Sample records for reducing foraging effort

  1. Temporal patterns in the foraging behavior of sea otters in Alaska

    USGS Publications Warehouse

    Esslinger, George G.; Bodkin, James L.; Breton, André R.; Burns, Jennifer M.; Monson, Daniel H.

    2014-01-01

    Activity time budgets in apex predators have been proposed as indicators of population status relative to resource limitation or carrying capacity. We used archival time-depth recorders implanted in 15 adult female and 4 male sea otters (Enhydra lutris) from the northernmost population of the species, Prince William Sound, Alaska, USA, to examine temporal patterns in their foraging behavior. Sea otters that we sampled spent less time foraging during summer (females 8.8 hr/day, males 7.9 hr/day) than other seasons (females 10.1–10.5 hr/day, males 9.2–9.5 hr/day). Both sexes showed strong preferences for diurnal foraging and adjusted their foraging effort in response to the amount of available daylight. One exception to this diurnal foraging mode occurred after females gave birth. For approximately 3 weeks post-partum, females switched to nocturnal foraging, possibly in an effort to reduce the risk of predation by eagles on newborn pups. We used multilevel mixed regression models to assess the contribution of several biological and environmental covariates to variation in the daily foraging effort of parous females. In the random effects only model, 87% of the total variation in foraging effort was within-otter variation. The relatively small among-otter variance component (13%) indicates substantial consistency in the foraging effort of sea otters in this northern population. In the top 3 models, 17% of the within-otter variation was explained by reproductive stage, day length, wind speed, air temperature and a wind speed × air temperature interaction. This study demonstrates the potential importance of environmental and reproductive effects when using activity budgets to assess population status relative to carrying capacity.

  2. Integrating feeding behavior, ecological data, and DNA barcoding to identify developmental differences in invertebrate foraging strategies in wild white-faced capuchins (Cebus capucinus).

    PubMed

    Mallott, Elizabeth K; Garber, Paul A; Malhi, Ripan S

    2017-02-01

    Invertebrate foraging strategies in nonhuman primates often require complex extractive foraging or prey detection techniques. As these skills take time to master, juveniles may have reduced foraging efficiency or concentrate their foraging efforts on easier to acquire prey than adults. We use DNA barcoding, behavioral observations, and ecological data to assess age-based differences in invertebrate prey foraging strategies in a group of white-faced capuchins (Cebus capucinus) in northeastern Costa Rica. Invertebrate availability was monitored using canopy traps and sweep netting. Fecal samples were collected from adult female, adult male, and juvenile white-faced capuchins (n = 225). COI mtDNA sequences were compared with known sequences in GenBank and the Barcode of Life Database. Frequencies of Lepidoptera and Hymenoptera consumption were higher in juveniles than in adults. A significantly smaller proportion of juvenile fecal samples contained Gryllidae and Cercopidae sequences, compared with adults (0% and 4.2% vs. 4.6% and 12.5%), and a significantly larger proportion contained Tenthredinidae, Culicidae, and Crambidae (5.6%, 9.7%, and 5.6% vs. 1.3%, 0.7%, and 1.3%). Juveniles spent significantly more time feeding and foraging than adults, and focused their foraging efforts on prey that require different skills to capture or extract. Arthropod availability was not correlated with foraging efficiency, and the rate of consumption of specific orders of invertebrates was not correlated with the availability of those same taxa. Our data support the hypothesis that juveniles are concentrating their foraging efforts on different prey than adults, potentially focusing their foraging efforts on more easily acquired types of prey. © 2016 Wiley Periodicals, Inc.

  3. Temporal Allocation of Foraging Effort in Female Australian Fur Seals (Arctocephalus pusillus doriferus)

    PubMed Central

    Hoskins, Andrew J.; Arnould, John P. Y.

    2013-01-01

    Across an individual's life, foraging decisions will be affected by multiple intrinsic and extrinsic drivers that act at differing timescales. This study aimed to assess how female Australian fur seals allocated foraging effort and the behavioural changes used to achieve this at three temporal scales: within a day, across a foraging trip and across the final six months of the lactation period. Foraging effort peaked during daylight hours (57% of time diving) with lulls in activity just prior to and after daylight. Dive duration reduced across the day (196 s to 168 s) but this was compensated for by an increase in the vertical travel rate (1500–1600 m·h−1) and a reduction in postdive duration (111–90 s). This suggests physiological constraints (digestive costs) or prey availability may be limiting mean dive durations as a day progresses. During short trips (<2.9 d), effort remained steady at 55% of time diving, whereas, on long trips (>2.9 d) effort increased up to 2–3 d and then decreased. Dive duration decreased at the same rate in short and long trips, respectively, before stabilising (long trips) between 4–5 d. Suggesting that the same processes (digestive costs or prey availability) working at the daily scale may also be present across a trip. Across the lactation period, foraging effort, dive duration and vertical travel rate increased until August, before beginning to decrease. This suggests that as the nutritional demands of the suckling pup and developing foetus increase, female effort increases to accommodate this, providing insight into the potential constraints of maternal investment in this species. PMID:24244511

  4. The influence of food supply on foraging behaviour in a desert spider.

    PubMed

    Lubin, Y; Henschel, J

    1996-01-01

    We tested the alternative hypotheses that foraging effort will increase (energy maximizer model) or decrease (due to increased costs or risks) when food supply increased, using a Namib desert burrowing spider, Seothyra henscheli (Eresidae), which feeds mainly on ants. The web of S. henscheli has a simple geometrical configuration, comprising a horizontal mat on the sand surface, with a variable number of lobes lined with sticky silk. The sticky silk is renewed daily after being covered by wind-blown sand. In a field experiment, we supplemented the spiders' natural prey with one ant on each day that spiders had active webs and determined the response to an increase in prey. We compared the foraging activity and web geometry of prey-supplemented spiders to non-supplemented controls. We compared the same parameters in fooddeprived and supplemented spiders in captivity. The results support the "costs of foraging" hypothesis. Supplemented spiders reduced their foraging activity and web dimensions. They moulted at least once and grew rapidly, more than doubling their mass in 6 weeks. By contrast, food-deprived spiders increased foraging effort by enlarging the diameter of the capture web. We suggest that digestive constraints prevented supplemented spiders from fully utilizing the available prey. By reducing foraging activities on the surface, spiders in a prey-rich habitat can reduce the risk of predation. However, early maturation resulting from a higher growth rate provides no advantage to S. henscheli owing to the fact that the timing of mating and dispersal are fixed by climatic factors (wind and temperature). Instead, large female body size will increase fitness by increasing the investiment in young during the period of extended maternal care.

  5. The nurse's load: early-life exposure to brood-rearing affects behavior and lifespan in honey bees (Apis mellifera).

    PubMed

    Amdam, Gro V; Rueppell, Olav; Fondrk, M Kim; Page, Robert E; Nelson, C Mindy

    2009-01-01

    Long-lived honey bees (Apis mellifera) develop in fall. This pattern may be explained by reduced nurse loads. When the amount of brood in colonies declines as a function of adverse foraging conditions, adult bees build up surplus nutrient stores that include vitellogenin, a behavioral affector protein that also can increase lifespan. Although the seasonal reduction in exposure to nursing tasks predictably results in vitellogenin accumulation, the assumption that long-lived adults thereby develop is confounded by a concomitant decline in foraging effort. Foraging activity reduces lifespan, and is influenced by colony resource consumption, brood pheromones, availability of nectar and pollen, and weather. Here, we perform the first controlled experiment where the nursing environment of pre-foraging sister bees was set to vary, while their foraging environment later was set to be the same. We measure vitellogenin, age at foraging onset and lifespan. We establish that reduced brood-rearing increases vitellogenin levels, and delays foraging onset and death. Longevity is largely explained by the effect of nursing on the onset of foraging behavior, but is also influenced by the level of brood-rearing independent of behavioral change. Our findings are consistent with the roles of vitellogenin in regulation of honey bee behavior and lifespan.

  6. LivestockPlus: Forages, sustainable intensification, and food security in the tropics.

    PubMed

    Rudel, Thomas K; Paul, Birthe; White, Douglas; Rao, I M; Van Der Hoek, Rein; Castro, Aracely; Boval, Maryline; Lerner, Amy; Schneider, Laura; Peters, Michael

    2015-11-01

    The increased use of grain-based feed for livestock during the last two decades has contributed, along with other factors, to a rise in grain prices that has reduced human food security. This circumstance argues for feeding more forages to livestock, particularly in the tropics where many livestock are reared on small farms. Efforts to accomplish this end, referred to as the 'LivestockPlus' approach, intensify in sustainable ways the management of grasses, shrubs, trees, and animals. By decoupling the human food and livestock feed systems, these efforts would increase the resilience of the global food system. Effective LivestockPlus approaches take one of two forms: (1) simple improvements such as new forage varieties and animal management practices that spread from farmer to farmer by word of mouth, or (2) complex sets of new practices that integrate forage production more closely into farms' other agricultural activities and agro-ecologies.

  7. Effect of reducing dietary forage in lower starch diets on performance, ruminal characteristics, and nutrient digestibility in lactating Holstein cows.

    PubMed

    Farmer, E R; Tucker, H A; Dann, H M; Cotanch, K W; Mooney, C S; Lock, A L; Yagi, K; Grant, R J

    2014-09-01

    This experiment evaluated the effect of feeding a lower starch diet (21% of dry matter) with different amounts of forage (52, 47, 43, and 39% of dry matter) on lactational performance, chewing activity, ruminal fermentation and turnover, microbial N yield, and total-tract nutrient digestibility. Dietary forage consisted of a mixture of corn and haycrop silages, and as dietary forage content was reduced, chopped wheat straw (0-10% of dry matter) was added in an effort to maintain chewing activity. Dietary concentrate was adjusted (corn meal, nonforage fiber sources, and protein sources) to maintain similar amounts of starch and other carbohydrate and protein fractions among the diets. Sixteen lactating Holstein cows were used in replicated 4×4 Latin squares with 21-d periods. Dry matter intake increased while physically effective neutral detergent fiber (peNDF1.18) intake was reduced as forage content decreased from 52 to 39%. However, reducing dietary forage did not influence milk yield or composition, although we observed changes in dry matter intake. Time spent chewing, eating, and ruminating (expressed as minutes per day or as minutes per kilogram of NDF intake) were not affected by reducing dietary forage. However, addition of chopped wheat straw to the diets resulted in greater time spent chewing and eating per kilogram of peNDF1.18 consumed. Reducing dietary forage from 52 to 39% did not affect ruminal pH, ruminal digesta volume and mass, ruminal pool size of NDF or starch, ruminal digesta mat consistency, or microbial N yield. Ruminal acetate-to-propionate ratio was reduced, ruminal turnover rates of NDF and starch were greater, and total-tract digestibility of fiber diminished as dietary forage content decreased. Reducing the dietary forage content from 52 to 39% of dry matter, while increasing wheat straw inclusion to maintain chewing and rumen function, resulted in similar milk yield and composition although feed intake increased. With the lower starch diets in this short-term study, the minimal forage content to maintain lactational performance was between 39 and 43%. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. A Bayesian hierarchical model of Antarctic fur seal foraging and pup growth related to sea ice and prey abundance.

    PubMed

    Hiruki-Raring, Lisa M; Ver Hoef, Jay M; Boveng, Peter L; Bengtson, John L

    2012-03-01

    We created a Bayesian hierarchical model (BHM) to investigate ecosystem relationships between the physical ecosystem (sea ice extent), a prey measure (krill density), predator behaviors (diving and foraging effort of female Antarctic fur seals, Arctocephalus gazella, with pups) and predator characteristics (mass of maternal fur seals and pups). We collected data on Antarctic fur seals from 1987/1988 to 1994/1995 at Seal Island, Antarctica. The BHM allowed us to link together predators and prey into a model that uses all the data efficiently and accounts for major sources of uncertainty. Based on the literature, we made hypotheses about the relationships in the model, which we compared with the model outcome after fitting the BHM. For each BHM parameter, we calculated the mean of the posterior density and the 95% credible interval. Our model confirmed others' findings that increased sea ice was related to increased krill density. Higher krill density led to reduced dive intensity of maternal fur seals, as measured by dive depth and duration, and to less time spent foraging by maternal fur seals. Heavier maternal fur seals and lower maternal foraging effort resulted in heavier pups at 22 d. No relationship was found between krill density and maternal mass, or between maternal mass and foraging effort on pup growth rates between 22 and 85 days of age. Maternal mass may have reflected environmental conditions prior to the pup provisioning season, rather than summer prey densities. Maternal mass and foraging effort were not related to pup growth rates between 22 and 85 d, possibly indicating that food was not limiting, food sources other than krill were being used, or differences occurred before pups reached age 22 d.

  9. Social effects on foraging behavior and success depend on local environmental conditions

    PubMed Central

    Marshall, Harry H; Carter, Alecia J; Ashford, Alexandra; Rowcliffe, J Marcus; Cowlishaw, Guy

    2015-01-01

    In social groups, individuals' dominance rank, social bonds, and kinship with other group members have been shown to influence their foraging behavior. However, there is growing evidence that the particular effects of these social traits may also depend on local environmental conditions. We investigated this by comparing the foraging behavior of wild chacma baboons, Papio ursinus, under natural conditions and in a field experiment where food was spatially clumped. Data were collected from 55 animals across two troops over a 5-month period, including over 900 agonistic foraging interactions and over 600 food patch visits in each condition. In both conditions, low-ranked individuals received more agonism, but this only translated into reduced foraging performances for low-ranked individuals in the high-competition experimental conditions. Our results suggest one possible reason for this pattern may be low-ranked individuals strategically investing social effort to negotiate foraging tolerance, but the rank-offsetting effect of this investment being overwhelmed in the higher-competition experimental environment. Our results also suggest that individuals may use imbalances in their social bonds to negotiate tolerance from others under a wider range of environmental conditions, but utilize the overall strength of their social bonds in more extreme environments where feeding competition is more intense. These findings highlight that behavioral tactics such as the strategic investment of social effort may allow foragers to mitigate the costs of low rank, but that the effectiveness of these tactics is likely to be limited in certain environments. PMID:25691973

  10. Variation in body condition during the post-moult foraging trip of southern elephant seals and its consequences on diving behaviour.

    PubMed

    Richard, Gaëtan; Vacquié-Garcia, Jade; Jouma'a, Joffrey; Picard, Baptiste; Génin, Alexandre; Arnould, John P Y; Bailleul, Frédéric; Guinet, Christophe

    2014-07-15

    Mature female southern elephant seals (Mirounga leonina) come ashore only in October to breed and in January to moult, spending the rest of the year foraging at sea. Mature females may lose as much as 50% of their body mass, mostly in lipid stores, during the breeding season due to fasting and lactation. When departing to sea, post-breeding females are negatively buoyant, and the relative change in body condition (i.e. density) during the foraging trip has previously been assessed by monitoring the descent rate during drift dives. However, relatively few drift dives are performed, resulting in low resolution of the temporal reconstruction of body condition change. In this study, six post-breeding females were equipped with time-depth recorders and accelerometers to investigate whether changes in active swimming effort and speed could be used as an alternative method of monitoring density variations throughout the foraging trip. In addition, we assessed the consequences of density change on the swimming efforts of individuals while diving and investigated the effects on dive duration. Both descent swimming speed and ascent swimming effort were found to be strongly correlated to descent rate during drift dives, enabling the fine-scale monitoring of seal density change over the whole trip. Negatively buoyant seals minimized swimming effort during descents, gliding down at slower speeds, and reduced their ascent swimming effort to maintain a nearly constant swimming speed as their buoyancy increased. One per cent of seal density variation over time was found to induce a 20% variation in swimming effort during dives with direct consequences on dive duration. © 2014. Published by The Company of Biologists Ltd.

  11. Perissodactyla diet

    USGS Publications Warehouse

    Schoenecker, Kathryn A.

    2018-01-01

    Perissodactyla (Schoch 1989) includes tapirs, rhinoceros, wild asses, horses, and zebras. It is the order of hoofed mammals referred to as “odd-toed ungulates” because its members have one to three weight-bearing toes and walk on hoofs or “ungules.” They are herbivores that are specialized to exploit grasslands and brushy habitat (rhinos, horses, asses, zebras) or dense tropical forests (tapirs). All share a common digestive system called hindgut fermentation, or cecal digestion (in the cecum), and can consume relatively tough, coarse forage. Some perissodactyls are “browsers” that forage primarily on woody shrubs and trees, whereas others are “grazers” with a graminoid-dominated diet. They are all predominantly opportunistic feeders and select for quantity over quality of forage; that is, they consume more abundant low-quality forage instead of searching and selecting for higher-quality forage because it gives them the advantage of reducing search effort, which conserves energy.

  12. Group foraging increases foraging efficiency in a piscivorous diver, the African penguin

    PubMed Central

    McGeorge, Cuan; Ginsberg, Samuel; Pichegru, Lorien; Pistorius, Pierre A.

    2017-01-01

    Marine piscivores have evolved a variety of morphological and behavioural adaptations, including group foraging, to optimize foraging efficiency when targeting shoaling fish. For penguins that are known to associate at sea and feed on these prey resources, there is nonetheless a lack of empirical evidence to support improved foraging efficiency when foraging with conspecifics. We examined the hunting strategies and foraging performance of breeding African penguins equipped with animal-borne video recorders. Individuals pursued both solitary as well as schooling pelagic fish, and demonstrated independent as well as group foraging behaviour. The most profitable foraging involved herding of fish schools upwards during the ascent phase of a dive where most catches constituted depolarized fish. Catch-per-unit-effort was significantly improved when targeting fish schools as opposed to single fish, especially when foraging in groups. In contrast to more generalist penguin species, African penguins appear to have evolved specialist hunting strategies closely linked to their primary reliance on schooling pelagic fish. The specialist nature of the observed hunting strategies further limits the survival potential of this species if Allee effects reduce group size-related foraging efficiency. This is likely to be exacerbated by diminishing fish stocks due to resource competition and environmental change. PMID:28989785

  13. Meeting reproductive demands in a dynamic upwelling system: Foraging strategies of a pursuit-diving seabird, the marbled murrelet

    USGS Publications Warehouse

    Peery, M.Z.; Newman, S.H.; Storlazzi, C.D.; Beissinger, S.R.

