Sample records for reducing dislocation rate

  1. Reducing the rate of early primary hip dislocation by combining a change in surgical technique and an increase in femoral head diameter to 36 mm.

    PubMed

    Ho, Ki Wai Kevin; Whitwell, George S; Young, Steve K

    2012-07-01

    We report how changes to our total hip arthroplasty (THA) surgical practise lead to a decrease in early hip dislocation rates. Group B consisted of 421 consecutive primary THA operations performed via a posterior approach. The operative technique included a meticulous repair of the posterior capsule, alignment of the acetabular cup with the transverse acetabular ligament (TAL) and a 36-mm-diameter femoral head. We compared the dislocation rates and cost implications of this technique to a historical control Group A consisting of 389 patients. The control group had their THA performed with no repair of the capsule, no identification of the TAL and all received a 28-mm-diameter head. Our primary outcome is the rate of early hip dislocation and we hypothesised that we can reduce the rate of early hip dislocation with this new regime. In Group B there were no early dislocations (within 6 months) and two (0.5 %) dislocations within 18 months; minimum follow-up time was 18 months with a range of (18-96 months). This compared to a 1.8 % early dislocation rate and a 2.6 % rate at 18 months in Group A; minimum follow-up time was 60 months with a range of (60-112 months). These results were statistically significant (p = 0.006). We suggest that when primary hip arthroplasty is performed through a posterior approach, a low early dislocation rate can be achieved using the described methods.

  2. Systematic Review and Meta-Analysis of Avascular Necrosis and Posttraumatic Arthritis After Traumatic Hip Dislocation.

    PubMed

    Kellam, Patrick; Ostrum, Robert F

    2016-01-01

    To determine the incidence rate and associative factors for the development of avascular necrosis (AVN) and posttraumatic arthritis (PTA) after traumatic hip dislocation and time to reduction. A comprehensive search of databases including PubMed, Cochrane Database, and Embase through April 2014 for English articles reporting complications of AVN and PTA after hip dislocation was performed. Inclusion criteria were English-only studies, a patient population of adults, study outcomes of AVN and/or PTA reported, and articles reported at least type I dislocations. Two authors independently extracted data from the selected studies and the data collected were compared to verify agreement. Random-effects models were used for meta-analysis. The overall event rate of AVN and PTA was calculated and stratified based on Thompson-Epstein of the hip dislocation. Odds ratios were calculated for those articles that reported rates of AVN based on time to reduction. For anterior dislocations, the event rate for AVN ranged from 0.087 to 0.333, whereas the event rate for PTA ranged from 0.125 to 0.700. Analysis of posterior dislocations revealed that the event rate for AVN ranged from 0.106 to 0.430; additionally, the event rate for PTA ranged from 0.194 to 0.586. For posterior hip dislocations and type I and II anterior dislocations, the severity of the injury correlates with an increase in the development of AVN and PTA. The odds ratio of AVN for those hip dislocations reduced after 12 hours versus those reduced before 12 hours was 5.627. Prognostic Level IV. See Instructions for Authors for a complete description of levels of evidence.

  3. Dual Mobility Cemented Cups Have Low Dislocation Rates in THA Revisions

    PubMed Central

    Langlais, Frantz L.; Gaucher, François; Musset, Thierry; Chaix, Olivier

    2008-01-01

    THA revisions using standard cups are at risk of dislocation (5.1% to 14.4% incidence), especially in patients over 70 years of age. Constrained tripolar cups have reduced this risk (6% incidence) but are associated with substantial loosening rates (9%). The nonconstrained dual mobility cup was designed to improve prosthetic stability (polyethylene head ≥ 40 mm diameter) without increasing loosening rates by reducing wear and limiting impingement (rotation range of 108°). We implanted 88 cemented dual mobility cups for THA revisions in 82 patients at high risk of dislocation. Average patient age was 72 years (range, 65–86 years). Eighty-five of the 88 hips were reviewed at 2 to 5 years followup. One patient (1.1%) had a traumatic dislocation at 2 years postoperatively. Two patients (2.3%) had asymptomatic early loosening and three patients (3.5%) had localized radiographic lucencies. These results confirm those with press-fit dual mobility cups suggesting a low dislocation rate at 5 years and a cup survival of 94.6%. At middle term followup, cemented dual mobility cup achieved better results than constrained cups in cases at risk of dislocation and recurrent loosening. Level of Evidence: Level IV, therapeutic study. See the Guidelines for Authors for a complete description of levels of evidence. PMID:18196422

  4. Immobilization in External Rotation Versus Internal Rotation After Primary Anterior Shoulder Dislocation: A Meta-analysis of Randomized Controlled Trials.

    PubMed

    Whelan, Daniel B; Kletke, Stephanie N; Schemitsch, Geoffrey; Chahal, Jaskarndip

    2016-02-01

    The recurrence rate after primary anterior shoulder dislocation is high, especially in young, active individuals. Recent studies have suggested external rotation immobilization as a method to reduce the rate of recurrent shoulder dislocation in comparison to traditional sling immobilization. To assess and summarize evidence from randomized controlled trials on the effect of internal rotation versus external rotation immobilization on the rate of recurrence after primary anterior shoulder dislocation. Meta-analysis. PubMed, MEDLINE, EMBASE, the Cochrane Central Register of Controlled Trials, and abstracts from recent proceedings were searched for eligible studies. Two reviewers selected studies for inclusion, assessed methodological quality, and extracted data. Six randomized controlled trials (632 patients) were included in this review. Demographic and prognostic variables measured at baseline were similar in the pooled groups. The average age was 30.1 years in the pooled external rotation group and 30.3 years in the pooled internal rotation group. Two studies found that external rotation immobilization reduced the rate of recurrence after initial anterior shoulder dislocation compared with conventional internal rotation immobilization, whereas 4 studies failed to find a significant difference between the 2 groups. This meta-analysis suggested no overall significant difference in the rate of recurrence among patients treated with internal rotation versus external rotation immobilization (risk ratio, 0.69; 95% CI, 0.42-1.14; P = .15). There was no significant difference in the rate of compliance between internal and external rotation immobilization (P = .43). The Western Ontario Shoulder Instability Index scores were pooled across 3 studies, and there was no significant difference between the 2 groups (P = .54). Immobilization in external rotation is not significantly more effective in reducing the recurrence rate after primary anterior shoulder dislocation than immobilization in internal rotation. Additionally, this review suggests that there is minimal difference in patients' perceptions of their health-related quality of life after immobilization in internal versus external rotation. © 2015 The Author(s).

  5. Method of euthanasia influences the oocyte fertilization rate with fresh mouse sperm.

    PubMed

    Hazzard, Karen C; Watkins-Chow, Dawn E; Garrett, Lisa J

    2014-11-01

    In vitro fertilization (IVF) is used to produce mouse embryos for a variety of reasons. We evaluated the effect of the method of euthanasia on the fertilization rate in 2 different IVF protocols. Oocytes collected from C57BL/6J female mice euthanized by CO2 inhalation or cervical dislocation were used in IVF with fresh sperm from either wild-type or genetically engineered C57BL/6J. Compared with CO2 inhalation, cervical dislocation improved the resulting rate of fertilization by 18% in an IVF method using Cook media and by 13% in an IVF method using methyl-B cyclodextrin and reduced glutathione. The lower fertilization rate due to euthanasia by CO2 inhalation was accompanied by changes in blood pH and body temperature despite efforts to minimize temperature drops. In our hands, euthanasia by cervical dislocation improved fertilization rates and consequently reduced the number of egg-donor mice required.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Thao; Luscher, D. J.; Wilkerson, J. W.

    We developed a framework for dislocation-based viscoplasticity and dynamic ductile failure to model high strain rate deformation and damage in single crystals. The rate-dependence of the crystal plasticity formulation is based on the physics of relativistic dislocation kinetics suited for extremely high strain rates. The damage evolution is based on the dynamics of void growth, which are governed by both micro-inertia as well as dislocation kinetics and dislocation substructure evolution. Furthermore, an averaging scheme is proposed in order to approximate the evolution of the dislocation substructure in both the macroscale as well as its spatial distribution at the microscale. Inmore » addition, a concept of a single equivalent dislocation density that effectively captures the collective influence of dislocation density on all active slip systems is proposed here. Together, these concepts and approximations enable the use of semi-analytic solutions for void growth dynamics developed in [J. Wilkerson and K. Ramesh. A dynamic void growth model governed by dislocation kinetics. J. Mech. Phys. Solids, 70:262–280, 2014.], which greatly reduce the computational overhead that would otherwise be required. The resulting homogenized framework has been implemented into a commercially available finite element package, and a validation study against a suite of direct numerical simulations was carried out.« less

  7. A dislocation-based crystal plasticity framework for dynamic ductile failure of single crystals

    NASA Astrophysics Data System (ADS)

    Nguyen, Thao; Luscher, D. J.; Wilkerson, J. W.

    2017-11-01

    A framework for dislocation-based viscoplasticity and dynamic ductile failure has been developed to model high strain rate deformation and damage in single crystals. The rate-dependence of the crystal plasticity formulation is based on the physics of relativistic dislocation kinetics suited for extremely high strain rates. The damage evolution is based on the dynamics of void growth, which are governed by both micro-inertia as well as dislocation kinetics and dislocation substructure evolution. An averaging scheme is proposed in order to approximate the evolution of the dislocation substructure in both the macroscale as well as its spatial distribution at the microscale. Additionally, a concept of a single equivalent dislocation density that effectively captures the collective influence of dislocation density on all active slip systems is proposed here. Together, these concepts and approximations enable the use of semi-analytic solutions for void growth dynamics developed in (Wilkerson and Ramesh, 2014), which greatly reduce the computational overhead that would otherwise be required. The resulting homogenized framework has been implemented into a commercially available finite element package, and a validation study against a suite of direct numerical simulations was carried out.

  8. Effect of femoral head size and surgical approach on risk of revision for dislocation after total hip arthroplasty

    PubMed Central

    Zijlstra, Wierd P; De Hartog, Bas; Van Steenbergen, Liza N; Scheurs, B Willem; Nelissen, Rob G H H

    2017-01-01

    Background and purpose Recurrent dislocation is the commonest cause of early revision of a total hip arthropasty (THA). We examined the effect of femoral head size and surgical approach on revision rate for dislocation, and for other reasons, after total hip arthroplasty (THA). Patients and methods We analyzed data on 166,231 primary THAs and 3,754 subsequent revision THAs performed between 2007 and 2015, registered in the Dutch Arthroplasty Register (LROI). Revision rate for dislocation, and for all other causes, were calculated by competing-risk analysis at 6-year follow-up. Multivariable Cox proportional hazard regression ratios (HRs) were used for comparisons. Results Posterolateral approach was associated with higher dislocation revision risk (HR =1) than straight lateral, anterolateral, and anterior approaches (HR =0.5–0.6). However, the risk of revision for all other reasons (especially stem loosening) was higher with anterior and anterolateral approaches (HR =1.2) and lowest with posterolateral approach (HR =1). For all approaches, 32-mm heads reduced the risk of revision for dislocation compared to 22- to 28-mm heads (HR =1 and 1.6, respectively), while the risk of revision for other causes remained unchanged. 36-mm heads increasingly reduced the risk of revision for dislocation but only with the posterolateral approach (HR =0.6), while the risk of revision for other reasons was unchanged. With the anterior approach, 36-mm heads increased the risk of revision for other reasons (HR =1.5). Interpretation Compared to the posterolateral approach, direct anterior and anterolateral approaches reduce the risk of revision for dislocation, but at the cost of more stem revisions and other revisions. For all approaches, there is benefit in using 32-mm heads instead of 22- to 28-mm heads. For the posterolateral approach, 36-mm heads can safely further reduce the risk of revision for dislocation. PMID:28440704

  9. Dislocation loop models for the high temperature creep of Al-5.5 at.% Mg alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    An, S.U.; Blum, W.

    1995-04-15

    The Al-5.5 at.% Mg alloy is a typical class I type solution hardened material. The dislocation loop models proposed by Orlova and Cadek and by Mills et al., respectively are widely applied models in describing the high temperature creep behavior of the Al-5.5 at.% Mg alloy. These models, however, are in conflict in explaining dislocation loop theory. Orlova and Cadek suggest that in class I solution hardened alloys screw dislocations are relatively easier to migrate because they are subject to a smaller resistance in motion than edge dislocations. Consequently, the migration rate of screw dislocations is higher than that ofmore » edge dislocations. However, since dislocation loops are composed of both screw and edge components, the overall migration rate of screw dislocations are reduced by that of the edge component. Mills et al. on the contrary, used a different dislocation loop model. As the loop grows while it moves, it takes on the shape of an ellipsoid due to the unbalance in growth rate, the score segment moving much easier than the edge. Therefore, as shown in the results of the stress reduction tests, rapid elastic ({Delta} {var_epsilon}{sub el}) and anelastic contraction ({Delta} {var_epsilon}{sub an}) occur simultaneously directly after stress reduction. During the movement of the dislocation loop, the screw component hence becomes severely curved, while the edge component retains a straight line. This has been proved through dislocation structure observations by TEM.« less

  10. A dislocation-based crystal plasticity framework for dynamic ductile failure of single crystals

    DOE PAGES

    Nguyen, Thao; Luscher, D. J.; Wilkerson, J. W.

    2017-08-02

    We developed a framework for dislocation-based viscoplasticity and dynamic ductile failure to model high strain rate deformation and damage in single crystals. The rate-dependence of the crystal plasticity formulation is based on the physics of relativistic dislocation kinetics suited for extremely high strain rates. The damage evolution is based on the dynamics of void growth, which are governed by both micro-inertia as well as dislocation kinetics and dislocation substructure evolution. Furthermore, an averaging scheme is proposed in order to approximate the evolution of the dislocation substructure in both the macroscale as well as its spatial distribution at the microscale. Inmore » addition, a concept of a single equivalent dislocation density that effectively captures the collective influence of dislocation density on all active slip systems is proposed here. Together, these concepts and approximations enable the use of semi-analytic solutions for void growth dynamics developed in [J. Wilkerson and K. Ramesh. A dynamic void growth model governed by dislocation kinetics. J. Mech. Phys. Solids, 70:262–280, 2014.], which greatly reduce the computational overhead that would otherwise be required. The resulting homogenized framework has been implemented into a commercially available finite element package, and a validation study against a suite of direct numerical simulations was carried out.« less

  11. Effect of dislocations on properties of heteroepitaxial InP solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Swartz, C. K.; Curtis, H. B.; Brinker, D. J.; Jenkins, P.; Faur, M.

    1991-01-01

    The apparently unrelated phenomena of temperature dependency, carrier removal and photoluminescence are shown to be affected by the high dislocation densities present in heteroepitaxial InP solar cells. Using homoepitaxial InP cells as a baseline, it is found that the relatively high dislocation densities present in heteroepitaxial InP/GaAs cells lead to increased volumes of dVoc/dt and carrier removal rate and substantial decreases in photoluminescence spectral intensities. With respect to dVoc/dt, the observed effect is attributed to the tendency of dislocations to reduce Voc. Although the basic cause for the observed increase in carrier removal rate is unclear, it is speculated that the decreased photoluminescence intensity is attributable to defect levels introduced by dislocations in the heteroepitaxial cells.

  12. Radiation resistance of oxide dispersion strengthened alloys: Perspectives from in situ observations and rate theory calculations

    DOE PAGES

    Liu, Xiang; Miao, Yinbin; Li, Meimei; ...

    2018-04-15

    Here, in situ ion irradiation and rate theory calculations were employed to directly compare the radiation resistance of an oxide dispersion strengthened alloy with that of a conventional ferritic/martensitic alloy. Compared to the rapid buildup of dislocation loops, loop growth, and formation of network dislocations in the conventional ferritic/martensitic alloy, the superior radiation resistance of the oxide dispersion strengthened alloy is manifested by its stable dislocation structure under the same irradiation conditions. Thus, the results are consistent with rate theory calculations, which show that high-density nanoparticles can significantly reduce freely migrating defects and suppress the buildup of clustered defects.

  13. Radiation resistance of oxide dispersion strengthened alloys: Perspectives from in situ observations and rate theory calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiang; Miao, Yinbin; Li, Meimei

    Here, in situ ion irradiation and rate theory calculations were employed to directly compare the radiation resistance of an oxide dispersion strengthened alloy with that of a conventional ferritic/martensitic alloy. Compared to the rapid buildup of dislocation loops, loop growth, and formation of network dislocations in the conventional ferritic/martensitic alloy, the superior radiation resistance of the oxide dispersion strengthened alloy is manifested by its stable dislocation structure under the same irradiation conditions. Thus, the results are consistent with rate theory calculations, which show that high-density nanoparticles can significantly reduce freely migrating defects and suppress the buildup of clustered defects.

  14. Method of Euthanasia Influences the Oocyte Fertilization Rate with Fresh Mouse Sperm

    PubMed Central

    Hazzard, Karen C; Watkins-Chow, Dawn E; Garrett, Lisa J

    2014-01-01

    In vitro fertilization (IVF) is used to produce mouse embryos for a variety of reasons. We evaluated the effect of the method of euthanasia on the fertilization rate in 2 different IVF protocols. Oocytes collected from C57BL/6J female mice euthanized by CO2 inhalation or cervical dislocation were used in IVF with fresh sperm from either wild-type or genetically engineered C57BL/6J. Compared with CO2 inhalation, cervical dislocation improved the resulting rate of fertilization by 18% in an IVF method using Cook media and by 13% in an IVF method using methyl-B cyclodextrin and reduced glutathione. The lower fertilization rate due to euthanasia by CO2 inhalation was accompanied by changes in blood pH and body temperature despite efforts to minimize temperature drops. In our hands, euthanasia by cervical dislocation improved fertilization rates and consequently reduced the number of egg-donor mice required. PMID:25650969

  15. Posterior approach and dislocation rate: a 213 total hip replacements case-control study comparing the dual mobility cup with a conventional 28-mm metal head/polyethylene prosthesis.

    PubMed

    Bouchet, R; Mercier, N; Saragaglia, D

    2011-02-01

    Dislocation is a frequent complication of total hip arthroplasties (THA) especially in older patients, especially when using a posterior approach. In these cases, dual mobility (DM) cups developed by Gilles Bousquet in 1975 can be indicated to reduce this complication risk. Dual mobility cups reduce the rate of dislocation in primary total hip arthroplasty using posterior approach in a single-surgeon series. Test this hypothesis in a controlled study to compare the rate of dislocation in primary total hip arthroplasties done in patients over 50 years old either with a dual mobility cup or a conventional metal-on-polyethylene 28-mm diameter head. Two consecutive series of primary total hip replacements were performed by a single surgeon using a posterolateral approach. The piriformis tendon was left intact. The DM series included 105 patients who underwent arthroplasty between January 2005 and June 2007 with a dual mobility cup (60 women and 45 men, mean age 76.6±5.65 years old [53-93]). The control series (S series) included 108 patients who underwent arthroplasty (56 women and 52 men, mean age 74.2±5.9 years old [53-87]) with a conventional 28-mm polyethylene cup between January 2003 and June 2005. All hip replacements included a 28-mm metal-polyethylene cup and a 12-14-mm Morse taper. Both groups were comparable for gender, diagnosis, body mass index, type of anesthesia and ASA score distribution. All patients included in this series had a minimum follow-up of 1 year. There were no dislocations in the DM series and five early dislocations (before the third month) in the S series for a rate of 4.63%. Although the rate of dislocation was higher in the S series (4.63% vs 0%), the difference was barely significant (P=0.0597). This study comparing the incidence of dislocations after THA with conventional or dual mobility cups, shows that even using a posterior approach and in older patients, dual mobility cups increase stability with no postoperative dislocations. Although results are barely significant, a larger series should confirm the benefit of this implant. In this series, morbidity was not increased with dual mobility cups. Level III: retrospective case-control study. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  16. Constitutive relations for determining the critical conditions for dynamic recrystallization behavior

    NASA Astrophysics Data System (ADS)

    Choe, J. I.

    2016-04-01

    A series mathematical model has been developed for the prediction of flow stress and microstructure evolution during the hot deformation of metals such as copper or austenitic steels with low stacking fault energies, involving features of both diffusional flow and dislocation motion. As the strain rate increases, multiple peaks on the stress-strain curve decrease. At a high strain rate, the stress rises to a single peak, while dynamic recrystallization causes an oscillatory behavior. At a low strain rate (when there is sufficient time for the recrystallizing grains to grow before they become saturated with high dislocation density with an increase in strain rate), the difference in stored stress between recrystallizing and old grains diminishes, resulting in reduced driving force for grain growth and rendering smaller grains in the alloy. The final average grain size at the steady stage (large strain) increases with a decrease in the strain rate. During large strain deformation, grain size reduction accompanying dislocation creep might be balanced by the grain growth at the border delimiting the ranges of realization (field boundary) of the dislocation-creep and diffusion-creep mechanisms.

  17. Reduction of Crosshatch Roughness and Threading Dislocation Density in Metamorphic GaInP Buffers and GaInAs Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    France, R. M.; Geisz, J. F.; Steiner, M. A.

    Surface crosshatch roughness typically develops during the growth of lattice-mismatched compositionally graded buffers and can limit misfit dislocation glide. In this study, the crosshatch roughness during growth of a compressive GaInP/GaAs graded buffer is reduced by increasing the phosphine partial pressure throughout the metamorphic growth. Changes in the average misfit dislocation length are qualitatively determined by characterizing the threading defect density and residual strain. The decrease of crosshatch roughness leads to an increase in the average misfit dislocation glide length, indicating that the surface roughness is limiting dislocation glide. Growth rate is also analyzed as a method to reduce surfacemore » crosshatch roughness and increase glide length, but has a more complicated relationship with glide kinetics. Using knowledge gained from these experiments, high quality inverted GaInAs 1 eV solar cells are grown on a GaInP compositionally graded buffer with reduced roughness and threading dislocation density. The open circuit voltage is only 0.38 V lower than the bandgap potential at a short circuit current density of 15 mA/cm{sup 2}, suggesting that there is very little loss due to the lattice mismatch.« less

  18. Effect of Temper Condition on Stress Relaxation Behavior of an Aluminum Copper Lithium Alloy

    NASA Astrophysics Data System (ADS)

    Mishra, Sumeet; Beura, Vikrant Kumar; Singh, Amit; Yadava, Manasij; Nayan, Niraj

    2018-07-01

    Deformation behavior of an Al-Cu-Li alloy in different temper conditions (solutionized and T8) is investigated using stress relaxation tests. Fundamental parameters such as the apparent and physical activation volume, strain rate sensitivity, effective stress, and exhaustion rate of mobile dislocation density are determined from single and multiple relaxation tests. It was found that dislocation-dislocation interaction controls the kinetics of plastic deformation in the solutionized sample, whereas dislocation-precipitate interaction is the overriding factor in the presence of T1 precipitates. The apparent activation volume was found to be significantly lower in the presence of T1 precipitates compared with solutionized samples. Strain rate sensitivity and effective stress were found to be higher in the presence of T1 precipitates. In addition, multiple relaxation tests showed that irrespective of microstructural features (solutes, semi-coherent precipitates), the mobile dislocation density reduces during the relaxation period. Further evidence regarding reduction in mobile dislocation density is obtained from uniaxial tensile tests carried out after stress relaxation tests, where both solutionized and T8 samples show an increase in strength. Additional discussion on relaxation strain is included to provide a complete overview regarding the time-dependent deformation behavior of the Al-Cu-Li alloy in different temper conditions.

  19. Effect of Temper Condition on Stress Relaxation Behavior of an Aluminum Copper Lithium Alloy

    NASA Astrophysics Data System (ADS)

    Mishra, Sumeet; Beura, Vikrant Kumar; Singh, Amit; Yadava, Manasij; Nayan, Niraj

    2018-04-01

    Deformation behavior of an Al-Cu-Li alloy in different temper conditions (solutionized and T8) is investigated using stress relaxation tests. Fundamental parameters such as the apparent and physical activation volume, strain rate sensitivity, effective stress, and exhaustion rate of mobile dislocation density are determined from single and multiple relaxation tests. It was found that dislocation-dislocation interaction controls the kinetics of plastic deformation in the solutionized sample, whereas dislocation-precipitate interaction is the overriding factor in the presence of T1 precipitates. The apparent activation volume was found to be significantly lower in the presence of T1 precipitates compared with solutionized samples. Strain rate sensitivity and effective stress were found to be higher in the presence of T1 precipitates. In addition, multiple relaxation tests showed that irrespective of microstructural features (solutes, semi-coherent precipitates), the mobile dislocation density reduces during the relaxation period. Further evidence regarding reduction in mobile dislocation density is obtained from uniaxial tensile tests carried out after stress relaxation tests, where both solutionized and T8 samples show an increase in strength. Additional discussion on relaxation strain is included to provide a complete overview regarding the time-dependent deformation behavior of the Al-Cu-Li alloy in different temper conditions.

  20. Rocket launcher: A novel reduction technique for posterior hip dislocations and review of current literature.

    PubMed

    Dan, Michael; Phillips, Alfred; Simonian, Marcus; Flannagan, Scott

    2015-06-01

    We provide a review of literature on reduction techniques for posterior hip dislocations and present our experience with a novel technique for the reduction of acute posterior hip dislocations in the ED, 'the rocket launcher' technique. We present our results with six patients with prosthetic posterior hip dislocation treated in our rural ED. We recorded patient demographics. The technique involves placing the patient's knee over the shoulder, and holding the lower leg like a 'Rocket Launcher' allow the physician's shoulder to work as a fulcrum, in an ergonomically friendly manner for the reducer. We used Fisher's t-test for cohort analysis between reduction techniques. Of our patients, the mean age was 74 years (range 66 to 85 years). We had a 83% success rate. The one patient who the 'rocket launcher' failed in, was a hemi-arthroplasty patient who also failed all other closed techniques and needed open reduction. When compared with Allis (62% success rate), Whistler (60% success rate) and Captain Morgan (92% success rate) techniques, there was no statistically significant difference in the successfulness of the reduction techniques. There were no neurovascular or periprosthetic complications. We have described a reduction technique for posterior hip dislocations. Placing the patient's knee over the shoulder, and holding the lower leg like a 'Rocket Launcher' allow the physician's shoulder to work as a fulcrum, thus mechanically and ergonomically superior to standard techniques. © 2015 Australasian College for Emergency Medicine and Australasian Society for Emergency Medicine.

  1. FAST TRACK COMMUNICATION High rate straining of tantalum and copper

    NASA Astrophysics Data System (ADS)

    Armstrong, R. W.; Zerilli, F. J.

    2010-12-01

    High strain rate measurements reported recently for several tantalum and copper crystal/polycrystal materials are shown to follow dislocation mechanics-based constitutive relations, first at lower strain rates, for dislocation velocity control of the imposed plastic deformations and, then at higher rates, transitioning to nano-scale dislocation generation control by twinning or slip. For copper, there is the possibility of added-on slip dislocation displacements to be accounted for from the newly generated dislocations.

  2. Dislocation Reduction and Stress Relaxation of GaN and InGaN Multiple Quantum Wells with Improved Performance via Serpentine Channel Patterned Mask.

    PubMed

    Ji, Qingbin; Li, Lei; Zhang, Wei; Wang, Jia; Liu, Peichi; Xie, Yahong; Yan, Tongxing; Yang, Wei; Chen, Weihua; Hu, Xiaodong

    2016-08-24

    The existence of high threading dislocation density (TDD) in GaN-based epilayers is a long unsolved problem, which hinders further applications of defect-sensitive GaN-based devices. Multiple-modulation of epitaxial lateral overgrowth (ELOG) is used to achieve high-quality GaN template on a novel serpentine channel patterned sapphire substrate (SCPSS). The dislocation blocking brought by the serpentine channel patterned mask, coupled with repeated dislocation bending, can reduce the dislocation density to a yet-to-be-optimized level of ∼2 × 10(5) to 2 × 10(6) cm(-2). About 80% area utilization rate of GaN with low TDD and stress relaxation is obtained. The periodical variations of dislocation density, optical properties and residual stress in GaN-based epilayers on SCPSS are analyzed. The quantum efficiency of InGaN/GaN multiple quantum wells (MQWs) on it can be increased by 52% compared with the conventional sapphire substrate. The reduced nonradiative recombination centers, the enhanced carrier localization, and the suppressed quantum confined Stark effect, are the main determinants of improved luminous performance in MQWs on SCPSS. This developed ELOG on serpentine shaped mask needs no interruption and regrowth, which can be a promising candidate for the heteroepitaxy of semipolar/nonpolar GaN and GaAs with high quality.

  3. Reduced Moment-Based Models for Oxygen Precipitates and Dislocation Loops in Silicon

    NASA Astrophysics Data System (ADS)

    Trzynadlowski, Bart

    The demand for ever smaller, higher-performance integrated circuits and more efficient, cost-effective solar cells continues to push the frontiers of process technology. Fabrication of silicon devices requires extremely precise control of impurities and crystallographic defects. Failure to do so not only reduces performance, efficiency, and yield, it threatens the very survival of commercial enterprises in today's fiercely competitive and price-sensitive global market. The presence of oxygen in silicon is an unavoidable consequence of the Czochralski process, which remains the most popular method for large-scale production of single-crystal silicon. Oxygen precipitates that form during thermal processing cause distortion of the surrounding silicon lattice and can lead to the formation of dislocation loops. Localized deformation caused by both of these defects introduces potential wells that trap diffusing impurities such as metal atoms, which is highly desirable if done far away from sensitive device regions. Unfortunately, dislocations also reduce the mechanical strength of silicon, which can cause wafer warpage and breakage. Engineers must negotiate this and other complex tradeoffs when designing fabrication processes. Accomplishing this in a complex, modern process involving a large number of thermal steps is impossible without the aid of computational models. In this dissertation, new models for oxygen precipitation and dislocation loop evolution are described. An oxygen model using kinetic rate equations to evolve the complete precipitate size distribution was developed first. This was then used to create a reduced model tracking only the moments of the size distribution. The moment-based model was found to run significantly faster than its full counterpart while accurately capturing the evolution of oxygen precipitates. The reduced model was fitted to experimental data and a sensitivity analysis was performed to assess the robustness of the results. Source code for both models is included. A moment-based model for dislocation loop formation from {311} defects in ion-implanted silicon was also developed and validated against experimental data. Ab initio density functional theory calculations of stacking faults and edge dislocations were performed to extract energies and elastic properties. This allowed the effect of applied stress on the evolution of {311} defects and dislocation loops to be investigated.

  4. Could larger diameter of 4th generation ceramic bearing decrease the rate of dislocation after THA?

    PubMed

    Lee, Young-Kyun; Ha, Yong-Chan; Jo, Woo-Lam; Kim, Tae-Young; Jung, Woon-Hwa; Koo, Kyung-Hoi

    2016-05-01

    Fourth generation (Delta) ceramic bearing was developed to reduce dislocation after total hip arthroplasty (THA) by increasing the head diameter. We tested a hypothesis that 32/36 mm Delta ceramic bearing decreases the dislocation rate. We also evaluated ceramic-related complications and early outcome of this thin liner-on-large head ceramic bearing. We performed a prospective study on patients who underwent THA with use of 32/36 mm Delta ceramic bearing. The dislocation rate was compared with the historical dislocation rate of third generation 28 mm ceramic bearing. We also evaluated ceramic fracture, squeak, short-term results and survival. Follow-up period was minimum 2 years. Between April 2010 and February 2012, we enrolled 250 consecutive patients (278 hips). All patients received cementless prostheses. Four patients (4 hips) who received metal shells ≤ 46 mm and 28 mm heads were excluded. Three patients died and 2 patients were lost within 2 years. The remaining 241 patients (269 hips) were followed for 24-46 months. There were 142 men (161 hips) and 99 women (108 hips) with a mean age of 53.7 years (range, 17-75 years) at the index operation. Dislocation occurred in three hips (1.1%). An old age was a risk factor for dislocation. Ceramic fracture and squeaking did not occur in any patient. Mean Harris hip score was 90.3 points at the latest follow-up. All acetabular and femoral components had bone-ingrowth stability. No hip had detectable wear or osteolysis. The survival was 99.3% in the best case scenario and 97.8% in the worst at 48 months. Total hip arthroplasty with use of 32/36 mm Delta ceramic bearing showed lower incidence of hip dislocation compared with 28 mm third generation ceramic bearing. A caution should be paid to prevent a fall in senile patients even though a large head is used. The short-term results of THA with this type of ceramic articulation are encouraging and we did not find any ceramic-related complications. Copyright © 2016 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.

  5. Modeling collective behavior of dislocations in crystalline materials

    NASA Astrophysics Data System (ADS)

    Varadhan, Satya N.

    Elastic interaction of dislocations leads to collective behavior and determines plastic response at the mesoscale. Notable characteristics of mesoscale plasticity include the formation of dislocation patterns, propagative instability phenomena due to strain aging such as the Luders and Portevin-Le Chatelier effects, and size-dependence of low stress. This work presents a unified approach to modeling collective behavior based on mesoscale field dislocation mechanics and crystal plasticity, using constitutive models with physical basis. Successful application is made to: compression of a bicrystal, where "smaller is stronger"---the flow stress increases as the specimen size is reduced; torsional creep of ice single crystals, where the plastic strain rate increases with time under constant applied torque; strain aging in a single crystal alloy, where the transition from homogeneous deformation to intermittent bands to continuous band is captured as the applied deformation rate is increased. A part of this work deals with the kinematics of dislocation density evolution. An explicit Galerkin/least-squares formulation is introduced for the quasilinear evolution equation, which leads to a symmetric and well-conditioned system of equations with constant coefficients, making it attractive for large-scale problems. It is shown that the evolution equation simplifies to the Hamilton-Jacobi equations governing geometric optics and level set methods in the following physical contexts: annihilation of dislocations, expansion of a polygonal dislocation loop and operation of a Frank-Read source. The weak solutions to these equations are not unique, and the numerical method is able to capture solutions corresponding to shock as well as expansion fans.

  6. Modified anterior-only reduction and fixation for traumatic cervical facet dislocation (AO type C injuries).

    PubMed

    Kanna, Rishi M; Shetty, Ajoy P; Rajasekaran, S

    2018-06-01

    Surgical reduction of uni and bi-facetal dislocations of the cervical spine (AO type C injuries) can be performed by posterior, anterior or combined approaches. Ease of access, low infection rates and less risks of neurological worsening has popularized anterior approach. However, the reduction of locked cervical facets can be intricate through anterior approach. We analyzed the safety, efficacy and outcomes at a minimum 1 year, of a novel anterior reduction technique for consecutively treated cervical facet dislocations. Patients with single level traumatic sub-axial cervical dislocation (n = 39) treated by this modified anterior technique were studied. The technique involved standard Smith-Robinson approach, discectomy beyond PLL, use of inter-laminar distracter to distract while Caspar pins were used as "joysticks" (either flexion-extension or lateral rotation moments are provided), to reduce the sub-luxed facets. Among 51 patients with cervical type C injury treated during the study period, 4 patients who had spontaneous reduction and 8 treated by planned global fusion were excluded. 39 patients of mean age 49.9 years were studied. The levels of injury included (C3-4 = 2, C4-5 = 5, C5-6 = 20, C6-7 = 12). 18 were bi-facetal and 21 were uni-facetal dislocation. One facet was fractured in 17 and both in 5 patients. 30% (n = 13) had a concomitant disc prolapse. The neurological status was as follows: 9 ASIA A, 9 ASIA C, 13 ASIA D and 8 ASIA E. All the patients were successfully reduced by this technique and fixed with anterior locking cervical locking plates. No supplemental posterior surgery was performed. 22 patients with incomplete deficit showed recovery. The mean follow-up was 14.3 months and there was no implant failure except one patient who had partial loss of the reduction. Patients with traumatic sub-axial cervical dislocation (AO type C injuries) can be safely and effectively reduced by this technique. Other advantages include minimal blood loss, less risks of infection, shorted fusion zone, good fusion rate and neurological recovery.

  7. Milch versus Stimson technique for nonsedated reduction of anterior shoulder dislocation: a prospective randomized trial and analysis of factors affecting success.

    PubMed

    Amar, Eyal; Maman, Eran; Khashan, Morsi; Kauffman, Ehud; Rath, Ehud; Chechik, Ofir

    2012-11-01

    The shoulder is regarded as the most commonly dislocated major joint in the human body. Most dislocations can be reduced by simple methods in the emergency department, whereas others require more complicated approaches. We compared the efficacy, safety, pain, and duration of the reduction between the Milch technique and the Stimson technique in treating dislocations. We also identified factors that affected success rate. All enrolled patients were randomized to either the Milch technique or the Stimson technique for dislocated shoulder reduction. The study cohort consisted of 60 patients (mean age, 43.9 years; age range, 18-88 years) who were randomly assigned to treatment by either the Stimson technique (n = 25) or the Milch technique (n = 35). Oral analgesics were available for both groups. The 2 groups were similar in demographics, patient characteristics, and pain levels. The first reduction attempt in the Milch and Stimson groups was successful in 82.8% and 28% of cases, respectively (P < .001), and the mean reduction time was 4.68 and 8.84 minutes, respectively (P = .007). The success rate was found to be affected by the reduction technique, the interval between dislocation occurrence and first reduction attempt, and the pain level on admittance. The success rate and time to achieve reduction without sedation were superior for the Milch technique compared with the Stimson technique. Early implementation of reduction measures and low pain levels at presentation favor successful reduction, which--in combination with oral pain medication--constitutes an acceptable and reasonable management alternative to reduction with sedation. Copyright © 2012 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.

  8. Removal of restrictions following primary THA with posterolateral approach does not increase the risk of early dislocation.

    PubMed

    Gromov, Kirill; Troelsen, Anders; Otte, Kristian Stahl; Ørsnes, Thue; Ladelund, Steen; Husted, Henrik

    2015-01-01

    Patient education and mobilization restrictions are often used in an attempt to reduce the risk of dislocation following primary THA. To date, there have been no studies investigating the safety of removal of mobilization restrictions following THA performed using a posterolateral approach. In this retrospective non-inferiority study, we investigated the rate of early dislocation following primary THA in an unselected patient cohort before and after removal of postoperative mobilization restrictions. From the Danish National Health Registry, we identified patients with early dislocation in 2 consecutive and unselected cohorts of patients who received primary THA at our institution from 2004 through 2008 (n = 946) and from 2010 through 2014 (n = 1,329). Patients in the first cohort were mobilized with functional restrictions following primary THA whereas patients in the second cohort were allowed unrestricted mobilization. Risk of early dislocation (within 90 days) was compared in the 2 groups and odds ratio (OR)-adjusted for possible confounders-was calculated. Reasons for early dislocation in the 2 groups were identified. When we adjusted for potential confounders, we found no increased risk of early dislocation within 90 days in patients who were mobilized without restrictions. Risk of dislocation within 90 days was lower (3.4% vs 2.8%), risk of dislocation within 30 days was lower (2.1% vs 2.0%), and risk of multiple dislocations (1.8% vs 1.1%) was lower in patients who were mobilized without restrictions, but not statistically significantly so. Increasing age was an independent risk factor for dislocation. Removal of mobilization restrictions from the mobilization protocol following primary THA performed with a posterolateral approach did not lead to an increased risk of dislocation within 90 days.

  9. The Effects of Prior Cold Work on the Shock Response of Copper

    NASA Astrophysics Data System (ADS)

    Millett, J. C. F.; Higgins, D. L.; Chapman, D. J.; Whiteman, G.; Jones, I. P.; Chiu, Y.-L.

    2018-04-01

    A series of experiments have been performed to probe the effects of dislocation density on the shock response of copper. The shear strength immediately behind the shock front has been measured using embedded manganin stress gauges, whilst the post shock microstructural and mechanical response has been monitored via one-dimensional recovery experiments. Material in the half hard (high dislocation density) condition was shown to have both a higher shear strength and higher rate of change of shear strength with impact stress than its annealed (low dislocation density) counterpart. Microstructural analysis showed a much higher dislocation density in the half hard material compared to the annealed after shock loading, whilst post shock mechanical examination showed a significant degree of hardening in the annealed state with reduced, but still significant amount in the half hard state, thus showing a correlation between temporally resolved stress gauge measurements and post shock microstructural and mechanical properties.

  10. Chronic bilateral dislocation of temporomandibular joint.

    PubMed

    Shakya, S; Ongole, R; Sumanth, K N; Denny, C E

    2010-01-01

    Dislocation of the condyle of the mandible is a common condition that may occur in an acute or chronic form. It is characterised by inability to close the mouth with or without pain. Dislocation has to be differentiated from subluxation which is a self reducible condition. Dislocation can occur in any direction with anterior dislocation being the commonest one. Various predisposing factors have been associated with dislocation like muscle fatigue and spasm, the defect in the bony surface like shallow articular eminence, and laxity of the capsular ligament. People with defect in collagen synthesis like Ehler Danlos syndrome, Marfan syndrome are said to be genetically predisposed to this condition. Various treatment modalities have been used ranging from conservative techniques to surgical methods. Acute dislocations can be reduced manually or with conservative approach and recurrent and chronic cases can be reduced by surgical intervention. Though the dislocation in our case was 4 months a simple manual reduction proved to be successful. We believe that manual reduction can be attempted as first line of treatment prior to surgical intervention.

  11. Eeyarestatin 1 Interferes with Both Retrograde and Anterograde Intracellular Trafficking Pathways

    PubMed Central

    Aletrari, Mina-Olga; McKibbin, Craig; Williams, Helen; Pawar, Vidya; Pietroni, Paola; Lord, J. Michael; Flitsch, Sabine L.; Whitehead, Roger; Swanton, Eileithyia; High, Stephen; Spooner, Robert A.

    2011-01-01

    Background The small molecule Eeyarestatin I (ESI) inhibits the endoplasmic reticulum (ER)-cytosol dislocation and subsequent degradation of ERAD (ER associated protein degradation) substrates. Toxins such as ricin and Shiga/Shiga-like toxins (SLTx) are endocytosed and trafficked to the ER. Their catalytic subunits are thought to utilise ERAD-like mechanisms to dislocate from the ER into the cytosol, where a proportion uncouples from the ERAD process, recovers a catalytic conformation and destroys their cellular targets. We therefore investigated ESI as a potential inhibitor of toxin dislocation. Methodology and Principal Findings Using cytotoxicity measurements, we found no role for ESI as an inhibitor of toxin dislocation from the ER, but instead found that for SLTx, ESI treatment of cells was protective by reducing the rate of toxin delivery to the ER. Microscopy of the trafficking of labelled SLTx and its B chain (lacking the toxic A chain) showed a delay in its accumulation at a peri-nuclear location, confirmed to be the Golgi by examination of SLTx B chain metabolically labelled in the trans-Golgi cisternae. The drug also reduced the rate of endosomal trafficking of diphtheria toxin, which enters the cytosol from acidified endosomes, and delayed the Golgi-specific glycan modifications and eventual plasma membrane appearance of tsO45 VSV-G protein, a classical marker for anterograde trafficking. Conclusions and Significance ESI acts on one or more components that function during vesicular transport, whilst at least one retrograde trafficking pathway, that of ricin, remains unperturbed. PMID:21799938

  12. Dislocation mechanism based model for stage II fatigue crack propagation rate

    NASA Technical Reports Server (NTRS)

    Mazumdar, P. K.

    1986-01-01

    Repeated plastic deformation, which of course depends on dislocation mechanism, at or near the crack tip leads to the fatigue crack propagation. By involving the theory of thermally activated flow and the cumulative plastic strain criterion, an effort is made here to model the stage II fatigue crack propagation rate in terms of the dislocation mechanism. The model, therefore, provides capability to ascertain: (1) the dislocation mechanism (and hence the near crack tip microstructures) assisting the crack growth, (2) the relative resistance of dislocation mechanisms to the crack growth, and (3) the fracture surface characteristics and its interpretation in terms of the dislocation mechanism. The local microstructure predicted for the room temperature crack growth in copper by this model is in good agreement with the experimental results taken from the literature. With regard to the relative stability of such dislocation mechanisms as the cross-slip and the dislocation intersection, the model suggests an enhancement of crack growth rate with an ease of cross-slip which in general promotes dislocation cell formation and is common in material which has high stacking fault energy (produces wavy slips). Cross-slip apparently enhances crack growth rate by promoting slip irreversibility and fracture surface brittleness to a greater degree.

  13. Clinical Evaluation and Physical Exam Findings in Patients with Anterior Shoulder Instability.

    PubMed

    Lizzio, Vincent A; Meta, Fabien; Fidai, Mohsin; Makhni, Eric C

    2017-12-01

    The goal of this paper is to provide an overview in evaluating the patient with suspected or known anteroinferior glenohumeral instability. There is a high rate of recurrent subluxations or dislocations in young patients with history of anterior shoulder dislocation, and recurrent instability will increase likelihood of further damage to the glenohumeral joint. Proper identification and treatment of anterior shoulder instability can dramatically reduce the rate of recurrent dislocation and prevent subsequent complications. Overall, the anterior release or surprise test demonstrates the best sensitivity and specificity for clinically diagnosing anterior shoulder instability, although other tests also have favorable sensitivities, specificities, positive likelihood ratios, negative likelihood ratios, and inter-rater reliabilities. Anterior shoulder instability is a relatively common injury in the young and athletic population. The combination of history and performing apprehension, relocation, release or surprise, anterior load, and anterior drawer exam maneuvers will optimize sensitivity and specificity for accurately diagnosing anterior shoulder instability in clinical practice.

  14. Modal analysis of dislocation vibration and reaction attempt frequency

    DOE PAGES

    Sobie, Cameron; Capolungo, Laurent; McDowell, David L.; ...

    2017-02-04

    Transition state theory is a fundamental approach for temporal coarse-graining. It estimates the reaction rate for a transition processes by quantifying the activation free energy and attempt frequency for the unit process. To calculate the transition rate of a gliding dislocation, the attempt frequency is often obtained from line tension estimates of dislocation vibrations, a highly simplified model of dislocation behavior. This work revisits the calculation of attempt frequency for a dislocation bypassing an obstacle, in this case a self-interstitial atom (SIA) loop. First, a direct calculation of the vibrational characteristics of a finite pinned dislocation segment is compared tomore » line tension estimates before moving to the more complex case of dislocation-obstacle bypass. The entropic factor associated with the attempt frequency is calculated for a finite dislocation segment and for an infinite glide dislocation interacting with an SIA loop. Lastly, it is found to be dislocation length independent for three cases of dislocation-self interstitial atom (SIA) loop interactions.« less

  15. Overhead Bryant's Traction Does Not Improve the Success of Closed Reduction or Limit AVN in Developmental Dysplasia of the Hip.

    PubMed

    Sucato, Daniel J; De La Rocha, Adriana; Lau, Karlee; Ramo, Brandon A

    2017-03-01

    Preoperative Bryant's overhead traction before closed reduction (CR) in developmental dysplasia of the hip (DDH) remains controversial and its success in increasing CR rates and reducing avascular necrosis (AVN) rates has not been specifically reported in a large cohort. IRB-approved retrospective study of patients (below 3 y)who were treated with attempted CR for idiopathic DDH from 1980 to 2009. Successful CR was defined as a hip that remained reduced and did not require repeat CR or open reduction. Patients were grouped by age, hip instability [Ortolani positive (reducible) vs. fixed dislocation], and Tonnis classification and rates of successful CR were compared between groups with P<0.05. A total of 342 hips were included with a mean age of 0.9 years (0.2 to 2.8 y) and a mean follow-up of 10.4 years (2.0 to 27.7 y). There were 269 hips with fixed dislocations and 73 Ortolani-positive hips. Traction was used in 276 hips. There was no difference in traction utilization in the 3 age groups (below 1, below 1.5, and below 2 y) for either Ortolani-positive hips (P=0.947) or fixed dislocations (P=0.943). There was no difference in achieving a successful CR comparing traction (60.9%) and no-traction groups (60.6%) (P=1.00). For Ortolani-positive hips, traction did not improve the incidence of a successful CR for any age group: below 1 year: P=0.19; below 1.5 years: P=0.23; and below 2 years: P=0.25. Similarly, fixed dislocation patients had no benefit from traction: below 1 year: P=0.76; below 1.5 years: P=0.82; and below 2 years: P=0.85. Tonnis classification did predict success of CR but had no influence on traction success. There was no difference in the rate of AVN between the traction (18%) and no-traction (8%) groups for all patients (P=0.15). In this retrospective series, preoperative Bryant's traction does not improve the rate of a successful CR for patients with DDH and has no protective effect on the development of AVN of the femoral head. These results suggest that Bryant's overhead traction may not be warranted for patients below 3 years of age with DDH. Level III.

  16. Probing the character of ultra-fast dislocations

    DOE PAGES

    Rudd, R. E.; Ruestes, C. J.; Bringa, E. M.; ...

    2015-11-23

    Plasticity is often controlled by dislocation motion, which was first measured for low pressure, low strain rate conditions decades ago. However, many applications require knowledge of dislocation motion at high stress conditions where the data are sparse, and come from indirect measurements dominated by the effect of dislocation density rather than velocity. Here we make predictions based on atomistic simulations that form the basis for a new approach to measure dislocation velocities directly at extreme conditions using three steps: create prismatic dislocation loops in a near-surface region using nanoindentation, drive the dislocations with a shockwave, and use electron microscopy tomore » determine how far the dislocations moved and thus their velocity at extreme stress and strain rate conditions. We report on atomistic simulations of tantalum that make detailed predictions of dislocation flow, and find that the approach is feasible and can uncover an exciting range of phenomena, such as transonic dislocations and a novel form of loop stretching. Furthermore, the simulated configuration enables a new class of experiments to probe average dislocation velocity at very high applied shear stress.« less

  17. Minimally Invasive Repair of Pectus Excavatum Without Bar Stabilizers Using Endo Close.

    PubMed

    Pio, Luca; Carlucci, Marcello; Leonelli, Lorenzo; Erminio, Giovanni; Mattioli, Girolamo; Torre, Michele

    2016-02-01

    Since the introduction of the Nuss technique for pectus excavatum (PE) repair, stabilization of the bar has been a matter of debate and a crucial point for the outcome, as bar dislocation remains one of the most frequent complications. Several techniques have been described, most of them including the use of a metal stabilizer, which, however, can increase morbidity and be difficult to remove. Our study compares bar stabilization techniques in two groups of patients, respectively, with and without the metal stabilizer. A retrospective study on patients affected by PE and treated by the Nuss technique from January 2012 to June 2013 at our institution was performed in order to evaluate the efficacy of metal stabilizers. Group 1 included patients who did not have the metal stabilizer inserted; stabilization was achieved with multiple (at least four) bilateral pericostal Endo Close™ (Auto Suture, US Surgical; Tyco Healthcare Group, Norwalk, CT) sutures. Group 2 included patients who had a metal stabilizer placed because pericostal sutures could not be used bilaterally. We compared the two groups in terms of bar dislocation rate, surgical operative time, and other complications. Statistical analysis was performed with the Mann-Whitney U test and Fisher's exact test. Fifty-seven patients were included in the study: 37 in Group 1 and 20 in Group 2. Two patients from Group 2 had a bar dislocation. Statistical analysis showed no difference between the two groups in dislocation rate or other complications. In our experience, the placement of a metal stabilizer did not reduce the rate of bar dislocation. Bar stabilization by the pericostal Endo Close suture technique appears to have no increase in morbidity or migration compared with the metal lateral stabilizer technique.

  18. Preservation of the articular capsule and short lateral rotator in direct anterior approach to total hip arthroplasty.

    PubMed

    Kanda, Akio; Kaneko, Kazuo; Obayashi, Osamu; Mogami, Atsuhiko; Morohashi, Itaru

    2018-03-09

    In total hip arthroplasty via a direct anterior approach, the femur must be elevated at the time of femoral implant placement. For adequate elevation, division of the posterior soft tissues is necessary. However, if we damage and separate the posterior muscle tissue, we lose the benefits of the intermuscular approach. Furthermore, damage to the posterior soft tissue can result in posterior dislocation. We investigate that protecting the posterior soft tissue increases the joint stability in the early postoperative period and results in a lower dislocation rate. We evaluated muscle strength recovery by measuring the maximum width of the internal obturator muscle on CT images (GE-Healthcare Discovery CT 750HD). We compared the maximum width of the muscle belly preoperatively versus 10 days and 6 months postoperatively. As clinical evaluations, we also investigated the range of motion of the hip joint, hip joint function based on the Japanese Orthopaedic Association hip score (JOA score), and the dislocation rate 6 months after surgery. The width of the internal obturator muscle increased significantly from 15.1 ± 3.1 mm before surgery to 16.4 ± 2.8 mm 6 months after surgery. The JOA score improved significantly from 50.8 ± 15.1 points to 95.6 ± 7.6 points. No dislocations occurred in this study. We cut only the posterosuperior articular capsule and protected the internal obturator muscle to preserve muscle strength. We repaired the entire posterosuperior and anterior articular capsule. These treatments increase joint stability in the early postoperative period, thus reducing the dislocation rate. Therapeutic, Level IV.

  19. Comparison of dual-mobility cup and unipolar cup for prevention of dislocation after revision total hip arthroplasty.

    PubMed

    Gonzalez, Amanda Inez; Bartolone, Placido; Lubbeke, Anne; Dupuis Lozeron, Elise; Peter, Robin; Hoffmeyer, Pierre; Christofilopoulos, Panayiotis

    2017-02-01

    Background and purpose - Revision total hip arthroplasty (THA) is associated with higher dislocation rates than primary THA. We compared the risk of dislocation within 6 months and all-cause re-revision during the whole study period using either the dual-mobility cup or the unipolar cup. Methods - We used a prospective hospital registry-based cohort including all total and cup-only revision THAs performed between 2003 and 2013. The cups used were either dual-mobility or unipolar; the choice was made according to the preference of the surgeon. 316 revision THAs were included. The mean age of the cohort was 69 (25-98) years and 160 THAs (51%) were performed in women. The dual-mobility group (group 1) included 150 THAs (48%) and the mean length of follow-up was 31 (0-128) months. The unipolar group (group 2) included 166 THAs (53%) and the mean length of follow-up was 52 (0-136) months. Results - The incidence of dislocation within 6 months was significantly lower with the dual-mobility cup than with the unipolar cup (2.7% vs. 7.8%). The unadjusted risk ratio (RR) was 0.34 (95% CI: 0.11-1.02) and the adjusted RR was 0.28 (95% CI: 0.09-0.87). The number of patients needed to treat with a dual-mobility cup in order to prevent 1 case of dislocation was 19. The unadjusted incidence rate ratio for all-cause re-revision in the dual-mobility group compared to the unipolar group was 0.6 (95% CI: 0.3-1.4). Interpretation - Use of a dual-mobility rather than a unipolar cup in revision THA reduced the risk of dislocation within 6 months.

  20. Growth rate effects on the formation of dislocation loops around deep helium bubbles in Tungsten

    DOE PAGES

    Sandoval, Luis; Perez, Danny; Uberuaga, Blas P.; ...

    2016-11-15

    Here, the growth process of spherical helium bubbles located 6 nm below a (100) surface is studied using molecular dynamics and parallel replica dynamics simulations, over growth rates from 10 6 to 10 12 helium atoms per second. Slower growth rates lead to a release of pressure and lower helium content as compared with fast growth cases. In addition, at slower growth rates, helium bubbles are not decorated by multiple dislocation loops, as these tend to merge or emit given sufficient time. At faster rates, dislocation loops nucleate faster than they can emit, leading to a more complicated dislocation structuremore » around the bubble.« less

  1. Impact of screw and edge dislocations on the thermal conductivity of individual nanowires and bulk GaN: a molecular dynamics study.

    PubMed

    Termentzidis, Konstantinos; Isaiev, Mykola; Salnikova, Anastasiia; Belabbas, Imad; Lacroix, David; Kioseoglou, Joseph

    2018-02-14

    We report the thermal transport properties of wurtzite GaN in the presence of dislocations using molecular dynamics simulations. A variety of isolated dislocations in a nanowire configuration are analyzed and found to considerably reduce the thermal conductivity while impacting its temperature dependence in a different manner. Isolated screw dislocations reduce the thermal conductivity by a factor of two, while the influence of edge dislocations is less pronounced. The relative reduction of thermal conductivity is correlated with the strain energy of each of the five studied types of dislocations and the nature of the bonds around the dislocation core. The temperature dependence of the thermal conductivity follows a physical law described by a T -1 variation in combination with an exponent factor that depends on the material's nature, type and the structural characteristics of the dislocation core. Furthermore, the impact of the dislocation density on the thermal conductivity of bulk GaN is examined. The variation and absolute values of the total thermal conductivity as a function of the dislocation density are similar for defected systems with both screw and edge dislocations. Nevertheless, we reveal that the thermal conductivity tensors along the parallel and perpendicular directions to the dislocation lines are different. The discrepancy of the anisotropy of the thermal conductivity grows with increasing density of dislocations and it is more pronounced for the systems with edge dislocations. Besides the fundamental insights of the presented results, these could also be used for the identification of the type of dislocations when one experimentally obtains the evolution of thermal conductivity with temperature since each type of dislocation has a different signature, or one could extract the density of dislocations with a simple measurement of thermal anisotropy.

  2. Observations of Glide and Decomposition of a<101> Dislocations at High Temperatures in Ni-Al Single Crystals Deformed along the Hard Orientation

    NASA Technical Reports Server (NTRS)

    Srinivasan, R.; Daw, M. S.; Noebe, R. D.; Mills, M. J.

    2003-01-01

    Ni-44at.% Al and Ni-50at.% single crystals were tested in compression in the hard (001) orientations. The dislocation processes and deformation behavior were studied as a function of temperature, strain and strain rate. A slip transition in NiAl occurs from alpha(111) slip to non-alphaaaaaaaaaaa9111) slip at intermediate temperatures. In Ni-50at.% Al single crystal, only alpha(010) dislocations are observed above the slip transition temperature. In contrast, alpha(101)(101) glide has been observed to control deformation beyond the slip transition temperature in Ni-44at.%Al. alpha(101) dislocations are observed primarily along both (111) directions in the glide plane. High-resolution transmission electron microscopy observations show that the core of the alpha(101) dislocations along these directions is decomposed into two alpha(010) dislocations, separated by a distance of approximately 2nm. The temperature window of stability for these alpha(101) dislocations depends upon the strain rate. At a strain rate of 1.4 x 10(exp -4)/s, lpha(101) dislocations are observed between 800 and 1000K. Complete decomposition of a alpha(101) dislocations into alpha(010) dislocations occurs beyond 1000K, leading to alpha(010) climb as the deformation mode at higher temperature. At lower strain rates, decomposition of a alpha(101) dislocations has been observed to occur along the edge orientation at temperatures below 1000K. Embedded-atom method calculations and experimental results indicate that alpha(101) dislocation have a large Peieris stress at low temperature. Based on the present microstructural observations and a survey of the literature with respect to vacancy content and diffusion in NiAl, a model is proposed for alpha(101)(101) glide in Ni-44at.%Al, and for the observed yield strength versus temperature behavior of Ni-Al alloys at intermediate and high temperatures.

  3. Transition of dislocation glide to shear transformation in shocked tantalum

    DOE PAGES

    Hsiung, Luke L.; Campbell, Geoffrey H.

    2017-02-28

    A TEM study of pure tantalum and tantalum-tungsten alloys explosively shocked at a peak pressure of 30 GPa (strain rate: ~1 x 10 4 sec -1) is presented. While no ω (hexagonal) phase was found in shock-recovered pure Ta and Ta-5W that contain mainly a low-energy cellular dislocation structure, shock-induced ω phase was found to form in Ta-10W that contains evenly distributed dislocations with a stored dislocation density higher than 1 x 10 12 cm -2. The TEM results clearly reveal that shock-induced α (bcc) → ω (hexagonal) shear transformation occurs when dynamic recovery reactions which lead the formation low-energymore » cellular dislocation structure become largely suppressed in Ta-10W shocked under dynamic (i.e., high strain-rate and high-pressure) conditions. A novel dislocation-based mechanism is proposed to rationalize the transition of dislocation glide to twinning and/or shear transformation in shock-deformed tantalum. Lastly, twinning and/or shear transformation take place as an alternative deformation mechanism to accommodate high-strain-rate straining when the shear stress required for dislocation multiplication exceeds the threshold shear stresses for twinning and/or shear transformation.« less

  4. Method to reduce dislocation density in silicon using stress

    DOEpatents

    Buonassisi, Anthony; Bertoni, Mariana; Argon, Ali; Castellanos, Sergio; Fecych, Alexandria; Powell, Douglas; Vogl, Michelle

    2013-03-05

    A crystalline material structure with reduced dislocation density and method of producing same is provided. The crystalline material structure is annealed at temperatures above the brittle-to-ductile transition temperature of the crystalline material structure. One or more stress elements are formed on the crystalline material structure so as to annihilate dislocations or to move them into less harmful locations.

  5. Reducing dislocations in semiconductors utilizing repeated thermal cycling during multistage epitaxial growth

    DOEpatents

    Fan, John C. C.; Tsaur, Bor-Yeu; Gale, Ronald P.; Davis, Frances M.

    1992-02-25

    Dislocation densities are reduced in growing semiconductors from the vapor phase by employing a technique of interrupting growth, cooling the layer so far deposited, and then repeating the process until a high quality active top layer is achieved. The method of interrupted growth, coupled with thermal cycling, permits dislocations to be trapped in the initial stages of epitaxial growth.

  6. Reducing dislocations in semiconductors utilizing repeated thermal cycling during multistage epitaxial growth

    DOEpatents

    Fan, John C. C.; Tsaur, Bor-Yeu; Gale, Ronald P.; Davis, Frances M.

    1986-12-30

    Dislocation densities are reduced in growing semiconductors from the vapor phase by employing a technique of interrupting growth, cooling the layer so far deposited, and then repeating the process until a high quality active top layer is achieved. The method of interrupted growth, coupled with thermal cycling, permits dislocations to be trapped in the initial stages of epitaxial growth.

  7. Numerical analysis of thermal stress and dislocation density distributions in large size multi-crystalline silicon ingots during the seeded growth process

    NASA Astrophysics Data System (ADS)

    Nguyen, Thi Hoai Thu; Chen, Jyh-Chen; Hu, Chieh; Chen, Chun-Hung; Huang, Yen-Hao; Lin, Huang-Wei; Yu, Andy; Hsu, Bruce

    2017-06-01

    In this study, a global transient numerical simulation of silicon growth from the beginning of the solidification process until the end of the cooling process is carried out modeling the growth of an 800 kg ingot in an industrial seeded directional solidification furnace. The standard furnace is modified by the addition of insulating blocks in the hot zone. The simulation results show that there is a significant decrease in the thermal stress and dislocation density in the modified model as compared to the standard one (a maximal decrease of 23% and 75% along the center line of ingot for thermal stress and dislocation density, respectively). This modification reduces the heating power consumption for solidification of the silicon melt by about 17% and shortens the growth time by about 2.5 h. Moreover, it is found that adjusting the operating conditions of modified model to obtain the lower growth rate during the early stages of the solidification process can lower dislocation density and total heater power.

  8. Reduced dislocation density in Ga xIn 1–xP compositionally graded buffer layers through engineered glide plane switch

    DOE PAGES

    Schulte, Kevin L.; France, Ryan M.; McMahon, William E.; ...

    2016-11-17

    In this work we develop control over dislocation glide dynamics in Ga xIn 1-xP compositionally graded buffer layers (CGBs) through control of CuPt ordering on the group-III sublattice. The ordered structure is metastable in the bulk, so any glissile dislocation that disrupts the ordered pattern will release stored energy, and experience an increased glide force. Here we show how this connection between atomic ordering and dislocation glide force can be exploited to control the threading dislocation density (TDD) in Ga xIn 1-xP CGBs. When ordered Ga xIn 1-xP is graded from the GaAs lattice constant to InP, the order parametermore » ..eta.. decreases as x decreases, and dislocation glide switches from one set of glide planes to the other. This glide plane switch (GPS) is accompanied by the nucleation of dislocations on the new glide plane, which typically leads to increased TDD. We develop control of the GPS position within a Ga xIn 1-xP CGB through manipulation of deposition temperature, surfactant concentration, and strain-grading rate. We demonstrate a two-stage Ga xIn 1-xP CGB from GaAs to InP with sufficiently low TDD for high performance devices, such as the 4-junction inverted metamorphic multi-junction solar cell, achieved through careful control the GPS position. Here, experimental results are analyzed within the context of a model that considers the force balance on dislocations on the two competing glide planes as a function of the degree of ordering.« less

  9. A discrete dislocation dynamics model of creeping single crystals

    NASA Astrophysics Data System (ADS)

    Rajaguru, M.; Keralavarma, S. M.

    2018-04-01

    Failure by creep is a design limiting issue for metallic materials used in several high temperature applications. Current theoretical models of creep are phenomenological with little connection to the underlying microscopic mechanisms. In this paper, a bottom-up simulation framework based on the discrete dislocation dynamics method is presented for dislocation creep aided by the diffusion of vacancies, known to be the rate controlling mechanism at high temperature and stress levels. The time evolution of the creep strain and the dislocation microstructure in a periodic unit cell of a nominally infinite single crystal is simulated using the kinetic Monte Carlo method, together with approximate constitutive laws formulated for the rates of thermal activation of dislocations over local pinning obstacles. The deformation of the crystal due to dislocation glide between individual thermal activation events is simulated using a standard dislocation dynamics algorithm, extended to account for constant stress periodic boundary conditions. Steady state creep conditions are obtained in the simulations with the predicted creep rates as a function of stress and temperature in good agreement with experimentally reported values. Arrhenius scaling of the creep rates as a function of temperature and power-law scaling with the applied stress are also reproduced, with the values of the power-law exponents in the high stress regime in good agreement with experiments.

  10. First-time anterior shoulder dislocations: should they be arthroscopically stabilised?

    PubMed Central

    Sedeek, Sedeek Mohamed; Bin Abd Razak, Hamid Rahmatullah; Ee, Gerard WW; Tan, Andrew HC

    2014-01-01

    The glenohumeral joint is inherently unstable because the large humeral head articulates with the small shadow glenoid fossa. Traumatic anterior dislocation of the shoulder is a relatively common athletic injury, and the high frequency of recurrent instability in young athletes after shoulder dislocation is discouraging to both the patient and the treating physician. Management of primary traumatic shoulder dislocation remains controversial. Traditionally, treatment involves initial immobilisation for 4–6 weeks, followed by functional rehabilitation. However, in view of the high recurrence rates associated with this traditional approach, there has been an escalating interest in determining whether immediate surgical intervention can lower the rate of recurrent shoulder dislocation, improving the patient’s quality of life. This review article aims to provide an overview of the nature and pathogenesis of first-time primary anterior shoulder dislocations, the widely accepted management modalities, and the efficacy of primary surgical intervention in first-time primary anterior shoulder dislocations. PMID:25631890

  11. Effects of doping impurity and growth orientation on dislocation generation in GaAs crystals grown from the melt: A qualitative finite-element study

    NASA Astrophysics Data System (ADS)

    Zhu, X. A.; Tsai, C. T.

    2000-09-01

    Dislocations in gallium arsenide (GaAs) crystals are generated by excessive thermal stresses induced during the crystal growth process. The presence of dislocations has adverse effects on the performance and reliability of the GaAs-based devices. It is well known that dislocation density can be significantly reduced by doping impurity atoms into a GaAs crystal during its growth process. A viscoplastic constitutive equation that couples the microscopic dislocation density with the macroscopic plastic deformation is employed in a crystallographic finite element model for calculating the dislocation density generated in the GaAs crystal during its growth process. The dislocation density is considered as an internal state variable and the drag stress caused by doping impurity is included in this constitutive equation. A GaAs crystal grown by the vertical Bridgman process is adopted as an example to study the influences of doping impurity and growth orientation on dislocation generation. The calculated results show that doping impurity can significantly reduce the dislocation density generated in the crystal. The level of reduction is also influenced by the growth orientation during the crystal growth process.

  12. Stress versus temperature dependence of activation energies for creep

    NASA Technical Reports Server (NTRS)

    Freed, A. D.; Raj, S. V.; Walker, K. P.

    1992-01-01

    The activation energy for creep at low stresses and elevated temperatures is associated with lattice diffusion, where the rate controlling mechanism for deformation is dislocation climb. At higher stresses and intermediate temperatures, the rate controlling mechanism changes from dislocation climb to obstacle-controlled dislocation glide. Along with this change in deformation mechanism occurs a change in the activation energy. When the rate controlling mechanism for deformation is obstacle-controlled dislocation glide, it is shown that a temperature-dependent Gibbs free energy does better than a stress-dependent Gibbs free energy in correlating steady-state creep data for both copper and LiF-22mol percent CaF2 hypereutectic salt.

  13. Constitutive modeling of intrinsic and oxygen-contaminated silicon monocrystals in easy glide

    NASA Astrophysics Data System (ADS)

    Cochard, J.; Yonenaga, I.; Gouttebroze, S.; M'Hamdi, M.; Zhang, Z. L.

    2010-11-01

    We generalize in this work the constitutive model for silicon crystals of Alexander and Haasen. Strain-rate and temperature dependency of the mechanical behavior of intrinsic crystals are correctly accounted for into stage I of hardening. We show that the steady-state of deformation in stage I is very well reproduced in a wide range of temperature and strain rate. The case of extrinsic crystals containing high levels of dissolved oxygen is examined. The introduction of an effective density of mobile dislocations dependent on the unlocking stress created by oxygen atoms gathered at the dislocation cores is combined to an alteration of the dislocation multiplication rate, due to pinning of the dislocation line by oxygen atoms. This increases the upper yield stress with the bulk oxygen concentration in agreement with experimental observations. The fraction of effectively mobile dislocations is found to decay exponentially with the unlocking stress. Finally, the influence of oxygen migration back onto the dislocations from the bulk on the stress distribution in silicon bars is investigated.

  14. Defect structure of high temperature hydride vapor phase epitaxy-grown epitaxial (0 0 0 1) AlN/sapphire using growth mode modification process

    NASA Astrophysics Data System (ADS)

    Su, Xujun; Zhang, Jicai; Huang, Jun; Zhang, Jinping; Wang, Jianfeng; Xu, Ke

    2017-06-01

    Defect structures were investigated by transmission electron microscopy for AlN/sapphire (0 0 0 1) epilayers grown by high temperature hydride vapor phase epitaxy using a growth mode modification process. The defect structures, including threading dislocations, inversion domains, and voids, were analyzed by diffraction contrast, high-resolution imaging, and convergent beam diffraction. AlN film growth was initiated at 1450 °C with high V/III ratio for 8 min. This was followed by low V/III ratio growth for 12 min. The near-interfacial region shows a high density of threading dislocations and inversion domains. Most of these dislocations have Burgers vector b = 1/3〈1 1 2 0〉 and were reduced with the formation of dislocation loops. In the middle range 400 nm < h < 2 μm, dislocations gradually aggregated and reduced to ∼109 cm-2. The inversion domains have a shuttle-like shape with staggered boundaries that deviate by ∼ ±5° from the c axis. Above 2 μm thickness, the film consists of isolated threading dislocations with a total density of 8 × 108 cm-2. Most of threading dislocations are either pure edge or mixed dislocations. The threading dislocation reduction in these films is associated with dislocation loops formation and dislocation aggregation-interaction during island growth with high V/III ratio.

  15. Peculiarities of dislocation motion in aluminum with allowance for the Peierls relief in the presence of ultrasound

    NASA Astrophysics Data System (ADS)

    Arakelyan, M. M.

    2017-11-01

    The effect of ultrasound on motion of the Frenkel-Kontorova dislocations in aluminum has been studied with inclusion of the Peierls relief. A dislocation moves at a variable rate when overcoming the Peierls barrier. The dislocation mean free path is changed under action of ultrasound at various frequencies comparable to the dislocation transition time to a neighboring valley. The stress-strain dependences have been obtained for high and low strain rates. In both the cases, a disordering takes place; however, the disordering rates and characters are different. At the resonance frequency, the strain resistance decreases, the hardening stage is shortened and the disordering stage is elongated. The dependence of the coefficient of hardening on coordinate has three segments different in characters. The coefficient of hardening decreases at the resonance frequency.

  16. The minimal invasive direct anterior approach in combination with large heads in total hip arthroplasty - is dislocation still a major issue? a case control study.

    PubMed

    Hoell, Steffen; Sander, Marius; Gosheger, Georg; Ahrens, Helmut; Dieckmann, Ralf; Hauschild, Gregor

    2014-03-12

    There have been increasing numbers of publications in recent years on minimally invasive surgery (MIS) for total hip arthroplasty (THA), reporting results with the use of different head sizes, tribologic and functional outcomes. This study presents the results and early complication rates after THA using the direct anterior approach (DAA) in combination with head sizes ≥ 36 mm. A total of 113 patients with THA were included in the study. The Harris Hip Score (HHS) was determined, a radiographic evaluation was carried out, and complications were recorded. The minimum follow-up period was 2 years (means 35 ± 7 months). The HHS improved from 43.6 (± 12) to 88.2 (± 14; P < 0.01). One early infection occurred, one periprosthetic fracture, and three cases of aseptic stem loosening. No incorrect positioning of the implants was observed, and there were no dislocations. THA with the minimally invasive DAA in combination with large heads is associated with good to very good functional results in the majority of cases. The complication rates are not increased. The rate of dislocation mainly as an complication of the first two years can be markedly reduced in particular.

  17. Management of traumatic patellar dislocation in a regional hospital in Hong Kong.

    PubMed

    Lee, H L; Yau, W P

    2017-04-01

    The role of surgery for acute patellar dislocation without osteochondral fracture is controversial. The aim of this study was to report the short-term results of management of patellar dislocation in our institute. Patients who were seen in our institution with patella dislocation from January 2011 to April 2014 were managed according to a standardised management algorithm. Pretreatment and 1-year post-treatment International Knee Documentation Committee score, Tegner activity level scale score, and presence of apprehension sign were analysed. A total of 41 patients were studied of whom 20 were first-time dislocators and 21 were recurrent dislocators. Among the first-time dislocators, there was a significant difference between patients who received conservative treatment versus surgical management. The conservative treatment group had a 33% recurrent dislocation rate, whereas there were no recurrent dislocations in the surgery group. There was no difference in Tegner activity level scale score or apprehension sign before and 1 year after treatment, however. Among the recurrent dislocators, there was a significant difference between those who received conservative treatment and those who underwent surgery. The recurrent dislocation rate was 71% in the conservative treatment group versus 0% in the surgery group. There was also significant improvement in International Knee Documentation Committee score from 67.7 to 80.0 (P=0.02), and of apprehension sign from 62% to 0% (P<0.01). A management algorithm for patellar dislocation is described. Surgery is preferable to conservative treatment in patients who have recurrent patellar dislocation, and may also be preferable for those who have an acute dislocation.

  18. Evolution of Dislocation Density During Tensile Deformation of BH220 Steel at Different Pre-strain Conditions

    NASA Astrophysics Data System (ADS)

    Seth, Prem Prakash; Das, A.; Bar, H. N.; Sivaprasad, S.; Basu, A.; Dutta, K.

    2015-07-01

    Tensile behavior of BH220 steel with different pre-strain conditions (2 and 8%) followed by bake hardening was studied at different strain rates (0.001 and 0.1/s). Dislocation densities of the deformed specimens were successfully estimated from x-ray diffraction profile analysis using the modified Williamson-Hall equation. The results indicate that other than 2% pre-strain the dislocation density increases with increase in pre-strain level as well as with strain rate. The decrease in the dislocation density in 2% pre-strain condition without any drop in strength value is attributed to the characteristic dislocation feature formed during pre-straining.

  19. Timing of Surgical Reduction and Stabilization of Talus Fracture-Dislocations.

    PubMed

    Buckwalter V, Joseph A; Westermann, Robert; Mooers, Brian; Karam, Matthew; Wolf, Brian

    Talus fractures with associated dislocations are rare but have high rates of complications, including avascular necrosis (AVN). Management of these injuries involves urgent surgical reduction and fixation, although there are no definitive data defining an operative time frame for preserving the blood supply and preventing complications. To determine the effect of time to surgical reduction of talus fractures and talus fracture-dislocations on rates of AVN and posttraumatic osteoarthritis (PTOA), we retrospectively reviewed talus fractures surgically managed at a level I trauma center during the 10-year period 2003 to 2013. Operative reports were obtained and reviewed, and 3 independent reviewers, using the Hawkins and AO/OTA (Arbeitsgemeinschaft für Osteosynthesefragen/Orthopaedic Trauma Association) systems, classified the injuries on plain radiographs. Analysis of AO/OTA 81 fractures with associated tibiotalar, subtalar, or talonavicular dislocations was performed. Primary outcomes were presence of AVN/PTOA and subsequent arthrodesis of tibiotalar or subtalar joints. We identified 106 surgically managed talus fractures. Rates of AVN/PTOA were 41% for all talus fractures and 50% for talus fracture-dislocations. Mean time to surgical reduction was not significant for development of AVN/PTOA for all talus fractures (P = .45) or talus fracture-dislocations (P = .29). There was no difference in age (P = .20), body mass index (P = .45), or polytrauma (P = .79) between patients who developed AVN and those who did not. Open fractures were significantly correlated with the development of AVN/PTOA (P = .009). Talar fracture-dislocations are devastating injuries with high rates of complications. Our data suggest there is no effect of time from injury to surgical reduction of talus fractures or talus fracture-dislocations on rates of AVN and PTOA.

  20. Harnessing atomistic simulations to predict the rate at which dislocations overcome obstacles

    NASA Astrophysics Data System (ADS)

    Saroukhani, S.; Nguyen, L. D.; Leung, K. W. K.; Singh, C. V.; Warner, D. H.

    2016-05-01

    Predicting the rate at which dislocations overcome obstacles is key to understanding the microscopic features that govern the plastic flow of modern alloys. In this spirit, the current manuscript examines the rate at which an edge dislocation overcomes an obstacle in aluminum. Predictions were made using different popular variants of Harmonic Transition State Theory (HTST) and compared to those of direct Molecular Dynamics (MD) simulations. The HTST predictions were found to be grossly inaccurate due to the large entropy barrier associated with the dislocation-obstacle interaction. Considering the importance of finite temperature effects, the utility of the Finite Temperature String (FTS) method was then explored. While this approach was found capable of identifying a prominent reaction tube, it was not capable of computing the free energy profile along the tube. Lastly, the utility of the Transition Interface Sampling (TIS) approach was explored, which does not need a free energy profile and is known to be less reliant on the choice of reaction coordinate. The TIS approach was found capable of accurately predicting the rate, relative to direct MD simulations. This finding was utilized to examine the temperature and load dependence of the dislocation-obstacle interaction in a simple periodic cell configuration. An attractive rate prediction approach combining TST and simple continuum models is identified, and the strain rate sensitivity of individual dislocation obstacle interactions is predicted.

  1. Dislocation pileup as a representation of strain accumulation on a strike-slip fault

    USGS Publications Warehouse

    Savage, J.C.

    2006-01-01

    The conventional model of strain accumulation on a vertical transform fault is a discrete screw dislocation in an elastic half-space with the Burgers vector of the dislocation increasing at the rate of relative plate motion. It would be more realistic to replace that discrete dislocation by a dislocation distribution, presumably a pileup in which the individual dislocations are in equilibrium. The length of the pileup depends upon the applied stress and the amount of slip that has occurred at depth. I argue here that the dislocation pileup (the transition on the fault from no slip to slip at the full plate rate) occupies a substantial portion of the lithosphere thickness. A discrete dislocation at an adjustable depth can reproduce the surface deformation profile predicted by a pileup so closely that it will be difficult to distinguish between the two models. The locking depth (dislocation depth) of that discrete dislocation approximation is substantially (???30%) larger than that (depth to top of the pileup) in the pileup model. Thus, in inverting surface deformation data using the discrete dislocation model, the locking depth in the model should not be interpreted as the true locking depth. Although dislocation pileup models should provide a good explanation of the surface deformation near the fault trace, that explanation may not be adequate at greater distances from the fault trace because approximating the expected horizontally distributed deformation at subcrustal depths by uniform slip concentrated on the fault is not justified.

  2. Anterior cervical distraction and screw elevating–pulling reduction for traumatic cervical spine fractures and dislocations

    PubMed Central

    Li, Haoxi; Yong, Zhiyao; Chen, Zhaoxiong; Huang, Yufeng; Lin, Zhoudan; Wu, Desheng

    2017-01-01

    Abstract Treatment of cervical fracture and dislocation by improving the anterior cervical technique. Anterior cervical approach has been extensively used in treating cervical spine fractures and dislocations. However, when this approach is used in the treatment of locked facet joints, an unsatisfactory intraoperative reduction and prying reduction increases the risk of secondary spinal cord injury. Thus, herein, the cervical anterior approach was improved. With distractor and screw elevation therapy during surgery, the restoration rate is increased, and secondary injury to the spinal cord is avoided. To discuss the feasibility of the surgical method of treating traumatic cervical spine fractures and dislocations and the clinical application. This retrospective study included the duration of patients’ hospitalization from January 2005 to June 2015. The potential risks of surgery (including death and other surgical complications) were explained clearly, and written consents were obtained from all patients before surgery. The study was conducted on 86 patients (54 males and 32 females, average age of 40.1 ± 5.6 years) with traumatic cervical spine fractures and dislocations, who underwent one-stage anterior approach treatment. The effective methods were evaluated by postoperative follow-up. The healing of the surgical incision was monitored in 86 patients. The follow-up duration was 18 to 36 (average 26.4 ± 7.1) months. The patients achieved bones grafted fusion and restored spine stability in 3 to 9 (average 6) months after the surgery. Statistically, significant improvement was observed by Frankel score, visual analog scale score, Japanese Orthopedic Association score, and correction rate of the cervical spine dislocation pre- and postoperative (P < .01). The modified anterior cervical approach is simple with a low risk but a good effect in reduction. In addition, it can reduce the risk of iatrogenic secondary spinal cord injury and maintain optimal cervical spine stability as observed during follow-ups. Therefore, it is suitable for clinical promotion and application. PMID:28658125

  3. Water redistribution in experimentally deformed natural milky quartz single crystals—Implications for H2O-weakening processes

    NASA Astrophysics Data System (ADS)

    Stünitz, H.; Thust, A.; Heilbronner, R.; Behrens, H.; Kilian, R.; Tarantola, A.; Fitz Gerald, J. D.

    2017-02-01

    Natural quartz single crystals were experimentally deformed in two orientations: (1) ⊥ to one prism plane and (2) in O+ orientation at 900 and 1000°C, 1.0 and 1.5 GPa, and strain rates of 1 × 10-6 s-1. In addition, hydrostatic and annealing experiments were performed. The starting material was milky quartz, which consisted of dry quartz with a large number of fluid inclusions of variable size up to several 100 µm. During pressurization fluid inclusions decrepitated producing much smaller fluid inclusions. Deformation on the sample scale is anisotropic due to dislocation glide on selected slip systems and inhomogeneous due to an inhomogeneous distribution of fluid inclusions. Dislocation glide is accompanied by minor dynamic recovery. Strongly deformed regions show a pointed broad absorption band in the 3400 cm-1 region consisting of a superposition of bands of molecular H2O and three discrete absorption bands (at 3367, 3400, and 3434 cm-1). In addition, there is a discrete absorption band at 3585 cm-1, which only occurs in deformed regions and reduces or disappears after annealing, so that this band appears to be associated with dislocations. H2O weakening in inclusion-bearing natural quartz crystals is assigned to the H2O-assisted dislocation generation and multiplication. Processes in these crystals represent recycling of H2O between fluid inclusions, cracking and crack healing, incorporation of structurally bound H in dislocations, release of H2O from dislocations during recovery, and dislocation generation at very small fluid inclusions. The H2O weakening by this process is of disequilibrium nature because it depends on the amount of H2O available.

  4. Reduction of threading dislocation density in SiGe epilayer on Si (0 0 1) by lateral growth liquid-phase epitaxy

    NASA Astrophysics Data System (ADS)

    O'Reilly, Andrew J.; Quitoriano, Nathaniel J.

    2018-02-01

    Si0.973Ge0.027 epilayers were grown on a Si (0 0 1) substrate by a lateral liquid-phase epitaxy (LLPE) technique. The lateral growth mechanism favoured the glide of misfit dislocations and inhibited the nucleation of new dislocations by maintaining the thickness less than the critical thicknesses for dislocation nucleation and greater than the critical thickness for glide. This promoted the formation of an array of long misfit dislocations parallel to the [1 1 0] growth direction and reduced the threading dislocation density to 103 cm-2, two orders of magnitude lower than the seed area with an isotropic misfit dislocation network.

