delivery to the coastline, perhaps as a result of increased rainfall or development of valley glaciers. High sedimentation rates continued into the early Pleistocene, but the extent of slope dissection by gullies increased. Gully-cutting episodes alternated with sediment-draping episodes. Throughout the southeastern Canadian continental margin, there was a change in sedimentation style in the middle Pleistocene that resulted from extensive ice sheets crossing the continental shelf and delivering coarse sediment directly to the continental slope. ?? 1989.
NASA Astrophysics Data System (ADS)
Aryal, Yog N.; Villarini, Gabriele; Zhang, Wei; Vecchi, Gabriel A.
2018-04-01
The aim of this study is to examine the contribution of North Atlantic tropical cyclones (TCs) to flooding and heavy rainfall across the continental United States. Analyses highlight the spatial variability in these hazards, their temporal changes in terms of frequency and magnitude, and their connection to large-scale climate, in particular to the North Atlantic Oscillation (NAO) and El Niño-Southern Oscillation (ENSO). We use long-term stream and rain gage measurements, and our analyses are based on annual maxima (AMs) and peaks-over-threshold (POTs). TCs contribute to ∼20-30% of AMs and POTs over Florida and coastal areas of the eastern United States, and the contribution decreases as we move inland. We do not detect statistically significant trends in the magnitude or frequency of TC floods. Regarding the role of climate, NAO and ENSO do not play a large role in controlling the frequency and magnitude of TC flooding. The connection between heavy rainfall and TCs is comparable to what observed in terms of flooding. Unlike flooding, NAO plays a significant role in TC-related extreme rainfall along the U.S. East Coast, while ENSO is most strongly linked to the TC precipitation in Texas.
NASA Astrophysics Data System (ADS)
Schumacher, R. S.; Peters, J. M.
2015-12-01
Mesoscale convective systems (MCSs) are responsible for a large fraction of warm-season extreme rainfall events over the continental United States, as well as other midlatitude regions globally. The rainfall production in these MCSs is determined by numerous factors, including the large-scale forcing for ascent, the organization of the convection, cloud microphysical processes, and the surrounding thermodynamic and kinematic environment. Furthermore, heavy-rain-producing MCSs are most common at night, which means that well-studied mechanisms for MCS maintenance and organization such as cold pools (gravity currents) are not always at work. In this study, we use numerical model simulations and recent field observations to investigate the sensitivity of low-level MCS structures, and their influences on rainfall, to the details of the thermodynamic environment. In particular, small alterations to the initial conditions in idealized and semi-idealized simulations result in comparatively large precipitation changes, both in terms of the intensity and the spatial distribution. The uncertainties in the thermodynamic enviroments in the model simulations will be compared with high-resolution observations from the Plains Elevated Convection At Night (PECAN) field experiment in 2015. The results have implications for the paradigms of "surface-based" versus "elevated" convection, as well as for the predictability of warm-season convective rainfall.
Rainfall over the African continent from the 19th through the 21st century
NASA Astrophysics Data System (ADS)
Nicholson, Sharon E.; Funk, Chris; Fink, Andreas H.
2018-06-01
Most of the African continent is semi-arid and hence prone to extreme variations in rainfall from year to year. The extreme droughts that have plagued the Sahel and eastern Africa are particularly well known. This article uses a markedly expanded and updated rainfall data set to examine rainfall variability in 13 sectors that cover most of the continent. Annual rainfall is presented for each sector; the March-to-May and October-November seasons are also examined for equatorial sectors. In each case, the article includes the longest and most comprehensive precipitation gauge series ever published. All time series cover at least a century and most cover roughly one and one-half centuries or more. Although towards the end of the 20th century there was a widespread trend towards more arid conditions, few significant trends are evident over the entire period of record. The largest were downward trends in the Sahel and western sectors of North Africa. In those regions, an abrupt reduction in rainfall occurred around 1968, but a synchronous change occurred many other parts of Africa. A recovery did occur in the Sahel, but to varying degrees across the east-west expanse of the region. Noteworthy is that the west-to-east rainfall gradient across the region appears to have weakened in recent decades. For the continent as a whole, another change began in the 1980s decade, with more arid conditions persisting at the continental scale until early in the twenty-first century. No other such period of dry conditions occurred within the roughly one and one-half centuries evaluated here. A notable change also occurred at the seasonal level. During the period 1980 to 1998 rainfall during March-to-May was well below the long-term mean throughout most of the area from 20° N to 35° S. At the same time rainfall was above the long-term mean in most of eastern sectors within this latitude span, indicating a change in the seasonality of rainfall of a large part of Africa.
Contrasting influences of aerosols on cloud properties during deficient and abundant monsoon years
Patil, Nitin; Dave, Prashant; Venkataraman, Chandra
2017-01-01
Direct aerosol radiative forcing facilitates the onset of Indian monsoon rainfall, based on synoptic scale fast responses acting over timescales of days to a month. Here, we examine relationships between aerosols and coincident clouds over the Indian subcontinent, using observational data from 2000 to 2009, from the core monsoon region. Season mean and daily timescales were considered. The correlation analyses of cloud properties with aerosol optical depth revealed that deficient monsoon years were characterized by more frequent and larger decreases in cloud drop size and ice water path, but increases in cloud top pressure, with increases in aerosol abundance. The opposite was observed during abundant monsoon years. The correlations of greater aerosol abundance, with smaller cloud drop size, lower evidence of ice processes and shallower cloud height, during deficient rainfall years, imply cloud inhibition; while those with larger cloud drop size, greater ice processes and a greater cloud vertical extent, during abundant rainfall years, suggest cloud invigoration. The study establishes that continental aerosols over India alter cloud properties in diametrically opposite ways during contrasting monsoon years. The mechanisms underlying these effects need further analysis. PMID:28337991
Contrasting influences of aerosols on cloud properties during deficient and abundant monsoon years.
Patil, Nitin; Dave, Prashant; Venkataraman, Chandra
2017-03-24
Direct aerosol radiative forcing facilitates the onset of Indian monsoon rainfall, based on synoptic scale fast responses acting over timescales of days to a month. Here, we examine relationships between aerosols and coincident clouds over the Indian subcontinent, using observational data from 2000 to 2009, from the core monsoon region. Season mean and daily timescales were considered. The correlation analyses of cloud properties with aerosol optical depth revealed that deficient monsoon years were characterized by more frequent and larger decreases in cloud drop size and ice water path, but increases in cloud top pressure, with increases in aerosol abundance. The opposite was observed during abundant monsoon years. The correlations of greater aerosol abundance, with smaller cloud drop size, lower evidence of ice processes and shallower cloud height, during deficient rainfall years, imply cloud inhibition; while those with larger cloud drop size, greater ice processes and a greater cloud vertical extent, during abundant rainfall years, suggest cloud invigoration. The study establishes that continental aerosols over India alter cloud properties in diametrically opposite ways during contrasting monsoon years. The mechanisms underlying these effects need further analysis.
Precipitation Estimation from the ARM Distributed Radar Network During the MC3E Campaign
NASA Astrophysics Data System (ADS)
Theisen, A. K.; Giangrande, S. E.; Collis, S. M.
2012-12-01
The DOE - NASA Midlatitude Continental Convective Cloud Experiment (MC3E) was the first demonstration of the Atmospheric Radiation Measurement (ARM) Climate Research Facility scanning precipitation radar platforms. A goal for the MC3E field campaign over the Southern Great Plains (SGP) facility was to demonstrate the capabilities of ARM polarimetric radar systems for providing unique insights into deep convective storm evolution and microphysics. One practical application of interest for climate studies and the forcing of cloud resolving models is improved Quantitative Precipitation Estimates (QPE) from ARM radar systems positioned at SGP. This study presents the results of ARM radar-based precipitation estimates during the 2-month MC3E campaign. Emphasis is on the usefulness of polarimetric C-band radar observations (CSAPR) for rainfall estimation to distances within 100 km of the Oklahoma SGP facility. Collocated ground disdrometer resources, precipitation profiling radars and nearby surface Oklahoma Mesonet gauge records are consulted to evaluate potential ARM radar-based rainfall products and optimal methods. Rainfall products are also evaluated against the regional NEXRAD-standard observations.
NASA Technical Reports Server (NTRS)
Williams, E.; Lin, S.; Labrada, C.; Christian, H.; Goodman, S.; Boccippio, D.; Driscoll, K.
1999-01-01
Simultaneous radar (13.8 Ghz) and lightning (Lightning Imaging Sensor) observations from the NASA TRMM (Tropical Rainfall Measuring Mission) spacecraft afford a new opportunity to examine differences in tropical continental and oceanic convection on a global basis, The 250 meter vertical resolution of the radar data and the approximately 17 dBZ sensitivity are well suited to providing vertical profiles of radar reflectivity over the entire tropical belt. The reflectivity profile has been shown in numerous local ground-based studies to be a good indicator of both updraft velocity and electrical activity. The radar and lightning observations for multiple satellite orbits have been integrated to produce global CAPPI's for various altitudes. At 7 km altitude, where mixed phase microphysics is known to be active, the mean reflectivity in continental convection is 10-15 dB greater than the value in oceanic convection. These results provide a sound physical basis for the order-of-magnitude contrast in lightning counts between continental and oceanic convection. These observations still beg the question, however, about the contrast in updraft velocity in these distinct convective regimes.
Possible rainfall reduction through reduced surface temperatures due to overgrazing
NASA Technical Reports Server (NTRS)
Otterman, J.
1975-01-01
Surface temperature reduction in terrain denuded of vegetation (as by overgrazing) is postulated to decrease air convection, reducing cloudiness and rainfall probability during weak meteorological disturbances. By reducing land-sea daytime temperature differences, the surface temperature reduction decreases daytime circulation of thermally driven local winds. The described desertification mechanism, even when limited to arid regions, high albedo soils, and weak meteorological disturbances, can be an effective rainfall reducing process in many areas including most of the Mediterranean lands.
Visser, K.; Thunell, R.; Goni, M.A.
2004-01-01
Recent studies convincingly show that climate in the Western Pacific Warm Pool and other equatorial/tropical regions was significantly colder (by ???3-4??C) during glacial periods, prompting a reexamination of the late Pleistocene paleoenvironments of these regions. This study examines changes in continental vegetation during the last two deglaciations (Terminations I and II) using a sediment core (MD9821-62) recovered from the Makassar Strait, Indonesia. Evidence based on the lignin phenol ratios suggests that vegetation on Borneo and other surrounding islands did not significantly change from tropical rainforest during the last two glacial periods relative to subsequent interglacial periods. This supports the hypothesis that the winter monsoon increased in strength during glacial periods, allowing Indonesia to maintain high rainfall despite the cooler conditions. ?? 2003 Elsevier Ltd. All rights reserved.
Calibrating a Rainfall-Runoff and Routing Model for the Continental United States
NASA Astrophysics Data System (ADS)
Jankowfsky, S.; Li, S.; Assteerawatt, A.; Tillmanns, S.; Hilberts, A.
2014-12-01
Catastrophe risk models are widely used in the insurance industry to estimate the cost of risk. The models consist of hazard models linked to vulnerability and financial loss models. In flood risk models, the hazard model generates inundation maps. In order to develop country wide inundation maps for different return periods a rainfall-runoff and routing model is run using stochastic rainfall data. The simulated discharge and runoff is then input to a two dimensional inundation model, which produces the flood maps. In order to get realistic flood maps, the rainfall-runoff and routing models have to be calibrated with observed discharge data. The rainfall-runoff model applied here is a semi-distributed model based on the Topmodel (Beven and Kirkby, 1979) approach which includes additional snowmelt and evapotranspiration models. The routing model is based on the Muskingum-Cunge (Cunge, 1969) approach and includes the simulation of lakes and reservoirs using the linear reservoir approach. Both models were calibrated using the multiobjective NSGA-II (Deb et al., 2002) genetic algorithm with NLDAS forcing data and around 4500 USGS discharge gauges for the period from 1979-2013. Additional gauges having no data after 1979 were calibrated using CPC rainfall data. The model performed well in wetter regions and shows the difficulty of simulating areas with sinks such as karstic areas or dry areas. Beven, K., Kirkby, M., 1979. A physically based, variable contributing area model of basin hydrology. Hydrol. Sci. Bull. 24 (1), 43-69. Cunge, J.A., 1969. On the subject of a flood propagation computation method (Muskingum method), J. Hydr. Research, 7(2), 205-230. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T., 2002. A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Transactions on evolutionary computation, 6(2), 182-197.
NASA Astrophysics Data System (ADS)
Sanyal, P.; Ghosh, S.; Bhushan, R.; Juyal, N.
2017-12-01
The early Holocene was characterized by intensified monsoon, however none of the paleoclimatic records showed the magnitude required to shape the observed landform in the Ganges plain and sediment discharge in the Bay of Bengal. The Tropical Rainfall Measurement Mission data suggests that the Central Himalaya ( 2 km altitude) is characterized by high rainfall and hence paleoclimate proxies from this region would provide excellent opportunity to reconstruct the Holocene monsoon. An attempt has been made, for the first time, to reconstruct the Holocene monsoon using n-alkane δDC29 values of lake sediments from Benital area in the Central Himalaya which receives ca. 80% of the mean annual rainfall during summer monsoon. The n-alkane δDC29 values indicated that early Holocene (ca. 9 ka) was characterised by a wet phase with 70% increase in the rainfall followed by the dry middle-late Holocene which is in agreement with existing continental records. However, the change in intensity as inferred in the present study is maximum compared to the existing records. The comparison of δDC29values and the solar insolation data at 30 °N latitude suggested that migration of the Inter Tropical Convergence Zone controlled the variation in monsoonal rainfall. Comparison with the modern plants, the δ13CC29 values indicated that during ca. pre and post 7 ka the lake catchment was dominated by woody and non-woody plants, respectively. The cross plot between δDC29 and δ13CC29 indicated that at higher rainfall, the δ13CC29 values of catchment vegetation were less-responsive.
NASA Astrophysics Data System (ADS)
Konecky, B. L.; Noone, D.; Mosimanyana, E.; Gondwe, M.
2016-12-01
The Okavango Delta in northern Botswana is one of the world's richest biodiversity hotspots. A UNESCO World Heritage Site, the Delta is known for its unique annual flood pulse, whereby the wetland and its neighboring river systems are inundated with waters that travel nearly 1000 km before reaching this subtropical, semi-arid destination. The livelihoods of northern Botswana's ecosystems and human populations rely on these floods to supplement the short and variable rainy season, which in many years is too minimal to ameliorate regional drought. However, anthropogenic climate change is reducing the amount of water that reaches the delta by increasing evaporation from soils and rivers, and transpiration by vegetation, during its long transit to Botswana. Future changes in rainfall patterns, extreme events, and increased upstream water use could exacerbate this water stress. Unfortunately, it remains difficult to assess the impacts of climate change on the delta because few data exist to constrain its complex climatic and seasonal water cycling regimes. This study presents a novel characterization of the water cycle in and around the Okavango Delta based on a survey of free-flowing surface waters, stagnant pools, precipitation, and groundwater carried out during the 2016 rainy and early-flood season. We use stable isotope and water quality data to assess local moisture sources, transport, evaporation, wetland flushing, and land-atmosphere exchanges, all of which are subject to change under global warming. We find a strong evaporation gradient and a progressive flushing of stagnant swamp waters along the northeastern and northwestern channels of the Delta. The evaporation gradient is more limited in nearby rivers with more limited wetlands. We contrast results with a survey of the Delta performed in the 1970's in order to assess changes over the past 40 years. Since some of these changes may arise from rainfall supply, we also present new analysis of rainfall moisture sources and transport characteristics during 2016's unusually-late wet season, using both in situ and satellite data. Implications are discussed for the large-scale water cycling over the southern African continental interior. These data serve as a baseline for future monitoring under climate change.
Ellis, Sian R; Hodson, Mark E; Wege, Phil
2010-08-01
Carbendazim is highly toxic to earthworms and is used as a standard control substance when running field-based trials of pesticides, but results using carbendazim are highly variable. In the present study, impacts of timing of rainfall events following carbendazim application on earthworms were investigated. Lumbricus terrestris were maintained in soil columns to which carbendazim and then deionized water (a rainfall substitute) were applied. Carbendazim was applied at 4 kg/ha, the rate recommended in pesticide field trials. Three rainfall regimes were investigated: initial and delayed heavy rainfall 24 h and 6 d after carbendazim application, and frequent rainfall every 48 h. Earthworm mortality and movement of carbendazim through the soil was assessed 14 d after carbendazim application. No detectable movement of carbendazim occurred through the soil in any of the treatments or controls. Mortality in the initial heavy and frequent rainfall was significantly higher (approximately 55%) than in the delayed rainfall treatment (approximately 25%). This was due to reduced bioavailability of carbendazim in the latter treatment due to a prolonged period of sorption of carbendazim to soil particles before rainfall events. The impact of carbendazim application on earthworm surface activity was assessed using video cameras. Carbendazim applications significantly reduced surface activity due to avoidance behavior of the earthworms. Surface activity reductions were least in the delayed rainfall treatment due to the reduced bioavailability of the carbendazim. The nature of rainfall events' impacts on the response of earthworms to carbendazim applications, and details of rainfall events preceding and following applications during field trials should be made at a higher level of resolution than is currently practiced according to standard International Organization for Standardization protocols. Copyright 2010 SETAC
2008-01-01
Paulo , Brazil ) and Jerry Miller (formerly of NRL) shelf extent, so that interaction between the plumes in this season are gratefully acknowledged. This...g00 Ro Grnde Brazil ’ Departamento Oceancgriti, Servicto de Hldnropa Naval Cludad Autonoma de Buen os Aie Buenas Aires. Argentina ARTICLE IN FO...Available online 26 March 2008 the continental shelf off Uruguay and Southern Brazil . Depending upon the prevailing rainfall, Keywords: wind and tidal
Heavy rainfall events and diarrhea incidence: the role of social and environmental factors.
Carlton, Elizabeth J; Eisenberg, Joseph N S; Goldstick, Jason; Cevallos, William; Trostle, James; Levy, Karen
2014-02-01
The impact of heavy rainfall events on waterborne diarrheal diseases is uncertain. We conducted weekly, active surveillance for diarrhea in 19 villages in Ecuador from February 2004 to April 2007 in order to evaluate whether biophysical and social factors modify vulnerability to heavy rainfall events. A heavy rainfall event was defined as 24-hour rainfall exceeding the 90th percentile value (56 mm) in a given 7-day period within the study period. Mixed-effects Poisson regression was used to test the hypothesis that rainfall in the prior 8 weeks, water and sanitation conditions, and social cohesion modified the relationship between heavy rainfall events and diarrhea incidence. Heavy rainfall events were associated with increased diarrhea incidence following dry periods (incidence rate ratio = 1.39, 95% confidence interval: 1.03, 1.87) and decreased diarrhea incidence following wet periods (incidence rate ratio = 0.74, 95% confidence interval: 0.59, 0.92). Drinking water treatment reduced the deleterious impacts of heavy rainfall events following dry periods. Sanitation, hygiene, and social cohesion did not modify the relationship between heavy rainfall events and diarrhea. Heavy rainfall events appear to affect diarrhea incidence through contamination of drinking water, and they present the greatest health risks following periods of low rainfall. Interventions designed to increase drinking water treatment may reduce climate vulnerability.
Scholl, Martha A.; Murphy, Sheila F.
2014-01-01
Like many mountainous areas in the tropics, watersheds in the Luquillo Mountains of eastern Puerto Rico have abundant rainfall and stream discharge and provide much of the water supply for the densely populated metropolitan areas nearby. Projected changes in regional temperature and atmospheric dynamics as a result of global warming suggest that water availability will be affected by changes in rainfall patterns. It is essential to understand the relative importance of different weather systems to water supply to determine how changes in rainfall patterns, interacting with geology and vegetation, will affect the water balance. To help determine the links between climate and water availability, stable isotope signatures of precipitation from different weather systems were established to identify those that are most important in maintaining streamflow and groundwater recharge. Precipitation stable isotope values in the Luquillo Mountains had a large range, from fog/cloud water with δ2H, δ18O values as high as +12 ‰, −0.73 ‰ to tropical storm rain with values as low as −127 ‰, −16.8 ‰. Temporal isotope values exhibit a reverse seasonality from those observed in higher latitude continental watersheds, with higher isotopic values in the winter and lower values in the summer. Despite the higher volume of convective and low-pressure system rainfall, stable isotope analyses indicated that under the current rainfall regime, frequent trade -wind orographic showers contribute much of the groundwater recharge and stream base flow. Analysis of rain events using 20 years of 15 -minute resolution data at a mountain station (643 m) showed an increasing trend in rainfall amount, in agreement with increased precipitable water in the atmosphere, but differing from climate model projections of drying in the region. The mean intensity of rain events also showed an increasing trend. The determination of recharge sources from stable isotope tracers indicates that water supply will be affected if regional atmospheric dynamics change trade- wind orographic rainfall patterns in the Caribbean.
Symbiotic soil fungi enhance ecosystem resilience to climate change.
Martínez-García, Laura B; De Deyn, Gerlinde B; Pugnaire, Francisco I; Kothamasi, David; van der Heijden, Marcel G A
2017-12-01
Substantial amounts of nutrients are lost from soils through leaching. These losses can be environmentally damaging, causing groundwater eutrophication and also comprise an economic burden in terms of lost agricultural production. More intense precipitation events caused by climate change will likely aggravate this problem. So far it is unresolved to which extent soil biota can make ecosystems more resilient to climate change and reduce nutrient leaching losses when rainfall intensity increases. In this study, we focused on arbuscular mycorrhizal (AM) fungi, common soil fungi that form symbiotic associations with most land plants and which increase plant nutrient uptake. We hypothesized that AM fungi mitigate nutrient losses following intensive precipitation events (higher amount of precipitation and rain events frequency). To test this, we manipulated the presence of AM fungi in model grassland communities subjected to two rainfall scenarios: moderate and high rainfall intensity. The total amount of nutrients lost through leaching increased substantially with higher rainfall intensity. The presence of AM fungi reduced phosphorus losses by 50% under both rainfall scenarios and nitrogen losses by 40% under high rainfall intensity. Thus, the presence of AM fungi enhanced the nutrient interception ability of soils, and AM fungi reduced the nutrient leaching risk when rainfall intensity increases. These findings are especially relevant in areas with high rainfall intensity (e.g., such as the tropics) and for ecosystems that will experience increased rainfall due to climate change. Overall, this work demonstrates that soil biota such as AM fungi can enhance ecosystem resilience and reduce the negative impact of increased precipitation on nutrient losses. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
Precipitation Estimation from the ARM Distributed Radar Network during the MC3E Campaign
Giangrande, Scott E.; Collis, Scott; Theisen, Adam K.; ...
2014-09-12
This study presents radar-based precipitation estimates collected during the two-month DOE ARM - NASA Midlatitude Continental Convective Clouds Experiment (MC3E). Emphasis is on the usefulness of radar observations from the C-band and X-band scanning ARM precipitation radars (CSAPR, XSAPR) for rainfall estimation products to distances within 100 km of the Oklahoma SGP facility. A dense collection of collocated ARM, NASA GPM and nearby surface Oklahoma Mesonet gauge records are consulted to evaluate potential ARM radar-based hourly rainfall products and campaign optimized methods over individual gauge and areal characterizations. Rainfall products are evaluated against the performance of the regional operational NWSmore » NEXRAD S-band radar polarimetric product. Results indicate that the ARM C-band system may achieve similar point and areal-gauge bias and root mean square (rms) error performance to the NEXRAD standard for the variety of MC3E deep convective events sampled when capitalizing on differential phase measurements. The best campaign rainfall performance was achieved when applying radar relations capitalizing on estimates of the specific attenuation from the CSAPR system. The ARM X-band systems only demonstrate solid capabilities as compared to NEXRAD standards for hourly point and areal rainfall accumulations under 10 mm. Here, all methods exhibit a factor of 1.5 to 2.5 reduction in rms errors for areal accumulations over a 15 km2 NASA dense network housing 16 sites having collocated bucket gauges, with the higher error reductions best associated with polarimetric methods.« less
El Niño and the shifting geography of cholera in Africa.
Moore, Sean M; Azman, Andrew S; Zaitchik, Benjamin F; Mintz, Eric D; Brunkard, Joan; Legros, Dominique; Hill, Alexandra; McKay, Heather; Luquero, Francisco J; Olson, David; Lessler, Justin
2017-04-25
The El Niño Southern Oscillation (ENSO) and other climate patterns can have profound impacts on the occurrence of infectious diseases ranging from dengue to cholera. In Africa, El Niño conditions are associated with increased rainfall in East Africa and decreased rainfall in southern Africa, West Africa, and parts of the Sahel. Because of the key role of water supplies in cholera transmission, a relationship between El Niño events and cholera incidence is highly plausible, and previous research has shown a link between ENSO patterns and cholera in Bangladesh. However, there is little systematic evidence for this link in Africa. Using high-resolution mapping techniques, we find that the annual geographic distribution of cholera in Africa from 2000 to 2014 changes dramatically, with the burden shifting to continental East Africa-and away from Madagascar and portions of southern, Central, and West Africa-where almost 50,000 additional cases occur during El Niño years. Cholera incidence during El Niño years was higher in regions of East Africa with increased rainfall, but incidence was also higher in some areas with decreased rainfall, suggesting a complex relationship between rainfall and cholera incidence. Here, we show clear evidence for a shift in the distribution of cholera incidence throughout Africa in El Niño years, likely mediated by El Niño's impact on local climatic factors. Knowledge of this relationship between cholera and climate patterns coupled with ENSO forecasting could be used to notify countries in Africa when they are likely to see a major shift in their cholera risk.
Precipitation Estimation from the ARM Distributed Radar Network during the MC3E Campaign
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giangrande, Scott E.; Collis, Scott; Theisen, Adam K.
This study presents radar-based precipitation estimates collected during the two-month DOE ARM - NASA Midlatitude Continental Convective Clouds Experiment (MC3E). Emphasis is on the usefulness of radar observations from the C-band and X-band scanning ARM precipitation radars (CSAPR, XSAPR) for rainfall estimation products to distances within 100 km of the Oklahoma SGP facility. A dense collection of collocated ARM, NASA GPM and nearby surface Oklahoma Mesonet gauge records are consulted to evaluate potential ARM radar-based hourly rainfall products and campaign optimized methods over individual gauge and areal characterizations. Rainfall products are evaluated against the performance of the regional operational NWSmore » NEXRAD S-band radar polarimetric product. Results indicate that the ARM C-band system may achieve similar point and areal-gauge bias and root mean square (rms) error performance to the NEXRAD standard for the variety of MC3E deep convective events sampled when capitalizing on differential phase measurements. The best campaign rainfall performance was achieved when applying radar relations capitalizing on estimates of the specific attenuation from the CSAPR system. The ARM X-band systems only demonstrate solid capabilities as compared to NEXRAD standards for hourly point and areal rainfall accumulations under 10 mm. Here, all methods exhibit a factor of 1.5 to 2.5 reduction in rms errors for areal accumulations over a 15 km2 NASA dense network housing 16 sites having collocated bucket gauges, with the higher error reductions best associated with polarimetric methods.« less
NASA Astrophysics Data System (ADS)
Fraedrich, K.
2014-12-01
Processes along the continental rainfall-runoff chain cover a wide range of time and space scales which are presented here combining observations (ranging from minutes to decades) and minimalist concepts. (i) Rainfall, which can be simulated by a censored first-order autoregressive process (vertical moisture fluxes), exhibits 1/f-spectra if presented as binary events (tropics), while extrema world wide increase with duration according to Jennings' scaling law. (ii) Runoff volatility (Yangtze) shows data collapse which, linked to an intra-annual 1/f-spectrum, is represented by a single function not unlike physical systems at criticality and the short and long return times of extremes are Weibull-distributed. Atmospheric and soil moisture variabilities are also discussed. (iii) Soil moisture (in a bucket), whose variability is interpreted by a biased coinflip Ansatz for rainfall events, adds an equation of state to energy and water flux balances comprising Budyko's frame work for quasi-stationary watershed analysis. Eco-hydrologic state space presentations in terms of surface flux ratios of energy excess (loss by sensible heat over supply by net radiation) versus water excess (loss by discharge over gain by precipitation) allow attributions of state change to external (or climate) and internal (or anthropogenic) causes. Including the vegetation-greenness index (NDVI) as an active tracer extends the eco-hydrologic state space analysis to supplement the common geographical presentations. Two examples demonstrate the approach combining ERA and MODIS data sets: (a) global geobotanic classification by combining first and second moments of the dryness ratio (net radiation over precipitation) and (b) regional attributions (Tibetan Plateau) of vegetation changes.
Signatures of Hydrometeor Species from Airborne Passive Microwave Data for Frequencies 10-183 GHz
NASA Technical Reports Server (NTRS)
Cecil, Daniel J.; Leppert, Kenneth, II
2014-01-01
There are 2 basic precipitation retrieval methods using passive microwave measurements: (1) Emission-based: Based on the tendency of liquid precipitation to cause an increase in brightness temperature (BT) primarily at frequencies below 22 GHz over a radiometrically cold background, often an ocean background (e.g., Spencer et al. 1989; Adler et al. 1991; McGaughey et al. 1996); and (2) Scattering-based: Based on the tendency of precipitation-sized ice to scatter upwelling radiation, thereby reducing the measured BT over a relatively warmer (usually land) background at frequencies generally 37 GHz (e.g., Spencer et al. 1989; Smith et al. 1992; Ferraro and Marks 1995). Passive microwave measurements have also been used to detect intense convection (e.g., Spencer and Santek 1985) and for the detection of hail (e.g., Cecil 2009; Cecil and Blankenship 2012; Ferraro et al. 2014). The Global Precipitation Measurement (GPM) mission expands upon the successful Tropical Rainfall Measurement Mission program to provide global rainfall and snowfall observations every 3 hours (Hou et al. 2014). One of the instruments on board the GPM Core Observatory is the GPM Microwave Imager (GMI) which is a conically-scanning microwave radiometer with 13 channels ranging from 10-183 GHz. Goal of this study: Determine the signatures of various hydrometeor species in terms of BTs measured at frequencies used by GMI by using data collected on 3 case days (all having intense/severe convection) during the Mid-latitude Continental Convective Clouds Experiment conducted over Oklahoma in 2011.
Dynamical downscaling inter-comparison for high resolution climate reconstruction
NASA Astrophysics Data System (ADS)
Ferreira, J.; Rocha, A.; Castanheira, J. M.; Carvalho, A. C.
2012-04-01
In the scope of the project: "High-resolution Rainfall EroSivity analysis and fORecasTing - RESORT", an evaluation of various methods of dynamic downscaling is presented. The methods evaluated range from the classic method of nesting a regional model results in a global model, in this case the ECMWF reanalysis, to more recently proposed methods, which consist in using Newtonian relaxation methods in order to nudge the results of the regional model to the reanalysis. The method with better results involves using a system of variational data assimilation to incorporate observational data with results from the regional model. The climatology of a simulation of 5 years using this method is tested against observations on mainland Portugal and the ocean in the area of the Portuguese Continental Shelf, which shows that the method developed is suitable for the reconstruction of high resolution climate over continental Portugal.
Sources of water vapor to economically relevant regions in Amazonia and the effect of deforestation
NASA Astrophysics Data System (ADS)
Pires, G. F.; Fontes, V. C.
2017-12-01
The Amazon rain forest helps regulate the regional humid climate. Understanding the effects of Amazon deforestation is important to preserve not only the climate, but also economic activities that depend on it, in particular, agricultural productivity and hydropower generation. This study calculates the source of water vapor contributing to the precipitation on economically relevant regions in Amazonia according to different scenarios of deforestation. These regions include the state of Mato Grosso, which produces about 9% of the global soybean production, and the basins of the Xingu and Madeira, with infrastructure under construction that will be capable to generate 20% of the electrical energy produced in Brazil. The results show that changes in rainfall after deforestation are stronger in regions nearest to the ocean and indicate the importance of the continental water vapor source to the precipitation over southern Amazonia. In the two more continental regions (Madeira and Mato Grosso), decreases in the source of water vapor in one region were offset by increases in contributions from other continental regions, whereas in the Xingu basin, which is closer to the ocean, this mechanism did not occur. As a conclusion, the geographic location of the region is an important determinant of the resiliency of the regional climate to deforestation-induced regional climate change. The more continental the geographic location, the less climate changes after deforestation.
[Characteristics of rainfall and runoff in urban drainage based on the SWMM model.
Xiong, Li Jun; Huang, Fei; Xu, Zu Xin; Li, Huai Zheng; Gong, Ling Ling; Dong, Meng Ke
2016-11-18
The characteristics of 235 rainfall and surface runoff events, from 2009 to 2011 in a typical urban drainage area in Shanghai were analyzed by using SWMM model. The results showed that the rainfall events in the region with high occurrence frequency were characterized by small rainfall amount and low intensity. The most probably occurred rainfall had total amount less than 10 mm, or mean intensity less than 5 mm·h -1 ,or peak intensity less than 10 mm·h -1 , accounting for 66.4%, 88.8% and 79.6% of the total rainfall events, respectively. The study was of great significance to apply low-impact development to reduce runoff and non-point source pollution under condition of less rainfall amount or low mean rainfall intensity in the area. The runoff generally increased with the increase of rainfall. The threshold of regional occurring runoff was controlled by not only rainfall amount, but also mean rainfall intensity and rainfall duration. In general, there was no surface runoff when the rainfall amount was less than 2 mm. When the rainfall amount was between 2 to 4 mm and the mean rainfall intensity was below 1.6 mm·h -1 , the runoff was less than 1 mm. When the rainfall exceeded 4 mm and the mean rainfall intensity was larger than 1.6 mm·h -1 , the runoff would occur generally. Based on the results of the SWMM simulation, three regression equations that were applicable to regional runoff amount and rainfall factors were established. The adjustment R 2 of the three equations were greater than 0.97. This indicated that the equations could reflect well the relationship between runoff and rainfall variables. The results provided the basis of calculations to plan low impact development and better reduce overflow pollution in local drainage area. It also could serve as a useful reference for runoff study in similar drainage areas.
NASA Technical Reports Server (NTRS)
Adler, Robert
2007-01-01
Floods impact more people globally than any other type of natural disaster. It has been established by experience that the most effective means to reduce the property damage and life loss caused by floods is the development of flood early warning systems. However, advances for such a system have been constrained by the difficulty in estimating rainfall continuously over space (catchment-. national-, continental-. or even global-scale areas) and time (hourly to daily). Particularly, insufficient in situ data, long delay in data transmission and absence of real-time data sharing agreements in many trans-boundary basins hamper the development of a real-time system at the regional to global scale. In many countries around the world, particularly in the tropics where rainfall and flooding co-exist in abundance, satellite-based precipitation estimation may be the best source of rainfall data for those data scarce (ungauged) areas and trans-boundary basins. Satellite remote sensing data acquired and processed in real time can now provide the space-time information on rainfall fluxes needed to monitor severe flood events around the world. This can be achieved by integrating the satellite-derived forcing data with hydrological models, which can be parameterized by a tailored geospatial database. An example that is a key to this progress is NASA's contribution to the Tropical Rainfall Measuring Mission (TRMM), launched in November 1997. Hence, in an effort to evolve toward a more hydrologically-relevant flood alert system, this talk articulates a module-structured framework for quasi-global flood potential naming, that is 'up to date' with the state of the art on satellite rainfall estimation and the improved geospatial datasets. The system is modular in design with the flexibility that permits changes in the model structure and in the choice of components. Four major components included in the system are: 1) multi-satellite precipitation estimation; 2) characterization of land surface including digital elevation from NASA SRTM, topography-derived hydrologic parameters such as flood direction. flow accumulation, basin, and river network etc.; 3) spatially distributed hydrological models to infiltrate rainfall and route overland runoff; and 4) an implementation interface to relay thc input data to the models and display the flood inundation results to the users and decision-makers. Early results appear reasonable in terms of location and frequency of events. Case studies of this experimental system are evaluated with surface runoff data and other river monitoring systems. such as Dartmouth Flood Observatory's "Surface Water Watch" array of river reaches that are measured daily via other satellite remote sensing data. A major outcome of this progress will be the availability of a global overview of flood alerts that should consequently improve the performance of Decision Support System. We expect these developments in utilization of satellite remote sensing technology to offer a practical solution to the challenge of building a cost-effective early warning system for data scarce and under-developed areas.
NASA Technical Reports Server (NTRS)
Sud, Yogesh C.; Lau, William K. M.; Walker, G. K.; Mehta, V. M.
2001-01-01
Annual cycle of climate and precipitation is related to annual cycle of sunshine and sea-surface temperatures. Understanding its behavior is important for the welfare of humans worldwide. For example, failure of Asian monsoons can cause widespread famine and grave economic disaster in the subtropical regions. For centuries meteorologists have struggled to understand the importance of the summer sunshine and associated heating and the annual cycle of sea-surface temperatures (SSTs) on rainfall in the subtropics. Because the solar income is pretty steady from year to year, while SSTs depict large interannual variability as consequence of the variability of ocean dynamics, the influence of SSTs on the monsoons are better understood through observational and modeling studies whereas the relationship of annual rainfall to sunshine remains elusive. However, using NASA's state of the art climate model(s) that can generate realistic climate in a computer simulation, one can answer such questions. We asked the question: if there was no annual cycle of the sunshine (and its associated land-heating) or the SST and its associated influence on global circulation, what will happen to the annual cycle of monsoon rains? By comparing the simulation of a 4-year integration of a baseline Control case with two parallel anomaly experiments: 1) with annual mean solar and 2) with annual mean sea-surface temperatures, we were able to draw the following conclusions: (1) Tropical convergence zone and rainfall which moves with the Sun into the northern and southern hemispheres, specifically over the Indian, African, South American and Australian regions, is strongly modulated by the annual cycles of SSTs as well as solar forcings. The influence of the annual cycle of solar heating over land, however, is much stronger than the corresponding SST influence for almost all regions, particularly the subtropics; (2) The seasonal circulation patterns over the vast land-masses of the Northern Hemisphere at mid and high latitudes also get strongly influenced by the annual cycles of solar heating. The SST influence is largely limited to the oceanic regions of these latitudes; (3) The annual mode of precipitation over Amazonia has an equatorial regime revealing a maxima in the month of March associated with SST, and another maxima in the month of January associated with the solar annual cycles, respectively. The baseline simulation, which has both annual cycles, depicts both annual modes and its rainfall is virtually equal to the sum of those two modes; (4) Rainfall over Sahelian-Africa is significantly reduced (increased) in simulations lacking (invoking) solar irradiation with (without) the annual cycle. In fact, the dominant influence of solar irradiation emerges in almost all monsoonal-land regions: India, Southeast Asia, as well as Australia. The only exception is the Continental United States, where solar annual cycle shows only a relatively minor influence on the annual mode of rainfall.
Impact of Climatic Variability on Hydropower Reservoirs in the Paraiba Basin, Southeast of Brazil
NASA Astrophysics Data System (ADS)
Barros, A.; simoes, s
2002-05-01
During 2000/2001, a severe drought greatly reduced the volume of water available to Brazilian hydropower plants and lead to a national water rationing plan. To undestand the potential for climatic change in hydrological regimes and its impact on hydropower we chose the Paraiba Basin located in Southeast Brazil. Three important regional multi-purpose reservoirs are operating in this basin. Moreover, the Paraiba River is of great economic and environmental importance and also constitutes a major corridor connecting the two cities of Sao Paulo and Rio de Janeiro. We analyzed monthly and daily records for rainfall, streamflow and temperature using regression and variance analysis. Rainfall records do not show any significant trend since the 1930s/1940s. By contrast, analysis of seasonal patterns show that in the last twenty years rainfall has increased during autumn and winter (dry season) and decreased during spring and summer (rainy season). Comparison between rainfall and streaflow, from small catchment without man-made influences, shows a more pronounced deficit in streamflow when compared with rainfall. The shifts in seasonal rainfall could indicate a tendency towards a more uniform rainfall pattern and could serve to reduce the streamflow. However, the largest upward trends in temperature were found in the driest months (JJA). The increase in rainfall would not be sufficient to overcome increased of evaporation expect to the same period. Instead, such increase in evaporation could create an over more pronounced streamflow deficit. Climatic variability could be reducing water availability in these reservoirs especially in the driest months. To reduce the uncertainties in hydrological predictions, planners need to incorporate climatic variability, at the catchment scale, in order to accomodate the new conditions resulting from these changes.
NASA Technical Reports Server (NTRS)
Halverson, Jeffrey B.; Roy, Biswadev; O'CStarr, David (Technical Monitor)
2002-01-01
An overview of mean convective thermodynamic and wind profiles for the Tropical Rainfall Measuring Mission (TRMM) Large Scale Biosphere-Atmosphere Experiment (LBA) and Kwajalein Experiment (KWAJEX) field campaigns will be presented, highlighting the diverse continental and marine tropical environments in which rain clouds and mesoscale convective systems evolved. An assessment of ongoing sounding quality control procedures will be shown. Additionally, we will present preliminary budgets of sensible heat source (Q1) and apparent moisture sink (Q2), which have been diagnosed from the various sounding networks.
NASA Astrophysics Data System (ADS)
Ordonez, Paulina; Ribera, Pedro; Gallego, David; Pena-Ortiz, Cristina
2013-10-01
Recent studies suggest that there is a strong linkage between the moisture uptake over the equatorial area of the Somali low level jet (SLLJ) and the rainfall variability over most of continental India. Additionally, the Madden-Julian Oscillation (MJO) strongly modulates the intraseasonal variability of the Indian summer monsoon rainfall, since the northward propagation of the boreal summer MJO is closely associated with the active and break phases of monsoon rainfall. But a question remains open: is there a relationship between the moisture transported by the SLLJ and the MJO evolution? In this paper, a Lagrangian approach is used to track the evaporation minus precipitation (E - P) evolution along trajectories of particles initially situated over the equatorial region of SLLJ. The impact of the MJO on the water budget transport of the SLLJ is examined by making composites of the obtained (E-P) fields for the different MJO phases. The spatial structures of the boreal summer intraseasonal oscillation are revealed in our results, which strongly suggest that the main responsible for the rainfall variability associated to the MJO in these regions are the changes in the moisture advected by the SLLJ. In order to assess the MJO-SLLJ interaction, an analysis of the total-column mass and the total-column specific humidity transported by the SLLJ during the MJO life cycle is performed. While a systematic difference between air mass advected to India during active and break phases of MJO is not detected, changes in the moisture of particles are found, with wet (dry) anomalies over enhanced (suppressed) convection region. This result implicitly leads to assume air-sea interaction processes.
NASA Astrophysics Data System (ADS)
Hadiwijaya, B.; Nadeau, D.; Pépin, S.
2017-12-01
Forest evapotranspiration is the sum of transpiration, evaporation from intercepted rainfall by the canopy and soil evaporation, each component being governed by distinct time scales and mechanisms. Therefore, to develop a simple, yet realistic, model to estimate evapotranspiration over forested areas, field measurements must capture the full chronological sequence of events taking place following rainfall. This becomes a challenge in the case of young sparse forest stands due to large diversity in canopy covers and leaf area indices, which leads to strong spatial variation in intercepted rainfall by the canopy. Unfortunately, very few studies have focused on transition between the dry and wet canopy conditions. The objectives of this study are to investigate each element of rain interception and intercepted water loss, to characterize water loss partitioning processes based on precipitation rate, elapsed time and time-sequence events. To do this, we conducted a summer field campaign at Forêt Montmorency (47°N, 71°W), in southern Québec, Canada, started from early May until late October. The site is characterized by a humid continental climate, with a mean annual precipitation of 1500 mm. The site is located at the boreal forest region, in the balsam for-white birch ecosystem, whose growing season typically extends from May until October. Six measurement plots were established around two micrometeorological towers located in juvenile and sapling forest stands. Five sap flow probes to measure transpiration and a set of rainfall interception instruments (measuring throughfall, free throughfall and stemflow separately) have been deployed on each plot. Initial results presented will include the estimated evapotranspiration rate and soil evaporation measured using eddy covariance method, transpiration rate and high resolution analysis of rainfall interception.
El Niño and the shifting geography of cholera in Africa
Moore, Sean M.; Azman, Andrew S.; Zaitchik, Benjamin F.; Mintz, Eric D.; Brunkard, Joan; Legros, Dominique; Hill, Alexandra; McKay, Heather; Luquero, Francisco J.; Olson, David; Lessler, Justin
2017-01-01
The El Niño Southern Oscillation (ENSO) and other climate patterns can have profound impacts on the occurrence of infectious diseases ranging from dengue to cholera. In Africa, El Niño conditions are associated with increased rainfall in East Africa and decreased rainfall in southern Africa, West Africa, and parts of the Sahel. Because of the key role of water supplies in cholera transmission, a relationship between El Niño events and cholera incidence is highly plausible, and previous research has shown a link between ENSO patterns and cholera in Bangladesh. However, there is little systematic evidence for this link in Africa. Using high-resolution mapping techniques, we find that the annual geographic distribution of cholera in Africa from 2000 to 2014 changes dramatically, with the burden shifting to continental East Africa—and away from Madagascar and portions of southern, Central, and West Africa—where almost 50,000 additional cases occur during El Niño years. Cholera incidence during El Niño years was higher in regions of East Africa with increased rainfall, but incidence was also higher in some areas with decreased rainfall, suggesting a complex relationship between rainfall and cholera incidence. Here, we show clear evidence for a shift in the distribution of cholera incidence throughout Africa in El Niño years, likely mediated by El Niño’s impact on local climatic factors. Knowledge of this relationship between cholera and climate patterns coupled with ENSO forecasting could be used to notify countries in Africa when they are likely to see a major shift in their cholera risk. PMID:28396423
NASA Astrophysics Data System (ADS)
Meng, Xianqiang; Liu, Lianwen; Wang, Xingchen T.; Balsam, William; Chen, Jun; Ji, Junfeng
2018-03-01
The East Asian summer monsoon (EASM) is an important component of the global climate system. A better understanding of EASM rainfall variability in the past can help constrain climate models and better predict the response of EASM to ongoing global warming. The warm early Pleistocene, a potential analog of future climate, is an important period to study EASM dynamics. However, existing monsoon proxies for reconstruction of EASM rainfall during the early Pleistocene fail to disentangle monsoon rainfall changes from temperature variations, complicating the comparison of these monsoon records with climate models. Here, we present three 2.6 million-year-long EASM rainfall records from the Chinese Loess Plateau (CLP) based on carbonate dissolution, a novel proxy for rainfall intensity. These records show that the interglacial rainfall on the CLP was lower during the early Pleistocene and then gradually increased with global cooling during the middle and late Pleistocene. These results are contrary to previous suggestions that a warmer climate leads to higher monsoon rainfall on tectonic timescales. We propose that the lower interglacial EASM rainfall during the early Pleistocene was caused by reduced sea surface temperature gradients across the equatorial Pacific, providing a testable hypothesis for climate models.
Accounting for Rainfall Spatial Variability in Prediction of Flash Floods
NASA Astrophysics Data System (ADS)
Saharia, M.; Kirstetter, P. E.; Gourley, J. J.; Hong, Y.; Vergara, H. J.
2016-12-01
Flash floods are a particularly damaging natural hazard worldwide in terms of both fatalities and property damage. In the United States, the lack of a comprehensive database that catalogues information related to flash flood timing, location, causative rainfall, and basin geomorphology has hindered broad characterization studies. First a representative and long archive of more than 20,000 flooding events during 2002-2011 is used to analyze the spatial and temporal variability of flash floods. We also derive large number of spatially distributed geomorphological and climatological parameters such as basin area, mean annual precipitation, basin slope etc. to identify static basin characteristics that influence flood response. For the same period, the National Severe Storms Laboratory (NSSL) has produced a decadal archive of Multi-Radar/Multi-Sensor (MRMS) radar-only precipitation rates at 1-km spatial resolution with 5-min temporal resolution. This provides an unprecedented opportunity to analyze the impact of event-level precipitation variability on flooding using a big data approach. To analyze the impact of sub-basin scale rainfall spatial variability on flooding, certain indices such as the first and second scaled moment of rainfall, horizontal gap, vertical gap etc. are computed from the MRMS dataset. Finally, flooding characteristics such as rise time, lag time, and peak discharge are linked to derived geomorphologic, climatologic, and rainfall indices to identify basin characteristics that drive flash floods. Next the model is used to predict flash flooding characteristics all over the continental U.S., specifically over regions poorly covered by hydrological observations. So far studies involving rainfall variability indices have only been performed on a case study basis, and a large scale approach is expected to provide a deeper insight into how sub-basin scale precipitation variability affects flooding. Finally, these findings are validated using the National Weather Service storm reports and a historical flood fatalities database. This analysis framework will serve as a baseline for evaluating distributed hydrologic model simulations such as the Flooded Locations And Simulated Hydrographs Project (FLASH) (http://flash.ou.edu).
NASA Astrophysics Data System (ADS)
Mandal, S.; Choudhury, B. U.
2015-07-01
Sagar Island, setting on the continental shelf of Bay of Bengal, is one of the most vulnerable deltas to the occurrence of extreme rainfall-driven climatic hazards. Information on probability of occurrence of maximum daily rainfall will be useful in devising risk management for sustaining rainfed agrarian economy vis-a-vis food and livelihood security. Using six probability distribution models and long-term (1982-2010) daily rainfall data, we studied the probability of occurrence of annual, seasonal and monthly maximum daily rainfall (MDR) in the island. To select the best fit distribution models for annual, seasonal and monthly time series based on maximum rank with minimum value of test statistics, three statistical goodness of fit tests, viz. Kolmogorove-Smirnov test (K-S), Anderson Darling test ( A 2 ) and Chi-Square test ( X 2) were employed. The fourth probability distribution was identified from the highest overall score obtained from the three goodness of fit tests. Results revealed that normal probability distribution was best fitted for annual, post-monsoon and summer seasons MDR, while Lognormal, Weibull and Pearson 5 were best fitted for pre-monsoon, monsoon and winter seasons, respectively. The estimated annual MDR were 50, 69, 86, 106 and 114 mm for return periods of 2, 5, 10, 20 and 25 years, respectively. The probability of getting an annual MDR of >50, >100, >150, >200 and >250 mm were estimated as 99, 85, 40, 12 and 03 % level of exceedance, respectively. The monsoon, summer and winter seasons exhibited comparatively higher probabilities (78 to 85 %) for MDR of >100 mm and moderate probabilities (37 to 46 %) for >150 mm. For different recurrence intervals, the percent probability of MDR varied widely across intra- and inter-annual periods. In the island, rainfall anomaly can pose a climatic threat to the sustainability of agricultural production and thus needs adequate adaptation and mitigation measures.
NASA Astrophysics Data System (ADS)
Tabi Tataw, James; Baier, Fabian; Krottenthaler, Florian; Pachler, Bernadette; Schwaiger, Elisabeth; Whylidal, Stefan; Formayer, Herbert; Hösch, Johannes; Baumgarten, Andreas; Zaller, Johann G.
2014-05-01
Wheat is a crop of global importance supplying more than half of the world's population with carbohydrates. We examined, whether climate change induced rainfall patterns towards less frequent but heavier events alter wheat agroecosystem productivity and functioning under three different soil types. Therefore, in a full-factorial experiment Triticum aestivum L. was cultivated in 3 m2 lysimeter plots containing the soil types sandy calcaric phaeozem, gleyic phaeozem or calcic chernozem. Prognosticated rainfall patterns based on regionalised climate change model calculations were compared with current long-term rainfall patterns; each treatment combination was replicated three times. Future rainfall patterns significantly reduced wheat growth and yield, reduced the leaf area index, accelerated crop development, reduced arbuscular mycorrhizal fungi colonisation of roots, increased weed density and the stable carbon isotope signature (δ13C) of both old and young wheat leaves. Different soil types affected wheat growth and yield, ecosystem root production as well as weed abundance and biomass. The interaction between climate and soil type was significant only for the harvest index. Our results suggest that even slight changes in rainfall patterns can significantly affect the functioning of wheat agroecosystems. These rainfall effects seemed to be little influenced by soil types suggesting more general impacts of climate change across different soil types. Wheat production under future conditions will likely become more challenging as further concurrent climate change factors become prevalent.
NASA Astrophysics Data System (ADS)
Pineda, N.; Rigo, T.; Bech, J.; Argemí, O.
2009-09-01
Thunderstorms can be characterized by both rainfall and lightning. The relationship between convective precipitation and lightning activity may be used as an indicator of the rainfall regime. Besides, a better knowledge of local thunderstorm phenomenology can be very useful to assess weather surveillance tasks. Two types of approach can be distinguished in the bibliography when analyzing the rainfall and lightning activity. On one hand, rain yields (ratio of rain mass to cloud-to-ground flash over a common area) calculated for long temporal and spatial domains and using rain-gauge records to estimate the amounts of precipitation. On the other hand, a case-by-case approach has been used in many studies to analyze the relationship between convective precipitation and lightning in individual storms, using weather radar data to estimate rainfall volumes. Considering a local thunderstorm case study approach, the relation between rainfall and lightning is usually quantified as the Rainfall-Lightning ratio (RLR). This ratio estimates the convective rainfall volume per lightning flash. Intense storms tend to produce lower RLR values than moderate storms, but the range of RLR found in diverse studies is quite wide. This relationship depends on thunderstorm type, local climatology, convective regime, type of lightning flashes considered, oceanic and continental storms, etc. The objective of this paper is to analyze the relationship between convective precipitation and lightning in a case-by-case approach, by means of daily radar-derived quantitative precipitation estimates (QPE) and total lightning data, obtained from observations of the Servei Meteorològic de Catalunya remote sensing systems, which covers an area of approximately 50000 km2 in the NE of the Iberian Peninsula. The analyzed dataset is composed by 45 thunderstorm days from April to October 2008. A good daily correlation has been found between the radar QPE and the CG flash counts (best linear fit with a R^2=0.74). The daily RLR found has a mean value of 86 10^3m3 rainfall volume per CG flash. The daily range of variation is quite wide, as it goes from 19 to 222 10^3m3 per CG flash. This variation has a seasonal component, related to changes in the convective regime. Summer days (July to middle September) had a mean RLR of 57 10^3m3 rainfall volume per CG flash, while from middle September to the end of October the rainfall volume per CG flash doubles (mean of 125 10^3m3 per CG flash).
Chemical-meteorological aspects of some atmospheric nitrogen compounds in the tropics (CUBA)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cuesta Santos, O.A.; Ortiz Bulto, P.L.; Hurtado, M.S.
The transboundary problems of global and regional atmospheric pollution are at current time, a concern of scientific community and environmentalist, so our region is not considered as an exception on this matter. In our monitoring stations, some studies confirming the presence of nitrogen compounds connected with long range transport have been undertaken. For such reason, the interesting tropospheric chemistry reactions shall be verified. The above mentioned studies include the analysis of NO{sub x} (NO + NO{sub 2}), NH{sub 3}, nitrate and ammonium concentrations in aerosols and rainfall in some monitoring stations its connection with the Kinds of Synoptic Situations (KSS)more » and the research on back tracks, so all this allows to know its possible sources of origin. As a result of interest it has been found that the total deposition of these compounds oscillates between 0,706 an d3,317 g.m{sup -2} year{sup -1}. The wet deposition exhibits approximately 60%, while the dry one is of 40%. The weight of both depositions depends on our tropical rainy climate`s features. On the other hand, the oxidized nitrogen forms only give 40%, while the reduced ones 60% of total. This coincides more with the power of natural sources in accordance with our climate. The nitrate`s concentrations in aerosols and rainfall connected with Continental Migratory Anticyclone have the higher values than with remaining kinds of synoptic situations influencing on our territory, so it can be concluded that there is transport of these pollutants from continent.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voigt, Aiko; Biasutti, Michela; Scheff, Jacob
This paper introduces the Tropical Rain belts with an Annual cycle and a Continent Model Intercomparison Project (TRACMIP). TRACMIP studies the dynamics of tropical rain belts and their response to past and future radiative forcings through simulations with 13 comprehensive and one simplified atmosphere models coupled to a slab ocean and driven by seasonally-varying insolation. Five idealized experiments, two with an aquaplanet setup and three with a setup with an idealized tropical continent, fill the space between prescribed-SST aquaplanet simulations and realistic simulations provided by CMIP5/6. The simulations reproduce key features of the present-day climate and expected future climate change,more » including an annual-mean intertropical convergence zone (ITCZ) that is located north of the equator and Hadley cells and eddy-driven jets that are similar to the present-day climate. Quadrupling CO 2 leads to a northward ITCZ shift and preferential warming in Northern high-latitudes. The simulations show interesting CO 2-induced changes in the seasonal excursion of the ITCZ and indicate a possible state-dependence of climate sensitivity. The inclusion of an idealized continent modulates both the control climate and the response to increased CO 2; for example it reduces the northward ITCZ shift associated with warming and, in some models, climate sensitivity. In response to eccentricity-driven seasonal insolation changes, seasonal changes in oceanic rainfall are best characterized as a meridional dipole, while seasonal continental rainfall changes tend to be symmetric about the equator. Finally, this survey illustrates TRACMIP’s potential to engender a deeper understanding of global and regional climate phenomena and to address pressing questions on past and future climate change.« less
Hydrological and geomorphological controls of malaria transmission
NASA Astrophysics Data System (ADS)
Smith, M. W.; Macklin, M. G.; Thomas, C. J.
2013-01-01
Malaria risk is linked inextricably to the hydrological and geomorphological processes that form vector breeding sites. Yet environmental controls of malaria transmission are often represented by temperature and rainfall amounts, ignoring hydrological and geomorphological influences altogether. Continental-scale studies incorporate hydrology implicitly through simple minimum rainfall thresholds, while community-scale coupled hydrological and entomological models do not represent the actual diversity of the mosquito vector breeding sites. The greatest range of malaria transmission responses to environmental factors is observed at the catchment scale where seemingly contradictory associations between rainfall and malaria risk can be explained by hydrological and geomorphological processes that govern surface water body formation and persistence. This paper extends recent efforts to incorporate ecological factors into malaria-risk models, proposing that the same detailed representation be afforded to hydrological and, at longer timescales relevant for predictions of climate change impacts, geomorphological processes. We review existing representations of environmental controls of malaria and identify a range of hydrologically distinct vector breeding sites from existing literature. We illustrate the potential complexity of interactions among hydrology, geomorphology and vector breeding sites by classifying a range of water bodies observed in a catchment in East Africa. Crucially, the mechanisms driving surface water body formation and destruction must be considered explicitly if we are to produce dynamic spatial models of malaria risk at catchment scales.
NASA Technical Reports Server (NTRS)
Tokay, Ali; Petersen, Arthur; Gatlin, Patrick N.; Wingo, Matt; Wolff, David B.; Carey, Lawrence D.
2011-01-01
Dual tipping bucket gauges were operated at 16 sites in support of ground based precipitation measurements during Mid-latitude Continental Convective Clouds Experiment (MC3E). The experiment is conducted in North Central Oklahoma from April 22 through June 6, 2011. The gauge sites were distributed around Atmospheric Radiation Measurement (ARM) Climate Research facility where the minimum and maximum separation distances ranged from 1 to 12 km. This study investigates the rainfall variability by employing the stretched exponential function. It will focus on the quantitative assessment of the partial beam of the experiment area in both convective and stratiform rain. The parameters of the exponential function will also be determined for various events. This study is unique for two reasons. First is the existing gauge setup and the second is the highly convective nature of the events with rain rates well above 100 mm h-1 for 20 minutes. We will compare the findings with previous studies.
NASA Technical Reports Server (NTRS)
Tokay, Ali; Petersen, Walter Arthur; Gatlin, Patrick N.; Wingo, Matt; Wolff, David B.; Carey, Lawrence D.
2011-01-01
Dual tipping bucket gauges were operated at 16 sites in support of ground based precipitation measurements during Mid-latitude Continental Convective Clouds Experiment (MC3E). The experiment is conducted in North Central Oklahoma from April 22 through June 6, 2011. The gauge sites were distributed around Atmospheric Radiation Measurement (ARM) Climate Research facility where the minimum and maximum separation distances ranged from 1 to 12 km. This study investigates the rainfall variability by employing the stretched exponential function. It will focus on the quantitative assessment of the partial beam of the experiment area in both convective and stratiform rain. The parameters of the exponential function will also be determined for various events. This study is unique for two reasons. First is the existing gauge setup and the second is the highly convective nature of the events with rain rates well above 100 mm/h for 20 minutes. We will compare the findings with previous studies.
Satellite-derived mineral mapping and monitoring of weathering, deposition and erosion
Cudahy, Thomas; Caccetta, Mike; Thomas, Matilda; Hewson, Robert; Abrams, Michael; Kato, Masatane; Kashimura, Osamu; Ninomiya, Yoshiki; Yamaguchi, Yasushi; Collings, Simon; Laukamp, Carsten; Ong, Cindy; Lau, Ian; Rodger, Andrew; Chia, Joanne; Warren, Peter; Woodcock, Robert; Fraser, Ryan; Rankine, Terry; Vote, Josh; de Caritat, Patrice; English, Pauline; Meyer, Dave; Doescher, Chris; Fu, Bihong; Shi, Pilong; Mitchell, Ross
2016-01-01
The Earth’s surface comprises minerals diagnostic of weathering, deposition and erosion. The first continental-scale mineral maps generated from an imaging satellite with spectral bands designed to measure clays, quartz and other minerals were released in 2012 for Australia. Here we show how these satellite mineral maps improve our understanding of weathering, erosional and depositional processes in the context of changing weather, climate and tectonics. The clay composition map shows how kaolinite has developed over tectonically stable continental crust in response to deep weathering during northwardly migrating tropical conditions from 45 to 10 Ma. The same clay composition map, in combination with one sensitive to water content, enables the discrimination of illite from montmorillonite clays that typically develop in large depositional environments over thin (sinking) continental crust such as the Lake Eyre Basin. Cutting across these clay patterns are sandy deserts that developed <10 Ma and are well mapped using another satellite product sensitive to the particle size of silicate minerals. This product can also be used to measure temporal gains/losses of surface clay caused by periodic wind erosion (dust) and rainfall inundation (flood) events. The accuracy and information content of these satellite mineral maps are validated using published data. PMID:27025192
Bioengineering Technology to Control River Soil Erosion using Vetiver (Vetiveria Zizaniodes)
NASA Astrophysics Data System (ADS)
Sriwati, M.; Pallu, S.; Selintung, M.; Lopa, R.
2018-04-01
Erosion is the action of surface processes (such as water flow or wind) that removes soil, rock or dissolved material from one location on the earth’s crust, and then transport it away to another location. Bioengineering is an attempt to maximise the use of vegetation components along riverbanks to cope with landslides and erosion of river cliffs and another riverbank damage. This study aims to analyze the bioengineering of Vetiver as a surface layer for soil erosion control using slope of 100, 200, and 300. This study is conducted with 3 variations of rain intensity (I), at 103 mm/hour, 107 mm/hour, and 130 mm/hour by using rainfall simulator tool. In addition, the USLE (Universal Soil Loss Equation) method is used in order to measure the rate of soil erosion. In this study, there are few USLE model parameters were used such as rainfall erosivity factor, soil erodibility factor, length-loss slope and stepness factor, cover management factor, and support practise factor. The results demonstrated that average of reduction of erosion rate using Vetiver, under 3 various rainfalls, namely rainfall intensity 103 mm/hr had reduced 84.971%, rainfall intensity 107 mm/hr had reduced 86.583 %, rainfall intensity 130 mm/hr had reduced 65.851%.
NASA Astrophysics Data System (ADS)
Panagos, Panos; Ballabio, Cristiano; Meusburger, Katrin; Poesen, Jean; Lugato, Emanuele; Montanarella, Luca; Alewell, Christine; Borrelli, Pasquale
2017-04-01
The implementation of RUSLE2015 for modelling soil loss by water erosion at European scale has introduced important aspects related to management practices. The policy measurements such as reduced tillage, crop residues, cover crops, grass margins, stone walls and contouring have been incorporated in the RUSLE2015 modelling platform. The recent policy interventions introduced in Good Agricultural Environmental Conditions of Common Agricultural Policy have reduced the rate of soil loss in the EU by an average of 9.5% overall, and by 20% for arable lands (NATURE, 526, 195). However, further economic and political action should rebrand the value of soil as part of ecosystem services, increase the income of rural land owners, involve young farmers and organize regional services for licensing land use changes (Land Degradation and Development, 27 (6): 1547-1551). RUSLE2015 is combining the future policy scenarios and land use changes introduced by predictions of LUISA Territorial Modelling Platform. Latest developments in RUSLE2015 allow also incorporating the climate change scenarios and the forthcoming intensification of rainfall in North and Central Europe contrary to mixed trends in Mediterranean basin. The rainfall erosivity predictions estimate a mean increase by 18% in European Union by 2050. Recently, a module of CENTURY model was coupled with the RUSLE2015 for estimating the effect of erosion in current carbon balance in European agricultural lands (Global Change Biology, 22(5), 1976-1984; 2016). Finally, the monthly erosivity datasets (Science of the Total Environment, 579: 1298-1315) introduce a dynamic component in RUSLE2015 and it is a step towards spatio-temporal soil erosion mapping at continental scale. The monthly mapping of rainfall erosivity permits to identify the months and the areas with highest risk of soil loss where conservation measures should apply in different seasons of the year. In the future, the soil erosion-modelling platform will incorporate the land use intra-annual variability, sediment transport and economic assessments of land degradation. Panagos, P., Borrelli, P., Robinson, D.A. 2015. Common Agricultural Policy: Tackling soil loss across Europe. Nature 526: 195 Panagos, P., Imeson, A., Meusburger, K., Borrelli, P., Poesen, J., Alewell, C. 2016. Soil Conservation in Europe: Wish or Reality? Land Degradation and Development, 27(6): 1547-1551 Lugato, E., Paustian, K., Panagos, P. et al. 2016. Quantifying the erosion effect on current carbon budget of European agricultural soils at high spatial resolution. Global Change Biology. 22(5): 1976-1984 Ballabio, C., Borrelli, P. et al. 2017. Mapping monthly rainfall erosivity in Europe. Science of the Total Environment, 579: 1298-1315
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Kai; Fu, Rong; Shaikh, Muhammad J.
We evaluate the Community Atmosphere Model Version 5 (CAM5) with a higher-order turbulence closure scheme, named Cloud Layers Unified By Binomials (CLUBB), and a Multiscale Modeling Framework (MMF) with two different microphysics configurations to investigate their influences on rainfall simulations over Southern Amazonia. The two different microphysics configurations in MMF are the one-moment cloud microphysics without aerosol treatment (SAM1MOM) and two-moment cloud microphysics coupled with aerosol treatment (SAM2MOM). Results show that both MMF-SAM2MOM and CLUBB effectively reduce the low biases of rainfall, mainly during the wet season. The CLUBB reduces low biases of humidity in the lower troposphere with furthermore » reduced shallow clouds. The latter enables more surface solar flux, leading to stronger convection and more rainfall. MMF, especially MMF-SAM2MOM, unstablizes the atmosphere with more moisture and higher atmospheric temperatures in the atmospheric boundary layer, allowing the growth of more extreme convection and further generating more deep convection. MMF-SAM2MOM significantly increases rainfall in the afternoon, but it does not reduce the early bias of the diurnal rainfall peak; LUBB, on the other hand, delays the afternoon peak time and produces more precipitation in the early morning, due to more realistic gradual transition between shallow and deep convection. MMF appears to be able to realistically capture the observed increase of relative humidity prior to deep convection, especially with its two-moment configuration. In contrast, in CAM5 and CAM5 with CLUBB, occurrence of deep convection in these models appears to be a result of stronger heating rather than higher relative humidity.« less
NASA Technical Reports Server (NTRS)
Colose, Christopher; LeGrande, Allegra N.; Vuille, Mathias
2016-01-01
Currently, little is known on how volcanic eruptions impact large-scale climate phenomena such as South American paleo-intertropical Convergence Zone (ITCZ) position and summer monsoon behavior. In this paper, an analysis of observations and model simulations is employed to assess the influence of large volcanic eruptions on the climate of tropical South America. This problem is first considered for historically recent volcanic episodes for which more observations are available but where fewer events exist and the confounding effects of El NioSouthern Oscillation (ENSO) lead to inconclusive interpretation of the impact of volcanic eruptions at the continental scale. Therefore, we also examine a greater number of reconstructed volcanic events for the period 850CE to present that are incorporated into the NASA GISS ModelE2-R simulation of the last millennium.An advantage of this model is its ability to explicitly track water isotopologues throughout the hydrologic cycle and simulating the isotopic imprint following a large eruption. This effectively removes a degree of uncertainty associated with error-prone conversion of isotopic signals into climate variables, and allows for a direct comparison between GISS simulations and paleoclimate proxy records.Our analysis reveals that both precipitation and oxygen isotope variability respond with a distinct seasonal and spatial structure across tropical South America following an eruption. During austral winter, the heavy oxygen isotope in precipitation is enriched, likely due to reduced moisture convergence in the ITCZ domain and reduced rainfall over northern South America. During austral summer, however, more negative values of the precipitation isotopic composition are simulated over Amazonia, despite reductions in rainfall, suggesting that the isotopic response is not a simple function of the amount effect. During the South American monsoon season, the amplitude of the temperature response to volcanic forcing is larger than the rather weak and spatially less coherent precipitation signal, complicating the isotopic response to changes in the hydrologic cycle.
NASA Technical Reports Server (NTRS)
Colose, Christopher M.; LeGrande, Allegra N.; Vuille, Mathias
2016-01-01
Currently, little is known on how volcanic eruptions impact large-scale climate phenomena such as South American paleo-intertropical Convergence Zone (ITCZ) position and summer monsoon behavior. In this paper, an analysis of observations and model simulations is employed to assess the influence of large volcanic eruptions on the climate of tropical South America. This problem is first considered for historically recent volcanic episodes for which more observations are available but where fewer events exist and the confounding effects of El Niño-Southern Oscillation (ENSO) lead to inconclusive interpretation of the impact of volcanic eruptions at the continental scale. Therefore, we also examine a greater number of reconstructed volcanic events for the period 850 CE to present that are incorporated into the NASA GISS ModelE2-R simulation of the last millennium. An advantage of this model is its ability to explicitly track water isotopologues throughout the hydrologic cycle and simulating the isotopic imprint following a large eruption. This effectively removes a degree of uncertainty associated with error-prone conversion of isotopic signals into climate variables, and allows for a direct comparison between GISS simulations and paleoclimate proxy records. Our analysis reveals that both precipitation and oxygen isotope variability respond with a distinct seasonal and spatial structure across tropical South America following an eruption. During austral winter, the heavy oxygen isotope in precipitation is enriched, likely due to reduced moisture convergence in the ITCZ domain and reduced rainfall over northern South America. During austral summer, however, more negative values of the precipitation isotopic composition are simulated over Amazonia, despite reductions in rainfall, suggesting that the isotopic response is not a simple function of the "amount effect". During the South American monsoon season, the amplitude of the temperature response to volcanic forcing is larger than the rather weak and spatially less coherent precipitation signal, complicating the isotopic response to changes in the hydrologic cycle.
The physics of rainclouds, what is behind rainfall trends?
NASA Astrophysics Data System (ADS)
Junkermann, Wolfgang; Hacker, Jorg
2017-04-01
In several locations in the world rainfall was significantly declining during the last four decades since about 1970, despite during the same timespan the water vapor availability in the planetary boundary layer (PBL) was increasing by about five percent. Increasing water vapor levels in the PBL are a result of climate change and well in agreement with the observed one degree increase of air temperature over the oceans. Increasing water vapor availability due to an increase in evaporation should lead to a higher turnover rate within the hydrological cycle, which should result either in more frequent or in more intense rainfall. Several regional observations especially along the Australian coastline show a contrary picture. Often rainfall is less frequent and the annual rainfall is declining. Also the number of rainy days goes down. This behavior could be caused by a number of different processes affecting both, the amount of liquid water in the atmosphere and the microphysical properties of clouds. Within the discussions are: -A change in the large scale advection patterns due to global warming, shifting the trajectories of low pressure systems, a slow process that takes several decades. -A change in land use by deforestation leading to lower roughness, higher albedo and lower convective energy. Such a land use change might happen within about one decade (e.g. Western Australia). -A change in aerosol abundance. Addition of anthropogenic cloud condensation nuclei lead instantly to smaller cloud droplets and subsequently to a regional to continental scale redistribution of rainfall within the time scales of cloud lifetime (hours to days). Airborne experiments show that indeed the number of aerosols in several of the respective areas investigated up to now was increasing roughly in time with the observed rainfall changes. However, only in few of the areas the availability of historical aerosol data is sufficient for a more detailed investigation. We show results from experiments in search for physical reasons for a regional scale rainfall decline observed along the Australian coastline. Here the historical database including an airborne survey in the early 70's allows to reconstruct a 'laboratory' notebook an aerosol trends. This makes the area a perfect 'natural laboratory' for such studies on the physical background for climate change trends and to disentangle different climate / hydrological cycle relevant physical processes.
Changing sources of strontium to soils and ecosystems across the Hawaiian Islands
Chadwick, O.A.; Derry, L.A.; Bern, C.R.; Vitousek, P.M.
2009-01-01
Strontium isotope ratios assist ecosystem scientists in constraining the sources of alkaline earth elements, but their interpretation can be difficult because of complexities in mineral weathering and in the geographical and environmental controls on elemental additions and losses. Hawaii is a "natural laboratory" where a number of important biogeochemical variables have either limited ranges or vary in systematic ways, providing a unique opportunity to understand the impact of time, climate, and atmospheric inputs on the evolution of base cation sources to ecosystems. There are three major sources of strontium (Sr) to these ecosystems, each with distinct isotopic compositions: basalt lava, Asian dust, and rainfall. We present Sr isotope and concentration data on both bulk soil digests and NH4Ac extracts from soil profiles covering a wide range of environments and substrate ages. Bulk soil material from dry climates and/or young substrate ages with > 80????g g- 1 Sr retain basalt-like Sr isotopic signatures, whereas those with Sr concentrations < 80????g g- 1 can have isotope signatures that range from basalt-like values to the more radiogenic values associated with continental dust. Although both dust accumulation and lava weathering are time- and rainfall-dependent, the overall concentration of Sr drops with increasing leaching even as quartz and mica derived from continental dust sources increase to > 40% by mass. At elevated dust levels, lava-derived Sr is low and dust-derived Sr is the dominant control of 87Sr/86Sr in bulk soils; however, 87Sr/86Sr of NH4Ac-extractable Sr largely reflects atmospheric deposition of marine aerosol in these situations. Overall, whole-soil Sr isotope values are controlled by complex interactions between Sr provided by lava weathering but partially lost by leaching, and Sr provided by dust but held in more resistant minerals. The isotopic composition of NH4Ac-extractable Sr and of the biota is controlled by lava weathering and rainfall contribution of Sr with only minor contributions from radiogenic dust sources. ?? 2009 Elsevier B.V.
NASA Astrophysics Data System (ADS)
Nelson, D. B.; Kahmen, A.
2017-12-01
The stable isotopic composition of hydrogen and oxygen are physical properties of water molecules that can carry information on their sources or transport histories. This provides a useful tool for assessing the importance of rainfall at different times of the year for plant growth, provided that rainwater values vary over time and that waters do not partially evaporate after deposition. We tested the viability of this approach using data from samples collected at nineteen sites throughout Europe at monthly intervals over two consecutive growing seasons in 2014 and 2015. We compared isotope measurements of plant xylem water with soil water from multiple depths, and measured and modeled precipitation isotope values. Paired analyses of oxygen and hydrogen isotope values were used to screen out a limited number of water samples that were influenced by evaporation, with the majority of all water samples indicating meteoric sources. The isotopic composition of soil and xylem waters varied over the course of an individual growing season, with many trending towards more enriched values, suggesting integration of the plant-relevant water pool at a timescale shorter than the annual mean. We then quantified how soil water residence times varied at each site by calculating the interval between measured xylem water and the most recently preceding match in modeled precipitation isotope values. Results suggest a generally increasing interval between rainfall and plant uptake throughout each year, with source water corresponding to dates in the spring, likely reflecting a combination of spring rain, and mixing with winter and summer precipitation. The seasonally evolving spatial distribution of source water-precipitation lag values was then modeled as a function of location and climatology to develop continental-scale predictions. This spatial portrait of the average date for filling the plant source water pool provides insights on the seasonal importance of rainfall for plant growth. It also permits continental scale predictions of monthly plant source water isotope values, with applications to improving isotopic paleoclimate proxies from plants such as tree rings or sedimentary leaf waxes, and for using oxygen and hydrogen isotopes to track the origins of agricultural products.
Coupled modes of rainfall over China and the pacific sea surface temperature in boreal summertime
NASA Astrophysics Data System (ADS)
Li, Chun; Ma, Hao
2011-09-01
In addition, the possible atmospheric teleconnections of the coupled rainfall and SST modes were discussed. For the ENSO-NC mode, anomalous low-pressure and high-pressure over the Asian continent induces moisture divergence over North China and reduces summer rainfall there. For the WTP-YRV mode, East Asia-Pacific teleconnection induces moisture convergence over the Yangtze River valley and enhances the summer rainfall there. The TPMM SST and the summer rainfall anomalies over the YRVL are linked by a circumglobal, wave-train-like, atmospheric teleconnection.
Reactive Iron and Iron-Reducing Bacteria in Louisiana Continental Shelf Sediments
The Mississippi and Atchafalaya Rivers release sediments containing 15 x 106 t of iron onto the Louisiana continental shelf (LCS) each year. Iron oxides reaching the seafloor may be utilized as electron acceptors by iron-reducing bacteria for organic matter oxidation or become r...
NASA Astrophysics Data System (ADS)
Ampil, L. J. Y.; Yao, J. G.; Lagrosas, N.; Lorenzo, G. R. H.; Simpas, J.
2017-12-01
The Global Precipitation Measurement (GPM) mission is a group of satellites that provides global observations of precipitation. Satellite-based observations act as an alternative if ground-based measurements are inadequate or unavailable. Data provided by satellites however must be validated for this data to be reliable and used effectively. In this study, the Integrated Multisatellite Retrievals for GPM (IMERG) Final Run v3 half-hourly product is validated by comparing against interpolated ground measurements derived from sixteen ground stations in Metro Manila. The area considered in this study is the region 14.4° - 14.8° latitude and 120.9° - 121.2° longitude, subdivided into twelve 0.1° x 0.1° grid squares. Satellite data from June 1 - August 31, 2014 with the data aggregated to 1-day temporal resolution are used in this study. The satellite data is directly compared to measurements from individual ground stations to determine the effect of the interpolation by contrast against the comparison of satellite data and interpolated measurements. The comparisons are calculated by taking a fractional root-mean-square error (F-RMSE) between two datasets. The results show that interpolation improves errors compared to using raw station data except during days with very small amounts of rainfall. F-RMSE reaches extreme values of up to 654 without a rainfall threshold. A rainfall threshold is inferred to remove extreme error values and make the distribution of F-RMSE more consistent. Results show that the rainfall threshold varies slightly per month. The threshold for June is inferred to be 0.5 mm, reducing the maximum F-RMSE to 9.78, while the threshold for July and August is inferred to be 0.1 mm, reducing the maximum F-RMSE to 4.8 and 10.7, respectively. The maximum F-RMSE is reduced further as the threshold is increased. Maximum F-RMSE is reduced to 3.06 when a rainfall threshold of 10 mm is applied over the entire duration of JJA. These results indicate that IMERG performs well for moderate to high intensity rainfall and that the interpolation remains effective only when rainfall exceeds a certain threshold value. Over Metro Manila, an F-RMSE threshold of 0.5 mm indicated better correspondence between ground measured and satellite measured rainfall.
Validation of a 30m resolution flood hazard model of the conterminous United States
NASA Astrophysics Data System (ADS)
Sampson, C. C.; Wing, O.; Smith, A.; Bates, P. D.; Neal, J. C.
2017-12-01
We present a 30m resolution two-dimensional hydrodynamic model of the entire conterminous US that has been used to simulate continent-wide flood extent for ten return periods. The model uses a highly efficient numerical solution of the shallow water equations to simulate fluvial flooding in catchments down to 50 km2 and pluvial flooding in all catchments. We use the US National Elevation Dataset (NED) to determine topography for the model and the US Army Corps of Engineers National Levee Dataset to explicitly represent known flood defences. Return period flows and rainfall intensities are estimated using regionalized frequency analyses. We validate these simulations against the complete catalogue of Federal Emergency Management Agency (FEMA) Special Flood Hazard Area maps. We also compare the results obtained from the NED-based continental model with results from a 90m resolution global hydraulic model built using SRTM terrain and identical boundary conditions. Where the FEMA Special Flood Hazard Areas are based on high quality local models the NED-based continental scale model attains a Hit Rate of 86% and a Critical Success Index (CSI) of 0.59; both are typical of scores achieved when comparing high quality reach-scale models to observed event data. The NED model also consistently outperformed the coarser SRTM model. The correspondence between the continental model and FEMA improves in temperate areas and for basins above 400 km2. Given typical hydraulic modeling uncertainties in the FEMA maps, it is probable that the continental-scale model can replicate them to within error. The continental model covers the entire continental US, compared to only 61% for FEMA, and also maps flooding in smaller watersheds not included in the FEMA coverage. The simulations were performed using computing hardware costing less than 100k, whereas the FEMA flood layers are built from thousands of individual local studies that took several decades to develop at an estimated cost (up to 2013) of 4.5 - $7.5bn. The continental model is relatively straightforward to modify and could be re-run under different scenarios, such as climate change. The results show that continental-scale models may now offer sufficient rigor to inform some decision-making needs with far lower cost and greater coverage than traditional patchwork approaches.