    2009-01-01

    Seabirds maintain plasticity in their foraging behavior to cope with energy demands and foraging constraints that vary over the reproductive cycle, but behavioral studies comparing breeding and nonbreeding individuals are rare. Here we characterize how Marbled Murrelets (Brachyramphus marmoratus) adjust their foraging effort in response to changes in reproductive demands in an upwelling system in central California. We radio-marked 32 murrelets of known reproductive status (9 breeders, 12 potential breeders, and 11 nonbreeders) and estimated both foraging ranges and diving rates during the breeding season. Murrelets spent more time diving during upwelling than oceanographic relaxation, increased their foraging ranges as the duration of relaxation grew longer, and reduced their foraging ranges after transitions to upwelling. When not incubating, murrelets moved in a circadian pattern, spending nighttime hours resting near flyways used to reach nesting habitat and foraging during the daytime an average of 5.7 km (SD 6.7 km) from nighttime locations. Breeders foraged close to nesting habitat once they initiated nesting and nest attendance was at a maximum, and then resumed traveling longer distances following the completion of nesting. Nonbreeders had similar nighttime and daytime distributions and tended to be located farther from inland flyways. Breeders increased the amount of time they spent diving by 71-73% when they had an active nest by increasing the number of dives rather than by increasing the frequency of anaerobiosis. Thus, to meet reproductive demands during nesting, murrelets adopted a combined strategy of reducing energy expended commuting to foraging sites and increasing aerobic dive rates. ?? 2009 by The Cooper Ornithological Society. All rights reserved.

  14. Determination of Foraging Thresholds and Effects of Application on Energetic Carrying Capacity for Waterfowl

    PubMed Central

    2015-01-01

    Energetic carrying capacity of habitats for wildlife is a fundamental concept used to better understand population ecology and prioritize conservation efforts. However, carrying capacity can be difficult to estimate accurately and simplified models often depend on many assumptions and few estimated parameters. We demonstrate the complex nature of parameterizing energetic carrying capacity models and use an experimental approach to describe a necessary parameter, a foraging threshold (i.e., density of food at which animals no longer can efficiently forage and acquire energy), for a guild of migratory birds. We created foraging patches with different fixed prey densities and monitored the numerical and behavioral responses of waterfowl (Anatidae) and depletion of foods during winter. Dabbling ducks (Anatini) fed extensively in plots and all initial densities of supplemented seed were rapidly reduced to 10 kg/ha and other natural seeds and tubers combined to 170 kg/ha, despite different starting densities. However, ducks did not abandon or stop foraging in wetlands when seed reduction ceased approximately two weeks into the winter-long experiment nor did they consistently distribute according to ideal-free predictions during this period. Dabbling duck use of experimental plots was not related to initial seed density, and residual seed and tuber densities varied among plant taxa and wetlands but not plots. Herein, we reached several conclusions: 1) foraging effort and numerical responses of dabbling ducks in winter were likely influenced by factors other than total food densities (e.g., predation risk, opportunity costs, forager condition), 2) foraging thresholds may vary among foraging locations, and 3) the numerical response of dabbling ducks may be an inconsistent predictor of habitat quality relative to seed and tuber density. We describe implications on habitat conservation objectives of using different foraging thresholds in energetic carrying capacity models and suggest scientists reevaluate assumptions of these models used to guide habitat conservation. PMID:25790255

  15. Enhancing and restoring habitat for the desert tortoise

    USGS Publications Warehouse

    Abella, Scott R.; Berry, Kristin H.

    2016-01-01

    Habitat has changed unfavorably during the past 150 y for the desert tortoise Gopherus agassizii, a federally threatened species with declining populations in the Mojave Desert and western Sonoran Desert. To support recovery efforts, we synthesized published information on relationships of desert tortoises with three habitat features (cover sites, forage, and soil) and candidate management practices for improving these features for tortoises. In addition to their role in soil health and facilitating recruitment of annual forage plants, shrubs are used by desert tortoises for cover and as sites for burrows. Outplanting greenhouse-grown seedlings, protected from herbivory, has successfully restored (>50% survival) a variety of shrubs on disturbed desert soils. Additionally, salvaging and reapplying topsoil using effective techniques is among the more ecologically beneficial ways to initiate plant recovery after severe disturbance. Through differences in biochemical composition and digestibility, some plant species provide better-quality forage than others. Desert tortoises selectively forage on particular annual and herbaceous perennial species (e.g., legumes), and forage selection shifts during the year as different plants grow or mature. Nonnative grasses provide low-quality forage and contribute fuel to spreading wildfires, which damage or kill shrubs that tortoises use for cover. Maintaining a diverse “menu” of native annual forbs and decreasing nonnative grasses are priorities for restoring most desert tortoise habitats. Reducing herbivory by nonnative animals, carefully timing herbicide applications, and strategically augmenting annual forage plants via seeding show promise for improving tortoise forage quality. Roads, another disturbance, negatively affect habitat in numerous ways (e.g., compacting soil, altering hydrology). Techniques such as recontouring road berms to reestablish drainage patterns, vertical mulching (“planting” dead plant material), and creating barriers to prevent trespasses can assist natural recovery on decommissioned backcountry roads. Most habitat enhancement efforts to date have focused on only one factor at a time (e.g., providing fencing) and have not included proactive restoration activities (e.g., planting native species on disturbed soils). A research and management priority in recovering desert tortoise habitats is implementing an integrated set of restorative habitat enhancements (e.g., reducing nonnative plants, improving forage quality, augmenting native perennial plants, and ameliorating altered hydrology) and monitoring short- and long-term indicators of habitat condition and the responses of desert tortoises to habitat restoration.

  16. Sperm whales reduce foraging effort during exposure to 1-2 kHz sonar and killer whale sounds.

    PubMed

    Isojunno, Saana; Cure, Charlotte; Kvadsheim, Petter Helgevold; Lam, Frans-Peter Alexander; Tyack, Peter Lloyd; Wensveen, Paul Jacobus; Miller, Patrick James O'Malley

    2016-01-01

    The time and energetic costs of behavioral responses to incidental and experimental sonar exposures, as well as control stimuli, were quantified using hidden state analysis of time series of acoustic and movement data recorded by tags (DTAG) attached to 12 sperm whales (Physeter macrocephalus) using suction cups. Behavioral state transition modeling showed that tagged whales switched to a non-foraging, non-resting state during both experimental transmissions of low-frequency active sonar from an approaching vessel (LFAS; 1-2 kHz, source level 214 dB re 1 µPa m, four tag records) and playbacks of potential predator (killer whale, Orcinus orca) sounds broadcast at naturally occurring sound levels as a positive control from a drifting boat (five tag records). Time spent in foraging states and the probability of prey capture attempts were reduced during these two types of exposures with little change in overall locomotion activity, suggesting an effect on energy intake with no immediate compensation. Whales switched to the active non-foraging state over received sound pressure levels of 131-165 dB re 1 µPa during LFAS exposure. In contrast, no changes in foraging behavior were detected in response to experimental negative controls (no-sonar ship approach or noise control playback) or to experimental medium-frequency active sonar exposures (MFAS; 6-7 kHz, source level 199 re 1 µPa m, received sound pressure level [SPL] = 73-158 dB re 1 µPa). Similarly, there was no reduction in foraging effort for three whales exposed to incidental, unidentified 4.7-5.1 kHz sonar signals received at lower levels (SPL = 89-133 dB re 1 µPa). These results demonstrate that similar to predation risk, exposure to sonar can affect functional behaviors, and indicate that increased perception of risk with higher source level or lower frequency may modulate how sperm whales respond to anthropogenic sound.

  17. Movements and foraging effort of Steller's Eiders and Harlequin Ducks wintering near Dutch Harbor, Alaska

    USGS Publications Warehouse

    Reed, J.A.; Flint, Paul L.

    2007-01-01

    We studied the movements and foraging effort of radio-marked Steller's Eiders (Polysticta stelleri) and Harlequin Ducks (Histrionicus histrionicus) to evaluate habitat quality in an area impacted by industrial activity near Dutch Harbor, Alaska. Foraging effort was relatively low, with Steller's Eiders foraging only 2.7 ± 0.6 (SE) hours per day and Harlequin Ducks 4.1 ± 0.5 hours per day. Low-foraging effort during periods of high-energetic demand generally suggests high food availability, and high food availability frequently corresponds with reductions in home range size. However, the winter ranges of Harlequin Ducks did not appear to be smaller than usual, with the mean range size in our study (5.5 ± 1.1 km2) similar to that reported by previous investigators. The mean size of the winter ranges of Steller's Eiders was similar (5.1 ± 1.3 km2), but no comparable estimates are available. Eutrophication of the waters near Dutch Harbor caused by seafood processing and municipal sewage effluent may have increased populations of the invertebrate prey of these sea ducks and contributed to their low-foraging effort. The threat of predation by Bald Eagles (Haliaeetus leucocephalus) that winter near Dutch Harbor may cause Steller's Eiders and Harlequin Ducks to move further offshore when not foraging, contributing to an increase in range sizes. Thus, the movement patterns and foraging behavior of these ducks likely represent a balance between the cost and benefits of wintering in a human-influenced environment.

  18. King eider foraging effort during the pre-breeding period in Alaska

    USGS Publications Warehouse

    Oppel, Steffen; Powell, Abby N.; Butler, Malcolm G.

    2011-01-01

    For reproduction, many arctic-nesting migratory birds rely on nutrients obtained on the breeding grounds, so they devote sufficient time to foraging immediately prior to nesting. However, little is known about the increase in foraging effort necessary to meet the energetic requirements of reproduction. In early June 2006 and 2008, we quantified the proportion of time spent foraging before breeding by a large sea duck, the King Eider (Somateria spectabilis), on its breeding grounds in northern Alaska. During >235 hours of behavioral observations, both male and female King Eiders spent >50% of the day loafing (resting, sleeping, comfort behavior, or being alert). Females foraged on average 30% of the time (mean 7.2 hr day-1,95% CI 6.0-8.4 hr day-1), three times as much as males (9%; 2.3 hr day-1, 95% CI 1.5–2.8 hr day-1). The most common prey in ponds where the eiders foraged were chironomid larvae and worms ranging in length from 1 to 30 mm. If the King Eider's daily energy expenditure on its breeding grounds is similar to values published for related species, it would need to ingest only 0.2–0.6 g dry mass of invertebrates per minute of foraging to meet its energetic requirements. Males did not lose body mass before breeding, and we assume that their foraging effort was sufficient for energy balance. Therefore, female King Eiders appear to triple their foraging effort over maintenance requirements to meet the energetic challenges of egg formation.

  19. Spatio-Temporal Dynamics of Foraging Networks in the Grass-Cutting Ant Atta bisphaerica Forel, 1908 (Formicidae, Attini)

    PubMed Central

    Lopes, Juliane F. S.; Brugger, Mariana S.; Menezes, Regys B.; Camargo, Roberto S.; Forti, Luiz Carlos; Fourcassié, Vincent

    2016-01-01

    Foraging networks are a key element for ant colonies because they facilitate the flow of resources from the environment to the nest and they allow the sharing of information among individuals. Here we report the results of an 8-month survey, extending from November 2009 to June 2010, of the foraging networks of four mature colonies of Atta bisphaerica, a species of grass-cutting ant which is considered as a pest in Brazil. We found that the distribution of foraging effort was strongly influenced by the landscape features around the nests, in particular by the permanently wet parts of the pasture in which the nests were located. The foraging networks consisted of underground tunnels which opened on average at 21.5m from the nests and of above-ground physical trails that reached on average 4.70m in length. The use of the foraging networks was highly dynamic, with few sections of the networks used for long periods of time. Three different phases, which could be linked to the seasonal change in the local rainfall regime, could be identified in the construction and use of the foraging networks. The first phase corresponded to the beginning of the rainy season and was characterized by a low foraging activity, as well as a low excavation and physical trail construction effort. The second phase, which began in February and extended up to the end of the humid season at the end of March, was characterized by an intense excavation and trail construction effort, resulting in an expansion of the foraging networks. Finally, in the third phase, which corresponded to the beginning of the dry season, the excavation and trail construction effort leveled off or decreased while foraging activity kept increasing. Our hypothesis is that ants could benefit from the underground tunnels and physical trails built during the humid season to maintain their foraging activity at a high level. PMID:26752413

  20. Resiliency in forage and grazinglands

    USDA-ARS?s Scientific Manuscript database

    This manuscript is a combined effort of the speakers at the 2017 C6 Forage and Grazinglands Division Symposia which was titled “Resiliency in Forage and Grazinglands.” Developing more resilient agroecosystems, including those that produce forage and livestock, will become necessary to maintain agric...

  1. Impacts of experimentally increased foraging effort on the family: offspring sex matters

    USGS Publications Warehouse

    Harding, A.M.A.; Kitaysky, A.S.; Hamer, K.C.; Hall, M.E.; Welcker, J.; Talbot, S.L.; Karnovsky, N.J.; Gabrielsen, G.W.; Gremillet, D.

    2009-01-01

    We examined how short-term impacts of experimentally increased foraging effort by one parent reverberate around the family in a monomorphic seabird (little auk, Alle alle), and whether these effects depend on offspring sex. In many species, more effort is required to rear sons successfully than daughters. However, undernourishment may have stronger adverse consequences for male offspring, which could result in a lower fitness benefit of additional parental effort when rearing a son. We tested two alternative hypotheses concerning the responses of partners to handicapping parents via feather clipping: partners rearing a son are (1) more willing or able to compensate for the reduced contribution of their mate, or (2) less willing or able to compensate, compared to those rearing a daughter. Hypothesis 1 predicts that sons will be no more adversely affected than daughters, and the impact on parents will be greater when rearing a son. Hypothesis 2 predicts that sons will be more adversely affected than daughters, and parents raising a son less affected. Although experimental chicks of both sexes fledged in poorer condition than controls, sons attained higher mass and more rapid growth than daughters in both groups. Clipped parents lost a similar proportion of their initial mass regardless of chick sex, whereas partners of clipped birds lost more mass when rearing a son. These results support hypothesis 1: impacts of increased foraging effort by one parent were felt by offspring, regardless of their sex, and by the partners of manipulated birds, particularly when the offspring was male. ?? 2009 The Association for the Study of Animal Behaviour.

  2. Effects of colony relocation on diet and productivity of Caspian terns

    USGS Publications Warehouse

    Roby, D.D.; Collis, K.; Lyons, Donald E.; Craig, D.P.; Adkins, J.Y.; Myers, A.M.; Suryan, R.M.

    2002-01-01

    We investigated the efficacy of management to reduce the impact of Caspian tern (Sterna caspia) predation on survival of juvenile salmonids (Oncorhynchus spp.) in the Columbia River estuary. Resource managers sought to relocate approximately 9,000 pairs of terns nesting on Rice Island (river km 34) to East Sand Island (river km 8), where terns were expected to prey on fewer juvenile salmonids. Efforts to attract terns to nest on East Sand Island included creation of nesting habitat, use of social attraction techniques, and predator control, with concurrent efforts to discourage terns from nesting on Rice Island. This approach was successful in completely relocating the tern colony from Rice Island to East Sand Island by the third breeding season. Juvenile salmonids decreased and marine forage fishes (i.e., herring, sardine, anchovy, smelt, surfperch, Pacific sand lance) increased in the diet of Caspian terns nesting on East Sand Island, compared with terns nesting on Rice Island. During 1999 and 2000, the diet of terns nesting on Rice Island consisted of 77% and 90% juvenile salmonids, respectively, while during 1999, 2000, and 2001, the diet of terns nesting on East Sand Island consisted of 46%, 47%, and 33% juvenile salmonids, respectively. Nesting success of Caspian terns was consistently and substantially higher on East Sand Island than on Rice Island. These results indicate that relocating the Caspian tern colony was an effective management action for reducing predation on juvenile salmonids without harm to the population of breeding terns, at least in the short term. The success of this management approach largely was a consequence of the nesting and foraging ecology of Caspian terns: the species shifts breeding colony sites frequently in response to changing habitats, and the species is a generalist forager, preying on the most available forage fish near the colony.

  3. Mean Annual Temperature Drives Microbial Nitrogen Cycling and Fine Root Nutrient Foraging Across a Tropical Montane Wet Forest Elevation Gradient

    NASA Astrophysics Data System (ADS)

    Pierre, S.; Litton, C. L. M.; Giardina, C. P.; Sparks, J. P.; Groffman, P. M.; Hewson, I.; Fahey, T. J.

    2017-12-01

    Mean annual temperature (MAT) is positively correlated with rates of primary production and carbon (C) turnover in forests globally, but the underlying biotic drivers of these relationships remain poorly resolved. We hypothesized that (1) MAT increases nitrifier abundance and thereby nitrate (NO-) bioavailability in soils and (2) increased NO- bioavailability reduces fine root nitrogen (N) demand. We used an ecologically well-constrained natural elevation gradient (13˚C -18˚C) in a tropical wet motane forest on the Island of Hawaii to study to role of MAT in situ. Our previous work showed that MAT drives increased soil NO- bioavailability in situ (r²=0.79, P=0.003), and indicated that the abundance of ammonia oxidizing archaea is strongly and positively correlated with MAT in situ (r²=0.34, P<0.001; Pierre et. al. 2017). Using fertilized fine root ingrowth cores (+N, +P, +N+P, control) across the same MAT gradient, we found that increasing MAT and bulk soil NO- bioavailability produced a significant negative fine root response to the +N+P treatment (P=0.023), and no response to other fertilization treatments. Increasing MAT and soil NO- bioavailability led to increased percent arbuscular mycorrhizal (AM) colonization of fine roots (r²=0.43, P=0.004), but no treatment effect on AM colonization was observed. Our results suggest that N and P generally co-limit fine root foraging across the gradient, while higher MAT and bulk soil NO- bioavailability interact to reduce fine root foraging effort. Further, higher MAT and greater N fertility in soils may reduce the C limitation of AM fungal colonization. We conclude that MAT drives N-rich conditions, which allow for lower N foraging effort, but greater C investment in P acquisition through AM fine root colonization.