  5. A modified technique of reconstruction for complete acromioclavicular dislocation: a prospective study.

    PubMed

    Tienen, Tony G; Oyen, Jan F C H; Eggen, Peter J G M

    2003-01-01

    Many procedures, both nonoperative and operative, have been described for treatment of complete acromioclavicular dislocations. The best primary treatment, however, still remains unclear. We present a new surgical technique in which the clavicle is reduced to an anatomic position, the coracoacromial ligament is transferred to the clavicle, and acromioclavicular joint fixation is accomplished with the use of absorbable, braided suture cord. Twenty-one patients underwent the modified technique of reconstruction. Patients were included only if they had sustained a Rockwood type V acromioclavicular dislocation and were extremely active in competitive sports before dislocation occurred. Eighteen patients returned to their sports without pain within 2.5 months after operation. The mean follow-up was 35.7 months. The average Constant score at last follow-up was 97. Radiographs taken at this time confirmed anatomic reduction in 18 patients, residual subluxation in 2 patients, and, in 1 patient, redislocation of the joint that occurred because of infection. Six patients had radiographic evidence of coracoclavicular ossifications. All patients developed a wide scar. Considering its operative simplicity, the advantage of absorbable augmentation of the clavicular reduction, and the low rate of recurrence, this technique may be an attractive alternative in this particular group of patients.

  6. Thermal activation of dislocations in large scale obstacle bypass

    NASA Astrophysics Data System (ADS)

    Sobie, Cameron; Capolungo, Laurent; McDowell, David L.; Martinez, Enrique

    2017-08-01

    Dislocation dynamics simulations have been used extensively to predict hardening caused by dislocation-obstacle interactions, including irradiation defect hardening in the athermal case. Incorporating the role of thermal energy on these interactions is possible with a framework provided by harmonic transition state theory (HTST) enabling direct access to thermally activated reaction rates using the Arrhenius equation, including rates of dislocation-obstacle bypass processes. Moving beyond unit dislocation-defect reactions to a representative environment containing a large number of defects requires coarse-graining the activation energy barriers of a population of obstacles into an effective energy barrier that accurately represents the large scale collective process. The work presented here investigates the relationship between unit dislocation-defect bypass processes and the distribution of activation energy barriers calculated for ensemble bypass processes. A significant difference between these cases is observed, which is attributed to the inherent cooperative nature of dislocation bypass processes. In addition to the dislocation-defect interaction, the morphology of the dislocation segments pinned to the defects play an important role on the activation energies for bypass. A phenomenological model for activation energy stress dependence is shown to describe well the effect of a distribution of activation energies, and a probabilistic activation energy model incorporating the stress distribution in a material is presented.

  7. GaSb and GaSb/AlSb Superlattice Buffer Layers for High-Quality Photodiodes Grown on Commercial GaAs and Si Substrates

    NASA Astrophysics Data System (ADS)

    Gutiérrez, M.; Lloret, F.; Jurczak, P.; Wu, J.; Liu, H. Y.; Araújo, D.

    2018-05-01

    The objective of this work is the integration of InGaAs/GaSb/GaAs heterostructures, with high indium content, on GaAs and Si commercial wafers. The design of an interfacial misfit dislocation array, either on GaAs or Si substrates, allowed growth of strain-free devices. The growth of purposely designed superlattices with their active region free of extended defects on both GaAs and Si substrates is demonstrated. Transmission electron microscopy technique is used for the structural characterization and plastic relaxation study. In the first case, on GaAs substrates, the presence of dopants was demonstrated to reduce several times the threading dislocation density through a strain-hardening mechanism avoiding dislocation interactions, while in the second case, on Si substrates, similar reduction of dislocation interactions is obtained using an AlSb/GaSb superlattice. The latter is shown to redistribute spatially the interfacial misfit dislocation array to reduce dislocation interactions.

  8. Effect of strain rate and dislocation density on the twinning behavior in Tantalum

    DOE PAGES

    Florando, Jeffrey N.; El-Dasher, Bassem S.; Chen, Changqiang; ...

    2016-04-28

    The conditions which affect twinning in tantalum have been investigated across a range of strain rates and initial dislocation densities. Tantalum samples were subjected to a range of strain rates, from 10 –4/s to 10 3/s under uniaxial stress conditions, and under laser-induced shock-loading conditions. In this study, twinning was observed at 77K at strain rates from 1/s to 103/s, and during laser-induced shock experiments. The effect of the initial dislocation density, which was imparted by deforming the material to different amounts of pre-strain, was also studied, and it was shown that twinning is suppressed after a given amount ofmore » pre-strain, even as the global stress continues to increase. These results indicate that the conditions for twinning cannot be represented solely by a critical global stress value, but are also dependent on the evolution of the dislocation density. Additionally, the analysis shows that if twinning is initiated, the nucleated twins may continue to grow as a function of strain, even as the dislocation density continues to increase.« less

  9. Ipsilateral fracture dislocation of the shoulder and elbow: A case report and literature review

    PubMed Central

    Behr, Ian; Blint, Andy; Trenhaile, Scott

    2013-01-01

    Ipsilateral dislocation of the shoulder and elbow is an uncommon injury. A literature review identified nine previously described cases. We are reporting a unique case of ipsilateral posterior shoulder dislocation and anterior elbow dislocation along with concomitant intra-articular fractures of both joints. This is the first report describing this combination of injuries. Successful treatment generally occurs with closed reduction of ipsilateral shoulder and elbow dislocations, usually reducing the elbow first. When combined with a fracture at one or both locations, closed reduction of the dislocations in conjunction with appropriate fracture management can result in a positive functional outcome. PMID:26403884

  10. Molecular dynamics study on the evolution of interfacial dislocation network and mechanical properties of Ni-based single crystal superalloys

    NASA Astrophysics Data System (ADS)

    Li, Nan-Lin; Wu, Wen-Ping; Nie, Kai

    2018-05-01

    The evolution of misfit dislocation network at γ /γ‧ phase interface and tensile mechanical properties of Ni-based single crystal superalloys at various temperatures and strain rates are studied by using molecular dynamics (MD) simulations. From the simulations, it is found that with the increase of loading, the dislocation network effectively inhibits dislocations emitted in the γ matrix cutting into the γ‧ phase and absorbs the matrix dislocations to strengthen itself which increases the stability of structure. Under the influence of the temperature, the initial mosaic structure of dislocation network gradually becomes irregular, and the initial misfit stress and the elastic modulus slowly decline as temperature increasing. On the other hand, with the increase of the strain rate, it almost has no effect on the elastic modulus and the way of evolution of dislocation network, but contributes to the increases of the yield stress and tensile strength. Moreover, tension-compression asymmetry of Ni-based single crystal superalloys is also presented based on MD simulations.

  11. Isolated transcalcaneal talonavicular dislocation: a severe injury related to a low-energy mechanism.

    PubMed

    Ventham, Nicholas T; Phadnis, Joideep; Sujenthiran, Arunan; Trompeter, Alex J; Ramesh, Palanisamy

    2013-01-01

    Transcalcaneal talonavicular dislocation is a rare injury, with very few reported cases. Of these, most have been the result of high-energy mechanisms such as road traffic collisions or falls from a height. The management of this injury is challenging, and treatment is fraught with a high rate of disability, infection, and amputation. We describe the successful management of the first reported case of a low-energy transcalcaneal talonavicular dislocation in a 71-year-old female. Combined external and internal fixation was used to reduce and maintain the injury, with a resultant good functional and complication-free outcome at 1 year after the injury. Our experience highlights the prevalence of these devastating injuries caused by relatively benign mechanisms in an increasingly older population with osteoporotic bone. It also indicates that operative stabilization of a low-energy injury can be more successful than that with the traditional high-velocity trauma. Copyright © 2013 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Benjamin L; Bronkhorst, Curt; Beyerlein, Irene

    The goal of this work is to formulate a constitutive model for the deformation of metals over a wide range of strain rates. Damage and failure of materials frequently occurs at a variety of deformation rates within the same sample. The present state of the art in single crystal constitutive models relies on thermally-activated models which are believed to become less reliable for problems exceeding strain rates of 10{sup 4} s{sup -1}. This talk presents work in which we extend the applicability of the single crystal model to the strain rate region where dislocation drag is believed to dominate. Themore » elastic model includes effects from volumetric change and pressure sensitive moduli. The plastic model transitions from the low-rate thermally-activated regime to the high-rate drag dominated regime. The direct use of dislocation density as a state parameter gives a measurable physical mechanism to strain hardening. Dislocation densities are separated according to type and given a systematic set of interactions rates adaptable by type. The form of the constitutive model is motivated by previously published dislocation dynamics work which articulated important behaviors unique to high-rate response in fcc systems. The proposed material model incorporates thermal coupling. The hardening model tracks the varying dislocation population with respect to each slip plane and computes the slip resistance based on those values. Comparisons can be made between the responses of single crystals and polycrystals at a variety of strain rates. The material model is fit to copper.« less

  13. Point-of-care ultrasound facilitates diagnosing a posterior shoulder dislocation.

    PubMed

    Mackenzie, David C; Liebmann, Otto

    2013-05-01

    Posterior shoulder dislocation is an uncommon disruption of the glenohumeral joint. Risk factors include seizure, electric shock, and underlying instabilities of the shoulder joint. A 27-year-old man with a history of recurrent posterior shoulder dislocation presented to the Emergency Department with sudden shoulder pain and reduced range of motion about the shoulder after abducting and internally rotating his arm. Radiographs did not show fracture or dislocation. The treating physician suspected an occult posterior shoulder dislocation, but wanted to avoid performing a computed tomography scan of the shoulder, as the patient had undergone numerous scans during the evaluation of similar complaints. Instead, a point-of-care ultrasound was performed, demonstrating posterior displacement of the humeral head relative to the glenoid rim, confirming the presence of a posterior shoulder dislocation. The patient received procedural sedation, and the shoulder was reduced with real-time ultrasound visualization. The patient tolerated the procedure well, and had decreased pain and improved range of motion. He was discharged with a sling, swathe, and orthopedic follow-up. Point-of-care ultrasound of the shoulder may be used to demonstrate posterior shoulder dislocation. This may have particular utility in the setting of non-diagnostic radiographs. Copyright © 2013. Published by Elsevier Inc.

  14. Acetabular cup position and risk of dislocation in primary total hip arthroplasty.

    PubMed

    Seagrave, Kurt G; Troelsen, Anders; Malchau, Henrik; Husted, Henrik; Gromov, Kirill

    2017-02-01

    Background and purpose - Hip dislocation is one of the most common complications following total hip arthroplasty (THA). Several factors that affect dislocation have been identified, including acetabular cup positioning. Optimal values for cup inclination and anteversion are debatable. We performed a systematic review to describe the different methods for measuring cup placement, target zones for cup positioning, and the association between cup positioning and dislocation following primary THA. Methods - A systematic search of literature in the PubMed database was performed (January and February 2016) to identify articles that compared acetabular cup positioning and the risk of dislocation. Surgical approach and methods for measurement of cup angles were also considered. Results - 28 articles were determined to be relevant to our research question. Some articles demonstrated that cup positioning influenced postoperative dislocation whereas others did not. The majority of articles could not identify a statistically significant difference between dislocating and non-dislocating THA with regard to mean angles of cup anteversion and inclination. Most of the articles that assessed cup placement within the Lewinnek safe zone did not show a statistically significant reduction in dislocation rate. Alternative target ranges have been proposed by several authors. Interpretation - The Lewinnek safe zone could not be justified. It is difficult to draw broad conclusions regarding a definitive target zone for cup positioning in THA, due to variability between studies and the likely multifactorial nature of THA dislocation. Future studies comparing cup positioning and dislocation rate should investigate surgical approach separately. Standardized tools for measurement of cup positioning should be implemented to allow comparison between studies.

  15. Acetabular cup position and risk of dislocation in primary total hip arthroplasty

    PubMed Central

    Seagrave, Kurt G; Troelsen, Anders; Malchau, Henrik; Husted, Henrik; Gromov, Kirill

    2017-01-01

    Background and purpose — Hip dislocation is one of the most common complications following total hip arthroplasty (THA). Several factors that affect dislocation have been identified, including acetabular cup positioning. Optimal values for cup inclination and anteversion are debatable. We performed a systematic review to describe the different methods for measuring cup placement, target zones for cup positioning, and the association between cup positioning and dislocation following primary THA. Methods — A systematic search of literature in the PubMed database was performed (January and February 2016) to identify articles that compared acetabular cup positioning and the risk of dislocation. Surgical approach and methods for measurement of cup angles were also considered. Results— 28 articles were determined to be relevant to our research question. Some articles demonstrated that cup positioning influenced postoperative dislocation whereas others did not. The majority of articles could not identify a statistically significant difference between dislocating and non-dislocating THA with regard to mean angles of cup anteversion and inclination. Most of the articles that assessed cup placement within the Lewinnek safe zone did not show a statistically significant reduction in dislocation rate. Alternative target ranges have been proposed by several authors. Interpretation— The Lewinnek safe zone could not be justified. It is difficult to draw broad conclusions regarding a definitive target zone for cup positioning in THA, due to variability between studies and the likely multifactorial nature of THA dislocation. Future studies comparing cup positioning and dislocation rate should investigate surgical approach separately. Standardized tools for measurement of cup positioning should be implemented to allow comparison between studies. PMID:27879150

  16. Thermodynamic dislocation theory: Bauschinger effect

    NASA Astrophysics Data System (ADS)

    Le, K. C.; Tran, T. M.

    2018-04-01

    The thermodynamic dislocation theory developed for nonuniform plastic deformations is used here to simulate the stress-strain curves for crystals subjected to antiplane shear-controlled load reversal. We show that the presence of the positive back stress during the load reversal reduces the magnitude of shear stress required to pull excess dislocations back to the center of the specimen. There, the excess dislocations of opposite signs meet and annihilate each other leading to the Bauschinger effect.

  17. Ligamentous and capsular injuries to the metacarpophalangeal joints of the hand.

    PubMed

    Shah, Smiresh Suresh; Techy, Fernando; Mejia, Alfonso; Gonzalez, Mark H

    2012-01-01

    The mechanism of dorsal dislocation of the metacarpophalangeal (MCP) joint is with forced hyperextension of the joint and the main structure injured is the volar plate. A simple dislocation can be reduced by closed means whereas a complex dislocation cannot. Care must be taken not to put traction across the joint, which may cause the volar plate to slip into the joint, converting a simple dislocation into a complex dislocation. Volar dislocations are rare and mainly treated nonoperatively. Sagittal band injuries can be treated with extension splinting or surgical management with direct repair or reconstruction. A locked MCP joint can usually be treated with closed manipulation. This article discusses these injuries and management options.

  18. Discrete dislocation plasticity analysis of loading rate-dependent static friction.

    PubMed

    Song, H; Deshpande, V S; Van der Giessen, E

    2016-08-01

    From a microscopic point of view, the frictional force associated with the relative sliding of rough surfaces originates from deformation of the material in contact, by adhesion in the contact interface or both. We know that plastic deformation at the size scale of micrometres is not only dependent on the size of the contact, but also on the rate of deformation. Moreover, depending on its physical origin, adhesion can also be size and rate dependent, albeit different from plasticity. We present a two-dimensional model that incorporates both discrete dislocation plasticity inside a face-centred cubic crystal and adhesion in the interface to understand the rate dependence of friction caused by micrometre-size asperities. The friction strength is the outcome of the competition between adhesion and discrete dislocation plasticity. As a function of contact size, the friction strength contains two plateaus: at small contact length [Formula: see text], the onset of sliding is fully controlled by adhesion while for large contact length [Formula: see text], the friction strength approaches the size-independent plastic shear yield strength. The transition regime at intermediate contact size is a result of partial de-cohesion and size-dependent dislocation plasticity, and is determined by dislocation properties, interfacial properties as well as by the loading rate.

  19. Effect of strain rate and dislocation density on the twinning behavior in tantalum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Florando, Jeffrey N., E-mail: florando1@llnl.gov; Swift, Damian C.; Barton, Nathan R.

    2016-04-15

    The conditions which affect twinning in tantalum have been investigated across a range of strain rates and initial dislocation densities. Tantalum samples were subjected to a range of strain rates, from 10{sup −4}/s to 10{sup 3}/s under uniaxial stress conditions, and under laser-induced shock-loading conditions. In this study, twinning was observed at 77 K at strain rates from 1/s to 10{sup 3}/s, and during laser-induced shock experiments. The effect of the initial dislocation density, which was imparted by deforming the material to different amounts of pre-strain, was also studied, and it was shown that twinning is suppressed after a givenmore » amount of pre-strain, even as the global stress continues to increase. These results indicate that the conditions for twinning cannot be represented solely by a critical global stress value, but are also dependent on the evolution of the dislocation density. In addition, the analysis shows that if twinning is initiated, the nucleated twins may continue to grow as a function of strain, even as the dislocation density continues to increase.« less

  20. Rare Complication in Third Maxillary Molar Extraction: Dislocation in Infratemporal Fossa.

    PubMed

    Battisti, Andrea; Priore, Paolo; Giovannetti, Filippo; Barbera, Giorgio; D'Alessandro, Francesco; Valentini, Valentino

    2017-10-01

    Removal of impacted third maxillary molar is frequently carried out without difficulties and low rate of intraoperative complications. The rare and particularly challenger to manage it is the third molar dislocation into the infratemporal fossa (IF). In this clinical report, the authors present their solution to manage and resolve this particular complication. A 28-year-old woman was referred to the emergency rescue unit of the authors' hospital by her dentistry, after the attempt to extract the left impacted maxillary third molar. During the procedure the tooth accidentally dislodged and was lost sight of it. The patient had significant mouth-opening limitation, omolateral mid face swelling and pain. Computer tomography was immediately performed to determine the exact position of the tooth, showing the dental element dislocated into the IF. Considering all of possible complications the best surgical option must guarantee a direct approach and a constant eye contact of the tooth, even in case of further displacement during the procedure, and allow early surgery. The authors used an endoscopic transoral approach through the preexisted access and solved all the issues reducing morbidity. Removing tooth from the IF could be burdened by serious risk of bleeding and/or nerve injury. The endoscopic approach provides direct view of the IF reducing morbidity.

  1. Traumatic hip dislocation at a regional trauma centre in Nigeria.

    PubMed

    Onyemaechi, N O C; Eyichukwu, G O

    2011-01-01

    Traumatic dislocation or fracture-dislocation of the hip is an orthopaedic emergency that is steadily increasing in incidence due to high-speed motor vehicular accidents. These injuries need to be recognized early and promptly treated to prevent morbidity and long-term complications. Some of the fundamental issues in the management of traumatic dislocations of the hip are the critical interval between injury and reduction, the type of reduction most suitable for various types of injury and the duration of immobilization that give the best results. This study was carried out at the National Orthopaedic Hospital Enugu, a regional trauma and orthopaedic centre in South-East Nigeria. The purpose of the study is to describe the pattern of presentation and to identify the factors that determine the long-term outcome in the treatment of traumatic dislocations and fracture-dislocations of the hip at Enugu, Nigeria. The case notes of all the patients that presented with traumatic dislocations and fracture-dislocations of the hip between January 2003 and December 2007 were reviewed. The information extracted and analyzed included the patients' demographics, etiology of injury, time interval before reduction, associated injuries, treatment offered, complications and follow-up. Thompson-Epstein classification was used to grade the posterior hip dislocations. The outcome of treatment was evaluated using the clinical and radiological criteria proposed by Epstein (1974). Three patients with incomplete data and two patients with central fracture dislocation were excluded from this study. Forty-eight patients with 50 hip dislocations were analyzed. The age range was 12 years to 67 years with a mean age of 34.8 years. Thirty-nine patients (81.3%) were males and 9 (18.7%) were females. Road-traffic accident was the leading cause of traumatic hip dislocation in this series, 44 cases (91.6%). Posterior dislocation occurred in 48 hips (96%) while anterior dislocation occurred in 2 hips (4%). Forty-seven hips (94%) were treated by primary closed reduction, two hips (4%) were treated with open reduction and one patient (2%) had Girdlestone excision arthroplasty. Thirty-six hips (73.5%) were reduced with 12 hours of the injury. Concomitant injuries were found in 37 patients (77%). The follow up period ranged from 10 months to 36 months with a mean follow up period of 15 months. Post-traumatic osteoarthritis occurred in 2 hips (4%) avascular necrosis of the femoral head was seen in 2 hips (4%). Five patients had sciatic nerve paresis while there was recurrence in one hip. No mortality was recorded. Traumatic dislocations and fracture-dislocations of the hip are severe injuries caused mostly by high-speed motor-vehicular accidents. Young adult males are most commonly affected, and there is a high rate of concomitant injuries. Excellent results can be achieved by early and stable closed reduction of these injuries with immobilization of the affected hips.

  2. A micro S-shaped optical fiber temperature sensor based on dislocation fiber splice

    NASA Astrophysics Data System (ADS)

    Yan, Haitao; Li, Pengfei; Zhang, Haojie; Shen, Xiaoyue; Wang, Yongzhen

    2017-12-01

    We fabricated a simple, compact, and stable temperature sensor based on an S-shaped dislocated optical fiber. The dislocation optical fiber has two splice points, and we obtained the optimal parameters based on the theory and our experiment, such as the dislocation amount and length of the dislocation optical fiber. According to the relationship between the temperature and the peak wavelength shift, the temperature of the environment can be obtained. Then, we made this fiber a micro bending as S-shape between the two dislocation points, and the S-shaped micro bending part could release stress with the change in temperature and reduce the effect of stress on the temperature measurement. This structure could solve the problem of sensor distortion caused by the cross response of temperature and stress. We measured the S-shaped dislocation fiber sensor and the dislocation fiber without S-shape under the same environment and conditions, and the S-shaped dislocation fiber had the advantages of the stable reliability and good linearity.

  3. A phase field crystal model simulation of morphology evolution and misfit dislocation generation in nanoheteroepitaxy

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Chen, Z.; Cheng, C.; Wang, Y. X.

    2017-10-01

    A phase field crystal (PFC) model is employed to study morphology evolution of nanoheteroepitaxy and misfit dislocation generation when applied with enhanced supercooling, lattice mismatch and substrate vicinal angle conditions. Misfit strain that rises due to lattice mismatch causes rough surfaces or misfit dislocations, deteriorates film properties, hence, efforts taken to reveal their microscopic mechanism are significant for film quality improvement. Uniform islands, instead of misfit dislocations, are developed in subcritical thickness film, serving as a way of strain relief by surface mechanism. Misfit dislocations generate when strain relief by surface mechanism is deficient in higher supercooling, multilayers of misfit dislocations dominate, but the number of layers reduces gradually when the supercooling is further enhanced. Rough surfaces like islands or cuspate pits are developed which is ascribed to lattice mismatch, multilayers of misfit dislocations generate to further enhance lattice mismatch. Layers of misfit dislocations generate at a thickening position at enhanced substrate vicinal angle, this further enhancing the angle leading to sporadic generation of misfit dislocations.

  4. Infrared absorption band in deformed qtz crystals analyzed by combining different microstructural methods

    NASA Astrophysics Data System (ADS)

    Stunitz, Holger; Thust, Anja; Behrens, Harald; Heilbronner, Renee; Kilian, Ruediger

    2016-04-01

    Natural single crystals of quartz have been experimentally deformed in two orientations: (1) normal to one prism-plane, (2) In O+ orientation at temperatures of 900 and 1000°C, pressures of 1.0 and 1.5 GPa, and strain rates of ~1 x 10-6s-1. The starting material is milky quartz, consisting of dry quartz (H2O contents of <150 H/106Si) with fluid inclusions (FI). During pressurization many FÍs decrepitate. Cracks heal and small neonate FÍs form, increasing the number of FÍs drastically. During subsequent deformation, the size of FÍs is further reduced (down to ~10 nm). Sample deformation occurs by dominant dislocation glide on selected slip systems, accompanied by some dynamic recovery. Strongly deformed regions show FTIR spectra with a pointed broad absorption band in the ~3400 cm-1 region as a superposition of molecular H2O bands and three discrete absorption bands (at 3367, 3400, and 3434 cm-1). In addition, there is a discrete absorption band at 3585 cm-1, which only occurs in deformed regions. The 3585 cm-1 band is reduced or even disappears after annealing. This band is polarized and represents structurally bound H, its H-content is estimated to be 1-3% of the total H2O-content and appears to be associated with dislocations. The H2O weakening effect in our FI-bearing natural quartz crystals is assigned to the processes of dislocation generation and multiplication at small FÍs. The deformation processes in these crystals represent a recycling of H2O between FÍs, dislocation generation at very small fluid inclusions, incorporation of structurally bound H into dislocation cores, and release of H2O from dislocations back into FÍs during recovery. Cracking and crack healing play an important role in the recycling process and imply a close interrelationship between brittle and crystal plastic deformation. The H2O weakening by this process is of a disequilibrium nature and thus depends on the amount of H2O available.

  5. Water weakening in experimentally deformed milky quartz single crystals

    NASA Astrophysics Data System (ADS)

    Stunitz, H.; Thust, A.; Kilian, R.; Heilbronner, R.; Behrens, H.; Tarantola, A.; Fitz Gerald, J. D.

    2015-12-01

    Natural single crystals of quartz have been experimentally deformed in two orientations: (1) normal to one prism-plane, (2) In O+ orientation at temperatures of 900 and 1000°C, pressures of 1.0 and 1.5 GPa, and strain rates of ~1 x 10-6s-1. The starting material is milky quartz, consisting of dry quartz (H2O contents of <150 H/106Si) with fluid inclusions (FI). During pressurization many FI´s decrepitate. Cracks heal and small neonate FI´s form, increasing the number of FI´s drastically. During subsequent deformation, the size of FI´s is further reduced (down to ~10 nm). Sample deformation occurs by dominant dislocation glide on selected slip systems, accompanied by some dynamic recovery. Strongly deformed regions show FTIR spectra with a pointed broad absorption band in the ~3400 cm-1 region as a superposition of molecular H2O bands and three discrete absorption bands (at 3367, 3400, and 3434 cm-1). In addition, there is a discrete absorption band at 3585 cm-1, which only occurs in deformed regions. The 3585 cm-1 band is reduced or even disappears after annealing. This band is polarized and represents structurally bound H, its H-content is estimated to be 1-3% of the total H2O-content and appears to be associated with dislocations. The H2O weakening effect in our FI-bearing natural quartz crystals is assigned to the processes of dislocation generation and multiplication at small FI´s. The deformation processes in these crystals represent a recycling of H2O between FI´s, dislocation generation at very small fluid inclusions, incorporation of structurally bound H into dislocation cores, and release of H2O from dislocations back into FI´s during recovery. Cracking and crack healing play an important role in the recycling process and imply a close interrelationship between brittle and crystal plastic deformation. The H2O weakening by this process is of a disequilibrium nature and thus depends on the amount of H2O available.

  6. INTERNATIONAL CONFERENCE ON SEMICONDUCTOR INJECTION LASERS SELCO-87: Recombination-induced motion of dislocations in III-V compounds

    NASA Astrophysics Data System (ADS)

    Schreiber, J.; Leipner, H. S.

    1988-11-01

    The methods of in situ cathodoluminescence and scanning electron microscopy were used in a study of stimulated dislocation glide. Dislocations generated by deliberate surface damage were found to be highly mobile when excited above a certain threshold. A study was made of the dependence of the glide velocity on the excitation rate and the first quantitative results on low-temperature dislocation motion are reported.

  7. Use of Intraoperative Temporary Invasive Distraction to Reduce a Chronic Talar Neck Fracture-Dislocation

    DTIC Science & Technology

    2011-04-01

    tures. J Orthop Trauma. 2004;18(5):265-270. 2. Metzger M, Levin J, Clancy J. Talar neck frac- tures and rates of avascular necrosis . J Foot Ankle Surg...of the talus.4 Given the risk for osteo- necrosis with talar neck fractures, early operative intervention is con- sidered the standard of care.5

  8. Optimization of hetero-epitaxial growth for the threading dislocation density reduction of germanium epilayers

    NASA Astrophysics Data System (ADS)

    Chong, Haining; Wang, Zhewei; Chen, Chaonan; Xu, Zemin; Wu, Ke; Wu, Lan; Xu, Bo; Ye, Hui

    2018-04-01

    In order to suppress dislocation generation, we develop a "three-step growth" method to heteroepitaxy low dislocation density germanium (Ge) layers on silicon with the MBE process. The method is composed of 3 growth steps: low temperature (LT) seed layer, LT-HT intermediate layer as well as high temperature (HT) epilayer, successively. Threading dislocation density (TDD) of epitaxial Ge layers is measured as low as 1.4 × 106 cm-2 by optimizing the growth parameters. The results of Raman spectrum showed that the internal strain of heteroepitaxial Ge layers is tensile and homogeneous. During the growth of LT-HT intermediate layer, TDD reduction can be obtained by lowering the temperature ramping rate, and high rate deposition maintains smooth surface morphology in Ge epilayer. A mechanism based on thermodynamics is used to explain the TDD and surface morphological dependence on temperature ramping rate and deposition rate. Furthermore, we demonstrate that the Ge layer obtained can provide an excellent platform for III-V materials integrated on Si.

  9. Prediction of dislocation generation during Bridgman growth of GaAs crystals

    NASA Technical Reports Server (NTRS)

    Tsai, C. T.; Yao, M. W.; Chait, Arnon

    1992-01-01

    Dislocation densities are generated in GaAs single crystals due to the excessive thermal stresses induced by temperature variations during growth. A viscoplastic material model for GaAs, which takes into account the movement and multiplication of dislocations in the plastic deformation, is developed according to Haasen's theory. The dislocation density is expressed as an internal state variable in this dynamic viscoplastic model. The deformation process is a nonlinear function of stress, strain rate, dislocation density and temperature. The dislocation density in the GaAs crystal during vertical Bridgman growth is calculated using a nonlinear finite element model. The dislocation multiplication in GaAs crystals for several temperature fields obtained from thermal modeling of both the GTE GaAs experimental data and artificially designed data are investigated.

  10. Prediction of dislocation generation during Bridgman growth of GaAs crystals

    NASA Astrophysics Data System (ADS)

    Tsai, C. T.; Yao, M. W.; Chait, Arnon

    1992-11-01

    Dislocation densities are generated in GaAs single crystals due to the excessive thermal stresses induced by temperature variations during growth. A viscoplastic material model for GaAs, which takes into account the movement and multiplication of dislocations in the plastic deformation, is developed according to Haasen's theory. The dislocation density is expressed as an internal state variable in this dynamic viscoplastic model. The deformation process is a nonlinear function of stress, strain rate, dislocation density and temperature. The dislocation density in the GaAs crystal during vertical Bridgman growth is calculated using a nonlinear finite element model. The dislocation multiplication in GaAs crystals for several temperature fields obtained from thermal modeling of both the GTE GaAs experimental data and artificially designed data are investigated.

  11. Impact of Various Charge States of Hydrogen on Passivation of Dislocation in Silicon

    NASA Astrophysics Data System (ADS)

    Song, Lihui; Lou, Jingjing; Fu, Jiayi; Ji, Zhenguo

    2018-03-01

    Dislocation, one of typical crystallographic defects in silicon, is detrimental to the minority carrier lifetime of silicon wafer. Hydrogen passivation is able to reduce the recombination activity of dislocation, however, the passivation efficacy is strongly dependent on the experimental conditions. In this paper, a model based on the theory of hydrogen charge state control is proposed to explain the passivation efficacy of dislocation correlated to the peak temperature of thermal annealing and illumination intensity. Experimental results support the prediction of the model that a mix of positively charged hydrogen and negatively charged hydrogen at certain ratio can maximise the passivation efficacy of dislocation, leading to a better power conversion efficiency of silicon solar cell with dislocation in it.

  12. Theory of interacting dislocations on cylinders.

    PubMed

    Amir, Ariel; Paulose, Jayson; Nelson, David R

    2013-04-01

    We study the mechanics and statistical physics of dislocations interacting on cylinders, motivated by the elongation of rod-shaped bacterial cell walls and cylindrical assemblies of colloidal particles subject to external stresses. The interaction energy and forces between dislocations are solved analytically, and analyzed asymptotically. The results of continuum elastic theory agree well with numerical simulations on finite lattices even for relatively small systems. Isolated dislocations on a cylinder act like grain boundaries. With colloidal crystals in mind, we show that saddle points are created by a Peach-Koehler force on the dislocations in the circumferential direction, causing dislocation pairs to unbind. The thermal nucleation rate of dislocation unbinding is calculated, for an arbitrary mobility tensor and external stress, including the case of a twist-induced Peach-Koehler force along the cylinder axis. Surprisingly rich phenomena arise for dislocations on cylinders, despite their vanishing Gaussian curvature.

  13. DEFORMATION PROCESSES IN MATERIALS. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washburn, J.; Parker, E.R.; Tinder, R.F.

    1962-08-01

    It was found that irreversible plastic deformation occurs in polycrystaliine specimens of zinc, copper and its dilute alloys, and aluminum at room temperature, beginning at stresses indetectably above zero applied stress. Neither Frank-Read source generation nor simple bowing of dislocations between fixed nodes can explain the irreversible plastic behavior observed at small stresses in the metals studied. More extensive rearrangements of the dislocation substructure that probably involve glide of nodes and formation of new nodes seem to be required. Prestrained specimens of copper and its dilute alloys often exhibited bursts of plastic deformation which could possibly be due to cooperativemore » rearrangement of the dislocation substructure in one or a few grains. The introduction, by particle bombardment, of new lengths of dislocations into the gage section surface of specimens of copper and its dilute alloys produced extensive irreversible plastic flow beginning at stresses indetectably above zero applied stress. The effect of prestraln on the shape of the loading and unloading curves for zinc shows that dislocation rearrangements that cause forward and reverse strain can occur simultaneously. The net strain rate can be the algebraic sum of the strain recovery rate and the forward creep rate. The present quantitative theories of the Peierls-Nabarro stress are insufficient to permit an estimate of its magnitude from the results of this investigation. In dilute copper alloys containing up to 0.1 at.% impurity, there were many dislocations in the grown-in networks that were not locked by segregation of the foreign atoms. The study of creep behavior over a range of temperatures and at the same strain sensitivity used in these experiments combined with dislocation etch pit observations of dislocation substructure appears to be a particularly fruitful field for further investigation. (auth)« less

  14. Dislocation reduction in heteroepitaxial Ge on Si using SiO{sub 2} lined etch pits and epitaxial lateral overgrowth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leonhardt, Darin; Han, Sang M.

    2011-09-12

    We report a technique that significantly reduces threading dislocations in Ge on Si heteroepitaxy. Germanium is first grown on Si and etched to produce pits in the surface where threading dislocations terminate. Further processing leaves a layer of SiO{sub 2} only within etch pits. Subsequent selective epitaxial Ge growth results in coalescence above the SiO{sub 2}. The SiO{sub 2} blocks the threading dislocations from propagating into the upper Ge epilayer. With annealed Ge films grown on Si, the said method reduces the defect density from 2.6 x 10{sup 8} to 1.7 x 10{sup 6} cm{sup -2}, potentially making the layermore » suitable for electronic and photovoltaic devices.« less

  15. Characteristics of dislocation structure in creep deformed lamellar tial alloy within primary regime

    NASA Astrophysics Data System (ADS)

    Cho, H. S.; Nam, Soo W.

    1999-06-01

    In this investigation, dislocations of a lamellar TiAl alloy are analyzed after creeping in the primary range at 800°C/200MPa in order to interpret their mobility It was found that the dislocation density in γ-laths decreased as the creep deformation proceeds within primary creep regime Schmid factor analysis suggests that the creep deformation in the early stage of the primary creep regime is controlled by the gliding of some of the initial dislocations which have a high enough Schmid factor As the creep deformation progressed, those dislocations with high Schmid factors slip preferentially to be annihilated at the α-γ interface For further continuous deformation, dislocation generation is required, and for this, α-phase is transformed to γ-phase in order to generate new dislocations A slow dislocation generation process by phase transformation of α-phase compared with the absorbing rate to sinks is responsible for the decreasing dislocation density as the creep strain increases

  16. Delayed management of traumatic bilateral cervical facet dislocation: surgical strategy. Report of three cases.

    PubMed

    Bartels, Ronald H M A; Donk, Roland

    2002-10-01

    Postinjury cervical spine instability typically requires surgical treatment in the acute or semiacute stage. The authors, however, report on three patients with older (> 8 weeks) untreated bilateral cervical facet dislocation. In two patients they attempted a classic anterior-posterior-anterior approach but failed. The misalignment in the second stage of the procedure could not be corrected, and they had to add a fourth, posterior, stage. To avoid the fourth stage, thereby reducing operating time and risk of neurological damage while turning the patient, they propose the following sequence: 1) a posterior approach to perform a complete facetectomy bilaterally with no attempt to reduce the dislocation; 2) an anterior microscopic discectomy with reduction of the dislocation and anterior fixation; and 3) posterior fixation. This sequence of procedures was successfully performed in the third patient. Based on this experience, they suggest that in cases of nonacute bilateral cervical facet dislocations the operating sequence should be posterior-anterior-posterior.

  17. Late dislocation of rotating platform in New Jersey Low-Contact Stress knee prosthesis.

    PubMed

    Huang, Chun-Hsiung; Ma, Hon-Ming; Liau, Jiann-Jong; Ho, Fang-Yuan; Cheng, Cheng-Kung

    2002-12-01

    Five patients with late rotational dislocation of the rotating platform bearing in the New Jersey Low-Contact Stress total knee arthroplasty are reported. The prostheses had functioned well for 8 to 12 years before failure. Preoperative radiographs showed asymmetric femorotibial joint spaces. Entrapment of the dislocated bearing in three patients and spontaneous reduction of the dislocated bearing in another two patients were seen at revision. Femorotibial ligamentous instability was found after reduction. The retrieved polyethylene bearings showed advanced wear and cold flow deformities and the thickness was reduced. The revision arthroplasty was accomplished by replacement with a thicker bearing element. Progressive femorotibial ligament laxity and reduction of the thickness of polyethylene with wearing break down the originally well-balanced soft tissue tension of the knee. The rotational degree of the rotating platform bearing is unrestricted, which may result in late dislocation. Polyethylene wear is unavoidable in knee prostheses using metal contact with polyethylene even with a mobile-bearing design. Efforts to reduce polyethylene wear are mandatory.

  18. Dislocation pinning effects induced by nano-precipitates during warm laser shock peening: Dislocation dynamic simulation and experiments

    NASA Astrophysics Data System (ADS)

    Liao, Yiliang; Ye, Chang; Gao, Huang; Kim, Bong-Joong; Suslov, Sergey; Stach, Eric A.; Cheng, Gary J.

    2011-07-01

    Warm laser shock peening (WLSP) is a new high strain rate surface strengthening process that has been demonstrated to significantly improve the fatigue performance of metallic components. This improvement is mainly due to the interaction of dislocations with highly dense nanoscale precipitates, which are generated by dynamic precipitation during the WLSP process. In this paper, the dislocation pinning effects induced by the nanoscale precipitates during WLSP are systematically studied. Aluminum alloy 6061 and AISI 4140 steel are selected as the materials with which to conduct WLSP experiments. Multiscale discrete dislocation dynamics (MDDD) simulation is conducted in order to investigate the interaction of dislocations and precipitates during the shock wave propagation. The evolution of dislocation structures during the shock wave propagation is studied. The dislocation structures after WLSP are characterized via transmission electron microscopy and are compared with the results of the MDDD simulation. The results show that nano-precipitates facilitate the generation of highly dense and uniformly distributed dislocation structures. The dislocation pinning effect is strongly affected by the density, size, and space distribution of nano-precipitates.

  19. [Treatment of sternoclavicular joint dislocation with sternoclavicular hook plate fixation].

    PubMed

    Liu, Pan; Yuan, Jia-bin; Liu, Zhong-qian; Lu, Bing; Wang, Yue

    2015-08-01

    To evaluate the technique and therapeutic effect of sternoclavicular hook plate fixation in treating sternoclavicular joint (SCJ) dislocation. From January 2010 to March 2014,6 patients with SCJ dislocation were treated with sternoclavicular hook plate fixation in our hospital. Among the 6 patients, 5 patients were male and 1 patient was female, and the average age was 34 years, ranging from 26 to 48 years. The course of the disease ranged from 3 to 20 days. All the SCJ dislocations were caused by external injury and accompanied with the symptoms of swelling pain and obvious shoulder joint activity restricted in affected side. All SCJ dislocations were anterior dislocation by the diagnosis of X-ray and CT scan. The postoperative curative effect was evaluated according to Rockwood score. All the patients' operative incision were healed well and in good appearance. X-ray showed that the dislocated SCJ was well reduced and the plate was on right position. All the 6 patients were followed up for 4 to 18 months, with an average of 12 months. The results were evaluated according to Rockwood score, 4 got excellent results, 1 good and 1 fair. No fixation loosening, redislocation or side injury such as vessel, nerve or pleura injury were found. With sternoclavicular hook plate fixation, SCJ dislocation could be reduced while keeping its amphiarthrodial function and the completeness of the cartilage surface. Sternoclavicular hook plate fixation has advantages of safety and stabilization in fixation, and patients can begin function exercises earlier.

  20. Position of the prosthesis and the incidence of dislocation following total hip replacement.

    PubMed

    He, Rong-xin; Yan, Shi-gui; Wu, Li-dong; Wang, Xiang-hua; Dai, Xue-song

    2007-07-05

    Dislocation is the second most common complication of hip replacement surgery, and impact of the prosthesis is believed to be the fundamental reason. The present study employed Solidworks 2003 and MSC-Nastran software to analyze the three dimensional variables in order to investigate how to prevent dislocation following hip replacement surgery. Computed tomography (CT) imaging was used to collect femoral outline data and Solidworks 2003 software was used to construct the cup model with variabilities. Nastran software was used to evaluate dislocation at different prosthesis positions and different geometrical shapes. Three dimensional movement and results from finite element method were analyzed and the values of dislocation resistance index (DRI), range of motion to impingement (ROM-I), range of motion to dislocation (ROM-D) and peak resisting moment (PRM) were determined. Computer simulation was used to evaluate the range of motion of the hip joint at different prosthesis positions. Finite element analysis showed: (1) Increasing the ratio of head/neck increased the ROM-I values and moderately increased ROM-D and PRM values. Increasing the head size significantly increased PRM and to some extent ROM-I and ROM-D values, which suggested that there would be a greater likelihood of dislocation. (2) Increasing the anteversion angle increased the ROM-I, ROM-D, PRM, energy required for dislocation (ENERGY-D) and DRI values, which would increase the stability of the joint. (3) As the chamber angle was increased, ROM-I, ROM-D, PRM, Energy-D and DRI values were increased, resulting in improved joint stability. Chamber angles exceeding 55 degrees resulted in increases in ROM-I and ROM-D values, but decreases in PRM, Energy-D, and DRI values, which, in turn, increased the likelihood of dislocation. (4) The cup, which was reduced posteriorly, reduced ROM-I values (2.1 -- 5.3 degrees ) and increased the DRI value (0.073). This suggested that the posterior high side had the effect of 10 degrees anteversion angle. Increasing the head/neck ratio increases joint stability. Posterior high side reduced the range of motion of the joint but increased joint stability; Increasing the anteversion angle increases DRI values and thus improve joint stability; Increasing the chamber angle increases DRI values and improves joint stability. However, at angles exceeding 55 degrees , further increases in the chamber angle result in decreased DRI values and reduce the stability of the joint.

  1. Period-doubling reconstructions of semiconductor partial dislocations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Ji -Sang; Huang, Bing; Wei, Su -Huai

    2015-09-18

    Atomic-scale understanding and control of dislocation cores is of great technological importance, because they act as recombination centers for charge carriers in optoelectronic devices. Using hybrid density-functional calculations, we present period-doubling reconstructions of a 90 degrees partial dislocation in GaAs, for which the periodicity of like-atom dimers along the dislocation line varies from one to two, to four dimers. The electronic properties of a dislocation change drastically with each period doubling. The dimers in the single-period dislocation are able to interact, to form a dispersive one-dimensional band with deep-gap states. However, the inter-dimer interaction for the double-period dislocation becomes significantlymore » reduced; hence, it is free of mid-gap states. The Ga core undergoes a further period-doubling transition to a quadruple-period reconstruction induced by the formation of small hole polarons. In conclusion, the competition between these dislocation phases suggests a new passivation strategy via population manipulation of the detrimental single-period phase.« less

  2. Electron energy can oscillate near a crystal dislocation

    DOE PAGES

    Li, Mingda; Cui, Wenping; Dresselhaus, Mildred S.; ...

    2017-01-25

    Crystal dislocations govern the plastic mechanical properties of materials but also affect the electrical and optical properties. However, a fundamental and quantitative quantum field theory of a dislocation has remained undiscovered for decades. Here in this article we present an exactly-solvable one-dimensional quantum field theory of a dislocation, for both edge and screw dislocations in an isotropic medium, by introducing a new quasiparticle which we have called the ‘dislon’. The electron-dislocation relaxation time can then be studied directly from the electron self-energy calculation, which is reducible to classical results. In addition, we predict that the electron energy will experience anmore » oscillation pattern near a dislocation. Compared with the electron density’s Friedel oscillation, such an oscillation is intrinsically different since it exists even with only single electron is present. With our approach, the effect of dislocations on materials’ non-mechanical properties can be studied at a full quantum field theoretical level.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Mingda; Cui, Wenping; Dresselhaus, Mildred S.

    Crystal dislocations govern the plastic mechanical properties of materials but also affect the electrical and optical properties. However, a fundamental and quantitative quantum field theory of a dislocation has remained undiscovered for decades. Here in this article we present an exactly-solvable one-dimensional quantum field theory of a dislocation, for both edge and screw dislocations in an isotropic medium, by introducing a new quasiparticle which we have called the ‘dislon’. The electron-dislocation relaxation time can then be studied directly from the electron self-energy calculation, which is reducible to classical results. In addition, we predict that the electron energy will experience anmore » oscillation pattern near a dislocation. Compared with the electron density’s Friedel oscillation, such an oscillation is intrinsically different since it exists even with only single electron is present. With our approach, the effect of dislocations on materials’ non-mechanical properties can be studied at a full quantum field theoretical level.« less

  4. Clinical outcomes of the Cadenat procedure in the treatment of acromioclavicular joint dislocations.

    PubMed

    Moriyama, Hiroaki; Gotoh, Masafumi; Mitsui, Yasuhiro; Yoshikawa, Eiichirou; Uryu, Takuya; Okawa, Takahiro; Higuchi, Fujio; Shirahama, Masahiro; Shiba, Naoto

    2014-01-01

    We report our clinical experience using the modified Cadenat method to treat acromioclavicular joint dislocation, and discuss the usefulness of this method. This study examined 6 shoulders in 6 patients (5 males, 1 female) who were diagnosed with acromioclavicular joint dislocation and treated with the modified Cadenat method at our hospital. Average age at onset was 49.3 years (26-78 years), average time interval from injury until surgery was 263.8 days (10 to 1100 days), and the average follow-up period was 21.7 months (12 to 42 months). Post-operative assessment was performed using plain radiographs to determine shoulder joint dislocation rate and Japanese Orthopaedic Association (JOA) score. The average post-operative JOA score was 94.1 points (91 to 100 points). The acromioclavicular joint dislocation rate improved from 148.7% (72 to 236%) before surgery to 28.6% (0 to 60%) after surgery. Conservative treatment has been reported to achieve good outcomes in acromioclavicular joint dislocations. However, many patients also experience chronic pain or a sensation of fatigue upon putting the extremity in an elevated posture, and therefore ensuring the stability of the acromioclavicular joint is crucial for highly active patients. In this study, we treated acromioclavicular joint dislocations by the modified Cadenat method, and were able to achieve favorable outcomes.

  5. Five to thirteen year results of a cemented dual mobility socket to treat recurrent dislocation.

    PubMed

    Hamadouche, Moussa; Ropars, Mickael; Rodaix, Camille; Musset, Thierry; Gaucher, François; Biau, David; Courpied, Jean Pierre; Huten, Denis

    2017-03-01

    Dual mobility (DM) socket has been associated with a low rate of dislocation following both primary and revision total hip arthroplasty (THA). However, little is known about the long-term efficiency of DM in the treatment of THA instability. The purpose of this retrospective study was to evaluate the outcome of a cemented DM socket to treat recurrent dislocation after a minimum of five year follow-up. The series included 51 patients with a mean age of 71.3 ± 11.5 (range, 41-98) years presenting with recurrent dislocation (mean 3.3). A single DM socket design was used consisting of a stainless steel outer shell with grooves with a highly polished inner surface articulating with a mobile polyethylene component. The femoral head was captured in the polyethylene component using a snap-fit type mechanism, the latter acting as a large unconstrained head inside the metal cup. At the minimum five year follow-up evaluation, 18 of the 51 patients deceased at a mean of 4.8 ± 2.3 years, three were lost to follow-up at a mean of 1.4 years, seven had been revised at a mean of 4.7 ± 3.1 years (range, 1.5-9.1), and the remaining 23 were still alive and did not have revision at a mean of 8.2 ± 2.4 years (range, 5-13 years). Of the seven revision, three were performed for further episodes of dislocation (at the large bearing for one patient and intra-prosthetic for two patients) after a mean 5.9 ± 2.9 years (range, 2.7-9.1), whereas two were performed for late sepsis and two for aseptic loosening of the acetabular component. Radiographic analysis did not reveal any further loosening on the acetabular side. The survival rate of the cup at ten years, using re-dislocation as the end-point, was 86.1 ± 8.4% (95% confidence interval, 69.7-100%). The survival rate of the cup at ten years, using revision for any reason as the end-point, was 75.2 ± 9.3% (95% confidence interval, 56.9-93.5%). A cemented dual mobility cup was able to restore hip stability in 94% of patients presenting with recurrent dislocating hips up to 13-year follow-up with none of the complications associated with constrained devices, as mechanical failure occurred in only 3.9% of the patients of this series. The overall reduced survival using revision for any reason as the end-point at ten years was related to this specific patients population that had various co-morbidities.

  6. Implicit integration methods for dislocation dynamics

    DOE PAGES

    Gardner, D. J.; Woodward, C. S.; Reynolds, D. R.; ...

    2015-01-20

    In dislocation dynamics simulations, strain hardening simulations require integrating stiff systems of ordinary differential equations in time with expensive force calculations, discontinuous topological events, and rapidly changing problem size. Current solvers in use often result in small time steps and long simulation times. Faster solvers may help dislocation dynamics simulations accumulate plastic strains at strain rates comparable to experimental observations. Here, this paper investigates the viability of high order implicit time integrators and robust nonlinear solvers to reduce simulation run times while maintaining the accuracy of the computed solution. In particular, implicit Runge-Kutta time integrators are explored as a waymore » of providing greater accuracy over a larger time step than is typically done with the standard second-order trapezoidal method. In addition, both accelerated fixed point and Newton's method are investigated to provide fast and effective solves for the nonlinear systems that must be resolved within each time step. Results show that integrators of third order are the most effective, while accelerated fixed point and Newton's method both improve solver performance over the standard fixed point method used for the solution of the nonlinear systems.« less

  7. Microstructure of calcite deformed by high-pressure torsion: An X-ray line profile study

    NASA Astrophysics Data System (ADS)

    Schuster, Roman; Schafler, Erhard; Schell, Norbert; Kunz, Martin; Abart, Rainer

    2017-11-01

    Calcite aggregates were deformed to high strain using high-pressure torsion and applying confining pressures of 1-6 GPa and temperatures between room temperature and 450 °C. The run products were characterized by X-ray diffraction, and key microstructural parameters were extracted employing X-ray line profile analysis. The dominant slip system was determined as r { 10 1 bar 4 } ⟨ 2 bar 021 ⟩ with edge dislocation character. The resulting dislocation density and the size of the coherently scattering domains (CSD) exhibit a systematic dependence on the P-T conditions of deformation. While high pressure generally impedes recovery through reducing point defect mobility, the picture is complicated by pressure-induced phase transformations in the CaCO3 system. Transition from the calcite stability field to those of the high-pressure polymorphs CaCO3-II, CaCO3-III and CaCO3-IIIb leads to a change of the microstructural evolution with deformation. At 450 °C and pressures within the calcite stability field, dislocation densities and CSD sizes saturate at shear strains exceeding 10 in agreement with earlier studies at lower pressures. In the stability field of CaCO3-II, the dislocation density exhibits a more complex behavior. Furthermore, at a given strain and strain rate, the dislocation density increases and the CSD size decreases with increasing pressure within the stability fields of either calcite or of the high-pressure polymorphs. There is, however, a jump from high dislocation densities and small CSDs in the upper pressure region of the calcite stability field to lower dislocation densities and larger CSDs in the low-pressure region of the CaCO3-II stability field. This jump is more pronounced at higher temperatures and less so at room temperature. The pressure influence on the deformation-induced evolution of dislocation densities implies that pressure variations may change the rheology of carbonate rocks. In particular, a weakening is expected to occur at the transition from the calcite to the CaCO3-II stability field, if aragonite does not form.

  8. Strain-rate behavior in tension of the tempered martensitic reduced activation steel Eurofer97

    NASA Astrophysics Data System (ADS)

    Cadoni, Ezio; Dotta, Matteo; Forni, Daniele; Spätig, Philippe

    2011-07-01

    The tensile properties of the high-chromium tempered martensitic reduced activation steel Eurofer97 were determined from tests carried out over a wide range of strain-rates on cylindrical specimens. The quasi-static tests were performed with a universal electro-mechanical machine, whereas a hydro-pneumatic machine and a JRC-split Hopkinson tensile bar apparatus were used for medium and high strain-rates respectively. This tempered martensitic stainless steel showed significant strain-rate sensitivity. The constitutive behavior was investigated within a framework of dislocations dynamics model using Kock's approach. The parameters of the model were determined and then used to predict the deformation range of the tensile deformation stability. A very good agreement between the experimental results and predictions of the model was found.

  9. Modeling and 2-D discrete simulation of dislocation dynamics for plastic deformation of metal

    NASA Astrophysics Data System (ADS)

    Liu, Juan; Cui, Zhenshan; Ou, Hengan; Ruan, Liqun

    2013-05-01

    Two methods are employed in this paper to investigate the dislocation evolution during plastic deformation of metal. One method is dislocation dynamic simulation of two-dimensional discrete dislocation dynamics (2D-DDD), and the other is dislocation dynamics modeling by means of nonlinear analysis. As screw dislocation is prone to disappear by cross-slip, only edge dislocation is taken into account in simulation. First, an approach of 2D-DDD is used to graphically simulate and exhibit the collective motion of a large number of discrete dislocations. In the beginning, initial grains are generated in the simulation cells according to the mechanism of grain growth and the initial dislocation is randomly distributed in grains and relaxed under the internal stress. During the simulation process, the externally imposed stress, the long range stress contribution of all dislocations and the short range stress caused by the grain boundaries are calculated. Under the action of these forces, dislocations begin to glide, climb, multiply, annihilate and react with each other. Besides, thermal activation process is included. Through the simulation, the distribution of dislocation and the stress-strain curves can be obtained. On the other hand, based on the classic dislocation theory, the variation of the dislocation density with time is described by nonlinear differential equations. Finite difference method (FDM) is used to solve the built differential equations. The dislocation evolution at a constant strain rate is taken as an example to verify the rationality of the model.

  10. High-quality AlN epitaxy on nano-patterned sapphire substrates prepared by nano-imprint lithography.

    PubMed

    Zhang, Lisheng; Xu, Fujun; Wang, Jiaming; He, Chenguang; Guo, Weiwei; Wang, Mingxing; Sheng, Bowen; Lu, Lin; Qin, Zhixin; Wang, Xinqiang; Shen, Bo

    2016-11-04

    We report epitaxial growth of AlN films with atomically flat surface on nano-patterned sapphire substrates (NPSS) prepared by nano-imprint lithography. The crystalline quality can be greatly improved by using the optimized 1-μm-period NPSS. The X-ray diffraction ω-scan full width at half maximum values for (0002) and (102) reflections are 171 and 205 arcsec, respectively. The optimized NPSS contribute to eliminating almost entirely the threading dislocations (TDs) originating from the AlN/sapphire interface via bending the dislocations by image force from the void sidewalls before coalescence. In addition, reducing the misorientations of the adjacent regions during coalescence adopting the low lateral growth rate is also essential for decreasing TDs in the upper AlN epilayer.

  11. High-quality AlN epitaxy on nano-patterned sapphire substrates prepared by nano-imprint lithography

    NASA Astrophysics Data System (ADS)

    Zhang, Lisheng; Xu, Fujun; Wang, Jiaming; He, Chenguang; Guo, Weiwei; Wang, Mingxing; Sheng, Bowen; Lu, Lin; Qin, Zhixin; Wang, Xinqiang; Shen, Bo

    2016-11-01

    We report epitaxial growth of AlN films with atomically flat surface on nano-patterned sapphire substrates (NPSS) prepared by nano-imprint lithography. The crystalline quality can be greatly improved by using the optimized 1-μm-period NPSS. The X-ray diffraction ω-scan full width at half maximum values for (0002) and (102) reflections are 171 and 205 arcsec, respectively. The optimized NPSS contribute to eliminating almost entirely the threading dislocations (TDs) originating from the AlN/sapphire interface via bending the dislocations by image force from the void sidewalls before coalescence. In addition, reducing the misorientations of the adjacent regions during coalescence adopting the low lateral growth rate is also essential for decreasing TDs in the upper AlN epilayer.

  12. High-quality AlN epitaxy on nano-patterned sapphire substrates prepared by nano-imprint lithography

    PubMed Central

    Zhang, Lisheng; Xu, Fujun; Wang, Jiaming; He, Chenguang; Guo, Weiwei; Wang, Mingxing; Sheng, Bowen; Lu, Lin; Qin, Zhixin; Wang, Xinqiang; Shen, Bo

    2016-01-01

    We report epitaxial growth of AlN films with atomically flat surface on nano-patterned sapphire substrates (NPSS) prepared by nano-imprint lithography. The crystalline quality can be greatly improved by using the optimized 1-μm-period NPSS. The X-ray diffraction ω-scan full width at half maximum values for (0002) and (102) reflections are 171 and 205 arcsec, respectively. The optimized NPSS contribute to eliminating almost entirely the threading dislocations (TDs) originating from the AlN/sapphire interface via bending the dislocations by image force from the void sidewalls before coalescence. In addition, reducing the misorientations of the adjacent regions during coalescence adopting the low lateral growth rate is also essential for decreasing TDs in the upper AlN epilayer. PMID:27812006

  13. Dislocation density evolution of AA 7020-T6 investigated by in-situ synchrotron diffraction under tensile load

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Z.Y., E-mail: zhengye.zhong@hzg.de; Helmholtz-Zentrum Geesthacht, Max-Planck-Straße 1, D-21502 Geesthacht; Brokmeier, H.-G.

    2015-10-15

    The dislocation density evolution along the loading axis of a textured AA 7020-T6 aluminum alloy during uniaxial tension was investigated by in-situ synchrotron diffraction. The highly parallel synchrotron beam at the High Energy Materials Science beamline P07 in PETRA III, DESY, offers excellent conditions to separate different influences for line broadening from which micro-strains are obtained using the modified Williamson–Hall method which is also for defect density investigations. During tensile loading the dislocation density evolution was documented from the as-received material (initial micro-strain state) to the relaxation of the strains during elastic deformation. After yield, the increasing rate of dislocationmore » density growth was relatively fast till half-way between yield and UTS. After that, the rate started to decrease and the dislocation density fluctuated as the elongation increased due to the generation and annihilation of dislocations. When dislocation generation is dominant, the correlation between the flow stress and dislocation density satisfies the Taylor equation. Besides, a method to correct the thickness effect on peak broadening is developed in the present study. - Highlights: • In-situ synchrotron diffraction was applied to characterize peak broadening. • Dislocation evolution along the loading axis during uniaxial tension was investigated. • A method to correct the sample thickness effect on peak broadening was developed. • Dislocation density and flow stress satisfy the Taylor equation at a certain range. • The texture before load and after sample fracture was analyzed.« less

  14. [Acute traumatic and especially neglected traumatic hip dislocations are very rare in children].

    PubMed

    Fernandez, F F; Wirth, T; Eberhardt, O

    2012-09-01

    We report about the first hip arthroscopies of extracapsular neglected hip dislocations with concomitant injuries in two children (2 and 4 years old). The major problem of traumatic hip dislocation is avascular necrosis. Further problems are possible concomitant injuries. It is important not to cause further damage by therapeutic procedures. In a 4-year-old child the hip could be reduced under visualization and in a 2-year-old child with epiphyseal fracture the extent of the operation could be reduced. In both children large avulsion injuries of the ligamentum capitis femoris could be resected via hip arthroscopy. Hip arthroscopy can reduce surgical morbidity considerably and can possibly contribute to prevention of the feared avascular necrosis of the femoral head.

  15. High Strain Rate Tensile Testing of Silver Nanowires: Rate-Dependent Brittle-to-Ductile Transition.

    PubMed

    Ramachandramoorthy, Rajaprakash; Gao, Wei; Bernal, Rodrigo; Espinosa, Horacio

    2016-01-13

    The characterization of nanomaterials under high strain rates is critical to understand their suitability for dynamic applications such as nanoresonators and nanoswitches. It is also of great theoretical importance to explore nanomechanics with dynamic and rate effects. Here, we report in situ scanning electron microscope (SEM) tensile testing of bicrystalline silver nanowires at strain rates up to 2/s, which is 2 orders of magnitude higher than previously reported in the literature. The experiments are enabled by a microelectromechanical system (MEMS) with fast response time. It was identified that the nanowire plastic deformation has a small activation volume (<10b(3)), suggesting dislocation nucleation as the rate controlling mechanism. Also, a remarkable brittle-to-ductile failure mode transition was observed at a threshold strain rate of 0.2/s. Transmission electron microscopy (TEM) revealed that along the nanowire, dislocation density and spatial distribution of plastic regions increase with increasing strain rate. Furthermore, molecular dynamic (MD) simulations show that deformation mechanisms such as grain boundary migration and dislocation interactions are responsible for such ductility. Finally, the MD and experimental results were interpreted using dislocation nucleation theory. The predicted yield stress values are in agreement with the experimental results for strain rates above 0.2/s when ductility is pronounced. At low strain rates, random imperfections on the nanowire surface trigger localized plasticity, leading to a brittle-like failure.

  16. Patellofemoral Arthritis After Lateral Patellar Dislocation: A Matched Population-Based Analysis.

    PubMed

    Sanders, Thomas L; Pareek, Ayoosh; Johnson, Nicholas R; Stuart, Michael J; Dahm, Diane L; Krych, Aaron J

    2017-04-01

    The rate of patellofemoral arthritis after lateral patellar dislocation is unknown. Purpose/Hypothesis: The purpose of this study was to compare the risk of patellofemoral arthritis and knee arthroplasty between patients who experienced a lateral patellar dislocation and matched individuals without a patellar dislocation. Additionally, factors predictive of arthritis after patellar dislocation were examined. The hypothesis was that the rate of arthritis is likely higher among patients who experience a patellar dislocation compared with those who do not. Cohort study; Level of evidence, 3. In this study, 609 patients who had a first-time lateral patellar dislocation between 1990 and 2010 were compared with an age- and sex-matched cohort of patients who did not have a patellar dislocation. Medical records were reviewed to collect information related to the initial injury, recurrent dislocation, treatment, and progression to clinically significant patellofemoral arthritis (defined as symptoms with degenerative changes on patellar sunrise radiographs). Factors associated with arthritis (age, sex, recurrence, osteochondral injury, trochlear dysplasia) were examined. At a mean follow-up of 12.3 ± 6.5 years from initial dislocation, 58 patients (9.5%) in the dislocation cohort were diagnosed with patellofemoral arthritis, corresponding to a cumulative incidence of arthritis of 1.2% at 5 years, 2.7% at 10 years, 8.1% at 15 years, 14.8% at 20 years, and 48.9% at 25 years. In the control cohort, 8 patients (1.3%) were diagnosed with arthritis, corresponding to a cumulative incidence of arthritis of 0% at 5 years, 0% at 10 years, 1.3% at 15 years, 2.9% at 20 years, and 8.3% at 25 years. Therefore, patients who experienced a lateral patellar dislocation had a significantly higher risk of developing arthritis (hazard ratio [HR], 7.8; 95% CI, 3.9-17.6; P < .001) than individuals without a patellar dislocation. However, the risk of knee arthroplasty was similar between groups (HR, 2.8; 95% CI, 0.6-19.7; P = .2). Recurrent patellar dislocations (HR, 4.5; 95% CI, 1.6-12.6), osteochondral injury (HR, 11.3; 95% CI, 5.0-26.6), and trochlear dysplasia (HR, 3.6; 95% CI, 1.3-10.0) were associated with arthritis after patellar dislocation. Patellar dislocation is a significant risk factor for patellofemoral arthritis, as nearly half of patients have symptoms and radiographic changes consistent with arthritis at 25 years after lateral patellar dislocation. Osteochondral injury, recurrent patellar instability, and trochlear dysplasia are associated with the development of arthritis.

  17. Single-crystal sapphire microstructure for high-resolution synchrotron X-ray monochromators

    DOE PAGES

    Asadchikov, Victor E.; Butashin, Andrey V.; Buzmakov, Alexey V.; ...

    2016-03-22

    We report on the growth and characterization of several sapphire single crystals for the purpose of x-ray optics applications. Structural defects were studied by means of laboratory double-crystal X-ray diffractometry and white beam synchrotron-radiation topography. The investigations confirmed that the main defect types are dislocations. The best quality crystal was grown using the Kyropoulos technique with a dislocation density of 10 2-10 3 cm -2 and a small area with approximately 2*2 mm 2 did not show dislocation contrast in many reflections and has suitable quality for application as a backscattering monochromator. As a result, a clear correlation between growthmore » rate and dislocation density is observed, though growth rate is not the only parameter impacting the quality.« less

  18. Biomechanical reposition techniques in anterior shoulder dislocation: a randomised multicentre clinical trial— the BRASD-trial protocol

    PubMed Central

    Roetman, Martijn H; Boeije, Tom; Roodheuvel, Floris; Mullaart-Jansen, Nieke; Peeters, Suzanne; Burg, Mike D

    2017-01-01

    Introduction Glenohumeral (shoulder) dislocations are the most common large joint dislocations seen in the emergency department (ED). They cause pain, often severe, and require timely interventions to minimise discomfort and tissue damage. Commonly used reposition or relocation techniques often involve traction and/or leverage. These techniques have high success rates but may be painful and time consuming. They may also cause complications. Recently, other techniques—the biomechanical reposition techniques (BRTs)—have become more popular since they may cause less pain, require less time and cause fewer complications. To our knowledge, no research exists comparing the various BRTs. Our objective is to establish which BRT or BRT combination is fastest, least painful and associated with the lowest complication rate for adult ED patients with anterior glenohumeral dislocations (AGDs). Methods and analysis Adults presenting to the participating EDs with isolated AGDs, as determined by radiographs, will be randomised to one of three BRTs: Cunningham, modified Milch or scapular manipulation. Main study parameters/endpoints are ED length of stay and patients’ self-report of pain. Secondary study parameters/endpoints are procedure times, need for analgesic and/or sedative medications, iatrogenic complications and rates of successful reduction. Ethics and dissemination Non-biomechanical AGD repositioning techniques based on traction and/or leverage are inherently painful and potentially harmful. We believe that the three BRTs used in this study are more physiological, more patient friendly, less likely to cause pain, more time efficient and less likely to produce complications. By comparing these three techniques, we hope to improve the care provided to adults with acute AGDs by reducing their ED length of stay and minimising pain and procedure-related complications. We also hope to define which of the three BRTs is quickest, most likely to be successful and least likely to require sedative or analgesic medications to achieve reduction. Trial registration number NTR5839. PMID:28729305

  19. General Overview: Atomistics of Environmentally-Induced Fracture.

    DTIC Science & Technology

    1981-05-01

    might be affected, recent field ion microscopy by Clum 35 suggests that hydrogen may reduce the work required to nucleate dislocations at the surface...and, hence, induces plasticity. Lynch 3 6 has proposed similar behavior based on the view that chemisorption facilitates dislocation nucleation at...that chemisorption may facilitate the nucleation of dislocations at crack tips, although the mechanism by which this might occur is unclear. The basis

  20. The low thermal gradient CZ technique as a way of growing of dislocation-free germanium crystals

    NASA Astrophysics Data System (ADS)

    Moskovskih, V. A.; Kasimkin, P. V.; Shlegel, V. N.; Vasiliev, Y. V.; Gridchin, V. A.; Podkopaev, O. I.

    2014-09-01

    This paper considers the possibility of growth of dislocation-free germanium single crystals. This is achieved by reducing the temperature gradients at the level of 1 K/cm and lower. Single germanium crystals 45-48 mm in diameter with a dislocation density of 102 cm-2 were grown by a Low Thermal Gradient Czochralski technique (LTG CZ).

  1. Computational modelling of mesoscale dislocation patterning and plastic deformation of single crystals

    NASA Astrophysics Data System (ADS)

    Xia, Shengxu; El-Azab, Anter

    2015-07-01

    We present a continuum dislocation dynamics model that predicts the formation of dislocation cell structure in single crystals at low strains. The model features a set of kinetic equations of the curl type that govern the space and time evolution of the dislocation density in the crystal. These kinetic equations are coupled to stress equilibrium and deformation kinematics using the eigenstrain approach. A custom finite element method has been developed to solve the coupled system of equations of dislocation kinetics and crystal mechanics. The results show that, in general, dislocations self-organize in patterns under their mutual interactions. However, the famous dislocation cell structure has been found to form only when cross slip is implemented in the model. Cross slip is also found to lower the yield point, increase the hardening rate, and sustain an increase in the dislocation density over the hardening regime. Analysis of the cell structure evolution reveals that the average cell size decreases with the applied stress, which is consistent with the similitude principle.

  2. Identical activation volumes of dislocation mobility in the [100](010) and [001](010) slip systems in natural olivine

    NASA Astrophysics Data System (ADS)

    Wang, Lin; Blaha, Stephan; Kawazoe, Takaaki; Miyajima, Nobuyoshi; Katsura, Tomoo

    2017-03-01

    Dislocation recovery experiments were performed on predeformed olivine single crystals at pressures of 2, 7 and 12 GPa and a constant temperature of 1650 K to determine the pressure dependence of the annihilation rate constants for [100](010) edge dislocation (a dislocation) and [001](010) screw dislocation (c dislocation). The constants of both types of dislocations are comparable within 0.3 orders of magnitude. The activation volumes of a and c dislocations are small and identical within error: 2.7 ± 0.2 and 2.5 ± 0.9 cm3/mol, respectively. These values are slightly larger and smaller than those of Si lattice and grain-boundary diffusions in olivine, respectively. The small and identical activation volumes for the a and c dislocations suggest that the pressure-induced fabric transition is unlikely in the asthenosphere. The decrease in seismic anisotropy with depth down in the asthenosphere may be caused by the fabric transition from A type or B type to AG type with decreasing stress with depth.

  3. Microstructurally Based Prediction of High Strain Failure Modes in Crystalline Solids

    DTIC Science & Technology

    2016-07-05

    SECURITY CLASSIFICATION OF: New three-dimensional dislocation-density based crystalline plasticity formulations was used with grain-boundary (GB...Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 High strain-rate; failure, crsytalline plasticity , dislocation-density...Solids Report Title New three-dimensional dislocation-density based crystalline plasticity formulations was used with grain-boundary (GB) kinematic

  4. Hip arthroscopy versus open surgical dislocation for femoroacetabular impingement

    PubMed Central

    Zhang, Dagang; Chen, Long; Wang, Guanglin

    2016-01-01

    Abstract Background: This meta-analysis aims to evaluate the efficacy and safety of hip arthroscopy versus open surgical dislocation for treating femoroacetabular impingement (FAI) through published clinical trials. Methods: We conducted a comprehensive literature search using PUBMED, EMBASE, and the Cochrane Central Register of Controlled Trials databases for relevant studies on hip arthroscopy and open surgical dislocation as treatment options for FAI. Results: Compared with open surgical dislocation, hip arthroscopy resulted in significantly higher Nonarthritic Hip Scores (NAHS) at 3- and 12-month follow-ups, a significant improvement in NAHS from preoperation to 3 months postoperation, and a significantly lower reoperation rate. Open surgical dislocation resulted in a significantly improved alpha angle by the Dunn view in patients with cam osteoplasty from preoperation to postoperation, compared with hip arthroscopy. This meta-analysis demonstrated no significant differences in the modified Harris Hip Score, Hip Outcome Score-Activities of Daily Living, or Hip Outcome Score-Sport Specific Subscale at 12 months of follow-up, or in complications (including nerve damage, wound infection, and wound dehiscence). Conclusion: Hip arthroscopy resulted in higher NAHS and lower reoperation rates, but had less improvement in alpha angle in patients with cam osteoplasty, than open surgical dislocation. PMID:27741133

  5. Recovery of strain-hardening rate in Ni-Si alloys.

    PubMed

    Yang, C L; Zhang, Z J; Cai, T; Zhang, P; Zhang, Z F

    2015-10-21

    In this study, the recovery of strain-hardening rate (RSHR) was discovered for the first time in polycrystalline materials (Ni-Si alloys) that have only dislocation activities during tensile test. Detailed microstructure characterizations show that the activation of dislocations in the secondary slip systems during tensile deformation is the major reason for this RSHR. By taking into account other metals that also exhibit RSHR during tension, a more general mechanism for the RSHR was proposed, i.e. the occurrence of a sharp decrease of dislocation mean free path (Λ) during plastic deformation, caused by either planar defects or linear defects.

  6. Recovery of strain-hardening rate in Ni-Si alloys

    PubMed Central

    Yang, C. L.; Zhang, Z. J.; Cai, T.; Zhang, P.; Zhang, Z. F.

    2015-01-01

    In this study, the recovery of strain-hardening rate (RSHR) was discovered for the first time in polycrystalline materials (Ni-Si alloys) that have only dislocation activities during tensile test. Detailed microstructure characterizations show that the activation of dislocations in the secondary slip systems during tensile deformation is the major reason for this RSHR. By taking into account other metals that also exhibit RSHR during tension, a more general mechanism for the RSHR was proposed, i.e. the occurrence of a sharp decrease of dislocation mean free path (Λ) during plastic deformation, caused by either planar defects or linear defects. PMID:26487419

  7. Recovery of strain-hardening rate in Ni-Si alloys

    NASA Astrophysics Data System (ADS)

    Yang, C. L.; Zhang, Z. J.; Cai, T.; Zhang, P.; Zhang, Z. F.

    2015-10-01

    In this study, the recovery of strain-hardening rate (RSHR) was discovered for the first time in polycrystalline materials (Ni-Si alloys) that have only dislocation activities during tensile test. Detailed microstructure characterizations show that the activation of dislocations in the secondary slip systems during tensile deformation is the major reason for this RSHR. By taking into account other metals that also exhibit RSHR during tension, a more general mechanism for the RSHR was proposed, i.e. the occurrence of a sharp decrease of dislocation mean free path (Λ) during plastic deformation, caused by either planar defects or linear defects.

  8. Use of a constrained tripolar acetabular liner to treat intraoperative instability and postoperative dislocation after total hip arthroplasty: a review of our experience.

    PubMed

    Callaghan, John J; O'Rourke, Michael R; Goetz, Devon D; Lewallen, David G; Johnston, Richard C; Capello, William N

    2004-12-01

    Constrained acetabular components have been used to treat certain cases of intraoperative instability and postoperative dislocation after total hip arthroplasty. We report our experience with a tripolar constrained component used in these situations since 1988. The outcomes of the cases where this component was used were analyzed for component failure, component loosening, and osteolysis. At average 10-year followup, for cases treated for intraoperative instability (2 cases) or postoperative dislocation (4 cases), the component failure rate was 6% (6 of 101 hips in 5 patients). For cases where the constrained liner was cemented into a fixed cementless acetabular shell, the failure rate was 7% (2 of 31 hips in 2 patients) at 3.9-year average followup. Use of a constrained liner was not associated with an increased osteolysis or aseptic loosening rate. This tripolar constrained acetabular liner provided total hip arthroplasty construct stability in most cases in which it was used for intraoperative instability or postoperative dislocation.

  9. Method for reducing or eliminating interface defects in mismatched semiconductor epilayers

    DOEpatents

    Fitzgerald, Jr., Eugene A.; Ast, Dieter G.

    1992-01-01

    The present invention and process relates to crystal lattice mismatched semiconductor composite having a first semiconductor layer and a second semiconductor growth layer deposited thereon to form an interface wherein the growth layer can be deposited at thicknesses in excess of the critical thickness, even up to about 10.times. critical thickness. Such composite has an interface which is substantially free of interface defects. For example, the size of the growth areas in a mismatched In.sub.0.05 Ga.sub.0.95 As/(001)GaAs interface was controlled by fabricating 2-.mu.m high pillars of various lateral geometries and lateral dimensions before the epitaxial deposition of 3500.ANG. of In.sub.0.05 Ga.sub.0.95 As. The linear dislocation density at the interface was reduced from >5000 dislocations/cm to about zero for 25-.mu.m lateral dimensions and to less than 800 dislocations/cm for lateral dimensions as large as 100 .mu.m. The fabricated pillars control the lateral dimensions of the growth layer and block the glide of misfit dislocations with the resultant decrease in dislocation density.

  10. Method for reducing or eliminating interface defects in mismatched semiconductor eiplayers

    DOEpatents

    Fitzgerald, Jr., Eugene A.; Ast, Dieter G.

    1991-01-01

    The present invention and process relates to crystal lattice mismatched semiconductor composite having a first semiconductor layer and a second semiconductor growth layer deposited thereon to form an interface wherein the growth layer can be deposited at thicknesses in excess of the critical thickness, even up to about 10x critical thickness. Such composite has an interface which is substantially free of interface defects. For example, the size of the growth areas in a mismatched In.sub.0.05 Ga.sub.0.95 As/(001)GaAs interface was controlled by fabricating 2-.mu.m high pillars of various lateral geometries and lateral dimensions before the epitaxial deposition of 3500.ANG. of In.sub.0.05 Ga.sub.0.95 As. The linear dislocation density at the interface was reduced from >5000 dislocations/cm to about zero for 25-.mu.m lateral dimensions and to less than 800 dislocations/cm for lateral dimensions as large as 100 .mu.m. The fabricated pillars control the lateral dimensions of the growth layer and block the glide of misfit dislocations with the resultant decrease in dislocation density.

  11. Method for reducing or eliminating interface defects in mismatched semiconductor epilayers

    DOEpatents

    Fitzgerald, E.A. Jr.; Ast, D.G.

    1992-10-20

    The present invention and process relates to crystal lattice mismatched semiconductor composite having a first semiconductor layer and a second semiconductor growth layer deposited thereon to form an interface wherein the growth layer can be deposited at thicknesses in excess of the critical thickness, even up to about 10[times] critical thickness. Such composite has an interface which is substantially free of interface defects. For example, the size of the growth areas in a mismatched In[sub 0.05]Ga[sub 0.95]As/(001)GaAs interface was controlled by fabricating 2-[mu]m high pillars of various lateral geometries and lateral dimensions before the epitaxial deposition of 3500 [angstrom] of In[sub 0.05]Ga[sub 0.95]As. The linear dislocation density at the interface was reduced from >5000 dislocations/cm to about zero for 25-[mu]m lateral dimensions and to less than 800 dislocations/cm for lateral dimensions as large as 100 [mu]m. The fabricated pillars control the lateral dimensions of the growth layer and block the glide of misfit dislocations with the resultant decrease in dislocation density. 7 figs.

  12. Dislocation confinement in the growth of Na flux GaN on metalorganic chemical vapor deposition-GaN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeuchi, S., E-mail: takeuchi@ee.es.osaka-u.ac.jp; Asazu, H.; Nakamura, Y.

    2015-12-28

    We have demonstrated a GaN growth technique in the Na flux method to confine c-, (a+c)-, and a-type dislocations around the interface between a Na flux GaN crystal and a GaN layer grown by metalorganic chemical vapor deposition (MOCVD) on a (0001) sapphire substrate. Transmission electron microscopy (TEM) clearly revealed detailed interface structures and dislocation behaviors that reduced the density of vertically aligned dislocations threading to the Na flux GaN surface. Submicron-scale voids were formed at the interface above the dislocations with a c component in MOCVD-GaN, while no such voids were formed above the a-type dislocations. The penetration ofmore » the dislocations with a c component into Na flux GaN was, in most cases, effectively blocked by the presence of the voids. Although some dislocations with a c component in the MOCVD-GaN penetrated into the Na flux GaN, their propagation direction changed laterally through the voids. On the other hand, the a-type dislocations propagated laterally and collectively near the interface, when these dislocations in the MOCVD-GaN penetrated into the Na flux GaN. These results indicated that the dislocation propagation behavior was highly sensitive to the type of dislocation, but all types of dislocations were confined to within several micrometers region of the Na flux GaN from the interface. The cause of void formation, the role of voids in controlling the dislocation behavior, and the mechanism of lateral and collective dislocation propagation are discussed on the basis of TEM results.« less

  13. Observations of Screw Dislocation Driven Growth and Faceting During CVD Homoepitaxy on 4H-SiC On-Axis Mesa Arrays

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Trunek, Andrew J.; Powell, J. Anthony; Picard, Yoosuf N.; Twigg, Mark E.

    2009-01-01

    Previous studies of (0001) homoepitaxial growth carried out on arrays of small-area mesas etched into on-axis silicon-face 4H-SiC wafers have demonstrated that spiral growth emanating from at least one screw dislocation threading the mesa is necessary in order for a mesa to grow taller in the <0001> (c-axis vertical) direction while maintaining 4H stacking sequence [1]. However, even amongst mesas containing the screw dislocation step source necessary for vertical c-axis growth, we have observed striking differences in the height and faceting that evolve during prolonged homoepitaxial growths. This paper summarizes Atomic Force Microscopy (AFM), Electron Channeling Contrast Imaging (ECCI), Scanning Electron Microscopy (SEM), and optical microscopy observations of this phenomenon. These observations support our initially proposed model [2] that the observed large variation (for mesas where 3C-SiC nucleation has not occurred) is related to the lateral positioning of a screw dislocation step source within each etched mesa. When the screw dislocation step source is located close enough to the developing edge/sidewall facet of a mesa, the c-axis growth rate and facet angle are affected by the resulting interaction. In particular, the intersection (or near intersection) of the inward-sloping mesa sidewall facet with the screw dislocation appears to impede the rate at which the spiral provides new steps required for c-axis growth. Also, the inward slope of the sidewall facet during growth (relative to other sidewalls of the same mesa not near the screw dislocation) seems to be impeded by the screw dislocation. In contrast, mesas whose screw dislocations are centrally located grow vertically, but inward sloping sidewall facets shrink the area of the top (0001) growth surface almost to the point of vanishing.

  14. The Effect of the Wall Contact and Post-Growth, Cool-Down on Defects in CdTe Crystals Grown By 'Contactless' PVT

    NASA Technical Reports Server (NTRS)

    Palosz, W.; Grasza, K.; Dudley, M.; Raghothamachar, B.; Cai, L.; Dunrose, K.; Halliday, D.; Boyall, N. M.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    To take a maximum advantage of materials processing in microgravity for understanding the effects of gravity, gravity-independent effects should be minimized. In crystal growth, the quality of the grown crystals may depend, among other factors, on their interaction with the walls of the processing container during and after growth, and on the rate of the crystal cool-down at the end of the process. To investigate the above phenomena, a series of CdTe crystal growth processes was carried out. The crystals were grown by physical vapor transport without contact with the side walls of the silica glass ampoules. To eliminate the effect of the seed quality, and to reduce the number of nuclei and related crystal grains, the Low Supersaturation Nucleation technique was applied. The source temperature was 930 C, the undercooling was a few degrees. The crystals, having the diameter of 25 mm, grew at the rate of a few mm per day. The post-growth cool-down to the room temperature was conducted at different rates, and lasted from a few minutes to four days. The crystals were characterized using chemical etching, low temperature luminescence, and Synchrotron White Beam X-ray Topography techniques. The dislocation (etch pit) density was measured and its distribution was analyzed by comparison with Poisson curves and with the Normalized Radial Distribution Correlation Function. In the regions where the crystal is in contact with silica, the materials show a considerable strain field which extends for a few mm or more from the silica-crystal interface. In the reference crystal grown with contact with the ampoule walls, and when the crystals are cooled at the highest rates, the etch pit/dislocation density is in the high 10(exp 5) per square centimeter region. Typical EPD values for lower cool-down rates are in the lower 10(exp 4) per square centimeter region. In some areas the actual dislocation density was about 10(exp 3) per square centimeter or even less. No apparent effect of the cool-down rate on polygonization was observed. Low temperature PL spectra show, that the dominant peak is (D(sup 0), h) and (A(sup 0), e) for samples with low and high dislocation densities, respectively. For low EPD crystals a peak at 1.45 eV with 21 meV phonon replicas was observed and attributed to donor-acceptor pair to neutral copper-acceptor transition. In high EPD crystals this PL structure was not observed, apparently due to the masking effect of the strong contribution from the dislocation band.