Hydroclimate of the western Indo-Pacific Warm Pool during the past 24,000 years
Niedermeyer, Eva M.; Sessions, Alex L.; Feakins, Sarah J.; Mohtadi, Mahyar
2014-01-01
The Indo-Pacific Warm Pool (IPWP) is a key site for the global hydrologic cycle, and modern observations indicate that both the Indian Ocean Zonal Mode (IOZM) and the El Niño Southern Oscillation exert strong influence on its regional hydrologic characteristics. Detailed insight into the natural range of IPWP dynamics and underlying climate mechanisms is, however, limited by the spatial and temporal coverage of climate data. In particular, long-term (multimillennial) precipitation patterns of the western IPWP, a key location for IOZM dynamics, are poorly understood. To help rectify this, we have reconstructed rainfall changes over Northwest Sumatra (western IPWP, Indian Ocean) throughout the past 24,000 y based on the stable hydrogen and carbon isotopic compositions (δD and δ13C, respectively) of terrestrial plant waxes. As a general feature of western IPWP hydrology, our data suggest similar rainfall amounts during the Last Glacial Maximum and the Holocene, contradicting previous claims that precipitation increased across the IPWP in response to deglacial changes in sea level and/or the position of the Intertropical Convergence Zone. We attribute this discrepancy to regional differences in topography and different responses to glacioeustatically forced changes in coastline position within the continental IPWP. During the Holocene, our data indicate considerable variations in rainfall amount. Comparison of our isotope time series to paleoclimate records from the Indian Ocean realm reveals previously unrecognized fluctuations of the Indian Ocean precipitation dipole during the Holocene, indicating that oscillations of the IOZM mean state have been a constituent of western IPWP rainfall over the past ten thousand years. PMID:24979768
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Li, Xiaowen
2016-01-01
A high-resolution, two-dimensional cloud-resolving model with spectral-bin microphysics is used to study the impact of aerosols on precipitation processes in both a tropical oceanic and a midlatitude continental squall line with regard to three processes: latent heating (LH), cold pool dynamics, and ice microphysics. Evaporative cooling in the lower troposphere is found to enhance rainfall in low cloud condensation nuclei (CCN) concentration scenarios in the developing stages of a midlatitude convective precipitation system. In contrast, the tropical case produced more rainfall under high CCN concentrations. Both cold pools and low-level convergence are stronger for those configurations having enhanced rainfall. Nevertheless, latent heat release is stronger (especially after initial precipitation) in the scenarios having more rainfall in both the tropical and midlatitude environment. Sensitivity tests are performed to examine the impact of ice and evaporative cooling on the relationship between aerosols, LH, and precipitation processes. The results show that evaporative cooling is important for cold pool strength and rain enhancement in both cases. However, ice microphysics play a larger role in the midlatitude case compared to the tropics. Detailed analysis of the vertical velocity-governing equation shows that temperature buoyancy can enhance updraftsdowndrafts in the middlelower troposphere in the convective core region; however, the vertical pressure gradient force (PGF) is of the same order and acts in the opposite direction. Water loading is small but of the same order as the net PGF-temperature buoyancy forcing. The balance among these terms determines the intensity of convection.
Impact of atmospheric CO2 levels on continental silicate weathering
NASA Astrophysics Data System (ADS)
Beaulieu, E.; GoddéRis, Y.; Labat, D.; Roelandt, C.; Oliva, P.; Guerrero, B.
2010-07-01
Anthropogenic sources are widely accepted as the dominant cause for the increase in atmospheric CO2 concentrations since the beginning of the industrial revolution. Here we use the B-WITCH model to quantify the impact of increased CO2 concentrations on CO2 consumption by weathering of continental surfaces. B-WITCH couples a dynamic biogeochemistry model (LPJ) and a process-based numerical model of continental weathering (WITCH). It allows simultaneous calculations of the different components of continental weathering fluxes, terrestrial vegetation dynamics, and carbon and water fluxes. The CO2 consumption rates are estimated at four different atmospheric CO2 concentrations, from 280 up to 1120 ppmv, for 22 sites characterized by silicate lithologies (basalt, granite, or sandstones). The sensitivity to atmospheric CO2 variations is explored, while temperature and rainfall are held constant. First, we show that under 355 ppmv of atmospheric CO2, B-WITCH is able to reproduce the global pattern of weathering rates as a function of annual runoff, mean annual temperature, or latitude for silicate lithologies. When atmospheric CO2 increases, evapotranspiration generally decreases due to progressive stomatal closure, and the soil CO2 pressure increases due to enhanced biospheric productivity. As a result, vertical drainage and soil acidity increase, promoting CO2 consumption by mineral weathering. We calculate an increase of about 3% of the CO2 consumption through silicate weathering (mol ha-1 yr-1) for 100 ppmv rise in CO2. Importantly, the sensitivity of the weathering system to the CO2 rise is not uniform and heavily depends on the climatic, lithologic, pedologic, and biospheric settings.
Analysis of rainfall distribution in Kelantan river basin, Malaysia
NASA Astrophysics Data System (ADS)
Che Ros, Faizah; Tosaka, Hiroyuki
2018-03-01
Using rainfall gauge on its own as input carries great uncertainties regarding runoff estimation, especially when the area is large and the rainfall is measured and recorded at irregular spaced gauging stations. Hence spatial interpolation is the key to obtain continuous and orderly rainfall distribution at unknown points to be the input to the rainfall runoff processes for distributed and semi-distributed numerical modelling. It is crucial to study and predict the behaviour of rainfall and river runoff to reduce flood damages of the affected area along the Kelantan river. Thus, a good knowledge on rainfall distribution is essential in early flood prediction studies. Forty six rainfall stations and their daily time-series were used to interpolate gridded rainfall surfaces using inverse-distance weighting (IDW), inverse-distance and elevation weighting (IDEW) methods and average rainfall distribution. Sensitivity analysis for distance and elevation parameters were conducted to see the variation produced. The accuracy of these interpolated datasets was examined using cross-validation assessment.
USDA-ARS?s Scientific Manuscript database
The movement of metolachlor via runoff and leaching from plots planted to corn on Mississippi River alluvial soil (Commerce silt loam) was measured for a six-year period, 1995-2000. The first three years were characterized by normal rainfall volume, the second three years by reduced rainfall. The ...
Maltais-Landry, Gabriel; Neufeld, Katarina; Poon, David; Grant, Nicholas; Nesic, Zoran; Smukler, Sean
2018-04-01
Manure-based soil amendments (herein "amendments") are important fertility sources, but differences among amendment types and management can significantly affect their nutrient value and environmental impacts. A 6-month in situ decomposition experiment was conducted to determine how protection from wintertime rainfall affected nutrient losses and greenhouse gas (GHG) emissions in poultry (broiler chicken and turkey) and horse amendments. Changes in total nutrient concentration were measured every 3 months, changes in ammonium (NH 4 + ) and nitrate (NO 3 - ) concentrations every month, and GHG emissions of carbon dioxide (CO 2 ), methane (CH 4 ), and nitrous oxide (N 2 O) every 7-14 days. Poultry amendments maintained higher nutrient concentrations (except for K), higher emissions of CO 2 and N 2 O, and lower CH 4 emissions than horse amendments. Exposing amendments to rainfall increased total N and NH 4 + losses in poultry amendments, P losses in turkey and horse amendments, and K losses and cumulative N 2 O emissions for all amendments. However, it did not affect CO 2 or CH 4 emissions. Overall, rainfall exposure would decrease total N inputs by 37% (horse), 59% (broiler chicken), or 74% (turkey) for a given application rate (wet weight basis) after 6 months of decomposition, with similar losses for NH 4 + (69-96%), P (41-73%), and K (91-97%). This study confirms the benefits of facilities protected from rainfall to reduce nutrient losses and GHG emissions during amendment decomposition. The impact of rainfall protection on nutrient losses and GHG emissions was monitored during the decomposition of broiler chicken, turkey, and horse manure-based soil amendments. Amendments exposed to rainfall had large ammonium and potassium losses, resulting in a 37-74% decrease in N inputs when compared with amendments protected from rainfall. Nitrous oxide emissions were also higher with rainfall exposure, although it had no effect on carbon dioxide and methane emissions. Overall, this work highlights the benefits of rainfall protection during amendment decomposition to reduce nutrient losses and GHG emissions.
Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks.
Zemp, Delphine Clara; Schleussner, Carl-Friedrich; Barbosa, Henrique M J; Hirota, Marina; Montade, Vincent; Sampaio, Gilvan; Staal, Arie; Wang-Erlandsson, Lan; Rammig, Anja
2017-03-13
Reduced rainfall increases the risk of forest dieback, while in return forest loss might intensify regional droughts. The consequences of this vegetation-atmosphere feedback for the stability of the Amazon forest are still unclear. Here we show that the risk of self-amplified Amazon forest loss increases nonlinearly with dry-season intensification. We apply a novel complex-network approach, in which Amazon forest patches are linked by observation-based atmospheric water fluxes. Our results suggest that the risk of self-amplified forest loss is reduced with increasing heterogeneity in the response of forest patches to reduced rainfall. Under dry-season Amazonian rainfall reductions, comparable to Last Glacial Maximum conditions, additional forest loss due to self-amplified effects occurs in 10-13% of the Amazon basin. Although our findings do not indicate that the projected rainfall changes for the end of the twenty-first century will lead to complete Amazon dieback, they suggest that frequent extreme drought events have the potential to destabilize large parts of the Amazon forest.
Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks
NASA Astrophysics Data System (ADS)
Zemp, Delphine Clara; Schleussner, Carl-Friedrich; Barbosa, Henrique M. J.; Hirota, Marina; Montade, Vincent; Sampaio, Gilvan; Staal, Arie; Wang-Erlandsson, Lan; Rammig, Anja
2017-03-01
Reduced rainfall increases the risk of forest dieback, while in return forest loss might intensify regional droughts. The consequences of this vegetation-atmosphere feedback for the stability of the Amazon forest are still unclear. Here we show that the risk of self-amplified Amazon forest loss increases nonlinearly with dry-season intensification. We apply a novel complex-network approach, in which Amazon forest patches are linked by observation-based atmospheric water fluxes. Our results suggest that the risk of self-amplified forest loss is reduced with increasing heterogeneity in the response of forest patches to reduced rainfall. Under dry-season Amazonian rainfall reductions, comparable to Last Glacial Maximum conditions, additional forest loss due to self-amplified effects occurs in 10-13% of the Amazon basin. Although our findings do not indicate that the projected rainfall changes for the end of the twenty-first century will lead to complete Amazon dieback, they suggest that frequent extreme drought events have the potential to destabilize large parts of the Amazon forest.
Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks
Zemp, Delphine Clara; Schleussner, Carl-Friedrich; Barbosa, Henrique M. J.; Hirota, Marina; Montade, Vincent; Sampaio, Gilvan; Staal, Arie; Wang-Erlandsson, Lan; Rammig, Anja
2017-01-01
Reduced rainfall increases the risk of forest dieback, while in return forest loss might intensify regional droughts. The consequences of this vegetation–atmosphere feedback for the stability of the Amazon forest are still unclear. Here we show that the risk of self-amplified Amazon forest loss increases nonlinearly with dry-season intensification. We apply a novel complex-network approach, in which Amazon forest patches are linked by observation-based atmospheric water fluxes. Our results suggest that the risk of self-amplified forest loss is reduced with increasing heterogeneity in the response of forest patches to reduced rainfall. Under dry-season Amazonian rainfall reductions, comparable to Last Glacial Maximum conditions, additional forest loss due to self-amplified effects occurs in 10–13% of the Amazon basin. Although our findings do not indicate that the projected rainfall changes for the end of the twenty-first century will lead to complete Amazon dieback, they suggest that frequent extreme drought events have the potential to destabilize large parts of the Amazon forest. PMID:28287104
Axelsson, Charles; van Sebille, Erik
2017-11-15
The leakage of large plastic litter (macroplastics) into the ocean is a major environmental problem. A significant fraction of this leakage originates from coastal cities, particularly during extreme rainfall events. As coastal cities continue to grow, finding ways to reduce this macroplastic leakage is extremely pertinent. Here, we explore why and how coastal cities can reduce macroplastic leakages during extreme rainfall events. Using nine global cities as a basis, we establish that while cities actively create policies that reduce plastic leakages, more needs to be done. Nonetheless, these policies are economically, socially and environmentally cobeneficial to the city environment. While the lack of political engagement and economic concerns limit these policies, lacking social motivation and engagement is the largest limitation towards implementing policy. We recommend cities to incentivize citizen and municipal engagement with responsible usage of plastics, cleaning the environment and preparing for future extreme rainfall events. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Dal Corso, Jacopo; Gianolla, Piero; Newton, Robert J.; Franceschi, Marco; Roghi, Guido; Caggiati, Marcello; Raucsik, Béla; Budai, Tamás; Haas, János; Preto, Nereo
2015-04-01
In the early Late Triassic a period of increased rainfall, named the Carnian Pluvial Event (CPE), is evidenced by major lithological changes in continental and marine successions worldwide. The environmental change seems to be closely associated with a negative carbon isotope excursion that was identified in a stratigraphic succession of the Dolomites (Italy) but the temporal relationship between these phenomena is still not well defined. Here we present organic-carbon isotope data from Carnian deep-water stratigraphic sections in Austria and Hungary, and carbonate petrography of samples from a marginal marine section in Italy. A negative 2-4‰ δ13C shift is recorded by bulk organic matter in the studied sections and is coincident with a similar feature highlighted in higher plant and marine algal biomarker carbon-isotope records from the Dolomites (Italy), thus testifying to a global change in the isotopic composition of the reservoirs of the exchangeable carbon. Our new observations verify that sedimentological changes related to the CPE coincide with the carbon cycle perturbation and therefore occurred synchronously within the western Tethys. Consistent with modern observations, our results show that the injection of 13C-depleted CO2 into the Carnian atmosphere-ocean system may have been directly responsible for the increase in rainfall by intensifying the Pangaean mega-monsoon activity. The consequent increased continental weathering and erosion led to the transfer of large amounts of siliciclastics into the basins that were rapidly filled up, while the increased nutrient flux triggered the local development of anoxia. The new carbonate petrography data show that these changes also coincided with the demise of platform microbial carbonate factories and their replacement with metazoan driven carbonate deposition. This had the effect of considerably decreasing carbonate deposition in shallow water environments.
The role of tropical cyclones in precipitation over the tropical and subtropical North America
NASA Astrophysics Data System (ADS)
Dominguez, Christian; Magaña, Victor
2018-03-01
Tropical cyclones (TCs) are essential elements of the hydrological cycle in tropical and subtropical regions. In the present study, the contribution of TCs to seasonal precipitation around the tropical and subtropical North America is examined. When TC activity over the tropical eastern Pacific (TEP) or the Intra Americas Seas (IAS) is below (above-normal), regional precipitation may be below (above-normal). However, it is not only the number of TCs what may change seasonal precipitation, but the trajectory of the systems. TCs induce intense precipitation over continental regions if they are close enough to shorelines, for instance, if the TC center is located, on average, less than 500 km-distant from the coast. However, if TCs are more remote than this threshold distance, the chances of rain over continental regions decrease, particularly in arid and semi-arid regions. In addition, a distant TC may induce subsidence or produce moisture divergence that inhibits, at least for a few days, convective activity farther away than the threshold distance. An analysis of interannual variability in the TCs that produce precipitation over the tropical and subtropical North America shows that some regions in northern Mexico, which mostly depend on this effect to undergo wet years, may experience seasonal negative anomalies in precipitation if TCs trajectories are remote. Therefore, TCs (activity and trajectories) are important modulators of climate variability on various time scales, either by producing intense rainfall or by inhibiting convection at distant regions from their trajectory. The impact of such variations on water availability in northern Mexico may be relevant, since water availability in dams recovers under the effects of TC rainfall. Seasonal precipitation forecasts or climate change scenarios for these regions should take into account the effect of TCs, if regional adaptation strategies are implemented.
Forecasting Andean rainfall and crop yield from the influence of El Nino on Pleiades visibility
Orlove; Chiang; Cane
2000-01-06
Farmers in drought-prone regions of Andean South America have historically made observations of changes in the apparent brightness of stars in the Pleiades around the time of the southern winter solstice in order to forecast interannual variations in summer rainfall and in autumn harvests. They moderate the effect of reduced rainfall by adjusting the planting dates of potatoes, their most important crop. Here we use data on cloud cover and water vapour from satellite imagery, agronomic data from the Andean altiplano and an index of El Nino variability to analyse this forecasting method. We find that poor visibility of the Pleiades in June-caused by an increase in subvisual high cirrus clouds-is indicative of an El Nino year, which is usually linked to reduced rainfall during the growing season several months later. Our results suggest that this centuries-old method of seasonal rainfall forecasting may be based on a simple indicator of El Nino variability.
NASA Astrophysics Data System (ADS)
Fouchier, Catherine; Maire, Alexis; Arnaud, Patrick; Cantet, Philippe; Odry, Jean
2016-04-01
The starting point of our study was the availability of maps of rainfall quantiles available for the entire French mainland territory at the spatial resolution of 1 km². These maps display the rainfall amounts estimated for different rainfall durations (from 15 minutes to 72 hours) and different return periods (from 2 years up to 1 000 years). They are provided by a regionalized stochastic hourly point rainfall generator, the SHYREG method which was previously developed by Irstea (Arnaud et al., 2007; Cantet and Arnaud, 2014). Being calibrated independently on numerous raingauges data (with an average density across the country of 1 raingauge per 200 km²), this method suffers from a limitation common to point-process rainfall generators: it can only reproduce point rainfall patterns and has no capacity to generate rainfall fields. It can't hence provide areal rainfall quantiles, the estimation of the latter being however needed for the construction of design rainfall or for the diagnostic of observed events. One means of bridging this gap between our local rainfall quantiles and areal rainfall quantiles is given by the concept of probabilistic areal reduction factors of rainfall (ARF) as defined by Omolayo (1993). This concept enables to estimate areal rainfall of a particular frequency within a certain amount of time from point rainfalls of the same frequency and duration. Assessing such ARF for the whole French territory is of particular interest since it should allow us to compute areal rainfall quantiles, and eventually watershed rainfall quantiles, by using the already available grids of statistical point rainfall of the SHYREG method. Our purpose was then to assess these ARF thanks to long time-series of spatial rainfall data. We have used two sets of rainfall fields: i) hourly rainfall fields from a 10-year reference database of Quantitative Precipitation Estimation (QPE) over France (Tabary et al., 2012), ii) daily rainfall fields resulting from a 53-year high-resolution atmospheric reanalysis over France with the SAFRAN-gauge-based analysis system (Vidal et al., 2010). We have then built samples of maximal rainfalls for each cell location (the "point" rainfalls) and for different areas centered on each cell location (the areal rainfalls) of these gridded data. To compute rainfall quantiles, we have fitted a Gumbel law, with the L-moment method, on each of these samples. Our daily and hourly ARF have then shown four main trends: i) a sensitivity to the return period, with ARF values decreasing when the return period increases; ii) a sensitivity to the rainfall duration, with ARF values decreasing when the rainfall duration decreases; iii) a sensitivity to the season, with ARF values smaller for the summer period than for the winter period; iv) a sensitivity to the geographical location, with low ARF values in the French Mediterranean area and ARF values close to 1 for the climatic zones of Northern and Western France (oceanic to semi-continental climate). The results of this data-intensive study led for the first time on the whole French territory are in agreement with studies led abroad (e.g. Allen and DeGaetano 2005, Overeem et al. 2010) and confirm and widen the results of previous studies that were carried out in France on smaller areas and with fewer rainfall durations (e.g. Ramos et al., 2006, Neppel et al., 2003). References Allen R. J. and DeGaetano A. T. (2005). Areal reduction factors for two eastern United States regions with high rain-gauge density. Journal of Hydrologic Engineering 10(4): 327-335. Arnaud P., Fine J.-A. and Lavabre J. (2007). An hourly rainfall generation model applicable to all types of climate. Atmospheric Research 85(2): 230-242. Cantet, P. and Arnaud, P. (2014). Extreme rainfall analysis by a stochastic model: impact of the copula choice on the sub-daily rainfall generation, Stochastic Environmental Research and Risk Assessment, Springer Berlin Heidelberg, 28(6), 1479-1492. Neppel L., Bouvier C. and Lavabre J. (2003). Areal reduction factor probabilities for rainfall in Languedoc Roussillon. IAHS-AISH Publication (278): 276-283. Omolayo, A. S. (1993). On the transposition of areal reduction factors for rainfall frequency estimation. Journal of Hydrology 145 (1-2): 191-205. Overeem A., Buishand T. A., Holleman I. and Uijlenhoet R. (2010). Extreme value modeling of areal rainfall from weather radar. Water Resources Research 46(9): 10 p. Ramos M.-H., Leblois E., Creutin J.-D. (2006). From point to areal rainfall: Linking the different approaches for the frequency characterisation of rainfalls in urban areas. Water Science and Technology. 54(6-7): 33-40. Tabary P., Dupuy P., L'Henaff G., Gueguen C., Moulin L., Laurantin O., Merlier C., Soubeyroux J. M. (2012). A 10-year (1997-2006) reanalysis of Quantitative Precipitation Estimation over France: methodology and first results. IAHS-AISH Publication (351) : 255-260. Vidal J.-P., Martin E., Franchistéguy L., Baillon M. and Soubeyroux J.-M. (2010). A 50-year high-resolution atmospheric reanalysis over France with the Safran system. International Journal of Climatology 30(11): 1627-1644.
Latent Heating Structures Derived from TRMM
NASA Technical Reports Server (NTRS)
Tao, W.-K.; Smith, E. A.; Adler, R.; Hou, A.; Kakar, R.; Krishnamurti, T.; Kummerow, C.; Lang, S.; Olson, W.; Satoh, S.
2004-01-01
Rainfall is the fundamental variable within the Earth's hydrological cycle because it is both the main forcing term leading to variations in continental and oceanic surface water budgets. The vertical distribution of latent heat release, which is accompanied with rain, modulates large-scale meridional and zonal circulations within the tropics as well as modifying the energetic efficiency of mid-latitude weather systems. Latent heat release itself is a consequence of phase changes between the vapor, liquid, and frozen states of water.This paper focuses on the retrieval of latent heat release from satellite measurements generated by the Tropical Rainfall Measuring Mission 0. The TRMM observatory, whose development was a joint US-Japan space endeavor, was launched in November 1997. TRMM measurements provide an accurate account of rainfall over the global tropics, information which can be .used to estimate the four-dimensional structure of latent heating across the entire tropical and sub-tropical regions. Various algorithm methodologies for estimating latent heating based on rain rate measurements from TRMM observations are described. The strengths and weaknesses of these algorithms, as well as the latent heating products generated by these algorithms, are also discussed along with validation analyses of the products. The investigation paper provides an overview of how TRMM-derived latent heating information is currently being used in conjunction with global weather and climate models, and concludes with remarks designed to stimulate further research on latent heating retrieval
NASA Astrophysics Data System (ADS)
Li, Wenhong; Fu, Rong; Dickinson, Robert E.
2006-01-01
The global climate models for the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4) predict very different changes of rainfall over the Amazon under the SRES A1B scenario for global climate change. Five of the eleven models predict an increase of annual rainfall, three models predict a decrease of rainfall, and the other three models predict no significant changes in the Amazon rainfall. We have further examined two models. The UKMO-HadCM3 model predicts an El Niño-like sea surface temperature (SST) change and warming in the northern tropical Atlantic which appear to enhance atmospheric subsidence and consequently reduce clouds over the Amazon. The resultant increase of surface solar absorption causes a stronger surface sensible heat flux and thus reduces relative humidity of the surface air. These changes decrease the rate and length of wet season rainfall and surface latent heat flux. This decreased wet season rainfall leads to drier soil during the subsequent dry season, which in turn can delay the transition from the dry to wet season. GISS-ER predicts a weaker SST warming in the western Pacific and the southern tropical Atlantic which increases moisture transport and hence rainfall in the Amazon. In the southern Amazon and Nordeste where the strongest rainfall increase occurs, the resultant higher soil moisture supports a higher surface latent heat flux during the dry and transition season and leads to an earlier wet season onset.
NASA Astrophysics Data System (ADS)
Li, Jialun; Mahalov, Alex; Hyde, Peter
2016-11-01
The Noah-Multiparameterization land surface model in the Weather Research and Forecasting (WRF) with Chemistry (WRF/Chem) is modified to include the effects of chronic ozone exposure (COE) on plant conductance and photosynthesis (PCP) found from field experiments. Based on the modified WRF/Chem, the effects of COE on regional hydroclimate have been investigated over the continental United States. Our results indicate that the model with/without modification in its current configuration can reproduce the rainfall and temperature patterns of the observations and reanalysis data, although it underestimates rainfall in the central Great Plains and overestimates it in the eastern coast states. The experimental tests on the effects of COE include setting different thresholds of ambient ozone concentrations ([O3]) and using different linear regressions to quantify PCP against the COE. Compared with the WRF/Chem control run (i.e., without considering the effects of COE), the modified model at different experiment setups improves the simulated estimates of rainfall and temperatures in Texas and regions to the immediate north. The simulations in June, July and August of 2007-2012 show that surface [O3] decrease latent heat fluxes (LH) by 10-27 W m-2, increase surface air temperatures (T 2) by 0.6 °C-2.0 °C, decrease rainfall by 0.9-1.4 mm d-1, and decrease runoff by 0.1-0.17 mm d-1 in Texas and surrounding areas, all of which highly depends on the precise experiment setup, especially the [O3] threshold. The mechanism producing these results is that COE decreases the LH and increases sensible heat fluxes, which in turn increases the Bowen ratios and air temperatures. This lowering of the LH also results in the decrease of convective potential and finally decreases convective rainfall. Employing this modified WRF/Chem model in any high [O3] region can improve the understanding of the interactions of vegetation, meteorology, chemistry/emissions, and crop productivity.
NASA Astrophysics Data System (ADS)
Krishnamurthy, Lakshmi; Muñoz, Ángel G.; Vecchi, Gabriel A.; Msadek, Rym; Wittenberg, Andrew T.; Stern, Bill; Gudgel, Rich; Zeng, Fanrong
2018-05-01
The Caribbean low-level jet (CLLJ) is an important component of the atmospheric circulation over the Intra-Americas Sea (IAS) which impacts the weather and climate both locally and remotely. It influences the rainfall variability in the Caribbean, Central America, northern South America, the tropical Pacific and the continental Unites States through the transport of moisture. We make use of high-resolution coupled and uncoupled models from the Geophysical Fluid Dynamics Laboratory (GFDL) to investigate the simulation of the CLLJ and its teleconnections and further compare with low-resolution models. The high-resolution coupled model FLOR shows improvements in the simulation of the CLLJ and its teleconnections with rainfall and SST over the IAS compared to the low-resolution coupled model CM2.1. The CLLJ is better represented in uncoupled models (AM2.1 and AM2.5) forced with observed sea-surface temperatures (SSTs), emphasizing the role of SSTs in the simulation of the CLLJ. Further, we determine the forecast skill for observed rainfall using both high- and low-resolution predictions of rainfall and SSTs for the July-August-September season. We determine the role of statistical correction of model biases, coupling and horizontal resolution on the forecast skill. Statistical correction dramatically improves area-averaged forecast skill. But the analysis of spatial distribution in skill indicates that the improvement in skill after statistical correction is region dependent. Forecast skill is sensitive to coupling in parts of the Caribbean, Central and northern South America, and it is mostly insensitive over North America. Comparison of forecast skill between high and low-resolution coupled models does not show any dramatic difference. However, uncoupled models show improvement in the area-averaged skill in the high-resolution atmospheric model compared to lower resolution model. Understanding and improving the forecast skill over the IAS has important implications for highly vulnerable nations in the region.
Predicting monthly precipitation along coastal Ecuador: ENSO and transfer function models
NASA Astrophysics Data System (ADS)
de Guenni, Lelys B.; García, Mariangel; Muñoz, Ángel G.; Santos, José L.; Cedeño, Alexandra; Perugachi, Carlos; Castillo, José
2017-08-01
It is well known that El Niño-Southern Oscillation (ENSO) modifies precipitation patterns in several parts of the world. One of the most impacted areas is the western coast of South America, where Ecuador is located. El Niño events that occurred in 1982-1983, 1987-1988, 1991-1992, and 1997-1998 produced important positive rainfall anomalies in the coastal zone of Ecuador, bringing considerable damage to livelihoods, agriculture, and infrastructure. Operational climate forecasts in the region provide only seasonal scale (e.g., 3-month averages) information, but during ENSO events it is key for decision-makers to use reliable sub-seasonal scale forecasts, which at the present time are still non-existent in most parts of the world. This study analyzes the potential predictability of coastal Ecuador rainfall at monthly scale. Instead of the discrete approach that considers training models using only particular seasons, continuous (i.e., all available months are used) transfer function models are built using standard ENSO indices to explore rainfall forecast skill along the Ecuadorian coast and Galápagos Islands. The modeling approach considers a large-scale contribution, represented by the role of a sea-surface temperature index, and a local-scale contribution represented here via the use of previous precipitation observed in the same station. The study found that the Niño3 index is the best ENSO predictor of monthly coastal rainfall, with a lagged response varying from 0 months (simultaneous) for Galápagos up to 3 months for the continental locations considered. Model validation indicates that the skill is similar to the one obtained using principal component regression models for the same kind of experiments. It is suggested that the proposed approach could provide skillful rainfall forecasts at monthly scale for up to a few months in advance.
El Niño, Rainfall, and the Shifting Geography of Cholera in Africa
NASA Astrophysics Data System (ADS)
Moore, S.; Azman, A. S.; Zaitchik, B. F.; McKay, H.; Lessler, J.
2017-12-01
The El Niño Southern Oscillation (ENSO) and other climate patterns can have profound impacts on the occurrence of infectious diseases. Because of the key role of water supplies in cholera transmission, a relationship between El Niño events and cholera incidence is highly plausible, and previous research has shown a link between El Niño patterns and cholera in Bangladesh. However, there is little systematic evidence for this link in Africa where many cholera cases and deaths are reported. To understand how ENSO affects the geographic distribution of cholera incidence in Africa, we used a hierarchical Bayesian approach to integrate over 17,000 annual observations of cholera incidence from 2000-2014 in over 3,000 unique locations of varying spatial extent, ranging from entire countries to neighborhoods. The resulting maps reflect modeled cholera incidence at a fine spatial resolution using reported counts of cholera cases, key explanatory variables, and a spatially-dependent covariance term. We then examined the potential mechanistic association between ENSO-related changes in cholera incidence and several environmental variables including rainfall. El Niño profoundly changed the annual geographic distribution of cholera in Africa from 2000-2014, shifting the burden to continental East Africa, where almost 50,000 additional cases occur during El Niño years. Cholera incidence during El Niño years was higher in regions of East Africa with increased rainfall, but incidence was also higher in some areas with decreased rainfall suggesting a complex relationship between rainfall and cholera incidence. Here we show clear evidence for a shift in the distribution of cholera incidence throughout Africa in El Niño and non-El Niño years, likely mediated by El Niño's impact on local climatic factors. Knowledge of this relationship between cholera and climate patterns coupled with El Niño forecasting could be used to notify countries in Africa when they are likely to see a major shift in their cholera risk.
The tropical rain belts with an annual cycle and a continent model intercomparison project: TRACMIP
Voigt, Aiko; Biasutti, Michela; Scheff, Jacob; ...
2016-11-16
This paper introduces the Tropical Rain belts with an Annual cycle and a Continent Model Intercomparison Project (TRACMIP). TRACMIP studies the dynamics of tropical rain belts and their response to past and future radiative forcings through simulations with 13 comprehensive and one simplified atmosphere models coupled to a slab ocean and driven by seasonally-varying insolation. Five idealized experiments, two with an aquaplanet setup and three with a setup with an idealized tropical continent, fill the space between prescribed-SST aquaplanet simulations and realistic simulations provided by CMIP5/6. The simulations reproduce key features of the present-day climate and expected future climate change,more » including an annual-mean intertropical convergence zone (ITCZ) that is located north of the equator and Hadley cells and eddy-driven jets that are similar to the present-day climate. Quadrupling CO 2 leads to a northward ITCZ shift and preferential warming in Northern high-latitudes. The simulations show interesting CO 2-induced changes in the seasonal excursion of the ITCZ and indicate a possible state-dependence of climate sensitivity. The inclusion of an idealized continent modulates both the control climate and the response to increased CO 2; for example it reduces the northward ITCZ shift associated with warming and, in some models, climate sensitivity. In response to eccentricity-driven seasonal insolation changes, seasonal changes in oceanic rainfall are best characterized as a meridional dipole, while seasonal continental rainfall changes tend to be symmetric about the equator. Finally, this survey illustrates TRACMIP’s potential to engender a deeper understanding of global and regional climate phenomena and to address pressing questions on past and future climate change.« less
The Tropical Rain Belts with an Annual Cycle and a Continent Model Intercomparison Project: TRACMIP
NASA Technical Reports Server (NTRS)
Voigt, Aiko; Biasutti, Michela; Scheff, Jacob; Bader, Juergen; Bordoni, Simona; Codron, Francis; Dixon, Ross D.; Jonas, Jeffrey; Kang, Sarah M.; Klingaman, Nicholas P.;
2016-01-01
This paper introduces the Tropical Rain belts with an Annual cycle and a Continent Model Intercomparison Project (TRACMIP). TRACMIP studies the dynamics of tropical rain belts and their response to past and future radiative forcings through simulations with 13 comprehensive and one simplified atmosphere models coupled to a slab ocean and driven by seasonally-varying insolation. Five idealized experiments, two with an aquaplanet setup and three with a setup with an idealized tropical continent, fill the space between prescribed-SST aquaplanet simulations and realistic simulations provided by CMIP5/6. The simulations reproduce key features of present-day climate and expected future climate change, including an annual-mean intertropical convergence zone (ITCZ) that is located north of the equator and Hadley cells and eddy-driven jets that are similar to present-day climate. Quadrupling CO2 leads to a northward ITCZ shift and preferential warming in Northern high-latitudes. The simulations show interesting CO2-induced changes in the seasonal excursion of the ITCZ and indicate a possible state-dependence of climate sensitivity. The inclusion of an idealized continent modulates both the control climate and the response to increased CO2; for example, it reduces the northward ITCZ shift associated with warming and, in some models, climate sensitivity. In response to eccentricity-driven seasonal insolation changes, seasonal changes in oceanic rainfall are best characterized as a meridional dipole, while seasonal continental rainfall changes tend to be symmetric about the equator. This survey illustrates TRACMIP's potential to engender a deeper understanding of global and regional climate and to address questions on past and future climate change.
Hinojosa, M Belén; Parra, Antonio; Laudicina, Vito Armando; Moreno, José M
2016-12-15
Fire may cause significant alterations in soil properties. Post-fire soil dynamics can vary depending, among other factors, on rainfall patterns. However, little is known regarding variations in response to post-fire drought. This is relevant in arid and semiarid areas with poor soils, like much of the western Mediterranean. Furthermore, climate change projections in such areas anticipate reduced precipitation and longer annual drought periods, together with an increase in fire severity and frequency. This research evaluates the effects of experimental drought after fire on soil dynamics of a Cistus-Erica shrubland (Central Spain). A replicated (n=4) field experiment was conducted in which the total rainfall and its patterns were manipulated by means of a rain-out shelters and irrigation system. The treatments were: environmental control (natural rainfall), historical control (average rainfall, 2months drought), moderate drought (25% reduction of historical control, 5months drought) and severe drought (45% reduction, 7months drought). After one growing season under these rainfall treatments, the plots were burned. One set of unburned plots under natural rainfall served as an additional control. Soils were collected seasonally. Fire increased soil P and N availability. Post-fire drought treatments reduced available soil P but increased N concentration (mainly nitrate). Fire reduced available K irrespective of drought treatments. Fire reduced enzyme activities and carbon mineralization rate, a reduction that was higher in post-fire drought-treated soils. Fire decreased soil microbial biomass and the proportion of fungi, while that of actinomycetes increased. Post-fire drought decreased soil total microbial biomass and fungi, with bacteria becoming more abundant. Our results support that increasing drought after fire could compromise the resilience of Mediterranean ecosystems to fire. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Moon, Y. I.; Kim, M. S.; Choi, J. H.; Yuk, G. M.
2017-12-01
eavy rainfall has become a recent major cause of urban area flooding due to the climate change and urbanization. To prevent property damage along with casualties, a system which can alert and forecast urban flooding must be developed. Optimal performance of reducing flood damage can be expected of urban drainage facilities when operated in smaller rainfall events over extreme ones. Thus, the purpose of this study is to execute: A) flood forecasting system using runoff analysis based on short term rainfall; and B) flood warning system which operates based on the data from pump stations and rainwater storage in urban basins. In result of the analysis, it is shown that urban drainage facilities using short term rainfall forecasting data by radar will be more effective to reduce urban flood damage than using only the inflow data of the facility. Keywords: Heavy Rainfall, Urban Flood, Short-term Rainfall Forecasting, Optimal operating of urban drainage facilities. AcknowledgmentsThis research was supported by a grant (17AWMP-B066744-05) from Advanced Water Management Research Program (AWMP) funded by Ministry of Land, Infrastructure and Transport of Korean government.
NASA Astrophysics Data System (ADS)
Reed, Patrick M.; Chaney, Nathaniel W.; Herman, Jonathan D.; Ferringer, Matthew P.; Wood, Eric F.
2015-02-01
At present 4 of 10 dedicated rainfall observing satellite systems have exceeded their design life, some by more than a decade. Here, we show operational implications for flood management of a ‘collapse’ of space-based rainfall observing infrastructure as well as the high-value opportunities for a globally coordinated portfolio of satellite missions and data services. Results show that the current portfolio of rainfall missions fails to meet operational data needs for flood management, even when assuming a perfectly coordinated data product from all current rainfall-focused missions (i.e., the full portfolio). In the full portfolio, satellite-based rainfall data deficits vary across the globe and may preclude climate adaptation in locations vulnerable to increasing flood risks. Moreover, removing satellites that are currently beyond their design life (i.e., the reduced portfolio) dramatically increases data deficits globally and could cause entire high intensity flood events to be unobserved. Recovery from the reduced portfolio is possible with internationally coordinated replenishment of as few as 2 of the 4 satellite systems beyond their design life, yielding rainfall data coverages that outperform the current full portfolio (i.e., an optimized portfolio of eight satellites can outperform ten satellites). This work demonstrates the potential for internationally coordinated satellite replenishment and data services to substantially enhance the cost-effectiveness, sustainability and operational value of space-based rainfall observations in managing evolving flood risks.
Tropical forest soil microbial communities couple iron and carbon biogeochemistry
Eric A. Dubinsky; Whendee L. Silver; Mary K. Firestone
2010-01-01
We report that iron-reducing bacteria are primary mediators of anaerobic carbon oxidation in upland tropical soils spanning a rainfall gradient (3500â5000 mm/yr) in northeast Puerto Rico. The abundant rainfall and high net primary productivity of these tropical forests provide optimal soil habitat for iron-reducing and iron-oxidizing bacteria. Spatially and temporally...
Surface storage of rainfall in tree crowns: not all trees are equal
E. Gregory McPherson; Q. Xiao; Natalie van Doorn; P. Peper; E. Teach
2017-01-01
Urban forests can be an effective strategy for managing stormwater. The soil that supports tree growth acts like a reservoir that reduces runoff. The tree crown intercepts rainfall on leaves and stems and its evaporation reduces water reaching the ground below. Until now surface storage capacities have been studied only for forest trees. Based on forest research, green...
Stalling Tropical Cyclones over the Atlantic Basin
NASA Astrophysics Data System (ADS)
Nielsen-Gammon, J. W.; Emanuel, K.
2017-12-01
Hurricane Harvey produced massive amounts of rain over southeast Texas and southwest Louisiana. Average storm total rainfall amounts over a 10,000 square mile (26,000 square km) area exceeded 30 inches (750 mm). An important aspect of the storm that contributed to the large rainfall totals was its unusual motion. The storm stalled shortly after making landfall, then moved back offshore before once again making landfall five days later. This storm motion permitted heavy rainfall to occur in the same general area for an extended period of time. The unusual nature of this event motivates an investigation into the characteristics and potential climate change influences on stalled tropical cyclones in the Atlantic basin using the HURDAT 2 storm track database for 1866-2016 and downscaled tropical cyclones driven by simulations of present and future climate. The motion of cyclones is quantified as the size of a circle circumscribing all storm locations during a given length of time. For a three-day period, Harvey remained inside a circle with a radius of 123 km. This ranks within the top 0.6% of slowest-moving historical storm instances. Among the 2% of slowest-moving storm instances prior to Harvey, only 13 involved storms that stalled near the continental United States coast, where they may have produced substantial rainfall onshore while tapping into marine moisture. Only two such storms stalled in the month of September, in contrast to 20 September stalls out of the 36 storms that stalled over the nearby open Atlantic. Just four of the stalled coastal storms were hurricanes, implying a return frequency for such storms of much less than once per decade. The synoptic setting of these storms is examined for common features, and historical and projected trends in occurrences of stalled storms near the coast and farther offshore are investigated.
HYDROSCAPE: A SCAlable and ParallelizablE Rainfall Runoff Model for Hydrological Applications
NASA Astrophysics Data System (ADS)
Piccolroaz, S.; Di Lazzaro, M.; Zarlenga, A.; Majone, B.; Bellin, A.; Fiori, A.
2015-12-01
In this work we present HYDROSCAPE, an innovative streamflow routing method based on the travel time approach, and modeled through a fine-scale geomorphological description of hydrological flow paths. The model is designed aimed at being easily coupled with weather forecast or climate models providing the hydrological forcing, and at the same time preserving the geomorphological dispersion of the river network, which is kept unchanged independently on the grid size of rainfall input. This makes HYDROSCAPE particularly suitable for multi-scale applications, ranging from medium size catchments up to the continental scale, and to investigate the effects of extreme rainfall events that require an accurate description of basin response timing. Key feature of the model is its computational efficiency, which allows performing a large number of simulations for sensitivity/uncertainty analyses in a Monte Carlo framework. Further, the model is highly parsimonious, involving the calibration of only three parameters: one defining the residence time of hillslope response, one for channel velocity, and a multiplicative factor accounting for uncertainties in the identification of the potential maximum soil moisture retention in the SCS-CN method. HYDROSCAPE is designed with a simple and flexible modular structure, which makes it particularly prone to massive parallelization, customization according to the specific user needs and preferences (e.g., rainfall-runoff model), and continuous development and improvement. Finally, the possibility to specify the desired computational time step and evaluate streamflow at any location in the domain, makes HYDROSCAPE an attractive tool for many hydrological applications, and a valuable alternative to more complex and highly parametrized large scale hydrological models. Together with model development and features, we present an application to the Upper Tiber River basin (Italy), providing a practical example of model performance and characteristics.
Stochastic Generation of Spatiotemporal Rainfall Events for Flood Risk Assessment
NASA Astrophysics Data System (ADS)
Diederen, D.; Liu, Y.; Gouldby, B.; Diermanse, F.
2017-12-01
Current flood risk analyses that only consider peaks of hydrometeorological forcing variables have limitations regarding their representation of reality. Simplistic assumptions regarding antecedent conditions are required, often different sources of flooding are considered in isolation, and the complex temporal and spatial evolution of the events is not considered. Mid-latitude storms, governed by large scale climatic conditions, often exhibit a high degree of temporal dependency, for example. For sustainable flood risk management, that accounts appropriately for climate change, it is desirable for flood risk analyses to reflect reality more appropriately. Analysis of risk mitigation measures and comparison of their relative performance is therefore likely to be more robust and lead to improved solutions. We provide a new framework for the provision of boundary conditions to flood risk analyses that more appropriately reflects reality. The boundary conditions capture the temporal dependencies of complex storms whilst preserving the extreme values and associated spatial dependencies. We demonstrate the application of this framework to generate a synthetic rainfall events time series boundary condition set from reanalysis rainfall data (CFSR) on the continental scale. We define spatiotemporal clusters of rainfall as events, extract hydrological parameters for each event, generate synthetic parameter sets with a multivariate distribution with a focus on the joint tail probability [Heffernan and Tawn, 2004], and finally create synthetic events from the generated synthetic parameters. We highlight the stochastic integration of (a) spatiotemporal features, e.g. event occurrence intensity over space-time, or time to previous event, which we use for the spatial placement and sequencing of the synthetic events, and (b) value-specific parameters, e.g. peak intensity and event extent. We contrast this to more traditional approaches to highlight the significant improvements in terms of representing the reality of extreme flood events.
NASA Astrophysics Data System (ADS)
Dunkerley, David
2018-01-01
The characteristic intermittency of rainfall includes temporary cessations (hiatuses), as well as periods of very low intensity within more intense events. To understand how these characteristics of rainfall affect overland flow production, rainfall simulations involving repeated cycles of on-off intermittency were carried out on dryland soils in arid western New South Wales, Australia. Periods of rain (10 mm/h) and no-rain were applied in alternation with cycle times from 3 min to 25 min, in experiments lasting 1-1.5 h. Results showed that intermittency could delay the onset of runoff by more than 30 min, reduce the runoff ratio, reduce the peak runoff rate, and reduce the apparent event infiltration rate by 30-45%. When hiatuses in rainfall were longer than 15-20 min, runoff that had resulted from prior rain ceased completely before the recommencement of rain. Results demonstrate that if rainfall intermittency is not accounted for, estimates of infiltrability based on runoff plot data can be systematically in error. Despite the use of intermittent rain, the episodic occurrence of runoff could be predicted successfully by fitting multiple affine Horton infiltration equations, whose changing f0 and Kf coefficients, but uniform values of fc, reflected the redistribution of soil moisture and the change in the infiltrability f during hiatuses in rainfall. The value of fc varied little among the fitted equations, so constituting an affine set of relationships. This new approach provides an alternative to the use of steady-state methods that are common in rainfall simulation experiments and which typically yield only an estimate of fc. The new field results confirm that intermittency affects infiltration and runoff depths and timing at plot scale and on intra-event timescales. Additional work on other soil types, and at other spatial and temporal scales, is needed to test the generality of these findings.
NASA Technical Reports Server (NTRS)
Spar, J.; Cohen, C.
1981-01-01
The effects of terrain elevation, soil moisture, and zonal variations in sea/surface temperature on the mean daily precipitation rates over Australia, Africa, and South America in January were evaluated. It is suggested that evaporation of soil moisture may either increase or decrease the model generated precipitation, depending on the surface albedo. It was found that a flat, dry continent model best simulates the January rainfall over Australia and South America, while over Africa the simulation is improved by the inclusion of surface physics, specifically soil moisture and albedo variations.
Impacts of the ENSO Modoki and other Tropical Indo-Pacific Climate-Drivers on African Rainfall
Preethi, B.; Sabin, T. P.; Adedoyin, J. A.; Ashok, K.
2015-01-01
The study diagnoses the relative impacts of the four known tropical Indo-Pacific drivers, namely, El Niño Southern Oscillation (ENSO), ENSO Modoki, Indian Ocean Dipole (IOD), and Indian Ocean Basin-wide mode (IOBM) on African seasonal rainfall variability. The canonical El Niño and El Niño Modoki are in general associated with anomalous reduction (enhancement) of rainfall in southern (northern) hemispheric regions during March-May season. However, both the El Niño flavours anomalously reduce the northern hemispheric rainfall during June-September. Interestingly, during boreal spring and summer, in many regions, the Indian Ocean drivers have influences opposite to those from tropical Pacific drivers. On the other hand, during the October-December season, the canonical El Niño and/or positive IOD are associated with an anomalous enhancement of rainfall in the Eastern Africa, while the El Niño Modoki events are associated with an opposite impact. In addition to the Walker circulation changes, the Indo-Pacific drivers influence the African rainfall through modulating jet streams. During boreal summer, the El Niño Modoki and canonical El Niño (positive IOD) tend to weaken (strengthen) the tropical easterly jet, and result in strengthening (weakening) and southward shift of African easterly jet. This anomalously reduces (enhances) rainfall in the tropical north, including Sahelian Africa. PMID:26567458
Impacts of the ENSO Modoki and other Tropical Indo-Pacific Climate-Drivers on African Rainfall.
Preethi, B; Sabin, T P; Adedoyin, J A; Ashok, K
2015-11-16
The study diagnoses the relative impacts of the four known tropical Indo-Pacific drivers, namely, El Niño Southern Oscillation (ENSO), ENSO Modoki, Indian Ocean Dipole (IOD), and Indian Ocean Basin-wide mode (IOBM) on African seasonal rainfall variability. The canonical El Niño and El Niño Modoki are in general associated with anomalous reduction (enhancement) of rainfall in southern (northern) hemispheric regions during March-May season. However, both the El Niño flavours anomalously reduce the northern hemispheric rainfall during June-September. Interestingly, during boreal spring and summer, in many regions, the Indian Ocean drivers have influences opposite to those from tropical Pacific drivers. On the other hand, during the October-December season, the canonical El Niño and/or positive IOD are associated with an anomalous enhancement of rainfall in the Eastern Africa, while the El Niño Modoki events are associated with an opposite impact. In addition to the Walker circulation changes, the Indo-Pacific drivers influence the African rainfall through modulating jet streams. During boreal summer, the El Niño Modoki and canonical El Niño (positive IOD) tend to weaken (strengthen) the tropical easterly jet, and result in strengthening (weakening) and southward shift of African easterly jet. This anomalously reduces (enhances) rainfall in the tropical north, including Sahelian Africa.
NASA Astrophysics Data System (ADS)
Belz, Lukas; Schüller, Irka; Wehrmann, Achim; Wilkes, Heinz
2016-04-01
The climate system of sub-tropical southern Africa is mainly controlled by large scale atmospheric and marine circulation processes and, therefore, very sensitive to global climate change. This underlines the importance of paleoenvironmental reconstructions in order to estimate regional implications of current global changes. However, the majority of studies on southern African paleoclimate are based on the investigation of marine sedimentary archives and past climate development especially in continental areas is still poorly understood. This emphasizes the necessity of continental proxy-data from this area. Proxy datasets from local geoarchives especially of the southwestern Kalahari region are still scarce. A main problem is the absence of conventional continental climatic archives, due to the lack of lacustrine systems. In this study we are exploring the utility of sediments from western Kalahari salt pans, i.e. local depressions which are flooded temporarily during rainfall events. An age model based on 14C dating of total organic carbon (TOC) shows evidence that sedimentation predominates over erosional processes with respect to pan formation. Besides the analyses of basic geochemical bulk parameters including TOC, δ13CTOC, total inorganic carbon, δ13CTIC, δ18OTIC, total nitrogen and δ15N, our paleo-climatic approach focuses on reconstruction of local vegetation assemblages to identify changes in the ecosystem. This is pursued using plant biomarkers, particularly leaf wax n-alkanes and n-alcohols and their stable carbon and hydrogen isotopic signatures. Results show prominent shifts in n-alkane and n-alkanol distributions and compound specific carbon isotope values, pointing to changes to a more grass dominated environment during Heinrich Stadial 1 (18.5-14.6 ka BP), while hydrogen isotope values suggest wetter phases during Holocene and LGM. This high variability indicates the local vulnerability to global change.
Adequacy of satellite derived rainfall data for stream flow modeling
Artan, G.; Gadain, Hussein; Smith, Jodie; Asante, Kwasi; Bandaragoda, C.J.; Verdin, J.P.
2007-01-01
Floods are the most common and widespread climate-related hazard on Earth. Flood forecasting can reduce the death toll associated with floods. Satellites offer effective and economical means for calculating areal rainfall estimates in sparsely gauged regions. However, satellite-based rainfall estimates have had limited use in flood forecasting and hydrologic stream flow modeling because the rainfall estimates were considered to be unreliable. In this study we present the calibration and validation results from a spatially distributed hydrologic model driven by daily satellite-based estimates of rainfall for sub-basins of the Nile and Mekong Rivers. The results demonstrate the usefulness of remotely sensed precipitation data for hydrologic modeling when the hydrologic model is calibrated with such data. However, the remotely sensed rainfall estimates cannot be used confidently with hydrologic models that are calibrated with rain gauge measured rainfall, unless the model is recalibrated. ?? Springer Science+Business Media, Inc. 2007.
Spectral analysis of temporal non-stationary rainfall-runoff processes
NASA Astrophysics Data System (ADS)
Chang, Ching-Min; Yeh, Hund-Der
2018-04-01
This study treats the catchment as a block box system with considering the rainfall input and runoff output being a stochastic process. The temporal rainfall-runoff relationship at the catchment scale is described by a convolution integral on a continuous time scale. Using the Fourier-Stieltjes representation approach, a frequency domain solution to the convolution integral is developed to the spectral analysis of runoff processes generated by temporal non-stationary rainfall events. It is shown that the characteristic time scale of rainfall process increases the runoff discharge variability, while the catchment mean travel time constant plays the role in reducing the variability of runoff discharge. Similar to the behavior of groundwater aquifers, catchments act as a low-pass filter in the frequency domain for the rainfall input signal.
NASA Astrophysics Data System (ADS)
Li, Changjia; Pan, Chengzhong
2018-03-01
The effects of vegetation cover on overland flow and erosion processes on hillslopes vary with vegetation type and spatial distribution and the different vegetation components, including the above- and below-ground biomass. However, few attempts have been made to quantify how these factors affect erosion processes. Field experimental plots (5 m × 2 m) with a slope of approximately 25° were constructed and simulated rainfall (60 mm hr-1) (Rainfall) and simulated rainfall combined with upslope overland flow (20 L min-1) (Rainfall + Flow) were applied. Three grass species were planted, specifically Astragalus adsurgens (A. adsurgens), Medicago sativa (M. sativa) and Cosmos bipinnatus (C. bipinnatus). To isolate and quantify the relative contributions of the above-ground grass parts (stems, litter cover and leaves) and the roots to reducing surface runoff and erosion, each of the three grass species was subjected to three treatments: intact grass control (IG), no litter or leaves (only the grass stems and roots were reserved) (NLL), and only roots remaining (OR). The results showed that planting grass significantly reduced overland flow rate and velocity and sediment yield, and the mean reductions were 21.8%, 29.1% and 67.1%, respectively. M. sativa performed the best in controlling water and soil losses due to its thick canopy and dense, fine roots. Grasses reduced soil erosion mainly during the early stage of overland flow generation. The above-ground grass parts primarily contributed to reducing overland flow rate and velocity, with mean relative contributions of 64% and 86%, respectively. The roots played a predominant role in reducing soil erosion, with mean contribution of 84%. Due to the impact of upslope inflow, overland flow rate and velocity and sediment yield increased under the Rainfall + Flow conditions. The results suggest that grass species on downslope parts of semi-arid hillslopes performed better in reducing water and soil losses. This study is beneficial for forage selection, allocation and management practices, such as forage harvesting, when implementing restoration strategies to control soil and water losses.
Power, Sally A.; Barnett, Kirk L.; Ochoa-Hueso, Raul; Facey, Sarah L.; Gibson-Forty, Eleanor V. J.; Hartley, Susan E.; Nielsen, Uffe N.; Tissue, David T.; Johnson, Scott N.
2016-01-01
Climate models predict shifts in the amount, frequency and seasonality of rainfall. Given close links between grassland productivity and rainfall, such changes are likely to have profound effects on the functioning of grassland ecosystems and modify species interactions. Here, we introduce a unique, new experimental platform – DRI-Grass (Drought and Root Herbivore Interactions in a Grassland) – that exposes a south-eastern Australian grassland to five rainfall regimes [Ambient (AMB), increased amount (IA, +50%), reduced amount (RA, -50%), reduced frequency (RF, single rainfall event every 21 days, with total amount unchanged) and summer drought (SD, 12–14 weeks without water, December–March)], and contrasting levels of root herbivory. Incorporation of a belowground herbivore (root-feeding scarabs) addition treatment allows novel investigation of ecological responses to the twin stresses of altered rainfall and root herbivory. We quantified effects of permanently installed rain shelters on microclimate by comparison with outside plots, identifying small shelter effects on air temperature (-0.19°C day, +0.26°C night), soil water content (SWC; -8%) and photosynthetically active radiation (PAR; -16%). Shelters were associated with modest increases in net primary productivity (NPP), particularly during the cool season. Rainfall treatments generated substantial differences in SWC, with the exception of IA; the latter is likely due to a combination of higher transpiration rates associated with greater plant biomass in IA and the low water-holding capacity of the well-drained, sandy soil. Growing season NPP was strongly reduced by SD, but did not respond to the other rainfall treatments. Addition of root herbivores did not affect plant biomass and there were no interactions between herbivory and rainfall treatments in the 1st year of study. Root herbivory did, however, induce foliar silicon-based defenses in Cynodon dactylon and Eragrostis curvula. Rapid recovery of NPP following resumption of watering in SD plots indicates high functional resilience at the site, and may reflect adaptation of the vegetation to historically high variability in rainfall, both within- and between years. DRI-Grass provides a unique platform for understanding how ecological interactions will be affected by changing rainfall regimes and, specifically, how belowground herbivory modifies grassland resistance and resilience to climate extremes. PMID:27703458
Detecting Climate Variability in Tropical Rainfall
NASA Astrophysics Data System (ADS)
Berg, W.
2004-05-01
A number of satellite and merged satellite/in-situ rainfall products have been developed extending as far back as 1979. While the availability of global rainfall data covering over two decades and encompassing two major El Niño events is a valuable resource for a variety of climate studies, significant differences exist between many of these products. Unfortunately, issues such as availability often determine the use of a product for a given application instead of an understanding of the strengths and weaknesses of the various products. Significant efforts have been made to address the impact of sparse sampling by satellite sensors of variable rainfall processes by merging various satellite and in-situ rainfall products. These combine high spatial and temporal frequency satellite infrared data with higher quality passive microwave observations and rain gauge observations. Combining such an approach with spatial and temporal averaging of the data can reduce the large random errors inherent in satellite rainfall estimates to very small levels. Unfortunately, systematic biases can and do result in artificial climate signals due to the underconstrained nature of the rainfall retrieval problem. Because all satellite retrieval algorithms make assumptions regarding the cloud structure and microphysical properties, systematic changes in these assumed parameters between regions and/or times results in regional and/or temporal biases in the rainfall estimates. These biases tend to be relatively small compared to random errors in the retrieval, however, when random errors are reduced through spatial and temporal averaging for climate applications, they become the dominant source of error. Whether or not such biases impact the results for climate studies is very much dependent on the application. For example, all of the existing satellite rainfall products capture the increased rainfall in the east Pacific associated with El Niño, however, the resulting tropical response to El Niño is substantially smaller due to decreased rainfall in the west Pacific partially canceling increases in the central and east Pacific. These differences are not limited to the long-term merged rainfall products using infrared data, but are also exist in state-of-the-art rainfall retrievals from the active and passive microwave sensors on board the Tropical Rainfall Measuring Mission (TRMM). For example, large differences exist in the response of tropical mean rainfall retrieved from the TRMM microwave imager (TMI) 2A12 algorithm and the precipitation radar (PR) 2A25 algorithm to the 1997/98 El Niño. To assist scientists attempting to wade through the vast array of climate rainfall products currently available, and to help them determine whether systematic biases in these rainfall products impact the conclusions of a given study, we have developed a Climate Rainfall Data Center (CRDC). The CRDC web site (rain.atmos.colostate.edu/CRDC) provides climate researchers information on the various rainfall datasets available as well as access to experts in the field of satellite rainfall retrievals to assist them in the appropriate selection and use of climate rainfall products.
NASA Astrophysics Data System (ADS)
Oueslati, Boutheina; Camberlin, Pierre; Zoungrana, Joël; Roucou, Pascal; Diallo, Saliou
2018-02-01
The relationships between precipitation and temperature in the central Sudano-Sahelian belt are investigated by analyzing 50 years (1959-2008) of observed temperature (Tx and Tn) and rainfall variations. At daily time-scale, both Tx and Tn show a marked decrease as a response to rainfall occurrence, with a strongest departure from normal 1 day after the rainfall event (-0.5 to -2.5 °C depending on the month). The cooling is slightly larger when heavy rainfall events (>5 mm) are considered. The temperature anomalies weaken after the rainfall event, but are still significant several days later. The physical mechanisms accounting for the temperature response to precipitation are analysed. The Tx drop is accounted for by reduced incoming solar radiation associated with increased cloud cover and increased surface evaporation following surface moistening. The effect of evaporation becomes dominant a few days after the rainfall event. The reduced daytime heat storage and the subsequent sensible heat flux result in a later negative Tn anomaly. The effect of rainfall variations on temperature is significant for long-term warming trends. The rainfall decrease experienced between 1959 and 2008 accounts for a rainy season Tx increase of 0.15 to 0.3 °C, out of a total Tx increase of 1.3 to 1.5 °C. These results have strong implications on the assessment of future temperature changes. The dampening or amplifying effects of precipitation are determined by the sign of future precipitation trends. Confidence on temperature changes under global warming partly depend on the robustness of precipitation projections.
Characterizing convective cold pools: Characterizing Convective Cold Pools
Drager, Aryeh J.; van den Heever, Susan C.
2017-05-09
Cold pools produced by convective storms play an important role in Earth's climate system. However, a common framework does not exist for objectively identifying convective cold pools in observations and models. The present study investigates convective cold pools within a simulation of tropical continental convection that uses a cloud-resolving model with a coupled land-surface model. Multiple variables are assessed for their potential in identifying convective cold pool boundaries, and a novel technique is developed and tested for identifying and tracking cold pools in numerical model simulations. This algorithm is based on surface rainfall rates and radial gradients in the densitymore » potential temperature field. The algorithm successfully identifies near-surface cold pool boundaries and is able to distinguish between connected cold pools. Once cold pools have been identified and tracked, composites of cold pool evolution are then constructed, and average cold pool properties are investigated. Wet patches are found to develop within the centers of cold pools where the ground has been soaked with rainwater. These wet patches help to maintain cool surface temperatures and reduce cold pool dissipation, which has implications for the development of subsequent convection.« less
Abrupt response of chemical weathering to Late Quaternary hydroclimate changes in northeast Africa
Bastian, Luc; Revel, Marie; Bayon, Germain; Dufour, Aurélie; Vigier, Nathalie
2017-01-01
Chemical weathering of silicate rocks on continents acts as a major sink for atmospheric carbon dioxide and has played an important role in the evolution of the Earth’s climate. However, the magnitude and the nature of the links between weathering and climate are still under debate. In particular, the timescale over which chemical weathering may respond to climate change is yet to be constrained at the continental scale. Here we reconstruct the relationships between rainfall and chemical weathering in northeast Africa for the last 32,000 years. Using lithium isotopes and other geochemical proxies in the clay-size fraction of a marine sediment core from the Eastern Mediterranean Sea, we show that chemical weathering in the Nile Basin fluctuated in parallel with the monsoon-related climatic evolution of northeast Africa. We also evidence strongly reduced mineral alteration during centennial-scale regional drought episodes. Our findings indicate that silicate weathering may respond as quickly as physical erosion to abrupt hydroclimate reorganization on continents. Consequently, we anticipate that the forthcoming hydrological disturbances predicted for northeast Africa may have a major impact on chemical weathering patterns and soil resources in this region. PMID:28290474
Coupling of equatorial Atlantic surface stratification to glacial shifts in the tropical rainbelt.
Portilho-Ramos, R C; Chiessi, C M; Zhang, Y; Mulitza, S; Kucera, M; Siccha, M; Prange, M; Paul, A
2017-05-08
The modern state of the Atlantic meridional overturning circulation promotes a northerly maximum of tropical rainfall associated with the Intertropical Convergence Zone (ITCZ). For continental regions, abrupt millennial-scale meridional shifts of this rainbelt are well documented, but the behavior of its oceanic counterpart is unclear due the lack of a robust proxy and high temporal resolution records. Here we show that the Atlantic ITCZ leaves a distinct signature in planktonic foraminifera assemblages. We applied this proxy to investigate the history of the Atlantic ITCZ for the last 30,000 years based on two high temporal resolution records from the western Atlantic Ocean. Our reconstruction indicates that the shallowest mixed layer associated with the Atlantic ITCZ unambiguously shifted meridionally in response to changes in the strength of the Atlantic meridional overturning with a southward displacement during Heinrich Stadials 2-1 and the Younger Dryas. We conclude that the Atlantic ITCZ was located at ca. 1°S (ca. 5° to the south of its modern annual mean position) during Heinrich Stadial 1. This supports a previous hypothesis, which postulates a southern hemisphere position of the oceanic ITCZ during climatic states with substantially reduced or absent cross-equatorial oceanic meridional heat transport.
Characterizing convective cold pools: Characterizing Convective Cold Pools
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drager, Aryeh J.; van den Heever, Susan C.
Cold pools produced by convective storms play an important role in Earth's climate system. However, a common framework does not exist for objectively identifying convective cold pools in observations and models. The present study investigates convective cold pools within a simulation of tropical continental convection that uses a cloud-resolving model with a coupled land-surface model. Multiple variables are assessed for their potential in identifying convective cold pool boundaries, and a novel technique is developed and tested for identifying and tracking cold pools in numerical model simulations. This algorithm is based on surface rainfall rates and radial gradients in the densitymore » potential temperature field. The algorithm successfully identifies near-surface cold pool boundaries and is able to distinguish between connected cold pools. Once cold pools have been identified and tracked, composites of cold pool evolution are then constructed, and average cold pool properties are investigated. Wet patches are found to develop within the centers of cold pools where the ground has been soaked with rainwater. These wet patches help to maintain cool surface temperatures and reduce cold pool dissipation, which has implications for the development of subsequent convection.« less
Herczeg, Tamás; Száz, Dénes; Blahó, Miklós; Barta, András; Gyurkovszky, Mónika; Farkas, Róbert; Horváth, Gábor
2015-03-01
Although the tabanid species and populations occurring in eastern central Europe (Carpathian Basin) are thoroughly studied, there are only sporadic data about the influence of weather conditions on the abundance and activity of horseflies. To fill in this lack, in Hungary, we performed a 3-month summer survey of horsefly catches registering the weather parameters. Using common canopy traps and polarization liquid traps, we found the following: (i) rainfall, air temperature, and sunshine were the three most important factors influencing the trapping number of tabanids. (ii) The effect of relative air humidity H on tabanids was indirect through the air temperature T: H ≈ 35 % (corresponding to T ≈ 32 °C) was optimal for tabanid trapping, and tabanids were not captured for H ≥ 80 % (corresponding to T ≤ 18 °C). (iii) A fast decrease in the air pressure enhanced the trapping number of both water-seeking and host-seeking horseflies. (iv) Wind velocities larger than 10 km/h reduced drastically the number of trapped tabanids. Our data presented here may serve as a reference for further investigations of the effect of climate change on tabanids in Europe.
Abrupt response of chemical weathering to Late Quaternary hydroclimate changes in northeast Africa.
Bastian, Luc; Revel, Marie; Bayon, Germain; Dufour, Aurélie; Vigier, Nathalie
2017-03-14
Chemical weathering of silicate rocks on continents acts as a major sink for atmospheric carbon dioxide and has played an important role in the evolution of the Earth's climate. However, the magnitude and the nature of the links between weathering and climate are still under debate. In particular, the timescale over which chemical weathering may respond to climate change is yet to be constrained at the continental scale. Here we reconstruct the relationships between rainfall and chemical weathering in northeast Africa for the last 32,000 years. Using lithium isotopes and other geochemical proxies in the clay-size fraction of a marine sediment core from the Eastern Mediterranean Sea, we show that chemical weathering in the Nile Basin fluctuated in parallel with the monsoon-related climatic evolution of northeast Africa. We also evidence strongly reduced mineral alteration during centennial-scale regional drought episodes. Our findings indicate that silicate weathering may respond as quickly as physical erosion to abrupt hydroclimate reorganization on continents. Consequently, we anticipate that the forthcoming hydrological disturbances predicted for northeast Africa may have a major impact on chemical weathering patterns and soil resources in this region.
NASA Astrophysics Data System (ADS)
Massari, Christian; Brocca, Luca; Pellarin, Thierry; Kerr, Yann; Crow, Wade; Cascon, Carlos; Ciabatta, Luca
2016-04-01
Recent advancements in the measurement of precipitation from space have provided estimates at scales that are commensurate with the needs of the hydrological and land-surface model communities. However, as demonstrated in a number of studies (Ebert et al. 2007, Tian et al. 2007, Stampoulis et al. 2012) satellite rainfall estimates are characterized by low accuracy in certain conditions and still suffer from a number of issues (e.g., bias) that may limit their utility in over-land applications (Serrat-Capdevila et al. 2014). In recent years many studies have demonstrated that soil moisture observations from ground and satellite sensors can be used for correcting satellite precipitation estimates (e.g. Crow et al., 2011; Pellarin et al., 2013), or directly estimating rainfall (SM2RAIN, Brocca et al., 2014). In this study, we carried out a detailed scientific analysis in which these three different methods are used for: i) estimating rainfall through satellite soil moisture observations (SM2RAIN, Brocca et al., 2014); ii) correcting rainfall through a Land surface Model Assimilation Algorithm (LMAA) (an improvement of a previous work of Crow et al. 2011 and Pellarin et al. 2013) and through the Soil Moisture Analysis Rainfall Tool (SMART, Crow et al. 2011). The analysis is carried within the ESA project "SMOS plus Rainfall" and involves 9 sites in Europe, Australia, Africa and USA containing high-quality hydrometeorological and soil moisture observations. Satellite soil moisture data from Soil Moisture and Ocean Salinity (SMOS) mission are employed for testing their potential in deriving a cumulated rainfall product at different temporal resolutions. The applicability and accuracy of the three algorithms is investigated also as a function of climatic and soil/land use conditions. A particular attention is paid to assess the expected limitations soil moisture based rainfall estimates such as soil saturation, freezing/snow conditions, SMOS RFI, irrigated areas, contribution of surface runoff and evapotranspiration, vegetation coverage, temporal sampling, and the assimilation/modelling approach. The 9 selected sites gather such potential problems which are shown and discussed at the conference. REFERENCES Ebert, E. E.; Janowiak, J. E.; Kidd, C. Comparison of Near-Real-Time Precipitation Estimates from Satellite Observations and Numerical Models. Bull. Am. Meteorol. Soc. 2007, 88, 47-64. Tian, Y.; Peters-Lidard, C. D.; Choudhury, B. J.; Garcia, M. Multitemporal Analysis of TRMM-Based Satellite Precipitation Products for Land Data Assimilation Applications. J. Hydrometeorol. 2007, 8, 1165-1183. Stampoulis, D.; Anagnostou, E. N. Evaluation of Global Satellite Rainfall Products over Continental Europe. J. Hydrometeorol. 2012, 13, 588-603. Serrat-Capdevila, A.; Valdes, J. B.; Stakhiv, E. Z. Water Management Applications for Satellite Precipitation Products: Synthesis and Recommendations. JAWRA J. Am. Water Resour. Assoc. 2014, 50, 509-525. Crow, W. T.; van den Berg, M. J.; Huffman, G. J.; Pellarin, T. Correcting rainfall using satellite-based surface soil moisture retrievals: The Soil Moisture Analysis Rainfall Tool (SMART). Water Resour. Res. 2011, 47, W08521. Pellarin, T.; Louvet, S.; Gruhier, C.; Quantin, G.; Legout, C. A simple and effective method for correcting soil moisture and precipitation estimates using AMSR-E measurements. Remote Sens. Environ. 2013, 136, 28-36. Brocca, L.; Ciabatta, L.; Massari, C.; Moramarco, T.; Hahn, S.; Hasenauer, S.; Kidd, R.; Dorigo, W.; Wagner, W.; Levizzani, V. Soil as a natural rain gauge: Estimating global rainfall from satellite soil moisture data. J. Geophys. Res. Atmos. 2014, 119, 5128-5141.
Interactive effects of climate change and biodiversity loss on ecosystem functioning.
Pires, Aliny P F; Srivastava, Diane S; Marino, Nicholas A C; MacDonald, A Andrew M; Figueiredo-Barros, Marcos Paulo; Farjalla, Vinicius F
2018-05-01
Climate change and biodiversity loss are expected to simultaneously affect ecosystems, however research on how each driver mediates the effect of the other has been limited in scope. The multiple stressor framework emphasizes non-additive effects, but biodiversity may also buffer the effects of climate change, and climate change may alter which mechanisms underlie biodiversity-function relationships. Here, we performed an experiment using tank bromeliad ecosystems to test the various ways that rainfall changes and litter diversity may jointly determine ecological processes. Litter diversity and rainfall changes interactively affected multiple functions, but how depends on the process measured. High litter diversity buffered the effects of altered rainfall on detritivore communities, evidence of insurance against impacts of climate change. Altered rainfall affected the mechanisms by which litter diversity influenced decomposition, reducing the importance of complementary attributes of species (complementarity effects), and resulting in an increasing dependence on the maintenance of specific species (dominance effects). Finally, altered rainfall conditions prevented litter diversity from fueling methanogenesis, because such changes in rainfall reduced microbial activity by 58%. Together, these results demonstrate that the effects of climate change and biodiversity loss on ecosystems cannot be understood in isolation and interactions between these stressors can be multifaceted. © 2018 by the Ecological Society of America.
NASA Astrophysics Data System (ADS)
Oldaker, Guy; Liu, Liping; Lin, Yuh-Lang
2017-12-01
This study focuses on the heavy rainfall event associated with hurricane Isabel's (2003) passage over the Appalachian mountains of the eastern United States. Specifically, an ensemble consisting of two groups of simulations using the Weather Research and Forecasting model (WRF), with and without topography, is performed to investigate the orographic influences on heavy rainfall and rainfall variability. In general, the simulated ensemble mean with full terrain is able to reproduce the key observed 24-h rainfall amount and distribution, while the flat-terrain mean lacks in this respect. In fact, 30-h rainfall amounts are reduced by 75% with the removal of topography. Rainfall variability is also significantly increased with the presence of orography. Further analysis shows that the complex interaction between the hurricane and terrain along with contributions from varied microphysics, cumulus parametrization, and planetary boundary layer schemes have a pronounced effect on rainfall and rainfall variability. This study follows closely with a previous study, but for a different TC case of Isabel (2003). It is an important sensitivity test for a different TC in a very different environment. This study reveals that the rainfall variability behaves similarly, even with different settings of the environment.
Cunningham, Shaun C; Cavagnaro, Timothy R; Mac Nally, Ralph; Paul, Keryn I; Baker, Patrick J; Beringer, Jason; Thomson, James R; Thompson, Ross M
2015-04-01
Reforestation has large potential for mitigating climate change through carbon sequestration. Native mixed-species plantings have a higher potential to reverse biodiversity loss than do plantations of production species, but there are few data on their capacity to store carbon. A chronosequence (5-45 years) of 36 native mixed-species plantings, paired with adjacent pastures, was measured to investigate changes to stocks among C pools following reforestation of agricultural land in the medium rainfall zone (400-800 mm yr(-1)) of temperate Australia. These mixed-species plantings accumulated 3.09 ± 0.85 t C ha(-1) yr(-1) in aboveground biomass and 0.18 ± 0.05 t C ha(-1) yr(-1) in plant litter, reaching amounts comparable to those measured in remnant woodlands by 20 years and 36 years after reforestation respectively. Soil C was slower to increase, with increases seen only after 45 years, at which time stocks had not reached the amounts found in remnant woodlands. The amount of trees (tree density and basal area) was positively associated with the accumulation of carbon in aboveground biomass and litter. In contrast, changes to soil C were most strongly related to the productivity of the location (a forest productivity index and soil N content in the adjacent pasture). At 30 years, native mixed-species plantings had increased the stability of soil C stocks, with higher amounts of recalcitrant C and higher C:N ratios than their adjacent pastures. Reforestation with native mixed-species plantings did not significantly change the availability of macronutrients (N, K, Ca, Mg, P, and S) or micronutrients (Fe, B, Mn, Zn, and Cu), content of plant toxins (Al, Si), acidity, or salinity (Na, electrical conductivity) in the soil. In this medium rainfall area, native mixed-species plantings provided comparable rates of C sequestration to local production species, with the probable additional benefit of providing better quality habitat for native biota. These results demonstrate that reforestation using native mixed-species plantings is an effective alternative for carbon sequestration to standard monocultures of production species in medium rainfall areas of temperate continental climates, where they can effectively store C, convert C into stable pools and provide greater benefits for biodiversity. © 2014 John Wiley & Sons Ltd.
Zhang, Zhengzhong; Shan, Lishan; Li, Yi
2018-01-01
The resurrection plant Reaumuria soongorica is widespread across Asia, southern Europe, and North Africa and is considered to be a constructive keystone species in desert ecosystems, but the impacts of climate change on this species in desert ecosystems are unclear. Here, the morphological responses of R. soongorica to changes in rainfall quantity (30% reduction and 30% increase in rainfall quantity) and interval (50% longer drought interval between rainfall events) were tested. Stage-specific changes in growth were monitored by sampling at the beginning, middle, and end of the growing season. Reduced rainfall decreased the aboveground and total biomass, while additional precipitation generally advanced R. soongorica growth and biomass accumulation. An increased interval between rainfall events resulted in an increase in root biomass in the middle of the growing season, followed by a decrease toward the end. The response to the combination of increased rainfall quantity and interval was similar to the response to increased interval alone, suggesting that the effects of changes in rainfall patterns exert a greater influence than increased rainfall quantity. Thus, despite the short duration of this experiment, consequences of changes in rainfall regime on seedling growth were observed. In particular, a prolonged rainfall interval shortened the growth period, suggesting that climate change-induced rainfall variability may have significant effects on the structure and functioning of desert ecosystems.
NASA Astrophysics Data System (ADS)
Wright, Ashley J.; Walker, Jeffrey P.; Pauwels, Valentijn R. N.
2017-08-01
Floods are devastating natural hazards. To provide accurate, precise, and timely flood forecasts, there is a need to understand the uncertainties associated within an entire rainfall time series, even when rainfall was not observed. The estimation of an entire rainfall time series and model parameter distributions from streamflow observations in complex dynamic catchments adds skill to current areal rainfall estimation methods, allows for the uncertainty of entire rainfall input time series to be considered when estimating model parameters, and provides the ability to improve rainfall estimates from poorly gauged catchments. Current methods to estimate entire rainfall time series from streamflow records are unable to adequately invert complex nonlinear hydrologic systems. This study aims to explore the use of wavelets in the estimation of rainfall time series from streamflow records. Using the Discrete Wavelet Transform (DWT) to reduce rainfall dimensionality for the catchment of Warwick, Queensland, Australia, it is shown that model parameter distributions and an entire rainfall time series can be estimated. Including rainfall in the estimation process improves streamflow simulations by a factor of up to 1.78. This is achieved while estimating an entire rainfall time series, inclusive of days when none was observed. It is shown that the choice of wavelet can have a considerable impact on the robustness of the inversion. Combining the use of a likelihood function that considers rainfall and streamflow errors with the use of the DWT as a model data reduction technique allows the joint inference of hydrologic model parameters along with rainfall.
NASA Astrophysics Data System (ADS)
Endale, Dinku M.; Fisher, Dwight S.; Steiner, Jean L.
2006-01-01
Few studies have reported runoff from small agricultural watersheds over sufficiently long period so that the effect of different cover types on runoff can be examined. We analyzed 45-yrs of monthly and annual rainfall-runoff characteristics of a small (7.8 ha) zero-order typical Southern Piedmont watershed in southeastern United States. Agricultural land use varied as follows: 1. Row cropping (5-yrs); 2. Kudzu ( Pueraria lobata; 5-yrs); 3. Grazed kudzu and rescuegrass ( Bromus catharticus; 7-yrs); and 4. Grazed bermudagrass and winter annuals ( Cynodon dactylon; 28-yrs). Land use and rainfall variability influenced runoff characteristics. Row cropping produced the largest runoff amount, percentage of the rainfall partitioned into runoff, and peak flow rates. Kudzu reduced spring runoff and almost eliminated summer runoff, as did a mixture of kudzu and rescuegrass (KR) compared to row cropping. Peak flow rates were also reduced during the kudzu and KR. Peak flow rates increased under bermudagrass but were lower than during row cropping. A simple process-based 'tanh' model modified to take the previous month's rainfall into account produced monthly rainfall and runoff correlations with coefficient of determination ( R2) of 0.74. The model was tested on independent data collected during drought. Mean monthly runoff was 1.65 times the observed runoff. Sustained hydrologic monitoring is essential to understanding long-term rainfall-runoff relationships in agricultural watersheds.
Hay, S. I.; Lennon, J. J.
2012-01-01
Summary This paper presents the results of an investigation into the utility of remote sensing (RS) using meteorological satellites sensors and spatial interpolation (SI) of data from meteorological stations, for the prediction of spatial variation in monthly climate across continental Africa in 1990. Information from the Advanced Very High Resolution Radiometer (AVHRR) of the National Oceanic and Atmospheric Administration’s (NOAA) polar-orbiting meteorological satellites was used to estimate land surface temperature (LST) and atmospheric moisture. Cold cloud duration (CCD) data derived from the High Resolution Radiometer (HRR) on-board the European Meteorological Satellite programme’s (EUMETSAT) Meteosat satellite series were also used as a RS proxy measurement of rainfall. Temperature, atmospheric moisture and rainfall surfaces were independently derived from SI of measurements from the World Meteorological Organization (WMO) member stations of Africa. These meteorological station data were then used to test the accuracy of each methodology, so that the appropriateness of the two techniques for epidemiological research could be compared. SI was a more accurate predictor of temperature, whereas RS provided a better surrogate for rainfall; both were equally accurate at predicting atmospheric moisture. The implications of these results for mapping short and long-term climate change and hence their potential for the study and control of disease vectors are considered. Taking into account logistic and analytical problems, there were no clear conclusions regarding the optimality of either technique, but there was considerable potential for synergy. PMID:10203175
Hay, S I; Lennon, J J
1999-01-01
This paper presents the results of an investigation into the utility of remote sensing (RS) using meteorological satellites sensors and spatial interpolation (SI) of data from meteorological stations, for the prediction of spatial variation in monthly climate across continental Africa in 1990. Information from the Advanced Very High Resolution Radiometer (AVHRR) of the National Oceanic and Atmospheric Administration's (NOAA) polar-orbiting meteorological satellites was used to estimate land surface temperature (LST) and atmospheric moisture. Cold cloud duration (CCD) data derived from the High Resolution Radiometer (HRR) on-board the European Meteorological Satellite programme's (EUMETSAT) Meteosat satellite series were also used as a RS proxy measurement of rainfall. Temperature, atmospheric moisture and rainfall surfaces were independently derived from SI of measurements from the World Meteorological Organization (WMO) member stations of Africa. These meteorological station data were then used to test the accuracy of each methodology, so that the appropriateness of the two techniques for epidemiological research could be compared. SI was a more accurate predictor of temperature, whereas RS provided a better surrogate for rainfall; both were equally accurate at predicting atmospheric moisture. The implications of these results for mapping short and long-term climate change and hence their potential for the study and control of disease vectors are considered. Taking into account logistic and analytical problems, there were no clear conclusions regarding the optimality of either technique, but there was considerable potential for synergy.