  4. What do foraging wasps optimize in a variable environment, energy investment or body temperature?

    PubMed

    Kovac, Helmut; Stabentheiner, Anton; Brodschneider, Robert

    2015-11-01

    Vespine wasps (Vespula sp.) are endowed with a pronounced ability of endothermic heat production. To show how they balance energetics and thermoregulation under variable environmental conditions, we measured the body temperature and respiration of sucrose foragers (1.5 M, unlimited flow) under variable ambient temperature (T a = 20-35 °C) and solar radiation (20-570 W m(-2)). Results revealed a graduated balancing of metabolic efforts with thermoregulatory needs. The thoracic temperature in the shade depended on ambient temperature, increasing from ~37 to 39 °C. However, wasps used solar heat gain to regulate their thorax temperature at a rather high level at low T a (mean T thorax ~ 39 °C). Only at high T a they used solar heat to reduce their metabolic rate remarkably. A high body temperature accelerated the suction speed and shortened foraging time. As the costs of foraging strongly depended on duration, the efficiency could be significantly increased with a high body temperature. Heat gain from solar radiation enabled the wasps to enhance foraging efficiency at high ambient temperature (T a = 30 °C) by up to 63 %. The well-balanced change of economic strategies in response to environmental conditions minimized costs of foraging and optimized energetic efficiency.

  5. Ocean climate and seal condition.

    PubMed

    Le Boeuf, Burney J; Crocker, Daniel E

    2005-03-28

    The condition of many marine mammals varies with fluctuations in productivity and food supply in the ocean basin where they forage. Prey is impacted by physical environmental variables such as cyclic warming trends. The weaning weight of northern elephant seal pups, Mirounga angustirostris, being closely linked to maternal condition, indirectly reflects prey availability and foraging success of pregnant females in deep waters of the northeastern Pacific. The aim of this study was to examine the effect of ocean climate on foraging success in this deep-diving marine mammal over the course of three decades, using cohort weaning weight as the principal metric of successful resource accrual. The mean annual weaning weight of pups declined from 1975 to the late 1990s, a period characterized by a large-scale, basin-wide warm decadal regime that included multiple strong or long-duration El Niños; and increased with a return to a cool decadal regime from about 1999 to 2004. Increased foraging effort and decreased mass gain of adult females, indicative of reduced foraging success and nutritional stress, were associated with high ocean temperatures. Despite ranging widely and foraging deeply in cold waters beyond coastal thermoclines in the northeastern Pacific, elephant seals are impacted significantly by ocean thermal dynamics. Ocean warming redistributes prey decreasing foraging success of females, which in turn leads to lower weaning mass of pups. Annual fluctuations in weaning mass, in turn, reflect the foraging success of females during the year prior to giving birth and signals changes in ocean temperature cycles.

  6. Contrasting responses of male and female foraging effort to year-round wind conditions.

    PubMed

    Lewis, Sue; Phillips, Richard A; Burthe, Sarah J; Wanless, Sarah; Daunt, Francis

    2015-11-01

    There is growing interest in the effects of wind on wild animals, given evidence that wind speeds are increasing and becoming more variable in some regions, particularly at temperate latitudes. Wind may alter movement patterns or foraging ability, with consequences for energy budgets and, ultimately, demographic rates. These effects are expected to vary among individuals due to intrinsic factors such as sex, age or feeding proficiency. Furthermore, this variation is predicted to become more marked as wind conditions deteriorate, which may have profound consequences for population dynamics as the climate changes. However, the interaction between wind and intrinsic effects has not been comprehensively tested. In many species, in particular those showing sexual size dimorphism, males and females vary in foraging performance. Here, we undertook year-round deployments of data loggers to test for interactions between sex and wind speed and direction on foraging effort in adult European shags Phalacrocorax aristotelis, a pursuit-diving seabird in which males are c. 18% heavier. We found that foraging time was lower at high wind speeds but higher during easterly (onshore) winds. Furthermore, there was an interaction between sex and wind conditions on foraging effort, such that females foraged for longer than males when winds were of greater strength (9% difference at high wind speeds vs. 1% at low wind speeds) and when winds were easterly compared with westerly (7% and 4% difference, respectively). The results supported our prediction that sex-specific differences in foraging effort would become more marked as wind conditions worsen. Since foraging time is linked to demographic rates in this species, our findings are likely to have important consequences for population dynamics by amplifying sex-specific differences in survival rates. © 2015 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of the British Ecological Society.

  7. Persistence of forage fish ‘hot spots’ and its association with foraging Steller sea lions (Eumetopias jubatus) in southeast Alaska

    NASA Astrophysics Data System (ADS)

    Gende, Scott M.; Sigler, Michael F.

    2006-02-01

    Whereas primary and secondary productivity at oceanic 'hotspots' may be a function of upwelling and temperature fronts, the aggregation of higher-order vertebrates is a function of their ability to search for and locate these areas. Thus, understanding how predators aggregate at these productive foraging areas is germane to the study of oceanic hot spots. We examined the spatial distribution of forage fish in southeast Alaska for three years to better understand Steller sea lion ( Eumetopias jubatus) aggregations and foraging behavior. Energy densities (millions KJ/km 2) of forage fish were orders of magnitude greater during the winter months (November-February), due to the presence of schools of overwintering Pacific herring ( Clupea pallasi). Within the winter months, herring consistently aggregated at a few areas, and these areas persisted throughout the season and among years. Thus, our study area was characterized by seasonally variable, highly abundant but highly patchily distributed forage fish hot spots. More importantly, the persistence of these forage fish hot spots was an important characteristic in determining whether foraging sea lions utilized them. Over 40% of the variation in the distribution of sea lions on our surveys was explained by the persistence of forage fish hot spots. Using a simple spatial model, we demonstrate that when the density of these hot spots is low, effort necessary to locate these spots is minimized when those spots persist through time. In contrast, under similar prey densities but lower persistence, effort increases dramatically. Thus an important characteristic of pelagic hot spots is their persistence, allowing predators to predict their locations and concentrate search efforts accordingly.

  8. Eating locally: Australasian gannets increase their foraging effort in a restricted range

    PubMed Central

    Angel, Lauren P.; Barker, Sophie; Berlincourt, Maud; Tew, Emma; Warwick-Evans, Victoria; Arnould, John P. Y.

    2015-01-01

    ABSTRACT During the breeding season, seabirds adopt a central place foraging strategy and are restricted in their foraging range by the fasting ability of their partner/chick and the cost of commuting between the prey resources and the nest. Because of the spatial and temporal variability of marine ecosystems, individuals must adapt their behaviour to increase foraging success within these constraints. The at-sea movements, foraging behaviour and effort of the Australasian gannet (Morus serrator) was determined over three sequential breeding seasons of apparent differing prey abundance to investigate how the species adapts to inter-annual fluctuations in food availability. GPS and tri-axial accelerometer data loggers were used to compare the degree of annual variation within two stages of breeding (incubation and chick rearing) at a small gannet colony situated between two larger, nearby colonies. Interestingly, neither males nor females increased the total distance travelled or duration of foraging trip in any breeding stage (P>0.05 in all cases) despite apparent low prey availability. However, consistently within each breeding stage, mean vectorial dynamic body acceleration (an index of energy expenditure) was greater in years of poorer breeding success (increased by a factor of three to eight), suggesting birds were working harder within their range. Additionally, both males and females increased the proportion of a foraging trip spent foraging in a poorer year across both breeding stages. Individuals from this colony may be limited in their ability to extend their range in years of low prey availability due to competition from conspecifics in nearby colonies and, consequently, increase foraging effort within this restricted foraging area. PMID:26369928

  9. Eating locally: Australasian gannets increase their foraging effort in a restricted range.

    PubMed

    Angel, Lauren P; Barker, Sophie; Berlincourt, Maud; Tew, Emma; Warwick-Evans, Victoria; Arnould, John P Y

    2015-09-14

    During the breeding season, seabirds adopt a central place foraging strategy and are restricted in their foraging range by the fasting ability of their partner/chick and the cost of commuting between the prey resources and the nest. Because of the spatial and temporal variability of marine ecosystems, individuals must adapt their behaviour to increase foraging success within these constraints. The at-sea movements, foraging behaviour and effort of the Australasian gannet (Morus serrator) was determined over three sequential breeding seasons of apparent differing prey abundance to investigate how the species adapts to inter-annual fluctuations in food availability. GPS and tri-axial accelerometer data loggers were used to compare the degree of annual variation within two stages of breeding (incubation and chick rearing) at a small gannet colony situated between two larger, nearby colonies. Interestingly, neither males nor females increased the total distance travelled or duration of foraging trip in any breeding stage (P>0.05 in all cases) despite apparent low prey availability. However, consistently within each breeding stage, mean vectorial dynamic body acceleration (an index of energy expenditure) was greater in years of poorer breeding success (increased by a factor of three to eight), suggesting birds were working harder within their range. Additionally, both males and females increased the proportion of a foraging trip spent foraging in a poorer year across both breeding stages. Individuals from this colony may be limited in their ability to extend their range in years of low prey availability due to competition from conspecifics in nearby colonies and, consequently, increase foraging effort within this restricted foraging area. © 2015. Published by The Company of Biologists Ltd.

  10. Thermoregulation of water foraging honeybees--balancing of endothermic activity with radiative heat gain and functional requirements.

    PubMed

    Kovac, Helmut; Stabentheiner, Anton; Schmaranzer, Sigurd

    2010-12-01

    Foraging honeybees are subjected to considerable variations of microclimatic conditions challenging their thermoregulatory ability. Solar heat is a gain in the cold but may be a burden in the heat. We investigated the balancing of endothermic activity with radiative heat gain and physiological functions of water foraging Apis mellifera carnica honeybees in the whole range of ambient temperatures (T(a)) and solar radiation they are likely to be exposed in their natural environment in Middle Europe. The mean thorax temperature (T(th)) during foraging stays was regulated at a constantly high level (37.0-38.5 °C) in a broad range of T(a) (3-30 °C). At warmer conditions (T(a)=30-39 °C) T(th) increased to a maximal level of 45.3 °C. The endothermic temperature excess (difference of T(body)-T(a) of living and dead bees) was used to assess the endogenously generated temperature elevation as a correlate of energy turnover. Up to a T(a) of ∼30 °C bees used solar heat gain for a double purpose: to reduce energetic expenditure and to increase T(th) by about 1-3 °C to improve force production of flight muscles. At higher T(a) they exhibited cooling efforts to get rid of excess heat. A high T(th) also allowed regulation of the head temperature high enough to guarantee proper function of the bees' suction pump even at low T(a). This shortened the foraging stays and this way reduced energetic costs. With decreasing T(a) bees also reduced arrival body weight and crop loading to do both minimize costs and optimize flight performance. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Meeting reproductive demands in a dynamic upwelling system: foraging strategies of a pursuit-diving seabird, the marbled murrelet

    Treesearch

    M. Zachariah Peery; Scott H. Newman; Curt D. Storlazzi; Steven R. Beissinger

    2009-01-01

    Seabirds maintain plasticity in their foraging behavior to cope with energy demands and foraging constraints that vary over the reproductive cycle, but behavioral studies comparing breeding and nonbreeding individuals are rare. Here we characterize how Marbled Murrelets (Brachyramphus marmoratus) adjust their foraging effort in response to changes...

  12. Evaluating Energy Flows Through Jellyfish and Forage Fish and the Effects of Fishing on the Northern Humboldt Current Ecosystem

    NASA Astrophysics Data System (ADS)

    Chiaverano, L.; Robinson, K. L.; Ruzicka, J.; Quiñones, J.; Tam, J.; Acha, M.; Graham, W. M.; Brodeur, R.; Decker, M. B.; Hernandez, F., Jr.; Leaf, R.; Mianzan, H.; Uye, S. I.

    2016-02-01

    Increases in the frequency of jellyfish mass occurrences in a number of coastal areas around the globe have intensified concerns that some ecosystems are becoming "jellyfish-dominated". Gelatinous planktivores not only compete with forage fish for food, but also feed on fish eggs and larvae. When jellyfish abundance is high, the fraction of the energy and the efficiency at which it is transferred upwards in the food web are reduced compared with times when fish are dominant. Hence, ecosystems supporting major forage fish fisheries are the most likely to experience fish-to-jellyfish shifts due to the harvest pressure on mid-trophic planktivores. Although forage fish-jellyfish replacement cycles have been detected in recent decades in some productive, coastal ecosystems (e.g. Gulf of Mexico, Northern California Current), jellyfish are typically not included in ecosystem-based fisheries management (EBFM) production models. Here we explored the roles of jellyfish and forage fish as trophic energy transfer pathways to higher trophic levels in the Northern Humboldt Current (NHC) ecosystem, one of the most productive ecosystems in the world. A trophic network model with 33 functional groups was developed using ECOPATH and transformed to an end-to-end model using ECOTRAN techniques to map food web energy flows. Predicted, relative changes in functional group productivity were analyzed in simulations with varying forage fish consumption rates, jellyfish consumption rates, and forage fish harvest rates in a suite of static, alternative-energy-demand scenarios. Our modeling efforts will not only improve EBFM of forage fish and their predators in the NHC ecosystem, but also increase our understanding of trophic interactions between forage fish and large jellyfish, an important, but overlooked component in most ecosystem models to date.

  13. ASAS Centennial Paper: Future needs of research and extension in forage utilization.

    PubMed

    Rouquette, F M; Redmon, L A; Aiken, G E; Hill, G M; Sollenberger, L E; Andrae, J

    2009-01-01

    Forage-animal production agriculture is implementing infrastructure changes and management strategies to adjust to increased energy-related costs of fuel, feed grains, fertilizers, and seeds. The primary objectives of this position paper are to assess future research and extension scientific needs in forage utilization, financial support for the discipline, and changing status and number of scientists. A survey questionnaire returned from 25 land-grant universities in the eastern half of the United States rated the top 4 research needs as 1) pasture systems and efficiency of production; 2) interfacing with energy concerns; 3) forage cultivar evaluations and persistence; and 4) environment impacts. Plant-animal future research needs at 11 USDA-ARS regional locations are targeted at sustainable management and improved livestock performance, ecophysiology and ecology of grasslands, environment impacts, and improved technologies for nutritive value assessments. Extension scientists from 17 southern and northeastern states listed the top 3 needs as forage persistence, soil fertility and nutrient management, and pasture systems and efficiency of production. Grant funds currently provide more than 40% of land-grant university research and extension efforts in forage utilization, and scientists estimate that this support base will increase to 55 to 60% of the funding total by 2013. Reduced allocation of state and federal funding has contributed to a reduction in the number of full-time equivalent (FTE) scientists engaged in forage utilization research and extension activities. The current 25 state FTE conducting research number about 2.8 per state. This includes 10 states with >3, 11 states with <2, and 3 states with <1 FTE. Increased interest in cellulosic energy, climate change, and environmental impact may offer new opportunities for these FTE to participate in integrated cross-discipline research Extension programming, and technology transfer methods will change to accommodate reduced funding but with increasing numbers of novice, recreation-oriented landowners.

  14. Effects of neonicotinoid imidacloprid exposure on bumble bee (Hymenoptera: Apidae) queen survival and nest initiation.

    PubMed

    Wu-Smart, Judy; Spivak, Marla

    2018-02-08

    Neonicotinoids are highly toxic to insects and may systemically translocate to nectar and pollen of plants where foraging bees may become exposed. Exposure to neonicotinoids can induce detrimental sublethal effects on individual and colonies of bees and may have long-term impacts, such as impaired foraging, reduced longevity, and reduced brood care or production. Less well-studied are the potential effects on queen bumble bees that may become exposed while foraging in the spring during colony initiation. This study assessed queen survival and nest founding in caged bumble bees [Bombus impatiens (Cresson) (Hymenoptera: Apidae)] after chronic (18-d) dietary exposure of imidacloprid in syrup (1, 5, 10, and 25 ppb) and pollen (0.3, 1.7, 3.3, and 8.3 ppb), paired respectively. Here we show some mortality in queens exposed at all doses even as low as 1 ppb, and, compared with untreated queens, significantly reduced survival of treated queens at the two highest doses. Queens that survived initial imidacloprid exposure commenced nest initiation; however, they exhibited dose-dependent delay in egg-laying and emergence of worker brood. Furthermore, imidacloprid treatment affected other parameters such as nest and queen weight. This study is the first to show direct impacts of imidacloprid at field-relevant levels on individual B. impatiens queen survival and nest founding, indicating that bumble bee queens are particularly sensitive to neonicotinoids when directly exposed. This study also helps focus pesticide risk mitigation efforts and highlights the importance of reducing exposure rates in the early spring when bumble bee queens, and other wild bees are foraging and initiating nests. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. A negative feedback signal that is triggered by peril curbs honey bee recruitment.

    PubMed

    Nieh, James C

    2010-02-23

    Decision making in superorganisms such as honey bee colonies often uses self-organizing behaviors, feedback loops that allow the colony to gather information from multiple individuals and achieve reliable and agile solutions. Honey bees use positive feedback from the waggle dance to allocate colony foraging effort. However, the use of negative feedback signals by superorganisms is poorly understood. I show that conspecific attacks at a food source lead to the production of stop signals, communication that was known to reduce waggle dancing and recruitment but lacked a clear natural trigger. Signalers preferentially targeted nestmates visiting the same food source, on the basis of its odor. During aggressive food competition, attack victims increased signal production by 43 fold. Foragers that attacked competitors or experienced no aggression did not alter signal production. Biting ambush predators also attack foragers at flowers. Simulated biting of foragers or exposure to bee alarm pheromone also elicited signaling (88-fold and 14-fold increases, respectively). This provides the first clear evidence of a negative feedback signal elicited by foraging peril to counteract the positive feedback of the waggle dance. As in intra- and intercellular communication, negative feedback may play an important, though currently underappreciated, role in self-organizing behaviors within superorganisms. Copyright 2010 Elsevier Ltd. All rights reserved.

  16. Yellowjackets use nest-based cues to differentially exploit higher-quality resources

    NASA Astrophysics Data System (ADS)

    Taylor, Benjamin J.; Schalk, Dane R.; Jeanne, Robert L.

    2010-12-01

    While foraging, social insects encounter a dynamic array of food resources of varying quality and profitability. Because food acquisition influences colony growth and fitness, natural selection can be expected to favor colonies that allocate their overall foraging effort so as to maximize their intake of high-quality nutrients. Social wasps lack recruitment communication, but previous studies of vespine wasps have shown that olfactory cues influence foraging decisions. Odors associated with food brought into the nest by successful foragers prompt naive foragers to leave the nest and search for the source of those odors. Left unanswered, however, is the question of whether naive foragers take food quality into account in making their decisions about whether or not to search. In this study, two different concentrations of sucrose solutions, scented differently, were inserted directly into each of three Vespula germanica nests. At a feeder away from the nest, arriving foragers were given a choice between two 1.5 M sucrose solutions with the same scents as those in the nest. We show that wasps chose higher-quality resources in the field using information in the form of intranidal food-associated odor cues. By this simple mechanism, the colony can bias the allocation of its foraging effort toward higher-quality resources in the environment.