  15. Subtalar dislocation without associated fractures: Case report and review of literature

    PubMed Central

    Giannoulis, Dionisios; Papadopoulos, Dimitrios V; Lykissas, Marios G; Koulouvaris, Panagiotis; Gkiatas, Ioannis; Mavrodontidis, Alexandros

    2015-01-01

    Isolated subtalar dislocations are unusual injuries due to the inherent instability of the talus. Subtalar dislocations are frequently associated with fractures of the malleoli, the talus, the calcaneus or the fifth metatarsal. Four types of subtalar dislocation have been described according to the direction of the foot in relation to the talus: medial, lateral posterior and anterior. It has been shown that some of these dislocations may spontaneously reduce. A rare case of a 36-year-old male patient who sustained a closed medial subtalar dislocation without any associated fractures of the ankle is reported. The patient suffered a pure closed medial subtalar dislocation that is hardly reported in the literature. Six months after injury the patient did not report any pain, had a satisfactory range of motion, and no signs of residual instability or early posttraumatic osteoarthritis. The traumatic mechanism, the treatment options, and the importance of a stable and prompt closed reduction and early mobilization are discussed. PMID:25893182

  16. Posterior tibial tendon displacement behind the tibia and its interposition in an irreducible isolated ankle dislocation: a case report and literature review

    PubMed Central

    ORTOLANI, ALESSANDRO; BEVONI, ROBERTO; RUSSO, ALESSANDRO; MARCACCI, MAURILIO; GIROLAMI, MAURO

    2016-01-01

    Isolated posteromedial ankle dislocation is a rare condition thanks to the highly congruent anatomical configuration of the ankle mortise, in which the medial and lateral malleoli greatly reduce the rotational movement of the talus, and the strength of the ligaments higher than the malleoli affords protection against fractures. However, other factors, like medial malleolus hypoplasia, laxity of the ligaments, peroneal muscle weakness and previous ankle sprains, could predispose to pure dislocation. In the absence of such factors, only a complex high-energy trauma, with a rotational component, can lead to this event. Irreducibility of an ankle dislocation, which is rarely encountered, can be due to soft tissue interposition. Dislocation of the posterior tibial tendon can be the cause of an irreducible talar dislocation; interposition of this tendon, found to have slid posteriorly to the distal tibia and then passed through the tibioperoneal syndesmosis, is reported in just a few cases of ankle fracture-dislocation. PMID:27900312

  17. New method for revealing dislocations in garnet: premelting decoration

    NASA Astrophysics Data System (ADS)

    Liu, Xiangwen; Xie, Zhanjun; Jin, Zhenmin; Li, Zhuoyue; Ao, Ping; Wu, Yikun

    2018-05-01

    Premelting decoration (PMD) of dislocation experiments was carried out on garnets at 1 atmosphere pressure and temperatures of 800-1000 °C. Numerous decorated lines were observed on the polished surface of heat-treated garnet grains. The results of scanning electron microscopy, laser Raman spectroscopy and transmission electron microscopy (TEM) analyses indicate that these decorated lines were generated by premelting reaction along the dislocation lines and subgrain boundaries. The constituents of decorated lines on the polished surface of garnet are hematite, magnetite, and melt. While, in the interior of garnet, their constituents changed to Al-bearing magnetite and melt. The dislocation density of a gem-quality megacrystal garnet grain by means of the PMD is similar to that obtained by TEM, which confirms that the PMD is a new reliable method for revealing dislocations in garnet. This method greatly reduces the cost and time involved in the observation of dislocation microstructures in deformed garnet.

  18. The role of surface roughness on dislocation bending and stress evolution in low mobility AlGaN films during growth

    NASA Astrophysics Data System (ADS)

    Bardhan, Abheek; Mohan, Nagaboopathy; Chandrasekar, Hareesh; Ghosh, Priyadarshini; Sridhara Rao, D. V.; Raghavan, Srinivasan

    2018-04-01

    The bending and interaction of threading dislocations are essential to reduce their density for applications involving III-nitrides. Bending of dislocation lines also relaxes the compressive growth stress that is essential to prevent cracking on cooling down due to tensile thermal expansion mismatch stress while growing on Si substrates. It is shown in this work that surface roughness plays a key role in dislocation bending. Dislocations only bend and relax compressive stresses when the lines intersect a smooth surface. These films then crack. In rough films, dislocation lines which terminate at the bottom of the valleys remain straight. Compressive stresses are not relaxed and the films are relatively crack-free. The reasons for this difference are discussed in this work along with the implications on simultaneously meeting the requirements of films being smooth, crack free and having low defect density for device applications.

  19. Effect of annealing temperature on the thermal stress and dislocation density of mc-Si ingot grown by DS process for solar cell application

    NASA Astrophysics Data System (ADS)

    Sanmugavel, S.; Srinivasan, M.; Aravinth, K.; Ramasamy, P.

    2018-04-01

    90% of the solar industries are using crystalline silicon. Cost wise the multi-crystalline silicon solar cells are better compared to mono crystalline silicon. But because of the presence of grain boundaries, dislocations and impurities, the efficiency of the multi-crystalline silicon solar cells is lower than that of mono crystalline silicon solar cells. By reducing the defect and dislocation we can achieve high conversion efficiency. The velocity of dislocation motion increases with stress. By annealing the grown ingot at proper temperature we can decrease the stress and dislocation. Our simulation results show that the value of stress and dislocation density is decreased by annealing the grown ingot at 1400K and the input parameters can be implemented in real system to grow a better mc-Si ingot for energy harvesting applications.

  20. Does Study Design Affect Redislocation Rates After Primary Shoulder Dislocations? A Systematic Review Comparing Prospective and Retrospective Studies.

    PubMed

    Gohal, Chetan; Rofaiel, James; Abouali, Jihad; Ayeni, Olufemi R; Pinsker, Ellie; Whelan, Daniel

    2017-10-01

    To compare recurrence rates between prospectively collected and retrospectively collected data on primary anterior shoulder dislocations, as this could influence the timing of surgical decision making. A comprehensive literature search of Medline, Embase, CINAHL, and hand searches was performed. Recurrence rates of anterior shoulder dislocations were collected from relevant articles, along with follow-up length, age, and gender. An independent sample t test was conducted to evaluate our hypothesis. A multiple linear regression model was used to examine the variance in recurrence rates while controlling for covariates. A total of 1,379 articles were identified, of which 25 were relevant to our study-16 prospective and 9 retrospective. The average rate of recurrence of anterior shoulder dislocations in retrospective studies (mean [M] = 45.2, standard deviation [SD] = 31.67) was not significantly different from that in prospective studies (M = 56.7, SD = 22.55). The 95% confidence interval for the difference of the means ranged from -34.05 to 10.91. After controlling for covariates with the multiple linear regression, only 1.9% of the variance in recurrence rates was due to study type and was not significant (P = .42). The t test performed to evaluate our hypothesis was also not significant t(23) = -1.07, P = .298. When comparing prospective and retrospective studies, there was no significant difference in recurrence rates of primary anterior shoulder dislocations treated nonoperatively. The average redislocation rate was 56.7% in prospective studies and 45.2% in retrospective studies. Furthermore, the majority of this difference was accounted for by varying rates between age groups. Further research is needed to determine the risk of redislocation in specific age groups, to guide treatment decisions based on varying risk. Systematic review of Level II and III studies. Copyright © 2017 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  1. Lubrication of dislocation glide in MgO by hydrous defects

    NASA Astrophysics Data System (ADS)

    Skelton, Richard; Walker, Andrew M.

    2018-02-01

    Water-related defects, principally in the form of protonated cation vacancies, are potentially able to weaken minerals under high-stress or low-temperature conditions by reducing the Peierls stress required to initiate dislocation glide. In this study, we use the Peierls-Nabarro (PN) model to determine the effect of protonated Mg vacancies on the 1/2<110>{110} and 1/2<110>{100} slip systems in MgO. This PN model is parameterized using generalized stacking fault energies calculated using plane-wave density functional theory, with and without protonated Mg vacancies present at the glide plane. It found that these defects increase dislocation core widths and reduce the Peierls stress over the entire pressure range 0-125 GPa. Furthermore, 1/2<110>{110} slip is found to be more sensitive to the presence of protonated vacancies which increases in the pressure at which {100} becomes the easy glide plane for 1/2<110> screw dislocations. These results demonstrate, for a simple mineral system, that water-related defects can alter the deformation behavior of minerals in the glide-creep regime by reducing the stress required to move dislocations by glide. (Mg, Fe)O is the most anisotropic mineral in the Earth's lower mantle, so the differential sensitivity of the major slip systems in MgO to hydrous defects has potential implications for the interpretation of the seismic anisotropy in this region.

  2. Surgical treatment on displaced and dislocated sagittal fractures of the mandibular condyle.

    PubMed

    Jing, Jie; Han, Yu; Song, Yu; Wan, Yingbiao

    2011-06-01

    The purpose of this study was to evaluate the effect of surgical treatment on displaced and dislocated sagittal fractures of the mandibular condyle (SFMC). Twenty-four patients with 28 displaced and dislocated SFMCs were distinguished into type M, type C, and type L fractures according the location of the fracture line. The fractured fragment was reduced and fixated with two 0.6-mm 4-hole micro-plates via a preauricular temporal incision. The fragment was extirpated when it was too small to be fixated. The postoperative position and profile of the fragment was examined by orthopantomogram radiograph or computed tomography (CT). The function of the temporal and zygomatic branches of the facial nerve was inspected. The occluding relation was surveyed, the interincisal distance at maximum mouth opening was measured, and the deviation from the midline during mouth opening was recorded. Twenty-three condyles (82%) suffered dislocated fractures with the condylar fragment out of the glenoid fossa. Five condyles (18%) were displaced, but not dislocated. There were 2 (7%) type M, 19 (68%) type C (3 comminuted), and 7 (25%) type L fractures (1 comminuted), respectively. Twenty-one (75%) fractured fragments received free-graft procedures with 2 micro-plates. Four (14%) fragments were reduced and fixated without being dissected free of their attachments. Three (11%) fragments were extirpated. There were no permanent facial never branch injuries. Micro-plate removal was necessary because of postoperative infection and necrosis of the fractured fragment in 1 condylar process. No other patients could be found with obvious postoperative bone resorption. The average postoperative maximum mouth opening and deviation at 6 months were improved significantly. The postoperative occlusion was good in 22 cases. Access with the preauricular incision, and the dislocated and displaced fragment can be reduced and fixated to its normal position easily. Free-graft procedure is a suitable surgical treatment if the fractured fragment cannot be reduced without dissection free of the pterygoid muscle attachment. Although most fractured fragments in SFMCs have to be dissected free, there are no obvious complications in dislocated and displaced SFMCs after surgical treatment. Copyright © 2011 Mosby, Inc. All rights reserved.

  3. The role of twinning deformation on the hardening response of polycrystalline magnesium from discrete dislocation dynamics simulations

    DOE PAGES

    Fan, Haidong; Aubry, Sylvie; Arsenlis, Athanasios; ...

    2015-04-13

    The mechanical response of micro-twinned polycrystalline magnesium was studied through three-dimensional discrete dislocation dynamics (DDD). A systematic interaction model between dislocations and (1012) tension twin boundaries (TBs) was proposed and introduced into the DDD framework. In addition, a nominal grain boundary (GB) model agreeing with experimental results was also introduced to mimic the GB’s barrier effect. The current simulation results show that TBs act as a strong obstacle to gliding dislocations, which contributes significantly to the hardening behavior of magnesium. On the other hand, the deformation accommodated by twinning plays a softening role. Therefore, the concave shape of the Mgmore » stress-strain curve results from the competition between dislocation-TB induced hardening and twinning deformation induced softening. At low strain levels, twinning deformation induced softening dominates and a decreasing hardening rate is observed in Stage-I. In Stage-II, both the hardening and softening effects decline, but twinning deformation induced softening declines faster, which leads to an increasing hardening rate.« less

  4. Risk Factors for Migration, Fracture, and Dislocation of Pancreatic Stents

    PubMed Central

    Kawaguchi, Yoshiaki; Lin, Jung-Chun; Kawashima, Yohei; Maruno, Atsuko; Ito, Hiroyuki; Ogawa, Masami; Mine, Tetsuya

    2015-01-01

    Aim. To analyze the risk factors for pancreatic stent migration, dislocation, and fracture in chronic pancreatitis patients with pancreatic strictures. Materials and Methods. Endoscopic stent placements (total 386 times) were performed in 99 chronic pancreatitis patients with pancreatic duct stenosis at our institution between April 2006 and June 2014. We retrospectively examined the frequency of stent migration, dislocation, and fracture and analyzed the patient factors and stent factors. We also investigated the retrieval methods for migrated and fractured stents and their success rates. Results. The frequencies of stent migration, dislocation, and fracture were 1.5% (5/396), 0.8% (3/396), and 1.2% (4/396), respectively. No significant differences in the rates of migration, dislocation, or fracture were noted on the patient factors (etiology, cases undergoing endoscopic pancreatic sphincterotomy, location of pancreatic duct stenosis, existence of pancreatic stone, and approach from the main or minor papilla) and stent factors (duration of stent placement, numbers of stent placements, stent shape, diameter, and length). Stent retrieval was successful in all cases of migration. In cases of fractured stents, retrieval was successful in 2 of 4 cases. Conclusion. Stent migration, fracture, and dislocation are relatively rare, but possible complications. A good understanding of retrieval techniques is necessary. PMID:25945085

  5. A continuum theory of edge dislocations

    NASA Astrophysics Data System (ADS)

    Berdichevsky, V. L.

    2017-09-01

    Continuum theory of dislocation aims to describe the behavior of large ensembles of dislocations. This task is far from completion, and, most likely, does not have a "universal solution", which is applicable to any dislocation ensemble. In this regards it is important to have guiding lines set by benchmark cases, where the transition from a discrete set of dislocations to a continuum description is made rigorously. Two such cases have been considered recently: equilibrium of dislocation walls and screw dislocations in beams. In this paper one more case is studied, equilibrium of a large set of 2D edge dislocations placed randomly in a 2D bounded region. The major characteristic of interest is energy of dislocation ensemble, because it determines the structure of continuum equations. The homogenized energy functional is obtained for the periodic dislocation ensembles with a random contents of the periodic cell. Parameters of the periodic structure can change slowly on distances of order of the size of periodic cells. The energy functional is obtained by the variational-asymptotic method. Equilibrium positions are local minima of energy. It is confirmed the earlier assertion that energy density of the system is the sum of elastic energy of averaged elastic strains and microstructure energy, which is elastic energy of the neutralized dislocation system, i.e. the dislocation system placed in a constant dislocation density field making the averaged dislocation density zero. The computation of energy is reduced to solution of a variational cell problem. This problem is solved analytically. The solution is used to investigate stability of simple dislocation arrays, i.e. arrays with one dislocation in the periodic cell. The relations obtained yield two outcomes: First, there is a state parameter of the system, dislocation polarization; averaged stresses affect only dislocation polarization and cannot change other characteristics of the system. Second, the structure of dislocation phase space is strikingly simple. Dislocation phase space is split in a family of subspaces corresponding to constant values of dislocation polarizations; in each equipolarization subspace there are many local minima of energy; for zero external stresses the system is stuck in a local minimum of energy; for non-zero slowly changing external stress, dislocation polarization evolves, while the system moves over local energy minima of equipolarization subspaces. Such a simple picture of dislocation dynamics is due to the presence of two time scales, slow evolution of dislocation polarization and fast motion of the system over local minima of energy. The existence of two time scales is justified for a neutral system of edge dislocations.

  6. Incidence of shoulder dislocations in the UK, 1995–2015: a population-based cohort study

    PubMed Central

    Judge, Andrew; Delmestri, Antonella; Edwards, Katherine; Arden, Nigel K; Prieto-Alhambra, Daniel; Holt, Tim A; Pinedo-Villanueva, Rafael A; Hopewell, Sally; Lamb, Sarah E; Rangan, Amar; Carr, Andrew J; Collins, Gary S; Rees, Jonathan L

    2017-01-01

    Objective This cohort study evaluates the unknown age-specific and gender-specific incidence of primary shoulder dislocations in the UK. Setting UK primary care data from the Clinical Practice Research Datalink (CPRD) were used to identify patients aged 16–70 years with a shoulder dislocation during 1995–2015. Coding of primary shoulder dislocations was validated using the CPRD general practitioner questionnaire service. Participants A cohort of 16 763 patients with shoulder dislocation aged 16–70 years during 1995–2015 were identified. Primary outcome measure Incidence rates per 100 000 person-years and 95% CIs were calculated. Results Correct coding of shoulder dislocation within CPRD was 89% (95% CI 83% to 95%), and confirmation that the dislocation was a ‘primary’ was 76% (95% CI 67% to 85%). Seventy-two percent of shoulder dislocations occurred in men. The overall incidence rate in men was 40.4 per 100 000 person-years (95% CI 40.4 to 40.4), and in women was 15.5 per 100 000 person-years (95% CI 15.5 to 15.5). The highest incidence was observed in men aged 16–20 years (80.5 per 100 000 person-years; 95% CI 80.5 to 80.6). Incidence in women increased with age to a peak of 28.6 per 100 000 person-years among those aged 61–70 years. Conclusions This is the first time the incidence of shoulder dislocations has been studied using primary care data from a national database, and the first time the results for the UK have been produced. While most primary dislocations occurred in young men, an unexpected finding was that the incidence increased in women aged over 50 years, but not in men. The reasons for this are unknown. Further work is commissioned by the National Institute for Health Research to examine treatments and predictors for recurrent shoulder dislocation. Study registration The design of this study was approved by the Independent Scientific Advisory Committee (15_260) for the Medicines & Healthcare products Regulatory Agency. PMID:29138197

  7. What Are the Risk Factors for Dislocation of Hip Bipolar Hemiarthroplasty Through the Anterolateral Approach? A Nested Case-control Study.

    PubMed

    Li, Lianhua; Ren, Jixin; Liu, Jia; Wang, Hao; Sang, Qinghua; Liu, Zhi; Sun, Tiansheng

    2016-12-01

    Hip dislocation after treatment of a femoral neck fracture with a hemiarthroplasty remains an important problem in the treatment of hip fractures, but the associations between patient factors and surgical factors, and how these factors contribute to dislocation in patients who have undergone bipolar hemiarthroplasty through an anterolateral approach for femoral neck fracture currently are only poorly characterized. We evaluated patients with bipolar hemiarthroplasty dislocation after surgery for femoral neck fracture treated through an anterolateral approach and asked: (1) What are the frequency, characteristics, and risk factors of bipolar hemiarthroplasty dislocations? (2) What are the frequency, characteristics, and risk factors of bipolar hemiarthroplasty dissociations? A review of hospital records for patients who underwent bipolar hip hemiarthroplasty for femoral neck fracture at one hospital between July 2004 and August 2014 was conducted. During that time, 1428 patients were admitted with a diagnosis of femoral neck fracture; 508 of these patients underwent bipolar hip hemiarthroplasty, of whom 61 died and 23 were lost to followup during the first year, leaving 424 (83%) available for analysis. The remainder of the patients during that time were treated with internal fixation (512), unipoloar hip arthroplasty (17), or THA (391). For each patient with dislocation, we selected five control patients from the cohort according to sex, age (± 3 years), and year of entry in the study to eliminate some confounding factors. We recorded patient characteristics regarding demographics, medical comorbidities, Katz score, American Society of Anesthesiologists score, Mini-Mental State Examination (MMSE) score, and anesthesia type. Medical comorbidities included diabetes, chronic pulmonary disease, heart disease, neuromuscular diseases, and dementia. Univariate analyses were used to search for possible risk factors. Conditional logistic regression analyses on dislocation or dissociation were performed to estimate hazard rates (HRs) and corresponding 95% CIs with covariates of a probability less than 0.1 in univariate analysis. In this cohort, there were 26 dislocations including four that were also dissociations. The proportion of patients experiencing a dislocation was 6% (26 of 424). The mean interval from surgery to dislocation was 56 weeks (range, 0-433 weeks), and 18 dislocations (69%) occurred within 3 months after surgery. Three variables were independently associated with an increased risk of hip dislocation: dementia (HR, 3.51; 95% CI, 1.19-10.38; p = 0.02), discrepancy of offset (HR, 1.72; 95% CI, 1.15-2.58; p = 0.008), and lower MMSE score (HR, 0.93; 95% CI, 0.88-0.98; p = 0.007). The proportion of patients experiencing a dissociation was 0.9% (four of 424). The result of conditional logistic regression for dissociation showed that cup size smaller than 43 mm was the risk factor (HR = 513.05). However, there was no statistical difference with the probability equaling 0.47. After the anterolateral approach for treatment of femoral neck fracture using bipolar hemiarthroplasty, 6% of hips dislocated and 0.9% experienced dissociation. Cognitive dysfunction and discrepancy of offset were independent risk factors associated with an increased risk of prosthetic dislocation. The small cup without a safety ring may be the risk factor of dissociation. Discrepancy of offset should be avoided during the operation by performing an accurate femoral osteotomy and choosing an adequate femoral stem neck length. For patients with cognitive dysfunction and a small cup, suturing the joint capsule during the operation and reinforcing protective measures after surgery might reduce the occurrence of dislocation and dissociation, however a study addressing this is necessary to confirm this. Level III, therapeutic study.

  8. Neurological complications of the reduction of cervical spine dislocations.

    PubMed

    Mahale, Y J; Silver, J R; Henderson, N J

    1993-05-01

    We have studied the case records of 16 patients with dislocations of the cervical spine who deteriorated neurologically during or after reduction. The dislocations were reduced by skull traction in four patients, by manipulation in four and by operation in seven. This complication was not related to age, sex, mechanism of injury, or the level and the type of dislocation. Fourteen patients made substantial recoveries, one made a partial recovery and one patient remained totally paralysed and died three months later. The causes and prevention of spinal-cord damage at this stage of management are discussed, and the early use of MRI or CT myelography is recommended.

  9. Structural anisotropic properties of a-plane GaN epilayers grown on r-plane sapphire by molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lotsari, A.; Kehagias, Th.; Katsikini, M.

    2014-06-07

    Heteroepitaxial non-polar III-Nitride layers may exhibit extensive anisotropy in the surface morphology and the epilayer microstructure along distinct in-plane directions. The structural anisotropy, evidenced by the “M”-shape dependence of the (112{sup ¯}0) x-ray rocking curve widths on the beam azimuth angle, was studied by combining transmission electron microscopy observations, Raman spectroscopy, high resolution x-ray diffraction, and atomic force microscopy in a-plane GaN epilayers grown on r-plane sapphire substrates by plasma-assisted molecular beam epitaxy (PAMBE). The structural anisotropic behavior was attributed quantitatively to the high dislocation densities, particularly the Frank-Shockley partial dislocations that delimit the I{sub 1} intrinsic basal stacking faults,more » and to the concomitant plastic strain relaxation. On the other hand, isotropic samples exhibited lower dislocation densities and a biaxial residual stress state. For PAMBE growth, the anisotropy was correlated to N-rich (or Ga-poor) conditions on the surface during growth, that result in formation of asymmetric a-plane GaN grains elongated along the c-axis. Such conditions enhance the anisotropy of gallium diffusion on the surface and reduce the GaN nucleation rate.« less

  10. New insights in the treatment of acromioclavicular separation

    PubMed Central

    van Bergen, Christiaan J A; van Bemmel, Annelies F; Alta, Tjarco D W; van Noort, Arthur

    2017-01-01

    A direct force on the superior aspect of the shoulder may cause acromioclavicular (AC) dislocation or separation. Severe dislocations can lead to chronic impairment, especially in the athlete and high-demand manual laborer. The dislocation is classified according to Rockwood. Types I and II are treated nonoperatively, while types IV, V and VI are generally treated operatively. Controversy exists regarding the optimal treatment of type III dislocations in the high-demand patient. Recent evidence suggests that these should be treated nonoperatively initially. Classic surgical techniques were associated with high complication rates, including recurrent dislocations and hardware breakage. In recent years, many new techniques have been introduced in order to improve the outcomes. Arthroscopic reconstruction or repair techniques have promising short-term results. This article aims to provide a current concepts review on the treatment of AC dislocations with emphasis on recent developments. PMID:29312844

  11. Validation of the Concurrent Atomistic-Continuum Method on Screw Dislocation/Stacking Fault Interactions

    DOE PAGES

    Xu, Shuozhi; Xiong, Liming; Chen, Youping; ...

    2017-04-26

    Dislocation/stacking fault interactions play an important role in the plastic deformation of metallic nanocrystals and polycrystals. These interactions have been explored in atomistic models, which are limited in scale length by high computational cost. In contrast, multiscale material modeling approaches have the potential to simulate the same systems at a fraction of the computational cost. In this paper, we validate the concurrent atomistic-continuum (CAC) method on the interactions between a lattice screw dislocation and a stacking fault (SF) in three face-centered cubic metallic materials—Ni, Al, and Ag. Two types of SFs are considered: intrinsic SF (ISF) and extrinsic SF (ESF).more » For the three materials at different strain levels, two screw dislocation/ISF interaction modes (annihilation of the ISF and transmission of the dislocation across the ISF) and three screw dislocation/ESF interaction modes (transformation of the ESF into a three-layer twin, transformation of the ESF into an ISF, and transmission of the dislocation across the ESF) are identified. Here, our results show that CAC is capable of accurately predicting the dislocation/SF interaction modes with greatly reduced DOFs compared to fully-resolved atomistic simulations.« less

  12. Validation of the Concurrent Atomistic-Continuum Method on Screw Dislocation/Stacking Fault Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Shuozhi; Xiong, Liming; Chen, Youping

    Dislocation/stacking fault interactions play an important role in the plastic deformation of metallic nanocrystals and polycrystals. These interactions have been explored in atomistic models, which are limited in scale length by high computational cost. In contrast, multiscale material modeling approaches have the potential to simulate the same systems at a fraction of the computational cost. In this paper, we validate the concurrent atomistic-continuum (CAC) method on the interactions between a lattice screw dislocation and a stacking fault (SF) in three face-centered cubic metallic materials—Ni, Al, and Ag. Two types of SFs are considered: intrinsic SF (ISF) and extrinsic SF (ESF).more » For the three materials at different strain levels, two screw dislocation/ISF interaction modes (annihilation of the ISF and transmission of the dislocation across the ISF) and three screw dislocation/ESF interaction modes (transformation of the ESF into a three-layer twin, transformation of the ESF into an ISF, and transmission of the dislocation across the ESF) are identified. Here, our results show that CAC is capable of accurately predicting the dislocation/SF interaction modes with greatly reduced DOFs compared to fully-resolved atomistic simulations.« less

  13. Collective behaviour of dislocations in a finite medium

    NASA Astrophysics Data System (ADS)

    Kooiman, M.; Hütter, M.; Geers, M. G. D.

    2014-04-01

    We derive the grand-canonical partition function of straight and parallel dislocation lines without making a priori assumptions on the temperature regime. Such a systematic derivation for dislocations has, to the best of our knowledge, not been carried out before, and several conflicting assumptions on the free energy of dislocations have been made in the literature. Dislocations have gained interest as they are the carriers of plastic deformation in crystalline materials and solid polymers, and they constitute a prototype system for two-dimensional Coulomb particles. Our microscopic starting level is the description of dislocations as used in the discrete dislocation dynamics (DDD) framework. The macroscopic level of interest is characterized by the temperature, the boundary deformation and the dislocation density profile. By integrating over state space, we obtain a field theoretic partition function, which is a functional integral of the Boltzmann weight over an auxiliary field. The Hamiltonian consists of a term quadratic in the field and an exponential of this field. The partition function is strongly non-local, and reduces in special cases to the sine-Gordon model. Moreover, we determine implicit expressions for the response functions and the dominant scaling regime for metals, namely the low-temperature regime.

  14. Radiation damage buildup and dislocation evolution in Ni and equiatomic multicomponent Ni-based alloys

    NASA Astrophysics Data System (ADS)

    Levo, E.; Granberg, F.; Fridlund, C.; Nordlund, K.; Djurabekova, F.

    2017-07-01

    Single-phase multicomponent alloys of equal atomic concentrations ("equiatomic") have proven to exhibit promising mechanical and corrosion resistance properties, that are sought after in materials intended for use in hazardous environments like next-generation nuclear reactors. In this article, we investigate the damage production and dislocation mobility by simulating irradiation of elemental Ni and the alloys NiCo, NiCoCr, NiCoFe and NiFe, to assess the effect of elemental composition. We compare the defect production and the evolution of dislocation networks in the simulation cells of two different sizes, for all five studied materials. We find that the trends in defect evolution are in good agreement between the different cell sizes. The damage is generally reduced with increased alloy complexity, and the dislocation evolution is specific to each material, depending on its complexity. We show that increasing complexity of the alloys does not always lead to decreased susceptibility to damage accumulation under irradiation. We show that, for instance, the NiCo alloy behaves very similarly to Ni, while presence of Fe or Cr in the alloy even as a third component reduces the saturated level of damage substantially. Moreover, we linked the defect evolution with the dislocation transformations in the alloys. Sudden drops in defect number and large defect fluctuations from the continuous irradiation can be explained from the dislocation activity.

  15. Hydrogen-vacancy-dislocation interactions in α-Fe

    NASA Astrophysics Data System (ADS)

    Tehranchi, A.; Zhang, X.; Lu, G.; Curtin, W. A.

    2017-02-01

    Atomistic simulations of the interactions between dislocations, hydrogen atoms, and vacancies are studied to assess the viability of a recently proposed mechanism for the formation of nanoscale voids in Fe-based steels in the presence of hydrogen. Quantum-mechanics/molecular-mechanics method calculations confirm molecular statics simulations based on embedded atom method (EAM) potential showing that individual vacancies on the compressive side of an edge dislocation can be transported with the dislocation as it glides. Molecular dynamics simulations based on EAM potential then show, however, that vacancy clusters in the glide plane of an approaching dislocation are annihilated or reduced in size by the creation of a double-jog/climb process that is driven by the huge reduction in energy accompanying vacancy annihilation. The effectiveness of annihilation/reduction processes is not reduced by the presence of hydrogen in the vacancy clusters because typical V-H cluster binding energies are much lower than the vacancy formation energy, except at very high hydrogen content in the cluster. Analysis of a range of configurations indicates that hydrogen plays no special role in stabilizing nanovoids against jog formation processes that shrink voids. Experimental observations of nanovoids on the fracture surfaces of steels must be due to as-yet undetermined processes.

  16. Results of a longer than 10-year follow-Up of patients with rheumatoid arthritis treated by occipitocervical fusion.

    PubMed

    Matsunaga, S; Ijiri, K; Koga, H

    2000-07-15

    Evaluation of results a longer than 10-year follow-up of patients with upper cervical lesions due to rheumatoid arthritis who underwent occipitocervical fusion. To determine the final outcome of patients with upper cervical lesions due to rheumatoid arthritis treated by occipitocervical fusion. There are few studies reporting the final outcome of patients with rheumatoid arthritis treated by occipitocervical fusion and observed for longer than 10 years. The subjects were 16 patients with rheumatoid arthritis with myelopathy who underwent occipitocervical fusion with a rectangular rod more than 10 years ago. All 16 patients had irreducible atlantoaxial dislocation, and 11 also had vertical dislocation of the axis. All patients had preoperative nuchal pain, and were classified into Class II (two patients), Class IIIA (nine patients), and class IIIB (five patients) according to Ranawat's preoperative neurologic classification. The atlas-dens interval remained the same as immediately after surgery. Vertical dislocation returned to the preoperative condition, despite successful surgical correction. Preoperative occipital pain disappeared or was reduced in all cases. Myelopathy improved in 12 of the 16 patients (75%) by more than one class in the Ranawat preoperative neurologic classification. Survival rate at 10 years after surgery was 38%; mean age at death was 70.7 years. The postoperative periods during which patients could walk by themselves ranged from 6 months to 13 years (mean, 7.5 years). Occipitocervical fusion for patients with rheumatoid arthritis is useful for decreasing nuchal pain, reducing myelopathy, and improving prognosis.

  17. Atomic-scale investigation of point defects and hydrogen-solute atmospheres on the edge dislocation mobility in alpha iron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatia, M. A.; Solanki, K. N., E-mail: kiran.solanki@asu.edu; Groh, S.

    2014-08-14

    In this study, we present atomistic mechanisms of 1/2 [111](11{sup ¯}0) edge dislocation interactions with point defects (hydrogen and vacancies) and hydrogen solute atmospheres in body centered cubic (bcc) iron. In metals such as iron, increases in hydrogen concentration can increase dislocation mobility and/or cleavage-type decohesion. Here, we first investigate the dislocation mobility in the presence of various point defects, i.e., change in the frictional stress as the edge dislocation interacts with (a) vacancy, (b) substitutional hydrogen, (c) one substitutional and one interstitial hydrogen, (d) interstitial hydrogen, (e) vacancy and interstitial hydrogen, and (f) two interstitial hydrogen. Second, we examinemore » the role of a hydrogen-solute atmosphere on the rate of local dislocation velocity. The edge dislocation simulation with a vacancy in the compression side of the dislocation and an interstitial hydrogen atom at the tension side exhibit the strongest mechanical response, suggesting a higher potential barrier and hence, the higher frictional stress (i.e., ∼83% higher than the pure iron Peierls stress). In the case of a dislocation interacting with a vacancy on the compressive side, the vacancy binds with the edge dislocation, resulting in an increase in the friction stress of about 28% when compared with the Peierls stress of an edge dislocation in pure iron. Furthermore, as the applied strain increases, the vacancy migrates through a dislocation transportation mechanism by attaining a velocity of the same order as the dislocation velocity. For the case of the edge dislocation interacting with interstitial hydrogen on the tension side, the hydrogen atom jumps through one layer perpendicular to the glide plane during the pinning-unpinning process. Finally, our simulation of dislocation interactions with hydrogen show first an increase in the local dislocation velocity followed by a pinning of the dislocation core in the atmosphere, resulting in resistance to dislocation motion as the dislocation moves though the hydrogen-solute atmospheres. With this systematic, atomistic study of the edge dislocation with various point defects, we show significant increase in obstacle strengths in addition to an increase in the local dislocation velocity during interaction with solute atmospheres. The results have implications for constitutive development and modeling of the hydrogen effect on dislocation mobility and deformation in metals.« less

  18. Axillary artery injury secondary to inferior shoulder dislocation.

    PubMed

    Plaga, Brad R; Looby, Peter; Feldhaus, Steven J; Kreutzmann, Karl; Babb, Aaron

    2010-11-01

    Dislocation injuries of the glenohumeral joint are common in the general public and generally are corrected without complication. One serious complication with shoulder dislocations, or the subsequent reduction, is a lesion to the axillary artery. This specific complication is most frequently seen in the elderly population, where vascular structures have become less flexible. Also, these injuries are most common in association with anterior dislocations of the shoulder. To bring awareness to the possibility of axillary artery injury with inferior dislocation of the shoulder, the treatment options, and a review. We report a 15-year-old male athlete who inferiorly dislocated his shoulder during wrestling practice. The injury was reduced at the scene with manual traction and the patient was transferred to our clinic for evaluation. The patient was determined to have a pseudoaneurysm of the axillary artery, and the history and treatment of the illness are presented. Axillary artery injuries secondary to shoulder dislocations are rare, especially in the young athlete, and proper recognition and treatment offer patients a full recovery. Copyright © 2010. Published by Elsevier Inc.

  19. Molecular dynamic simulations of the high-speed copper nanoparticles collision with the aluminum surface

    NASA Astrophysics Data System (ADS)

    Pogorelko, V. V.; Mayer, A. E.

    2016-11-01

    With the use of the molecular dynamic simulations, we investigated the effect of the high-speed (500 m/s, 1000 m/s) copper nanoparticle impact on the mechanical properties of an aluminum surface. Dislocation analysis shows that a large number of dislocations are formed in the impact area; the total length of dislocations is determined not only by the speed and size of the incoming copper nanoparticle (kinetic energy of the nanoparticle), but by a temperature of the system as well. The dislocations occupy the whole area of the aluminum single crystal at high kinetic energy of the nanoparticle. With the decrease of the nanoparticle kinetic energy, the dislocation structures are formed in the near-surface layer; formation of the dislocation loops takes place. Temperature rise of the system (aluminum substrate + nanoparticle) reduces the total dislocation length in the single crystal of aluminum; there is deeper penetration of the copper atoms in the aluminum at high temperatures. Average energy of the nanoparticles and room temperature of the system are optimal for production of high-quality layers of copper on the aluminum surface.

  20. Ipsilateral hip and knee dislocation: Case report and review of literature

    PubMed Central

    Sharma, Gaurav; Chahar, Deepak; Sreenivasan, Ravi; Verma, Nikhil; Pankaj, Amite

    2016-01-01

    Hip and knee dislocations are not uncommon but simultaneous ipsilateral dislocation of the hip and knee joint is rare; consequently, there is an inadequate amount of literature on the subject. We identified only 11 such cases reported in English literature. In the present report, we describe the case of a 23-year-old male patient who presented with ipsilateral hip and knee dislocation on the right side after being involved in a road traffic accident. The hip dislocation was associated with a posterior wall acetabular fracture. The hip as well as the knee joints was reduced in the emergency bay. The patient underwent an urgent fixation of the posterior wall acetabular fracture with delayed ligament reconstruction for the knee dislocation. At one-year follow-up, he had no pain in the hip or knee. There was grade 1 posterior sag but no symptoms of knee instability. Radiographs revealed no evidence of avascular necrosis or arthritis of the femoral head. The normal treatment protocol for individual injury is affected by the simultaneous occurrence of hip and knee dislocation. PMID:27182149

  1. Identification of Deformation Mechanisms During Bi-Axial Straining of Superplastic AA5083 Material

    DTIC Science & Technology

    2004-06-01

    equiaxed grain structure in FSS along with the prevalence of high - energy boundaries accommodates sliding under the proper shearing conditions. Figure...by a randomized texture and a higher concentration of high disorientation angles. Dislocation creep, which dominates at higher strain rates, is...concentration of high disorientation angles. Dislocation creep, which dominates at higher strain rates, is characterized by fiber texture formation

  2. In situ high-energy X-ray diffraction study of tensile deformation of neutron-irradiated polycrystalline Fe-9%Cr alloy

    DOE PAGES

    Zhang, Xuan; Li, Meimei; Park, Jun -Sang; ...

    2016-12-30

    The effect of neutron irradiation on tensile deformation of a Fe-9wt.%Cr alloy was investigated using in situ high-energy synchrotron X-ray diffraction during room-temperature uniaxial tensile tests. New insights into the deformation mechanisms were obtained through the measurements of lattice strain evolution and the analysis of diffraction peak broadening using the modified Williamson-Hall method. Two neutron-irradiated specimens, one irradiated at 300 °C to 0.01 dpa and the other at 450 °C to 0.01dpa, were tested along with an unirradiated specimen. The macroscopic stress–strain curves of the irradiated specimens showed increased strength, reduced ductility and work-hardening exponent compared to the unirradiated specimen.more » The evolutions of the lattice strain, the dislocation density and the coherent scattering domain size in the deformation process revealed different roles of the submicroscopic defects in the 300°C/0.01 dpa specimen and the TEM-visible nanometer-sized dislocation loops in the 450°C/0.01 dpa specimen: submicroscopic defects extended the linear work hardening stage (stage II) to a higher strain, while irradiation-induced dislocation loops were more effective in dislocation pinning. Lastly, while the work hardening rate of stage II was unaffected by irradiation, significant dynamic recovery in stage III in the irradiated specimens led to the early onset of necking without stage IV as observed in the unirradiated specimen.« less

  3. A dislocation density-based continuum model of the anisotropic shock response of single crystal α-cyclotrimethylene trinitramine

    NASA Astrophysics Data System (ADS)

    Luscher, D. J.; Addessio, F. L.; Cawkwell, M. J.; Ramos, K. J.

    2017-01-01

    We have developed a model for the finite deformation thermomechanical response of α-cyclotrimethylene trinitramine (RDX). Our model accounts for nonlinear thermoelastic lattice deformation through a free energy-based equation of state developed by Cawkwell et al. (2016) in combination with temperature and pressure dependent elastic constants, as well as dislocation-mediated plastic slip on a set of slip systems motivated by experimental observation. The kinetics of crystal plasticity are modeled using the Orowan equation relating slip rate to dislocation density and the dislocation velocity developed by Austin and McDowell (2011), which naturally accounts for transition from thermally activated to dislocation drag limited regimes. Evolution of dislocation density is specified in terms of local ordinary differential equations reflecting dislocation-dislocation interactions. This paper presents details of the theory and parameterization of the model, followed by discussion of simulations of flyer plate impact experiments. Impact conditions explored within this combined simulation and experimental effort span shock pressures ranging from 1 to 3 GPa for four crystallographic orientations and multiple specimen thicknesses. Simulation results generated using this model are shown to be in strong agreement with velocimetry measurements from the corresponding plate impact experiments. Finally, simulation results are used to motivate conclusions about the nature of dislocation-mediated plasticity in RDX.

  4. Dislocation formation in seed crystals induced by feedstock indentation during growth of quasimono crystalline silicon ingots

    NASA Astrophysics Data System (ADS)

    Trempa, M.; Beier, M.; Reimann, C.; Roßhirth, K.; Friedrich, J.; Löbel, C.; Sylla, L.; Richter, T.

    2016-11-01

    In this work the dislocation formation in the seed crystal induced by feedstock indentation during the growth of quasimono (QM) silicon ingots for photovoltaic application was investigated. It could be shown by special laboratory indentation experiments that the formed dislocations propagate up to several millimeters deep into the volume of the seed crystal in dependence on the applied pressure of the feedstock particles on the surface of the seed crystal. Further, it was demonstrated that these dislocations if they were not back-melted during the seeding process grow further into the silicon ingot and drastically reduce its material quality. An estimation of the apparent pressure values in a G5 industrial crucible/feedstock setup reveals that the indentation phenomenon is a critical issue for the industrial production of QM silicon ingots. Therefore, some approaches to avoid/reduce the indentation events were tested with the result, that the most promising solution should be the usage of suitable feedstock particles as coverage of the seed.

  5. Defect sensitive etching of hexagonal boron nitride single crystals

    NASA Astrophysics Data System (ADS)

    Edgar, J. H.; Liu, S.; Hoffman, T.; Zhang, Yichao; Twigg, M. E.; Bassim, Nabil D.; Liang, Shenglong; Khan, Neelam

    2017-12-01

    Defect sensitive etching (DSE) was developed to estimate the density of non-basal plane dislocations in hexagonal boron nitride (hBN) single crystals. The crystals employed in this study were precipitated by slowly cooling (2-4 °C/h) a nickel-chromium flux saturated with hBN from 1500 °C under 1 bar of flowing nitrogen. On the (0001) planes, hexagonal-shaped etch pits were formed by etching the crystals in a eutectic mixture of NaOH and KOH between 450 °C and 525 °C for 1-2 min. There were three types of pits: pointed bottom, flat bottom, and mixed shape pits. Cross-sectional transmission electron microscopy revealed that the pointed bottom etch pits examined were associated with threading dislocations. All of these dislocations had an a-type burgers vector (i.e., they were edge dislocations, since the line direction is perpendicular to the [ 2 11 ¯ 0 ]-type direction). The pit widths were much wider than the pit depths as measured by atomic force microscopy, indicating the lateral etch rate was much faster than the vertical etch rate. From an Arrhenius plot of the log of the etch rate versus the inverse temperature, the activation energy was approximately 60 kJ/mol. This work demonstrates that DSE is an effective method for locating threading dislocations in hBN and estimating their densities.

  6. Influence of strain rate on the structure/property behavior of the alpha-2 alloy Ti-24.5Al-10.5Nb-1.5Mo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, G.T. III; Hong, Sun Ig; Marquardt, B.J.

    Preliminary dislocation g{center_dot}b analysis revealed that following room temperature deformation at low strain rate the majority of the dislocations are a-dislocations lying on basal planes, 2nd order pyramidal (a/2 + c) slip on [1211], and 1st order pyramidal a-slip on [1011]. Increasing the rate of deformation at room temperature to 6000 s{sup {minus}1} is seen to result in increased a-slip on prism planes and a decreased amount of basal slip. At high-strain-rates and elevated temperatures the substructure was seen to be generally similar to that observed following high-rate deformation at room temperature except for an increased amount of basal slipmore » and a somewhat higher incidence of 2nd order pyramidal slip. The defect generation and the rate sensitivity of Ti-24.5Al-10.5Nb-1.5Mo are discussed as a function of strain rate and temperature and contrasted to that observed in conventional titanium alloys and TiAl.« less

  7. Stress versus temperature dependent activation energies in creep

    NASA Technical Reports Server (NTRS)

    Freed, A. D.; Raj, S. V.; Walker, K. P.

    1990-01-01

    The activation energy for creep at low stresses and elevated temperatures is lattice diffusion, where the rate controlling mechanism for deformation is dislocation climb. At higher stresses and intermediate temperatures, the rate controlling mechanism changes from that of dislocation climb to one of obstacle-controlled dislocation glide. Along with this change, there occurs a change in the activation energy. It is shown that a temperature-dependent Gibbs free energy does a good job of correlating steady-state creep data, while a stress-dependent Gibbs free energy does a less desirable job of correlating the same data. Applications are made to copper and a LiF-22 mol. percent CaF2 hypereutectic salt.

  8. Size effects under homogeneous deformation of single crystals: A discrete dislocation analysis

    NASA Astrophysics Data System (ADS)

    Guruprasad, P. J.; Benzerga, A. A.

    Mechanism-based discrete dislocation plasticity is used to investigate the effect of size on micron scale crystal plasticity under conditions of macroscopically homogeneous deformation. Long-range interactions among dislocations are naturally incorporated through elasticity. Constitutive rules are used which account for key short-range dislocation interactions. These include junction formation and dynamic source and obstacle creation. Two-dimensional calculations are carried out which can handle high dislocation densities and large strains up to 0.1. The focus is laid on the effect of dimensional constraints on plastic flow and hardening processes. Specimen dimensions ranging from hundreds of nanometers to tens of microns are considered. Our findings show a strong size-dependence of flow strength and work-hardening rate at the micron scale. Taylor-like hardening is shown to be insufficient as a rationale for the flow stress scaling with specimen dimensions. The predicted size effect is associated with the emergence, at sufficient resolution, of a signed dislocation density. Heuristic correlations between macroscopic flow stress and macroscopic measures of dislocation density are sought. Most accurate among those is a correlation based on two state variables: the total dislocation density and an effective, scale-dependent measure of signed density.

  9. Vertical Patellar Dislocation: Reduction by the Push Up and Rotate Method, A Case Report and Literature Review.

    PubMed

    Ahmad Khan, Hayat; Bashir Shah, Adil; Kamal, Younis

    2016-11-01

    Patellar dislocation is an emergency. Vertical patellar dislocation is rare, often seen in adolescents and mostly due to sports injuries or high-velocity trauma. Few cases have been reported in the literature. Closed or open reduction under general anesthesia is often needed. We report a case of vertical locked patellar dislocation in a 26-year-old male, which was reduced by a simple closed method under spinal anaesthesia. A literature review regarding the various methods of treatment is also discussed. A 26-year-old male experienced a trivial accident while descending stairs, sustaining patellar dislocation. The closed method of reduction was attempted, using a simple technique. Reduction was confirmed and postoperative rehabilitation was started. Follow-up was uneventful. Vertical patellar dislocations are encountered rarely in the emergency department. Adolescents are not the only victims, and high-velocity trauma is not the essential cause. Unnecessary manipulation should be avoided. The closed reduction method is simple, but the surgeon should be prepared for open reduction.

  10. Statistical description of the motion of dislocation kinks in a random field of impurities adsorbed by a dislocation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petukhov, B. V., E-mail: petukhov@ns.crys.ras.r

    2010-01-15

    A model has been proposed for describing the influence of impurities adsorbed by dislocation cores on the mobility of dislocation kinks in materials with a high crystalline relief (Peierls barriers). The delay time spectrum of kinks at statistical fluctuations of the impurity density has been calculated for a sufficiently high energy of interaction between impurities and dislocations when the migration potential is not reduced to a random Gaussian potential. It has been shown that fluctuations in the impurity distribution substantially change the character of the migration of dislocation kinks due to the slow decrease in the probability of long delaymore » times. The dependences of the position of the boundary of the dynamic phase transition to a sublinear drift of kinks x {proportional_to} t{sup {delta}} ({delta} {sigma} 1) and the characteristics of the anomalous mobility on the physical parameters (stress, impurity concentration, experimental temperature, etc.) have been calculated.« less

  11. Design and characterization of thick InxGa1-xAs metamorphic buffer layers grown by hydride vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Schulte, K. L.; Zutter, B. T.; Wood, A. W.; Babcock, S. E.; Kuech, T. F.

    2014-03-01

    Thick InxGa1-xAs metamorphic buffer layers (MBLs) grown by hydride vapor phase epitaxy (HVPE) were studied. Relationships between MBL properties and growth parameters such as grading rate, cap layer thickness, final xInAs, and deposition temperature (TD) were explored. The MBLs were characterized by measurement of in-plane residual strain (ɛ¦¦), surface etch pit density (EPD), and surface roughness. Capping layer thickness had a strong effect on strain relaxation, with thickly capped samples exhibiting the lowest ɛ¦¦. EPD was higher in samples with thicker caps, reflecting their increased relaxation through dislocation generation. ɛ¦¦ and EPD were weakly affected by the grading rate, making capping layer thickness the primary structural parameter which controls these properties. MBLs graded in discrete steps had similar properties to MBLs with continuous grading. In samples with identical thickness and 10-step grading style, ɛ¦¦ increased almost linearly with final xInAs, while total relaxation stayed relatively constant. Relaxation as a function of xInAs could be described by an equilibrium model in which dislocation nucleation is impeded by the energy of the existing dislocation array. EPD was constant from xInAs = 0 to 0.24 then increased exponentially, which is related to the increased dislocation interaction and blocking seen at higher dislocation densities. RMS roughness increased with xInAs above a certain strain rate (0.15%/µm) samples grown below this level possessed large surface hillocks and high roughness values. The elimination of hillocks at higher values of xInAs is attributed to increased density of surface steps and is related to the out-of-plane component of the burgers vector of the dominant type of 60° dislocation. TD did not affect ɛ¦¦ for samples with a given xInAs. EPD tended to increase with TD, indicating dislocation glide likely is impeded at higher temperatures.

  12. Surgical versus conservative management of Type III acromioclavicular dislocation: a systematic review.

    PubMed

    Longo, Umile Giuseppe; Ciuffreda, Mauro; Rizzello, Giacomo; Mannering, Nicholas; Maffulli, Nicola; Denaro, Vincenzo

    2017-06-01

    The management of Type III acromioclavicular (AC) dislocations is still controversial. We wished to compare the rate of recurrence and outcome scores of operative versus non-operative treatment of patients with Type III AC dislocations. A systematic review of the literature was performed by applying the PRISMA guidelines according to the PRISMA checklist and algorithm. A search in Medline, PubMed, Cochrane and CINAHL was performed using combinations of the following keywords: 'dislocation', 'Rockwood', 'type three', 'treatment', 'acromioclavicular' and 'joint'. Fourteen studies were included, evaluating 646 shoulders. The rate of recurrence in the surgical group was 14%. No statistical significant differences were found between conservative and surgical approaches in terms of postoperative osteoarthritis and persistence of pain, although persistence of pain seemed to occur less frequently in patients undergoing a surgical treatment. Persistence of pain seemed to occur less frequently in patients undergoing surgery. Persistence of pain seems to occur less frequently in patients treated surgically for a Type III AC dislocation. There is insufficient evidence to establish the effects of surgical versus conservative treatment on functional outcome of patients with AC dislocation. High-quality randomized controlled clinical trials are needed to establish whether there is a difference in functional outcome. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, T.Q.; Buczkowski, A.; Radzimski, Z.J.

    The electrical activity of as-grown and intentionally decorated misfit dislocations in an epitaxial Si/Si(Ge) heterostructure was examined using the electron beam induced current (EBIC) technique in a scanning electron microscope. Misfit dislocations, which were not visible initially, were subsequently activated either by an unknown processing contaminant or a backside metallic impurity. Passivation of these contaminated dislocations was then studied using low energy deuterium ion implantation in a Kaufman ion source. EBIC results show that the recombination activity of the decorated misfit dislocations was dramatically reduced by the deuterium treatment. Although a front side passivation treatment was more effective than amore » backside treatment, a surface ion bombardment damage problem is still evident. 5 refs., 3 figs.« less

  14. Biomechanical reposition techniques in anterior shoulder dislocation: a randomised multicentre clinical trial- the BRASD-trial protocol.

    PubMed

    Baden, David N; Roetman, Martijn H; Boeije, Tom; Roodheuvel, Floris; Mullaart-Jansen, Nieke; Peeters, Suzanne; Burg, Mike D

    2017-07-20

    Glenohumeral (shoulder) dislocations are the most common large joint dislocations seen in the emergency department (ED). They cause pain, often severe, and require timely interventions to minimise discomfort and tissue damage. Commonly used reposition or relocation techniques often involve traction and/or leverage. These techniques have high success rates but may be painful and time consuming. They may also cause complications. Recently, other techniques-the biomechanical reposition techniques (BRTs)-have become more popular since they may cause less pain, require less time and cause fewer complications. To our knowledge, no research exists comparing the various BRTs. Our objective is to establish which BRT or BRT combination is fastest, least painful and associated with the lowest complication rate for adult ED patients with anterior glenohumeral dislocations (AGDs). Adults presenting to the participating EDs with isolated AGDs, as determined by radiographs, will be randomised to one of three BRTs: Cunningham, modified Milch or scapular manipulation. Main study parameters/endpoints are ED length of stay and patients' self-report of pain. Secondary study parameters/endpoints are procedure times, need for analgesic and/or sedative medications, iatrogenic complications and rates of successful reduction. Non-biomechanical AGD repositioning techniques based on traction and/or leverage are inherently painful and potentially harmful. We believe that the three BRTs used in this study are more physiological, more patient friendly, less likely to cause pain, more time efficient and less likely to produce complications. By comparing these three techniques, we hope to improve the care provided to adults with acute AGDs by reducing their ED length of stay and minimising pain and procedure-related complications. We also hope to define which of the three BRTs is quickest, most likely to be successful and least likely to require sedative or analgesic medications to achieve reduction. NTR5839. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  15. Dislocation Strengthening without Ductility Trade-off in Metastable Austenitic Steels

    PubMed Central

    Liu, Jiabin; Jin, Yongbin; Fang, Xiaoyang; Chen, Chenxu; Feng, Qiong; Liu, Xiaowei; Chen, Yuzeng; Suo, Tao; Zhao, Feng; Huang, Tianlin; Wang, Hongtao; Wang, Xi; Fang, Youtong; Wei, Yujie; Meng, Liang; Lu, Jian; Yang, Wei

    2016-01-01

    Strength and ductility are mutually exclusive if they are manifested as consequence of the coupling between strengthening and toughening mechanisms. One notable example is dislocation strengthening in metals, which invariably leads to reduced ductility. However, this trend is averted in metastable austenitic steels. A one-step thermal mechanical treatment (TMT), i.e. hot rolling, can effectively enhance the yielding strength of the metastable austenitic steel from 322 ± 18 MPa to 675 ± 15 MPa, while retaining both the formability and hardenability. It is noted that no boundaries are introduced in the optimized TMT process and all strengthening effect originates from dislocations with inherited thermal stability. The success of this method relies on the decoupled strengthening and toughening mechanisms in metastable austenitic steels, in which yield strength is controlled by initial dislocation density while ductility is retained by the capability to nucleate new dislocations to carry plastic deformation. Especially, the simplicity in processing enables scaling and industrial applications to meet the challenging requirements of emissions reduction. On the other hand, the complexity in the underlying mechanism of dislocation strengthening in this case may shed light on a different route of material strengthening by stimulating dislocation activities, rather than impeding motion of dislocations. PMID:27739481

  16. Dislocation Strengthening without Ductility Trade-off in Metastable Austenitic Steels

    NASA Astrophysics Data System (ADS)

    Liu, Jiabin; Jin, Yongbin; Fang, Xiaoyang; Chen, Chenxu; Feng, Qiong; Liu, Xiaowei; Chen, Yuzeng; Suo, Tao; Zhao, Feng; Huang, Tianlin; Wang, Hongtao; Wang, Xi; Fang, Youtong; Wei, Yujie; Meng, Liang; Lu, Jian; Yang, Wei

    2016-10-01

    Strength and ductility are mutually exclusive if they are manifested as consequence of the coupling between strengthening and toughening mechanisms. One notable example is dislocation strengthening in metals, which invariably leads to reduced ductility. However, this trend is averted in metastable austenitic steels. A one-step thermal mechanical treatment (TMT), i.e. hot rolling, can effectively enhance the yielding strength of the metastable austenitic steel from 322 ± 18 MPa to 675 ± 15 MPa, while retaining both the formability and hardenability. It is noted that no boundaries are introduced in the optimized TMT process and all strengthening effect originates from dislocations with inherited thermal stability. The success of this method relies on the decoupled strengthening and toughening mechanisms in metastable austenitic steels, in which yield strength is controlled by initial dislocation density while ductility is retained by the capability to nucleate new dislocations to carry plastic deformation. Especially, the simplicity in processing enables scaling and industrial applications to meet the challenging requirements of emissions reduction. On the other hand, the complexity in the underlying mechanism of dislocation strengthening in this case may shed light on a different route of material strengthening by stimulating dislocation activities, rather than impeding motion of dislocations.

  17. Dislocation Strengthening without Ductility Trade-off in Metastable Austenitic Steels.

    PubMed

    Liu, Jiabin; Jin, Yongbin; Fang, Xiaoyang; Chen, Chenxu; Feng, Qiong; Liu, Xiaowei; Chen, Yuzeng; Suo, Tao; Zhao, Feng; Huang, Tianlin; Wang, Hongtao; Wang, Xi; Fang, Youtong; Wei, Yujie; Meng, Liang; Lu, Jian; Yang, Wei

    2016-10-14

    Strength and ductility are mutually exclusive if they are manifested as consequence of the coupling between strengthening and toughening mechanisms. One notable example is dislocation strengthening in metals, which invariably leads to reduced ductility. However, this trend is averted in metastable austenitic steels. A one-step thermal mechanical treatment (TMT), i.e. hot rolling, can effectively enhance the yielding strength of the metastable austenitic steel from 322 ± 18 MPa to 675 ± 15 MPa, while retaining both the formability and hardenability. It is noted that no boundaries are introduced in the optimized TMT process and all strengthening effect originates from dislocations with inherited thermal stability. The success of this method relies on the decoupled strengthening and toughening mechanisms in metastable austenitic steels, in which yield strength is controlled by initial dislocation density while ductility is retained by the capability to nucleate new dislocations to carry plastic deformation. Especially, the simplicity in processing enables scaling and industrial applications to meet the challenging requirements of emissions reduction. On the other hand, the complexity in the underlying mechanism of dislocation strengthening in this case may shed light on a different route of material strengthening by stimulating dislocation activities, rather than impeding motion of dislocations.

  18. Nationwide multicenter follow-up cohort study of hip arthroplasties performed for osteonecrosis of the femoral head.

    PubMed

    Kobayashi, Seneki; Kubo, Toshikazu; Iwamoto, Yukihide; Fukushima, Wakaba; Sugano, Nobuhiko

    2018-05-12

    To identify modifiable factors related to post-operative dislocation and reoperation in patients with osteonecrosis of the femoral head (ONFH) in a large cohort. We studied 4995 hip arthroplasties: total hip arthroplasty (THA) was performed in 79% of patients; bipolar hemiarthroplasty (BP), 17%; total resurfacing arthroplasty (tRS), 3%; and hemi-resurfacing arthroplasty (hRS), 1%. A new type of BP (accounting for 49% of BPs) comprised a femoral component with a polished or smooth, small-diameter (approximately 10 mm) neck with a round or oval axial cut surface and no sharp corners. The infection rate was relatively low (0.56%) even though 58% of cases of ONFH were associated with systemic steroid use, a known risk factor for infection. Post-operative dislocation occurred in 4.3% of cases, with re-operation needed in 3.9%. The dislocation rate was related to surgery type: 5.2% in THA, 0.9% in BP, and 0% in tRS and hRS. Among total arthroplasties with six month or longer follow-up (3670 THAs and 159 tRSs), the risk factors for post-operative dislocation were younger (≤ 40 years) or older (≥ 62 years) age, higher body weight, posterolateral approach, and smaller prosthetic head diameter. Regarding the need for re-operation, higher body weight and surgery type were identified as risk factors. The relatively high dislocation rate of 5.2% in THA is a cause for concern. The identified risk factors for dislocation should be considered when selecting THA for treatment. Prosthesis survivorship in hRSs was inferior to that in BPs or THAs. Body weight also affected the survivorship of hip arthroplasties.

  19. A Study of the Correlation Between Dislocations and Diffusion Length in In(49)Ga(51)P Solar Cells

    DTIC Science & Technology

    2008-12-01

    method of depositing a monocrystalline film on a monocrystalline substrate, the variation in lattice constant is a measure of the structural...charge transport results in greater power generation, reducing the number of cells per panel , thereby reducing weight and volume requirements while... panel . 39 The line scan mode with a horizontal rotation imaged across the dislocation bands was seen in Figure 15, where as the line scan mode

  20. Isolated scaphoid dislocation associated with axial carpal dissociation: an unusual injury report.

    PubMed

    Horton, Todd; Shin, Alexander Y; Cooney, William P

    2004-11-01

    We present a report of a patient with an isolated scaphoid dislocation associated with a hyperextension and axial loading injury of the carpus required a careful and extensive clinical and radiographic evaluation leading to surgical intervention to reduce and stabilize the scaphoid and to reduce and hold internally the axial carpal injury. Knowledge of the anatomy and the potential injury patterns of the carpus will aid the hand surgeon with injury recognition and proper treatment.

  1. Incidence of shoulder dislocations in the UK, 1995-2015: a population-based cohort study.

    PubMed

    Shah, Anjali; Judge, Andrew; Delmestri, Antonella; Edwards, Katherine; Arden, Nigel K; Prieto-Alhambra, Daniel; Holt, Tim A; Pinedo-Villanueva, Rafael A; Hopewell, Sally; Lamb, Sarah E; Rangan, Amar; Carr, Andrew J; Collins, Gary S; Rees, Jonathan L

    2017-11-14

    This cohort study evaluates the unknown age-specific and gender-specific incidence of primary shoulder dislocations in the UK. UK primary care data from the Clinical Practice Research Datalink (CPRD) were used to identify patients aged 16-70 years with a shoulder dislocation during 1995-2015. Coding of primary shoulder dislocations was validated using the CPRD general practitioner questionnaire service. A cohort of 16 763 patients with shoulder dislocation aged 16-70 years during 1995-2015 were identified. Incidence rates per 100 000 person-years and 95% CIs were calculated. Correct coding of shoulder dislocation within CPRD was 89% (95% CI 83% to 95%), and confirmation that the dislocation was a 'primary' was 76% (95% CI 67% to 85%). Seventy-two percent of shoulder dislocations occurred in men. The overall incidence rate in men was 40.4 per 100 000 person-years (95% CI 40.4 to 40.4), and in women was 15.5 per 100 000 person-years (95% CI 15.5 to 15.5). The highest incidence was observed in men aged 16-20 years (80.5 per 100 000 person-years; 95% CI 80.5 to 80.6). Incidence in women increased with age to a peak of 28.6 per 100 000 person-years among those aged 61-70 years. This is the first time the incidence of shoulder dislocations has been studied using primary care data from a national database, and the first time the results for the UK have been produced. While most primary dislocations occurred in young men, an unexpected finding was that the incidence increased in women aged over 50 years, but not in men. The reasons for this are unknown. Further work is commissioned by the National Institute for Health Research to examine treatments and predictors for recurrent shoulder dislocation. The design of this study was approved by the Independent Scientific Advisory Committee (15_260) for the Medicines & Healthcare products Regulatory Agency. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  2. The strain path dependence of plastic deformation response of AA5754: Experiment and modeling

    NASA Astrophysics Data System (ADS)

    Pham, Minh-Son; Hu, Lin; Iadicola, Mark; Creuziger, Adam; Rollett, Anthony D.

    2013-12-01

    This work presents modeling of experiments on a balanced biaxial (BB) pre-strained AA5754 alloy, subsequently reloaded uniaxially along the rolling direction and transverse direction. The material exhibits a complex plastic deformation response during the change in strain path due to 1) crystallographic texture, 2) aging (interactions between dislocations and Mg atoms) and 3) recovery (annihilation and re-arrangement of dislocations). With a BB prestrain of about 5 %, the aging process is dominant, and the yield strength for uniaxially deformed samples is observed to be higher than the flow stress during BB straining. The strain hardening rate after changing path is, however, lower than that for pre-straining. Higher degrees of pre-straining make the dynamic recovery more active. The dynamic recovery at higher strain levels compensates for the aging effect, and results in: 1) a reduction of the yield strength, and 2) an increase in the hardening rate of re-strained specimens along other directions. The yield strength of deformed samples is further reduced if these samples are left at room temperature to let static recovery occur. The synergistic influences of texture condition, aging and recovery processes on the material response make the modeling of strain path dependence of mechanical behavior of AA5754 challenging. In this study, the influence of crystallographic texture is taken into account by incorporating the latent hardening into a visco-plastic self-consistent model. Different strengths of dislocation glide interaction models in 24 slip systems are used to represent the latent hardening. Moreover, the aging and recovery effects are also included into the latent hardening model by considering strong interactions between dislocations and dissolved atom Mg and the microstructural evolution. These microstructural considerations provide a powerful capability to successfully describe the strain path dependence of plastic deformation behavior of AA5754.

  3. Analytical and Experimental Nanomechanical Approaches to Understanding the Ductile-to-Brittle Transition

    NASA Astrophysics Data System (ADS)

    Hintsala, Eric Daniel

    This dissertation presents progress towards understanding the ductile-to-brittle transition (DBT) using a mixture of nanomechanical experiments and an analytical model. The key concept is dislocation shielding of crack tips, which is occurs due to a dislocation back stress. In order to properly evaluate the role of these interactions, in-situ experiments are ideal by reducing the number of interacting dislocations and allowing direct observation of cracking behavior and the dislocations themselves. First, in-situ transmission electron microscope (TEM) compression experiments of plasma-synthesized silicon nanocubes (NCs) are presented which shows plastic strains greater than 50% in a semi-brittle material. The mechanical properties are discussed and plasticity mechanisms are identified using post-mortem imaging with a combination of dark field and high-resolution imaging. This observations help to develop a back stress model which is used to fit the hardening regime. This represents the first study of its kind where back stresses are used in a discrete manner to match hardening rates. However, the important measurable quantities for evaluating the DBT include fracture toughness values and energetic activation parameters for cracking and plasticity. In order to do this, a new method for doing in-situ fracture experiments is explored. This method is pre-notched three point bending experiments, which were fabricated by focused ion beam (FIB) milling. Two different materials are evaluated: a model ductile material, Nitronic 50, an austenitic steel alloy, and a model brittle material, silicon. These experiments are performed in-situ scanning electron microscope (SEM) and TEM and explore different aspects including electron backscatter diffraction (EBSD) to track deformation in SEM scale experiments, pre-notching using a converged TEM beam to produce sharper notches better replicating natural cracks, etching procedures to reduce residual FIB damage and elevated temperature experiments. Lastly, an analytical method to predict DBTs is presented which can account for effects of strain rate, temperature and impurity presence. The model is tested by pre-existing data on macroscopic compact tension specimens of single crystal Fe-3%Si. Next, application of the model to nano/micro scale fracture toughness experiments is explored and the large number of confounding variables is discussed in detail. A first attempt at fitting is also presented.

  4. Medial patellofemoral ligament reconstruction with a divergent patellar transverse 2-tunnel technique.

    PubMed

    Panni, Alfredo Schiavone; Alam, Mahbub; Cerciello, Simone; Vasso, Michele; Maffulli, Nicola

    2011-12-01

    The medial patellofemoral ligament (MPFL) is the primary passive restraint to lateral patellar dislocation and there is increasing awareness of its role in recurrent lateral patellar instability. This study was conducted to prospectively analyze the functional results of a modified MPFL reconstruction technique in recurrent patellar dislocation. Case series; Level of evidence, 4. Forty-eight patients (51 knees) with at least 3 episodes of lateral patellar dislocation who had been treated with a 6-month rehabilitation protocol were included in this study. All patients practiced sports regularly. Reconstruction was with a semitendinosus tendon using a divergent 2-tunnel technique. Outcome was evaluated with the Kujala, Larsen, modified Lysholm, and Fulkerson outcome scores. Patient satisfaction with range of motion, pain, and sporting activities was also assessed. Three patients were lost at the final follow-up, giving a follow-up rate of 94%. The mean follow-up was 33 months. There was no patella dislocation postoperatively. The mean Kujala score improved significantly (P < .01) from 56.7 ± 17.7 (2 × standard deviation) preoperatively to 86.8 ± 14.4 postoperatively. The mean Larsen score improved significantly (P < .01) from 12.4 ± 3.2 to 17.1 ± 2.7. The mean Fulkerson score improved significantly (P < .01) from 59.2 ± 21.8 to 90.1 ± 14. The mean modified Lysholm score improved significantly (P < .01) from 57.6 ± 19.6 to 88.1 ± 16.2. Sixty-four percent of patients returned to the same type of sport at the same level, 16% reduced the level or type of sport for reasons unrelated to the surgery, while 20% reduced the level of sport or changed it for reasons related to surgery. Eighty-seven percent were either satisfied or very satisfied with the pain relief achieved. The patellar tilt decreased significantly from a preoperative mean of 11.1° to 8.9° at the last follow-up (P = .02). The mean preoperative Insall-Salvati ratio of 1.1 decreased to 1.06, although the change was not significant (P = .1). The results of modified MPFL reconstructions are encouraging, with minimal risks of redislocation and an overall patient satisfaction rate of over 80%. These early and medium-term results are comparable with those of other MPFL reconstruction techniques reported in the literature.

  5. Craniovertebral realignment for basilar invagination and atlantoaxial dislocation secondary to rheumatoid arthritis.

    PubMed

    Goel, Atul; Sharma, Praveen

    2004-09-01

    We present our experience of treating nine consecutive cases of rheumatoid arthritis involving the craniovertebral junction by atlantoaxial joint manipulation and attempts towards restoration of craniovertebral region alignments. Between November 2001 and March 2004, nine cases of rheumatoid arthritis involving the craniovertebral junction were treated in our department of neurosurgery. Six patients had basilar invagination and 'fixed' atlantoaxial dislocation and three patients had a retroodontoid process pannus and mobile and incompletely reducible atlantoaxial dislocation. The patients ranged from 24 to 74 years in age. Six patients were males and three were females. Neck pain and spastic quadriparesis were the most prominent symptoms. Surgery involved attempts to reduce the atlantoaxial dislocation and basilar invagination by manual distraction of the facets of the atlas and axis. Reduction of the atlantoaxial dislocation and of basilar invagination and stabilization of the region was achieved by placement of bone graft and metal spacers within the joint and direct inter-articular plate and screw method of atlantoaxial fixation. Following surgery all the patients showed symptomatic improvement and restoration of craniovertebral alignments. Follow-up ranged from four to 48 months (average 28 months). Manipulation of the atlantoaxial joints and restoring the anatomical craniovertebral alignments in selected cases of rheumatoid arthritis involving the craniovertebral junction leads to remarkable and sustained clinical recovery.

  6. Neutron irradiation effects in Fe and Fe-Cr at 300 °C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Wei-Ying; Miao, Yinbin; Gan, Jian

    2016-06-01

    Fe and Fe-Cr (Cr = 10–16 at.%) specimens were neutron-irradiated at 300 °C to 0.01, 0.1 and 1 dpa. The TEM observations indicated that the Cr significantly reduced the mobility of dislocation loops and suppressed vacancy clustering, leading to distinct damage microstructures between Fe and Fe-Cr. Irradiation-induced dislocation loops in Fe were heterogeneously observed in the vicinity of grown-in dislocations, whereas the loop distribution observed in Fe-Cr is much more uniform. Voids were observed in the irradiated Fe samples, but not in irradiated Fe-Cr samples. Increasing Cr content in Fe-Cr results in a higher density, and a smaller size ofmore » irradiation-induced dislocation loops. Orowan mechanism was used to correlate the observed microstructure and hardening, which showed that the hardening in Fe-Cr can be attributed to the formation of dislocation loops and α' precipitates.« less

  7. In-game Management of Common Joint Dislocations

    PubMed Central

    Skelley, Nathan W.; McCormick, Jeremy J.; Smith, Matthew V.

    2014-01-01

    Context: Sideline management of sports-related joint dislocations often places the treating medical professional in a challenging position. These injuries frequently require prompt evaluation, diagnosis, reduction, and postreduction management before they can be evaluated at a medical facility. Our objective is to review the mechanism, evaluation, reduction, and postreduction management of sports-related dislocations to the shoulder, elbow, finger, knee, patella, and ankle joints. Evidence Acquisition: A literature review was performed using the PubMed database to evaluate previous and current publications focused on joint dislocations. This review focused on articles published between 1980 and 2013. Study Design: Clinical review. Level of Evidence: Level 4. Results: The clinician should weigh the benefits and risks of on-field reduction based on their knowledge of the injury and the presence of associated injuries. Conclusion: When properly evaluated and diagnosed, most sports-related dislocations can be reduced and initially managed at the game. PMID:24790695

  8. Effect of strain rate on bake hardening response of BH220 steel

    NASA Astrophysics Data System (ADS)

    Das, Anindya; Tarafder, Soumitro; Sivaprasad, S.; Chakrabarti, Debalay

    2015-09-01

    This study aims at understanding the bake hardening ability of ultra low carbon BH220 steel at different strain rates. The as-received material has been pre-strained to four different levels and then deformed in tension under (a) as pre-strained state and (b) after baking at 170 ∘C for 20 minutes, at three different strain rates of 0.001, 0.1 and 100/s. In both the conditions, yield stress increased with pre-strain and strain rate, but bake hardening ability was found to decrease when strain rate was increased. The strain rate sensitivity of the material was also found to decrease with bake hardening. Generation of dislocation forests and their subsequent immobility during baking treatment enables them to act as long range obstacles during further deformation. At higher strain rates, less amount of dislocations are produced which can interact with themselves and produce hardening, because of which bake hardening ability and the strain rate drops. A dislocation based strengthening model, as proposed by Larour et al. 2011 [7], was used to predict the yield stress values obtained at different conditions. The equation produced excellent co-relation with the experimental data.

  9. [Therapy of traumatic anterior shoulder dislocation: current status of therapy in Germany. Are there scientifically verified therapy concepts?].

    PubMed

    Tingart, M; Bäthis, H; Bouillon, B; Tiling, T

    2001-06-01

    There are no generally accepted concepts for the treatment of traumatic anterior shoulder dislocation. The objective of this study was to ascertain the current treatment for traumatic shoulder dislocations in German hospitals and to compare this with the data reported in the literature. A total of 210 orthopedic surgery departments were asked for their treatment strategy in an anonymous country-wide survey; 103 questionnaires (49%) were returned for evaluation. Additional imaging (ultrasound, CT, MRI) beyond the routine X-rays is performed in 82% of clinics for primary shoulder dislocation (94% in recurrent dislocation). A young, athletic patient (< 30 years old) would be operated on for a primary traumatic shoulder dislocation in 73% of hospitals (98% in recurrent dislocation). In contrast, a patient of the same age, with a moderate level of sporting activity would be treated conservatively in 67% of cases (14% in recurrent dislocation). Similarly, for an active, middle-aged patient with a demanding job, 74% of responses favored conservative treatment after a primary dislocation and 6% after a recurrent dislocation. Older patients (> 65 years old) are usually treated conservatively after a primary or recurrent shoulder dislocation (99%, 69%). For a primary shoulder dislocation the most popular surgical reconstruction is a Bankart repair (75%). For recurrent shoulder dislocation several different operative techniques are seen (Bankart 29%, T-shift 26%, Putti-Platt 8%, Eden-Lange-Hybbinette 22%, Weber osteotomy 13%). Based on our literature review, we found: (1) The clinical examination of both shoulders is important to diagnose hyperlaxity; (2) Routine CT or MRI is not necessary for primary traumatic shoulder dislocations; (3) A young, athletic patient should undergo surgical reconstruction after a primary shoulder dislocation; (4) The operation of choice for primary and recurrent dislocation is the Bankart repair; (5) There is no sufficient evidence that an arthroscopic Bankart repair is as good as an open procedure; (6) There are limited indications for other operative techniques, as they are associated with a higher recurrence and arthrosis rate.

  10. Variability in Treatment for Patients with Cervical Spine Fracture and Dislocation: An Analysis of 107,152 Patients.

    PubMed

    Wang, Jing; Eltorai, Adam E M; DePasse, J Mason; Durand, Wesley; Reid, Daniel; Daniels, Alan H

    2018-06-01

    Cervical spine injuries are a common cause of morbidity and mortality; however, the optimal treatment of many of these injuries is debated, and previous studies have shown substantial variation in treatment. We sought to examined treatment variation in arthrodesis and halo/tong placement in cervical spine injury patients over a 12-year period. Data from the Healthcare Cost and Utilization Project National Inpatient Sample, from 2000 to 2011, were used for this study. Patients were identified with a cervical vertebral facture or dislocation based on the International Classification of Diseases, 9th Revision codes. Using χ 2 analysis, spinal arthrodesis rates and halo/tong placement rates were compared between hospitals based on teaching status for patients with and without spinal cord injury (SCI). The records of 107,152 patients with cervical fractures were examined. From 2000 to 2011, the overall arthrodesis rates fell from 25.2% to 20.6% (P < 0.001), and halo/tong placement rates fell from 13.2% to 3.6% (P < 0.001). In patients with cervical fracture without SCI, arthrodesis rates fell from 17.6% to 13.9% (P < 0.001), in cervical fracture patients with SCI, arthrodesis rates rose from 50.0% to 58.9% (P < 0.001), and in cervical dislocation patients, arthrodesis rates rose from 47.6% to 57.5% (P < 0.001). During the 12-year period, teaching hospitals had higher arthrodesis rates compared with nonteaching hospitals for patients with cervical fractures with SCI (57.3% vs. 53.4%, P = 0.001) and higher halo/tong placement rates for patients with cervical dislocations (2.7% vs. 1.7%, P = 0.004). Individual hospital variation showed a 3.5-fold variation in arthrodesis rates in 2000 to 2002, which fell to 3.0-fold by 2009 to 2011. Arthrodesis rates for cervical fracture patients significantly decreased, and arthrodesis rates for cervical dislocation and SCI patients increased from 2000 to 2011, with variability in treatment based on hospital teaching status. Rates of halo/tong placement rapidly decreased for cervical spine trauma at both teaching and nonteaching hospitals. Individual hospital treatment variation also decreased over the study period. Further clinical studies examining the optimal treatment for spine trauma may lead to continued decreases in treatment variability. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Effects of dislocations on polycrystal anelasticity

    NASA Astrophysics Data System (ADS)

    Sasaki, Y.; Takei, Y.; McCarthy, C.; Suzuki, A.

    2017-12-01

    Effects of dislocations on the seismic velocity and attenuation have been poorly understood, because only a few experimental studies have been performed [Guéguen et al., 1989; Farla et al., 2012]. By using organic borneol as a rock analogue, we measured dislocation-induced anelasticity accurately over a broad frequency range. We first measured the flow law of borneol aggregates by uniaxial compression tests under a confining pressure of 0.8 MPa. A transition from diffusion creep (n = 1) to dislocation creep (n = 5) was captured at about σ = 1 MPa (40°C-50°C). After deforming in the dislocation creep regime, sample microstructure showed irregular grain shape consistent with grain boundary migration. Next, we conducted three creep tests at σ = 0.27 MPa (diffusion creep regime), σ = 1.3 MPa and σ = 1.9 MPa (dislocation creep regime) on the same sample in increasing order, and measured Young's modulus E and attenuation Q-1 after each creep test by forced oscillation tests. The results show that as σ increased, E decreased and Q-1 increased. These changes induced by dislocations, however, almost fully recovered during the forced oscillation tests performed for about two weeks under a small stress (σ = 0.27 MPa) due to the dislocation recovery (annihilation). In order to constrain the time scale of the dislocation-induced anelastic relaxation, we further measured Young's modulus E at ultrasonic frequency before and after the dislocation creep and found that E at 106 Hz is not influenced by dislocations. Because E at 100 Hz is reduced by dislocations by 10%, the dislocation-induced anelastic relaxation occurs mostly between 102-106 Hz which is at a higher frequency than grain-boundary-induced anelasticity. To avoid dislocation recovery during the anelasticity measurement, we are now trying to perform an in-situ measurement of anelasticity while simultaneously deforming under a high stress associated with dislocation creep. The combination of persistent creep stress with small amplitude perturbations is similar to a seismic wave traveling through a region of active tectonic deformation.

  12. Work Hardening Behavior of 1020 Steel During Cold-Beating Simulation

    NASA Astrophysics Data System (ADS)

    CUI, Fengkui; LING, Yuanfei; XUE, Jinxue; LIU, Jia; LIU, Yuhui; LI, Yan

    2017-03-01

    The present research of cold-beating formation mainly focused on roller design and manufacture, kinematics, constitutive relation, metal flow law, thermo-mechanical coupling, surface micro-topography and microstructure evolution. However, the research on surface quality and performance of workpieces in the process of cold-beating is rare. Cold-beating simulation experiment of 1020 steel is conducted at room temperature and strain rates ranging from 2000 to 4000 s-1 base on the law of plastic forming. According to the experimental data, the model of strain hardening of 1020 steel is established, Scanning Electron Microscopy(SEM) is conducted, the mechanism of the work hardening of 1020 steel is clarified by analyzing microstructure variation of 1020 steel. It is found that the strain rate hardening effect of 1020 steel is stronger than the softening effect induced by increasing temperatures, the process of simulation cold-beating cause the grain shape of 1020 steel significant change and microstructure elongate significantly to form a fibrous tissue parallel to the direction of deformation, the higher strain rate, the more obvious grain refinement and the more hardening effect. Additionally, the change law of the work hardening rate is investigated, the relationship between dislocation density and strain, the relationship between work hardening rate and dislocation density is obtained. Results show that the change trend of the work hardening rate of 1020 steel is divided into two stages, the work hardening rate decreases dramatically in the first stage and slowly decreases in the second stage, finally tending toward zero. Dislocation density increases with increasing strain and strain rate, work hardening rate decreases with increasing dislocation density. The research results provide the basis for solving the problem of improving the surface quality and performance of workpieces under cold-beating formation of 1020 steel.

  13. Accumulated distribution of material gain at dislocation crystal growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rakin, V. I., E-mail: rakin@geo.komisc.ru

    2016-05-15

    A model for slowing down the tangential growth rate of an elementary step at dislocation crystal growth is proposed based on the exponential law of impurity particle distribution over adsorption energy. It is established that the statistical distribution of material gain on structurally equivalent faces obeys the Erlang law. The Erlang distribution is proposed to be used to calculate the occurrence rates of morphological combinatorial types of polyhedra, presenting real simple crystallographic forms.

  14. Abnormal Strain Rate Sensitivity Driven by a Unit Dislocation-Obstacle Interaction in bcc Fe

    NASA Astrophysics Data System (ADS)

    Bai, Zhitong; Fan, Yue

    2018-03-01

    The interaction between an edge dislocation and a sessile vacancy cluster in bcc Fe is investigated over a wide range of strain rates from 108 down to 103 s-1 , which is enabled by employing an energy landscape-based atomistic modeling algorithm. It is observed that, at low strain rates regime less than 105 s-1 , such interaction leads to a surprising negative strain rate sensitivity behavior because of the different intermediate microstructures emerged under the complex interplays between thermal activation and applied strain rate. Implications of our findings regarding the previously established global diffusion model are also discussed.