NASA Astrophysics Data System (ADS)
Song, Hwan-Jin; Sohn, Byung-Ju
2018-01-01
The Korean peninsula is the region of distinctly showing the heavy rain associated with relatively low storm height and small ice water content in the upper part of cloud system (i.e., so-called warm-type heavy rainfall). The satellite observations for the warmtype rain over Korea led to a conjecture that the cloud microphysics parameterization suitable for the continental deep convection may not work well for the warm-type heavy rainfall over the Korean peninsula. Therefore, there is a growing need to examine the performance of cloud microphysics schemes for simulating the warm-type heavy rain structures over the Korean peninsula. This study aims to evaluate the capabilities of eight microphysics schemes in the Weather Research and Forecasting (WRF) model how warmtype heavy rain structures can be simulated, in reference to the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) reflectivity measurements. The results indicate that the WRF Double Moment 6-class (WDM6) scheme simulated best the vertical structure of warm-type heavy rain by virtue of a reasonable collisioncoalescence process between liquid droplets and the smallest amount of snow. Nonetheless the WDM6 scheme appears to have limitations that need to be improved upon for a realistic reflectivity structure, in terms of the reflectivity slope below the melting layer, discontinuity in reflectivity profiles around the melting layer, and overestimation of upper-level reflectivity due to high graupel content.
NASA Astrophysics Data System (ADS)
Song, Hwan-Jin; Sohn, Byung-Ju
2018-05-01
The Korean peninsula is the region of distinctly showing the heavy rain associated with relatively low storm height and small ice water content in the upper part of cloud system (i.e., so-called warm-type heavy rainfall). The satellite observations for the warm-type rain over Korea led to a conjecture that the cloud microphysics parameterization suitable for the continental deep convection may not work well for the warm-type heavy rainfall over the Korean peninsula. Therefore, there is a growing need to examine the performance of cloud microphysics schemes for simulating the warm-type heavy rain structures over the Korean peninsula. This study aims to evaluate the capabilities of eight microphysics schemes in the Weather Research and Forecasting (WRF) model how warm-type heavy rain structures can be simulated, in reference to the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) reflectivity measurements. The results indicate that the WRF Double Moment 6-class (WDM6) scheme simulated best the vertical structure of warm-type heavy rain by virtue of a reasonable collision-coalescence process between liquid droplets and the smallest amount of snow. Nonetheless the WDM6 scheme appears to have limitations that need to be improved upon for a realistic reflectivity structure, in terms of the reflectivity slope below the melting layer, discontinuity in reflectivity profiles around the melting layer, and overestimation of upper-level reflectivity due to high graupel content.
New insights into debris-flow hazards from an extraordinary event in the Colorado Front Range
Coe, Jeffrey A.; Kean, Jason W.; Godt, Jonathan W.; Baum, Rex L.; Jones, Eric S.; Gochis, David; Anderson, Gregory S
2016-01-01
Rainfall on 9–13 September 2013 triggered at least 1,138 debris flows in a 3430 km2 area of the Colorado Front Range. The historical record reveals that the occurrence of these flows over such a large area in the interior of North America is highly unusual. Rainfall that triggered the debris flows began after ~75 mm of antecedent rain had fallen, a relatively low amount compared to other parts of the United States. Most flows were triggered in response to two intense rainfall periods, one 12.5-hour-long period on 11–12 September, and one 8-hour-long period on 12 September. The maximum 10 min. intensities during these periods were 67 and 39 mm/hr. Ninety-five percent of flows initiated in canyons and on hogbacks at elevations lower than a widespread erosion surface of low slope and relief (25°), predominantly south- and east-facing slopes with upslope contributing areas 3300 m2. Areal concentrations of debris flows revealed that colluvial soils formed on sedimentary rocks were more susceptible to flows than soils on crystalline rocks. This event should serve as an alert to government authorities, emergency responders, and residents in the Front Range and other interior continental areas with steep slopes. Widespread debris flows in these areas occur infrequently but may pose a greater risk than in areas with shorter return periods, because the public is typically unprepared for them.
TRMM rainfall estimative coupled with Bell (1969) methodology for extreme rainfall characterization
NASA Astrophysics Data System (ADS)
Schiavo Bernardi, E.; Allasia, D.; Basso, R.; Freitas Ferreira, P.; Tassi, R.
2015-06-01
The lack of rainfall data in Brazil, and, in particular, in Rio Grande do Sul State (RS), hinders the understanding of the spatial and temporal distribution of rainfall, especially in the case of the more complex extreme events. In this context, rainfall's estimation from remote sensors is seen as alternative to the scarcity of rainfall gauges. However, as they are indirect measures, such estimates needs validation. This paper aims to verify the applicability of the Tropical Rainfall Measuring Mission (TRMM) satellite information for extreme rainfall determination in RS. The analysis was accomplished at different temporal scales that ranged from 5 min to daily rainfall while spatial distribution of rainfall was investigated by means of regionalization. An initial test verified TRMM rainfall estimative against measured rainfall at gauges for 1998-2013 period considering different durations and return periods (RP). Results indicated that, for the RP of 2, 5, 10 and 15 years, TRMM overestimated on average 24.7% daily rainfall. As TRMM minimum time-steps is 3 h, in order to verify shorter duration rainfall, the TRMM data were adapted to fit Bell's (1969) generalized IDF formula (based on the existence of similarity between the mechanisms of extreme rainfall events as they are associated to convective cells). Bell`s equation error against measured precipitation was around 5-10%, which varied based on location, RP and duration while the coupled BELL+TRMM error was around 10-35%. However, errors were regionally distributed, allowing a correction to be implemented that reduced by half these values. These findings in turn permitted the use of TRMM+Bell estimates to improve the understanding of spatiotemporal distribution of extreme hydrological rainfall events.
Simulation of Tropical Rainfall Variability
NASA Astrophysics Data System (ADS)
Bader, J.; Latif, M.
2002-12-01
The impact of sea surface temperature (SST) - especially the role of the tropical Atlantic meridional SST gradient and the El Nino-Southern Oscillation - on precipitation is investigated with the atmospheric general circulation model ECHAM4/T42. Ensemble experiments - driven with observed SST - show that Atlantic SST has a significant influence on precipitation over West Africa and northeast Brazil. SST sensitivity experiments were performed in which the climatological SST was enhanced or decreased by one Kelvin in certain ocean areas. Changing SST in the eastern tropical Atlantic caused only significant changes along the Guinea Coast, with a positive anomaly (SSTA) increasing rainfall and a negative SSTA reducing it. The response was nearly linear. Changing SST in other ocean areas caused significant changes over West Africa, especially in the Sahel area. The response is found to be non linear, with only negative SSTA leading to significant reduction in Sahel rainfall. Also, the impact of the SSTAs from the different ocean regions was not additive with respect to the rainfall. The influence of SST on precipitation over northeast Brazil (Nordeste) was also investigated. Three experiments were performed in which the climatological SST was enhanced/decreased or decreased/enhanced by one Kelvin in the North/South Atlantic and increased by two Kelvin in the Nino3 ocean area. All experiments caused significant changes over Nordeste, with an enhanced/reduced SST gradient in the Atlantic increasing/reducing rainfall. The response was nearly linear. The main effect of the Atlantic SST gradient was a shift of the ITCZ, caused by trade wind changes. The ''El Nino'' event generates a significant reduction in Nordeste rainfall. A significant positive SLP anomaly occurs in northeast Brazil which may be associated with the descending branch of the Walker circulation. Also a significant positive SLP over the Atlantic from 30S to 10N north occurs. This results in a reduced SLP gradient from the subtropical highs to the equator and a weakening of the trade winds.
Aerosols cause intraseasonal short-term suppression of Indian monsoon rainfall.
Dave, Prashant; Bhushan, Mani; Venkataraman, Chandra
2017-12-11
Aerosol abundance over South Asia during the summer monsoon season, includes dust and sea-salt, as well as, anthropogenic pollution particles. Using observations during 2000-2009, here we uncover repeated short-term rainfall suppression caused by coincident aerosols, acting through atmospheric stabilization, reduction in convection and increased moisture divergence, leading to the aggravation of monsoon break conditions. In high aerosol-low rainfall regions extending across India, both in deficient and normal monsoon years, enhancements in aerosols levels, estimated as aerosol optical depth and absorbing aerosol index, acted to suppress daily rainfall anomaly, several times in a season, with lags of a few days. A higher frequency of prolonged rainfall breaks, longer than seven days, occurred in these regions. Previous studies point to monsoon rainfall weakening linked to an asymmetric inter-hemispheric energy balance change attributed to aerosols, and short-term rainfall enhancement from radiative effects of aerosols. In contrast, this study uncovers intraseasonal short-term rainfall suppression, from coincident aerosol forcing over the monsoon region, leading to aggravation of monsoon break spells. Prolonged and intense breaks in the monsoon in India are associated with rainfall deficits, which have been linked to reduced food grain production in the latter half of the twentieth century.
NASA Astrophysics Data System (ADS)
Belz, Lukas; Schüller, Irka; Wehrmann, Achim; Wilkes, Heinz
2015-04-01
The climate system of southern Africa is strongly influenced by large scale atmospheric and marine circulation processes and, therefore, very sensitive to global climate change. Recent publications provided evidence for strong spatial and temporal climate variability in southern Africa over the Holocene. It is of major importance to understand the mechanisms driving the southern African climate system in order to estimate regional implications of current global change. However, proxy datasets from continental geoarchives especially of the semi-arid western Kalahari region are still scarce. A main problem is the absence of conventional continental climatic archives, due to the lack of lacustrine systems. In this study we are exploring the utility of sediments from western Kalahari salt pans, i.e. local depressions which are flooded temporarily during rainfall events. Besides the analyses of basic geochemical bulk parameters including TOC, δ13Corg, TIC, δ13Ccarb, δ18Ocarb, TN, δ15N, the paleo-climatic approach focuses on reconstruction of local vegetation assemblages to identify changes in the ecosystem. This is pursued using plant biomarkers, particularly leaf wax n-alkanes and n-alcohols and their stable carbon and hydrogen isotopic signatures. Preliminary results show prominent shifts in n-alkane distribution and δ13C values of the C33 homologue during late Pleistocene and early Holocene. These shifts correlate to changes of the TOC content. Our data indicate changes in carbon sources which possibly reflect major environmental changes.
NASA Technical Reports Server (NTRS)
Manning, Robert M.
1990-01-01
A static and dynamic rain-attenuation model is presented which describes the statistics of attenuation on an arbitrarily specified satellite link for any location for which there are long-term rainfall statistics. The model may be used in the design of the optimal stochastic control algorithms to mitigate the effects of attenuation and maintain link reliability. A rain-statistics data base is compiled, which makes it possible to apply the model to any location in the continental U.S. with a resolution of 0-5 degrees in latitude and longitude. The model predictions are compared with experimental observations, showing good agreement.
NASA Technical Reports Server (NTRS)
Lau, K. M.; Weng, Hengyi
2000-01-01
Major droughts and floods over the U.S. continent may be related to a far field energy source in the Asian Pacific. This is illustrated by two climate patterns associated with summertime rainfall over the U.S. and large-scale circulation on interannual timescale. The first shows an opposite variation between the drought/flood over the Midwest and that over eastern and southeastern U.S., coupled to a coherent wave pattern spanning the entire East Asia-North Pacific-North America region related to the East Asian jetstream. The second shows a continental-scale drought/flood in the central U.S., coupled to a wavetrain linking Asian/Pacific monsoon region to North America.
NASA Astrophysics Data System (ADS)
Muneepeerakul, Chitsomanus; Huffaker, Ray; Munoz-Carpena, Rafael
2016-04-01
The weather index insurance promises financial resilience to farmers struck by harsh weather conditions with swift compensation at affordable premium thanks to its minimal adverse selection and moral hazard. Despite these advantages, the very nature of indexing causes the presence of "production basis risk" that the selected weather indexes and their thresholds do not correspond to actual damages. To reduce basis risk without additional data collection cost, we propose the use of rain intensity and frequency as indexes as it could offer better protection at the lower premium by avoiding basis risk-strike trade-off inherent in the total rainfall index. We present empirical evidences and modeling results that even under the similar cumulative rainfall and temperature environment, yield can significantly differ especially for drought sensitive crops. We further show that deriving the trigger level and payoff function from regression between historical yield and total rainfall data may pose significant basis risk owing to their non-unique relationship in the insured range of rainfall. Lastly, we discuss the design of index insurance in terms of contract specifications based on the results from global sensitivity analysis.
Temporal rainfall estimation using input data reduction and model inversion
NASA Astrophysics Data System (ADS)
Wright, A. J.; Vrugt, J. A.; Walker, J. P.; Pauwels, V. R. N.
2016-12-01
Floods are devastating natural hazards. To provide accurate, precise and timely flood forecasts there is a need to understand the uncertainties associated with temporal rainfall and model parameters. The estimation of temporal rainfall and model parameter distributions from streamflow observations in complex dynamic catchments adds skill to current areal rainfall estimation methods, allows for the uncertainty of rainfall input to be considered when estimating model parameters and provides the ability to estimate rainfall from poorly gauged catchments. Current methods to estimate temporal rainfall distributions from streamflow are unable to adequately explain and invert complex non-linear hydrologic systems. This study uses the Discrete Wavelet Transform (DWT) to reduce rainfall dimensionality for the catchment of Warwick, Queensland, Australia. The reduction of rainfall to DWT coefficients allows the input rainfall time series to be simultaneously estimated along with model parameters. The estimation process is conducted using multi-chain Markov chain Monte Carlo simulation with the DREAMZS algorithm. The use of a likelihood function that considers both rainfall and streamflow error allows for model parameter and temporal rainfall distributions to be estimated. Estimation of the wavelet approximation coefficients of lower order decomposition structures was able to estimate the most realistic temporal rainfall distributions. These rainfall estimates were all able to simulate streamflow that was superior to the results of a traditional calibration approach. It is shown that the choice of wavelet has a considerable impact on the robustness of the inversion. The results demonstrate that streamflow data contains sufficient information to estimate temporal rainfall and model parameter distributions. The extent and variance of rainfall time series that are able to simulate streamflow that is superior to that simulated by a traditional calibration approach is a demonstration of equifinality. The use of a likelihood function that considers both rainfall and streamflow error combined with the use of the DWT as a model data reduction technique allows the joint inference of hydrologic model parameters along with rainfall.
van der Pol, T D; van Ierland, E C; Gabbert, S; Weikard, H-P; Hendrix, E M T
2015-05-01
Stormwater drainage and other water systems are vulnerable to changes in rainfall and runoff and need to be adapted to climate change. This paper studies impacts of rainfall variability and changing return periods of rainfall extremes on cost-effective adaptation of water systems to climate change given a predefined system performance target, for example a flood risk standard. Rainfall variability causes system performance estimates to be volatile. These estimates may be used to recurrently evaluate system performance. This paper presents a model for this setting, and develops a solution method to identify cost-effective investments in stormwater drainage adaptations. Runoff and water levels are simulated with rainfall from stationary rainfall distributions, and time series of annual rainfall maxima are simulated for a climate scenario. Cost-effective investment strategies are determined by dynamic programming. The method is applied to study the choice of volume for a storage basin in a Dutch polder. We find that 'white noise', i.e. trend-free variability of rainfall, might cause earlier re-investment than expected under projected changes in rainfall. The risk of early re-investment may be reduced by increasing initial investment. This can be cost-effective if the investment involves fixed costs. Increasing initial investments, therefore, not only increases water system robustness to structural changes in rainfall, but could also offer insurance against additional costs that would occur if system performance is underestimated and re-investment becomes inevitable. Copyright © 2015 Elsevier Ltd. All rights reserved.
Southwick, Lloyd M; Appelboom, Timothy W; Fouss, James L
2009-02-25
The movement of the herbicide metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide] via runoff and leaching from 0.21 ha plots planted to corn on Mississippi River alluvial soil (Commerce silt loam) was measured for a 6-year period, 1995-2000. The first three years received normal rainfall (30 year average); the second three years experienced reduced rainfall. The 4-month periods prior to application plus the following 4 months after application were characterized by 1039 +/- 148 mm of rainfall for 1995-1997 and by 674 +/- 108 mm for 1998-2000. During the normal rainfall years 216 +/- 150 mm of runoff occurred during the study seasons (4 months following herbicide application), accompanied by 76.9 +/- 38.9 mm of leachate. For the low-rainfall years these amounts were 16.2 +/- 18.2 mm of runoff (92% less than the normal years) and 45.1 +/- 25.5 mm of leachate (41% less than the normal seasons). Runoff of metolachlor during the normal-rainfall seasons was 4.5-6.1% of application, whereas leaching was 0.10-0.18%. For the below-normal periods, these losses were 0.07-0.37% of application in runoff and 0.22-0.27% in leachate. When averages over the three normal and the three less-than-normal seasons were taken, a 35% reduction in rainfall was characterized by a 97% reduction in runoff loss and a 71% increase in leachate loss of metolachlor on a percent of application basis. The data indicate an increase in preferential flow in the leaching movement of metolachlor from the surface soil layer during the reduced rainfall periods. Even with increased preferential flow through the soil during the below-average rainfall seasons, leachate loss (percent of application) of the herbicide remained below 0.3%. Compared to the average rainfall seasons of 1995-1997, the below-normal seasons of 1998-2000 were characterized by a 79% reduction in total runoff and leachate flow and by a 93% reduction in corresponding metolachlor movement via these routes. An added observation in the study was that neither runoff of rainfall nor runoff loss of metolachlor was influenced by the presence of subsurface drains, compared to the results from plots without such drains that were described in an earlier paper.
Constraining the Sensitivity of Amazonian Rainfall with Observations of Surface Temperature
NASA Astrophysics Data System (ADS)
Dolman, A. J.; von Randow, C.; de Oliveira, G. S.; Martins, G.; Nobre, C. A.
2016-12-01
Earth System models generally do a poor job in predicting Amazonian rainfall, necessitating the need to look for observational constraints on their predictability. We use observed surface temperature and precipitation of the Amazon and a set of 21 CMIP5 models to derive an observational constraint of the sensitivity of rainfall to surface temperature (dP/dT). From first principles such a relation between the surface temperature of the earth and the amount of precipitation through the surface energy balance should exist, particularly in the tropics. When de-trended anomalies in surface temperature and precipitation from a set of datasets are plotted, a clear linear relation between surface temperature and precipitation appears. CMIP5 models show a similar relation with relatively cool models having a larger sensitivity, producing more rainfall. Using the ensemble of models and the observed surface temperature we were able to derive an emerging constraint, reducing the dPdt sensitivity of the CMIP5 model from -0.75 mm day-1 0C-1 (+/- 0.54 SD) to -0.77 mm day-1 0C-1 with a reduced uncertainty of about a factor 5. dPdT from the observation is -0.89 mm day-1 0C-1 . We applied the method to wet and dry season separately noticing that in the wet season we shifted the mean and reduced uncertainty, while in the dry season we very much reduced uncertainty only. The method can be applied to other model simulations such as specific deforestation scenarios to constrain the sensitivity of rainfall to surface temperature. We discuss the implications of the constrained sensitivity for future Amazonian predictions.
On the Comparison of the Global Surface Soil Moisture product and Land Surface Modeling
NASA Astrophysics Data System (ADS)
Delorme, B., Jr.; Ottlé, C.; Peylin, P.; Polcher, J.
2016-12-01
Thanks to its large spatio-temporal coverage, the new ESA CCI multi-instruments dataset offers a good opportunity to assess and improve land surface models parametrization. In this study, the ESA CCI surface soil moisture (SSM) combined product (v2.2) has been compared to the simulated top first layers of the ORCHIDEE LSM (the continental part of the IPSL earth system model), in order to evaluate its potential of improvements with data assimilation techniques. The ambition of the work was to develop a comprehensive comparison methodology by analyzing simultaneously the temporal and spatial structures of both datasets. We analyzed the SSM synoptic, seasonal, and inter-annual variations by decomposing the signals into fast and slow components. ORCHIDEE was shown to adequately reproduce the observed SSM dynamics in terms of temporal correlation. However, these correlation scores are supposed to be strongly influenced by SSM seasonal variability and the quality of the model input forcing. Autocorrelation and spectral analyses brought out disagreements in the temporal inertia of the upper soil moisture reservoirs. By linking our results to land cover maps, we found that ORCHIDEE is more dependent on rainfall events compared to the observations in regions with sparse vegetation cover. These diflerences might be due to a wrong partition of rainfall between soil evaporation, transpiration, runofl and drainage in ORCHIDEE. To refine this analysis, a single value decomposition (SVD) of the co-variability between rainfall provided by WFDEI and soil moisture was pursued over Central Europe and South Africa. It showed that spatio-temporal co-varying patterns between ORCHIDEE and rainfall and the ESA-CCI product and rainfall are in relatively good agreement. However, the leading SVD pattern, which exhibits a strong annual cycle and explains the same portion of covariance for both datasets, explains a much larger fraction of variance for ORCHIDEE than for the ESA-CCI product. These results highlight that the role of other surface variables presenting a strong seasonal variability (like vegetation cover, possibly irrigation) is not accounted for similarly in both the model and the product, and that further work is needed to explore these discrepancies.
Changes to Sub-daily Rainfall Patterns in a Future Climate
NASA Astrophysics Data System (ADS)
Westra, S.; Evans, J. P.; Mehrotra, R.; Sharma, A.
2012-12-01
An algorithm is developed for disaggregating daily rainfall into sub-daily rainfall 'fragments' (continuous high temporal-resolution rainfall sequences whose total depth sums to the daily rainfall amount) under a future, warmer climate. The basis of the algorithm is to re-sample sub-daily fragments from the historical record conditional on the total daily rainfall amount and a range of temperature-based atmospheric predictors. The logic is that as the atmosphere warms, future rainfall patterns will be more reflective of historical rainfall patterns which occurred on warmer days at the same location, or at locations which have an atmospheric temperature profile more representative of expected future atmospheric conditions. It was found that the daily to sub-daily scaling relationship varied significantly by season and by location, with rainfall patterns on warmer seasons or at warmer locations typically exhibiting higher rainfall intensity occurring over shorter periods within a day, compared with cooler seasons and locations. Importantly, by regressing against temperature-based atmospheric covariates, this effect was substantially reduced, suggesting that the approach also may be valid when extrapolating to a future climate. An adjusted method of fragments algorithm was then applied to nine stations around Australia, with the results showing that when holding total daily rainfall constant, the maximum intensity of short duration rainfall increased by a median of about 5% per degree for the maximum 6 minute burst, and 3.5% for the maximum one hour burst, whereas the fraction of the day with no rainfall increased by a median of 1.5%. This highlights that a large proportion of the change to the distribution of rainfall is likely to occur at sub-daily timescales, with significant implications for many hydrological systems.
Tropical forest soil microbial communities couple iron and carbon biogeochemistry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dubinsky, E.A.; Silver, W.L.; Firestone, M.K.
2009-10-15
We report that iron-reducing bacteria are primary mediators of anaerobic carbon oxidation in upland tropical soils spanning a rainfall gradient (3500 - 5000 mm yr-1) in northeast Puerto Rico. The abundant rainfall and high net primary productivity of these tropical forests provide optimal soil habitat for iron-reducing and iron-oxidizing bacteria. Spatially and temporally dynamic redox conditions make iron-transforming microbial communities central to the belowground carbon cycle in these wet tropical forests. The exceedingly high abundance of iron-reducing bacteria (up to 1.2 x 10{sup 9} cells per gram soil) indicated that they possess extensive metabolic capacity to catalyze the reduction ofmore » iron minerals. In soils from the higher rainfall sites, measured rates of ferric iron reduction could account for up to 44 % of organic carbon oxidation. Iron reducers appeared to compete with methanogens when labile carbon availability was limited. We found large numbers of bacteria that oxidize reduced iron at sites with high rates of iron reduction and large numbers of iron-reducers. the coexistence of large populations of ironreducing and iron-oxidizing bacteria is evidence for rapid iron cycling between its reduced and oxidized states, and suggests that mutualistic interactions among these bacteria ultimately fuel organic carbon oxidation and inhibit CH4 production in these upland tropical forests.« less
Salimon, Cleber; Anderson, Liana
2017-05-22
Despite the knowledge of the influence of rainfall on vegetation dynamics in semiarid tropical Brazil, few studies address and explore quantitatively the various aspects of this relationship. Moreover, Northeast Brazil is expected to have its rainfall reduced by as much as 60% until the end of the 21st Century, under scenario AII of the IPCC Report 2010. We sampled and analyzed satellite-derived monthly rainfall and a vegetation index data for 40 sites with natural vegetation cover in Paraíba State, Brazil from 2001 to 2012. In addition, the anomalies for both variables were calculated. Rainfall variation explained as much as 50% of plant productivity, using the vegetation index as a proxy, and rainfall anomaly explained 80% of the vegetation productivity anomaly. In an extreme dry year (2012), with 65% less rainfall than average for the period 2001-2012, the vegetation index decreased by 25%. If such decrease persists in a long term trend in rainfall reduction, this could lead to a disruption in this ecosystem functioning and the dominant vegetation could become even more xeric or desert-like, bringing serious environmental, social and economical impacts.
Western Pacific emergent constraint lowers projected increase in Indian summer monsoon rainfall
NASA Astrophysics Data System (ADS)
Li, Gen; Xie, Shang-Ping; He, Chao; Chen, Zesheng
2017-10-01
The agrarian-based socioeconomic livelihood of densely populated South Asian countries is vulnerable to modest changes in Indian summer monsoon (ISM) rainfall. How the ISM rainfall will evolve is a question of broad scientific and socioeconomic importance. In response to increased greenhouse gas (GHG) forcing, climate models commonly project an increase in ISM rainfall. This wetter ISM projection, however, does not consider large model errors in both the mean state and ocean warming pattern. Here we identify a relationship between biases in simulated present climate and future ISM projections in a multi-model ensemble: models with excessive present-day precipitation over the tropical western Pacific tend to project a larger increase in ISM rainfall under GHG forcing because of too strong a negative cloud-radiation feedback on sea surface temperature. The excessive negative feedback suppresses the local ocean surface warming, strengthening ISM rainfall projections via atmospheric circulation. We calibrate the ISM rainfall projections using this `present-future relationship’ and observed western Pacific precipitation. The correction reduces by about 50% of the projected rainfall increase over the broad ISM region. Our study identifies an improved simulation of western Pacific convection as a priority for reliable ISM projections.
The influence of mid-latitude storm tracks on hot, cold, dry and wet extremes
Lehmann, Jascha; Coumou, Dim
2015-01-01
Changes in mid-latitude circulation can strongly affect the number and intensity of extreme weather events. In particular, high-amplitude quasi-stationary planetary waves have been linked to prolonged weather extremes at the surface. In contrast, analyses of fast-traveling synoptic-scale waves and their direct influence on heat and cold extremes are scarce though changes in such waves have been detected and are projected for the 21st century. Here we apply regression analyses of synoptic activity with surface temperature and precipitation in monthly gridded observational data. We show that over large parts of mid-latitude continental regions, summer heat extremes are associated with low storm track activity. In winter, the occurrence of cold spells is related to low storm track activity over parts of eastern North America, Europe, and central- to eastern Asia. Storm tracks thus have a moderating effect on continental temperatures. Pronounced storm track activity favors monthly rainfall extremes throughout the year, whereas dry spells are associated with a lack thereof. Trend analyses reveal significant regional changes in recent decades favoring the occurrence of cold spells in the eastern US, droughts in California and heat extremes over Eurasia. PMID:26657163
Polarimetric Signatures of Initiating Convection During MC3E
NASA Technical Reports Server (NTRS)
Emory, Amber
2012-01-01
One of the goals of the Mid-latitude Continental Convective Clouds Experiment (MC3E) field campaign was to provide constraints for space-based rainfall retrieval algorithms over land. This study used datasets collected during the 2011 field campaign to combine radiometer and ground-based radar polarimetric retrievals in order to better understand hydrometeor type, habit and distribution for initiating continental convection. Cross-track and conically scanning nadir views from the Conical Scanning Millimeter-wave Imaging Radiometer (CoSMIR) were compared with ground-based polarimetric radar retrievals along the ER-2 flight track. Polarimetric signatures for both airborne radiometers and ground-based radars were well co-located with deep convection to relate radiometric signatures with low-level polarimetric radar data for hydrometeor identification and diameter estimation. For the time period of study, Z(sub DR) values indicated no presence of hail at the surface. However, the Z(sub DR) column extended well above the melting level into the mixed phase region, suggesting a possible source of frozen drop embryos for the future formation of hail. The results shown from this study contribute ground truth datasets for GPM PR algorithm development for convective events, which is an improvement upon previous stratiform precipitation centered framework.
NASA Technical Reports Server (NTRS)
Vila, Daniel; deGoncalves, Luis Gustavo; Toll, David L.; Rozante, Jose Roberto
2008-01-01
This paper describes a comprehensive assessment of a new high-resolution, high-quality gauge-satellite based analysis of daily precipitation over continental South America during 2004. This methodology is based on a combination of additive and multiplicative bias correction schemes in order to get the lowest bias when compared with the observed values. Inter-comparisons and cross-validations tests have been carried out for the control algorithm (TMPA real-time algorithm) and different merging schemes: additive bias correction (ADD), ratio bias correction (RAT) and TMPA research version, for different months belonging to different seasons and for different network densities. All compared merging schemes produce better results than the control algorithm, but when finer temporal (daily) and spatial scale (regional networks) gauge datasets is included in the analysis, the improvement is remarkable. The Combined Scheme (CoSch) presents consistently the best performance among the five techniques. This is also true when a degraded daily gauge network is used instead of full dataset. This technique appears a suitable tool to produce real-time, high-resolution, high-quality gauge-satellite based analyses of daily precipitation over land in regional domains.
NASA Astrophysics Data System (ADS)
von Ruette, J.; Lehmann, P.; Or, D.
2014-10-01
The occurrence of shallow landslides is often associated with intense and prolonged rainfall events, where infiltrating water reduces soil strength and may lead to abrupt mass release. Despite general understanding of the role of rainfall water in slope stability, the prediction of rainfall-induced landslides remains a challenge due to natural heterogeneity that affect hydrologic loading patterns and the largely unobservable internal progressive failures. An often overlooked and potentially important factor is the role of rainfall variability in space and time on landslide triggering that is often obscured by coarse information (e.g., hourly radar data at spatial resolution of a few kilometers). To quantify potential effects of rainfall variability on failure dynamics, spatial patterns, landslide numbers and volumes, we employed a physically based "Catchment-scale Hydromechanical Landslide Triggering" (CHLT) model for a study area where a summer storm in 2002 triggered 51 shallow landslides. In numerical experiments based on the CHLT model, we applied the measured rainfall amount of 53 mm in different artificial spatiotemporal rainfall patterns, resulting in between 30 and 100 landslides and total released soil volumes between 3000 and 60,000 m3 for the various scenarios. Results indicate that low intensity rainfall below soil's infiltration capacity resulted in the largest mechanical perturbation. This study illustrates how small-scale rainfall variability that is often overlooked by present operational rainfall data may play a key role in shaping landslide patterns.
Integrating remotely sensed surface water extent into continental scale hydrology
NASA Astrophysics Data System (ADS)
Revilla-Romero, Beatriz; Wanders, Niko; Burek, Peter; Salamon, Peter; de Roo, Ad
2016-12-01
In hydrological forecasting, data assimilation techniques are employed to improve estimates of initial conditions to update incorrect model states with observational data. However, the limited availability of continuous and up-to-date ground streamflow data is one of the main constraints for large-scale flood forecasting models. This is the first study that assess the impact of assimilating daily remotely sensed surface water extent at a 0.1° × 0.1° spatial resolution derived from the Global Flood Detection System (GFDS) into a global rainfall-runoff including large ungauged areas at the continental spatial scale in Africa and South America. Surface water extent is observed using a range of passive microwave remote sensors. The methodology uses the brightness temperature as water bodies have a lower emissivity. In a time series, the satellite signal is expected to vary with changes in water surface, and anomalies can be correlated with flood events. The Ensemble Kalman Filter (EnKF) is a Monte-Carlo implementation of data assimilation and used here by applying random sampling perturbations to the precipitation inputs to account for uncertainty obtaining ensemble streamflow simulations from the LISFLOOD model. Results of the updated streamflow simulation are compared to baseline simulations, without assimilation of the satellite-derived surface water extent. Validation is done in over 100 in situ river gauges using daily streamflow observations in the African and South American continent over a one year period. Some of the more commonly used metrics in hydrology were calculated: KGE', NSE, PBIAS%, R2, RMSE, and VE. Results show that, for example, NSE score improved on 61 out of 101 stations obtaining significant improvements in both the timing and volume of the flow peaks. Whereas the validation at gauges located in lowland jungle obtained poorest performance mainly due to the closed forest influence on the satellite signal retrieval. The conclusion is that remotely sensed surface water extent holds potential for improving rainfall-runoff streamflow simulations, potentially leading to a better forecast of the peak flow.
Earth Observations taken by the Expedition 18 Crew
2008-10-28
ISS018-E-005660 (28 Oct. 2008) --- The Great Divide of the Rocky Mountains in Colorado is featured in this image photographed by an Expedition 18 crewmember on the International Space Station. This view highlights a portion of the Great Divide in the Rocky Mountains approximately 31 kilometers due west of Boulder, Colorado. The Great Divide is one of four continental divides recognized by geographers and hydrologists in North America -- the others being the Northern, Eastern, and Saint Lawrence Seaway Divides -- but it is still generally (and erroneously) known as "the" Continental Divide. The Great Divide is a hydrologic boundary defined by the ultimate destination of precipitation -- rainfall on the western side of the Divide flows to the Pacific Ocean, while rainfall on the eastern side of the Divide flows to the Gulf of Mexico. It is easy to visualize such a boundary traced along the high ridges of the Rocky Mountains, but in regions of less topography more detailed study of the local geomorphology and hydrology are required to map the location of the Divide. This portion of the Rocky Mountains also hosts the Niwot Ridge Long Term Ecological Research (LTER) site. Part of the National Science Foundation LTER program, the Niwot Ridge LTER site studies climate interactions with tundra and alpine ecosystems. Niwot Ridge is visible in this image as a large eastward spur off the central spine of the mountains. The entire Niwot LTER site is located at elevations higher than 3000 m, and includes an active cirque glacier and glacial landforms, tarns (glacial lakes), and permafrost. Lake Granby, located to the west of the Great Divide, is a reservoir on the Colorado River and the second-largest manmade body of water in the state of Colorado. Storage of water began in 1949. Today, the Lake is popular location for fishing, boating and camping.
NASA Technical Reports Server (NTRS)
Druyan, Leonard M.; Fulakeza, Matthew B.
2013-01-01
Five annual climate cycles (1998-2002) are simulated for continental Africa and adjacent oceans by a regional atmospheric model (RM3). RM3 horizontal grid spacing is 0.44deg at 28 vertical levels. Each of 2 simulation ensembles is driven by lateral boundary conditions from each of 2 alternative reanalysis data sets. One simulation downs cales National Center for Environmental Prediction reanalysis 2 (NCPR2) and the other the European Centre for Medium Range Weather Forecasts Interim reanalysis (ERA-I). NCPR2 data are archived at 2.5deg grid spacing, while a recent version of ERA-I provides data at 0.75deg spacing. ERA-I-forced simulations are recomrp. ended by the Coordinated Regional Downscaling Experiment (CORDEX). Comparisons of the 2 sets of simulations with each other and with observational evidence assess the relative performance of each downscaling system. A third simulation also uses ERA-I forcing, but degraded to the same horizontal resolution as NCPR2. RM3-simulated pentad and monthly mean precipitation data are compared to Tropical Rainfall Measuring Mission (TRMM) data, gridded at 0.5deg, and RM3-simulated circulation is compared to both reanalyses. Results suggest that each downscaling system provides advantages and disadvantages relative to the other. The RM3/NCPR2 achieves a more realistic northward advance of summer monsoon rains over West Africa, but RM3/ERA-I creates the more realistic monsoon circulation. Both systems recreate some features of JulySeptember 1999 minus 2002 precipitation differences. Degrading the resolution of ERA-I driving data unrealistically slows the monsoon circulation and considerably diminishes summer rainfall rates over West Africa. The high resolution of ERA-I data, therefore, contributes to the quality of the downscaling, but NCPR2laterai boundary conditions nevertheless produce better simulations of some features.
Continental Affinities of the Alpha Ridge
NASA Astrophysics Data System (ADS)
Jackson, H. Ruth; Li, Qingmou; Shimeld, John; Chian, Deping
2017-04-01
Identifying the crustal attributes of the Alpha Ridge (AR) part of the High Arctic Large Igneous Province and tracing the spreading centre across the Amerasia Basin plays a key role in understanding the opening history of the Arctic Ocean. In this approach, we report the evidence for a continental influence on the development of the AR and reduced ocean crust in the Amerasia Basin. These points are inferred from a documented continental sedimentation source in the Amerasia Basin and calculated diagnostic compressional and shear refraction waves, and from the tracing of the distinct spreading centre using the potential field data. (1) The circum-Arctic geology of the small polar ocean provides compelling evidence of a long-lived continental landmass north of the Sverdrup Basin in the Canadian Arctic Islands and north of the Barents Sea continental margin. Based on sediment distribution patterns in the Sverdrup Basin a continental source is required from the Triassic to mid Jurassic. In addition, an extensive continental sediment source to the north of the Barents Sea is required until the Barremian. (2) Offshore data suggest a portion of continental crust in the Alpha and Mendeleev ridges including measured shear wave velocities, similarity of compressional wave velocities with large igneous province with continental fragments and magnetic patterns. Ocean bottom seismometers recorded shear waves velocities that are sensitive to the quartz content of rocks across the Chukchi Borderland and the Mendeleev Ridge that are diagnostic of both an upper and lower continental crust. On the Nautilus Spur of the Alpha Ridge expendable sonobuoys recorded clear converted shear waves also consistent with continental crust. The magnetic patterns (amplitude, frequency, and textures) on the Northwind Ridge and the Nautilus Spur also have similarities. In fact only limited portions of the deepest water portions of the Canada Basin and the Makarov Basin have typical oceanic layer 2 and 3 crustal velocities and lineated magnetic anomalies. (3) The gravity and magnetic anomalies associated with the spreading centre in the Canada Basin unveiled by multifractal singularity analysis of the potential field data can now be traced as far as the Lomonosov Ridge. In addition, linear magnetic features cutting across the spreading centres are identified as transform faults. The combination of the detected continental attributes of AR, the quantification of transform faults, and the outlined reduced extent of oceanic crust in the Amerasia Basin provide new insights into the opening history of the basin.
NASA Astrophysics Data System (ADS)
Segoni, Samuele; Rosi, Ascanio; Lagomarsino, Daniela; Fanti, Riccardo; Casagli, Nicola
2018-03-01
We communicate the results of a preliminary investigation aimed at improving a state-of-the-art RSLEWS (regional-scale landslide early warning system) based on rainfall thresholds by integrating mean soil moisture values averaged over the territorial units of the system. We tested two approaches. The simplest can be easily applied to improve other RSLEWS: it is based on a soil moisture threshold value under which rainfall thresholds are not used because landslides are not expected to occur. Another approach deeply modifies the original RSLEWS: thresholds based on antecedent rainfall accumulated over long periods are substituted with soil moisture thresholds. A back analysis demonstrated that both approaches consistently reduced false alarms, while the second approach reduced missed alarms as well.
NASA Astrophysics Data System (ADS)
Uijlenhoet, R.; Brauer, C.; Overeem, A.; Sassi, M.; Rios Gaona, M. F.
2014-12-01
Several rainfall measurement techniques are available for hydrological applications, each with its own spatial and temporal resolution. We investigated the effect of these spatiotemporal resolutions on discharge simulations in lowland catchments by forcing a novel rainfall-runoff model (WALRUS) with rainfall data from gauges, radars and microwave links. The hydrological model used for this analysis is the recently developed Wageningen Lowland Runoff Simulator (WALRUS). WALRUS is a rainfall-runoff model accounting for hydrological processes relevant to areas with shallow groundwater (e.g. groundwater-surface water feedback). Here, we used WALRUS for case studies in a freely draining lowland catchment and a polder with controlled water levels. We used rain gauge networks with automatic (hourly resolution but low spatial density) and manual gauges (high spatial density but daily resolution). Operational (real-time) and climatological (gauge-adjusted) C-band radar products and country-wide rainfall maps derived from microwave link data from a cellular telecommunication network were also used. Discharges simulated with these different inputs were compared to observations. We also investigated the effect of spatiotemporal resolution with a high-resolution X-band radar data set for catchments with different sizes. Uncertainty in rainfall forcing is a major source of uncertainty in discharge predictions, both with lumped and with distributed models. For lumped rainfall-runoff models, the main source of input uncertainty is associated with the way in which (effective) catchment-average rainfall is estimated. When catchments are divided into sub-catchments, rainfall spatial variability can become more important, especially during convective rainfall events, leading to spatially varying catchment wetness and spatially varying contribution of quick flow routes. Improving rainfall measurements and their spatiotemporal resolution can improve the performance of rainfall-runoff models, indicating their potential for reducing flood damage through real-time control.
Tsyganov, Andrey N; Keuper, Frida; Aerts, Rien; Beyens, Louis
2013-01-01
Extreme precipitation events are recognised as important drivers of ecosystem responses to climate change and can considerably affect high-latitude ombrotrophic bogs. Therefore, understanding the relationships between increased rainfall and the biotic components of these ecosystems is necessary for an estimation of climate change impacts. We studied overall effects of increased magnitude, intensity and frequency of rainfall on assemblages of Sphagnum-dwelling testate amoebae in a field climate manipulation experiment located in a relatively dry subarctic bog (Abisko, Sweden). The effects of the treatment were estimated using abundance, species diversity and structure of living and empty shell assemblages of testate amoebae in living and decaying layers of Sphagnum. Our results show that increased rainfall reduced the mean abundance and species richness of living testate amoebae. Besides, the treatment affected species structure of both living and empty shell assemblages, reducing proportions of hydrophilous species. The effects are counterintuitive as increased precipitation-related substrate moisture was expected to have opposite effects on testate amoeba assemblages in relatively dry biotopes. Therefore, we conclude that other rainfall-related factors such as increased infiltration rates and frequency of environmental disturbances can also affect testate amoeba assemblages in Sphagnum and that hydrophilous species are particularly sensitive to variation in these environmental variables.
Varying Influence of Different Forcings on the Indo-Pacific Warm Pool Climate
NASA Astrophysics Data System (ADS)
Mohtadi, M.; Huang, E.; Hollstein, M.; Chen, Y.; Schefuß, E.; Rosenthal, Y.; Prange, M.; Oppo, D.; Liu, J.; Steinke, S.; Martinez-Mendez, G.; Tian, J.; Moffa-Sanchez, P.; Lückge, A.
2017-12-01
Proxy records of rainfall in marine archives from the eastern and western parts of the Indo-Pacific Warm Pool (IPWP) vary at precessional band and suggest a dominant role of orbital forcing by modulating monsoon rainfall and the position of the Inter Tropical Convergence Zone. Rainfall changes recorded in marine archives from the northern South China Sea reveal a more complex history. They are largely consistent with those recorded in the Chinese cave speleothems during glacial periods, but show opposite changes during interglacial peaks that coincide with strong Northern Hemisphere summer insolation maxima. During glacial periods, the establishment of massive Northern Hemisphere ice sheets and the exposure of broad continental shelves in East and Southeast Asia alter the large-scale routes and amounts of water vapor transport onto land relative to interglacials. Precipitation over China during glacials varies at precessional band and is dominated by water vapor transport from the nearby tropical and northwest Pacific, resulting in consistent changes in precipitation over large areas. In the absence of ice forcing during peak interglacials with a strong summer insolation, the low-level southerly monsoonal winds mainly of the Indian Ocean origin penetrate further landward and rainout along their path over China. Subsurface temperatures from the IPWP lack changes on glacial-interglacial timescales but follow the obliquity cycle, and suggest that obliquity-paced climate variations at mid-latitudes remotely control subsurface temperatures in the IPWP. Temperature and rainfall in the IPWP respond primarily to abrupt climate changes in the North Atlantic on millennial timescales, and to ENSO and solar forcing on interannual to decadal timescales. In summary, results from marine records reveal that the IPWP climate is sensitive to changes in spatial and temporal distribution of heat by many types of forcing, the influence of which seems to vary in time and space.
Probabilistic clustering of rainfall condition for landslide triggering
NASA Astrophysics Data System (ADS)
Rossi, Mauro; Luciani, Silvia; Cesare Mondini, Alessandro; Kirschbaum, Dalia; Valigi, Daniela; Guzzetti, Fausto
2013-04-01
Landslides are widespread natural and man made phenomena. They are triggered by earthquakes, rapid snow melting, human activities, but mostly by typhoons and intense or prolonged rainfall precipitations. In Italy mostly they are triggered by intense precipitation. The prediction of landslide triggered by rainfall precipitations over large areas is commonly based on the exploitation of empirical models. Empirical landslide rainfall thresholds are used to identify rainfall conditions for the possible landslide initiation. It's common practice to define rainfall thresholds by assuming a power law lower boundary in the rainfall intensity-duration or cumulative rainfall-duration space above which landslide can occur. The boundary is defined considering rainfall conditions associated to landslide phenomena using heuristic approaches, and doesn't consider rainfall events not causing landslides. Here we present a new fully automatic method to identify the probability of landslide occurrence associated to rainfall conditions characterized by measures of intensity or cumulative rainfall and rainfall duration. The method splits the rainfall events of the past in two groups: a group of events causing landslides and its complementary, then estimate their probabilistic distributions. Next, the probabilistic membership of the new event to one of the two clusters is estimated. The method doesn't assume a priori any threshold model, but simple exploits the real empirical distribution of rainfall events. The approach was applied in the Umbria region, Central Italy, where a catalogue of landslide timing, were obtained through the search of chronicles, blogs and other source of information in the period 2002-2012. The approach was tested using rain gauge measures and satellite rainfall estimates (NASA TRMM-v6), allowing in both cases the identification of the rainfall condition triggering landslides in the region. Compared to the other existing threshold definition methods, the prosed one (i) largely reduces the subjectivity in the choice of the threshold model and in how it is calculated, and (ii) it can be easier set-up in other study areas. The proposed approach can be conveniently integrated in existing early-warning system to improve the accuracy of the estimation of the real landslide occurrence probability associated to rainfall events and its uncertainty.
NASA Astrophysics Data System (ADS)
Salinas, J. L.; Nester, T.; Komma, J.; Bloeschl, G.
2017-12-01
Generation of realistic synthetic spatial rainfall is of pivotal importance for assessing regional hydroclimatic hazard as the input for long term rainfall-runoff simulations. The correct reproduction of observed rainfall characteristics, such as regional intensity-duration-frequency curves, and spatial and temporal correlations is necessary to adequately model the magnitude and frequency of the flood peaks, by reproducing antecedent soil moisture conditions before extreme rainfall events, and joint probability of flood waves at confluences. In this work, a modification of the model presented by Bardossy and Platte (1992), where precipitation is first modeled on a station basis as a multivariate autoregressive model (mAr) in a Normal space. The spatial and temporal correlation structures are imposed in the Normal space, allowing for a different temporal autocorrelation parameter for each station, and simultaneously ensuring the positive-definiteness of the correlation matrix of the mAr errors. The Normal rainfall is then transformed to a Gamma-distributed space, with parameters varying monthly according to a sinusoidal function, in order to adapt to the observed rainfall seasonality. One of the main differences with the original model is the simulation time-step, reduced from 24h to 6h. Due to a larger availability of daily rainfall data, as opposite to sub-daily (e.g. hourly), the parameters of the Gamma distributions are calibrated to reproduce simultaneously a series of daily rainfall characteristics (mean daily rainfall, standard deviations of daily rainfall, and 24h intensity-duration-frequency [IDF] curves), as well as other aggregated rainfall measures (mean annual rainfall, and monthly rainfall). The calibration of the spatial and temporal correlation parameters is performed in a way that the catchment-averaged IDF curves aggregated at different temporal scales fit the measured ones. The rainfall model is used to generate 10.000 years of synthetic precipitation, fed into a rainfall-runoff model to derive the flood frequency in the Tirolean Alps in Austria. Given the number of generated events, the simulation framework is able to generate a large variety of rainfall patterns, as well as reproduce the variograms of relevant extreme rainfall events in the region of interest.
Contrasting Tropical Rainfall Regimes Using TRMM and Ground-Based Polarimetric Radar
NASA Astrophysics Data System (ADS)
Rutledge, S. A.; Cifelli, R.; Lang, T.; Nesbitt, S.
2009-04-01
The NASA TRMM satellite has provided unprecedented data for over 11 years. TRMM precipitation products have advanced our understanding of tropical precipitation considerably. Field programs in the tropics, specifically TRMM-LBA (January-February 1999 in Brazil; a TRMM ground validation experiment) and NAME (North American Monsoon Experiment, summer 2004 along the west coast of Mexico) have provided opportunities to investigate the characteristics of precipitation using S-band polarimetric radar data. Both of these locales feature heavy, monsoon-like precipitation. However, there is significant variability in precipitation in these regions. In Brazil, two distinct rainfall regimes were observed. During "easterly" phase periods, precipitation was continental like, featuring deep, intense convection. During "westerly" periods, precipitation was more oceanic like, featuring weaker convection embedded in widespread stratiform precipitation. In NAME, precipitation variability was forced more by terrain, opposed to synoptic conditions, as was the case in Brazil. The National Center for Atmospheric Research S-pol radar was used to diagnose precipitation characteristics. Larger drops, larger ice mass aloft, and larger rain contents were found in the TRMM-LBA easterly phases compared to westerly events. For NAME, larger drops, larger ice mass aloft, and larger rain contents were found for coastal plain convection compared to convection over the higher terrain of the Sierra Madre Occidental or adjacent coastal waters. The effects of these differences on TRMM Precipitation Radar based rainfall estimates are investigated. These microphysical differences suggest the use of different Z-R estimators as a function of regime and elevation. It appears that the TRMM attenuation correction is inadequate for intense convection observed in these two regions.
Human-induced changes in the distribution of rainfall
Putnam, Aaron E.; Broecker, Wallace S.
2017-01-01
A likely consequence of global warming will be the redistribution of Earth’s rain belts, affecting water availability for many of Earth’s inhabitants. We consider three ways in which planetary warming might influence the global distribution of precipitation. The first possibility is that rainfall in the tropics will increase and that the subtropics and mid-latitudes will become more arid. A second possibility is that Earth’s thermal equator, around which the planet’s rain belts and dry zones are organized, will migrate northward. This northward shift will be a consequence of the Northern Hemisphere, with its large continental area, warming faster than the Southern Hemisphere, with its large oceanic area. A third possibility is that both of these scenarios will play out simultaneously. We review paleoclimate evidence suggesting that (i) the middle latitudes were wetter during the last glacial maximum, (ii) a northward shift of the thermal equator attended the abrupt Bølling-Allerød climatic transition ~14.6 thousand years ago, and (iii) a southward shift occurred during the more recent Little Ice Age. We also inspect trends in seasonal surface heating between the hemispheres over the past several decades. From these clues, we predict that there will be a seasonally dependent response in rainfall patterns to global warming. During boreal summer, in which the rate of recent warming has been relatively uniform between the hemispheres, wet areas will get wetter and dry regions will become drier. During boreal winter, rain belts and drylands will expand northward in response to differential heating between the hemispheres. PMID:28580418
NASA Astrophysics Data System (ADS)
Mishra, Anoop; Rafiq, Mohammd
2017-12-01
This is the first attempt to merge highly accurate precipitation estimates from Global Precipitation Measurement (GPM) with gap free satellite observations from Meteosat to develop a regional rainfall monitoring algorithm to estimate heavy rainfall over India and nearby oceanic regions. Rainfall signature is derived from Meteosat observations and is co-located against rainfall from GPM to establish a relationship between rainfall and signature for various rainy seasons. This relationship can be used to monitor rainfall over India and nearby oceanic regions. Performance of this technique was tested by applying it to monitor heavy precipitation over India. It is reported that our algorithm is able to detect heavy rainfall. It is also reported that present algorithm overestimates rainfall areal spread as compared to rain gauge based rainfall product. This deficiency may arise from various factors including uncertainty caused by use of different sensors from different platforms (difference in viewing geometry from MFG and GPM), poor relationship between warm rain (light rain) and IR brightness temperature, and weak characterization of orographic rain from IR signature. We validated hourly rainfall estimated from the present approach with independent observations from GPM. We also validated daily rainfall from this approach with rain gauge based product from India Meteorological Department (IMD). Present technique shows a Correlation Coefficient (CC) of 0.76, a bias of -2.72 mm, a Root Mean Square Error (RMSE) of 10.82 mm, Probability of Detection (POD) of 0.74, False Alarm Ratio (FAR) of 0.34 and a Skill score of 0.36 with daily rainfall from rain gauge based product of IMD at 0.25° resolution. However, FAR reduces to 0.24 for heavy rainfall events. Validation results with rain gauge observations reveal that present technique outperforms available satellite based rainfall estimates for monitoring heavy rainfall over Indian region.
Hypoxia occurs during summer on the Louisiana Continental Shelf. We investigated whether resuspension of sediment organic matter and the reduced end products of anaerobic microbial metabolism contributes to the onset and maintenance of hypoxia. The potential oxygen demand due to...
Validation of a 30 m resolution flood hazard model of the conterminous United States
NASA Astrophysics Data System (ADS)
Wing, Oliver E. J.; Bates, Paul D.; Sampson, Christopher C.; Smith, Andrew M.; Johnson, Kris A.; Erickson, Tyler A.
2017-09-01
This paper reports the development of a ˜30 m resolution two-dimensional hydrodynamic model of the conterminous U.S. using only publicly available data. The model employs a highly efficient numerical solution of the local inertial form of the shallow water equations which simulates fluvial flooding in catchments down to 50 km2 and pluvial flooding in all catchments. Importantly, we use the U.S. Geological Survey (USGS) National Elevation Dataset to determine topography; the U.S. Army Corps of Engineers National Levee Dataset to explicitly represent known flood defenses; and global regionalized flood frequency analysis to characterize return period flows and rainfalls. We validate these simulations against the complete catalogue of Federal Emergency Management Agency (FEMA) Special Flood Hazard Area (SFHA) maps and detailed local hydraulic models developed by the USGS. Where the FEMA SFHAs are based on high-quality local models, the continental-scale model attains a hit rate of 86%. This correspondence improves in temperate areas and for basins above 400 km2. Against the higher quality USGS data, the average hit rate reaches 92% for the 1 in 100 year flood, and 90% for all flood return periods. Given typical hydraulic modeling uncertainties in the FEMA maps and USGS model outputs (e.g., errors in estimating return period flows), it is probable that the continental-scale model can replicate both to within error. The results show that continental-scale models may now offer sufficient rigor to inform some decision-making needs with dramatically lower cost and greater coverage than approaches based on a patchwork of local studies.
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Wu, Di; Lang, Stephen; Chern, Jiundar; Peters-Lidard, Christa; Fridlind, Ann; Matsui, Toshihisa
2015-01-01
The Goddard microphysics scheme was recently improved by adding a 4th ice class (frozen dropshail). This new 4ICE scheme was implemented and tested in the Goddard Cumulus Ensemble model (GCE) for an intense continental squall line and a moderate,less-organized continental case. Simulated peak radar reflectivity profiles were improved both in intensity and shape for both cases as were the overall reflectivity probability distributions versus observations. In this study, the new Goddard 4ICE scheme is implemented into the regional-scale NASA Unified - Weather Research and Forecasting model (NU-WRF) and tested on an intense mesoscale convective system that occurred during the Midlatitude Continental Convective Clouds Experiment (MC3E). The NU42WRF simulated radar reflectivities, rainfall intensities, and vertical and horizontal structure using the new 4ICE scheme agree as well as or significantly better with observations than when using previous versions of the Goddard 3ICE (graupel or hail) schemes. In the 4ICE scheme, the bin microphysics-based rain evaporation correction produces more erect convective cores, while modification of the unrealistic collection of ice by dry hail produces narrow and intense cores, allowing more slow-falling snow to be transported rearward. Together with a revised snow size mapping, the 4ICE scheme produces a more horizontally stratified trailing stratiform region with a broad, more coherent light rain area. In addition, the NU-WRF 4ICE simulated radar reflectivity distributions are consistent with and generally superior to those using the GCE due to the less restrictive open lateral boundaries
Surface water storage capacity of twenty tree species in Davis, California
Qingfu Xiao; E. Gregory McPherson
2016-01-01
Urban forestry is an important green infrastructure strategy because healthy trees can intercept rainfall, reducing stormwater runoff and pollutant loading. Surface saturation storage capacity, defined as the thin film of water that must wet tree surfaces before flow begins, is the most important variable influencing rainfall interception processes. Surface storage...
Estimation of debris flow critical rainfall thresholds by a physically-based model
NASA Astrophysics Data System (ADS)
Papa, M. N.; Medina, V.; Ciervo, F.; Bateman, A.
2012-11-01
Real time assessment of debris flow hazard is fundamental for setting up warning systems that can mitigate its risk. A convenient method to assess the possible occurrence of a debris flow is the comparison of measured and forecasted rainfall with rainfall threshold curves (RTC). Empirical derivation of the RTC from the analysis of rainfall characteristics of past events is not possible when the database of observed debris flows is poor or when the environment changes with time. For landslides triggered debris flows, the above limitations may be overcome through the methodology here presented, based on the derivation of RTC from a physically based model. The critical RTC are derived from mathematical and numerical simulations based on the infinite-slope stability model in which land instability is governed by the increase in groundwater pressure due to rainfall. The effect of rainfall infiltration on landside occurrence is modelled trough a reduced form of the Richards equation. The simulations are performed in a virtual basin, representative of the studied basin, taking into account the uncertainties linked with the definition of the characteristics of the soil. A large number of calculations are performed combining different values of the rainfall characteristics (intensity and duration of event rainfall and intensity of antecedent rainfall). For each combination of rainfall characteristics, the percentage of the basin that is unstable is computed. The obtained database is opportunely elaborated to derive RTC curves. The methodology is implemented and tested on a small basin of the Amalfi Coast (South Italy).
Improving Assimilated Global Climate Data Using TRMM and SSM/I Rainfall and Moisture Data
NASA Technical Reports Server (NTRS)
Hou, Arthur Y.; Zhang, Sara Q.; daSilva, Arlindo M.; Olson, William S.
1999-01-01
Current global analyses contain significant errors in primary hydrological fields such as precipitation, evaporation, and related cloud and moisture in the tropics. Work has been underway at NASA's Data Assimilation Office to explore the use of TRMM and SSM/I-derived rainfall and total precipitable water (TPW) data in global data assimilation to directly constrain these hydrological parameters. We found that assimilating these data types improves not only the precipitation and moisture estimates but also key climate parameters directly linked to convection such as the outgoing longwave radiation, clouds, and the large-scale circulation in the tropics. We will present results showing that assimilating TRMM and SSM/I 6-hour averaged rain rates and TPW estimates significantly reduces the state-dependent systematic errors in assimilated products. Specifically, rainfall assimilation improves cloud and latent heating distributions, which, in turn, improves the cloudy-sky radiation and the large-scale circulation, while TPW assimilation reduces moisture biases to improve radiation in clear-sky regions. Rainfall and TPW assimilation also improves tropical forecasts beyond 1 day.
NASA Technical Reports Server (NTRS)
Hielkema, J. U.; Howard, J. A.; Tucker, C. J.; Van Ingen Schenau, H. A.
1987-01-01
The African real time environmental monitoring using imaging satellites (Artemis) system, which should monitor precipitation and vegetation conditions on a continental scale, is presented. The hardware and software characteristics of the system are illustrated and the Artemis databases are outlined. Plans for the system include the use of hourly digital Meteosat data and daily NOAA/AVHRR data to study environmental conditions. Planned mapping activities include monthly rainfall anomaly maps, normalized difference vegetation index maps for ten day and monthly periods with a spatial resolution of 7.6 km, ten day crop/rangeland moisture availability maps, and desert locust potential breeding activity factor maps for a plague prevention program.
Simple rain-shelter cultivation prolongs accumulation period of anthocyanins in wine grape berries.
Li, Xiao-Xi; He, Fei; Wang, Jun; Li, Zheng; Pan, Qiu-Hong
2014-09-17
Simple rain-shelter cultivation is normally applied during the grape growth season in continental monsoon climates aiming to reduce the occurrence of diseases caused by excessive rainfall. However, whether or not this cultivation practice affects the composition and concentration of phenolic compounds in wine grapes remains unclear. The objective of this study was to investigate the effect of rain-shelter cultivation on the accumulation of anthocyanins in wine grapes (Vitis vinifera L. Cabernet Sauvignon) grown in eastern China. The results showed that rain-shelter cultivation, compared with the open-field, extended the period of rapid accumulation of sugar, increased the soluble solid content in the grape berries, and delayed the senescence of the green leaves at harvest. The concentrations of most anthocyanins were significantly enhanced in the rain-shelter cultivated grapes, and their content increases were closely correlated with the accumulation of sugar. However, the compositions of anthocyanins in the berries were not altered. Correspondingly, the expressions of VvF3'H, VvF3'5'H, and VvUFGT were greatly up-regulated and this rising trend appeared to continue until berry maturation. These results suggested that rain-shelter cultivation might help to improve the quality of wine grape berries by prolonging the life of functional leaves and hence increasing the assimilation products.
NASA Astrophysics Data System (ADS)
Aditya, M. R.; Hernina, R.; Rokhmatuloh
2017-12-01
Rapid development in Jakarta which generates more impervious surface has reduced the amount of rainfall infiltration into soil layer and increases run-off. In some events, continuous high rainfall intensity could create sudden flood in Jakarta City. This article used rainfall data of Jakarta during 10 February 2015 to compute rainfall intensity and then interpolate it with ordinary kriging technique. Spatial distribution of rainfall intensity then overlaid with run-off coefficient based on certain land use type of the study area. Peak run-off within each cell resulted from hydrologic rational model then summed for the whole study area to generate total peak run-off. For this study area, land use types consisted of 51.9 % industrial, 37.57% parks, and 10.54% residential with estimated total peak run-off 6.04 m3/sec, 0.39 m3/sec, and 0.31 m3/sec, respectively.
NASA Astrophysics Data System (ADS)
Xie, Yanan; Zhou, Mingliang; Pan, Dengke
2017-10-01
The forward-scattering model is introduced to describe the response of normalized radar cross section (NRCS) of precipitation with synthetic aperture radar (SAR). Since the distribution of near-surface rainfall is related to the rate of near-surface rainfall and horizontal distribution factor, a retrieval algorithm called modified regression empirical and model-oriented statistical (M-M) based on the volterra integration theory is proposed. Compared with the model-oriented statistical and volterra integration (MOSVI) algorithm, the biggest difference is that the M-M algorithm is based on the modified regression empirical algorithm rather than the linear regression formula to retrieve the value of near-surface rainfall rate. Half of the empirical parameters are reduced in the weighted integral work and a smaller average relative error is received while the rainfall rate is less than 100 mm/h. Therefore, the algorithm proposed in this paper can obtain high-precision rainfall information.
Truman, C C; Strickland, T C; Potter, T L; Franklin, D H; Bosch, D D; Bednarz, C W
2007-01-01
The low-carbon, intensively cropped Coastal Plain soils of Georgia are susceptible to runoff, soil loss, and drought. Reduced tillage systems offer the best management tool for sustained row crop production. Understanding runoff, sediment, and chemical losses from conventional and reduced tillage systems is expected to improve if the effect of a variable rainfall intensity storm was quantified. Our objective was to quantify and compare effects of a constant (Ic) intensity pattern and a more realistic, observed, variable (Iv) rainfall intensity pattern on runoff (R), sediment (E), and carbon losses (C) from a Tifton loamy sand cropped to conventional-till (CT) and strip-till (ST) cotton (Gossypium hirsutum L.). Four treatments were evaluated: CT-Ic, CT-Iv, ST-Ic, and ST-Iv, each replicated three times. Field plots (n=12), each 2 by 3 m, were established on each treatment. Each 6-m2 field plot received simulated rainfall at a constant (57 mm h(-1)) or variable rainfall intensity pattern for 70 min (12-run ave.=1402 mL; CV=3%). The Iv pattern represented the most frequent occurring intensity pattern for spring storms in the region. Compared with CT, ST decreased R by 2.5-fold, E by 3.5-fold, and C by 7-fold. Maximum runoff values for Iv events were 1.6-fold higher than those for Ic events and occurred 38 min earlier. Values for Etot and Ctot for Iv events were 19-36% and 1.5-fold higher than corresponding values for Ic events. Values for Emax and Cmax for Iv events were 3-fold and 4-fold higher than corresponding values for Ic events. Carbon enrichment ratios (CER) were
North Pacific Westerly Jet Influence of the Winter Hawaii Rainfall in the last 21,000 years
NASA Astrophysics Data System (ADS)
Li, S.; Elison Timm, O.
2017-12-01
Hawaii rainfall has a strong seasonality which has more rainfall during the winter than summer. Part of the winter rainfall is from extratropical weather disturbances. Kona lows (KL) are important contributors to the annual rainfall budget of the Hawaiian Islands. KL activity is found to have a strong relationship with the North Pacific climate variability. The goal of the research is to test the hypothesis that changes in the strength and position of the upper level zonal wind jet is a key driver for regional rainfall changes. The main objectives are (1) to identify the relationship between North Pacific westerly jet strength and KL activity in present day climate, (2) to test the stability of this relationship under past climatic conditions, and (3) to explore the teleconnection between Hawaii and North America. For the present-day analysis of the westerly jet, the zonal wind at 250hPa is used from ERA-interim data from 1979-2014. The potential vorticity is used as a measure of extratropical synoptic activity. The Hawaii Rainfall Index is from the Rainfall Atlas of Hawaii (seasonal means, 1920-2012). For the paleoclimatic study, the transient TraCE-21ka simulation is used for the zonal wind - Hawaii rainfall analysis. The results of present-day analysis show that when the jet extends farther into the eastern Pacific sector the Kona Low activity is reduced, less winter rainfall is observed over Hawaii and more rainfall over the California region. The jet position-rainfall relationship was investigated within the TrACE-21 simulation. For the TraCE-21ka dataset, there is an increasing rainfall trend from 21kBP to 14kBP; this period coincides with a gradual decrease in the strength of the westerly wind jet. The results show that the westerly jet strength has a strong influence of the Kona Low activity and the rainfall over Hawaii both in the present and the past.
NASA Astrophysics Data System (ADS)
Sylvestre, F.; Williams, M. A.; Gasse, F.; Chalie, F.; Vincens, A.; David, W.
2006-12-01
The timing and amplitude of climate changes during the Last Glacial Maximum (LGM) and Termination I have led to considerable debate around the mechanisms driving the reorganisation of the global climate system and its regional expression. The LGM over the southern tropics and subtropics is still poorly understood and the interpretation of different proxies sometimes appears controversial. Here, we summarise the best, well-dated continental records spanning the interval 30-11 cal. kyr, from Africa south of the equator, Australia and South America. Due to the scarcity of the usable records, we had to decipher several proxies (pollen-inferred vegetation, diatom-inferred lake level, isotopes, sea-surface temperatures SST- in the surrounding oceans) and to consider all existing types of archives (wetlands, lakes, speleothems, (peri)glacial deposits, dunes and aeolian dusts), to characterize as completely as possible, the major features of the climate variability over the three continents. Regional similarities and divergences are pointed out, especially East-West asymmetry linked with oceanic currents and topography. The processes driving the observed temperature and hydrological changes are discussed focusing on the following questions: -How did monsoonal climates in the southern tropics respond to orbital forcing versus other glacial boundary conditions, e.g., sea-surface conditions, during the LGM? Example: several tropical lakes from southern Africa were low during the LGM probably in response to low SST. -How did the convergence zones (e.g. the Intertropical Convergence Zone ITCZ) have migrated through time and why? Example: in South America, LGM dryness in Amazonia has been associated with a southward migration of the ITCZ. -How did the extratropical, winter rainfall domain expand/retreat in response to meridian shifts of the Subtropical Westerly Jet and of the oceanic Subtropical Front, and to latitudinal thermal gradient in the Southern Ocean? Example: in tropical Andes and southwestern Africa, several pollen and hydrological records suggest winter rainfall influence further north than today at the LGM. -When did continental glaciers reach their greatest extent? We discuss the factors driving glacier advances with examples from Peru and Bolivia and from the Snowy Mountains in Australia. -How, when and where rapid climate changes can be related with climate shifts at northern and southern high latitudes? Example: some records show that the first deglaciation steps have been in phase with those in Antarctica, but the end of the Younger Dryas is well recorded in many places, e.g. from N to S in Africa.
NASA Astrophysics Data System (ADS)
Worqlul, Abeyou W.; Ayana, Essayas K.; Maathuis, Ben H. P.; MacAlister, Charlotte; Philpot, William D.; Osorio Leyton, Javier M.; Steenhuis, Tammo S.
2018-01-01
In many developing countries and remote areas of important ecosystems, good quality precipitation data are neither available nor readily accessible. Satellite observations and processing algorithms are being extensively used to produce satellite rainfall products (SREs). Nevertheless, these products are prone to systematic errors and need extensive validation before to be usable for streamflow simulations. In this study, we investigated and corrected the bias of Multi-Sensor Precipitation Estimate-Geostationary (MPEG) data. The corrected MPEG dataset was used as input to a semi-distributed hydrological model Hydrologiska Byråns Vattenbalansavdelning (HBV) for simulation of discharge of the Gilgel Abay and Gumara watersheds in the Upper Blue Nile basin, Ethiopia. The result indicated that the MPEG satellite rainfall captured 81% and 78% of the gauged rainfall variability with a consistent bias of underestimating the gauged rainfall by 60%. A linear bias correction applied significantly reduced the bias while maintaining the coefficient of correlation. The simulated flow using bias corrected MPEG SRE resulted in a simulated flow comparable to the gauge rainfall for both watersheds. The study indicated the potential of MPEG SRE in water budget studies after applying a linear bias correction.
Precipitation Processes Derived from TRMM Satellite Data, Cloud Resolving Model and Field Campaigns
NASA Technical Reports Server (NTRS)
Tao, W.-K.; Lang, S.; Simpson, J.; Meneghini, R.; Halverson, J.; Johnson, R.; Adler, R.; Einaudi, Franco (Technical Monitor)
2001-01-01
Rainfall is a key link in the hydrologic cycle and is a primary heat source for the atmosphere. The vertical distribution of latent-heat release, which is accompanied by rainfall, modulates the large-scale circulations of the tropics and in turn can impact midlatitude weather. This latent heat release is a consequence of phase changes between vapor, liquid. and solid water. Present large-scale weather and climate models can simulate cloud latent heat release only crudely thus reducing their confidence in predictions on both global and regional scales. In this paper, NASA Tropical Rainfall Measuring (TRMM) precipitation radar (PR) derived rainfall information and the Goddard Convective and Stratiform Heating (CSH) algorithm used to estimate the four-dimensional structure of global monthly latent heating and rainfall profiles over the global tropics from December 1997 to October 2000. Rainfall latent heating and radar reflectively structure between ENSO (1997-1998 winter) and non-ENSO (1998-1999 winter) periods are examined and compared. The seasonal variation of heating over various geographic locations (i.e. Indian ocean vs west Pacific; Africa vs S. America) are also analyzed. In addition, the relationship between rainfall latent heating maximum heating level), radar reflectively and SST are examined.
TRMM Fire Algorithm, Product and Applications
NASA Technical Reports Server (NTRS)
Ji, Yi-Min; Stocker, Erich
2003-01-01
Land fires are frequent menaces to human lives and property. They also change the state of the vegetation and contribute to the climate forcing by releasing large amount of aerosols and greenhouse gases into the atmosphere. This paper summarizes methodologies of detecting global land fires from the Tropical Rainfall Measuring Mission (TRMM) Visible Infrared Scanner FIRS) measurements. The TRMM Science Data and Information System (TSDIS) fire products include global images of daily hot spots and monthly fire counts at 0.5 deg. x 0.5 deg. resolution, as well as text fiies that details necessary information of all fire pixels. The information includes date, orbit number, pixel number, local time, solar zenith angle, latitude, longitude, reflectance of visible/near infrared channels, brightness temperatures of infrared channels, as well as background brightness temperatures of infrared channels. These products have been archived since January 1998. The TSDIS fire products are compared with the coincidental European Commission (EC) Joint Research Center (JRC) 1 km AVHRR fire products. Analyses of the TSDIS monthly fire products during the period from 1998 to 2003 manifested seasonal cycles of biomass fires over Southeast Asia, Africa, North America and South America. The data also showed interannual variations associated with the 98/99 ENS0 cycle in Central America and the Indonesian region. In order to understand the variability of global land fires and their effects on the distribution of atmospheric aerosols, statistical methods were applied to the TSDIS fire products as well as to the Total Ozone Mapping Spectrometer (TOMS) aerosol index products for a period of five years from January 1998 to December 2002. The variability of global atmospheric aerosol is consistent with the fire variations over these regions during this period. The correlation between fire count and TOMS aerosol index is about 0.55 for fire pixels in Southeast Asia, Indonesia, and Africa. Parallel statistical analyses such as Empirical Orthogonal Function (EOF) analysis and Singular Spectrum Analysis (SSA) methods were applied to pentad TRMM fire data and TOMS aerosol data. The EOF analyses showed contrast between North and South hemispheres and also inter- continental transitions in Africa and America. EOF and SSA analyses also identified 25-60 day intra-seasonal oscillations that were superimposed on the annual cycles of both fire and aerosol data. The intra-seasonal variability of fires showed similarity of tropical rainfall oscillation modes. The TRMM fire products were also compared to the coincident TRMh4 rainfall and other rainfall products to investigate the interaction between rainfall and fire. The results indicate that the annual, interannual and intraseasonal variability of fire are dominated by global rainfall variations. However, the feedback of fire to the rainfall occurrence at regional scale for certain regions is also evident.
An object-based approach for areal rainfall estimation and validation of atmospheric models
NASA Astrophysics Data System (ADS)
Troemel, Silke; Simmer, Clemens
2010-05-01
An object-based approach for areal rainfall estimation is applied to pseudo-radar data simulated of a weatherforecast model as well as to real radar volume data. The method aims at an as fully as possible exploitation of three-dimensional radar signals produced by precipitation generating systems during their lifetime to enhance areal rainfall estimation. Therefore tracking of radar-detected precipitation-centroids is performed and rain events are investigated using so-called Integral Radar Volume Descriptors (IRVD) containing relevant information of the underlying precipitation process. Some investigated descriptors are statistical quantities from the radar reflectivities within the boundary of a tracked rain cell like the area mean reflectivity or the compactness of a cell; others evaluate the mean vertical structure during the tracking period at the near surface reflectivity-weighted center of the cell like the mean effective efficiency or the mean echo top height. The stage of evolution of a system is given by the trend in the brightband fraction or related quantities. Furthermore, two descriptors not directly derived from radar data are considered: the mean wind shear and an orographic rainfall amplifier. While in case of pseudo-radar data a model based on a small set of IRVDs alone provides rainfall estimates of high accuracy, the application of such a model to the real world remains within the accuracies achievable with a constant Z-R-relationship. However, a combined model based on single IRVDs and the Marshall-Palmer Z-R-estimator already provides considerable enhancements even though the resolution of the data base used has room for improvement. The mean echo top height, the mean effective efficiency, the empirical standard deviation and the Marshall-Palmer estimator are detected for the final rainfall estimator. High correlations between storm height and rain rates, a shift of the probability distribution to higher values with increasing effective efficiency, and the possibility to classify continental and maritime systems using the effective efficiency confirm the informative value of the qualified descriptors. The IRVDs especially correct for the underestimation in case of intense rain events, and the information content of descriptors is most likely higher than demonstrated so far. We used quite sparse information about meteorological variables needed for the calculation of some IRVDs from single radiosoundings, and several descriptors suffered from the range-dependent vertical resolution of the reflectivity profile. Inclusion of neighbouring radars and assimilation runs of weather forecasting models will further enhance the accuracy of rainfall estimates. Finally, the clear difference between the IRVD selection from the pseudo-radar data and from the real world data hint to a new object-based avenue for the validation of higher resolution atmospheric models and for evaluating their potential to digest radar observations in data assimilation schemes.
NASA Astrophysics Data System (ADS)
Tian, P.; Xu, X.; Pan, C.; Hsu, K. L.; Yang, T.
2016-12-01
Few attempts have been made to investigate the quantitative effects of rainfall on overland flow driven erosion processes and flow hydrodynamics on steep hillslopes under field conditions. Field experiments were performed in flows for six inflow rates (q: 6-36 Lmin-1m-1) with and without rainfall (60 mm h-1) on a steep slope (26°) to investigate: (1) the quantitative effects of rainfall on runoff and sediment yield processes, and flow hydrodynamics; (2) the effect of interaction between rainfall and overland flow on soil loss. Results showed that the rainfall increased runoff coefficients and the fluctuation of temporal variations in runoff. The rainfall significantly increased soil loss (10.6-68.0%), but this increment declined as q increased. When the interrill erosion dominated (q=6 Lmin-1m-1), the increment in the rill erosion was 1.5 times that in the interrill erosion, and the effect of the interaction on soil loss was negative. When the rill erosion dominated (q=6-36 Lmin-1m-1), the increment in the interrill erosion was 1.7-8.8 times that in the rill erosion, and the effect of the interaction on soil loss became positive. The rainfall was conducive to the development of rills especially for low inflow rates. The rainfall always decreased interrill flow velocity, decreased rill flow velocity (q=6-24 Lmin-1m-1), and enhanced the spatial uniformity of the velocity distribution. Under rainfall disturbance, flow depth, Reynolds number (Re) and resistance were increased but Froude number was reduced, and lower Re was needed to transform a laminar flow to turbulent flow. The rainfall significantly increased flow shear stress (τ) and stream power (φ), with the most sensitive parameters to sediment yield being τ (R2=0.994) and φ (R2=0.993), respectively, for non-rainfall and rainfall conditions. Compared to non-rainfall conditions, there was a reduction in the critical hydrodynamic parameters of mean flow velocity, τ, and φ by the rainfall. These findings provide a better understanding on the influence mechanism of rainfall impact on hillslope erosion processes.
NASA Astrophysics Data System (ADS)
Revilla-Romero, Beatriz; Shelton, Kay; Wood, Elizabeth; Berry, Robert; Bevington, John; Hankin, Barry; Lewis, Gavin; Gubbin, Andrew; Griffiths, Samuel; Barnard, Paul; Pinnell, Marc; Huyck, Charles
2017-04-01
The hours and days immediately after a major flood event are often chaotic and confusing, with first responders rushing to mobilise emergency responders, provide alleviation assistance and assess loss to assets of interest (e.g., population, buildings or utilities). Preparations in advance of a forthcoming event are becoming increasingly important; early warning systems have been demonstrated to be useful tools for decision markers. The extent of damage, human casualties and economic loss estimates can vary greatly during an event, and the timely availability of an accurate flood extent allows emergency response and resources to be optimised, reduces impacts, and helps prioritise recovery. In the insurance sector, for example, insurers are under pressure to respond in a proactive manner to claims rather than waiting for policyholders to report losses. Even though there is a great demand for flood inundation extents and severity information in different sectors, generating flood footprints for large areas from hydraulic models in real time remains a challenge. While such footprints can be produced in real time using remote sensing, weather conditions and sensor availability limit their ability to capture every single flood event across the globe. In this session, we will present Flood Foresight (www.floodforesight.com), an operational tool developed to meet the universal requirement for rapid geographic information, before, during and after major riverine flood events. The tool provides spatial data with which users can measure their current or predicted impact from an event - at building, basin, national or continental scales. Within Flood Foresight, the Screening component uses global rainfall predictions to provide a regional- to continental-scale view of heavy rainfall events up to a week in advance, alerting the user to potentially hazardous situations relevant to them. The Forecasting component enhances the predictive suite of tools by providing a local-scale view of the extent and depth of possible riverine flood events several days in advance by linking forecast river flow from a hydrological model to a global flood risk map. The Monitoring component provides a similar local-scale view of a flood inundation extent but in near real time, as an event unfolds, by combining the global flood risk map with observed river gauge telemetry. Immediately following an event, the maximum extent of the flood is also generated. Users of Flood Foresight will be able to receive current and forecast flood extents and depth information via API into their own GIS or analytics software. The set of tools is currently operational for the UK and Europe; the methods presented can be applied globally, allowing provision of service to any country or region. This project was supported by InnovateUK under the Solving Business Problems with Environmental Data competition.