  17. Silage review: Mycotoxins in silage: Occurrence, effects, prevention, and mitigation.

    PubMed

    Ogunade, I M; Martinez-Tuppia, C; Queiroz, O C M; Jiang, Y; Drouin, P; Wu, F; Vyas, D; Adesogan, A T

    2018-05-01

    Ensiled forage, particularly corn silage, is an important component of dairy cow diets worldwide. Forages can be contaminated with several mycotoxins in the field pre-harvest, during storage, or after ensiling during feed-out. Exposure to dietary mycotoxins adversely affects the performance and health of livestock and can compromise human health. Several studies and surveys indicate that ruminants are often exposed to mycotoxins such as aflatoxins, trichothecenes, ochratoxin A, fumonisins, zearalenone, and many other fungal secondary metabolites, via the silage they ingest. Problems associated with mycotoxins in silage can be minimized by preventing fungal growth before and after ensiling. Proper silage management is essential to reduce mycotoxin contamination of dairy cow feeds, and certain mold-inhibiting chemical additives or microbial inoculants can also reduce the contamination levels. Several sequestering agents also can be added to diets to reduce mycotoxin levels, but their efficacy varies with the type and level of mycotoxin contamination. This article gives an overview of the types, prevalence, and levels of mycotoxin contamination in ensiled forages in different countries, and describes their adverse effects on health of ruminants, and effective prevention and mitigation strategies for dairy cow diets. Future research priorities discussed include research efforts to develop silage additives or rumen microbial innocula that degrade mycotoxins. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Effects of the juvenile hormone analogue methoprene on rate of behavioural development, foraging performance and navigation in honey bees (Apis mellifera).

    PubMed

    Chang, Lun-Hsien; Barron, Andrew B; Cheng, Ken

    2015-06-01

    Worker honey bees change roles as they age as part of a hormonally regulated process of behavioural development that ends with a specialised foraging phase. The rate of behavioural development is highly plastic and responsive to changes in colony condition such that forager losses, disease or nutritional stresses accelerate behavioural development and cause an early onset of foraging in workers. It is not clear to what degree the behavioural development of workers can be accelerated without there being a cost in terms of reduced foraging performance. Here, we compared the foraging performance of bees induced to accelerate their behavioural development by treatment with the juvenile hormone analogue methoprene with that of controls that developed at a normal rate. Methoprene treatment accelerated the onset of both flight and foraging behaviour in workers, but it also reduced foraging span, the total time spent foraging and the number of completed foraging trips. Methoprene treatment did not alter performance in a short-range navigation task, however. These data indicate a limitation to the physiological plasticity of bees, and a trade off between forager performance and the speed at which bees begin foraging. Chronic stressors will be expected to reduce the mean age of the foraging force, and therefore also reduce the efficiency of the foraging force. This interaction may explain why honey bee colonies react to sustained stressors with non-linear population decline. © 2015. Published by The Company of Biologists Ltd.

  19. Assessing Social – Ecological Trade-Offs to Advance Ecosystem-Based Fisheries Management

    PubMed Central

    Voss, Rudi; Quaas, Martin F.; Schmidt, Jörn O.; Tahvonen, Olli; Lindegren, Martin; Möllmann, Christian

    2014-01-01

    Modern resource management faces trade-offs in the provision of various ecosystem goods and services to humanity. For fisheries management to develop into an ecosystem-based approach, the goal is not only to maximize economic profits, but to consider equally important conservation and social equity goals. We introduce such a triple-bottom line approach to the management of multi-species fisheries using the Baltic Sea as a case study. We apply a coupled ecological-economic optimization model to address the actual fisheries management challenge of trading-off the recovery of collapsed cod stocks versus the health of ecologically important forage fish populations. Management strategies based on profit maximization would rebuild the cod stock to high levels but may cause the risk of stock collapse for forage species with low market value, such as Baltic sprat (Fig. 1A). Economically efficient conservation efforts to protect sprat would be borne almost exclusively by the forage fishery as sprat fishing effort and profits would strongly be reduced. Unless compensation is paid, this would challenge equity between fishing sectors (Fig. 1B). Optimizing equity while respecting sprat biomass precautionary levels would reduce potential profits of the overall Baltic fishery, but may offer an acceptable balance between overall profits, species conservation and social equity (Fig. 1C). Our case study shows a practical example of how an ecosystem-based fisheries management will be able to offer society options to solve common conflicts between different resource uses. Adding equity considerations to the traditional trade-off between economy and ecology will greatly enhance credibility and hence compliance to management decisions, a further footstep towards healthy fish stocks and sustainable fisheries in the world ocean. PMID:25268117

  20. Pronounced Seasonal Changes in the Movement Ecology of a Highly Gregarious Central-Place Forager, the African Straw-Coloured Fruit Bat (Eidolon helvum)

    PubMed Central

    Fahr, Jakob; Abedi-Lartey, Michael; Esch, Thomas; Machwitz, Miriam; Suu-Ire, Richard; Wikelski, Martin; Dechmann, Dina K. N.

    2015-01-01

    Background Straw-coloured fruit bats (Eidolon helvum) migrate over vast distances across the African continent, probably following seasonal bursts of resource availability. This causes enormous fluctuations in population size, which in turn may influence the bats’ impact on local ecosystems. We studied the movement ecology of this central-place forager with state-of-the-art GPS/acceleration loggers and concurrently monitored the seasonal fluctuation of the colony in Accra, Ghana. Habitat use on the landscape scale was assessed with remote sensing data as well as ground-truthing of foraging areas. Principal Findings During the wet season population low (~ 4000 individuals), bats foraged locally (3.5–36.7 km) in urban areas with low tree cover. Major food sources during this period were fruits of introduced trees. Foraging distances almost tripled (24.1–87.9 km) during the dry season population peak (~ 150,000 individuals), but this was not compensated for by reduced resting periods. Dry season foraging areas were random with regard to urban footprint and tree cover, and food consisted almost exclusively of nectar and pollen of native trees. Conclusions and Significance Our study suggests that straw-coloured fruit bats disperse seeds in the range of hundreds of meters up to dozens of kilometres, and pollinate trees for up to 88 km. Straw-coloured fruit bats forage over much larger distances compared to most other Old World fruit bats, thus providing vital ecosystem services across extensive landscapes. We recommend increased efforts aimed at maintaining E. helvum populations throughout Africa since their keystone role in various ecosystems is likely to increase due to the escalating loss of other seed dispersers as well as continued urbanization and habitat fragmentation. PMID:26465139

  1. Pronounced Seasonal Changes in the Movement Ecology of a Highly Gregarious Central-Place Forager, the African Straw-Coloured Fruit Bat (Eidolon helvum).

    PubMed

    Fahr, Jakob; Abedi-Lartey, Michael; Esch, Thomas; Machwitz, Miriam; Suu-Ire, Richard; Wikelski, Martin; Dechmann, Dina K N

    2015-01-01

    Straw-coloured fruit bats (Eidolon helvum) migrate over vast distances across the African continent, probably following seasonal bursts of resource availability. This causes enormous fluctuations in population size, which in turn may influence the bats' impact on local ecosystems. We studied the movement ecology of this central-place forager with state-of-the-art GPS/acceleration loggers and concurrently monitored the seasonal fluctuation of the colony in Accra, Ghana. Habitat use on the landscape scale was assessed with remote sensing data as well as ground-truthing of foraging areas. During the wet season population low (~ 4000 individuals), bats foraged locally (3.5-36.7 km) in urban areas with low tree cover. Major food sources during this period were fruits of introduced trees. Foraging distances almost tripled (24.1-87.9 km) during the dry season population peak (~ 150,000 individuals), but this was not compensated for by reduced resting periods. Dry season foraging areas were random with regard to urban footprint and tree cover, and food consisted almost exclusively of nectar and pollen of native trees. Our study suggests that straw-coloured fruit bats disperse seeds in the range of hundreds of meters up to dozens of kilometres, and pollinate trees for up to 88 km. Straw-coloured fruit bats forage over much larger distances compared to most other Old World fruit bats, thus providing vital ecosystem services across extensive landscapes. We recommend increased efforts aimed at maintaining E. helvum populations throughout Africa since their keystone role in various ecosystems is likely to increase due to the escalating loss of other seed dispersers as well as continued urbanization and habitat fragmentation.

  2. In-hive patterns of temporal polyethism in strains of honey bees (Apis mellifera) with distinct genetic backgrounds.

    PubMed

    Siegel, Adam J; Fondrk, M Kim; Amdam, Gro V; Page, Robert E

    2013-01-01

    Honey bee workers exhibit an age-based division of labor (temporal polyethism, DOL). Younger bees transition through sets of tasks within the nest; older bees forage outside. Components of temporal polyethism remain unrevealed. Here, we investigate the timing and pattern of pre-foraging behavior in distinct strains of bees to (1) determine if a general pattern of temporal DOL exists in honey bees, (2) to demonstrate a direct genetic impact on temporal pacing, and (3) to further elucidate the mechanisms controlling foraging initiation. Honey bees selected for differences in stored pollen demonstrate consistent differences in foraging initiation age. Those selected for increased pollen storage (high pollen hoarding strain, HSBs) initiate foraging earlier in life than those selected for decreased pollen storage (low pollen hoarding strain, LSBs). We found that HSBs both initiate and terminate individual pre-foraging tasks earlier than LSBs when housed in a common hive environment. Unselected commercial bees (wild type) generally demonstrated intermediate behavioral timing. There were few differences between genotypes for the proportion of pre-foraging effort dedicated to individual tasks, though total pre-foraging effort differences differed dramatically. This demonstrates that behavioral pacing can be accelerated or slowed, but the pattern of behavior is not fundamentally altered, suggesting a general pattern of temporal behavior in honey bees. This also demonstrates direct genetic control of temporal pacing. Finally, our results suggest that earlier HSB protein (pollen) consumption termination compared to LSBs may contribute to an earlier decline in hemolymph vitellogenin protein titers, which would explain their earlier onset of foraging.

  3. Plant toxicity, adaptive herbivory, and plant community dynamics

    USGS Publications Warehouse

    Feng, Z.; Liu, R.; DeAngelis, D.L.; Bryant, J.P.; Kielland, K.; Stuart, Chapin F.; Swihart, R.K.

    2009-01-01

    We model effects of interspecific plant competition, herbivory, and a plant's toxic defenses against herbivores on vegetation dynamics. The model predicts that, when a generalist herbivore feeds in the absence of plant toxins, adaptive foraging generally increases the probability of coexistence of plant species populations, because the herbivore switches more of its effort to whichever plant species is more common and accessible. In contrast, toxin-determined selective herbivory can drive plant succession toward dominance by the more toxic species, as previously documented in boreal forests and prairies. When the toxin concentrations in different plant species are similar, but species have different toxins with nonadditive effects, herbivores tend to diversify foraging efforts to avoid high intakes of any one toxin. This diversification leads the herbivore to focus more feeding on the less common plant species. Thus, uncommon plants may experience depensatory mortality from herbivory, reducing local species diversity. The depensatory effect of herbivory may inhibit the invasion of other plant species that are more palatable or have different toxins. These predictions were tested and confirmed in the Alaskan boreal forest. ?? 2009 Springer Science+Business Media, LLC.

  4. Time limits during visual foraging reveal flexible working memory templates.

    PubMed

    Kristjánsson, Tómas; Thornton, Ian M; Kristjánsson, Árni

    2018-06-01

    During difficult foraging tasks, humans rarely switch between target categories, but switch frequently during easier foraging. Does this reflect fundamental limits on visual working memory (VWM) capacity or simply strategic choice due to effort? Our participants performed time-limited or unlimited foraging tasks where they tapped stimuli from 2 target categories while avoiding items from 2 distractor categories. These time limits should have no effect if capacity imposes limits on VWM representations but more flexible VWM could allow observers to use VWM according to task demands in each case. We found that with time limits, participants switched more frequently and switch-costs became much smaller than during unlimited foraging. Observers can therefore switch between complex (conjunction) target categories when needed. We propose that while maintaining many complex templates in working memory is effortful and observers avoid this, they can do so if this fits task demands, showing the flexibility of working memory representations used for visual exploration. This is in contrast with recent proposals, and we discuss the implications of these findings for theoretical accounts of working memory. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  5. Forage accumulation and nutritive value of reduced lignin and reference alfalfa cultivars

    USDA-ARS?s Scientific Manuscript database

    Reduced lignin alfalfa (Medicago sativa L.) cultivars have the potential to increase the feeding value of alfalfa for livestock by improving the forage fiber digestibility and to increase harvest management flexibility. The objectives were to compare the yield and forage nutritive value of reduced ...

  6. Spatial Heterogeneity in the Strength of Plant-Herbivore Interactions under Predation Risk: The Tale of Bison Foraging in Wolf Country

    PubMed Central

    Harvey, Léa; Fortin, Daniel

    2013-01-01

    Spatial heterogeneity in the strength of trophic interactions is a fundamental property of food web spatial dynamics. The feeding effort of herbivores should reflect adaptive decisions that only become rewarding when foraging gains exceed 1) the metabolic costs, 2) the missed opportunity costs of not foraging elsewhere, and 3) the foraging costs of anti-predator behaviour. Two aspects of these costs remain largely unexplored: the link between the strength of plant-herbivore interactions and the spatial scale of food-quality assessment, and the predator-prey spatial game. We modeled the foraging effort of free-ranging plains bison (Bison bison bison) in winter, within a mosaic of discrete meadows. Spatial patterns of bison herbivory were largely driven by a search for high net energy gains and, to a lesser degree, by the spatial game with grey wolves (Canis lupus). Bison decreased local feeding effort with increasing metabolic and missed opportunity costs. Bison herbivory was most consistent with a broad-scale assessment of food patch quality, i.e., bison grazed more intensively in patches with a low missed opportunity cost relative to other patches available in the landscape. Bison and wolves had a higher probability of using the same meadows than expected randomly. This co-occurrence indicates wolves are ahead in the spatial game they play with bison. Wolves influenced bison foraging at fine scale, as bison tended to consume less biomass at each feeding station when in meadows where the risk of a wolf's arrival was relatively high. Also, bison left more high-quality vegetation in large than small meadows. This behavior does not maximize their energy intake rate, but is consistent with bison playing a shell game with wolves. Our assessment of bison foraging in a natural setting clarifies the complex nature of plant-herbivore interactions under predation risk, and reveals how spatial patterns in herbivory emerge from multi-scale landscape heterogeneity. PMID:24039909

  7. Corticosterone predicts foraging behavior and parental care in macaroni penguins.

    PubMed

    Crossin, Glenn T; Trathan, Phil N; Phillips, Richard A; Gorman, Kristen B; Dawson, Alistair; Sakamoto, Kentaro Q; Williams, Tony D

    2012-07-01

    Corticosterone has received considerable attention as the principal hormonal mediator of allostasis or physiological stress in wild animals. More recently, it has also been implicated in the regulation of parental care in breeding birds, particularly with respect to individual variation in foraging behavior and provisioning effort. There is also evidence that prolactin can work either inversely or additively with corticosterone to achieve this. Here we test the hypothesis that endogenous corticosterone plays a key physiological role in the control of foraging behavior and parental care, using a combination of exogenous corticosterone treatment, time-depth telemetry, and physiological sampling of female macaroni penguins (Eudyptes chrysolophus) during the brood-guard period of chick rearing, while simultaneously monitoring patterns of prolactin secretion. Plasma corticosterone levels were significantly higher in females given exogenous implants relative to those receiving sham implants. Increased corticosterone levels were associated with significantly higher levels of foraging and diving activity and greater mass gain in implanted females. Elevated plasma corticosterone was also associated with an apparent fitness benefit in the form of increased chick mass. Plasma prolactin levels did not correlate with corticosterone levels at any time, nor was prolactin correlated with any measure of foraging behavior or parental care. Our results provide support for the corticosterone-adaptation hypothesis, which predicts that higher corticosterone levels support increased foraging activity and parental effort.

  8. Parents are a drag: long-lived birds share the cost of increased foraging effort with their offspring, but males pass on more of the costs than females.

    PubMed

    Jacobs, Shoshanah R; Elliott, Kyle Hamish; Gaston, Anthony J

    2013-01-01

    Life history theory predicts that parents will balance benefits from investment in current offspring against benefits from future reproductive investments. Long-lived organisms are therefore less likely to increase parental effort when environmental conditions deteriorate. To investigate the effect of decreased foraging capacity on parental behaviour of long-lived monogamous seabirds, we experimentally increased energy costs for chick-rearing thick-billed murres (Uria lomvia). Handicapped birds had lighter chicks and lower provisioning rates, supporting the prediction that long-lived animals would pass some of the costs of impaired foraging ability on to their offspring. Nonetheless, handicapped birds spent less time underwater, had longer inter-dive surface intervals, had lower body mass, showed lower resighting probabilities in subsequent years and consumed fewer risky prey items. Corticosterone levels were similar between control and handicapped birds. Apparently, adults shared some of the costs of impaired foraging, but those costs were not measurable in all metrics. Handicapped males had higher plasma neutral lipid concentrations (higher energy mobilisation) and their chicks exhibited lower growth rates than handicapped females, suggesting different sex-specific investment strategies. Unlike other studies of auks, partners did not compensate for handicapping, despite good foraging conditions for unhandicapped birds. In conclusion, parental murres and their offspring shared the costs of experimentally increased foraging constraints, with females investing more than males.

  9. Parents are a Drag: Long-Lived Birds Share the Cost of Increased Foraging Effort with Their Offspring, but Males Pass on More of the Costs than Females

    PubMed Central

    Jacobs, Shoshanah R.; Elliott, Kyle Hamish; Gaston, Anthony J.

    2013-01-01

    Life history theory predicts that parents will balance benefits from investment in current offspring against benefits from future reproductive investments. Long-lived organisms are therefore less likely to increase parental effort when environmental conditions deteriorate. To investigate the effect of decreased foraging capacity on parental behaviour of long-lived monogamous seabirds, we experimentally increased energy costs for chick-rearing thick-billed murres (Uria lomvia). Handicapped birds had lighter chicks and lower provisioning rates, supporting the prediction that long-lived animals would pass some of the costs of impaired foraging ability on to their offspring. Nonetheless, handicapped birds spent less time underwater, had longer inter-dive surface intervals, had lower body mass, showed lower resighting probabilities in subsequent years and consumed fewer risky prey items. Corticosterone levels were similar between control and handicapped birds. Apparently, adults shared some of the costs of impaired foraging, but those costs were not measurable in all metrics. Handicapped males had higher plasma neutral lipid concentrations (higher energy mobilisation) and their chicks exhibited lower growth rates than handicapped females, suggesting different sex-specific investment strategies. Unlike other studies of auks, partners did not compensate for handicapping, despite good foraging conditions for unhandicapped birds. In conclusion, parental murres and their offspring shared the costs of experimentally increased foraging constraints, with females investing more than males. PMID:23382921

  10. Restoration through eradication? Removal of an invasive bioengineer restores some habitat function for a native predator.