  15. Dislocation of the proximal tibiofibular joint, do not miss it

    PubMed Central

    van Wulfften Palthe, Alexander FY; Musters, Linda; Sonnega, Remko JA; van der Sluijs, Hans A

    2015-01-01

    We present a case of a 45-year-old woman with a right proximal tibiofibular dislocation she sustained after a fall during roller skating. Anteroposterior and lateral radiographs confirmed the diagnosis; there were no other injuries. The dislocation was reduced by direct manipulation after intra-articular infiltration, in our emergency department. The patient was treated with a long, non-weight bearing leg cast for 1 week. After 4 weeks, she had no pain and a full range of motion of the knee. PMID:26628303

  16. Defect analysis of the LED structure deposited on the sapphire substrate

    NASA Astrophysics Data System (ADS)

    Nie, Qichu; Jiang, Zhimin; Gan, Zhiyin; Liu, Sheng; Yan, Han; Fang, Haisheng

    2018-04-01

    Transmission electron microscope (TEM) and double-crystal X-ray diffraction (DCXRD) measurements have been performed to investigate dislocations of the whole structure of the LED layers deposited on both the conventional (unpatterned sapphire substrate, UPSS) and patterned sapphire substrates (PSS). TEM results show that there exists a dislocation-accumulated region near the substrate/GaN interface, where the dislocation density is much higher with the UPPS than that with the PSS. It indicates that the pattern on the substrate surface is able to block the formation and propagation of dislocations. Further analysis discloses that slope of the pattern is found to suppress the deposition of GaN, and thus to provide more spaces for the epitaxially lateral overgrowth (ELO) of high temperature GaN, which significantly reduces the number of the initial islands, and minimizes dislocation formation due to the island coalescence. V-defect incorporating the threading dislocation is detected in the InGaN/GaN multi-quantum wells (MQWs), and its propagation mechanism is determined as the decrease of the surface energy due to the incorporation of indium. In addition, temperature dependence of dislocation formation is further investigated. The results show that dislocation with the screw component decreases monotonously as temperature goes up. However, edge dislocation firstly drops, and then increases by temperature due to the enhanced thermal mismatch stress. It implies that an optimized range of the growth temperature can be obtained to improve quality of the LED layers.

  17. Bilateral Posterior Tibial Tendon and Flexor Digitorum Longus Dislocations.

    PubMed

    Padegimas, Eric M; Beck, David M; Pedowitz, David I

    2017-04-01

    The authors present a case of a previously healthy and athletic 17-year-old female who presented with a 3.5-year history of medial left ankle pain after sustaining an inversion injury while playing basketball. Prior to presentation, she had failed prior immobilization and physical therapy for a presumed ankles sprain. Physical examination revealed a dislocated posterior tibial tendon (PTT) that was temporarily reducible, but would spontaneously dislocate immediately after reduction. She had pain and snapping of the PTT with resisted ankle plantar flexion and resisted inversion as well as 4/5 strength in ankle inversion. The diagnosis of dislocated PTT was confirmed on magnetic resonance imaging (MRI). The patient underwent suture anchor repair of the medial retinaculum of the left ankle. At the time of surgery both the PTT and flexor digitorum longus (FDL) were dislocated. Three months postoperatively, the patient represented with PTT dislocation of the right (nonoperative) ankle confirmed by MRI. After failure of immobilization, physical therapy, and oral anti-inflammatory medications, the patient underwent suture anchor repair of the medial retinaculum of the right ankle. At 6 months postoperatively, the patient has 5/5 strength inversion bilaterally, no subluxation of either PTT, and has returned to all activities without limitation. The authors present this unique case of bilateral PTT dislocation and concurrent PTT/FDL dislocation along with review of the literature for PTT dislocation. The authors highlight the common misdaiganosis of this injury and highlight the successful results of surgical intervention. Level V: Case report.

  18. Complications after pectus excavatum repair using pectus bars in adolescents and adults: risk comparisons between age and technique groups.

    PubMed

    Choi, Soohwan; Park, Hyung Joo

    2017-10-01

    To compare the complications associated with age and technique groups in patients undergoing pectus excavatum (PE) repair. The data of 994 patients who underwent PE repair from March 2011 to December 2015 were retrospectively reviewed. Mean age was 9.59 years (range 31 months-55 years), and 756 patients were men (76.1%). The age groups were defined as follows: Group 1, <5 years; Group 2, 5-9 years; Group 3, 10-14 years; Group 4, 15-17 years; Group 5, 18-19 years; Group 6, 20-24 years; and Group 7, >24 years. The technique groups were defined as follows: Group 1, patients who underwent repair with claw fixators and hinge plates; Group 2, patients who underwent repair with our 'bridge' technique. Complications were compared between age groups and technique groups. No cases of mortality occurred. Complication rates in the age groups 1-7 were 5.4%, 3.6%, 12.1%, 18.2%, 17.3%, 13.9% and 16.7%, respectively. The complication rate tripled after the age of 10. In multivariable analysis, odds ratio of Groups 4, 5 and 7 and asymmetric types were 3.04, 2.81, 2.97 and 1.70 (P < 0.01, P = 0.02, 0.03 and 0.03, respectively). The bar dislocation rate in technique Group 1 was 0.8% (6 of 780). No bar dislocations occurred in technique Group 2. Older patients have more asymmetric pectus deformity and they are also risk factors for complications following PE repair. The bridge technique provides a bar dislocation rate of 0%, even in adult patients. This procedure seems to reduce or prevent major complications following PE repair. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  19. The rate of dislocation is not increased when minimal precautions are used after total hip arthroplasty using the posterolateral approach: a prospective, comparative safety study.

    PubMed

    Kornuijt, A; Das, D; Sijbesma, T; van der Weegen, W

    2016-05-01

    In order to prevent dislocation of the hip after total hip arthroplasty (THA), patients have to adhere to precautions in the early post-operative period. The hypothesis of this study was that a protocol with minimal precautions after primary THA using the posterolateral approach would not increase the short-term (less than three months) risk of dislocation. We prospectively monitored a group of unselected patients undergoing primary THA managed with standard precautions (n = 109, median age 68.9 years; interquartile range (IQR) 61.2 to 77.3) and a group who were managed with fewer precautions (n = 108, median age 67.2 years; IQR 59.8 to 73.2). There were no significant differences between the groups in relation to predisposing risk factors. The diameter of the femoral head ranged from 28 mm to 36 mm; meticulous soft-tissue repair was undertaken in all patients. The medical records were reviewed and all patients were contacted three months post-operatively to confirm whether they had experienced a dislocation. There were no dislocations in the less restricted group and one in the more restricted group (p = 0.32). For experienced surgeons using the posterolateral approach at THA and femoral heads of diameter ≥ 28 mm, it appears safe to manage patients in the immediate post-operative period with minimal precautions to protect against dislocation. Larger studies with adequate statistical power are needed to verify this conclusion. Experienced orthopaedic surgeons using the posterolateral approach for THA should not fear an increased dislocation rate if they manage their patients with a minimal precautions protocol. Cite this article: Bone Joint J 2016;98-B:589-94. ©2016 The British Editorial Society of Bone & Joint Surgery.

  20. Inelastic deformation and phenomenological modeling of aluminum including transient effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, C.W.

    A review was made of several phenomenological theories which have recently been proposed to describe the inelastic deformation of crystalline solids. Hart's deformation theory has many advantages, but there are disagreements with experimental deformation at stress levels below yield. A new inelastic deformation theory was proposed, introducing the concept of microplasticity. The new model consists of five deformation elements: a friction element representing a deformation element controlled by dislocation glide, a nonrecoverable plastic element representing the dislocation leakage rate over the strong dislocation barriers, a microplastic element representing the dislocation leakage rate over the weak barriers, a short range anelasticmore » spring element representing the recoverable anelastic strain stored by piled-up dislocations against the weak barriers, and a long range anelastic spring element representing the recoverable strain stored by piled-up dislocations against the strong barriers. Load relaxation and tensile testing in the plastic range were used to determine the material parameters for the plastic friction elements. The short range and long range anelastic moduli and the material parameters for the kinetics of microplasticity were determined by the measurement of anelastic loops and by performing load relaxation tests in the microplastic region. Experimental results were compared with a computer simulation of the transient deformation behavior of commercial purity aluminum. An attempt was made to correlate the material parameters and the microstructure from TEM. Stability of material parameters during inelastic deformation was discussed and effect of metallurgical variables was examined experimentally. 71 figures, 5 tables.« less

  1. Dislocation creation and void nucleation in FCC ductile metals under tensile loading: a general microscopic picture.

    PubMed

    Pang, Wei-Wei; Zhang, Ping; Zhang, Guang-Cai; Xu, Ai-Guo; Zhao, Xian-Geng

    2014-11-10

    Numerous theoretical and experimental efforts have been paid to describe and understand the dislocation and void nucleation processes that are fundamental for dynamic fracture modeling of strained metals. To date an essential physical picture on the self-organized atomic collective motions during dislocation creation, as well as the essential mechanisms for the void nucleation obscured by the extreme diversity in structural configurations around the void nucleation core, is still severely lacking in literature. Here, we depict the origin of dislocation creation and void nucleation during uniaxial high strain rate tensile processes in face-centered-cubic (FCC) ductile metals. We find that the dislocations are created through three distinguished stages: (i) Flattened octahedral structures (FOSs) are randomly activated by thermal fluctuations; (ii) The double-layer defect clusters are formed by self-organized stacking of FOSs on the close-packed plane; (iii) The stacking faults are formed and the Shockley partial dislocations are created from the double-layer defect clusters. Whereas, the void nucleation is shown to follow a two-stage description. We demonstrate that our findings on the origin of dislocation creation and void nucleation are universal for a variety of FCC ductile metals with low stacking fault energies.

  2. Surgical treatment of acute type V acromioclavicular joint dislocations in professional athletes: an anatomic ligament reconstruction with synthetic implant augmentation.

    PubMed

    Triantafyllopoulos, Ioannis K; Lampropoulou-Adamidou, Kalliopi; Schizas, Nikitas P; Karadimas, Eleftherios V

    2017-12-01

    Most acromioclavicular (AC) joint injuries occur in men in their third decade of life during high-speed or high-impact body contact sports. The management of acute complete AC joint dislocation is surgical. Current surgical techniques include anatomic reconstruction of the main restraints of the AC joint and aim to improve functional outcomes and to reduce the complication rate. We present 10 cases of acute type V AC joint dislocation in professional athletes treated surgically with anatomic reconstruction of the coracoclavicular and AC ligaments and augmentation with the use of a synthetic polyester tape. The minimum follow-up of the patients was 2 years (mean, 48 months; range, 24-86 months). The postoperative functional outcome was assessed at 1 year and 2 years using the Constant-Murley, American Shoulder and Elbow Surgeons, and modified University of California-Los Angeles scoring systems. In all cases, the postoperative scores were significantly improved (P < .005 in all comparisons with the preoperative scores), and all patients returned to their preinjury high level of activity 6 months postoperatively. Radiographs at 1 month and 6 months revealed the maintenance of reduction. There were no complications. According to the results of our series of patients, demanding cases of acute AC joint dislocation Rockwood type V, in professional athletes, require anatomic fixation of both coracoclavicular and AC ligaments for return to sports as soon as possible and at the preinjury level of performance. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  3. Incidence of and risk factors for traumatic anterior shoulder dislocation: an epidemiologic study in high-school rugby players.

    PubMed

    Kawasaki, Takayuki; Ota, Chihiro; Urayama, Shingo; Maki, Nobukazu; Nagayama, Masataka; Kaketa, Takefumi; Takazawa, Yuji; Kaneko, Kazuo

    2014-11-01

    The incidence of reinjuries due to glenohumeral instability and the major risk factors for primary anterior shoulder dislocation in youth rugby players have been unclear. The purpose of this study was to investigate the incidence, mechanisms, and intrinsic risk factors of shoulder dislocation in elite high-school rugby union teams during the 2012 season. A total of 378 male rugby players from 7 high-school teams were investigated by use of self-administered preseason and postseason questionnaires. The prevalence of a history of shoulder dislocation was 14.8%, and there were 21 events of primary shoulder dislocation of the 74 overall shoulder injuries that were sustained during the season (3.2 events per 1000 player-hours of match exposure). During the season, 54.3% of the shoulders with at least one episode of shoulder dislocation had reinjury. This study also indicated that the persistence of glenohumeral instability might affect the player's self-assessed condition, regardless of the incidence during the current season. By a multivariate logistic regression method, a history of shoulder dislocation on the opposite side before the season was found to be a risk factor for contralateral primary shoulder dislocation (odds ratio, 3.56; 95% confidence interval, 1.27-9.97; P = .02). High-school rugby players with a history of shoulder dislocation are not playing at full capacity and also have a significant rate of reinjury as well as a high risk of dislocating the other shoulder. These findings may be helpful in deciding on the proper treatment of primary anterior shoulder dislocation in young rugby players. Copyright © 2014 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  4. Elastic precursor wave decay in shock-compressed aluminum over a wide range of temperature

    NASA Astrophysics Data System (ADS)

    Austin, Ryan A.

    2018-01-01

    The effect of temperature on the dynamic flow behavior of aluminum is considered in the context of precursor wave decay measurements and simulations. In this regard, a dislocation-based model of high-rate metal plasticity is brought into agreement with previous measurements of evolving wave profiles at 300 to 933 K, wherein the amplification of the precursor structure with temperature arises naturally from the dislocation mechanics treatment. The model suggests that the kinetics of inelastic flow and stress relaxation are governed primarily by phonon scattering and radiative damping (sound wave emission from dislocation cores), both of which intensify with temperature. The manifestation of these drag effects is linked to low dislocation density ahead of the precursor wave and the high mobility of dislocations in the face-centered cubic lattice. Simulations performed using other typical models of shock wave plasticity do not reproduce the observed temperature-dependence of elastic/plastic wave structure.

  5. Laser shock microforming of aluminum foil with fs laser

    NASA Astrophysics Data System (ADS)

    Ye, Yunxia; Feng, Yayun; Xuan, Ting; Hua, Xijun; Hua, Yinqun

    2014-12-01

    Laser shock microforming of Aluminum(Al) foil through fs laser has been researched in this paper. The influences of confining layer, clamping method and impact times on induced dent depths were investigated experimentally. Microstructure of fs laser shock forming Al foil was observed through Transmission electron microscopy (TEM). Under the condition of tightly clamping, the dent depths increase with impact times and finally tend to saturating. Another new confining layer, the main component of which is polypropylene, was applied and the confining effect of it is better because of its higher impedance. TEM results show that dislocation is one of the main deformation mechanisms of fs laser shock forming Al foil. Specially, most of dislocations exist in the form of short and discrete dislocation lines. Parallel straight dislocation slip line also were observed. We analyzed that these unique dislocation arrangements are due to fs laser-induced ultra high strain rate.

  6. The co-evolution of microstructure features in self-ion irradiated HT9 at very high damage levels

    NASA Astrophysics Data System (ADS)

    Getto, Elizabeth Margaret

    The objective of this study was to understand the co-evolution of microstructure features in self-ion irradiated HT9 at very high damage levels. HT9 (heat 84425) was pre-implanted with 10 atom parts per million helium and then irradiated with 5 MeV Fe++ in the temperature range of 440-480°C to 188 dpa. A damage dependence study from 75 to 650 dpa was performed at the peak swelling temperature of 460°C. The swelling, dislocation and precipitate evolution was determined using Analytic Electron Microscopes in both Conventional Transmission electron microscopy (CTEM) and Scanning Transmission Electron Microscopy (STEM) modes. Void swelling reached a nominally linear rate of 0.03%/dpa from 188 to 650 dpa at 460°C. G phase precipitates were observed by 75 dpa and grew linearly up to 650 dpa. M 2X was observed by 250 dpa and peaked in volume fraction at 450 dpa. Dislocation loop evolution was observed up to 650 dpa including a step change in diameter between 375 and 450 dpa; which correlated with nucleation and growth of M2X. The experimental results were interpreted using a rate theory model, the Radiation Induced Microstructure Evolution (RIME), in the damage range from 188 to 650 dpa. A simple system of voids and dislocations was modeled in which the dislocations measured from experiment were used as input, or the dislocations were allowed to evolve dynamically, resulting in swelling that was overestimated by 63% relative to that observed experimentally. G phase had limited effect on the void or dislocation behavior. The behavior of M2X within the microstructure was characterized as a direct effect as a coherent sink, and as an indirect effect in consuming carbon from the matrix, which had the largest impact on both void and dislocation behavior. A slowly monotonically increasing swelling rate was observed both experimentally and computationally, with swelling rates of ˜0.025%/dpa and ˜0.036%/dpa before and after 450 dpa. The agreement in void behavior between experiment and model when all effects (loops, network, G phase, M2X formation and growth, and removal of carbon) are accounted for demonstrates the importance of characterizing the evolution of the full microstructure over a large dpa range.

  7. [Analysis of the failures of a cemented constrained liner model in patients with a high dislocation risk].

    PubMed

    Gallart, X; Gomez, J C; Fernández-Valencia, J A; Combalía, A; Bori, G; García, S; Rios, J; Riba, J

    2014-01-01

    To evaluate the short-term results of an ultra high molecular weight polyethylene retentive cup in patients at high risk of dislocation, either primary or revision surgery. Retrospective review of 38 cases in order to determine the rate of survival and failure analysis of a constrained cemented cup, with a mean follow-up of 27 months. We studied demographic data, complications, especially re-dislocations of the prosthesis and, also the likely causes of system failure analyzed. In 21.05% (8 cases) were primary surgery and 78.95% were revision surgery (30 cases). The overall survival rate by Kaplan-Meier method was 70.7 months. During follow-up 3 patients died due to causes unrelated to surgery and 2 infections occurred. 12 hips had at least two previous surgeries done. It wasn't any case of aseptic loosening. Four patients presented dislocation, all with a 22 mm head (P=.008). Our statistical analysis didn't found relationship between the abduction cup angle and implant failure (P=.22). The ultra high molecular weight polyethylene retentive cup evaluated in this series has provided satisfactory short-term results in hip arthroplasty patients at high risk of dislocation. Copyright © 2014 SECOT. Published by Elsevier Espana. All rights reserved.

  8. Dislocation Processes and Frictional Stability of Faults

    NASA Astrophysics Data System (ADS)

    Toy, V. G.; Mitchell, T. M.; Druiventak, A.

    2011-12-01

    The rate dependence of frictional processes in faults in quartzofeldspathic crust is proposed to change at c. 300°C, because above this temperature asperity deformation can be accommodated by crystal plastic processes. As a consequence, the real fault contact area increases and the fault velocity strengthens. Conversely, faults at lower temperatures are velocity weakening and therefore prone to earthquake slip. We have investigated whether dislocation processes are important around faults in quartzites on seismic timescales, by inducing fault slip on a saw cut surface in novaculite blocks. Deformation was carried out at 450°C and 600°C in a Griggs apparatus. Slip rates of 8.3 x 10-7s-1 allowed total slip, u, of 0.5mm to be achieved in c. 10 minutes. Failure occurred at peak differential stresses of ~1.7 GPa and 1.4 GPa respectively, followed by significant weakening. Structures of the novaculite within and surrounding the fault surface were examined using EBSD, FIB-SEM and TEM to elucidate changes to their dislocation substructure. In the sample deformed at 450°C, a ~50μm thick layer of amorphous / non-crystalline silica was developed on the saw-cut surface during deformation. Rare clasts of the wall rock are preserved within this material. The surrounding sample is mostly composed of equant quartz grains of 5-10μm diameter that lack a preferred orientation, contain very few intercrystalline dislocations, and are divided by organised high angle grain boundaries. After deformation, most quartz grains within the sample retain their starting microstructure. However, within ~10μm of the sliding surface, dislocations are more common, and these are arranged into elongated, tangled zones (subgrain boundaries?). Microfractures are also observed. These microstructures are characteristic of deformation accommodated by low temperature plasticity. Our preliminary observations suggest that dislocation processes may be able to accommodate some deformation around fault surfaces, at least at the slightly sub-seismic deformation rates of these experiments. Furthermore, once sliding initiated on the saw cut surface, an amorphous material was generated. We hypothesise that this could have been due to a breakdown of the crystal structure by a combination of cataclasis and generation of excessive dislocation densities. There would also have been a slight increase in temperature around the sliding surface during and after fault slip, which may have aided the focussing of dislocation processes around the sliding surface.

  9. Ductile failure initiation and evolution in porous polycrystalline aggregates due to interfacial effects

    NASA Astrophysics Data System (ADS)

    Ashmawi, Waeil Muhammad Al-Anwar

    New analytical and computational formulations have been developed for the investigation of micro structurally induced ductile failure mechanisms in porous polycrystalline aggregates with low and high (CSL) angle grain-boundaries (GBs). A multiple-slip rate-dependent crystalline constitutive formulation that is coupled to the evolution of mobile and immobile dislocation densities, a new internal porosity formulation for void nucleation and growth, and specialized computational schemes have been developed to obtain a detailed understanding of the multi-scale interrelated physical mechanisms that result in ductile failure in polycrystalline materials. Comprehensive transmission and pile-up mechanisms have also been introduced to investigate dislocation-density impedance and slip-rate incompatibility at the GBs. The interrelated effects of GB orientation, mobile and immobile dislocation densities, strain hardening, geometrical softening, localized plastic strains, and dislocation-density transmission and blockage on void growth, interaction, and coalescence have been studied. Criteria have been developed to identify and monitor the initiation and development of potential dislocation-density activity sites adjacent to GB regions. These interactions play an important role in the formation of GB pile-up and transmission regions. The effects of GB structure and orientation on ductile failure have been accounted for by the development of GB interfacial kinematic conditions that account for a multitude of dislocation-density interactions with GBs, such as full and partial transmission, impedance, blockage, and absorption. Pile-ups and transmission regions are identified and monitored as the deformation and failure evolve. These kinematic conditions are linked to the initiation and evolution of failure modes by the development of a new internal porosity evolution formulation that accounts for void nucleation and growth. The internal porosity relation is coupled with the proposed dislocation-density based crystalline constitutive formulation, the interfacial GB dislocation-density interaction models, and the specialized computational schemes to obtain detailed predictions of the behavior of aggregates with explicit voids that have different orientations and combinations of sizes, shapes, and spacings. Results from the present study indicate that material failure is a competition between different interrelated effects, such as stress triaxiality, accumulated plastic shear strain, temperature, dislocation density concentration, and grain and GB crystallographic orientations. For all void arrangements, as the void size is increased, specimen necking is diffuse and failure is concentrated in the ligament regions. Furthermore, there are more dislocation-density activity sites for potential transmission and pile-ups at the GBs. Failure is concentrated along the void peripheries and within intervoid ligaments. It has been shown that the evolution of the mobile dislocation density saturation curves, and their saturation rate are directly related to the aggregate response. Nucleation and growth for all void distributions have occurred in regions of maximum dislocation density and along preferred crystallographic orientations. Spatial distributions of porosity, accumulated plastic strains, and pressure have been obtained to further elucidate how these parameters evolve and affect void to void interaction in critical ligament and localized regions as a function of intervoid spacing and nominal strains. These failure predictions can be also used to identify intergranular and transgranular failure propagation. The present study underscores the importance of using dislocation-density based multiple-slip crystalline constitutive formulations and GB interfacial mechanisms that are consistent with experimental observations and results to accurately characterize the microstructural evolution of deformation and failure modes on a length scale that is commensurate with the material competition between the inherent strengthening and softening mechanisms of crystalline systems.

  10. Ultrahigh strength single crystalline nanowhiskers grown by physical vapor deposition.

    PubMed

    Richter, Gunther; Hillerich, Karla; Gianola, Daniel S; Mönig, Reiner; Kraft, Oliver; Volkert, Cynthia A

    2009-08-01

    The strength of metal crystals is reduced below the theoretical value by the presence of dislocations or by flaws that allow easy nucleation of dislocations. A straightforward method to minimize the number of defects and flaws and to presumably increase its strength is to increase the crystal quality or to reduce the crystal size. Here, we describe the successful fabrication of high aspect ratio nanowhiskers from a variety of face-centered cubic metals using a high temperature molecular beam epitaxy method. The presence of atomically smooth, faceted surfaces and absence of dislocations is confirmed using transmission electron microscopy investigations. Tensile tests performed in situ in a focused-ion beam scanning electron microscope on Cu nanowhiskers reveal strengths close to the theoretical upper limit and confirm that the properties of nanomaterials can be engineered by controlling defect and flaw densities.

  11. Using Omega and NIF to Advance Theories of High-Pressure, High-Strain-Rate Tantalum Plastic Flow

    NASA Astrophysics Data System (ADS)

    Rudd, R. E.; Arsenlis, A.; Barton, N. R.; Cavallo, R. M.; Huntington, C. M.; McNaney, J. M.; Orlikowski, D. A.; Park, H.-S.; Prisbrey, S. T.; Remington, B. A.; Wehrenberg, C. E.

    2015-11-01

    Precisely controlled plasmas are playing an important role as both pump and probe in experiments to understand the strength of solid metals at high energy density (HED) conditions. In concert with theory, these experiments have enabled a predictive capability to model material strength at Mbar pressures and high strain rates. Here we describe multiscale strength models developed for tantalum and vanadium starting with atomic bonding and extending up through the mobility of individual dislocations, the evolution of dislocation networks and so on up to full scale. High-energy laser platforms such as the NIF and the Omega laser probe ramp-compressed strength to 1-5 Mbar. The predictions of the multiscale model agree well with the 1 Mbar experiments without tuning. The combination of experiment and theory has shown that solid metals can behave significantly differently at HED conditions; for example, the familiar strengthening of metals as the grain size is reduced has been shown not to occur in the high pressure experiments. Work performed under the auspices of the U.S. Dept. of Energy by Lawrence Livermore National Lab under contract DE-AC52-07NA273.

  12. Traumatic Posterior Atlantoaxial Dislocation Without Associated Fracture but With Neurological Deficit

    PubMed Central

    Xu, Yong; Li, Feng; Guan, Hanfeng; Xiong, Wei

    2015-01-01

    Abstract Posterior atlantoaxial dislocation without odontoid fracture is extremely rare and often results in fatal spinal cord injury. According to the reported literature, all cases presented mild or no neurologic deficit, with no definite relation to upper spinal cord injury. Little is reported about traumatic posterior atlantoaxial dislocation, with incomplete quadriplegia associated with a spinal cord injury. We present a case of posterior atlantoaxial dislocation without associated fracture, but with quadriplegia, and accompanying epidural hematoma and subarachnoid hemorrhage. The patient underwent gentle traction in the neutral position until repeated cranial computed tomography revealed no progression of the epidural hematoma. Thereafter, the atlantoaxial dislocation was reduced by using partial odontoidectomy via a video-assisted transcervical approach and maintained with posterior polyaxial screw-rod constructs and an autograft. Neurological status improved immediately after surgery, and the patient recovered completely after 1 year. Posterior fusion followed by closed reduction is the superior strategy for posterior atlantoaxial dislocation without odontoid fracture, according to literature. But for cases with severe neurological deficit, open reduction may be the safest choice to avoid the lethal complication of overdistraction of the spinal cord. Also, open reduction and posterior srew-rod fixation are safe and convenient strategies in dealing with traumatic posterior atlantoaxial dislocation patients with neurological deficit. PMID:26512572

  13. Solute softening and defect generation during prismatic slip in magnesium alloys

    NASA Astrophysics Data System (ADS)

    Yi, Peng; Cammarata, Robert C.; Falk, Michael L.

    2017-12-01

    Temperature and solute effects on prismatic slip of 〈a〉 dislocations in Mg are studied using molecular dynamics simulation. Prismatic slip is controlled by the low mobility screw dislocation. The screw dislocation glides on the prismatic plane through alternating cross-slip between the basal plane and the prismatic plane. In doing so, it exhibits a locking-unlocking mechanism at low temperatures and a more continuous wavy propagation at high temperatures. The dislocation dissociates into partials on the basal plane and the constriction formation of the partials is identified to be the rate-limiting process for unlocking. In addition, the diffusion of partials on the basal plane enables the formation of jogs and superjogs for prismatic slip, which lead to the generation of vacancies and dislocation loops. Solute softening in Mg alloys was observed in the presence of both Al and Y solute. The softening in prismatic slip is found to be due to solute pinning on the basal plane, instead of the relative energy change of the screw dislocation on the basal and prismatic planes, as has been hypothesized.

  14. Simultaneous Middle Third Clavicle Fracture and Type 3 Acromioclavicular Joint Dislocation; A Case Report

    PubMed Central

    Solooki, Saeed; Azad, Ali

    2014-01-01

    Simultaneous middle third clavicle fracture and acromioclavicular joint dislocation is a rare combination injury, as a result of high-energy trauma. We report a patient with a middle third clavicle fracture and ipsilateral grade three-acromioclavicular joint dislocation, which is a rare combination. The patient wanted to get back to work as soon as possible, so the fracture was fixed with reconstruction plate after open reduction and plate contouring; and acromioclavicular joint dislocation was reduced and fixed with two full threaded cancellous screws. One screw was inserted through the plate to the coracoid process. Clinical and radiographic finding revealed complete union of clavicle fracture and anatomical reduction of acromioclavicular joint with pain free full joint range of motion one year after operation. PMID:25207318

  15. A dislocation density-based continuum model of the anisotropic shock response of single crystal α-cyclotrimethylene trinitramine

    DOE PAGES

    Luscher, Darby Jon; Addessio, Francis L.; Cawkwell, Marc Jon; ...

    2017-01-01

    Here, we have developed a model for the finite deformation thermomechanical response of α-cyclotrimethylene trinitramine (RDX). Our model accounts for nonlinear thermoelastic lattice deformation through a free energy-based equation of state developed by Cawkwell et al. (2016) in combination with temperature and pressure dependent elastic constants, as well as dislocation-mediated plastic slip on a set of slip systems motivated by experimental observation. The kinetics of crystal plasticity are modeled using the Orowan equation relating slip rate to dislocation density and the dislocation velocity developed by Austin and McDowell (2011), which naturally accounts for transition from thermally activated to dislocation dragmore » limited regimes. Evolution of dislocation density is specified in terms of local ordinary differential equations reflecting dislocation–dislocation interactions. This paper presents details of the theory and parameterization of the model, followed by discussion of simulations of flyer plate impact experiments. Impact conditions explored within this combined simulation and experimental effort span shock pressures ranging from 1 to 3 GPa for four crystallographic orientations and multiple specimen thicknesses. Simulation results generated using this model are shown to be in strong agreement with velocimetry measurements from the corresponding plate impact experiments. Finally, simulation results are used to motivate conclusions about the nature of dislocation-mediated plasticity in RDX.« less

  16. The influence of anisotropy on the core structure of Shockley partial dislocations within FCC materials

    NASA Astrophysics Data System (ADS)

    Szajewski, B. A.; Hunter, A.; Luscher, D. J.; Beyerlein, I. J.

    2018-01-01

    Both theoretical and numerical models of dislocations often necessitate the assumption of elastic isotropy to retain analytical tractability in addition to reducing computational load. As dislocation based models evolve towards physically realistic material descriptions, the assumption of elastic isotropy becomes increasingly worthy of examination. We present an analytical dislocation model for calculating the full dissociated core structure of dislocations within anisotropic face centered cubic (FCC) crystals as a function of the degree of material elastic anisotropy, two misfit energy densities on the γ-surface ({γ }{{isf}}, {γ }{{usf}}) and the remaining elastic constants. Our solution is independent of any additional features of the γ-surface. Towards this pursuit, we first demonstrate that the dependence of the anisotropic elasticity tensor on the orientation of the dislocation line within the FCC crystalline lattice is small and may be reasonably neglected for typical materials. With this approximation, explicit analytic solutions for the anisotropic elasticity tensor {B} for both nominally edge and screw dislocations within an FCC crystalline lattice are devised, and employed towards defining a set of effective isotropic elastic constants which reproduce fully anisotropic results, however do not retain the bulk modulus. Conversely, Hill averaged elastic constants which both retain the bulk modulus and reasonably approximate the dislocation core structure are employed within subsequent numerical calculations. We examine a wide range of materials within this study, and the features of each partial dislocation core are sufficiently localized that application of discrete linear elasticity accurately describes the separation of each partial dislocation core. In addition, the local features (the partial dislocation core distribution) are well described by a Peierls-Nabarro dislocation model. We develop a model for the displacement profile which depends upon two disparate dislocation length scales which describe the core structure; (i) the equilibrium stacking fault width between two Shockley partial dislocations, R eq and (ii) the maximum slip gradient, χ, of each Shockley partial dislocation. We demonstrate excellent agreement between our own analytic predictions, numerical calculations, and R eq computed directly by both ab-initio and molecular statics methods found elsewhere within the literature. The results suggest that understanding of various plastic mechanisms, e.g., cross-slip and nucleation may be augmented with the inclusion of elastic anisotropy.

  17. Inferring nonlinear mantle rheology from the shape of the Hawaiian swell.

    PubMed

    Asaadi, N; Ribe, N M; Sobouti, F

    2011-05-26

    The convective circulation generated within the Earth's mantle by buoyancy forces of thermal and compositional origin is intimately controlled by the rheology of the rocks that compose it. These can deform either by the diffusion of point defects (diffusion creep, with a linear relationship between strain rate and stress) or by the movement of intracrystalline dislocations (nonlinear dislocation creep). However, there is still no reliable map showing where in the mantle each of these mechanisms is dominant, and so it is important to identify regions where the operative mechanism can be inferred directly from surface geophysical observations. Here we identify a new observable quantity--the rate of downstream decay of the anomalous seafloor topography (swell) produced by a mantle plume--which depends only on the value of the exponent in the strain rate versus stress relationship that defines the difference between diffusion and dislocation creep. Comparison of the Hawaiian swell topography with the predictions of a simple fluid mechanical model shows that the swell shape is poorly explained by diffusion creep, and requires a dislocation creep rheology. The rheology predicted by the model is reasonably consistent with laboratory deformation data for both olivine and clinopyroxene, suggesting that the source of Hawaiian lavas could contain either or both of these components.

  18. Transformations of the dislocation structure of nickel single crystals

    NASA Astrophysics Data System (ADS)

    Alfyorova, E. A.; Lychagin, D. V.; Lychagina, L. L.; Tsvetkov, N. A.

    2017-12-01

    A relationship between different-scale deformations of crystals has not been established yet. In order to solve this task, we investigate the development of a deformation relief and dislocation structure in nickel single crystals after deformation. The stress tensor, crystallography, and geometry of specimens affect the organization of some shear along corresponding systems of sliding. The organization of shear shows some features of self-organization. It is associated with the self-organization in the dislocation subsystem analyzed previously. The effectiveness of reducing external and internal stresses determines patterns of deformation processes at different scale levels.

  19. Analytical model of the effect of misfit dislocation character on the bubble-to-void transition in metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martínez, Enrique; Schwen, Daniel; Hetherly, Jeffrey

    Here, this paper addresses the role of misfit dislocations in the nucleation and growth of nanoscale He bubbles at interfaces. In a recent work, we studied the nanoscale effects on the capillarity equation and on equilibrium conditions. We proposed an expression for surface energy and for the equation of state, EOS, for He in bubbles, which have a size dependence that captures the role of the interface forces, which become relevant at the nanoscale. Here we determine the EOS for several twist grain boundaries in Fe and Cu and incorporate these results into the rate equation that determines the bubble-to-voidmore » transition, focusing on the influence of interface dislocations on the evaporation rate of vacancies. We find a significant effect of the magnitude of the Burgers vector of the dislocations on the critical radius for the transition. In conclusion, these results give a quantitative way to characterize grain boundaries in their ability to capture He and alter the onset of swelling.« less

  20. Analytical model of the effect of misfit dislocation character on the bubble-to-void transition in metals

    DOE PAGES

    Martínez, Enrique; Schwen, Daniel; Hetherly, Jeffrey; ...

    2015-11-30

    Here, this paper addresses the role of misfit dislocations in the nucleation and growth of nanoscale He bubbles at interfaces. In a recent work, we studied the nanoscale effects on the capillarity equation and on equilibrium conditions. We proposed an expression for surface energy and for the equation of state, EOS, for He in bubbles, which have a size dependence that captures the role of the interface forces, which become relevant at the nanoscale. Here we determine the EOS for several twist grain boundaries in Fe and Cu and incorporate these results into the rate equation that determines the bubble-to-voidmore » transition, focusing on the influence of interface dislocations on the evaporation rate of vacancies. We find a significant effect of the magnitude of the Burgers vector of the dislocations on the critical radius for the transition. In conclusion, these results give a quantitative way to characterize grain boundaries in their ability to capture He and alter the onset of swelling.« less

  1. Edge Stabilized Ribbon (ESR); Stress, Dislocation Density and Electronic Performance

    NASA Technical Reports Server (NTRS)

    Sachs, E. M.

    1984-01-01

    The edge stabilized ribbon (ESR) silicon ribbon was grown in widths of 1, 2.2 and 4.0 inches at speeds ranging from .6 to 7 in/min, which result in ribbon thicknesses of 5 to 400 microns. One of the primary problems remaining in ESR growth is that of thermally induced mechanical stresses. This problem is manifested as ribbon with a high degree of residual stress or as ribbon with buckled ribbon. Thermal stresses result in a high dislocation density in the grown material, resulting in compromised electronic performance. Improvements in ribbon flatness were accomplished by modification of the ribbon cooling profile. Ribbon flatness and other experimental observations of ESR ribbon are discussed. Laser scanner measurements show a good correlation between diffusion length and dislocation density which indicates that the high dislocation densities are the primary cause of the poor current performance of ESR materials. Dislocation densities were reduced and improved electronic performance resulted. Laser scanner data on new and old material are presented.

  2. Vacancy-induced dislocations within grains for high-performance PbSe thermoelectrics

    DOE PAGES

    Chen, Zhiwei; Ge, Binghui; Li, Wen; ...

    2017-01-04

    To minimize the lattice thermal conductivity in thermoelectrics, strategies typically focus on the scattering of low-frequency phonons by interfaces and high-frequency phonons by point defects. In addition, scattering of mid-frequency phonons by dense dislocations, localized at the grain boundaries, has been shown to reduce the lattice thermal conductivity and improve the thermoelectric performance. Here we propose a vacancy engineering strategy to create dense dislocations in the grains. In Pb 1$-$xSb 2x/3Se solid solutions, cation vacancies are intentionally introduced, where after thermal annealing the vacancies can annihilate through a number of mechanisms creating the desired dislocations homogeneously distributed within the grains.more » This leads to a lattice thermal conductivity as low as 0.4Wm -1 K -1 and a high thermoelectric figure of merit, which can be explained by a dislocation scattering model. As a result, the vacancy engineering strategy used here should be equally applicable for solid solution thermoelectrics and provides a strategy for improving zT.« less

  3. Surgical hip dislocation for treatment of cam femoroacetabular impingement.

    PubMed

    Chaudhary, Milind M; Chaudhary, Ishani M; Vikas, K N; KoKo, Aung; Zaw, Than; Siddhartha, A

    2015-01-01

    Cam femoroacetabular impingement is caused by a misshapen femoral head with a reduced head neck offset, commonly in the anterolateral quadrant. Friction in flexion, adduction and internal rotation causes limitation of the hip movements and pain progressively leading to labral and chondral damage and osteoarthritis. Surgical hip dislocation described by Ganz permits full exposure of the hip without damaging its blood supply. An osteochondroplasty removes the bump at the femoral head neck junction to recreate the offset for impingement free movement. Sixteen patients underwent surgery with surgical hip dislocation for the treatment of cam femoroacetabular impingement by open osteochondroplasty over last 6 years. Eight patients suffered from sequelae of avascular necrosis (AVN). Three had a painful dysplastic hip. Two had sequelae of Perthes disease. Three had combined cam and pincer impingement caused by retroversion of acetabulum. All patients were operated by the trochanteric flip osteotomy with attachments of gluteus medius and vastus lateralis, dissection was between the piriformis and gluteus minimus preserving the external rotators. Z-shaped capsular incision and dislocation of the hip was done in external rotation. Three cases also had subtrochanteric osteotomy. Two cases of AVN also had an intraarticular femoral head reshaping osteotomy. Goals of treatment were achieved in all patients. No AVN was detected after a 6 month followup. There were no trochanteric nonunions. Hip range of motion improved in all and Harris hip score improved significantly in 15 of 16 cases. Mean alpha angle reduced from 86.13° (range 66°-108°) to 46.35° (range 39°-58°). Cam femoroacetabular Impingement causing pain and limitation of hip movements was treated by open osteochondroplasty after surgical hip dislocation. This reduced pain, improved hip motion and gave good to excellent results in the short term.

  4. [A new type sternoclavicular hook plate for unstable sternoclavicular joint dislocation and fracture].

    PubMed

    Zhang, Chuan-Yi; Lin, Lie; Liang, Jun-Bo; Wang, Bin; Chen, Guo-Fu; Chen, Hai-Xiao

    2016-11-25

    To evaluate the therapeutic effect of a new type sternoclavicular hook plate fixation in treating unstable sternoclavicular joint dislocation and fracture. From June 2011 to December 2013, 32 patients with sternoclavicular joint dislocation and fracture were treated with a new type sternoclavicular hook plate fixation, including 24 males and 8 females with an average age of 42 years ranging from 25 to 76 years;12 patients were anterior dislocation, 5 pations were posterior dislocation, 10 patients were internal extremity of clavicle fracture and 5 patients were sternoclavicular joint dislocation combined with fracture. The anterior fracture dislocation of the sternoclavicular joint adopted standard sternoclavicular joint hook plate, and the posterior dislocation was at the distal end of the hook of the steel plate, that is, the front part of the handle of the breast was added with a nut and a gasket to prevent the re-dislocation after operation. The results were evaluated according to Rockwood score. No complication happened in all patients. X-ray and CT showed that the dislocation and fracture of the sternoclavicular joint was well reduced and the plate was on right position. All patients were followed up for 6 to 24 months with an average of 10 months. At 6 to 3 months after operation, the fracture was healing without re-dislocation of the sternoclavicular joint, the medial end of the clavicle anatomical structure were restored, functional satisfaction, in which 9 patients with the swelling around sternoclavicular joint, but no pain and other symptoms. The total Rockwood score was 12.78±1.43; the results were excellent in 24 cases, good in 8 cases. The use of the new type of locking hook plate for the treatment of unstable fracture of the sternoclavicular joint, internal fixation is reliable, high security, easy to operate, to provide a reliable method for the treatment of such trauma.

  5. Effects of Wavelength and Defect Density on the Efficiency of (In,Ga)N-Based Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Pristovsek, Markus; Bao, An; Oliver, Rachel A.; Badcock, Tom; Ali, Muhammad; Shields, Andrew

    2017-06-01

    We measure the electroluminescence of light-emitting diodes (LEDs) on substrates with low dislocation densities (LDD) at 106 cm-2 and low 108 cm-2 , and compare them to LEDs on substrates with high dislocation densities (HDD) closer to 1010 cm-2 . The external quantum efficiencies (EQEs) are fitted using the A B C model with and without localization. The nonradiative-recombination (NR) coefficient A is constant for HDD LEDs, indicating that the NR is dominated by dislocations at all wavelengths. However, A strongly increases for LDD LEDs by a factor of 20 when increasing the emission wavelength from 440 to 540 nm. We attribute this to an increased density of point defects due to the lower growth temperatures used for longer wavelengths. The radiative recombination coefficient B follows the squared wave-function overlap for all samples. Using the observed coefficients, we calculate the peak efficiency as a function of the wavelength. For HDD LEDs the change of wave-function overlap (i.e., B ) is sufficient to reduce the EQE as observed, while for LDD LEDs also the NR coefficient A must increase to explain the observed EQEs. Thus, reducing NR is important to improving the EQEs of green LEDs, but this cannot be achieved solely by reducing the dislocation density: point defects must also be addressed.

  6. A rare complication of a unilateral vertebral artery occlusion, which resulted in a basilar emboli after a C5-C6 bifacet dislocation in a professional rugby player: case study.

    PubMed

    Davies, Simon R

    2011-03-01

    Vertebral artery damage after cervical fracture and especially cervical dislocations is a recognized phenomenon. The incidence of significant intracranial neurology after unilateral vertebral damage is extremely rare, and to our knowledge, no such injury has been sustained while playing sport. To describe a rare vascular complication of a bifacet C5-C6 dislocation. Case report and clinical discussion. We present a 28-year old white man who was a professional rugby player. He sustained a hyperflexion injury while playing scrum half in a recent league match, which resulted in a C5-C6 dislocation, diagnosed clinically and with a plain radiograph. The patient on admission had complete neurologic loss below C6. The patient underwent immediate computed tomography and magnetic resonance imaging (MRI) scans that revealed a 50% displacement of C5 on C6 with a complete unifacet dislocation and the other facet partially dislocated. The MRI revealed signal changes in the cord at the C5-C6 level and an intimal tear in the left vertebral artery. The decision was taken to reduce the dislocation when medically stable. A few hours after injury, after an episode of vomiting, the patient sustained a respiratory arrest owing to the embolization of a clot from the left vertebral artery into the basilar artery. Despite rapid embolectomy and subsequent permanent left vertebral artery occlusion, the patient sustained multiple infarcts in the cerebellar, thalamic, occipital, and pontine regions of the brain that eventually proved fatal. This case shows a rare complication of unilateral vertebral artery occlusion. Despite early identification of a basilar infarct and a successful embolectomy, intracranial infarction occurred. Although there is no guideline for the treatment of vertebral artery damage, early reduction and anticoagulation may reduce the risk of cerebral infarction. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Dislocation creation and void nucleation in FCC ductile metals under tensile loading: A general microscopic picture

    PubMed Central

    Pang, Wei-Wei; Zhang, Ping; Zhang, Guang-Cai; Xu, Ai-Guo; Zhao, Xian-Geng

    2014-01-01

    Numerous theoretical and experimental efforts have been paid to describe and understand the dislocation and void nucleation processes that are fundamental for dynamic fracture modeling of strained metals. To date an essential physical picture on the self-organized atomic collective motions during dislocation creation, as well as the essential mechanisms for the void nucleation obscured by the extreme diversity in structural configurations around the void nucleation core, is still severely lacking in literature. Here, we depict the origin of dislocation creation and void nucleation during uniaxial high strain rate tensile processes in face-centered-cubic (FCC) ductile metals. We find that the dislocations are created through three distinguished stages: (i) Flattened octahedral structures (FOSs) are randomly activated by thermal fluctuations; (ii) The double-layer defect clusters are formed by self-organized stacking of FOSs on the close-packed plane; (iii) The stacking faults are formed and the Shockley partial dislocations are created from the double-layer defect clusters. Whereas, the void nucleation is shown to follow a two-stage description. We demonstrate that our findings on the origin of dislocation creation and void nucleation are universal for a variety of FCC ductile metals with low stacking fault energies. PMID:25382029

  8. Arthroscopic Triple Labral Repair in an Adolescent.

    PubMed

    Cotter, Eric J; Frank, Rachel M; Trenhaile, Scott W

    2017-10-01

    Traumatic glenohumeral dislocations often result in significant injury to the anterior-inferior labrum, most commonly leading to recurrent anterior instability. While in skeletally immature patients, shoulder trauma more commonly results in fracture versus a true dislocation, shoulder instability does occur and can be difficult to manage in the setting of open physes. In any event, the goal of treatment is to reduce the risk of recurrence and allow full participation in activities, including sports. Arthroscopic stabilization has been shown to be an effective treatment option for young patients, with good return to sport rates; however, the vast majority of literature on shoulder instability in the youth patient population focuses on anterior instability. Concomitant lesions of the anterior, posterior, and superior labrum have been rarely described in youth athletes and present a formidable clinical challenge, particularly in skeletally immature patients. In this Technical Note, we describe the authors' preferred technique for arthroscopic repair of a traumatic triple labral tear, including anterior, posterior, and type IV SLAP components, in adolescent patients.

  9. Effect of microstructure on the coupled electromagnetic-thermo-mechanical response of cyclotrimethylenetrinitramine-estane energetic aggregates to infrared laser radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Judith A.; Zikry, M. A., E-mail: zikry@ncsu.edu

    2015-09-28

    The coupled electromagnetic (EM)-thermo-mechanical response of cyclotrimethylenetrinitramine-estane energetic aggregates under laser irradiation and high strain rate loads has been investigated for various aggregate sizes and binder volume fractions. The cyclotrimethylenetrinitramine (RDX) crystals are modeled with a dislocation density-based crystalline plasticity formulation and the estane binder is modeled with finite viscoelasticity through a nonlinear finite element approach that couples EM wave propagation with laser heat absorption, thermal conduction, and inelastic deformation. Material property and local behavior mismatch at the crystal-binder interfaces resulted in geometric scattering of the EM wave, electric field and laser heating localization, high stress gradients, dislocation density, andmore » crystalline shear slip accumulation. Viscous sliding in the binder was another energy dissipation mechanism that reduced stresses in aggregates with thicker binder ligaments and larger binder volume fractions. This investigation indicates the complex interactions between EM waves and mechanical behavior, for accurate predictions of laser irradiation of heterogeneous materials.« less

  10. Non-basal dislocations should be accounted for in simulating ice mass flow

    NASA Astrophysics Data System (ADS)

    Chauve, T.; Montagnat, M.; Piazolo, S.; Journaux, B.; Wheeler, J.; Barou, F.; Mainprice, D.; Tommasi, A.

    2017-09-01

    Prediction of ice mass flow and associated dynamics is pivotal at a time of climate change. Ice flow is dominantly accommodated by the motion of crystal defects - the dislocations. In the specific case of ice, their observation is not always accessible by means of the classical tools such as X-ray diffraction or transmission electron microscopy (TEM). Part of the dislocation population, the geometrically necessary dislocations (GNDs) can nevertheless be constrained using crystal orientation measurements via electron backscattering diffraction (EBSD) associated with appropriate analyses based on the Nye (1950) approach. The present study uses the Weighted Burgers Vectors, a reduced formulation of the Nye theory that enables the characterization of GNDs. Applied to ice, this method documents, for the first time, the presence of dislocations with non-basal [ c ] or < c + a > Burgers vectors. These [ c ] or < c + a > dislocations represent up to 35% of the GNDs observed in laboratory-deformed ice samples. Our findings offer a more complex and comprehensive picture of the key plasticity processes responsible for polycrystalline ice creep and provide better constraints on the constitutive mechanical laws implemented in ice sheet flow models used to predict the response of Earth ice masses to climate change.

  11. Cross-scale MD simulations of dynamic strength of tantalum

    NASA Astrophysics Data System (ADS)

    Bulatov, Vasily

    2017-06-01

    Dislocations are ubiquitous in metals where their motion presents the dominant and often the only mode of plastic response to straining. Over the last 25 years computational prediction of plastic response in metals has relied on Discrete Dislocation Dynamics (DDD) as the most fundamental method to account for collective dynamics of moving dislocations. Here we present first direct atomistic MD simulations of dislocation-mediated plasticity that are sufficiently large and long to compute plasticity response of single crystal tantalum while tracing the underlying dynamics of dislocations in all atomistic details. Where feasible, direct MD simulations sidestep DDD altogether thus reducing uncertainties of strength predictions to those of the interatomic potential. In the specific context of shock-induced material dynamics, the same MD models predict when, under what conditions and how dislocations interact and compete with other fundamental mechanisms of dynamic response, e.g. twinning, phase-transformations, fracture. In collaboration with: Luis Zepeda-Ruiz, Lawrence Livermore National Laboratory; Alexander Stukowski, Technische Universitat Darmstadt; Tomas Oppelstrup, Lawrence Livermore National Laboratory. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  12. High purith low defect FZ silicon

    NASA Technical Reports Server (NTRS)

    Kimura, H.; Robertson, G.

    1985-01-01

    The most common intrinsic defects in dislocation-free float zone (FZ) silicon crystals are the A- and B-type swirl defects. The mechanisms of their formation and annihilation have been extensively studied. Another type of defect in dislocation-free FZ crystals is referred to as a D-type defect. Concentrations of these defects can be minimized by optimizing the growth conditions, and the residual swirls can be reduced by the post-growth extrinsic gettering process. Czochralski (Cz) silicon wafers are known to exhibit higher resistance to slip and warpage due to thermal stress than do FZ wafers. The Cz crystals containing dislocations are more resistant to dislocation movement than dislocated FZ crystals because of the locking of dislocations by oxygen atoms present in the Cz crystals. Recently a transverse magnetic field was applied during the FZ growth of extrinsic silicon. Resultant flow patterns, as revealed by striation etching and spreading resistance in Ga-doped silicon crystals, indicate strong effects of the transverse magnetic field on the circulation within the melt. At fields of 5500 gauss, the fluid flow in the melt volume is so altered as to affect the morphology of the growing crystal.

  13. Effects of solutes on dislocation nucleation from grain boundaries

    DOE PAGES

    Borovikov, Valery; Mendelev, Mikhail I.; King, Alexander H.

    2016-12-27

    When grain sizes are reduced to the nanoscale, grain boundaries (GB) become the dominant sources of the dislocations that enable plastic deformation. Here, we present the first molecular dynamics (MD) study of the effect of substitutional solutes on the dislocation nucleation process from GBs during uniaxial tensile deformation. A simple bi-crystal geometry is utilized in which the nucleation and propagation of dislocations away from a GB is the only active mechanism of plastic deformation. Solutes with atomic radii both larger and smaller than the solvent atomic radius were considered. Although the segregation sites are different for the two cases, bothmore » produce increases in the stress required to nucleate a dislocation. MD simulations at room temperature revealed that this increase in the nucleation stress is associated with changes of the GB structure at the emission site caused by dislocation emission, leading to increases in the heats of segregation of the solute atoms, which cannot diffuse to lower-energy sites on the timescale of the nucleation event. These results contribute directly to understanding the strength of nanocrystalline materials, and suggest suitable directions for nanocrystalline alloy design leading toward structural applications.« less

  14. On Roesler and Arzt's new model of creep in dispersion strengthened alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orlova, A.; Cadek, J.

    1992-08-01

    The model of creep in dispersion (noncoherent particle) strengthened alloys assuming thermally activated detachment of dislocations from particles to be the rate controlling process, recently presented by Roesler and Arzt (1990), is correlated with some available creep and structure data for aluminum alloys strengthened by Al4C3 and Al2O3 particles. It is shown that though the model requires applied stress dependent apparent activation energy of creep, the stress dependence of creep rate can be satisfactorily accounted for even when this activation energy is stress independent, admitting a strong stress dependence of the preexponential structure factor, i.e., of the mobile dislocation density.more » On the other hand, the model is not able to account for the temperature dependence of creep rate if it is significantly stronger than that of the coefficient of lattice diffusion, as is usually the case with alloys strengthened by noncoherent particles in which the attractive dislocation/particle interaction can be expected. 14 refs.« less

  15. Talocrural Dislocation With Associated Weber Type C Fibular Fracture in a Collegiate Football Player: A Case Report

    PubMed Central

    Ricci, R Daniel; Cerullo, James; Blanc, Robert O; McMahon, Patrick J; Buoncritiani, Anthony M; Stone, David A; Fu, Freddie H

    2008-01-01

    Objective: To present the case of a talocrural dislocation with a Weber type C fibular fracture in a National Collegiate Athletic Association Division I football athlete. Background: The athlete, while attempting to make a tackle during a game, collided with an opponent, who in turn stepped on the lateral aspect of the athlete's ankle, resulting in forced ankle eversion and external rotation. On-field evaluation showed a laterally displaced talocrural dislocation. Immediate reduction was performed in the athletic training room to maintain skin integrity. Post-reduction radiographs revealed a Weber type C fibular fracture and increased medial joint clear space. A below-knee, fiberglass splint was applied to stabilize the ankle joint complex. Differential Diagnosis: Subtalar dislocation, Maisonneuve fracture, malleolar fracture, deltoid ligament rupture, syndesmosis disruption. Treatment: The sports medicine staff immediately splinted and transported the athlete to the athletic training room to reduce the dislocation. The athlete then underwent an open reduction and internal fixation procedure to stabilize the injury: 2 syndesmosis screws and a fibular plate were placed to keep the ankle joint in an anatomically reduced position. With the guidance of the athletic training staff, the athlete underwent an accelerated physical rehabilitation protocol in an effort to return to sport as quickly and safely as possible. Uniqueness: Most talocrural dislocations and associated Weber type C fibular fractures are due to motor vehicle accidents or falls. We are the first to describe this injury in a Division I football player and to present a general rehabilitation protocol for a high-level athlete. Conclusions: Sports medicine practitioners must recognize that this injury can occur in the athletic environment. Prompt reduction, early surgical intervention, sufficient resources, and an accelerated rehabilitation protocol all contributed to a successful outcome in the patient. PMID:18523569

  16. Defect reduction in Si-doped Al{sub 0.45}Ga{sub 0.55}N films by SiN{sub x} interlayer method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yang; Chen, Shengchang; Kong, Man

    2014-01-28

    The dislocation density in AlGaN epitaxial layers with Al content as high as 45% grown on sapphire substrates has been effectively reduced by introducing an in-situ deposited SiN{sub x} nanomask layer in this study. By closely monitoring the evolution of numerous material properties, such as surface morphology, dislocation density, photoluminescence, strain states, and electron mobility of the Si-Al{sub 0.45}Ga{sub 0.55}N layers as the functions of SiN{sub x} interlayer growth time, the surface coverage fraction of SiN{sub x} is found to be a crucial factor determining the strain states and dislocation density. The dependence of the strain states and the dislocationmore » density on the surface coverage fraction of SiN{sub x} nanomask supports the very different growth models of Al-rich AlGaN on SiN{sub x} interlayer due to the reduced nucleation selectivity compared with the GaN counterpart. Compared with GaN, which can only nucleate at open pores of SiN{sub x} nanomask, Al-rich AlGaN can simultaneously nucleate at both open pores and SiN{sub x} covered areas. Dislocations will annihilate at the openings due to the 3D growth initiated on the opening area, while 2D growth mode is preserved on SiN{sub x} and the threading dislocations are also preserved. During the following growth process, lateral overgrowth will proceed from the Al{sub 0.45}Ga{sub 0.55}N islands on the openings towards the regions covered by SiN{sub x}, relaxing the compressive strain and bending the dislocations at the same time.« less

  17. Method of inhibiting dislocation generation in silicon dendritic webs

    DOEpatents

    Spitznagel, John A.; Seidensticker, Raymond G.; McHugh, James P.

    1990-11-20

    A method of tailoring the heat balance of the outer edge of the dendrites adjacent the meniscus to produce thinner, smoother dendrites, which have substantially less dislocation sources contiguous with the dendrites, by changing the view factor to reduce radiation cooling or by irradiating the dendrites with light from a quartz lamp or a laser to raise the temperature of the dendrites.

  18. An EBIC study of dislocation networks in unprocessed and unprocessed web silicon ribbon. [for solar cells

    NASA Technical Reports Server (NTRS)

    Fieldler, F. S.; Ast, D.

    1982-01-01

    Experimental techniques for the preparation of electron beam induced current samples of Web-dentritic silicon are described. Both as grown and processed material were investigated. High density dislocation networks were found close to twin planes in the bulk of the material. The electrical activity of these networks is reduced in processed material.

  19. Experience of the posterior lip augmentation device in a regional hip arthroplasty unit as a treatment for recurrent dislocation.

    PubMed

    Hoggett, L; Cross, C; Helm, T

    2017-12-01

    Dislocation after total hip arthroplasty (THA) remains a significant complication of the procedure and is the third leading cause for revision THA. One technique for treatment of this complication is the use of the posterior lip augmentation device (PLAD). We describe our experience using the PLAD including complication rates. A retrospective review of 55 PLADs (54 patients) was carried out following identification from electronic theatre records. Basic patient demographics, operative records and radiographs were collected and reviewed and data was analysed using Microsoft Excel. Failure of the PLAD was defined as further operative intervention after PLAD insertion and included: dislocation, implant breakage, infection and revision of the THA for loosening of either component. 55 PLADs were implanted in 54 patients with an average age of 77 years. There was a significant preponderance of females and a variety of surgical approaches had been used for the original hip replacement, including trochanteric osteotomy, posterior and antero-lateral. 9 (16%) patients had recurrent dislocations,1 (2%) failed secondary to screw breakage, 3 (5%) had and infection requiring intervention and 2 (4%) underwent further revision for aseptic loosening of the femoral component. The overall failure rate was 25% with 14 patients requiring intervention post PLAD. Our results are inferior to other published results and indicate that the PLAD should be used with caution for recurrent dislocations of the Charnley hip replacement.

  20. Dislocation based controlling of kinematic hardening contribution to simulate primary and secondary stages of uniaxial ratcheting

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, S.; Dhar, S.; Acharyya, S. K.

    2017-07-01

    The primary and secondary stages of the uniaxial ratcheting curve for the C-Mn steel SA333 have been investigated. Stress controlled uniaxial ratcheting experiments were conducted with different mean stresses and stress amplitudes to obtain curves showing the evolution of ratcheting strain with number of cycles. In stage-I of the ratcheting curve, a large accumulation of ratcheting strain occurs, but at a decreasing rate. In contrast, in stage-II a smaller accumulation of ratcheting strain is found and the ratcheting rate becomes almost constant. Transmission electron microscope observations reveal that no specific dislocation structures are developed during the early stages of ratcheting. Rather, compared with the case of low cycle fatigue, it is observed that sub-cell formation is delayed in the case of ratcheting. The increase in dislocation density as a result of the ratcheting strain is obtained using the Orowan equation. The ratcheting strain is obtained from the shift of the plastic strain memory surface. The dislocation rearrangement is incorporated in a functional form of dislocation density, which is used to calibrate the parameters of a kinematic hardening law. The observations are formulated in a material model, plugged into the ABAQUS finite element (FE) platform as a user material subroutine. Finally the FE-simulated ratcheting curves are compared with the experimental curves.

  1. [Tripolar cups].

    PubMed

    Fink, B

    2015-04-01

    Tripolar cups can be separated into constrained and unconstrained dual-mobility cups. The latter show better survival and revision rates. The main problem is the polyethylene wear. Therefore modern types of polyethylene are used in these cups. The indications for dual-mobility cups are recurrent dislocation and situations where the risk of dislocation is increased. Georg Thieme Verlag KG Stuttgart · New York.

  2. The size effects upon shock plastic compression of nanocrystals

    NASA Astrophysics Data System (ADS)

    Malygin, G. A.; Klyavin, O. V.

    2017-10-01

    For the first time a theoretical analysis of scale effects upon the shock plastic compression of nanocrystals is implemented in the context of a dislocation kinetic approach based on the equations and relationships of dislocation kinetics. The yield point of crystals τy is established as a quantitative function of their cross-section size D and the rate of shock deformation as τy ɛ2/3 D. This dependence is valid in the case of elastic stress relaxation on account of emission of dislocations from single-pole Frank-Read sources near the crystal surface.

  3. Microstructural investigation of plastically deformed Ti{sub 20}Zr{sub 20}Hf{sub 20}Nb{sub 20}Ta{sub 20} high entropy alloy by X-ray diffraction and transmission electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dirras, G., E-mail: dirras@univ-paris13.fr; Gubicza, J.; Heczel, A.

    2015-10-15

    The microstructure evolution in body-centered cubic (bcc) Ti{sub 20}Zr{sub 20}Hf{sub 20}Nb{sub 20}Ta{sub 20} high entropy alloy during quasi-static compression test was studied by X-ray line profile analysis (XLPA) and transmission electron microscopy (TEM). The average lattice constant and other important parameters of the microstructure such as the mean crystallite size, the dislocation density and the edge/screw character of dislocations were determined by XLPA. The elastic anisotropy factor required for XLPA procedure was determined by nanoindentation. XLPA shows that the crystallite size decreased while the dislocation density increased with strain during compression, and their values reached about 39 nm and 15more » × 10{sup 14} m{sup −2}, respectively, at a plastic strain of ~ 20%. It was revealed that with increasing strain the dislocation character became more screw. This can be explained by the reduced mobility of screw dislocations compared to edge dislocations in bcc structures. These observations are in line with TEM investigations. The development of dislocation density during compression was related to the yield strength evolution. - Highlights: • Ti{sub 20}Zr{sub 20}Hf{sub 20}Nb{sub 20}Ta{sub 20} high entropy alloy was processed by arc-melting. • The mechanical was evaluated by RT compression test. • The microstructure evolution was studied by XLPA and TEM. • With increasing strain the dislocation character became more screw. • The yield strength was related to the development of the dislocation density.« less

  4. GaAsP/InGaP HBTs grown epitaxially on Si substrates: Effect of dislocation density on DC current gain

    NASA Astrophysics Data System (ADS)

    Heidelberger, Christopher; Fitzgerald, Eugene A.

    2018-04-01

    Heterojunction bipolar transistors (HBTs) with GaAs0.825P0.175 bases and collectors and In0.40Ga0.60P emitters were integrated monolithically onto Si substrates. The HBT structures were grown epitaxially on Si via metalorganic chemical vapor deposition, using SiGe compositionally graded buffers to accommodate the lattice mismatch while maintaining threading dislocation density at an acceptable level (˜3 × 106 cm-2). GaAs0.825P0.175 is used as an active material instead of GaAs because of its higher bandgap (increased breakdown voltage) and closer lattice constant to Si. Misfit dislocation density in the active device layers, measured by electron-beam-induced current, was reduced by making iterative changes to the epitaxial structure. This optimized process culminated in a GaAs0.825P0.175/In0.40Ga0.60P HBT grown on Si with a DC current gain of 156. By considering the various GaAsP/InGaP HBTs grown on Si substrates alongside several control devices grown on GaAs substrates, a wide range of threading dislocation densities and misfit dislocation densities in the active layers could be correlated with HBT current gain. The effect of threading dislocations on current gain was moderated by the reduction in minority carrier lifetime in the base region, in agreement with existing models for GaAs light-emitting diodes and photovoltaic cells. Current gain was shown to be extremely sensitive to misfit dislocations in the active layers of the HBT—much more sensitive than to threading dislocations. We develop a model for this relationship where increased base current is mediated by Fermi level pinning near misfit dislocations.

  5. Dislocation and Structural Studies at Metal-Metallic Glass Interface at Low Temperature

    NASA Astrophysics Data System (ADS)

    Gupta, Pradeep; Yedla, Natraj

    2017-12-01

    In this paper, molecular dynamics (MD) simulation deformation studies on the Al (metal)-Cu50Zr50 (metallic glass) model interface is carried out based on cohesive zone model. The interface is subjected to mode-I loading at a strain rate of 109 s-1 and temperature of 100 K. The dislocations reactions and evolution of dislocation densities during the deformation have been investigated. Atomic interactions between Al, Cu and Zr atoms are modeled using EAM (embedded atom method) potential, and a timestep of 0.002 ps is used for performing the MD simulations. A circular crack and rectangular notch are introduced at the interface to investigate the effect on the deformation behavior and fracture. Further, scale size effect is also investigated. The structural changes and evolution of dislocation density are also examined. It is found that the dominant deformation mechanism is by Shockley partial dislocation nucleation. Amorphization is observed in the Al regions close to the interface and occurs at a lower strain in the presence of a crack. The total dislocation density is found to be maximum after the first yield in both the perfect and defect interface models and is highest in the case of perfect interface with a density of 6.31 × 1017 m-2. In the perfect and circular crack defect interface models, it is observed that the fraction of Shockley partial dislocation density decreases, whereas that of strain rod dislocations increases with increase in strain.

  6. Controversies in the Management of the First Time Shoulder Dislocation

    PubMed Central

    Avila Lafuente, José Luis; Moros Marco, Santos; García Pequerul, José Manuel

    2017-01-01

    Background: Traditionally, initial management of first anterior shoulder dislocations consists of reduction of the glenohumeral joint followed by a period of immobilization and subsequent physical therapy to recover shoulder range of motion and strength. This traditional approach in management is now controversial due to the high rate of recurrence. The aim of this paper is to review and discuss the literature about the global management of patients presenting with first-time traumatic anterior glenohumeral dislocation, analyzing the factors that affect shoulder instability after the first episode of dislocation. Methods: Scientific publications about the management of first-time shoulder dislocations are reviewed. Pubmed is used for that and no limit in the year of publication are stablished. These papers and their conclusions are discussed. Results: Younger patients, patient´s activities and the kind of injury are the most important factors related to the shoulder instability after a first time traumatic dislocation. Authors that recommend surgical treatment after the first episode of dislocation argue that the possibilities of recurrence are high and therefore surgery should be performed before its occurrence. Other authors, however, argue that surgical treatment is demanding, and keep in mind that complications, such as recurrence, stiffness and pain after surgery, are still present. Conclusion: Currently, there is still no consensus in the literature with regard to the management of first episode of shoulder dislocation. It is necessary to analyze carefully every individual case to manage them more or less aggressive to obtain the best result in our practice. PMID:29430264

  7. Three-stage nucleation and growth of Ge self-assembled quantum dots grown on partially relaxed SiGe buffer layers

    NASA Astrophysics Data System (ADS)

    Kim, H. J.; Zhao, Z. M.; Xie, Y. H.

    2003-11-01

    Three-stage nucleation and growth of Ge self-assembled quantum dots (SAQDs) on a relaxed SiGe buffer layer has been studied. Plastic relaxation of the SiGe buffer layer is associated with a network of buried 60° dislocations leading to an undulating strain field. As a result, the surface possesses three different types of sites for the nucleation and growth of Ge SAQDs: over the intersection of two perpendicular buried dislocations, over a single dislocation line, and in the region beyond one diffusion length away from any dislocation. Ge SAQDs are observed to nucleate exclusively over the dislocation intersections first, followed by over single dislocation lines, and finally in the region far away from dislocations. By increasing the Ge coverage at a slow rate, the prenucleation stage at the various sites is observed. It appears that the varying strain field has a significant effect on both the diffusion of Ge adatoms before SAQD nucleation, as well as the shape evolution of the SAQDs after they form. Moreover, two distinctly different self-assembly mechanisms are observed at different sites. There exist denuded zones free of Ge SAQDs adjacent to dislocation lines. The width of the denuded zone can be used to make direct determination of the Ge adatom diffusion lengths. The partially relaxed substrate provides a useful experimental vehicle for the in-depth understanding of the formation mechanism of SAQDs grown epitaxially in the Stranski-Krastanov growth mode.

  8. K-wire and tension band wire fixation in treating sternoclavicular joint dislocation.

    PubMed

    Chen, Qing-yu; Cheng, Shao-wen; Wang, Wei; Lin, Zhong-qin; Zhang, Wei; Kou, Dong-quan; Shen, Yue; Ying, Xiao-zhou; Cheng, Xiao-jie; Lv, Chuan-zhu; Peng, Lei

    2011-02-01

    To evaluate the feasibility and therapeutic effect of treating sternoclavicular joint dislocation by K-wire and tension band wire fixation, and to improve the safety and stability of this technique. This study consisted of 9 cases, 6 males and 3 females with the mean age of 25 years (range, 9-62 years). The causes were traffic accident in 7 cases, falling in 1 case and fight in 1 case. The duration from injury to operation was 2 hours to 7 days. There were 5 left dislocations and 4 right dislocations; 8 anterior dislocations and 1 posterior dislocation, including one combined with left scapular fracture and one with left olecranon fracture. Open reduction and internal fixation using K-wires and tension band wires were performed to treat dislocations. All patients were followed up for 6 to 24 months, 10 months on average. According to Rockwood's rating scale on postoperative sternoclavicular joint, 8 cases achieved excellent outcomes with an average score of 13.88, and the rest case achieved a good outcome with the score of 12. Anatomical reduction was obtained in all cases. There were no such postoperative complications as severe infection, injury to blood vessel and nerve, failure of fixation, etc. Patients were all satisfied with the anatomical reduction and functional recovery. The technique of K-wire and tension band wire fixation is safe, simple, effective, less invasive and has been successfully used in orthopedic surgery. It is effective in treating sternoclavicular joint dislocation though it has some disadvantages.

  9. Wear versus Thickness and Other Features of 5-Mrad Crosslinked UHMWPE Acetabular Liners

    PubMed Central

    Shen, Fu-Wen; Lu, Zhen

    2010-01-01

    Background The low wear rates of crosslinked polyethylenes provide the potential to use larger diameters to resist dislocation. However, this requires the use of thinner liners in the acetabular component, with concern that higher contact stresses will increase wear, offsetting the benefits of the crosslinking. Questions/purposes We asked the following questions: Is the wear of conventional and crosslinked polyethylene liners affected by ball diameter, rigidity of backing, and liner thickness? Are the stresses in the liner affected by thickness? Methods Wear rates were measured in a hip simulator and stresses were calculated using finite element modeling. Results Without crosslinking, the wear rate was 4% to 10% greater with a 36-mm diameter than a 28-mm diameter. With crosslinking, wear was 9% lower with a 36-mm diameter without metal backing and 4% greater with metal backing. Reducing the thickness from 6 mm to 3 mm increased the contact stress by 46%, but the wear rate decreased by 19%. Conclusions The reduction in wear with 5 Mrad of crosslinking was not offset by increasing the diameter from 28 mm to 36 mm or by using a liner as thin as 3 mm. Clinical Relevance The results indicate, for a properly positioned 5-Mrad crosslinked acetabular component and within the range of dimensions evaluated, neither wear nor stresses in the polyethylene are limiting factors in the use of larger-diameter, thinner cups to resist dislocation. PMID:20848244

  10. What is the chance that a patella dislocation will happen a second time: update on the natural history of a first time patella dislocation in the adolescent.

    PubMed

    Seitlinger, Gerd; Ladenhauf, Hannah N; Wierer, Guido

    2018-02-01

    Patellar instability occurs mainly in young patients and shows a high incidence of concomitant cartilage injuries. Recently there has been a strong attempt to identify risk factors and enhance imaging techniques to detect patients with an increased risk for recurrent patella dislocation.We describe current findings on factors associated with recurrent patella dislocation in the adolescent. Trochlear dysplasia, patellar height, patellar tilt, tibial tuberosity-trochlear groove distance, skeletal maturity, and history of contralateral patellar dislocation are well known significant risk factors for recurrence in adolescent patients. Predictive models to calculate risk of recurrence have been reported recently. The Patellar Instability Severity Score was the first to include demographic and anatomic factors, which is of major value when counseling patients and relatives. Several classification systems to predict the rate of recurrence after primary patella dislocation have been presented over the last years. Anatomic risk factors such as skeletal immaturity, trochlear morphology, patellar height, patellar tilt, and elevated tibial tuberosity-trochlear groove distance have been investigated. However, there is still a lack of knowledge as to how single risk factors or their interaction with each other may contribute.

  11. The Stress-Dependent Activation Parameters for Dislocation Nucleation in Molybdenum Nanoparticles.

    PubMed

    Chachamovitz, Doron; Mordehai, Dan

    2018-03-02

    Many specimens at the nanoscale are pristine of dislocations, line defects which are the main carriers of plasticity. As a result, they exhibit extremely high strengths which are dislocation-nucleation controlled. Since nucleation is a thermally activated process, it is essential to quantify the stress-dependent activation parameters for dislocation nucleation in order to study the strength of specimens at the nanoscale and its distribution. In this work, we calculate the strength of Mo nanoparticles in molecular dynamics simulations and we propose a method to extract the activation free-energy barrier for dislocation nucleation from the distribution of the results. We show that by deforming the nanoparticles at a constant strain rate, their strength distribution can be approximated by a normal distribution, from which the activation volumes at different stresses and temperatures are calculated directly. We found that the activation energy dependency on the stress near spontaneous nucleation conditions obeys a power-law with a critical exponent of approximately 3/2, which is in accordance with critical exponents found in other thermally activated processes but never for dislocation nucleation. Additionally, significant activation entropies were calculated. Finally, we generalize the approach to calculate the activation parameters for other driving-force dependent thermally activated processes.

  12. Investigation of primary static recrystallization in a NiTiFe shape memory alloy subjected to cold canning compression using the coupling crystal plasticity finite element method with cellular automaton

    NASA Astrophysics Data System (ADS)

    Zhang, Yanqiu; Jiang, Shuyong; Hu, Li; Zhao, Yanan; Sun, Dong

    2017-10-01

    The behavior of primary static recrystallization (SRX) in a NiTiFe shape memory alloy (SMA) subjected to cold canning compression was investigated using the coupling crystal plasticity finite element method (CPFEM) with the cellular automaton (CA) method, where the distribution of the dislocation density and the deformed grain topology quantified by CPFEM were used as the input for the subsequent SRX simulation performed using the CA method. The simulation results were confirmed by the experimental ones in terms of microstructures, average grain size and recrystallization fraction, which indicates that the proposed coupling method is well able to describe the SRX behavior of the NiTiFe SMA. The results show that the dislocation density exhibits an inhomogeneous distribution in the deformed sample and the recrystallization nuclei mainly concentrate on zones where the dislocation density is relatively higher. An increase in the compressive deformation degree leads to an increase in nucleation rate and a decrease in grain boundary spaces in the compression direction, which reduces the growth spaces for the SRX nuclei and impedes their further growth. In addition, both the mechanisms of local grain refinement in the incomplete SRX and the influence of compressive deformation degree on the grain size of SRX were vividly illustrated by the corresponding physical models.

  13. Microstructural changes in Beta-silicon nitride grains upon crystallizing the grain-boundary glass

    NASA Technical Reports Server (NTRS)

    Lee, William E.; Hilmas, Gregory E.; Lange, F. F. (Editor)

    1991-01-01

    Crystallizing the grain boundary glass of a liquid phase sintered Si3N4 ceramic for 2 h or less at 1500 C led to formation of gamma Y2Si2O7. After 5 h at 1500 C, the gamma Y2Si2O7 had transformed to beta Y2Si2O7 with a concurrent dramatic increase in dislocation density within beta Si3N4 grains. Reasons for the increased dislocation density is discussed. Annealing for 20 h at 1500 C reduced dislocation densities to the levels found in as-sintered materials.

  14. Homoepitaxial "Web Growth" of SiC to Terminate C-Axis Screw Dislocations and Enlarge Step-Free Surfaces

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Powell, J. Anthony; Trunek, Andrew; Spry, David; Beheim, Glenn M.; Benavage, Emye; Abel, Phillip; Vetter, William M.; Dudley, Michael

    2001-01-01

    Homoepitaxial CVD growth of thin lateral cantilevers emanating from the edges of mesa patterns dry-etched into on-axis commercial 4H-SiC substrates prior to growth is reported. Cantilevers on the order of a micrometer thick extending tens of micrometers from the edge of a mesa have been grown. The termination of vertically propagating screw dislocations, including a micropipe, that are overgrown by the cantilevers has been demonstrated, in large part because the crystal structure of the cantilevers is established laterally from the mesa sidewalls. This technique could help reduce performance-degrading dislocations in SiC electrical devices.

  15. Atomic-scale studies on the effect of boundary coherency on stability in twinned Cu

    NASA Astrophysics Data System (ADS)

    Niu, Rongmei; Han, Ke; Su, Yi-Feng; Salters, Vincent J.

    2014-01-01

    The stored energy and hardness of nanotwinned (NT) Cu are related to interaction between dislocations and {111}-twin boundaries (TBs) studied at atomic scales by high-angle annular dark-field scanning transmission electron microscope. Lack of mobile dislocations at coherent TBs (CTBs) provides as-deposited NT Cu a rare combination of stability and hardness. The introduction of numerous incoherent TBs (ITBs) reduces both the stability and hardness. While storing more energy in their ITBs than in the CTBs, deformed NT Cu also exhibits high dislocation density and TB mobility and therefore has increased the driving force for recovery, coarsening, and recrystallization.

  16. Anomalous elastic response of silicon to uniaxial shock compression on nanosecond time scales.

    PubMed

    Loveridge-Smith, A; Allen, A; Belak, J; Boehly, T; Hauer, A; Holian, B; Kalantar, D; Kyrala, G; Lee, R W; Lomdahl, P; Meyers, M A; Paisley, D; Pollaine, S; Remington, B; Swift, D C; Weber, S; Wark, J S

    2001-03-12

    We have used x-ray diffraction with subnanosecond temporal resolution to measure the lattice parameters of orthogonal planes in shock compressed single crystals of silicon (Si) and copper (Cu). Despite uniaxial compression along the (400) direction of Si reducing the lattice spacing by nearly 11%, no observable changes occur in planes with normals orthogonal to the shock propagation direction. In contrast, shocked Cu shows prompt hydrostaticlike compression. These results are consistent with simple estimates of plastic strain rates based on dislocation velocity data.

  17. Results of Operative and Nonoperative Treatment of Rockwood Types III and V Acromioclavicular Joint Dislocation

    PubMed Central

    Joukainen, Antti; Kröger, Heikki; Niemitukia, Lea; Mäkelä, E. Antero; Väätäinen, Urho

    2014-01-01

    Background: The optimal treatment of acute, complete dislocation of the acromioclavicular joint (ACJ) is still unresolved. Purpose: To determine the difference between operative and nonoperative treatment in acute Rockwood types III and V ACJ dislocation. Study Design: Randomized controlled trial; Level of evidence, 2. Methods: In the operative treatment group, the ACJ was reduced and fixed with 2 transarticular Kirschner wires and ACJ ligament suturing. The Kirschner wires were extracted after 6 weeks. Nonoperatively treated patients received a reduction splint for 4 weeks. At the 18- to 20-year follow-up, the Constant, University of California at Los Angeles Shoulder Rating Scale (UCLA), Larsen, and Simple Shoulder Test (SST) scores were obtained, and clinical and radiographic examinations of both shoulders were performed. Results: Twenty-five of 35 potential patients were examined at the 18- to 20-year follow-up. There were 11 patients with Rockwood type III and 14 with type V dislocations. Delayed surgical treatment for ACJ was used in 2 patients during follow-up: 1 in the operatively treated group and 1 in the nonoperatively treated group. Clinically, ACJs were statistically significantly less prominent or unstable in the operative group than in the nonoperative group (normal/prominent/unstable: 9/4/3 and 0/6/3, respectively; P = .02) and in the operative type III (P = .03) but not type V dislocation groups. In operatively and nonoperatively treated patients, the mean Constant scores were 83 and 85, UCLA scores 25 and 27, Larsen scores 11 and 11, and SST scores 11 and 12 at follow-up, respectively. There were no statistically significant differences in type III and type V dislocations. In the radiographic analysis, the ACJ was wider in the nonoperative than the operative group (8.3 vs 3.4 mm; P = .004), and in the type V dislocations (nonoperative vs operative: 8.5 vs 2.4 mm; P = .007). There was no statistically significant difference between study groups in the elevation of the lateral end of the clavicle. Both groups showed equal levels of radiologic signs of ACJ osteoarthritis and calcification of the coracoclavicular ligaments. Conclusion: Nonoperative treatment was shown to produce more prominent or unstable and radiographically wider ACJs than was operative treatment, but clinical results were equally good in the study groups at 18- to 20-year follow-up. Both treatment methods showed statistically significant radiographic elevations of the lateral clavicle when compared with a noninjured ACJ. PMID:26535287

  18. Repeated posterior dislocation of total hip arthroplasty after spinal corrective long fusion with pelvic fixation.

    PubMed

    Furuhashi, Hiroki; Togawa, Daisuke; Koyama, Hiroshi; Hoshino, Hironobu; Yasuda, Tatsuya; Matsuyama, Yukihiro

    2017-05-01

    Several reports have indicated that anterior dislocation of total hip arthroplasty (THA) can be caused by spinal degenerative changes with excessive pelvic retroversion. However, no reports have indicated that posterior dislocation can be caused by fixed pelvic anteversion after corrective spine surgery. We describe a rare case experiencing repeated posterior THA dislocation that occurred at 5 months after corrective spinal long fusion with pelvic fixation. A 64-year-old woman had undergone bilateral THA at 13 years before presenting to our institution. She had been diagnosed with kyphoscoliosis and underwent three subsequent spinal surgeries after the THA. We finally performed spinal corrective long fusion from T5 to ilium with pelvic fixation (with iliac screws). Five months later, she experienced severe hip pain when she tried to stand up from the toilet, and was unable to move, due to posterior THA dislocation. Therefore, we performed closed reduction under sedation, and her left hip was easily reduced. After the reduction, she started to walk with a hip abduction brace. However, she had experienced 5 subsequent dislocations. Based on our findings and previous reports, we have hypothesized that posterior dislocation could be occurred after spinal corrective long fusion with pelvic fixation due to three mechanisms: (1) a change in the THA cup alignment before and after spinal corrective long fusion surgery, (2) decreased and fixed pelvic posterior tilt in the sitting position, or (3) the trunk's forward tilting during standing-up motion after spinopelvic fixation. Spinal long fusion with pelvic fixation could be a risk factor for posterior THA dislocation.