Potter, Thomas L; Truman, Clint C; Strickland, Timothy C; Bosch, David D; Webster, Theodore M; Franklin, Dorcas H; Bednarz, Craig W
2006-01-01
Pesticide runoff research relies heavily on rainfall simulation experiments. Most are conducted at a constant intensity, i.e., at a fixed rainfall rate; however, large differences in natural rainfall intensity is common. To assess implications we quantified runoff of two herbicides, fluometuron and pendimethalin, and applied preemergence after planting cotton on Tifton loamy sand. Rainfall at constant and variable intensity patterns representative of late spring thunderstorms in the Atlantic Coastal Plain region of Georgia (USA) were simulated on 6-m2 plots under strip- (ST) and conventional-tillage (CT) management. The variable pattern produced significantly higher runoff rates of both compounds from CT but not ST plots. However, on an event-basis, runoff totals (% applied) were not significantly different, with one exception: fluometuron runoff from CT plots. There was about 25% more fluometuron runoff with the variable versus the constant intensity pattern (P = 0.10). Study results suggest that conduct of simulations using variable intensity storm patterns may provide more representative rainfall simulation-based estimates of pesticide runoff and that the greatest impacts will be observed with CT. The study also found significantly more fluometuron in runoff from ST than CT plots. Further work is needed to determine whether this behavior may be generalized to other active ingredients with similar properties [low K(oc) (organic carbon partition coefficient) approximately 100 mL g(-1); high water solubility approximately 100 mg L(-1)]. If so, it should be considered when making tillage-specific herbicide recommendations to reduce runoff potential.
Influence of plant composition and water use strategies on green roof stormwater retention.
Zhang, Zheng; Szota, Christopher; Fletcher, Tim D; Williams, Nicholas S G; Werdin, Joerg; Farrell, Claire
2018-06-01
Green roofs are increasingly being considered a promising engineered ecosystem for reducing stormwater runoff. Plants are a critical component of green roofs and it has been suggested that plants with high water use after rainfall, but which are also drought tolerant, can improve rainfall retention on green roofs. However, there is little evidence to show how plants with different water use strategies will affect green roof retention performance, either in monocultures or in mixed plantings. This study tested how monocultures and a mixture of herbaceous species (Dianella admixta, Lomandra longifolia and Stypandra glauca) affected rainfall retention on green roofs. These species were chosen based on their water use strategies and compared with a commonly used succulent species (Sedum pachyphyllum) with conservative water use. We measured retention performance for 67 rainfall events, quantifying all components of the water balance. We also compared growth for species in monocultures and mixtures. We found that monocultures of L. longifolia had the greatest stormwater retention and ET. Although S. glauca has a similar water use strategy to D. admixta, it had the lowest stormwater retention and ET. In both the mixture and as a monoculture, S. glauca created preferential flow pathways, resulting in lower substrate water contents which reduced ET and therefore rainfall retention. This species also dominated performance of the mixture, such that the mixture had lower ET and retention than all monocultures (except S. glauca). We suggest that root traits and their interaction with substrates should be considered alongside water use strategies for rainfall retention on green roofs. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yang, Chun Xia; Xiao, PeiQing; Li, Li; Jiao, Peng
2018-06-01
Land consolidation measures affected the underlying surface erosion environment during the early stage of vegetation construction, and then had an impact on rainfall infiltration, erosion and sediment yield. This paper adopted the field simulated rainfall experiments to analyze the function that pockets site preparation measures affected on rainfall infiltration, runoff sediment yield and runoff erosion ability. The results showed that, the measures can delay the rainfall runoff formation time of the slope by 3'17" and 1'04" respectively. Compared with the same condition of the bare land and natural grassland. The rainfall infiltration coefficient each increased by 76.47% and 14.49%, and infiltration rate increased by 0.26 mm/min and 0.11mm/min respectively; The amount of runoff and sediment yield were reduced because of the pockets site preparation. The amount of runoff reducing rate were 33.51% and 30.49%, and sediment reduction rate were 81.35% and 65.66%, The sediment concentration was decreased by 71.99% and 50.58%; Runoff velocity of bare slope and natural grassland slope decreased by 38.12% and 34.59% respectively after pockets site preparation . The runoff erosion rate decreased by 67.92% and 79.68% respectively. The results will have a great significance for recognizing the effect of water and sediment reduction about vegetation and the existence of its plowing measures at the early period of restoration.
The spatial return level of aggregated hourly extreme rainfall in Peninsular Malaysia
NASA Astrophysics Data System (ADS)
Shaffie, Mardhiyyah; Eli, Annazirin; Wan Zin, Wan Zawiah; Jemain, Abdul Aziz
2015-07-01
This paper is intended to ascertain the spatial pattern of extreme rainfall distribution in Peninsular Malaysia at several short time intervals, i.e., on hourly basis. Motivation of this research is due to historical records of extreme rainfall in Peninsular Malaysia, whereby many hydrological disasters at this region occur within a short time period. The hourly periods considered are 1, 2, 3, 6, 12, and 24 h. Many previous hydrological studies dealt with daily rainfall data; thus, this study enables comparison to be made on the estimated performances between daily and hourly rainfall data analyses so as to identify the impact of extreme rainfall at a shorter time scale. Return levels based on the time aggregate considered are also computed. Parameter estimation using L-moment method for four probability distributions, namely, the generalized extreme value (GEV), generalized logistic (GLO), generalized Pareto (GPA), and Pearson type III (PE3) distributions were conducted. Aided with the L-moment diagram test and mean square error (MSE) test, GLO was found to be the most appropriate distribution to represent the extreme rainfall data. At most time intervals (10, 50, and 100 years), the spatial patterns revealed that the rainfall distribution across the peninsula differ for 1- and 24-h extreme rainfalls. The outcomes of this study would provide additional information regarding patterns of extreme rainfall in Malaysia which may not be detected when considering only a higher time scale such as daily; thus, appropriate measures for shorter time scales of extreme rainfall can be planned. The implementation of such measures would be beneficial to the authorities to reduce the impact of any disastrous natural event.
Statistical characterization of spatial patterns of rainfall cells in extratropical cyclones
NASA Astrophysics Data System (ADS)
Bacchi, Baldassare; Ranzi, Roberto; Borga, Marco
1996-11-01
The assumption of a particular type of distribution of rainfall cells in space is needed for the formulation of several space-time rainfall models. In this study, weather radar-derived rain rate maps are employed to evaluate different types of spatial organization of rainfall cells in storms through the use of distance functions and second-moment measures. In particular the spatial point patterns of the local maxima of rainfall intensity are compared to a completely spatially random (CSR) point process by applying an objective distance measure. For all the analyzed radar maps the CSR assumption is rejected, indicating that at the resolution of the observation considered, rainfall cells are clustered. Therefore a theoretical framework for evaluating and fitting alternative models to the CSR is needed. This paper shows how the "reduced second-moment measure" of the point pattern can be employed to estimate the parameters of a Neyman-Scott model and to evaluate the degree of adequacy to the experimental data. Some limitations of this theoretical framework, and also its effectiveness, in comparison to the use of scaling functions, are discussed.
NASA Astrophysics Data System (ADS)
Shi, Pu; Thorlacius, Sigurdur; Keller, Thomas; Keller, Martin; Schulin, Rainer
2017-04-01
Soil aggregate breakdown under rainfall impact is an important process in interrill erosion, but is not represented explicitly in water erosion models. Aggregate breakdown not only reduces infiltration through surface sealing during rainfall, but also determines the size distribution of the disintegrated fragments and thus their availability for size-selective sediment transport and re-deposition. An adequate representation of the temporal evolution of fragment mass size distribution (FSD) during rainfall events and the dependence of this dynamics on factors such as rainfall intensity and soil moisture content may help improve mechanistic erosion models. Yet, little is known about the role of those factors in the dynamics of aggregate breakdown under field conditions. In this study, we conducted a series of artificial rainfall experiments on a field silt loam soil to investigate aggregate breakdown dynamics at different rainfall intensity (RI) and initial soil water content (IWC). We found that the evolution of FSD in the course of a rainfall event followed a consistent two-stage pattern in all treatments. The fragment mean weight diameter (MWD) drastically decreased in an approximately exponential way at the beginning of a rainfall event, followed by a further slow linear decrease in the second stage. We proposed an empirical model that describes this temporal pattern of MWD decrease during a rainfall event and accounts for the effects of RI and IWC on the rate parameters. The model was successfully tested using an independent dataset, showing its potential to be used in erosion models for the prediction of aggregate breakdown. The FSD at the end of the experimental rainfall events differed significantly among treatments, indicating that different aggregate breakdown mechanisms responded differently to the variation in initial soil moisture and rainfall intensity. These results provide evidence that aggregate breakdown dynamics needs to be considered in a case-specific manner in modelling sediment mobilization and transport during water erosion events.
Simulation of extreme rainfall and projection of future changes using the GLIMCLIM model
NASA Astrophysics Data System (ADS)
Rashid, Md. Mamunur; Beecham, Simon; Chowdhury, Rezaul Kabir
2017-10-01
In this study, the performance of the Generalized LInear Modelling of daily CLImate sequence (GLIMCLIM) statistical downscaling model was assessed to simulate extreme rainfall indices and annual maximum daily rainfall (AMDR) when downscaled daily rainfall from National Centers for Environmental Prediction (NCEP) reanalysis and Coupled Model Intercomparison Project Phase 5 (CMIP5) general circulation models (GCM) (four GCMs and two scenarios) output datasets and then their changes were estimated for the future period 2041-2060. The model was able to reproduce the monthly variations in the extreme rainfall indices reasonably well when forced by the NCEP reanalysis datasets. Frequency Adapted Quantile Mapping (FAQM) was used to remove bias in the simulated daily rainfall when forced by CMIP5 GCMs, which reduced the discrepancy between observed and simulated extreme rainfall indices. Although the observed AMDR were within the 2.5th and 97.5th percentiles of the simulated AMDR, the model consistently under-predicted the inter-annual variability of AMDR. A non-stationary model was developed using the generalized linear model for local, shape and scale to estimate the AMDR with an annual exceedance probability of 0.01. The study shows that in general, AMDR is likely to decrease in the future. The Onkaparinga catchment will also experience drier conditions due to an increase in consecutive dry days coinciding with decreases in heavy (>long term 90th percentile) rainfall days, empirical 90th quantile of rainfall and maximum 5-day consecutive total rainfall for the future period (2041-2060) compared to the base period (1961-2000).
Evaluating Satellite-based Rainfall Estimates for Basin-scale Hydrologic Modeling
NASA Astrophysics Data System (ADS)
Yilmaz, K. K.; Hogue, T. S.; Hsu, K.; Gupta, H. V.; Mahani, S. E.; Sorooshian, S.
2003-12-01
The reliability of any hydrologic simulation and basin outflow prediction effort depends primarily on the rainfall estimates. The problem of estimating rainfall becomes more obvious in basins with scarce or no rain gauges. We present an evaluation of satellite-based rainfall estimates for basin-scale hydrologic modeling with particular interest in ungauged basins. The initial phase of this study focuses on comparison of mean areal rainfall estimates from ground-based rain gauge network, NEXRAD radar Stage-III, and satellite-based PERSIANN (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks) and their influence on hydrologic model simulations over several basins in the U.S. Six-hourly accumulations of the above competing mean areal rainfall estimates are used as input to the Sacramento Soil Moisture Accounting Model. Preliminary experiments for the Leaf River Basin in Mississippi, for the period of March 2000 - June 2002, reveals that seasonality plays an important role in the comparison. There is an overestimation during the summer and underestimation during the winter in satellite-based rainfall with respect to the competing rainfall estimates. The consequence of this result on the hydrologic model is that simulated discharge underestimates the major observed peak discharges during early spring for the basin under study. Future research will entail developing correction procedures, which depend on different factors such as seasonality, geographic location and basin size, for satellite-based rainfall estimates over basins with dense rain gauge network and/or radar coverage. Extension of these correction procedures to satellite-based rainfall estimates over ungauged basins with similar characteristics has the potential for reducing the input uncertainty in ungauged basin modeling efforts.
Environmental correlates of breeding in the Crested Caracara (Caracara cheriway)
Morrison, J.L.; Pias, Kyle E.; Cohen, J.B.; Catlin, D.H.
2009-01-01
We evaluated the influence of weather on reproduction of the Crested Caracara (Caracara cheriway) in an agricultural landscape in south-central Florida. We used a mixed logistic-regression modeling approach within an information-theoretic framework to examine the influence of total rainfall, rainfall frequency, and temperature on the number of breeding pairs, timing of breeding, nest success, and productivity of Crested Caracaras during 1994–2000. The best models indicated an influence of rainfall frequency and laying period on reproduction. More individuals nested and more pairs nested earlier during years with more frequent rainfall in late summer and early fall. Pairs that nested later in each breeding season had smaller clutches, lower nest success and productivity, and higher probability of nest failure. More frequent rainfall during early spring months that are usually characterized by water deficit (March–May), more frequent rainfall during the fall drawdown period (September–November), and a shorter winter dry period showed some association with higher probability of brood reduction and lower nest success. The proportion of nests that failed was higher in “wet” years, when total rainfall during the breeding season (September–April) was >10% above the 20-year average. Rainfall may influence reproduction in Crested Caracaras indirectly through food resources. As total rainfall increased during February–April, when most pairs are feeding nestlings or dependent fledglings, the proportion of drawdown-dependent species (those that become available as rainfall decreases and wetlands become isolated and shallow) in the diet of Crested Caracaras declined, which may indicate reduced availability of foraging habitat for this primarily terrestrial raptor.
NASA Astrophysics Data System (ADS)
Wilson, H. F.; Elliott, J. A.; Glenn, A. J.
2017-12-01
Runoff generation and the associated export of nitrogen, phosphorus, and organic carbon on the Northern Great Plains have historically been dominated by snowmelt runoff. In this region the transport of elements primarily occurs in dissolved rather than particulate forms, so cropland management practices designed to reduce particulate losses tend to be ineffective in reducing nutrient runoff. Over the last decade a higher frequency of high volume and intensity rainfall has been observed, leading to rainfall runoff and downstream flooding. To evaluate interactions between tillage, crop residue management, fertilization practices, weather, and runoff biogeochemistry a network of 18 single field scale watersheds (2-6 ha.) has been established in Manitoba, Canada over a range of fertilization (no input to high input) and tillage (zero tillage to frequent tillage). Soils in this network are typical of cropland in the region with clay or clay loam textures, but soil phosphorus differs greatly depending on input practices (3 to 25 mg kg-1 sodium bicarbonate extractable P). Monitoring of runoff chemistry and hydrology at these sites was initiated in 2013 and over the course of 5 years high volume snowmelt runoff from deep snowpack (125mm snow water equivalent), low volume snowmelt from shallow snowpack (25mm snow water equivalent) and extreme rainfall runoff events in spring have all been observed. Event based analyses of the drivers of runoff chemistry indicate that spring fertilization practices (depth, amount, and timing) influence concentrations of N and P in runoff during large rainfall runoff events, but for snowmelt runoff the near surface soil chemistry, tillage, and crop residue management are of greater importance. Management recommendations that might be suggested to reduce nutrient export and downstream eutrophication in the region differ for snowmelt and rainfall, but are not mutually exclusive.
Inter-event variability in urban stormwater runoff response associated with hydrologic connectivity
NASA Astrophysics Data System (ADS)
Hondula, K. L.
2015-12-01
Urbanization alters the magnitude and composition of hydrologic and biogeochemical fluxes from watersheds, with subsequent deleterious consequences for receiving waters. Projected changes in storm characteristics such as rainfall intensity and event size are predicted to amplify these impacts and render current regulations inadequate for protecting surface water quality. As stormwater management practices (BMPs) are increasingly being relied upon to reduce excess nutrient pollution in runoff from residential development, empirical investigation of their performance across a range of conditions is warranted. Despite substantial investment in urban and suburban BMPs, significant knowledge gaps exist in understanding how landscape structure and precipitation event characteristics influence the amount of stormwater runoff and associated nutrient loads from these complex catchments. Increasing infiltration of stormwater before it enters the sewer network (source control) is hypothesized to better mimic natural hydrologic and biogeochemical fluxes compared to more centralized BMPs at sewer outlets such as wet and dry ponds. Rainfall and runoff quality and quantity were monitored in four small (1-5 ha) residential catchments in Maryland to test the efficacy of infiltration-based stormwater management practices in comparison to end-of-pipe BMPs. Results indicated that reduced hydrologic connectivity associated with infiltration-based practices affected the relationship between the magnitude of rainfall events and water yield , but only for small precipitation events: compared to end-of-pipe BMPs, source control was associated with both lower runoff ratios and lower nutrient export per area for a given rainfall event size. We found variability in stormwater runoff responses (water yield, quality, and nutrient loads) was associated with precipitation event size, antecedent rainfall, and hydrologic connectivity as quantified by a modified directional connectivity index. Accounting for the interactive effects of landscape structure and precipitation event characteristics can reduce the uncertainty surrounding stormwater runoff responses in complex urban watersheds.
Spatial dependence of extreme rainfall
NASA Astrophysics Data System (ADS)
Radi, Noor Fadhilah Ahmad; Zakaria, Roslinazairimah; Satari, Siti Zanariah; Azman, Muhammad Az-zuhri
2017-05-01
This study aims to model the spatial extreme daily rainfall process using the max-stable model. The max-stable model is used to capture the dependence structure of spatial properties of extreme rainfall. Three models from max-stable are considered namely Smith, Schlather and Brown-Resnick models. The methods are applied on 12 selected rainfall stations in Kelantan, Malaysia. Most of the extreme rainfall data occur during wet season from October to December of 1971 to 2012. This period is chosen to assure the available data is enough to satisfy the assumption of stationarity. The dependence parameters including the range and smoothness, are estimated using composite likelihood approach. Then, the bootstrap approach is applied to generate synthetic extreme rainfall data for all models using the estimated dependence parameters. The goodness of fit between the observed extreme rainfall and the synthetic data is assessed using the composite likelihood information criterion (CLIC). Results show that Schlather model is the best followed by Brown-Resnick and Smith models based on the smallest CLIC's value. Thus, the max-stable model is suitable to be used to model extreme rainfall in Kelantan. The study on spatial dependence in extreme rainfall modelling is important to reduce the uncertainties of the point estimates for the tail index. If the spatial dependency is estimated individually, the uncertainties will be large. Furthermore, in the case of joint return level is of interest, taking into accounts the spatial dependence properties will improve the estimation process.
Effects of episodic rainfall on a subterranean estuary
NASA Astrophysics Data System (ADS)
Yu, Xiayang; Xin, Pei; Lu, Chunhui; Robinson, Clare; Li, Ling; Barry, D. A.
2017-07-01
Numerical simulations were conducted to examine the effect of episodic rainfall on nearshore groundwater dynamics in a tidally influenced unconfined coastal aquifer, with a focus on both long-term (yearly) and short-term (daily) behavior of submarine groundwater discharge (SGD) and seawater intrusion (SWI). The results showed nonlinear interactions among the processes driven by rainfall, tides, and density gradients. Rainfall-induced infiltration increased the yearly averaged fresh groundwater discharge to the ocean but reduced the extents of the saltwater wedge and upper saline plume as well as the total rate of seawater circulation through both zones. Overall, the net effect of the interactions led to an increase of the SGD. The nearshore groundwater responded to individual rainfall events in a delayed and cumulative fashion, as evident in the variations of daily averaged SGD and salt stored in the saltwater wedge (quantifying the extent of SWI). A generalized linear model (GLM) along with a Gamma distribution function was developed to describe the delayed and prolonged effect of rainfall events on short-term groundwater behavior. This model validated with results of daily averaged SGD and SWI from the simulations of groundwater and solute transport using independent rainfall data sets, performed well in predicting the behavior of the nearshore groundwater system under the combined influence of episodic rainfall, tides, and density gradients. The findings and developed GLM form a basis for evaluating and predicting SGD, SWI, and associated mass fluxes from unconfined coastal aquifers under natural conditions, including episodic rainfall.
NASA Astrophysics Data System (ADS)
Leonarduzzi, Elena; Molnar, Peter; McArdell, Brian W.
2017-08-01
A high-resolution gridded daily precipitation data set was combined with a landslide inventory containing over 2000 events in the period 1972-2012 to analyze rainfall thresholds which lead to landsliding in Switzerland. We colocated triggering rainfall to landslides, developed distributions of triggering and nontriggering rainfall event properties, and determined rainfall thresholds and intensity-duration ID curves and validated their performance. The best predictive performance was obtained by the intensity-duration ID threshold curve, followed by peak daily intensity Imax and mean event intensity Imean. Event duration by itself had very low predictive power. A single country-wide threshold of Imax = 28 mm/d was extended into space by regionalization based on surface erodibility and local climate (mean daily precipitation). It was found that wetter local climate and lower erodibility led to significantly higher rainfall thresholds required to trigger landslides. However, we showed that the improvement in model performance due to regionalization was marginal and much lower than what can be achieved by having a high-quality landslide database. Reference cases in which the landslide locations and timing were randomized and the landslide sample size was reduced showed the sensitivity of the Imax rainfall threshold model. Jack-knife and cross-validation experiments demonstrated that the model was robust. The results reported here highlight the potential of using rainfall ID threshold curves and rainfall threshold values for predicting the occurrence of landslides on a country or regional scale with possible applications in landslide warning systems, even with daily data.
NASA Astrophysics Data System (ADS)
Dunkerley, David
2017-04-01
It is important to develop methods for determining infiltrability and infiltration rates under conditions of fluctuating rainfall intensity, since rainfall intensity rarely remains constant. During rain of fluctuating intensity, ponding deepens and dissipates, and the drivers of soil infiltration, including sorptivity, fluctuate in value. This has been explored on dryland soils in the field, using small plots and rainfall simulation, involving repeated changes in intensity as well as short and long hiatuses in rainfall. The field area was the Fowlers Gap Arid Zone Research Station, in western NSW, Australia. The field experiments used multiple 60 minute design rainfall events that all had the same total depth and average rainfall intensity, but which included intensity bursts at various positions within the event. These were based on the character of local rainfall events in the field area. Infiltration was found from plot runoff rates measured every 2 minutes, and rainfall intensities that were adjusted by computer-controlled pumps at 1 second intervals. Data were analysed by fitting a family of affine Horton equations, all having the same final infiltrability (about 6-7 mm/h) but having initial infiltrabilities and exponential decay constants that were permitted to recover during periods of very low intensity rain, or rainfall hiatuses. Results show that the terms in the Horton equation, f0, fc, and Kf, can all be estimated from field data of the kind collected. This is a considerable advance over 'steady-state' rainfall simulation methods, which typically only allow the estimation of the final infiltrability fc. This may rarely be reached owing to the occurrence of short rainfall events, or to changing intensity under natural rainfall, that prohibits the establishment of steady-state infiltration and runoff. Importantly, this method allows a focus on the recovery of infiltrability during periods of reduced rainfall intensity. Recovery of infiltrability is shown to proceed at rates of up to 1 mm/h per minute of hiatus time, or by 20 mm/h during a 20 minute period of low rainfall intensity.
NASA Astrophysics Data System (ADS)
Koul, Vimal; Parekh, Anant; Srinivas, G.; Kakatkar, Rashmi; Chowdary, Jasti S.; Gnanaseelan, C.
2018-03-01
Coupled models tend to underestimate Indian summer monsoon (ISM) rainfall over most of the Indian subcontinent. Present study demonstrates that a part of dry bias is arising from the discrepancies in Oceanic Initial Conditions (OICs). Two hindcast experiments are carried out using Climate Forecast System (CFSv2) for summer monsoons of 2012-2014 in which two different OICs are utilized. With respect to first experiment (CTRL), second experiment (AcSAL) differs by two aspects: usage of high-resolution atmospheric forcing and assimilation of only ARGO observed temperature and salinity profiles for OICs. Assessment of OICs indicates that the quality of OICs is enhanced due to assimilation of actual salinity profiles. Analysis reveals that AcSAL experiment showed 10% reduction in the dry bias over the Indian land region during the ISM compared to CTRL. This improvement is consistently apparent in each month and is highest for June. The better representation of upper ocean thermal structure of tropical oceans at initial stage supports realistic upper ocean stability and mixing. Which in fact reduced the dominant cold bias over the ocean, feedback to air-sea interactions and land sea thermal contrast resulting better representation of monsoon circulation and moisture transport. This reduced bias of tropospheric moisture and temperature over the Indian land mass and also produced better tropospheric temperature gradient over land as well as ocean. These feedback processes reduced the dry bias in the ISM rainfall. Study concludes that initializing the coupled models with realistic OICs can reduce the underestimation of ISM rainfall prediction.
Are revised models better models? A skill score assessment of regional interannual variability
NASA Astrophysics Data System (ADS)
Sperber, Kenneth R.; Participating AMIP Modelling Groups
1999-05-01
Various skill scores are used to assess the performance of revised models relative to their original configurations. The interannual variability of all-India, Sahel and Nordeste rainfall and summer monsoon windshear is examined in integrations performed under the experimental design of the Atmospheric Model Intercomparison Project. For the indices considered, the revised models exhibit greater fidelity at simulating the observed interannual variability. Interannual variability of all-India rainfall is better simulated by models that have a more realistic rainfall climatology in the vicinity of India, indicating the beneficial effect of reducing systematic model error.
Are revised models better models? A skill score assessment of regional interannual variability
NASA Astrophysics Data System (ADS)
Participating AMIP Modelling Groups,; Sperber, Kenneth R.
Various skill scores are used to assess the performance of revised models relative to their original configurations. The interannual variability of all-India, Sahel and Nordeste rainfall and summer monsoon windshear is examined in integrations performed under the experimental design of the Atmospheric Model Intercomparison Project. For the indices considered, the revised models exhibit greater fidelity at simulating the observed interannual variability. Interannual variability of all-India rainfall is better simulated by models that have a more realistic rainfall climatology in the vicinity of India, indicating the beneficial effect of reducing systematic model error.
Tropical Rainfall Measuring Mission (TRMM) and the Future of Rainfall Estimation from Space
NASA Technical Reports Server (NTRS)
Kakar, Ramesh; Adler, Robert; Smith, Eric; Starr, David OC. (Technical Monitor)
2001-01-01
Tropical rainfall is important in the hydrological cycle and to the lives and welfare of humans. Three-fourths of the energy that drives the atmospheric wind circulation comes from the latent heat released by tropical precipitation. Recognizing the importance of rain in the tropics, NASA for the U.S.A. and NASDA for Japan have partnered in the design, construction and flight of a satellite mission to measure tropical rainfall and calculate the associated latent heat release. The Tropical Rainfall Measuring Mission (TRMM) satellite was launched on November 27, 1997, and data from all the instruments first became available approximately 30 days after launch. Since then, much progress has been made in the calibration of the sensors, the improvement of the rainfall algorithms and applications of these results to areas such as Data Assimilation and model initialization. TRMM has reduced the uncertainty of climatological rainfall in tropics by over a factor of two, therefore establishing a standard for comparison with previous data sets and climatologies. It has documented the diurnal variation of precipitation over the oceans, showing a distinct early morning peak and this satellite mission has shown the utility of precipitation information for the improvement of numerical weather forecasts and climate modeling. This paper discusses some promising applications using TRMM data and introduces a measurement concept being discussed by NASA/NASDA and ESA for the future of rainfall estimation from space.
NASA Astrophysics Data System (ADS)
Borodina, Aleksandra; Fischer, Erich M.; Knutti, Reto
2017-04-01
Model projections of heavy rainfall are uncertain. On timescales of few decades, internal variability plays an important role and therefore poses a challenge to detect robust model responses. We show that spatial aggregation across regions with intense heavy rainfall events, - defined as grid cells with high annual precipitation maxima (Rx1day), - allows to reduce the role of internal variability and thus to detect a robust signal during the historical period. This enables us to evaluate models with observational datasets and to constrain long-term projections of the intensification of heavy rainfall, i.e., to recalibrate full model ensemble consistent with observations resulting in narrower range of projections. In the regions of intense heavy rainfall, we found two present-day metrics that are related to a model's projection. The first metric is the observed relationship between the area-weighted mean of the annual precipitation maxima (Rx1day) and the global land temperatures. The second is the fraction of land exhibiting statistically significant relationships between local annual precipitation maxima (Rx1day) and global land temperatures over the historical period. The models that simulate high values in both metrics are those that are in better agreement with observations and show strong future intensification of heavy rainfall. This implies that changes in heavy rainfall are likely to be more intense than anticipated from the multi-model mean.
Impact of Satellite Remote Sensing Data on Simulations of ...
We estimated surface salinity flux and solar penetration from satellite data, and performed model simulations to examine the impact of including the satellite estimates on temperature, salinity, and dissolved oxygen distributions on the Louisiana continental shelf (LCS) near the annual hypoxic zone. Rainfall data from the Tropical Rainfall Measurement Mission (TRMM) were used for the salinity flux, and the diffuse attenuation coefficient (Kd) from Moderate Resolution Imaging Spectroradiometer (MODIS) were used for solar penetration. Improvements in the model results in comparison with in situ observations occurred when the two types of satellite data were included. Without inclusion of the satellite-derived surface salinity flux, realistic monthly variability in the model salinity fields was observed, but important inter-annual variability wasmissed. Without inclusion of the satellite-derived light attenuation, model bottom water temperatures were too high nearshore due to excessive penetration of solar irradiance. In general, these salinity and temperature errors led to model stratification that was too weak, and the model failed to capture observed spatial and temporal variability in water-column vertical stratification. Inclusion of the satellite data improved temperature and salinity predictions and the vertical stratification was strengthened, which improved prediction of bottom-water dissolved oxygen. The model-predicted area of bottom-water hypoxia on the
NASA Astrophysics Data System (ADS)
Pritchard, M. S.; Kooperman, G. J.; Zhao, Z.; Wang, M.; Russell, L. M.; Somerville, R. C.; Ghan, S. J.
2011-12-01
Evaluating the fidelity of new aerosol physics in climate models is confounded by uncertainties in source emissions, systematic error in cloud parameterizations, and inadequate sampling of long-range plume concentrations. To explore the degree to which cloud parameterizations distort aerosol processing and scavenging, the Pacific Northwest National Laboratory (PNNL) Aerosol-Enabled Multi-Scale Modeling Framework (AE-MMF), a superparameterized branch of the Community Atmosphere Model Version 5 (CAM5), is applied to represent the unusually active and well sampled North American wildfire season in 2004. In the AE-MMF approach, the evolution of double moment aerosols in the exterior global resolved scale is linked explicitly to convective statistics harvested from an interior cloud resolving scale. The model is configured in retroactive nudged mode to observationally constrain synoptic meteorology, and Arctic wildfire activity is prescribed at high space/time resolution using data from the Global Fire Emissions Database. Comparisons against standard CAM5 bracket the effect of superparameterization to isolate the role of capturing rainfall intermittency on the bulk characteristics of 2004 Arctic plume transport. Ground based lidar and in situ aircraft wildfire plume constraints from the International Consortium for Atmospheric Research on Transport and Transformation field campaign are used as a baseline for model evaluation.
Gauge-adjusted rainfall estimates from commercial microwave links
NASA Astrophysics Data System (ADS)
Fencl, Martin; Dohnal, Michal; Rieckermann, Jörg; Bareš, Vojtěch
2017-01-01
Increasing urbanization makes it more and more important to have accurate stormwater runoff predictions, especially with potentially severe weather and climatic changes on the horizon. Such stormwater predictions in turn require reliable rainfall information. Especially for urban centres, the problem is that the spatial and temporal resolution of rainfall observations should be substantially higher than commonly provided by weather services with their standard rainfall monitoring networks. Commercial microwave links (CMLs) are non-traditional sensors, which have been proposed about a decade ago as a promising solution. CMLs are line-of-sight radio connections widely used by operators of mobile telecommunication networks. They are typically very dense in urban areas and can provide path-integrated rainfall observations at sub-minute resolution. Unfortunately, quantitative precipitation estimates (QPEs) from CMLs are often highly biased due to several epistemic uncertainties, which significantly limit their usability. In this manuscript we therefore suggest a novel method to reduce this bias by adjusting QPEs to existing rain gauges. The method has been specifically designed to produce reliable results even with comparably distant rain gauges or cumulative observations. This eliminates the need to install reference gauges and makes it possible to work with existing information. First, the method is tested on data from a dedicated experiment, where a CML has been specifically set up for rainfall monitoring experiments, as well as operational CMLs from an existing cellular network. Second, we assess the performance for several experimental layouts of ground truth
from rain gauges (RGs) with different spatial and temporal resolutions. The results suggest that CMLs adjusted by RGs with a temporal aggregation of up to 1 h (i) provide precise high-resolution QPEs (relative error < 7 %, Nash-Sutcliffe efficiency coefficient > 0.75) and (ii) that the combination of both sensor types clearly outperforms each individual monitoring system. Unfortunately, adjusting CML observations to RGs with longer aggregation intervals of up to 24 h has drawbacks. Although it substantially reduces bias, it unfavourably smoothes out rainfall peaks of high intensities, which is undesirable for stormwater management. A similar, but less severe, effect occurs due to spatial averaging when CMLs are adjusted to remote RGs. Nevertheless, even here, adjusted CMLs perform better than RGs alone. Furthermore, we provide first evidence that the joint use of multiple CMLs together with RGs also reduces bias in their QPEs. In summary, we believe that our adjustment method has great potential to improve the space-time resolution of current urban rainfall monitoring networks. Nevertheless, future work should aim to better understand the reason for the observed systematic error in QPEs from CMLs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halder, Subhadeep; Saha, Subodh K.; Dirmeyer, Paul A.
Daily moderate rainfall events, which constitute a major portion of seasonal summer monsoon rainfall over central India, have decreased significantly during the period 1951 through 2005. On the other hand, mean and extreme near-surface daily temperature during the monsoon season have increased by a maximum of 1–1.5 °C. Using simulations made with a high-resolution regional climate model (RegCM4) and prescribed land cover of years 1950 and 2005, it is demonstrated that part of the changes in moderate rainfall events and temperature have been caused by land-use/land-cover change (LULCC), which is mostly anthropogenic. Model simulations show that the increase in seasonal mean and extreme temperature over centralmore » India coincides with the region of decrease in forest and increase in crop cover. Our results also show that LULCC alone causes warming in the extremes of daily mean and maximum temperatures by a maximum of 1–1.2 °C, which is comparable with the observed increasing trend in the extremes. Decrease in forest cover and simultaneous increase in crops not only reduces the evapotranspiration over land and large-scale convective instability, but also contributes toward decrease in moisture convergence through reduced surface roughness. These factors act together in reducing significantly the moderate rainfall events and the amount of rainfall in that category over central India. Additionally, the model simulations are repeated by removing the warming trend in sea surface temperatures over the Indian Ocean. As a result, enhanced warming at the surface and greater decrease in moderate rainfall events over central India compared to the earlier set of simulations are noticed. Results from these additional experiments corroborate our initial findings and confirm the contribution of LULCC in the decrease in moderate rainfall events and increase in daily mean and extreme temperature over India. Therefore, this study demonstrates the important implications of LULCC over India during the monsoon season. Although, the regional climate model helps in better resolving land–atmosphere feedbacks over the Indian region, the inferences do depend on the fidelity of the model in capturing the features of Indian monsoon realistically. Lastly, it is proposed that similar studies using a suite of climate models will further enrich our understanding about the role of LULCC in the Indian monsoon climate.« less
Halder, Subhadeep; Saha, Subodh K.; Dirmeyer, Paul A.; ...
2016-05-10
Daily moderate rainfall events, which constitute a major portion of seasonal summer monsoon rainfall over central India, have decreased significantly during the period 1951 through 2005. On the other hand, mean and extreme near-surface daily temperature during the monsoon season have increased by a maximum of 1–1.5 °C. Using simulations made with a high-resolution regional climate model (RegCM4) and prescribed land cover of years 1950 and 2005, it is demonstrated that part of the changes in moderate rainfall events and temperature have been caused by land-use/land-cover change (LULCC), which is mostly anthropogenic. Model simulations show that the increase in seasonal mean and extreme temperature over centralmore » India coincides with the region of decrease in forest and increase in crop cover. Our results also show that LULCC alone causes warming in the extremes of daily mean and maximum temperatures by a maximum of 1–1.2 °C, which is comparable with the observed increasing trend in the extremes. Decrease in forest cover and simultaneous increase in crops not only reduces the evapotranspiration over land and large-scale convective instability, but also contributes toward decrease in moisture convergence through reduced surface roughness. These factors act together in reducing significantly the moderate rainfall events and the amount of rainfall in that category over central India. Additionally, the model simulations are repeated by removing the warming trend in sea surface temperatures over the Indian Ocean. As a result, enhanced warming at the surface and greater decrease in moderate rainfall events over central India compared to the earlier set of simulations are noticed. Results from these additional experiments corroborate our initial findings and confirm the contribution of LULCC in the decrease in moderate rainfall events and increase in daily mean and extreme temperature over India. Therefore, this study demonstrates the important implications of LULCC over India during the monsoon season. Although, the regional climate model helps in better resolving land–atmosphere feedbacks over the Indian region, the inferences do depend on the fidelity of the model in capturing the features of Indian monsoon realistically. Lastly, it is proposed that similar studies using a suite of climate models will further enrich our understanding about the role of LULCC in the Indian monsoon climate.« less
NASA Astrophysics Data System (ADS)
Ramírez, Beatriz H.; Teuling, Adriaan J.; Ganzeveld, Laurens; Hegger, Zita; Leemans, Rik
2017-09-01
Mountain areas are characterized by a large heterogeneity in hydrological and meteorological conditions. This heterogeneity is currently poorly represented by gauging networks and by the coarse scale of global and regional climate and hydrological models. Tropical Montane Cloud Forests (TMCFs) are found in a narrow elevation range and are characterized by persistent fog. Their water balance depends on local and upwind temperatures and moisture, therefore, changes in these parameters will alter TMCF hydrology. Until recently the hydrological functioning of TMCFs was mainly studied in coastal regions, while continental TMCFs were largely ignored. This study contributes to fill this gap by focusing on a TMCF which is located on the northern eastern Andes at an elevation of 1550-2300 m asl, in the Orinoco river basin highlands. In this study, we describe the spatial and seasonal meteorological variability, analyse the corresponding catchment hydrological response to different land cover, and perform a sensitivity analysis on uncertainties related to rainfall interpolation, catchment area estimation and streamflow measurements. Hydro-meteorological measurements, including hourly solar radiation, temperature, relative humidity, wind speed, precipitation, soil moisture and streamflow, were collected from June 2013 to May 2014 at three gauged neighbouring catchments with contrasting TMCF/grassland cover and less than 250 m elevation difference. We found wetter and less seasonally contrasting conditions at higher elevations, indicating a positive relation between elevation and fog or rainfall persistence. This pattern is similar to that of other eastern Andean TMCFs, however, the study site had higher wet season rainfall and lower dry season rainfall suggesting that upwind contrasts in land cover and moisture can influence the meteorological conditions at eastern Andean TMCFs. Contrasting streamflow dynamics between the studied catchments reflect the overall system response as a function of the catchments' elevation and land cover. The forested catchment, located at the higher elevations, had the highest seasonal streamflows. During the wet season, different land covers at the lower elevations were important in defining the streamflow responses between the deforested catchment and the catchment with intermediate forest cover. Streamflows were higher and the rainfall-runoff responses were faster in the deforested catchment than in the intermediate forest cover catchment. During the dry season, the catchments' elevation defined streamflows due to higher water inputs and lower evaporative demand at the higher elevations.
Effects of extreme low flows on freshwater shrimps in a perennial tropical stream.
A.P. COVICH; T.A. CROWL; F.N. SCATENA
2003-01-01
1. Long-term data on rainfall suggests that perennial rainforest streams rarely are subject to drying of riffles or pools in the wet, non-seasonal Caribbean climate of Puerto Rico. Unusually low rainfall in 1994 caused some headwater riffles to dry out completely, resulting in isolated pools, reduced pool volumes and loss of access to microhabitats by benthic...
Rainfall, soil moisture, and runoff dynamics in New Mexico pinon-juniper woodland watersheds
Carlos Ochoa; Alexander Fernald; Vincent Tidwell
2008-01-01
Clearing trees in pinon-juniper woodlands may increase grass cover and infiltration, leading to reduced surface runoff and erosion. This study was conducted to evaluate pinon-juniper hydrology conditions during baseline data collection in a paired watershed study. We instrumented six 1.0 to 1.3 ha experimental watersheds near Santa Fe, NM to collect rainfall, soil...
Consideration of online rainfall measurement and nowcasting for RTC of the combined sewage system.
Rouault, P; Schroeder, K; Pawlowsky-Reusing, E; Reimer, E
2008-01-01
In Berlin, Germany, the demand for enhanced protection of the environment and the growing economic pressure have led to an increased application of control concepts within the sewage system. A global control strategy to regulate the pumpage of the combined sewage system to the treatment plant was developed and evaluated in a theoretical study. The objective was to reduce CSO. In this paper an extension of the existing control algorithm by information from online rainfall measurement and radar nowcasting is described. The rainfall information is taken into account by two additive terms describing the predicted volume from rainfall runoff. On the basis of numerical simulation the potential of these two complementary forecast terms in the global control algorithm to further reduce CSO is evaluated. The investigations are based on long-time simulations that are conducted with the dynamic flow routing model InfoWorks for three subcatchments of the Berlin drainage system. The results show that at the current Berlin system a CSO reduction of only 0.8% is possible. The effect of the forecast terms is limited by operational constraints. Limits are set to both, the delivery from each individual pump station and the total pumpage to the treatment plant.
NASA Astrophysics Data System (ADS)
Leung, L. R.; Houze, R.; Feng, Z.; Yang, Q.
2017-12-01
Mesoscale convective systems (MCSs) are important precipitation producers that account for 30-70% of warm season rainfall between the Rocky Mountains and Mississippi River and some 50-60% of tropical rainfall. Besides the tendency to produce floods, MCSs also carry with them a variety of attendant severe weather phenomena. Our recent analysis found that observed increases in springtime total and extreme rainfall in the central United States in the past 35 years are dominated by increased frequency and intensity of long-lasting MCSs. Understanding the environmental conditions producing long-lived MCSs is therefore a priority in determining how heavy precipitation events might change in character and location in a changing climate. Continental-scale convection-permitting simulations of the warm seasons using the WRF model reproduce realistic structure and frequency distribution of lifetime and event mean precipitation of MCSs over the central United States. The simulations show that MCSs systematically form over the central Great Plains ahead of a trough in the westerlies in combination with an enhanced low-level moist jet from the Gulf of Mexico. These environmental properties at the time of storm initiation are most prominent for the MCSs that persist for the longest times. MCSs reaching lifetimes of 9 h or more occur closer to the approaching trough than shorter-lived MCSs. These long-lived MCSs exhibit the strongest feedback to the environment through diabatic heating in the trailing regions of the MCSs that helps to maintain them over a long period of time. The identified large-scale and mesoscale ingredients provide a framework for understanding and modeling the potential changes in MCSs and associated hydrometeorological extremes in the future.
Past and future hydro-climatic change and the 2015 drought in the interior of western Canada
NASA Astrophysics Data System (ADS)
DeBeer, C. M.; Wheater, H. S.; Pomeroy, J. W.; Stewart, R. E.; Szeto, K.; Brimelow, J.; Chun, K. P.; Masud, M. B.; Bonsal, B. R.
2015-12-01
The interior of western Canada has experienced rapid and severe hydro-climatic change in recent decades. This is projected to continue in future. Since 1950, mean annual air temperature has increased by 2 °C (4 °C increase in winter daily means) with associated changes in cryospheric regime. Changes in precipitation have varied regionally; in the Prairies there has been a decrease in winter precipitation, shift from snowfall to rainfall, and increased clustering of summer rainfall events into multiple day storms. Regionally, river discharge indicates an earlier spring freshet and increased incidence of rain-on-snow peak flow events, but otherwise mixed responses due to multiple process interactions. In winter/spring 2015, persistent anomalous ridging conditions developed over western North America causing widespread drought. This produced abnormally warm and dry conditions over the Rocky Mountain headwaters of the Mackenzie and Saskatchewan Rivers, resulting in low spring snowpacks that melted earlier than normal and were followed by an atypical lack of spring rainfall. By summer 2015, most of western Canada was subject to extreme drought conditions leading to record dry soil moisture conditions in parts of the Prairies during a key crop growth time, streamflows that were greatly diminished, and extensive wildfires across the Boreal Forest. The importance of the warmer winter to this drought and the contextual trend for increasing winter warmth provide new insight into the impact of climate warming on droughts in cold regions. This talk will discuss efforts by the Changing Cold Regions Network (CCRN; www.ccrnetwork.ca) to understand and diagnose the 2015 drought, its potential linkages with the concurrent California drought and other continental events, and its relevance in the context of historical and predicted future climate change.
NASA Technical Reports Server (NTRS)
Hong, Yang; Adler, Robert F.; Huffman, George J.; Pierce, Harold
2008-01-01
Advances in flood monitoring/forecasting have been constrained by the difficulty in estimating rainfall continuously over space (catchment-, national-, continental-, or even global-scale areas) and flood-relevant time scale. With the recent availability of satellite rainfall estimates at fine time and space resolution, this paper describes a prototype research framework for global flood monitoring by combining real-time satellite observations with a database of global terrestrial characteristics through a hydrologically relevant modeling scheme. Four major components included in the framework are (1) real-time precipitation input from NASA TRMM-based Multi-satellite Precipitation Analysis (TMPA); (2) a central geospatial database to preprocess the land surface characteristics: water divides, slopes, soils, land use, flow directions, flow accumulation, drainage network etc.; (3) a modified distributed hydrological model to convert rainfall to runoff and route the flow through the stream network in order to predict the timing and severity of the flood wave, and (4) an open-access web interface to quickly disseminate flood alerts for potential decision-making. Retrospective simulations for 1998-2006 demonstrate that the Global Flood Monitor (GFM) system performs consistently at both station and catchment levels. The GFM website (experimental version) has been running at near real-time in an effort to offer a cost-effective solution to the ultimate challenge of building natural disaster early warning systems for the data-sparse regions of the world. The interactive GFM website shows close-up maps of the flood risks overlaid on topography/population or integrated with the Google-Earth visualization tool. One additional capability, which extends forecast lead-time by assimilating QPF into the GFM, also will be implemented in the future.
Shi, Qian-hua; Wang, Wen-long; Guo, Ming-ming; Bai, Yun; Deng, Li-qiang; Li, Jian-ming; Li, Yao-lin
2015-09-01
Engineering accumulation formed in production and construction projects is characterized by unique structure and complex material composition. Characteristics of soil erosion on the engineering accumulation significantly differ from those on farmland. An artificially simulated rainfall experiment was carried out to investigate the effects of rainfall intensity on the processes of runoff and sediment yielding on the engineering accumulation of different gravel contents (0%, 10%, 20% and 30%) in red soil regions. Results showed that the initial time of runoff generation decreased with increases in rainfall intensity and gravel content, the decreased amplitudes being about 48.5%-77.9% and 4.2%-34.2%, respectively. The initial time was found to be a power function of rainfall intensity. Both runoff velocity and runoff rate manifested a trend of first rising and then in a steady state with runoff duration. Rainfall intensity was found to be the main factor influencing runoff velocity and runoff rate, whereas the influence of gravel content was not significant. About 10% of gravel content was determined to be a critical value in the influence of gravel content on runoff volume. For the underlying surface of 10% gravel content, the runoff volume was least at rainfall intensity of 1.0 mm · min(-1) and maximum at rainfall intensity of greater than 1.0 mm · min(-1). The runoff volume in- creased 10%-60% with increase in rainfall intensity. Sediment concentration showed a sharp decline in first 6 min and then in a stable state in rest of time. Influence of rainfall intensity on sediment concentration decreased as gravel content increased. Gravels could reduce sediment yield significantly at rainfall intensity of greater than 1.0 mm · min(-1). Sediment yield was found to be a linear function of rainfall intensity and gravel content.
NASA Astrophysics Data System (ADS)
da Silva, Felipe das Neves Roque; Alves, José Luis Drummond; Cataldi, Marcio
2018-03-01
This paper aims to validate inflow simulations concerning the present-day climate at Água Vermelha Hydroelectric Plant (AVHP—located on the Grande River Basin) based on the Soil Moisture Accounting Procedure (SMAP) hydrological model. In order to provide rainfall data to the SMAP model, the RegCM regional climate model was also used working with boundary conditions from the MIROC model. Initially, present-day climate simulation performed by RegCM model was analyzed. It was found that, in terms of rainfall, the model was able to simulate the main patterns observed over South America. A bias correction technique was also used and it was essential to reduce mistakes related to rainfall simulation. Comparison between rainfall simulations from RegCM and MIROC showed improvements when the dynamical downscaling was performed. Then, SMAP, a rainfall-runoff hydrological model, was used to simulate inflows at Água Vermelha Hydroelectric Plant. After calibration with observed rainfall, SMAP simulations were evaluated in two different periods from the one used in calibration. During calibration, SMAP captures the inflow variability observed at AVHP. During validation periods, the hydrological model obtained better results and statistics with observed rainfall. However, in spite of some discrepancies, the use of simulated rainfall without bias correction captured the interannual flow variability. However, the use of bias removal in the simulated rainfall performed by RegCM brought significant improvements to the simulation of natural inflows performed by SMAP. Not only the curve of simulated inflow became more similar to the observed inflow, but also the statistics improved their values. Improvements were also noticed in the inflow simulation when the rainfall was provided by the regional climate model compared to the global model. In general, results obtained so far prove that there was an added value in rainfall when regional climate model was compared to global climate model and that data from regional models must be bias-corrected so as to improve their results.
Wind erodibility response of physical and biological crusts to rain and flooding
NASA Astrophysics Data System (ADS)
Aubault, H.; Bullard, J. E.; Strong, C. L.; Ghadiri, H.; McTainsh, G. H.
2015-12-01
Soil surface crusts are important controllers of the small-scale wind entrainment processes that occur across all dust source regions globally. The crust type influences water and wind erosion by impacting infiltration, runoff, threshold wind velocity and surface storage capacity of both water and loose erodible material. The spatial and temporal patterning of both physical and biological crusts is known to change with rainfall and flooding. However, little is known about the impact of differing water quantity (from light rainfall through to flooding) on soil crusting characteristics (strength, roughness, sediment loss). This study compares the response of two soil types (loamy sand - LS, sandy loam - SL) with and without BSCs to three different rainfall events (2mm, 8mm, 15mm). Two BSC treatments were used one that simulated a young cyanobacteria dominated crust and an older flood induced multi species biological crust. For both soil types, soil surface strength increased with increasing rainfall amount with LS having consistently higher resistance to rupture than SL. Regardless of texture, soils with BSCs were more resistant and strength did not change in response to rainfall impact. Soil loss due to wind erosion was substantially higher on bare LS (4 times higher) and SL (3 times higher) soils compared with those with BSCs. Our results also show that young biological crust (formed by the rainfall event) have reduced soil erodibility with notably greater strength, roughness and reduced sediment losses when compared to soils with physical crust. Interestingly though, the erodibility of the old BSC did not differ greatly from that of the young BSC with respect to strength, roughness and sediment loss. This raises questions regarding the rapid soil surface protection offered by young colonising cyanobacteria crusts. Further analyses exploring the role of biological soil crusts on surface response to rainfall and wind saltation impact are ongoing.
Lightning activity with rainfall during El Nino and La Nina events over India
NASA Astrophysics Data System (ADS)
Tinmaker, M. I. R.; Aslam, M. Y.; Ghude, Sachin D.; Chate, D. M.
2017-10-01
This paper appraises the association of lightning flash count (FC) with rainfall using the satellite-borne Lightning Imaging Sensor's (LIS) data along with gridded rainfall data (0.5o × 0.5o) for Indian summer monsoon seasons over 10 years (2001-2010). During strong El Nino years, 2002 and 2009, FCs were greater in magnitude by about 26.5 % and 37 %, than the long-term average, respectively, while during weak El Nino year (2004), it was more by 8 %. During the same years, the rainfall was deficient by about 10 % than the long-term average. Similarly, a rise in aerosol optical depth (AOD) over its average value (by about 15 % and 20 %) reduces the ratio of rainfall to FC (RLR) by 41 % and 44 % for strong El Nino years 2002 and 2009, respectively, and for weak El Nino year (2004), a 6.5 % rise in AOD lowers the RLR by 20 %. Bowen ratio more by 11 % and 17 % of its average value reduces the RLR by 41 % and 44 % for strong El Nino years 2002 and 2009, respectively, and, also, Bowen ratio higher by 8 % for 2004 declines RLR by 20 %. On the other hand, Bowen ratio less by 9 % and 6 % raises the RLR by 19 % and 56 % for moderate La Nina year (2007) and strong La Nina year (2010), respectively. Results for the daily rainfall, AOD and Bowen ratio over Indian regions, are discussed for strong El Nino and La Nina years. Correlations of FC with AOD and Bowen ratio of 0.66 and 0.71, respectively, while, that of FC with ONI of 0.56 indicates numerous (fewer) break days during El Nino (La Nina) years.
Potter, Thomas L; Truman, Clint C; Bosch, David D; Bednarz, Craig
2004-01-01
In the Atlantic Coastal Plain region of southern Georgia (USA), cotton (Gossypium hirsutum L.) acreage increased threefold in the past decade. To more effectively protect water quality in the region, best management practices are needed that reduce pesticide runoff from fields in cotton production. This study compared runoff of two herbicides, fluometuron [N,N-dimethyl-N'-[3-(trifluoromethyl)-phenyl]-urea] and pendimethalin [N-(1-ethylpropyl)-3,4-dimethyl-2,6-dinitro-benzenamine], from plots in strip-tillage (ST) and conventional-tillage (CT) management near Tifton, GA. Rainfall simulations were conducted one day after preemergence herbicide applications to 0.0006-ha plots and runoff from 0.15-ha plots due to natural rainfall following preemergence pendimethalin and fluometuron and postemergence fluometuron use was monitored. Pendimethalin runoff was greater under CT than ST due to strong pendimethalin soil sorption and higher erosion and runoff under CT. The highest losses, 1.3% of applied in CT and 0.22% of applied in ST, were observed during rainfall simulations conducted 1 DAT. Fluometuron runoff from natural rainfall was substantially lower from ST than from CT plots but the trend was reversed in rainfall simulations. In all studies, fluometuron runoff was also relatively low (<1% of applied), and on plots under natural rainfall, desmethylfluometuron (DMF) represented about 50% of total fluometuron runoff. Fluometuron's relatively low runoff rate appeared linked to its rapid leaching, and high DMF detection rates in runoff support DMF inclusion in fluometuron risk assessments. Results showed that ST has the potential to reduce runoff of both herbicides, but fluometuron leaching may be a ground water quality concern.
Estimation of Rain Intensity Spectra over the Continental US Using Ground Radar-Gauge Measurements
NASA Technical Reports Server (NTRS)
Lin, Xin; Hou, Arthur Y.
2013-01-01
A high-resolution surface rainfall product is used to estimate rain characteristics over the continental US as a function of rain intensity. By defining each data at 4-km horizontal resolutions and 1-h temporal resolutions as an individual precipitating/nonprecipitating sample, statistics of rain occurrence and rain volume including their geographical and seasonal variations are documented. Quantitative estimations are also conducted to evaluate the impact of missing light rain events due to satellite sensors' detection capabilities. It is found that statistics of rain characteristics have large seasonal and geographical variations across the continental US. Although heavy rain events (> 10 mm/hr.) only occupy 2.6% of total rain occurrence, they may contribute to 27% of total rain volume. Light rain events (< 1.0 mm/hr.), occurring much more frequently (65%) than heavy rain events, can also make important contributions (15%) to the total rain volume. For minimum detectable rain rates setting at 0.5 and 0.2 mm/hr which are close to sensitivities of the current and future space-borne precipitation radars, there are about 43% and 11% of total rain occurrence below these thresholds, and they respectively represent 7% and 0.8% of total rain volume. For passive microwave sensors with their rain pixel sizes ranging from 14 to 16 km and the minimum detectable rain rates around 1 mm/hr., the missed light rain events may account for 70% of train occurrence and 16% of rain volume. Statistics of rain characteristics are also examined on domains with different temporal and spatial resolutions. Current issues in estimates of rain characteristics from satellite measurements and model outputs are discussed.
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Wu, Di; Lang, Stephen; Chern, Jiun-Dar; Peters-Lidard, Christa; Fridlind, Ann; Matsui, Toshihisa
2016-01-01
The Goddard microphysics was recently improved by adding a fourth ice class (frozen dropshail). This new 4ICE scheme was developed and tested in the Goddard Cumulus Ensemble (GCE) model for an intense continental squall line and a moderate, less organized continental case. Simulated peak radar reflectivity profiles were improved in intensity and shape for both cases, as were the overall reflectivity probability distributions versus observations. In this study, the new Goddard 4ICE scheme is implemented into the regional-scale NASA Unified-Weather Research and Forecasting (NU-WRF) model, modified and evaluated for the same intense squall line, which occurred during the Midlatitude Continental Convective Clouds Experiment (MC3E). NU-WRF simulated radar reflectivities, total rainfall, propagation, and convective system structures using the 4ICE scheme modified herein agree as well as or significantly better with observations than the original 4ICE and two previous 3ICE (graupel or hail) versions of the Goddard microphysics. With the modified 4ICE, the bin microphysics-based rain evaporation correction improves propagation and in conjunction with eliminating the unrealistic dry collection of icesnow by hail can replicate the erect, narrow, and intense convective cores. Revisions to the ice supersaturation, ice number concentration formula, and snow size mapping, including a new snow breakup effect, allow the modified 4ICE to produce a stronger, better organized system, more snow, and mimic the strong aggregation signature in the radar distributions. NU-WRF original 4ICE simulated radar reflectivity distributions are consistent with and generally superior to those using the GCE due to the less restrictive domain and lateral boundaries.
Multisite rainfall downscaling and disaggregation in a tropical urban area
NASA Astrophysics Data System (ADS)
Lu, Y.; Qin, X. S.
2014-02-01
A systematic downscaling-disaggregation study was conducted over Singapore Island, with an aim to generate high spatial and temporal resolution rainfall data under future climate-change conditions. The study consisted of two major components. The first part was to perform an inter-comparison of various alternatives of downscaling and disaggregation methods based on observed data. This included (i) single-site generalized linear model (GLM) plus K-nearest neighbor (KNN) (S-G-K) vs. multisite GLM (M-G) for spatial downscaling, (ii) HYETOS vs. KNN for single-site disaggregation, and (iii) KNN vs. MuDRain (Multivariate Rainfall Disaggregation tool) for multisite disaggregation. The results revealed that, for multisite downscaling, M-G performs better than S-G-K in covering the observed data with a lower RMSE value; for single-site disaggregation, KNN could better keep the basic statistics (i.e. standard deviation, lag-1 autocorrelation and probability of wet hour) than HYETOS; for multisite disaggregation, MuDRain outperformed KNN in fitting interstation correlations. In the second part of the study, an integrated downscaling-disaggregation framework based on M-G, KNN, and MuDRain was used to generate hourly rainfall at multiple sites. The results indicated that the downscaled and disaggregated rainfall data based on multiple ensembles from HadCM3 for the period from 1980 to 2010 could well cover the observed mean rainfall amount and extreme data, and also reasonably keep the spatial correlations both at daily and hourly timescales. The framework was also used to project future rainfall conditions under HadCM3 SRES A2 and B2 scenarios. It was indicated that the annual rainfall amount could reduce up to 5% at the end of this century, but the rainfall of wet season and extreme hourly rainfall could notably increase.
de Jong, Pieter; Tanajura, Clemente Augusto Souza; Sánchez, Antonio Santos; Dargaville, Roger; Kiperstok, Asher; Torres, Ednildo Andrade
2018-09-01
By the end of this century higher temperatures and significantly reduced rainfall are projected for the Brazilian North and Northeast (NE) regions due to Global Warming. This study examines the impact of these long-term rainfall changes on the Brazilian Northeast's hydroelectric production. Various studies that use different IPCC models are examined in order to determine the average rainfall reduction by the year 2100 in comparison to baseline data from the end of the 20th century. It was found that average annual rainfall in the NE region could decrease by approximately 25-50% depending on the emissions scenario. Analysis of historical rainfall data in the São Francisco basin during the last 57years already shows a decline of more than 25% from the 1961-90 long-term average. Moreover, average annual rainfall in the basin has been below its long-term average every year bar one since 1992. If this declining trend continues, rainfall reduction in the basin could be even more severe than the most pessimistic model projections. That is, the marked drop in average rainfall projected for 2100, based on the IPCC high emissions scenario, could actually eventuate before 2050. Due to the elasticity factor between rainfall and streamflow and because of increased amounts of irrigation in the São Francisco basin, the reduction in the NE's average hydroelectric production in the coming decades could be double the predicted decline in rainfall. Conversely, it is estimated that wind power potential in the Brazilian NE will increase substantially by 2100. Therefore both wind and solar power will need to be significantly exploited in order for the NE region to sustainably replace lost hydroelectric production. Copyright © 2018 Elsevier B.V. All rights reserved.
Mirus, Benjamin B.; Becker, Rachel E.; Baum, Rex L.; Smith, Joel B.
2018-01-01
Early warning for rainfall-induced shallow landsliding can help reduce fatalities and economic losses. Although these commonly occurring landslides are typically triggered by subsurface hydrological processes, most early warning criteria rely exclusively on empirical rainfall thresholds and other indirect proxies for subsurface wetness. We explore the utility of explicitly accounting for antecedent wetness by integrating real-time subsurface hydrologic measurements into landslide early warning criteria. Our efforts build on previous progress with rainfall thresholds, monitoring, and numerical modeling along the landslide-prone railway corridor between Everett and Seattle, Washington, USA. We propose a modification to a previously established recent versus antecedent (RA) cumulative rainfall thresholds by replacing the antecedent 15-day rainfall component with an average saturation observed over the same timeframe. We calculate this antecedent saturation with real-time telemetered measurements from five volumetric water content probes installed in the shallow subsurface within a steep vegetated hillslope. Our hybrid rainfall versus saturation (RS) threshold still relies on the same recent 3-day rainfall component as the existing RA thresholds, to facilitate ready integration with quantitative precipitation forecasts. During the 2015–2017 monitoring period, this RS hybrid approach has an increase of true positives and a decrease of false positives and false negatives relative to the previous RA rainfall-only thresholds. We also demonstrate that alternative hybrid threshold formats could be even more accurate, which suggests that further development and testing during future landslide seasons is needed. The positive results confirm that accounting for antecedent wetness conditions with direct subsurface hydrologic measurements can improve thresholds for alert systems and early warning of rainfall-induced shallow landsliding.
NASA Astrophysics Data System (ADS)
Soulis, K. X.; Valiantzas, J. D.
2011-10-01
The Soil Conservation Service Curve Number (SCS-CN) approach is widely used as a simple method for predicting direct runoff volume for a given rainfall event. The CN values can be estimated by being selected from tables. However, it is more accurate to estimate the CN value from measured rainfall-runoff data (assumed available) in a watershed. Previous researchers indicated that the CN values calculated from measured rainfall-runoff data vary systematically with the rainfall depth. They suggested the determination of a single asymptotic CN value observed for very high rainfall depths to characterize the watersheds' runoff response. In this paper, the novel hypothesis that the observed correlation between the calculated CN value and the rainfall depth in a watershed reflects the effect of the inevitable presence of soil-cover complex spatial variability along watersheds is being tested. Based on this hypothesis, the simplified concept of a two-CN heterogeneous system is introduced to model the observed CN-rainfall variation by reducing the CN spatial variability into two classes. The behavior of the CN-rainfall function produced by the proposed two-CN system concept is approached theoretically, it is analyzed systematically, and it is found to be similar to the variation observed in natural watersheds. Synthetic data tests, natural watersheds examples, and detailed study of two natural experimental watersheds with known spatial heterogeneity characteristics were used to evaluate the method. The results indicate that the determination of CN values from rainfall runoff data using the proposed two-CN system approach provides reasonable accuracy and it over performs the previous original method based on the determination of a single asymptotic CN value. Although the suggested method increases the number of unknown parameters to three (instead of one), a clear physical reasoning for them is presented.
Zeglin, L H; Bottomley, P J; Jumpponen, A; Rice, C W; Arango, M; Lindsley, A; McGowan, A; Mfombep, P; Myrold, D D
2013-10-01
Climate change models predict that future precipitation patterns will entail lower-frequency but larger rainfall events, increasing the duration of dry soil conditions. Resulting shifts in microbial C cycling activity could affect soil C storage. Further, microbial response to rainfall events may be constrained by the physiological or nutrient limitation stress of extended drought periods; thus seasonal or multiannual precipitation regimes may influence microbial activity following soil wet-up. We quantified rainfall-driven dynamics of microbial processes that affect soil C loss and retention, and microbial community composition, in soils from a long-term (14-year) field experiment contrasting "Ambient" and "Altered" (extended intervals between rainfalls) precipitation regimes. We collected soil before, the day following, and five days following 2.5-cm rainfall events during both moist and dry periods (June and September 2011; soil water potential = -0.01 and -0.83 MPa, respectively), and measured microbial respiration, microbial biomass, organic matter decomposition potential (extracellular enzyme activities), and microbial community composition (phospholipid fatty acids). The equivalent rainfall events caused equivalent microbial respiration responses in both treatments. In contrast, microbial biomass was higher and increased after rainfall in the Altered treatment soils only, thus microbial C use efficiency (CUE) was higher in Altered than Ambient treatments (0.70 +/- 0.03 > 0.46 +/- 0.10). CUE was also higher in dry (September) soils. C-acquiring enzyme activities (beta-glucosidase, cellobiohydrolase, and phenol oxidase) increased after rainfall in moist (June), but not dry (September) soils. Both microbial biomass C:N ratios and fungal:bacterial ratios were higher at lower soil water contents, suggesting a functional and/or population-level shift in the microbiota at low soil water contents, and microbial community composition also differed following wet-up and between seasons and treatments. Overall, microbial activity may directly (C respiration) and indirectly (enzyme potential) reduce soil organic matter pools less in drier soils, and soil C sequestration potential (CUE) may be higher in soils with a history of extended dry periods between rainfall events. The implications include that soil C loss may be reduced or compensated for via different mechanisms at varying time scales, and that microbial taxa with better stress tolerance or growth efficiency may be associated with these functional shifts.
Jones, Perry M.; Winterstein, Thomas A.
2000-01-01
The U.S. Geological Survey (USGS), in cooperation with the Minnesota Department of Natural Resources and the Heron Lake Watershed District, conducted a study to characterize the rainfall-runoff response and to examine the effects of wetland restoration on the rainfall-runoff response within the Heron Lake Basin in southwestern Minnesota. About 93 percent of the land cover in the Heron Lake Basin consists of agricultural lands, consisting almost entirely of row crops, with less than one percent consisting of wetlands. The Hydrological Simulation Program – Fortran (HSPF), Version 10, was calibrated to continuous discharge data and used to characterize rainfall-runoff responses in the Heron Lake Basin between May 1991 and August 1997. Simulation of the Heron Lake Basin was done as a two-step process: (1) simulations of five small subbasins using data from August 1995 through August 1997, and (2) simulations of the two large basins, Jack and Okabena Creek Basins, using data from May 1991 through September 1996. Simulations of the five small subbasins was done to determine basin parameters for the land segments and assess rainfall-runoff response variability in the basin. Simulations of the two larger basins were done to verify the basin parameters and assess rainfall-runoff responses over a larger area and for a longer time period. Best-fit calibrations of the five subbasin simulations indicate that the rainfall-runoff response is uniform throughout the Heron Lake Basin, and 48 percent of the total rainfall for storms becomes direct (surface and interflow) runoff. Rainfall-runoff response variations result from variations in the distribution, intensity, timing, and duration of rainfall; soil moisture; evapotranspiration rates; and the presence of lakes in the basin. In the spring, the amount and distribution of rainfall tends to govern the runoff response. High evapotranspiration rates in the summer result in a depletion of moisture from the soils, substantially affecting the rainfall-runoff relation. Five wetland restoration simulations were run for each of five subbasins using data from August 1995 through August 1997, and for the two larger basins, Jack and Okabena Creek Basins, using data from May 1991 through September 1996. Results from linear regression analysis of total simulated direct runoff and total rainfall data for simulated storms in the wetland-restoration simulations indicate that the portion of total rainfall that becomes runoff will be reduced by 46 percent if 45 percent of current cropland is converted to wetland. The addition of wetlands reduced peak runoff in most of the simulations, but the reduction varied with antecedent soil moisture, the magnitude of the peak flow, and the presence of current wetlands and lakes. Reductions in the simulated total and peak runoff from the Jack Creek Basin for most of the simulated storms were greatest when additional wetlands were simulated in the North Branch Jack Creek or the Upper Jack Creek Subbasins. In the Okabena Creek Basin, reductions in simulated peak runoff for most of the storms were greatest when additional wetlands were simulated in the Lower Okabena Creek Subbasin.
NASA Astrophysics Data System (ADS)
Saha, Saurav; Chakraborty, Debasish; Paul, Ranjit Kumar; Samanta, Sandipan; Singh, S. B.
2017-10-01
Rainfall anomaly during crop-growing season can have large impact on the agricultural output of a country, especially like India, where two-thirds of the crop land is rain-fed. In such situation, decreased agricultural production not only challenges food security of the country but directly and immediately hits the livelihood of its farming community. In a vast country like India, rainfall or its anomalies hardly follow a specific pattern, rather it is having high variability in spatial domain. This study focused on the trends of national and regional rainfall anomalies (wetness/dryness) along with their interrelationship using time series data of past 158 years. The significant reducing wetness trend (p < 0.05) over north mountainous India was prominent with an increasing trend over southern peninsular India (p < 0.10). However, long-term annual wetness was increasing over entire peninsular India. The results of change point tests indicate that major abrupt changes occurred between early to mid-twentieth century having regional variations. The regional interrelationship was studied using principal component, hierarchical clustering, and pair-wise difference test, which clearly indicated a significantly different pattern in rainfall anomalies for north east India (p = 0.022), north central India (p = 0.022), and north mountainous India (p = 0.011) from that of the all India. Result of this study affirmed high spatial variability in rainfall anomaly and most importantly established the unalike pattern in trends of regional rainfall vis-à-vis national level, ushering towards paradigm shift in rainfall forecast from country scale to regional scale for pragmatic planning.
Kaufmann, Vander; Pinheiro, Adilson; Castro, Nilza Maria dos Reis
2014-05-01
Intense rainfall adversely affects agricultural areas, causing transport of pollutants. Physically-based hydrological models to simulate flows of water and chemical substances can be used to help decision-makers adopt measures which reduce such problems. The purpose of this paper is to evaluate the performance of SWAP and ANIMO models for simulating transport of water, nitrate and phosphorus nutrients, during intense rainfall events generated by a simulator, and during natural rainfall, on a volumetric drainage lysimeter. The models were calibrated and verified using daily time series and simulated rainfall measured at 10-minute intervals. For daily time-intervals, the Nash-Sutcliffe coefficient was 0.865 for the calibration period and 0.805 for verification. Under simulated rainfall, these coefficients were greater than 0.56. The pattern of both nitrate and phosphate concentrations in daily drainage flow under simulated rainfall was acceptably reproduced by the ANIMO model. In the simulated rainfall, loads of nitrate transported in surface runoff varied between 0.08 and 8.46 kg ha(-1), and in drainage form the lysimeter, between 2.44 and 112.57 kg ha(-1). In the case of phosphate, the loads transported in surface runoff varied between 0.002 and 0.504 kg ha(-1), and in drainage, between 0.005 and 1.107 kg ha(-1). The use of the two models SWAP and ANIMO shows the magnitudes of nitrogen and phosphorus fluxes transported by natural and simulated intense rainfall in an agricultural area with different soil management procedures, as required by decision makers. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yoon, S.; Lee, B.; Nakakita, E.; Lee, G.
2016-12-01
Recent climate changes and abnormal weather phenomena have resulted in increased occurrences of localized torrential rainfall. Urban areas in Korea have suffered from localized heavy rainfall, including the notable Seoul flood disaster in 2010 and 2011. The urban hydrological environment has changed in relation to precipitation, such as reduced concentration time, a decreased storage rate, and increased peak discharge. These changes have altered and accelerated the severity of damage to urban areas. In order to prevent such urban flash flood damages, we have to secure the lead time for evacuation through the improvement of radar-based quantitative precipitation forecasting (QPF). The purpose of this research is to improve the QPF products using spatial-scale decomposition method for considering the life time of storm and to assess the accuracy between traditional QPF method and proposed method in terms of urban flood management. The layout of this research is as below. First, this research applies the image filtering to separate the spatial-scale of rainfall field. Second, the separated small and large-scale rainfall fields are extrapolated by each different forecasting method. Third, forecasted rainfall fields are combined at each lead time. Finally, results of this method are evaluated and compared with the results of uniform advection model for urban flood modeling. It is expected that urban flood information using improved QPF will help to reduce casualties and property damage caused by urban flooding through this research.
Kats, Lee B.; Bucciarelli, Gary; Vandergon, Thomas L.; Honeycutt, Rodney L.; Mattiasen, Evan; Sanders, Arthur; Riley, Seth P.D.; Kerby, Jacob L.; Fisher, Robert N.
2013-01-01
Aquatic amphibians are known to be vulnerable to a myriad of invasive predators. Invasive crayfish are thought to have eliminated native populations of amphibians in some streams in the semi-arid Santa Monica Mountains of southern California. Despite their toxic skin secretions that defend them from native predators, newts are vulnerable to crayfish attacks, and crayfish have been observed attacking adult newts, and eating newt egg masses and larvae. For 15 years, we have observed invasive crayfish and native California newts coexisting in one stream in the Santa Monica Mountains. During that period, we monitored the densities of both crayfish and newt egg mass densities and compared these to annual rainfall totals. After three seasons of below average rainfall, we reduced crayfish numbers by manual trapping. Our long-term data indicated that crayfish did not fare well in years when rainfall is above the historic average. This invasive predator did not evolve with high velocity streams, and observations indicated that southern California storm events washed crayfish downstream, killing many of them. Newts exhibit increased reproduction in years when crayfish numbers were reduced. A comparison with a nearby stream that does not contain crayfish indicated that newt reproduction positively responded to increased rainfall, but that fluctuations were much greater in the stream that contains crayfish. We suggest that rainfall patterns help explain invasive crayfish/newt coexistence and that management for future coexistence may benefit from manual trapping.
NASA Astrophysics Data System (ADS)
Liao, Yibo; Shou, Lu; Tang, Yanbin; Zeng, Jiangning; Gao, Aigen; Chen, Quanzhen; Yan, Xiaojun
2017-05-01
To assess the effects of hypoxia, macrobenthic communities along an estuarine gradient of the Changjiang estuary and adjacent continental shelf were analyzed. This revealed spatial variations in the communities and relationships with environmental variables during periods of reduced dissolved oxygen (DO) concentration in summer. Statistical analyses revealed significant differences in macrobenthic community composition among the three zones: estuarine zone (EZ), mildly hypoxic zone (MHZ) in the continental shelf, and normoxic zone (NZ) in the continental shelf (Global R =0.206, P =0.002). Pairwise tests showed that the macrobenthic community composition of the EZ was significantly different from the MHZ (pairwise test R =0.305, P =0.001) and the NZ (pairwise test R =0.259, P =0.001). There was no significant difference in macrobenthic communities between the MHZ and the NZ (pairwise test R =0.062, P =0.114). The taxa included small and typically opportunistic polychaetes, which made the greatest contribution to the dissimilarity between the zones. The effects of mild hypoxia on the macrobenthic communities are a result not only of reduced DO concentration but also of differences in environmental variables such as temperature, salinity, and nutrient concentrations caused by stratification.
Predicting Flood in Perlis Using Ant Colony Optimization
NASA Astrophysics Data System (ADS)
Nadia Sabri, Syaidatul; Saian, Rizauddin
2017-06-01
Flood forecasting is widely being studied in order to reduce the effect of flood such as loss of property, loss of life and contamination of water supply. Usually flood occurs due to continuous heavy rainfall. This study used a variant of Ant Colony Optimization (ACO) algorithm named the Ant-Miner to develop the classification prediction model to predict flood. However, since Ant-Miner only accept discrete data, while rainfall data is a time series data, a pre-processing steps is needed to discretize the rainfall data initially. This study used a technique called the Symbolic Aggregate Approximation (SAX) to convert the rainfall time series data into discrete data. As an addition, Simple K-Means algorithm was used to cluster the data produced by SAX. The findings show that the predictive accuracy of the classification prediction model is more than 80%.
O'Brien, Michael J; Pugnaire, Francisco I; Armas, Cristina; Rodríguez-Echeverría, Susana; Schöb, Christian
2017-04-01
The stress-gradient hypothesis predicts a higher frequency of facilitative interactions as resource limitation increases. Under severe resource limitation, it has been suggested that facilitation may revert to competition, and identifying the presence as well as determining the magnitude of this shift is important for predicting the effect of climate change on biodiversity and plant community dynamics. In this study, we perform a meta-analysis to compare temporal differences of species diversity and productivity under a nurse plant ( Retama sphaerocarpa ) with varying annual rainfall quantity to test the effect of water limitation on facilitation. Furthermore, we assess spatial differences in the herbaceous community under nurse plants in situ during a year with below-average rainfall. We found evidence that severe rainfall deficit reduced species diversity and plant productivity under nurse plants relative to open areas. Our results indicate that the switch from facilitation to competition in response to rainfall quantity is nonlinear. The magnitude of this switch depended on the aspect around the nurse plant. Hotter south aspects under nurse plants resulted in negative effects on beneficiary species, while the north aspect still showed facilitation. Combined, these results emphasize the importance of spatial heterogeneity under nurse plants for mediating species loss under reduced precipitation, as predicted by future climate change scenarios. However, the decreased water availability expected under climate change will likely reduce overall facilitation and limit the role of nurse plants as refugia, amplifying biodiversity loss.
NASA Astrophysics Data System (ADS)
Adi-Kusumo, Fajar; Gunardi, Utami, Herni; Nurjani, Emilya; Sopaheluwakan, Ardhasena; Aluicius, Irwan Endrayanto; Christiawan, Titus
2016-02-01
We consider the Empirical Orthogonal Function (EOF) to study the rainfall pattern in Daerah Istimewa Yogyakarta (DIY) Province, Indonesia. The EOF is one of the important methods to study the dominant pattern of the data using dimension reduction technique. EOF makes possible to reduce the huge dimension of observed data into a smaller one without losing its significant information in order to figures the whole data. The methods is also known as Principal Components Analysis (PCA) which is conducted to find the pattern of the data. DIY Province is one of the province in Indonesia which has special characteristics related to the rainfall pattern. This province has an active volcano, karst, highlands, and also some lower area including beach. This province is bounded by the Indonesian ocean which is one of the important factor to provide the rainfall. We use at least ten years rainfall monthly data of all stations in this area and study the rainfall characteristics based on the four regencies of the province. EOF analysis is conducted to analyze data in order to decide the station groups which have similar characters.
Climate Change, Growth, and Poverty in Ethiopia
2013-06-01
agricultural effects of global warming, reflecting their disadvantaged geographic location Higher evaporation and reduced soil moisture can damage crops...Ringler (2007) 5 Temperature, radiation, rainfall, soil moisture , and carbon dioxide (CO2) concentration are important variables that can proxy...iii) rainfall can affect other proxies of climate change in the literature such as soil moisture 6 This is based on FAOstat database 7 According to
NASA Astrophysics Data System (ADS)
López-Vicente, M.; Navas, A.
2012-04-01
One important issue in agricultural management and hydrological research is the assessment of water stored during a rainfall event. In this study, the new Distributed Rainfall-Runoff (DR2) model (López-Vicente and Navas, 2012) is used to estimate the volume of actual available water (Waa) and the soil moisture status (SMS) in a set of rain-fed cereal fields (65 ha) located in the Central Spanish Pre-Pyrenees. This model makes the most of GIS techniques (ArcMapTM 10.0) and distinguishes five configurations of the upslope contributing area, infiltration processes and climatic parameters. Results are presented on a monthly basis. The study site has a relatively long history (since the 10th century) of human occupation, agricultural practices and water management. The landscape is representative of the typical former rain-fed Mediterranean agro-ecosystem where small patches of natural and anthropogenic areas are heterogeneously distributed. Climate is continental Mediterranean with a dry summer with rainfall events of high intensity (I30max, higher than 30 mm / h between May and October). Average annual precipitation was 520 mm for the reference period (1961-1990), whereas the average precipitation during the last ten years (2001-2010) was 16% lower (439 mm). Measured antecedent topsoil moisture presented the highest values in autumn (18.3 vol.%) and the lowest in summer (11.2 vol.%). Values of potential overland flow per raster cell (Q0) during maximum rainfall intensity varied notably in terms of time and space. When rainfall intensity is high (May, August, September and October), potential runoff was predicted along the surface of the crops and variability of Q0 was very low, whereas areas with no runoff production appeared when rainfall intensity was low and variability of Q0 values was high. A variance components analysis shows that values of Q0 are mainly explained by variations in the values of saturated hydraulic conductivity (76% of the variability of Q0) and, to a lesser extent, by the values of the antecedent topsoil moisture (23%) and the volumetric content of water of the soil at saturation (1%). Maps of monthly actual available water after maximum rainfall intensity presented a significant spatial variability, though values varied as a function of total rainfall depth and infiltration, and the five different scenarios of cumulative processes considered on the DR2 model. The minimum value of Waa for each month was well correlated with the average values of precipitation (Pearson's r = 0.86), whereas the mean values of Waa showed a close correlation with the values of maximum rainfall intensity (Pearson's r = 0.92). Maps of SMS and their values were reclassified in seven wetness-dryness categories. Predominant wet conditions occurred in May, September, October, November and December, whereas dry conditions appeared in February, March and July. Drying-up conditions were identified in January and June and wetting-up conditions occurred in April and August. The new DR2 model seems to be of interest to monitor humidity variations and trends in time and space in Mediterranean agricultural systems and can provide valuable information for sustainable soil and water resource management in agro-climatic analysis.
Detecting Trends in Tropical Rainfall Characteristics, 1979-2003
NASA Technical Reports Server (NTRS)
Lau, K. M.; Wu, H. T.