    PubMed

    Holsman, Kirstin K; McDonald, P Sean; Barreyro, Pablo A; Armstrong, David A

    2010-12-01

    Invasive aquatic macrophytes increase structural complexity in recipient systems and alter trophic and physical resources; thus, eradication programs that remove plant structure have potential to restore some impaired ecological functions. In this study we evaluate how an invasive ecosystem engineer, Atlantic smooth cordgrass (Spartina alterniflora), interferes with the movement and foraging activity of a mobile predator, Dungeness crab (Cancer magister), and whether removal of aboveground cordgrass structure rapidly reestablishes access to foraging habitats. By 2004, smooth cordgrass had invaded >25% of crab foraging habitat in Willapa Bay, Washington (USA), and transformed it into a highly structured landscape. However, by 2007 successful eradication efforts had eliminated most meadows of the cordgrass. In order to investigate the effect of smooth cordgrass on the habitat function of littoral areas for foraging crabs, we integrated field, laboratory, and statistical modeling approaches. We conducted trapping surveys at multiple sites and used a hierarchical model framework to examine patterns in catches prior to and following cordgrass removal (i.e., before-after control-impact design, BACI). Prior to eradication, catches of Dungeness crabs in unstructured habitats were 4-19 times higher than catches in adjacent patches of live cordgrass. In contrast, the results of post-eradication trapping in 2007 indicated similar catch rates of crabs in unstructured habitats and areas formerly invaded by the cordgrass. Subsequent laboratory experiments and video observations demonstrated that the rigid physical structure of smooth cordgrass shoots reduces the ability of Dungeness crabs to access prey resources and increases the risk of stranding. Taken together, these findings suggest that eliminating the structural complexity of invasive macrophytes may rapidly restore some ecological function (i.e., foraging area) for migratory predators like Dungeness crab. However, restoration of affected areas to a preinvasion state will also depend on long-term patterns of succession in invaded areas and the degree of persistence of physical changes that continue to alter biotic characteristics of the habitat. Our work highlights: (1) the efficacy of employing multiple methods of inquiry to evaluate causal relationships through mechanisms of interaction, and (2) the importance of targeting particular ecological functions when identifying both short- and long-term goals of restoration efforts.

  11. How well can we predict forage species occurrence and abundance?

    USDA-ARS?s Scientific Manuscript database

    As part of a larger effort focused on forage species production and management, we have been developing a statistical modeling approach to predict the probability of species occurrence and the abundance for Orchard Grass over the Northeast region of the United States using two selected statistical m...

  12. The costs of keeping cool in a warming world: implications of high temperatures for foraging, thermoregulation and body condition of an arid-zone bird.

    PubMed

    du Plessis, Katherine L; Martin, Rowan O; Hockey, Philip A R; Cunningham, Susan J; Ridley, Amanda R

    2012-10-01

    Recent mass mortalities of bats, birds and even humans highlight the substantial threats that rising global temperatures pose for endotherms. Although less dramatic, sublethal fitness costs of high temperatures may be considerable and result in changing population demographics. Endothermic animals exposed to high environmental temperatures can adjust their behaviour (e.g. reducing activity) or physiology (e.g. elevating rates of evaporative water loss) to maintain body temperatures within tolerable limits. The fitness consequences of these adjustments, in terms of the ability to balance water and energy budgets and therefore maintain body condition, are poorly known. We investigated the effects of daily maximum temperature on foraging and thermoregulatory behaviour as well as maintenance of body condition in a wild, habituated population of Southern Pied Babblers Turdoides bicolor. These birds inhabit a hot, arid area of southern Africa where they commonly experience environmental temperatures exceeding optimal body temperatures. Repeated measurements of individual behaviour and body mass were taken across days varying in maximum air temperature. Contrary to expectations, foraging effort was unaffected by daily maximum temperature. Foraging efficiency, however, was lower on hotter days and this was reflected in a drop in body mass on hotter days. When maximum air temperatures exceeded 35.5 °C, individuals no longer gained sufficient weight to counter typical overnight weight loss. This reduction in foraging efficiency is likely driven, in part, by a trade-off with the need to engage in heat-dissipation behaviours. When we controlled for temperature, individuals that actively dissipated heat while continuing to forage experienced a dramatic decrease in their foraging efficiency. This study demonstrates the value of investigations of temperature-dependent behaviour in the context of impacts on body condition, and suggests that increasingly high temperatures will have negative implications for the fitness of these arid-zone birds. © 2012 Blackwell Publishing Ltd.

  13. Habitat-specific foraging of prothonotary warblers: Deducing habitat quality

    USGS Publications Warehouse

    Lyons, J.E.

    2005-01-01

    Foraging behavior often reflects food availability in predictable ways. For example, in habitats where food availability is high, predators should attack prey more often and move more slowly than in habitats where food availability is low. To assess relative food availability and habitat quality, I studied the foraging behavior of breeding Prothonotary Warblers (Protonotaria citrea) in two forest habitat types, cypress-gum swamp forest and coastal-plain levee forest. I quantified foraging behavior with focal animal sampling and continuous recording during foraging bouts. I measured two aspects of foraging behavior: 1) prey attack rate (attacks per minute), using four attack maneuvers (glean, sally, hover, strike), and 2) foraging speed (movements per minute), using three types of movement (hop, short flight [???1 m], long flight [>1 m]). Warblers attacked prey more often in cypress-gum swamp forest than in coastal-plain levee forest. Foraging speed, however, was not different between habitats. I also measured foraging effort (% time spent foraging) and relative frequency of attack maneuvers employed in each habitat; neither of these variables was influenced by forest type. I conclude that Prothonotary Warblers encounter more prey when foraging in cypress-gum swamps than in coastal-plain levee forest, and that greater food availability results in higher density and greater reproductive success for birds breeding in cypress-gum swamp.

  14. New Developments in Forage Varieties

    USDA-ARS?s Scientific Manuscript database

    Forage crops harvested for hay or haylage or grazed support dairy, beef, sheep and horse production. Additional livestock production from reduced forage acreage supports the need for forage variety improvement. The Consortium for Alfalfa Improvement is a partnership model of government, private no...

  15. On salesmen and tourists: Two-step optimization in deterministic foragers

    NASA Astrophysics Data System (ADS)

    Maya, Miguel; Miramontes, Octavio; Boyer, Denis

    2017-02-01

    We explore a two-step optimization problem in random environments, the so-called restaurant-coffee shop problem, where a walker aims at visiting the nearest and better restaurant in an area and then move to the nearest and better coffee-shop. This is an extension of the Tourist Problem, a one-step optimization dynamics that can be viewed as a deterministic walk in a random medium. A certain amount of heterogeneity in the values of the resources to be visited causes the emergence of power-laws distributions for the steps performed by the walker, similarly to a Lévy flight. The fluctuations of the step lengths tend to decrease as a consequence of multiple-step planning, thus reducing the foraging uncertainty. We find that the first and second steps of each planned movement play very different roles in heterogeneous environments. The two-step process improves only slightly the foraging efficiency compared to the one-step optimization, at a much higher computational cost. We discuss the implications of these findings for animal and human mobility, in particular in relation to the computational effort that informed agents should deploy to solve search problems.

  16. 76 FR 43706 - Final Supplementary Rules To Require the Use of Certified Noxious-Weed-Free Forage and Straw on...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-21

    ... to use certified noxious-weed-free forage and straw. Restoration, rehabilitation, and stabilization... domestic ungulates, weaken rehabilitation and landscape restoration efforts, increase soil erosion and... consistent with and supportive of the statewide Conservation Plan for the Greater Sage- Grouse in Idaho...

  17. Seasonal regulation of condensed tannin consumption by free-ranging goats in a semi-arid savanna

    PubMed Central

    Heitkӧnig, Ignas M. A.; Scogings, Peter F.; Hattas, Dawood; Dziba, Luthando E.; Prins, Herbert H. T.; de Boer, Willem F.

    2018-01-01

    Although condensed tannins (CTs) are known to reduce forage intake by mammalian herbivores in controlled experiments, few studies have tested these effects in the field. Thus the role of CTs on foraging ecology of free-ranging herbivores is inadequately understood. To investigate the effects of CTs under natural savanna conditions, we pre-dosed groups of goats with polyethylene glycol (PEG, a CT-neutralising chemical), CT powder or water before observing their foraging behaviour. While accounting for the effects of season and time of the day, we tested the hypothesis that herbivores forage in ways that reduce the intake rate (g DM per minute) of CTs. We expected pre-dosing goats with CTs to reduce CT intake rates by (1) consuming diets low in CTs, (2) reducing bite rates, (3) increasing the number of foraging bouts, or (4) reducing the length of foraging bouts. Lastly, (5) expected CT to have no influence the number of dietary forage species. In both wet and dry seasons, pre-dosing goats with CTs resulted in lower CT consumption rates compared to PEG goats which seemed relieved from the stress associated with CT consumption. During dry season, the number of dietary forage species was similar across treatments, although goats that were dosed with PEG significantly increased this number in the wet season. Dosing goats with PEG increased the number and length of browsing bouts compared to goats from the other treatments. Pre-loading goats with PEG also tended to increase bite rates on browse forages, which contributed to increased consumption rates of CTs. Based on the behavioural adjustments made by goats in this study and within the constraints imposed by chemical complexity in savanna systems, we concluded that herbivores under natural conditions foraged in ways that minimised CTs consumption. More research should further elucidate the mechanism through which CTs regulated feeding behaviour. PMID:29293513

  18. Relationship between brain plasticity, learning and foraging performance in honey bees.

    PubMed

    Cabirol, Amélie; Cope, Alex J; Barron, Andrew B; Devaud, Jean-Marc

    2018-01-01

    Brain structure and learning capacities both vary with experience, but the mechanistic link between them is unclear. Here, we investigated whether experience-dependent variability in learning performance can be explained by neuroplasticity in foraging honey bees. The mushroom bodies (MBs) are a brain center necessary for ambiguous olfactory learning tasks such as reversal learning. Using radio frequency identification technology, we assessed the effects of natural variation in foraging activity, and the age when first foraging, on both performance in reversal learning and on synaptic connectivity in the MBs. We found that reversal learning performance improved at foraging onset and could decline with greater foraging experience. If bees started foraging before the normal age, as a result of a stress applied to the colony, the decline in learning performance with foraging experience was more severe. Analyses of brain structure in the same bees showed that the total number of synaptic boutons at the MB input decreased when bees started foraging, and then increased with greater foraging intensity. At foraging onset MB structure is therefore optimized for bees to update learned information, but optimization of MB connectivity deteriorates with foraging effort. In a computational model of the MBs sparser coding of information at the MB input improved reversal learning performance. We propose, therefore, a plausible mechanistic relationship between experience, neuroplasticity, and cognitive performance in a natural and ecological context.

  19. Sympatric cattle grazing and desert bighorn sheep foraging

    USGS Publications Warehouse

    Garrison, Kyle R.; Cain, James W.; Rominger, Eric M.; Goldstein, Elise J.

    2015-01-01

    Foraging behavior affects animal fitness and is largely dictated by the resources available to an animal. Understanding factors that affect forage resources is important for conservation and management of wildlife. Cattle sympatry is proposed to limit desert bighorn population performance, but few studies have quantified the effect of cattle foraging on bighorn forage resources or foraging behavior by desert bighorn. We estimated forage biomass for desert bighorn sheep in 2 mountain ranges: the cattle-grazed Caballo Mountains and the ungrazed San Andres Mountains, New Mexico. We recorded foraging bout efficiency of adult females by recording feeding time/step while foraging, and activity budgets of 3 age-sex classes (i.e., adult males, adult females, yearlings). We also estimated forage biomass at sites where bighorn were observed foraging. We expected lower forage biomass in the cattle-grazed Caballo range than in the ungrazed San Andres range and lower biomass at cattle-accessible versus inaccessible areas within the Caballo range. We predicted bighorn would be less efficient foragers in the Caballo range. Groundcover forage biomass was low in both ranges throughout the study (Jun 2012–Nov 2013). Browse biomass, however, was 4.7 times lower in the Caballo range versus the San Andres range. Bighorn in the Caballo range exhibited greater overall daily travel time, presumably to locate areas of higher forage abundance. By selecting areas with greater forage abundance, adult females in the Caballo range exhibited foraging bout efficiency similar to their San Andres counterparts but lower overall daily browsing time. We did not find a significant reduction in forage biomass at cattle-accessible areas in the Caballo range. Only the most rugged areas in the Caballo range had abundant forage, potentially a result of intensive historical livestock use in less rugged areas. Forage conditions in the Caballo range apparently force bighorn to increase foraging effort by feeding only in areas where adequate forage remains.

  20. Elevated CO2 induces substantial and persistent declines in forage quality irrespective of warming in mixedgrass prairie.

    PubMed

    Augustine, David J; Blumenthal, Dana M; Springer, Tim L; LeCain, Daniel R; Gunter, Stacey A; Derner, Justin D

    2018-04-01

    Increasing atmospheric [CO 2 ] and temperature are expected to affect the productivity, species composition, biogeochemistry, and therefore the quantity and quality of forage available to herbivores in rangeland ecosystems. Both elevated CO 2 (eCO 2 ) and warming affect plant tissue chemistry through multiple direct and indirect pathways, such that the cumulative outcomes of these effects are difficult to predict. Here, we report on a 7-yr study examining effects of CO 2 enrichment (to 600 ppm) and infrared warming (+1.5°C day/3°C night) under realistic field conditions on forage quality and quantity in a semiarid, mixedgrass prairie. For the three dominant forage grasses, warming effects on in vitro dry matter digestibility (IVDMD) and tissue [N] were detected only in certain years, varied from negative to positive, and were relatively minor. In contrast, eCO 2 substantially reduced IVDMD (two most abundant grasses) and [N] (all three dominant grass species) in most years, except the two wettest years. Furthermore, eCO 2 reduced IVDMD and [N] independent of warming effects. Reduced IVDMD with eCO 2 was related both to reduced [N] and increased acid detergent fiber (ADF) content of grass tissues. For the six most abundant forage species (representing 96% of total forage production), combined warming and eCO 2 increased forage production by 38% and reduced forage [N] by 13% relative to ambient climate. Although the absolute magnitude of the decline in IVDMD and [N] due to combined warming and eCO 2 may seem small (e.g., from 63.3 to 61.1% IVDMD and 1.25 to 1.04% [N] for Pascopyrum smithii), such shifts could have substantial consequences for the rate at which ruminants gain weight during the primary growing season in the largest remaining rangeland ecosystem in North America. With forage production increases, declining forage quality could potentially be mitigated by adaptively increasing stocking rates, and through management such as prescribed burning, fertilization at low rates, and legume interseeding to enhance forage quality. © 2018 by the Ecological Society of America.

  1. Characterization of winter foraging locations of Adélie penguins along the Western Antarctic Peninsula, 2001-2002

    NASA Astrophysics Data System (ADS)

    Erdmann, Eric S.; Ribic, Christine A.; Patterson-Fraser, Donna L.; Fraser, William R.

    2011-07-01

    In accord with the hypotheses driving the Southern Ocean Global Ocean Ecosystems Dynamics (SO GLOBEC) program, we tested the hypothesis that the winter foraging ecology of a major top predator in waters off the Western Antarctic Peninsula (WAP), the Adélie penguin ( Pygoscelis adeliae), is constrained by oceanographic features related to the physiography of the region. This hypothesis grew from the supposition that breeding colonies in the WAP during summer are located adjacent to areas of complex bathymetry where circulation and upwelling processes appear to ensure predictable food resources. Therefore, we tested the additional hypothesis that these areas continue to contribute to the foraging strategy of this species throughout the non-breeding winter season. We used satellite telemetry data collected as part of the SO GLOBEC program during the austral winters of 2001 and 2002 to characterize individual penguin foraging locations in relation to bathymetry, sea ice variability within the pack ice, and wind velocity and divergence (as a proxy for potential areas with cracks and leads). We also explored differences between males and females in core foraging area overlap. Ocean depth was the most influential variable in the determination of foraging location, with most birds focusing their effort on shallow (<200 m) waters near land and on mixed-layer (200-500 m) waters near the edge of deep troughs. Within-ice variability and wind (as a proxy for potential areas with cracks and leads) were not found to be influential variables, which is likely because of the low resolution satellite imagery and model outputs that were available. Throughout the study period, all individuals maintained a core foraging area separated from other individuals with very little overlap. However, from a year with light sea ice to one with heavy ice cover (2001-2002), we observed an increase in the overlap of individual female foraging areas with those of other birds, likely due to restricted access to the water column, reduced prey abundance, or higher prey concentration. Male birds maintained separate core foraging areas with the same small amount of overlap, showing no difference in overlap between the years. While complex bathymetry was an important physical variable influencing the Adélie penguin's foraging, the analysis of sea ice data of a higher resolution than was available for this study may help elucidate the role of sea ice in affecting Adélie penguin winter foraging behavior within the pack ice.

  2. Characterization of winter foraging locations of Adélie penguins along the Western Antarctic Peninsula, 2001–2002

    USGS Publications Warehouse

    Erdmann, Eric S.; Ribic, Christine; Patterson-Fraser, Donna L.; Fraser, William R.