  19. A Rare Case of Massive Rotator Cuff Tear and Biceps Tendon Rupture with Posterior Shoulder Dislocation in a Young Adult - Surgical Decision-making and Outcome

    PubMed Central

    Soon, En Loong; Razak, Hamid Rahmatullah Bin Abd; Tan, Andrew Hwee Chye

    2017-01-01

    Introduction: Massive rotator cuff tears (RCTs) in the context of shoulder dislocations are relatively uncommon in the young adult (<40 years) and if reported are more commonly described in association with acute traumatic anterior glenohumeral dislocations. They have rarely been described with posterior dislocations, regardless of patient age. This is the 1st case reported in the context of posterior dislocations, where a triad of biceps tendon rupture, posterior dislocation, and RCTs was observed during surgery. It provides an important reminder to readers about certain injuries commonly overlooked during the assessment of an acute traumatic shoulder. Case Report: We report an atypical case of a massive RCT involving a 34-year-old Asian male who landed on his outstretched hand after falling off a bicycle. A tear involving the supraspinatus and subscapularis was visualized during surgery, along with long head of biceps (LHB) tendon rupture. This was after an initial failure to achieve closed reduction of the posteriorly dislocated left shoulder. Conclusion: It is easy to miss the posterior instability, the associated RCTs or the biceps tendon injuries. Biceps tendon rupture should be a consideration when one is unable to reduce a posteriorly dislocated shoulder. The interposed torn LHB tendon trapped within the glenohumeral joint was the likely physical block in the initial failure to achieve closed reduction. With timely diagnosis, prudent physical examination, early imaging and surgery, and excellent results can potentially be achieved to return a young patient to full functionality. PMID:28819610

  20. Effects of plasma hydrogenation on trapping properties of dislocations in heteroepitaxial InP/GaAs

    NASA Technical Reports Server (NTRS)

    Ringel, S. A.; Chatterjee, B.

    1994-01-01

    In previous work, we have demonstrated the effectiveness of a post-growth hydrogen plasma treatment for passivating the electrical activity of dislocations in metalorganic chemical vapor deposition (MOCVD) grown InP on GaAs substrates by a more than two order of magnitude reduction in deep level concentration and an improvement in reverse bias leakage current by a factor of approximately 20. These results make plasma hydrogenation an extremely promising technique for achieving high efficiency large area and light weight heteroepitaxial InP solar cells for space applications. In this work we investigate the carrier trapping process by dislocations in heteroepitaxial InP/GaAs and the role of hydrogen passivation on this process. It is shown that the charge trapping kinetics of dislocations after hydrogen passivation are significantly altered, approaching point defect-like behavior consistent with a transformation from a high concentration of dislocation-related defect bands within the InP bandgap to a low concentration of individual dislocation related deep levels, before and after passivation. It is further shown that the 'apparent' activation energies of dislocation related deep levels, before and after passivation, reduce by approximately 70 meV as DLTS fill pulse times are increased from 1 microsecond to 1 millisecond. A model is proposed which explains these effects based on a reduction of Coulombic interaction between individual core sites along the dislocation cores by hydrogen incorporation. Knowledge of the trapping properties in these specific structures is important to develop optimum, low loss heteroepitaxial InP cells.

  1. Management of acute anterior shoulder dislocation.

    PubMed

    Dala-Ali, Benan; Penna, Marta; McConnell, Jamie; Vanhegan, Ivor; Cobiella, Carlos

    2014-08-01

    Shoulder dislocation is the most common large joint dislocation in the body. Recent advances in radiological imaging and shoulder surgery have shown the potential dangers of traditional reduction techniques such as the Kocher's and the Hippocratic methods, which are still advocated by many textbooks. Many non-specialists continue to use these techniques, unaware of their potential risks. This article reviews the clinical and radiographic presentation of dislocation; some common reduction techniques; their risks and success rate; analgesia methods to facilitate the reduction; and postreduction management. Many textbooks advocate methods that have been superceded by safer alternatives. Trainees should learn better and safer relocation methods backed up by the current evidence available. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  2. A constitutive model accounting for strain ageing effects on work-hardening. Application to a C-Mn steel

    NASA Astrophysics Data System (ADS)

    Ren, Sicong; Mazière, Matthieu; Forest, Samuel; Morgeneyer, Thilo F.; Rousselier, Gilles

    2017-12-01

    One of the most successful models for describing the Portevin-Le Chatelier effect in engineering applications is the Kubin-Estrin-McCormick model (KEMC). In the present work, the influence of dynamic strain ageing on dynamic recovery due to dislocation annihilation is introduced in order to improve the KEMC model. This modification accounts for additional strain hardening rate due to limited dislocation annihilation by the diffusion of solute atoms and dislocation pinning at low strain rate and/or high temperature. The parameters associated with this novel formulation are identified based on tensile tests for a C-Mn steel at seven temperatures ranging from 20 °C to 350 °C. The validity of the model and the improvement compared to existing models are tested using 2D and 3D finite element simulations of the Portevin-Le Chatelier effect in tension.

  3. The relationship between chronic type III acromioclavicular joint dislocation and cervical spine pain

    PubMed Central

    2009-01-01

    Background This study was aimed at evaluating whether or not patients with chronic type III acromioclavicular dislocation develop cervical spine pain and degenerative changes more frequently than normal subjects. Methods The cervical spine of 34 patients with chronic type III AC dislocation was radiographically evaluated. Osteophytosis presence was registered and the narrowing of the intervertebral disc and cervical lordosis were evaluated. Subjective cervical symptoms were investigated using the Northwick Park Neck Pain Questionnaire (NPQ). One-hundred healthy volunteers were recruited as a control group. Results The rate and distribution of osteophytosis and narrowed intervertebral disc were similar in both of the groups. Patients with chronic AC dislocation had a lower value of cervical lordosis. NPQ score was 17.3% in patients with AC separation (100% = the worst result) and 2.2% in the control group (p < 0.05). An inverse significant nonparametric correlation was found between the NPQ value and the lordosis degree in the AC dislocation group (p = 0.001) wheras results were not correlated (p = 0.27) in the control group. Conclusions Our study shows that chronic type III AC dislocation does not interfere with osteophytes formation or intervertebral disc narrowing, but that it may predispose cervical hypolordosis. The higher average NPQ values were observed in patients with chronic AC dislocation, especially in those that developed cervical hypolordosis. PMID:20015356

  4. An Agenda for the 90's: Strategies and Tactics for Conducting an Effective Dislocated Worker Training Program.

    ERIC Educational Resources Information Center

    Spaid, Robin L.; Parsons, Michael H.

    In August 1983, when the second largest employer in Washington County, Maryland, closed its plant, the local unemployment rate was 13%. The following month, Hagerstown Junior College (HJC) received $50,000 in state funds to initiate a dislocated worker (DLW) program. The program included orientation by a counselor, diagnostic testing, and…

  5. Doping and compensation in Al-rich AlGaN grown on single crystal AlN and sapphire by MOCVD

    NASA Astrophysics Data System (ADS)

    Bryan, Isaac; Bryan, Zachary; Washiyama, Shun; Reddy, Pramod; Gaddy, Benjamin; Sarkar, Biplab; Breckenridge, M. Hayden; Guo, Qiang; Bobea, Milena; Tweedie, James; Mita, Seiji; Irving, Douglas; Collazo, Ramon; Sitar, Zlatko

    2018-02-01

    In order to understand the influence of dislocations on doping and compensation in Al-rich AlGaN, thin films were grown by metal organic chemical vapor deposition (MOCVD) on different templates on sapphire and low dislocation density single crystalline AlN. AlGaN grown on AlN exhibited the highest conductivity, carrier concentration, and mobility for any doping concentration due to low threading dislocation related compensation and reduced self-compensation. The onset of self-compensation, i.e., the "knee behavior" in conductivity, was found to depend only on the chemical potential of silicon, strongly indicating the cation vacancy complex with Si as the source of self-compensation. However, the magnitude of self-compensation was found to increase with an increase in dislocation density, and consequently, AlGaN grown on AlN substrates demonstrated higher conductivity over the entire doping range.

  6. Local Variability of the Peierls Barrier of Screw Dislocations in Ta-10W.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foiles, Stephen M.

    2017-10-01

    It is well know that the addition of substitutional elements changes the mechanical behavior of metals, a effect referred to solid solution hardening. For body-centered-cubic (BCC) metals, screw dislocation play a key role in the mechanical properties. Here the detailed modification of the Peierls barrier for screw dislocation motion in Ta with W substitutional atoms is computing using density functional theory (DFT). A reduced order model (ROM) of the influence of W substitution on the Peierls barrier is developed. The mean field change in the Peierls barrier for a Ta10W alloy is determined and shown to be larger than anticipatedmore » based on simple elasticity considerations. The ROM could be used in future calculations to determine the local variability of the Peierls barrier and the resultant influence on the motion of screw dislocation in this alloy.« less

  7. The inverse hall-petch relation in nanocrystalline metals: A discrete dislocation dynamics analysis

    NASA Astrophysics Data System (ADS)

    Quek, Siu Sin; Chooi, Zheng Hoe; Wu, Zhaoxuan; Zhang, Yong Wei; Srolovitz, David J.

    2016-03-01

    When the grain size in polycrystalline materials is reduced to the nanometer length scale (nanocrystallinity), observations from experiments and atomistic simulations suggest that the yield strength decreases (softening) as the grain size is decreased. This is in contrast to the Hall-Petch relation observed in larger sized grains. We incorporated grain boundary (GB) sliding and dislocation emission from GB junctions into the classical DDD framework, and recovered the smaller is weaker relationship observed in nanocrystalline materials. This current model shows that the inverse Hall-Petch behavior can be obtained through a relief of stress buildup at GB junctions from GB sliding by emitting dislocations from the junctions. The yield stress is shown to vary with grain size, d, by a d 1 / 2 relationship when grain sizes are very small. However, pure GB sliding alone without further plastic accomodation by dislocation emission is grain size independent.

  8. Propagation of misfit dislocations from buffer/Si interface into Si

    DOEpatents

    Liliental-Weber, Zuzanna [El Sobrante, CA; Maltez, Rogerio Luis [Porto Alegre, BR; Morkoc, Hadis [Richmond, VA; Xie, Jinqiao [Raleigh, VA

    2011-08-30

    Misfit dislocations are redirected from the buffer/Si interface and propagated to the Si substrate due to the formation of bubbles in the substrate. The buffer layer growth process is generally a thermal process that also accomplishes annealing of the Si substrate so that bubbles of the implanted ion species are formed in the Si at an appropriate distance from the buffer/Si interface so that the bubbles will not migrate to the Si surface during annealing, but are close enough to the interface so that a strain field around the bubbles will be sensed by dislocations at the buffer/Si interface and dislocations are attracted by the strain field caused by the bubbles and move into the Si substrate instead of into the buffer epi-layer. Fabrication of improved integrated devices based on GaN and Si, such as continuous wave (CW) lasers and light emitting diodes, at reduced cost is thereby enabled.

  9. High-quality GaN epitaxially grown on Si substrate with serpentine channels

    NASA Astrophysics Data System (ADS)

    Wei, Tiantian; Zong, Hua; Jiang, Shengxiang; Yang, Yue; Liao, Hui; Xie, Yahong; Wang, Wenjie; Li, Junze; Tang, Jun; Hu, Xiaodong

    2018-06-01

    A novel serpentine-channeled mask was introduced to Si substrate for low-dislocation GaN epitaxial growth and the fully coalesced GaN film on the masked Si substrate was achieved for the first time. Compared with the epitaxial lateral overgrowth (ELOG) growth method, this innovative mask only requires one-step epitaxial growth of GaN which has only one high-dislocation region per mask opening. This new growth method can effectively reduce dislocation density, thus improving the quality of GaN significantly. High-quality GaN with low dislocation density ∼2.4 × 107 cm-2 was obtained, which accounted for about eighty percent of the GaN film in area. This innovative technique is promising for the growth of high-quality GaN templates and the subsequent fabrication of high-performance GaN-based devices like transistors, laser diodes (LDs), and light-emitting diodes (LEDs) on Si substrate.

  10. Hydrolytic weakening in olivine single crystals

    NASA Astrophysics Data System (ADS)

    Tielke, Jacob A.; Zimmerman, Mark E.; Kohlstedt, David L.

    2017-05-01

    Deformation experiments on single crystals of San Carlos olivine under hydrous conditions were performed to investigate the microphysical processes responsible for hydrolytic weakening during dislocation creep. Hydrogen was supplied to the crystals using either talc or brucite sealed in nickel capsules with the crystal. Deformation experiments were carried out using a gas medium apparatus at temperatures of 1050° to 1250°C, a confining pressure of 300 MPa, differential stresses of 45 to 294 MPa, and resultant strain rates of 1.5 × 10-6 to 4.4 × 10-4 s-1. For talc-buffered (i.e., water and orthopyroxene-buffered) samples at high temperatures, the dependence of strain rate on stress follows a power law relationship with a stress exponent (n) of ˜2.5 and an activation energy of ˜490 kJ/mol. Brucite-buffered samples deformed faster than talc-buffered samples but contained similar hydrogen concentrations, demonstrating that strain rate is influenced by orthopyroxene activity under hydrous conditions. The values of n and dependence of strain rate on orthopyroxene activity are consistent with hydrolytic weakening occurring in the climb-controlled dislocation creep regime that is associated with deformation controlled by lattice diffusion under hydrous conditions and by pipe diffusion under anhydrous conditions. Analyses of postdeformation electron-backscatter diffraction data demonstrate that dislocations with [100] Burgers vectors are dominant in the climb-controlled regime and dislocations with [001] are dominant in the glide-controlled regime. Comparison of the experimentally determined constitutive equations demonstrates that under hydrous conditions crystals deform 1 to 2 orders of magnitude faster than under anhydrous conditions.

  11. Nanostructural engineering of nitride nucleation layers for GaN substrate dislocation reduction.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koleske, Daniel David; Lee, Stephen Roger; Lemp, Thomas Kerr

    2009-07-01

    With no lattice matched substrate available, sapphire continues as the substrate of choice for GaN growth, because of its reasonable cost and the extensive prior experience using it as a substrate for GaN. Surprisingly, the high dislocation density does not appear to limit UV and blue LED light intensity. However, dislocations may limit green LED light intensity and LED lifetime, especially as LEDs are pushed to higher current density for high end solid state lighting sources. To improve the performance for these higher current density LEDs, simple growth-enabled reductions in dislocation density would be highly prized. GaN nucleation layers (NLs)more » are not commonly thought of as an application of nano-structural engineering; yet, these layers evolve during the growth process to produce self-assembled, nanometer-scale structures. Continued growth on these nuclei ultimately leads to a fully coalesced film, and we show in this research program that their initial density is correlated to the GaN dislocation density. In this 18 month program, we developed MOCVD growth methods to reduce GaN dislocation densities on sapphire from 5 x 10{sup 8} cm{sup -2} using our standard delay recovery growth technique to 1 x 10{sup 8} cm{sup -2} using an ultra-low nucleation density technique. For this research, we firmly established a correlation between the GaN nucleation thickness, the resulting nucleation density after annealing, and dislocation density of full GaN films grown on these nucleation layers. We developed methods to reduce the nuclei density while still maintaining the ability to fully coalesce the GaN films. Ways were sought to improve the GaN nuclei orientation by improving the sapphire surface smoothness by annealing prior to the NL growth. Methods to eliminate the formation of additional nuclei once the majority of GaN nuclei were developed using a silicon nitride treatment prior to the deposition of the nucleation layer. Nucleation layer thickness was determined using optical reflectance and the nucleation density was determined using atomic force microscopy (AFM) and Nomarski microscopy. Dislocation density was measured using X-ray diffraction and AFM after coating the surface with silicon nitride to delineate all dislocation types. The program milestone of producing GaN films with dislocation densities of 1 x 10{sup 8} cm{sup -2} was met by silicon nitride treatment of annealed sapphire followed by the multiple deposition of a low density of GaN nuclei followed by high temperature GaN growth. Details of this growth process and the underlying science are presented in this final report along with problems encountered in this research and recommendations for future work.« less

  12. Continuum dislocation-density based models for the dynamic shock response of single-crystal and polycrystalline materials

    NASA Astrophysics Data System (ADS)

    Luscher, Darby

    2017-06-01

    The dynamic thermomechanical responses of polycrystalline materials under shock loading are often dominated by the interaction of defects and interfaces. For example, polymer-bonded explosives (PBX) can initiate under weak shock impacts whose energy, if distributed homogeneously throughout the material, translates to temperature increases that are insufficient to drive the rapid chemistry observed. In such cases, heterogeneous thermomechanical interactions at the mesoscale (i.e. between single-crystal and macroscale) lead to the formation of localized hot spots. Within metals, a prescribed deformation associated with a shock wave may be accommodated by crystallographic slip, provided a sufficient population of mobile dislocations is available. However, if the deformation rate is large enough, there may be an insufficient number of freely mobile dislocations. In these cases, additional dislocations may be nucleated, or alternate mechanisms (e.g. twinning, damage) activated in order to accommodate the deformation. Direct numerical simulation at the mesoscale offers insight into these physical processes that can be invaluable to the development of macroscale constitutive theories, if the mesoscale models adequately represent the anisotropic nonlinear thermomechanical response of individual crystals and their interfaces. This talk will briefly outline a continuum mesoscale modeling framework founded upon local and nonlocal variations of dislocation-density based crystal plasticity theory. The nonlocal theory couples continuum dislocation transport with the local theory. In the latter, dislocation transport is modeled by enforcing dislocation conservation at a slip-system level through the solution of advection-diffusion equations. The configuration of geometrically necessary dislocation density gives rise to a back-stress that inhibits or accentuates the flow of dislocations. Development of the local theory and application to modeling the explosive molecular crystal RDX and polycrystalline PBX will be discussed. The talk will also emphasize recent implementation of the coupled nonlocal model into a 3D shock hydrocode and simulation results for the dynamic response of polycrystalline copper in two and three dimensions.

  13. Novel Cross-Slip Mechanism of Pyramidal Screw Dislocations in Magnesium.

    PubMed

    Itakura, Mitsuhiro; Kaburaki, Hideo; Yamaguchi, Masatake; Tsuru, Tomohito

    2016-06-03

    Compared to cubic metals, whose primary slip mode includes twelve equivalent systems, the lower crystalline symmetry of hexagonal close-packed metals results in a reduced number of equivalent primary slips and anisotropy in plasticity, leading to brittleness at the ambient temperature. At higher temperatures, the ductility of hexagonal close-packed metals improves owing to the activation of secondary ⟨c+a⟩ pyramidal slip systems. Thus, understanding the fundamental properties of corresponding dislocations is essential for the improvement of ductility at the ambient temperature. Here, we present the results of large-scale ab initio calculations for ⟨c+a⟩ pyramidal screw dislocations in magnesium and show that their slip behavior is a stark counterexample to the conventional wisdom that a slip plane is determined by the stacking fault plane of dislocations. A stacking fault between dissociated partial dislocations can assume a nonplanar shape with a negligible energy cost and can migrate normal to its plane by a local shuffling of atoms. Partial dislocations dissociated on a {21[over ¯]1[over ¯]2} plane "slither" in the {011[over ¯]1} plane, dragging the stacking fault with them in response to an applied shear stress. This finding resolves the apparent discrepancy that both {21[over ¯]1[over ¯]2} and {011[over ¯]1} slip traces are observed in experiments while ab initio calculations indicate that dislocations preferably dissociate in the {21[over ¯]1[over ¯]2} planes.

  14. Effects of Plasma Hydrogenation on Trapping Properties of Dislocations in Heteroepitaxial InP/GaAs

    NASA Technical Reports Server (NTRS)

    Ringel, S. A.; Chatterjee, B.

    1994-01-01

    In previous work, we have demonstrated the effectiveness of a post-growth hydrogen plasma treatment for passivating the electrical activity of dislocations in metalorganic chemical vapor deposition (MOCVD) grown InP on GaAs substrates by a more than two order of magnitude reduction in deep level concentration and an improvement in reverse bias leakage current by a factor of approx. 20. These results make plasma hydrogenation an extremely promising technique for achieving high efficiency large area and light weight heteroepitaxial InP solar cells for space applications. In this work we investigate the carrier trapping process by dislocations in heteroepitaxial InP/GaAs and the role of hydrogen passivation on this process. It is shown that the charge trapping kinetics of dislocations after hydrogen passivation are significantly altered, approaching point defect-like behavior consistent with a transformation from a high concentration of dislocation-related defect bands within the InP bandgap to a low concentration of individual deep levels after hydrogen passivation. It is further shown that the "apparent" activation energies of dislocation related deep levels, before and after passivation, reduce by approx. 70 meV as DLTS fill pulse times are increased from 1 usec. to 1 msec. A model is proposed which explains these effects based on a reduction of Coulombic interaction between individual core sites along the dislocation cores by hydrogen incorporation. Knowledge of the trapping properties in these specific structures is important to develop optimum, low loss heteroepitaxial InP cells.

  15. Sports activity after anatomic acromioclavicular joint stabilisation with flip-button technique.

    PubMed

    Porschke, Felix; Schnetzke, Marc; Aytac, Sara; Studier-Fischer, Stefan; Gruetzner, Paul Alfred; Guehring, Thorsten

    2017-07-01

    Sports activity after surgical AC joint stabilisation has not been comprehensively evaluated to date. The aim of this study was to determine rate, level and time to return to sports after AC joint stabilisation and to identify the influence of overhead sports on post-operative sports activity. In this retrospective case series, a total of 68 patients with a high-grade AC joint dislocation (Rockwood type V) were stabilised using a single TightRope technique. Fifty-five patients (80.9 %) with median age of 42.0 (range, 18-65) years completed questionnaires regarding sports activity before and after surgery. Clinical outcome and complications were also evaluated. Forty-three patients participated in sports regularly before injury. Their sports activity was rated according to Allain, and non-overhead and overhead sports were differentiated. At median follow-up of 24 (18-45) months, 41 of 43 patients (95.3 %) had returned to sports. 63 % returned to the same sports activity as before injury. 16.3 % needed to adapt the type of sports to reduce demanding activities. 11.6 % reduced the frequency and 32.5 % the intensity of sports. The median time to return to sports was 9.5 (3-18) months. Overhead athletes (Allain Type III and IV) had to reduce their sports activity significantly more often (11.8 vs. 53.8 %; p = 0.011) and needed more time to return to sports (9.5 vs. 4.5 months; p = 0.009). After stabilisation of AC joint dislocation, the majority of patients returned to sports after a substantial period of time. Overhead athletes, in particular, required more time and had to considerably reduce their sports activity. The findings impact therapeutic decision-making after AC joint injury and help with the prognosis and assessment of rehabilitation progress. IV.

  16. Comparison of the technique of anterior cervical distraction and screw elevating-pulling reduction and conventional anterior cervical reduction technique for traumatic cervical spine fractures and dislocations.

    PubMed

    Li, Haoxi; Huang, Yufeng; Cheng, Changzhi; Lin, Zhoudan; Wu, Desheng

    2017-04-01

    To analyze and confirm the advantages of anterior cervical distraction and screw elevating-pulling reduction which are absent in conventional anterior cervical reduction for traumatic cervical spine fractures and dislocations. A retrospective study was conducted on 86 patients with traumatic cervical spine fractures and dislocations who received one-stage anterior approach treatment for a distraction-flexion injury with bilateral locked facet joints between January 2010 and June 2015. They were 54 males and 32 females with an age ranging from 20 to 73 years (average age, 40.1 ± 5.6 years). These patients were distributed into group A and group B in the sequence of visits, with 44 cases of conventional anterior cervical reduction (group A) and 42 cases of anterior cervical distraction and screw elevating-pulling reduction (group B). Comparison of intraoperative blood loss, operation duration and vertebral reduction rate was made between the two groups. The follow-up time was 12-18 months, and the clinical outcomes of surgery were evaluated according to ASIA score, VAS score and JOA score. Statistically significant difference was revealed between group A and group B in the surgical time and the correction rate of cervical spine dislocation (p < 0.05), with the results of group B better than those of group A. For the two groups, statistically significant difference was shown between the ASIA score, VAS score and JOA score before and after operation (p < 0.05), with the results better after operation, while no statistically significant difference was revealed in such scores between the two groups (p > 0.05), with the therapeutic effect of group A the same with that of group B. Anterior cervical distraction and screw elevating-pulling reduction is simple with low risk, short operation duration, good effect of intraoperative vertebral reduction and well-recovered function after the operation. Meanwhile, as a safe and effective operation method for cervical spine fractures and dislocations, it can reduce postoperative complications and the risk of the iatrogenic cervical spinal cord injury caused by prying or facet joint springing during conventional reduction, having more obvious advantages compared to the conventional surgical reduction adopted by group A, with good cervical spine stability as shown in long-term follow-up. Therefore, it is suitable for clinical promotion and application. Copyright © 2017. Published by Elsevier Ltd.

  17. Evora® chromium-cobalt dual mobility socket: results at a minimum 10 years' follow-up.

    PubMed

    Leclercq, S; Benoit, J Y; de Rosa, J P; Tallier, E; Leteurtre, C; Girardin, P H

    2013-12-01

    The Evora chromium-cobalt alloy dual mobility socket claims to display a large articulation tribology different from that of stainless steel models, limiting the risk of intraprosthetic dislocation and wear. The present study reports a minimum of 10years' follow-up in a multicenter prospective series of 200 sockets previously reported on at 5years. The use of chromium-cobalt in dual mobility sockets provides a low rate of failure at 10years, especially as regards to osteolysis and intraprosthetic dislocation. Two hundred hydroxyapatite-coated molded chromium-cobalt sockets without titanium interface were implanted without cement in 194 patients with a mean age of 70 years (range, 32-91 years). Clinical results were assessed on Postel Merle d'Aubigné and Harris scores, plain radiographs and survival analysis. At a mean 11 years' follow-up (10-13 years), 56 patients had died and 31 were lost to follow-up. Four underwent surgical revision (3 femoral components, and 1 socket for migration at 9 years with complete disappearance of the hydroxyapatite). A total of 109 implants were analyzable in 107 patients with a mean age of 81 years (55-93 years). At follow-up, the mean Harris score was 90 (75-96) and the PMA score 16.3 (14-18). There were no cases of loosening (except for the case reoperated on at 9 years) and no acetabular radiolucency or cysts. There were 2 cases of non-evolutive femoral radiolucency and 10 of femoral granuloma, involving head size > 22 mm (P<0.0001) and a cemented titanium stem (P=0.004) as risk factors. There were no dislocations in the large or small articulation. Ten-year survival was 99% (95% CI: 97.3%-100%) with socket revision as censorship criterion. The absence of dislocation in both small and large articulations confirmed the efficacy of the dual mobility concept and suggested an advantage for chromium-cobalt sockets in reducing the rate of intraprosthetic dislocation and preventing blockage of the large articulation by a better performance in the friction couple. Granulomas were associated with wear in cemented titanium stems and with heads greater than 22 mm in diameter. Ten-year survival was 99% (censorship criterion: revision for socket failure); there was, however, one case of socket loosening with disappearance of the hydroxyapatite, indicating that surveillance should be continued in this cohort. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  18. Acute acromioclavicular dislocation: a cheaper, easier and all-arthroscopic system. Is it effective in nowadays economical crisis?

    PubMed

    Sastre, Sergi; Dada, Michelle; Santos, Simon; Lozano, Lluis; Alemany, Xavier; Peidro, Lluis

    2015-03-01

    The objective of this manuscript is to show an effective, easier and cheaper way to reduce acute acromioclavicular (AC) dislocation type III and V (Rockwood classification). Numerous procedures have been described for surgical management of acromioclavicular joint disruption. Newest devices involve an arthroscopic technique that allows nonrigid anatomic fixation of the acromioclavicular joint. Arthroscopically assisted treatment of acute AC joint dislocation is advantageous because it provides good clinical results and few complications. It also allows reviewing glenohumeral associated lesions. This surgical technique requires no specific implants to achieve a correct AC reduction. Actually, economical advantages are very important factors to decide the use of determinate surgical techniques.

  19. Attenuation of the dynamic yield point of shocked aluminum using elastodynamic simulations of dislocation dynamics.

    PubMed

    Gurrutxaga-Lerma, Beñat; Balint, Daniel S; Dini, Daniele; Eakins, Daniel E; Sutton, Adrian P

    2015-05-01

    When a metal is subjected to extremely rapid compression, a shock wave is launched that generates dislocations as it propagates. The shock wave evolves into a characteristic two-wave structure, with an elastic wave preceding a plastic front. It has been known for more than six decades that the amplitude of the elastic wave decays the farther it travels into the metal: this is known as "the decay of the elastic precursor." The amplitude of the elastic precursor is a dynamic yield point because it marks the transition from elastic to plastic behavior. In this Letter we provide a full explanation of this attenuation using the first method of dislocation dynamics to treat the time dependence of the elastic fields of dislocations explicitly. We show that the decay of the elastic precursor is a result of the interference of the elastic shock wave with elastic waves emanating from dislocations nucleated in the shock front. Our simulations reproduce quantitatively recent experiments on the decay of the elastic precursor in aluminum and its dependence on strain rate.

  20. Treatment of chronic mandibular dislocations by eminectomy: follow-up of 10 cases and literature review.

    PubMed

    Vasconcelos, Belmiro-Cavalcanti do Egito; Porto, Gabriela-Granja; Neto, José-Pacheco-Martins-Ribeiro; Vasconcelos, César-Freire de Melo

    2009-11-01

    Temporomandibular joint (TMJ) dislocation is defined as an excessive forward movement of the condyle beyond the articular eminence, with complete separation of the articular surfaces and fixation in that position. To report ten cases treated by eminectomy for chronic mandibular dislocations, to evaluate the results of these surgeries and make a critical review of the literature. The sample was obtained from the records of the Department of Oral and Maxillofacial Surgery, University of Pernambuco and comprises cases submitted to chronic mandibular dislocation treatment by eminectomy between 2002 and 2007. Pre- and postoperative assessment included a thorough history and physical examination to determine the maximal mouth opening, presence of pain and sounds, frequency of luxations, recurrence rate and presence of facial nerve paralysis. The mean maximal mouth opening in the preoperative period was 48.4 +/- 8.5 mm and in the postoperative period it was 41.3 +/- 5.0 mm. No facial nerve paralysis or recurrence was observed. The treatment of chronic mandibular dislocations by eminectomy was shown to be efficient in relationship to the postoperative maximal mouth opening, recurrence and articular function.

  1. A Case of Acromioclavicular Joint Dislocation Associated with Coracoid Process Fracture.

    PubMed

    Nakamura, Yosuke; Gotoh, Masafumi; Mitsui, Yasuhiro; Shirachi, Isao; Yoshikawa, Eiichiro; Uryu, Takuya; Murakami, Hidetaka; Okawa, Takahiro; Higuchi, Fujio; Shiba, Naoto

    2015-01-01

    Rupture of any two or more parts of the superior shoulder suspensory complex (SSSC) including the distal clavicle, acromion, coracoid process, glenoid cavity of the scapula, acromioclavicular ligament, and coracoclavicular ligament is associated with shoulder girdle instability and is an indication for surgery. Here we report a case of acromioclavicular joint dislocation associated with coracoid process fracture. A 48-year-old man sustained a hard blow to the left shoulder from a fall, and simple radiography detected a coracoid process fracture and acromioclavicular joint dislocation. The injury consisted of a rupture of two parts of the SSSC. For the coracoid process fracture, osteosynthesis was performed using hollow cancellous bone screws. For the acromioclavicular joint dislocation, hook plate fixation and the modified Neviaser's procedure were performed. The bone healed well 5 months after surgery, at which time the screws were removed. At 18 months after initial surgery, the coracoid process fracture had healed with a 10% rate of dislocation on radiography, and the patient currently has no problem performing daily activities, no range of motion limitations, and a Japanese Orthopaedic Association scale score of 93.

  2. Modeling plastic deformation of post-irradiated copper micro-pillars

    NASA Astrophysics Data System (ADS)

    Crosby, Tamer; Po, Giacomo; Ghoniem, Nasr M.

    2014-12-01

    We present here an application of a fundamentally new theoretical framework for description of the simultaneous evolution of radiation damage and plasticity that can describe both in situ and ex situ deformation of structural materials [1]. The theory is based on the variational principle of maximum entropy production rate; with constraints on dislocation climb motion that are imposed by point defect fluxes as a result of irradiation. The developed theory is implemented in a new computational code that facilitates the simulation of irradiated and unirradiated materials alike in a consistent fashion [2]. Discrete Dislocation Dynamics (DDD) computer simulations are presented here for irradiated fcc metals that address the phenomenon of dislocation channel formation in post-irradiated copper. The focus of the simulations is on the role of micro-pillar boundaries and the statistics of dislocation pinning by stacking-fault tetrahedra (SFTs) on the onset of dislocation channel and incipient surface crack formation. The simulations show that the spatial heterogeneity in the distribution of SFTs naturally leads to localized plastic deformation and incipient surface fracture of micro-pillars.

  3. The Correlation Between Dislocations and Vacancy Defects Using Positron Annihilation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Pang, Jinbiao; Li, Hui; Zhou, Kai; Wang, Zhu

    2012-07-01

    An analysis program for positron annihilation lifetime spectra is only applicable to isolated defects, but is of no use in the presence of defective correlations. Such limitations have long caused problems for positron researchers in their studies of complicated defective systems. In order to solve this problem, we aim to take a semiconductor material, for example, to achieve a credible average lifetime of single crystal silicon under plastic deformation at different temperatures using positron life time spectroscopy. By establishing reasonable positron trapping models with defective correlations and sorting out four lifetime components with multiple parameters, as well as their respective intensities, information is obtained on the positron trapping centers, such as the positron trapping rates of defects, the density of the dislocation lines and correlation between the dislocation lines, and the vacancy defects, by fitting with the average lifetime with the aid of Matlab software. These results give strong grounds for the existence of dislocation-vacancy correlation in plastically deformed silicon, and lay a theoretical foundation for the analysis of positron lifetime spectra when the positron trapping model involves dislocation-related defects.

  4. Alternate approach for calculating hardness based on residual indentation depth: Comparison with experiments

    NASA Astrophysics Data System (ADS)

    Ananthakrishna, G.; K, Srikanth

    2018-03-01

    It is well known that plastic deformation is a highly nonlinear dissipative irreversible phenomenon of considerable complexity. As a consequence, little progress has been made in modeling some well-known size-dependent properties of plastic deformation, for instance, calculating hardness as a function of indentation depth independently. Here, we devise a method of calculating hardness by calculating the residual indentation depth and then calculate the hardness as the ratio of the load to the residual imprint area. Recognizing the fact that dislocations are the basic defects controlling the plastic component of the indentation depth, we set up a system of coupled nonlinear time evolution equations for the mobile, forest, and geometrically necessary dislocation densities. Within our approach, we consider the geometrically necessary dislocations to be immobile since they contribute to additional hardness. The model includes dislocation multiplication, storage, and recovery mechanisms. The growth of the geometrically necessary dislocation density is controlled by the number of loops that can be activated under the contact area and the mean strain gradient. The equations are then coupled to the load rate equation. Our approach has the ability to adopt experimental parameters such as the indentation rates, the geometrical parameters defining the Berkovich indenter, including the nominal tip radius. The residual indentation depth is obtained by integrating the Orowan expression for the plastic strain rate, which is then used to calculate the hardness. Consistent with the experimental observations, the increasing hardness with decreasing indentation depth in our model arises from limited dislocation sources at small indentation depths and therefore avoids divergence in the limit of small depths reported in the Nix-Gao model. We demonstrate that for a range of parameter values that physically represent different materials, the model predicts the three characteristic features of hardness, namely, increase in the hardness with decreasing indentation depth, and the linear relation between the square of the hardness and the inverse of the indentation depth, for all but 150 nm, deviating for smaller depths. In addition, we also show that it is straightforward to obtain optimized parameter values that give good fit to the hardness data for polycrystalline cold worked copper and single crystals of silver.

  5. Strain rate dependent calcite microfabric evolution at natural conditions

    NASA Astrophysics Data System (ADS)

    Rogowitz, Anna; Grasemann, Bernhard; Huet, Benjamin; Habler, Gerlinde

    2014-05-01

    Crystal plastic deformational behaviour of calcite has been the focus of many experimental studies. Different strain rates, pressure and temperature conditions have been addressed to investigate a wide range of deformation regimes. However, a direct comparison with natural fault rocks remains difficult because of extreme differences between experimental and natural strain rates. A flanking structure developed in almost pure calcite marble on Syros (Cyclades, Greece). Due to rotation of a planar feature (crack) a heterogeneous strain field in the surrounding area occurred resulting in different strain domains and the formation of the flanking structure. Assuming that deformation was active continuously during the development of the flanking structure, the different strain domains correspond to different strain-rate domains. The outcrop thus represents the final state of a natural experiment and gives us a great opportunity to get natural constraints on strain rate dependent deformation behaviour of calcite. Comparing the microfabrics in the 1 to 2.5 cm thick shear zone and the surrounding host rocks, which formed under the same metamorphic conditions but with different strain rates, is the central focus of this study. Due to the extreme variation in strain and strain rate, different microstructures and textures can be observed corresponding to different deformation mechanisms. With increasing strain rate we observe a change in dominant deformation mechanism from dislocation glide to dislocation creep and finally diffusion creep. Additionally, a change from subgrain rotation to bulging recrystallization can be observed in the dislocation creep regime. Crystallographic preferred orientations (CPO) and the grade of intracrystalline deformation were measured on a FEI Quanta 3D FEG instrument equipped with an EDAX Digiview IV EBSD camera. At all strain rates clear CPOs developed leading to the assumption that calcite preferentially deforms within the dislocation creep field. However, we can also find clear evidence for grain size sensitive deformation mechanisms at smaller grain sizes (3.6 μm) consistent with experimental observations and determined flaw laws. The results of this study are compared with experimental data, closing the gap between experimental and natural geological strain rates.

  6. Solid/melt interface studies of high-speed silicon sheet growth

    NASA Technical Reports Server (NTRS)

    Ciszek, T. F.

    1984-01-01

    Radial growth-rate anisotropies and limiting growth forms of point nucleated, dislocation-free silicon sheets spreading horizontally on the free surface of a silicon melt have been measured for (100), (110), (111), and (112) sheet planes. Sixteen-millimeter movie photography was used to record the growth process. Analysis of the sheet edges has lead to predicted geometries for the tip shape of unidirectional, dislocation-free, horizontally growing sheets propagating in various directions within the above-mentioned planes. Similar techniques were used to study polycrystalline sheets and dendrite propagation. For dendrites, growth rates on the order of 2.5 m/min and growth rate anisotropies on the order of 25 were measured.

  7. Peierls potential of screw dislocations in bcc transition metals: Predictions from density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weinberger, Christopher R.; Tucker, Garritt J.; Foiles, Stephen M.

    2013-02-01

    It is well known that screw dislocation motion dominates the plastic deformation in body-centered-cubic metals at low temperatures. The nature of the nonplanar structure of screw dislocations gives rise to high lattice friction, which results in strong temperature and strain rate dependence of plastic flow. Thus the nature of the Peierls potential, which is responsible for the high lattice resistance, is an important physical property of the material. However, current empirical potentials give a complicated picture of the Peierls potential. Here, we investigate the nature of the Peierls potential using density functional theory in the bcc transition metals. The resultsmore » show that the shape of the Peierls potential is sinusoidal for every material investigated. Furthermore, we show that the magnitude of the potential scales strongly with the energy per unit length of the screw dislocation in the material.« less

  8. High temperature (900-1300 C) mechanical behaviour of dendritic web grown silicon ribbons - Strain rate and temperature dependence of the yield stress

    NASA Technical Reports Server (NTRS)

    Mathews, V. K.; Gross, T. S.

    1987-01-01

    The mechanical behavior of dendritic web Si ribbons close the melting point was studied experimentally. The goal of the study was to generate data for modeling the generation of stresses and dislocation structures during growth of dendritic web Si ribbons, thereby permitting modifications to the production process, i.e., the temperature profile, to lower production costs for the photovoltaic ribbons. A laser was used to cut specimens in the direction of growth of sample ribbons, which were then subjected to tensile tests at temperatures up to 1300 C in an Ar atmosphere. The tensile strengths of the samples increased when the temperature rose above 1200 C, a phenomena which was attributed to the diffusion of oxygen atoms to the quasi-dislocation sites. The migration to the potential dislocations sites effectively locked the dislocations.

  9. Primary creep deformation behaviors related with lamellar interface in TiAl alloy

    NASA Astrophysics Data System (ADS)

    Cho, Han Seo; Nam, Soo Woo; Kim, Young-Won

    1998-02-01

    Constant tensile stress creep tests under the condition of 760 816°C/172 276 MPa in an air environment are conducted, and the microstructural evolution during primary creep deformation at the creep condition of 816°C/172 MPa was observed by transmission electron microscopy (TEM) for the lamellar structured Ti-45. 5Al-2Cr-2.6Nb-0.17W-0.lB-0.2C-0.15Si (at.%) alloy. The amount of creep strain deformed during primary creep stage is considered to be the summation of the strains occurred by gliding of initial dislocations and of newly generated dislocations. Creep rate controlling process within the primary stage seems to be shifting from the initial dislocation climb controlled to the generation of the new dislocations by the phase transformation of 2 to as creep strain increases.

  10. Effect of He+ fluence on surface morphology and ion-irradiation induced defect evolution in 7075 aluminum alloys

    NASA Astrophysics Data System (ADS)

    Ni, Kai; Ma, Qian; Wan, Hao; Yang, Bin; Ge, Junjie; Zhang, Lingyu; Si, Naichao

    2018-02-01

    The evolution of microstructure for 7075 aluminum alloys with 50 Kev helium ions irradiation were studied by using optical microscopy (OM), scanning electron microscopy (SEM), x-ray diffraction (XRD) and transmission electron microscopy (TEM). The fluences of 1 × 1015, 1 × 1016 and 1 × 1017 ions cm-2 were selected, and irradiation experiments were conducted at room temperatures. The transmission process of He+ ions was simulated by using SRIM software, including distribution of ion ranges, energy losses and atomic displacements. Experimental results show that irradiated pits and micro-cracks were observed on irradiation sample surface, and the size of constituent particles (not including Mg2Si) decreased with the increasing dose. The x-ray diffraction results of the pair of peaks is better resolved in irradiated samples might indicate that the stressed structure consequence due to crystal defects (vacancies and interstitials) after He+ implantation. TEM observation indicated that the density of MgZn2 phase was significantly reduced after helium ion irradiation which is harmful to strength. Besides, the development of compressive stress produced a large amount of dislocation defects in the 1015 ions cm-2 sample. Moreover, higher fluence irradiation produced more dislocations in sample. At fluence of 1016 ions cm-2, dislocation wall formed by dislocation slip and aggregation in the interior of grains, leading to the refinement of these grains. As fluence increased to 1017 ions cm-2, dislocation loops were observed in pinned dislocation. Moreover, dislocation as effective defect sink, irradiation-induced vacancy defects aggregated to these sinks, and resulted in the formation of helium bubbles in dislocation.

  11. Surgical hip dislocation for treatment of cam femoroacetabular impingement

    PubMed Central

    Chaudhary, Milind M; Chaudhary, Ishani M; Vikas, KN; KoKo, Aung; Zaw, Than; Siddhartha, A

    2015-01-01

    Background: Cam femoroacetabular impingement is caused by a misshapen femoral head with a reduced head neck offset, commonly in the anterolateral quadrant. Friction in flexion, adduction and internal rotation causes limitation of the hip movements and pain progressively leading to labral and chondral damage and osteoarthritis. Surgical hip dislocation described by Ganz permits full exposure of the hip without damaging its blood supply. An osteochondroplasty removes the bump at the femoral head neck junction to recreate the offset for impingement free movement. Materials and Methods: Sixteen patients underwent surgery with surgical hip dislocation for the treatment of cam femoroacetabular impingement by open osteochondroplasty over last 6 years. Eight patients suffered from sequelae of avascular necrosis (AVN). Three had a painful dysplastic hip. Two had sequelae of Perthes disease. Three had combined cam and pincer impingement caused by retroversion of acetabulum. All patients were operated by the trochanteric flip osteotomy with attachments of gluteus medius and vastus lateralis, dissection was between the piriformis and gluteus minimus preserving the external rotators. Z-shaped capsular incision and dislocation of the hip was done in external rotation. Three cases also had subtrochanteric osteotomy. Two cases of AVN also had an intraarticular femoral head reshaping osteotomy. Results: Goals of treatment were achieved in all patients. No AVN was detected after a 6 month followup. There were no trochanteric nonunions. Hip range of motion improved in all and Harris hip score improved significantly in 15 of 16 cases. Mean alpha angle reduced from 86.13° (range 66°–108°) to 46.35° (range 39°–58°). Conclusion: Cam femoroacetabular Impingement causing pain and limitation of hip movements was treated by open osteochondroplasty after surgical hip dislocation. This reduced pain, improved hip motion and gave good to excellent results in the short term. PMID:26538754

  12. Mapping strain rate dependence of dislocation-defect interactions by atomistic simulations

    PubMed Central

    Fan, Yue; Osetskiy, Yuri N.; Yip, Sidney; Yildiz, Bilge

    2013-01-01

    Probing the mechanisms of defect–defect interactions at strain rates lower than 106 s−1 is an unresolved challenge to date to molecular dynamics (MD) techniques. Here we propose an original atomistic approach based on transition state theory and the concept of a strain-dependent effective activation barrier that is capable of simulating the kinetics of dislocation–defect interactions at virtually any strain rate, exemplified within 10−7 to 107 s−1. We apply this approach to the problem of an edge dislocation colliding with a cluster of self-interstitial atoms (SIAs) under shear deformation. Using an activation–relaxation algorithm [Kushima A, et al. (2009) J Chem Phys 130:224504], we uncover a unique strain-rate–dependent trigger mechanism that allows the SIA cluster to be absorbed during the process, leading to dislocation climb. Guided by this finding, we determine the activation barrier of the trigger mechanism as a function of shear strain, and use that in a coarse-graining rate equation formulation for constructing a mechanism map in the phase space of strain rate and temperature. Our predictions of a crossover from a defect recovery at the low strain-rate regime to defect absorption behavior in the high strain-rate regime are validated against our own independent, direct MD simulations at 105 to 107 s−1. Implications of the present approach for probing molecular-level mechanisms in strain-rate regimes previously considered inaccessible to atomistic simulations are discussed. PMID:24114271

  13. Simulation study of the effect of strain rate on the mechanical properties and tensile deformation of gold nanowire

    NASA Astrophysics Data System (ADS)

    Shi, Guo-Jie; Wang, Jin-Guo; Hou, Zhao-Yang; Wang, Zhen; Liu, Rang-Su

    2017-09-01

    The mechanical properties and deformation mechanisms of Au nanowire during the tensile processes at different strain rates are revealed by the molecular dynamics method. It is found that the Au nanowire displays three distinct types of mechanical behaviors when tensioning at low, medium and high strain rates, respectively. At the low strain rate, the stress-strain curve displays a periodic zigzag increase-decrease feature, and the plastic deformation is resulted from the slide of dislocation. The dislocations nucleate, propagate, and finally annihilate in every decreasing stages of stress, and the nanowire always can recover to FCC-ordered structure. At the medium strain rate, the stress-strain curve gently decreases during the plastic process, and the deformation is contributed from sliding and twinning. The dislocations formed in the yield stage do not fully propagate and further escape from the nanowire. At the high strain rate, the stress-strain curve wave-like oscillates during the plastic process, and the deformation is resulted from amorphization. The FCC atoms quickly transform into disordered amorphous structure in the yield stage. The relative magnitude between the loading velocity of strain and the propagation velocity of phonons determines the different deformation mechanisms. The mechanical behavior of Au nanowire is similar to Ni, Cu and Pt nanowires, but their deformation mechanisms are not completely identical with each other.

  14. Laser diodes with 353 nm wavelength enabled by reduced-dislocation-density AlGaN templates

    DOE PAGES

    Crawford, Mary H.; Allerman, Andrew A.; Armstrong, Andrew M.; ...

    2015-10-30

    We fabricated optically pumped and electrically injected ultraviolet (UV) lasers on reduced-threading-dislocation-density (reduced-TDD) AlGaN templates. The overgrowth of sub-micron-wide mesas in the Al 0.32Ga 0.68N templates enabled a tenfold reduction in TDD, to (2–3) × 10 8 cm –2. Optical pumping of AlGaN hetero-structures grown on the reduced-TDD templates yielded a low lasing threshold of 34 kW/cm 2 at 346 nm. Room-temperature pulsed operation of laser diodes at 353 nm was demonstrated, with a threshold of 22.5 kA/cm 2. Furthermore, reduced-TDD templates have been developed across the entire range of AlGaN compositions, presenting a promising approach for extending laser diodesmore » into the deep UV.« less

  15. Radiologic and functional evaluation of electrode dislocation from the scala tympani to the scala vestibuli in patients with cochlear implants.

    PubMed

    Fischer, N; Pinggera, L; Weichbold, V; Dejaco, D; Schmutzhard, J; Widmann, G

    2015-02-01

    Localization of the electrode after cochlear implantation seems to have an impact on auditory outcome, and conebeam CT has emerged as a reliable method for visualizing the electrode array position within the cochlea. The aim of this retrospective study was to evaluate the frequency and clinical impact of scalar dislocation of various electrodes and surgical approaches and to evaluate its influence on auditory outcome. This retrospective single-center study analyzed a consecutive series of 63 cochlear implantations with various straight electrodes. The placement of the electrode array was evaluated by using multiplanar reconstructed conebeam CT images. For the auditory outcome, we compared the aided hearing thresholds and the charge units of maximum comfortable loudness level at weeks 6, 12, and 24 after implantation. In 7.9% of the cases, the electrode array showed scalar dislocation. In all cases, the electrode array penetrated the basal membrane within 45° of the electrode insertion. All 3 cases of cochleostomy were dislocated in the first 45° segment. No hearing differences were noted, but the charge units of maximum comfortable loudness level seemed to increase with time in patients with dislocations. The intracochlear dislocation rate of various straight electrodes detected by conebeam CT images is relatively low. Scalar dislocation may not negatively influence the hearing threshold but may require an increase of the necessary stimulus charge and should be reported by the radiologist. © 2015 by American Journal of Neuroradiology.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulte, Kevin L.; France, Ryan M.; McMahon, William E.

    In this work we develop control over dislocation glide dynamics in Ga xIn 1-xP compositionally graded buffer layers (CGBs) through control of CuPt ordering on the group-III sublattice. The ordered structure is metastable in the bulk, so any glissile dislocation that disrupts the ordered pattern will release stored energy, and experience an increased glide force. Here we show how this connection between atomic ordering and dislocation glide force can be exploited to control the threading dislocation density (TDD) in Ga xIn 1-xP CGBs. When ordered Ga xIn 1-xP is graded from the GaAs lattice constant to InP, the order parametermore » ..eta.. decreases as x decreases, and dislocation glide switches from one set of glide planes to the other. This glide plane switch (GPS) is accompanied by the nucleation of dislocations on the new glide plane, which typically leads to increased TDD. We develop control of the GPS position within a Ga xIn 1-xP CGB through manipulation of deposition temperature, surfactant concentration, and strain-grading rate. We demonstrate a two-stage Ga xIn 1-xP CGB from GaAs to InP with sufficiently low TDD for high performance devices, such as the 4-junction inverted metamorphic multi-junction solar cell, achieved through careful control the GPS position. Here, experimental results are analyzed within the context of a model that considers the force balance on dislocations on the two competing glide planes as a function of the degree of ordering.« less

  17. Influence of template properties and quantum well number on stimulated emission from Al0.7Ga0.3N/Al0.8Ga0.2N quantum wells

    NASA Astrophysics Data System (ADS)

    Jeschke, J.; Martens, M.; Hagedorn, S.; Knauer, A.; Mogilatenko, A.; Wenzel, H.; Zeimer, U.; Enslin, J.; Wernicke, T.; Kneissl, M.; Weyers, M.

    2018-03-01

    AlGaN multiple quantum well laser heterostructures for emission around 240 nm have been grown by metalorganic vapor phase epitaxy on epitaxially laterally overgrown (ELO) AlN/sapphire templates. The edge emitting laser structures showed optically pumped lasing with threshold power densities in the range of 2 MW cm-2. The offcut angle of the sapphire substrates as well as the number and the width of the quantum wells were varied while keeping the total thickness of the gain region constant. A larger offcut angle of 0.2° leads to step bunching on the surface as well as Ga accumulation at the steps, but also to an increased inclination of threading dislocations and coalescence boundaries resulting in a reduced dislocation density and thus a reduced laser threshold in comparison to lasers grown on ELO with an offcut of 0.1°. For low losses, samples with fewer QWs exhibited a lower lasing threshold due to a reduced transparency pump power density while for high losses, caused by a higher threading dislocation density, the quadruple quantum well was favorable due to its higher maximum gain.

  18. Large femoral heads decrease the incidence of dislocation after total hip arthroplasty: a randomized controlled trial.

    PubMed

    Howie, Donald W; Holubowycz, Oksana T; Middleton, Robert

    2012-06-20

    The use of larger femoral heads has been proposed to reduce the risk of dislocation after total hip arthroplasty, but there is a lack of evidence to support this proposal. The aim of this multicenter randomized controlled trial was to determine whether the incidence of dislocation one year after total hip arthroplasty is significantly lower in association with the use of a 36-mm femoral head articulation as compared with a 28-mm articulation. Six hundred and forty-four middle-aged and elderly patients undergoing primary or revision arthroplasty were randomized intraoperatively to receive either a 36 or 28-mm metal femoral head on highly cross-linked polyethylene. Patients who were at high risk of dislocation (including those with dementia and neuromuscular disease) and those undergoing revision for the treatment of recurrent hip dislocation or infection were excluded. Patients were stratified according to other potential risk factors for dislocation, including diagnosis and age. Diagnosis of hip dislocation required confirmation by a physician and radiographic evidence of a dislocation. Overall, at one year of follow-up, hips with a 36-mm femoral head articulation had a significantly lower incidence of dislocation than did those with a 28-mm articulation (1.3% [four of 299] compared with 5.4% [seventeen of 316]; difference, 4.1% [95% confidence interval, 1.2% to 7.2%]) when controlling for the type of procedure (primary or revision) (p = 0.012). The incidence of dislocation following primary arthroplasty was also significantly lower for hips with a 36-mm femoral head articulation than for those with a 28-mm articulation (0.8% [two of 258] compared with 4.4% [twelve of 275]; difference, 3.6% [95% confidence interval, 0.9% to 6.8%]) (p = 0.024). The incidence of dislocation following revision arthroplasty was 4.9% (two of forty-one) for hips with a 36-mm articulation and 12.2% (five of forty-one) for hips with a 28-mm articulation; this difference was not significant with the relatively small sample size of the revision group (difference, 7.3% [95% confidence interval, -5.9% to 21.1%]) (p = 0.273). Compared with a 28-mm femoral head articulation, a larger 36-mm articulation resulted in a significantly decreased incidence of dislocation in the first year following primary total hip arthroplasty. However, before a 36-mm metal-on-highly cross-linked polyethylene articulation is widely recommended, the incidence of late dislocation, wear, periprosthetic osteolysis, and liner fracture should be established.

  19. Simultaneous multiscale measurements on dynamic deformation of a magnesium alloy with synchrotron x-ray imaging and diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, L.; Sun, T.; Fezzaa, K.

    Dynamic split Hopkinson pressure bar experiments with in situ synchrotron x-ray imaging and diffraction are conducted on a rolled magnesium alloy at high strain rates of ~5500 s-1. High speed multiscale measurements including stress–strain curves (macroscale), strain fields (mesoscale), and diffraction patterns (microscale) are obtained simultaneously, revealing strong anisotropy in deformation across different length scales. {1012} extension twinning induces homogenized strain fields and gives rise to rapid increase in strain hardening rate, while dislocation motion leads to inhomogeneous deformation and a decrease in strain hardening rate. During the early stage of plastic deformation, twinning is dominant in dynamic compression, whilemore » dislocation motion prevails in quasi-static loading, manifesting a strain-rate dependence of deformation.« less

  20. Modeling dislocation generation in high pressure Czochralski growth of indium phosphide single crystals

    NASA Astrophysics Data System (ADS)

    Pendurti, Srinivas

    InP is an important material for opto-electronic and high speed electronics applications. Its main use today is as the substrate material for epitaxy to produce GaInAsP lasers. The present technology for growing bulk InP is the high pressure Czochralski process. Bulk InP grown through this technique suffers from presence of a high density of line defects or dislocations, which are produced by thermal stresses the material goes through during its growth in the high temperature furnace. Modeling of these thermal stresses and the resulting plastic deformation, giving rise to dislocation densities, entails simulation of the entire thermal history of the crystal during its growth in the furnace, and studying the deformation of the crystal through suitable visco-plastic constitutive equations. Accordingly, a suitable visco-plastic model for deformation of InP was constructed, integrated with the ABAQUS finite element code, and verified through experimental data for uniaxial constant strain rate deformation tests available in literature. This was then coupled with a computation fluid dynamics model, predicting the entire temperature history in the furnace during crystal growth, to study the plastic deformation and dislocation density evolution in the crystal during growth. Growth in a variety of conditions was simulated and those conditions that generate minimum dislocation density identified. Macroscopic controllable parameters that affect the dislocation densities the most, have also been delineated. It was found that the strength of gas convection in the Czochralski furnace has the strongest effect on the dislocation densities in the fully grown crystal. Comparison of the simulated dislocation densities on wafers, with experimentally recorded etch pit profiles on as-grown crystals was reasonable. Finally some limitations in the work are discussed and avenues for future work identified.

  1. Knee dislocations with vascular injury: outcomes in the Lower Extremity Assessment Project (LEAP) Study.

    PubMed

    Patterson, Brendan M; Agel, Julie; Swiontkowski, Marc F; Mackenzie, Ellen J; Bosse, Michael J

    2007-10-01

    The purpose of this study is to report the clinical and functional results of a cohort of patients with knee dislocations associated with vascular injury. Patients with knee dislocation and associated vascular injury were prospectively assessed for outcome of severe lower extremity trauma during 2 years. The Sickness Impact Profile was used to assess the functional recovery of the patient. Surgeon and therapist assessments documented clinical metrics and treatment, including salvage or amputation, neurologic recovery, knee stability, and knee motion. Eighteen patients sustained a knee dislocation and an associated popliteal artery injury. Seven patients were found to have an additional vascular injury. All patients underwent repair of the vascular injury. At the time of final follow-up, 14 knees were successfully salvaged and four required amputation (1 below knee amputation, 2 through knee amputation, and 1 above knee amputation). Eighteen patients had at least a popliteal injury and underwent repair of the vascular injury. The patients with a limb-threatening knee dislocation that was successfully reconstructed had Sickness Impact Profile scores of 20.12 at 3 months, 13.18 at 6 months, 12.08 at 1 year, and 7.0 at 2 years after injury. Patients who sustain a limb-threatening knee dislocation have a moderate to high level of disability 2 years after injury. Nearly one in five patients who present to a Level I trauma center with a dysvascular limb associated with a knee dislocation will require amputation. Prolonged warm ischemia time was associated with a high rate of amputation. Patients who sustain vascular injuries associated with a knee dislocation need immediate transport to a trauma hospital, rapid assessment and diagnosis at presentation, and revascularization. Patients with these injuries can be effectively treated without angiography before surgery.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Linyun; Mei, Zhi -Gang; Kim, Yeon Soo

    A mesoscale model is developed by integrating the rate theory and phase-field models and is used to study the fission-induced recrystallization in U-7Mo alloy. The rate theory model is used to predict the dislocation density and the recrystallization nuclei density due to irradiation. The predicted fission rate and temperature dependences of the dislocation density are in good agreement with experimental measurements. This information is used as input for the multiphase phase-field model to investigate the fission-induced recrystallization kinetics. The simulated recrystallization volume fraction and bubble induced swelling agree well with experimental data. The effects of the fission rate, initial grainmore » size, and grain morphology on the recrystallization kinetics are discussed based on an analysis of recrystallization growth rate using the modified Avrami equation. Here, we conclude that the initial microstructure of the U-Mo fuels, especially the grain size, can be used to effectively control the rate of fission-induced recrystallization and therefore swelling.« less

  3. Management of irreducible unilateral facet joint dislocations in subaxial cervical spine: two case reports and a review of the literature.

    PubMed

    Zhou, Yu; Zhou, Zhenyu; Liu, Lifeng; Cao, Xuecheng

    2018-03-21

    Skeletal and soft tissue damage are often associated with unilateral facet dislocations, which undoubtedly lead to instability of the spine and further increase difficulties in cervical reduction. This type of irreducible facet dislocation is usually accompanied with potential catastrophic consequences including neurological deficit and severe disability. Therefore, a consistent and evidence-based treatment plan is imperative. The literature regarding the management of traumatic unilateral locked cervical facet dislocations was reviewed. Two patient cases (a 30-year-old Asian man and a 25-year-old Asian woman) who suffered irreducible cervical facet dislocations were presented. These two patients received surgical treatments including posterior reduction by poking facet joints, adjacent spinous process fixation by wire rope banding, anterior plate fixation, and intervertebral fusion after the failure of skull traction and closed reduction. At the postoperative 24-month follow-up, intervertebral fusion was achieved and our patients' neurological status improved based on the American Spinal Injury Association scale, compared with their preoperative status. Unilateral facet joint dislocations of subaxial cervical spine are difficult to reduce when complicated with posterior facet fractures or ligamentous injury. Magnetic resonance imaging can be beneficial for identifying ventral and dorsal compressive lesions, as well as ligamentous or capsule rupture. The combination of posterior reduction and anterior fixation with fusion has advantages in terms of clinical safety, ease of operation, and less iatrogenic damage.

  4. MD modeling of screw dislocation influence upon initiation and mechanism of BCC-HCP polymorphous transition in iron

    NASA Astrophysics Data System (ADS)

    Dremov, V. V.; Ionov, G. V.; Sapozhnikov, F. A.; Smirnov, N. A.; Karavaev, A. V.; Vorobyova, M. A.; Ryzhkov, M. V.

    2015-09-01

    The present work is devoted to classical molecular dynamics investigation into microscopic mechanisms of the bcc-hcp transition in iron. The interatomic potential of EAM type used in the calculations was tested for the capability to reproduce ab initio data on energy evolution along the bcc-hcp transformation path (Burgers deformation + shuffe) and then used in the large-scale MD simulations. The large-scale simulations included constant volume deformation along the Burgers path to study the origin and nature of the plasticity, hydrostatic volume compression of defect free samples above the bcc to hcp transition threshold to observe the formation of new phase embryos, and the volume compression of samples containing screw dislocations to study the effect of the dislocations on the probability of the new phase critical embryo formation. The volume compression demonstrated high level of metastability. The transition starts at pressure much higher than the equilibrium one. Dislocations strongly affect the probability of the critical embryo formation and significantly reduce the onset pressure of transition. The dislocations affect also the resulting structure of the samples upon the transition. The formation of layered structure is typical for the samples containing the dislocations. The results of the simulations were compared with the in-situ experimental data on the mechanism of the bcc-hcp transition in iron.

  5. Study of structure defect interactions in aluminum by the acoustic method. [internal friction in pure aluminum

    NASA Technical Reports Server (NTRS)

    Nicolaescu, I. I.

    1974-01-01

    Using echo pulse and resonance rod methods, internal friction in pure aluminum was studied as a function of frequency, hardening temperature, time (internal friction relaxation) and impurity content. These studies led to the conclusion that internal friction in these materials depends strongly on dislocation structure and on elastic interactions between structure defects. It was found experimentally that internal friction relaxation depends on the cooling rate and on the impurity content. Some parameters of the dislocation structure and of the diffusion process were determined. It is shown that the dislocated dependence of internal friction can be used as a method of nondestructive testing of the impurity content of high-purity materials.

  6. Dislocations Accelerate Oxygen Ion Diffusion in La 0.8Sr 0.2MnO 3 Epitaxial Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Navickas, Edvinas; Chen, Yan; Lu, Qiyang

    Revealing whether dislocations accelerate oxygen ion transport is important for providing abilities in tuning the ionic conductivity of ceramic materials. In this study, we report how dislocations affect oxygen ion diffusion in Sr-doped LaMnO 3 (LSM), a model perovskite oxide that serves in energy conversion technologies. LSM epitaxial thin films with thicknesses ranging from 10 nm to more than 100 nm were prepared by pulsed laser deposition on single-crystal LaAlO 3 and SrTiO 3 substrates. The lattice mismatch between the film and substrates induces compressive or tensile in-plane strain in the LSM layers. This lattice strain is partially reduced bymore » dislocations, especially in the LSM films on LaAlO 3. Oxygen isotope exchange measured by secondary ion mass spectrometry revealed the existence of at least two very different diffusion coefficients in the LSM films on LaAlO 3. In conclusion, the diffusion profiles can be quantitatively explained by the existence of fast oxygen ion diffusion along threading dislocations that is faster by up to 3 orders of magnitude compared to that in LSM bulk.« less

  7. Hydrogen-induced strain localisation in oxygen-free copper in the initial stage of plastic deformation

    NASA Astrophysics Data System (ADS)

    Yagodzinskyy, Yuriy; Malitckii, Evgenii; Tuomisto, Filip; Hänninen, Hannu

    2018-03-01

    Single crystals of oxygen-free copper oriented to easy glide of dislocations were tensile tested in order to study the hydrogen effects on the strain localisation in the form of slip bands appearing on the polished specimen surface under tensile straining. It was found that hydrogen increases the plastic flow stress in Stage I of deformation. The dislocation slip localisation in the form of slip bands was observed and analysed using an online optical monitoring system and atomic force microscopy. The fine structure of the slip bands observed with AFM shows that they consist of a number of dislocation slip offsets which spacing in the presence of hydrogen is markedly reduced as compared to that in the hydrogen-free specimens. The tensile tests and AFM observations were accompanied with positron annihilation lifetime measurements showing that straining of pure copper in the presence of hydrogen results in free volume generation in the form of vacancy complexes. Hydrogen-enhanced free-volume generation is discussed in terms of hydrogen interactions with edge dislocation dipoles forming in double cross-slip of screw dislocations in the initial stage of plastic deformation of pure copper.

  8. Dislocations Accelerate Oxygen Ion Diffusion in La0.8Sr0.2MnO3 Epitaxial Thin Films

    PubMed Central

    2017-01-01

    Revealing whether dislocations accelerate oxygen ion transport is important for providing abilities in tuning the ionic conductivity of ceramic materials. In this study, we report how dislocations affect oxygen ion diffusion in Sr-doped LaMnO3 (LSM), a model perovskite oxide that serves in energy conversion technologies. LSM epitaxial thin films with thicknesses ranging from 10 nm to more than 100 nm were prepared by pulsed laser deposition on single-crystal LaAlO3 and SrTiO3 substrates. The lattice mismatch between the film and substrates induces compressive or tensile in-plane strain in the LSM layers. This lattice strain is partially reduced by dislocations, especially in the LSM films on LaAlO3. Oxygen isotope exchange measured by secondary ion mass spectrometry revealed the existence of at least two very different diffusion coefficients in the LSM films on LaAlO3. The diffusion profiles can be quantitatively explained by the existence of fast oxygen ion diffusion along threading dislocations that is faster by up to 3 orders of magnitude compared to that in LSM bulk. PMID:28981249

  9. Dislocations Accelerate Oxygen Ion Diffusion in La 0.8Sr 0.2MnO 3 Epitaxial Thin Films

    DOE PAGES

    Navickas, Edvinas; Chen, Yan; Lu, Qiyang; ...

    2017-10-05

    Revealing whether dislocations accelerate oxygen ion transport is important for providing abilities in tuning the ionic conductivity of ceramic materials. In this study, we report how dislocations affect oxygen ion diffusion in Sr-doped LaMnO 3 (LSM), a model perovskite oxide that serves in energy conversion technologies. LSM epitaxial thin films with thicknesses ranging from 10 nm to more than 100 nm were prepared by pulsed laser deposition on single-crystal LaAlO 3 and SrTiO 3 substrates. The lattice mismatch between the film and substrates induces compressive or tensile in-plane strain in the LSM layers. This lattice strain is partially reduced bymore » dislocations, especially in the LSM films on LaAlO 3. Oxygen isotope exchange measured by secondary ion mass spectrometry revealed the existence of at least two very different diffusion coefficients in the LSM films on LaAlO 3. In conclusion, the diffusion profiles can be quantitatively explained by the existence of fast oxygen ion diffusion along threading dislocations that is faster by up to 3 orders of magnitude compared to that in LSM bulk.« less

  10. Trap-assisted tunneling in Si-InAs nanowire heterojunction tunnel diodes.

    PubMed

    Bessire, Cedric D; Björk, Mikael T; Schmid, Heinz; Schenk, Andreas; Reuter, Kathleen B; Riel, Heike

    2011-10-12

    We report on the electrical characterization of one-sided p(+)-si/n-InAs nanowire heterojunction tunnel diodes to provide insight into the tunnel process occurring in this highly lattice mismatched material system. The lattice mismatch gives rise to dislocations at the interface as confirmed by electron microscopy. Despite this, a negative differential resistance with peak-to-valley current ratios of up to 2.4 at room temperature and with large current densities is observed, attesting to the very abrupt and high-quality interface. The presence of dislocations and other defects that increase the excess current is evident in the first and second derivative of the I-V characteristics as distinct peaks arising from trap-and phonon-assisted tunneling via the corresponding defect levels. We observe this assisted tunneling mainly in the forward direction and at low reverse bias but not at higher reverse biases because the band-to-band generation rates are peaked in the InAs, which is also confirmed by modeling. This indicates that most of the peaks are due to dislocations and defects in the immediate vicinity of the interface. Finally, we also demonstrate that these devices are very sensitive to electrical stress, in particular at room temperature, because of the extremely high electrical fields obtained at the abrupt junction even at low bias. The electrical stress induces additional defect levels in the band gap, which reduce the peak-to-valley current ratios.

  11. Acute quadriplegia following closed traction reduction of a cervical facet dislocation in the setting of ossification of the posterior longitudinal ligament: case report.

    PubMed

    Wimberley, David W; Vaccaro, Alexander R; Goyal, Nitin; Harrop, James S; Anderson, D Greg; Albert, Todd J; Hilibrand, Alan S

    2005-08-01

    A case report of acute quadriplegia resulting from closed traction reduction of traumatic bilateral cervical facet dislocation in a 54-year-old male with concomitant ossification of the posterior longitudinal ligament (OPLL). To report an unusual presentation of a spinal cord injury, examine the approach to reversal of the injury, and review the treatment and management controversies of acute cervical facet dislocations in specific patient subgroups. The treatment of acute cervical facet dislocations is an area of ongoing controversy, especially regarding the question of the necessity of advanced imaging studies before closed traction reduction of the dislocated cervical spine. The safety of an immediate closed, traction reduction of the cervical spine in awake, alert, cooperative, and appropriately select patients has been reported in several studies. To date, there have been no permanent neurologic deficits resulting from awake, closed reduction reported in the literature. A case of temporary, acute quadriplegia with complete neurologic recovery following successful closed traction reduction of a bilateral cervical facet dislocation in the setting of OPLL is presented. The clinical neurologic examination, radiographic, and advanced imaging studies before and after closed, traction reduction of a cervical facet dislocation are evaluated and discussed. A review of the literature regarding the treatment of acute cervical facet dislocations is presented. Radiographs showed approximately 50% subluxation of the fifth on the sixth cervical vertebrae, along with computerized tomography revealing extensive discontinuous OPLL. The cervical facet dislocation was successfully reduced with an awake, closed traction reduction, before magnetic resonance imaging (MRI) evaluation. The patient subsequently had acute quadriplegia develop, with the ensuing MRI study illustrating severe spinal stenosis at the C5, C6 level as a result of OPLL or a large extruded disc herniation. Following an immediate anterior decompression and a posterior stabilization procedure, the patient regained full motor and sensory function. This case report highlights the advantages and shows some safety concerns regarding immediate, closed traction reduction of cervical facet dislocation with real-time neural monitoring in an awake, alert, oriented, and appropriately select patient before MRI studies in the setting of preexisting central stenosis from OPLL.

  12. Dwell fatigue in two Ti alloys: An integrated crystal plasticity and discrete dislocation study

    NASA Astrophysics Data System (ADS)

    Zheng, Zebang; Balint, Daniel S.; Dunne, Fionn P. E.

    2016-11-01

    It is a well known and important problem in the aircraft engine industry that alloy Ti-6242 shows a significant reduction in fatigue life, termed dwell debit, if a stress dwell is included in the fatigue cycle, whereas Ti-6246 does not; the mechanistic explanation for the differing dwell debit of these alloys has remained elusive for decades. In this work, crystal plasticity modelling has been utilised to extract the thermal activation energies for pinned dislocation escape for both Ti alloys based on independent experimental data. This then allows the markedly different cold creep responses of the two alloys to be captured accurately and demonstrates why the observed near-identical rate sensitivity under non-dwell loading is entirely consistent with the dwell behaviour. The activation energies determined are then utilised within a recently developed thermally-activated discrete dislocation plasticity model to predict the strain rate sensitivities of the two alloys associated with nano-indentation into basal and prism planes. It is shown that Ti-6242 experiences a strong crystallographic orientation-dependent rate sensitivity while Ti-6246 does not which is shown to agree with recently published independent measurements; the dependence of rate sensitivity on indentation slip plane is also well captured. The thermally-activated discrete dislocation plasticity model shows that the incorporation of a stress dwell in fatigue loading leads to remarkable stress redistribution from soft to hard grains in the classical cold dwell fatigue rogue grain combination in alloy Ti-6242, but that no such load shedding occurs in alloy Ti-6246. The key property controlling the behaviour is the time constant of the thermal activation process relative to that of the loading. This work provides the first mechanistic basis to explain why alloy Ti-6242 shows a dwell debit but Ti-6246 does not.

  13. Evaluating the influence of stress on the dislocation creep flow law for quartz

    NASA Astrophysics Data System (ADS)

    Tokle, L.; Hirth, G.

    2017-12-01

    Due to the abundance of quartz in the continental crust, quartz rheology is fundamental to our understanding of many geodynamic processes. Microstructures in many naturally deformed quartzites deformed at ductile conditions, indicate that dislocation creep is a common deformation mechanism in quartz at crustal conditions. The dislocation creep flow laws for quartz were constructed based on deformation experiments on aggregates at temperatures from 900 to 1100°C and strain rates of 10-5-10-6 s-1. Hirth et al. (2001) point out that these flow laws underestimate sample strengths for experiments conducted below 900°C; yet samples deformed as low as 700°C exhibit dislocation creep microstructures. To address this discrepancy, we compared 14 different studies on experimentally deformed wet quartzite aggregates ranging in temperature from 700 to 1100°C. Our analysis shows that two clear trends develop, one with a power-law stress exponent of n = 4 and the other, at a higher stress, with a stress exponent of n = 3. This change suggests a transition in the rate-limiting process; further, the conditions where the transition in stress exponent occurs correlate well with changes in quartz c-axis fabrics in general shear experiments. At low stresses, quartz fabrics are defined by a Y-max, indicating prism slip, while at higher stresses quartz fabrics are defined by basal slip. Our interpretation is that the c-axis fabrics represent the easy slip system in quartz and hypothesize that basal slip is rate-limiting at low stresses while prism is rate-limiting at high stresses. A change in the stress exponent has significant consequences for our understanding of high stress tectonic environments, such as the brittle-ductile transition and sediment rheology in a subducting slab.

  14. The epidemiology of 1345 shoulder dislocations and subluxations in French Rugby Union players: a five-season prospective study from 2008 to 2013.

    PubMed

    Bohu, Yoann; Klouche, Shahnaz; Lefevre, Nicolas; Peyrin, Jean-Claude; Dusfour, Bernard; Hager, Jean-Philippe; Ribaut, Aurélie; Herman, Serge

    2015-12-01

    An understanding of the epidemiology of shoulder dislocation/subluxation in rugby union players could help develop targeted prevention programmes and treatment. We performed a multiyear epidemiological survey of shoulder dislocation/subluxation in a large cohort of rugby players. A descriptive epidemiological study was performed prospectively for five playing seasons (2008-2013) in all players licensed in the French Rugby Union. Rugby players were categorised into five groups by age. The player and the team physician reported the injury to the club insurance company if it occurred during training or a match. The goals of the study were to define the rate, type and causes of shoulder dislocation/subluxation. 88,044 injuries were reported, including 1345 (1.5%) episodes of dislocation/subluxation in 1317 men and 28 women, mean age 22.5±5.9 years. About 10/10,000 men and 5/10,000 women reported an episode of shoulder dislocation/subluxation per season, including 83/10,000 senior professionals, 17/10,000 senior amateurs, 21/10,000 juniors, 12/10,000 cadets and <1/10,000 rugby school players. Shoulder dislocation/subluxation was significantly more frequent in senior and junior players (p<0.001). Injuries mainly occurred during a match (66%) in the middle of the season (44%). The most frequent playing position was forwards (56%) and the main mechanism was tackling (69%). When reported, the history of recurrence was found in 66% of injured players, fractures in 22% and acromioclavicular injury in 6.7%. Nerve injury was associated with shoulder dislocation in 6% of cases. Senior professionals and junior male forward rugby players with a history of shoulder dislocation/subluxation should receive special attention from sports medicine professionals and orthopaedic surgeons. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  15. Interfacial diffusion aided deformation during nanoindentation

    DOE PAGES

    Samanta, Amit; E., Weinan

    2015-07-06

    Nanoindentation is commonly used to quantify the mechanical response of material surfaces. Despite its widespread use, a detailed understanding of the deformation mechanisms responsible for plasticity during these experiments has remained elusive. Nanoindentation measurements often show stress values close to a material’s ideal strength which suggests that dislocation nucleation and subsequent dislocation activity dominates the deformation. However, low strain-rate exponents and small activation volumes have also been reported which indicates high temperature sensitivity of the deformation processes. Using an order parameter aided temperature accelerated sampling technique called adiabatic free energy dynamics [J. B. Abrams and M. E. Tuckerman, J. Phys.more » Chem. B, 112, 15742 (2008)], and molecular dynamics we have probed the diffusive mode of deformation during nanoindentation. Localized processes such as surface vacancy and ad-atom pair formation, vacancy diffusion are found to play an important role during indentation. Furthermore, our analysis suggests a change in the dominant deformation mode from dislocation mediated plasticity to diffusional flow at high temperatures, slow indentation rates and small indenter tip radii.« less

  16. Positron annihilation lifetime study of oxide dispersion strengthened steels

    NASA Astrophysics Data System (ADS)

    Krsjak, V.; Szaraz, Z.; Hähner, P.

    2012-09-01

    A comparative positron annihilation lifetime study has been performed on various commercial ferritic and ferritic/martensitic oxide dispersion strengthened (ODS) steels. Both as-extruded and recrystallized materials were investigated. In the materials with recrystallized coarse-grained microstructures, only the positron trapping at small vacancy clusters and yttria nanofeatures was observed. Materials which had not undergone recrystallization treatment clearly showed additional positron trapping which is associated with dislocations. Dislocation densities were calculated from a two-component decomposition of the positron lifetime spectra by assuming the first component to be a superposition of the bulk controlled annihilation rate and the dislocation controlled trapping rate. The second component (which translates into lifetimes of 240-260 ps) was found to be well separated in all those ODS materials. This paper presents the potentialities and limitations of the positron annihilation lifetime spectroscopy, and discusses the results of the experimental determination of the defect concentrations and sensitivity of this technique to the material degradation due to thermally induced precipitation of chromium-rich α' phases.

  17. Effect of irradiation-induced plastic flow localization on ductile crack resistance behavior of a 9%Cr tempered martensitic steel

    NASA Astrophysics Data System (ADS)

    Chaouadi, R.

    2008-01-01

    This paper examines the effect of irradiation-induced plastic flow localization on the crack resistance behavior. Tensile and crack resistance measurements were performed on Eurofer-97 that was irradiated at 300 °C to neutron doses ranging between 0.3 and 2.1 dpa. A severe degradation of crack resistance behavior is experimentally established at quasi-static loading, in contradiction with the Charpy impact data and the dynamic crack resistance measurements. This degradation is attributed to the dislocation channel deformation phenomenon. At quasi-static loading rate, scanning electron microscopy observations of the fracture surfaces revealed a significant change of fracture topography, mainly from equiaxed dimples (mode I) to shear dimples (mode I + II). With increasing loading rate, the high peak stresses that develop inside the process zone activate much more dislocation sources resulting in a higher density of cross cutting dislocation channels and therefore an almost unaffected crack resistance. These explanations provide a rational to all experimental observations.

  18. Atomic and electronic structure of Lomer dislocations at CdTe bicrystal interface

    PubMed Central

    Sun, Ce; Paulauskas, Tadas; Sen, Fatih G.; Lian, Guoda; Wang, Jinguo; Buurma, Christopher; Chan, Maria K. Y.; Klie, Robert F.; Kim, Moon J.

    2016-01-01

    Extended defects are of considerable importance in determining the electronic properties of semiconductors, especially in photovoltaics (PVs), due to their effects on electron-hole recombination. We employ model systems to study the effects of dislocations in CdTe by constructing grain boundaries using wafer bonding. Atomic-resolution scanning transmission electron microscopy (STEM) of a [1–10]/(110) 4.8° tilt grain boundary reveals that the interface is composed of three distinct types of Lomer dislocations. Geometrical phase analysis is used to map strain fields, while STEM and density functional theory (DFT) modeling determine the atomic structure at the interface. The electronic structure of the dislocation cores calculated using DFT shows significant mid-gap states and different charge-channeling tendencies. Cl-doping is shown to reduce the midgap states, while maintaining the charge separation effects. This report offers novel avenues for exploring grain boundary effects in CdTe-based solar cells by fabricating controlled bicrystal interfaces and systematic atomic-scale analysis. PMID:27255415

  19. Scaphocapitate Syndrome With Associated Trans-Scaphoid, Trans-Hamate Perilunate Dislocation

    PubMed Central

    Nunez, Fiesky A.; Luo, T. David; Jupiter, Jesse B.; Nunez, Fiesky A.

    2016-01-01

    Background: Perilunate fracture dislocations are often associated with fractures of the distal pole of the scaphoid or the proximal pole of the capitate. However, the combination of perilunate dislocation with multiple carpal fractures and associated scaphocapitate syndrome is very rare. Methods: We report a unique case of scaphocapitate fracture syndrome with perilunate dislocation and fracture of the hamate resulting from a high-energy injury to the wrist during a dirt-bike competition. Results: Open reduction and internal fixation of the scaphoid fracture with a 3.0-mm headless screw, the head of the capitate with a 1.5-mm lag screw, and the hamate fracture with a 1.3-mm lag screw was performed. The lunotriquetral dissociation was reduced, with the ligament repaired and the joint stabilized using a Kirschner wire. All screw heads are carefully buried under the articulate cartilage. Conclusions: Prompt anatomic reduction and stable osteosynthesis of all fractures in this patient resulted in successful healing and return to activity. PMID:28344539

  20. Strain rate dependent calcite microfabric evolution - an experiment carried out by nature

    NASA Astrophysics Data System (ADS)

    Rogowitz, A.; Huet, B.; Grasemann, B.; Habler, G.

    2013-12-01

    The deformation behaviour of calcite has been studied extensively in a number of experiments. Different strain rates and pressure and temperature conditions have been used to investigate a wide range of deformation regimes. However, a direct comparison with natural fault rocks remains difficult because of extreme differences between experimental and natural strain rates. A secondary shear zone (flanking structure) developed in almost pure calcite marble on Syros (Greece). Due to rotation of an elliptical inclusion (crack) a heterogeneous strain field in the surrounding area occurred resulting in different strain domains and the formation of the flanking structure. Assuming that deformation was active continuously during the development of the flanking structure, the different strain domains correspond to different strain-rate domains. The outcrop thus represents the final state of a natural experiment and gives us a great opportunity to get natural constraints on strain rate dependent deformation behaviour of calcite. Comparing the microfabrics in the 1 to 2.5 cm thick shear zone and the surrounding host rocks, which formed under the same metamorphic conditions but with different strain rates, is the central focus of this study. Due to the extreme variation in strain and strain rate, different microstructures and textures can be observed corresponding to different deformation mechanisms. With increasing strain rate we observe a change in dominant deformation mechanism from dislocation glide to dislocation creep and finally diffusion creep. Additionally, a change from subgrain rotation (SGR) to bulging (BLG) recrystallization can be observed in the dislocation creep regime. Textures and the degree of intracrystalline deformation have been measured by electron back scatter diffraction (EBSD). At all strain rates clear CPOs developed leading to the assumption that calcite preferentially deforms within the dislocation creep field. However, we can also find clear evidence for grain size sensitive deformation mechanisms at smaller grain sizes (3.6 μm) consistent with experimental observations and determined flaw laws. Although mylonitic layers evolve at high (10^-10 s^-1) and intermediate strain rates (10^-11 s^-1) by SGR recrystallization we observe variations in texture leading to the assumption that at varying strain rates different gliding systems were active. The results of this study are compared with experimental data, closing the gap between experimental and natural geological strain rates.