2006-01-01
From analyses of blended space-based and ground-based global rainfall data, we found increasing trends in the occurrence of extreme heavy and light rain events, coupled to a decreasing trend in moderate rain events in the tropics during 1979-2003. The trends are consistent with a shift in the large-scale circulation associated with a) a relatively uniform increase in warm rain over the tropical oceans, b) enhanced ice-phase rain over the near-equatorial oceans, and c) reduced mixed-phase rain over the tropical ocean and land regions. Due to the large compensation among different rain categories, the total tropical rainfall trend remained undetectable.
Landslide susceptibility and early warning model for shallow landslide in Taiwan
NASA Astrophysics Data System (ADS)
Huang, Chun-Ming; Wei, Lun-Wei; Chi, Chun-Chi; Chang, Kan-Tsun; Lee, Chyi-Tyi
2017-04-01
This study aims to development a regional susceptibility model and warning threshold as well as the establishment of early warning system in order to prevent and reduce the losses caused by rainfall-induced shallow landslides in Taiwan. For the purpose of practical application, Taiwan is divided into nearly 185,000 slope units. The susceptibility and warning threshold of each slope unit were analyzed as basic information for disaster prevention. The geological characteristics, mechanism and the occurrence time of landslides were recorded for more than 900 cases through field investigation and interview of residents in order to discuss the relationship between landslides and rainfall. Logistic regression analysis was performed to evaluate the landslide susceptibility and an I3-R24 rainfall threshold model was proposed for the early warning of landslides. The validations of recent landslide cases show that the model was suitable for the warning of regional shallow landslide and most of the cases can be warned 3 to 6 hours in advanced. We also propose a slope unit area weighted method to establish local rainfall threshold on landslide for vulnerable villages in order to improve the practical application. Validations of the local rainfall threshold also show a good agreement to the occurrence time reported by newspapers. Finally, a web based "Rainfall-induced Landslide Early Warning System" is built and connected to real-time radar rainfall data so that landslide real-time warning can be achieved. Keywords: landslide, susceptibility analysis, rainfall threshold
A field evaluation of a satellite microwave rainfall sensor network
NASA Astrophysics Data System (ADS)
Caridi, Andrea; Caviglia, Daniele D.; Colli, Matteo; Delucchi, Alessandro; Federici, Bianca; Lanza, Luca G.; Pastorino, Matteo; Randazzo, Andrea; Sguerso, Domenico
2017-04-01
An innovative environmental monitoring system - Smart Rainfall System (SRS) - that estimates rainfall in real-time by means of the analysis of the attenuation of satellite signals (DVB-S in the microwave Ku band) is presented. Such a system consists in a set of peripheral microwave sensors placed on the field of interest, and connected to a central processing and analysis node. It has been developed jointly by the University of Genoa, with its departments DITEN and DICCA and the Genoese SME "Darts Engineering Srl". This work discusses the rainfall intensity measurements accuracy and sensitivity performance of SRS, based on preliminary results from a field comparison experiment at the urban scale. The test-bed is composed by a set of preliminary measurement sites established from Autumn 2016 in the Genoa (Italy) municipality and the data collected from the sensors during a selection of rainfall events is studied. The availability of point-scale rainfall intensity measurements made by traditional tipping-bucket rain gauges and radar areal observations allows a comparative analysis of the SRS performance. The calibration of the reference rain gauges has been carried out at the laboratories of DICCA using a rainfall simulator and the measurements have been processed taking advantage of advanced algorithms to reduce counting errors. The experimental set-up allows a fine tuning of the retrieval algorithm and a full characterization of the accuracy of the rainfall intensity estimates from the microwave signal attenuation as a function of different precipitation regimes.
Effect of climate change on agriculture sustainability in Jordan
NASA Astrophysics Data System (ADS)
Khresat, S.
2009-04-01
Jordan is a vulnerable country in terms of climate change impact. In the latest assessment report published by the Intergovernmental Panel on Climate Change. Jordan will suffer from reduced agricultural productivity due to more erratic rainfall patterns, reduced freshwater resources and increased temperatures. The Initial National Communication (INC) to the United Nations Framework Convention to Climate Change (UNFCCC) foresees that over the next three decades, Jordan will witness a rise in temperature, drop in rainfall, reduced ground cover, reduced water availability, heat-waves, and more frequent dust storms. Coupled with the effect of continuing drought incidents, plant cover removal was greatly accelerated. Climate change can impact agricultural sustainability in Jordan in two interrelated ways: first, by diminishing the long-term ability of agroecosystems to provide food and fiber locally; and second, by inducing shifts in agricultural regions that may encroach upon natural habitats, at the expense of floral and faunal diversity. Global warming may encourage the expansion of agricultural activities into regions now occupied by natural ecosystems such as rangelands in the Badia region and forests. Such encroachment will have adverse effects on the fragile ecosystem in those areas (Badia and steppe areas). Primary model test results showed that the reduction of rainfall by 10 to 20% had a negative impact while the increase in rainfall by 10 to 20% had a positive impact on grain yield for both barley and wheat at the different temperature regimes. This is due to the fact that water is the main limiting growth factor for wheat and barley under rainfed agriculture on Jordan. The warming (increase in temperature by 1 to 4Ë C) had negative impact on barley grain yield while it had a positive impact on grain yield of wheat.
NASA Astrophysics Data System (ADS)
Brauer, Claudia; Overeem, Aart; Uijlenhoet, Remko
2015-04-01
Several rainfall measurement techniques are available for hydrological applications, each with its own spatial and temporal resolution. We investigated the effect of differences in rainfall estimates on discharge simulations in a lowland catchment by forcing a novel rainfall-runoff model (WALRUS) with rainfall data from gauges, radars and microwave links. The hydrological model used for this analysis is the recently developed Wageningen Lowland Runoff Simulator (WALRUS). WALRUS is a rainfall-runoff model accounting for hydrological processes relevant to areas with shallow groundwater (e.g. groundwater-surface water feedback). Here, we used WALRUS for case studies in the Hupsel Brook catchment. We used two automatic rain gauges with hourly resolution, located inside the catchment (the base run) and 30 km northeast. Operational (real-time) and climatological (gauge-adjusted) C-band radar products and country-wide rainfall maps derived from microwave link data from a cellular telecommunication network were also used. Discharges simulated with these different inputs were compared to observations. Traditionally, the precipitation research community places emphasis on quantifying spatial errors and uncertainty, but for hydrological applications, temporal errors and uncertainty should be quantified as well. Its memory makes the hydrologic system sensitive to missed or badly timed rainfall events, but also emphasizes the effect of a bias in rainfall estimates. Systematic underestimation of rainfall by the uncorrected operational radar product leads to very dry model states and an increasing underestimation of discharge. Using the rain gauge 30 km northeast of the catchment yields good results for climatological studies, but not for forecasting individual floods. Simulating discharge using the maps derived from microwave link data and the gauge-adjusted radar product yields good results for both events and climatological studies. This indicates that these products can be used in catchments without gauges in or near the catchment. Uncertainty in rainfall forcing is a major source of uncertainty in discharge predictions, both with lumped and with distributed models. For lumped rainfall-runoff models, the main source of input uncertainty is associated with the way in which (effective) catchment-average rainfall is estimated. Improving rainfall measurements can improve the performance of rainfall-runoff models, indicating their potential for reducing flood damage through real-time control.
Meite, Fatima; Alvarez-Zaldívar, Pablo; Crochet, Alexandre; Wiegert, Charline; Payraudeau, Sylvain; Imfeld, Gwenaël
2018-03-01
The combined influence of soil characteristics, pollutant aging and rainfall patterns on the export of pollutants from topsoils is poorly understood. We used laboratory experiments and parsimonious modeling to evaluate the impact of rainfall characteristics on the ponding and the leaching of a pollutant mixture from topsoils. The mixture included the fungicide metalaxyl, the herbicide S-metolachlor, as well as copper (Cu) and zinc (Zn). Four rainfall patterns, which differed in their durations and intensities, were applied twice successively with a 7days interval on each soil type. To evaluate the influence of soil type and aging, experiments included crop and vineyard soils and two stages of pollutant aging (0 and 10days). The global export of pollutants was significantly controlled by the rainfall duration and frequency (P<0.01). During the first rainfall event, the longest and most intense rainfall pattern yielded the largest export of metalaxyl (44.5±21.5% of the initial mass spiked in the soils), S-metolachlor (8.1±3.1%) and Cu (3.1±0.3%). Soil compaction caused by the first rainfall reduced in the second rainfall the leaching of remaining metalaxyl, S-metolachlor, Cu and Zn by 2.4-, 2.9-, 30- and 50-fold, respectively. In contrast, soil characteristics and aging had less influence on pollutant mass export. The soil type significantly influenced the leaching of Zn, while short-term aging impacted Cu leaching. Our results suggest that rainfall characteristics predominantly control export patterns of metalaxyl and S-metolachlor, in particular when the aging period is short. We anticipate our study to be a starting point for more systematic evaluation of the dissolved pollutant ponding/leaching partitioning and the export of pollutant mixtures from different soil types in relation to rainfall patterns. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kretzschmar, Ann; Tych, Wlodek; Beven, Keith; Chappell, Nick
2017-04-01
Flooding is the most widely occurring natural disaster affecting thousands of lives and businesses worldwide each year, and the size and frequency of flood-events are predicted to increase with climate change. The main input-variable for models used in flood prediction is rainfall. Estimating the rainfall input is often based on a sparse network of raingauges, which may or may not be representative of the salient rainfall characteristics responsible for generating of storm-hydrographs. A method based on Reverse Hydrology (Kretzschmar et al 2014 Environ Modell Softw) has been developed and is being tested using the intensively-instrumented Brue catchment (Southwest England) to explore the spatiotemporal structure of the rainfall-field (using 23 rain gauges over the 135.2 km2 basin). We compare how well the rainfall measured at individual gauges, or averaged over the basin, represent the rainfall inferred from the streamflow signal. How important is it to get the detail of the spatiotemporal rainfall structure right? Rainfall is transformed by catchment processes as it moves to streams, so exact duplication of the structure may not be necessary. 'True' rainfall estimated using 23 gauges / 135.2 km2 is likely to be a good estimate of the overall-catchment-rainfall, however, the integration process 'smears' the rainfall patterns in time, i.e. reduces the number of and lengthens rain-events as they travel across the catchment. This may have little impact on the simulation of stream-hydrographs when events are extensive across the catchment (e.g., frontal rainfall events) but may be significant for high-intensity, localised convective events. The Reverse Hydrology approach uses the streamflow record to infer a rainfall sequence with a lower time-resolution than the original input time-series. The inferred rainfall series is, however, able simulate streamflow as well as the observed, high resolution rainfall (Kretzschmar et al 2015 Hydrol Res). Most gauged catchments in the UK of a similar size would only have data available for 1 to 3 raingauges. The high density of the Brue raingauge network allows a good estimate of the 'True' catchment rainfall to be made and compared with data from an individual raingauge as if that was the only data available. In addition the rainfall from each raingauge is compared with rainfall inferred from streamflow using data from the selected individual raingauge, and also inferred from the full catchment network. The stochastic structure of the rainfall from all of these datasets is compared using a combination of traditional statistical measures, i.e., the first 4 moments of rainfall totals and its residuals; plus the number, length and distribution of wet and dry periods; rainfall intensity characteristics; and their ability to generate the observed stream hydrograph. Reverse Hydrology, which utilises information present in both the input rainfall and the output hydrograph, has provided a method of investigating the quality of the information each gauge adds to the catchment-average (Kretzschmar et al 2016 Procedia Eng.). Further, it has been used to ascertain how important reproducing the detailed rainfall structure really is, when used for flow prediction.
Characteristics of the modelled meteoric freshwater budget of the western Antarctic Peninsula
NASA Astrophysics Data System (ADS)
van Wessem, J. M.; Meredith, M. P.; Reijmer, C. H.; van den Broeke, M. R.; Cook, A. J.
2017-05-01
Rapid climatic changes in the western Antarctic Peninsula (WAP) have led to considerable changes in the meteoric freshwater input into the surrounding ocean, with implications for ocean circulation, the marine ecosystem and sea-level rise. In this study, we use the high-resolution Regional Atmospheric Climate Model RACMO2.3, coupled to a firn model, to assess the various contributions to the meteoric freshwater budget of the WAP for 1979-2014: precipitation (snowfall and rainfall), meltwater runoff to the ocean, and glacial discharge. Snowfall is the largest component in the atmospheric contribution to the freshwater budget, and exhibits large spatial and temporal variability. The highest snowfall rates are orographically forced and occur over the coastal regions of the WAP (> 2000 mm water equivalent (w.e.) y-1) and extend well onto the ocean up to the continental shelf break; a minimum (∼ 500 mm w . e .y-1) is reached over the open ocean. Rainfall is an order of magnitude smaller, and strongly depends on latitude and season, being large in summer, when sea ice extent is at its minimum. For Antarctic standards, WAP surface meltwater production is relatively large (> 50 mm w . e .y-1) , but a large fraction refreezes in the snowpack, limiting runoff. Only at a few more northerly locations is the meltwater predicted to run off into the ocean. In summer, we find a strong relationship of the freshwater fluxes with the Southern Annular Mode (SAM) index. When SAM is positive and occurs simultaneously with a La Niña event there are anomalously strong westerly winds and enhanced snowfall rates over the WAP mountains, Marguerite Bay and the Bellingshausen Sea. When SAM coincides with an El Niño event, winds are more northerly, reducing snowfall and increasing rainfall over the ocean, and enhancing orographic snowfall over the WAP mountains. Assuming balance between snow accumulation (mass gain) and glacial discharge (mass loss), the largest glacial discharge is found for the regions around Adelaide Island (10 Gty-1) , Anvers Island (8 Gty-1) and southern Palmer Land (12 Gty-1) , while a minimum (< 2 Gty-1) is found in Marguerite Bay and the northern WAP. Glacial discharge is in the same order of magnitude as the direct freshwater input into the ocean from snowfall, but there are some local differences. The spatial patterns in the meteoric freshwater budget have consequences for local productivity and carbon drawdown in the coastal ocean.
Prego, Ricardo; Caetano, Miguel; Ospina-Alvarez, Natalia; Raimundo, Joana; Vale, Carlos
2014-01-15
The enrichment of Cr and Ni in the coastal zones is usually associated with anthropogenic sources such as the tanning, galvanization, ceramic, and cement industries. However, geological complexes of specific lithologic composition located near shorelines may act as natural sources of metals to the continental shelf. Cape Ortegal (SW Europe) is an ultramafic complex that has Cr, Ni and Co enriched in rocks due to the minerals chromite, chromospinel, gersdorfite and pentlandite. Thus, the hypothesis that this geological complex contributes to metal enrichment in Ortigueira and Barqueiro Rias and the adjacent continental shelf was tested. Chromium, Ni, and Co were determined in water and in suspended particulate matter of ria tributaries, rainfall, surface sediments, mussels, and algae. High contents of Cr (max. 1670mg·kg(-1)) and Ni (max. 1360 mg · kg(-1)) were found in the sediments surrounding Cape Ortegal and the Ortigueira Ria as a result of erosion of exposed cliffs. Dissolved Cr and Ni concentrations in fluvial waters were significantly higher in the rivers that crosses the Ortegal Complex, i.e. Lourido (0.47 μg Cr · L(-1); 9.4 μg Ni · L(-1)) and Landoi (0.37 μg Cr · L(-1); 4.3 μg Ni · L(-1)), in comparison with the nearby basin out of the complex influence (Sor River: <0.01 μg Cr · L(-1); 0.57 μg Ni · L(-1)). The annual fluvial contributions of Cr and Ni to the Ortigueira Ria were higher than fluxes into the Barqueiro Ria. Moreover, the increase in Cr and Ni in the rainfall in summer demonstrated the importance of the atmosphere pathway for introducing these elements into the aquatic environment. As a consequence, the contents of these metals in soft tissues and shell of mussels and algae from the Ortigueira Ria were higher than the organisms from Barqueiro Ria. Thus, geological complexes, such as the Cape Ortegal, located in an uncontaminated area, can increase the land-sea exchange of trace metals. © 2013.
Integrating remotely sensed surface water extent into continental scale hydrology.
Revilla-Romero, Beatriz; Wanders, Niko; Burek, Peter; Salamon, Peter; de Roo, Ad
2016-12-01
In hydrological forecasting, data assimilation techniques are employed to improve estimates of initial conditions to update incorrect model states with observational data. However, the limited availability of continuous and up-to-date ground streamflow data is one of the main constraints for large-scale flood forecasting models. This is the first study that assess the impact of assimilating daily remotely sensed surface water extent at a 0.1° × 0.1° spatial resolution derived from the Global Flood Detection System (GFDS) into a global rainfall-runoff including large ungauged areas at the continental spatial scale in Africa and South America. Surface water extent is observed using a range of passive microwave remote sensors. The methodology uses the brightness temperature as water bodies have a lower emissivity. In a time series, the satellite signal is expected to vary with changes in water surface, and anomalies can be correlated with flood events. The Ensemble Kalman Filter (EnKF) is a Monte-Carlo implementation of data assimilation and used here by applying random sampling perturbations to the precipitation inputs to account for uncertainty obtaining ensemble streamflow simulations from the LISFLOOD model. Results of the updated streamflow simulation are compared to baseline simulations, without assimilation of the satellite-derived surface water extent. Validation is done in over 100 in situ river gauges using daily streamflow observations in the African and South American continent over a one year period. Some of the more commonly used metrics in hydrology were calculated: KGE', NSE, PBIAS%, R 2 , RMSE, and VE. Results show that, for example, NSE score improved on 61 out of 101 stations obtaining significant improvements in both the timing and volume of the flow peaks. Whereas the validation at gauges located in lowland jungle obtained poorest performance mainly due to the closed forest influence on the satellite signal retrieval. The conclusion is that remotely sensed surface water extent holds potential for improving rainfall-runoff streamflow simulations, potentially leading to a better forecast of the peak flow.
GOES-13 Satellite Sees a "Giant Apostrophe" from Strong Eastern U.S. Low Pressure
2017-12-08
NASA image captured April 12, 2011 at 1731 UTC (1:31 p.m. EDT) A giant swirl of clouds that form an apostrophe-like shape over the eastern U.S. was spotted in visible imagery from the Geostationary Operational Environmental Satellite, GOES-13 on April 12, 2011 at 1731 UTC (1:31 p.m. EDT). The GOES-13 satellite monitors weather over the eastern continental U.S. and Atlantic Ocean, while GOES-11 monitors the western U.S. and the Eastern Pacific Ocean. GOES-13 captured this image of the clouds associated with a strong upper level low pressure area that is moving though the Tennessee River Valley and bringing moderate to heavy rainfall as it moves eastward. The low is forecast by the National Weather Service to bring unsettled conditions to the Mid-Atlantic and then to New England late Tuesday and Wednesday as it tracks northeast. Severe thunderstorms are possible today in extreme eastern Virginia and North Carolina as the cold front associated with the low pushes through that region. Meanwhile, rainfall from the low stretches from Massachusetts south to Florida today. It seems that New Englanders are having a tough time getting warm spring weather and this low won't help as it moves north. The low pressure area may even bring some light to moderate snowfall on the northern fringe of the storm. The GOES series of satellites keep an eye on the weather happening over the continental U.S. and eastern Pacific and Atlantic Oceans. NASA's GOES Project, located at NASA's Goddard Space Flight Center in Greenbelt, Md., procures and manages the development and launch of the GOES series of satellites for NOAA and creates images and animations. The GOES satellites are operated by NOAA. Rob Gutro NASA's Goddard Space Flight Center Credit: NOAA/NASA GOES Project NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook
NASA Astrophysics Data System (ADS)
Maslin, M. A.
2008-12-01
Paleoclimate records of tropical moisture availability suggest there are complex controls. Using marine and continental records from both South America and Africa it is possible to resolve these influences and start to build a theoretical model explaining variations in both rainfall and moisture availability. The first control is the position of the Intertropical Convergence Zone (ITCZ). Evidence is emerging that the northern and southern boundaries of the ITCZ move independently. The extreme seasonal position of the boundary is controlled by the temperature gradient between the Equator and the relevant Pole. The temperature gradient of each Hemisphere is governed primarily by the prevalent boundary condition i.e., whether it is a glacial or interglacial period. The secondary influence are millennial-scale changes such as the Heinrich events. This idea is important as it moves away from the concept that the ITCZ is a fixed band which moves north and south. The second major control is precession which influences seasonality in the Tropics. This is important as it controls the strength of convection in each Hemisphere and thus the strength of the resultant monsoon. For example Amazonia monsoon is controlled by Southern Hemisphere convection strength, while the Congo and SE Asia monsoons are controlled by the Northern Hemisphere. In terms of tropical rainfall it has been shown by GCMs that precession can have the same scale of affect as switching from a glacial to an interglacial period. In summary the relative position of the northern and southern boundaries of the ITCZ controls the location of rainfall. While precession controls the intensity of the convection within the ITZC and thus the strength of the monsoon. This radical new theoretical framework explains why rainfall and moisture records from the same region e.g., Amazonia can be very different on a millennial and centennial time-scale. New evidence from Amazonia and East Africa combined with ice core data will be presented to support this new theoretical model.
NASA Astrophysics Data System (ADS)
Peethambaran, Rahul; Ghosh, Prosenjit
2015-04-01
Rainwater and water vapour were collected during monsoon rainfall from Bangalore station to identifying the signature of moisture sources. Moisture responsible for the rainfall originates from Arabian Sea and Bay of Bengal and advected to the station together with vapour generated from the local . Total no of samples includes 72 for water vapour and 81 for rainwater respectively. The mean difference between water vapour and rainwater was found to be -13.27±2.5 ‰ for δ18O, -100±9 ‰ for δD, which was calculated from monthly mean values of water vapour and rainwater. The most enriched samples of rainwater and water vapour were found during the pre monsoon months which correspond to temperature maximum at the study location. Lighter isotopic ratios were recorded in samples collected during the starting of monsoon showers which goes to further depletion in δ18O during the period of post monsoon. This was mainly due to the change in the prevailing wind direction from southwest to northeast. Local Meteoric Water Line (LMWL) generated for rainwater (d = 7.49 δ 18O + 5.2555, R² = 0.93) equation suggesting enrichment due to evaporation. Local Vapour Line (LVL) (d = 7.5248 δ 18O + 6.6534,R² = 0.8957) indicates the dominance of vapor from local source. The time series of d-xcess of rainwater and water vapor reveals large variability, coinciding with the presence of transported and local sources. It was observed that rainwater and water vapor exhibits higher values indicating re-evaporation from the region. Repetition of this feature demonstrated pattern of moisture recycling in the atmosphere and the contribution of continental evaporation and transpiration. The sensitivity of isotopes to the sudden change in wind direction was documented by an abrupt variations in the isotope values. Such changes in wind patterns were mostly associated with the prevalence of low pressure depression systems during the monsoon periods. Detailed analysis on role of wind patterns and air parcel trajectories, atmospheric parameters such as rainfall, temperature and relative humidity and quantitative estimation of local source moisture source contributions will be discussed at the time of presentation.
Salt as a public health challenge in continental European convenience and ready meals.
Kanzler, Sonja; Hartmann, Christina; Gruber, Anita; Lammer, Guido; Wagner, Karl-Heinz
2014-11-01
To assess the salt content of continental European convenience and ready meals. A multistage study in which, after laboratory analysis of the products' salt contents (n 32), new salt-reduced meals were developed through food reformulation. Additionally, a comprehensive survey of convenience meals from the Austrian market (n 572) was conducted to evaluate the salt contents of a wider product range. Six continental European countries participated. No subjects enrolled. The salt contents of continental European convenience and ready meals mostly exceeded 1·8 g/100 g, which is 30 % of the targeted daily intake level; some contained even more than the recommended daily intake of 6 g. The highest salt contents were found in pizzas and pasta dishes, the lowest ones in sweet meals. Large variations in salt levels were found not only between and within meal type categories, but also between similar meals from different producers. In addition, our approach to develop new salt-reduced meals showed that a stepwise reduction of the ready meals' salt contents is possible without compromising the sensory quality. To address the problem of hypertension and increased risk for CVD through high salt intake, a reduction of the salt levels in continental European convenience and ready meals is urgently needed, since they are providing a major part of the daily salt intake. Successful national-wide salt reduction strategies in the UK or Finland have already demonstrated the public health impact of this setting.
Wang, Li-Pen; Ochoa-Rodríguez, Susana; Simões, Nuno Eduardo; Onof, Christian; Maksimović, Cedo
2013-01-01
The applicability of the operational radar and raingauge networks for urban hydrology is insufficient. Radar rainfall estimates provide a good description of the spatiotemporal variability of rainfall; however, their accuracy is in general insufficient. It is therefore necessary to adjust radar measurements using raingauge data, which provide accurate point rainfall information. Several gauge-based radar rainfall adjustment techniques have been developed and mainly applied at coarser spatial and temporal scales; however, their suitability for small-scale urban hydrology is seldom explored. In this paper a review of gauge-based adjustment techniques is first provided. After that, two techniques, respectively based upon the ideas of mean bias reduction and error variance minimisation, were selected and tested using as case study an urban catchment (∼8.65 km(2)) in North-East London. The radar rainfall estimates of four historical events (2010-2012) were adjusted using in situ raingauge estimates and the adjusted rainfall fields were applied to the hydraulic model of the study area. The results show that both techniques can effectively reduce mean bias; however, the technique based upon error variance minimisation can in general better reproduce the spatial and temporal variability of rainfall, which proved to have a significant impact on the subsequent hydraulic outputs. This suggests that error variance minimisation based methods may be more appropriate for urban-scale hydrological applications.
Yang, Xu; You, Xue-Yi; Ji, Min; Nima, Ciren
2013-01-01
The effects of limiting factors such as rainfall intensity, rainfall duration, grass type and vegetation coverage on the stormwater runoff of urban green space was investigated in Tianjin. The prediction equation of stormwater runoff was established by the quantitative theory with the lab experimental data of soil columns. It was validated by three field experiments and the relative errors between predicted and measured stormwater runoff are 1.41, 1.52 and 7.35%, respectively. The results implied that the prediction equation could be used to forecast the stormwater runoff of urban green space. The results of range and variance analysis indicated the sequence order of limiting factors is rainfall intensity > grass type > rainfall duration > vegetation coverage. The least runoff of green land in the present study is the combination of rainfall intensity 60.0 mm/h, duration 60.0 min, grass Festuca arundinacea and vegetation coverage 90.0%. When the intensity and duration of rainfall are 60.0 mm/h and 90.0 min, the predicted volumetric runoff coefficient is 0.23 with Festuca arundinacea of 90.0% vegetation coverage. The present approach indicated that green space is an effective method to reduce stormwater runoff and the conclusions are mainly applicable to Tianjin and the semi-arid areas with main summer precipitation and long-time interval rainfalls.
Large-scale rainfall diversity for ACTS
NASA Technical Reports Server (NTRS)
Lin, H. P.; Vogel, Wolfhard J.
1993-01-01
From the NOAA 15 minute precipitation file for the US, data were selected for a set of 23 stations spanning a 5 year period. The selection covers the spot beam locations for ACTS and the propagation experiment sites. There is a 2 percent probability of having any simultaneous rain at 3 or more stations, but this reduces to less than 0.001 percent at a rainfall rate of 40 mm/hr.
Jato-Espino, Daniel; Charlesworth, Susanne M; Bayon, Joseba R; Warwick, Frank
2016-01-21
Sustainable Urban Drainage Systems (SuDS) constitute an alternative to conventional drainage when managing stormwater in cities, reducing the impact of urbanization by decreasing the amount of runoff generated by a rainfall event. This paper shows the potential benefits of installing different types of SuDS in preventing flooding in comparison with the common urban drainage strategies consisting of sewer networks of manholes and pipes. The impact of these systems on urban water was studied using Geographic Information Systems (GIS), which are useful tools when both delineating catchments and parameterizing the elements that define a stormwater drainage system. Taking these GIS-based data as inputs, a series of rainfall-runoff simulations were run in a real catchment located in the city of Donostia (Northern Spain) using stormwater computer models, in order to compare the flow rates and depths produced by a design storm before and after installing SuDS. The proposed methodology overcomes the lack of precision found in former GIS-based stormwater approaches when dealing with the modeling of highly urbanized catchments, while the results demonstrated the usefulness of these systems in reducing the volume of water generated after a rainfall event and their ability to prevent localized flooding and surcharges along the sewer network.
NASA Astrophysics Data System (ADS)
Li, Chaofan; Chen, Wei; Hong, Xiaowei; Lu, Riyu
2017-11-01
It is widely recognized that rainfall over the Yangtze River valley (YRV) strengthens considerably during the decaying summer of El Niño, as demonstrated by the catastrophic flooding suffered in the summer of 1998. Nevertheless, the rainfall over the YRV in the summer of 2016 was much weaker than that in 1998, despite the intensity of the 2016 El Niño having been as strong as that in 1998. A thorough comparison of the YRV summer rainfall anomaly between 2016 and 1998 suggests that the difference was caused by the sub-seasonal variation in the YRV rainfall anomaly between these two years, principally in August. The precipitation anomaly was negative in August 2016—different to the positive anomaly of 1998. Further analysis suggests that the weaker YRV rainfall in August 2016 could be attributable to the distinct circulation anomalies over the midlatitudes. The intensified "Silk Road Pattern" and upper-tropospheric geopotential height over the Urals region, both at their strongest since 1980, resulted in an anticyclonic circulation anomaly over midlatitude East Asia with anomalous easterly flow over the middle-to-lower reaches of the YRV in the lower troposphere. This easterly flow reduced the climatological wind, weakened the water vapor transport, and induced the weaker YRV rainfall in August 2016, as compared to that in 1998. Given the unique sub-seasonal variation of the YRV rainfall in summer 2016, more attention should be paid to midlatitude circulation—besides the signal in the tropics—to further our understanding of the predictability and variation of YRV summer rainfall.
Rainfall and sheet power model for interrill erosion in steep slope
NASA Astrophysics Data System (ADS)
Shin, Seung Sook; Deog Park, Sand; Nam, Myeong Jun
2015-04-01
The two-phase process of interrill erosion consist of the splash and detachment of individual particles from soil mass by impact of raindrops and the transport by erosive running water. Most experimental results showed that the effect of interaction between rainfall impact and surface runoff increases soil erosion in low or gentle slope. Especially, the combination of rain splash and sheet flow is the dominant runoff and erosion mechanism occurring on most steep hillslopes. In this study, a rainfall simulation was conducted to evaluate interrill erosion in steep slope with cover or non-cover. The kinetic energy of raindrops of rainfall simulator was measured by disdrometer used to measure the drop size distribution and velocity of falling raindrops and showed about 0.563 rate of that calculated from empirical equation between rainfall kinetic energy and rainfall intensity. Surface and subsurface runoff and sediment yield depended on rainfall intensity, gradient of slope, and existence of cover. Sediment from steep plots under rainfall simulator is greatly reduced by existence of the strip cover that the kinetic energy of raindrop approximates to zero. Soil erosion in steep slope with non-cover was nearly 4.93 times of that measured in plots with strip cover although runoff was only 1.82 times. The equation of a rainfall and sheet power was used to evaluate sediment yields in steep slope with cover or non-cover. The power model successfully explained physical processes for interrill erosion that combination of raindrop impact and sheet flow increases greatly soil erosion in steep slope. This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology(No. 2013R1A1A3011962).
Impact of Rainfall on Multilane Roundabout Flowrate Contraction
NASA Astrophysics Data System (ADS)
PARKSHIR, Amir; BEN-EDIGBE, Johnnie
2017-08-01
In this study, roundabouts at two sites in the Malaysia were investigated under rainy and dry weather conditions. Two automatic traffic counters per roundabout arm as well as two rain gauge stations were used to collect data at each surveyed site. Nearly one million vehicles were investigated at four sites. Vehicle volume, speeds and headways for entry and circulating flows were collected continuously at each roundabout about arm for six weeks between November 2013 and January 2014. Empirical regression technique and gap-acceptance models were modified and used to analyze roundabout capacity. Good fits to the data were obtained; the results also fit models developed in other countries. It was assumed that entry capacity depends on the geometric characteristics of the roundabout, particularly the diameter of the outside circle of the intersection. It was also postulated that geometric characteristics determine the speed of vehicles around the central island and, therefore, have an impact on the gap-acceptance process and consequently the capacity. Only off-peak traffic data per light, moderate or heavy rainfall were analysed. Peak traffic data were not used because of the presence of peak traffic flow. Passenger car equivalent values being an instrument of conversion from traffic volume to flow were modified. Results show that, average entry capacity loss is about 22.6% under light rainfall, about 18.1% under moderate rainfall and about 5.6% under heavy rainfall. Significant entry capacity loss would result from rainfall irrespective of their intensity. It can be postulated that entry capacity loss under heavy rainfall is lowest because the advantage enjoyed by circulating flow would be greatly reduced with increased rainfall intensity. The paper concluded that rainfall has significant impact of flowrate contraction at roundabouts.
Merging gauge and satellite rainfall with specification of associated uncertainty across Australia
NASA Astrophysics Data System (ADS)
Woldemeskel, Fitsum M.; Sivakumar, Bellie; Sharma, Ashish
2013-08-01
Accurate estimation of spatial rainfall is crucial for modelling hydrological systems and planning and management of water resources. While spatial rainfall can be estimated either using rain gauge-based measurements or using satellite-based measurements, such estimates are subject to uncertainties due to various sources of errors in either case, including interpolation and retrieval errors. The purpose of the present study is twofold: (1) to investigate the benefit of merging rain gauge measurements and satellite rainfall data for Australian conditions and (2) to produce a database of retrospective rainfall along with a new uncertainty metric for each grid location at any timestep. The analysis involves four steps: First, a comparison of rain gauge measurements and the Tropical Rainfall Measuring Mission (TRMM) 3B42 data at such rain gauge locations is carried out. Second, gridded monthly rain gauge rainfall is determined using thin plate smoothing splines (TPSS) and modified inverse distance weight (MIDW) method. Third, the gridded rain gauge rainfall is merged with the monthly accumulated TRMM 3B42 using a linearised weighting procedure, the weights at each grid being calculated based on the error variances of each dataset. Finally, cross validation (CV) errors at rain gauge locations and standard errors at gridded locations for each timestep are estimated. The CV error statistics indicate that merging of the two datasets improves the estimation of spatial rainfall, and more so where the rain gauge network is sparse. The provision of spatio-temporal standard errors with the retrospective dataset is particularly useful for subsequent modelling applications where input error knowledge can help reduce the uncertainty associated with modelling outcomes.
De Paola, Francesco; Giugni, Maurizio; Topa, Maria Elena; Bucchignani, Edoardo
2014-01-01
Changes in the hydrologic cycle due to increase in greenhouse gases cause variations in intensity, duration, and frequency of precipitation events. Quantifying the potential effects of climate change and adapting to them is one way to reduce urban vulnerability. Since rainfall characteristics are often used to design water structures, reviewing and updating rainfall characteristics (i.e., Intensity-Duration-Frequency (IDF) curves) for future climate scenarios is necessary (Reg Environ Change 13(1 Supplement):25-33, 2013). The present study regards the evaluation of the IDF curves for three case studies: Addis Ababa (Ethiopia), Dar Es Salaam (Tanzania) and Douala (Cameroon). Starting from daily rainfall observed data, to define the IDF curves and the extreme values in a smaller time window (10', 30', 1 h, 3 h, 6 h, 12 h), disaggregation techniques of the collected data have been used, in order to generate a synthetic sequence of rainfall, with statistical properties similar to the recorded data. Then, the rainfall pattern of the three test cities was analyzed and IDF curves were evaluated. In order to estimate the contingent influence of climate change on the IDF curves, the described procedure was applied to the climate (rainfall) simulations over the time period 2010-2050, provided by CMCC (Centro Euro-Mediterraneo sui Cambiamenti Climatici). The evaluation of the IDF curves allowed to frame the rainfall evolution of the three case studies, considering initially only historical data, then taking into account the climate projections, in order to verify the changes in rainfall patterns. The same set of data and projections was also used for evaluating the Probable Maximum Precipitation (PMP).
Klein, Shannon G; Pitt, Kylie A; Carroll, Anthony R
2016-02-01
Accurately predicting how marine biota are likely to respond to changing ocean conditions requires accurate simulation of interacting stressors, exposure regimes and recovery periods. Jellyfish populations have increased in some parts of the world and, despite few direct empirical tests, are hypothesised to be increasing because they are robust to a range of environmental stressors. Here, we investigated the effects of contaminated runoff on a zooxanthellate jellyfish by exposing juvenile Cassiopea sp. medusae to a photosystem II (PSII) herbicide, atrazine and reduced salinity conditions that occur following rainfall. Four levels of atrazine (0ngL(-1), 10ngL(-1), 2μgL(-1), 20μgL(-1)) and three levels of salinity (35 ppt, 25 ppt, 17 ppt) were varied, mimicking the timeline of light, moderate and heavy rainfall events. Normal conditions were then slowly re-established over four days to mimic the recovery of the ecosystem post-rain and the experiment continued for a further 7 days to observe potential recovery of the medusae. Pulse-amplitude modulated (PAM) chlorophyll fluorescence, growth and bell contraction rates of medusae were measured. Medusae exposed to the combination of high atrazine and lowest salinity died. After 3 days of exposure, bell contraction rates were reduced by 88% and medusae were 16% smaller in the lowest salinity treatments. By Day 5 of the experiment, all medusae that survived the initial pulse event began to recover quickly. Although atrazine decreased YII under normal salinity conditions, YII was further reduced when medusae were exposed to both low salinity and atrazine simultaneously. Atrazine breakdown products were more concentrated in jellyfish tissues than atrazine at the end of the experiment, suggesting that although bioaccumulation occurred, atrazine was metabolised. Our results suggest that reduced salinity may increase the susceptibility of medusae to herbicide exposure during heavy rainfall events. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Breinl, Korbinian; Di Baldassarre, Giuliano; Girons Lopez, Marc
2017-04-01
We assess uncertainties of multi-site rainfall generation across spatial scales and different climatic conditions. Many research subjects in earth sciences such as floods, droughts or water balance simulations require the generation of long rainfall time series. In large study areas the simulation at multiple sites becomes indispensable to account for the spatial rainfall variability, but becomes more complex compared to a single site due to the intermittent nature of rainfall. Weather generators can be used for extrapolating rainfall time series, and various models have been presented in the literature. Even though the large majority of multi-site rainfall generators is based on similar methods, such as resampling techniques or Markovian processes, they often become too complex. We think that this complexity has been a limit for the application of such tools. Furthermore, the majority of multi-site rainfall generators found in the literature are either not publicly available or intended for being applied at small geographical scales, often only in temperate climates. Here we present a revised, and now publicly available, version of a multi-site rainfall generation code first applied in 2014 in Austria and France, which we call TripleM (Multisite Markov Model). We test this fast and robust code with daily rainfall observations from the United States, in a subtropical, tropical and temperate climate, using rain gauge networks with a maximum site distance above 1,000km, thereby generating one million years of synthetic time series. The modelling of these one million years takes one night on a recent desktop computer. In this research, we first start the simulations with a small station network of three sites and progressively increase the number of sites and the spatial extent, and analyze the changing uncertainties for multiple statistical metrics such as dry and wet spells, rainfall autocorrelation, lagged cross correlations and the inter-annual rainfall variability. Our study contributes to the scientific community of earth sciences and the ongoing debate on extreme precipitation in a changing climate by making a stable, and very easily applicable, multi-site rainfall generation code available to the research community and providing a better understanding of the performance of multi-site rainfall generation depending on spatial scales and climatic conditions.
NASA Astrophysics Data System (ADS)
Vathsala, H.; Koolagudi, Shashidhar G.
2017-01-01
In this paper we discuss a data mining application for predicting peninsular Indian summer monsoon rainfall, and propose an algorithm that combine data mining and statistical techniques. We select likely predictors based on association rules that have the highest confidence levels. We then cluster the selected predictors to reduce their dimensions and use cluster membership values for classification. We derive the predictors from local conditions in southern India, including mean sea level pressure, wind speed, and maximum and minimum temperatures. The global condition variables include southern oscillation and Indian Ocean dipole conditions. The algorithm predicts rainfall in five categories: Flood, Excess, Normal, Deficit and Drought. We use closed itemset mining, cluster membership calculations and a multilayer perceptron function in the algorithm to predict monsoon rainfall in peninsular India. Using Indian Institute of Tropical Meteorology data, we found the prediction accuracy of our proposed approach to be exceptionally good.
NASA Astrophysics Data System (ADS)
Cao, W.; Lee, C. T.
2016-12-01
Continental arc volcanoes have been suggested to release more CO2 than island arc volcanoes due to decarbonation of wallrock carbonates in the continental upper plate through which the magmas traverse (Lee et al., 2013). Continental arcs may thus play an important role in long-term climate. To test this hypothesis, we compiled geological maps to reconstruct the surface distribution of granitoid plutons and the lengths of ancient continental arcs. These results were then compiled into a GIS framework and incorporated into GPlates plate reconstructions. Our results show an episodic nature of global continental arc activity since 720 Ma. The lengths of continental arcs were at minimums during most of the Cryogenian ( 720-670 Ma), the middle Paleozoic ( 460-300 Ma) and the Cenozoic ( 50-0 Ma). Arc lengths were highest during the Ediacaran ( 640-570 Ma), the early Paleozoic ( 550-430 Ma) and the entire Mesozoic with peaks in the Early Triassic ( 250-240 Ma), Late Jurassic-Early Cretaceous ( 160-130 Ma), and Late Cretaceous ( 90-65 Ma). The extensive continental arcs in the Ediacaran and early Paleozoic reflect the Pan-African events and circum-Gondwana subduction during the assembly of the Gondwana supercontinent. The Early Triassic peak is coincident with the final closure of the paleo-Asian oceans and the onset of circum-Pacific subduction associated with the assembly of the Pangea supercontinent. The Jurassic-Cretaceous peaks reflect the extensive continental arcs established in the western Pacific, North and South American Cordillera, coincident with the initial dispersal of the Pangea. Continental arcs are favored during the final assembly and the early-stage dispersal of a supercontinent. Our compilation shows a temporal match between continental arc activity and long-term climate at least since 720 Ma. For example, continental arc activity was reduced during the Cryogenian icehouse event, and enhanced during the Early Paleozoic and Jurassic-Cretaceous greenhouse events. This coherence provides further evidence that continental arcs may play an important role in controlling long-term climate evolution. CO2 degassing fluxes from continental arcs should be incorporated into global, long-term climate models. Our work provides a quantitative framework for estimating these fluxes.
Kim, Sangdan; Han, Suhee
2010-01-01
Most related literature regarding designing urban non-point-source management systems assumes that precipitation event-depths follow the 1-parameter exponential probability density function to reduce the mathematical complexity of the derivation process. However, the method of expressing the rainfall is the most important factor for analyzing stormwater; thus, a better mathematical expression, which represents the probability distribution of rainfall depths, is suggested in this study. Also, the rainfall-runoff calculation procedure required for deriving a stormwater-capture curve is altered by the U.S. Natural Resources Conservation Service (Washington, D.C.) (NRCS) runoff curve number method to consider the nonlinearity of the rainfall-runoff relation and, at the same time, obtain a more verifiable and representative curve for design when applying it to urban drainage areas with complicated land-use characteristics, such as occurs in Korea. The result of developing the stormwater-capture curve from the rainfall data in Busan, Korea, confirms that the methodology suggested in this study provides a better solution than the pre-existing one.
Effectiveness of distinct mulch application rates and schemes under laboratory conditions
NASA Astrophysics Data System (ADS)
Prats, Sergio; Abrantes, Joao; Crema, Isabela; Keizer, Jacob; de Lima, Joao
2017-04-01
Post-fire forest residue mulching using eucalypt bark strands have been proven effective for reducing hillslope runoff and erosion in field plots of different sizes. Application rates of around 8-10 Mg ha-1 achieved about 80% of protective soil surface. Lower application rates, however, would reduce costs and, possibly, also allow faster application, which could be especially critical in late summer high-severity fires. Such lower rates could be achieved by applying less mulch per unit area, by applying mulch in specific zones (strips) and by removing the finest fractions, especially since these can be expected to contribute little to reduce erosion risk. The objective of this laboratory study was to identify the threshold, or the minimum application rate, at which a new mulch blend (without the fraction ≤4 cm) would effectively control runoff and erosion. Two levels of ground cover by forest residue mulch (50 and 70%) and three mulch strips (of 1/3, 2/3 and 3/3) at the bottom of the flume were tested against the untreated bare soil, by applying simulated rainfall and simulated inflow. The seven treatments were replicated three times using a 2.7 m x 0.3 m soil flume with a 40% slope, filled with a dry loamy sand soil. Each experiment included: (i) a "Dry" soil run comprising 20 min of simulated rainfall at a rate of 56 mm h-1; (ii) a "Wet" soil run with the same rainfall characteristics; (iii) a "Flow" run combining 20 min of rainfall with three inflows at increasing rates (52, 110, 232 mm h-1) on nearly saturated soil. The results showed that runoff, interrill and rill erosion were strongly reduced by covering 3/3 and 2/3 of the flume with mulch at 70% ground cover (overall mulch application rates of 2.6 and 1.3 Mg ha-1). The 1/3 mulch strip at 70% mulch cover (application rate of 1 Mg ha-1) also reduced significantly erosion but not runoff. The mulch strips at 50% were less effective, and only the application over the whole plot was able to reduce interrill and rill erosion. Apparently, runoff depended most on mulch cover, while soil losses depended most on strip width. Even so, the new mulch was poorly effective in reducing runoff but effective in reducing interrill erosion and even highly effective in reducing rill erosion.
Monsoon climate response in Indian teak (Tectona grandis L.f.) along a transect from coast to inland
NASA Astrophysics Data System (ADS)
Sengupta, Saikat; Borgaonkar, Hemant; Joy, Reji Mariya; Ram, Somaru
2017-11-01
Indian monsoon (June-September) and post monsoon (October-November) rainfall show a distinct trend from coast to inland primarily due to moisture availability. However, the response of this synoptic-scale variation of rainfall amount to annual ring growth of Indian teak has not been studied systematically yet. The study is important as (1) ring width of Indian teak is considered as a reliable proxy for studying monsoon climate variability in multi-centennial time scale and (2) observed meteorological data show systematic changes in rainfall variation from coast to inland since last three decades. Towards this, we present here tree-ring width data from two locations—Thatibanda (1747-1979) and Nagzira (1728-2000) and use similar published data from two other locations—Allapalli (1866-1897) and Edugurapalli (1827-2000). The locations fall along a southeast northwest transect from south east Indian coast to inland. Monthly mean data from nearest observatories show an increasing trend in monsoon rainfall and a pronounced decreasing trend in post monsoon rainfall towards inland. Ring width data show moderately positive response to monsoon rainfall and negative response to summer (March-May) temperature for all stations suggesting moisture deficit in hot summer and intense precipitation in monsoon affect ring growth pattern in different ways. Ring width indices also exhibit significantly positive response with post monsoon rainfall at coastal location. The response gradually reduces towards inland. This preliminary study, thus, suggests that Indian teak has a potential to capture signals of the synoptic variation of post monsoon rainfall from coast to inland.
NASA Astrophysics Data System (ADS)
Parra, Antonio; Ramírez, David A.; Resco, Víctor; Velasco, Ángel; Moreno, José M.
2012-11-01
Global warming is projected to increase the frequency and intensity of droughts in the Mediterranean region, as well as the occurrence of large fires. Understanding the interactions between drought, fire and plant responses is therefore important. In this study, we present an experiment in which rainfall patterns were modified to simulate various levels of drought in a Mediterranean shrubland of central Spain dominated by Cistus ladanifer, Erica arborea and Phillyrea angustifolia. A system composed of automatic rainout shelters with an irrigation facility was used. It was designed to be applied in vegetation 2 m tall, treat relatively large areas (36 m2), and be quickly dismantled to perform experimental burning and reassembled back again. Twenty plots were subjected to four rainfall treatments from early spring: natural rainfall, long-term average rainfall (2 months drought), moderate drought (25% reduction from long-term rainfall, 5 months drought) and severe drought (45% reduction, 7 months drought). The plots were burned in late summer, without interfering with rainfall manipulations. Results indicated that rainfall manipulations caused differences in soil moisture among treatments, leading to reduced water availability and growth of C. ladanifer and E. arborea in the drought treatments. However, P. angustifolia was not affected by the manipulations. Rainout shelters had a negligible impact on plot microenvironment. Experimental burns were of high fire intensity, without differences among treatments. Our system provides a tool to study the combined effects of drought and fire on vegetation, which is important to assess the threats posed by climate change in Mediterranean environments.
Parra, Antonio; Ramírez, David A; Resco, Víctor; Velasco, Ángel; Moreno, José M
2012-11-01
Global warming is projected to increase the frequency and intensity of droughts in the Mediterranean region, as well as the occurrence of large fires. Understanding the interactions between drought, fire and plant responses is therefore important. In this study, we present an experiment in which rainfall patterns were modified to simulate various levels of drought in a Mediterranean shrubland of central Spain dominated by Cistus ladanifer, Erica arborea and Phillyrea angustifolia. A system composed of automatic rainout shelters with an irrigation facility was used. It was designed to be applied in vegetation 2 m tall, treat relatively large areas (36 m2), and be quickly dismantled to perform experimental burning and reassembled back again. Twenty plots were subjected to four rainfall treatments from early spring: natural rainfall, long-term average rainfall (2 months drought), moderate drought (25% reduction from long-term rainfall, 5 months drought) and severe drought (45% reduction, 7 months drought). The plots were burned in late summer, without interfering with rainfall manipulations. Results indicated that rainfall manipulations caused differences in soil moisture among treatments, leading to reduced water availability and growth of C. ladanifer and E. arborea in the drought treatments. However, P. angustifolia was not affected by the manipulations. Rainout shelters had a negligible impact on plot microenvironment. Experimental burns were of high fire intensity, without differences among treatments. Our system provides a tool to study the combined effects of drought and fire on vegetation, which is important to assess the threats posed by climate change in Mediterranean environments.
Late Pleistocene-Holocene vegetation and climate change in the Middle Kalahari, Lake Ngami, Botswana
NASA Astrophysics Data System (ADS)
Cordova, Carlos E.; Scott, Louis; Chase, Brian M.; Chevalier, Manuel
2017-09-01
Pollen, spores, and microscopic charcoal from a sediment core from Lake Ngami, in the Middle Kalahari, reflect paleovegetation and paleoclimatic conditions over the last 16,600 cal years BP. The location of Lake Ngami allows for the receipt of moisture sourced from the Indian and/or Atlantic oceans, which may have influenced local rainfall or long distance water transport via the Okavango system. We interpret results of statistical analyses of the pollen data as showing a complex, dynamic system wherein variability in tropical convective systems and local forcing mechanisms influence hydrological changes. Our reconstructions show three primary phases in the regional precipitation regime: 1) an early period of high but fluctuating summer rainfall under relatively cool conditions from ∼16,600-12,500 cal BP, with reduced tree to herb and shrub ratio; 2) an episode of significantly reduced rainfall centered around c. 11,400 cal BP, characterized by an increase in xeric Asteraceae pollen, but persistent aquatic elements, suggesting less rainfall but cool conditions and lower evaporation that maintained water in the basin; and 3) a longer phase of high, but fluctuating rainfall from ∼9000 cal BP to present with more woody savanna vegetation (Vachellia (Acacia) and Combretaceae). We propose a model to relate these changes to increased Indian Ocean-sourced moisture in the late Pleistocene due to a southerly position of the African rain belt, a northerly contraction of tropical systems that immediately followed the Younger Dryas, and a subsequent dominance of local insolation forcing, modulated by changes in the SE Atlantic basin.
NASA Astrophysics Data System (ADS)
Thomas, Nicholas W.; Arenas Amado, Antonio; Schilling, Keith E.; Weber, Larry J.
2016-10-01
This research systematically analyzed the influence of antecedent soil wetness, rainfall depth, and the subsequent impact on peak flows in a 45 km2 watershed. Peak flows increased with increasing antecedent wetness and rainfall depth, with the highest peak flows occurring under intense precipitation on wet soils. Flood mitigation structures were included and investigated under full and empty initial storage conditions. Peak flows were reduced at the outlet of the watershed by 3-17%. The highest peak flow reductions occurred in scenarios with dry soil, empty project storage, and low rainfall depths. These analyses showed that with increased rainfall depth, antecedent moisture conditions became increasingly less impactful. Scaling invariance of peak discharges were shown to hold true within this basin and were fit through ordinary least squares regression for each design scenario. Scale-invariance relationships were extrapolated beyond the outlet of the analyzed basin to the point of intersection of with and without structure scenarios. In each scenario extrapolated peak discharge benefits depreciated at a drainage area of approximately 100 km2. The associated drainage area translated to roughly 2 km downstream of the Beaver Creek watershed outlet. This work provides an example of internal watershed benefits of structural flood mitigation efforts, and the impact the may exert outside of the basin. Additionally, the influence of 1.8 million in flood reduction tools was not sufficient to routinely address downstream flood concerns, shedding light on the additional investment required to alter peak flows in large basins.
Climate Variability and Yields of Major Staple Food Crops in Northern Ghana
NASA Astrophysics Data System (ADS)
Amikuzuno, J.
2012-12-01
Climate variability, the short-term fluctuations in average weather conditions, and agriculture affect each other. Climate variability affects the agroecological and growing conditions of crops and livestock, and is recently believed to be the greatest impediment to the realisation of the first Millennium Development Goal of reducing poverty and food insecurity in arid and semi-arid regions of developing countries. Conversely, agriculture is a major contributor to climate variability and change by emitting greenhouse gases and reducing the agroecology's potential for carbon sequestration. What however, is the empirical evidence of this inter-dependence of climate variability and agriculture in Sub-Sahara Africa? In this paper, we provide some insight into the long run relationship between inter-annual variations in temperature and rainfall, and annual yields of the most important staple food crops in Northern Ghana. Applying pooled panel data of rainfall, temperature and yields of the selected crops from 1976 to 2010 to cointegration and Granger causality models, there is cogent evidence of cointegration between seasonal, total rainfall and crop yields; and causality from rainfall to crop yields in the Sudano-Guinea Savannah and Guinea Savannah zones of Northern Ghana. This suggests that inter-annual yields of the crops have been influenced by the total mounts of rainfall in the planting season. Temperature variability over the study period is however stationary, and is suspected to have minimal effect if any on crop yields. Overall, the results confirm the appropriateness of our attempt in modelling long-term relationships between the climate and crop yield variables.
NASA Astrophysics Data System (ADS)
Li, Xinrong
2016-04-01
Biological soil crust (BSC) is a vital component in the stabilized sand dunes with a living cover up to more than 70% of the total, which has been considered as a bio-mediator that directly influences and regulates the sand dune ecosystem processes. However, its influences on soil hydrological processes have been long neglected in Chinese deserts. In this study, BSCs of different successional stages were chose to test their influence on the hydrological processes of stabilized dune, where the groundwater deep exceeds 30m, further to explore why occur the sand-binding vegetation replacement between shrubs and herbs. Our long-term observation (60 years) shows that cyanobacteria crust has been colonized and developed after 3 years since the sand-binding vegetation has been established and dune fixation using planted xerophytic shrubs and made sand barrier (straw-checkerboard) on shifting dune surface, lichen and moss crust occurred after 20 years, and the cover of moss dominated crust could reach 70 % after 50 years. The colonization and development of BSC altered the initial soil water balance of revegetated areas by influencing rainfall infiltration, soil evaporation and dew water entrapment. The results show that BSC obviously reduced the infiltration that occurred during most rainfall events (80%), when rainfall was greater than 5 mm or less than 20 mm. The presence of BSC reduced evaporation of topsoil after small rainfall (<5 mm) because its high proportion of finer particles slowed the evaporation rate, thus keeping the water in the soil surface longer, and crust facilitated topsoil evaporation when rainfall reached 10 mm. The amount of dew entrapment increases with the succession of BSC. Moreover, the effect of the later successional BSC to dew entrapment, rainfall infiltration and evaporation was more obvious than the early successional BSC on stabilized dunes. In general, BSC reduced the amount of rainfall water that reached deeper soil (0.4-3m), which is where the roots of shrubs are primarily distributed. These changes in the soil moisture pattern induced shifting of sand-binding vegetation from initial planted xerophytic shrub communities with higher coverage (35%) to complex communities dominated by shallow-rooted herbaceous species with low shrub coverage (9%). In correspondence with these changes, soil water balance of the initial vegetation systems (mean soil water kept 3.5%) was turned into a new balance of current vegetation (mean soil water maintains 1.5%). Above findings provide an important enlightenment for future desertification control and sand hazards prevention by revegetation.
The impact of mesoscale convective systems on global precipitation: A modeling study
NASA Astrophysics Data System (ADS)
Tao, Wei-Kuo
2017-04-01
The importance of precipitating mesoscale convective systems (MCSs) has been quantified from TRMM precipitation radar and microwave imager retrievals. MCSs generate more than 50% of the rainfall in most tropical regions. Typical MCSs have horizontal scales of a few hundred kilometers (km); therefore, a large domain and high resolution are required for realistic simulations of MCSs in cloud-resolving models (CRMs). Almost all traditional global and climate models do not have adequate parameterizations to represent MCSs. Typical multi-scale modeling frameworks (MMFs) with 32 CRM grid points and 4 km grid spacing also might not have sufficient resolution and domain size for realistically simulating MCSs. In this study, the impact of MCSs on precipitation processes is examined by conducting numerical model simulations using the Goddard Cumulus Ensemble model (GCE) and Goddard MMF (GMMF). The results indicate that both models can realistically simulate MCSs with more grid points (i.e., 128 and 256) and higher resolutions (1 or 2 km) compared to those simulations with less grid points (i.e., 32 and 64) and low resolution (4 km). The modeling results also show that the strengths of the Hadley circulations, mean zonal and regional vertical velocities, surface evaporation, and amount of surface rainfall are either weaker or reduced in the GMMF when using more CRM grid points and higher CRM resolution. In addition, the results indicate that large-scale surface evaporation and wind feed back are key processes for determining the surface rainfall amount in the GMMF. A sensitivity test with reduced sea surface temperatures (SSTs) is conducted and results in both reduced surface rainfall and evaporation.
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Chern, Jiun-Dar
2017-01-01
The importance of precipitating mesoscale convective systems (MCSs) has been quantified from TRMM precipitation radar and microwave imager retrievals. MCSs generate more than 50% of the rainfall in most tropical regions. MCSs usually have horizontal scales of a few hundred kilometers (km); therefore, a large domain with several hundred km is required for realistic simulations of MCSs in cloud-resolving models (CRMs). Almost all traditional global and climate models do not have adequate parameterizations to represent MCSs. Typical multi-scale modeling frameworks (MMFs) may also lack the resolution (4 km grid spacing) and domain size (128 km) to realistically simulate MCSs. In this study, the impact of MCSs on precipitation is examined by conducting model simulations using the Goddard Cumulus Ensemble (GCE) model and Goddard MMF (GMMF). The results indicate that both models can realistically simulate MCSs with more grid points (i.e., 128 and 256) and higher resolutions (1 or 2 km) compared to those simulations with fewer grid points (i.e., 32 and 64) and low resolution (4 km). The modeling results also show the strengths of the Hadley circulations, mean zonal and regional vertical velocities, surface evaporation, and amount of surface rainfall are weaker or reduced in the GMMF when using more CRM grid points and higher CRM resolution. In addition, the results indicate that large-scale surface evaporation and wind feed back are key processes for determining the surface rainfall amount in the GMMF. A sensitivity test with reduced sea surface temperatures shows both reduced surface rainfall and evaporation.
NASA Astrophysics Data System (ADS)
Tao, Wei-Kuo; Chern, Jiun-Dar
2017-06-01
The importance of precipitating mesoscale convective systems (MCSs) has been quantified from TRMM precipitation radar and microwave imager retrievals. MCSs generate more than 50% of the rainfall in most tropical regions. MCSs usually have horizontal scales of a few hundred kilometers (km); therefore, a large domain with several hundred km is required for realistic simulations of MCSs in cloud-resolving models (CRMs). Almost all traditional global and climate models do not have adequate parameterizations to represent MCSs. Typical multiscale modeling frameworks (MMFs) may also lack the resolution (4 km grid spacing) and domain size (128 km) to realistically simulate MCSs. The impact of MCSs on precipitation is examined by conducting model simulations using the Goddard Cumulus Ensemble (GCE, a CRM) model and Goddard MMF that uses the GCEs as its embedded CRMs. Both models can realistically simulate MCSs with more grid points (i.e., 128 and 256) and higher resolutions (1 or 2 km) compared to those simulations with fewer grid points (i.e., 32 and 64) and low resolution (4 km). The modeling results also show the strengths of the Hadley circulations, mean zonal and regional vertical velocities, surface evaporation, and amount of surface rainfall are weaker or reduced in the Goddard MMF when using more CRM grid points and higher CRM resolution. In addition, the results indicate that large-scale surface evaporation and wind feedback are key processes for determining the surface rainfall amount in the GMMF. A sensitivity test with reduced sea surface temperatures shows both reduced surface rainfall and evaporation.
A further assessment of vegetation feedback on decadal Sahel rainfall variability
NASA Astrophysics Data System (ADS)
Kucharski, Fred; Zeng, Ning; Kalnay, Eugenia
2013-03-01
The effect of vegetation feedback on decadal-scale Sahel rainfall variability is analyzed using an ensemble of climate model simulations in which the atmospheric general circulation model ICTPAGCM ("SPEEDY") is coupled to the dynamic vegetation model VEGAS to represent feedbacks from surface albedo change and evapotranspiration, forced externally by observed sea surface temperature (SST) changes. In the control experiment, where the full vegetation feedback is included, the ensemble is consistent with the observed decadal rainfall variability, with a forced component 60 % of the observed variability. In a sensitivity experiment where climatological vegetation cover and albedo are prescribed from the control experiment, the ensemble of simulations is not consistent with the observations because of strongly reduced amplitude of decadal rainfall variability, and the forced component drops to 35 % of the observed variability. The decadal rainfall variability is driven by SST forcing, but significantly enhanced by land-surface feedbacks. Both, local evaporation and moisture flux convergence changes are important for the total rainfall response. Also the internal decadal variability across the ensemble members (not SST-forced) is much stronger in the control experiment compared with the one where vegetation cover and albedo are prescribed. It is further shown that this positive vegetation feedback is physically related to the albedo feedback, supporting the Charney hypothesis.
The washout effects of rainfall on atmospheric particulate pollution in two Chinese cities.
Guo, Ling-Chuan; Zhang, Yonghui; Lin, Hualiang; Zeng, Weilin; Liu, Tao; Xiao, Jianpeng; Rutherford, Shannon; You, Jing; Ma, Wenjun
2016-08-01
Though rainfall is recognized as one of the main mechanisms to reduce atmospheric particulate pollution, few studies have quantified this effect, particularly the corresponding lag effect and threshold. This study aimed to investigate the association between rainfall and air quality using a distributed lag non-linear model. Daily data on ambient PM2.5 and PM2.5-10 (particulate matter with an aerodynamic diameter less than 2.5 μm and from 2.5 to 10 μm) and meteorological factors were collected in Guangzhou and Xi'an from 2013 to 2014. A better washout effect was found for PM2.5-10 than for PM2.5, and the rainfall thresholds for both particle fractions were 7 mm in Guangzhou and 1 mm in Xi'an. The decrease in PM2.5 levels following rain lasted for 3 and 6 days in Guangzhou and Xi'an, respectively. Rainfall had a better washout effect in Xi'an compared with that in Guangzhou. Findings from this study contribute to a better understanding of the washout effects of rainfall on particulate pollution, which may help to understand the category and sustainability of dust-haze and enforce anthropogenic control measures in time. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chen, Ling; Liu, De-Fu; Song, Lin-Xu; Cui, Yu-Jie; Zhang, Gei
2013-06-01
In order to investigate the loss characteristics of N and P through surface flow and interflow under different rainfall intensities, a field experiment was conducted on the sloping arable land covered by typical yellow-brown soils inXiangxi River watershed by artificial rainfall. The results showed that the discharge of surface flow, total runoff and sediment increased with the increase of rain intensity, while the interflow was negatively correlated with rain intensity under the same total rainfall. TN, DN and DP were all flushed at the very beginning in surface flow underdifferent rainfall intensities; TP fluctuated and kept consistent in surface flow without obvious downtrend. While TN, DN and DP in interflow kept relatively stable in the whole runoff process, TP was high at the early stage, then rapidly decreased with time and kept steady finally. P was directly influenced by rainfall intensity, its concentration in the runoff increased with the increase of the rainfall intensity, the average concentration of N and P both exceeded the threshold of eutrophication of freshwater. The higher the amount of P loss was, the higher the rain intensity. The change of N loss was the opposite. The contribution rate of TN loss carried by surface flow increased from 36.5% to 57.6% with the increase of rainfall intensity, but surface flow was the primary form of P loss which contributed above 90.0%. Thus, it is crucial to control interflow in order to reduce N loss. In addition, measures should be taken to effectively manage soil erosion to mitigate P loss. The proportion of dissolved nitrogen in surface flow elevated with the decrease of rainfall intensity, but in interflow, dissolved form was predominant. P was exported mainly in the form of particulate under different rainfall intensities and runoff conditions.
NASA Astrophysics Data System (ADS)
Soulis, K. X.; Valiantzas, J. D.
2012-03-01
The Soil Conservation Service Curve Number (SCS-CN) approach is widely used as a simple method for predicting direct runoff volume for a given rainfall event. The CN parameter values corresponding to various soil, land cover, and land management conditions can be selected from tables, but it is preferable to estimate the CN value from measured rainfall-runoff data if available. However, previous researchers indicated that the CN values calculated from measured rainfall-runoff data vary systematically with the rainfall depth. Hence, they suggested the determination of a single asymptotic CN value observed for very high rainfall depths to characterize the watersheds' runoff response. In this paper, the hypothesis that the observed correlation between the calculated CN value and the rainfall depth in a watershed reflects the effect of soils and land cover spatial variability on its hydrologic response is being tested. Based on this hypothesis, the simplified concept of a two-CN heterogeneous system is introduced to model the observed CN-rainfall variation by reducing the CN spatial variability into two classes. The behaviour of the CN-rainfall function produced by the simplified two-CN system is approached theoretically, it is analysed systematically, and it is found to be similar to the variation observed in natural watersheds. Synthetic data tests, natural watersheds examples, and detailed study of two natural experimental watersheds with known spatial heterogeneity characteristics were used to evaluate the method. The results indicate that the determination of CN values from rainfall runoff data using the proposed two-CN system approach provides reasonable accuracy and it over performs the previous methods based on the determination of a single asymptotic CN value. Although the suggested method increases the number of unknown parameters to three (instead of one), a clear physical reasoning for them is presented.
Using rainfall radar data to improve interpolated maps of dose rate in the Netherlands.
Hiemstra, Paul H; Pebesma, Edzer J; Heuvelink, Gerard B M; Twenhöfel, Chris J W
2010-12-01
The radiation monitoring network in the Netherlands is designed to detect and track increased radiation levels, dose rate more specifically, in 10-minute intervals. The network consists of 153 monitoring stations. Washout of radon progeny by rainfall is the most important cause of natural variations in dose rate. The increase in dose rate at a given time is a function of the amount of progeny decaying, which in turn is a balance between deposition of progeny by rainfall and radioactive decay. The increase in progeny is closely related to average rainfall intensity over the last 2.5h. We included decay of progeny by using weighted averaged rainfall intensity, where the weight decreases back in time. The decrease in weight is related to the half-life of radon progeny. In this paper we show for a rainstorm on the 20th of July 2007 that weighted averaged rainfall intensity estimated from rainfall radar images, collected every 5min, performs much better as a predictor of increases in dose rate than using the non-averaged rainfall intensity. In addition, we show through cross-validation that including weighted averaged rainfall intensity in an interpolated map using universal kriging (UK) does not necessarily lead to a more accurate map. This might be attributed to the high density of monitoring stations in comparison to the spatial extent of a typical rain event. Reducing the network density improved the accuracy of the map when universal kriging was used instead of ordinary kriging (no trend). Consequently, in a less dense network the positive influence of including a trend is likely to increase. Furthermore, we suspect that UK better reproduces the sharp boundaries present in rainfall maps, but that the lack of short-distance monitoring station pairs prevents cross-validation from revealing this effect. Copyright © 2010 Elsevier B.V. All rights reserved.
Snyder, Richard A; Ederington-Hagy, Melissa; Hileman, Fredrick; Moss, Joseph A; Amick, Lauren; Carruth, Rebecca; Head, Marie; Marks, Joel; Tominack, Sarah; Jeffrey, Wade H
2014-12-15
The Florida Panhandle continental shelf environment was exposed to oil from the BP oil well failure in the Gulf of Mexico during 2010. Floating mats of oil were documented by satellite, but the distribution of dissolved components of the oil in this region was unknown. Shipek® grab samples of sediments were taken during repeated cruises between June 2010 and June 2012 to test for selected polycyclic aromatic hydrocarbons (PAHs) as indicators of this contamination. Sediments were collected as composite samples, extracted using standard techniques, and PAHs were quantified by GC/MS-SIM. PAHs in samples from the continental slope in May 2011 were highest near to the failed well site and were reduced in samples taken one year later. PAHs from continental shelf sediments during the spill (June 2010) ranged from 10 to 165 ng g(-1). Subsequent cruises yielded variable and reduced amounts of PAHs across the shelf. The data suggest that PAHs were distributed widely across the shelf, and their subsequent loss to background levels suggests these compounds were of oil spill origin. PAH half-life estimates by regression were 70-122 days for slope and 201 days for shelf stations. Copyright © 2014 Elsevier Ltd. All rights reserved.
Hovenden, Mark J; Newton, Paul C D; Porter, Meagan
2017-05-01
Global warming is expected to increase the mortality rate of established plants in water-limited systems because of its effect on evapotranspiration. The rising CO 2 concentration ([CO 2 ]), however, should have the opposite effect because it reduces plant transpiration, delaying the onset of drought. This potential for elevated [CO 2 ] (eCO 2 ) to modify the warming effect on mortality should be related to prevailing moisture conditions. This study aimed to determine the impacts of warming by 2 °C and eCO 2 (550 μmol mol -1 ) on plant mortality in an Australian temperate grassland over a 6-year period and to test how interannual variation in rainfall influenced treatment effects. Analyses were based on results from a field experiment, TasFACE, in which grassland plots were exposed to a combination of eCO 2 by free air CO 2 enrichment (FACE) and warming by infrared heaters. Using an annual census of established plants and detailed estimates of recruitment, annual mortality of all established plants was calculated. The influence of rainfall amount and timing on the relative impact of treatments on mortality in each year was analysed using multiple regression techniques. Warming and eCO 2 effects had an interactive influence on mortality which varied strongly from year to year and this variation was determined by temporal rainfall patterns. Warming tended to increase density-adjusted mortality and eCO 2 moderated that effect, but to a greater extent in years with fewer dry periods. These results show that eCO 2 reduced the negative effect of warming but this influence varied strongly with rainfall timing. Importantly, indices involving the amount of rainfall were not required to explain interannual variation in mortality or treatment effects on mortality. Therefore, predictions of global warming effects on plant mortality will be reliant not only on other climate change factors, but also on the temporal distribution of rainfall. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Newton, Paul C. D.; Porter, Meagan
2017-01-01
Abstract Background and aims Global warming is expected to increase the mortality rate of established plants in water-limited systems because of its effect on evapotranspiration. The rising CO2 concentration ([CO2]), however, should have the opposite effect because it reduces plant transpiration, delaying the onset of drought. This potential for elevated [CO2] (eCO2) to modify the warming effect on mortality should be related to prevailing moisture conditions. This study aimed to determine the impacts of warming by 2 °C and eCO2 (550 μmol mol−1) on plant mortality in an Australian temperate grassland over a 6-year period and to test how interannual variation in rainfall influenced treatment effects. Methods Analyses were based on results from a field experiment, TasFACE, in which grassland plots were exposed to a combination of eCO2 by free air CO2 enrichment (FACE) and warming by infrared heaters. Using an annual census of established plants and detailed estimates of recruitment, annual mortality of all established plants was calculated. The influence of rainfall amount and timing on the relative impact of treatments on mortality in each year was analysed using multiple regression techniques. Key Results Warming and eCO2 effects had an interactive influence on mortality which varied strongly from year to year and this variation was determined by temporal rainfall patterns. Warming tended to increase density-adjusted mortality and eCO2 moderated that effect, but to a greater extent in years with fewer dry periods. Conclusions These results show that eCO2 reduced the negative effect of warming but this influence varied strongly with rainfall timing. Importantly, indices involving the amount of rainfall were not required to explain interannual variation in mortality or treatment effects on mortality. Therefore, predictions of global warming effects on plant mortality will be reliant not only on other climate change factors, but also on the temporal distribution of rainfall. PMID:28334161
Regional rainfall thresholds for landslide occurrence using a centenary database
NASA Astrophysics Data System (ADS)
Vaz, Teresa; Luís Zêzere, José; Pereira, Susana; Cruz Oliveira, Sérgio; Quaresma, Ivânia
2017-04-01
Rainfall is one of the most important triggering factors for landslides occurrence worldwide. The relation between rainfall and landslide occurrence is complex and some approaches have been focus on the rainfall thresholds identification, i.e., rainfall critical values that when exceeded can initiate landslide activity. In line with these approaches, this work proposes and validates rainfall thresholds for the Lisbon region (Portugal), using a centenary landslide database associated with a centenary daily rainfall database. The main objectives of the work are the following: i) to compute antecedent rainfall thresholds using linear and potential regression; ii) to define lower limit and upper limit rainfall thresholds; iii) to estimate the probability of critical rainfall conditions associated with landslide events; and iv) to assess the thresholds performance using receiver operating characteristic (ROC) metrics. In this study we consider the DISASTER database, which lists landslides that caused fatalities, injuries, missing people, evacuated and homeless people occurred in Portugal from 1865 to 2010. The DISASTER database was carried out exploring several Portuguese daily and weekly newspapers. Using the same newspaper sources, the DISASTER database was recently updated to include also the landslides that did not caused any human damage, which were also considered for this study. The daily rainfall data were collected at the Lisboa-Geofísico meteorological station. This station was selected considering the quality and completeness of the rainfall data, with records that started in 1864. The methodology adopted included the computation, for each landslide event, of the cumulative antecedent rainfall for different durations (1 to 90 consecutive days). In a second step, for each combination of rainfall quantity-duration, the return period was estimated using the Gumbel probability distribution. The pair (quantity-duration) with the highest return period was considered as the critical rainfall combination responsible for triggering the landslide event. Only events whose critical rainfall combinations have a return period above 3 years were included. This criterion reduces the likelihood of been included events whose triggering factor was other than rainfall. The rainfall quantity-duration threshold for the Lisbon region was firstly defined using the linear and potential regression. Considering that this threshold allow the existence of false negatives (i.e. events below the threshold) it was also identified the lower limit and upper limit rainfall thresholds. These limits were defined empirically by establishing the quantity-durations combinations bellow which no landslides were recorded (lower limit) and the quantity-durations combinations above which only landslides were recorded without any false positive occurrence (upper limit). The zone between the lower limit and upper limit rainfall thresholds was analysed using a probabilistic approach, defining the uncertainties of each rainfall critical conditions in the triggering of landslides. Finally, the performances of the thresholds obtained in this study were assessed using ROC metrics. This work was supported by the project FORLAND - Hydrogeomorphologic risk in Portugal: driving forces and application for land use planning [grant number PTDC/ATPGEO/1660/2014] funded by the Portuguese Foundation for Science and Technology (FCT), Portugal. Sérgio Cruz Oliveira is a post-doc fellow of the FCT [grant number SFRH/BPD/85827/2012].
P. R. Robichaud; P. Jordan; S. A. Lewis; L. E. Ashmun; S. A. Covert; R. E. Brown
2013-01-01
After the 2009 Terrace Mountain fire near Kelowna, BC, Canada, wood shred and agricultural straw mulch effects on post-fire runoff and sediment yields were compared using three experimental techniques: rainfall simulations on 1-m2 plots, concentrated flow (rill) simulations on 9-m long plots, and sediment yields from natural rainfall on 30-m2 plots. All experimental...
Scholl, M.A.; Ingebritsen, S.E.; Janik, C.J.; Kauahikaua, J.P.
1996-01-01
Isotope tracer methods were used to determine flow paths, recharge areas, and relative age for groundwater in the Kilauea volcano area of the Island of Hawaii. A network of up to 66 precipitation collectors was emplaced in the study area and sampled twice yearly for a 3-year period. Stable isotopes in rainfall show three distinct isotopic gradients with elevation, which are correlated with trade wind, rain shadow, and highelevation climatological patterns. Temporal variations in precipitation isotopes are controlled more by the frequency of storms than by seasonal temperature fluctuations. Results from this study suggest that (1) sampling network design must take into account areal variations in rainfall patterns on islands and in continental coastal areas and (2) isotope/elevation gradients on other tropical islands may be predictable on the basis of similar climatology. Groundwater was sampled yearly in coastal springs, wells, and a few high-elevation springs. Areal contrasts in groundwater stable isotopes and tritium indicate that the volcanic rift zones compartmentalize the regional groundwater system, isolating the groundwater south of Kilauea's summit and rift zones. Part of the Southwest Rift Zone appears to act as a conduit for water from higher elevation, but there is no evidence for downrift flow in the springs and shallow wells sampled in the lower East Rift Zone.
Importance of Rain Evaporation and Continental Convection in the Tropical Water Cycle
NASA Technical Reports Server (NTRS)
Worden, John; Noone, David; Bowman, Kevin; Beer, R.; Eldering, A.; Fisher, B.; Gunson, M.; Goldman, Aaron; Kulawik, S. S.; Lampel, Michael;
2007-01-01
Atmospheric moisture cycling is an important aspect of the Earth's climate system, yet the processes determining atmospheric humidity are poorly understood. For example, direct evaporation of rain contributes significantly to the heat and moisture budgets of clouds, but few observations of these processes are available. Similarly, the relative contributions to atmospheric moisture over land from local evaporation and humidity from oceanic sources are uncertain. Lighter isotopes of water vapour preferentially evaporate whereas heavier isotopes preferentially condense and the isotopic composition of ocean water is known. Here we use this information combined with global measurements of the isotopic composition of tropospheric water vapour from the Tropospheric Emission Spectrometer (TES) aboard the Aura spacecraft, to investigate aspects of the atmospheric hydrological cycle that are not well constrained by observations of precipitation or atmospheric vapour content. Our measurements of the isotopic composition of water vapour near tropical clouds suggest that rainfall evaporation contributes significantly to lower troposphere humidity, with typically 20% and up to 50% of rainfall evaporating near convective clouds. Over the tropical continents the isotopic signature of tropospheric water vapour differs significantly from that of precipitation, suggesting that convection of vapour from both oceanic sources and evapotranspiration are the dominant moisture sources. Our measurements allow an assessment of the intensity of the present hydrological cycle and will help identify any future changes as they occur.
NASA Astrophysics Data System (ADS)
Scholl, M. A.; Ingebritsen, S. E.; Janik, C. J.; Kauahikaua, J. P.
1996-12-01
Isotope tracer methods were used to determine flow paths, recharge areas, and relative age for groundwater in the Kilauea volcano area of the Island of Hawaii. A network of up to 66 precipitation collectors was emplaced in the study area and sampled twice yearly for a 3-year period. Stable isotopes in rainfall show three distinct isotopic gradients with elevation, which are correlated with trade wind, rain shadow, and highelevation climatological patterns. Temporal variations in precipitation isotopes are controlled more by the frequency of storms than by seasonal temperature fluctuations. Results from this study suggest that (1) sampling network design must take into account areal variations in rainfall patterns on islands and in continental coastal areas and (2) isotope/elevation gradients on other tropical islands may be predictable on the basis of similar climatology. Groundwater was sampled yearly in coastal springs, wells, and a few high-elevation springs. Areal contrasts in groundwater stable isotopes and tritium indicate that the volcanic rift zones compartmentalize the regional groundwater system, isolating the groundwater south of Kilauea's summit and rift zones. Part of the Southwest Rift Zone appears to act as a conduit for water from higher elevation, but there is no evidence for downrift flow in the springs and shallow wells sampled in the lower East Rift Zone.
Analysis of TRMM-LIS Lightning and Related Microphysics Using a Cell-Scale Database
NASA Technical Reports Server (NTRS)
Leroy, Anita; Petersen, Walter A.
2010-01-01
Previous studies of tropical lightning activity using Tropical Rainfall Measurement Mission (TRMM) Lightning Imaging Sensor (LIS) data performed analyses of lightning behavior over mesoscale "feature" scales or over uniform grids. In order to study lightning and the governing ice microphysics intrinsic to thunderstorms at a more process-specific scale (i.e., the scale over which electrification processes and lightning occur in a "unit" thunderstorm), a new convective cell-scale database was developed by analyzing and refining the University of Utah's Precipitation Features database and retaining precipitation data parameters computed from the TRMM precipitation radar (PR), microwave imager (TMI) and LIS instruments. The resulting data base was to conduct a limited four-year study of tropical continental convection occurring over the Amazon Basin, Congo, Maritime Continent and the western Pacific Ocean. The analysis reveals expected strong correlations between lightning flash counts per cell and ice proxies, such as ice water path, minimum and average 85GHz brightness temperatures, and 18dBz echo top heights above the freezing level in all regimes, as well as regime-specific relationships between lighting flash counts and PR-derived surface rainfall rates. Additionally, radar CFADs were used to partition the 3D structure of cells in each regime at different flash counts. The resulting cell-scale analyses are compared to previous mesoscale feature and gridded studies wherever possible.
Importance of rain evaporation and continental convection in the tropical water cycle.