    2011-01-01

    In accord with the hypotheses driving the Southern Ocean Global Ocean Ecosystems Dynamics (SO GLOBEC) program, we tested the hypothesis that the winter foraging ecology of a major top predator in waters off the Western Antarctic Peninsula (WAP), the Adélie penguin (Pygoscelis adeliae), is constrained by oceanographic features related to the physiography of the region. This hypothesis grew from the supposition that breeding colonies in the WAP during summer are located adjacent to areas of complex bathymetry where circulation and upwelling processes appear to ensure predictable food resources. Therefore, we tested the additional hypothesis that these areas continue to contribute to the foraging strategy of this species throughout the non-breeding winter season. We used satellite telemetry data collected as part of the SO GLOBEC program during the austral winters of 2001 and 2002 to characterize individual penguin foraging locations in relation to bathymetry, sea ice variability within the pack ice, and wind velocity and divergence (as a proxy for potential areas with cracks and leads). We also explored differences between males and females in core foraging area overlap. Ocean depth was the most influential variable in the determination of foraging location, with most birds focusing their effort on shallow (<200 m) waters near land and on mixed-layer (200–500 m) waters near the edge of deep troughs. Within-ice variability and wind (as a proxy for potential areas with cracks and leads) were not found to be influential variables, which is likely because of the low resolution satellite imagery and model outputs that were available. Throughout the study period, all individuals maintained a core foraging area separated from other individuals with very little overlap. However, from a year with light sea ice to one with heavy ice cover (2001–2002), we observed an increase in the overlap of individual female foraging areas with those of other birds, likely due to restricted access to the water column, reduced prey abundance, or higher prey concentration. Male birds maintained separate core foraging areas with the same small amount of overlap, showing no difference in overlap between the years. While complex bathymetry was an important physical variable influencing the Adélie penguin's foraging, the analysis of sea ice data of a higher resolution than was available for this study may help elucidate the role of sea ice in affecting Adélie penguin winter foraging behavior within the pack ice.

  3. Season and landscape composition affect pollen foraging distances and habitat use of honey bees.

    PubMed

    Danner, Nadja; Molitor, Anna Maria; Schiele, Susanne; Härtel, Stephan; Steffan-Dewenter, Ingolf

    2016-09-01

    Honey bees (Apis mellifera L.) show a large variation in foraging distances and use a broad range of plant species as pollen resources, even in regions with intensive agriculture. However, it is unknown how increasing areas of mass-flowering crops like oilseed rape (Brassica napus; OSR) or a decrease of seminatural habitats (SNH) change the temporal and spatial availability of pollen resources for honey bee colonies, and thus foraging distances and frequency in different habitat types. We studied pollen foraging of honey bee colonies in 16 agricultural landscapes with independent gradients of OSR and SNH area within 2 km and used waggle dances and digital geographic maps with major land cover types to reveal the distance and visited habitat type on a landscape level. Mean pollen foraging distance of 1347 decoded bee dances was 1015 m (± 26 m; SEM). In spring, increasing area of flowering OSR within 2 km reduced mean pollen foraging distances from 1324 m to only 435 m. In summer, increasing cover of SNH areas close to the colonies (within 200 m radius) reduced mean pollen foraging distances from 846 to 469 m. Frequency of pollen foragers per habitat type, measured as the number of dances per hour and hectare, was equally high for SNH, grassland, and OSR fields, but lower for other crops and forests. In landscapes with a small proportion of SNH a significantly higher density of pollen foragers on SNH was observed, indicating that pollen resources in such simple agricultural landscapes are more limited. Overall, we conclude that SNH and mass-flowering crops can reduce foraging distances of honey bee colonies at different scales and seasons with possible benefits for the performance of honey bee colonies. Further, mixed agricultural landscapes with a high proportion of SNH reduce foraging densities of honey bees in SNH and thus possible competition for pollen resources. © 2016 by the Ecological Society of America.

  4. Survival of adult murres and kittiwakes in relation to forage fish abundance

    USGS Publications Warehouse

    Piatt, John F.

    2000-01-01

    Some seabird populations damaged by the Exxon Valdez oil spill continue to decline or are not recovering. In order to understand the ultimate cause of seabird population fluctuations, we must measure productivity, recruitment, and adult survival. Recent APEX studies focused on measuring productivity only. Recruitment measurement demands an unrealistic study duration. We propose to augment current studies in lower Cook Inlet that relate breeding success and foraging effort to fluctuations in forage fish density by using banding and resighting to quantify the survival of adult common murres and black-legged kittiwakes.

  5. Foraging behavior of lactating South American sea lions (Otaria flavescens) and spatial-temporal resource overlap with the Uruguayan fisheries

    NASA Astrophysics Data System (ADS)

    Riet-Sapriza, Federico G.; Costa, Daniel P.; Franco-Trecu, Valentina; Marín, Yamandú; Chocca, Julio; González, Bernardo; Beathyate, Gastón; Louise Chilvers, B.; Hückstadt, Luis A.

    2013-04-01

    Resource competition between fisheries and marine mammal continue to raise concern worldwide. Understanding this complex conflict requires data on spatial and dietary overlap of marine mammal and fisheries. In Uruguay the South American sea lions population has been dramatically declining over the past decade. The reasons for this population decline are unknown but may include the following: (1) direct harvesting; (2) reduced prey availability and distribution as a consequence of environmental change; or (3) biological interaction with fisheries. This study aims to determine resource overlap and competition between South American sea lions (SASL, Otaria flavescens, n=10) and the artisanal fisheries (AF), and the coastal bottom trawl fisheries (CBTF). We integrated data on sea lions diet (scat analysis), spatial and annual consumption estimates; and foraging behavior-satellite-tracking data from lactating SASL with data on fishing effort areas and fisheries landings. We found that lactating SASL are benthic divers and forage in shallow water within the continental shelf. SASL's foraging areas overlapped with CBTF and AF fisheries operational areas. Dietary analysis indicated a high degree of overlap between the diet of SASL and the AF and CBTF fisheries catch. The results of our work show differing degrees of spatial resource overlap with AF and CBTF, highlighting that there are differences in potential impact from each fishery; and that different management/conservation approaches may need to be taken to solve the fisheries-SASL conflict.

  6. Deep-water feeding and behavioral plasticity in Manta birostris revealed by archival tags and submersible observations.

    PubMed

    Stewart, Joshua D; Hoyos-Padilla, Edgar Mauricio; Kumli, Katherine R; Rubin, Robert D

    2016-10-01

    Foraging drives many fundamental aspects of ecology, and an understanding of foraging behavior aids in the conservation of threatened species by identifying critical habitats and spatial patterns relevant to management. The world's largest ray, the oceanic manta (Manta birostris) is poorly studied and threatened globally by targeted fisheries and incidental capture. Very little information is available on the natural history, ecology and behavior of the species, complicating management efforts. This study provides the first data on the diving behavior of the species based on data returned from six tagged individuals, and an opportunistic observation from a submersible of a manta foraging at depth. Pop-off archival satellite tags deployed on mantas at the Revillagigedo Archipelago, Mexico recorded seasonal shifts in diving behavior, likely related to changes in the location and availability of zooplankton prey. Across seasons, mantas spent a large proportion of their time centered around the upper limit of the thermocline, where zooplankton often aggregate. Tag data reveal a gradual activity shift from surface waters to 100-150m across the tagging period, possibly indicating a change in foraging behavior from targeting surface-associated zooplankton to vertical migrators. The depth ranges accessed by mantas in this study carry variable bycatch risks from different fishing gear types. Consequently, region-specific data on diving behavior can help inform local management strategies that reduce or mitigate bycatch of this vulnerable species. Copyright © 2016 Elsevier GmbH. All rights reserved.

  7. Floral Resource Competition Between Honey Bees and Wild Bees: Is There Clear Evidence and Can We Guide Management and Conservation?

    PubMed

    Wojcik, Victoria A; Morandin, Lora A; Davies Adams, Laurie; Rourke, Kelly E

    2018-06-05

    Supporting managed honey bees by pasturing in natural landscapes has come under review due to concerns that honey bees could negatively impact the survival of wild bees through competition for floral resources. Critique and assessment of the existing body of published literature against our criteria focussing on studies that can support best management resulted in 19 experimental papers. Indirect measures of competition examining foraging patterns and behavior yielded equivocal results. Direct measures of reproduction and growth were investigated in only seven studies, with six indicating negative impacts to wild bees from the presence of managed honey bees. Three of these studies examined fitness impacts to BombusLatreille and all three indicated reduced growth or reduced reproductive output. Because there is a severe lack of literature, yet potential that honey bee presence could negatively impact wild bees, exemplified with bumble bee studies, we advocate for further research into the fitness impacts of competition between managed and wild pollinators. Conservative approaches should be taken with respect to pasturing honey bees on natural lands with sensitive bumble bee populations. Correspondingly, forage opportunities for honey bees in managed, agricultural landscapes, should be increased in an effort to reduce potential pressure and infringement on wild bee populations in natural areas.

  8. Epidemiological models to control the spread of information in marine mammals.

    PubMed

    Schakner, Zachary A; Buhnerkempe, Michael G; Tennis, Mathew J; Stansell, Robert J; van der Leeuw, Bjorn K; Lloyd-Smith, James O; Blumstein, Daniel T

    2016-12-14

    Socially transmitted wildlife behaviours that create human-wildlife conflict are an emerging problem for conservation efforts, but also provide a unique opportunity to apply principles of infectious disease control to wildlife management. As an example, California sea lions (Zalophus californianus) have learned to exploit concentrations of migratory adult salmonids below the fish ladders at Bonneville Dam, impeding endangered salmonid recovery. Proliferation of this foraging behaviour in the sea lion population has resulted in a controversial culling programme of individual sea lions at the dam, but the impact of such culling remains unclear. To evaluate the effectiveness of current and alternative culling strategies, we used network-based diffusion analysis on a long-term dataset to demonstrate that social transmission is implicated in the increase in dam-foraging behaviour and then studied different culling strategies within an epidemiological model of the behavioural transmission data. We show that current levels of lethal control have substantially reduced the rate of social transmission, but failed to effectively reduce overall sea lion recruitment. Earlier implementation of culling could have substantially reduced the extent of behavioural transmission and, ultimately, resulted in fewer animals being culled. Epidemiological analyses offer a promising tool to understand and control socially transmissible behaviours. © 2016 The Author(s).

  9. Genetic diversity within honeybee colonies increases signal production by waggle-dancing foragers

    PubMed Central

    Mattila, Heather R; Burke, Kelly M; Seeley, Thomas D

    2008-01-01

    Recent work has demonstrated considerable benefits of intracolonial genetic diversity for the productivity of honeybee colonies: single-patriline colonies have depressed foraging rates, smaller food stores and slower weight gain relative to multiple-patriline colonies. We explored whether differences in the use of foraging-related communication behaviour (waggle dances and shaking signals) underlie differences in foraging effort of genetically diverse and genetically uniform colonies. We created three pairs of colonies; each pair had one colony headed by a multiply mated queen (inseminated by 15 drones) and one colony headed by a singly mated queen. For each pair, we monitored the production of foraging-related signals over the course of 3 days. Foragers in genetically diverse colonies had substantially more information available to them about food resources than foragers in uniform colonies. On average, in genetically diverse colonies compared with genetically uniform colonies, 36% more waggle dances were identified daily, dancers performed 62% more waggle runs per dance, foragers reported food discoveries that were farther from the nest and 91% more shaking signals were exchanged among workers each morning prior to foraging. Extreme polyandry by honeybee queens enhances the production of worker–worker communication signals that facilitate the swift discovery and exploitation of food resources. PMID:18198143

  10. Ultra-High Foraging Rates of Harbor Porpoises Make Them Vulnerable to Anthropogenic Disturbance.

    PubMed

    Wisniewska, Danuta Maria; Johnson, Mark; Teilmann, Jonas; Rojano-Doñate, Laia; Shearer, Jeanne; Sveegaard, Signe; Miller, Lee A; Siebert, Ursula; Madsen, Peter Teglberg

    2016-06-06

    The question of how individuals acquire and allocate resources to maximize fitness is central in evolutionary ecology. Basic information on prey selection, search effort, and capture rates are critical for understanding a predator's role in its ecosystem and for predicting its response to natural and anthropogenic disturbance. Yet, for most marine species, foraging interactions cannot be observed directly. The high costs of thermoregulation in water require that small marine mammals have elevated energy intakes compared to similar-sized terrestrial mammals [1]. The combination of high food requirements and their position at the apex of most marine food webs may make small marine mammals particularly vulnerable to changes within the ecosystem [2-4], but the lack of detailed information about their foraging behavior often precludes an informed conservation effort. Here, we use high-resolution movement and prey echo recording tags on five wild harbor porpoises to examine foraging interactions in one of the most metabolically challenged cetacean species. We report that porpoises forage nearly continuously day and night, attempting to capture up to 550 small (3-10 cm) fish prey per hour with a remarkable prey capture success rate of >90%. Porpoises therefore target fish that are smaller than those of commercial interest, but must forage almost continually to meet their metabolic demands with such small prey, leaving little margin for compensation. Thus, for these "aquatic shrews," even a moderate level of anthropogenic disturbance in the busy shallow waters they share with humans may have severe fitness consequences at individual and population levels. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. BILL E. KUNKLE INTERDISCIPLINARY BEEF SYMPOSIUM: A meta-analysis of research efforts aimed at reducing the impact of fescue toxicosis on cattle weight gain and feed intake.

    PubMed

    Gadberry, M S; Hawley, J; Beck, P A; Jennings, J A; Kegley, E B; Coffey, K P

    2015-12-01

    The objective of this paper is to present a systematic review and meta-analysis of research efforts aimed at recovering cattle production losses attributed to toxic endophyte-infected [ (Morgan-Jones & Gams.) Glenn, Bacon, & Hanlin comb. Nov.] tall fescue [ (Schreb.) Darbysh.]. The strategies presented include those 1) applied with forage systems, 2) based on pharmacological compounds and functional foods, and 3) based on supplemental dietary nutrients. Cattle BW gain and DM intake was the dependent response evaluated. Among the forage systems reviewed, studies with nontoxic, endophyte-infected tall fescue as a total replacement forage system demonstrated the greatest improvement in per-hectare (152 ± 27.5 kg/ha) and per-animal (0.29 ± 0.03 kg/d) BW gain. Studies with interseeded legumes have exhibited a small and highly variable BW gain effect size per hectare (52 ± 24.1 kg/ha) and per animal (0.11 ± 0.03 kg/d). The legume response was seasonal, with summer exhibiting the greatest benefit. Studies with chemicals that suppress plant growth demonstrated BW gain responses (0.17 ± 0.06 kg/d) equal to or greater than the response observed with legume studies. Cattle grazing toxic tall fescue responded well to anthelmentics, antimicrobial feed additives, and steroid implants, and the use of these technologies may additively help recover production losses. As a group, functional foods have not improved BW gain ( = 0.85). Studies with cattle supplemented with highly digestible fiber supplements observed a 0.15 kg greater BW gain compared with studies using starch- and sugar-based supplements ( < 0.05). Weight gain was positively impacted by the level of supplementation (0.06 kg/DM intake as percent BW). Supplement feed conversion was estimated at 6:1 for the highly digestible fiber supplements compared with 11:1 for starch-based supplements. Tall fescue forage DM intake was predicted to maximize at a supplemental feeding rate of 0.24% BW with a breakpoint at 0.5% BW, and total maximum DM intake (forage plus supplement) occurred at 2.7% BW when supplemental feeding approached 0.9% BW. Results from this meta-analysis should be useful for 1) establishing and comparing measured responses to theoretical improvements in BW gain when additive strategies are considered, 2) research planning, and 3) producer education.

  12. Spatiotemporal resource distribution and foraging strategies of ants (Hymenoptera: Formicidae)

    PubMed Central

    Lanan, Michele

    2014-01-01

    The distribution of food resources in space and time is likely to be an important factor governing the type of foraging strategy used by ants. However, no previous systematic attempt has been made to determine whether spatiotemporal resource distribution is in fact correlated with foraging strategy across the ants. In this analysis, I present data compiled from the literature on the foraging strategy and food resource use of 402 species of ants from across the phylogenetic tree. By categorizing the distribution of resources reported in these studies in terms of size relative to colony size, spatial distribution relative to colony foraging range, frequency of occurrence in time relative to worker life span, and depletability (i.e., whether the colony can cause a change in resource frequency), I demonstrate that different foraging strategies are indeed associated with specific spatiotemporal resource attributes. The general patterns I describe here can therefore be used as a framework to inform predictions in future studies of ant foraging behavior. No differences were found between resources collected via short-term recruitment strategies (group recruitment, short-term trails, and volatile recruitment), whereas different resource distributions were associated with solitary foraging, trunk trails, long-term trail networks, group raiding, and raiding. In many cases, ant species use a combination of different foraging strategies to collect diverse resources. It is useful to consider these foraging strategies not as separate options but as modular parts of the total foraging effort of a colony. PMID:25525497

  13. Interaction between Varroa destructor and imidacloprid reduces flight capacity of honeybees.

    PubMed

    Blanken, Lisa J; van Langevelde, Frank; van Dooremalen, Coby

    2015-12-07

    Current high losses of honeybees seriously threaten crop pollination. Whereas parasite exposure is acknowledged as an important cause of these losses, the role of insecticides is controversial. Parasites and neonicotinoid insecticides reduce homing success of foragers (e.g. by reduced orientation), but it is unknown whether they negatively affect flight capacity. We investigated how exposing colonies to the parasitic mite Varroa destructor and the neonicotinoid insecticide imidacloprid affect flight capacity of foragers. Flight distance, time and speed of foragers were measured in flight mills to assess the relative and interactive effects of high V. destructor load and a field-realistic, chronic sub-lethal dose of imidacloprid. Foragers from colonies exposed to high levels of V. destructor flew shorter distances, with a larger effect when also exposed to imidacloprid. Bee body mass partly explained our results as bees were heavier when exposed to these stressors, possibly due to an earlier onset of foraging. Our findings contribute to understanding of interacting stressors that can explain colony losses. Reduced flight capacity decreases the food-collecting ability of honeybees and may hamper the use of precocious foraging as a coping mechanism during colony (nutritional) stress. Ineffective coping mechanisms may lead to destructive cascading effects and subsequent colony collapse. © 2015 The Author(s).