  1. Face-centred cubic to body-centred cubic phase transformation under [1 0 0] tensile loading

    NASA Astrophysics Data System (ADS)

    Xie, Hongxian; Yu, Jiayun; Yu, Tao; Yin, Fuxing

    2018-06-01

    Molecular dynamics simulation was used to verify a speculation of the existence of a certain face-centred cubic (FCC) to body-centred cubic (BCC) phase transformation pathway. Four FCC metals, Ni, Cu, Au and Ag, were stretched along the [1 0 0] direction at various strain rates and temperatures. Under high strain rate and low temperature, and beyond the elastic limit, the bifurcation of the FCC phase occurred with sudden contraction along one lateral direction and expansion along the other lateral direction. When the lattice constant along the expansion direction converged with that of the stretched direction, the FCC phase transformed into an unstressed BCC phase. By reducing the strain rate or increasing the temperature, dislocation or 'momentum-induced melting' mechanisms began to control the plastic deformation of the FCC metals, respectively.

  2. Dislocation creep accommodated Grain Boundary Sliding: A high strain rate/low temperature deformation mechanism in calcite ultramylonites

    NASA Astrophysics Data System (ADS)

    Rogowitz, Anna; Grasemann, Bernhard

    2014-05-01

    Grain boundary sliding (GBS) is an important grain size sensitive deformation mechanism that is often associated with extreme strain localization and superplasticity. Another mechanism has to operate simultaneously to GBS in order to prevent overlaps and voids between sliding grains. One of the most common accommodating mechanisms is diffusional creep but, recently, dislocation creep has been reported to operate simultaneous to GBS. Due to the formation of a flanking structure in nearly pure calcite marble on Syros (Cyclades, Greece) at lower greenschist facies conditions, an extremely fine grained ultramylonite developed. The microstructure of the layer is characterized by (1) calcite grains with an average grain size of 3.6 µm (developed by low temperature/high strain rate grain boundary migration recrystallization, BLG), (2) grain boundary triple junctions with nearly 120° angles and (3) small cavities preferentially located at triple junctions and at grain boundaries in extension. These features suggest that the dominant deformation mechanism was GBS. In order to get more information on the accommodation mechanism detailed microstructural and textural analyses have been performed on a FEI Quanta 3D FEG instrument equipped with an EDAX Digiview IV EBSD camera. The misorientation distribution curves for correlated and uncorrelated grains follow almost perfect the calculated theoretical curve for a random distribution, which is typical for polycrystalline material deformed by GBS. However, the crystallographic preferred orientation indicates that dislocation creep might have operated simultaneously. We also report Zener-Stroh cracks resulting from dislocation pile up, indicating that dislocation movement was active. We, therefore, conclude that the dominant deformation mechanism was dislocation creep accommodated grain boundary sliding. This is consistent with the observed grain size range that plots at the field boundary between grain size insensitive and grain size sensitive creep, in a deformation mechanism map for calcite.

  3. Probing the limits of metal plasticity with molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Zepeda-Ruiz, Luis A.; Stukowski, Alexander; Oppelstrup, Tomas; Bulatov, Vasily V.

    2017-10-01

    Ordinarily, the strength and plasticity properties of a metal are defined by dislocations--line defects in the crystal lattice whose motion results in material slippage along lattice planes. Dislocation dynamics models are usually used as mesoscale proxies for true atomistic dynamics, which are computationally expensive to perform routinely. However, atomistic simulations accurately capture every possible mechanism of material response, resolving every ``jiggle and wiggle'' of atomic motion, whereas dislocation dynamics models do not. Here we present fully dynamic atomistic simulations of bulk single-crystal plasticity in the body-centred-cubic metal tantalum. Our goal is to quantify the conditions under which the limits of dislocation-mediated plasticity are reached and to understand what happens to the metal beyond any such limit. In our simulations, the metal is compressed at ultrahigh strain rates along its [001] crystal axis under conditions of constant pressure, temperature and strain rate. To address the complexity of crystal plasticity processes on the length scales (85-340 nm) and timescales (1 ns-1μs) that we examine, we use recently developed methods of in situ computational microscopy to recast the enormous amount of transient trajectory data generated in our simulations into a form that can be analysed by a human. Our simulations predict that, on reaching certain limiting conditions of strain, dislocations alone can no longer relieve mechanical loads; instead, another mechanism, known as deformation twinning (the sudden re-orientation of the crystal lattice), takes over as the dominant mode of dynamic response. Below this limit, the metal assumes a strain-path-independent steady state of plastic flow in which the flow stress and the dislocation density remain constant as long as the conditions of straining thereafter remain unchanged. In this distinct state, tantalum flows like a viscous fluid while retaining its crystal lattice and remaining a strong and stiff metal.

  4. In-situ NC-AFM measurements of high quality AlN(0001) layers grown at low growth rate on 4H-SiC(0001) and Si(111) substrates using ammonia molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaumeton, Florian, E-mail: florian.chaumeton@cemes.fr; Gauthier, Sébastien, E-mail: gauthier@cemes.fr; Martrou, David, E-mail: david.martrou@cemes.fr

    Nitride wide-band-gap semiconductors are used to make high power electronic devices or efficient light sources. The performance of GaN-based devices is directly linked to the initial AlN buffer layer. During the last twenty years of research on nitride growth, only few information on the AlN surface quality have been obtained, mainly by ex-situ characterization techniques. Thanks to a Non Contact Atomic Force Microscope (NC-AFM) connected under ultra high vacuum (UHV) to a dedicated molecular beam epitaxy (MBE) chamber, the surface of AlN(0001) thin films grown on Si(111) and 4H-SiC(0001) substrates has been characterized. These experiments give access to a quantitativemore » determination of the density of screw and edge dislocations at the surface. The layers were also characterized by ex-situ SEM to observe the largest defects such as relaxation dislocations and hillocks. The influence of the growth parameters (substrate temperature, growth speed, III/V ratio) and of the initial substrate preparation on the dislocation density was also investigated. On Si(111), the large in-plane lattice mismatch with AlN(0001) (19%) induces a high dislocation density ranging from 6 to 12×10{sup 10}/cm{sup 2} depending on the growth conditions. On 4H-SiC(0001) (1% mismatch with AlN(0001)), the dislocation density decreases to less than 10{sup 10}/cm{sup 2}, but hillocks appear, depending on the initial SiC(0001) reconstruction. The use of a very low growth rate of 10 nm/h at the beginning of the growth process allows to decrease the dislocation density below 2 × 10{sup 9}/cm{sup 2}.« less

  5. [Intra-prosthetic dislocation of the Bousquet dual mobility socket].

    PubMed

    Lecuire, F; Benareau, I; Rubini, J; Basso, M

    2004-05-01

    The Bousquet system is a dual mobility head-polyethylene polyethylene-metal cup socket. The polyethylene insert retaining the femoral head moves in the noncemented metal cup, increasing both mobility and stability. Between 1989 and 1997, seven cases of intra-prosthetic dislocation (six patients) were observed. The femoral head escaped from the polyethylene insert due to wear. On the average, this complication occurred ten Years after implantation. Risk of dislocation was high in six of the seven hips. All patients had a large sized stem screwed into the femoral neck. There was a characteristic radiological aspect with loss of the concentric head metal cup configuration. The head was applied against the upper wall of the metal cup. Surgical replacement was undertaken early in six patients by simply changing the insert without modifying the other stable components. Outcome remained good at three to eight Years. One patient underwent late surgery. The insert and the cup were replaced with a classical implant. Functional outcome was good but recurrent dislocation occurred. At mid-term, intra-prosthetic dislocation of dual mobility sockets appears to be exceptional. Dislocation results from polyethylene wear leading to failure of the insert to retain the prosthetic head. Wear is favored by direct phenomena (direct contact between neck and insert which can occur early if there is a small difference in the head and neck diameters) or indirect phenomena (factors limiting polyethylene metal-cup mobility). Surgical treatment is necessary. If undertaken early, replacement with a modular head and insert can be sufficient if the prosthesis has not loosened but the metal cup may have to be replaced in the event of metal-metal contact between the head and the cup. Prosthesis loosening, wear of the metal cup, or an identified cause of dislocation imply replacing the failing implants. Implantation of the dual mobility system is particularly interesting for patients with a high risk of dislocation or a chronically unstable hip prosthesis. Careful technique is required to reduce or retard the risk of intra-prosthetic dislocation. Intra-prosthetic dislocation of a dual mobility socket is an exceptional complication at mid-term. Surgical treatment is required but may be limited to simple insert replacement. Systematic use of this type of implant in young subjects must be carefully examined, but for us, the risk of dislocation does not outweigh the advantages of this original concept of dual mobility. This type of socket remains an useful preventive technique for high-risk hips or for curative treatment of recurrent dislocation.

  6. Employment.

    ERIC Educational Resources Information Center

    Social and Labour Bulletin, 1983

    1983-01-01

    A series of articles discusses employment issues in various countries: youth employment, reduced working hours and wage cuts, dislocated workers, government employment policies, and job creation. (SK)

  7. Reduction of metallosis in hip implant using thin film coating

    NASA Astrophysics Data System (ADS)

    Rajeshshyam, R.; Chockalingam, K.; Gayathri, V.; Prakash, T.

    2018-04-01

    Hip implant finds its emerging attraction due to it continuous demand over the years. The hip implants (femoral head) and acetabulum cup) mainly fabricated by metals such as stainless steel, cobalt chrome and titanium alloys, other than that ceramics and polyethylene have been used. The metal-on-metal hip implant was found to be best implant material for most of the surgeons due to its high surface finish, low wear rate and low chance of dislocation from its position after implanting. Where in metal based hip implant shows less wear rate of 0.01mm3/year. Metal-on-metal implant finds its advantage over other materials both in its mechanical and physical stability against human load. In M-O-M Cobalt- chromium alloys induce metal allergy. The metal allergy (particulate debris) that is generated by wear, fretting, fragmentation and which is unavoidable when a prosthesis is implanted, can induce an inflammatory reaction in some circumstances. The objectives of this research to evaluate thin film coating with Nano particle additives to reduce the wear leads to regarding metal ion release. Experimental results reveals that thin film Sol-Gel coating with 4wt. % of specimen reduced the cobalt and chromium ion release and reduces the wear rate. Wear rate reduced by 98% for 4wt. % graphene in 20N and 95% for 4wt. % graphene in 10N.

  8. Microstructure and nanohardness distribution in a polycrystalline Zn deformed by high strain rate impact

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dirras, G., E-mail: dirras@univ-paris13.fr; Ouarem, A.; Couque, H.

    2011-05-15

    Polycrystalline Zn with an average grain size of about 300 {mu}m was deformed by direct impact Hopkinson pressure bar at a velocity of 29 m/s. An inhomogeneous grain structure was found consisting of a center region having large average grain size of 20 {mu}m surrounded by a fine-grained rim with an average grain size of 6 {mu}m. Transmission electron microscopy investigations showed a significant dislocation density in the large-grained area while in the fine-grained rim the dislocation density was negligible. Most probably, the higher strain yielded recrystallization in the outer ring while in the center only recovery occurred. The hardeningmore » effect of dislocations overwhelms the smaller grain size strengthening in the center part resulting in higher nanohardness in this region than in the outer ring. - Graphical Abstract: (a): EBSD micrograph showing the initial microstructure of polycrystalline Zn that was subsequently submitted to high strain rate impact. (b): an inhomogeneous grain size refinement was obtained which consists of a central coarse-grained area, surrounded by a fine-grained recrystallized rim. The black arrow points to the disc center. Research Highlights: {yields} A polycrystalline Zn specimen was submitted to high strain rate impact loading. {yields} Inhomogeneous grain refinement occurred due to strain gradient in impacted sample. {yields} A fine-grained recrystallized rim surrounded the coarse-grained center of specimen. {yields} The coarse-grained center exhibited higher hardness than the fine-grained rim. {yields} The higher hardness of the center was caused by the higher dislocation density.« less

  9. The Effect of the Wall Contact and Post-Growth C001-Down on Defects in CdTe Crystals Grown by Contactless PVT

    NASA Technical Reports Server (NTRS)

    Palosz, W.; Grasza, K.; Dudley, M.; Raghothamachar, B.; Cai, L.; Durose, K.; Halliday, D.; Boyall, N. M.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    In crystal growth, the quality of the final material may depend, among other factors, on its interaction with the walls of the ampoule during and after the growth, and on the rate of the crystal cool-down at the end of ate the process. To investigate the above phenomena, a series of CdTe crystal growth processes was carried out, The crystals were grown by physical vapor transport without contact with the side walls of the silica glass ampoules, applying the Low Supersaturation Nucleation technique. The source temperature was 930 C, the undercooling was a few degrees. The crystals, having the diameter of 25 mm, grew at the rate of a few mm per day. The post-growth cool-down to the room temperature was conducted at different rates, and lasted from a few minutes to four days. The crystals were characterized using chemical etching low temperature luminescence, and Synchrotron White Beam X-ray Topography techniques. The dislocation (etch pit) density was measured and its distribution was analyzed by comparison with Poisson curves and with the Normalized Radial Distribution Correlation Function. It was found that the contact of the crystal with silica leads to a strain field and high (in the 105 sq cm range) dislocation (etch pit) density. Similar defect concentrations were found in crystals subjected to fast post-growth cool-down. Typical EPD values for lower cool-down rates and in regions not affected by wall interactions are in the lower 10(exp 4) sq cm range. In some areas the actual dislocation density was about 10(exp 3) sq cm or even less. No apparent effect of the cool-down rate on polygonization was observed. A fine structure could be discerned in low-temperature PL spectra of crystals with low dislocation density.

  10. Environmental fatigue of an Al-Li-Cu alloy. Part 3: Modeling of crack tip hydrogen damage

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.; Gangloff, Richard P.

    1992-01-01

    Environmental fatigue crack propagation rates and microscopic damage modes in Al-Li-Cu alloy 2090 (Parts 1 and 2) are described by a crack tip process zone model based on hydrogen embrittlement. Da/dN sub ENV equates to discontinuous crack advance over a distance, delta a, determined by dislocation transport of dissolved hydrogen at plastic strains above a critical value; and to the number of load cycles, delta N, required to hydrogenate process zone trap sites that fracture according to a local hydrogen concentration-tensile stress criterion. Transgranular (100) cracking occurs for process zones smaller than the subgrain size, and due to lattice decohesion or hydride formation. Intersubgranular cracking dominates when the process zone encompasses one or more subgrains so that dislocation transport provides hydrogen to strong boundary trapping sites. Multi-sloped log da/dN-log delta K behavior is produced by process zone plastic strain-hydrogen-microstructure interactions, and is determined by the DK dependent rates and proportions of each parallel cracking mode. Absolute values of the exponents and the preexponential coefficients are not predictable; however, fractographic measurements theta sub i coupled with fatigue crack propagation data for alloy 2090 established that the process zone model correctly describes fatigue crack propagation kinetics. Crack surface films hinder hydrogen uptake and reduce da/dN and alter the proportions of each fatigue crack propagation mode.

  11. Comparison of four different reduction methods for anterior dislocation of the shoulder.

    PubMed

    Guler, Olcay; Ekinci, Safak; Akyildiz, Faruk; Tirmik, Uzeyir; Cakmak, Selami; Ugras, Akin; Piskin, Ahmet; Mahirogullari, Mahir

    2015-05-28

    Shoulder dislocations account for almost 50% of all major joint dislocations and are mainly anterior. The aim is a comparative retrospective study of different reduction maneuvers without anesthesia to reduce the dislocated shoulder. Patients were treated with different reduction maneuvers, including various forms of traction and external rotation, in the emergency departments of four training hospitals between 2009 and 2012. Each of the four hospitals had different treatment protocols for reduction and applying one of four maneuvers: Spaso, Chair, Kocher, and Matsen methods. Thirty-nine patients were treated by the Spaso method, 47 by the Chair reduction method, 40 by the Kocher method, and 27 patients by Matsen's traction-countertraction method. All patients' demographic data were recorded. Dislocation number, reduction time, time interval between dislocation and reduction, and associated complications, pre- and post-reduction period, were recorded prospectively. No anesthetic method was used for the reduction. All of the methods used included traction and some external rotation. The Chair method had the shortest reduction time. All surgeons involved in the study agreed that the Kocher and Matsen methods needed more force for the reduction. Patients could contract their muscles because of the pain in these two methods. The Spaso method includes flexion of the shoulder and blocks muscle contraction somewhat. The Chair method was found to be the easiest because the patients could not contract their muscles while sitting on a chair with the affected arm at their side. We suggest that the Chair method is an effective and fast reduction maneuver that may be an alternative for the treatment of anterior shoulder dislocations. Further prospective studies with larger sample size are needed to compare safety of different reduction techniques.

  12. Ulnar Rotation Osteotomy for Congenital Radial Head Dislocation.

    PubMed

    Liu, Ruiyu; Miao, Wusheng; Mu, Mingchao; Wu, Ge; Qu, Jining; Wu, Yongtao

    2015-09-01

    To evaluate an ulnar rotation osteotomy for congenital anterior dislocation of the radial head. Nine patients (5 boys and 4 girls aged 6 to 13 years) with congenital anterior dislocation of the radial head were treated with ulnar rotation osteotomy. Magnetic resonance imaging of the elbow showed the proximal radioulnar joint on the anterior-lateral side of the ulna rather than on the lateral side in patients with congenital anterior dislocation of the radial head. On the basis of this finding, we performed an osteotomy on the ulna and laterally rotated the proximal radioulnar joint achieving radial head reduction and restoring the anatomical relationship between the radial head and the capitellum. Clinical and radiographical evaluation of the elbow was performed before surgery and at postoperative follow-up. All patients were followed for 13 to 45 months after surgery. Elbow radiography showed that the radiocapitellar joint was reduced in all patients at the last follow-up visit and that the carrying angle was decreased relative to that in the preoperative condition. Elbow stability and the range of elbow flexion motion were improved at the last follow-up. We did not observe ulnar osteotomy site nonunion or elbow osteoarthritis in these patients. Furthermore, radial head dislocation did not recur. At early follow-up, ulnar rotation osteotomy was a safe and effective method for the treatment of congenital anterior dislocation of the radial head. Therapeutic IV. Copyright © 2015 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  13. Cyclic deformation leads to defect healing and strengthening of small-volume metal crystals

    DOE PAGES

    Wang, Zhang-Jie; Li, Qing-Jie; Cui, Yi-Nan; ...

    2015-10-19

    When microscopic and macroscopic specimens of metals are subjected to cyclic loading, the creation, interaction, and accumulation of defects lead to damage, cracking, and failure. We demonstrate that when aluminum single crystals of submicrometer dimensions are subjected to low-amplitude cyclic deformation at room temperature, the density of preexisting dislocation lines and loops can be dramatically reduced with virtually no change of the overall sample geometry and essentially no permanent plastic strain. Furthermore, this “cyclic healing” of the metal crystal leads to significant strengthening through dramatic reductions in dislocation density, in distinct contrast to conventional cyclic strain hardening mechanisms arising frommore » increases in dislocation density and interactions among defects in microcrystalline and macrocrystalline metals and alloys. Our real-time, in situ transmission electron microscopy observations of tensile tests reveal that pinned dislocation lines undergo shakedown during cyclic straining, with the extent of dislocation unpinning dependent on the amplitude, sequence, and number of strain cycles. Those unpinned mobile dislocations moving close enough to the free surface of the thin specimens as a result of such repeated straining are then further attracted to the surface by image forces that facilitate their egress from the crystal. Our results point to a versatile pathway for controlled mechanical annealing and defect engineering in submicrometer-sized metal crystals, thereby obviating the need for thermal annealing or significant plastic deformation that could cause change in shape and/or dimensions of the specimen.« less

  14. Cyclic deformation leads to defect healing and strengthening of small-volume metal crystals

    PubMed Central

    Wang, Zhang-Jie; Li, Qing-Jie; Cui, Yi-Nan; Liu, Zhan-Li; Ma, Evan; Li, Ju; Sun, Jun; Zhuang, Zhuo; Dao, Ming; Shan, Zhi-Wei; Suresh, Subra

    2015-01-01

    When microscopic and macroscopic specimens of metals are subjected to cyclic loading, the creation, interaction, and accumulation of defects lead to damage, cracking, and failure. Here we demonstrate that when aluminum single crystals of submicrometer dimensions are subjected to low-amplitude cyclic deformation at room temperature, the density of preexisting dislocation lines and loops can be dramatically reduced with virtually no change of the overall sample geometry and essentially no permanent plastic strain. This “cyclic healing” of the metal crystal leads to significant strengthening through dramatic reductions in dislocation density, in distinct contrast to conventional cyclic strain hardening mechanisms arising from increases in dislocation density and interactions among defects in microcrystalline and macrocrystalline metals and alloys. Our real-time, in situ transmission electron microscopy observations of tensile tests reveal that pinned dislocation lines undergo shakedown during cyclic straining, with the extent of dislocation unpinning dependent on the amplitude, sequence, and number of strain cycles. Those unpinned mobile dislocations moving close enough to the free surface of the thin specimens as a result of such repeated straining are then further attracted to the surface by image forces that facilitate their egress from the crystal. These results point to a versatile pathway for controlled mechanical annealing and defect engineering in submicrometer-sized metal crystals, thereby obviating the need for thermal annealing or significant plastic deformation that could cause change in shape and/or dimensions of the specimen. PMID:26483463

  15. Magnesium Vacancy Segregation and Fast Pipe Diffusion for the ½<110>{110} Edge Dislocation in MgO

    NASA Astrophysics Data System (ADS)

    Walker, A. M.; Zhang, F.; Wright, K.; Gale, J. D.

    2009-12-01

    The movement of point defects in minerals plays a key role in determining their rheological properties, both by permitting diffusional creep and by allowing recovery by dislocation climb. Point defect diffusion can also control the kinetics of phase transitions and grain growth, and can determine the rate of chemical equilibration between phases. Because of this, and the difficulties associated with experimental studies of diffusion, the simulation of point defect formation and migration has been a subject of considerable interest in computational mineral physics. So far, studies have concentrated on point defects moving through otherwise perfect crystals. In this work we examine the behavior of magnesium vacancies close to the core of an edge dislocation in MgO and find that the dislocation dramatically changes the behavior of the point defect. An atomic scale model of the ½<110>{110} edge dislocation in MgO was constructed by applying the anisotropic linear elastic displacement field to the crystal structure and subsequently minimizing the energy of the crystal close to the dislocation core using a parameterized potential model. This process yielded the structure of an isolated edge dislocation in an otherwise perfect crystal. The energy cost associated with introducing magnesium vacancies around the dislocation was then mapped and compared to the formation energy of an isolated magnesium vacancy in bulk MgO. We find that the formation energy of magnesium vacancies around the dislocation mirrors the elastic strain field. Above the dislocation line σxx and σyy are negative and the strain field is compressional. Atoms are squeezed together to make room for the extra half plane effectively increasing the pressure in this region. Below the dislocation line σxx and σyy are positive and the strain field is dilatational. Planes of atoms are pulled apart to avoid a discontinuity across the glide plane and the effective pressure is decreased. In the region with a compressional strain field the vacancies become less stable than those in perfect MgO. In contrast, the region with a dilatational strain field hosts vacancies which are stabilized compared to the perfect crystal. This is in agreement with the previously observed tendency for increasing pressure to decrease the stability of vacancies in MgO. The most stable position for a magnesium vacancy was found to be 1.7 eV more stable than the vacancy in the bulk crystal, suggesting that vacancies will strongly partition to dislocations in MgO. Finally, the energy profile traced out by a vacancy moving through the bulk crystal was compared with that experienced by a vacancy moving along the dislocation core. A low energy pathway for vacancy migration along the dislocation line was found with a migration energy of 1.6 eV compared with a migration energy in the perfect crystal of 1.9 eV. This shows that vacancies segregated to the dislocation line will be significantly more mobile than vacancies in the perfect crystal. Dislocations will act as pipes, allowing material to be rapidly transported through crystals of MgO.

  16. Epitaxy of GaN in high aspect ratio nanoscale holes over silicon substrate

    NASA Astrophysics Data System (ADS)

    Wang, Kejia; Wang, Anqi; Ji, Qingbin; Hu, Xiaodong; Xie, Yahong; Sun, Ying; Cheng, Zhiyuan

    2017-12-01

    Dislocation filtering in gallium nitride (GaN) by epitaxial growth through patterned nanoscale holes is studied. GaN grown from extremely high aspect ratio holes by metalorganic chemical vapor deposition is examined by transmission electron microscopy and high-resolution transmission electron microscopy. This selective area epitaxial growth method with a reduced epitaxy area and an increased depth to width ratio of holes leads to effective filtering of dislocations within the hole and improves the quality of GaN significantly.

  17. Microstructurally Based Cross-slip Mechanisms and Their Effects on Dislocation Microstructure Evolution in fcc Crystals

    DTIC Science & Technology

    2015-01-01

    still necessary. One such model that could bridge this gap is discrete dis- location dynamics ( DDD ) simulations, in which both the time- and length-scale...limitations from atomic simulations are greatly reduced. Over the past two decades, two-dimen- sional (2D) and three-dimensional (3D) DDD methods have...dislocation ensem- bles according to physics-based rules [27–34]. The physics that can be incorporated in DDD simulations can range http://dx.doi.org

  18. Drag of a Cottrell atmosphere by an edge dislocation in a smectic-A liquid crystal.

    PubMed

    Oswald, P; Lejček, L

    2017-10-01

    In a recent letter (P. Oswald et al., EPL 103, 46004 (2013)), we have shown that a smectic-A phase hardens in compression normal to the layers when the liquid crystal is doped with gold nanoparticles. This is due to the formation of Cottrell clouds nearby the core of the edge dislocations and the appearance of an additional drag force that reduces their mobility. We theoretically calculate the shape of the Cottrell cloud and the associated drag force as a function of the climb velocity of the dislocations. The main result is that the drag force depends on velocity and vanishes when the temperature tends to the smectic-A-to-nematic transition temperature. The role of the diffusion anisotropy is also evaluated.

  19. Radiographic comparison of surgical hip dislocation and hip arthroscopy for treatment of cam deformity in femoroacetabular impingement.

    PubMed

    Bedi, Asheesh; Zaltz, Ira; De La Torre, Katrina; Kelly, Bryan T

    2011-07-01

    Whether open or arthroscopic techniques are employed, the goal of femoroacetabular impingement (FAI) surgery is to achieve impingement-free range of motion. While arthroscopic approaches have improved and gained popularity, an objective evaluation of the surgical correction achieved with this approach compared with open surgery remains to be defined in the literature. This study was undertaken to compare the efficacy of arthroscopic osteoplasty and open surgical dislocation in treating FAI dysmorphology in a consecutive series of patients. Cohort study; Level of evidence, 3. Surgical treatment was performed in 60 male patients under 40 years of age for symptomatic FAI refractory to nonoperative management. Patients were matched (not randomized) to treatment groups: 30 patients (15 left and 15 right hips) underwent arthroscopic cam and/or rim osteoplasty with labral debridement and/or refixation by an arthroscopic surgeon; and 30 (14 left and 16 right hips) underwent open surgical dislocation, cam and/or rim osteoplasty, and labral debridement or refixation by a hip preservation surgeon. Anteroposterior (AP) pelvis and extended-neck (Dunn) lateral radiographs were obtained and the depth of resection and arc of resection were measured by assessment of anterior femoral head-neck offset, AP and lateral α angle, and β angle on preoperative and postoperative radiographs. In the arthroscopic group, the extended-neck lateral α angle was reduced by a mean of 17.2° (28.3%, P < .05), AP α angle was reduced by a mean of 12.6° (16.8%), anterior head-neck offset improved 5.0 mm (111%, P < .05), and β angle increased by a mean of 23.1°. In the open dislocation group, the extended-neck lateral α angle was reduced by a mean of 21.2° (30.7%, P < .05), AP α angle was reduced by a mean of 20.1° (25.7%), anterior head-neck offset improved 6.56 mm (108%, P < .05), and β angle increased by a mean of 18.35°. Arthroscopic osteoplasty can restore head-neck offset and achieve similar depth, arc, and proximal-distal resection with comparable efficacy to open surgical dislocation for anterior and anterosuperior cam and focal rim impingement deformity. The open technique, however, may allow greater correction of posterosuperior loss of femoral offset and may be favorable for FAI patterns that demonstrate considerable proximal femoral deformity on AP radiographs.

  20. The role of strain hardening in the transition from dislocation-mediated to frictional deformation of marbles within the Karakoram Fault Zone, NW India

    NASA Astrophysics Data System (ADS)

    Wallis, David; Lloyd, Geoffrey E.; Hansen, Lars N.

    2018-02-01

    The onset of frictional failure and potentially seismogenic deformation in carbonate rocks undergoing exhumation within fault zones depends on hardening processes that reduce the efficiency of aseismic dislocation-mediated deformation as temperature decreases. However, few techniques are available for quantitative analysis of dislocation slip system activity and hardening in natural tectonites. Electron backscatter diffraction maps of crystal orientations offer one such approach via determination of Schmid factors, if the palaeostress conditions can be inferred and the critical resolved shear stresses of slip systems are constrained. We analyse calcite marbles deformed in simple shear within the Karakoram Fault Zone, NW India, to quantify changes in slip system activity as the rocks cooled during exhumation. Microstructural evidence demonstrates that between ∼300 °C and 200-250 °C the dominant deformation mechanisms transitioned from dislocation-mediated flow to twinning and frictional failure. However, Schmid factor analysis, considering critical resolved shear stresses for yield of undeformed single crystals, indicates that the fraction of grains with sufficient resolved shear stress for glide apparently increased with decreasing temperature. Misorientation analysis and previous experimental data indicate that strain-dependent work hardening is responsible for this apparent inconsistency and promoted the transition from dislocation-mediated flow to frictional, and potentially seismogenic, deformation.

  1. Two Patients with Osteochondral Injury of the Weight-Bearing Portion of the Lateral Femoral Condyle Associated with Lateral Dislocation of the Patella

    PubMed Central

    Inoue, Hiroaki; Atsumi, Satoru; Ichimaru, Shohei; Fujiwara, Hiroyoshi; Kubo, Toshikazu

    2014-01-01

    Complications of patellar dislocation include osteochondral injury of the lateral femoral condyle and patella. Most cases of osteochondral injury occur in the anterior region, which is the non-weight-bearing portion of the lateral femoral condyle. We describe two patients with osteochondral injury of the weight-bearing surface of the lateral femoral condyle associated with lateral dislocation of the patella. The patients were 18- and 11-year-old females. Osteochondral injury occurred on the weight-bearing surface distal to the lateral femoral condyle. The presence of a free osteochondral fragment and osteochondral injury of the lateral femoral condyle was confirmed on MRI and reconstruction CT scan. Treatment consisted of osteochondral fragment fixation or microfracture, as well as patellar stabilization. Osteochondral injury was present in the weight-bearing portion of the lateral femoral condyle in both patients, suggesting that the injury was caused by friction between the patella and lateral femoral condyle when the patella was dislocated or reduced at about 90° flexion of the knee joint. These findings indicate that patellar dislocation may occur and osteochondral injury may extend to the weight-bearing portion of the femur even in deep flexion, when the patella is stabilized on the bones of the femoral groove. PMID:25506015

  2. Plastic Deformation Behavior of Ti Foil Under Ultrasonic Vibration in Tension

    NASA Astrophysics Data System (ADS)

    Jiang, Shaosong; Jia, Yong; Zhang, Hongbin; Du, Zhihao; Lu, Zhen; Zhang, Kaifeng; He, Yushi; Wang, Ruizhuo

    2017-04-01

    The benefits of ultrasonic vibration auxiliary metal forming have been shown by many studies. In this study, a series of experiments were carried out to investigate the deformation behavior of Ti foils under ultrasonic vibration in tension, and the tensile properties of Ti foils with/without the application of ultrasonic vibration were investigated. Then, the microstructure of different tensile samples was analyzed by transmission electron microscopy (TEM). The results of the tensile experiments showed that the tensile strength of tensile samples was reduced when ultrasonic vibration was applied, while the elongation of these samples increased. The flow stress increased with increasing strain without applying ultrasonic vibration, while it decreased steeply when the ultrasonic vibration was applied, and this reduction of flow stress demonstrated the effect of acoustic softening on the properties of the material. Additionally, the range of flow stress reduction was inversely proportional to the time for which ultrasonic vibration was applied. The TEM images showed that there were remarkable differences in dislocation distribution and tangles with/without ultrasonic vibration. The dislocation distribution was inhomogeneous, and copious dislocation tangles were discovered without ultrasonic vibration. When it was applied, the parallel re-arrangement of dislocations could be observed and the mass of dislocation tangles was mostly absent.

  3. Study on Dynamic Strain Aging and Low-Cycle Fatigue of Stainless Steel in Ultra-Supercritical Unit

    NASA Astrophysics Data System (ADS)

    Hongwei, Zhou; Yizhu, He; Jizu, Lv; Sixian, Rao

    Dynamic strain aging (DSA) and low-cycle fatigue (LCF) behavior of TP347H stainless steel in ultra-supercritical unit were investigated at 550-650 °C. All the LCF tests were carried out under a fully-reversed, total axial strain control mode at the total strain amplitude from ±0.2% to ±1.0%. The effects of DSA in cyclic stress response, microstructure evolution and fatigue fracture surfaces and fatigue life were investigated in detail. The results show that DSA occurs during tensile, which is manifested as serrated flow in tensile stress-strain curves. The apparent activation energy for appearing of serrations in tensile stress-strain curves was 270 kJ/mol. Pipe diffusion of substitutional solutes such as Cr and Nb along the dislocation core, and strong interactions between segregated solutes and dislocations are considered as the mechanism of DSA. DSA partly restricts dislocation cross-slip, and dislocation cross-slip and planar-slip happen simultaneously during LCF. A lot of planar structures form, which is due to dislocation gliding on the special plane. This localized deformation structures result in many crack initiation sites. Meanwhile, DSA hardening increases cyclic stress response, accelerating crack propagation, which reduces high temperature strain fatigue life of steel.

  4. POSTEROSUPERIOR SURGICAL ACCESS ROUTE FOR TREATMENT OF ACROMIOCLAVICULAR DISLOCATIONS: RESULTS FROM 84 SURGICAL CASES.

    PubMed

    Dal Molin, Danilo Canesin; Ribeiro, Fabiano Rebouças; Filho, Rômulo Brasil; Filardi, Cantídio Salvador; Tenor, Antonio Carlos; Stipp, Willian Nandi; Petros, Rodrigo Souto Borges

    2012-01-01

    To evaluate the results from surgical treatment of 84 cases of acute acromioclavicular dislocation, using a posterosuperior access route. Eighty-four cases of acute acromioclavicular dislocation (grade III in the Allman-Tossy classification) operated between November 2002 and May 2010 were evaluated. The patients' mean age was 34 years. The diagnoses were made using clinical and radiographic evaluations. The patients were operated by the same surgical team, within three weeks of the date of the trauma, using a posterosuperior approach to the shoulder to access the top of the base of the coracoid process for placement of two anchors, which were used in reducing the dislocation. The minimum follow-up was 12 months. The postoperative clinical-radiographic evaluation was done using the modified Karlsson criteria and the University of California at Los Angeles (UCLA) score. 92.8% of the 84 patients treated presented good or excellent results, and 7.2% presented fair or poor results, using the UCLA assessment score. According to the modified Karlsson criteria, 76.2% were assessed as grade A, 17.9% as grade B and 5.9% as grade C. The posterosuperior access route to the shoulder is a new option for accessing the coracoid process and treating acromioclavicular dislocation, with clinical and radiographic results equivalent to those in the literature.

  5. Traumatic atlantooccipital dislocation injury in children.

    PubMed

    Nichols, J; West, J S

    1994-10-01

    The tragedy of trauma turns into triumph when the surgery team members' efforts result in victory for the patient. Nowhere is this more true than in successful pediatric trauma care. Giving a child a second chance at life and the family an opportunity for a new beginning is the highest reward for the trauma team's years of professional training and practice. Traumatic atlantoocipital dislocation injury usually results in death, but recent neurosurgery trauma advances are increasing pediatric survival rates.

  6. Microstructural characteristics of adiabatic shear localization in a metastable beta titanium alloy deformed at high strain rate and elevated temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhan, Hongyi, E-mail: h.zhan@uq.edu.au; Zeng, Weidong; Wang, Gui

    2015-04-15

    The microstructural evolution and grain refinement within adiabatic shear bands in the Ti6554 alloy deformed at high strain rates and elevated temperatures have been characterized using transmission electron microscopy. No stress drops were observed in the corresponding stress–strain curve, indicating that the initiation of adiabatic shear bands does not lead to the loss of load capacity for the Ti6554 alloy. The outer region of the shear bands mainly consists of cell structures bounded by dislocation clusters. Equiaxed subgrains in the core area of the shear band can be evolved from the subdivision of cell structures or reconstruction and transverse segmentationmore » of dislocation clusters. It is proposed that dislocation activity dominates the grain refinement process. The rotational recrystallization mechanism may operate as the kinetic requirements for it are fulfilled. The coexistence of different substructures across the shear bands implies that the microstructural evolution inside the shear bands is not homogeneous and different grain refinement mechanisms may operate simultaneously to refine the structure. - Graphical abstract: Display Omitted - Highlights: • The microstructure within the adiabatic shear band was characterized by TEM. • No stress drops were observed in the corresponding stress–strain curve. • Dislocation activity dominated the grain refinement process. • The kinetic requirements for rotational recrystallization mechanism were fulfilled. • Different grain refinement mechanisms operated simultaneously to refine the structure.« less

  7. Etude par émission acoustique de la dynamique des dislocations pendant la déformation cyclique de polycristaux d'aluminium

    NASA Astrophysics Data System (ADS)

    Slimani, A.; Fleischmann, P.; Fougères, R.

    1992-06-01

    The cyclic plasticity of 5N polycrystalline aluminium have been studied at room temperature by measuring the continuous acoustic emission (A.E.) due to dislocations movements in the metal. In this study, original data have been obtained in the understanding of continuous A.E. sources. In comparison with classical interpretation given in the literature, the fact that dislocations are arranged according to a dislocation cell structure from the first cycle has been included in the analysis of the results. From this, it has been shown that the amplitude of the A.E. signal is not directly connected with the plastic strain rate prescribed to the fatigue sample and that the probability density function of dislocation loops created during the cycling can be determined. La plasticité cyclique de l'AI 5N polycristallin a été étudiée à la température ambiante à partir de mesures d'émission acoustique continue (E.A.). L'application de la technique de l'E.A. nous a permis d'obtenir des données originales quant aux mécanismes sources d'E.A. Par rapport aux interprétations classiques de la littérature, nous avons fait intervenir le fait que, dès les premiers cycles, une structure cellulaire de dislocations est établie. Nous montrons que l'amplitude du signal d'E.A. n'est plus liée directement à la vitesse de déformation plastique macroscopique. A partir de cette donnée, l'analyse des résultats d'E.A. permet d'obtenir des informations sur la fonction distribution des boucles de dislocations créées au cours de la déformation cyclique.

  8. Mesoscale model for fission-induced recrystallization in U-7Mo alloy

    DOE PAGES

    Liang, Linyun; Mei, Zhi -Gang; Kim, Yeon Soo; ...

    2016-08-09

    A mesoscale model is developed by integrating the rate theory and phase-field models and is used to study the fission-induced recrystallization in U-7Mo alloy. The rate theory model is used to predict the dislocation density and the recrystallization nuclei density due to irradiation. The predicted fission rate and temperature dependences of the dislocation density are in good agreement with experimental measurements. This information is used as input for the multiphase phase-field model to investigate the fission-induced recrystallization kinetics. The simulated recrystallization volume fraction and bubble induced swelling agree well with experimental data. The effects of the fission rate, initial grainmore » size, and grain morphology on the recrystallization kinetics are discussed based on an analysis of recrystallization growth rate using the modified Avrami equation. Here, we conclude that the initial microstructure of the U-Mo fuels, especially the grain size, can be used to effectively control the rate of fission-induced recrystallization and therefore swelling.« less

  9. Microstructure and critical strain of dynamic recrystallization of 6082 aluminum alloy in thermal deformation

    NASA Astrophysics Data System (ADS)

    Ren, W. W.; Xu, C. G.; Chen, X. L.; Qin, S. X.

    2018-05-01

    Using high temperature compression experiments, true stress true strain curve of 6082 aluminium alloy were obtained at the temperature 460°C-560°C and the strain rate 0.01 s-1-10 s-1. The effects of deformation temperature and strain rate on the microstructure are investigated; (‑∂lnθ/∂ε) ‑ ε curves are plotted based on σ-ε curve. Critical strains of dynamic recrystallization of 6082 aluminium alloy model were obtained. The results showed lower strain rates were beneficial to increase the volume fraction of recrystallization, the average recrystallized grain size was coarse; High strain rates are beneficial to refine average grain size, the volume fraction of dynamic recrystallized grain is less than that by using low strain rates. High temperature reduced the dislocation density and provided less driving force for recrystallization so that coarse grains remained. Dynamic recrystallization critical strain model and thermal experiment results can effectively predict recrystallization critical point of 6082 aluminium alloy during thermal deformation.

  10. Evolution of stress and microstructure in silicon-doped aluminum gallium nitride thin films

    NASA Astrophysics Data System (ADS)

    Manning, Ian C.

    The present work examines the effects of the Si incorporation on the stress evolution of AlxGa1-xN thin films deposited using metalorganic chemical vapor deposition. Specifically, tensile stress generation was evaluated using an in situ wafer curvature measurement technique, and correlated with the inclination of edge-type threading dislocations observed with transmission electron microscopy (TEM). This microstructural process had been theorized to relax compressive strain with increasing film thickness by expanding the missing planes of atoms associated with the dislocations. Prior work regarded dislocation bending as being the result of an effective climb mechanism. In a preliminary investigation, the accuracy of the model derived to quantify the strain induced by dislocation inclination was tested. The relevant parameters were measured to calculate a theoretical stress gradient, which was compared with the gradient as extract from experimental stress data. The predicted value was found to overestimate the measured value. It was also confirmed during the preliminary investigation that Si incorporation alone was sufficient to initiate dislocation bending. The overestimation of the stress gradient yielded by the prediction of the model was then addressed by exploring the effects of dislocation annihilation and fusion reactions occurring during film growth. Si-doped Al0.42Ga 0.58N layers exhibiting inclined threading dislocations were grown to different thicknesses. The dislocation density at the surface of each sample was then measured using plan-view TEM, and was found to be inversely proportional to the thickness. As the original model assumed a constant dislocation density, applying the correction for its reduction yielded a better prediction of the stress evolution. In an attempt to extend the predictive capabilities of the model beyond the single composition examined above, and to better understand the interaction of Si with the host AlxGa1-xN lattice, several sets of AlxGa1-xN films were grown, each with a unique composition. The Si doping level was varied within each set. It was determined that the dominant influence on tensile strain generation is in fact the initial dislocation density, which increased with increasing Al content as observed with plan-view TEM. This was expounded in a series of modeling examples. In addition, threading dislocation inclination was studied in nominally undoped and Si-doped Al xGa1-xN grown under conditions of tensile stress to isolate the influence of Si from that of compressive stress, which had also been found to induce dislocation bending. The effects due to Si and compressive stress were found not to combine as expected, based on a stochastic model of dislocation jog formation that had been developed in prior work to describe the inclination mechanism. Having confirmed the strong, direct relationship between the initial dislocation density and the degree of tensile stress generated in the Al xGa1-xN epilayers during growth, an effort was made to demonstrate the advantage that might be gained by using AlN substrates rather than SiC. In principle, AlN provides a growth surface that inhibits defect formation due to its close similarity to AlxGa1-xN lattice structure and chemistry, particularly at high Al mole fractions. Threading dislocation densities were reduced by an order of magnitude in comparison with samples grown on SiC, with a corresponding reduction in the stress gradient arising from dislocation inclination. (Abstract shortened by UMI.)

  11. Creep Deformation of Allvac 718Plus

    DOE PAGES

    Hayes, Robert W.; Unocic, Raymond R.; Nasrollahzadeh, Maryam

    2014-11-11

    The creep deformation behavior of Allvac 718Plus was studied over the temperature range 650° to 732°C at initial applied stress levels ranging from 517 to 655 MPa. Over the entire experimental temperature stress regime this alloy exhibits Class M type creep behavior with all creep curves exhibiting a decelerating strain rate with strain or time throughout primary creep. However, unlike pure metals or simple solid solution alloys this gamma prime strengthened superalloy does not exhibit steady state creep. Rather, primary creep is instantly followed by a long duration of accelerating strain rate with strain or time. These creep characteristics aremore » common amongst the gamma prime strengthened superalloys. Allvac 718Plus also exhibits a very high temperature dependence of creep rate. Detailed TEM examination of the deformation structures of selected creep samples reveals dislocation mechanisms similar to those found in high volume fraction gamma prime strengthened superalloys. Strong evidence of microtwinning is found in several of the deformation structures. The presence of microtwinning may account for the strong temperature dependence of creep rate observed in this alloy. In addition, due to the presence of Nb and thus, grain boundary delta phase, matrix dislocation activity which is not present in non Nb bearing superalloys occurs in this alloy. The creep characteristics and dislocation mechanisms are presented and discussed in detail.« less

  12. Strain localization in ultramylonitic calcite marbles by dislocation creep-accommodated grain boundary sliding

    NASA Astrophysics Data System (ADS)

    Rogowitz, Anna; Grasemann, Bernhard; Clancy White, Joseph

    2015-04-01

    Strain localization in monomineralic rocks is often associated with brittle precursors, resulting in stress and strain concentration, followed by grain size reduction and activation of grain-size-sensitive deformation mechanisms such as diffusion creep, grain boundary sliding and cataclastic flow. The aforementioned mechanisms typically tend to produce a random crystallographic orientation or a decrease in intensity of a pre-existing texture. However, reports of fine grained polycrystalline materials showing a preferred crystallographic orientation indicate a need for subsequent grain re-organization by either static annealing or the activation of additional deformation mechanisms in conjunction with grain boundary sliding. We present observations from an almost pure calcite marble layer from Syros Island (Cyclades, Greece) deformed in lower greenschist facies conditions. The presence of a crack (i.e. cross-cutting element) that rotated during shear resulted in the formation of a flanking structure. At the location of maximum displacement (120 cm) along the cross-cutting element, the marble is extremely fine grained (3 µm) leading to anticipation of deformation by grain-size-sensitive mechanisms. Detailed microstructural analysis of the highly strained (80 < gamma < 1000) calcite ultramylonite by optical microscopy, electron backscatter diffraction and scanning transmission electron microscopy show that recrystallization by bulging results in small, strain-free grains. The change in grain size appears to be concomitant with increased activity of independent grain boundary sliding as indicated by a random misorientation angle distribution. At the same time, dislocation multiplication through Frank-Read sources produces high mean dislocation density (~ 5x10^13 m^-2) as well as a weak primary CPO; the latter all argue that grain boundary sliding was accommodated by dislocation activity. Theoretical and experimental determined relationships (paleowattmeter, paleopiezometer, dislocation density) have been used to estimate the flow stress conditions. All of the applied relationships indicate differential stresses in a range between 80 and 200 MPa. Plotted in a deformation mechanism map for calcite, the data show that the ultramylonite was deformed at maximum strain rates of 10^-9 s^-1. Our study shows that the switch from dominantly dislocation creep to grain boundary sliding accommodated by dislocation activity corresponds to strain softening and can be an important strain localization process in calcite rocks, even at high strain rate (10^-9 s^-1) and low temperature (300 °C).

  13. Stress evolution and associated microstructure during transient creep of olivine at 1000-1200 °C

    NASA Astrophysics Data System (ADS)

    Thieme, M.; Demouchy, S.; Mainprice, D.; Barou, F.; Cordier, P.

    2018-05-01

    We study the mechanical response and correlated microstructure of axial deformed fine-grained olivine aggregates as a function of incremental finite strains. Deformation experiments were conducted in uniaxial compression in an internally heated gas-medium deformation apparatus at temperatures of 1000 and 1200 °C, at strain rates of 10-6 s-1 to 10-5 s-1 and at confining pressure of 300 MPa. Sample volumes are around 1.2 cm3. Finite strains range from 0.1 to 8.6% and corresponding maximal (final) differential stresses range from 80 to 1073 MPa for deformation at 1000 °C and from 71 to 322 MPa for deformation at 1200 °C. At 1200 °C, samples approach steady state deformation after about 8% of strain. At 1000 °C, significant strain hardening leads to stresses exceeding the confining pressure by a factor of 3.5 with brittle deformation after 3% of strain. Deformed samples were characterized by electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). EBSD maps with step sizes as low as 50 nm were acquired without introducing analytical artifacts for the first time. The grain size of deformed samples ranges from 2.1 to 2.6 μm. Despite clear strain hardening, texture or microstructure do not change as a function of stress or finite strain. This observation is supported by a constant texture strength (J-index) and symmetry (BA-index), constant grain shape and aspect ratio, constant density of geometrically necessary dislocations, grain orientation spread, and constant subgrain boundary spacing and misorientation in between samples. TEM shows that all samples exhibit unambiguous dislocation activity but with a highly heterogeneous dislocation distribution. Olivine grains display evidence of [1 0 0] and [0 0 1] slip activity, but there is no evidence of interaction between the dislocations from the different slip systems. Several observations of grain boundaries acting as dislocation sources have been found. We find no confirmation of increasing dislocation densities as the cause for strain hardening during transient creep. This suggests other, yet not fully understood mechanisms affecting the strength of deformed olivine. These mechanisms could possibly involve grain boundaries. Such mechanisms are relevant for the deformation of uppermost mantle rocks, where the Si diffusion rate is too slow and dislocation glide must be accommodated in another way to fulfill the von Mises criterion.

  14. The Microstructural Evolution and Special Flow Behavior of Ti-5Al-2Sn-2Zr-4Mo-4Cr During Isothermal Compression at a Low Strain Rate

    NASA Astrophysics Data System (ADS)

    Sun, J. Z.; Li, M. Q.; Li, H.

    2017-09-01

    The microstructural evolution and special flow behavior of Ti-5Al-2Sn-2Zr-4Mo-4Cr during isothermal compression at a strain rate of 0.0001 s-1 were investigated. The dislocation climbs in elongated α grains resulted in the formation of low-angle boundaries that transform into high-angle boundaries with greater deformation, and the elongated α grains subsequently separated into homogenous globular α grains with the penetration of the β phase. The simultaneous occurrence of discontinuous dynamic recrystallization and continuous dynamic recrystallization in the primary β grains resulted in a trimode grain distribution. The β grains surrounded by dislocations presented an equilateral-hexagonal morphology, which suggests that grain boundary sliding through dislocation climbs was the main deformation mechanism. The true stress-strain curves for 1073 and 1113 K abnormally intersect at a strain of 0.35, related to the α → β phase transformation and distinct growth of the β grain size.

  15. Molecular dynamics modeling and simulation of void growth in two dimensions

    NASA Astrophysics Data System (ADS)

    Chang, H.-J.; Segurado, J.; Rodríguez de la Fuente, O.; Pabón, B. M.; LLorca, J.

    2013-10-01

    The mechanisms of growth of a circular void by plastic deformation were studied by means of molecular dynamics in two dimensions (2D). While previous molecular dynamics (MD) simulations in three dimensions (3D) have been limited to small voids (up to ≈10 nm in radius), this strategy allows us to study the behavior of voids of up to 100 nm in radius. MD simulations showed that plastic deformation was triggered by the nucleation of dislocations at the atomic steps of the void surface in the whole range of void sizes studied. The yield stress, defined as stress necessary to nucleate stable dislocations, decreased with temperature, but the void growth rate was not very sensitive to this parameter. Simulations under uniaxial tension, uniaxial deformation and biaxial deformation showed that the void growth rate increased very rapidly with multiaxiality but it did not depend on the initial void radius. These results were compared with previous 3D MD and 2D dislocation dynamics simulations to establish a map of mechanisms and size effects for plastic void growth in crystalline solids.

  16. Two-year follow-up evaluation of surgical treatment for thoracolumbar fracture-dislocation.

    PubMed

    Hao, Dingjun; Wang, Wentao; Duan, Kun; Ma, Minjie; Jiang, Yong; Liu, Tuanjiang; He, Baorong

    2014-10-01

    A randomized, controlled clinical trial. This randomized controlled clinical trial was aimed at comparing the clinical outcomes of combined posteroanterior (P-A) fusion and transforaminal thoracic interbody fusion (TTIF) in cases of thoracolumbar fracture-dislocation. The optimal treatment strategy for thoracolumbar fracture-dislocation remains controversial. Sixty-one patients presenting with acute fracture-dislocation of the thoracolumbar joint between March 2010 and December 2011 were enrolled and randomly assigned to the P-A or TTIF group. The radiological outcome was assessed by acquiring radiographs in the standing position and computed tomographic scans. The clinical outcome was measured in terms of the American Spinal Injury Association score, visual analogue scale score, and Oswestry Disability Index. Moreover, we assessed the severity of overall morbidity and morbidity at the donor site in the 2 patient groups. The Student t and χ tests were used for the analysis of independent variables and categorical data, respectively. Only 57 of the enrolled patients were available for the required 24-month follow-up period, 27 underwent TTIF and 30 underwent P-A fusion. Both treatments were similar with respect to the fusion rate, extent of decompression, loss of correction, rate of instrumentation failure, American Spinal Injury Association score, visual analogue scale score, and Oswestry Disability Index (P > 0.05). However, the blood loss, operating time, and rate of perioperative complications were greater in the P-A group than in the TTIF group (P < 0.05). The clinical and radiological outcomes were similar for both the treatment procedures. However, our findings suggest that TTIF allows for safe interbody fusion and circumferential decompression, requires only a posterior approach, and is associated with a lower incidence of surgery-related complications. 2.

  17. Clinical Outcomes After the Nonoperative Management of Lateral Patellar Dislocations: A Systematic Review

    PubMed Central

    Moiz, Munim; Smith, Nick; Smith, Toby O.; Chawla, Amit; Thompson, Peter; Metcalfe, Andrew

    2018-01-01

    Background: The first-line treatment for patellar dislocations is often nonoperative and consists of physical therapy and immobilization techniques, with various adjuncts employed. However, the outcomes of nonoperative therapy are poorly described, and there is a lack of quality evidence to define the optimal intervention. Purpose: To perform a comprehensive review of the literature and assess the quality of studies presenting patient outcomes from nonoperative interventions for patellar dislocations. Study Design: Systematic review; Level of evidence, 4. Methods: The MEDLINE, AMED, Embase, CINAHL, Cochrane Library, PEDro, and SPORTDiscus electronic databases were searched through July 2017 by 3 independent reviewers. The PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines were followed. Study quality was assessed using the CONSORT (Consolidated Standards for Reporting Trials) criteria for randomized controlled trials and the Newcastle-Ottawa Scale for cohort studies and case series. Results: A total of 25 studies met our inclusion criteria, including 12 randomized controlled trials, 7 cohort studies, and 6 case series, consisting of 1066 patients. Studies were grouped according to 4 broad categories of nonoperative interventions based on immobilization, weightbearing status, quadriceps exercise type, and alternative therapies. The most commonly used outcome measure was the Kujala score, and the pooled redislocation rate was 31%. Conclusion: This systematic review found that patient-reported outcomes consistently improved after all methods of treatment but did not return to normal. Redislocation rates were high and close to the redislocation rates reported in natural history studies. There is a lack of quality evidence to advocate the use of any particular nonoperative technique for the treatment of patellar dislocations. PMID:29942814

  18. Spinopelvic Fixation of Sacroiliac Joint Fractures and Fracture-Dislocations: A Clinical 8 Years Follow-Up Study.

    PubMed

    Sobhan, Mohammad R; Abrisham, Seyed Mohammad J; Vakili, Mahmood; Shirdel, Saeed

    2016-10-01

    Pelvic ring injuries and sacroiliac dislocations have significant impacts on patient's quality of life. Several techniques have been described for posterior pelvic fixation. The current study has been designed to evaluate the spinopelvic method of fixation for sacroiliac fractures and fracture-dislocations. Between January 2006 and December 2014, 14 patients with sacroiliac joint fractures, dislocation and fracture-dislocation were treated by Spinopelvic fixation at Shahid Sadoughi Training Hospital, Yazd, Iran. Patients were seen in follow up, on average, out to 32 months after surgery. Computed tomographic (CT) scans of patients with sacral fractures were reviewed to determine the presence of injuries. A functional assessment of the patients was performed using Majeed's score. Patient demographics, reduction quality, loss of fixation, outcomes and complications, return to activity, and screw hardware characteristics are described. The injury was unilateral in 11 (78.5%) patients and bilateral in 3 (21.5%). Associated injuries were present in all patients, including fractures, dislocation and abdominal injuries. Lower limb length discrepancy was less than 10 mm in all patients except two. Displacement, as a measure of quality of reduction was less than 5 mm in 13 patients. The mean Majeed score was 78/100. Wound infection and hardware failure were observed in 3 (21.4%) and 1 (7.1%) cases, respectively. In this study most patients (85%) return to work postoperatively. According to the findings, spinopelvic fixation is a safe and effective technique for treatment of sacroiliac injuries. This method can obtain early partial to full weight bearing and possibly reduce the complications.

  19. Effects of gap junction inhibition on contraction waves in the murine small intestine in relation to coupled oscillator theory.

    PubMed

    Parsons, Sean P; Huizinga, Jan D

    2015-02-15

    Waves of contraction in the small intestine correlate with slow waves generated by the myenteric network of interstitial cells of Cajal. Coupled oscillator theory has been used to explain steplike gradients in the frequency (frequency plateaux) of contraction waves along the length of the small intestine. Inhibition of gap junction coupling between oscillators should lead to predictable effects on these plateaux and the wave dislocation (wave drop) phenomena associated with their boundaries. It is these predictions that we wished to test. We used a novel multicamera diameter-mapping system to measure contraction along 25- to 30-cm lengths of murine small intestine. There were typically two to three plateaux per length of intestine. Dislocations could be limited to the wavefronts immediately about the terminated wave, giving the appearance of a three-pronged fork, i.e., a fork dislocation; additionally, localized decreases in velocity developed across a number of wavefronts, ending with the terminated wave, which could appear as a fork, i.e., slip dislocations. The gap junction inhibitor carbenoxolone increased the number of plateaux and dislocations and decreased contraction wave velocity. In some cases, the usual frequency gradient was reversed, with a plateau at a higher frequency than its proximal neighbor; thus fork dislocations were inverted, and the direction of propagation was reversed. Heptanol had no effect on the frequency or velocity of contractions but did reduce their amplitude. To understand intestinal motor patterns, the pacemaker network of the interstitial cells of Cajal is best evaluated as a system of coupled oscillators. Copyright © 2015 the American Physiological Society.

  20. Creep and precipitation behaviors of AL6XN austenitic steel at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Meng, L. J.; Sun, J.; Xing, H.

    2012-08-01

    Creep behaviors of the solution-treated AL6XN austenitic stainless steel have been investigated at 873-1023 K and 120-260 MPa. The results showed that the creep stress exponent and activation energy of the AL6XN steel are 5 and 395.4 kJ/mol, respectively in the power-law breakdown regime. TEM observations revealed that dislocations distributed homogenously in grains. The creep deformation mechanism is mainly attributed to viscous dislocation glide. Precipitates in the steel after creep deformation were additionally analyzed by TEM, and the results showed that there are four different types of precipitates, such as M23C6, M6C, σ phase and Laves phase. The M23C6 carbides were observed at grain boundaries in the steel after creep at 873 K. The M6C, σ phase and Laves phase precipitates were found when the creep temperature increases to 923-1023 K. Although the AL6XN steel exhibited low steady state creep rates, a high volume fraction of brittle precipitates of σ and Laves phases reduced the creep lifetime of the steel at elevated temperatures.

  1. Creep of quartz by dislocation and grain boundary processes

    NASA Astrophysics Data System (ADS)

    Fukuda, J. I.; Holyoke, C. W., III; Kronenberg, A. K.

    2015-12-01

    Wet polycrystalline quartz aggregates deformed at temperatures T of 600°-900°C and strain rates of 10-4-10-6 s-1 at a confining pressure Pc of 1.5 GPa exhibit plasticity at low T, governed by dislocation glide and limited recovery, and grain size-sensitive creep at high T, governed by diffusion and sliding at grain boundaries. Quartz aggregates were HIP-synthesized, subjecting natural milky quartz powder to T=900°C and Pc=1.5 GPa, and grain sizes (2 to 25 mm) were varied by annealing at these conditions for up to 10 days. Infrared absorption spectra exhibit a broad OH band at 3400 cm-1 due to molecular water inclusions with a calculated OH content (~4000 ppm, H/106Si) that is unchanged by deformation. Rate-stepping experiments reveal different stress-strain rate functions at different temperatures and grain sizes, which correspond to differing stress-temperature sensitivities. At 600-700°C and grain sizes of 5-10 mm, flow law parameters compare favorably with those for basal plasticity and dislocation creep of wet quartzites (effective stress exponents n of 3 to 6 and activation enthalpy H* ~150 kJ/mol). Deformed samples show undulatory extinction, limited recrystallization, and c-axis maxima parallel to the shortening direction. Similarly fine-grained samples deformed at 800°-900°C exhibit flow parameters n=1.3-2.0 and H*=135-200 kJ/mol corresponding to grain size-sensitive Newtonian creep. Deformed samples show some undulatory extinction and grain sizes change by recrystallization; however, grain boundary deformation processes are indicated by the low value of n. Our experimental results for grain size-sensitive creep can be compared with models of grain boundary diffusion and grain boundary sliding using measured rates of silicon grain boundary diffusion. While many quartz mylonites show microstructural and textural evidence for dislocation creep, results for grain size-sensitive creep may apply to very fine-grained (<10 mm) quartz mylonites.

  2. An Analysis of Strengthening Mechanisms and Rate-Dependence in a High Strength Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Cao, B.; Shaeffer, M.; Cadel, D.; Ramesh, K. T.; Prasad, S.

    2017-11-01

    We examine the strengthening mechanisms within a high-strength aluminum alloy with the objective of providing guidelines for increased strength. First, we measure the mechanical behavior of the age-hardenable Al-Cu-Mg-Ag alloy known as Al 2139 in the T8 condition, and observe strengths of 500 MPa at quasistatic strain rates and average strengths of up to 600 MPa at high strain rates. Next, we explore the reasons for the high strength of this alloy by considering the contributions of various strengthening mechanisms to the total strength of the material. Finally, we develop an analytical approach to estimating the strengthening developed through the mechanism of dislocation cutting of closely spaced plate-like semi-coherent precipitates. Our results suggest that dislocation cutting of the Ω phase is the primary strengthening mechanism in this alloy.

  3. Surgical Dislocation of the Hip for the Treatment of Pre-Arthritic Hip Disease.

    PubMed

    Beaulé, Paul E; Singh, Amardeep; Poitras, Stéphane; Parker, Gillian

    2015-09-01

    The purpose of this study was to report the clinical results of surgical dislocation of the hip in the treatment of pre-arthritic hip disease. Between 2005 and 2010, eighty-two patients (89 hips) underwent a surgical dislocation of the hip at a mean age of 30.5 years (range 14.8-51.7); 10 females and 72 males. At a mean follow-up of 7.1 years (range 5-9.6) clinical function improved significantly. 6 patients were converted to total hip arthroplasty and 3 patients underwent an arthroscopy and an additional three patients had >1mm of joint space narrowing at latest follow-up giving us a 9-year cumulative Kaplan-Meier survivorship of 86.4% (CI, 79% to 94%). Thirty-four patients underwent internal fixation removal at a mean of 12.0 months (range 0.3-40.8 months). Although effective in the treatment of early hip disease, the surgical dislocation approach carries a high re-operation rate for removal of internal fixation; consequently, less invasive approaches should be considered for less complex deformities. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. On the mobility of carriers at semi-coherent oxide heterointerfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dholabhai, Pratik P.; Martinez, Enrique Saez; Brown, Nicholas Taylor

    In the quest to develop new materials with enhanced ionic conductivity for battery and fuel cell applications, nano-structured oxides have attracted attention. Experimental reports indicate that oxide heterointerfaces can lead to enhanced ionic conductivity, but these same reports cannot elucidate the origin of this enhancement, often vaguely referring to pipe diffusion at misfit dislocations as a potential explanation. However, this highlights the need to understand the role of misfit dislocation structure at semi-coherent oxide heterointerfaces in modifying carrier mobilities. Here, we use atomistic and kinetic Monte Carlo (KMC) simulations to develop a model of oxygen vacancy migration at SrTiO 3/MgOmore » interfaces, chosen because the misfit dislocation structure can be modified by changing the termination chemistry. We use atomistic simulations to determine the energetics of oxygen vacancies at both SrO and TiO 2 terminated interfaces, which are then used as the basis of the KMC simulations. While this model is approximate (as revealed by select nudged elastic band calculations), it highlights the role of the misfit dislocation structure in modifying the oxygen vacancy dynamics. We find that oxygen vacancy mobility is significantly reduced at either interface, with slight differences at each interface due to the differing misfit dislocation structure. Here, we conclude that if such semi-coherent oxide heterointerfaces induce enhanced ionic conductivity, it is not a consequence of higher carrier mobility.« less

  5. On the mobility of carriers at semi-coherent oxide heterointerfaces

    DOE PAGES

    Dholabhai, Pratik P.; Martinez, Enrique Saez; Brown, Nicholas Taylor; ...

    2017-08-17

    In the quest to develop new materials with enhanced ionic conductivity for battery and fuel cell applications, nano-structured oxides have attracted attention. Experimental reports indicate that oxide heterointerfaces can lead to enhanced ionic conductivity, but these same reports cannot elucidate the origin of this enhancement, often vaguely referring to pipe diffusion at misfit dislocations as a potential explanation. However, this highlights the need to understand the role of misfit dislocation structure at semi-coherent oxide heterointerfaces in modifying carrier mobilities. Here, we use atomistic and kinetic Monte Carlo (KMC) simulations to develop a model of oxygen vacancy migration at SrTiO 3/MgOmore » interfaces, chosen because the misfit dislocation structure can be modified by changing the termination chemistry. We use atomistic simulations to determine the energetics of oxygen vacancies at both SrO and TiO 2 terminated interfaces, which are then used as the basis of the KMC simulations. While this model is approximate (as revealed by select nudged elastic band calculations), it highlights the role of the misfit dislocation structure in modifying the oxygen vacancy dynamics. We find that oxygen vacancy mobility is significantly reduced at either interface, with slight differences at each interface due to the differing misfit dislocation structure. Here, we conclude that if such semi-coherent oxide heterointerfaces induce enhanced ionic conductivity, it is not a consequence of higher carrier mobility.« less

  6. Analysis of Mesa Dislocation Gettering in HgCdTe/CdTe/Si(211) by Scanning Transmission Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Jacobs, R. N.; Stoltz, A. J.; Benson, J. D.; Smith, P.; Lennon, C. M.; Almeida, L. A.; Farrell, S.; Wijewarnasuriya, P. S.; Brill, G.; Chen, Y.; Salmon, M.; Zu, J.

    2013-11-01

    Due to its strong infrared absorption and variable band-gap, HgCdTe is the ideal detector material for high-performance infrared focal-plane arrays (IRFPAs). Next-generation IRFPAs will utilize dual-color high-definition formats on large-area substrates such as Si or GaAs. However, heteroepitaxial growth on these substrates is plagued by high densities of lattice-mismatch-induced threading dislocations (TDs) that ultimately reduce IRFPA operability. Previously we demonstrated a postgrowth technique with the potential to eliminate or move TDs such that they have less impact on detector operability. In this technique, highly reticulated mesa structures are produced in as-grown HgCdTe epilayers, and then subjected to thermal cycle annealing. To fully exploit this technique, better understanding of the inherent mechanism is required. In this work, we employ scanning transmission electron microscopy (STEM) analysis of HgCdTe/CdTe/Si(211) samples prepared by focused ion beam milling. A key factor is the use of defect-decorated samples, which allows for a correlation of etch pits observed on the surface with underlying dislocation segments viewed in cross-section STEM images. We perform an analysis of these dislocations in terms of the general distribution, density, and mobility at various locations within the mesa structures. Based on our observations, we suggest factors that contribute to the underlying mechanism for dislocation gettering.

  7. POSTEROSUPERIOR SURGICAL ACCESS ROUTE FOR TREATMENT OF ACROMIOCLAVICULAR DISLOCATIONS: RESULTS FROM 84 SURGICAL CASES

    PubMed Central

    Dal Molin, Danilo Canesin; Ribeiro, Fabiano Rebouças; Filho, Rômulo Brasil; Filardi, Cantídio Salvador; Tenor, Antonio Carlos; Stipp, Willian Nandi; Petros, Rodrigo Souto Borges

    2015-01-01

    Objective: To evaluate the results from surgical treatment of 84 cases of acute acromioclavicular dislocation, using a posterosuperior access route. Methods: Eighty-four cases of acute acromioclavicular dislocation (grade III in the Allman-Tossy classification) operated between November 2002 and May 2010 were evaluated. The patients’ mean age was 34 years. The diagnoses were made using clinical and radiographic evaluations. The patients were operated by the same surgical team, within three weeks of the date of the trauma, using a posterosuperior approach to the shoulder to access the top of the base of the coracoid process for placement of two anchors, which were used in reducing the dislocation. The minimum follow-up was 12 months. The postoperative clinical-radiographic evaluation was done using the modified Karlsson criteria and the University of California at Los Angeles (UCLA) score. Results: 92.8% of the 84 patients treated presented good or excellent results, and 7.2% presented fair or poor results, using the UCLA assessment score. According to the modified Karlsson criteria, 76.2% were assessed as grade A, 17.9% as grade B and 5.9% as grade C. Conclusion: The posterosuperior access route to the shoulder is a new option for accessing the coracoid process and treating acromioclavicular dislocation, with clinical and radiographic results equivalent to those in the literature. PMID:27047866

  8. Dual-phase steel sheets under cyclic tension-compression to large strains: Experiments and crystal plasticity modeling

    NASA Astrophysics Data System (ADS)

    Zecevic, Milovan; Korkolis, Yannis P.; Kuwabara, Toshihiko; Knezevic, Marko

    2016-11-01

    In this work, we develop a physically-based crystal plasticity model for the prediction of cyclic tension-compression deformation of multi-phase materials, specifically dual-phase (DP) steels. The model is elasto-plastic in nature and integrates a hardening law based on statistically stored dislocation density, localized hardening due to geometrically necessary dislocations (GNDs), slip-system-level kinematic backstresses, and annihilation of dislocations. The model further features a two level homogenization scheme where the first level is the overall response of a two-phase polycrystalline aggregate and the second level is the homogenized response of the martensite polycrystalline regions. The model is applied to simulate a cyclic tension-compression-tension deformation behavior of DP590 steel sheets. From experiments, we observe that the material exhibits a typical decreasing hardening rate during forward loading, followed by a linear and then a non-linear unloading upon the load reversal, the Bauschinger effect, and changes in hardening rate during strain reversals. To predict these effects, we identify the model parameters using a portion of the measured data and validate and verify them using the remaining data. The developed model is capable of predicting all the particular features of the cyclic deformation of DP590 steel, with great accuracy. From the predictions, we infer and discuss the effects of GNDs, the backstresses, dislocation annihilation, and the two-level homogenization scheme on capturing the cyclic deformation behavior of the material.

  9. Characterization of electrically-active defects in ultraviolet light-emitting diodes with laser-based failure analysis techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Mary A.; Tangyunyong, Paiboon; Cole, Edward I.

    2016-01-14

    Laser-based failure analysis techniques demonstrate the ability to quickly and non-intrusively screen deep ultraviolet light-emitting diodes (LEDs) for electrically-active defects. In particular, two laser-based techniques, light-induced voltage alteration and thermally-induced voltage alteration, generate applied voltage maps (AVMs) that provide information on electrically-active defect behavior including turn-on bias, density, and spatial location. Here, multiple commercial LEDs were examined and found to have dark defect signals in the AVM indicating a site of reduced resistance or leakage through the diode. The existence of the dark defect signals in the AVM correlates strongly with an increased forward-bias leakage current. This increased leakage ismore » not present in devices without AVM signals. Transmission electron microscopy analysis of a dark defect signal site revealed a dislocation cluster through the pn junction. The cluster included an open core dislocation. Even though LEDs with few dark AVM defect signals did not correlate strongly with power loss, direct association between increased open core dislocation densities and reduced LED device performance has been presented elsewhere [M. W. Moseley et al., J. Appl. Phys. 117, 095301 (2015)].« less

  10. Characterization of electrically-active defects in ultraviolet light-emitting diodes with laser-based failure analysis techniques

    DOE PAGES

    Miller, Mary A.; Tangyunyong, Paiboon; Edward I. Cole, Jr.

    2016-01-12

    In this study, laser-based failure analysis techniques demonstrate the ability to quickly and non-intrusively screen deep ultraviolet light-emitting diodes(LEDs) for electrically-active defects. In particular, two laser-based techniques, light-induced voltage alteration and thermally-induced voltage alteration, generate applied voltage maps (AVMs) that provide information on electrically-active defect behavior including turn-on bias, density, and spatial location. Here, multiple commercial LEDs were examined and found to have dark defect signals in the AVM indicating a site of reduced resistance or leakage through the diode. The existence of the dark defect signals in the AVM correlates strongly with an increased forward-bias leakage current. This increasedmore » leakage is not present in devices without AVM signals. Transmission electron microscopyanalysis of a dark defect signal site revealed a dislocation cluster through the pn junction. The cluster included an open core dislocation. Even though LEDs with few dark AVM defect signals did not correlate strongly with power loss, direct association between increased open core dislocation densities and reduced LED device performance has been presented elsewhere [M. W. Moseley et al., J. Appl. Phys. 117, 095301 (2015)].« less

  11. Electrical properties of grain boundaries and dislocations in crystalline silicon: Influence of impurity incorporation and hydrogenation

    NASA Astrophysics Data System (ADS)

    Park, Yongkook

    This thesis examines the electrical properties of grain boundaries (GBs) and dislocations in crystalline silicon. The influence of impurity incorporation and hydrogenation on the electrical properties of grain boundaries , as well as the electrical activity of impurity decorated dislocations and the retention of impurities at dislocations at high temperatures have been investigated. The electrical properties of Si GB were examined by C-V, J-V , and capacitance transient methods using aluminum/Si(100)/Si(001) junctions. First, the density of states and the carrier capture cross-sections of the clean GB were evaluated by C-V/J-V analyses. The density of GB states was determined as 4.0x1012 cm-2eV -1. It was found that the states close to the valance band edge have relatively smaller hole capture cross sections than those at higher energy position, and electron capture cross sections are at least two or three orders larger than the corresponding hole capture cross sections. Secondly, the influence of iron contamination and hydrogenation following iron contamination on the electrical properties of (110)/(001) Si GB was characterized by a capacitance transient technique. Compared with the clean sample, iron contamination increased both the density of states by at least three times and the zero-bias barrier height by 70 meV, while reducing by two orders of magnitude the electron/hole capture cross-section ratio. Hydrogenation following iron contamination led to the reduction of the density of Fe-decorated GB states, which was increased to over 2x1013 cm-2eV-1 after iron contamination, to ˜1x1013 cm-2 eV-1 after hydrogenation treatment. The increased zero-bias GB energy barrier due to iron contamination was reversed as well by hydrogen treatment. The density of GB states before and after hydrogenation was evaluated by J-V, C-V and capacitance transient methods using gold/direct-silicon-bonded (DSB) (110) thin silicon top layer/(100) silicon substrate junctions. The GB potential energy barrier in thermal equilibrium was reduced by 70 meV. Whereas the clean sample had a density of GB states of ˜6x1012 cm-2eV-1 in the range of Ev+0.54˜0.64 eV, hydrogenation reduced the density of GB states to ˜9x1011 cm-2eV -1 in the range of Ev+0.56˜0.61 eV, which is about a seven-fold reduction from that of the clean sample. Segregation and thermal dissociation kinetics of hydrogen at a large-angle general GB in crystalline silicon have been investigated using deuterium as a readily identifiable isotope which duplicates hydrogen chemistry. Segregation or trapping of deuterium (hydrogen) introduced was found to take place at (110)/(001) Si GB. The segregation coefficient (k) of deuterium (hydrogen) at GB was determined as k≈24+/-3 at 100°C. Thermal dissociation of deuterium (hydrogen) from GB obeyed first-order kinetics with an activation energy of ˜1.62 eV. The electrical activities of dislocations in a SiGe/Si heterostructure were examined by deep level transient spectroscopy (DLTS) after iron contamination and phosphorous diffusion gettering. DLTS of iron contaminated samples revealed a peak at 210 K, which was assigned to individual iron atoms or very small (<2 nm) precipitates decorated along dislocations. Arrhenius plot of the 210 K peak yielded a hole capture cross section of 2.4x10-14 cm2 and an energy level of 0.42 eV above the valance band. DLTS of the iron contaminated sample revealed that 6x10 14 cm-3 of boron can more effectively trap interstitial iron at room temperature than the strain field/defect sites at 107 ˜108 cm-2 dislocations. Phosphorous diffusion experiments revealed that the gettering efficiency of iron impurities depends on the dislocation density. For regions of high dislocation density, phosphorous diffusion cannot remove all iron impurities decorated at dislocations, suggesting a strong binding of iron impurities at dislocation core defects.

  12. Influence of misfit stresses on dislocation glide in single crystal superalloys: A three-dimensional discrete dislocation dynamics study

    NASA Astrophysics Data System (ADS)

    Gao, Siwen; Fivel, Marc; Ma, Anxin; Hartmaier, Alexander

    2015-03-01

    In the characteristic γ / γ ‧ microstructure of single crystal superalloys, misfit stresses occur due to a significant lattice mismatch of those two phases. The magnitude of this lattice mismatch depends on the chemical composition of both phases as well as on temperature. Furthermore, the lattice mismatch of γ and γ ‧ phases can be either positive or negative in sign. The internal stresses caused by such lattice mismatch play a decisive role for the micromechanical processes that lead to the observed macroscopic athermal deformation behavior of these high-temperature alloys. Three-dimensional discrete dislocation dynamics (DDD) simulations are applied to investigate dislocation glide in γ matrix channels and shearing of γ ‧ precipitates by superdislocations under externally applied uniaxial stresses, by fully taking into account internal misfit stresses. Misfit stress fields are calculated by the fast Fourier transformation (FFT) method and hybridized with DDD simulations. For external loading along the crystallographic [001] direction of the single crystal, it was found that the different internal stress states for negative and positive lattice mismatch result in non-uniform dislocation movement and different dislocation patterns in horizontal and vertical γ matrix channels. Furthermore, positive lattice mismatch produces a lower deformation rate than negative lattice mismatch under the same tensile loading, but for an increasing magnitude of lattice mismatch, the deformation resistance always diminishes. Hence, the best deformation performance is expected to result from alloys with either small positive, or even better, vanishing lattice mismatch between γ and γ ‧ phase.

  13. Complication Rates for Hip Arthroscopy Are Underestimated: A Population-Based Study.

    PubMed

    Truntzer, Jeremy N; Hoppe, Daniel J; Shapiro, Lauren M; Abrams, Geoffrey D; Safran, Marc

    2017-06-01

    To identify major and minor complication rates associated with hip arthroscopy from a payer-based national database and compare with the rates reported in the existing literature. Patients who underwent hip arthroscopy between 2007 and 2014 were identified using PearlDiver, a publicly available database. Rates of major and minor complications, as well as conversion to total hip arthroscopy (THA), were determined by using Current Procedural Terminology (CPT) and International Classification of Diseases, Ninth Revision (ICD-9), codes. Incidence rates of select major complications across the entire database were used as a comparison group. Statistical significance was set at P < .05. Of 18 million patients screened from 2007 to 2014, a total of 2,581 hip arthroscopies were identified. The rates of major and minor complications within a 1-year postoperative period were 1.74% and 4.22%, respectively. Complications included heterotopic ossification (2.85%), bursitis (1.23%), proximal femur fracture (1.08%), deep vein thrombosis (0.79%), and hip dislocation (0.58%). The rate of conversion to THA within 1 year was 2.85%. When compared to rates in the general population, the relative risks [RRs] of requiring a THA (age <50 years, RR = 57.66, P < .001; age >50 years, RR = 22.05, P < .001), sustaining a proximal femur fracture (age <50 years, RR = 18.02, P < .001; age >50 years, RR = 2.23, P < .001), or experiencing a hip dislocation (RR 19.60, P < .001) at 1 year after hip arthroscopy were significantly higher in all age groups. Higher major complication rates after hip arthroscopy were observed using a national payer-based database than previously reported in the literature, especially in regard to hip dislocations and proximal femur fractures. Rates of total hip arthroplasty were similar to prior studies, whereas the rates of revision hip arthroscopy were higher. Level IV, case series. Copyright © 2017 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  14. Re-examination of the Present Stress State of the Atera Fault, Central Japan, Based on the Calibrated Crustal Stress Data of Hydraulic Fracturing Test by Measuring the Tensile Strength of Rocks

    NASA Astrophysics Data System (ADS)

    Yamashita, F.; Mizoguchi, K.; Fukuyama, E.; Omura, K.

    2008-12-01

    To infer the activity and physical state of intraplate faults in Japan, we re-examined the crustal stress with the hydraulic fracturing test by measuring the tensile strength of rocks. The tensile strength was measured by fracturing hollow cylindrical rock samples (inner and outer radius are 25.0-25.2 mm and 55.1-101.5 mm, respectively, length is 137.0-140.1 mm) which were obtained close to the in situ stress measurement locations by pressurizing the inner hole of the sample. Confining pressure is not applied to the samples in this test. To check the reliability and accuracy of this test, we conducted similar experiments with the standard rock sample (Inada granite) whose physical property is well known. Then, we measured the tensile strength of all available core samples including the Atera fault (at Ueno, Fukuoka, and Hatajiri), the Atotsugawa fault, and the Nojima fault (at Hirabayashi, Iwaya and Kabutoyama), in central Japan, which had been obtained by the National Research Institute for Earth Science and Disaster Prevention (NIED) by the stress measurement with the hydraulic fracturing method. The measured tensile strength data reveals that the in situ re- opening pressure, which is one of the parameters needed for the determination of the maximum in situ horizontal stress, was obviously biased. We re-estimated the re-opening pressure using the measured tensile strength and the in situ breakdown pressure, and re-calculated the in situ stress around the Atera fault. Although the past dislocation of the Atera fault has been considered to be left lateral from the geographical features around the fault, the re-estimated stress suggests that the present dislocation of the Atera fault is right lateral. And the shear stress decreases from the fault. The right lateral dislocation is also supported by the present-day horizontal crustal deformation observed by the triangular and GPS surveys by Geographical Survey Institute in Japan. Therefore, the dislocation direction of the Atera fault seems to change from left lateral to right lateral some time ago. The amount of accumulated right lateral dislocation estimated from the stress data with the dislocation model by Okada (1992) is 2.2-2.6 m. Because the current slip rate from the GPS survey is 2.1-2.3 mm/yr, the accumulation period of the dislocation becomes 960-1240 years if the slip rate is stable. This estimation suggests that during the last 1586 Tensho earthquake the Atera fault dislocated right laterally.

  15. Understanding Preferences for Treatment After Hypothetical First-Time Anterior Shoulder Dislocation: Surveying an Online Panel Utilizing a Novel Shared Decision-Making Tool.

    PubMed

    Streufert, Ben; Reed, Shelby D; Orlando, Lori A; Taylor, Dean C; Huber, Joel C; Mather, Richard C

    2017-03-01

    Although surgical management of a first-time anterior shoulder dislocation (FTASD) can reduce the risk of recurrent dislocation, other treatment characteristics, costs, and outcomes are important to patients considering treatment options. While patient preferences, such as those elicited by conjoint analysis, have been shown to be important in medical decision-making, the magnitudes or effects of patient preferences in treating an FTASD are unknown. To test a novel shared decision-making tool after sustained FTASD. Specifically measured were the following: (1) importance of aspects of operative versus nonoperative treatment, (2) respondents' agreement with results generated by the tool, (3) willingness to share these results with physicians, and (4) association of results with choice of treatment after FTASD. Cross-sectional study; Level of evidence, 3. A tool was designed and tested using members of Amazon Mechanical Turk, an online panel. The tool included an adaptive conjoint analysis exercise, a method to understand individuals' perceived importance of the following attributes of treatment: (1) chance of recurrent dislocation, (2) cost, (3) short-term limits on shoulder motion, (4) limits on participation in high-risk activities, and (5) duration of physical therapy. Respondents then chose between operative and nonoperative treatment for hypothetical shoulder dislocation. Overall, 374 of 501 (75%) respondents met the inclusion criteria, of which most were young, active males; one-third reported prior dislocation. From the conjoint analysis, the importance of recurrent dislocation and cost of treatment were the most important attributes. A substantial majority agreed with the tool's ability to generate representative preferences and indicated that they would share these preferences with their physician. Importance of recurrence proved significantly predictive of respondents' treatment choices, independent of sex or age; however, activity level was important to previous dislocators. A total of 125 (55%) males and 33 (23%) females chose surgery after FTASD, as did 37% of previous dislocators compared with 45% of nondislocators. When given thorough information about the risks and benefits, respondents had strong preferences for operative treatment after an FTASD. Respondents agreed with the survey results and wanted to share the information with providers. Recurrence was the most important attribute and played a role in decisions about treatment.