Worden, John; Noone, David; Bowman, Kevin
2007-02-01
Atmospheric moisture cycling is an important aspect of the Earth's climate system, yet the processes determining atmospheric humidity are poorly understood. For example, direct evaporation of rain contributes significantly to the heat and moisture budgets of clouds, but few observations of these processes are available. Similarly, the relative contributions to atmospheric moisture over land from local evaporation and humidity from oceanic sources are uncertain. Lighter isotopes of water vapour preferentially evaporate whereas heavier isotopes preferentially condense and the isotopic composition of ocean water is known. Here we use this information combined with global measurements of the isotopic composition of tropospheric water vapour from the Tropospheric Emission Spectrometer (TES) aboard the Aura spacecraft, to investigate aspects of the atmospheric hydrological cycle that are not well constrained by observations of precipitation or atmospheric vapour content. Our measurements of the isotopic composition of water vapour near tropical clouds suggest that rainfall evaporation contributes significantly to lower troposphere humidity, with typically 20% and up to 50% of rainfall evaporating near convective clouds. Over the tropical continents the isotopic signature of tropospheric water vapour differs significantly from that of precipitation, suggesting that convection of vapour from both oceanic sources and evapotranspiration are the dominant moisture sources. Our measurements allow an assessment of the intensity of the present hydrological cycle and will help identify any future changes as they occur.
Efficient Parallel Algorithms for Landscape Evolution Modelling
NASA Astrophysics Data System (ADS)
Moresi, L. N.; Mather, B.; Beucher, R.
2017-12-01
Landscape erosion and the deposition of sediments by river systems are strongly controlled bytopography, rainfall patterns, and the susceptibility of the basement to the action ofrunning water. It is well understood that each of these processes depends on the other, for example:topography results from active tectonic processes; deformation, metamorphosis andexhumation alter the competence of the basement; rainfall patterns depend on topography;uplift and subsidence in response to tectonic stress can be amplified by erosionand sediment deposition. We typically gain understanding of such coupled systems through forward models which capture theessential interactions of the various components and attempt parameterise those parts of the individual systemthat are unresolvable at the scale of the interaction. Here we address the problem of predicting erosion and deposition rates at a continental scalewith a resolution of tens to hundreds of metres in a dynamic, Lagrangian framework. This isa typical requirement for a code to interface with a mantle / lithosphere dynamics model anddemands an efficient, unstructured, parallel implementation. We address this through a very general algorithm that treats all parts of the landscape evolution equationsin sparse-matrix form including those for stream-flow accumulation, dam-filling and catchment determination. This givesus considerable flexibility in developing unstructured, parallel code, and in creating a modular packagethat can be configured by users to work at different temporal and spatial scales, but is also has potential advantagesin treating the non-linear parts of the problem in a general manner.
Denitrification and Nitrogen Fixation in Alaskan Continental Shelf Sediments
Haines, John R.; Atlas, Ronald M.; Griffiths, Robert P.; Morita, Richard Y.
1981-01-01
Rates of nitrogen fixation and denitrification were measured in Alaskan continental shelf sediments. In some regions, rates of nitrogen fixation and denitrification appeared to be equal; in other areas, rates were significantly different. Potential rates of denitrification were found to be limited primarily by the available nitrate substrate. Major regional differences in rates of denitrification were not statistically significant, but significant differences were found for nitrogen fixation rates in different regions of the Alaskan continental shelf. Estimated net losses of nitrogen from Bering Sea sediments were calculated as 1.8 × 1012 g of N/yr. Experimental exposure of continental shelf sediments to petroleum hydrocarbons reduced rates of nitrogen fixation and denitrification in some cases but not others. Long-term exposure was necessary before a reduction in nitrogen fixation rates was observed; unamended rates of denitrification but not potential denitrification rates (NO3− added) were depressed after exposure to hydrocarbons. PMID:16345716
NASA Astrophysics Data System (ADS)
Bigg, E. K.; Soubeyrand, S.; Morris, C. E.
2015-03-01
Rainfall is one of the most important aspects of climate, but the extent to which atmospheric ice nuclei (IN) influence its formation, quantity, frequency, and location is not clear. Microorganisms and other biological particles are released following rainfall and have been shown to serve as efficient IN, in turn impacting cloud and precipitation formation. Here we investigated potential long-term effects of IN on rainfall frequency and quantity. Differences in IN concentrations and rainfall after and before days of large rainfall accumulation (i.e., key days) were calculated for measurements made over the past century in southeastern and southwestern Australia. Cumulative differences in IN concentrations and daily rainfall quantity and frequency as a function of days from a key day demonstrated statistically significant increasing logarithmic trends (R2 > 0.97). Based on observations that cumulative effects of rainfall persisted for about 20 days, we calculated cumulative differences for the entire sequence of key days at each site to create a historical record of how the differences changed with time. Comparison of pre-1960 and post-1960 sequences most commonly showed smaller rainfall totals in the post-1960 sequences, particularly in regions downwind from coal-fired power stations. This led us to explore the hypothesis that the increased leaf surface populations of IN-active bacteria due to rain led to a sustained but slowly diminishing increase in atmospheric concentrations of IN that could potentially initiate or augment rainfall. This hypothesis is supported by previous research showing that leaf surface populations of the ice-nucleating bacterium Pseudomonas syringae increased by orders of magnitude after heavy rain and that microorganisms become airborne during and after rain in a forest ecosystem. At the sites studied in this work, aerosols that could have initiated rain from sources unrelated to previous rainfall events (such as power stations) would automatically have reduced the influences on rainfall of those whose concentrations were related to previous rain, thereby leading to inhibition of feedback. The analytical methods described here provide means to map and delimit regions where rainfall feedback mediated by microorganisms is suspected to occur or has occurred historically, thereby providing rational means to establish experimental set-ups for verification.
The potential of urban rainfall monitoring with crowdsourced automatic weather stations in Amsterdam
NASA Astrophysics Data System (ADS)
de Vos, Lotte; Leijnse, Hidde; Overeem, Aart; Uijlenhoet, Remko
2017-02-01
The high density of built-up areas and resulting imperviousness of the land surface makes urban areas vulnerable to extreme rainfall, which can lead to considerable damage. In order to design and manage cities to be able to deal with the growing number of extreme rainfall events, rainfall data are required at higher temporal and spatial resolutions than those needed for rural catchments. However, the density of operational rainfall monitoring networks managed by local or national authorities is typically low in urban areas. A growing number of automatic personal weather stations (PWSs) link rainfall measurements to online platforms. Here, we examine the potential of such crowdsourced datasets for obtaining the desired resolution and quality of rainfall measurements for the capital of the Netherlands. Data from 63 stations in Amsterdam (˜ 575 km2) that measure rainfall over at least 4 months in a 17-month period are evaluated. In addition, a detailed assessment is made of three Netatmo stations, the largest contributor to this dataset, in an experimental setup. The sensor performance in the experimental setup and the density of the PWS network are promising. However, features in the online platforms, like rounding and thresholds, cause changes from the original time series, resulting in considerable errors in the datasets obtained. These errors are especially large during low-intensity rainfall, although they can be reduced by accumulating rainfall over longer intervals. Accumulation improves the correlation coefficient with gauge-adjusted radar data from 0.48 at 5 min intervals to 0.60 at hourly intervals. Spatial rainfall correlation functions derived from PWS data show much more small-scale variability than those based on gauge-adjusted radar data and those found in similar research using dedicated rain gauge networks. This can largely be attributed to the noise in the PWS data resulting from both the measurement setup and the processes occurring in the data transfer to the online PWS platform. A double mass comparison with gauge-adjusted radar data shows that the median of the stations resembles the rainfall reference better than the real-time (unadjusted) radar product. Averaging nearby raw PWS measurements further improves the match with gauge-adjusted radar data in that area. These results confirm that the growing number of internet-connected PWSs could successfully be used for urban rainfall monitoring.
Urban rainfall monitoring with crowdsourced automatic weather stations in Amsterdam
NASA Astrophysics Data System (ADS)
de Vos, Lotte; Leijnse, Hidde; Overeem, Aart; Uijlenhoet, Remko
2017-04-01
The high density of built-up areas and resulting imperviousness of the land surface makes urban areas vulnerable to extreme rainfall, which can lead to considerable damage. In order to design and manage cities to be able to deal with the growing number of extreme rainfall events, rainfall data is required at higher temporal and spatial resolutions than those needed for rural catchments. However, the density of operational rainfall monitoring networks managed by local or national authorities is typically low in urban areas. A growing number of automatic personal weather stations (PWSs) link rainfall measurements to online platforms. Here, we examine the potential of such crowdsourced datasets for obtaining the desired resolution and quality of rainfall measurements for the capital of the Netherlands. Data from 63 stations in Amsterdam (˜575 km2}) that measure rainfall over at least 4 months in a 17-month period are evaluated. In addition, a detailed assessment is made of three Netatmo stations, the largest contributor to this dataset, in an experimental set-up. The sensor performance in the experimental set-up and the density of the PWS-network are promising. However, features in the online platforms, like rounding and thresholds, cause changes from the original time series, resulting in considerable errors in the datasets obtained. These errors are especially large during low intensity rainfall, although they can be reduced by accumulating rainfall over longer intervals. Accumulation improves the correlation coefficient with gauge-adjusted radar data from 0.48 at 5 min intervals to 0.60 at hourly intervals. Spatial rainfall correlation functions derived from PWS data show much more small-scale variability than those based on gauge-adjusted radar data and those found in similar research using dedicated rain gauge networks. This can largely be attributed to the noise in the PWS data resulting from both the measurement setup and the processes occurring in the data transfer to the online PWS-platform. A double mass comparison with gauge-adjusted radar data shows that the median of the stations resembles the rainfall reference better than the real-time (unadjusted) radar product. Averaging nearby raw PWS measurements further improves the match with gauge-adjusted radar data in that area. These results confirm that the growing number of internet-connected PWSs could successfully be used for urban rainfall monitoring.
NASA Astrophysics Data System (ADS)
Velasco, David; Sempere-Torres, Daniel; Corral, Carles; Llort, Xavier; Velasco, Enrique
2010-05-01
Early Warning Systems (EWS) are commonly identified as the most efficient tools in order to improve the preparedness and risk management against heavy rains and Flash Floods (FF) with the objective of reducing economical losses and human casualties. In particular, flash floods affecting torrential Mediterranean catchments are a key element to be incorporated within operational EWSs. The characteristic high spatial and temporal variability of the storms requires high-resolution data and methods to monitor/forecast the evolution of rainfall and its hydrological impact in small and medium torrential basins. A first version of an operational FF-EWS has been implemented in Catalonia (NE Spain) under the name of EHIMI system (Integrated Tool for Hydrometeorological Forecasting) with the support of the Catalan Water Agency (ACA) and the Meteorological Service of Catalonia (SMC). Flash flood warnings are issued based on radar-rainfall estimates. Rainfall estimation is performed on radar observations with high spatial and temporal resolution (1km2 and 10 minutes) in order to adapt the warning scale to the 1-km grid of the EWS. The method is based on comparing observed accumulated rainfall against rainfall thresholds provided by the regional Intensity-Duration-Frequency (IDF) curves. The so-called "aggregated rainfall warning" at every river cell is obtained as the spatially averaged rainfall over its associated upstream draining area. Regarding the time aggregation of rainfall, the critical duration is thought to be an accumulation period similar to the concentration time of each cachtment. The warning is issued once the forecasted rainfall accumulation exceeds the rainfall thresholds mentioned above, which are associated to certain probability of occurrence. Finally, the hazard warning is provided and shown to the decision-maker in terms of exceeded return periods at every river cell covering the whole area of Catalonia. The objective of the present work includes the probabilistic component to the FF-EWS. As a first step, we have incorporated the uncertainty in rainfall estimates and forecasts based on an ensemble of equiprobable rainfall scenarios. The presented study has focused on a number of rainfall events and the performance of the FF-EWS evaluated in terms of its ability to produce probabilistic hazard warnings for decision-making support.
Coupled ocean-atmosphere surface variability and its climate impacts in the tropical Atlantic region
NASA Astrophysics Data System (ADS)
Fontaine, B.; Janicot, Serge; Roucou, P.
This study examines time evolution and statistical relationships involving the two leading ocean-atmosphere coupled modes of variability in the tropical Atlantic and some climate anomalies over the tropical 120°W-60°W region using selected historical files (75-y near global SSTs and precipitation over land), more recent observed data (30-y SST and pseudo wind stress in the tropical Atlantic) and reanalyses from the US National Centers for Environmental Prediction (NCEP/NCAR) reanalysis System on the period 1968-1997: surface air temperature, sea level pressure, moist static energy content at 850 hPa, precipitable water and precipitation. The first coupled mode detected through singular value decomposition of the SST and pseudo wind-stress data over the tropical Atlantic (30°N-20°S) expresses a modulation in the thermal transequatorial gradient of SST anomalies conducted by one month leading wind-stress anomalies mainly in the tropical north Atlantic during northern winter and fall. It features a slight dipole structure in the meridional plane. Its time variability is dominated by a quasi-decadal signal well observed in the last 20-30 ys and, when projected over longer-term SST data, in the 1920s and 1930s but with shorter periods. The second coupled mode is more confined to the south-equatorial tropical Atlantic in the northern summer and explains considerably less wind-stress/SST cross-covariance. Its time series features an interannual variability dominated by shorter frequencies with increased variance in the 1960s and 1970s before 1977. Correlations between these modes and the ENSO-like Nino3 index lead to decreasing amplitude of thermal anomalies in the tropical Atlantic during warm episodes in the Pacific. This could explain the nonstationarity of meridional anomaly gradients on seasonal and interannual time scales. Overall the relationships between the oceanic component of the coupled modes and the climate anomaly patterns denote thermodynamical processes at the ocean/atmosphere interface that create anomaly gradients in the meridional plane in a way which tends to alter the north-south movement of the seasonal cycle. This appears to be consistent with the intrinsic non-dipole character of the tropical Atlantic surface variability at the interannual time step and over the recent period, but produces abnormal amplitude and/or delayed excursions of the intertropical convergence zone (ITCZ). Connections with continental rainfall are approached through three (NCEP/NCAR and observed) rainfall indexes over the Nordeste region in Brazil, and the Guinea and Sahel zones in West Africa. These indices appear to be significantly linked to the SST component of the coupled modes only when the two Atlantic modes+the ENSO-like Nino3 index are taken into account in the regressions. This suggests that thermal forcing of continental rainfall is particularly sensitive to the linear combinations of some basic SST patterns, in particular to those that create meridional thermal gradients. The first mode in the Atlantic is associated with transequatorial pressure, moist static energy and precipitable water anomaly patterns which can explain abnormal location of the ITCZ particularly in northern winter, and hence rainfall variations in Nordeste. The second mode is more associated with in-phase variations of the same variables near the southern edge of the ITCZ, particularly in the Gulf of Guinea during the northern spring and winter. It is primarily linked to the amplitude and annual phase of the ITCZ excursions and thus to rainfall variations in Guinea. Connections with Sahel rainfall are less clear due to the difficulty for the model to correctly capture interannual variability over that region but the second Atlantic mode and the ENSO-like Pacific variability are clearly involved in the Sahel climate interannual fluctuations: anomalous dry (wet) situations tend to occur when warmer (cooler) waters are present in the eastern Pacific and the gulf of Guinea in northern summer which contribute to create a northward (southward) transequatorial anomaly gradient in sea level pressure over West Africa.
NASA Astrophysics Data System (ADS)
Almazroui, Mansour; Raju, P. V. S.; Yusef, A.; Hussein, M. A. A.; Omar, M.
2018-04-01
In this paper, a nonhydrostatic Weather Research and Forecasting (WRF) model has been used to simulate the extreme precipitation event of 25 November 2009, over Jeddah, Saudi Arabia. The model is integrated in three nested (27, 9, and 3 km) domains with the initial and boundary forcing derived from the NCEP reanalysis datasets. As a control experiment, the model integrated for 48 h initiated at 0000 UTC on 24 November 2009. The simulated rainfall in the control experiment depicts in well agreement with Tropical Rainfall Measurement Mission rainfall estimates in terms of intensity as well as spatio-temporal distribution. Results indicate that a strong low-level (850 hPa) wind over Jeddah and surrounding regions enhanced the moisture and temperature gradient and created a conditionally unstable atmosphere that favored the development of the mesoscale system. The influences of topography and heat exchange process in the atmosphere were investigated on the development of extreme precipitation event; two sensitivity experiments are carried out: one without topography and another without exchange of surface heating to the atmosphere. The results depict that both surface heating and topography played crucial role in determining the spatial distribution and intensity of the extreme rainfall over Jeddah. The topography favored enhanced uplift motion that further strengthened the low-level jet and hence the rainfall over Jeddah and adjacent areas. On the other hand, the absence of surface heating considerably reduced the simulated rainfall by 30% as compared to the observations.
Panel regressions to estimate low-flow response to rainfall variability in ungaged basins
Bassiouni, Maoya; Vogel, Richard M.; Archfield, Stacey A.
2016-01-01
Multicollinearity and omitted-variable bias are major limitations to developing multiple linear regression models to estimate streamflow characteristics in ungaged areas and varying rainfall conditions. Panel regression is used to overcome limitations of traditional regression methods, and obtain reliable model coefficients, in particular to understand the elasticity of streamflow to rainfall. Using annual rainfall and selected basin characteristics at 86 gaged streams in the Hawaiian Islands, regional regression models for three stream classes were developed to estimate the annual low-flow duration discharges. Three panel-regression structures (random effects, fixed effects, and pooled) were compared to traditional regression methods, in which space is substituted for time. Results indicated that panel regression generally was able to reproduce the temporal behavior of streamflow and reduce the standard errors of model coefficients compared to traditional regression, even for models in which the unobserved heterogeneity between streams is significant and the variance inflation factor for rainfall is much greater than 10. This is because both spatial and temporal variability were better characterized in panel regression. In a case study, regional rainfall elasticities estimated from panel regressions were applied to ungaged basins on Maui, using available rainfall projections to estimate plausible changes in surface-water availability and usable stream habitat for native species. The presented panel-regression framework is shown to offer benefits over existing traditional hydrologic regression methods for developing robust regional relations to investigate streamflow response in a changing climate.
Panel regressions to estimate low-flow response to rainfall variability in ungaged basins
NASA Astrophysics Data System (ADS)
Bassiouni, Maoya; Vogel, Richard M.; Archfield, Stacey A.
2016-12-01
Multicollinearity and omitted-variable bias are major limitations to developing multiple linear regression models to estimate streamflow characteristics in ungaged areas and varying rainfall conditions. Panel regression is used to overcome limitations of traditional regression methods, and obtain reliable model coefficients, in particular to understand the elasticity of streamflow to rainfall. Using annual rainfall and selected basin characteristics at 86 gaged streams in the Hawaiian Islands, regional regression models for three stream classes were developed to estimate the annual low-flow duration discharges. Three panel-regression structures (random effects, fixed effects, and pooled) were compared to traditional regression methods, in which space is substituted for time. Results indicated that panel regression generally was able to reproduce the temporal behavior of streamflow and reduce the standard errors of model coefficients compared to traditional regression, even for models in which the unobserved heterogeneity between streams is significant and the variance inflation factor for rainfall is much greater than 10. This is because both spatial and temporal variability were better characterized in panel regression. In a case study, regional rainfall elasticities estimated from panel regressions were applied to ungaged basins on Maui, using available rainfall projections to estimate plausible changes in surface-water availability and usable stream habitat for native species. The presented panel-regression framework is shown to offer benefits over existing traditional hydrologic regression methods for developing robust regional relations to investigate streamflow response in a changing climate.
Allen, Brett L; Mallarino, Antonio P
2008-01-01
Excessive manure phosphorus (P) application increases risk of P loss from fields. This study assessed total runoff P (TPR), bioavailable P (BAP), and dissolved reactive P (DRP) concentrations and loads in surface runoff after liquid swine (Sus scrofa domesticus) manure application with or without incorporation into soil and different timing of rainfall. Four replicated manure P treatments were applied in 2002 and in 2003 to two Iowa soils testing low in P managed with corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] rotations. Total P applied each time was 0 to 80 kg P ha(-1) at one site and 0 to 108 kg P ha(-1) at the other. Simulated rainfall was applied within 24 h of P application or after 10 to 16 d and 5 to 6 mo. Nonincorporated manure P increased DRP, BAP, and TPR concentrations and loads linearly or exponentially for 24-h and 10- to 16-d runoff events. On average for the 24-h events, DRP, BAP, and TPR concentrations were 5.4, 4.7, and 2.2 times higher, respectively, for nonincorporated manure than for incorporated manure; P loads were 3.8, 7.7, and 3.6 times higher; and DRP and BAP concentrations were 54% of TPR for nonincorporated manure and 22 to 25% for incorporated manure. A 10- to 16-d rainfall delay resulted in DRP, BAP, and TPR concentrations that were 3.1, 2.7, and 1.1 times lower, respectively, than for 24-h events across all nonincorporated P rates, sites, and years, whereas runoff P loads were 3.8, 3.6, and 1.6 times lower, respectively. A 5- to 6-mo simulated rainfall delay reduced runoff P to levels similar to control plots. Incorporating swine manure when the probability of immediate rainfall is high reduces the risk of P loss in surface runoff; however, this benefit sharply decreases with time.
NASA Astrophysics Data System (ADS)
Gires, A.; Tchiguirinskaia, I.; Schertzer, D. J.; Lovejoy, S.
2011-12-01
In large urban areas, storm water management is a challenge with enlarging impervious areas. Many cities have implemented real time control (RTC) of their urban drainage system to either reduce overflow or limit urban contamination. A basic component of RTC is hydraulic/hydrologic model. In this paper we use the multifractal framework to suggest an innovative way to test the sensitivity of such a model to the spatio-temporal variability of its rainfall input. Indeed the rainfall variability is often neglected in urban context, being considered as a non-relevant issue at the scales involve. Our results show that on the contrary the rainfall variability should be taken into account. Universal multifractals (UM) rely on the concept of multiplicative cascade and are a standard tool to analyze and simulate with a reduced number of parameters geophysical processes that are extremely variable over a wide range of scales. This study is conducted on a 3 400 ha urban area located in Seine-Saint-Denis, in the North of Paris (France). We use the operational semi-distributed model that was calibrated by the local authority (Direction Eau et Assainnissement du 93) that is in charge of urban drainage. The rainfall data comes from the C-Band radar of Trappes operated by Météo-France. The rainfall event of February 9th, 2009 was used. A stochastic ensemble approach was implemented to quantify the uncertainty on discharge associated to the rainfall variability occurring at scales smaller than 1 km x 1 km x 5 min that is usually available with C-band radar networks. An analysis of the quantiles of the simulated peak flow showed that the uncertainty exceeds 20 % for upstream links. To evaluate a potential gain from a direct use of the rainfall data available at the resolution of X-band radar, we performed similar analysis of the rainfall fields of the degraded resolution of 9 km x 9 km x 20 min. The results show a clear decrease in uncertainty when the original resolution of C-band radar data is used. This analysis highlights the interest of implementing X-band radars in urban areas. Indeed such radars provide the rainfall data at a hectometric resolution that would enable a better nowcasting and management of storm water. The multifractal properties of the simulated hydrographs were analysed with the help of simulated rainfall fields of resolution 111 m x 111 m x 1 min, lasting 4 hours, and corresponding to a 5 year return period event. On the whole, the discharge exhibits a good scaling behaviour over the range 4 h - 5 min. Both UM parameters tend to be greater for the discharge than for the rainfall. The notion of maximum probable singularity was used to clarify the consequences on the assessment of extremes. It appears that the urban drainage network basically reproduces the extremes, or only slightly damps them, at least in terms of multifractal statistics. The results were obtained with the financial support from the EU FP7 SMARTesT Project and the Chair "Hydrology for Resilient Cities" (sponsored by Veolia) of Ecole des Ponts ParisTech.
NASA Astrophysics Data System (ADS)
Polcher, Jan; Barella-Ortiz, Anaïs; Aires, Filipe; Balsamo, Gianpaolo; Gelati, Emiliano; Rodríguez-Fernández, Nemesio
2015-04-01
Soil moisture is a key state variable of the hydrological cycle. It conditions runoff, infiltration and evaporation over continental surfaces, and is key for forecasting droughts and floods. It plays thus an important role in surface-atmosphere interactions. Surface Soil Moisture (SSM) can be measured by in situ measurements, by satellite observations or modelled using land surface models. As a complementary tool, data assimilation can be used to combine both modelling and satellite observations. The work presented here is an inter-comparison of retrieved and modelled SSM data, for the 2010 - 2012 period, over the Iberian Peninsula. The region has been chosen because its vegetation cover is not very dense and includes strong contrasts in the rainfall regimes and thus a diversity of behaviours for SSM. Furthermore this semi-arid region is strongly dependent on a good management of its water resources. Satellite observations correspond to the Soil Moisture and Ocean Salinity (SMOS) retrievals: the L2 product from an optimal interpolation retrieval, and 3 other products using Neural Network retrievals with different input information: SMOS time indexes, purely SMOS data, or addition of the European Advanced Scaterometer (ASCAT) backscattering, and the Moderate-Resolution Imaging Spectrometer (MODIS) surface temperature information. The modelled soil moistures have been taken from the ORCHIDEE (ORganising Carbon and Hydrology In Dynamic EcosystEms) and the HTESSEL (Hydrology-Tiled ECMWF Scheme for Surface Exchanges over Land) land surface models. Both models are forced with the same atmospheric conditions (as part of the Earth2Observe FP7 project) over the period but they represent the surface soil moisture with very different degrees of complexity. ORCHIDEE has 5 levels in the top 5 centimetres of soil while in HTESSEL this variable is part of the top soil moisture level. The two types of SMOS retrievals are compared to the model outputs in their spatial and temporal characteristics. The comparison with the model helps to identify which retrieval configuration is most consistent with our understanding of surface soil moisture in this region. In particular we have determined how each of the soil moisture products is related to the spatio-temporal variations of rainfall. In large parts of the Iberian Peninsula the co-variance of remote sensed SSM and rainfall is consistent with that of the models. But for some regions questions are raised. The variability of SSM observed by SMOS in the North West of the Iberian Peninsula is similar to that of rainfall, at least this relation of SSM and rainfall is closer than suggested by the two models.
A Monte-Carlo Bayesian framework for urban rainfall error modelling
NASA Astrophysics Data System (ADS)
Ochoa Rodriguez, Susana; Wang, Li-Pen; Willems, Patrick; Onof, Christian
2016-04-01
Rainfall estimates of the highest possible accuracy and resolution are required for urban hydrological applications, given the small size and fast response which characterise urban catchments. While significant progress has been made in recent years towards meeting rainfall input requirements for urban hydrology -including increasing use of high spatial resolution radar rainfall estimates in combination with point rain gauge records- rainfall estimates will never be perfect and the true rainfall field is, by definition, unknown [1]. Quantifying the residual errors in rainfall estimates is crucial in order to understand their reliability, as well as the impact that their uncertainty may have in subsequent runoff estimates. The quantification of errors in rainfall estimates has been an active topic of research for decades. However, existing rainfall error models have several shortcomings, including the fact that they are limited to describing errors associated to a single data source (i.e. errors associated to rain gauge measurements or radar QPEs alone) and to a single representative error source (e.g. radar-rain gauge differences, spatial temporal resolution). Moreover, rainfall error models have been mostly developed for and tested at large scales. Studies at urban scales are mostly limited to analyses of propagation of errors in rain gauge records-only through urban drainage models and to tests of model sensitivity to uncertainty arising from unmeasured rainfall variability. Only few radar rainfall error models -originally developed for large scales- have been tested at urban scales [2] and have been shown to fail to well capture small-scale storm dynamics, including storm peaks, which are of utmost important for urban runoff simulations. In this work a Monte-Carlo Bayesian framework for rainfall error modelling at urban scales is introduced, which explicitly accounts for relevant errors (arising from insufficient accuracy and/or resolution) in multiple data sources (in this case radar and rain gauge estimates typically available at present), while at the same time enabling dynamic combination of these data sources (thus not only quantifying uncertainty, but also reducing it). This model generates an ensemble of merged rainfall estimates, which can then be used as input to urban drainage models in order to examine how uncertainties in rainfall estimates propagate to urban runoff estimates. The proposed model is tested using as case study a detailed rainfall and flow dataset, and a carefully verified urban drainage model of a small (~9 km2) pilot catchment in North-East London. The model has shown to well characterise residual errors in rainfall data at urban scales (which remain after the merging), leading to improved runoff estimates. In fact, the majority of measured flow peaks are bounded within the uncertainty area produced by the runoff ensembles generated with the ensemble rainfall inputs. REFERENCES: [1] Ciach, G. J. & Krajewski, W. F. (1999). On the estimation of radar rainfall error variance. Advances in Water Resources, 22 (6), 585-595. [2] Rico-Ramirez, M. A., Liguori, S. & Schellart, A. N. A. (2015). Quantifying radar-rainfall uncertainties in urban drainage flow modelling. Journal of Hydrology, 528, 17-28.
NASA Technical Reports Server (NTRS)
Lin, Xin; Zhang, Sara Q.; Zupanski, M.; Hou, Arthur Y.; Zhang, J.
2015-01-01
High-frequency TMI and AMSR-E radiances, which are sensitive to precipitation over land, are assimilated into the Goddard Weather Research and Forecasting Model- Ensemble Data Assimilation System (WRF-EDAS) for a few heavy rain events over the continental US. Independent observations from surface rainfall, satellite IR brightness temperatures, as well as ground-radar reflectivity profiles are used to evaluate the impact of assimilating rain-sensitive radiances on cloud and precipitation within WRF-EDAS. The evaluations go beyond comparisons of forecast skills and domain-mean statistics, and focus on studying the cloud and precipitation features in the jointed rainradiance and rain-cloud space, with particular attentions on vertical distributions of height-dependent cloud types and collective effect of cloud hydrometers. Such a methodology is very helpful to understand limitations and sources of errors in rainaffected radiance assimilations. It is found that the assimilation of rain-sensitive radiances can reduce the mismatch between model analyses and observations by reasonably enhancing/reducing convective intensity over areas where the observation indicates precipitation, and suppressing convection over areas where the model forecast indicates rain but the observation does not. It is also noted that instead of generating sufficient low-level warmrain clouds as in observations, the model analysis tends to produce many spurious upperlevel clouds containing small amount of ice water content. This discrepancy is associated with insufficient information in ice-water-sensitive radiances to address the vertical distribution of clouds with small amount of ice water content. Such a problem will likely be mitigated when multi-channel multi-frequency radiances/reflectivity are assimilated over land along with sufficiently accurate surface emissivity information to better constrain the vertical distribution of cloud hydrometers.
Teleconnections Between Tropical Deforestation and Midlatitude Precipitation
NASA Astrophysics Data System (ADS)
Avissar, R.; Werth, D.
2003-12-01
Past studies have indicated that total deforestation of Amazonia would result in an important reduction of the rainfall in that region, but that this process had no significant impact on the global temperature or precipitation and had only local implications. Here, we show that deforestation of tropical regions activates Rossby waves, which affect significantly precipitation at mid-latitudes by 'teleconnections'. In particular, we find that the deforestation of Amazonia and Central Africa severely reduces rainfall in the US Midwest during spring and summer, when water is crucial for agriculture in that region. Deforestation of South-East Asia reduces winter precipitation in the Western US and, consequently, the water storage that is released from snow melting later in the spring.
NASA Technical Reports Server (NTRS)
Stewart, Randy M.
2006-01-01
Allergies affect millions of Americans, increasing health risks and also increasing absenteeism and reducing productivity in the workplace. Outdoor allergens, such as airborne pollens and mold spores, commonly trigger respiratory distress symptoms, but rainfall reduces the quantity of allergens in the air (EPA, 2003). The current NASA Tropical Rainfall Measuring Mission provides accurate information related to rain events. These capabilities will be further enhanced with the future Global Precipitation Measurement mission. This report examines the effectiveness of combining these NASA resources with established ground-based allergen/spore sampling systems to better understand the benefits that rain provides in removing allergens and spores from the air.
NASA Astrophysics Data System (ADS)
Chowdary, Jasti S.; Srinivas, G.; Du, Yan; Gopinath, K.; Gnanaseelan, C.; Parekh, Anant; Singh, Prem
2018-03-01
Indian summer monsoon (ISM) rainfall during 2016 exhibited a prominent month-to-month fluctuations over India, with below normal rainfall in June and August and above normal rainfall in July. The factors determining the month-to-month fluctuations in ISM rainfall during 2016 are investigated with main focus on the Indo-Pacific climatic anomalies. Warm sea surface temperature (SST) anomalies associated with super El Niño 2015 disappeared by early summer 2016 over the central and eastern Pacific. On the other hand, negative Indian Ocean dipole (IOD) like SST anomaly pattern over the equatorial Indian Ocean and anomalous anticyclonic circulation over the western North Pacific (WNP) are reported in summer 2016 concurrently with decaying El Niño/developing La Niña phase. Observations revealed that the low rainfall over central north India in June is due to moisture divergence caused by the westward extension of ridge corresponding to WNP anticyclone and subsidence induced by local Hadley cell partly related to negative IOD. Low level convergence of southeasterly wind from Bay of Bengal associated with weak WNP anticyclone and northwesterly wind corresponding to anticyclonic circulation over the northwest India remarkably contributed to positive rainfall in July over most of the Indian subcontinent. While reduced rainfall over the Indian subcontinent in August 2016 is associated with the anomalous moisture transport from ISM region to WNP region, in contrast to July, due to local cyclogenesis corroborated by number of tropical cyclones in the WNP. In addition to this, subsidence related to strong convection supported by cyclonic circulation over the WNP also resulted in low rainfall over the ISM region. Coupled General Circulation model sensitivity experiments confirmed that strong convective activities associated with cyclonic circulation over the WNP is primarily responsible for the observed negative ISM rainfall anomalies in August 2016. It is noted that the Indo-Western Pacific circulation anomalies in August 2016 are well predicted when the coupled model is initiated with initial conditions from end of July and beginning of August compared to May. This analysis suggests the importance of the WNP circulation in forcing strong sub-seasonal/month to month rainfall variations over India.
Air Pollution, Greenhouse Gases and Climate Change
NASA Astrophysics Data System (ADS)
Ramanathan, V.
2007-12-01
The global build up of greenhouse gases (GHGs), is the most significant environmental issue facing the planet. GHGs warm the surface and the atmosphere with significant implications for, rainfall, retreat of glaciers and sea ice, sea level, among other factors. What is less recognized, however, is a comparably major global problem dealing with air pollution. Until about ten years ago, air pollution was thought to be just an urban or a local problem. But new data have revealed that, due to fast long range transport, air pollution is transported across continents and ocean basins, resulting in trans-oceanic and trans-continental plumes of atmospheric brown clouds (ABCs) containing sub micron size particles, i.e, aerosols. ABCs intercept sunlight by absorbing as well as reflecting it, both of which lead to a large surface dimming. The dimming effect is enhanced further because aerosols nucleate more cloud drops which makes the clouds reflect more solar radiation. While the solar heating at the surface is reduced by aerosols in ABCs, the atmospheric solar heating increases due to soot solar absorption. The net difference between the dimming and the atmospheric solar heating is estimated be negative which contributes to a global cooling effect. The global cooling from this negative ABC forcing may have masked as much as 50% of the warming due to GHGs. We will identify regional and mega-city hot spots of ABCs. Long range transport from these hot spots gives rise to wide spread plumes over the adjacent oceans. Such a pattern of regionally concentrated surface dimming and atmospheric solar heating, accompanied by wide spread dimming over the oceans, gives rise to large regional effects. Only during the last decade, we have begun to comprehend the surprisingly large regional impacts. The large north-south gradient in the ABC dimming has altered the north-south gradients in sea surface temperatures, which in turn has been shown by models to decrease rainfall over the continents. The uncertainties in our understanding of the ABC effects are large, but we are discovering new ways in which human activities are changing the climate and the environment.
NASA Astrophysics Data System (ADS)
Sidle, Roy C.; Ziegler, Alan D.
2017-01-01
The interception and smoothing effect of forest canopies on pulses of incident rainfall and its delivery to the soil has been suggested as a factor in moderating peak pore water pressure in soil mantles, thus reducing the risk of shallow landslides. Here we provide 3 years of rainfall and throughfall data in a tropical secondary dipterocarp forest characterized by few large trees in northern Thailand, along with selected soil moisture dynamics, to address this issue. Throughfall was an estimated 88 % of rainfall, varying from 86 to 90 % in individual years. Data from 167 events demonstrate that canopy interception was only weakly associated (via a nonlinear relationship) with total event rainfall, but not significantly correlated with duration, mean intensity, or antecedent 2-day precipitation (API2). Mean interception during small events (≤ 35 mm) was 17 % (n = 135 events) compared with only 7 % for large events (> 35 mm; n = 32). Examining small temporal intervals within the largest and highest intensity events that would potentially trigger landslides revealed complex patterns of interception. The tropical forest canopy had little smoothing effect on incident rainfall during the largest events. During events with high peak intensities, high wind speeds, and/or moderate-to-high pre-event wetting, measured throughfall was occasionally higher than rainfall during large event peaks, demonstrating limited buffering. However, in events with little wetting and low-to-moderate wind speed, early event rainfall peaks were buffered by the canopy. As rainfall continued during most large events, there was little difference between rainfall and throughfall depths. A comparison of both rainfall and throughfall depths to conservative mean intensity-duration thresholds for landslide initiation revealed that throughfall exceeded the threshold in 75 % of the events in which rainfall exceeded the threshold for both wet and dry conditions. Throughfall intensity for the 11 largest events (rainfall = 65-116 mm) plotted near or above the intensity-duration threshold for landslide initiation during wet conditions; 5 of the events were near or above the threshold for dry conditions. Soil moisture responses during large events were heavily and progressively buffered at depths of 1 to 2 m, indicating that the timescale of any short-term smoothing of peak rainfall inputs (i.e., ≤ 1 h) has little influence on peak pore water pressure at depths where landslides would initiate in this area. Given these findings, we conclude that canopy interception would have little effect on mitigating shallow landslide initiation during the types of monsoon rainfall conditions in this and similar tropical secondary forest sites.
NASA Astrophysics Data System (ADS)
Canon, C. C.; Tischbein, B.; Bogardi, J.
2017-12-01
Flood maps generally display the area that a river might overflow after a rainfall event takes place, under different scenarios of climate, land use/land cover, and/or failure of dams and dikes. However, rainfall is not limited to feed runoff and enlarge the river: it also causes minor disasters outside the map's highlighted area. The city of Cali in Colombia illustrates very well this situation: its flat topography and its major critical infrastructure near the river make it flood-risk prone; a heavy rainfall event would potentially deplete drinking water, electrical power and drainage capacity, and trigger outbreaks of water-borne diseases in the whole city, not only in the flooded area. Unfortunately, the government's disaster prevention strategies focus on the floodplain and usually overlook the aftermath of these minor disasters for being milder and scattered. Predicted losses in flood maps are potentially big, while those from minor disasters over the city are small but real, and citizens, utility companies and urban maintenance funds must constantly take them over. Mitigation and prevention of such minor disasters can save money for the development of the city in other aspects. This paper characterizes hundreds of rainfall events selected from 10-min step time series from 2006 to 2017, and finds their correlation with reported rainfall-related disasters throughout Cali, identified by date and neighborhood. Results show which rainfall parameters are most likely to indicate the occurrence of such disasters and their approximate location in the urban area of Cali. These results, when coupled with real-time observations of rainfall data and simulations of drainage network response, may help citizens and emergency bodies prioritize zones to assist during heavy storms. In the long term, stakeholders may also implement low impact development solutions in these zones to reduce flood risks.
Assessing Australian Rainfall Projections in Two Model Resolutions
NASA Astrophysics Data System (ADS)
Taschetto, A.; Haarsma, R. D.; Sen Gupta, A.
2016-02-01
Australian climate is projected to change with increases in greenhouse gases. The IPCC reports an increase in extreme daily rainfall across the country. At the same time, mean rainfall over southeast Australia is projected to reduce during austral winter, but to increase during austral summer, mainly associated with changes in the surrounding oceans. Climate models agree better on the future reduction of average rainfall over the southern regions of Australia compared to the increase in extreme rainfall events. One of the reasons for this disagreement may be related to climate model limitations in simulating the observed mechanisms associated with the mid-latitude weather systems, in particular due to coarse model resolutions. In this study we investigate how changes in sea surface temperature (SST) affect Australian mean and extreme rainfall under global warming, using a suite of numerical experiments at two model resolutions: about 126km (T159) and 25km (T799). The numerical experiments are performed with the earth system model EC-EARTH. Two 6-member ensembles are produced for the present day conditions and a future scenario. The present day ensemble is forced with the observed daily SST from the NOAA National Climatic Data Center from 2002 to 2006. The future scenario simulation is integrated from 2094 to 2098 using the present day SST field added onto the future SST change created from a 17-member ensemble based on the RCP4.5 scenario. Preliminary results show an increase in extreme rainfall events over Tasmania associated with enhanced convection driven by the Tasman Sea warming. We will further discuss how the projected changes in SST will impact the southern mid-latitude weather systems that ultimately affect Australian rainfall.
NASA Astrophysics Data System (ADS)
Rodrigo Comino, Jesús; Iserloh, Thomas; Morvan, Xavier; Malam Issa, Oumarou; Naisse, Christophe; Keesstra, Saskia; Cerdà, Artemi; Prosdocimi, Massimo; Arnáez, José; Lasanta, Teodoro; Concepción Ramos, María; José Marqués, María; Ruiz Colmenero, Marta; Bienes, Ramón; Damián Ruiz Sinoga, José; Seeger, Manuel; Ries, Johannes B.
2016-04-01
Small portable rainfall simulators are considered as a useful tool to analyze soil erosion processes in cultivated lands. European research groups of Spain (Valencia, Málaga, Lleida, Madrid and La Rioja), France (Reims) or Germany (Trier) have used different rainfall simulators (varying in drop size distribution and fall velocities, kinetic energy, plot forms and sizes, and field of application)to study soil loss, surface flow, runoff and infiltration coefficients in different experimental plots (Valencia, Montes de Málaga, Penedès, Campo Real and La Rioja in Spain, Champagne in France and Mosel-Ruwer valley in Germany). The measurements and experiments developed by these research teams give an overview of the variety in the methodologies with rainfall simulations in studying the problem of soil erosion and describing the erosion features in different climatic environments, management practices and soil types. The aim of this study is: i) to investigate where, how and why researchers from different wine-growing regions applied rainfall simulations with successful results as a tool to measure soil erosion processes; ii) to make a qualitative comparison about the general soil erosion processes in European terroirs; iii) to demonstrate the importance of the development a standard method for soil erosion processes in vineyards, using rainfall simulators; iv) and to analyze the key factors that should be taken into account to carry out rainfall simulations. The rainfall simulations in all cases allowed knowing the infiltration capacity and the susceptibility of the soil to be detached and to generate sediment loads to runoff. Despite using small plots, the experiments were useful to analyze the influence of soil cover to reduce soil erosion and to make comparison between different locations or the influence of different soil characteristics.
Mapping the spatial distribution of chloride deposition across Australia
NASA Astrophysics Data System (ADS)
Davies, P. J.; Crosbie, R. S.
2018-06-01
The high solubility and conservative behaviour of chloride make it ideal for use as an environmental tracer of water and salt movement through the hydrologic cycle. For such use the spatial distribution of chloride deposition in rainfall at a suitable scale must be known. A number of authors have used point data acquired from field studies of chloride deposition around Australia to construct relationships to characterise chloride deposition as a function of distance from the coast; these relationships have allowed chloride deposition to be interpolated in different regions around Australia. In this paper we took this a step further and developed a chloride deposition map for all of Australia which includes a quantification of uncertainty. A previously developed four parameter model of chloride deposition as a function of distance from the coast for Australia was used as the basis for producing a continental scale chloride deposition map. Each of the four model parameters were made spatially variable by creating parameter surfaces that were interpolated using a pilot point regularisation approach within a parameter estimation software. The observations of chloride deposition were drawn from a literature review that identified 291 point measurements of chloride deposition over a period of 80 years spread unevenly across all Australian States and Territories. A best estimate chloride deposition map was developed from the resulting surfaces on a 0.05 degree grid. The uncertainty in the chloride deposition map was quantified as the 5th and 95th percentile of 1000 calibrated models produced via Null Space Monte Carlo analysis and the spatial variability of chloride deposition across the continent was consistent with landscape morphology. The temporal variability in chloride deposition on a decadal scale was investigated in the Murray-Darling Basin, this highlighted the need for long-term monitoring of chloride deposition if the uncertainty of the continental scale map is to be reduced. Use of the derived chloride deposition map was demonstrated for a probabilistic estimation of groundwater recharge for the southeast of South Australia using the chloride mass balance method.
Status and challenges for conservation of small mammal assemblages in South America.
Kelt, Douglas A; Meserve, Peter L
2014-08-01
South America spans about 44° latitude, covers almost 18 million km(2) , and is second only to Africa in continental mammal species richness. In spite of this richness, research on the status of this fauna and on the nature and magnitude of contemporary threats remains limited. Distilling threats to this diverse fauna at a continental scale is challenging, in part because of the limited availability of rigorous studies. Recognizing this constraint, we summarize key threats to small mammals in South America, emphasizing the roles of habitat loss and degradation, direct persecution, and the increasing threat of climate change. We focus on three regional 'case studies': the tropical Andes, Amazonia and adjacent lowland regions, and the southern temperate region. We close with a brief summary of recent findings at our long-term research site in north-central Chile as they pertain to projected threats to this fauna. Habitat alteration is a pervasive threat that has been magnified by market forces and globalization (e.g. extensive agricultural development in Amazonia), and threatens increasing numbers of populations and species. Climate change poses even greater threats, from changes in rainfall and runoff regimes and resulting changes in vegetative structure and composition to secondary influences on fire dynamics. It is likely that many changes have yet to be recognized, but existing threats suggest that the future may bring dramatic changes in the distribution of many mammal taxa, although it is not clear if key habitat elements (vegetation) will respond as rapidly as climatic factors, leading to substantial uncertainty. Climate change is likely to result in 'winners' and 'losers' but available information precludes detailed assessment of which species are likely to fall into which category. In the absence of long-term monitoring and applied research to characterize these threats more accurately, and to develop strategies to reduce their impacts, managers already are being faced with daunting challenges. As the line between 'pure' and 'applied' research blurs in the face of converging interests of scientists and society we hope that solutions to these critical issues will be incorporated in addressing anticipated conservation crises. © 2014 The Authors. Biological Reviews © 2014 Cambridge Philosophical Society.
NASA Astrophysics Data System (ADS)
Chang, Q.; Chen, R. F.; Lin, W.; Hsieh, P. S.
2015-12-01
In an actively orogeny the landscape are transient state of disequilibrium in response to climatic and tectonic inputs. At the catchment scale, sensitivity of river systems plays an important role in landscape evolution. Hoping drainage basin is located at the tectonic transition zone in the north-eastern Taiwan, where the behavior of Philippine Sea plate switches from overriding above the east-dipping Eurasian Continental plate to northward subducting under the Ryukyu arc. However, extensive deep-seated landslides, debris flow, and numerous large alluvial terraces can be observed, suggesting strong surface processes in this watershed. This effect on regional climate fundamentally changed the landscape by reconfiguring drainage patterns and creating a vast influx of sediments into the basin. In this study we review the morphological evidence from multi-temporal timescale, including in-situ cosmogenic nuclides denudation rate and suspension load data, coupled with the analysis of the longitudinal profiles. The main goal of this study is to compare Holocene erosion rates with thermochronology and radiometric dating of river terraces to investigate the erosion history of Hoping area. The result shows that short-term erosion rate is around twice as large as the long-term denudation rate, which might due to the climate-driven erosion events such as typhoon-induced landslide. We've also mapped detail morphological features by using the high-resolution LiDAR image, which help us to identify not only the landslide but also tectonic features such as lineation, fault scarps, and fracture zones. The tectonic surface features and field investigation results show that the drainage basin is highly fractured, suggesting that even though the vertical tectonic activity rate is small, the horizontal shortening influenced by both southward opening of the back-arc Okinawa trough and the north-western collision in this area is significant. This might cause the reducing in rock strength and increase the hillslope erosion during heavy rainfall. By studying the erosion rate of Hoping River watershed we can understand more about surface processes in dynamic landscape, and more over, to establish a comprehensive understanding about the evolution of the ongoing Taiwan arc-continental collision process.
Liu, Jun'e; Wang, Zhanli; Li, Yuanyuan
2017-12-22
Raindrops disperse large soil aggregates into smaller particles, which can clog soil pores, cause soil crusting, reduce rainfall infiltration and increase soil loss. It was found that natural polymer derivatives were effective in improving soil physical properties and decreasing soil erosion on an experimental loess hillslope. This study investigated the effect of new natural polymer derivatives (Jag S and Jag C162) on soil properties, rainfall infiltration and sediment yield at four rates of sprayed polymers (0, 1, 3 and 5 g/m²), three rainfall intensities (1, 1.5 and 2 mm/min) and a slope gradient of 15° with a silt loam soil through simulated rain. The results showed that both Jag S and Jag C162 significantly increased the shear strength and improved the aggregates composition of the soil surface. The water-stable soil aggregates >0.25 mm increased from 9% to 50% with increasing rates of Jag S and Jag C162. Jag S and Jag C162 also effectively increased rainfall infiltration and final infiltration rate, and reduced erosion compared to controls without natural polymer derivatives added. However, higher rates of Jag S produced lower infiltration rates. Although both Jag S and Jag C162 effectively influenced soil physical properties and erosion, the effect of Jag C162 was more significant than that of Jag S.
Liu, Jun’e; Wang, Zhanli; Li, Yuanyuan
2017-01-01
Raindrops disperse large soil aggregates into smaller particles, which can clog soil pores, cause soil crusting, reduce rainfall infiltration and increase soil loss. It was found that natural polymer derivatives were effective in improving soil physical properties and decreasing soil erosion on an experimental loess hillslope. This study investigated the effect of new natural polymer derivatives (Jag S and Jag C162) on soil properties, rainfall infiltration and sediment yield at four rates of sprayed polymers (0, 1, 3 and 5 g/m2), three rainfall intensities (1, 1.5 and 2 mm/min) and a slope gradient of 15° with a silt loam soil through simulated rain. The results showed that both Jag S and Jag C162 significantly increased the shear strength and improved the aggregates composition of the soil surface. The water-stable soil aggregates >0.25 mm increased from 9% to 50% with increasing rates of Jag S and Jag C162. Jag S and Jag C162 also effectively increased rainfall infiltration and final infiltration rate, and reduced erosion compared to controls without natural polymer derivatives added. However, higher rates of Jag S produced lower infiltration rates. Although both Jag S and Jag C162 effectively influenced soil physical properties and erosion, the effect of Jag C162 was more significant than that of Jag S. PMID:29271899
NASA Astrophysics Data System (ADS)
Ebrahimian, Ali; Wilson, Bruce N.; Gulliver, John S.
2016-05-01
Impervious surfaces are useful indicators of the urbanization impacts on water resources. Effective impervious area (EIA), which is the portion of total impervious area (TIA) that is hydraulically connected to the drainage system, is a better catchment parameter in the determination of actual urban runoff. Development of reliable methods for quantifying EIA rather than TIA is currently one of the knowledge gaps in the rainfall-runoff modeling context. The objective of this study is to improve the rainfall-runoff data analysis method for estimating EIA fraction in urban catchments by eliminating the subjective part of the existing method and by reducing the uncertainty of EIA estimates. First, the theoretical framework is generalized using a general linear least square model and using a general criterion for categorizing runoff events. Issues with the existing method that reduce the precision of the EIA fraction estimates are then identified and discussed. Two improved methods, based on ordinary least square (OLS) and weighted least square (WLS) estimates, are proposed to address these issues. The proposed weighted least squares method is then applied to eleven urban catchments in Europe, Canada, and Australia. The results are compared to map measured directly connected impervious area (DCIA) and are shown to be consistent with DCIA values. In addition, both of the improved methods are applied to nine urban catchments in Minnesota, USA. Both methods were successful in removing the subjective component inherent in the analysis of rainfall-runoff data of the current method. The WLS method is more robust than the OLS method and generates results that are different and more precise than the OLS method in the presence of heteroscedastic residuals in our rainfall-runoff data.
The effect of leaf litter cover on surface runoff and soil erosion in Northern China.
Li, Xiang; Niu, Jianzhi; Xie, Baoyuan
2014-01-01
The role of leaf litter in hydrological processes and soil erosion of forest ecosystems is poorly understood. A field experiment was conducted under simulated rainfall in runoff plots with a slope of 10%. Two common types of litter in North China (from Quercus variabilis, representing broadleaf litter, and Pinus tabulaeformis, representing needle leaf litter), four amounts of litter, and five rainfall intensities were tested. Results revealed that the litter reduced runoff and delayed the beginning of runoff, but significantly reduced soil loss (p<0.05). Average runoff yield was 29.5% and 31.3% less than bare-soil plot, and for Q. variabilis and P. tabulaeformis, respectively, and average sediment yield was 85.1% and 79.9% lower. Rainfall intensity significantly affected runoff (R = 0.99, p<0.05), and the efficiency in runoff reduction by litter decreased considerably. Runoff yield and the runoff coefficient increased dramatically by 72.9 and 5.4 times, respectively. The period of time before runoff appeared decreased approximately 96.7% when rainfall intensity increased from 5.7 to 75.6 mm h-1. Broadleaf and needle leaf litter showed similarly relevant effects on runoff and soil erosion control, since no significant differences (p≤0.05) were observed in runoff and sediment variables between two litter-covered plots. In contrast, litter mass was probably not a main factor in determining runoff and sediment because a significant correlation was found only with sediment in Q. variabilis litter plot. Finally, runoff yield was significantly correlated (p<0.05) with sediment yield. These results suggest that the protective role of leaf litter in runoff and erosion processes was crucial, and both rainfall intensity and litter characteristics had an impact on these processes.
The Effect of Leaf Litter Cover on Surface Runoff and Soil Erosion in Northern China
Li, Xiang; Niu, Jianzhi; Xie, Baoyuan
2014-01-01
The role of leaf litter in hydrological processes and soil erosion of forest ecosystems is poorly understood. A field experiment was conducted under simulated rainfall in runoff plots with a slope of 10%. Two common types of litter in North China (from Quercus variabilis, representing broadleaf litter, and Pinus tabulaeformis, representing needle leaf litter), four amounts of litter, and five rainfall intensities were tested. Results revealed that the litter reduced runoff and delayed the beginning of runoff, but significantly reduced soil loss (p<0.05). Average runoff yield was 29.5% and 31.3% less than bare-soil plot, and for Q. variabilis and P. tabulaeformis, respectively, and average sediment yield was 85.1% and 79.9% lower. Rainfall intensity significantly affected runoff (R = 0.99, p<0.05), and the efficiency in runoff reduction by litter decreased considerably. Runoff yield and the runoff coefficient increased dramatically by 72.9 and 5.4 times, respectively. The period of time before runoff appeared decreased approximately 96.7% when rainfall intensity increased from 5.7 to 75.6 mm h−1. Broadleaf and needle leaf litter showed similarly relevant effects on runoff and soil erosion control, since no significant differences (p≤0.05) were observed in runoff and sediment variables between two litter-covered plots. In contrast, litter mass was probably not a main factor in determining runoff and sediment because a significant correlation was found only with sediment in Q. variabilis litter plot. Finally, runoff yield was significantly correlated (p<0.05) with sediment yield. These results suggest that the protective role of leaf litter in runoff and erosion processes was crucial, and both rainfall intensity and litter characteristics had an impact on these processes. PMID:25232858
Yu, Xing-Xiu; Ma, Qian; Liu, Qian-Jin; Lü, Guo-An
2011-02-01
Field in-situ rainfall simulation tests with two rainfall intensities (40 mm x h(-1) and 70 mm x h(-1)), which were conducted at typical sloping cropland in Yimeng mountainous area, were designed to analyze the output characteristics of dissolved inorganic nitrogen, Inorganic-N (NO3(-)-N, NH4(+) -N) and dissolved phosphorus (DP) in runoff water, as well as to compare the eutrophication risk in this water by calculating three ratios of Inorganic-N/DP, NO3(-) -N/DP, and NH4(+)-N/DP, respectively, in cross ridge and longitudinal ridge tillage methods. Results showed that, under the same rainfall intensity, the DP level in runoff water was higher in cross ridge than longitudinal ridge, while the change of different Inorganic-N level between the two tillage methods were not consistent. Cross ridge could effectively reduce runoff and the output rate of Inorganic-N and DP when compared to the longitudinal ridge tillage, which would be more outstanding with the increases of rainfall intensities. The losses of Inorganic-N and DP in runoff water were 43% and 5% less, respectively, in cross ridge than longitudinal ridge at the 40 mm x h(-1) rainfall intensity, and were 68% and 55%, respectively, at 70 mm x h(-1). The higher Inorganic-N/DP and NO3(-) -N/DP ratios suggest that runoff water from either cross ridge or longitudinal ridge tillage have a certain eutrophication risk, which present an increasing trend during the precipitation-runoff process. Compared with longitudinal ridge, cross ridge can not only hinder the increasing trend of eutrophication risk, but also can significantly lower it, and thus effectively reduce the effect of sloping cropland runoff on the eutrophication processes of receiving waters.
Thermal and water regime of green roof segments filled with Technosol
NASA Astrophysics Data System (ADS)
Jelínková, Vladimíra; Šácha, Jan; Dohnal, Michal; Skala, Vojtěch
2016-04-01
Artificial soil systems and structures comprise appreciable part of the urban areas and are considered to be perspective for number of reasons. One of the most important lies in contribution of green roofs and facades to the heat island effect mitigation, air quality improvement, storm water reduction, etc. The aim of the presented study is to evaluate thermal and water regime of the anthropogenic soil systems during the first months of the construction life cycle. Green roof test segments filled with two different anthropogenic soils were built to investigate the benefits of such systems in the temperate climate. Temperature and water balance measurements complemented with meteorological observations and knowledge of physical properties of the soil substrates provided basis for detailed analysis of thermal and hydrological regime. Water balance of green roof segments was calculated for available vegetation seasons and individual rainfall events. On the basis of an analysis of individual rainfall events rainfall-runoff dependency was found for green roof segments. The difference between measured actual evapotranspiration and calculated potential evapotranspiration was discussed on period with contrasting conditions in terms of the moisture stress. Thermal characteristics of soil substrates resulted in highly contrasting diurnal variation of soils temperatures. Green roof systems under study were able to reduce heat load of the roof construction when comparing with a concrete roof construction. Similarly, received rainfall was significantly reduced. The extent of the rainfall reduction mainly depends on soil, vegetation status and experienced weather patterns. The research was realized as a part of the University Centre for Energy Efficient Buildings supported by the EU and with financial support from the Czech Science Foundation under project number 14-10455P.
Mini rainfall simulation for assessing soil erodibility
NASA Astrophysics Data System (ADS)
Peters, Piet; Palese, Dina; Baartman, Jantiene
2016-04-01
The mini rainfall simulator is a small portable rainfall simulator to determine erosion and water infiltration characteristics of soils. The advantages of the mini rainfall simulator are that it is suitable for soil conservation surveys and light and easy to handle in the field. Practical experience over the last decade has shown that the used 'standard' shower is a reliable method to assess differences in erodibility due to soil type and/or land use. The mini rainfall simulator was used recently in a study on soil erosion in olive groves (Ferrandina-Italy). The propensity to erosion of a steep rain-fed olive grove (mean slope ~10%) with a sandy loam soil was evaluated by measuring runoff and sediment load under extreme rain events. Two types of soil management were compared: spontaneous grass as a ground cover (GC) and tillage (1 day (T1) and 10 days after tillage (T2)). Results indicate that groundcover reduced surface runoff to approximately one-third and soil-losses to zero compared with T1. The runoff between the two tilled plots was similar, although runoff on T1 plots increased steadily over time whereas runoff on T2 plots remained stable.
Climate influence on dengue epidemics in Puerto Rico.
Jury, Mark R
2008-10-01
The variability of the insect-borne disease dengue in Puerto Rico was studied in relation to climatic variables in the period 1979-2005. Annual and monthly reported dengue cases were compared with precipitation and temperature data. Results show that the incidence of dengue in Puerto Rico was relatively constant over time despite global warming, possibly due to the offsetting effects of declining rainfall, improving health care and little change in population. Seasonal fluctuations of dengue were driven by rainfall increases from May to November. Year-to-year variability in dengue cases was positively related to temperature, but only weakly associated with local rainfall and an index of El Nino Southern Oscillation (ENSO). Climatic conditions were mapped with respect to dengue cases and patterns in high and low years were compared. During epidemics, a low pressure system east of Florida draws warm humid air over the northwestern Caribbean. Long-term trends in past observed and future projected rainfall and temperatures were studied. Rainfall has declined slowly, but temperatures in the Caribbean are rising with the influence of global warming. Thus, dengue may increase in the future, and it will be necessary to anticipate dengue epidemics using climate forecasts, to reduce adverse health impacts.
Dynamics of changing impacts of tropical Indo-Pacific variability on Indian and Australian rainfall
NASA Astrophysics Data System (ADS)
Li, Ziguang; Cai, Wenju; Lin, Xiaopei
2016-08-01
A positive Indian Ocean Dipole (IOD) and a warm phase of the El Niño-Southern Oscillation (ENSO) reduce rainfall over the Indian subcontinent and southern Australia. However, since the 1980s, El Niño’s influence has been decreasing, accompanied by a strengthening in the IOD’s influence on southern Australia but a reversal in the IOD’s influence on the Indian subcontinent. The dynamics are not fully understood. Here we show that a post-1980 weakening in the ENSO-IOD coherence plays a key role. During the pre-1980 high coherence, ENSO drives both the IOD and regional rainfall, and the IOD’s influence cannot manifest itself. During the post-1980 weak coherence, a positive IOD leads to increased Indian rainfall, offsetting the impact from El Niño. Likewise, the post-1980 weak ENSO-IOD coherence means that El Niño’s pathway for influencing southern Australia cannot fully operate, and as positive IOD becomes more independent and more frequent during this period, its influence on southern Australia rainfall strengthens. There is no evidence to support that greenhouse warming plays a part in these decadal fluctuations.
Dynamics of changing impacts of tropical Indo-Pacific variability on Indian and Australian rainfall.
Li, Ziguang; Cai, Wenju; Lin, Xiaopei
2016-08-22
A positive Indian Ocean Dipole (IOD) and a warm phase of the El Niño-Southern Oscillation (ENSO) reduce rainfall over the Indian subcontinent and southern Australia. However, since the 1980s, El Niño's influence has been decreasing, accompanied by a strengthening in the IOD's influence on southern Australia but a reversal in the IOD's influence on the Indian subcontinent. The dynamics are not fully understood. Here we show that a post-1980 weakening in the ENSO-IOD coherence plays a key role. During the pre-1980 high coherence, ENSO drives both the IOD and regional rainfall, and the IOD's influence cannot manifest itself. During the post-1980 weak coherence, a positive IOD leads to increased Indian rainfall, offsetting the impact from El Niño. Likewise, the post-1980 weak ENSO-IOD coherence means that El Niño's pathway for influencing southern Australia cannot fully operate, and as positive IOD becomes more independent and more frequent during this period, its influence on southern Australia rainfall strengthens. There is no evidence to support that greenhouse warming plays a part in these decadal fluctuations.
Short-term modulation of Indian summer monsoon rainfall by West Asian dust
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vinoj, V.; Rasch, Philip J.; Wang, Hailong
The Indian summer monsoon is the result of a complex interplay between radiative heating, dynamics and cloud and aerosol interactions. Despite increased scientific attention, the effect of aerosols on monsoons still remains uncertain. Here we present both observational evidence and numerical modeling results demonstrating a remote aerosol link to Indian summer monsoon rainfall. Rainfall over central India is positively correlated to natural aerosols over the Arabian Sea and West Asia. Simulations using a state-of-the-art global climate model support this remote aerosol link and indicate that dust aerosols induce additional moisture transport and convergence over Central India, producing increased monsoon rainfall.more » The convergence is driven through solar heating and latent heating within clouds over West Asia that increases surface winds over the Arabian Sea. On the other hand, sea-salt aerosol tends to counteract the effect of dust and reduces rainfall. Our findings highlight the importance of natural aerosols in modulating the strength of the Indian summer monsoon, and motivate additional research in how changes in background aerosols of natural origin may be influencing long-term trends in monsoon precipitation.« less
Jacups, Susan P; Whelan, Peter I; Harley, David
2011-03-01
Ross River virus (RRV) causes the most common human arbovirus disease in Australia. Although the disease is nonfatal, the associated arthritis and postinfection fatigue can be debilitating for many months, impacting on workforce participation. We sought to create an early-warning system to notify of approaching RRV disease outbreak conditions for major townships in the Northern Territory. By applying a logistic regression model to meteorologic factors, including rainfall, a postestimation analysis of sensitivity and specificity can create rainfall cut-points. These rainfall cut-points indicate the rainfall level above which previous epidemic conditions have occurred. Furthermore, rainfall cut-points indirectly adjust for vertebrate host data from the agile wallaby (Macropus agilis) as the life cycle of the agile wallaby is intricately meshed with the wet season. Once generated, cut-points can thus be used prospectively to allow timely implementation of larval survey and control measures and public health warnings to preemptively reduce RRV disease incidence. Cut-points are location specific and have the capacity to replace previously used models, which require data management and input, and rarely provide timely notification for vector control requirements and public health warnings. These methods can be adapted for use elsewhere.
Monsoon Rainfall and Landslides in Nepal
NASA Astrophysics Data System (ADS)
Dahal, R. K.; Hasegawa, S.; Bhandary, N. P.; Yatabe, R.
2009-12-01
A large number of human settlements on the Nepal Himalayas are situated either on old landslide mass or on landslide-prone areas. As a result, a great number of people are affected by large- and small-scale landslides all over the Himalayas especially during monsoon periods. In Nepal, only in the half monsoon period (June 10 to August 15), 70, 50 and 68 people were killed from landslides in 2007, 2008 and 2009, respectively. In this context, this paper highlights monsoon rainfall and their implications in the Nepal Himalaya. In Nepal, monsoon is major source of rainfall in summer and approximately 80% of the annual total rainfall occurs from June to September. The measured values of mean annual precipitation in Nepal range from a low of approximately 250 mm at area north of the Himalaya to many areas exceeding 6,000 mm. The mean annual rainfall varying between 1500 mm and 2500 mm predominate over most of the country. In Nepal, the daily distribution of precipitation during rainy season is also uneven. Sometime 10% of the total annual precipitation can occur in a single day. Similarly, 50% total annual rainfall also can occur within 10 days of monsoon. This type of uneven distribution plays an important role in triggering many landslides in Nepal. When spatial distribution of landslides was evaluated from record of more than 650 landslides, it is found that more landslides events were concentrated at central Nepal in the area of high mean annual rainfall. When monsoon rainfall and landslide relationship was taken into consideration, it was noticed that a considerable number of landslides were triggered in the Himalaya by continuous rainfall of 3 to 90 days. It has been noticed that continuous rainfall of few days (5 days or 7 days or 10 days) are usually responsible for landsliding in the Nepal Himalaya. Monsoon rains usually fall with interruptions of 2-3 days and are generally characterized by low intensity and long duration. Thus, there is a strong role of antecedent rainfall in triggering landslides. It is noticed that a moderate correlation exists between the antecedent rainfalls of 3 to 10 days and the daily rainfall at failure in the Nepal Himalaya. The rainfall thresholds are utilized to develop early warning systems. Taking reference of the intensity-duration threshold and normalized rainfall intensity threshold, two proto-type models of early warning systems (RIEWS and N-RIEWS) are proposed. Early warning models show less time for evacuation in the case of short duration and high intensity rainfall, whereas for long duration rainfall, warning time is enough and when warning information disseminate to the people, people will aware to possible landslide risk. In the meantime, they will be mentally ready to tackle with possible disaster of coming hours or days and will avoid the consequences. On the basis of coarse hydro-meteorological data of developing country like Nepal, this simple and rather easy model of early warning will certainly help to reduce fatalities from landslides.
Herbaceous Legume Encroachment Reduces Grass Productivity and Density in Arid Rangelands.
Wagner, Thomas C; Hane, Susanne; Joubert, Dave F; Fischer, Christina
2016-01-01
Worldwide savannas and arid grasslands are mainly used for livestock grazing, providing livelihood to over a billion people. While normally dominated by perennial C4 grasses, these rangelands are increasingly affected by the massive spread of native, mainly woody legumes. The consequences are often a repression of grass cover and productivity, leading to a reduced carrying capacity. While such encroachment by woody plants has been extensively researched, studies on similar processes involving herbaceous species are rare. We studied the impact of a sustained and massive spread of the native herbaceous legume Crotalaria podocarpa in Namibia's escarpment region on the locally dominant fodder grasses Stipagrostis ciliata and Stipagrostis uniplumis. We measured tussock densities, biomass production of individual tussocks and tussock dormancy state of Stipagrostis on ten 10 m x 10 m plots affected and ten similarly-sized plots unaffected by C. podocarpa over eight consecutive years and under different seasonal rainfalls and estimated the potential relative productivity of the land. We found the percentage of active Stipagrostis tussocks and the biomass production of individual tussocks to increase asymptotically with higher seasonal rainfall reaching a maximum around 300 mm while the land's relative productivity under average local rainfall conditions reached only 40% of its potential. Crotalaria podocarpa encroachment had no effect on the proportion of productive grass tussocks, but reduced he productivity of individual Stipagrostis tussocks by a third. This effect of C. podocarpa on grass productivity was immediate and direct and was not compensated for by above-average rainfall. Besides this immediate effect, over time, the density of grass tussocks declined by more than 50% in areas encroached by C. podocarpa further and lastingly reducing the lands carrying capacity. The effects of C. podocarpa on grass productivity hereby resemble those of woody encroachers. Therefore, against the background of global change, the spread of herbaceous legumes and the underlying patterns needs to be further investigated to develop adequate counter measures for a sustainable land use.
Dam pre-release as an important operation strategy in reducing flood impact in Malaysia
NASA Astrophysics Data System (ADS)
Hidayah Ishak, Nurul; Mustafa Hashim, Ahmad
2018-03-01
The 2014 flood was reported to be one of the worst natural disaster has ever affected several states in the northern part of Peninsular Malaysia. Overwhelming rainfall was noted as one of the main factors causing such impact, which was claimed to be unprecedented to some extent. The state of Perak, which is blessed with four cascading dams had also experienced flood damage at a scale that was considered the worst in history. The rainfall received had caused the dam to reach danger level that necessitated additional discharge to be released. Safety of the dams was of great importance and such unavoidable additional discharge was allowed to avoid catastrophic failure of the dam structures. This paper discusses the dam pre-release as a significant dam management strategy in reducing flood impact. An important balance between required dam storage to be maintained and the risk element that can be afforded is the crucial factor in such enhanced operation strategy. While further possibility in developing a carefully engineered dam pre-release strategy can be explored for dam operation in Malaysia, this has already been introduced in some developed countries. Australia and South Africa are examples where pre-release has been practiced and proven to reduce flood risk. The concept involves controlling the dam lake level throughout the year, in reference to the rainfall data and the hydrological properties for the catchment area of the dams. Plentiful data analysis need to be done in contemplation of producing the optimal pre-release model. The amount of heavy rainfalls received is beyond human control but the distribution of the discharge from the dams can be further managed with the appropriate pre-release strategy.
South American climate during the Last Glacial Maximum: Delayed onset of the South American monsoon
NASA Astrophysics Data System (ADS)
Cook, K. H.; Vizy, E. K.
2006-01-01
The climate of the Last Glacial Maximum (LGM) over South America is simulated using a regional climate model with 60-km resolution, providing a simulation that is superior to those available from global models that do not resolve the topography and regional-scale features of the South American climate realistically. LGM conditions on SST, insolation, vegetation, and reduced atmospheric CO2 on the South American climate are imposed together and individually. Remote influences are not included. Annual rainfall is 25-35% lower in the LGM than in the present day simulation throughout the Amazon basin. A primary cause is a 2-3 month delay in the onset of the rainy season, so that the dry season is about twice as long as in the present day. The delayed onset occurs because the low-level inflow from the tropical Atlantic onto the South American continent is drier than in the present day simulation due to reduced evaporation from cooler surface waters, and this slows the springtime buildup of moist static energy that is needed to initiate convection. Once the monsoon begins in the Southern Hemisphere, LGM rainfall rates are similar to those in the present day. In the Northern Hemisphere, however, rainfall is lower throughout the (shortened) rainy season. Regional-scale structure includes slight precipitation increases in the Nordeste region of Brazil and along the eastern foothills of the Andes, and a region in the center of the Amazon basin that does not experience annual drying. In the Andes Mountains, the signal is complicated, with regions of significant rainfall increases adjacent to regions with reduced precipitation.
A climate trend analysis of Ethiopia
Funk, Christopher C.; Rowland, Jim; Eilerts, Gary; Kebebe, Emebet; Biru, Nigist; White, Libby; Galu, Gideon
2012-01-01
This brief report, drawing from a multi-year effort by the U.S. Agency for International Development (USAID) Famine Early Warning Systems Network (FEWS NET), examines recent trends in March-June, June-September, and March-September rainfall and temperature, identifying significant reductions in rainfall and increases in temperature over time in many areas of Ethiopia. Conclusions: * Spring and summer rains in parts of Ethiopia have declined by 15-20 percent since the mid-1970s. * Substantial warming across the entire country has exacerbated the dryness.* An important pattern of observed existing rainfall declines coincides with heavily populated areas of the Rift Valley in south-central Ethiopia, and is likely already adversely affecting crop yields and pasture conditions. * Rapid population growth and the expansion of farming and pastoralism under a drier, warmer climate regime could dramatically increase the number of at-risk people in Ethiopia during the next 20 years.* Many areas of Ethiopia will maintain moist climate conditions, and agricultural development in these areas could help offset rainfall declines and reduced production in other areas.
Colson, B.E.
1986-01-01
In 1964 the U.S. Geological Survey in Mississippi expanded the small stream gaging network for collection of rainfall and runoff data to 92 stations. To expedite availability of flood frequency information a rainfall-runoff model using available long-term rainfall data was calibrated to synthesize flood peaks. Results obtained from observed annual peak flow data for 51 sites having 16 yr to 30 yr of annual peaks are compared with the synthetic results. Graphical comparison of the 2, 5, 10, 25, 50, and 100-year flood discharges indicate good agreement. The root mean square error ranges from 27% to 38% and the synthetic record bias from -9% to -18% in comparison with the observed record. The reduced variance in the synthetic results is attributed to use of only four long-term rainfall records and model limitations. The root mean square error and bias is within the accuracy considered to be satisfactory. (Author 's abstract)
Shafique, Muhammad; Kim, Reeho; Kyung-Ho, Kwon
2018-01-01
This field study elaborates the role of grass swale in the management of stormwater in an urban parking lot. Grass swale was constructed by using different vegetations and local soil media in the parking lot of Mapu-gu Seoul, Korea. In this study, rainfall runoff was first retained in soil and the vegetation layers of the grass swale, and then infiltrated rainwater was collected with the help of underground perforated pipe, and passed to an underground storage trench. In this way, grass swale detained a large amount of rainwater for a longer period of time and delayed peak discharge. In this field study, various real storm events were monitored and the research results were analyzed to evaluate the performance of grass swale for managing rainfall runoff in an urban area. From the analysis of field experiments, grass swale showed the significant rainfall runoff retention in different rain events. Grass swale markedly reduced total rainfall runoff volume and peak flow during the small storm events of intensity about 30 mm/h. From the analysis, on average rainfall runoff retention from the grass swale was found around 40 to 75% during the various small rain events. From the results, we can say that grass swale is a stormwater mitigation practice which can help avoid flash flooding problems in urban areas. PMID:29547567
Shafique, Muhammad; Kim, Reeho; Kyung-Ho, Kwon
2018-03-16
This field study elaborates the role of grass swale in the management of stormwater in an urban parking lot. Grass swale was constructed by using different vegetations and local soil media in the parking lot of Mapu-gu Seoul, Korea. In this study, rainfall runoff was first retained in soil and the vegetation layers of the grass swale, and then infiltrated rainwater was collected with the help of underground perforated pipe, and passed to an underground storage trench. In this way, grass swale detained a large amount of rainwater for a longer period of time and delayed peak discharge. In this field study, various real storm events were monitored and the research results were analyzed to evaluate the performance of grass swale for managing rainfall runoff in an urban area. From the analysis of field experiments, grass swale showed the significant rainfall runoff retention in different rain events. Grass swale markedly reduced total rainfall runoff volume and peak flow during the small storm events of intensity about 30 mm/h. From the analysis, on average rainfall runoff retention from the grass swale was found around 40 to 75% during the various small rain events. From the results, we can say that grass swale is a stormwater mitigation practice which can help avoid flash flooding problems in urban areas.
Disturbance Driven Rainfall in O`ahu, Hawai`i (1990-2010)
NASA Astrophysics Data System (ADS)
Longman, R. J.; Elison Timm, O.; Giambelluca, T. W.; Kaiser, L.; Newman, A. J.; Arnold, J.; Clark, M. P.
2017-12-01
Trade wind orographic rainfall is the most prevalent synoptic weather pattern in Hawai`i and provides a year-round source of moisture to the windward areas across the Island chain. Significant contributions to total and extreme precipitation have also been linked to one of four atmospheric disturbance situations that include: cold fronts, Kona storms, upper-tropospheric disturbances (upper level lows), and tropical systems. The primary objective of this research is to determine how these disturbance types contribute to total wet-season rainfall (RF) on the Island of O`ahu, Hawai`i and to identify any significant changes in the frequency of occurrence and or the intensity of these events. Atmospheric fronts that occurred in the Hawai`i region (17-26°N, 150-165°W) were extracted from a global dataset and combined with a Kona low and upper level low dataset to create a daily categorical weather classification time series (1990-2010). Mean rainfall was extracted from gridded daily O`ahu RF maps. Results show that the difference between a wet and dry year is predominantly explained by the RF contributions from disturbance events (r2 = 0.57, p < 0.01), in particularly, the contributions coming from Kona low and cold fronts that cross the Island. During the wettest season on record, disturbances accounted for 48% of the total RF, while during the driest season they accounted for only 6% of the total RF. The event-based RF analysis also compared the RF intensity in the absence of disturbance events with the average RF intensity on days when atmospheric fronts are present but do not cross the island. The results show that non-crossing fronts reduce the average RF intensity. A possible explanation is that these events are too far away to produce RF, but close enough to disrupt normal trade wind flow, thus limiting orographic RF on the island. This new event-based RF analysis has important implications for the projection of regional climate change in Hawai`i. Our results suggest that if storm tracks were to shift poleward, O`ahu wet season RF would be reduced. The most obvious effect is that fronts crossing the Island would likely occur less frequently reducing the number of days per year with heavy cold front rainfall. In addition, non-crossing fronts could occur more often and hence reducing the orographic RF.
NASA Astrophysics Data System (ADS)
Adnan Abid, Mohammad; Almazroui, Mansour; Kucharski, Fred
2017-04-01
Summer seasonal rainfall falls mainly over the south and southwestern parts of the Arabian Peninsula (AP). The relationship between this mean summer seasonal rainfall pattern and El Niño Southern Oscillation (ENSO) is analyzed with the aid of a 15-member ensemble of simulations using the King Abdulaziz University (KAU) Atmospheric Global Climate Model (AGCM). Each simulation is forced with Hadley Sea Surface Temperature (SST) for the period 1980-2015. The southwestern peninsula rainfall is linked towith the SST anomalies in the central-eastern pacific region. This relation is established through an atmospheric teleconnection which shows an upper-level convergence (divergence) anomalies over the southern Arabian Peninsula compensating the central-eastern Pacific region upper-level divergence (convergence) anomalies for the warm (cold) El Niño Southern Oscillaton (ENSO) phase. The upper-level convergence (divergence) over the southern Arabian Peninsula leads to sinking (rising) motion, low-level divergence (convergence) and consequently to reduced (enhanced) rainfall. The correlation coefficient between the observed area-averged Niño3.4 index and athe South Arabian Rainfall Index (SARI) is -0.54. This indicates that AP receives less rainfall during the warm (El Niño) phase, while the opposite happens in the cold (La Niña) El Niño Southern Oscillaton (ENSO) phase. The lower tropospheric cyclonic circulation anomalies strongly modulate the ENSO-related rainfall in the region. Overall, the model shows a 43% potential predictability (PP) for the Southern Arabian Peninsula Rainfall Index (SARI). Further, the predictability during the warm ENSO (El Niño) events is higher than during cold ENSO (La Niña) events. This is not only because of a stronger signal, but also noise reduction contributes to the increase of the regional PP in El Niño compared to that of La Niña years.
Wang, Sai; Yi, Li-Ta; Yu, Shu-Quan; Zhang, Chao; Shi, Jing-Jing
2014-08-01
At three levels of simulated acid rainfall intensities with pH values of 2.5 (severe), 40 (medium) and 5.6 (light) respectively, the responses of chlorophyll fluorescence and photosynthetic parameters of Quercus glauca seedlings were studied in three acid rainfall treatments, i. e. only the aboveground of seedlings exposed to acid rain (T1), both of the seedlings and soil exposed to acid rain (T2), only the soil exposed to acid rain (T3) compared with blank control (CK). Under the severe acid rainfall, T1 significantly inhibited chlorophyll synthesis, and thus reduced the primary photochemical efficiency of PS II ( F(v)/F(m)), potential activity of PS II (F(v)/F(o)) , apparent quantum (Y), net photosynthetic rate (P(n)), and transpiration rate (T(r)), but increased the light compensation point (LCP) and dark respiration rate (R(d)) of Q. glauca seedlings. T2 inhibited, but T3 played a little enhancement on the aforementioned parameters of Q. glauca seedlings. Under the conditions of medium and light acid rainfall intensities, the above parameters in the three treatments were higher than that of CK, except with lower R(d). The chlorophyll fluorescence and photosynthetic parameters showed a similar tendency in the three treatments, i. e. T2>T3 >T1. It indicated that T1 had the strongest inhibition on seedlings in condition of the severe acid rainfall, while T2 had the most dramatic facilitating effect on seedlings under the medium and light acid rainfall. Intensity of acid rainfall had significant influences on SPAD, F(v)/F(m), F(v)/F(o), Y, P(n), T(r), and maximum photosynthetic rate (A(max)), whereas treatments of acid rainfall affected SPAD, F(v)/F(m), Y, P(n), T(r), A(max) and light saturation point (LSP). The interaction of acid rainfall intensities and treatments played significant effects on SPAD, F(v)/F(m), Y, P(n) and A(max).