  14. Interaction between Varroa destructor and imidacloprid reduces flight capacity of honeybees

    PubMed Central

    Blanken, Lisa J.; van Dooremalen, Coby

    2015-01-01

    Current high losses of honeybees seriously threaten crop pollination. Whereas parasite exposure is acknowledged as an important cause of these losses, the role of insecticides is controversial. Parasites and neonicotinoid insecticides reduce homing success of foragers (e.g. by reduced orientation), but it is unknown whether they negatively affect flight capacity. We investigated how exposing colonies to the parasitic mite Varroa destructor and the neonicotinoid insecticide imidacloprid affect flight capacity of foragers. Flight distance, time and speed of foragers were measured in flight mills to assess the relative and interactive effects of high V. destructor load and a field-realistic, chronic sub-lethal dose of imidacloprid. Foragers from colonies exposed to high levels of V. destructor flew shorter distances, with a larger effect when also exposed to imidacloprid. Bee body mass partly explained our results as bees were heavier when exposed to these stressors, possibly due to an earlier onset of foraging. Our findings contribute to understanding of interacting stressors that can explain colony losses. Reduced flight capacity decreases the food-collecting ability of honeybees and may hamper the use of precocious foraging as a coping mechanism during colony (nutritional) stress. Ineffective coping mechanisms may lead to destructive cascading effects and subsequent colony collapse. PMID:26631559

  15. Wintering birds avoid warm sunshine: predation and the costs of foraging in sunlight.

    PubMed

    Carr, Jennie M; Lima, Steven L

    2014-03-01

    Wintering birds can gain significant thermal benefits by foraging in direct sunlight. However, exposure to bright sunlight might make birds easier to detect by predators and may also cause visual glare that can reduce a bird's ability to monitor the environment. Thus, birds likely experience a trade-off between the thermal benefits and predation-related costs of foraging in direct sunlight. To examine this possible thermoregulation-predation trade-off, we monitored the behavior of mixed-species flocks of wintering emberizid sparrows foraging in alternating strips of sunlight and shade. On average, these sparrows routinely preferred to forage in the shade, despite midday air temperatures as much as 30 °C below their thermoneutral zone. This preference for shade was strongest at relatively high temperatures when the thermal benefits of foraging in sunlight were reduced, suggesting a thermoregulation-predation trade-off. Glare could be reduced if birds faced away from the sun while feeding in direct sunlight, but we found that foraging birds tended to face southward (the direction of the sun). We speculate that other factors, such as the likely direction of predator approach, may explain this southerly orientation, particularly if predators use solar glare to their advantage during an attack. This interpretation is supported by the fact that birds had the weakest southerly orientation on cloudy days. Wintering birds may generally avoid foraging in direct sunlight to minimize their risk of predation. However, given the thermal benefits of sunshine, such birds may benefit from foraging in habitats that provide a mosaic of sunlit and shaded microhabitats.

  16. Ocean acidification impairs crab foraging behaviour.

    PubMed

    Dodd, Luke F; Grabowski, Jonathan H; Piehler, Michael F; Westfield, Isaac; Ries, Justin B

    2015-07-07

    Anthropogenic elevation of atmospheric CO2 is driving global-scale ocean acidification, which consequently influences calcification rates of many marine invertebrates and potentially alters their susceptibility to predation. Ocean acidification may also impair an organism's ability to process environmental and biological cues. These counteracting impacts make it challenging to predict how acidification will alter species interactions and community structure. To examine effects of acidification on consumptive and behavioural interactions between mud crabs (Panopeus herbstii) and oysters (Crassostrea virginica), oysters were reared with and without caged crabs for 71 days at three pCO2 levels. During subsequent predation trials, acidification reduced prey consumption, handling time and duration of unsuccessful predation attempt. These negative effects of ocean acidification on crab foraging behaviour more than offset any benefit to crabs resulting from a reduction in the net rate of oyster calcification. These findings reveal that efforts to evaluate how acidification will alter marine food webs should include quantifying impacts on both calcification rates and animal behaviour. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  17. Ocean acidification impairs crab foraging behaviour

    PubMed Central

    Dodd, Luke F.; Grabowski, Jonathan H.; Piehler, Michael F.; Westfield, Isaac; Ries, Justin B.

    2015-01-01

    Anthropogenic elevation of atmospheric CO2 is driving global-scale ocean acidification, which consequently influences calcification rates of many marine invertebrates and potentially alters their susceptibility to predation. Ocean acidification may also impair an organism's ability to process environmental and biological cues. These counteracting impacts make it challenging to predict how acidification will alter species interactions and community structure. To examine effects of acidification on consumptive and behavioural interactions between mud crabs (Panopeus herbstii) and oysters (Crassostrea virginica), oysters were reared with and without caged crabs for 71 days at three pCO2 levels. During subsequent predation trials, acidification reduced prey consumption, handling time and duration of unsuccessful predation attempt. These negative effects of ocean acidification on crab foraging behaviour more than offset any benefit to crabs resulting from a reduction in the net rate of oyster calcification. These findings reveal that efforts to evaluate how acidification will alter marine food webs should include quantifying impacts on both calcification rates and animal behaviour. PMID:26108629

  18. An Extra Dimension to Decision-Making in Animals: The Three-way Trade-off between Speed, Effort per-Unit-Time and Accuracy

    PubMed Central

    de Froment, Adrian J.; Rubenstein, Daniel I.; Levin, Simon A.

    2014-01-01

    The standard view in biology is that all animals, from bumblebees to human beings, face a trade-off between speed and accuracy as they search for resources and mates, and attempt to avoid predators. For example, the more time a forager spends out of cover gathering information about potential food sources the more likely it is to make accurate decisions about which sources are most rewarding. However, when the cost of time spent out of cover rises (e.g. in the presence of a predator) the optimal strategy is for the forager to spend less time gathering information and to accept a corresponding decline in the accuracy of its decisions. We suggest that this familiar picture is missing a crucial dimension: the amount of effort an animal expends on gathering information in each unit of time. This is important because an animal that can respond to changing time costs by modulating its level of effort per-unit-time does not have to accept the same decrease in accuracy that an animal limited to a simple speed-accuracy trade-off must bear in the same situation. Instead, it can direct additional effort towards (i) reducing the frequency of perceptual errors in the samples it gathers or (ii) increasing the number of samples it gathers per-unit-time. Both of these have the effect of allowing it to gather more accurate information within a given period of time. We use a modified version of a canonical model of decision-making (the sequential probability ratio test) to show that this ability to substitute effort for time confers a fitness advantage in the face of changing time costs. We predict that the ability to modulate effort levels will therefore be widespread in nature, and we lay out testable predictions that could be used to detect adaptive modulation of effort levels in laboratory and field studies. Our understanding of decision-making in all species, including our own, will be improved by this more ecologically-complete picture of the three-way tradeoff between time, effort per-unit-time and accuracy. PMID:25522281

  19. An extra dimension to decision-making in animals: the three-way trade-off between speed, effort per-unit-time and accuracy.

    PubMed

    de Froment, Adrian J; Rubenstein, Daniel I; Levin, Simon A

    2014-12-01

    The standard view in biology is that all animals, from bumblebees to human beings, face a trade-off between speed and accuracy as they search for resources and mates, and attempt to avoid predators. For example, the more time a forager spends out of cover gathering information about potential food sources the more likely it is to make accurate decisions about which sources are most rewarding. However, when the cost of time spent out of cover rises (e.g. in the presence of a predator) the optimal strategy is for the forager to spend less time gathering information and to accept a corresponding decline in the accuracy of its decisions. We suggest that this familiar picture is missing a crucial dimension: the amount of effort an animal expends on gathering information in each unit of time. This is important because an animal that can respond to changing time costs by modulating its level of effort per-unit-time does not have to accept the same decrease in accuracy that an animal limited to a simple speed-accuracy trade-off must bear in the same situation. Instead, it can direct additional effort towards (i) reducing the frequency of perceptual errors in the samples it gathers or (ii) increasing the number of samples it gathers per-unit-time. Both of these have the effect of allowing it to gather more accurate information within a given period of time. We use a modified version of a canonical model of decision-making (the sequential probability ratio test) to show that this ability to substitute effort for time confers a fitness advantage in the face of changing time costs. We predict that the ability to modulate effort levels will therefore be widespread in nature, and we lay out testable predictions that could be used to detect adaptive modulation of effort levels in laboratory and field studies. Our understanding of decision-making in all species, including our own, will be improved by this more ecologically-complete picture of the three-way tradeoff between time, effort per-unit-time and accuracy.

  20. Systems assessment of water savings impact of controlled environment agriculture (CEA) utilizing wirelessly networked Sense•Decide•Act•Communicate (SDAC) systems.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, Jonathan T.; Baynes, Edward E., Jr.; Aguirre,Carlos

    Reducing agricultural water use in arid regions while maintaining or improving economic productivity of the agriculture sector is a major challenge. Controlled environment agriculture (CEA, or, greenhouse agriculture) affords advantages in direct resource use (less land and water required) and productivity (i.e., much higher product yield and quality per unit of resources used) relative to conventional open-field practices. These advantages come at the price of higher operating complexity and costs per acre. The challenge is to implement and apply CEA such that the productivity and resource use advantages will sufficiently outweigh the higher operating costs to provide for overall benefitmore » and viability. This project undertook an investigation of CEA for livestock forage production as a water-saving alternative to open-field forage production in arid regions. Forage production is a large consumer of fresh water in many arid regions of the world, including the southwestern U.S. and northern Mexico. With increasing competition among uses (agriculture, municipalities, industry, recreation, ecosystems, etc.) for limited fresh water supplies, agricultural practice alternatives that can potentially maintain or enhance productivity while reducing water use warrant consideration. The project established a pilot forage production greenhouse facility in southern New Mexico based on a relatively modest and passive (no active heating or cooling) system design pioneered in Chihuahua, Mexico. Experimental operations were initiated in August 2004 and carried over into early-FY05 to collect data and make initial assessments of operational and technical system performance, assess forage nutrition content and suitability for livestock, identify areas needing improvement, and make initial assessment of overall feasibility. The effort was supported through the joint leveraging of late-start FY04 LDRD funds and bundled CY2004 project funding from the New Mexico Small Business Technical Assistance program at Sandia. Despite lack of optimization with the project system, initial results show the dramatic water savings potential of hydroponic forage production compared with traditional irrigated open field practice. This project produced forage using only about 4.5% of the water required for equivalent open field production. Improved operation could bring water use to 2% or less. The hydroponic forage production system and process used in this project are labor intensive and not optimized for minimum water usage. Freshly harvested hydroponic forage has high moisture content that dilutes its nutritional value by requiring that livestock consume more of it to get the same nutritional content as conventional forage. In most other aspects the nutritional content compares well on a dry weight equivalent basis with other conventional forage. More work is needed to further explore and quantify the opportunities, limitations, and viability of this technique for broader use. Collection of greenhouse environmental data in this project was uniquely facilitated through the implementation and use of a self-organizing, wirelessly networked, multi-modal sensor system array with remote cell phone data link capability. Applications of wirelessly networked sensing with improved modeling/simulation and other Sandia technologies (e.g., advanced sensing and control, embedded reasoning, modeling and simulation, materials, robotics, etc.) can potentially contribute to significant improvement across a broad range of CEA applications.« less

  1. Breeding short-tailed shearwaters buffer local environmental variability in south-eastern Australia by foraging in Antarctic waters.

    PubMed

    Berlincourt, Maud; Arnould, John P Y

    2015-01-01

    Establishing patterns of movements of free-ranging animals in marine ecosystems is crucial for a better understanding of their feeding ecology, life history traits and conservation. As central place foragers, the habitat use of nesting seabirds is heavily influenced by the resources available within their foraging range. We tested the prediction that during years with lower resource availability, short-tailed shearwaters (Puffinus tenuirostris) provisioning chicks should increase their foraging effort, by extending their foraging range and/or duration, both when foraging in neritic (short trips) and distant oceanic waters (long trips). Using both GPS and geolocation data-loggers, at-sea movements and habitat use were investigated over three breeding seasons (2012-14) at two colonies in southeastern Australia. Most individuals performed daily short foraging trips over the study period and inter-annual variations observed in foraging parameters where mainly due to few individuals from Griffith Island, performing 2-day trips in 2014. When performing long foraging trips, this study showed that individuals from both colonies exploited similar zones in the Southern Ocean. The results of this study suggest that individuals could increase their foraging range while exploiting distant feeding zones, which could indicate that short-tailed shearwaters forage in Antarctic waters not only to maintain their body condition but may also do so to buffer against local environmental stochasticity. Lower breeding performances were associated with longer foraging trips to distant oceanic waters in 2013 and 2014 indicating they could mediate reductions in food availability around the breeding colonies by extending their foraging range in the Southern Ocean. This study highlights the importance of foraging flexibility as a fundamental aspect of life history in coastal/pelagic marine central place foragers living in highly variable environments and how these foraging strategies are use to buffer this variability.

  2. A Breath of Fresh Air in Foraging Theory: The Importance of Wind for Food Size Selection in a Central-Place Forager.

    PubMed

    Alma, Andrea Marina; Farji-Brener, Alejandro G; Elizalde, Luciana

    2017-09-01

    Empirical data about food size carried by central-place foragers do not often fit with the optimum predicted by classical foraging theory. Traditionally, biotic constraints such as predation risk and competition have been proposed to explain this inconsistency, leaving aside the possible role of abiotic factors. Here we documented how wind affects the load size of a central-place forager (leaf-cutting ants) through a mathematical model including the whole foraging process. The model showed that as wind speed at ground level increased from 0 to 2 km/h, load size decreased from 91 to 30 mm 2 , a prediction that agreed with empirical data from windy zones, highlighting the relevance of considering abiotic factors to predict foraging behavior. Furthermore, wind reduced the range of load sizes that workers should select to maintain a similar rate of food intake and decreased the foraging rate by ∼70% when wind speed increased 1 km/h. These results suggest that wind could reduce the fitness of colonies and limit the geographic distribution of leaf-cutting ants. The developed model offers a complementary explanation for why load size in central-place foragers may not fit theoretical predictions and could serve as a basis to study the effects of other abiotic factors that influence foraging.

  3. Collective Response of Leaf-Cutting Ants to the Effects of Wind on Foraging Activity.

    PubMed

    Alma, Andrea Marina; Farji-Brener, Alejandro G; Elizalde, Luciana

    2016-11-01

    One advantage of sociality is to mitigate environmental restrictions through collective behavior. Here we document a colony-level response of leaf-cutting ants to wind, an environmental factor that impedes foraging. Given that larger ants adhere more strongly to the substrate, increasing forager size in windy conditions should reduce the negative effect of wind. We tested this idea for Acromyrmex lobicornis in windy regions of Patagonia. We examined (1) whether the fraction of larger ants versus smaller ants increased in windy conditions and (2) whether the effect of wind on the ants' movement was lower for larger ants. The size-frequency distribution of foragers was skewed more toward larger ants in nature under more windy conditions. Under windy conditions in the field, the mobility of smaller ants was more reduced than that of larger ants. The change toward larger foragers in windy conditions reduced the negative effect of wind by 32%, illustrating how a social organism can collectively mitigate the adverse effects of the environment.

  4. Positive interactions between irrawaddy dolphins and artisanal fishers in the Chilika Lagoon of eastern India are driven by ecology, socioeconomics, and culture.

    PubMed

    D'Lima, Coralie; Marsh, Helene; Hamann, Mark; Sinha, Anindya; Arthur, Rohan

    2014-09-01

    In human-dominated landscapes, interactions and perceptions towards wildlife are influenced by multidimensional drivers. Understanding these drivers could prove useful for wildlife conservation. We surveyed the attitudes and perceptions of fishers towards threatened Irrawaddy dolphins (Orcaella brevirostris) at Chilika Lagoon India. To validate the drivers of fisher perceptions, we : (1) observed dolphin foraging behavior at stake nets, and (2) compared catch per unit effort (CPUE) and catch income of fishers from stake nets in the presence and absence of foraging dolphins. We found that fishers were mostly positive towards dolphins, believing that dolphins augmented their fish catch and using culture to express their perceptions. Foraging dolphins were observed spending half their time at stake nets and were associated with significantly higher catch income and CPUE of mullet (Liza sp.), a locally preferred food fish species. Wildlife conservation efforts should use the multidimensional drivers of human-wildlife interactions to involve local stakeholders in management.

  5. Physiological effects of increased foraging effort in a small passerine.

    PubMed

    Yap, Kang Nian; Kim, Oh Run; Harris, Karilyn C; Williams, Tony D

    2017-11-15

    Foraging to obtain food, either for self-maintenance or at presumably elevated rates to provide for offspring, is thought to be an energetically demanding activity but one that is essential for fitness (higher reproductive success and survival). Nevertheless, the physiological mechanisms that allow some individuals to support higher foraging performance, and the mechanisms underlying costs of high workload, remain poorly understood. We experimentally manipulated foraging behaviour in zebra finches ( Taeniopygia guttata ) using the technique described by Koetsier and Verhulst (2011) Birds in the 'high foraging effort' (HF) group had to obtain food either while flying/hovering or by making repeated hops or jumps from the ground up to the feeder, behaviour typical of the extremely energetically expensive foraging mode observed in many free-living small passerines. HF birds made significantly more trips to the feeder per 10 min, whereas control birds spent more time (perched) at the feeder. Despite this marked change in foraging behaviour, we documented few short- or long-term effects of 'training' (3 days and 90 days of 'training', respectively) and some of these effects were sex specific. There were no effects of treatment on basal metabolic rate, haematocrit, haemoglobin or plasma glycerol, triglyceride and glucose levels, and masses of kidney, crop, large intestine, small intestine, gizzard and liver. HF females had higher masses of flight muscle, leg muscle, heart and lung compared with controls. In contrast, HF males had lower heart mass than controls and there were no differences for other organs. When both sexes were pooled, there were no effects of treatment on body composition. Finally, birds in the HF treatment group had higher levels of reactive oxygen metabolites (dROMs) and, consequently, although treatment did not affect total anti-oxidant capacity, birds in the HF treatment group had higher oxidative stress. © 2017. Published by The Company of Biologists Ltd.

  6. Effects of tidal cycles on shorebird distribution and foraging behaviour in a coastal tropical wetland: Insights for carrying capacity assessment

    NASA Astrophysics Data System (ADS)

    Fonseca, Juanita; Basso, Enzo; Serrano, David; Navedo, Juan G.

    2017-11-01

    Wetland loss has driven negative effects on biodiversity by a reduction in potential available habitats, directly impacting wetland-dependent species such as migratory shorebirds. At coastal areas where tidal cycles can restrict food access, the degree to which density of foraging birds is mediated by conspecific abundance or by the available areas is crucial to understanding patterns of bird distribution and wetland carrying capacity. We used the bathymetry of two sectors modeled with two numerical matrices to determine the availability of intertidal foraging areas in relation to tidal level (spring and neap tides), and this information was used to estimate shorebird density and foraging activity throughout the low-tide cycle in a tropical coastal lagoon in northwestern Mexico. Relative to spring tides, an 80% reduction in available foraging areas occurred during neap tides. Overall shorebird abundance was significantly reduced during neap tide periods, with differences between species. Densities of shorebirds increased during neap tides, particularly in one sector, and remained similar throughout the low-tide period (i.e. 4 h) either during spring or neap tides. Time spent foraging was consistently lower during neap-tides relative to spring-tides, especially for Long-billed curlew (44% reduction), Willet (37% reduction) and Black-necked stilt (29% reduction). These decreases in foraging activity when available habitats became reduced can hamper the opportunities of migratory shorebirds to reach their daily energy requirements to survive during the non-breeding season. This study shows that when intertidal habitats are severely reduced an important fraction of shorebird populations would probably be forced to find alternative areas to forage or increase foraging time during the night. Serving an essential function as top-predators, these results can have important implications on carrying capacity assessment for shorebirds at coastal wetlands.