  16. Molecular dynamics simulation on the elastoplastic properties of copper nanowire under torsion

    NASA Astrophysics Data System (ADS)

    Yang, Yong; Li, Ying; Yang, Zailin; Zhang, Guowei; Wang, Xizhi; Liu, Jin

    2018-02-01

    Influences of different factors on the torsion properties of single crystal copper nanowire are studied by molecular dynamics method. The length, torsional rate, and temperature of the nanowire are discussed at the elastic-plastic critical point. According to the average potential energy curve and shear stress curve, the elastic-plastic critical angle is determined. Also, the dislocation at elastoplastic critical points is analyzed. The simulation results show that the single crystal copper nanowire can be strengthened by lengthening the model, decreasing the torsional rate, and lowering the temperature. Moreover, atoms move violently and dislocation is more likely to occur with a higher temperature. This work mainly describes the mechanical behavior of the model under different states.

  17. Bearing Dislocation and Progression of Osteoarthritis After Mobile-bearing Unicompartmental Knee Arthroplasty Vary Between Asian and Western Patients: A Meta-analysis.

    PubMed

    Ro, Kyung-Han; Heo, Jae-Won; Lee, Dae-Hee

    2018-05-01

    Implant survivorship is reported to be lower and complications, particularly bearing dislocation, are reported to be more frequent in Asian than in Western patients with medial knee osteoarthritis (OA) undergoing Oxford® Phase III unicompartmental knee arthroplasty (UKA). To date, however, these complications have not been compared between these groups of patients. The purpose of this study was to perform a meta-analysis comparing the standardized incidence rates of (1) all-cause reoperation; (2) reoperation related to bearing dislocation; and (3) reoperation related to progression of lateral compartment arthritis in Asian and Western patients with medial knee OA who underwent Oxford Phase III UKA. We searched MEDLINE® (January 1, 1976, to May 31, 2017), EMBASE® (January 1, 1985, to May 31, 2017), and the Cochrane Library (January 1, 1987, to May 31, 2017) for studies that reported complications of Oxford Phase III UKAs. Studies were included if they reported reoperation rates attributable to bearing dislocation and/or progression of lateral knee OA after surgery with this implant. Twenty-seven studies were included in this systematic review and 16 studies with followups > 5 years were included in the meta-analysis. These rates were converted to standardized incidence rate (that is, reoperations per 100 observed component years) based on mean followup and number of involved knees in each study. After applying prespecified inclusion and exclusion criteria, the studies were categorized into two groups, Asian and Western, based on hospital location. Twenty-five studies, containing 3152 Asian patients and 5455 Western patients, were evaluated. Study quality was assessed by the modified Coleman Methodology score (MCMS). Although all studies were Level IV, their mean MCMS score was 66.92 (SD, 8.7; 95% confidence interval [CI], 63.5-70.3), indicating fair quality. Because the heterogeneity of all subgroup meta-analyses was high, a random-effects model was used with estimations using the restricted maximum likelihood method. There was no difference in the proportion of Asian patients versus Western patients undergoing reoperation for any cause calculated as 100 component observed years (1.022 of 3152 Asian patients; 95% CI, 0.810-1.235 versus 1.300 of 5455 Western patients; 95% CI, 1.067-1.534; odds ratio, 0.7839; 95% CI, 0.5323-1.1545; p = 0.178). The mean reoperation rate attributable to bearing dislocation per 100 observed years was higher in Asian than in Western patients (0.525; 95% CI, 0.407-0.643 versus 0.141; 95% CI, 0.116-0.166; odds ratio, 3.7378; 95% CI, 1.694-8.248; p = 0.001) Conversely, the mean reoperation rate attributable to lateral knee OA per 100 observed years was lower in Asian than in Western patients (0.093; 95% CI, 0.070-0.115 versus 0.298; 95% CI, 0.217-0.379; odds ratio, 0.3114; 95% CI, 0.0986-0.9840; p < 0.001). Although total reoperation rates did not differ in the two populations, reoperation for bearing dislocation was more likely to occur in Asian than in Western patients, whereas reoperation for lateral knee OA progression was more likely to occur in Western than in Asian patients after Oxford Phase III UKA. Although possible explanations for these findings may be hypothesized, additional randomized, prospective comparative studies are needed. However, better survival outcomes after UKA may require consideration of ethnicity and lifestyle choices in addition to traditional surgical technique and perioperative care. Level III, therapeutic study.

  18. Origin of the sensitivity in modeling the glide behaviour of dislocations

    DOE PAGES

    Pei, Zongrui; Stocks, George Malcolm

    2018-03-26

    The sensitivity in predicting glide behaviour of dislocations has been a long-standing problem in the framework of the Peierls-Nabarro model. The predictions of both the model itself and the analytic formulas based on it are too sensitive to the input parameters. In order to reveal the origin of this important problem in materials science, a new empirical-parameter-free formulation is proposed in the same framework. Unlike previous formulations, it includes only a limited small set of parameters all of which can be determined by convergence tests. Under special conditions the new formulation is reduced to its classic counterpart. In the lightmore » of this formulation, new relationships between Peierls stresses and the input parameters are identified, where the sensitivity is greatly reduced or even removed.« less

  19. [Palmar lunate dislocation].

    PubMed

    Isenberg, J; Prokop, A; Schellhammer, F; Helling, H J

    2002-12-01

    Palmar lunate dislocation as the end stage of a perilunate dislocation is a very uncommon injury. Having treated 19,534 hospitalized patients between 1 January 1986 and 1 October 2001 the diagnosis was recorded in four male trauma patients (33, 36, 37 and 62 years old). Among the operatively treated carpal dislocations and carpal fracture dislocations those of the lunate were seen in five per cent. The dislocation was caused in by an acute hyperextension injury resulting of falls from heights in three cases, and of a motorcycle accident in a further case. In two of these cases a complete palmar lunate dislocation was analysed that were produced by fall from seven meters heights of a young craftsman and by accident of a motorcyclist. First using a longitudinal palmar approach in both cases a revision of the hemorrhagic carpal canal was performed urgently, the largely denuded lunate was reduced and the repair of identified ligamentous structures was performed by means of sutures respectively suture anchors. Reduction was stabilized with Kirschner wires. Afterwards performed computed tomography identified the result of reduction and associated defects (subluxation distal radioulnar joint). In one patient a soft tissue infection prevented the dorsal ligamentous repair. In spite of a consequent after-treatment and a good functional result a scapho-lunate dissociation was proved. An avascular defect of the lunate could be excluded by magnetic resonance imaging. In case of a secondary performed dorsal repair a persisting carpal stabilization with a satisfactory functional result could achieved. At second hand an advanced carpal collapse was proved. If reduction cannot be achieved by closed manipulation or a loss of reduction is shown, open reduction is indicated first by a palmar approach. An additional dorsal ligamentous repair seems to be necessary. Transfixation by Kirschner wires and suture anchors stabilize the restored anatomic relationships. Wrist immobilization in a cast for at least eight weeks is recommended. Although ligamentous insufficiency, osteoarthrosis and avascular necrosis are often proved, functional results are satisfactory.

  20. Fixation of split-thickness skin graft using fast-clotting fibrin glue containing undiluted high-concentration thrombin or sutures: a comparison study.

    PubMed

    Han, Hyun Ho; Jun, Daiwon; Moon, Suk-Ho; Kang, In Sook; Kim, Min Cheol

    2016-01-01

    For skin defects caused by full-thickness burns, trauma, or tumor tissue excision, skin grafting is one of the most convenient and useful treatment methods. In this situation, graft fixation is important in skin grafting. This study was performed to compare the effectiveness of skin graft fixation between high-concentration fibrin sealant and sutures. There have been numerous studies using fibrin sealant for graft fixation, but they utilized slow-clotting fibrin sealant containing less than 10 IU/mL thrombin. Twenty-five patients underwent split-thickness skin grafting using fast-clotting fibrin sealant containing 400 IU/mL thrombin, while 30 patients underwent grafting using sutures. Rates of hematoma/seroma formation, graft dislocation, graft necrosis, and graft take were investigated postoperatively. The graft surface area was calculated using Image J software (National Institutes of Health, Bethesda, MD, USA). After 5 days, rates of hematoma/seroma formation and graft dislocation were 7.84 and 1.29% in group I, and 9.55 and 1.45% in group II, respectively. After 30 days, rates of graft necrosis and graft take were 1.86 and 98.14% in group I, and 4.65 and 95.35% in group II. Undiluted fibrin sealant showed significantly superior results for all rates ( p  < 0.05) except graft dislocation. When high-concentration fast-clotting fibrin sealant was applied to skin grafts without dilution, no difficulty was experienced during surgery. Sealant showed superior results compared with sutures and had an excellent graft take rate. II.

  1. A revised dislocation model of interseismic deformation of the Cascadia subduction zone

    USGS Publications Warehouse

    Wang, Kelin; Wells, Ray E.; Mazzotti, Stephane; Hyndman, Roy D.; Sagiya, Takeshi

    2003-01-01

    CAS3D‐2, a new three‐dimensional (3‐D) dislocation model, is developed to model interseismic deformation rates at the Cascadia subduction zone. The model is considered a snapshot description of the deformation field that changes with time. The effect of northward secular motion of the central and southern Cascadia forearc sliver is subtracted to obtain the effective convergence between the subducting plate and the forearc. Horizontal deformation data, including strain rates and surface velocities from Global Positioning System (GPS) measurements, provide primary geodetic constraints, but uplift rate data from tide gauges and leveling also provide important validations for the model. A locked zone, based on the results of previous thermal models constrained by heat flow observations, is located entirely offshore beneath the continental slope. Similar to previous dislocation models, an effective zone of downdip transition from locking to full slip is used, but the slip deficit rate is assumed to decrease exponentially with downdip distance. The exponential function resolves the problem of overpredicting coastal GPS velocities and underpredicting inland velocities by previous models that used a linear downdip transition. A wide effective transition zone (ETZ) partially accounts for stress relaxation in the mantle wedge that cannot be simulated by the elastic model. The pattern of coseismic deformation is expected to be different from that of interseismic deformation at present, 300 years after the last great subduction earthquake. The downdip transition from full rupture to no slip should take place over a much narrower zone.

  2. Phase Transformation and Creep Behavior in Ti50Pd30Ni20 High Temperature Shape Memory Alloy in Compression

    NASA Technical Reports Server (NTRS)

    Kumar, Parikshith K.; Desai, Uri; Monroe, James; Lagoudas, Dimitris C.; Karaman, Ibrahim; Noebe, Ron; Bigelow, Glenn

    2010-01-01

    The creep behavior and the phase transformation of Ti50Pd30Ni20 High Temperature Shape Memory Alloy (HTSMA) is investigated by standard creep tests and thermomechanical tests. Ingots of the alloy are induction melted, extruded at high temperature, from which cylindrical specimens are cut and surface polished. A custom high temperature test setup is assembled to conduct the thermomechanical tests. Following preliminary monotonic tests, standard creep tests and thermally induced phase transformation tests are conducted on the specimen. The creep test results suggest that over the operating temperatures and stresses of this alloy, the microstructural mechanisms responsible for creep change. At lower stresses and temperatures, the primary creep mechanism is a mixture of dislocation glide and dislocation creep. As the stress and temperature increase, the mechanism shifts to predominantly dislocation creep. If the operational stress or temperature is raised even further, the mechanism shifts to diffusion creep. The thermally induced phase transformation tests show that actuator performance can be affected by rate independent irrecoverable strain (transformation induced plasticity + retained martensite) as well as creep. The rate of heating and cooling can adversely impact the actuators performance. While the rate independent irrecoverable strain is readily apparent early in the actuators life, viscoplastic strain continues to accumulate over the lifespan of the HTSMA. Thus, in order to get full actuation out of the HTSMA, the heating and cooling rates must be sufficiently high enough to avoid creep.

  3. Severe upper extremity injuries in frontal automobile crashes: the effects of depowered airbags.

    PubMed

    Jernigan, M Virginia; Rath, Amber L; Duma, Stefan M

    2005-03-01

    The purpose of this study was to determine the effects of depowered frontal airbags on the incidence of severe upper extremity injuries. The National Automotive Sampling System database files from 1993 to 2000 were examined in a study that included 2,413,347 occupants who were exposed to an airbag deployment in the United States. Occupants exposed to a depowered airbag deployment were significantly more likely to sustain a severe upper extremity injury (3.9%) than those occupants exposed to a full-powered airbag deployment (2.5%) (P=.01). Full-powered systems resulted in an injury distribution of 89.2% fractures and 7.9% dislocations compared with depowered systems with 55.3% fractures and 44.3% dislocations. Although depowered airbags were designed to reduce the risk of injuries, they appear to have increased the overall incidence of severe upper extremity injuries through a shift from long bone fractures to joint dislocations.

  4. Impact of open-core threading dislocations on the performance of AlGaN metal-semiconductor-metal photodetectors

    NASA Astrophysics Data System (ADS)

    Walde, S.; Brendel, M.; Zeimer, U.; Brunner, F.; Hagedorn, S.; Weyers, M.

    2018-04-01

    The influence of open-core threading dislocations on the bias-dependent external quantum efficiency (EQE) of bottom-illuminated Al0.5Ga0.5N/AlN metal-semiconductor-metal (MSM) photodetectors (PDs) is presented. These defects originate at the Al0.5Ga0.5N/AlN interface and terminate on the Al0.5Ga0.5N surface as hexagonal prisms. They work as electrically active paths bypassing the Al0.5Ga0.5N absorber layer and therefore alter the behavior of the MSM PDs under bias voltage. This effect is included in the model of carrier collection in the MSM PDs showing a good agreement with the experimental data. While such dislocations usually limit the device performance, the MSM PDs benefit by high EQE at a reduced bias voltage while maintaining a low dark current.

  5. Elbow dislocation secondary to fall during police arrest.

    PubMed

    Stevenson, R J; Clark, K; Kelliher, T

    2014-02-01

    A case of total elbow dislocation with significant swelling and loss of distal pulses during police arrest is described. To date, this specific injury in relation to police arrest has not been described in the literature. Whilst attempting to remove the detainee from a public transport vehicle, the patient and the officers involved fell to the ground with his arm slightly flexed. He was handcuffed to the rear and taken to the police office. Whilst there, it was noted that his left elbow was swelling dramatically and he complained of pain. The detainee and officers attended the emergency room and he was found to have a total dislocation of the left elbow and vascular compromise of the limb. The elbow was promptly reduced with sedation and a post reduction angiogram demonstrated injury to the tissues surrounding the brachial artery. Copyright © 2014 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  6. Multi-scale simulation of lithium diffusion in the presence of a 30° partial dislocation and stacking fault in Si

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chao-Ying; Li, Chen-liang; Wu, Guo-Xun

    The multi-scale simulation method is employed to investigate how defects affect the performances of Li-ion batteries (LIBs). The stable positions, binding energies and dynamics properties of Li impurity in Si with a 30° partial dislocation and stacking fault (SF) have been studied in comparison with the ideal crystal. It is found that the most table position is the tetrahedral (T{sub d}) site and the diffusion barrier is 0.63 eV in bulk Si. In the 30° partial dislocation core and SF region, the most stable positions are at the centers of the octagons (Oct-A and Oct-B) and pentahedron (site S), respectively. Inmore » addition, Li dopant may tend to congregate in these defects. The motion of Li along the dislocation core are carried out by the transport among the Oct-A (Oct-B) sites with the barrier of 1.93 eV (1.12 eV). In the SF region, the diffusion barrier of Li is 0.91 eV. These two types of defects may retard the fast migration of Li dopant that is finally trapped by them. Thus, the presence of the 30° partial dislocation and SF may deactivate the Li impurity and lead to low rate capability of LIB.« less

  7. Pathologic changes associated with shoulder dislocations. Arthroscopic and physical examination findings in first-time, traumatic anterior dislocations.

    PubMed

    Taylor, D C; Arciero, R A

    1997-01-01

    This prospective observational study was performed on young patients, less than 24 years old, with first-time, traumatic anterior shoulder dislocations. These patients were offered either arthroscopic or nonoperative treatment. Fifty-three patients chose nonoperative treatment. Sixty-three patients elected to have arthroscopic procedures. The average patient age was 19.6 years. There were 59 men and 4 women. All procedures were performed within 10 days of dislocation. All 63 patients had hemarthrosis. Sixty-one of 63 (97%) patients treated surgically had complete detachment of the capsuloligamentous complex from the glenoid rim and neck (Perthes-Bankart lesion), with no gross evidence of intracapsular injury. Of the other two patients, one had an avulsion of the inferior glenohumeral ligament from the neck of the humerus, and one had an interstitial capsular tear adjacent to the intact glenoid labrum. Fifty-seven patients had Hill-Sachs lesions; none were large. There were six superior labral anterior posterior lesions, two with detachment of the biceps tendon. There were no rotator cuff tears. Of the 53 nonoperatively treated patients, 48 (90%) have developed recurrent instability. In this population, the capsulolabral avulsion appeared to be the primary gross pathologic lesion after a first-time dislocation. These findings, associated with the 90% nonoperative recurrence rate, suggest a strong association between recurrent instability and the Perthes-Bankart lesion in this population.

  8. Tuberculosis among Dislocated North Koreans Entering Republic of Korea since 1999

    PubMed Central

    Choi, Chang-Min; June, Jung-Hee; Kang, Cheol-In; Park, Jung-Tak; Oh, Soo-Yon; Lee, Jin-Beom; Lee, Chang-Hoon; Yim, Jae-Joon

    2007-01-01

    The collapse of North Korea's public health system has increased the development of tuberculosis (TB) in its populace. This study investigated the prevalence of active and latent TB infection (LTBI) in such people who have settled in the Republic of Korea since 1999. From 1999 to August 2006, 7,722 dislocated North Koreans entered the Republic of Korea and all were screened immediately for active TB. Demographic and clinical characteristics were reviewed from the official records of the Settlement Support Office for Dislocated North Koreans, based in the Ministry of Unification. Of 7,722 participants, 87 (1.13%) were diagnosed with active TB from 1999 to August 2006. Of these, 78 (90%) had pulmonary TB. Checking for the presence of a Bacille Calmette-Guérin (BCG) scar and tuberculin skin test has been performed in all dislocated North Koreans since November 2005. Of 1,112 participants, BCG vaccination scars were found in 67.4%. The tuberculin-positive rate using two tuberculin unit doses of the purified protein derivative RT23 (≥10 mm in diameter) was 81.5%. The prevalence of active TB and LTBI in dislocated North Koreans was high. Because this group bears a disproportionate burden of TB, we need to initiate a specific control programme and to plan for the impact of this disease in the Republic of Korea. PMID:18162707

  9. Tuberculosis among dislocated North Koreans entering Republic of Korea since 1999.

    PubMed

    Choi, Chang Min; June, Jung Hee; Kang, Cheol In; Park, Jung Tak; Oh, Soo Yon; Lee, Jin Beom; Lee, Chang Hoon; Yim, Jae Joon; Kim, Hee Jin

    2007-12-01

    The collapse of North Korea's public health system has increased the development of tuberculosis (TB) in its populace. This study investigated the prevalence of active and latent TB infection (LTBI) in such people who have settled in the Republic of Korea since 1999. From 1999 to August 2006, 7,722 dislocated North Koreans entered the Republic of Korea and all were screened immediately for active TB. Demographic and clinical characteristics were reviewed from the official records of the Settlement Support Office for Dislocated North Koreans, based in the Ministry of Unification. Of 7,722 participants, 87 (1.13%) were diagnosed with active TB from 1999 to August 2006. Of these, 78 (90%) had pulmonary TB. Checking for the presence of a Bacille Calmette-Guerin (BCG) scar and tuberculin skin test has been performed in all dislocated North Koreans since November 2005. Of 1,112 participants, BCG vaccination scars were found in 67.4%. The tuberculin-positive rate using two tuberculin unit doses of the purified protein derivative RT23 (> or =10mm in diameter) was 81.5%. The prevalence of active TB and LTBI in dislocated North Koreans was high. Because this group bears a disproportionate burden of TB, we need to initiate a specific control programme and to plan for the impact of this disease in the Republic of Korea.

  10. Analysis of the Temperature and Strain-Rate Dependences of Strain Hardening

    NASA Astrophysics Data System (ADS)

    Kreyca, Johannes; Kozeschnik, Ernst

    2018-01-01

    A classical constitutive modeling-based Ansatz for the impact of thermal activation on the stress-strain response of metallic materials is compared with the state parameter-based Kocks-Mecking model. The predicted functional dependencies suggest that, in the first approach, only the dislocation storage mechanism is a thermally activated process, whereas, in the second approach, only the mechanism of dynamic recovery is. In contradiction to each of these individual approaches, our analysis and comparison with experimental evidence shows that thermal activation contributes both to dislocation generation and annihilation.

  11. Low dislocation density InAlN/AlN/GaN heterostructures grown on GaN substrates and the effects on gate leakage characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotani, Junji, E-mail: kotani.junji-01@jp.fujitsu.com; Yamada, Atsushi; Ishiguro, Tetsuro

    2016-04-11

    This paper reports on the electrical characterization of Ni/Au Schottky diodes fabricated on InAlN high-electron-mobility transistor (HEMT) structures grown on low dislocation density free-standing GaN substrates. InAlN HEMT structures were grown on sapphire and GaN substrates by metal-organic vapor phase epitaxy, and the effects of threading dislocation density on the leakage characteristics of Ni/Au Schottky diodes were investigated. Threading dislocation densities were determined to be 1.8 × 10{sup 4 }cm{sup −2} and 1.2 × 10{sup 9 }cm{sup −2} by the cathodoluminescence measurement for the HEMT structures grown on GaN and sapphire substrates, respectively. Leakage characteristics of Ni/Au Schottky diodes were compared between the two samples, andmore » a reduction of the leakage current of about three to four orders of magnitude was observed in the forward bias region. For the high reverse bias region, however, no significant improvement was confirmed. We believe that the leakage current in the low bias region is governed by a dislocation-related Frenkel–Poole emission, and the leakage current in the high reverse bias region originates from field emission due to the large internal electric field in the InAlN barrier layer. Our results demonstrated that the reduction of dislocation density is effective in reducing leakage current in the low bias region. At the same time, it was also revealed that another approach will be needed, for instance, band modulation by impurity doping and insertion of insulating layers beneath the gate electrodes for a substantial reduction of the gate leakage current.« less

  12. Enhancing elastic stress relaxation in SiGe/Si heterostructures by Si pillar necking

    NASA Astrophysics Data System (ADS)

    Isa, F.; Salvalaglio, M.; Arroyo Rojas Dasilva, Y.; Jung, A.; Isella, G.; Erni, R.; Timotijevic, B.; Niedermann, P.; Gröning, P.; Montalenti, F.; von Känel, H.

    2016-10-01

    We demonstrate that the elastic stress relaxation mechanism in micrometre-sized, highly mismatched heterostructures may be enhanced by employing patterned substrates in the form of necked pillars, resulting in a significant reduction of the dislocation density. Compositionally graded Si1-xGex crystals were grown by low energy plasma enhanced chemical vapour deposition, resulting in tens of micrometres tall, three-dimensional heterostructures. The patterned Si(001) substrates consist of micrometre-sized Si pillars either with the vertical {110} or isotropically under-etched sidewalls resulting in narrow necks. The structural properties of these heterostructures were investigated by defect etching and transmission electron microscopy. We show that the dislocation density, and hence the competition between elastic and plastic stress relaxation, is highly influenced by the shape of the substrate necks and their proximity to the mismatched epitaxial material. The SiGe dislocation density increases monotonically with the crystal width but is significantly reduced by the substrate under-etching. The drop in dislocation density is interpreted as a direct effect of the enhanced compliance of the under-etched Si pillars, as confirmed by the three-dimensional finite element method simulations of the elastic energy distribution.

  13. Total vertebrectomy and spine shortening for the treatment of T12-L1 spine dislocation: Management with suboptimal resources.

    PubMed

    Lorente, Alejandro; Palacios, Pablo; Burgos, Jesús; Barrios, Carlos; Lorente, Rafael

    2018-04-21

    Total vertebrectomy with spine shortening has been reported for the treatment of difficult cases of traumatic spine dislocation, both in acute and chronic phase. We report an exceptional case of a five-week-old T12-L1 spine dislocation in a 25-year-old female with complete paraplegia as a result of trauma in Ciudad de León (Nicaragua). In view of the time since the dislocation, we performed a complete L1 vertebrectomy in order to reduce the dorsolumbar hinge. For osteosynthesis material we had only eight screws and two Steffee plates. We therefore introduced pedicle screws at levels T11, T12, L2 and L3 on the right side and T11, T12, L3 and L4 on the left, and performed manual reduction of the spine. Steffee plates were placed and we added sublaminar wires to reinforce the osteosynthesis. Fifteen months after surgery, there has been no neurological improvement. Copyright © 2018 Sociedad Española de Neurocirugía. Publicado por Elsevier España, S.L.U. All rights reserved.

  14. Different redox sensitivity of endoplasmic reticulum associated degradation clients suggests a novel role for disulphide bonds in secretory proteins.

    PubMed

    Medraño-Fernandez, Iria; Fagioli, Claudio; Mezghrani, Alexandre; Otsu, Mieko; Sitia, Roberto

    2014-04-01

    To maintain proteostasis in the endoplasmic reticulum (ER), terminally misfolded secretory proteins must be recognized, partially unfolded, and dislocated to the cytosol for proteasomal destruction, in a complex process called ER-associated degradation (ERAD). Dislocation implies reduction of inter-chain disulphide bonds. When in its reduced form, protein disulphide isomerase (PDI) can act not only as a reductase but also as an unfoldase, preparing substrates for dislocation. PDI oxidation by Ero1 favours substrate release and transport across the ER membrane. Here we addressed the redox dependency of ERAD and found that DTT stimulates the dislocation of proteins with DTT-resistant disulphide bonds (i.e., orphan Ig-μ chains) but stabilizes a ribophorin mutant (Ri332) devoid of them. DTT promotes the association of Ri332, but not of Ig-µ, with PDI. This discrepancy may suggest that disulphide bonds in cargo proteins can be utilized to oxidize PDI, hence facilitating substrate detachment and degradation also in the absence of Ero1. Accordingly, Ero1 silencing retards Ri332 degradation, but has little if any effect on Ig-µ. Thus, some disulphides can increase the stability and simultaneously favour quality control of secretory proteins.

  15. Intra-articular injuries of the elbow: pitfalls of diagnosis and treatment.

    PubMed Central

    Fowles, J. V.; Rizkallah, R.

    1976-01-01

    Poor results in treating fractures and dislocations about the elbow may be avoided if the surgeon is aware of the possible injuries, examines good radiographs of both elbows, and treats the injury promptly and appropriately. A displaced fracture of the lateral or medial condyle of the humerus should be suspected if there is a flake fracture of the adjoining metaphysis; open reduction and internal fixation give better results than closed reduction. A shear fracture of the capitulum humeri can only be seen on a lateral radiograph; excision of the fragment, followed by mobilization, is sufficient for a good functional result. Dislocation of the elbow in a child may avulse the medial epicondyle, which sometimes lodges in the joint; it is essential to recognize this and remove the fragment without delay to avoid early degenerative arthritis. An apparently isolated fracture of the ulna should alert the surgeon to the possibility of a dislocation of the radial head; the dislocation and the fracture must be reduced and stabilized to conserve elbow function. Images FIG. 1 FIG. 2 FIG. 3 FIG. 4 FIG. 5 FIG. 6 FIG. 7 FIG. 8 PMID:943224

  16. Implementing Capsule Representation in a Total Hip Dislocation Finite Element Model

    PubMed Central

    Stewart, Kristofer J; Pedersen, Douglas R; Callaghan, John J; Brown, Thomas D

    2004-01-01

    Previously validated hardware-only finite element models of THA dislocation have clarified how various component design and surgical placement variables contribute to resisting the propensity for implant dislocation. This body of work has now been enhanced with the incorporation of experimentally based capsule representation, and with anatomic bone structures. The current form of this finite element model provides for large deformation multi-body contact (including capsule wrap-around on bone and/or implant), large displacement interfacial sliding, and large deformation (hyperelastic) capsule representation. In addition, the modular nature of this model now allows for rapid incorporation of current or future total hip implant designs, accepts complex multi-axial physiologic motion inputs, and outputs case-specific component/bone/soft-tissue impingement events. This soft-tissue-augmented finite element model is being used to investigate the performance of various implant designs for a range of clinically-representative soft tissue integrities and surgical techniques. Preliminary results show that capsule enhancement makes a substantial difference in stability, compared to an otherwise identical hardware-only model. This model is intended to help put implant design and surgical technique decisions on a firmer scientific basis, in terms of reducing the likelihood of dislocation. PMID:15296198

  17. Extreme Response in Tension and Compression of Tantalum

    NASA Astrophysics Data System (ADS)

    Remington, Tane Perry

    This research on a model bcc metal, tantalum, has three components: the study of tensile failure; defects generated under a nanoindenter; and dislocation velocities in an extreme regime generated by pulsed lasers. The processes of dynamic failure by spalling were established in nano, poly, and mono crystalline tantalum in recovery experiments following laser compression and release. The process of spall was characterized by different techniques: optical microscopy, scanning electron microscopy, microcomputerized tomography and electron backscatter diffraction. Additionally, the pull back signal was measured by VISAR and the pressure decay was compared with HYADES simulations. There are clear differences in the microscopic fracture mechanisms, dictated by the grain sizes. In the nano and poly crystals, spalling occurred by ductile fracture favoring grain boundaries. In the monocrystals, grain boundaries are absent, and the process was of ductile failure by void initiation, growth and coalescence. The spall strength of single crystalline tantalum was higher than the poly and nano crystals. It was experimentally confirmed that spall strength in tantalum increases with strain rate. In order to generate dislocations close to the surface, single crystalline tantalum with orientations (100), (110) and (111) was nanoindented with a Berkovich tip. Atomic force microscopy showed pile-ups of dislocations around the perimeter of the nanoindentations. Sections of nanoindentations were focused ion beam cut into transmission electron microscope foils. The mechanisms of deformation under a nanoindentation in tantalum were identified and quantified. Molecular dynamics simulations were conducted and the simulated plastic deformation proceeds by the formation of nanotwins, which rapidly evolve into shear dislocation loops. Dislocation densities under the indenter were estimated experimentally (~1.2 x 1015 m-2), by MD (~7 x1015 m-2) and through an analytical calculation (2.6--19 x10 15 m-2). Considering the assumptions and simplifications, this agreement is considered satisfactory. These indented crystals were subjected to shock compression and the results are being analyzed with the objective of establishing the velocities of dislocations. A novel technique to establish dislocation velocities is being tested. It consists of subjecting tantalum containing a matrix of nanoindentations to shock compression for post shock characterization enabling the determination of mean dislocation displacements.

  18. EBSD in Antarctic and Greenland Ice

    NASA Astrophysics Data System (ADS)

    Weikusat, Ilka; Kuiper, Ernst-Jan; Pennock, Gill; Sepp, Kipfstuhl; Drury, Martyn

    2017-04-01

    Ice, particularly the extensive amounts found in the polar ice sheets, impacts directly on the global climate by changing the albedo and indirectly by supplying an enormous water reservoir that affects sea level change. The discharge of material into the oceans is partly controlled by the melt excess over snow accumulation, partly by the dynamic flow of ice. In addition to sliding over bedrock, an ice body deforms gravitationally under its own weight. In order to improve our description of this flow, ice microstructure studies are needed that elucidate the dominant deformation and recrystallization mechanisms involved. Deformation of hexagonal ice is highly anisotropic: ice is easily sheared in the basal plane and is about two orders of magnitude harder parallel to the c-axis. As dislocation creep is the dominant deformation mechanism in polar ice this strong anisotropy needs to be understood in terms of dislocation activity. The high anisotropy of the ice crystal is usually ascribed to a particular behaviour of dislocations in ice, namely the extension of dislocations into partials on the basal plane. Analysis of EBSD data can help our understanding of dislocation activity by characterizing subgrain boundary types thus providing a tool for comprehensive dislocation characterization in polar ice. Cryo-EBSD microstructure in combination with light microscopy measurements from ice core material from Antarctica (EPICA-DML deep ice core) and Greenland (NEEM deep ice core) are presented and interpreted regarding substructure identification and characterization. We examined one depth for each ice core (EDML: 656 m, NEEM: 719 m) to obtain the first comparison of slip system activity from the two ice sheets. The subgrain boundary to grain boundary threshold misorientation was taken to be 3-5° (Weikusat et al. 2011). EBSD analyses suggest that a large portion of edge dislocations with slip systems basal gliding on the basal plane were indeed involved in forming subgrain boundaries. However, an almost equal number of tilt subgrain boundaries were measured, involving dislocations gliding on non-basal planes (prism or prism slip). A few subgrain boundaries involving prism edge dislocation glide, as well as boundaries involving basal twist dislocation slip, were also identified. The finding that subgrain boundaries built up by dislocations gliding on non-basal planes are as frequent as those originating from basal plane slip is surprising and has impact on the discussion on rate-controlling processes for the ice flow descriptions of large ice masses with respect to sea-level evolution. Weikusat, I.; Miyamoto, A.; Faria, S. H.; Kipfstuhl, S.; Azuma, N. & Hondoh, T.: Subgrain boundaries in Antarctic ice quantified by X-ray Laue diffraction J. Glaciol., 2011, 57, 85-94

  19. Association between hospital procedure volume and early complications after pacemaker implantation: results from a large, unselected, contemporary cohort of the German nationwide obligatory external quality assurance programme.

    PubMed

    Nowak, Bernd; Tasche, Karl; Barnewold, Linda; Heller, Günther; Schmidt, Boris; Bordignon, Stefano; Chun, K R Julian; Fürnkranz, Alexander; Mehta, Rajendra H

    2015-05-01

    Several studies demonstrated an inverse relationship between cardioverter-defibrillator implantation volume and complication rates, suggesting better outcomes for higher volume centres. However, the association of institutional procedural volume with patient outcomes for permanent pacemaker (PPM) implantation remains less known, especially in decentralized implantation systems. We performed retrospective examination of data on patients undergoing PPM from the German obligatory quality assurance programme (2007-12) to evaluate the relationship of hospital PPM volume (categorized into quintiles of their mean annual volume) with risk-adjusted in-hospital surgical complications (composite of pneumothorax, haemothorax, pericardial effusion, or pocket haematoma, all requiring intervention, or device infection) and pacemaker lead dislocation. Overall 430 416 PPM implantations were documented in 1226 hospitals. Systems included dual (72.8%) and single (25.8%) chamber PPM and cardiac resynchronization therapy (CRT) devices (1.1%). Complications included surgical (0.92%), and ventricular (0.99%), and atrial (1.22%) lead dislocation. Despite an increase in relatively complex procedures (dual chamber, CRT), there was a significant decrease in the procedural and fluoroscopy times and complications from lowest to highest implantation volume quintiles (P for trend <0.0001). The greatest difference was observed between the lowest (1-50 implantations/year-reference group) and the second-lowest (51-90 implantations/year) quintile: surgical complications [odds ratio (OR) 0.69; confidence interval (CI) 0.60-0.78], atrial lead dislocations (OR 0.69; CI 0.59-0.80), and ventricular lead dislocations (OR 0.73; CI 0.63-0.84). Hospital annual PPM volume was directly related to indication-based implantation of relatively more complex PPM and yet inversely with procedural times and rates of early surgical complications and lead dislocations. Thus, our data suggest better performance and lower complications with increasing procedural volume. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  20. Outcomes after salvage procedures for the painful dislocated hip in cerebral palsy.

    PubMed

    Wright, Patrick B; Ruder, John; Birnbaum, Mark A; Phillips, Jonathan H; Herrera-Soto, Jose A; Knapp, Dennis R

    2013-01-01

    The painful dislocated hip in the setting of cerebral palsy is a challenging problem. Many surgical procedures have been reported to treat this condition with varying success rates. The purpose of this study is to retrospectively evaluate and compare the outcomes of 3 different surgical procedures performed at our institution for pain relief in patients with spastic quadriplegic cerebral palsy and painful dislocated hips. A retrospective chart review of the surgical procedures performed by 5 surgeons for spastic, painful dislocated hips from 1997 to 2010 was performed. The procedures identified were (1) proximal femoral resection arthroplasty (PFRA); (2) subtrochanteric valgus osteotomy (SVO) with femoral head resection; and (3) proximal femur prosthetic interposition arthroplasty (PFIA) using a humeral prosthesis. Outcomes based on pain and range of motion were determined to be excellent, good, fair, or poor by predetermined criteria. Forty-four index surgeries and 14 revision surgeries in 33 patients with an average follow-up of 49 months met the inclusion criteria. Of the index surgeries, 12 hips were treated with a PFRA, 21 with a SVO, and 11 with a PFIA. An excellent or good result was noted in 67% of PFRAs, 67% of SVOs, and 73% of PFIAs. No statistical significance between these procedures was achieved. The 14 revisions were performed because of a poor result from previous surgery, demonstrating a 24% reoperation rate overall. No patients classified as having a fair result underwent revision surgery. All patients receiving revision surgery were eventually classified as having an excellent or good result. Surgical treatment for the painful, dislocated hip in the setting of spastic quadriplegic cerebral palsy remains unsettled. There continue to be a large percentage of failures despite the variety of surgical techniques designed to treat this problem. These failures can be managed, however, and eventually resulted in a good outcome. We demonstrated a trend toward better outcomes with a PFIA, but further study should be conducted to prove statistical significance. III.

  1. The epidemiology of closed reduction for simple elbow dislocations and the incidence of early subsequent open reduction.

    PubMed

    Mayne, Ian P; Wasserstein, David; Modi, Chetan S; Henry, Patrick D G; Mahomed, Nizar; Veillette, Christian

    2015-01-01

    Simple elbow dislocations are often treated with closed reduction (CR); however, the rate of CR failure and factors that may predict failure have been largely underinvestigated. The objectives of this study were (1) to determine the incidence of elbow dislocations treated by CR in a universal health care system and (2) to identify patient characteristics associated with failed CR, defined as the subsequent need for open reduction. Patients ≥16 years old who underwent elbow CR by a physician between 1994 and 2010 were identified from administrative databases. Concurrent elbow fractures were excluded. The incidence density rate (IDR) of CR per 100,000 eligible person-years among the general population was calculated. Failed CR was defined as subsequent open reduction with or without ligament repair or reconstruction within 90 days. Patient and provider characteristics were modeled in a multivariate logistic regression for failure. The cohort consisted of 4878 patients (median age, 41 years) who underwent CR (IDR, 2.65 per 100,000 person-years), and 75 (1.5%) underwent subsequent open reduction with or without ligament repair or reconstruction (median time, 15 days). Young men (≤20 years) had the highest IDR (7.45 per 100,000 person-years), twice that of young women (P = .005). Patient characteristics associated with failed CR included older age (P = .001), admission to the hospital (P < .0001), >1 attempted CR (P = .001), and new orthopedic consultation in the 4 weeks after the CR (P = .02). Young men are at highest risk for CR for simple elbow dislocations; however, older patients are more likely to require open intervention, as are those with markers of a difficult reduction signifying potentially greater soft tissue damage. A comprehensive understanding of the epidemiology of simple elbow dislocation will aid management decisions. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  2. Effect of heavy ion irradiation on microstructural evolution in CF8 cast austenitic stainless steel

    DOE PAGES

    Chen, Wei-Ying; Li, Meimei; Kirk, Marquis A.; ...

    2015-08-21

    The microstructural evolution in ferrite and austenitic in cast austenitic stainless steel (CASS) CF8, as received or thermally aged at 400 °C for 10,000 h, was followed under TEM with in situ irradiation of 1 MeV Kr ions at 300 and 350 °C to a fluence of 1.9 × 10 15 ions/cm 2 (~3 dpa) at the IVEM-Tandem Facility. For the unaged CF8, the irradiation-induced dislocation loops appeared at a much lower dose in the austenite than in the ferrite. At the end dose, the austenite formed a well-developed dislocation network microstructure, while the ferrite exhibited an extended dislocation structuremore » as line segments. Compared to the unaged CF8, the aged specimen appeared to have lower rate of damage accumulation. The rate of microstructural evolution under irradiation in the ferrite was significantly lower in the aged specimen than in the unaged. Finally, we attributed this difference to the different initial microstructures in the unaged and aged specimens, which implies that thermal aging and irradiation are not independent but interconnected damage processes.« less

  3. High Strain Rate Deformation Mechanisms of Body Centered Cubic Material Subjected to Impact Loading

    NASA Astrophysics Data System (ADS)

    Visser, William

    Low carbon steel is the most common grade of structural steel used; it has carbon content of 0.05% to 0.25% and very low content of alloying elements. It is produced in great quantities and provides material properties that are acceptable for many engineering applications, particularly in the construction industry in which low carbon steel is widely used as the strengthening phase in civil structures. The overall goal of this dissertation was to investigate the deformation response of A572 grade 50 steel when subjected to impact loading. This steel has a 0.23% by weight carbon content and has less than 2% additional alloying elements. The deformation mechanisms of this steel under shock loading conditions include both dislocation motion and twin formation. The goal of this work was achieved by performing experimental, analytical and numerical research in three integrated tasks. The first is to determine the relationship between the evolution of deformation twins and the impact pressure. Secondly, a stress criterion for twin nucleation during high strain rate loading was developed which can account for the strain history or initial dislocation density. Lastly, a method was applied for separating the effects of dislocations and twins generated by shock loading in order to determine their role in controlling the flow stress of the material. In this regard, the contents of this work have been categorically organized. First, the active mechanisms in body centered cubic (BCC) low carbon steel during shock loading have been determined as being a composed of the competing mechanisms of dislocations and deformation twins. This has been determined through a series of shock loading tests of the as-received steel. The shock loading tests were done by plate impact experiments at several impact pressures ranging from 2GPa up to 13GPa using a single stage light gas gun. A relationship between twin volume fraction and impact pressure was determined and an analytical model was utilized to simulate the shock loading and twin evolution for these loading conditions. The second part of this research ties into the modeling efforts. Within the model for predicting twin volume fraction is a twin growth equation and a constant describing the stress at which the twin nucleation will occur. By using a constant value for the twin nucleation stress modeling efforts fail to accurately predict the growth and final twin volume fraction. A second shock loading experimental study combined with high strain rate compression tests using a split Hopkinson pressure bar were completed to determine a twin nucleation stress equation as a function of dislocation density. Steel specimens were subjected to cold rolling to 3% strain and subsequently impacted using the gas gun at different pressures. The increase in dislocation density due to pre-straining substantially increased the twin nucleation stress indicating that twin nucleation stress in dependent upon prior strain history. This has been explained in terms of the velocity and generation rates of both perfect and partial dislocations. An explicit form of the critical twin nucleation stress was developed and parameters were determined through plate impact tests and low temperature (77K) SHPB compression tests. The final component in studying deformation twin mechanisms in BCC steel extends the research to the post-impact mechanical properties and how the twin volume fraction affects the dynamic flow stress. Compression tests between 293K and 923K at an average strain rate of 4700 s-1 were completed on the as-received and 3% pre-strained steels in both the initial condition and after being impacted at pressures of 6GPa and 11GPa. Results of the experimental testing were used in a thermal activation model in order to distinguish separate components in the microstructure contributing to the enhanced flow stress caused by the shock loading. It has been shown that the dislocations generated from shock loading are equivalent to those produced under lower rate straining and the addition of deformation twins in the microstructure contribute to the athermal stress by adding to the long range barriers.

  4. Modeling of grain size strengthening in tantalum at high pressures and strain rates

    DOE PAGES

    Rudd, Robert E.; Park, H. -S.; Cavallo, R. M.; ...

    2017-01-01

    Laser-driven ramp wave compression experiments have been used to investigate the strength (flow stress) of tantalum and other metals at high pressures and high strain rates. Recently this kind of experiment has been used to assess the dependence of the strength on the average grain size of the material, finding no detectable variation with grain size. The insensitivity to grain size has been understood theoretically to result from the dominant effect of the high dislocation density generated at the extremely high strain rates of the experiment. Here we review the experiments and describe in detail the multiscale strength model usedmore » to simulate them. The multiscale strength model has been extended to include the effect of geometrically necessary dislocations generated at the grain boundaries during compatible plastic flow in the polycrystalline metal. Lastly, we use the extended model to make predictions of the threshold strain rates and grain sizes below which grain size strengthening would be observed in the laser-driven Rayleigh-Taylor experiments.« less

  5. Study of Ferrite During Refinement of Prior Austenite Grains in Microalloyed Steel Continuous Casting

    NASA Astrophysics Data System (ADS)

    Liu, Jiang; Wen, Guanghua; Tang, Ping

    2017-12-01

    The formation of coarse prior austenite grain is a key factor to promote transverse crack, and the susceptibility to the transverse crack can be reduced by refining the austenite grain size. In the present study, the high-temperature confocal laser scanning microscope (CLSM) was used to simulate two types of double phase-transformation technologies. The distribution and morphology of ferrites under different cooling conditions were analyzed, and the effects of ferrite distribution and morphology on the double phase-transformation technologies were explored to obtain the suitable double phase-change technology for the continuous casting process. The results indicate that, under the thermal cycle TH0 [the specimens were cooled down to 913 K (640 °C) at a cooling rate of 5.0 K/s (5.0 °C/s)], the width of prior austenite grain boundaries was thick, and the dislocation density at grain boundaries was high. It had strong inhibition effect on crack propagation; under the thermal cycle TH1 [the specimens were cooled down to 1073 K (800 °C) at a cooling rate of 5.0 K/s (5.0 °C/s) and then to 913 K (640 °C) at a cooling rate of 1.0 K/s (1.0 °C/s)], the width of prior austenite grain boundary was thin, and the dislocation density at grain boundaries was low. It was beneficial to crack propagation. After the first phase change, the developed film-like ferrite along the austenite grain boundaries improved the nucleation conditions of new austenitic grains and removed the inhibition effect of the prior austenite grain boundaries on the austenite grain size.

  6. Neglected Monteggia fracture dislocations in children: a systematic review.

    PubMed

    Goyal, Tarun; Arora, Shobha S; Banerjee, Sumit; Kandwal, Pankaj

    2015-05-01

    Monteggia fractures are uncommon and frequently missed injuries in children. This article aims to study, in a systematic manner, the surgical management and complications of treatment of chronic radial head dislocations. After screening of relevant abstracts, a total of 28 studies were included in the systematic review. A narrative synthesis of various treatment modalities has been discussed. This article concludes that open reduction should be attempted unless dysmorphism of the radial head restricts it. Open reduction with ulnar osteotomy with or without annular ligament reconstruction is the most commonly performed procedure and is expected to result in reduced pain and elbow deformity.

  7. A tale of two mechanisms. Strain-softening versus strain-hardening in single crystals under small stressed volumes

    DOE PAGES

    Bei, Hongbin; Xia, Yuzhi; Barabash, Rozaliya; ...

    2015-08-10

    Pre-straining defect-free single crystals will introduce heterogeneous dislocation nucleation sources that reduce the measured strength from the theoretical value, while pre-straining bulk samples will lead to strain hardening. Their competition is investigated by nanoindentation pop-in tests on variously pre-strained Mo single crystals with several indenter radii (~micrometer). Pre-straining primarily shifts deformation mechanism from homogeneous dislocation nucleation to a stochastic behavior, while strain hardening plays a secondary role, as summarized in a master plot of pop-in strength versus normalized indenter radius.

  8. A syndrome of dislocated hips and radial heads, carpal coalition, and short stature in Puerto Rican children.

    PubMed

    Steel, H H; Piston, R W; Clancy, M; Betz, R R

    1993-02-01

    An orthopaedic syndrome that apparently had not been reported previously was identified in twenty-three children. Characteristics shared by all twenty-three children included Hispanic descent, residence in Puerto Rico, bilateral dislocation of the hip, dislocated radial heads, short stature, and other osseous anomalies. Twelve dislocated hips in six patients were not treated. All of these hips were functioning satisfactorily at the time of the review, but only four of the children had reached skeletal maturity. Sixteen hips in eight patients remained reduced after closed reduction. Of these eight patients, the four who were skeletally immature at the time of the review had a satisfactory result, and the four who were skeletally mature had an unsatisfactory result because of discomfort or fibrous ankylosis. Eighteen hips in nine patients were treated with a reduction augmented by some form of operation. All of these hips redislocated. Of the forty-six elbows in the twenty-three children, thirty-three were dislocated, as seen clinically and radiographically; eight were normal, both clinically and radiographically; and there was dysplasia at the radiocapitellar articulation of the remaining five. Twenty of the twenty-three children were found to have carpal coalitions. Fourteen children had scoliosis, and five of them were managed with spinal arthrodesis and correction. Three patients had an anomaly of the cervical spine, with one deformity causing symptoms and signs that were treated with decompression. Eight patients had talipes cavus bilaterally, which was not treated.

  9. Illusory spirals and loops in crystal growth

    PubMed Central

    Shtukenberg, Alexander G.; Zhu, Zina; Bhandari, Misha; Song, Pengcheng; Kahr, Bart; Ward, Michael D.

    2013-01-01

    The theory of dislocation-controlled crystal growth identifies a continuous spiral step with an emergent lattice displacement on a crystal surface; a mechanistic corollary is that closely spaced, oppositely winding spirals merge to form concentric loops. In situ atomic force microscopy of step propagation on pathological l-cystine crystals did indeed show spirals and islands with step heights of one lattice displacement. We show by analysis of the rates of growth of smaller steps only one molecule high that the major morphological spirals and loops are actually consequences of the bunching of the smaller steps. The morphology of the bunched steps actually inverts the predictions of the theory: Spirals arise from pairs of dislocations, loops from single dislocations. Only through numerical simulation of the growth is it revealed how normal growth of anisotropic layers of molecules within the highly symmetrical crystals can conspire to create features in apparent violation of the classic theory. PMID:24101507

  10. Implementation and application of a gradient enhanced crystal plasticity model

    NASA Astrophysics Data System (ADS)

    Soyarslan, C.; Perdahcıoǧlu, E. S.; Aşık, E. E.; van den Boogaard, A. H.; Bargmann, S.

    2017-10-01

    A rate-independent crystal plasticity model is implemented in which description of the hardening of the material is given as a function of the total dislocation density. The evolution of statistically stored dislocations (SSDs) is described using a saturating type evolution law. The evolution of geometrically necessary dislocations (GNDs) on the other hand is described using the gradient of the plastic strain tensor in a non-local manner. The gradient of the incremental plastic strain tensor is computed explicitly during an implicit FE simulation after each converged step. Using the plastic strain tensor stored as state variables at each integration point and an efficient numerical algorithm to find the gradients, the GND density is obtained. This results in a weak coupling of the equilibrium solution and the gradient enhancement. The algorithm is applied to an academic test problem which considers growth of a cylindrical void in a single crystal matrix.

  11. Decisive role of magnetism in the interaction of chromium and nickel solute atoms with 1/2$$\\langle$$111$$\\rangle$$-screw dislocation core in body-centered cubic iron

    DOE PAGES

    Odbadrakh, Kh.; Samolyuk, G.; Nicholson, D.; ...

    2016-09-13

    Resistance to swelling under irradiation and a low rate of corrosion in high temperature environments make Fe-Cr and Fe-Cr-Ni alloys promising structural materials for energy technologies. In this paper we report the results obtained using a combination of density functional theory (DFT) techniques: plane wave basis set solutions for pseudo-potentials and multiple scattering solutions for all electron potentials. We have found a very strong role of magnetism in the stability of screw dislocation cores in pure Fe and their interaction with Cr and Ni magnetic impurities. In particular, the screw dislocation quadrupole in Fe is stabilized only in the presencemore » of ferromagnetism. In addition, Ni atoms, who's magnetic moment is oriented along the magnetization direction of the Fe matrix, prefer to occupy in core positions whereas Cr atoms, which couple anti-ferromagnetically with the Fe matrix, prefer out of the dislocation core positions. In effect, Ni impurities are attracted to, while Cr impurities are repelled by the dislocation core. Moreover, we demonstrate that this contrasting behavior can be explained only by the nature of magnetic coupling of the impurities to the Fe matrix. In addition, Cr interaction with the dislocation core mirrors that of Ni if the Cr magnetic moment is constrained to be along the direction of Fe matrix magnetization. In addition, we have shown that the magnetic contribution can affect the impurity-impurity interaction at distances up to a few Burgers vectors. In particular, the distance between Cr atoms in Fe matrix should be at least 3–4 lattice parameters in order to eliminate finite size effects.« less

  12. Position of Immobilization After First-Time Traumatic Anterior Glenohumeral Dislocation: A Literature Review

    PubMed Central

    Gutkowska, Olga; Martynkiewicz, Jacek; Gosk, Jerzy

    2017-01-01

    Anterior glenohumeral dislocation affects about 2% of the general population during the lifetime. The incidence of traumatic glenohumeral dislocation ranges from 8.2 to 26.69 per 100 000 population per year. The most common complication is recurrent dislocation occurring in 17–96% of the patients. The majority of patients are treated conservatively by closed reduction and immobilization in internal rotation for 2–3 weeks. However, no clear conservative treatment protocol exists. Immobilization in external rotation can be considered an alternative. A range of external rotation braces are commercially available. The purpose of this work was to review the current literature on conservative management of glenohumeral dislocation and to compare the results of immobilization in internal and external rotation. A comprehensive literature search and review was performed using the keywords “glenohumeral dislocation”, “shoulder dislocation”, “immobilization”, “external rotation”, and “recurrent dislocation” in PubMed, MEDLINE, Cochrane Library, Scopus, and Google Scholar databases from their inceptions to May 2016. Three cadaveric studies, 6 imaging studies, 10 clinical studies, and 4 meta-analyses were identified. The total number of 734 patients were included in the clinical studies. Literature analysis revealed better coaptation of the labrum on the glenoid rim in external rotation in cadaveric and imaging studies. However, this tendency was not confirmed by lower redislocation rates or better quality of life in clinical studies. On the basis of the available literature, we cannot confirm the superiority of immobilization in external rotation after glenohumeral dislocation when compared to internal rotation. A yet-to-be-determined group of patients with specific labroligamentous injury pattern may benefit from immobilization in external rotation. Further studies are needed to identify these patients. PMID:28710344

  13. Size effect on the deformation mechanisms of nanocrystalline platinum thin films.

    PubMed

    Shu, Xinyu; Kong, Deli; Lu, Yan; Long, Haibo; Sun, Shiduo; Sha, Xuechao; Zhou, Hao; Chen, Yanhui; Mao, Shengcheng; Liu, Yinong

    2017-10-16

    This paper reports a study of time-resolved deformation process at the atomic scale of a nanocrystalline Pt thin film captured in situ under a transmission electron microscope. The main mechanism of plastic deformation was found to evolve from full dislocation activity-enabled plasticity in large grains (with grain size d > 10 nm), to partial dislocation plasticity in smaller grains (with grain size 10 nm < d < 6 nm), and grain boundary-mediated plasticity in the matrix with grain sizes d < 6 nm. The critical grain size for the transition from full dislocation activity to partial dislocation activity was estimated based on consideration of stacking fault energy. For grain boundary-mediated plasticity, the possible contributions to strain rate of grain creep, grain sliding and grain rotation to plastic deformation were estimated using established models. The contribution of grain creep is found to be negligible, the contribution of grain rotation is effective but limited in magnitude, and grain sliding is suggested to be the dominant deformation mechanism in nanocrystalline Pt thin films. This study provided the direct evidence of these deformation processes at the atomic scale.

  14. Modeling the Role of Dislocation Substructure During Class M and Exponential Creep. Revised

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Iskovitz, Ilana Seiden; Freed, A. D.

    1995-01-01

    The different substructures that form in the power-law and exponential creep regimes for single phase crystalline materials under various conditions of stress, temperature and strain are reviewed. The microstructure is correlated both qualitatively and quantitatively with power-law and exponential creep as well as with steady state and non-steady state deformation behavior. These observations suggest that creep is influenced by a complex interaction between several elements of the microstructure, such as dislocations, cells and subgrains. The stability of the creep substructure is examined in both of these creep regimes during stress and temperature change experiments. These observations are rationalized on the basis of a phenomenological model, where normal primary creep is interpreted as a series of constant structure exponential creep rate-stress relationships. The implications of this viewpoint on the magnitude of the stress exponent and steady state behavior are discussed. A theory is developed to predict the macroscopic creep behavior of a single phase material using quantitative microstructural data. In this technique the thermally activated deformation mechanisms proposed by dislocation physics are interlinked with a previously developed multiphase, three-dimensional. dislocation substructure creep model. This procedure leads to several coupled differential equations interrelating macroscopic creep plasticity with microstructural evolution.

  15. Capsular lesions with glenohumeral ligament injuries in patients with primary shoulder dislocation: magnetic resonance imaging and magnetic resonance arthrography evaluation

    PubMed Central

    Liavaag, S; Stiris, M G; Svenningsen, S; Enger, M; Pripp, A H; Brox, J I

    2011-01-01

    The glenohumeral ligaments are important structures for the stability of the shoulder. They are integrated parts of the capsule and are at risk to be injured in a traumatic shoulder dislocation. The aim was to examine the prevalence of capsular ligament lesions in the acute phase and at minimum 3 weeks' follow-up after first-time traumatic shoulder dislocation. Forty-two patients aged 16–40 years were included. All patients underwent computed tomography and magnetic resonance imaging (MRI) scans shortly after the injury and MR-arthrography (MRA) at follow-up. The median time from dislocation to MRI was 7 (range 2–14) days and to MRA 30 (range 21–54) days. We found capsular ligament lesions in 22 patients (52.4%) in the acute stage and in five patients (11.9%) at follow up. Nine patients (21.4%) had a humeral avulsion of the anterior glenohumeral ligament (HAGL lesion) on MRI. Three patients (7.1%) had this lesion at follow-up. The rate of HAGL lesions in the acute stage was higher than reported previously, but the prevalence at follow-up was in keeping with earlier published studies. PMID:21401723

  16. Outcomes of dual mobility cups in a young Middle Eastern population and its influence on life style.

    PubMed

    Assi, Chahine; El-Najjar, Elie; Samaha, Camille; Yammine, Kaissar

    2017-03-01

    Dual mobility cups (DMC) in total hip arthroplasty (THA) are becoming popular among orthopaedic surgeons. Substantial benefit of their use has been reported among high risk patients, particularly in reducing post-operative hip instability (dislocation). Many reports stated some concern when implanted in young and active people where complications such as polyethylene wear and mechanical loosening could potentially be higher. This Middle Eastern study analyses a retrospective series of THA for any aetiology other than infection, using DMC for the acetabular component in 75 patients (85 implants) less than 70 years old. No instability, intra-prosthetic dislocation or mechanical failure was reported during a mean follow-up of five years. The only major complication was a post-operative infection. The mean post- operative modified Harris hip score was 97.1 out of 100. All patients resumed their daily activities and all religious practicing patients were able to accomplish their prayer positions without pain. DMC is found to be an interesting option in reducing dislocation events in young patients. Those excellent short-term results would encourage surgeons to use DMC in an active and highly demanding population. Further research is necessary to confirm maintenance of such results at long term follow-up.

  17. Multiscale modeling of dislocation-precipitate interactions in Fe: From molecular dynamics to discrete dislocations.

    PubMed

    Lehtinen, Arttu; Granberg, Fredric; Laurson, Lasse; Nordlund, Kai; Alava, Mikko J

    2016-01-01

    The stress-driven motion of dislocations in crystalline solids, and thus the ensuing plastic deformation process, is greatly influenced by the presence or absence of various pointlike defects such as precipitates or solute atoms. These defects act as obstacles for dislocation motion and hence affect the mechanical properties of the material. Here we combine molecular dynamics studies with three-dimensional discrete dislocation dynamics simulations in order to model the interaction between different kinds of precipitates and a 1/2〈111〉{110} edge dislocation in BCC iron. We have implemented immobile spherical precipitates into the ParaDis discrete dislocation dynamics code, with the dislocations interacting with the precipitates via a Gaussian potential, generating a normal force acting on the dislocation segments. The parameters used in the discrete dislocation dynamics simulations for the precipitate potential, the dislocation mobility, shear modulus, and dislocation core energy are obtained from molecular dynamics simulations. We compare the critical stresses needed to unpin the dislocation from the precipitate in molecular dynamics and discrete dislocation dynamics simulations in order to fit the two methods together and discuss the variety of the relevant pinning and depinning mechanisms.

  18. Effect of deltoid tension and humeral version in reverse total shoulder arthroplasty: a biomechanical study.

    PubMed

    Henninger, Heath B; Barg, Alexej; Anderson, Andrew E; Bachus, Kent N; Tashjian, Robert Z; Burks, Robert T

    2012-04-01

    No clear recommendations exist regarding optimal humeral component version and deltoid tension in reverse total shoulder arthroplasty (TSA). A biomechanical shoulder simulator tested humeral versions (0°, 10°, 20° retroversion) and implant thicknesses (-3, 0, +3 mm from baseline) after reverse TSA in human cadavers. Abduction and external rotation ranges of motion as well as abduction and dislocation forces were quantified for native arms and arms implanted with 9 combinations of humeral version and implant thickness. Resting abduction angles increased significantly (up to 30°) after reverse TSA compared with native shoulders. With constant posterior cuff loads, native arms externally rotated 20°, whereas no external rotation occurred in implanted arms (20° net internal rotation). Humeral version did not affect rotational range of motion but did alter resting abduction. Abduction forces decreased 30% vs native shoulders but did not change when version or implant thickness was altered. Humeral center of rotation was shifted 17 mm medially and 12 mm inferiorly after implantation. The force required for lateral dislocation was 60% less than anterior and was not affected by implant thickness or version. Reverse TSA reduced abduction forces compared with native shoulders and resulted in limited external rotation and abduction ranges of motion. Because abduction force was reduced for all implants, the choice of humeral version and implant thickness should focus on range of motion. Lateral dislocation forces were less than anterior forces; thus, levering and inferior/posterior impingement may be a more probable basis for dislocation (laterally) than anteriorly directed forces. Copyright © 2012 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.

  19. The mechanisms of dispersion strengthening and fracture in Al-based XD(tm) alloys, part 1

    NASA Technical Reports Server (NTRS)

    Aikin, R. M., Jr.

    1990-01-01

    The influence of reinforcement size, volume fraction, and matrix deformation behavior on room and elevated temperature strength; the fracture toughness; and the fatigue crack growth rate of metal matrix composites of Al-4(pct)Cu-1.5(pct)Mg with TiB2 were examined. The influence of reinforcement volume fraction was also examined for pure aluminum with TiB2. Higher TiB2 volume fractions increased the tensile yield strength at both room and elevated temperatures, and reduced the elongation to fracture. Tensile tests also indicate that small particles provided a greater increase in strength for a given volume fraction than larger particles, whereas elongation to fracture appeared to be insensitive to reinforcement size. Interparticle spacing appears to be the factor that controls the strength of these alloys, with the exact nature of the dependence relying on the nature of dislocation slip in the matrix (planar vs. diffuse). The isothermal aging response of the precipitation strengthened Al-4(pct)Cu-1.5(pct)Mg alloys was not accelerated by the presence of TiB2. Cold work prior to artificial aging created additional geometrically necessary dislocations which serve as heterogeneous nucleation sites leading to accelerated aging, a finer precipitate size, and an increase in the strength of the alloy.

  20. A Novel Technique for Closed Reduction and Fixation of Paediatric Calcaneal Fracture Dislocation Injuries

    PubMed Central

    Faroug, Radwane; Stirling, Paul; Ali, Farhan

    2013-01-01

    Paediatric calcaneal fractures are rare injuries usually managed conservatively or with open reduction and internal fixation (ORIF). Closed reduction was previously thought to be impossible, and very few cases are reported in the literature. We report a new technique for closed reduction using Ilizarov half-rings. We report successful closed reduction and screwless fixation of an extra-articular calcaneal fracture dislocation in a 7-year-old boy. Reduction was achieved using two Ilizarov half-ring frames arranged perpendicular to each other, enabling simultaneous application of longitudinal and rotational traction. Anatomical reduction was achieved with restored angles of Bohler and Gissane. Two K-wires were the definitive fixation. Bony union with good functional outcome and minimal pain was achieved at eight-weeks follow up. ORIF of calcaneal fractures provides good functional outcome but is associated with high rates of malunion and postoperative pain. Preservation of the unique soft tissue envelope surrounding the calcaneus reduces the risk of infection. Closed reduction prevents distortion of these tissues and may lead to faster healing and mobilisation. Closed reduction and screwless fixation of paediatric calcaneal fractures is an achievable management option. Our technique has preserved the soft tissue envelope surrounding the calcaneus, has avoided retained metalwork related complications, and has resulted in a good functional outcome. PMID:23819090

  1. Dislocation evolution in 316 L stainless steel during multiaxial ratchetting deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong Yawei; Kang Guozheng, E-mail: guozhengkang@yahoo.com.cn; Liu Yujie

    2012-03-15

    Dislocation patterns and their evolutions in 316 L stainless steel during the multiaxial ratchetting deformation were observed by transmission electron microscopy (TEM). The microscopic observations indicate that the dislocation evolution presented during the multiaxial ratchetting with four kinds of multiaxial loading paths is similar to that in the uniaxial case [G. Z. Kang et al., Mater Sci Eng A 527 (2010) 5952]. That is, dislocation networks and dislocation tangles are formed quickly by the multiple-slip and cross-slip of dislocation activated by applied multiaxial stress; and then polarized patterns such as dislocation walls and elongated incipient dislocation cells are formed atmore » the last stage of multiaxial ratchetting. The dislocation patterns evolve more quickly from the modes at low dislocation density to the ones at high density during the multiaxial ratchetting than that in the uniaxial case, and some traces of multiple-slip are observed in the multiaxial ones. The dislocation evolution during the multiaxial ratchetting deformation is summarized by comparing the observed dislocation patterns with those presented in the multiaxial strain-controlled and symmetrical stress-controlled cyclic tests. The multiaxial ratchetting of 316 L stainless steel can be microscopically and qualitatively explained by the observed evolution of dislocation patterns. - Highlights: Black-Right-Pointing-Pointer Dislocation patterns change from lines and nets to tangles, walls and cells. Black-Right-Pointing-Pointer Dislocation patterns evolve quicker in the multiaxial case. Black-Right-Pointing-Pointer Aligned dislocation arrays and some traces of multiple slips are observed. Black-Right-Pointing-Pointer Heterogeneous dislocation patterns result in the multiaxial ratchetting.« less

  2. Worker Dislocation. Case Studies of Causes and Cures.

    ERIC Educational Resources Information Center

    Cook, Robert F., Ed.

    Case studies were made of the following dislocated worker programs: Cummins Engine Company Dislocated Worker Project; GM-UAW Metropolitan Pontiac Retraining and Employment Program; Minnesota Iron Range Dislocated Worker Project; Missouri Dislocated Worker Program Job Search Assistance, Inc.; Hillsborough, North Carolina, Dislocated Worker Project;…

  3. Column-by-column observation of dislocation motion in CdTe: Dynamic scanning transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Li, Chen; Zhang, Yu-Yang; Pennycook, Timothy J.; Wu, Yelong; Lupini, Andrew R.; Paudel, Naba; Pantelides, Sokrates T.; Yan, Yanfa; Pennycook, Stephen J.

    2016-10-01

    The dynamics of partial dislocations in CdTe have been observed at the atomic scale using aberration-corrected scanning transmission electron microscopy (STEM), allowing the mobility of different dislocations to be directly compared: Cd-core Shockley partial dislocations are more mobile than Te-core partials, and dislocation cores with unpaired columns have higher mobility than those without unpaired columns. The dynamic imaging also provides insight into the process by which the dislocations glide. Dislocations with dangling bonds on unpaired columns are found to be more mobile because the dangling bonds mediate the bond exchanges required for the dislocations to move. Furthermore, a screw dislocation has been resolved to dissociate into a Shockley partial-dislocation pair along two different directions, revealing a way for the screw dislocation to glide in the material. The results show that dynamic STEM imaging has the potential to uncover the details of dislocation motion not easily accessible by other means.

  4. Texture and Tempered Condition Combined Effects on Fatigue Behavior in an Al-Cu-Li Alloy

    NASA Astrophysics Data System (ADS)

    Wang, An; Liu, Zhiyi; Liu, Meng; Wu, Wenting; Bai, Song; Yang, Rongxian

    2017-05-01

    Texture and tempered condition combined effects on fatigue behavior in an Al-Cu-Li alloy have been investigated using tensile testing, cyclic loading testing, scanning electron microscope (SEM), transmission electron microscopy (TEM) and texture analysis. Results showed that in near-threshold region, T4-tempered samples possessed the lowest fatigue crack propagation (FCP) rate. In Paris regime, T4-tempered sample had similar FCP rate with T6-tempered sample. T83-tempered sample exhibited the greatest FCP rate among the three tempered conditions. 3% pre-stretching in T83-tempered sample resulted in a reducing intensity of Goss texture and facilitated T1 precipitation. SEM results showed that less crack deflection was observed in T83-tempered sample, as compared to other two tempered samples. It was the combined effects of a lower intensity of Goss texture and T1 precipitates retarding the reversible dislocation slipping in the plastic zone ahead the crack tip.

  5. Translation effects on vertical Bridgman growth and optical, mechanical and surface analysis of 2-phenylphenol single crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadhasivam, S., E-mail: sadha.phy1@gmail.com; Perumal, Rajesh Narayana

    2-phenylphenol optical crystals were grown in cone ampoules using vertical Bridgman technique. Single crystal of 2-phenylphenol with 150 mm length has been grown. The inclination on the conical part of the ampoule reduces the growth defects in the 2-phenylphenol single crystal. The lattice parameters and structure studied using single crystal X-ray diffraction method. 2-phenylphenol single crystal belongs to orthorhombic space group Fdd2. The micro translation rate affects crystal growth of 2-phenylphenol crystal was studied. The translation rate dependent defects present in the crystal were investigated by transmittance, indentation and etching characterizations. The dislocation induced indentation crack lengths variations were studied. Etchmore » pits and striations observed for the selective etchants furnish significant information on growth aspects and degree of defect present in the crystal.« less

  6. Anterior screw fixation of a dislocated type II odontoid fracture facilitated by transoral and posterior cervical manual reduction.

    PubMed

    Piedra, Mark P; Hunt, Matthew A; Nemecek, Andrew N

    2009-10-01

    Early fixation of type II odontoid fractures has been shown to provide high rates of long-term stabilization and osteosynthesis. In this report, the authors present the case of a patient with a locked type II odontoid fracture treated by anterior screw fixation facilitated by closed transoral and posterior cervical manual reduction. While transoral intraoperative reduction of a partially displaced odontoid fracture has previously been described, the authors present the first case utilizing this technique in the treatment of a completely dislocated type II odontoid fracture.

  7. An acoustic emission study of plastic deformation in polycrystalline aluminium

    NASA Technical Reports Server (NTRS)

    Bill, R. C.; Frederick, J. R.; Felbeck, D. K.

    1979-01-01

    Acoustic emission experiments were performed on polycrystalline and single crystal 99.99% aluminum while undergoing tensile deformation. It was found that acoustic emission counts as a function of grain size showed a maximum value at a particular grain size. Furthermore, the slip area associated with this particular grain size corresponded to the threshold level of detectability of single dislocation slip events. The rate of decline in acoustic emission activity as grain size is increased beyond the peak value suggests that grain boundary associated dislocation sources are giving rise to the bulk of the detected acoustic emissions.

  8. Imageological measurement of the sternoclavicular joint and its clinical application.

    PubMed

    Li, Ming; Wang, Bo; Zhang, Qi; Chen, Wei; Li, Zhi-Yong; Qin, Shi-Ji; Zhang, Ying-Ze

    2012-01-01

    Dislocation of the sternoclavicular joint is rare. However, posterior dislocation compressing important structures in the mediastinum may be fatal. Early diagnosis and prompt therapy of sternoclavicular joint dislocation are important. Computed tomography (CT) is an optimal means to investigate sternoclavicular joint anatomy; however, there are few reports on the imageological anatomical features of the sternoclavicular joint. The study investigated imageological anatomical features, and a new plate was devised according to these data to treat sternoclavicular joint dislocation. Fifty-three healthy Chinese volunteers examined with chest CT were included in the study. The coronal, sagittal, and axial images of the sternoclavicular region were reconstructed. The sternal head diameter in the inferolateral-to-superomedial direction, length of the clavicular notch, and angle between the clavicular notch and sternum were measured on coronal images. The angle between the presternum and trunk was measured on sagittal images. The following dimensions were measured on axial images: anteroposterior dimensions of the sternal head, clavicular notch, and presternum; width of the sternoclavicular joint; distance between bilateral clavicles; and minimal distance from the presternum to the underlying structures in the thoracic cavity. A new plate was designed according to the above data and was used to repair six sternoclavicular joint dislocations. All cases were followed up with a range of 9 to 12 months. The proximal clavicle is higher than the presternum in a horizontal position. On axial images, the anteroposterior dimension of the sternal head was longer than the presternum, and the center region of the presternum was thinner than the edges. The left sternoclavicular joint space was (0.82 ± 0.21) cm, and the right was (0.87 ± 0.22) cm. Among the structures behind the sternum, the left bilateral innominate vein ran nearest to the presternum. The distance from the anterior cortex of the sterna to the left bilateral innominate vein was (2.38 ± 0.61) cm. The dislocated joints were reduced anatomically and fixed with the new plate. All cases obtained satisfactory outcomes in follow-up visits. Normal sternoclavicular joint parameters were measured on CT images, which can facilitate treatment of sternoclavicular joint dislocation or subluxation. This newly designed plate can be used to treat sternoclavicular joint dislocation effectively and safely.

  9. Habitual dislocation of patella: A review

    PubMed Central

    Batra, Sumit; Arora, Sumit

    2014-01-01

    Habitual dislocation of patella is a condition where the patella dislocates whenever the knee is flexed and spontaneously relocates with extension of the knee. It is also termed as obligatory dislocation as the patella dislocates completely with each flexion and extension cycle of the knee and the patient has no control over the patella dislocating as he or she moves the knee1. It usually presents after the child starts to walk, and is often well tolerated in children, if it is not painful. However it may present in childhood with dysfunction and instability. Very little literature is available on habitual dislocation of patella as most of the studies have combined cases of recurrent dislocation with habitual dislocation. Many different surgical techniques have been described in the literature for the treatment of habitual dislocation of patella. No single procedure is fully effective in the surgical treatment of habitual dislocation of patella and a combination of procedures is recommended. PMID:25983506

  10. [Classification and Treatment of Sacroiliac Joint Dislocation].

    PubMed

    Tan, Zhen; Huang, Zhong; Li, Liang; Meng, Wei-Kun; Liu, Lei; Zhang, Hui; Wang, Guang-Lin; Huang, Fu-Guo

    2017-09-01

    To develop a renewed classification and treatment regimen for sacroiliac joint dislocation. According to the direction of dislocation of sacroiliac joint,combined iliac,sacral fractures,and fracture morphology,sacroiliac joint dislocation was classified into 4 types. Type Ⅰ (sacroiliac anterior dislocation): main fracture fragments of posterior iliac wing dislocated in front of sacroiliac joint. Type Ⅱ (sacroiliac posterior dislocation): main fracture fragments of posterior iliac wing dislocated in posterior of sacroiliac joint. Type Ⅲ (Crescent fracturedislocation of the sacroiliac joint): upward dislocation of posterior iliac wing with oblique fracture through posterior iliac wing. Type ⅢA: a large crescent fragment and dislocation comprises no more than onethird of sacroiliac joint,which is typically inferior. Type ⅢB: intermediatesize crescent fragment and dislocation comprises between one and twothirds of joint. Type ⅢC: a small crescent fragment where dislocation comprises most,but not the entire joint. Different treatment regimens were selected for different types of fractures. Treatment for type Ⅰ sacroiliac joint dislocation: anterior iliac fossa approach pry stripping reset; sacroiliac joint fixed with sacroiliac screw through percutaneous. Treatment for type Ⅱ sacroiliac joint dislocation: posterior sacroiliac joint posterior approach; sacroiliac joint fixed with sacroiliac screw under computer guidance. Treatment for type ⅢA and ⅢB sacroiliac joint dislocation: posterior sacroiliac joint approach; sacroiliac joint fixed with reconstruction plate. Treatment for type ⅢC sacroiliac joint dislocation: sacroiliac joint closed reduction; sacroiliac joint fixed with sacroiliac screw through percutaneous. Treatment for type Ⅳ sacroiliac joint dislocation: posterior approach; sacroiliac joint fixed with spinal pelvic fixation. Results of 24 to 72 months patient follow-up (mean 34.5 months): 100% survival,100% wound healing,and 100% fracture healing. Two cases were identified as type Ⅰ sacroiliac joint dislocation,including one with coexistence of nerve injury. Patients recovered completely 12 months after surgery. Eight cases were identified as type Ⅱ sacroiliac joint dislocation; none had obvious nerve injury during treatments. Twelve cases were identified as type Ⅲ sacroiliac joint dislocation,including one with coexistence of nerve injury. Patients recovered completely 12 months after surgery. Three cases were identified as type Ⅳ sacroiliac joint dislocation with coexistence of nerve injury. Two patients fully recovered 12 months after surgery. One had partial recovery of neurological function. The classification and treatment regimen for sacroiliac joint dislocation have achieved better therapeutic effect,which is worth promoting.

  11. Do Complication Rates Differ by Gender After Metal-on-metal Hip Resurfacing Arthroplasty? A Systematic Review.

    PubMed

    Haughom, Bryan D; Erickson, Brandon J; Hellman, Michael D; Jacobs, Joshua J

    2015-08-01

    Although metal-on-metal (MoM) bearing surfaces provide low rates of volumetric wear and increased stability, evidence suggests that certain MoM hip arthroplasties have high rates of complication and failure. Some evidence indicates that women have higher rates of failure compared with men; however, the orthopaedic literature as a whole has poorly reported such complications stratified by gender. This systematic review aimed to: (1) compare the rate of adverse local tissue reaction (ALTR); (2) dislocation; (3) aseptic loosening; and (4) revision between men and women undergoing primary MoM hip resurfacing arthroplasty (HRA). Systematic MEDLINE and EMBASE searches identified all level I to III articles published in peer-reviewed journals, reporting on the outcomes of interest, for MoM HRA. Articles were limited to those with 2-year followup that reported outcomes by gender. Ten articles met inclusion criteria. Study quality was evaluated using the Modified Coleman Methodology Score; the overall quality was poor. Heterogeneity and bias were analyzed using a Mantel-Haenszel statistical method. Women demonstrated an increased odds of developing ALTR (odds ratio [OR], 5.70 [2.71-11.98]; p<0.001), dislocation (OR, 3.04 [1.2-7.5], p=0.02), aseptic loosening (OR, 3.18 [2.21-4.58], p<0.001), and revision (OR, 2.50 [2.25-2.78], p<0.001) after primary MoM HRA. A systematic review of the currently available literature reveals a higher rate of complications (ALTR, dislocation, aseptic loosening, and revision) after MoM HRA in women compared with men. Although femoral head size has been frequently implicated as a prime factor in the higher rate of complication in women, further research is necessary to specifically probe this relationship. Retrospective studies of data available (eg, registry data) should be undertaken, and moving forward studies should report outcomes by gender (particularly complications). Level III, therapeutic study.

  12. Impurity effects on the grain boundary cohesion in copper

    NASA Astrophysics Data System (ADS)

    Li, Yunguo; Korzhavyi, Pavel A.; Sandström, Rolf; Lilja, Christina

    2017-12-01

    Segregated impurities at grain boundaries can dramatically change the mechanical behavior of metals, while the mechanism is still obscure in some cases. Here, we suggest a unified approach to investigate segregation and its effects on the mechanical properties of polycrystalline alloys using the example of 3 s p impurities (Mg, Al, Si, P, or S) at a special type Σ 5 (310 )[001 ] tilt grain boundary in Cu. We show that for these impurities segregating to the grain boundary, the strain contribution to the work of grain boundary decohesion is small and that the chemical contribution correlates with the electronegativity difference between Cu and the impurity. The strain contribution to the work of dislocation emission is calculated to be negative, while the chemical contribution is calculated to be always positive. Both the strain and chemical contributions to the work of dislocation emission generally become weaker with the increasing electronegativity from Mg to S. By combining these contributions together, we find, in agreement with experimental observations, that a strong segregation of S can reduce the work of grain boundary separation below the work of dislocation emission, thus embrittling Cu, while such an embrittlement cannot be produced by a P segregation because it lowers the energy barrier for dislocation emission relatively more than for work separation.

  13. Dynamic behavior of tripolar hip endoprostheses under physiological conditions and their effect on stability.

    PubMed

    Fabry, Christian; Kaehler, Michael; Herrmann, Sven; Woernle, Christoph; Bader, Rainer

    2014-01-01

    Tripolar systems have been implanted to reduce the risk of recurrent dislocation. However, there is little known about the dynamic behavior of tripolar hip endoprostheses under daily life conditions and achieved joint stability. Hence, the objective of this biomechanical study was to examine the in vivo dynamics and dislocation behavior of two types of tripolar systems compared to a standard total hip replacement (THR) with the same outer head diameter. Several load cases of daily life activities were applied to an eccentric and a concentric tripolar system by an industrial robot. During testing, the motion of the intermediate component was measured using a stereo camera system. Additionally, their behavior under different dislocation scenarios was investigated in comparison to a standard THR. For the eccentric tripolar system, the intermediate component demonstrated the shifting into moderate valgus-positions, regardless of the type of movement. This implant showed the highest resisting torque against dislocation in combination with a large range of motion. In contrast, the concentric tripolar system tended to remain in varus-positions and was primarily moved after stem contact. According to the results, eccentric tripolar systems can work well under in vivo conditions and increase hip joint stability in comparison to standard THRs. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  14. [Significance of lateral release in the therapy of patellar chondromalacia].

    PubMed

    Krüger, T; Göbel, F; Huschenbett, A; Hein, W

    2002-10-01

    A retrospective study was performed in 26 patients who underwent an operation for femoro-patellar pain due to a patellar chondromalacia with or without minor patellar dislocation/lateral pressure syndrome. The average age of the patients was 28.5 (15-39) years. 22 of the 26 patients revealed minor chondral damages of the stages 1 and 2 according to Outerbridge. In 12 patients ("lavage" group), an arthroscopic joint debridement only was carried out, while an additional open, lateral retinaculum release was made in 14 patients ("lateral release" group). The patella's distance of dislocation according to Hepp was reduced on an average of 3.0 (0-7) mm (p = 0.0019). The results of Bentley's score obtained during the follow-up interval on an average of 30.1 (9 to 60) months were almost identical for both groups. "Good" and "very good" results were achieved in the "lavage" group (83.3 %) and "lateral release" group (78.6 % of the patients). Lateral release should be used in cases of patellar decentration between 5 and 10 mm and adequate pain symptoms. The post-operative distance of dislocation should be less than 5 mm. Under such conditions and with minor chondral damage, a combined approach by using an arthroscopic joint debridement and open lateral release is promising to treat a patellar dislocation/lateral pressure syndrome.

  15. Transmission electron microscopy study of microstructural properties and dislocation characterization in the GaN film grown on the cone-shaped patterned Al2O3 substrate.

    PubMed

    Park, Jung Sik; Yang, Jun-Mo; Park, Kyung Jin; Park, Yun Chang; Yoo, Jung Ho; Jeong, Chil Seong; Park, Jucheol; He, Yinsheng; Shin, Keesam

    2014-02-01

    Growing a GaN film on a patterned Al2O3 substrate is one of the methods of reducing threading dislocations (TDs), which can significantly deteriorate the performance of GaN-based LEDs. In this study, the microstructural details of the GaN film grown on a cone-shaped patterned Al2O3 substrate were investigated using high-resolution transmission electron microscopy and weak-beam dark-field techniques. Various defects such as misfit dislocations (MDs), recrystallized GaN (R-GaN) islands and nano-voids were observed on the patterned Al2O3 surfaces, i.e. the flat surface (FS), the inclined surface (IS) and the top surface (TS), respectively. Especially, the crystallographic orientation of R-GaN between the GaN film and the inclined Al2O3 substrate was identified as $[\\overline 1 2\\overline 1 0]_{{\\rm GaN}} \\hbox{//}[\\overline 1 101]_{{\\rm R - GaN} \\,{\\rm on}\\,{\\rm IS}} \\hbox{//}[\\overline 1 100]_{ {{\\rm Al}} _{\\rm 2} {\\rm O}_{\\rm 3}} $, $(\\overline 1 012)_{{\\rm GaN}} \\hbox{//}(1\\overline 1 02)_{{\\rm R - Ga}\\,{\\rm Non}\\,{\\rm IS}} \\hbox{//}(\\overline {11} 26)_{ {{\\rm Al}} _{\\rm 2} {\\rm O}_{\\rm 3}} $. In addition, a rotation by 9° between $(10\\overline 1 1)_{{\\rm R - GaN}} $ and $(0002)_{{\\rm GaN}} $ and between $(10\\overline 1 1)_{{\\rm R - GaN}} $ and $(0006)_{ {{\\rm Al}} _{\\rm 2} {\\rm O}_{\\rm 3}} $ was found to reduce the lattice mismatch between the GaN film and the Al2O3 substrate. Many TDs in the GaN film were observed on the FS and TS of Al2O3. However, few TDs were observed on the IS. Most of the TDs generated from the FS of Al2O3 were bent to the inclined facet rather than propagating to the GaN surface, resulting in a reduction in the dislocation density. Most of the TDs generated from the TS of Al2O3 were characterized as edge dislocations.