NASA Astrophysics Data System (ADS)
Williams, C.; Silins, U.; Wagner, M. J.; Bladon, K. D.; Martens, A. M.; Anderson, A.; Stone, M.; Emelko, M. B.
2014-12-01
Interception of precipitation in sub-alpine forests is likely to be strongly reduced after wildfire, potentially producing large increases in net precipitation. Objectives of this study were to describe changes in rainfall and snow interception, and net precipitation after the severe 2003 Lost Creek wildfire as part of the Southern Rockies Watershed Project in the south-west Rocky Mountains of Alberta, Canada. Throughfall troughs and stemflow gauges were used to explore relationships between throughfall, stemflow, and net rainfall with variation in gross rainfall in burned and undisturbed stands during the summers of 2006-2008. These relationships were used to scale the effects of the wildfire on net rainfall for the first decade after the wildfire (2004-2013) using a 10 year rainfall record in the watershed. Annual snowpack surveys (5 snow courses in each of burned and reference stands) measured peak snowpack depth, density, and snow water equivalent (SWE) for this same period. Mean annual P was 1140 mm (684-1519 mm) during the first 10 years after the wildfire, with 61% falling as snow. Throughfall and stemflow in the burned forest accounted for 86% and 7% of gross rainfall, respectively, compared with 53% and 0.002% in the unburned stands in the summers of 2006-2008. Scaled rainfall interception relationships (=f(rainfall event size)) indicated annual increases in net rainfall were 192 mm/yr (133-347 mm) for 10 years after the fire. Similarly, mean increases in peak SWE were 134 mm/yr (93-216 mm). Collectively, the mean increase in net precipitation was 325 mm/yr (226-563 mm; 29%) for the first decade after the wildfire. Hydrologic forcing by increased net precipitation may be a particularly important element of wildfire impacts on sub-alpine watersheds. Furthermore, because of the very slow growth rates of sub-alpine forests, increases in net precipitation are likely to persist and affect precipitation-runoff relationships for decades in these environments.
NASA Astrophysics Data System (ADS)
O, Sungmin; Foelsche, U.; Kirchengast, G.; Fuchsberger, J.
2018-01-01
Eight years of daily rainfall data from WegenerNet were analyzed by comparison with data from Austrian national weather stations. WegenerNet includes 153 ground level weather stations in an area of about 15 km × 20 km in the Feldbach region in southeast Austria. Rainfall has been measured by tipping bucket gauges at 150 stations of the network since the beginning of 2007. Since rain gauge measurements are considered close to true rainfall, there are increasing needs for WegenerNet data for the validation of rainfall data products such as remote sensing based estimates or model outputs. Serving these needs, this paper aims at providing a clearer interpretation on WegenerNet rainfall data for users in hydro-meteorological communities. Five clusters - a cluster consists of one national weather station and its four closest WegenerNet stations - allowed us close comparison of datasets between the stations. Linear regression analysis and error estimation with statistical indices were conducted to quantitatively evaluate the WegenerNet daily rainfall data. It was found that rainfall data between the stations show good linear relationships with an average correlation coefficient (r) of 0.97 , while WegenerNet sensors tend to underestimate rainfall according to the regression slope (0.87). For the five clusters investigated, the bias and relative bias were - 0.97 mm d-1 and - 11.5 % on average (except data from new sensors). The average of bias and relative bias, however, could be reduced by about 80 % through a simple linear regression-slope correction, with the assumption that the underestimation in WegenerNet data was caused by systematic errors. The results from the study have been employed to improve WegenerNet data for user applications so that a new version of the data (v5) is now available at the WegenerNet data portal (www.wegenernet.org).
Assessment of Rainfall-induced Landslide Potential and Spatial Distribution
NASA Astrophysics Data System (ADS)
Chen, Yie-Ruey; Tsai, Kuang-Jung; Chen, Jing-Wen; Chiang, Jie-Lun; Hsieh, Shun-Chieh; Chue, Yung-Sheng
2016-04-01
Recently, due to the global climate change, most of the time the rainfall in Taiwan is of short duration but with high intensity. Due to Taiwan's steep terrain, rainfall-induced landslides often occur and lead to human causalities and properties loss. Taiwan's government has invested huge reconstruction funds to the affected areas. However, after rehabilitation they still face the risk of secondary sediment disasters. Therefore, this study assesses rainfall-induced (secondary) landslide potential and spatial distribution in watershed of Southern Taiwan under extreme climate change. The study areas in this research are Baolai and Jianshan villages in the watershed of the Laonongxi River Basin in the Southern Taiwan. This study focused on the 3 years after Typhoon Morakot (2009 to 2011). During this period, the study area experienced six heavy rainfall events including five typhoons and one heavy rainfall. The genetic adaptive neural network, texture analysis and GIS were implemented in the analysis techniques for the interpretation of satellite images and to obtain surface information and hazard log data and to analyze land use change. A multivariate hazards evaluation method was applied to quantitatively analyze the weights of various natural environmental and slope development hazard factors. Furthermore, this study established a slope landslide potential assessment model and depicted a slope landslide potential diagram by using the GIS platform. The interaction between (secondary) landslide mechanism, scale, and location was analyzed using association analysis of landslide historical data and regional environmental characteristics. The results of image classification before and after six heavy rainfall events show that the values of coefficient of agreement are at medium-high level. By multivariate hazards evaluation method, geology and the effective accumulative rainfall (EAR) are the most important factors. Slope, distance from fault, aspect, land disturbance, and elevation are the secondary important factors. Under the different rainfall, the greater the average of EAR, the more the landslide occurrence and area increments. The determination coefficients of trend lines on the charts of the average of EAR versus number and area of landslide increment are 0.83 and 0.92, respectively. The relations between landslide potential level, degree of land disturbance, and the ratio of number and area of landslide increment corresponding six heavy rainfall events are positive and the determination coefficients of trend lines are 0.82 and 0.72, respectively. The relation between the average of EAR and the area of landslide increment corresponding five heavy rainfall events (excluding Morakot) is positive and the determination coefficient of trend line is 0.98. Furthermore, the relation between the area increment of secondary landslide, average of EAR or the slope disturbance is positive. Under the same slope disturbance, the greater the EAR, the more the area increment of secondary landslide. Contrarily, under the same EAR, the greater the slope disturbance, the more the area increment of secondary landslide. The results of the analysis of this study can be a reference for the government for subsequent countermeasures for slope sediment disaster sensitive area to reduce the number of casualties and significantly reduce the social cost of post-disaster.
Development of microwave rainfall retrieval algorithm for climate applications
NASA Astrophysics Data System (ADS)
KIM, J. H.; Shin, D. B.
2014-12-01
With the accumulated satellite datasets for decades, it is possible that satellite-based data could contribute to sustained climate applications. Level-3 products from microwave sensors for climate applications can be obtained from several algorithms. For examples, the Microwave Emission brightness Temperature Histogram (METH) algorithm produces level-3 rainfalls directly, whereas the Goddard profiling (GPROF) algorithm first generates instantaneous rainfalls and then temporal and spatial averaging process leads to level-3 products. The rainfall algorithm developed in this study follows a similar approach to averaging instantaneous rainfalls. However, the algorithm is designed to produce instantaneous rainfalls at an optimal resolution showing reduced non-linearity in brightness temperature (TB)-rain rate(R) relations. It is found that the resolution tends to effectively utilize emission channels whose footprints are relatively larger than those of scattering channels. This algorithm is mainly composed of a-priori databases (DBs) and a Bayesian inversion module. The DB contains massive pairs of simulated microwave TBs and rain rates, obtained by WRF (version 3.4) and RTTOV (version 11.1) simulations. To improve the accuracy and efficiency of retrieval process, data mining technique is additionally considered. The entire DB is classified into eight types based on Köppen climate classification criteria using reanalysis data. Among these sub-DBs, only one sub-DB which presents the most similar physical characteristics is selected by considering the thermodynamics of input data. When the Bayesian inversion is applied to the selected DB, instantaneous rain rate with 6 hours interval is retrieved. The retrieved monthly mean rainfalls are statistically compared with CMAP and GPCP, respectively.
NASA Astrophysics Data System (ADS)
Abeysingha, N. S.; Singh, Man; Sehgal, V. K.; Khanna, Manoj; Pathak, Himanshu
2016-02-01
Trend analysis of hydro-climatic variables such as streamflow, rainfall, and temperature provides useful information for effective water resources planning, designing, and management. Trends in observed streamflow at four gauging stations in the Gomti River basin of North India were assessed using the Mann-Kendall and Sen's slope for the 1982 to 2012 period. The relationships between trends in streamflow and rainfall were studied by correlation analyses. There was a gradual decreasing trend of annual, monsoonal, and winter seasonal streamflow ( p < 0.05) from the midstream to the downstream of the river and also a decreasing trend of annual streamflow for the 5-year moving averaged standardized anomalies of streamflow for the entire basin. The declining trend in the streamflow was attributed partly to the increased water withdrawal, to increased air temperature, to higher population, and partly to significant reducing trend of post monsoon rainfall especially at downstream. Upstream gauging station showed a significant increasing trend of streamflow (1.6 m3/s/year) at annual scale, and this trend was attributed to the significant increasing trend of catchment rainfall (9.54 mm/year). It was further evident in the significant coefficient of positive correlation ( ρ = 0.8) between streamflow and catchment rainfall. The decreasing trend in streamflow and post-monsoon rainfall especially towards downstream area with concurrent increasing trend of temperature indicates a drying tendency of the Gomti River basin over the study period. The results of this study may help stakeholders to design streamflow restoration strategies for sustainable water management planning of the Gomti River basin.
NASA Astrophysics Data System (ADS)
Renard, Florent
2017-04-01
The Greater Lyon area is strongly built up, grouping 58 communes and a population of 1.3 million in approximately 500 km2. The flood risk is high as the territory is crossed by two large watercourses and by streams with torrential flow. Floods may also occur in case of runoff after heavy rain or because of a rise in the groundwater level. The whole territory can therefore be affected, and it is necessary to possess in-depth knowledge of the depths, causes and consequences of rainfall to achieve better management of precipitation in urban areas and to reduce flood risk. This study is thus focused on the effects of topography and land cover on the occurrence, intensity and area of intense rainfall cells. They are identified by local radar meteorology (C-band) combined with a processing algorithm running in a geographic information system (GIS) which identified 109,979 weighted mean centres of them in a sample composed of the five most intense rainfall events from 2001 to 2005. First, analysis of spatial distribution at an overall scale is performed, completed by study at a more detailed scale. The results show that the distribution of high-intensity rainfall cells is spread in cluster form. Subsequently, comparison of intense rainfall cells with the topography shows that cell density is closely linked with land slope but that, above all, urbanised zones feature nearly twice as many rainfall cells as farm land or forest, with more intense intensity.
Simulation of Rainfall Variability Over West Africa
NASA Astrophysics Data System (ADS)
Bader, J.; Latif, M.
The impact of sea surface temperature (SST) and vegetation on precipitation over West Africa is investigated with the atmospheric general circulation model ECHAM4.x/T42. Ensemble experiments -driven with observed SST- show that At- lantic SST has a significant influence on JJA precipitation over West Africa. Four- teen experiments were performed in which the climatological SST was enhanced or decreased by one Kelvin in certain ocean areas. Changing SST in the eastern tropi- cal Atlantic only caused significant changes along the Guinea Coast, with a positive SSTA increasing rainfall and a negative reducing it. The response was nearly linear. Changing SST in other ocean areas caused significant changes over West Africa, es- pecially in the Sahel area. The response is found to be non linear, with only negative SSTA leading to significant reduction in Sahel rainfall. Also, the impact of the SSTAs from the different ocean regions was not additive with respect to the rainfall. Four simulations with a coupled model (the simple dynamic vegetation model (SVege) and the ECHAM4-AGCM were coupled) were also performed, driven with observed SST from 1945 to 1998. The standard ECHAM-AGCM -forced by the same observed SST- was able to reproduce the drying trend from the fifties to the mid-eighties in the Sahel, but failed to mirror the magnitude of the rainfall anomalies. The coupled model was not only able to reproduce this drying trend, but was also able to better reproduce the amplitudes of the rainfall anomalies. The dynamic vegetation acted like an amplifier, increasing the SST induced rainfall anomalies.
Seasonal variation and climate change impact in Rainfall Erosivity across Europe
NASA Astrophysics Data System (ADS)
Panagos, Panos; Borrelli, Pasquale; Meusburger, Katrin; Alewell, Christine; Ballabio, Cristiano
2017-04-01
Rainfall erosivity quantifies the climatic effect on water erosion and is of high importance for soil scientists, land use planners, agronomists, hydrologists and environmental scientists in general. The rainfall erosivity combines the influence of rainfall duration, magnitude, frequency and intensity. Rainfall erosivity is calculated from a series of single storm events by multiplying the total storm kinetic energy with the measured maximum 30-minute rainfall intensity. This estimation requests high temporal resolution (e.g. 30 minutes) rainfall data for sufficiently long time periods (i.e. 20 years). The European Commission's Joint Research Centr(JRC) in collaboration with national/regional meteorological services and Environmental Institutions made an extensive data collection of high resolution rainfall data in the 28 Member States of the European Union plus Switzerland to estimate rainfall erosivity in Europe. This resulted in the Rainfall Erosivity Database on the European Scale (REDES) which included 1,675 stations. The interpolation of those point erosivity values with a Gaussian Process Regression (GPR) model has resulted in the first Rainfall Erosivity map of Europe (Science of the Total Environment, 511: 801-815). In 2016, REDES extended with a monthly component, which allowed developing monthly and seasonal erosivity maps and assessing rainfall erosivity both spatially and temporally for European Union and Switzerland. The monthly erosivity maps have been used to develop composite indicators that map both intra-annual variability and concentration of erosive events (Science of the Total Environment, 579: 1298-1315). Consequently, spatio-temporal mapping of rainfall erosivity permits to identify the months and the areas with highest risk of soil loss where conservation measures should be applied in different seasons of the year. Finally, the identification of the most erosive month allows recommending certain agricultural management practices (crop residues, reduced tillage) in regions with high erosivity. Besides soil erosion mapping, the intra-annual analysis of rainfall erosivity is an important step towards flood prevention, hazard mitigation, ecosystem services, land use change and agricultural production. The application of REDES in combination with moderate climate change scenarios scenario (HadGEM RCP 4.5) resulted in predictions of erosivity in 2050. The overall increase of rainfall erosivity in Europe by 18% until 2050 are in line with projected increases of 17% for the U.S.A. The predicted mean rise of erosivity is also expected to increase the threat of soil erosion in Europe. The most noticeable increase of erosivity is projected for North-Central Europe, the English Channel, The Netherlands and Northern France. On the contrary, the Mediterranean basin show mixed trends. The success story with the compilation of REDES and first rainfall erosivity map of Europe was a driver to implement a Global Rainfall Erosivity Database (GloREDa). During the last 3 years, JRC was leading an effort to collect high temporal resolution rainfall data worldwide. In collaboration with 50 scientists worldwide and 100+ Meteorological and environmental Organisations, we have developed a Global Erosivity Database. In this database, we managed to include calculated erosivity values for 3,625 stations covering 63 countries worldwide.
Modeling of Convective-Stratiform Precipitation Processes: Sensitivity to Partitioning Methods
NASA Technical Reports Server (NTRS)
Lang, S. E.; Tao, W.-K.; Simpson, J.; Ferrier, B.; Starr, David OC. (Technical Monitor)
2001-01-01
Six different convective-stratiform separation techniques, including a new technique that utilizes the ratio of vertical and terminal velocities, are compared and evaluated using two-dimensional numerical simulations of a tropical [Tropical Ocean Global Atmosphere Coupled Ocean Atmosphere Response Experiment (TOGA COARE)] and midlatitude continental [Preliminary Regional Experiment for STORM-Central (PRESTORM)] squall line. Comparisons are made in terms of rainfall, cloud coverage, mass fluxes, apparent heating and moistening, mean hydrometeor profiles, CFADs (Contoured Frequency with Altitude Diagrams), microphysics, and latent heating retrieval. Overall, it was found that the different separation techniques produced results that qualitatively agreed. However, the quantitative differences were significant. Observational comparisons were unable to conclusively evaluate the performance of the techniques. Latent heating retrieval was shown to be sensitive to the use of separation technique mainly due to the stratiform region for methods that found very little stratiform rain.
NASA Technical Reports Server (NTRS)
Smith, R. C. G.; Choudhury, B. J.
1990-01-01
Based on NOAA-9 AVHRR and Nimbus-7 SMMR satellite data, satellite indices of vegetation from the Australian continent are calculated for the period of May 1986 to April 1987. Visible (VIS) and near infrared (NIR) reflectances and the normalized difference (ND) vegetation index are calculated from the AVHRR sensor. The microwave polarization difference (PD) is also calculated as the difference between the vertically and horizontally polarized brightness temperatures at 37 GHz. ND, PD, VIS, and NIR indices were plotted against rainfall and water balance estimates of evaporation. It is concluded that direct satellite monitoring of annual evaporation across the Australian continent using PD or VIS satellite indices of vegetation biomass appears possible for areas with evaporation less than 600 mm/y and that use of the ND relationship at continental scale may underpredict monthly evaporation of forests relative to agriculture.
Retrieved Vertical Profiles of Latent Heat Release Using TRMM Rainfall Products
NASA Technical Reports Server (NTRS)
Tao, W.-K.; Lang, S.; Olson, W. S.; Meneghini, R.; Yang, S.; Simpson, J.; Kummerow, C.; Smith, E.
2000-01-01
This paper represents the first attempt to use TRMM rainfall information to estimate the four dimensional latent heating structure over the global tropics for February 1998. The mean latent heating profiles over six oceanic regions (TOGA COARE IFA, Central Pacific, S. Pacific Convergence Zone, East Pacific, Indian Ocean and Atlantic Ocean) and three continental regions (S. America, Central Africa and Australia) are estimated and studied. The heating profiles obtained from the results of diagnostic budget studies over a broad range of geographic locations are used to provide comparisons and indirect validation for the heating algorithm estimated heating profiles. Three different latent heating algorithms, the Goddard Convective-Stratiform (CSH) heating, the Goddard Profiling (GPROF) heating, and the Hydrometeor heating (HH) are used and their results are intercompared. The horizontal distribution or patterns of latent heat release from the three different heating retrieval methods are quite similar. They all can identify the areas of major convective activity (i.e., a well defined ITCZ in the Pacific, a distinct SPCZ) in the global tropics. The magnitude of their estimated latent heating release is also not in bad agreement with each other and with those determined from diagnostic budget studies. However, the major difference among these three heating retrieval algorithms is the altitude of the maximum heating level. The CSH algorithm estimated heating profiles only show one maximum heating level, and the level varies between convective activity from various geographic locations. These features are in good agreement with diagnostic budget studies. By contrast, two maximum heating levels were found using the GPROF heating and HH algorithms. The latent heating profiles estimated from all three methods can not show cooling between active convective events. We also examined the impact of different TMI (Multi-channel Passive Microwave Sensor) and PR (Precipitation Radar) rainfall information on latent heating structures.
Soper, Fiona M; Richards, Anna E; Siddique, Ilyas; Aidar, Marcos P M; Cook, Garry D; Hutley, Lindsay B; Robinson, Nicole; Schmidt, Susanne
2015-05-01
Water and nitrogen (N) interact to influence soil N cycling and plant N acquisition. We studied indices of soil N availability and acquisition by woody plant taxa with distinct nutritional specialisations along a north Australian rainfall gradient from monsoonal savanna (1,600-1,300 mm annual rainfall) to semi-arid woodland (600-250 mm). Aridity resulted in increased 'openness' of N cycling, indicated by increasing δ(15)N(soil) and nitrate:ammonium ratios, as plant communities transitioned from N to water limitation. In this context, we tested the hypothesis that δ(15)N(root) xylem sap provides a more direct measure of plant N acquisition than δ(15)N(foliage). We found highly variable offsets between δ(15)N(foliage) and δ(15)N(root) xylem sap, both between taxa at a single site (1.3-3.4 ‰) and within taxa across sites (0.8-3.4 ‰). As a result, δ(15)N(foliage) overlapped between N-fixing Acacia and non-fixing Eucalyptus/Corymbia and could not be used to reliably identify biological N fixation (BNF). However, Acacia δ(15)N(root) xylem sap indicated a decline in BNF with aridity corroborated by absence of root nodules and increasing xylem sap nitrate concentrations and consistent with shifting resource limitation. Acacia dominance at arid sites may be attributed to flexibility in N acquisition rather than BNF capacity. δ(15)N(root) xylem sap showed no evidence of shifting N acquisition in non-mycorrhizal Hakea/Grevillea and indicated only minor shifts in Eucalyptus/Corymbia consistent with enrichment of δ(15)N(soil) and/or decreasing mycorrhizal colonisation with aridity. We propose that δ(15)N(root) xylem sap is a more direct indicator of N source than δ(15)N(foliage), with calibration required before it could be applied to quantify BNF.
Wu, Lei; Qiao, Shanshan; Peng, Mengling; Ma, Xiaoyi
2018-05-01
Soil and nutrient loss is a common natural phenomenon but it exhibits unclear understanding especially on bare loess soil with variable rainfall intensity and slope gradient, which makes it difficult to design control measures for agricultural diffuse pollution. We employ 30 artificial simulated rainfalls (six rainfall intensities and five slope gradients) to quantify the coupling loss correlation of runoff-sediment-adsorbed and dissolved nitrogen and phosphorus on bare loess slope. Here, we show that effects of rainfall intensity on runoff yield was stronger than slope gradient with prolongation of rainfall duration, and the effect of slope gradient on runoff yield reduced gradually with increased rainfall intensity. But the magnitude of initial sediment yield increased significantly from an average value of 6.98 g at 5° to 36.08 g at 25° with increased slope gradient. The main factor of sediment yield would be changed alternately with the dual increase of slope gradient and rainfall intensity. Dissolved total nitrogen (TN) and dissolved total phosphorus (TP) concentrations both showed significant fluctuations with rainfall intensity and slope gradient, and dissolved TP concentration was far less than dissolved TN. Under the double influences of rainfall intensity and slope gradient, adsorbed TN concentration accounted for 7-82% of TN loss concentration with an average of 58.6% which was the main loss form of soil nitrogen, adsorbed TP concentration accounted for 91.8-98.7% of TP loss concentration with an average of 96.6% which was also the predominant loss pathway of soil phosphorus. Nitrate nitrogen (NO 3 - -N) accounted for 14.59-73.92% of dissolved TN loss, and ammonia nitrogen (NH 4 + -N) accounted for 1.48-18.03%. NO 3 - -N was the main loss pattern of TN in runoff. Correlation between dissolved TN, runoff yield, and rainfall intensity was obvious, and a significant correlation was also found between adsorbed TP, sediment yield, and slope gradient. Our results provide the underlying insights needed to guide the control of nitrogen and phosphorus loss on loess hills.
Connecting spatial and temporal scales of tropical precipitation in observations and the MetUM-GA6
NASA Astrophysics Data System (ADS)
Martin, Gill M.; Klingaman, Nicholas P.; Moise, Aurel F.
2017-01-01
This study analyses tropical rainfall variability (on a range of temporal and spatial scales) in a set of parallel Met Office Unified Model (MetUM) simulations at a range of horizontal resolutions, which are compared with two satellite-derived rainfall datasets. We focus on the shorter scales, i.e. from the native grid and time step of the model through sub-daily to seasonal, since previous studies have paid relatively little attention to sub-daily rainfall variability and how this feeds through to longer scales. We find that the behaviour of the deep convection parametrization in this model on the native grid and time step is largely independent of the grid-box size and time step length over which it operates. There is also little difference in the rainfall variability on larger/longer spatial/temporal scales. Tropical convection in the model on the native grid/time step is spatially and temporally intermittent, producing very large rainfall amounts interspersed with grid boxes/time steps of little or no rain. In contrast, switching off the deep convection parametrization, albeit at an unrealistic resolution for resolving tropical convection, results in very persistent (for limited periods), but very sporadic, rainfall. In both cases, spatial and temporal averaging smoothes out this intermittency. On the ˜ 100 km scale, for oceanic regions, the spectra of 3-hourly and daily mean rainfall in the configurations with parametrized convection agree fairly well with those from satellite-derived rainfall estimates, while at ˜ 10-day timescales the averages are overestimated, indicating a lack of intra-seasonal variability. Over tropical land the results are more varied, but the model often underestimates the daily mean rainfall (partly as a result of a poor diurnal cycle) but still lacks variability on intra-seasonal timescales. Ultimately, such work will shed light on how uncertainties in modelling small-/short-scale processes relate to uncertainty in climate change projections of rainfall distribution and variability, with a view to reducing such uncertainty through improved modelling of small-/short-scale processes.
NASA Astrophysics Data System (ADS)
Lefèvre, Nathalie; da Silva Dias, Francisco Jose; de Torres, Audálio Rebelo; Noriega, Carlos; Araujo, Moacyr; de Castro, Antonio Carlos Leal; Rocha, Carlos; Jiang, Shan; Ibánhez, J. Severino P.
2017-06-01
To reduce uncertainty regarding the contribution of continental shelf areas in low latitude regions to the air-sea CO2 exchange, more data are required to understand the carbon turnover in these regions and cover gaps in coverage. For the first time, inorganic carbon and alkalinity were measured along a cross-shelf transect off the coast of Maranhão (North Brazil) in 9 cruises spawning from April 2013 to September 2014. On the last 4 transects, dissolved organic matter and nutrients were also measured. The highest inorganic and organic carbon concentrations are observed close to land. As a result of low productivity and significant remineralization, heterotrophy dominates along the transect throughout the year. Although the temporal variability is significantly reduced at the offshore station with carbon concentrations decreasing seaward, the fugacity of CO2 (fCO2) at this station remains significantly higher, especially during the wet season, than the open ocean values measured routinely by a merchant ship further west. Overall, the continental shelf is a weak source of CO2 to the atmosphere throughout the year with an annual mean flux of 1.81±0.84 mmol m-2 d-1. The highest magnitudes of fCO2 are observed during the wet season when the winds are the weakest. As a result, the CO2 flux does not show a clear seasonal pattern. Further offshore, fCO2 is significantly lower than on the continental shelf. However, the oceanic CO2 flux, with an annual mean of 2.32±1.09 mmol m-2 d-1, is not statistically different from the CO2 flux at the continental shelf because the wind is stronger in the open ocean.
NASA Astrophysics Data System (ADS)
Staley, Dennis; Negri, Jacquelyn; Kean, Jason
2016-04-01
Population expansion into fire-prone steeplands has resulted in an increase in post-fire debris-flow risk in the western United States. Logistic regression methods for determining debris-flow likelihood and the calculation of empirical rainfall intensity-duration thresholds for debris-flow initiation represent two common approaches for characterizing hazard and reducing risk. Logistic regression models are currently being used to rapidly assess debris-flow hazard in response to design storms of known intensities (e.g. a 10-year recurrence interval rainstorm). Empirical rainfall intensity-duration thresholds comprise a major component of the United States Geological Survey (USGS) and the National Weather Service (NWS) debris-flow early warning system at a regional scale in southern California. However, these two modeling approaches remain independent, with each approach having limitations that do not allow for synergistic local-scale (e.g. drainage-basin scale) characterization of debris-flow hazard during intense rainfall. The current logistic regression equations consider rainfall a unique independent variable, which prevents the direct calculation of the relation between rainfall intensity and debris-flow likelihood. Regional (e.g. mountain range or physiographic province scale) rainfall intensity-duration thresholds fail to provide insight into the basin-scale variability of post-fire debris-flow hazard and require an extensive database of historical debris-flow occurrence and rainfall characteristics. Here, we present a new approach that combines traditional logistic regression and intensity-duration threshold methodologies. This method allows for local characterization of both the likelihood that a debris-flow will occur at a given rainfall intensity, the direct calculation of the rainfall rates that will result in a given likelihood, and the ability to calculate spatially explicit rainfall intensity-duration thresholds for debris-flow generation in recently burned areas. Our approach synthesizes the two methods by incorporating measured rainfall intensity into each model variable (based on measures of topographic steepness, burn severity and surface properties) within the logistic regression equation. This approach provides a more realistic representation of the relation between rainfall intensity and debris-flow likelihood, as likelihood values asymptotically approach zero when rainfall intensity approaches 0 mm/h, and increase with more intense rainfall. Model performance was evaluated by comparing predictions to several existing regional thresholds. The model, based upon training data collected in southern California, USA, has proven to accurately predict rainfall intensity-duration thresholds for other areas in the western United States not included in the original training dataset. In addition, the improved logistic regression model shows promise for emergency planning purposes and real-time, site-specific early warning. With further validation, this model may permit the prediction of spatially-explicit intensity-duration thresholds for debris-flow generation in areas where empirically derived regional thresholds do not exist. This improvement would permit the expansion of the early-warning system into other regions susceptible to post-fire debris flow.
NASA Astrophysics Data System (ADS)
Lean, J.; Rowntree, P. R.
1997-06-01
The experiment reported on here presents a realistic portrayal of Amazonian deforestation that uses measurements of vegetation characteristics, taken as part of the Anglo-Brazilian Amazonian Climate Observation Study field campaigns, to define the forest and replacement pasture vegetation in the Hadley Centre GCM. The duration of the main experiment (10 yr) leads to greater confidence in assessing regional changes than in previous shorter experiments.Complete removal of the Amazonian forest produced area-mean changes that resemble earlier experiments with decreases in evaporation of 0.76 mm day1 (18%) and rainfall of 0.27 mm day1 (4%) and a rise in surface temperature of 2.3°C. However, the relative changes in magnitude indicate that increased moisture convergence partly compensates for the reduced evaporation, in contrast to many previous deforestation experiments. Results also showed large regional variations in the change in annual mean rainfall over South America, with widespread decreases over most of the deforested area and increases near the Andes.A better understanding of the mechanisms responsible for the final deforested climate has been gained by carrying out additional experiments that examine the response to separate changes in roughness and albedo. Increased albedo resulted in widespread significant decreases in rainfall due to less moisture convergence and ascent. The response to reduced roughness is more complex but of comparable importance; in this experiment it was dominated by an increase in low-level wind speeds resulting in decreased moisture convergence and rainfall near the upwind edge of the area and the opposite near the downwind boundary where the increased flow meets the Andes.In the standard deforestation scenario all vegetation parameters were modified together with one soil parameter-the maximum infiltration rate, which is reduced to represent the observed compaction of soil following deforestation. Results from a further experiment, in which the maximum infiltration rate was left unchanged, showed much smaller reductions in evaporation of 0.3 mm day1 (7%) and indicated that the predicted regional changes in rainfall and evaporation were very sensitive to this parameter.
NASA Astrophysics Data System (ADS)
Duan, Yajuan
Light rainfall (< 3 mm/hr) amounts to 30-70% of the annual water budget in the Southern Appalachian Mountains (SAM), a mid-latitude mid-mountain system in the SE CONUS. Topographic complexity favors the diurnal development of regional-scale convergence patterns that provide the moisture source for low-level clouds and fog (LLCF). Low-level moisture and cloud condensation nuclei (CCN) are distributed by ridge-valley circulations favoring LLCF formation that modulate the diurnal cycle of rainfall especially the mid-day peak. The overarching objective of this dissertation is to advance the quantitative understanding of the indirect effect of aerosols on the diurnal cycle of LLCF and warm-season precipitation in mountainous regions generally, and in the SAM in particular, for the purpose of improving the representation of orographic precipitation processes in remote sensing retrievals and physically-based models. The research approach consists of integrating analysis of in situ observations from long-term observation networks and an intensive field campaign, multi-sensor satellite data, and modeling studies. In the first part of this dissertation, long-term satellite observations are analyzed to characterize the spatial and temporal variability of LLCF and to elucidate the physical basis of the space-time error structure in precipitation retrievals. Significantly underestimated precipitation errors are attributed to variations in low-level rainfall microstructure undetected by satellites. Column model simulations including observed LLCF microphysics demonstrate that seeder-feeder interactions (SFI) among upper-level precipitation and LLCF contribute to an three-fold increase in observed rainfall accumulation and can enhance surface rainfall by up to ten-fold. The second part of this dissertation examines the indirect effect of aerosols on cloud formation and warm-season daytime precipitation in the SAM. A new entraining spectral cloud parcel model was developed and applied to provide the first assessment of aerosol-cloud interactions in the early development of mid-day cumulus congestus over the inner SAM. Leveraging comprehensive measurements from the Integrated Precipitation and Hydrology Experiment (IPHEx) in 2014, model results indicate that simulated spectra with a low value of condensation coefficient (0.01) are in good agreement with IPHEx aircraft observations. Further, to explore sensitivity of warm-season precipitation processes to CCN characteristics, detailed intercomparisons of Weather Research and Forecasting (WRF) model simulations using IPHEx and standard continental CCN spectra were conducted. The simulated CDNC using the local spectrum show better agreement with IPHEx airborne observations and better replicate the widespread low-level cloudiness around mid-day over the inner region. The local spectrum simulation also indicate suppressed early precipitation, enhanced ice processes tied to more vigorous vertical development of individual storm cells. The studied processes here are representative of dominant moist atmospheric processes in complex terrain and cloud forests in the humid tropics and extra-tropics, thus findings from this research in the SAM are transferable to mountainous areas elsewhere.
NASA Astrophysics Data System (ADS)
Saez de Cámara, E.; Gangoiti, G.; Alonso, L.; Iza, J.
2012-04-01
A trend analysis of intensity and frequency of daily precipitation over Northern Iberia (NIB), with a primary focus on extreme events, is presented. It is based on 14 NOAA-NCDC daily records covering the last 35 years (1973-2007) plus two centenarian databases sited in eastern NIB: San Sebastián (1929-2007) (daily resolution) and Bilbao (1857-2007) (monthly resolution). It is the first time that this interfacial region between the Atlantic and the Mediterranean has been studied with such a density of monitoring stations. Spatial and temporal characteristics and changes in rainfall's distribution have been analyzed using the suite of indices developed and recommended by the Expert Team on Climate Change Detection, Monitoring and Indices (ETCCDMI). They include annual and seasonal accumulated precipitation, number of dry and rainy days, and mean precipitation per rainy day, among others. The observed trends have been tested for statistical significance using the Mann-Kendall's non-parametric test. Additionally, links between the North Atlantic Oscillation (NAO) and the precipitation in the aforementioned region have been explored. The analysis shows a significant tendency towards less intensive rainy days for the whole region together with a decreasing trend in the number of wet days for the Central NIB. The consequence is a decline of total rainfall, statistically significant in Central and Eastern NIB. The evolution to drier conditions may be seen in both annual and seasonal indices. Conversely, strong regional differences have been found in the response to the NAO signal: whereas the rainfall decrease in the Western NIB might be associated to the dominance of a positive mode of the NAO during the last decades, the lack of correlation between the NAO signal and the observed precipitation in the stations with significant decreases rises an important argument against a direct association. Using the global gridded 6-hourly NCEP-DOE Reanalysis 2 data (1979-2010) we have found that each one of the conventional NAO positive and negative modes include a variety of circulation patterns, which are critical in the precipitation distribution within the Atlantic-Mediterranean interfacial area: the mountain range distribution inside the regional margins of the Mediterranean Sea influences the main moisture pathways triggering or inhibiting precipitation in different ways, depending on differences among the circulation patterns associated to a similar NAO positive or negative signal. This results in no correlation between the NAO signal and the rainfall anomalies within the mountain ranges and their associated rain shade regions surrounding the Mediterranean Basin. These findings stress the need of caution when using rainfall anomalies in the region as a proxy for NAO or vice-versa: maps will be shown with the influence of the NAO signal in the precipitation anomalies inside the continental area of Europe, including the whole Mediterranean.
Land-Sea Correlation of Holocene Records in NW Iberian Peninsula
NASA Astrophysics Data System (ADS)
Gonzalez-Alvare, R.; Costas, S.; Bernardez, P.; Frances, G.; Alejo, I.
2005-12-01
Holocene climate fluctuations in the temperate region of the Northeast Atlantic have been established by comparing marine and terrestrial proxies. This work is based on suction-cores collected in the Cies Islands lagoon (NW Spain) and vibro-cores from the adjacent continental shelf. The lower Holocene marine record (9400-7000 yr BP) consists on sandy transgressive facies overlying fluvial Pleistocene deposits. During this time the continental shelf was dominated by high energy processes linked to the progressive and fast sea level rise. The rate of sea level rise sharply decelerated at 7000 yr BP and a high productive marine environment was fully established, as revealed by planktonic foraminifera assemblages and biogeochemical markers. In the terrestrial areas, peat deposits were formed beginning around 6000 yr BP in the deeper parts of the paleo-relief that was developed above the granitic basement. The peat was deposited in a fresh-water shallow coastal lake under warm and humid conditions that are brought about by prevailing SW winds. From 4800 yr BP, a progressive rainfall decrease provoked the lowering of the lake level and a weaker fluvial influence on the adjacent shelf. The prevailing eastern winds caused significantly drier conditions between 4000 and 3200 yr BP. During this period the coastal lake dried and the peat layer was covered by aeolian deposits. At the continental shelf a strong stratification of the water column induced a fall in the productivity. The end of this period is marked by the increase of storm regimes caused by a shift to prevailing SW winds. The last 3000 years are characterized by humid and warm conditions, and the enhancement of upwelling regime and terrestrial sediment supply. In Cies Islands, a sand barrier-lagoon complex was developed as a consequence of both the sea level rise and the inundation of the lower areas in the island.
Giraudoux, Patrick; Raoul, Francis; Pleydell, David; Li, Tiaoying; Han, Xiuming; Qiu, Jiamin; Xie, Yan; Wang, Hu; Ito, Akira; Craig, Philip S
2013-01-01
Human alveolar echinococcocosis (AE) is a highly pathogenic zoonotic disease caused by the larval stage of the cestode E. multilocularis. Its life-cycle includes more than 40 species of small mammal intermediate hosts. Therefore, host biodiversity losses could be expected to alter transmission. Climate may also have possible impacts on E. multilocularis egg survival. We examined the distribution of human AE across two spatial scales, (i) for continental China and (ii) over the eastern edge of the Tibetan plateau. We tested the hypotheses that human disease distribution can be explained by either the biodiversity of small mammal intermediate host species, or by environmental factors such as climate or landscape characteristics. The distributions of 274 small mammal species were mapped to 967 point locations on a grid covering continental China. Land cover, elevation, monthly rainfall and temperature were mapped using remotely sensed imagery and compared to the distribution of human AE disease at continental scale and over the eastern Tibetan plateau. Infection status of 17,589 people screened by abdominal ultrasound in 2002-2008 in 94 villages of Tibetan areas of western Sichuan and Qinghai provinces was analyzed using generalized additive mixed models and related to epidemiological and environmental covariates. We found that human AE was not directly correlated with small mammal reservoir host species richness, but rather was spatially correlated with landscape features and climate which could confirm and predict human disease hotspots over a 200,000 km(2) region. E. multilocularis transmission and resultant human disease risk was better predicted from landscape features that could support increases of small mammal host species prone to population outbreaks, rather than host species richness. We anticipate that our study may be a starting point for further research wherein landscape management could be used to predict human disease risk and for controlling this zoonotic helminthic.
Giraudoux, Patrick; Raoul, Francis; Pleydell, David; Li, Tiaoying; Han, Xiuming; Qiu, Jiamin; Xie, Yan; Wang, Hu; Ito, Akira; Craig, Philip S.
2013-01-01
Background Human alveolar echinococcocosis (AE) is a highly pathogenic zoonotic disease caused by the larval stage of the cestode E. multilocularis. Its life-cycle includes more than 40 species of small mammal intermediate hosts. Therefore, host biodiversity losses could be expected to alter transmission. Climate may also have possible impacts on E. multilocularis egg survival. We examined the distribution of human AE across two spatial scales, (i) for continental China and (ii) over the eastern edge of the Tibetan plateau. We tested the hypotheses that human disease distribution can be explained by either the biodiversity of small mammal intermediate host species, or by environmental factors such as climate or landscape characteristics. Methodology/findings The distributions of 274 small mammal species were mapped to 967 point locations on a grid covering continental China. Land cover, elevation, monthly rainfall and temperature were mapped using remotely sensed imagery and compared to the distribution of human AE disease at continental scale and over the eastern Tibetan plateau. Infection status of 17,589 people screened by abdominal ultrasound in 2002–2008 in 94 villages of Tibetan areas of western Sichuan and Qinghai provinces was analyzed using generalized additive mixed models and related to epidemiological and environmental covariates. We found that human AE was not directly correlated with small mammal reservoir host species richness, but rather was spatially correlated with landscape features and climate which could confirm and predict human disease hotspots over a 200,000 km2 region. Conclusions/Significance E. multilocularis transmission and resultant human disease risk was better predicted from landscape features that could support increases of small mammal host species prone to population outbreaks, rather than host species richness. We anticipate that our study may be a starting point for further research wherein landscape management could be used to predict human disease risk and for controlling this zoonotic helminthic. PMID:23505582
Snowpack regimes of the Western United States
NASA Astrophysics Data System (ADS)
Trujillo, Ernesto; Molotch, Noah P.
2014-07-01
Snow accumulation and melt patterns play a significant role in the water, energy, carbon, and nutrient cycles in the montane environments of the Western United States. Recent studies have illustrated that changes in the snow/rainfall apportionments and snow accumulation and melt patterns may occur as a consequence of changes in climate in the region. In order to understand how these changes may affect the snow regimes of the region, the current characteristics of the snow accumulation and melt patterns must be identified. Here we characterize the snow water equivalent (SWE) curve formed by the daily SWE values at 766 snow pillow stations in the Western United States, focusing on several metrics of the yearly SWE curves and the relationships between the different metrics. The metrics are the initial snow accumulation and snow disappearance dates, the peak snow accumulation and date of peak, the length of the snow accumulation season, the length of the snowmelt season, and the snow accumulation and snowmelt slopes. Three snow regimes emerge from these results: a maritime, an intermountain, and a continental regime. The maritime regime is characterized by higher maximum snow accumulations reaching 300 cm and shorter accumulation periods of less than 220 days. Conversely, the continental regime is characterized by lower maximum accumulations below 200 cm and longer accumulation periods reaching over 260 days. The intermountain regime lies in between. The regions that show the characteristics of the maritime regime include the Cascade Mountains, the Klamath Mountains, and the Sierra Nevada Mountains. The intermountain regime includes the Eastern Cascades slopes and foothills, the Blue Mountains, Northern and Central basins and ranges, the Columbia Mountains/Northern Rockies, the Idaho Batholith, and the Canadian Rockies. Lastly, the continental regime includes the Middle and Southern Rockies, and the Wasatch and Uinta Mountains. The implications of snow regime classification are discussed in the context of possible changes in accumulation and melt patterns associated with regional warming.
The Global ASTER Geoscience and Mineralogical Maps
NASA Astrophysics Data System (ADS)
Abrams, M.
2017-12-01
In 2012, Australia's Commonwealth Scientific and Industrial Research Organization (CSIRO) released 17 Geoscience mineral maps for the continent of Australia We are producing the CSIRO Geoscience data products for the entire land surface of the Earth. These maps are created from Advanced Spacecraft Thermal Emission and Reflection Radiometer (ASTER) data, acquired between 2000 and 2008. ASTER, onboard the United States' Terra satellite, is part of NASA's Earth Observing System. This multispectral satellite system has 14 spectral bands spanning: the visible and near-infrared (VNIR) @ 15 m pixel resolution; shortwave-infrared (SWIR) @ 30 m pixel resolution; and thermal infrared (TIR) @ 90 m pixel resolution. In a polar-orbit, ASTER acquires a 60 km swath of data.The CSIRO maps are the first continental-scale mineral maps generated from an imaging satellite designed to measure clays, quartz and other minerals. Besides their obvious use in resource exploration, the data have applicability to climatological studies. Over Australia, these satellite mineral maps improved our understanding of weathering, erosional and depositional processes in the context of changing weather, climate and tectonics. The clay composition map showed how kaolinite has developed over tectonically stable continental crust in response to deep weathering. The same clay composition map, in combination with one sensitive to water content, enabled the discrimination of illite from montmorillonite clays that typically develop in large depositional environments over thin (sinking) continental crust. This product was also used to measure temporal gains/losses of surface clay caused by periodic wind erosion (dust) and rainfall inundation (flood) events. The two-year project is undertaken by JPL with collaboration from CSIRO. JPL has in-house the entire ASTER global archive of Level 1B image data—more than 1,500,000 scenes. This cloud-screened and vegetation-masked data set will be the basis for creation of the suite of global Geoscience products using all of ASTER's 14 VNIR-SWIR-TIR spectral bands resampled to 100 m pixel resolution. We plan a staged release of the geoscience products through NASA's LPDAAC.
Monitoring on The Quality and Quantity of DIY Rainwater Harvesting System
NASA Astrophysics Data System (ADS)
Kasmin, H.; Bakar, N. H.; Zubir, M. M.
2016-07-01
Rainwater harvesting is an alternative sources of water supply and can be used for potable and non-potable uses. It could helps to store treated rainwater for more beneficial use and also for flood mitigation. Sustainable approach for flooding problem reduction in urban areas is by slowing down the rate of surface runoff flows at source by providing more storage area/tank. In order to understand the performance of a rainwater harvesting system (RWH), a preliminary monitoring on a ‘do it yourself’ (DIY) RWH model with additional first -flush strategy for water quality treatment was done. The main concept behind first flush diversion is to prevent initial polluted rainwater from entering the storage tank. Based on seven rainfall events observed in Parit Raja, both quality and quantity of the rainfalls were analysed. For rainwater quality, the samples from first flush diverter and storage tank were taken to understand their performance based on pH, dissolved oxygen (DO), turbidity, total dissolved solid (TDS), total suspended solid (TSS), chemical oxygen demand (COD) and biochemical oxygen demand (BOD) parameters. While for rainwater quantity, hydrograph analysis were done based on the performance of total rainfall and runoff, peak flow of rainfall and runoff; and delayed time parameters. Based on Interim National Water Quality Standard (INWQS) and National Drinking Water Quality Standard (NDWQS), first flush diverter apparently helps on water quality improvement in storage tanks when pH, DO, TDS, TSS and turbidity were classified as Class I (INWQS) and is allowable for drinking; but BOD and COD parameters were classified as Class III (INWQS). Hence, it has potential to be used as potable usage but will need extensive treatment to reduce its poor microbial quality. Based on the maximum observed rainfall event which had total volume of 3195.5 liter, had peakflow reduction from 0.00071 m3/s to 0.00034 m3/s and delayed runoff between 5 and 10 minutes after rainfall started. It concludes that the performance of water retention could be due to total rainfall and the tank capacity. Therefore, RWH has a potential to be used as potable use and at the same time it also has a potential to reduce local urban flooding.
The influence of anisotropy on preferential flow in landslides
NASA Astrophysics Data System (ADS)
Cristiano, Elena; Barontini, Stefano; Bogaard, Thom A.; Shao, Wei
2015-04-01
Infiltration is one of the most important landslides triggering mechanisms and it is controlled by the hydraulic characteristics of the soil, which depends on the degree of saturation, the existence of preferential flow paths and by anisotropy. Many soils, indeed, exhibit a certain degree of anisotropy due to the stratification associated with soil forming process. Recently, various authors investigated the effect of rainfall in layered soils and its effect on rainfall triggered landslides by means of experimental, conceptual, numerical and theoretical approaches. However, the combined effect of anisotropy and preferential flow on infiltration process and related to rainfall induced landslides has, according to the authors best knowledge, not been studied yet. Aiming at better understanding the soil hydrological processes which take place during an infiltration process, the stability of a synthetic hill slope is numerically investigated. The geometry we considered for the model is a slope with two different layers: the upper soil layer consists of sandy loam, while the lower soil layer is made out of clay. The geometry was studied using both a single permeability and a dual permeability model. In the first case the hydraulic conductivity at saturation was considered isotropic, equal in all directions. Then the vertical component of the hydraulic conductivity tensor at saturation was reduced, while in the third scenario the horizontal component was reduced. In this way the anisotropy effects on both the principal directions were studied. In the dual permeability model, the influence of the anisotropy was considered only in the preferential flow domain, and the hydraulic conductivity at saturation of the soil matrix domain was defined as being isotropic. In order to evaluate also the effects of rainfall intensity on the slope, two different rainfall events were studied: a low intensity rainfall with a long time duration (2 mmh-1,150 h) and an high intensity rainfall with a short duration (20 mmh-1,15 h). The results show that the anisotropy facilitates the saturation process in the slope and that the vertical component of the soil water flow is set especially in the soil matrix domain, while the lateral component dominates in the preferential flow domain. In some scenarios the patterns of the water content in the unsaturated soil layers suggest the possibility of the onset of a perched water table.
Modelling Ecuador's rainfall distribution according to geographical characteristics.
NASA Astrophysics Data System (ADS)
Tobar, Vladimiro; Wyseure, Guido
2017-04-01
It is known that rainfall is affected by terrain characteristics and some studies had focussed on its distribution over complex terrain. Ecuador's temporal and spatial rainfall distribution is affected by its location on the ITCZ, the marine currents in the Pacific, the Amazon rainforest, and the Andes mountain range. Although all these factors are important, we think that the latter one may hold a key for modelling spatial and temporal distribution of rainfall. The study considered 30 years of monthly data from 319 rainfall stations having at least 10 years of data available. The relatively low density of stations and their location in accessible sites near to main roads or rivers, leave large and important areas ungauged, making it not appropriate to rely on traditional interpolation techniques to estimate regional rainfall for water balance. The aim of this research was to come up with a useful model for seasonal rainfall distribution in Ecuador based on geographical characteristics to allow its spatial generalization. The target for modelling was the seasonal rainfall, characterized by nine percentiles for each one of the 12 months of the year that results in 108 response variables, later on reduced to four principal components comprising 94% of the total variability. Predictor variables for the model were: geographic coordinates, elevation, main wind effects from the Amazon and Coast, Valley and Hill indexes, and average and maximum elevation above the selected rainfall station to the east and to the west, for each one of 18 directions (50-135°, by 5°) adding up to 79 predictors. A multiple linear regression model by the Elastic-net algorithm with cross-validation was applied for each one of the PC as response to select the most important ones from the 79 predictor variables. The Elastic-net algorithm deals well with collinearity problems, while allowing variable selection in a blended approach between the Ridge and Lasso regression. The model fitting produced explained variances of 59%, 81%, 49% and 17% for PC1, PC2, PC3 and PC4, respectively, backing up the hypothesis of good correlation between geographical characteristics and seasonal rainfall patterns (comprised in the four principal components). With the obtained coefficients from the regression, the 108 rainfall percentiles for each station were back estimated giving very good results when compared with the original ones, with an overall 60% explained variance.
Miscanthus biomass productivity within US croplands and its potential impact on soil organic carbon
Mishra, Umakant; Torn, Margaret S.; Fingerman, Kevin
2012-08-10
Interest in bioenergy crops is increasing due to their potential to reduce greenhouse gas emissions and dependence on fossil fuels. Here, we combined process-based and geospatial models to estimate the potential biomass productivity of miscanthus and its potential impact on soil carbon stocks in the croplands of the continental United States. The optimum (climatic potential) rainfed productivity for field-dried miscanthus biomass ranged from 1 to 23 Mg biomass ha -1 yr -1, with a spatial average of 13 Mg ha -1 yr -1 and a coefficient of variation of 30%. This variation resulted primarily from the spatial heterogeneity of effectivemore » rainfall, growing degree days, temperature, and solar radiation interception. Cultivating miscanthus would result in a soil organic carbon (SOC) sequestration at the rate of 0.16–0.82 Mg C ha -1 yr -1 across the croplands due to cessation of tillage and increased biomass carbon input into the soil system. We identified about 81 million ha of cropland, primarily in the eastern United States, that could sustain economically viable (>10 Mg ha -1 yr -1) production without supplemental irrigation, of which about 14 million ha would reach optimal miscanthus growth. To meet targets of the US Energy Independence and Security Act of 2007 using miscanthus as feedstock, 19 million ha of cropland would be needed (spatial average 13 Mg ha -1 yr -1) or about 16% less than is currently dedicated to US corn-based ethanol production.« less
NASA Astrophysics Data System (ADS)
Troy, S.; Aharon, P.; Lambert, W. J.
2012-12-01
El Niño-Southern Oscillation's (ENSO) dominant control over the present global climate and its unpredictable response to a global warming makes the study of paleo-ENSO important. So far corals, spanning the Tropical Pacific Ocean, are the most commonly used geological archives of paleo-ENSO. This is because corals typically exhibit high growth rates (>1 cm/yr), and reproduce reliably surface water temperatures at sub-annual resolution. However there are limitations to coral archives because their time span is relatively brief (in the order of centuries), thus far making a long and continuous ENSO record difficult to achieve. On the other hand stalagmites from island settings can offer long and continuous records of ENSO-driven rainfall. Niue Island caves offer an unusual opportunity to investigate ENSO-driven paleo-rainfall because the island is isolated from other large land masses, making it untainted by continental climate artifacts, and its geographical location is within the Tropical Pacific "rain pool" (South Pacific Convergence Zone; SPCZ) that makes the rainfall variability particularly sensitive to the ENSO phase switches. We present here a δ18O and δ13C time series from a stalagmite sampled on Niue Island (19°00' S, 169°50' W) that exhibits exceptionally high growth rates (~1.2 mm/yr) thus affording a resolution comparable to corals but for much longer time spans. A precise chronology, dating back to several millennia, was achieved by U/Th dating of the stalagmite. The stalagmite was sampled using a Computer Automated Mill (CAM) at 300 μm increments in order to receive sub-annual resolution (every 3 months) and calcite powders of 50-100 μg weight were analyzed for δ18O and δ13C using a Continuous Flow Isotope Ratio Mass Spectrometer (CF-IRMS). The isotope time series contains variable shifts at seasonal, inter-annual, and inter-decadal periodicities. The δ13C and δ18O yield ranges of -3.0 to -13.0 (‰ VPDB) and -3.2 to -6.2 (‰ VPDB), respectively. The presentation will describe the factors impacting the seasonal, inter-annual and inter-decadal variability in a highly resolved ENSO record.
NASA Astrophysics Data System (ADS)
Moussirou, Bérangé; Bonnet, Stéphane
2017-04-01
Whether climatic variations play a major role, or not, in setting the erosion rate of continental landscapes is key for demonstrating the influence of climate on the tectonic evolution of mountain belts, as expected from analytical, numerical and analog modelling approaches. These models actually demonstrate that any modification in surface erosion rate that would affect significantly the gravitational loading of the continental crust might change its state of stress and consequently its deformation. However field evidences of these interactions has proved challenging to demonstrate unambiguously, the question of the climatic control on erosion efficiency at the geological time-scale being among the most critical issues. Here, we investigate how a change in precipitation influences the erosional dynamics of a landscape on the basis of an experimental approach where we surveyed the erosion by runoff of water of laboratory-scale landscapes that evolved under the combination of uplift and rainfall forcings (e.g. Bonnet and Crave, 2006). The experimental facility used is a modified of a device initially developed in the Geosciences Rennes laboratory and now set up in the Geosciences Environnement Toulouse laboratory. Following early experiments of Bonnet and Crave (2003) where the effect of a sudden drop in precipitation was investigated, we consider here the impact of decreasing rainfall events of finite duration on the erosive response of a landscape forced by a constant uplift (10 mm/h) and initially at steady-state (SS1). We performed several experiments with the same amplitude (from 160 to 60mm/h) but with different duration of rainfall drop (Tp: 0, 60, 300, 500, 700 min). As predicted theoretically and already observed in numerical and experimental modelling studies, a sudden drop of precipitation rate (Tp=0) induced a decrease of the mean erosion rate of the landscape (E), resulting in surface uplift. Then, landscape mean elevation stabilized to a higher value as it recovered a new steady-state (SS2). On experiments with a gradual (linear) decrease of precipitation of finite duration (Tp>0), we observe that the onset of surface uplift and of decrease in erosion rate is delayed with regard to the onset of precipitation change and occurs only after a period where landscapes remain very close steady-state. The duration of this delay differs between experiments and increases linearly with Tp. Beyond this delay, the mean erosion rate then drops to a minimum value, while knickpoints migrate in the drainage system following the mechanism described by Whipple and Tucker (1999). We observe that the amplitude of the drop in mean erosion rate decreases with Tp, experiments with the longest duration of precipitation drop showing a damped erosional response, representing only about 20 % the uplift rate value (Tp=700 min). As a perspective we anticipate that experiments with longer Tp would ultimately not show any significant erosional response to precipitation variations.
NASA Astrophysics Data System (ADS)
Vicarelli, M.; Giannini, A.; Osgood, D.
2009-12-01
In this study we explore the potential for re-insurance schemes built on regional climatic forecasts. We focus on micro-insurance contracts indexed on precipitation in 9 villages in Kenya, Tanzania (Eastern Africa) and Malawi (Southern Africa), and analyze the precipitation patterns and payouts resulting from El Niño Southern Oscillation (ENSO). The inability to manage future climate risk represents a “poverty trap” for several African regions. Weather shocks can potentially destabilize not only household, but also entire countries. Governments in drought-prone countries, donors and relief agencies are becoming aware of the importance to develop an ex-ante risk management framework for weather risk. Joint efforts to develop innovative mechanisms to spread and pool risk such as microinsurance and microcredit are currently being designed in several developing countries. While ENSO is an important component in modulating the rainfall regime in tropical Africa, the micro-insurance experiments currently under development to address drought risk among smallholder farmers in this region do not take into account ENSO monitoring or forecasting yet. ENSO forecasts could be integrated in the contracts and reinsurance schemes could be designed at the continental scale taking advantage of the different impact of ENSO on different regions. ENSO is associated to a bipolar precipitation pattern in Southern and Eastern Africa. La Niña years (i.e. Cold ENSO Episodes) are characterized by dry climate in Eastern Africa and wet climate in Southern Africa. During El Niño (or Warm Episode) the precipitation dipole is inverted, and Eastern Africa experiences increased probability for above normal rainfall (Halpert and Ropelewski, 1992, Journal of Climate). Our study represents the first exercise in trying to include ENSO forecasts in micro weather index insurance contract design. We analyzed the contracts payouts with respect to climate variability. In particular (i) we simulated possible payouts using historical precipitation data and analyzed the differences between years with different ENSO states from 1961 to 2005; (ii) we applied Monte Carlo methods to simulate precipitation distributions in each location and calculated the mean and variance of payouts associated to different ENSO states. The results obtained from historical precipitation data indicate that more abundant rainfall reduces payouts and the risk of loan default during La Niña in southern Kenya and Malawi, during El Niño in Tanzania. The results of the Monte Carlo simulations confirm our findings. Our results suggest that re-insurance schemes could be successfully designed to exploit the anti-correlation patterns related to interannual climate variability for different regions in Africa. Moreover, the exploratory framework presented can potentially be refined applied to other regions (e.g. Central and Latin America).
Preceding winter La Niña reduces Indian summer monsoon rainfall
NASA Astrophysics Data System (ADS)
Chakraborty, Arindam
2018-05-01
Leaving out the strong El Niño Southern Oscillation (ENSO) years, our understanding in the interannual variation of the Indian summer monsoon rainfall (ISMR) stands poor for the rest. This study quantifies the role of ENSO in the preceding winter on ISMR with a particular emphasis on ENSO-neutral summer and La Niña winter. Results show that, unlike the simultaneous ENSO-ISMR relationship, La Niña of previous winter reduces mean rainfall over the country by about 4% even during ENSO neutral summer. Moreover, when ENSO changes phase from La Niña in winter to El Niño in summer, ISMR is anomalously lower than during persisting El Niño years (‑14.5% and ‑5.3%, respectively), increasing the probability of severe drought. This suppression effect of La Niña of the preceding winter on summer monsoon precipitation over India is mostly experienced in its western and southern parts. Principal component analysis of the zonal propagation of surface pressure anomalies from winter to summer along Northern Hemisphere subtropics decomposes interannual variations of seasonally persisting anomalies from zonal propagations. The dominant modes are associated with the seasonal transition of the ENSO phase, and are well correlated with date of onset and seasonal mean rainfall of monsoon over India. These results improve our understanding of the interannual variations of ISMR and could be used for diagnostics of general circulation models.
NASA Astrophysics Data System (ADS)
Zhao, Z.
2011-12-01
Changes in ice sheet and floating ices around that have great significance for global change research. In the context of global warming, rapidly changing of Antarctic continental margin, caving of ice shelves, movement of iceberg are all closely related to climate change and ocean circulation. Using automatic change detection technology to rapid positioning the melting Region of Polar ice sheet and the location of ice drift would not only strong support for Global Change Research but also lay the foundation for establishing early warning mechanism for melting of the polar ice and Ice displacement. This paper proposed an automatic change detection method using object-based segmentation technology. The process includes three parts: ice extraction using image segmentation, object-baed ice tracking, change detection based on similarity matching. An approach based on similarity matching of eigenvector is proposed in this paper, which used area, perimeter, Hausdorff distance, contour, shape and other information of each ice-object. Different time of LANDSAT ETM+ data, Chinese environment disaster satellite HJ1B date, MODIS 1B date are used to detect changes of Floating ice at Antarctic continental margin respectively. We select different time of ETM+ data(January 7, 2003 and January 16, 2003) with the area around Antarctic continental margin near the Lazarev Bay, which is from 70.27454853 degrees south latitude, longitude 12.38573410 degrees to 71.44474167 degrees south latitude, longitude 10.39252222 degrees,included 11628 sq km of Antarctic continental margin area, as a sample. Then we can obtain the area of floating ices reduced 371km2, and the number of them reduced 402 during the time. In addition, the changes of all the floating ices around the margin region of Antarctic within 1200 km are detected using MODIS 1B data. During the time from January 1, 2008 to January 7, 2008, the floating ice area decreased by 21644732 km2, and the number of them reduced by 83080. The results show that the object-based information extraction algorithm can obtain more precise details of a single object, while the change detection method based on similarity matching can effectively tracking the change of floating ice.
Luecken, Deborah J; L Waterland, Robert; Papasavva, Stella; Taddonio, Kristen N; Hutzell, William T; Rugh, John P; Andersen, Stephen O
2010-01-01
We use a regional-scale, three-dimensional atmospheric model to evaluate U.S. air quality effects that would result from replacing HFC-134a in automobile air conditioners in the U.S. with HFO-1234yf. Although HFO-1234yf produces tropospheric ozone, the incremental amount is small, averaging less than 0.01% of total ozone formed during the simulation. We show that this production of ozone could be compensated for by a modest improvement in air conditioner efficiency. Atmospheric decomposition of HFO-1234yf produces trifluoroacetic acid (TFA), which is subject to wet and dry deposition. Deposition and concentrations of TFA are spatially variable due to HFO-1234yf's short atmospheric lifetime, with more localized peaks and less global transport when compared to HFC-134a. Over the 2.5 month simulation, deposition of TFA in the continental U.S. from mobile air conditioners averages 0.24 kg km(-2), substantially higher than previous estimates from all sources of current hydrofluorocarbons. Automobile air conditioning HFO-1234yf emissions are predicted to produce concentrations of TFA in Eastern U.S. rainfall at least double the values currently observed from all sources, natural and man-made. Our model predicts peak concentrations in rainfall of 1264 ng L(-1), a level that is 80x lower than the lowest level considered safe for the most sensitive aquatic organisms.
SPECIAL - The Savanna Patterns of Energy and Carbon Integrated Across the Landscape campaign
NASA Astrophysics Data System (ADS)
Beringer, J.; Hacker, J.; Hutley, L. B.; Leuning, R.; Arndt, S. K.; Amiri, R.; Bannehr, L.; Cernusak, L. A.; Grover, S.; Hensley, C.; Hocking, D. J.; Isaac, P. R.; Jamali, H.; Kanniah, K.; Livesley, S.; Neininger, B.; Paw U, K.; Sea, W. B.; Straten, D.; Tapper, N. J.; Weinmann, R. A.; Wood, S.; Zegelin, S. J.
2010-12-01
We undertook a significant field campaign (SPECIAL) to examine spatial patterns and processes of land surface-atmosphere exchanges (radiation, heat, moisture, CO2 and other trace gasses) across scales from leaf to landscape scales within Australian savannas. Such savanna ecosystems occur in over 20 countries and cover approximately 15% of the world’s land surface. They consist of a mix of trees and grasses that coexist, but are spatially highly varied in their physical structure, species composition and physiological function. This spatial variation is driven by climate factors (rainfall gradients and seasonality) and disturbances (fire, grazing, herbivory, cyclones). Variations in savanna structure, composition and function (i.e. leaf area and function, stem density, albedo, roughness) interact with the overlying atmosphere directly through exchanges of heat and moisture, which alter the overlying boundary layer. Variability in ecosystem types across the landscape can alter regional to global circulation patterns. Equally, savannas are an important part of the global carbon cycle and can influence the climate through net uptake or release of CO2. We utilized a combination of multiscale measurements including fixed flux towers, aircraft-based flux and regional budget measurements, and satellite remotely sensed quantities to quantify the spatial variability utilizing a continental scale rainfall gradient that resulted in a variety of savanna types. The ultimate goal of our research is to be able to produce robust estimates of regional carbon and water cycles to inform land management policy about how they may respond to future environmental changes.
NASA Astrophysics Data System (ADS)
Rodrigo Comino, Jesús; Damián Ruiz Sinoga, José; María Senciales González, José; Guerra Merchán, Antonio; Seeger, Manuel; Ries, Johannes B.
2016-04-01
Nowadays, steep hillslope viticulture areas are one of the most complex agricultural eco-geomorphological systems in Europe. Precisely, the vineyards of the Ruwer-Mosel valley (Germany) and Montes de Málaga-Axarquía (Spain) are one clear example. Both regions are characterized by frequent heavy rainfall events, concentrated in summer (Germany) and autumn-winter (Spain), and intensive and not conservative land use managements on the soil (application of vine training systems, herbicides, non ecological amendments, anthropic rills generated by wheel traffic, footsteps in Germany and built by hoes or shovels in Spain). The goals of this work were: i) to determine and to quantify the hydrological and erosive phenomena in two traditional hillslope vineyards in Waldrach (Ruwer-Mosel valley, Germany) and Almáchar (Montes de Málaga-Axarquía, Spain); ii) to compare the geomorphological and hydrological dynamics of these study areas during diverse seasons and under different management conditions (Mediterranean and Continental climatic contexts, application of machineries, traditional protection measures...). For this purpose, a combined methodology performed by Trier and Málaga Universities with soil analysis, sediment traps, rainfall simulations and Guelph permeameter were applied. The main results showed high soil erosion and similar variations in the runoff and infiltration rates. In both study areas, geomorphological and hydrological dynamics registered several spatiotemporal variations along the upper, middle and foot slope, and during different seasons (before and after the vintage, and between the dry and humid period).
NASA Astrophysics Data System (ADS)
Vale, Paulo
2012-02-01
At Aveiro lagoon (Portuguese northwest coast) bivalve contamination with diarrhoetic shellfish poisoning toxins (DSTs), okadaic acid (OA) and dinophysistoxin-2 (DTX2), is a recurrent annual phenomenon seriously affecting seafood safety. The influence of meteorological parameters was studied to understand accumulation of DSTs in mussels, related to the blooming of the causative toxic microalgae, belonging to genus Dinophysis. Two simplified models were useful in predicting the accumulation of DSTs in blue mussels from this lagoon. Either the May river drainage or the rainfall accumulated from January through May could adequately predict the severity of OA accumulated from predation upon Dinophysis acuminata during June/July. In both cases a linear relationship was obtained, with correlation coefficients of 0.85 or greater. Winds with a west direction favour coastal concentration of Dinophysis acuta in Aveiro region. Both OA and DTX2 contamination increased exponentially in September/October with the cumulative number of days with W-wind orientation in the preceding August (correlation coefficients greater than 0.92). This relationship was attributed to the quadratic effect of wind stress on surface currents. August is a transitional month, when the continental runoff effect upon Dinophysis acuminata can still be observed and Dinophysis acuta advection may be promoted by westerly winds occurring in July. The frequency of periods with northerly winds in July can halt accumulation of toxins derived from Dinophysis acuta.
Seasonal-to-Interannual Variability and Land Surface Processes
NASA Technical Reports Server (NTRS)
Koster, Randal
2004-01-01
Atmospheric chaos severely limits the predictability of precipitation on subseasonal to interannual timescales. Hope for accurate long-term precipitation forecasts lies with simulating atmospheric response to components of the Earth system, such as the ocean, that can be predicted beyond a couple of weeks. Indeed, seasonal forecasts centers now rely heavily on forecasts of ocean circulation. Soil moisture, another slow component of the Earth system, is relatively ignored by the operational seasonal forecasting community. It is starting, however, to garner more attention. Soil moisture anomalies can persist for months. Because these anomalies can have a strong impact on evaporation and other surface energy fluxes, and because the atmosphere may respond consistently to anomalies in the surface fluxes, an accurate soil moisture initialization in a forecast system has the potential to provide additional forecast skill. This potential has motivated a number of atmospheric general circulation model (AGCM) studies of soil moisture and its contribution to variability in the climate system. Some of these studies even suggest that in continental midlatitudes during summer, oceanic impacts on precipitation are quite small relative to soil moisture impacts. The model results, though, are strongly model-dependent, with some models showing large impacts and others showing almost none at all. A validation of the model results with observations thus naturally suggests itself, but this is exceedingly difficult. The necessary contemporaneous soil moisture, evaporation, and precipitation measurements at the large scale are virtually non-existent, and even if they did exist, showing statistically that soil moisture affects rainfall would be difficult because the other direction of causality - wherein rainfall affects soil moisture - is unquestionably active and is almost certainly dominant. Nevertheless, joint analyses of observations and AGCM results do reveal some suggestions of land-atmosphere feedback in the observational record, suggestions that soil moisture can affect precipitation over seasonal timescales and across certain large continental areas. The strength of this observed feedback in nature is not large but is still significant enough to be potentially useful, e.g., for forecasts. This talk will address all of these issues. It will begin with a brief overview of land surface modeling in atmospheric models but will then focus on recent research - using both observations and models - into the impact of land surface processes on variability in the climate system.
NASA Astrophysics Data System (ADS)
Bhardwaj, Alok; Ziegler, Alan D.; Wasson, Robert J.; Chow, Winston; Sharma, Mukat L.
2017-04-01
Extreme monsoon rainfall is the primary reason of floods and other secondary hazards such as landslides in the Indian Himalaya. Understanding the phenomena of extreme monsoon rainfall is therefore required to study the natural hazards. In this work, we study the characteristics of extreme monsoon rainfall including its intensity and frequency in the Garhwal Himalaya in India, with a focus on the Mandakini River Catchment, the site of devastating flood and multiple large landslides in 2013. We have used two long term rainfall gridded data sets: the Asian Precipitation Highly Resolved Observational Data Integration Towards Evaluation of Water Resources (APHRODITE) product with daily rainfall data from 1951-2007 and the India Meteorological Department (IMD) product with daily rainfall data from 1901 to 2013. Two methods of Mann Kendall and Sen Slope estimator are used to identify the statistical significance and magnitude of trends in intensity and frequency of extreme monsoon rainfall respectively, at a significance level of 0.05. The autocorrelation in the time series of extreme monsoon rainfall is identified and reduced using the methods of: pre-whitening, trend-free pre-whitening, variance correction, and block bootstrap. We define extreme monsoon rainfall threshold as the 99th percentile of time series of rainfall values and any rainfall depth greater than 99th percentile is considered as extreme in nature. With the IMD data set, significant increasing trend in intensity and frequency of extreme rainfall with slope magnitude of 0.55 and 0.02 respectively was obtained in the north of the Mandakini Catchment as identified by all four methods. Significant increasing trend in intensity with a slope magnitude of 0.3 is found in the middle of the catchment as identified by all methods except block bootstrap. In the south of the catchment, significant increasing trend in intensity with a slope magnitude of 0.86 for pre-whitening method and 0.28 for trend-free pre-whitening and variance correction methods was obtained. Further, increasing trend in frequency with a slope magnitude of 0.01 was identified by three methods except block bootstrap in the south of the catchment. With the APHRODITE data set, we obtained significant increasing trend in intensity with a slope magnitude of 1.27 at the middle of the catchment as identified by all four methods. Collectively, both the datasets show signals of increasing intensity, and IMD shows results for increasing frequency in the Mandakini Catchment. The increasing occurrence of extreme events, as identified here, is becoming more disastrous because of rising human population and infrastructure in the Mandakini Catchment. For example, the 2013 flood due to extreme rainfall was catastrophic in terms of loss of human and animal lives and destruction of the local economy. We believe our results will help understand more about extreme rainfall events in the Mandakini Catchment and in the Indian Himalaya.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Shi; Qian, Yun; Zhao, Chun
Convection-resolving ensemble simulations using the WRF-Chem model coupled with a single-layer Urban Canopy Model (UCM) are conducted to investigate the individual and combined impacts of land use and anthropogenic pollutant emissions from urbanization on a heavy rainfall event in the Greater Beijing Metropolitan Area (GBMA) in China. The simulation with the urbanization effect included generally captures the spatial pattern and temporal variation of the rainfall event. An improvement of precipitation is found in the experiment including aerosol effect on both clouds and radiation. The expanded urban land cover and increased aerosols have an opposite effect on precipitation processes, with themore » latter playing a more dominant role, leading to suppressed convection and rainfall over the upstream (northwest) area, and enhanced convection and more precipitation in the downstream (southeast) region of the GBMA. In addition, the influence of aerosol indirect effect is found to overwhelm that of direct effect on precipitation in this rainfall event. Increased aerosols induce more cloud droplets with smaller size, which favors evaporative cooling and reduce updrafts and suppress convection over the upstream (northwest) region in the early stage of the rainfall event. As the rainfall system propagates southeastward, more latent heat is released due to the freezing of larger number of smaller cloud drops that are lofted above the freezing level, which is responsible for the increased updraft strength and convective invigoration over the downstream (southeast) area.« less
Water balance dynamics in the Nile Basin
Senay, Gabriel B.; Asante, Kwabena; Artan, Guleid A.
2009-01-01
Understanding the temporal and spatial dynamics of key water balance components of the Nile River will provide important information for the management of its water resources. This study used satellite-derived rainfall and other key weather variables derived from the Global Data Assimilation System to estimate and map the distribution of rainfall, actual evapotranspiration (ETa), and runoff. Daily water balance components were modelled in a grid-cell environment at 0·1 degree (∼10 km) spatial resolution for 7 years from 2001 through 2007. Annual maps of the key water balance components and derived variables such as runoff and ETa as a percent of rainfall were produced. Generally, the spatial patterns of rainfall and ETa indicate high values in the upstream watersheds (Uganda, southern Sudan, and southwestern Ethiopia) and low values in the downstream watersheds. However, runoff as a percent of rainfall is much higher in the Ethiopian highlands around the Blue Nile subwatershed. The analysis also showed the possible impact of land degradation in the Ethiopian highlands in reducing ETa magnitudes despite the availability of sufficient rainfall. Although the model estimates require field validation for the different subwatersheds, the runoff volume estimate for the Blue Nile subwatershed is within 7·0% of a figure reported from an earlier study. Further research is required for a thorough validation of the results and their integration with ecohydrologic models for better management of water and land resources in the various Nile Basin ecosystems.
Wei, Haixia; Luo, Tianxiang; Wu, Bo
2016-09-01
In arid environments, a high nitrogen content per leaf area (Narea) induced by drought can enhance water use efficiency (WUE) of photosynthesis, but may also lead to high leaf construction cost (CC). Our aim was to investigate how maximizing Narea could balance WUE and CC in an arid-adapted, widespread species along a rainfall gradient, and how such a process may be related to the drought threshold of the desert-steppe ecotone in northern China. Along rainfall gradients with a moisture index (MI) of 0·17-0·41 in northern China and the northern Tibetan Plateau, we measured leaf traits and stand variables including specific leaf area (SLA), nitrogen content relative to leaf mass and area (Nmass, Narea) and construction cost (CCmass, CCarea), δ(13)C (indicator of WUE), leaf area index (LAI) and foliage N-pool across populations of Artemisia ordosica In samples from northern China, a continuous increase of Narea with decreasing MI was achieved by a higher Nmass and constant SLA (reduced LAI and constant N-pool) in high-rainfall areas (MI > 0·29), but by a lower SLA and Nmass (reduced LAI and N-pool) in low-rainfall areas (MI ≤ 0·29). While δ(13)C, CCmass and CCarea continuously increased with decreasing MI, the low-rainfall group had higher Narea and δ(13)C at a given CCarea, compared with the high-rainfall group. Similar patterns were also found in additional data for the same species in the northern Tibetan Plateau. The observed drought threshold where MI = 0·29 corresponded well to the zonal boundary between typical and desert steppes in northern China. Our data indicated that below a climatic drought threshold, drought-resistant plants tend to maximize their intrinsic WUE through increased Narea at a given CCarea, which suggests a linkage between leaf functional traits and arid vegetation zonation. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Wei, Haixia; Luo, Tianxiang; Wu, Bo
2016-01-01
Background and Aims In arid environments, a high nitrogen content per leaf area (Narea) induced by drought can enhance water use efficiency (WUE) of photosynthesis, but may also lead to high leaf construction cost (CC). Our aim was to investigate how maximizing Narea could balance WUE and CC in an arid-adapted, widespread species along a rainfall gradient, and how such a process may be related to the drought threshold of the desert–steppe ecotone in northern China. Methods Along rainfall gradients with a moisture index (MI) of 0·17–0·41 in northern China and the northern Tibetan Plateau, we measured leaf traits and stand variables including specific leaf area (SLA), nitrogen content relative to leaf mass and area (Nmass, Narea) and construction cost (CCmass, CCarea), δ13C (indicator of WUE), leaf area index (LAI) and foliage N-pool across populations of Artemisia ordosica. Key Results In samples from northern China, a continuous increase of Narea with decreasing MI was achieved by a higher Nmass and constant SLA (reduced LAI and constant N-pool) in high-rainfall areas (MI > 0·29), but by a lower SLA and Nmass (reduced LAI and N-pool) in low-rainfall areas (MI ≤ 0·29). While δ13C, CCmass and CCarea continuously increased with decreasing MI, the low-rainfall group had higher Narea and δ13C at a given CCarea, compared with the high-rainfall group. Similar patterns were also found in additional data for the same species in the northern Tibetan Plateau. The observed drought threshold where MI = 0·29 corresponded well to the zonal boundary between typical and desert steppes in northern China. Conclusions Our data indicated that below a climatic drought threshold, drought-resistant plants tend to maximize their intrinsic WUE through increased Narea at a given CCarea, which suggests a linkage between leaf functional traits and arid vegetation zonation. PMID:27443298
NASA Astrophysics Data System (ADS)
Souma, Kazuyoshi; Tanaka, Kenji; Suetsugi, Tadashi; Sunada, Kengo; Tsuboki, Kazuhisa; Shinoda, Taro; Wang, Yuqing; Sakakibara, Atsushi; Hasegawa, Koichi; Moteki, Qoosaku; Nakakita, Eiichi
2013-10-01
5 August 2008, a localized heavy rainfall event caused a rapid increase in drainpipe discharge, which killed five people working in a drainpipe near Zoshigaya, Tokyo. This study compared the effects of artificial land cover and anthropogenic heat on this localized heavy rainfall event based on three ensemble experiments using a cloud-resolving model that includes realistic urban features. The first experiment CTRL (control) considered realistic land cover and urban features, including artificial land cover, anthropogenic heat, and urban geometry. In the second experiment NOAH (no anthropogenic heat), anthropogenic heat was ignored. In the third experiment NOLC (no land cover), urban heating from artificial land cover was reduced by keeping the urban geometry but with roofs, walls, and roads of artificial land cover replaced by shallow water. The results indicated that both anthropogenic heat and artificial land cover increased the amount of precipitation and that the effect of artificial land cover was larger than that of anthropogenic heat. However, in the middle stage of the precipitation event, the difference between the two effects became small. Weak surface heating in NOAH and NOLC reduced the near-surface air temperature and weakened the convergence of horizontal wind and updraft over the urban areas, resulting in a reduced rainfall amount compared with that in CTRL.
[Runoff Pollution Experiments of Paddy Fields Under Different Irrigation Patterns].
Zhou, Jing-wen; Su, Bao-lin; Huang, Ning-bo; Guan, Yu-tang; Zhao, Kun
2016-03-15
To study runoff and non-point source pollution of paddy fields and to provide a scientific basis for agricultural water management of paddy fields, paddy plots in the Jintan City and the Liyang City were chosen for experiments on non-point source pollution, and flood irrigation and intermittent irrigation patterns were adopted in this research. The surface water level and rainfall were observed during the growing season of paddies, and the runoff amount from paddy plots and loads of total nitrogen (TN) and total phosphorus (TP) were calculated by different methods. The results showed that only five rain events of totally 27 rainfalls and one artificially drainage formed non-point source pollution from flood irrigated paddy plot, which resulted in a TN export coefficient of 49.4 kg · hm⁻² and a TP export coefficient of 1.0 kg · hm⁻². No any runoff event occurred from the paddy plot with intermittent irrigation even in the case of maximum rainfall of 95.1 mm. Runoff from paddy fields was affected by water demands of paddies and irrigation or drainage management, which was directly correlated to surface water level, rainfall amount and the lowest ridge height of outlets. Compared with the flood irrigation, intermittent irrigation could significantly reduce non-point source pollution caused by rainfall or artificial drainage.
Spatio-temporal trend analysis of projected precipitation data over Rwanda
NASA Astrophysics Data System (ADS)
Muhire, I.; Tesfamichael, S. G.; Ahmed, F.; Minani, E.
2018-01-01
This study applied a number of statistical techniques aimed at quantifying the magnitude of projected mean rainfall and number of rainy days over Rwanda on monthly, seasonal, and annual timescales for the period 2015-2050. The datasets for this period were generated by BCM2.0 for the SRES emission scenario SRB1, CO2 concentration for the baseline scenario (2011-2030) using the stochastic weather generator (LARS-WG). It was observed that on average, there will be a steady decline in mean rainfall. Save for the short rainy season, a positive trend in mean rainfall is expected over the south-west, the north-east region, and the northern highlands. The other regions (central, south-east, and western regions) are likely to experience a decline in mean rainfall. The number of rainy days is expected to decrease in the central plateau and the south-eastern lowlands, while the south-west, the north-west, and north-east regions are expected to have a pattern of increased number of rainy days. This decline in mean rainfall and rainy days over a large part of Rwanda is an indicator of just how much the country is bound to experience reduced water supply for various uses (e.g., agriculture, domestic activities, and industrial activities).
Szota, Christopher; Farrell, Claire; Williams, Nicholas S G; Arndt, Stefan K; Fletcher, Tim D
2017-12-15
Green roofs are increasingly being used among the suite of tools designed to reduce the volume of surface water runoff generated by cities. Plants provide the primary mechanism for restoring the rainfall retention capacity of green roofs, but selecting plants with high water use is likely to increase drought stress. Using empirically-derived plant physiological parameters, we used a water balance model to assess the trade-off between rainfall retention and plant drought stress under a 30-year climate scenario. We compared high and low water users with either drought avoidance or drought tolerance strategies. Green roofs with low water-using, drought-avoiding species achieved high rainfall retention (66-81%) without experiencing significant drought stress. Roofs planted with other strategies showed high retention (72-90%), but they also experienced >50days of drought stress per year. However, not all species with the same strategy behaved similarly, therefore selecting plants based on water use and drought strategy alone does not guarantee survival in shallow substrates where drought stress can develop quickly. Despite this, it is more likely that green roofs will achieve high rainfall retention with minimal supplementary irrigation if planted with low water users with drought avoidance strategies. Copyright © 2017 Elsevier B.V. All rights reserved.
Fuzzy neural network for flow estimation in sewer systems during wet weather.
Shen, Jun; Shen, Wei; Chang, Jian; Gong, Ning
2006-02-01
Estimation of the water flow from rainfall intensity during storm events is important in hydrology, sewer system control, and environmental protection. The runoff-producing behavior of a sewer system changes from one storm event to another because rainfall loss depends not only on rainfall intensities, but also on the state of the soil and vegetation, the general condition of the climate, and so on. As such, it would be difficult to obtain a precise flowrate estimation without sufficient a priori knowledge of these factors. To establish a model for flow estimation, one can also use statistical methods, such as the neural network STORMNET, software developed at Lyonnaise des Eaux, France, analyzing the relation between rainfall intensity and flowrate data of the known storm events registered in the past for a given sewer system. In this study, the authors propose a fuzzy neural network to estimate the flowrate from rainfall intensity. The fuzzy neural network combines four STORMNETs and fuzzy deduction to better estimate the flowrates. This study's system for flow estimation can be calibrated automatically by using known storm events; no data regarding the physical characteristics of the drainage basins are required. Compared with the neural network STORMNET, this method reduces the mean square error of the flow estimates by approximately 20%. Experimental results are reported herein.
Termites promote resistance of decomposition to spatiotemporal variability in rainfall.
Veldhuis, Michiel P; Laso, Francisco J; Olff, Han; Berg, Matty P
2017-02-01
The ecological impact of rapid environmental change will depend on the resistance of key ecosystems processes, which may be promoted by species that exert strong control over local environmental conditions. Recent theoretical work suggests that macrodetritivores increase the resistance of African savanna ecosystems to changing climatic conditions, but experimental evidence is lacking. We examined the effect of large fungus-growing termites and other non-fungus-growing macrodetritivores on decomposition rates empirically with strong spatiotemporal variability in rainfall and temperature. Non-fungus-growing larger macrodetritivores (earthworms, woodlice, millipedes) promoted decomposition rates relative to microbes and small soil fauna (+34%) but both groups reduced their activities with decreasing rainfall. However, fungus-growing termites increased decomposition rates strongest (+123%) under the most water-limited conditions, making overall decomposition rates mostly independent from rainfall. We conclude that fungus-growing termites are of special importance in decoupling decomposition rates from spatiotemporal variability in rainfall due to the buffered environment they create within their extended phenotype (mounds), that allows decomposition to continue when abiotic conditions outside are less favorable. This points at a wider class of possibly important ecological processes, where soil-plant-animal interactions decouple ecosystem processes from large-scale climatic gradients. This may strongly alter predictions from current climate change models. © 2016 by the Ecological Society of America.
The Effects Of Urban Landscape Patterns On Rainfall-Runoff Processes At Small Scale
NASA Astrophysics Data System (ADS)
Chen, L.
2016-12-01
Many studies have indicated that urban landscape change may alter rainfall-runoff processes. However, how urban landscape pattern affect this process is little addressed. In this study, the hydrological effects of landscape pattern on rainfall-runoff processes at small-scale was explored. Twelve residential blocks with independent drainage systems in Beijing were selected as case study areas. Impervious metrics of these blocks, i.e., total impervious area (TIA) and directly connected impervious area (DCIA), were identified. A drainage index describing catchment general drainage load and the overland flow distance, Ad, was estimated and used as one of the landscape spatial metrics. Three scenarios were designed to test the potential influence of impervious surface pattern on runoff processes. Runoff variables including total and peak runoff depth (Qt and Qp) were simulated under different rainfall conditions by Storm Water Management Model (SWMM). The relationship between landscape patterns and runoff variables were analyzed, and further among the three scenarios. The results demonstrated that, in small urban blocks, spatial patterns have inherent influences on rainfall-runoff processes. Specifically, (1) Imperviousness acts as effective indicators in predicting both Qt and Qp. As rainfall intensity increases, the major affecting factor changes from DCIA to TIA for both Qt and Qp; (2) Increasing the size of drainage area dominated by each drainage inlet will benefit the block peak flow mitigation; (3) Different spatial concentrations of impervious surfaces have inherent influences on Qp, when impervious surfaces located away from the outlet can reduce the peak flow discharge. These findings may provide insights into the role of urban landscape patterns in driving rainfall-runoff responses in urbanization, which is essential for urban planning and stormwater management.
Rika-Heke, Tamara; Kelman, Mark; Ward, Michael P
2015-07-01
The aim of this study was to describe the association between climate, weather and the occurrence of canine tick paralysis, feline tick paralysis and canine parvovirus in Australia. The Southern Oscillation Index (SOI) and monthly average rainfall (mm) data were used as indices for climate and weather, respectively. Case data were extracted from a voluntary national companion animal disease surveillance resource. Climate and weather data were obtained from the Australian Government Bureau of Meteorology. During the 4-year study period (January 2010-December 2013), a total of 4742 canine parvovirus cases and 8417 tick paralysis cases were reported. No significant (P ≥ 0.05) correlations were found between the SOI and parvovirus, canine tick paralysis or feline tick paralysis. A significant (P < 0.05) positive cross-correlation was found between parvovirus occurrence and rainfall in the same month (0.28), and significant negative cross-correlations (-0.26 to -0.36) between parvovirus occurrence and rainfall 4-6 months previously. Significant (P < 0.05) negative cross-correlations (-0.34 to -0.39) were found between canine tick paralysis occurrence and rainfall 1-3 months previously, and significant positive cross-correlations (0.29-0.47) between canine tick paralysis occurrence and rainfall 7-10 months previously. Significant positive cross-correlations (0.37-0.68) were found between cases of feline tick paralysis and rainfall 6-10 months previously. These findings may offer a useful tool for the management and prevention of tick paralysis and canine parvovirus, by providing an evidence base supporting the recommendations of veterinarians to clients thus reducing the impact of these diseases. Copyright © 2015 Elsevier Ltd. All rights reserved.
Gaxiola, Aurora; Armesto, Juan J.
2015-01-01
Differences in litter quality, microbial activity or abiotic conditions cannot fully account for the variability in decomposition rates observed in semiarid ecosystems. Here we tested the role of variation in litter quality, water supply, and UV radiation as drivers of litter decomposition in arid lands. And show that carry-over effects of litter photodegradation during dry periods can regulate decomposition during subsequent wet periods. We present data from a two-phase experiment, where we first exposed litter from a drought-deciduous and an evergreen shrub to natural UV levels during five, rainless summer months and, subsequently, in the laboratory, we assessed the carry-over effects of photodegradation on biomass loss under different irrigation treatments representing the observed range of local rainfall variation among years (15–240 mm). Photodegradation of litter in the field produced average carbon losses of 12%, but deciduous Proustia pungens lost >25%, while evergreen Porlieria chilensis less than 5%. Natural exposure to UV significantly reduced carbon-to-nitrogen and lignin:N ratios in Proustia litter but not in Porlieria. During the subsequent wet phase, remaining litter biomass was lower in Proustia than in Porlieria. Indeed UV exposure increased litter decomposition of Proustia under low and medium rainfall treatments, whereas no carry-over effects were detected under high rainfall treatment. Consequently, for deciduous Proustia carry-over effects of UV exposure were negligible under high irrigation. Litter decomposition of the evergreen Porlieria depended solely on levels of rainfall that promote microbial decomposers. Our two-phase experiment revealed that both the carry-over effects of photodegradation and litter quality, modulated by inter-annual variability in rainfall, can explain the marked differences in decomposition rates and the frequent decoupling between rainfall and litter decomposition observed in semiarid ecosystems. PMID:25852705
The association of weather and mortality in Bangladesh from 1983–2009
Alam, Nurul; Begum, Dilruba; Streatfield, Peter Kim
2012-01-01
Introduction The association of weather and mortality have not been widely studied in subtropical monsoon regions, particularly in Bangladesh. This study aims to assess the association of weather and mortality (measured with temperature and rainfall), adjusting for time trend and seasonal patterns in Abhoynagar, Bangladesh. Material and methods A sample vital registration system (SVRS) was set up in 1982 to facilitate operational research in family planning and maternal and child health. SVRS provided data on death counts and population from 1983–2009. The Bangladesh Meteorological Department provided data on daily temperature and rainfall for the same period. Time series Poisson regression with cubic spline functions was used, allowing for over-dispersion, including lagged weather parameters, and adjusting for time trends and seasonal patterns. Analysis was carried out using R statistical software. Results Both weekly mean temperature and rainfall showed strong seasonal patterns. After adjusting for seasonal pattern and time trend, weekly mean temperatures (lag 0) below the 25th percentile and between the 25th and 75th percentiles were associated with increased mortality risk, particularly in females and adults aged 20–59 years by 2.3–2.4% for every 1°C decrease. Temperature above the 75th percentile did not increase the risk. Every 1 mm increase in rainfall up to 14 mm of weekly average rainfall over lag 0–4 weeks was associated with decreased mortality risks. Rainfall above 14 mm was associated with increased mortality risk. Conclusion The relationships between temperature, rainfall and mortality reveal the importance of understanding the current factors contributing to adaptation and acclimatization, and how these can be enhanced to reduce negative impacts from weather. PMID:23195512
Gaxiola, Aurora; Armesto, Juan J
2015-01-01
Differences in litter quality, microbial activity or abiotic conditions cannot fully account for the variability in decomposition rates observed in semiarid ecosystems. Here we tested the role of variation in litter quality, water supply, and UV radiation as drivers of litter decomposition in arid lands. And show that carry-over effects of litter photodegradation during dry periods can regulate decomposition during subsequent wet periods. We present data from a two-phase experiment, where we first exposed litter from a drought-deciduous and an evergreen shrub to natural UV levels during five, rainless summer months and, subsequently, in the laboratory, we assessed the carry-over effects of photodegradation on biomass loss under different irrigation treatments representing the observed range of local rainfall variation among years (15-240 mm). Photodegradation of litter in the field produced average carbon losses of 12%, but deciduous Proustia pungens lost >25%, while evergreen Porlieria chilensis less than 5%. Natural exposure to UV significantly reduced carbon-to-nitrogen and lignin:N ratios in Proustia litter but not in Porlieria. During the subsequent wet phase, remaining litter biomass was lower in Proustia than in Porlieria. Indeed UV exposure increased litter decomposition of Proustia under low and medium rainfall treatments, whereas no carry-over effects were detected under high rainfall treatment. Consequently, for deciduous Proustia carry-over effects of UV exposure were negligible under high irrigation. Litter decomposition of the evergreen Porlieria depended solely on levels of rainfall that promote microbial decomposers. Our two-phase experiment revealed that both the carry-over effects of photodegradation and litter quality, modulated by inter-annual variability in rainfall, can explain the marked differences in decomposition rates and the frequent decoupling between rainfall and litter decomposition observed in semiarid ecosystems.
Controls on Characteristics of Event-based Catchment Flood Response over Continental United States
NASA Astrophysics Data System (ADS)
Shen, X.; Mei, Y.; Nikolopoulos, E. I.; Anagnostou, E. N.
2017-12-01
Understanding the primary drivers of regional flood characteristics is of utmost importance for the development of flood early warning system. Many studies have dedicated their efforts on this topic, but the majority of these works is limited in terms of either the size of event population or the extent of their study domain. This prevents us from drawing a comprehensive understanding of the primary factors controlling the variability of catchment flood response across different hydroclimatic regimes and basin geomorphologies. In this study, we render an exhaustive analysis that includes the effect of climate, hydrometeorology, geomorphology, land cover and initial wetness conditions on the catchment's flood response for 318,000 flood events distributed across 5,900 catchments (basin scales ranging from 1 to 106 km2) of the Continental United States (CONUS) over a 10-year (2002 to 2013) period. Event runoff coefficients, response time lag and hydrograph shape are used as diagnostic variables to represent catchment flood response. Our results indicate different distributions of runoff coefficient over different climate regions and seasons. The magnitude of runoff coefficient increases as function of initial basin wetness condition and rainfall depth. Opposite patterns are found for the actual evapotranspiration rate and baseflow index. On the other hand, response time lag is controlled by the relief ratio of the basins and the mean flow length of the events; hydrograph shape reveals increasing trend with soil moisture condition and relief ratio.
Continental magnetic anomaly constraints on continental reconstruction
NASA Technical Reports Server (NTRS)
Vonfrese, R. R. B.; Hinze, W. J.; Olivier, R.; Bentley, C. R.
1985-01-01
Crustal magnetic anomalies mapped by the MAGSAT satellite for North and South America, Europe, Africa, India, Australia and Antarctica and adjacent marine areas were adjusted to a common elevation of 400 km and differentially reduced to the radial pole of intensity 60,000 nT. These radially polarized anomalies are normalized for differential inclination, declination and intensity effects of the geomagnetic field, so that in principle they directly reflected the geometric and magnetic polarization attributes of sources which include regional petrologic variations of the crust and upper mantle, and crustal thickness and thermal perturbations. Continental anomalies demonstrate remarkably detailed correlation of regional magnetic sources across rifted margins when plotted on a reconstruction of Pangea. Accordingly, they suggest further fundamental constraints on the geologic evolution of the continents and their reconstructions.
Effect of urease inhibitor application rate and rainfall on ammonia emissions from beef manure
USDA-ARS?s Scientific Manuscript database
Social, economic, and environmental factors have prompted the desire to reduce global atmospheric ammonia emissions. A research project was conducted to assess the efficacy of the urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT) for reducing ammonia emissions from simulated open-lot beef...
Simulated management effects on ammonia emissions from field applied manure.
Smith, E; Gordon, R; Bourque, C; Campbell, A; Génermont, S; Rochette, P; Mkhabela, M
2009-06-01
A need exists to improve the utilization of manure nutrients by minimizing NH(3) emissions from land application of manure. Management strategies to reduce NH(3) emissions are available; however, few have been validated under Canadian conditions. A well tested and accurate simulation model, however, can help overcome this challenge by determining appropriate management strategies for a given set of field conditions. The Volt'Air simulation model was utilized to estimate NH(3) volatilization from manure spreading for various manure spreading considerations under a range of atmospheric conditions typically encountered in eastern Canada. Considerations included: (i) soil liming, (ii) time of day of manure spreading, (iii) rainfall (timing and amount) and (iv) manure incorporation (timing, depth and manure coverage). Results demonstrated that liming to increase soil pH, increased NH(3) emissions by 3.3 kg ha(-1) for each increment of 0.1 pH (up to a 1.5 total increase), over no liming at 34.6 kg ha(-1). For each hour delay in manure spreading past 0800 h, NH(3) losses were reduced by 1.5 kg ha(-1). Rainfall (10mm) at least 20 h after manure application reduced losses, with increased reductions at higher rainfall amounts. Incorporation soon (1h) after application was best for NH(3) mitigation. Increasing the depth of incorporation by 5c m reduced NH(3) emissions by 4.4 kg ha(-1); also increasing manure coverage by incorporation reduced losses by 2 kg ha(-1) for each 10% increase in coverage, compared to surface application at 34.6 kg ha(-1). This investigation using Volt'Air yielded valuable information about simulating manure management strategies and the magnitude of their effects on NH(3) emissions.
Turner, Wendy C.; Versfeld, Wilferd D.; Kilian, J. Werner; Getz, Wayne M.
2011-01-01
Summary 1. Seasonality of rainfall can exert a strong influence on animal condition and on host-parasite interactions. The body condition of ruminants fluctuates seasonally in response to changes in energy requirements, foraging patterns and resource availability, and seasonal variation in parasite infections may further alter ruminant body condition. 2. This study disentangles effects of rainfall and gastrointestinal parasite infections on springbok (Antidorcas marsupialis) body condition and determines how these factors vary among demographic groups. 3. Using data from four years and three study areas, we investigated i) the influence of rainfall variation, demographic factors and parasite interactions on parasite prevalence or infection intensity, ii) whether parasitism or rainfall is a more important predictor of springbok body condition and iii) how parasitism and condition vary among study areas along a rainfall gradient. 4. We found that increased parasite intensity is associated with reduced body condition only for adult females. For all other demographic groups, body condition was significantly related to prior rainfall and not to parasitism. Rainfall lagged by two months had a positive effect on body condition. 5. Adult females showed evidence of a “periparturient rise” in parasite intensity, and had higher parasite intensity and lower body condition than adult males after parturition and during early lactation. After juveniles were weaned, adult females had lower parasite intensity than adult males. Sex differences in parasitism and condition may be due to differences between adult females and males in the seasonal timing of reproductive effort and its effects on host immunity, as well as documented sex differences in vulnerability to predation. 6. Our results highlight that parasites and the environment can synergistically affect host populations, but that these interactions might be masked by their interwoven relationships, their differential impacts on demographic groups, and the different time scales at which they operate. PMID:21831195
Spatiotemporal trends in extreme rainfall and temperature indices over Upper Tapi Basin, India
NASA Astrophysics Data System (ADS)
Sharma, Priyank J.; Loliyana, V. D.; S. R., Resmi; Timbadiya, P. V.; Patel, P. L.
2017-12-01
The flood risk across the globe is intensified due to global warming and subsequent increase in extreme temperature and precipitation. The long-term trends in extreme rainfall (1944-2013) and temperature (1969-2012) indices have been investigated at annual, seasonal, and monthly time scales using nonparametric Mann-Kendall (MK), modified Mann-Kendall (MMK), and Sen's slope estimator tests. The extreme rainfall and temperature indices, recommended by the Expert Team on Climate Change Detection Monitoring Indices (ETCCDMI), have been analyzed at finer spatial scales for trend detection. The results of trend analyses indicate decreasing trend in annual total rainfall, significant decreasing trend in rainy days, and increasing trend in rainfall intensity over the basin. The seasonal rainfall has been found to decrease for all the seasons except postmonsoon, which could affect the rain-fed agriculture in the basin. The 1- and 5-day annual maximum rainfalls exhibit mixed trends, wherein part of the basin experiences increasing trend, while other parts experience a decreasing trend. The increase in dry spells and concurrent decrease in wet spells are also observed over the basin. The extreme temperature indices revealed increasing trends in hottest and coldest days, while decreasing trends in coldest night are found over most parts of the basin. Further, the diurnal temperature range is also found to increase due to warming tendency in maximum temperature (T max) at a faster rate compared to the minimum temperature (T min). The increase in frequency and magnitude of extreme rainfall in the basin has been attributed to the increasing trend in maximum and minimum temperatures, reducing forest cover, rapid pace of urbanization, increase in human population, and thereby increase in the aerosol content in the atmosphere. The findings of the present study would significantly help in sustainable water resource planning, better decision-making for policy framework, and setting up infrastructure against flood disasters in Upper Tapi Basin, India.
O'Connor, Lauren J; Kahn, Lewis P; Walkden-Brown, Stephen W
2008-08-17
A factorial experiment (3 x 4 x 2 x 3) was conducted in programmable incubators to investigate interaction between the effects of rainfall amount, rainfall distribution and evaporation rate on development of Haemonchus contortus to L3. Sheep faeces containing H. contortus eggs were incubated on sterilised soil under variable temperatures typical of summer in the Northern Tablelands of NSW, Australia. Simulated rainfall was applied in 1 of 3 amounts (12, 24 or 32 mm) and 4 distributions (a single event on the day after deposition, or the same total amount split in 2, 3 or 4 equal events over 2, 3 or 4 days, respectively). Samples were incubated at either a Low or High rate of evaporation (Low: 2.1-3.4 mm/day and High: 3.8-6.1 mm/day), and faeces and soil were destructively sampled at 4, 7 and 14 days post-deposition. Recovery of L3 from the soil (extra-pellet L3) increased over time (up to 0.52% at day 14) and with each increment of rainfall (12 mm: <0.01%; 24 mm: 0.10%; 32 mm: 0.45%) but was reduced under the High evaporation rate (0.01%) compared with the Low evaporation rate (0.31%). All rainfall amounts yielded significantly different recoveries of L3 under Low evaporation rates but there was no difference between the 12 and 24 mm treatments under the High evaporation rate. The distribution of simulated rainfall did not significantly affect recovery of infective larvae. Faecal moisture content was positively associated with L3 recovery, as was the ratio of cumulative precipitation and cumulative evaporation (P/E), particularly when measured in the first 4 days post-deposition. The results show that evaporation rate plays a significant role in regulating the influence of rainfall amount on the success of L3 transmission.
Economic benefits of reducing fire-related sediment in southwestern fire-prone ecosystems
John Loomis; Pete Wohlgemuth; Armando González-Cabán; Don English
2003-01-01
A multiple regression analysis of fire interval and resulting sediment yield (controlling for relief ratio, rainfall, etc.) indicates that reducing the fire interval from the current average 22 years to a prescribed fire interval of 5 years would reduce sediment yield by 2 million cubic meters in the 86.2 square kilometer southern California watershed adjacent to and...
Impacts of Different Soil Texture and Organic Content on Hydrological Performance of Bioretention
NASA Astrophysics Data System (ADS)
Gülbaz, Sezar; Melek Kazezyilmaz Alhan, Cevza
2015-04-01
The land development and increase in urbanization in a watershed has adverse effects such as flooding and water pollution on both surface water and groundwater resources. Low Impact Development (LID) Best Management Practices (BMPs) such as bioretentions, vegetated rooftops, rain barrels, vegetative swales and permeable pavements have been implemented in order to diminish adverse effects of urbanization. LID-BMP is a land planning method which is used to manage storm water runoff by reducing peak flows as well as simultaneously improving water quality. The aim of this study is developing a functional experimental setup called as Rainfall-Watershed-Bioretention (RWB) System in order to investigate and quantify the hydrological performance of bioretention. RWB System is constructed on the Istanbul University Campus and includes an artificial rainfall system, which allows for variable rainfall intensity, drainage area, which has controllable size and slope, and bioretention columns with different soil ratios. Four bioretention columns with different soil textures and organic content are constructed in order to investigate their effects on water quantity. Using RWB System, the runoff volume, hydrograph, peak flow rate and delay in peak time at the exit of bioretention columns may be quantified under various rainfalls in order to understand the role of soil types used in bioretention columns and rainfall intensities. The data obtained from several experiments conducted in RWB System are employed in establishing a relation among rainfall, surface runoff and flow reduction after bioretention. Moreover, the results are supported by mathematical models in order to explain the physical mechanism of bioretention. Following conclusions are reached based on the analyses carried out in this study: i) Results show that different local soil types in bioretention implementation affect surface runoff and peak flow considerably. ii) Rainfall intensity and duration affect peak flow reduction and arrival time and shape of the hydrograph. iii) A mathematical representation of the relation among the rainfall, surface runoff over the watershed and outflow from the bioretention is developed by incorporating kinematic wave equation into the modified Green-Ampt Method. The rainfall intensity in modified Green-Ampt method is represented by the inflow per unit surface area of bioretention which may be obtained from kinematic wave solution using the measured rainfall data. Variable rainfall cases may be taken into account by using the modified Green-Ampt method. Thus, employing the modified Green-Ampt method helps significantly in understanding and explaining the hydrological mechanism of a bioretention cell where the Darcy law or the classical Green-Ampt method is inadequate which works under constant rainfall intensities. Consequently, the rainfall is directly related with the outflow through the bioretention. This study discusses only the water quantity of bioretention.
Effects of landscape-based green infrastructure on stormwater ...
The development of impervious surfaces in urban and suburban catchments affects their hydrological behavior by decreasing infiltration, increasing peak hydrograph response following rainfall events, and ultimately increasing the total volume of water and mass of pollutants reaching streams. These changes have deleterious effects on downstream surface waters. Consequently, strategies to mitigate these impacts are now components of contemporary urban development and stormwater management. This study evaluates the effectiveness of landscape green infrastructure (GI) in reducing stormwater runoff volumes and controlling peak flows in four subdivision-scale suburban catchments (1.88 – 12.97 acres) in Montgomery County, MD, USA. Stormwater flow rates during runoff events were measured in five minute intervals at each catchment outlet. One catchment was built with GI vegetated swales on all parcels with the goal of intercepting, conveying, and infiltrating stormwater before it enters the sewer network. The remaining catchments were constructed with traditional gray infrastructure and “end-of-pipe” best management practices (BMPs) that treat stormwater before entering streams. This study compared characteristics of rainfall-runoff events at the green and gray infrastructure sites to understand their effects on suburban hydrology. The landscape GI strategy generally reduced rainfall-runoff ratios compared to gray infrastructure because of increased infiltration, ul
NASA Astrophysics Data System (ADS)
Hori, Toshikazu; Mohri, Yoshiyuki; Matsushima, Kenichi; Ariyoshi, Mitsuru
In recent years the increase in the number of heavy rainfall occurrences such as through unpredictable cloudbursts have resulted in the safety of the embankments of small earth dams needing to be improved. However, the severe financial condition of the government and local autonomous bodies necessitate the cost of improving them to be reduced. This study concerns the development of a method of evaluating the life cycle cost of small earth dams considered to pose a risk and in order to improve the safety of the downstream areas of small earth dams at minimal cost. Use of a safety evaluation method that is based on a combination of runoff analysis, saturated and unsaturated seepage analysis, and slope stability analysis enables the probability of a dam breach and its life cycle cost with the risk of heavy rainfall taken into account to be calculated. Moreover, use of the life cycle cost evaluation method will lead to the development of a technique for selecting the method of the optimal improvement or countermeasures against heavy rainfall.
NASA Astrophysics Data System (ADS)
Gaitan, S.; ten Veldhuis, J. A. E.
2015-06-01
Cities worldwide are challenged by increasing urban flood risks. Precise and realistic measures are required to reduce flooding impacts. However, currently implemented sewer and topographic models do not provide realistic predictions of local flooding occurrence during heavy rain events. Assessing other factors such as spatially distributed rainfall, socioeconomic characteristics, and social sensing, may help to explain probability and impacts of urban flooding. Several spatial datasets have been recently made available in the Netherlands, including rainfall-related incident reports made by citizens, spatially distributed rain depths, semidistributed socioeconomic information, and buildings age. Inspecting the potential of this data to explain the occurrence of rainfall related incidents has not been done yet. Multivariate analysis tools for describing communities and environmental patterns have been previously developed and used in the field of study of ecology. The objective of this paper is to outline opportunities for these tools to explore urban flooding risks patterns in the mentioned datasets. To that end, a cluster analysis is performed. Results indicate that incidence of rainfall-related impacts is higher in areas characterized by older infrastructure and higher population density.
NASA Astrophysics Data System (ADS)
Rohr, T.; Manzoni, S.; Feng, X.; Menezes, R.; Porporato, A. M.
2013-12-01
Although seasonally dry ecosystems (SDEs), identified by prolonged drought followed by a short, but intense, rainy season, cover large regions of the tropics, their biogeochemical response to seasonal rainfall and soil carbon (C) sequestration potential are not well characterized. Both productivity and soil respiration are positively affected by seasonal soil moisture availability, creating a delicate balance between C deposition through litterfall and C losses through heterotrophic respiration. As climate change projections for the tropics predict decreased annual rainfall and increased dry season length, it is critical to understand how variations in seasonal rainfall distributions control this balance. To address this question, we develop a minimal model linking the seasonal behavior of the ensemble soil moisture, plant productivity, the related soil C inputs through litterfall, and soil C dynamics. The model is parameterized for a case study from a drought-deciduous caatinga ecosystem in northeastern Brazil. Results indicate that when altering the seasonal rainfall patterns for a fixed annual rainfall, both plant productivity and soil C sequestration potential are largely, and nonlinearly, dependent on wet season duration. Moreover, total annual rainfall plays a dominant role in describing this relationship, leading at times to the emergence of distinct optima in both primary production and C sequestration. Examining these results in the context of climate-driven changes to wet season duration and mean annual precipitation indicate that the initial hydroclimatic regime of a particular ecosystem is an important factor to predict both the magnitude and direction of the effects of shifting seasonal distributions on productivity and C storage. Although highly productive ecosystems will likely experience declining C storage with predicted climate shifts, those currently operating well below peak production can potentially see improved C stocks with the onset of declining rainfall due to reduced soil respiration. a) Annual average net primary productivity
NASA Astrophysics Data System (ADS)
Manivasagam, V. S.; Nagarajan, R.
2018-04-01
Water stress due to uneven rainfall distribution causes a significant impact on the agricultural production of monsoon-dependent peninsular India. In the present study, water stress assessment for rainfed maize crop is carried out for kharif (June-October) and rabi (October-February) cropping seasons which coincide with two major Indian monsoons. Rainfall analysis (1976-2010) shows that the kharif season receives sufficient weekly rainfall (28 ± 32 mm) during 26th-39th standard meteorological weeks (SMWs) from southwest monsoon, whereas the rabi season experiences a major portion of its weekly rainfall due to northeast monsoon between the 42nd and 51st SMW (31 ± 42 mm). The later weeks experience minimal rainfall (5.5 ± 15 mm) and thus expose the late sown maize crops to a severe water stress during its maturity stage. Wet and dry spell analyses reveal a substantial increase in the rainfall intensity over the last few decades. However, the distribution of rainfall shows a striking decrease in the number of wet spells, with prolonged dry spells in both seasons. Weekly rainfall classification shows that the flowering and maturity stages of kharif maize (33rd-39th SMWs) can suffer around 30-40% of the total water stress. In the case of rabi maize, the analysis reveals that a shift in the sowing time from the existing 42nd SMW (16-22 October) to the 40th SMW (1-7 October) can avoid terminal water stress. Further, AquaCrop modeling results show that one or two minimal irrigations during the flowering and maturity stages (33rd-39th SMWs) of kharif maize positively avoid the mild water stress exposure. Similarly, rabi maize requires an additional two or three lifesaving irrigations during its flowering and maturity stages (48th-53rd SMWs) to improve productivity. Effective crop planning with appropriate sowing time, short duration crop, and high yielding drought-resistant varieties will allow for better utilization of the monsoon rain, thus reducing water stress with an increase in rainfed maize productivity.
NASA Astrophysics Data System (ADS)
Costa, Veber; Fernandes, Wilson
2017-11-01
Extreme flood estimation has been a key research topic in hydrological sciences. Reliable estimates of such events are necessary as structures for flood conveyance are continuously evolving in size and complexity and, as a result, their failure-associated hazards become more and more pronounced. Due to this fact, several estimation techniques intended to improve flood frequency analysis and reducing uncertainty in extreme quantile estimation have been addressed in the literature in the last decades. In this paper, we develop a Bayesian framework for the indirect estimation of extreme flood quantiles from rainfall-runoff models. In the proposed approach, an ensemble of long daily rainfall series is simulated with a stochastic generator, which models extreme rainfall amounts with an upper-bounded distribution function, namely, the 4-parameter lognormal model. The rationale behind the generation model is that physical limits for rainfall amounts, and consequently for floods, exist and, by imposing an appropriate upper bound for the probabilistic model, more plausible estimates can be obtained for those rainfall quantiles with very low exceedance probabilities. Daily rainfall time series are converted into streamflows by routing each realization of the synthetic ensemble through a conceptual hydrologic model, the Rio Grande rainfall-runoff model. Calibration of parameters is performed through a nonlinear regression model, by means of the specification of a statistical model for the residuals that is able to accommodate autocorrelation, heteroscedasticity and nonnormality. By combining the outlined steps in a Bayesian structure of analysis, one is able to properly summarize the resulting uncertainty and estimating more accurate credible intervals for a set of flood quantiles of interest. The method for extreme flood indirect estimation was applied to the American river catchment, at the Folsom dam, in the state of California, USA. Results show that most floods, including exceptionally large non-systematic events, were reasonably estimated with the proposed approach. In addition, by accounting for uncertainties in each modeling step, one is able to obtain a better understanding of the influential factors in large flood formation dynamics.
NASA Astrophysics Data System (ADS)
Leonarduzzi, E.; Molnar, P.; McArdell, B. W.
2017-12-01
In Switzerland floods are responsible for most of the damage caused by rainfall-triggered natural hazards (89%), followed by landslides (6%, almost 600 M USD) as reported in Hilker et al. (2009) for the period 1972-2007. A high-resolution gridded daily precipitation dataset is combined with a landslide inventory containing over 2000 events in the period 1972-2012 to analyze rainfall thresholds that lead to landsliding in Switzerland. First triggering rainfall and landslides are co-located obtaining the distributions of triggering and non-triggering rainfall event properties at the scale of the precipitation data (2*2 km2) and considering 1 day as the interarrival time to separate events. Then rainfall thresholds are obtained by maximizing true positives (accurate predictions) while minimizing false negatives (false alarms), using the True Skill Statistic. The best predictive performance is obtained by the intensity-duration ID threshold curve, followed by peak daily intensity (Imax) and mean event intensity (Imean). Event duration by itself has very low predictive power. In addition to country-wide thresholds, local ones are also defined by regionalization based on surface erodibility and local long-term climate (mean daily precipitation). Different Imax thresholds are determined for each of the regions separately. It is found that wetter local climate and lower erodibility lead to significantly higher rainfall thresholds required to trigger landslides. However, the improvement in model performance due to regionalization is marginal and much lower than what can be achieved by having a high quality landslide database. In order to validate the performance of the Imax rainfall threshold model, reference cases will be presented in which the landslide locations and timing are randomized and the landslide sample size is reduced. Jack-knife and cross-validation experiments demonstrate that the model is robust. The results highlight the potential of using rainfall I-D threshold curves and Imax threshold values for predicting the occurrence of landslides on a country or regional scale even with daily precipitation data, with possible applications in landslide warning systems.
We update and reevaluate the scientific information on the distribution, history and causes of continental shelf hypoxia that supports the 2001 "Action Plan for Reducing, Mitigating, and Controlling Hypoxiain the Northern Gulf of Mexico," incorporating data, publications, and res...
NASA Astrophysics Data System (ADS)
Khabarov, Nikolay; Huggel, Christian; Obersteiner, Michael; Ramírez, Juan Manuel
2010-05-01
Mountain regions are typically characterized by rugged terrain which is susceptible to different types of landslides during high-intensity precipitation. Landslides account for billions of dollars of damage and many casualties, and are expected to increase in frequency in the future due to a projected increase of precipitation intensity. Early warning systems (EWS) are thought to be a primary tool for related disaster risk reduction and climate change adaptation to extreme climatic events and hydro-meteorological hazards, including landslides. An EWS for hazards such as landslides consist of different components, including environmental monitoring instruments (e.g. rainfall or flow sensors), physical or empirical process models to support decision-making (warnings, evacuation), data and voice communication, organization and logistics-related procedures, and population response. Considering this broad range, EWS are highly complex systems, and it is therefore difficult to understand the effect of the different components and changing conditions on the overall performance, ultimately being expressed as human lives saved or structural damage reduced. In this contribution we present a further development of our approach to assess a landslide EWS in an integral way, both at the system and component level. We utilize a numerical model using 6 hour rainfall data as basic input. A threshold function based on a rainfall-intensity/duration relation was applied as a decision criterion for evacuation. Damage to infrastructure and human lives was defined as a linear function of landslide magnitude, with the magnitude modelled using a power function of landslide frequency. Correct evacuation was assessed with a ‘true' reference rainfall dataset versus a dataset of artificially reduced quality imitating the observation system component. Performance of the EWS using these rainfall datasets was expressed in monetary terms (i.e. damage related to false and correct evacuation). We applied this model to a landslide EWS in Colombia that is currently being implemented within a disaster prevention project. We evaluated the EWS against rainfall data with artificially introduced error and computed with multiple model runs the probabilistic damage functions depending on rainfall error. Then we modified the original precipitation pattern to reflect possible climatic changes e.g. change in annual precipitation as well as change in precipitation intensity with annual values remaining constant. We let the EWS model adapt for changed conditions to function optimally. Our results show that for the same errors in rainfall measurements the system's performance degrades with expected changing climatic conditions. The obtained results suggest that EWS cannot internally adapt to climate change and require exogenous adaptive measures to avoid increase in overall damage. The model represents a first attempt to integrally simulate and evaluate EWS under future possible climatic pressures. Future work will concentrate on refining model components and spatially explicit climate scenarios.
NASA Astrophysics Data System (ADS)
Hinojosa, M. B.; Parra, A.; Laudicina, V. A.; Moreno, J. M.
2014-10-01
Fire is a major ecosystem driver, causing significant changes in soil nutrients and microbial community structure and functionality. Post-fire soil dynamics can vary depending on rainfall patterns, although variations in response to drought are poorly known. This is particularly important in areas with poor soils and limited rainfall, like arid and semiarid ones. Furthermore, climate change projections in many such areas anticipate reduced precipitation and longer drought, together with an increase in fire severity. The effects of experimental drought and fire were studied on soils in a Mediterranean Cistus-Erica shrubland in Central Spain. A replicated (n = 4) field experiment was carried out in which four levels of rainfall pattern were implemented by means of a rain-out shelters and irrigation system. The treatments were: environmental control (natural rainfall), historical control (long-term average rainfall, 2 months drought), moderate drought (25% reduction of historical control, 5 months drought) and severe drought (45% reduction, 7 months drought). After one growing season, the plots were burned with high fire intensity, except a set of unburned plots that served as control. Soils were collected seasonally during one year and variables related to soil nutrient availability and microbial community structure and functionality were studied. Burned soils increased nutrient availability (P, N, K) with respect to unburned ones, but drought reduced such an increase in P, while it further increased N and K. Such changes in available soil nutrients were short-lived. Drought caused a further decrease of enzyme activities, carbon mineralization rate and microbial biomass. Fire decreased the relative abundance of fungi and actinomycetes. However, fire and drought caused a further reduction in fungi, with bacteria becoming relatively more abundant. Arguably, increasing drought and fires due to climate change will likely shift soil recovery after fire.
Cleveland, C.C.; Wieder, W.R.; Reed, S.C.; Townsend, A.R.
2010-01-01
Climate models predict precipitation changes for much of the humid tropics, yet few studies have investigated the potential consequences of drought on soil carbon (C) cycling in this important biome. In wet tropical forests, drought could stimulate soil respiration via overall reductions in soil anoxia, but previous research suggests that litter decomposition is positively correlated with high rainfall fluxes that move large quantities of dissolved organic matter (DOM) from the litter layer to the soil surface. Thus, reduced rainfall could also limit C delivery to the soil surface, reducing respiration rates. We conducted a throughfall manipulation experiment to investigate how 25% and 50% reductions in rainfall altered both C movement into soils and the effects of those DOM fluxes on soil respiration rates. In response to the experimental drought, soil respiration rates increased in both the -25% and -50% treatments. Throughfall fluxes were reduced by 26% and 55% in the-25% and-50% treatments, respectively. However, total DOM fluxes leached from the litter did not vary between treatments, because the concentrations of leached DOM reaching the soil surface increased in response to the simulated drought. Annual DOM concentrations averaged 7.7 ?? 0.8, 11.2 ?? 0.9, and 15.8 ?? 1.2 mg C/L in the control, -25%, and -50% plots, respectively, and DOM concentrations were positively correlated with soil respiration rates. A laboratory incubation experiment confirmed the potential importance of DOM concentration on soil respiration rates, suggesting that this mechanism could contribute to the increase in CO2 fluxes observed in the reduced rainfall plots. Across all plots, the data suggested that soil CO2 fluxes were partially regulated by the magnitude and concentration of soluble C delivered to the soil, but also by soil moisture and soil oxygen availability. Together, our data suggest that declines in precipitation in tropical rain forests could drive higher CO2 fluxes to the atmosphere both via increased soil O2 availability and through responses to elevated DOM concentrations. ?? 2010 by the Ecological Society of America.
Cleveland, Cory C.; Wieder, William R.; Reed, Sasha C.; Townsend, Alan R.
2010-01-01
Climate models predict precipitation changes for much of the humid tropics, yet few studies have investigated the potential consequences of drought on soil carbon (C) cycling in this important biome. In wet tropical forests, drought could stimulate soil respiration via overall reductions in soil anoxia, but previous research suggests that litter decomposition is positively correlated with high rainfall fluxes that move large quantities of dissolved organic matter (DOM) from the litter layer to the soil surface. Thus, reduced rainfall could also limit C delivery to the soil surface, reducing respiration rates. We conducted a throughfall manipulation experiment to investigate how 25% and 50% reductions in rainfall altered both C movement into soils and the effects of those DOM fluxes on soil respiration rates. In response to the experimental drought, soil respiration rates increased in both the -25% and -50% treatments. Throughfall fluxes were reduced by 26% and 55% in the -25% and -50% treatments, respectively. However, total DOM fluxes leached from the litter did not vary between treatments, because the concentrations of leached DOM reaching the soil surface increased in response to the simulated drought. Annual DOM concentrations averaged 7.7 ± 0.8, 11.2 ± 0.9, and 15.8 ± 1.2 mg C/L in the control, -25%, and -50% plots, respectively, and DOM concentrations were positively correlated with soil respiration rates. A laboratory incubation experiment confirmed the potential importance of DOM concentration on soil respiration rates, suggesting that this mechanism could contribute to the increase in CO2 fluxes observed in the reduced rainfall plots. Across all plots, the data suggested that soil CO2 fluxes were partially regulated by the magnitude and concentration of soluble C delivered to the soil, but also by soil moisture and soil oxygen availability. Together, our data suggest that declines in precipitation in tropical rain forests could drive higher CO2 fluxes to the atmosphere both via increased soil O2 availability and through responses to elevated DOM concentrations.
Evolution of plant growth and defense in a continental introduction.
Agrawal, Anurag A; Hastings, Amy P; Bradburd, Gideon S; Woods, Ellen C; Züst, Tobias; Harvey, Jeffrey A; Bukovinszky, Tibor
2015-07-01
Substantial research has addressed adaptation of nonnative biota to novel environments, yet surprisingly little work has integrated population genetic structure and the mechanisms underlying phenotypic differentiation in ecologically important traits. We report on studies of the common milkweed Asclepias syriaca, which was introduced from North America to Europe over the past 400 years and which lacks most of its specialized herbivores in the introduced range. Using 10 populations from each continent grown in a common environment, we identified several growth and defense traits that have diverged, despite low neutral genetic differentiation between continents. We next developed a Bayesian modeling approach to account for relationships between molecular and phenotypic differences, confirming that continental trait differentiation was greater than expected from neutral genetic differentiation. We found evidence that growth-related traits adaptively diverged within and between continents. Inducible defenses triggered by monarch butterfly herbivory were substantially reduced in European populations, and this reduction in inducibility was concordant with altered phytohormonal dynamics, reduced plant growth, and a trade-off with constitutive investment. Freedom from the community of native and specialized herbivores may have favored constitutive over induced defense. Our replicated analysis of plant growth and defense, including phenotypically plastic traits, suggests adaptive evolution following a continental introduction.
The causes for geographical variations in OS187/OS186 at the Cretaceous-Tertiary boundary
NASA Technical Reports Server (NTRS)
Turekian, K. K.; Esser, B. K.; Ravizza, G. E.
1988-01-01
Researchers at Yale has approached the problem of the osmium isotopic composition of marine deposits formed in contact with both oxidized and reduced bottom waters. The measured (187) Os/(186) Os ratios of modern bulk sediment can be explained using mixing equations involving continental detrital, volcaniclastic, cosmogenic and hydrogeneous components. These studies show that sediments deposited under reducing marine conditions contain a hydrogenous component which is enriched in Re and has a radiogenic (187) Os/(186) Os ratio. The presence of such a hydrogenous component in the marine fish clay at Stevns Klint can account for the elevation of its (187) Os/(186) Os ration above the expected meteoritic value. Mass balance considerations require the Re/Os ratio of the phase precipitated from the terminal Cretaceous sea at Stevns Klint to have been about one tenth the value observed in contemporary deposits in the Black Sea, assuming Re has not been lost (or Os gained) subsequent to precipitation. In continental sections, the elevation of the (187) Os/(186) Os ratio in boundary layers may be due to precipitation from continental waters of crustally-derived radiogenic osmium either contemporaneous with the meteoritic (or mantle) osmium deposition or later during diagenesis.
USGS Geospatial Fabric and Geo Data Portal for Continental Scale Hydrology Simulations
NASA Astrophysics Data System (ADS)
Sampson, K. M.; Newman, A. J.; Blodgett, D. L.; Viger, R.; Hay, L.; Clark, M. P.
2013-12-01
This presentation describes use of United States Geological Survey (USGS) data products and server-based resources for continental-scale hydrologic simulations. The USGS Modeling of Watershed Systems (MoWS) group provides a consistent national geospatial fabric built on NHDPlus. They have defined more than 100,000 hydrologic response units (HRUs) over the continental United States based on points of interest (POIs) and split into left and right bank based on the corresponding stream segment. Geophysical attributes are calculated for each HRU that can be used to define parameters in hydrologic and land-surface models. The Geo Data Portal (GDP) project at the USGS Center for Integrated Data Analytics (CIDA) provides access to downscaled climate datasets and processing services via web-interface and python modules for creating forcing datasets for any polygon (such as an HRU). These resources greatly reduce the labor required for creating model-ready data in-house, contributing to efficient and effective modeling applications. We will present an application of this USGS cyber-infrastructure for assessments of impacts of climate change on hydrology over the continental United States.
To the problem about the origin of lunar maria and continents (Moessbauer investigations)
NASA Technical Reports Server (NTRS)
Malysheva, T. V.
1977-01-01
A comparative study of Mossbauer spectra of regolith returned by the Luna 16 and Luna 20 spacecraft is presented. The Mossbauer spectra of the mare regolith differs significantly for all fractions from the spectra for the same fractions of continental regolith. The total quantity of iron is 1.85 times greater in the mare regolith. There is 2.4 times less olivine in the mare region than in the continental region. The pyroxene component of the mare regolith is less homogeneous in composition (contains more augite and glass) and is present in larger quantities. Ilmenite was found only in the mare regolith. In the continental region, the predominant titanium-containing phase is ulvospinel. The mare regolith contains more metallic iron, which is more finely dispersed and contains less nickel. Troilite is found in the maria region. Based on these differences, it is concluded that the formation of continental rocks occurred at an earlier stage of crystallization from the melt and at higher temperatures and higher partial pressures of oxygen. The mare basalts crystallized from a more reduced magma, apparently in a later process.
NASA Technical Reports Server (NTRS)
Gu, Guojun; Adler, Robert F.; Huffman, George J.; Curtis, Scott
2006-01-01
Global and large regional rainfall variations and possible long-term changes are examined using the 26-year (1979-2004) GPCP monthly dataset (Adler et al., 2003). Our emphasis is to discriminate among variations due to ENSO, volcanic events, and possible long-term climate changes in the tropics. Although the global linear change of precipitation in the data set is near zero during the time period, an increase in tropical rainfall is noted, with a weaker decrease over northern hemisphere middle latitudes. Focusing on the tropics (25degS-25degN), the data set indicates an upward trend (0.06 mm/day/decade) and a downward trend (-0.02 mm/day/decade) over tropical ocean and land, respectively. This corresponds to an about 4.9% increase (ocean) and 1.6% decrease (land) during the entire 26-year time period. Techniques are applied to isolate and quantify variations due to ENSO and two major volcanic eruptions (El Chichon, March 1982; Pinatubo, June 1991) in order to examine longer time-scale changes. The ENSO events generally do not impact the tropical total rainfall, but, of course, induce significant anomalies with opposite signs over tropical land and ocean. The impact of the two volcanic eruptions is estimated to be about a 5% reduction in tropical rainfall over both land and ocean. A modified data set (with ENSO and volcano effects removed) retains the same approximate linear change slopes, but with reduced variance, thereby increasing the confidence levels associated with the long-term rainfall changes in the tropics 2
Exploring the utility of real-time hydrologic data for landslide early warning
NASA Astrophysics Data System (ADS)
Mirus, B. B.; Smith, J. B.; Becker, R.; Baum, R. L.; Koss, E.
2017-12-01
Early warning systems can provide critical information for operations managers, emergency planners, and the public to help reduce fatalities, injuries, and economic losses due to landsliding. For shallow, rainfall-triggered landslides early warning systems typically use empirical rainfall thresholds, whereas the actual triggering mechanism involves the non-linear hydrological processes of infiltration, evapotranspiration, and hillslope drainage that are more difficult to quantify. Because hydrologic monitoring has demonstrated that shallow landslides are often preceded by a rise in soil moisture and pore-water pressures, some researchers have developed early warning criteria that attempt to account for these antecedent wetness conditions through relatively simplistic storage metrics or soil-water balance modeling. Here we explore the potential for directly incorporating antecedent wetness into landslide early warning criteria using recent landslide inventories and in-situ hydrologic monitoring near Seattle, WA, and Portland, OR. We use continuous, near-real-time telemetered soil moisture and pore-water pressure data measured within a few landslide-prone hillslopes in combination with measured and forecasted rainfall totals to inform easy-to-interpret landslide initiation thresholds. Objective evaluation using somewhat limited landslide inventories suggests that our new thresholds based on subsurface hydrologic monitoring and rainfall data compare favorably to the capabilities of existing rainfall-only thresholds for the Seattle area, whereas there are no established rainfall thresholds for the Portland area. This preliminary investigation provides a proof-of-concept for the utility of developing landslide early warning criteria in two different geologic settings using real-time subsurface hydrologic measurements from in-situ instrumentation.
Gaudioso-Levita, Jacqueline M.; Hart, Patrick J.; Lapointe, Dennis; Veillet, Anne; Sebastian-Gonzalez, Esther
2017-01-01
Plumage coloration in birds can be of major importance to mate selection, social signaling, or predator avoidance. Variations in plumage coloration related to sex, age class, or seasons have been widely studied, but the effect of other factors such as climate is less known. In this study, we examine how carotenoid-based plumage coloration and sexual dichromatism of the Hawai‘i ‘Amakihi (Chlorodrepanis virens) varies with rainfall and temperature on Hawai‘i Island. We also examined whether Hawai‘i ‘Amakihi plumage coloration patterns follow Gloger’s rule, which states that animals in wetter climates have darker coloration. Hawai‘i ‘Amakihi were mist-netted and banded at 12 sites representing six major climatic zones on Hawai‘i Island. Feather samples were collected from two body regions: the breast and rump. Using spectrophotometry, we recorded coloration using measures of hue, saturation, and brightness. We conducted sex determination by polymerase chain reaction to confirm the sex of birds sampled. We found that the plumage coloration of Hawai‘i ‘Amakihi varied with both temperature and rainfall. ‘Amakihi plumage’s brightness showed a quadratic relationship with rainfall, contrary to Gloger’s rule, and decreased with temperature. Saturation depended on the interaction between temperature and rainfall. Increases in rainfall also increased saturation in warm areas, while they reduced saturation when the temperature was low. Finally, we found chromatic differences among sexes, but sexual dichromatism was not affected by the climatic conditions. This study provides evidence that rainfall and temperature play an important role in determining the plumage traits of Hawai‘i ‘Amakihi.
Local and remote impacts of aerosol species on Indian summer monsoon rainfall in a GCM
NASA Astrophysics Data System (ADS)
Turner, A. G.; Guo, L.; Highwood, E.
2016-12-01
The HadGEM2 AGCM is used to determine the most important anthropogenic aerosols in the Indian monsoon using experiments in which observed trends in individual aerosol species are imposed. Sulphur dioxide (SD) emissions are shown to impact rainfall more strongly than black carbon (BC) aerosols, causing reduced rainfall especially over northern India. Significant perturbations due to BC are not noted until its emissions are scaled up in a sensitivity test, resulting in rainfall increases over northern India due to the Elevated Heat Pump mechanism, enhancing convection during the premonsoon and bringing forward the monsoon onset. Secondly, the impact of anthropogenic aerosols is compared to that of increasing greenhouse-gas concentrations and observed sea-surface temperature (SST) warming. The tropospheric temperature gradient driving the monsoon shows weakening when forced by either SD or imposed SST trends. However the observed SST trend is dominated by warming in the deep tropics; when the component of SST trend related to aerosol emissions is removed, further warming is found in the extratropical northern hemisphere that tends to offset monsoon weakening. This suggests caution is needed when using SST forcing as a proxy for greenhouse warming. Finally, aerosol emissions are decomposed into those from the Indian region and those elsewhere, in pairs of experiments with SD and BC. Both local and remote aerosol emissions are found to lead to rainfall changes over India; for SD, remote aerosols contribute around 75% of the rainfall decrease over India, while for BC the remote forcing is even more dominant.
Local and remote impacts of aerosol species on Indian summer monsoon rainfall in a GCM
NASA Astrophysics Data System (ADS)
Guo, Liang; Turner, Andrew; Highwood, Eleanor
2016-04-01
The HadGEM2 AGCM is used to determine the most important anthropogenic aerosols in the Indian monsoon using experiments in which observed trends in individual aerosol species are imposed. Sulphur dioxide (SD) emissions are shown to impact rainfall more strongly than black carbon (BC) aerosols, causing reduced rainfall especially over northern India. Significant perturbations due to BC are not noted until its emissions are scaled up in a sensitivity test, in which rainfall increases over northern India as a result of the Elevated Heat Pump mechanism, enhancing convection during the pre-monsoon and bringing forward the monsoon onset. Secondly, the impact of anthropogenic aerosols is compared to that of increasing greenhouse-gas concentrations and observed sea-surface temperature (SST) warming. The tropospheric temperature gradient driving the monsoon shows weakening when forced by either SD or imposed SST trends. However the observed SST trend is dominated by warming in the deep tropics; when the component of SST trend related to aerosol emissions is removed, further warming is found in the extratropical northern hemisphere that tends to offset monsoon weakening. This suggests caution is needed when using SST forcing as a proxy for greenhouse warming. Finally, aerosol emissions are decomposed into those from the Indian region and those elsewhere, in pairs of experiments with SD and BC. Both local and remote aerosol emissions are found to lead to rainfall changes over India; for SD, remote aerosols contribute around 75% of the rainfall decrease over India, while for BC the remote forcing is even more dominant.
NASA Technical Reports Server (NTRS)
Iguchi, Takamichi; Tao, Wei-Kuo; Wu, Di; Peters-Lidard, Christa; Santanello, Joseph A.; Kemp, Eric; Tian, Yudong; Case, Jonathan; Wang, Weile; Ferraro, Robert;
2017-01-01
This study investigates the sensitivity of daily rainfall rates in regional seasonal simulations over the contiguous United States (CONUS) to different cumulus parameterization schemes. Daily rainfall fields were simulated at 24-km resolution using the NASA-Unified Weather Research and Forecasting (NU-WRF) Model for June-August 2000. Four cumulus parameterization schemes and two options for shallow cumulus components in a specific scheme were tested. The spread in the domain-mean rainfall rates across the parameterization schemes was generally consistent between the entire CONUS and most subregions. The selection of the shallow cumulus component in a specific scheme had more impact than that of the four cumulus parameterization schemes. Regional variability in the performance of each scheme was assessed by calculating optimally weighted ensembles that minimize full root-mean-square errors against reference datasets. The spatial pattern of the seasonally averaged rainfall was insensitive to the selection of cumulus parameterization over mountainous regions because of the topographical pattern constraint, so that the simulation errors were mostly attributed to the overall bias there. In contrast, the spatial patterns over the Great Plains regions as well as the temporal variation over most parts of the CONUS were relatively sensitive to cumulus parameterization selection. Overall, adopting a single simulation result was preferable to generating a better ensemble for the seasonally averaged daily rainfall simulation, as long as their overall biases had the same positive or negative sign. However, an ensemble of multiple simulation results was more effective in reducing errors in the case of also considering temporal variation.
Spatial and temporal resolution effects on urban catchments with different imperviousness degrees
NASA Astrophysics Data System (ADS)
Cristiano, Elena; ten Veldhuis, Marie-Claire; van de Giesen, Nick C.
2015-04-01
One of the main problems in urban hydrological analysis is to measure the rainfall at urban scale with high resolution and use these measurements to model urban runoff processes to predict flows and reduce flood risk. With the aim of building a semi-distribute hydrological sewer model for an urban catchment, high resolution rainfall data are required as input. In this study, the sensitivity of hydrological response to high resolution precipitation data for hydrodynamic models at urban scale is evaluated with different combinations of spatial and temporal resolutions. The aim is to study sensitivity in relation to catchment characteristics, especially drainage area size, imperviousness degree and hydraulic properties such as special structures (weirs, pumping stations). Rainfall data of nine storms are considered with 4 different spatial resolutions (3000m, 1000m, 500m and 100m) combined with 4 different temporal resolutions (10min, 5min, 3min and 1min). The dual polarimetric X-band weather radar, located in the Cabauw Experimental Site for Atmospheric Research (CESAR) provided the high resolution rainfall data of these rainfall events, used to improve the sewer model. The effects of spatial-temporal rainfall input resolution on response is studied in three Districts of Rotterdam (NL): Kralingen, Spaanse Polder and Centrum district. These catchments have different average drainage area size (from 2km2 to 7km2), and different general characteristics. Centrum district and Kralingen are, indeed, more various and include residential and commercial areas, big green areas and a small industrial area, while Spaanse Polder is a industrial area, densely urbanized, and presents a high percentage of imperviousness.
Nenadis, Nikolaos; Llorens, Laura; Koufogianni, Agathi; Díaz, Laura; Font, Joan; Gonzalez, Josep Abel; Verdaguer, Dolors
2015-12-01
The effects of UV radiation and rainfall reduction on the seasonal leaf phenolic content/composition and antioxidant activity of the Mediterranean shrub Arbutus unedo were studied. Naturally growing plants of A. unedo were submitted to 97% UV-B reduction (UVA), 95% UV-A+UV-B reduction (UV0) or near-ambient UV levels (UVBA) under two precipitation regimes (natural rainfall or 10-30% rainfall reduction). Total phenol, flavonol and flavanol contents, levels of eight phenols and antioxidant activity [DPPH(●) radical scavenging and Cu (II) reducing capacity] were measured in sun-exposed leaves at the end of four consecutive seasons. Results showed a significant seasonal variation in the leaf content of phenols of A. unedo, with the lowest values found in spring and the highest in autumn and/or winter. Leaf ontogenetic development and/or a possible effect of low temperatures in autumn/winter may account for such findings. Regardless of the watering regime and the sampling date, plant exposure to UV-B radiation decreased the total flavanol content of leaves, while it increased the leaf content in quercitrin (the most abundant quercetin derivative identified). By contrast, UV-A radiation increased the leaf content of theogallin, a gallic acid derivative. Other phenolic compounds (two quercetin derivatives, one of them being avicularin, and one kaempferol derivative, juglanin), as well as the antioxidant activity of the leaves, showed different responses to UV radiation depending on the precipitation regime. Surprisingly, reduced rainfall significantly decreased the total amount of quantified quercetin derivatives as well as the DPPH scavenging activity in A. unedo leaves. To conclude, present findings indicate that leaves of A. unedo can be a good source of antioxidants throughout the year, but especially in autumn and winter. Copyright © 2015 Elsevier B.V. All rights reserved.
Engott, John A.; Vana, Thomas T.
2007-01-01
Concern surrounding declines in ground-water levels and an increase in the chloride concentration of water pumped from wells in the Iao aquifer system on the Island of Maui has prompted an investigation into the long-term sustainability of current (2006) and future ground-water withdrawals. As part of this investigation, a water budget for central and west Maui was calculated from which (1) ground-water recharge was estimated for the period 1926-2004 and (2) the effects of agricultural land-use changes and drought were analyzed. Estimated mean ground-water recharge decreased 44 percent from 1979 to 2004 in central and west Maui. Reduction in agricultural irrigation, resulting from more efficient irrigation methods and a reduction in the acreage used for agriculture, is largely responsible for the declining recharge. Recently, periods of lower-than-average rainfall have further reduced recharge. During the period 1926-79, ground-water recharge averaged 693 Mgal/d, irrigation averaged 437 Mgal/d, and rainfall averaged 897 Mgal/d. During the period 2000-04, ground-water recharge averaged 391 Mgal/d, irrigation averaged 237 Mgal/d, and rainfall averaged 796 Mgal/d. Simulations of hypothetical future conditions indicate that a cessation of agriculture in central and west Maui would reduce mean ground-water recharge by 18 percent in comparison with current conditions, assuming that current climatic conditions are the same as the long-term-average conditions during the period 1926-2004. A period of drought identical to that of 1998-2002 would reduce mean recharge by 27 percent. Mean recharge would decrease by 46 percent if this drought were to occur after a cessation of agriculture in central and western Maui. Whereas droughts are transient phenomena, a reduction in agricultural irrigation is likely a permanent condition.
NASA Astrophysics Data System (ADS)
Gill, R. A.; Campbell, C. S.; McQueen, S.; Isupov, T.; Walker, B. J.
2011-12-01
Forecasts predict that precipitation regimes in the western US will become more variable, with dry periods becoming more frequent and with individual rainfall events becoming more extreme. In water-limited ecosystems, increased event size may reduce soil moisture stress and increase net primary production (NPP), N mineralization (Nmin), and soil water content (Θ) and potential (Ψ). In more mesic systems, the increased time between rain events may increase soil moisture stress and reduce NPP, Nmin, Θ, and Ψ. To test this hypothesis, we experimentally altered the timing and size of rainfall events and reduced ambient rainfall during the growing season for xeric, low-elevation sites and mesic high-elevation sites. Research was conducted at the Great Basin Experimental Range in Ephraim Canyon, UT, USA. The experimental treatments were (1) ambient rain, (2) 30% reduction in ambient rain, (3) 70% reduction in ambient rain, (4) reapplication of ambient rain weekly, and (5) reapplication of ambient rain every 3 weeks. During this 3-year experiment (2009-2011), we monitored soil temperature and Θ, leaf area index and NDVI, N-mineralization, soil respiration, and aboveground NPP. We calculated Ψ using soil moisture release curves. To increase the temporal scope of our results we used the DAY-CENT ecosystem model to simulate century-long impacts of precipitation changes. We found production increased with larger, less-frequent precipitation events for both our xeric and mesic sites. Large rainfall events increased the duration of production where Ψ is more negative than critical water thresholds. There were no significant changes in N-availability with altered precipitation, but the modeling results suggest that drought is a much stronger control over N-availability than precipitation timing. Our results demonstrate that both xeric and mesic systems are highly sensitive to the timing and amount of precipitation.
Remote Sensing and Capacity Building to Improve Food Security
NASA Astrophysics Data System (ADS)
Husak, G. J.; Funk, C. C.; Verdin, J. P.; Rowland, J.; Budde, M. E.
2012-12-01
The Famine Early Warning Systems Network (FEWS NET) is a U.S. Agency for International Development (USAID) supported project designed to monitor and anticipate food insecurity in the developing world, primarily Africa, Central America, the Caribbean and Central Asia. This is done through a network of partners involving U.S. government agencies, universities, country representatives, and partner institutions. This presentation will focus on the remotely sensed data used in FEWS NET activities and capacity building efforts designed to expand and enhance the use of FEWS NET tools and techniques. Remotely sensed data are of particular value in the developing world, where ground data networks and data reporting are limited. FEWS NET uses satellite based rainfall and vegetation greenness measures to monitor and assess food production conditions. Satellite rainfall estimates also drive crop models which are used in determining yield potential. Recent FEWS NET products also include estimates of actual evapotranspiration. Efforts are currently underway to assimilate these products into a single tool which would indicate areas experiencing abnormal conditions with implications for food production. FEWS NET is also involved in a number of capacity building activities. Two primary examples are the development of software and training of institutional partners in basic GIS and remote sensing. Software designed to incorporate rainfall station data with existing satellite-derived rainfall estimates gives users the ability to enhance satellite rainfall estimates or long-term means, resulting in gridded fields of rainfall that better reflect ground conditions. Further, this software includes a crop water balance model driven by the improved rainfall estimates. Finally, crop parameters, such as the planting date or length of growing period, can be adjusted by users to tailor the crop model to actual conditions. Training workshops in the use of this software, as well as basic GIS and remote sensing tools, are routinely conducted by FEWS NET representatives at host country meteorological and agricultural services. These institutions are then able to produce information that can more accurately inform food security decision making. Informed decision making reduces the risk associated with a given hazard. In the case of FEWS NET, this involves identification of shocks to food availability, allowing for the pre-positioning of aid to be available when a hazard strikes. Developing tools to incorporate better information in food production estimates and working closely with local staff trained in state-of-the-practice techniques results in a more informed decision making process, reducing the impacts of food security hazards.
Hydrological modelling in sandstone rocks watershed
NASA Astrophysics Data System (ADS)
Ponížilová, Iva; Unucka, Jan
2015-04-01
The contribution is focused on the modelling of surface and subsurface runoff in the Ploučnice basin. The used rainfall-runoff model is HEC-HMS comprising of the method of SCS CN curves and a recession method. The geological subsurface consisting of sandstone is characterised by reduced surface runoff and, on the contrary, it contributes to subsurface runoff. The aim of this paper is comparison of the rate of influence of sandstone on reducing surface runoff. The recession method for subsurface runoff was used to determine the subsurface runoff. The HEC-HMS model allows semi- and fully distributed approaches to schematisation of the watershed and rainfall situations. To determine the volume of runoff the method of SCS CN curves is used, which results depend on hydrological conditions of the soils. The rainfall-runoff model assuming selection of so-called methods of event of the SCS-CN type is used to determine the hydrograph and peak flow rate based on simulation of surface runoff in precipitation exceeding the infiltration capacity of the soil. The recession method is used to solve the baseflow (subsurface) runoff. The method is based on the separation of hydrograph to direct runoff and subsurface or baseflow runoff. The study area for the simulation of runoff using the method of SCS CN curves to determine the hydrological transformation is the Ploučnice basin. The Ploučnice is a hydrologically significant river in the northern part of the Czech Republic, it is a right tributary of the Elbe river with a total basin area of 1.194 km2. The average value of CN curves for the Ploučnice basin is 72. The geological structure of the Ploučnice basin is predominantly formed by Mesozoic sandstone. Despite significant initial loss of rainfall the basin response to the causal rainfall was demonstrated by a rapid rise of the surface runoff from the watershed and reached culmination flow. Basically, only surface runoff occures in the catchment during the initial phase of this extreme event. The increase of the baseflow runoff is slower and remains constant after reaching a certain level. The rise of the baseflow runoff is showed in a descending part of the hydrograph. The recession method in this case shows almost 20 hours delay. Results from the HEC-HMS prove availability of both methods for the runoff modeling in this type of catchment. When simulating extreme short-term rainfall-runoff episodes, the influence of geological subsurface is not significant, but it is manifested. Using more relevant rainfall events would bring more satisfactory results.
Effect of heavy rain to the total received power
NASA Technical Reports Server (NTRS)
Iguchi, Toshio
1994-01-01
If the average power at the receiver is substantially reduced by heavy rain, the AGC (automatic gain control) circuit of the rain gauge will try to compensate this reduction by increasing the gain. If this happens, then the pulses created by rain drops are amplified more than they should be and the rainfall rate may be overestimated. If the effective diameter (blocking efficiency) of a particle is 2 mm and if the beam width is 2 cm, each particle will reduce the received power by 10 percent when it crosses the beam. Since the beam is blocked by water drops 75 percent of the total time according to the above calculation, the total received power may be reduced by 7.5 percent. To compensate this reduction to the reference value, the gain of amplifier will be increased by 8.1 percent. This increase of gain will increase all pulse sizes by the same fraction and result in the overestimate of the rainfall rate.
NASA Astrophysics Data System (ADS)
Power, Clare
Available from UMI in association with The British Library. The material presented in this thesis takes the form of a series of discrete, but inter-related projects on subjects related to the use of satellite remote sensing techniques for selected applications in the fields of cloud, rainfall, vegetation and food production monitoring and assessment. Detailed literature reviews have been carried out on remote sensing techniques in these fields, in particular, for rainfall monitoring and the development of systems for food crop prediction from various rainfall, vegetation and crop monitoring algorithms. The second part of the thesis is devoted to a series of practical projects using five different and contrasting satellite rainfall monitoring techniques using visible and/or infrared imagery, three applied over the Sultanate of Oman and two over West Africa. The case studies applied over the Sultanate of Oman show a range of techniques from manual nephanalyses of Potential Rain Clouds and the derivation of a 20 year record of Tropical Cyclone tracks over the Arabian Sea, to the manual Bristol rainfall monitoring technique and its human-machine interactive successor BIAS, which are applicable to the analysis of short term extreme rainfall events. The remaining two techniques were developed simultaneously over West Africa. The first, namely, PERMIT (the Polar-orbiter Effective Rainfall Monitoring Technique), was developed by the Author, and the second, ADMIT (Agricultural Drought Monitoring Integrated Technique), by a colleague, Giles D'Souza. The development, testing on data from July and August 1985 and July 1986, and subsequent modification of the PERMIT technique is described. The 1986 Case Study results have been compared with the ADMIT results from the same data set, as part of a project funded by FAO to compare the performance of four Meteosat rainfall monitoring techniques (Snijders 1988). PERMIT was designed to be an economic, (in terms of satellite data and computer processing needs), automatic rainfall estimation technique suitable for use in environments where computer facilities are limited. Finally the PERMIT rainfall products have been compared with contemporaneous NOAA AVHRR Normalised Vegetation Index monthly composites. The relationships observed between these two satellite-derived products may contribute to the future development of a simple, low cost crop prediction scheme for developing countries. The main conclusion drawn from this research is that there is an urgent need for simple but effective rainfall and vegetation monitoring systems such as PERMIT, to be implemented operationally on low cost portable microcomputer systems which are readily installed in Developing Countries, where effective monitoring of such environmental elements can provide early warnings and reduce the impacts of drought inflicted famine disasters.
NASA Astrophysics Data System (ADS)
Chen, Jie
2017-04-01
More frequent droughts and storms will occur globally in the prediction of global climate change model, which will influence soil microorganisms and nutrient cycles. Understanding the resistance of soil functional microorganisms and the associated biogeochemical cycles to such climate changes is important in evaluating responses of ecosystem functioning. In order to clarify the responses of soil functional microorganisms involved in nitrogen (N) cycle to the predicted precipitation scenarios, two contrasting precipitation manipulation experiments were conducted in an acidic subtropical forest soil. One experiment manipulated drier dry-season and wetter wet-season (DD) by reducing dry-season rainfall and adding the equivalently reduced rainfall to wet-season. Another experiment manipulated extending dry-season and wetter wet-season (ED) by reducing spring-season rainfall and adding the equivalent rainfall in the late wet-season. The resistance index of ammonia-oxidizing archaea (AOA) amoA and denitrifying (nirK, nirS and nosZ) genes abundance, soil net N mineralization and nitrification rates were calculated during experiments to examine their responses to precipitation changes. As the results, the resistance index of functional microbial abundance (-0.03 ± 0.08) was much lower than that of net N transformation rates (0.55 ± 0.02), indicating more sensitive of functional microorganisms in response to precipitation changes than the related N processes. Extending dry-season showed greater effects on both AOA amoA and denitrifying genes abundance than drier dry-season, with significant increases of these microbial abundance after extending dry-season. This was mainly due to the interaction effects of soil water content (SWC), dissolve organic carbon (DOC) and NH4+ concentration during rainfall reduction in spring-season. Interestingly, the resistance index of AOA amoA abundance was significantly higher than that of denitrifying gene abundance, indicating more resistant of AOA to precipitation changes. This was mainly because AOA have higher resource utilization efficiency and can acclimate to environmental changes more rapidly than denitrifiers, as indicated by less effects of N, C substrates and SWC on the resistance index of AOA abundance. This study demonstrated substantial disturbance of drier spring-season to soil nitrifying and denitrifying microorganisms, and greater stability of AOA community abundance in resistant to such disturbance.
Rainfall changes affect the algae dominance in tank bromeliad ecosystems.
Pires, Aliny Patricia Flauzino; Leal, Juliana da Silva; Peeters, Edwin T H M
2017-01-01
Climate change and biodiversity loss have been reported as major disturbances in the biosphere which can trigger changes in the structure and functioning of natural ecosystems. Nonetheless, empirical studies demonstrating how both factors interact to affect shifts in aquatic ecosystems are still unexplored. Here, we experimentally test how changes in rainfall distribution and litter diversity affect the occurrence of the algae-dominated condition in tank bromeliad ecosystems. Tank bromeliads are miniature aquatic ecosystems shaped by the rainwater and allochthonous detritus accumulated in the bases of their leaves. Here, we demonstrated that changes in the rainfall distribution were able to reduce the chlorophyll-a concentration in the water of bromeliad tanks affecting significantly the occurrence of algae-dominated conditions. On the other hand, litter diversity did not affect the algae dominance irrespective to the rainfall scenario. We suggest that rainfall changes may compromise important self-reinforcing mechanisms responsible for maintaining high levels of algae on tank bromeliads ecosystems. We summarized these results into a theoretical model which suggests that tank bromeliads may show two different regimes, determined by the bromeliad ability in taking up nutrients from the water and by the total amount of light entering the tank. We concluded that predicted climate changes might promote regime shifts in tropical aquatic ecosystems by shaping their structure and the relative importance of other regulating factors.
NASA Astrophysics Data System (ADS)
Fishman, R.
2013-12-01
Most studies of the impact of climate change on agriculture account for shifts in temperature and total seasonal (or monthly) precipitation. However, climate change is also projected to increase intra-seasonal precipitation variability in many parts of the world. To provide first estimates of the potential impact, I paired daily rainfall and rice yield data during the period 1970-2004, from across India, where about a fifth of the world's rice is produced, and yields have always been highly dependent on the erratic monsoon rainfall. Multivariate regression models revealed that the number of rainless days during the wet season has a statistically robust negative impact on rice yields that exceeds that of total seasonal rainfall. Moreover, a simulation of climate change impacts found that the negative impact of the projected increase in the number of rainless days will trump the positive impact of the projected increase in total precipitation, and reverse the net precipitation effect on rice production from positive (+3%) to negative (-10%). The results also indicate that higher irrigation coverage is correlated with reduced sensitivity to rainfall variability, suggesting the expansion of irrigation can effectively adapt agriculture to these climate change impacts. However, taking into account limitations on water resource availability in India, I calculate that under current irrigation practices, sustainable use of water can mitigate less than a tenth of the impact.
Application of geotechnical and geophysical field measurements in an active alpine environment
NASA Astrophysics Data System (ADS)
Lucas, D. R.; Fankhauser, K.; Springman, S. M.
2015-09-01
Rainfall can trigger landslides, rockfalls and debris flow events. When rainfall infiltrates into the soil, the suction (if there is any) is reduced, until positive water pressure can be developed, decreasing the effective stresses and leading to a potential failure. A challenging site for the study of mass movement is the Meretschibach catchment, a location in the Swiss Alps in the vicinity of Agarn, Canton of Valais. To study the effect of rainfall on slope stabilities, the soil characterization provides valuable insight on soil properties, necessary to establish a realistic ground model. This model, together with an effective long term-field monitoring, deliver the essential information and boundary conditions for predicting and validating rainfall- induced slope instabilities using numerical and physical modelling. Geotechnical monitoring, including soil temperature and volumetric water content measurements, has been performed on the study site together with geophysical measurements (ERT) to study the effect of rainfall on the (potential) triggering of landslides on a scree slope composed of a surficial layer of gravelly soil. These techniques were combined to provide information on the soil characteristics and depth to the bedrock. Seasonal changes of precipitation and temperature were reflected in corresponding trends in all measurements. A comparison of volumetric water content records was obtained from decagons, time domain reflectometry (TDR) and electrical resistivity tomography (ERT) conducted throughout the spring and summer months of 2014, yielding a reasonable agreement.
Rainfall changes affect the algae dominance in tank bromeliad ecosystems
Pires, Aliny Patricia Flauzino; Leal, Juliana da Silva; Peeters, Edwin T. H. M.
2017-01-01
Climate change and biodiversity loss have been reported as major disturbances in the biosphere which can trigger changes in the structure and functioning of natural ecosystems. Nonetheless, empirical studies demonstrating how both factors interact to affect shifts in aquatic ecosystems are still unexplored. Here, we experimentally test how changes in rainfall distribution and litter diversity affect the occurrence of the algae-dominated condition in tank bromeliad ecosystems. Tank bromeliads are miniature aquatic ecosystems shaped by the rainwater and allochthonous detritus accumulated in the bases of their leaves. Here, we demonstrated that changes in the rainfall distribution were able to reduce the chlorophyll-a concentration in the water of bromeliad tanks affecting significantly the occurrence of algae-dominated conditions. On the other hand, litter diversity did not affect the algae dominance irrespective to the rainfall scenario. We suggest that rainfall changes may compromise important self-reinforcing mechanisms responsible for maintaining high levels of algae on tank bromeliads ecosystems. We summarized these results into a theoretical model which suggests that tank bromeliads may show two different regimes, determined by the bromeliad ability in taking up nutrients from the water and by the total amount of light entering the tank. We concluded that predicted climate changes might promote regime shifts in tropical aquatic ecosystems by shaping their structure and the relative importance of other regulating factors. PMID:28422988
Spot Spraying Reduces Herbicide Concentrations in Runoff.
Melland, Alice R; Silburn, D Mark; McHugh, Allen D; Fillols, Emilie; Rojas-Ponce, Samuel; Baillie, Craig; Lewis, Stephen
2016-05-25
Rainfall simulator trials were conducted on sugar cane paddocks across dry-tropical and subtropical Queensland, Australia, to examine the potential for spot spraying to reduce herbicide losses in runoff. Recommended rates of the herbicides glyphosate, 2,4-D, fluoroxypyr, atrazine, and diuron were sprayed onto 0, 20, 40, 50, 70, or 100% of the area of runoff plots. Simulated rainfall was applied 2 days after spraying to induce runoff at one plant cane and three ratoon crop sites. Over 50% of all herbicides were transported in the dissolved phase of runoff, regardless of the herbicide's sediment-water partition coefficient. For most sites and herbicides, runoff herbicide concentrations decreased with decreasing spray coverage and with decreasing herbicide load in the soil and cane residues. Importantly, sites with higher infiltration prior to runoff and lower total runoff had lower runoff herbicide concentrations.
Weather conditions and voter turnout in Dutch national parliament elections, 1971-2010.
Eisinga, Rob; Te Grotenhuis, Manfred; Pelzer, Ben
2012-07-01
While conventional wisdom assumes that inclement weather on election day reduces voter turnout, there is remarkably little evidence available to support truth to such belief. This paper examines the effects of temperature, sunshine duration and rainfall on voter turnout in 13 Dutch national parliament elections held from 1971 to 2010. It merges the election results from over 400 municipalities with election-day weather data drawn from the nearest weather station. We find that the weather parameters indeed affect voter turnout. Election-day rainfall of roughly 25 mm (1 inch) reduces turnout by a rate of one percent, whereas a 10-degree-Celsius increase in temperature correlates with an increase of almost one percent in overall turnout. One hundred percent sunshine corresponds to a one and a half percent greater voter turnout compared to zero sunshine.
NASA Astrophysics Data System (ADS)
Chang, W.; Wang, J.; Marohnic, J.; Kotamarthi, V. R.; Moyer, E. J.
2017-12-01
We use a novel rainstorm identification and tracking algorithm (Chang et al 2016) to evaluate the effects of using resolved convection on improving how faithfully high-resolution regional simulations capture precipitation characteristics. The identification and tracking algorithm allocates all precipitation to individual rainstorms, including low-intensity events with complicated features, and allows us to decompose changes or biases in total mean precipitation into their causes: event size, intensity, number, and duration. It allows lower threshold for tracking so captures nearly all rainfall and improves tracking, so that events that are clearly meteorologically related are tracked across lifespans up to days. We evaluate a series of dynamically downscaled simulations of the summertime United States at 12 and 4 km under different model configurations, and find that resolved convection offers the largest gains in reducing biases in precipitation characteristics, especially in event size. Simulations with parametrized convection produce event sizes 80-220% too large in extent; with resolved convection the bias is reduced to 30%. The identification and tracking algorithm also allows us to demonstrate that the diurnal cycle in rainfall stems not from temporal variation in the production of new events but from diurnal fluctuations in rainfall from existing events. We show further hat model errors in the diurnal cycle biases are best represented as additive offsets that differ by time of day, and again that convection-permitting simulations are most efficient in reducing these additive biases.