  16. Deformation Behavior of Al/a-Si Core-shell Nanostructures

    NASA Astrophysics Data System (ADS)

    Fleming, Robert

    Al/a-Si core-shell nanostructures (CSNs), consisting of a hemispherical Al core surrounded by a hard shell of a-Si, have been shown to display unusual mechanical behavior in response to compression loading. Most notably, these nanostructures exhibit substantial deformation recovery, even when loaded much beyond the elastic limit. Nanoindentation measurements revealed a unique mechanical response characterized by discontinuous signatures in the load-displacement data. In conjunction with the indentation signatures, nearly complete deformation recovery is observed. This behavior is attributed to dislocation nucleation and annihilation events enabled by the 3-dimensional confinement of the Al core. As the core confinement is reduced, either through an increase in confined core volume or a change in the geometrical confinement, the indentation signatures and deformation resistance are significantly reduced. Complimentary molecular dynamics simulations show that a substantial amount of dislocation egression occurs in the core of CSNs during unloading as dislocations annihilate at the core/shell interface. Smaller core diameters correlate with the development of a larger back-stress within the core during unloading, which further correlates with improved dislocation annihilation after unloading. Furthermore, dislocations nucleated in the core of core-shell nanorods are not as effectively removed as compared to CSNs. Nanostructure-textured surfaces (NSTSs) composed of Al/a-Si CSNs have improved tribological properties compared surfaces patterned with Al nanodots and a flat (100) Si surface. NSTSs have a coefficient of friction (COF) as low as 0.015, exhibit low adhesion with adhesion forces on the order of less than 1 microN, and are highly deformation resistant, with no apparent surface deformation after nanoscratch testing, even at contact forces up to 8000 microN. In comparison, (100) Si has substantially higher adhesion and COF ( 10 microN and 0.062, respectively), while the Al nanodots have both higher friction (COF 0.044) and are deformed when subjected to contact loads as low as 250 microN. This integrated experimental and computational study elucidates the mechanisms that contribute to the novel properties of Al/a-Si CSNs and characterizes the tribological properties of surface composed of these nanostructures, which provides a foundation for the rational design of novel technologies based on CSNs.

  17. 3D discrete dislocation dynamics study of creep behavior in Ni-base single crystal superalloys by a combined dislocation climb and vacancy diffusion model

    NASA Astrophysics Data System (ADS)

    Gao, Siwen; Fivel, Marc; Ma, Anxin; Hartmaier, Alexander

    2017-05-01

    A three-dimensional (3D) discrete dislocation dynamics (DDD) creep model is developed to investigate creep behavior under uniaxial tensile stress along the crystallographic [001] direction in Ni-base single crystal superalloys, which takes explicitly account of dislocation glide, climb and vacancy diffusion, but neglects phase transformation like rafting of γ‧ precipitates. The vacancy diffusion model takes internal stresses by dislocations and mismatch strains into account and it is coupled to the dislocation dynamics model in a numerically efficient way. This model is helpful for understanding the fundamental creep mechanisms in superalloys and clarifying the effects of dislocation glide and climb on creep deformation. In cases where the precipitate cutting rarely occurs, e.g. due to the high anti-phase boundary energy and the lack of superdislocations, the dislocation glide in the γ matrix and the dislocation climb along the γ/γ‧ interface dominate plastic deformation. The simulation results show that a high temperature or a high stress both promote dislocation motion and multiplication, so as to cause a large creep strain. Dislocation climb accelerated by high temperature only produces a small plastic strain, but relaxes the hardening caused by the filling γ channels and lets dislocations further glide and multiply. The strongest variation of vacancy concentration occurs in the horizontal channels, where more mixed dislocations exit and tend to climb. The increasing internal stresses due to the increasing dislocation density are easily overcome by dislocations under a high external stress that leads to a long-term dislocation glide accompanied by multiplication.

  18. Strain-Rate Dependence of Deformation-Twinning in Tantalum

    NASA Astrophysics Data System (ADS)

    Abeywardhana, Jayalath; Germann, Tim; Ravelo, Ramon

    2017-06-01

    Large-Scale molecular dynamics (MD) simulations are used to model quasi-isentropic compression and expansion (QIC) in tantalum crystals varying the rate of deformation between the range 108 -1012s-1 and compressive pressures up to 100 GPa. The atomic interactions were modeled employing an embedded-atom method (EAM) potential of Ta. Isentropic expansion was done employing samples initially compressed to pressures of 60 and 100 GPa followed by uniaxial and quasi-isentropically expansion to zero pressure. The effect of initial dislocation density on twinning was also examined by varying the initial defect density of the Ta samples (1010 -1012cm-2). At these high-strain rates, a threshold in strain-rate on deformation twining is observed. Under expansion or compression, deformation twinning increases with strain rate for strain-rates >109s-1 . Below this value, small fraction of twins nucleates but anneal out with time. Samples with lower fraction of twins equilibrate to defect states containing higher screw dislocation densities from those with initially higher twinning fractions. This work was supported by the Department of Energy under contract DE-AC52-06NA25396 and by the Air Force Office of Scientific Research under AFOSR Award No. FA9550-12-1-0476.

  19. Interfacial dislocations in (111) oriented (Ba 0.7Sr 0.3)TiO 3 films on SrTiO 3 single crystal

    DOE PAGES

    Shen, Xuan; Yamada, Tomoaki; Lin, Ruoqian; ...

    2015-10-08

    In this study, we have investigated the interfacial structure of epitaxial (Ba,Sr)TiO 3 films grown on (111)-oriented SrTiO 3 single-crystal substrates using transmission electron microscopy (TEM) techniques. Compared with the (100) epitaxial perovskite films, we observe dominant dislocation half-loop with Burgers vectors of a<110> comprised of a misfit dislocation along <112>, and threading dislocations along <110> or <100>. The misfit dislocation with Burgers vector of a <110> can dissociate into two ½ a <110> partial dislocations and one stacking fault. We found the dislocation reactions occur not only between misfit dislocations, but also between threading dislocations. Via three-dimensional electron tomography,more » we retrieved the configurations of the threading dislocation reactions. The reactions between threading dislocations lead to a more efficient strain relaxation than do the misfit dislocations alone in the near-interface region of the (111)-oriented (Ba 0.7Sr 0.3)TiO 3 films.« less

  20. Dislocation mechanisms in stressed crystals with surface effects

    NASA Astrophysics Data System (ADS)

    Wu, Chi-Chin; Crone, Joshua; Munday, Lynn; Discrete Dislocation Dynamics Team

    2014-03-01

    Understanding dislocation properties in stressed crystals is the key for important processes in materials science, including the strengthening of metals and the stress relaxation during the growth of hetero-epitaxial structures. Despite existing experimental approaches and theories, many dislocation mechanisms with surface effects still remain elusive in experiments. Even though discrete dislocation dynamics (DDD) simulations are commonly employed to study dislocations, few demonstrate sufficient computational capabilities for massive dislocations with the combined effects of surfaces and stresses. Utilizing the Army's newly developed FED3 code, a DDD computation code coupled with finite elements, this work presents several dislocation mechanisms near different types of surfaces in finite domains. Our simulation models include dislocations in a bended metallic cantilever beam, near voids in stressed metals, as well as threading and misfit dislocations in as-grown semiconductor epitaxial layers and their quantitative inter-correlations to stress relaxation and surface instability. Our studies provide not only detailed physics of individual dislocation mechanisms, but also important collective dislocation properties such as dislocation densities and strain-stress profiles and their interactions with surfaces.

  1. Recombination properties of dislocations in GaN

    NASA Astrophysics Data System (ADS)

    Yakimov, Eugene B.; Polyakov, Alexander Y.; Lee, In-Hwan; Pearton, Stephen J.

    2018-04-01

    The recombination activity of threading dislocations in n-GaN with different dislocation densities and different doping levels was studied using electron beam induced current (EBIC). The recombination velocity on a dislocation, also known as the dislocation recombination strength, was calculated. The results suggest that dislocations in n-GaN giving contrast in EBIC are charged and surrounded by a space charge region, as evidenced by the observed dependence of dislocation recombination strength on dopant concentration. For moderate (below ˜108 cm-2) dislocation densities, these defects do not primarily determine the average diffusion length of nonequilibrium charge carriers, although locally, dislocations are efficient recombination sites. In general, it is observed that the effect of the growth method [standard metalorganic chemical vapor deposition (MOCVD), epitaxial lateral overgrowth versions of MOCVD, and hydride vapor phase epitaxy] on the recombination activity of dislocations is not very pronounced, although the average diffusion lengths can widely differ for various samples. The glide of basal plane dislocations at room temperature promoted by low energy electron irradiation does not significantly change the recombination properties of dislocations.

  2. Atomic and electronic structure of Lomer dislocations at CdTe bicrystal interface

    DOE PAGES

    Sun, Ce; Paulauskas, Tadas; Sen, Fatih G.; ...

    2016-06-03

    Extended defects are of considerable importance in determining the electronic properties of semiconductors, especially in photovoltaics (PVs), due to their effects on electron-hole recombination. We employ model systems to study the effects of dislocations in CdTe by constructing grain boundaries using wafer bonding. Atomic-resolution scanning transmission electron microscopy (STEM) of a [1–10]/ (110) 4.8° tilt grain boundary reveals that the interface is composed of three distinct types of Lomer dislocations. Geometrical phase analysis is used to map strain fields, while STEM and density functional theory (DFT) modeling determine the atomic structure at the interface. The electronic structure of the dislocationmore » cores calculated using DFT shows significant mid-gap states and different charge-channeling tendencies. Cl-doping is shown to reduce the midgap states, while maintaining the charge separation effects. In conclusion, this report offers novel avenues for exploring grain boundary effects in CdTe-based solar cells by fabricating controlled bicrystal interfaces and systematic atomic-scale analysis.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trishkina, L., E-mail: trishkina.53@mail.ru; Zboykova, N.; Koneva, N., E-mail: koneva@tsuab.ru

    The aim of the investigation was the determination of the statistic description of dislocation distribution in each dislocation substructures component forming after different deformation degrees in the Cu-Al alloys. The dislocation structures were investigated by the transmission diffraction electron microscopy method. In the work the statistic description of distance distribution between the dislocations, dislocation barriers and dislocation tangles in the deformed Cu-Al alloys with different concentration of Al and test temperature at the grain size of 100 µm was carried out. It was established that the above parameters influence the dislocation distribution in different types of the dislocation substructures (DSS): dislocationmore » chaos, dislocation networks without disorientation, nondisoriented and disoriented cells, in the walls and inside the cells. The distributions of the distances between dislocations in the investigated alloys for each DSS type formed at certain deformation degrees and various test temperatures were plotted.« less

  4. Torsion analysis of cracked circular bars actuated by a piezoelectric coating

    NASA Astrophysics Data System (ADS)

    Hassani, A. R.; Faal, R. T.

    2016-12-01

    This study presents a formulation for a bar with circular cross-section, coated by a piezoelectric layer and subjected to Saint-Venant torsion loading. The bar is weakened by a Volterra-type screw dislocation. First, with aid of the finite Fourier transform, the stress fields in the circular bar and the piezoelectric layer are obtained. The problem is then reduced to a set of singular integral equations with a Cauchy-type singularity. Unknown dislocation density is achieved by numerical solution of these integral equations. Numerical results are discussed, to reveal the effect of the piezoelectric layer on the reduction of the mechanical stress intensity factor in the bar.

  5. Unstable plastic deformation of ultrafine-grained copper at 0.5 K

    NASA Astrophysics Data System (ADS)

    Isaev, N. V.; Grigorova, T. V.; Shumilin, S. E.; Polishchuk, S. S.; Davydenko, O. A.

    2017-12-01

    We investigate the relation between the strain-hardening rate and flow instability of polycrystalline Cu-OF deformed by tension at a constant rate in a liquid 3He atmosphere. The microstructure of the ultrafine-grained crystal, obtained by the equal-channel angular hydro-extrusion method, was varied by annealing at recovery and recrystallization temperatures and was monitored by x-ray diffraction. It is shown that that the flow instability, manifesting itself as macroscopic stress serrations on the tension curve, appears at a threshold tension sufficient for activation of a dynamic recovery that leads to a decrease of the strain-hardening coefficient. We discuss the effect of grain size and the initial dislocation density on the evolution of the dislocation structure that determines the scale and the statistical properties of the flow instability in the investigated crystals at low temperature.

  6. The Role of Geometrically Necessary Dislocations in Cantilever Beam Bending Experiments of Single Crystals

    PubMed Central

    Husser, Edgar; Bargmann, Swantje

    2017-01-01

    The mechanical behavior of single crystalline, micro-sized copper is investigated in the context of cantilever beam bending experiments. Particular focus is on the role of geometrically necessary dislocations (GNDs) during bending-dominated load conditions and their impact on the characteristic bending size effect. Three different sample sizes are considered in this work with main variation in thickness. A gradient extended crystal plasticity model is presented and applied in a three-dimensional finite-element (FE) framework considering slip system-based edge and screw components of the dislocation density vector. The underlying mathematical model contains non-standard evolution equations for GNDs, crystal-specific interaction relations, and higher-order boundary conditions. Moreover, two element formulations are examined and compared with respect to size-independent as well as size-dependent bending behavior. The first formulation is based on a linear interpolation of the displacement and the GND density field together with a full integration scheme whereas the second is based on a mixed interpolation scheme. While the GND density fields are treated equivalently, the displacement field is interpolated quadratically in combination with a reduced integration scheme. Computational results indicate that GND storage in small cantilever beams strongly influences the evolution of statistically stored dislocations (SSDs) and, hence, the distribution of the total dislocation density. As a particular example, the mechanical bending behavior in the case of a physically motivated limitation of GND storage is studied. The resulting impact on the mechanical bending response as well as on the predicted size effect is analyzed. Obtained results are discussed and related to experimental findings from the literature. PMID:28772657

  7. The influence of transition metal solutes on the dislocation core structure and values of the Peierls stress and barrier in tungsten

    NASA Astrophysics Data System (ADS)

    Samolyuk, G. D.; Osetsky, Y. N.; Stoller, R. E.

    2013-01-01

    Several transition metals were examined to evaluate their potential for improving the ductility of tungsten. The dislocation core structure and Peierls stress and barrier of 1/2<111> screw dislocations in binary tungsten-transition metal alloys (W1-xTMx) were investigated using density functional theory calculations. The periodic quadrupole approach was applied to model the structure of the 1/2<111> dislocation. Alloying with transition metals was modeled using the virtual crystal approximation and the applicability of this approach was assessed by calculating the equilibrium lattice parameter and elastic constants of the tungsten alloys. Reasonable agreement was obtained with experimental data and with results obtained from the conventional supercell approach. Increasing the concentration of a transition metal from the VIIIA group, i.e. the elements in columns headed by Fe, Co and Ni, leads to reduction of the C‧ elastic constant and increase of the elastic anisotropy A = C44/C‧. Alloying W with a group VIIIA transition metal changes the structure of the dislocation core from symmetric to asymmetric, similarly to results obtained for W1-xRex alloys in the earlier work of Romaner et al (2010 Phys. Rev. Lett. 104 195503). In addition to a change in the core symmetry, the values of the Peierls stress and barrier are reduced. The latter effect could lead to increased ductility in a tungsten-based alloy. Our results demonstrate that alloying with any of the transition metals from the VIIIA group should have a similar effect to alloying with Re.

  8. On the permanent hip-stabilizing effect of atmospheric pressure.

    PubMed

    Prietzel, Torsten; Hammer, Niels; Schleifenbaum, Stefan; Kaßebaum, Eric; Farag, Mohamed; von Salis-Soglio, Georg

    2014-08-22

    Hip joint dislocations related to total hip arthroplasty (THA) are a common complication especially in the early postoperative course. The surgical approach, the alignment of the prosthetic components, the range of motion and the muscle tone are known factors influencing the risk of dislocation. A further factor that is discussed until today is atmospheric pressure which is not taken into account in the present THA concepts. The aim of this study was to investigate the impact of atmospheric pressure on hip joint stability. Five joint models (Ø 28-44 mm), consisting of THA components were hermetically sealed with a rubber capsule, filled with a defined amount of fluid and exposed to varying ambient pressure. Displacement and pressure sensors were used to record the extent of dislocation related to intraarticular and ambient pressure. In 200 experiments spontaneous dislocations of the different sized joint models were reliably observed once the ambient pressure was lower than 6.0 kPa. Increasing the ambient pressure above 6.0 kPa immediately and persistently reduced the joint models until the ambient pressure was lowered again. Displacement always exceeded half the diameter of the joint model and was independent of gravity effects. This experimental study gives strong evidence that the hip joint is permanently stabilized by atmospheric pressure, confirming the theories of Weber and Weber (1836). On basis of these findings the use of larger prosthetic heads, capsular repair and the deployment of an intracapsular Redon drain are proposed to substantially decrease the risk of dislocation after THA. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Surgical treatment for old subaxial cervical dislocation with bilateral locked facets in a 3-year-old girl: A case report.

    PubMed

    Li, Cheng; Li, Lei; Duan, Jingzhu; Zhang, Lijun; Liu, Zhenjiang

    2018-05-01

    This study aimed to describe the case of a 3-year-old girl with old bilateral facet dislocation on cervical vertebrae 6 and 7, who had spinal cord transection, received surgical treatment, and achieved a relative satisfactory therapeutic effect. A 3-year-old girl was urgently transferred to the hospital after a car accident. DIAGNOSES:: she was diagnosed with splenic rupture, intracranial hemorrhage, cervical dislocation, spinal transection, and Monteggia fracture of the left upper limb. The girl underwent emergency splenectomy and was transferred to the intensive care unit of the hospital 15 days later. One-stage anterior-posterior approach surgery (anterior discectomy, posterior laminectomy, and pedicle screw fixation) was performed when the patient stabilized after 45-day symptomatic treatment. The operation was uneventful. The reduction of lower cervical dislocation was satisfactory, with sufficient spinal cord decompression. The internal fixation position was good, and the spinal sequence was well restored. The girl was discharged 2 weeks later after the operation and followed up for 2 years. The major nerve function of both upper limbs was recovered, with no obvious retardation of the growth of immature spine. A satisfactory therapeutic effect was achieved for a pediatric old subaxial cervical dislocation with bilateral locked facets using anterior discectomy, posterior laminectomy, and pedicle screw fixation. The posterior pedicle screw fixation provided a good three-dimensional stability of the spine, with reduced risk and complications caused by anterior internal fixation. The growth of immature spine was not obviously affected during the 2-year follow-up.

  10. Dynamics of threading dislocations in porous heteroepitaxial GaN films

    NASA Astrophysics Data System (ADS)

    Gutkin, M. Yu.; Rzhavtsev, E. A.

    2017-12-01

    Behavior of threading dislocations in porous heteroepitaxial gallium nitride (GaN) films has been studied using computer simulation by the two-dimensional discrete dislocation dynamics approach. A computational scheme, where pores are modeled as cross sections of cylindrical cavities, elastically interacting with unidirectional parallel edge dislocations, which imitate threading dislocations, is used. Time dependences of coordinates and velocities of each dislocation from dislocation ensembles under investigation are obtained. Visualization of current structure of dislocation ensemble is performed in the form of a location map of dislocations at any time. It has been shown that the density of appearing dislocation structures significantly depends on the ratio of area of a pore cross section to area of the simulation region. In particular, increasing the portion of pores surface on the layer surface up to 2% should lead to about a 1.5-times decrease of the final density of threading dislocations, and increase of this portion up to 15% should lead to approximately a 4.5-times decrease of it.

  11. Study on the dynamic recrystallization model and mechanism of nuclear grade 316LN austenitic stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Shenglong; Zhang, Mingxian; Wu, Huanchun

    In this study, the dynamic recrystallization behaviors of a nuclear grade 316LN austenitic stainless steel were researched through hot compression experiment performed on a Gleeble-1500 simulator at temperatures of 900–1250 °C and strain rates of 0.01–1 s{sup −1}. By multiple linear regressions of the flow stress-strain data, the dynamic recrystallization mathematical models of this steel as functions of strain rate, strain and temperature were developed. Then these models were verified in a real experiment. Furthermore, the dynamic recrystallization mechanism of the steel was determined. The results indicated that the subgrains in this steel are formed through dislocations polygonization and thenmore » grow up through subgrain boundaries migration towards high density dislocation areas and subgrain coalescence mechanism. Dynamic recrystallization nucleation performs in grain boundary bulging mechanism and subgrain growth mechanism. The nuclei grow up through high angle grain boundaries migration. - Highlights: •Establish the DRX mathematical models of nuclear grade 316LN stainless steel •Determine the DRX mechanism of this steel •Subgrains are formed through dislocations polygonization. •Subgrains grow up through subgrain boundaries migration and coalescence mechanism. •DRX nucleation performs in grain boundary bulging mechanism and subgrain growth mechanism.« less

  12. Nanoepitaxy of GaAs on a Si(001) substrate using a round-hole nanopatterned SiO2 mask.

    PubMed

    Hsu, Chao-Wei; Chen, Yung-Feng; Su, Yan-Kuin

    2012-12-14

    GaAs is grown by metal-organic vapor-phase epitaxy on a 55 nm round-hole patterned Si substrate with SiO(2) as a mask. The threading dislocations, which are stacked on the lowest energy facet plane, move along the SiO(2) walls, reducing the number of dislocations. The etching pit density of GaAs on the 55 nm round-hole patterned Si substrate is about 3.3 × 10(5) cm(-2). Compared with the full width at half maximum measurement from x-ray diffraction and photoluminescence spectra of GaAs on a planar Si(001) substrate, those of GaAs on the 55 nm round-hole patterned Si substrate are reduced by 39.6 and 31.4%, respectively. The improvement in material quality is verified by transmission electron microscopy, field-emission scanning electron microscopy, Hall measurements, Raman spectroscopy, photoluminescence, and x-ray diffraction studies.

  13. Microstructure evolution of recrystallized Zircaloy-4 under charged particles irradiation

    NASA Astrophysics Data System (ADS)

    Gaumé, M.; Onimus, F.; Dupuy, L.; Tissot, O.; Bachelet, C.; Mompiou, F.

    2017-11-01

    Recrystallized zirconium alloys are used as nuclear fuel cladding tubes of Pressurized Water Reactors. During operation, these alloys are submitted to fast neutron irradiation which leads to their in-reactor deformation and to a change of their mechanical properties. These phenomena are directly related to the microstructure evolution under irradiation and especially to the formation of -type dislocation loops. In the present work, the radiation damage evolution in recrystallized Zircaloy-4 has been studied using charged particles irradiation. The loop nucleation and growth kinetics, and also the helical climb of linear dislocations, were observed in-situ using a High Voltage Electron Microscope (HVEM) under 1 MeV electron irradiation at 673 and 723 K. In addition, 600 keV Zr+ ion irradiations were conducted at the same temperature. Transmission Electron Microscopy (TEM) characterizations have been performed after both types of irradiations, and show dislocation loops with a Burgers vector belonging to planes close to { 10 1 bar 0 } first order prismatic planes. The nature of the loops has been characterized. Only interstitial dislocation loops have been observed after ion irradiation at 723 K. However, after electron irradiation conducted at 673 and 723 K, both interstitial and vacancy loops were observed, the proportion of interstitial loops increasing as the temperature is increased. The loop growth kinetics analysis shows that as the temperature increases, the loop number density decreases and the loop growth rate tends to increase. An increase of the flux leads to an increase of the loop number density and a decrease of the loop growth rate. The results are compared to previous works and discussed in the light of point defects diffusion.

  14. Density of bunched threading dislocations in epitaxial GaN layers as determined using X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Barchuk, M.; Holý, V.; Rafaja, D.

    2018-04-01

    X-ray diffraction is one of the most popular experimental methods employed for determination of dislocation densities, as it can recognize both the strain fields and the local lattice rotations produced by dislocations. The main challenge of the quantitative analysis of the dislocation density is the formulation of a suitable microstructure model, which describes the dislocation arrangement and the effect of the interactions between the strain fields from neighboring dislocations reliably in order to be able to determine the dislocation densities precisely. The aim of this study is to prove the capability of X-ray diffraction and two computational methods, which are frequently used for quantification of the threading dislocation densities from X-ray diffraction measurements, in the special case of partially bunched threading dislocations. The first method is based on the analysis of the dislocation-controlled crystal mosaicity, and the other one on the analysis of diffuse X-ray scattering from threading dislocations. The complementarity of both methods is discussed. Furthermore, it is shown how the complementarity of these methods can be used to improve the results of the quantitative analysis of bunched and thus inhomogeneously distributed threading dislocations and to get a better insight into the dislocation arrangement.

  15. Interaction of 〈1 0 0〉 dislocation loops with dislocations studied by dislocation dynamics in α-iron

    NASA Astrophysics Data System (ADS)

    Shi, X. J.; Dupuy, L.; Devincre, B.; Terentyev, D.; Vincent, L.

    2015-05-01

    Interstitial dislocation loops with Burgers vector of 〈1 0 0〉 type are formed in α-iron under neutron or heavy ion irradiation. As the density and size of these loops increase with radiation dose and temperature, these defects are thought to play a key role in hardening and subsequent embrittlement of iron-based steels. The aim of the present work is to study the pinning strength of the loops on mobile dislocations. Prior to run massive Dislocation Dynamics (DD) simulations involving experimentally representative array of radiation defects and dislocations, the DD code and its parameterization are validated by comparing the individual loop-dislocation reactions with those obtained from direct atomistic Molecular Dynamics (MD) simulations. Several loop-dislocation reaction mechanisms are successfully reproduced as well as the values of the unpinning stress to detach mobile dislocations from the defects.

  16. Strength of Dislocation Junctions in FCC-monocrystals with a [\\overline{1}11] Deformation Axis

    NASA Astrophysics Data System (ADS)

    Kurinnaya, R. I.; Zgolich, M. V.; Starenchenko, V. A.

    2017-07-01

    The paper examines all dislocation reactions implemented in FCC-monocrystals with axis deformation oriented in the [\\overline{1}11] direction. It identifies the fracture stresses of dislocation junctions depending on intersection geometry of the reacting dislocation loop segments. Estimates are produced for the full spectrum of reacting forest dislocations. The paper presents the statistical data of the research performed and identifies the share of long strong dislocation junctions capable of limiting the zone of dislocation shift.

  17. Size effects on plasticity and fatigue microstructure evolution in FCC single crystals

    NASA Astrophysics Data System (ADS)

    El-Awady, Jaafar Abbas

    In aircraft structures and engines, fatigue damage is manifest in the progressive emergence of distributed surface cracks near locations of high stress concentrations. At the present time, reliable methods for prediction of fatigue crack initiation are not available, because the phenomenon starts at the atomic scale. Initiation of fatigue cracks is associated with the formation of Persistent slip bands (PSBs), which start at certain critical conditions inside metals with specific microstructure dimensions. The main objective of this research is to develop predictive computational capabilities for plasticity and fatigue damage evolution in finite volumes. In that attempt, a dislocation dynamics model that incorporates the influence of free and internal interfaces on dislocation motion is presented. The model is based on a self-consistent formulation of 3-D Parametric Dislocation Dynamics (PDD) with the Boundary Element method (BEM) to describe dislocation motion, and hence microscopic plastic flow in finite volumes. The developed computer models are bench-marked by detailed comparisons with the experimental data, developed at the Wright-Patterson Air Force Lab (WP-AFRL), by three dimensional large scale simulations of compression loading on micro-scale samples of FCC single crystals. These simulation results provide an understanding of plastic deformation of micron-size single crystals. The plastic flow characteristics as well as the stress-strain behavior of simulated micropillars are shown to be in general agreement with experimental observations. New size scaling aspects of plastic flow and work-hardening are identified through the use of these simulations. The flow strength versus the diameter of the micropillar follows a power law with an exponent equal to -0.69. A stronger correlation is observed between the flow strength and the average length of activated dislocation sources. This relationship is again a power law, with an exponent -0.85. Simulation results with and without the activation of cross-slip are compared. Discontinuous hardening is observed when cross-slip is included. Experimentally-observed size effects on plastic flow and work- hardening are consistent with a "weakest-link activation mechanism". In addition, the variations and periodicity of dislocation activation are analyzed using the Fast Fourier Transform (FFT). We then present models of localized plastic deformation inside Persistent Slip Band channels. We investigate the interaction between screw dislocations as they pass one another inside channel walls in copper. The model shows the mechanisms of dislocation bowing, dipole formation and binding, and dipole destruction as screw dislocations pass one another. The mechanism of (dipole passing) is assessed and interpreted in terms of the fatigue saturation stress. We also present results for the effects of the wall dipole structure on the dipole passing mechanism. The edge dislocation dipolar walls is seen to have an effect on the passing stress as well. It is shown that the passing stress in the middle of the channel is reduced by 11 to 23% depending on the initial configuration of the screw dislocations with respect to one another. Finally, from large scale simulations of the expansion process of the edge dipoles from the walls in the channel the screw dislocations in the PSB channels may not meet "symmetrically", i.e. precisely in the center of the channel but preferably a little on one or the other side. For this configuration the passing stress will be lowered which is in agreement to experimental observations.

  18. Tailoring Superconductivity with Quantum Dislocations.

    PubMed

    Li, Mingda; Song, Qichen; Liu, Te-Huan; Meroueh, Laureen; Mahan, Gerald D; Dresselhaus, Mildred S; Chen, Gang

    2017-08-09

    Despite the established knowledge that crystal dislocations can affect a material's superconducting properties, the exact mechanism of the electron-dislocation interaction in a dislocated superconductor has long been missing. Being a type of defect, dislocations are expected to decrease a material's superconducting transition temperature (T c ) by breaking the coherence. Yet experimentally, even in isotropic type I superconductors, dislocations can either decrease, increase, or have little influence on T c . These experimental findings have yet to be understood. Although the anisotropic pairing in dirty superconductors has explained impurity-induced T c reduction, no quantitative agreement has been reached in the case a dislocation given its complexity. In this study, by generalizing the one-dimensional quantized dislocation field to three dimensions, we reveal that there are indeed two distinct types of electron-dislocation interactions. Besides the usual electron-dislocation potential scattering, there is another interaction driving an effective attraction between electrons that is caused by dislons, which are quantized modes of a dislocation. The role of dislocations to superconductivity is thus clarified as the competition between the classical and quantum effects, showing excellent agreement with existing experimental data. In particular, the existence of both classical and quantum effects provides a plausible explanation for the illusive origin of dislocation-induced superconductivity in semiconducting PbS/PbTe superlattice nanostructures. A quantitative criterion has been derived, in which a dislocated superconductor with low elastic moduli and small electron effective mass and in a confined environment is inclined to enhance T c . This provides a new pathway for engineering a material's superconducting properties by using dislocations as an additional degree of freedom.

  19. On damping of screw dislocation bending vibrations in dissipative crystal: limiting cases

    NASA Astrophysics Data System (ADS)

    Dezhin, V. V.

    2018-03-01

    The expression for the generalized susceptibility of the dislocation obtained earlier was used. The electronic drag mechanism of dislocations is considered. The study of small dislocation oscillations was limited. The contribution of the attenuation of low-frequency bending screw dislocation vibrations to the overall coefficient of dynamic dislocation drag in the long-wave and short-wave limits is calculated. The damping of short-wave bending screw dislocation vibrations caused by an external action of an arbitrary frequency has been investigated. The contribution of long-wave bending screw dislocation vibrations damping in the total drag coefficient at an arbitrary frequency is found.

  20. Automated identification and indexing of dislocations in crystal interfaces

    DOE PAGES

    Stukowski, Alexander; Bulatov, Vasily V.; Arsenlis, Athanasios

    2012-10-31

    Here, we present a computational method for identifying partial and interfacial dislocations in atomistic models of crystals with defects. Our automated algorithm is based on a discrete Burgers circuit integral over the elastic displacement field and is not limited to specific lattices or dislocation types. Dislocations in grain boundaries and other interfaces are identified by mapping atomic bonds from the dislocated interface to an ideal template configuration of the coherent interface to reveal incompatible displacements induced by dislocations and to determine their Burgers vectors. Additionally, the algorithm generates a continuous line representation of each dislocation segment in the crystal andmore » also identifies dislocation junctions.« less

  1. A dislocation density based micromechanical constitutive model for Sn-Ag-Cu solder alloys

    NASA Astrophysics Data System (ADS)

    Liu, Lu; Yao, Yao; Zeng, Tao; Keer, Leon M.

    2017-10-01

    Based on the dislocation density hardening law, a micromechanical model considering the effects of precipitates is developed for Sn-Ag-Cu solder alloys. According to the microstructure of the Sn-3.0Ag-0.5Cu thin films, intermetallic compounds (IMCs) are assumed as sphere particles embedded in the polycrystalline β-Sn matrix. The mechanical behavior of polycrystalline β-Sn matrix is determined by the elastic-plastic self-consistent method. The existence of IMCs not only impedes the motion of dislocations but also increases the overall stiffness. Thus, a dislocation density based hardening law considering non-shearable precipitates is adopted locally for single β-Sn crystal, and the Mori-Tanaka scheme is applied to describe the overall viscoplastic behavior of solder alloys. The proposed model is incorporated into finite element analysis and the corresponding numerical implementation method is presented. The model can describe the mechanical behavior of Sn-3.0Ag-0.5Cu and Sn-1.0Ag-0.5Cu alloys under high strain rates at a wide range of temperatures. Furthermore, the overall Young’s modulus changes due to different contents of IMCs is predicted and compared with experimental data. Results show that the proposed model can describe both elastic and inelastic behavior of solder alloys with reasonable accuracy.

  2. Biomechanical Analysis of Implanted Clavicle Hook Plates With Different Implant Depths and Materials in the Acromioclavicular Joint: A Finite Element Analysis Study.

    PubMed

    Lee, Cheng-Hung; Shih, Cheng-Min; Huang, Kui-Chou; Chen, Kun-Hui; Hung, Li-Kun; Su, Kuo-Chih

    2016-11-01

    Clinical implantation of clavicle hook plates is often used as a treatment for acromioclavicular joint dislocation. However, it is not uncommon to find patients that have developed acromion osteolysis or had peri-implant fracture after hook plate fixation. With the aim of preventing complications or fixation failure caused by implantation of inappropriate clavicle hook plates, the present study investigated the biomechanics of clavicle hook plates made of different materials and with different hook depths in treating acromioclavicular joint dislocation, using finite element analysis (FEA). This study established four parts using computer models: the clavicle, acromion, clavicle hook plate, and screws, and these established models were used for FEA. Moreover, implantations of clavicle hook plates made of different materials (stainless steel and titanium alloy) and with different depths (12, 15, and 18 mm) in patients with acromioclavicular joint dislocation were simulated in the biomechanical analysis. The results indicate that deeper implantation of the clavicle hook plate reduces stress on the clavicle, and also reduces the force applied to the acromion by the clavicle hook plate. Even though a clavicle hook plate made of titanium alloy (a material with a lower Young's modulus) reduces the force applied to the acromion by the clavicle hook plate, slightly higher stress on the clavicle may occur. The results obtained in this study provide a better reference for orthopedic surgeons in choosing different clavicle hook plates for surgery. Copyright © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  3. A continuum dislocation dynamics framework for plasticity of polycrystalline materials

    NASA Astrophysics Data System (ADS)

    Askari, Hesam Aldin

    The objective of this research is to investigate the mechanical response of polycrystals in different settings to identify the mechanisms that give rise to specific response observed in the deformation process. Particularly the large deformation of magnesium alloys and yield properties of copper in small scales are investigated. We develop a continuum dislocation dynamics framework based on dislocation mechanisms and interaction laws and implement this formulation in a viscoplastic self-consistent scheme to obtain the mechanical response in a polycrystalline system. The versatility of this method allows various applications in the study of problems involving large deformation, study of microstructure and its evolution, superplasticity, study of size effect in polycrystals and stochastic plasticity. The findings from the numerical solution are compared to the experimental results to validate the simulation results. We apply this framework to study the deformation mechanisms in magnesium alloys at moderate to fast strain rates and room temperature to 450 °C. Experiments for the same range of strain rates and temperatures were carried out to obtain the mechanical and material properties, and to compare with the numerical results. The numerical approach for magnesium is divided into four main steps; 1) room temperature unidirectional loading 2) high temperature deformation without grain boundary sliding 3) high temperature with grain boundary sliding mechanism 4) room temperature cyclic loading. We demonstrate the capability of our modeling approach in prediction of mechanical properties and texture evolution and discuss the improvement obtained by using the continuum dislocation dynamics method. The framework was also applied to nano-sized copper polycrystals to study the yield properties at small scales and address the observed yield scatter. By combining our developed method with a Monte Carlo simulation approach, the stochastic plasticity at small length scales was studied and the sources of the uncertainty in the polycrystalline structure are discussed. Our results suggest that the stochastic response is mainly because of a) stochastic plasticity due to dislocation substructure inside crystals and b) the microstructure of the polycrystalline material. The extent of the uncertainty is correlated to the "effective cell length" in the sampling procedure whether using simulations and experimental approach.

  4. Fracture toughness of materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burns, S.J.

    Crack tip dislocation emission in bulk specimens have been measured in single crystal specimens and the measurements are well below the accepted theoretical values for dislocation emission. The image forces on a dislocation due to the presence of a semi-infinite crack are used to calculate the potential energy of the dislocation around the crack. Expressions for the radial and tangential forces and for slip and climb forces have been found. Crack tip deformation in Mode I and Mode II fractures on both {l brace}100{r brace} and {l brace}110{r brace} planes have been observed in crystals of LiF. The deformation ismore » shown to nearly completely shield {l brace}110{r brace} plane cracks and prevent their propagation while deformation is less effective in shielding {l brace}100{r brace} plane cracks. The fracture toughness of MgO-partially-stabilized ZrO{sub 2} exhibiting transformation toughening been measured. The equations of linear elastic fracture mechanics have been self-consistantly formulated to include the residual displacement from the transformation wake. MgO single crystals were fatigued in plastic strain control at elevated temperatures. At high temperatures, dense bundles of dislocations were observed in transmission electron microscopy aligned perpendicular to the Burgers' vector directions. The thermodynamics of a superconducting second order phase transformation has been related to jumps in physical properties. A simple energy balance, without assuming an equation of state, is used to relate the rate of change of state variables to measurable physical properties. There are no preconceived assumptions about the superconducting mechanism.« less

  5. Lack of consensus on optimal acetabular cup orientation because of variation in assessment methods in total hip arthroplasty: a systematic review.

    PubMed

    Snijders, Thom E; Willemsen, Koen; van Gaalen, Steven M; Castelein, Rene M; Weinans, Harrie; de Gast, Arthur

    2018-05-01

    Dislocation is one of the main reasons for revision of total hip arthroplasty but dislocation rates have not changed in the past decades, compromising patients' well-being. Acetabular cup orientation plays a key role in implant stability and has been widely studied. This article investigates whether there is a consensus on optimal cup orientation, which is necessary when using a navigation system. A systematic search of the literature in the PubMed, Embase and Cochrane databases was performed (March 2017) to identify articles that investigated the direct relationship between cup orientation and dislocation, including a thorough evaluation of postoperative cup orientation assessment methods. Twenty eight relevant articles evaluating a direct relation between dislocation and cup orientation could not come to a consensus. The key reason is a lack of uniformity in the assessment of cup orientation. Cup orientation is assessed with different imaging modalities, different methodologies, different definitions for inclination and anteversion, several reference planes and distinct patient positions. All available studies lack uniformity in cup orientation assessment; therefore it is impossible to reach consensus on optimal cup orientation. Using navigation systems for placement of the cup is inevitably flawed when using different definitions in the preoperative planning, peroperative placement and postoperative evaluation. Further methodological development is required to assess cup orientation. Consequently, the postoperative assessment should be uniform, thus differentiating between anterior and posterior dislocation, use the same definitions for inclination and anteversion with the same reference plane and with the patient in the same position.

  6. A thermally activated dislocation-based constitutive flow model of nanostructured FCC metals involving microstructural evolution

    NASA Astrophysics Data System (ADS)

    Zhang, J. Y.; Li, J.; Wu, K.; Liu, G.; Sun, J.

    2017-03-01

    Due to their interface and nanoscale effects associated with structural peculiarities of nanostructured, face-centered-cubic (FCC) ultrafine-grained/nanocrystalline (UFG/NC) metals, in particular nanotwinned (NT) metals exhibit unexpected deformation behaviours fundamentally different from their coarse-grained (CG) counterparts. These internal boundaries, including grain boundaries and twin boundaries in UFG/NC metals, strongly interact with dislocations as deformation barriers to enhance the strength and strain rate sensitivity (SRS) of materials on the one hand, and play critical roles in their microstructural evolution as dislocation sources/sinks to sustain plastic deformation on the other. In this work, building on the findings of twin softening and (de)twinning-mediated grain growth/refinement in stretched free-standing NT-Ni foils, a constitutive model based on the thermally activated depinning process of dislocations residing in boundaries has been proposed to predict the steady-state grain size and simulate the plastic flow of NT-Ni, by considering the blocking effects of nanotwins on the absorption of dislocations emitted from boundaries. It is uncovered that the stress ratio (ηstress) of effective-to-internal stress can be taken as a signature to estimate the stability of microstructures during plastic deformation. This model not only reproduces well the plastic flow of the stretched NT-Ni foils as well as reported NT-Cu and the steady-state grain size, but also sheds light on the size-dependent SRS and failure of FCC UFG/NC metals. This theoretical framework offers the opportunity to tune the microstructures in the polycrystalline materials to synthesise high performance engineering materials with high strength and great ductility.

  7. Misfit dislocation patterns of Mg-Nb interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Youxing; Shao, Shuai; Liu, Xiang-Yang

    The role of heterogeneous interfaces in improving mechanical properties of polycrystalline aggregates and laminated composites has been well recognized with interface structure being of fundamental importance in designing composites containing multiple interfaces. In this paper, taking the Mg (hexagonal close-packed (hcp))/Nb (body-centered cubic (bcc)) interface as an example, we develop Mg-Nb interatomic potentials for predicting atomic configurations of Mg/Nb interfaces. We systematically characterize interface dislocations of Mg/Nb interfaces with Nishiyama-Wassermann (NW) and Kurdjumov-Sachs (KS) orientation relationships and propose a generalized procedure of characterizing interface structure by combining atomistic simulation and interface dislocation theory, which is applicable for not only hcp/bccmore » interfaces, but also other systems with complicated interface dislocation configurations.Here, in Mg/Nb, interface dislocation networks of two types of interfaces are significantly different although they originate from partial dislocations of similar character: the NW interface is composed of three sets of partial dislocations, while the KS interface is composed of four sets of interface dislocations - three sets of partial dislocations and one set of full dislocations that forms from the reaction of two close partial dislocations.« less

  8. Dislocation dynamics simulations of interactions between gliding dislocations and radiation induced prismatic loops in zirconium

    NASA Astrophysics Data System (ADS)

    Drouet, Julie; Dupuy, Laurent; Onimus, Fabien; Mompiou, Frédéric; Perusin, Simon; Ambard, Antoine

    2014-06-01

    The mechanical behavior of Pressurized Water Reactor fuel cladding tubes made of zirconium alloys is strongly affected by neutron irradiation due to the high density of radiation induced dislocation loops. In order to investigate the interaction mechanisms between gliding dislocations and loops in zirconium, a new nodal dislocation dynamics code, adapted to Hexagonal Close Packed metals, has been used. Various configurations have been systematically computed considering different glide planes, basal or prismatic, and different characters, edge or screw, for gliding dislocations with -type Burgers vectors. Simulations show various interaction mechanisms such as (i) absorption of a loop on an edge dislocation leading to the formation of a double super-jog, (ii) creation of a helical turn, on a screw dislocation, that acts as a strong pinning point or (iii) sweeping of a loop by a gliding dislocation. It is shown that the clearing of loops is more favorable when the dislocation glides in the basal plane than in the prismatic plane explaining the easy dislocation channeling in the basal plane observed after neutron irradiation by transmission electron microscopy.

  9. Three-dimensional formulation of dislocation climb

    NASA Astrophysics Data System (ADS)

    Gu, Yejun; Xiang, Yang; Quek, Siu Sin; Srolovitz, David J.

    2015-10-01

    We derive a Green's function formulation for the climb of curved dislocations and multiple dislocations in three-dimensions. In this new dislocation climb formulation, the dislocation climb velocity is determined from the Peach-Koehler force on dislocations through vacancy diffusion in a non-local manner. The long-range contribution to the dislocation climb velocity is associated with vacancy diffusion rather than from the climb component of the well-known, long-range elastic effects captured in the Peach-Koehler force. Both long-range effects are important in determining the climb velocity of dislocations. Analytical and numerical examples show that the widely used local climb formula, based on straight infinite dislocations, is not generally applicable, except for a small set of special cases. We also present a numerical discretization method of this Green's function formulation appropriate for implementation in discrete dislocation dynamics (DDD) simulations. In DDD implementations, the long-range Peach-Koehler force is calculated as is commonly done, then a linear system is solved for the climb velocity using these forces. This is also done within the same order of computational cost as existing discrete dislocation dynamics methods.

  10. Ultrasonic influence on evolution of disordered dislocation structures

    NASA Astrophysics Data System (ADS)

    Bachurin, D. V.; Murzaev, R. T.; Nazarov, A. A.

    2017-12-01

    Evolution of disordered dislocation structures under ultrasonic influence is studied in a model two-dimensional grain within the discrete-dislocation approach. Non-equilibrium grain boundary state is mimicked by a mesodefect located at the corners of the grain, stress field of which is described by that of a wedge junction disclination quadrupole. Significant rearrangement related to gliding of lattice dislocations towards the grain boundaries is found, which results in a noticeable reduction of internal stress fields and cancel of disclination quadrupole. The process of dislocation structure evolution passes through two stages: rapid and slow. The main dislocation rearrangement occurs during the first stage. Reduction of internal stress fields is associated with the number of dislocations entered into the grain boundaries. The change of misorientation angle due to lattice dislocations absorbed by the grain boundaries is evaluated. Amplitude of ultrasonic treatment significantly influences the relaxation of dislocation structure. Preliminary elastic relaxation of dislocation structure does not affect substantially the results of the following ultrasonic treatment. Substantial grain size dependence of relaxation of disordered dislocation systems is found. Simulation results are consistent with experimental data.

  11. Kneecap dislocation - aftercare

    MedlinePlus

    ... times a day. This will help reduce swelling. Ice your knee. Make an ice pack by putting ice cubes in a plastic bag and wrapping a ... For the first day of injury, apply the ice pack every hour for 10 to 15 minutes. ...

  12. Absence of dynamic strain aging in an additively manufactured nickel-base superalloy.

    PubMed

    Beese, Allison M; Wang, Zhuqing; Stoica, Alexandru D; Ma, Dong

    2018-05-25

    Dynamic strain aging (DSA), observed macroscopically as serrated plastic flow, has long been seen in nickel-base superalloys when plastically deformed at elevated temperatures. Here we report the absence of DSA in Inconel 625 made by additive manufacturing (AM) at temperatures and strain rates where DSA is present in its conventionally processed counterpart. This absence is attributed to the unique AM microstructure of finely dispersed secondary phases (carbides, N-rich phases, and Laves phase) and textured grains. Based on experimental observations, we propose a dislocation-arrest model to elucidate the criterion for DSA to occur or to be absent as a competition between dislocation pipe diffusion and carbide-carbon reactions. With in situ neutron diffraction studies of lattice strain evolution, our findings provide a new perspective for mesoscale understanding of dislocation-solute interactions and their impact on work-hardening behaviors in high-temperature alloys, and have important implications for tailoring thermomechanical properties by microstructure control via AM.

  13. Shock compression of [001] single crystal silicon

    DOE PAGES

    Zhao, S.; Remington, B.; Hahn, E. N.; ...

    2016-03-14

    Silicon is ubiquitous in our advanced technological society, yet our current understanding of change to its mechanical response at extreme pressures and strain-rates is far from complete. This is due to its brittleness, making recovery experiments difficult. High-power, short-duration, laser-driven, shock compression and recovery experiments on [001] silicon (using impedance-matched momentum traps) unveiled remarkable structural changes observed by transmission electron microscopy. As laser energy increases, corresponding to an increase in peak shock pressure, the following plastic responses are are observed: surface cleavage along {111} planes, dislocations and stacking faults; bands of amorphized material initially forming on crystallographic orientations consistent withmore » dislocation slip; and coarse regions of amorphized material. Molecular dynamics simulations approach equivalent length and time scales to laser experiments and reveal the evolution of shock-induced partial dislocations and their crucial role in the preliminary stages of amorphization. Furthermore, application of coupled hydrostatic and shear stresses produce amorphization below the hydrostatically determined critical melting pressure under dynamic shock compression.« less

  14. Flow stress model in metal cutting

    NASA Technical Reports Server (NTRS)

    Black, J. T.

    1978-01-01

    A model for the plastic deformation that occurs in metal cutting, based on dislocation mechanics, is presented. The model explains the fundamental deformation structure that develops during machining and is based on the well known Cottrell-Stokes Law, wherein the flow stress is partitioned into two parts; an athermal part which occurs in the shear fronts (or shear bands); and a thermal part which occurs in the lamella regions. The deformation envokes the presence of a cellular dislocation distribution which always exists in the material ahead of the shear process. This 'alien' dislocation distribution either exists in the metal prior to cutting or is produced by the compressive stress field which operates in front of the shear process. The magnitude of the flow stress and direction of the shear are shown to be correlated to the stacking fault energy of the metal being cut. The model is tested with respect to energy consumption rates and found to be consistent with observed values.

  15. Interacting effects of strengthening and twin boundary migration in nanotwinned materials

    NASA Astrophysics Data System (ADS)

    Joshi, Kartikey; Joshi, Shailendra P.

    Twin boundaries play a governing role in the mechanical characteristics of nanotwinned materials. They act as yield strengthening agents by offering resistance to non-coplanar dislocation slip. Twin boundary migration may cause yield softening while also enhancing the strain hardening response. In this work, we investigate the interaction between strengthening and twin boundary migration mechanisms by developing a length-scale dependent crystal plasticity framework for face-centered-cubic nanotwinned materials. The crystal plasticity model incorporates strengthening mechanisms due to dislocation pile-up via slip and slip-rate gradients and twin boundary migration via source-based twin partial nucleation and lattice dislocation-twin boundary interaction. The coupled effect of the load orientation and initial twin size on the speed of twin boundary is discussed and an expression for the same is proposed in terms of relevant material parameters. The efficacy of finite element simulations and the analytical expression in predicting evolution of nanotwinned microstructures comprising size and spatial distributions of twins is demonstrated.

  16. Shock compression of [001] single crystal silicon

    NASA Astrophysics Data System (ADS)

    Zhao, S.; Hahn, E. N.; Kad, B.; Remington, B. A.; Bringa, E. M.; Meyers, M. A.

    2016-05-01

    Silicon is ubiquitous in our advanced technological society, yet our current understanding of change to its mechanical response at extreme pressures and strain-rates is far from complete. This is due to its brittleness, making recovery experiments difficult. High-power, short-duration, laser-driven, shock compression and recovery experiments on [001] silicon (using impedance-matched momentum traps) unveiled remarkable structural changes observed by transmission electron microscopy. As laser energy increases, corresponding to an increase in peak shock pressure, the following plastic responses are are observed: surface cleavage along {111} planes, dislocations and stacking faults; bands of amorphized material initially forming on crystallographic orientations consistent with dislocation slip; and coarse regions of amorphized material. Molecular dynamics simulations approach equivalent length and time scales to laser experiments and reveal the evolution of shock-induced partial dislocations and their crucial role in the preliminary stages of amorphization. Application of coupled hydrostatic and shear stresses produce amorphization below the hydrostatically determined critical melting pressure under dynamic shock compression.

  17. Multiscale Modeling of Structurally-Graded Materials Using Discrete Dislocation Plasticity Models and Continuum Crystal Plasticity Models

    NASA Technical Reports Server (NTRS)

    Saether, Erik; Hochhalter, Jacob D.; Glaessgen, Edward H.

    2012-01-01

    A multiscale modeling methodology that combines the predictive capability of discrete dislocation plasticity and the computational efficiency of continuum crystal plasticity is developed. Single crystal configurations of different grain sizes modeled with periodic boundary conditions are analyzed using discrete dislocation plasticity (DD) to obtain grain size-dependent stress-strain predictions. These relationships are mapped into crystal plasticity parameters to develop a multiscale DD/CP model for continuum level simulations. A polycrystal model of a structurally-graded microstructure is developed, analyzed and used as a benchmark for comparison between the multiscale DD/CP model and the DD predictions. The multiscale DD/CP model follows the DD predictions closely up to an initial peak stress and then follows a strain hardening path that is parallel but somewhat offset from the DD predictions. The difference is believed to be from a combination of the strain rate in the DD simulation and the inability of the DD/CP model to represent non-monotonic material response.

  18. [Current status and expectations in the surgical treatment of recurrent lateral patellar dislocation].

    PubMed

    Zhao, Zhi-Dong; Li, Peng-Cui; Wei, Xiao-Chun

    2017-11-25

    Up to now, surgical treatment of recurrent lateral patellar dislocation mainly includes: medial patellofemoral ligament reconstruction, tibial tubercle osteotomy, trochleoplasty, lateral retinacular release, derotation osteotomy and so on . Clinical reports show that: the use of a single or combined with several methods have achieved ideal short to mid-term clinical outcomes. However, there is no consolidate criterion concerning the choices of different kinds of surgical ways for the treatment of individual recurrent lateral patellar dislocation. Meanwhile, with the wide use of MPFL reconstruction and other surgical options, there are more and more complications and failures that are worthy and necessary for us to pay attention to, even though its high success rate. The aim of this article is to make a systematic review of the application status of different surgical methods, collecting the positive results we have achieved, illuminating application keys of surgical techniques, guiding patient-specific therapy more precisely. Copyright© 2017 by the China Journal of Orthopaedics and Traumatology Press.

  19. Surface recrystallization theory of the wear of copper in liquid methane

    NASA Technical Reports Server (NTRS)

    Bill, R. C.; Wisander, D. W.

    1974-01-01

    Copper was subjected to sliding against 440C in liquid methane. The normal load range was from 1/4 to 2 kilograms, and the sliding velocity range was from 3.1 to 25 meters per second. Over this range of experimental parameters, the wear rate of the copper rider was found to be proportional to the sliding velocity squared and to the normal load. Transmission electron microscopy was used to study the dislocation structure in the copper very near the wear scar surface. It was found that near the wear scar surface, the microstructure was characterized by a fine-cell recrystallized zone in which individual dislocations could be distinguished in the cell walls. The interiors of the cells, about 0.5 micrometer in diameter, were nearly dislocation free. Below the recrystallized layer was a zone that was intensely cold worked by the friction process. With increasing depth, this intensely cold worked zone gradually became indistinguishable from the partially cold worked bulk of the copper, representative of the initial condition of the material.

  20. Hydrogen diffusion in the elastic fields of dislocations in iron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sivak, A. B., E-mail: Sivak-AB@nrcki.ru; Sivak, P. A.; Romanov, V. A.

    2016-12-15

    The effect of dislocation stress fields on the sink efficiency thereof is studied for hydrogen interstitial atoms at temperatures of 293 and 600 K and at a dislocation density of 3 × 10{sup 14} m{sup –2} in bcc iron crystal. Rectilinear full screw and edge dislocations in basic slip systems 〈111〉(110), 〈111〉(112), 〈100〉(100), and 〈100〉(110) are considered. Diffusion of defects is simulated by means of the object kinetic Monte Carlo method. The energy of interaction between defects and dislocations is calculated using the anisotropic theory of elasticity. The elastic fields of dislocations result in a less than 25% change ofmore » the sink efficiency as compared to the noninteracting linear sink efficiency at a room temperature. The elastic fields of edge dislocations increase the dislocation sink efficiency, whereas the elastic fields of screw dislocations either decrease this parameter (in the case of dislocations with the Burgers vector being 1/2〈111〉) or do not affect it (in the case of dislocations with the Burgers vector being 〈100〉). At temperatures above 600 K, the dislocations affect the behavior of hydrogen in bcc iron mainly owing to a high binding energy between the hydrogen atom and dislocation cores.« less

  1. Initial dislocation structure and dynamic dislocation multiplication in Mo single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsiung, L M; Lassila, D H

    Initial dislocation structure in annealed high-purity Mo single crystals and deformation substructure in a crystal subjected to 1% compression have been examined and studied in order to investigate dislocation multiplication mechanisms in the early stages of plastic deformation. The initial dislocation density is in a range of 10{sup 6} {approx} 10{sup 7} cm{sup -2}, and the dislocation structure is found to contain many grown-in superjogs along dislocation lines. The dislocation density increases to a range of 10{sup 8} {approx} 10{sup 9} cm{sup -2}, and the average jog height is also found to increase after compressing for a total strain ofmore » 1%. It is proposed that the preexisting jogged screw dislocations can act as (multiple) dislocation multiplication sources when deformed under quasi-static conditions. Both the jog height and length of link segment (between jogs) can increase by stress-induced jog coalescence, which takes place via the lateral migration (drift) of superjogs driven by unbalanced line-tension partials acting on link segments of unequal lengths. Applied shear stress begins to push each link segment to precede dislocation multiplication when link length and jog height are greater than critical lengths. This dynamic dislocation multiplication source is subsequently verified by direct simulations of dislocation dynamics under stress to be crucial in the early stages of plastic deformation in Mo single crystals.« less

  2. Dislocation density evolution in the process of high-temperature treatment and creep of EK-181 steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vershinina, Tatyana, E-mail: vershinina@bsu.edu.ru

    2017-03-15

    X-ray diffraction has been used to study the dislocation structure in ferrite-martensite high-chromium steel EK-181 in the states after heat treatment and high-temperature creep. The influence of heat treatment and stress on evolution of lath martensite structure was investigated by and electron back-scattered diffraction. The effect of nitrogen content on the total dislocation density, fraction of edge and screw dislocation segments are analyzed. - Highlights: •Fraction of edge dislocation in quenched state depends on nitrogen concentration. •Nitrogen affects the character of dislocation structure evolution during annealing. •Edge dislocations fraction influences on dislocation density after aging and creep.

  3. Supersonic Dislocation Bursts in Silicon

    DOE PAGES

    Hahn, E. N.; Zhao, S.; Bringa, E. M.; ...

    2016-06-06

    Dislocations are the primary agents of permanent deformation in crystalline solids. Since the theoretical prediction of supersonic dislocations over half a century ago, there is a dearth of experimental evidence supporting their existence. Here we use non-equilibrium molecular dynamics simulations of shocked silicon to reveal transient supersonic partial dislocation motion at approximately 15 km/s, faster than any previous in-silico observation. Homogeneous dislocation nucleation occurs near the shock front and supersonic dislocation motion lasts just fractions of picoseconds before the dislocations catch the shock front and decelerate back to the elastic wave speed. Applying a modified analytical equation for dislocation evolutionmore » we successfully predict a dislocation density of 1.5 x 10(12) cm(-2) within the shocked volume, in agreement with the present simulations and realistic in regards to prior and on-going recovery experiments in silicon.« less

  4. Supersonic Dislocation Bursts in Silicon

    PubMed Central

    Hahn, E. N.; Zhao, S.; Bringa, E. M.; Meyers, M. A.

    2016-01-01

    Dislocations are the primary agents of permanent deformation in crystalline solids. Since the theoretical prediction of supersonic dislocations over half a century ago, there is a dearth of experimental evidence supporting their existence. Here we use non-equilibrium molecular dynamics simulations of shocked silicon to reveal transient supersonic partial dislocation motion at approximately 15 km/s, faster than any previous in-silico observation. Homogeneous dislocation nucleation occurs near the shock front and supersonic dislocation motion lasts just fractions of picoseconds before the dislocations catch the shock front and decelerate back to the elastic wave speed. Applying a modified analytical equation for dislocation evolution we successfully predict a dislocation density of 1.5 × 1012 cm−2 within the shocked volume, in agreement with the present simulations and realistic in regards to prior and on-going recovery experiments in silicon. PMID:27264746

  5. Supersonic Dislocation Bursts in Silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahn, E. N.; Zhao, S.; Bringa, E. M.

    Dislocations are the primary agents of permanent deformation in crystalline solids. Since the theoretical prediction of supersonic dislocations over half a century ago, there is a dearth of experimental evidence supporting their existence. Here we use non-equilibrium molecular dynamics simulations of shocked silicon to reveal transient supersonic partial dislocation motion at approximately 15 km/s, faster than any previous in-silico observation. Homogeneous dislocation nucleation occurs near the shock front and supersonic dislocation motion lasts just fractions of picoseconds before the dislocations catch the shock front and decelerate back to the elastic wave speed. Applying a modified analytical equation for dislocation evolutionmore » we successfully predict a dislocation density of 1.5 x 10(12) cm(-2) within the shocked volume, in agreement with the present simulations and realistic in regards to prior and on-going recovery experiments in silicon.« less

  6. A multi-scale model of dislocation plasticity in α-Fe: Incorporating temperature, strain rate and non-Schmid effects

    DOE PAGES

    Lim, H.; Hale, L. M.; Zimmerman, J. A.; ...

    2015-01-05

    In this study, we develop an atomistically informed crystal plasticity finite element (CP-FE) model for body-centered-cubic (BCC) α-Fe that incorporates non-Schmid stress dependent slip with temperature and strain rate effects. Based on recent insights obtained from atomistic simulations, we propose a new constitutive model that combines a generalized non-Schmid yield law with aspects from a line tension (LT) model for describing activation enthalpy required for the motion of dislocation kinks. Atomistic calculations are conducted to quantify the non-Schmid effects while both experimental data and atomistic simulations are used to assess the temperature and strain rate effects. The parameterized constitutive equationmore » is implemented into a BCC CP-FE model to simulate plastic deformation of single and polycrystalline Fe which is compared with experimental data from the literature. This direct comparison demonstrates that the atomistically informed model accurately captures the effects of crystal orientation, temperature and strain rate on the flow behavior of siangle crystal Fe. Furthermore, our proposed CP-FE model exhibits temperature and strain rate dependent flow and yield surfaces in polycrystalline Fe that deviate from conventional CP-FE models based on Schmid's law.« less

  7. Application of a Multiscale Model of Tantalum Deformation at Megabar Pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cavallo, R M; Park, H; Barton, N R

    A new multiscale simulation tool has been developed to model the strength of tantalum under high-pressure dynamic compression. This new model combines simulations at multiple length scales to explain macroscopic properties of materials. Previously known continuum models of material response under load have built upon a mixture of theoretical physics and experimental phenomenology. Experimental data, typically measured at static pressures, are used as a means of calibration to construct models that parameterize the material properties; e.g., yield stress, work hardening, strain-rate dependence, etc. The pressure dependence for most models enters through the shear modulus, which is used to scale themore » flow stress. When these models are applied to data taken far outside the calibrated regions of phase space (e.g., strain rate or pressure) they often diverge in their predicted behavior of material deformation. The new multiscale model, developed at Lawrence Livermore National Laboratory, starts with interatomic quantum mechanical potential and is based on the motion and multiplication of dislocations. The basis for the macroscale model is plastic deformation by phonon drag and thermally activated dislocation motion and strain hardening resulting from elastic interactions among dislocations. The dislocation density, {rho}, and dislocation velocity, {nu}, are connected to the plastic strain rate {var_epsilon}{sup p}, via Orowan's equation: {var_epsilon}{sup p} = {rho}b{nu}/M, where b is the Burger's vector, the shear magnitude associated with a dislocation, and M is the Taylor factor, which accounts for geometric effects in how slip systems accommodate the deformation. The evolution of the dislocation density and velocity is carried out in the continuum model by parameterized fits to smaller scale simulations, each informed by calculations on smaller length scales down to atomistic dimensions. We apply this new model for tantalum to two sets of experiments and compare the results with more traditional models. The experiments are based on the Barnes's technique in which a low density material loads against a metal surface containing a pre-imposed rippled pattern. The loaded sample is Rayleigh-Taylor unstable and the rippled amplitudes grow with time. The rate of growth differs depending on the material strength, with stronger materials growing less, even to the point of saturation. One set of experiments was conducted at the pRad facility at LANSCE at Los Alamos National Laboratory in 2007 using high-explosive (HE) driven tantalum samples. The other set of experiments was done at the Omega laser at the Laboratory for Laser Energetics at the University of Rochester, which used high-powered lasers to create plasmas to dynamically compress a rippled tantalum sample. The two techniques provide data at different pressures and strain rates: The HE technique drives the samples at around 2 x 10{sup 5} s{sup -1} strain rate and pressures near 500 kbar, while the laser technique hits strain rates around 2 x 10{sup 7} s{sup -1} and pressures close to 1.4 Mbar. The most recent laser experiments were conducted in February 2010 and they present a sample of the data in Figure 1, which shows a face-on radiograph at a time of 65 ns after the laser was turned on. From this radiograph, they measure the growth factor which is defined to be the change in amplitude of the ripples relative to their initial amplitude. Figure 2 shows the resulting growth factors along with various model fits. The error bars are typically 20-25%. Only the multiscale model predictions match the experimental measurements. The growth factors via the HE technique are determined from multiple side-on proton radiography images and thus provide a full growth curve per single experiment. A sample growth curve is shown in Figure 3, also with various model fits and error bars estimated at 25%. It should be noted that by 7.5 {micro}s the growth in this sample has exceeded the initial target thickness indicating that localizations not captured in the overall simulation have probably become dominant, i.e., the target is likely breaking up. Application of the multiscale dislocation dynamics model as implemented in the Ares hydrodynamics code shows excellent agreement with both the pRad and Omega data. They also compare the Steinberg-Lund (SL), Preston-Tonks-Wallace (PTW), and Stainberg-Guinan (SG) models with the data. The PTW and SG models provide good fits to the pRad data but over-predict the growth (underestimate the strength) on the laser platform. The SL model under-predicts the pRad data and over-predicts the Omega data. The excellent agreement of the multiscale model with the data over two orders of magnitude in strain rate and more than a factor of two in pressure lends credibility to the model. They continue to stress the model by conducting experiments at 5 Mbars and beyond at the National Ignition Facility at LLNL in the near future.« less

  8. Atomistic calculations of dislocation core energy in aluminium

    DOE PAGES

    Zhou, X. W.; Sills, R. B.; Ward, D. K.; ...

    2017-02-16

    A robust molecular dynamics simulation method for calculating dislocation core energies has been developed. This method has unique advantages: it does not require artificial boundary conditions, is applicable for mixed dislocations, and can yield highly converged results regardless of the atomistic system size. Utilizing a high-fidelity bond order potential, we have applied this method in aluminium to calculate the dislocation core energy as a function of the angle β between the dislocation line and Burgers vector. These calculations show that, for the face-centred-cubic aluminium explored, the dislocation core energy follows the same functional dependence on β as the dislocation elasticmore » energy: Ec = A·sin 2β + B·cos 2β, and this dependence is independent of temperature between 100 and 300 K. By further analysing the energetics of an extended dislocation core, we elucidate the relationship between the core energy and radius of a perfect versus extended dislocation. With our methodology, the dislocation core energy can be accurately accounted for in models of plastic deformation.« less

  9. Atomistic calculations of dislocation core energy in aluminium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, X. W.; Sills, R. B.; Ward, D. K.

    A robust molecular dynamics simulation method for calculating dislocation core energies has been developed. This method has unique advantages: it does not require artificial boundary conditions, is applicable for mixed dislocations, and can yield highly converged results regardless of the atomistic system size. Utilizing a high-fidelity bond order potential, we have applied this method in aluminium to calculate the dislocation core energy as a function of the angle β between the dislocation line and Burgers vector. These calculations show that, for the face-centred-cubic aluminium explored, the dislocation core energy follows the same functional dependence on β as the dislocation elasticmore » energy: Ec = A·sin 2β + B·cos 2β, and this dependence is independent of temperature between 100 and 300 K. By further analysing the energetics of an extended dislocation core, we elucidate the relationship between the core energy and radius of a perfect versus extended dislocation. With our methodology, the dislocation core energy can be accurately accounted for in models of plastic deformation.« less

  10. Stress and Microstructure Evolution during Transient Creep of Olivine at 1000 and 1200 °C

    NASA Astrophysics Data System (ADS)

    Thieme, M.; Demouchy, S. A.; Mainprice, D.; Barou, F.; Cordier, P.

    2017-12-01

    As the major constituent of Earth's upper mantle, olivine largely determines its physical properties. In the past, deformation experiments were usually run until steady state or to a common value of finite strain. Additionally, few studies were performed on polycrystalline aggregates at low to intermediate temperatures (<1100 °C). For the first time, we study the mechanical response and correlated microstructure as a function of incremental finite strains. Deformation experiments were conducted in uniaxial compression in an internally heated gas-medium deformation apparatus at temperatures of 1000 and 1200 °C, at strain rates of 10-5s-1 and under 300 MPa of confining pressure. Sample volumes are large with > 1.2 cm3. Finite strains range from 0.1 to 8.6 % and corresponding differential stresses range from 71 to 1073 MPa. Deformed samples were characterized by high resolution electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). EBSD maps with step sizes as low as 0.05 µm were aquired for the first time without introducing artifacts. The grain size ranges from 1.8 to 2.3 µm, with no significant change in between samples. Likewise, the texture and texture strength (J- and BA-index), grain shape and aspect ratio, density of geometrically necessary dislocations, grain orientation spread, subgrain boundary spacing and misorientation do not change significantly as a function of finite strain or temperature. The dislocation distribution is highly heterogeneous, with some grains remaining dislocation free. TEM shows grain boundaries acting as low activity sites for dislocation nucleation. Even during early mechanical steady state, plasticity seems not to affect grains in unfavorable orientations. We find no confirmation of dislocation entanglements or increasing dislocation densities being the reason for strain hardening during transient creep. This suggests other, yet not understood, mechanisms affecting the strength of deformed olivine. Futhermore, we will map disclinations (rotational topological defects) to estimate their contribution to the transient deformation regime.

  11. Comparison of clinical outcomes of iris fixation and scleral fixation as treatment for intraocular lens dislocation.

    PubMed

    Kim, Kyeong Hwan; Kim, Wan Soo

    2015-09-01

    To compare the efficacy and safety of iris fixation with scleral fixation in surgical repositioning of dislocated intraocular lenses (IOLs). Retrospective, consecutive, comparative interventional case series. setting: Referral hospital. Seventy-eight consecutive patients who underwent surgical repositioning of dislocated intraocular lenses using suturing to the sclera or iris. Forty-four eyes of 44 patients underwent scleral fixation and 35 eyes of 34 patients underwent iris fixation of dislocated intraocular lenses. Visual acuity, refractive stability, operation time, and perioperative complications, including recurrence of IOL dislocation. Corrected distance visual acuity (CDVA) improved significantly 1 month postoperatively in both groups (P < .01 each), and remained stable for 12 months. One week postoperatively, however, CDVA improved significantly in the scleral fixation (P = .040) but not in the iris fixation (P = .058) group. The amount of refractive error significantly diminished 1 day after surgery (P = .028 in the scleral fixation and P = .046 in the iris fixation group). For the astigmatic components, Jackson crossed cylinders equivalent to conventional cylinders of positive power at axes of 0 degrees (J0) and 45 degrees (J45), J45 differed significantly in the scleral fixation and iris fixation groups (P = .009), whereas J0 was similar (P > .05). Operation time was significantly shorter (P = .0007), while immediate postoperative inflammation was significantly more severe (P = .001), in the iris fixation than in the scleral fixation group. Recurrence rates were similar (P > .05), but the mean time to recurrence was significantly shorter in the iris fixation than in the scleral fixation group (P = .031). Iris fixation and scleral fixation techniques had similar efficacy in the repositioning of dislocated intraocular lenses. Although operation time was shorter for iris fixation, it had several disadvantages, including induced astigmatism, immediate postoperative inflammation, earlier recurrence, and less stable refraction. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Dislocations

    MedlinePlus

    ... or a blow, sometimes from playing a contact sport. You can dislocate your ankles, knees, shoulders, hips, ... to dislocate it again. Wearing protective gear during sports may help prevent dislocations.

  13. Glide dislocation nucleation from dislocation nodes at semi-coherent {111} Cu–Ni interfaces

    DOE PAGES

    Shao, Shuai; Wang, Jian; Beyerlein, Irene J.; ...

    2015-07-23

    Using atomistic simulations and dislocation theory on a model system of semi-coherent {1 1 1} interfaces, we show that misfit dislocation nodes adopt multiple atomic arrangements corresponding to the creation and redistribution of excess volume at the nodes. We identified four distinctive node structures: volume-smeared nodes with (i) spiral or (ii) straight dislocation patterns, and volume-condensed nodes with (iii) triangular or (iv) hexagonal dislocation patterns. Volume-smeared nodes contain interfacial dislocations lying in the Cu–Ni interface but volume-condensed nodes contain two sets of interfacial dislocations in the two adjacent interfaces and jogs across the atomic layer between the two adjacent interfaces.more » Finally, under biaxial tension/compression applied parallel to the interface, we show that the nucleation of lattice dislocations is preferred at the nodes and is correlated with the reduction of excess volume at the nodes.« less

  14. The effect of isolated dislocations on substrate and device properties in low-dislocation czochralski GaAs

    NASA Astrophysics Data System (ADS)

    Hunter, A. T.; Kimura, H.; Olsen, H. M.; Winston, H. V.

    1986-07-01

    Czochralski GaAs grown with In incorporated into the melt has large regions with fewer than 100 cm-2 dislocations. We have examined the effect of these dislocations on substrate and device properties. Infrared transmission images reveal dark filaments of high EL2 concentration a few tens of microns in diameter surrounding dislocations, Cathodo and photoluminescence images show orders of magnitude contrast in band-edge luminescence intensity near dislocations. Single dislocations appear to be surrounded by bright rings ˜200 μm in diameter in luminescence images, with dark spots 50 to 75 μm across centered on the dislocation. More complex luminescence structures with larger dark regions (˜150 μ across) and central bright spots are centered on small dislocation clusters. Differences in lifetime of photogenerated electrons or holes are the most likely cause of the luminescence contrast. Anneals typical of our post-implant processing substantially lower the luminescence contrast, suggesting the defect lowering the lifetime is removed by annealing. This may partially explain why we do not observe any effect of dislocation proximity on the properties of devices made in the material, in spite of the enormous luminescence contrast observed near dislocations.

  15. Nonplanar core structure of the screw dislocations in tantalum from the improved Peierls-Nabarro theory

    NASA Astrophysics Data System (ADS)

    Hu, Xiangsheng; Wang, Shaofeng

    2018-02-01

    The extended structure of ? screw dislocation in Ta has been studied theoretically using the improved Peierls-Nabarro model combined with the first principles calculation. An instructive way to derive the fundamental equation for dislocations with the nonplanar structure is presented. The full ?-surface of ? plane in tantalum is evaluated from the first principles. In order to compare the energy of the screw dislocation with different structures, the structure parameter is introduced to describe the core configuration. Each kind of screw dislocation is described by an overall-shape component and a core component. Far from the dislocation centre, the asymptotic behaviour of dislocation is uniquely controlled by the overall-shape component. Near the dislocation centre, the structure detail is described by the core component. The dislocation energy is explicitly plotted as a function of the core parameter for the nonplanar dislocation as well as for the planar dislocation. It is found that in the physical regime of the core parameter, the sixfold nonplanar structure always has the lowest energy. Our result clearly confirms that the sixfold nonplanar structure is the most stable. Furthermore, the pressure effect on the dislocation structure is explored up to 100 GPa. The stability of the sixfold nonplanar structure is not changed by the applied pressure. The equilibrium structure and the related stress field are calculated, and a possible mechanism of the dislocation movement is discussed briefly based on the structure deformation caused by the external stress.

  16. Estimation of dislocations density and distribution of dislocations during ECAP-Conform process

    NASA Astrophysics Data System (ADS)

    Derakhshan, Jaber Fakhimi; Parsa, Mohammad Habibi; Ayati, Vahid; Jafarian, Hamidreza

    2018-01-01

    Dislocation density of coarse grain aluminum AA1100 alloy (140 µm) that was severely deformed by Equal Channel Angular Pressing-Conform (ECAP-Conform) are studied at various stages of the process by electron backscattering diffraction (EBSD) method. The geometrically necessary dislocations (GNDs) density and statistically stored dislocations (SSDs) densities were estimate. Then the total dislocations densities are calculated and the dislocation distributions are presented as the contour maps. Estimated average dislocations density for annealed of about 2×1012 m-2 increases to 4×1013 m-2 at the middle of the groove (135° from the entrance), and they reach to 6.4×1013 m-2 at the end of groove just before ECAP region. Calculated average dislocations density for one pass severely deformed Al sample reached to 6.2×1014 m-2. At micrometer scale the behavior of metals especially mechanical properties largely depend on the dislocation density and dislocation distribution. So, yield stresses at different conditions were estimated based on the calculated dislocation densities. Then estimated yield stresses were compared with experimental results and good agreements were found. Although grain size of material did not clearly change, yield stress shown intensive increase due to the development of cell structure. A considerable increase in dislocations density in this process is a good justification for forming subgrains and cell structures during process which it can be reason of increasing in yield stress.

  17. [New varieties of lateral metatarsophalangeal dislocations of the great toe].

    PubMed

    Bousselmame, N; Rachid, K; Lazrak, K; Galuia, F; Taobane, H; Moulay, I

    2001-04-01

    We report seven cases of traumatic dislocation of the great toe, detailing the anatomy, the mechanism of injury and the radiographic diagnosis. We propose an additional classification based on three hereto unreported cases. Between october 1994 and october 1997, we treated seven patients with traumatic dislocation of the first metatarso-phalangeal joint of the great toe. There were six men and one woman, mean age 35 years (range 24 - 44 years). Dislocation was caused by motor vehicle accidents in four cases and by falls in three. Diagnosis was made on anteroposterior, lateral and medial oblique radiographs. According to Jahss' classification, there was one type I and three type IIB dislocations. There was also one open lateral dislocation and two dorsomedial dislocations. Only these dorsomedial dislocations required open reduction, done via a dorsal approach. Mean follow-up was 17.5 months (range 9 - 24 months) in six cases. One patient was lost to follow-up. The outcome was good in six cases and poor in one (dorsomedial dislocation). Dislocation of the first metatarso-phalangeal joint of the great toe is an uncommon injury. In 1980, Jahss reported two cases and reviewed three others described in the literature. He proposed three types of dislocation based on the feasibility of closed reduction (type I, II and IIB). In 1991, Copeland and Kanat reported a unique case in which there was an association of IIA and IIB lesions. They proposed an addition to the classification (type IIC). In 1994, Garcia Mata et al. reported another case which had not been described by Jahss and proposed another addition. All dislocations reported to date have been sagittal dislocations. Pathological alteration of the collateral ligaments has not been previously reported. In our experience, we have seen one case of open lateral dislocation due, at surgical exploration, to medial ligament rupture and two cases of dorsomedial dislocation due, at surgical exploration, to lateral ligament rupture. We propose another additional classification with pure lateral dislocation (type III) and dorso-lateral dislocation (type IL or IIL+), which are related to the formerly described variants.

  18. Avalanche diode having reduced dark current and method for its manufacture

    DOEpatents

    Davids, Paul; Starbuck, Andrew Lee; Pomerene, Andrew T. S.

    2017-08-29

    An avalanche diode includes an absorption region in a germanium body epitaxially grown on a silicon body including a multiplication region. Aspect-ratio trapping is used to suppress dislocation growth in the vicinity of the absorption region.

  19. Confirmation of the safety and accuracy of physical examination in the evaluation of knee dislocation for injury of the popliteal artery: a prospective study.

    PubMed

    Miranda, Fernando E; Dennis, James W; Veldenz, Henry C; Dovgan, Peter S; Frykberg, Eric R

    2002-02-01

    Knee dislocation, which poses a significant risk for injury of the popliteal artery, prompts many surgeons to evaluate these patients with arteriography routinely. Our hypothesis was that physical examination alone (without arteriography) accurately confirms or excludes surgically significant vascular injuries associated with knee dislocation. All patients diagnosed with a knee dislocation by an attending orthopedic surgeon between January 1990 and January 2000 were prospectively managed by protocol at our Level I trauma center according to their physical examination. Those with hard signs (active hemorrhage, expanding hematoma, absent pulse, distal ischemia, bruit/thrill) underwent arteriography followed immediately by surgical repair if indicated. Patients with no hard signs (negative physical examination) were admitted for 23 hours, underwent serial physical examination, and then followed as outpatients. There were 35 knee dislocations in 35 patients during this 10-year period. The average age was 31 years; 18 dislocations were on the right knee and 17 were on the left. Two patients died from closed head injuries and multisystem trauma. Eight patients were found to have hard signs (positive physical examination) either at presentation (six patients) or during their hospitalization after reduction of their dislocation (two patients). All eight patients demonstrated a loss of pulses only. Six of these patients showed occlusion of the popliteal artery on arteriography and underwent surgical repair without complication (five vein grafts, one primary repair), one demonstrated spasm of the popliteal artery, and one showed a normal artery that required no treatment. None of the 27 patients with negative physical examination during their hospitalization ever developed limb ischemia, needed an operation for vascular injury, or experienced limb loss. Sixteen patients were available for follow-up (46%). Twelve patients with negative physical examination (44%) were contacted (mean, 13 months; range, 2-35 months), and four of the eight patients with positive physical examination (50%) and surgical repair were contacted (mean, 19 months; range, 6-49 months). None of the patients in either group developed any vascular-related symptoms or suffered from a vascular repair complication over the follow-up interval. This limited series suggests that the presence or absence of an injury of the popliteal artery after knee dislocation can be safely and reliably predicted, with a 94.3% positive predictive value and 100% negative predictive value. Arteriography appears to be unnecessary when physical examination is negative but may avert negative vascular exploration when physical examination is positive. This approach substantially reduces cost and resource use without adverse impact on the patient.

  20. A patient-specific model of the biomechanics of hip reduction for neonatal Developmental Dysplasia of the Hip: Investigation of strategies for low to severe grades of Developmental Dysplasia of the Hip.

    PubMed

    Huayamave, Victor; Rose, Christopher; Serra, Sheila; Jones, Brendan; Divo, Eduardo; Moslehy, Faissal; Kassab, Alain J; Price, Charles T

    2015-07-16

    A physics-based computational model of neonatal Developmental Dysplasia of the Hip (DDH) following treatment with the Pavlik Harness (PV) was developed to obtain muscle force contribution in order to elucidate biomechanical factors influencing the reduction of dislocated hips. Clinical observation suggests that reduction occurs in deep sleep involving passive muscle action. Consequently, a set of five (5) adductor muscles were identified as mediators of reduction using the PV. A Fung/Hill-type model was used to characterize muscle response. Four grades (1-4) of dislocation were considered, with one (1) being a low subluxation and four (4) a severe dislocation. A three-dimensional model of the pelvis-femur lower limb of a representative 10 week-old female was generated based on CT-scans with the aid of anthropomorphic scaling of anatomical landmarks. The model was calibrated to achieve equilibrium at 90° flexion and 80° abduction. The hip was computationally dislocated according to the grade under investigation, the femur was restrained to move in an envelope consistent with PV restraints, and the dynamic response under passive muscle action and the effect of gravity was resolved. Model results with an anteversion angle of 50° show successful reduction Grades 1-3, while Grade 4 failed to reduce with the PV. These results are consistent with a previous study based on a simplified anatomically-consistent synthetic model and clinical reports of very low success of the PV for Grade 4. However our model indicated that it is possible to achieve reduction of Grade 4 dislocation by hyperflexion and the resultant external rotation. Copyright © 2015 Elsevier Ltd. All rights reserved.

Top