  7. Rodents balancing a variety of risks: invasive fire ants and indirect and direct indicators of predation risk.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orrock, John, L.; Danielson, Brent, J.

    2004-06-08

    Oecologia (2004) 140: 662 - 667 We used foraging trays to compare how old field mice, Peromyscus polionotus, altered foraging in response to the presence of fire ants, Solenopsisinvicta, and in the presence of direct (predator urine) and indirect (sheltered or exposed micro habitat, moonlight, and precipitation) indicators of predation risk. Foraging reductions elicited by S. invicta were greater than reductions in response to well-documented indicators of risk (i.e., moonlit nights) and the presence of predator urine. The presence of S. invicta always led to reduced foraging, but the overall impact of S. invicta was dependent upon microhabitat and precipitation.more » When S. invicta was not present, foraging was greater in sheltered microhabitats compared to exposed microhabitats. S. invicta made sheltered microhabitats equivalent to more risky exposed microhabitats, and this effect was especially pronounced on nights without precipitation. The effect of S. invicta suggests that interactions with S. invicta may entail a potentially heavy cost or that presence of S. invicta may represent a more reliable indicator of imminent competition or predation compared to indirect cues of risk and predator urine. The presence of S. invicta led to reduced foraging under situations when foraging activity would otherwise be greatest (i.e., under vegetative cover), potentially reducing habitat quality for P. polionotus and the distribution of seeds consumed by rodents.« less

  8. Do Behavioral Foraging Responses of Prey to Predators Function Similarly in Restored and Pristine Foodwebs?

    PubMed Central

    Madin, Elizabeth M. P.; Gaines, Steven D.; Madin, Joshua S.; Link, Anne-Katrin; Lubchenco, Peggy J.; Selden, Rebecca L.; Warner, Robert R.

    2012-01-01

    Efforts to restore top predators in human-altered systems raise the question of whether rebounds in predator populations are sufficient to restore pristine foodweb dynamics. Ocean ecosystems provide an ideal system to test this question. Removal of fishing in marine reserves often reverses declines in predator densities and size. However, whether this leads to restoration of key functional characteristics of foodwebs, especially prey foraging behavior, is unclear. The question of whether restored and pristine foodwebs function similarly is nonetheless critically important for management and restoration efforts. We explored this question in light of one important determinant of ecosystem function and structure – herbivorous prey foraging behavior. We compared these responses for two functionally distinct herbivorous prey fishes (the damselfish Plectroglyphidodon dickii and the parrotfish Chlorurus sordidus) within pairs of coral reefs in pristine and restored ecosystems in two regions of these species' biogeographic ranges, allowing us to quantify the magnitude and temporal scale of this key ecosystem variable's recovery. We demonstrate that restoration of top predator abundances also restored prey foraging excursion behaviors to a condition closely resembling those of a pristine ecosystem. Increased understanding of behavioral aspects of ecosystem change will greatly improve our ability to predict the cascading consequences of conservation tools aimed at ecological restoration, such as marine reserves. PMID:22403650

  9. Simulating secondary succession of elk forage values in a managed forest landscape, western Washington

    USGS Publications Warehouse

    Jenkins, Kurt J.; Starkey, Edward E.

    1996-01-01

    Modern timber management practices often influence forage production for elk (Cervus elaphus) on broad temporal and spatial scales in forested landscapes. We incorporated site-specific information on postharvesting forest succession and forage characteristics in a simulation model to evaluate past and future influences of forest management practices on forage values for elk in a commercially managed Douglas fir (Pseudotsuga menziesii, PSME)-western hemlock (Tsuga heterophylla, TSHE) forest in western Washington. We evaluated future effects of: (1) clear-cut logging 0, 20, and 40% of harvestable stands every five years; (2) thinning 20-year-old Douglas fir forests; and (3) reducing the harvesting cycle from 60 to 45 years. Reconstruction of historical patterns of vegetation succession indicated that forage values peaked in the 1960s and declined from the 1970s to the present, but recent values still were higher than may have existed in the unmanaged landscape in 1945. Increased forest harvesting rates had little short-term influence on forage trends because harvestable stands were scarce. Simulations of forest thinning also produced negligible benefits because thinning did not improve forage productivity appreciably at the stand level. Simulations of reduced harvesting cycles shortened the duration of declining forage values from approximately 30 to 15 years. We concluded that simulation models are useful tools for examining landscape responses of forage production to forest management strategies, but the options examined provided little potential for improving elk forages in the immediate future.

  10. Over-Expression of Arabidopsis EDT1 Gene Confers Drought Tolerance in Alfalfa (Medicago sativa L.)

    PubMed Central

    Zheng, Guangshun; Fan, Cunying; Di, Shaokang; Wang, Xuemin; Xiang, Chengbin; Pang, Yongzhen

    2017-01-01

    Alfalfa (Medicago sativa L.) is an important legume forage crop with great economic value. However, as the growth of alfalfa is seriously affected by an inadequate supply of water, drought is probably the major abiotic environmental factor that most severely affects alfalfa production worldwide. In an effort to enhance alfalfa drought tolerance, we transformed the Arabidopsis Enhanced Drought Tolerance 1 (AtEDT1) gene into alfalfa via Agrobacterium-mediated transformation. Compared with wild type plants, drought stress treatment resulted in higher survival rates and biomass, but reduced water loss rates in the transgenic plants. Furthermore, transgenic alfalfa plants had increased stomatal size, but reduced stomatal density, and these stomatal changes contributed greatly to reduced water loss from leaves. Importantly, transgenic alfalfa plants exhibited larger root systems with larger root lengths, root weight, and root diameters than wild type plants. The transgenic alfalfa plants had reduced membrane permeability and malondialdehyde content, but higher soluble sugar and proline content, higher superoxide dismutase activity, higher chlorophyll content, enhanced expression of drought-responsive genes, as compared with wild type plants. Notably, transgenic alfalfa plants grew better in a 2-year field trial and showed enhanced growth performance with increased biomass yield. All of our morphological, physiological, and molecular analyses demonstrated that the ectopic expression of AtEDT1 improved growth and enhanced drought tolerance in alfalfa. Our study provides alfalfa germplasm for use in forage improvement programs, and may help to increase alfalfa production in arid lands. PMID:29326737

  11. Over-Expression of Arabidopsis EDT1 Gene Confers Drought Tolerance in Alfalfa (Medicago sativa L.).

    PubMed

    Zheng, Guangshun; Fan, Cunying; Di, Shaokang; Wang, Xuemin; Xiang, Chengbin; Pang, Yongzhen

    2017-01-01

    Alfalfa ( Medicago sativa L.) is an important legume forage crop with great economic value. However, as the growth of alfalfa is seriously affected by an inadequate supply of water, drought is probably the major abiotic environmental factor that most severely affects alfalfa production worldwide. In an effort to enhance alfalfa drought tolerance, we transformed the Arabidopsis Enhanced Drought Tolerance 1 ( AtEDT1 ) gene into alfalfa via Agrobacterium -mediated transformation. Compared with wild type plants, drought stress treatment resulted in higher survival rates and biomass, but reduced water loss rates in the transgenic plants. Furthermore, transgenic alfalfa plants had increased stomatal size, but reduced stomatal density, and these stomatal changes contributed greatly to reduced water loss from leaves. Importantly, transgenic alfalfa plants exhibited larger root systems with larger root lengths, root weight, and root diameters than wild type plants. The transgenic alfalfa plants had reduced membrane permeability and malondialdehyde content, but higher soluble sugar and proline content, higher superoxide dismutase activity, higher chlorophyll content, enhanced expression of drought-responsive genes, as compared with wild type plants. Notably, transgenic alfalfa plants grew better in a 2-year field trial and showed enhanced growth performance with increased biomass yield. All of our morphological, physiological, and molecular analyses demonstrated that the ectopic expression of AtEDT1 improved growth and enhanced drought tolerance in alfalfa. Our study provides alfalfa germplasm for use in forage improvement programs, and may help to increase alfalfa production in arid lands.

  12. Variability in sea ice cover and climate elicit sex specific responses in an Antarctic predator

    PubMed Central

    Labrousse, Sara; Sallée, Jean-Baptiste; Fraser, Alexander D.; Massom, Rob A.; Reid, Phillip; Hobbs, William; Guinet, Christophe; Harcourt, Robert; McMahon, Clive; Authier, Matthieu; Bailleul, Frédéric; Hindell, Mark A.; Charrassin, Jean-Benoit

    2017-01-01

    Contrasting regional changes in Southern Ocean sea ice have occurred over the last 30 years with distinct regional effects on ecosystem structure and function. Quantifying how Antarctic predators respond to such changes provides the context for predicting how climate variability/change will affect these assemblages into the future. Over an 11-year time-series, we examine how inter-annual variability in sea ice concentration and advance affect the foraging behaviour of a top Antarctic predator, the southern elephant seal. Females foraged longer in pack ice in years with greatest sea ice concentration and earliest sea ice advance, while males foraged longer in polynyas in years of lowest sea ice concentration. There was a positive relationship between near-surface meridional wind anomalies and female foraging effort, but not for males. This study reveals the complexities of foraging responses to climate forcing by a poleward migratory predator through varying sea ice property and dynamic anomalies. PMID:28233791

  13. Variability in sea ice cover and climate elicit sex specific responses in an Antarctic predator.

    PubMed

    Labrousse, Sara; Sallée, Jean-Baptiste; Fraser, Alexander D; Massom, Rob A; Reid, Phillip; Hobbs, William; Guinet, Christophe; Harcourt, Robert; McMahon, Clive; Authier, Matthieu; Bailleul, Frédéric; Hindell, Mark A; Charrassin, Jean-Benoit

    2017-02-24

    Contrasting regional changes in Southern Ocean sea ice have occurred over the last 30 years with distinct regional effects on ecosystem structure and function. Quantifying how Antarctic predators respond to such changes provides the context for predicting how climate variability/change will affect these assemblages into the future. Over an 11-year time-series, we examine how inter-annual variability in sea ice concentration and advance affect the foraging behaviour of a top Antarctic predator, the southern elephant seal. Females foraged longer in pack ice in years with greatest sea ice concentration and earliest sea ice advance, while males foraged longer in polynyas in years of lowest sea ice concentration. There was a positive relationship between near-surface meridional wind anomalies and female foraging effort, but not for males. This study reveals the complexities of foraging responses to climate forcing by a poleward migratory predator through varying sea ice property and dynamic anomalies.

  14. Conservation and Ecology of Marine Forage Fishes--Proceedings of a Research Symposium, September 2012

    USGS Publications Warehouse

    Liedtke, Theresa; Gibson, Caroline; Lowry, Dayv; Fagergren, Duane

    2013-01-01

    Locally and globally, there is growing recognition of the critical roles that herring, smelt, sand lance, eulachon, and other forage fishes play in marine ecosystems. Scientific and resource management entities throughout the Salish Sea, agree that extensive information gaps exist, both in basic biological knowledge and parameters critical to fishery management. Communication and collaboration among researchers also is inadequate. Building on the interest and enthusiasm generated by recent forage fish workshops and symposia around the region, the 2012 Research Symposium on the Conservation and Ecology of Marine Forage Fishes was designed to elucidate practical recommendations for science and policy needs and actions, and spur further collaboration in support for the precautionary management of forage fish. This dynamic and productive event was a joint venture of the Northwest Straits Commission Forage Fish Program, U.S. Geological Survey (USGS), Washington Department of Fish and Wildlife (WDFW), and The Puget Sound Partnership. The symposium was held on September 12–14, 2012, at the University of Washington, Friday Harbor Laboratories campus. Sixty scientists, graduate students, and fisheries policy experts convened; showcasing ongoing research, conservation, and management efforts targeting forage fish from regional and national perspectives. The primary objectives of this event were to: (1) review current research and management related to marine forage fish species; and (2) identify priority science and policy needs and actions for Washington, British Columbia, and the entire West Coast. Given the diversity of knowledge, interests, and disciplines surrounding forage fish on both sides of the international border, the organizing committee made a concerted effort to contact many additional experts who, although unable to attend, provided valuable insights and ideas to the symposium structure and discussions. The value of the symposium format was highlighted in the closing remarks delivered by Joseph Gaydos, SeaDoc Society and Chair of the Puget Sound Science Panel. Dr. Gaydos’ presentation referenced the 2011 paper by Murray Rudd in the journal Conservation Biology, “How research-prioritization exercises affect conservation policy.” The paper points out that policy makers and funding agencies are more likely to gain a full understanding of issues when they are presented with research findings from an aligned research program. That is, compared to unaligned research strategies, where work is not based on identified research priorities.

  15. Shearwater Foraging in the Southern Ocean: The Roles of Prey Availability and Winds

    PubMed Central

    Raymond, Ben; Shaffer, Scott A.; Sokolov, Serguei; Woehler, Eric J.; Costa, Daniel P.; Einoder, Luke; Hindell, Mark; Hosie, Graham; Pinkerton, Matt; Sagar, Paul M.; Scott, Darren; Smith, Adam; Thompson, David R.; Vertigan, Caitlin; Weimerskirch, Henri

    2010-01-01

    Background Sooty (Puffinus griseus) and short-tailed (P. tenuirostris) shearwaters are abundant seabirds that range widely across global oceans. Understanding the foraging ecology of these species in the Southern Ocean is important for monitoring and ecosystem conservation and management. Methodology/Principal Findings Tracking data from sooty and short-tailed shearwaters from three regions of New Zealand and Australia were combined with at-sea observations of shearwaters in the Southern Ocean, physical oceanography, near-surface copepod distributions, pelagic trawl data, and synoptic near-surface winds. Shearwaters from all three regions foraged in the Polar Front zone, and showed particular overlap in the region around 140°E. Short-tailed shearwaters from South Australia also foraged in Antarctic waters south of the Polar Front. The spatial distribution of shearwater foraging effort in the Polar Front zone was matched by patterns in large-scale upwelling, primary production, and abundances of copepods and myctophid fish. Oceanic winds were found to be broad determinants of foraging distribution, and of the flight paths taken by the birds on long foraging trips to Antarctic waters. Conclusions/Significance The shearwaters displayed foraging site fidelity and overlap of foraging habitat between species and populations that may enhance their utility as indicators of Southern Ocean ecosystems. The results highlight the importance of upwellings due to interactions of the Antarctic Circumpolar Current with large-scale bottom topography, and the corresponding localised increases in the productivity of the Polar Front ecosystem. PMID:20532034

  16. To walk or to fly? How birds choose among foraging modes

    PubMed Central

    Bautista, Luis M.; Tinbergen, Joost; Kacelnik, Alejandro

    2001-01-01

    We test the predictive value of the main energetic currencies used in foraging theory using starlings that choose between two foraging modes (walking versus flying). Walking is low-cost, low-yield, whereas flying is the opposite. We fixed experimentally, at 11 different values, the amount of flight required to get one food reward, and for each flight cost value, we titrated the amount of walking until the birds showed indifference between foraging modes. We then compared the indifference points to those predicted by gross rate of gain over time, net rate of gain over time, and the ratio of gain to expenditure (efficiency). The results for the choice between modes show strong qualitative and quantitative support for net rate of gain over time over the alternatives. However, the birds foraged for only a fraction of the available time, indicating that the choice between foraging and resting could not be explained by any of these currencies. We suggest that this discrepancy could be accounted for functionally because nonenergetic factors such as predation risk may differ between resting and foraging in any mode but may not differ much between foraging modes, hence releasing the choice between foraging modes from the influence of such factors. Alternatively, the discrepancy may be attributable to the use of predictable (rather than stochastic) ratios of effort per prey in our experiment, and it may thus be better understood with mechanistic rather than functional arguments. PMID:11158599

  17. To walk or to fly? How birds choose among foraging modes.

    PubMed

    Bautista, L M; Tinbergen, J; Kacelnik, A

    2001-01-30

    We test the predictive value of the main energetic currencies used in foraging theory using starlings that choose between two foraging modes (walking versus flying). Walking is low-cost, low-yield, whereas flying is the opposite. We fixed experimentally, at 11 different values, the amount of flight required to get one food reward, and for each flight cost value, we titrated the amount of walking until the birds showed indifference between foraging modes. We then compared the indifference points to those predicted by gross rate of gain over time, net rate of gain over time, and the ratio of gain to expenditure (efficiency). The results for the choice between modes show strong qualitative and quantitative support for net rate of gain over time over the alternatives. However, the birds foraged for only a fraction of the available time, indicating that the choice between foraging and resting could not be explained by any of these currencies. We suggest that this discrepancy could be accounted for functionally because nonenergetic factors such as predation risk may differ between resting and foraging in any mode but may not differ much between foraging modes, hence releasing the choice between foraging modes from the influence of such factors. Alternatively, the discrepancy may be attributable to the use of predictable (rather than stochastic) ratios of effort per prey in our experiment, and it may thus be better understood with mechanistic rather than functional arguments.

  18. The energetics of low browsing in sauropods.

    PubMed

    Ruxton, Graeme D; Wilkinson, David M

    2011-10-23

    It has recently been argued that the probable high cost of travel for sauropod dinosaurs would have made exploiting high forage energetically attractive, if this reduced the need to travel between food patches. This argument was supported by simple calculations. Here, we take a similar approach to evaluate the energetics of foraging close to the ground. We predict that small extensions of the neck beyond the minimum required for the mouth to reach the ground bring substantial energetic savings. Each increment of length brings a further saving, but the sizes of such benefits decrease with increasing neck length. However, the observed neck length of around 9 m for Brachiosaurus (for example) is predicted to reduce the overall cost of foraging by 80 per cent, compared with a minimally necked individual. We argue that the long neck of the sauropods may have been under positive selection for low foraging (instead of, or as well as, exploitation of high foraging), if this long neck allowed a greater area of food to be exploited from a given position and thus reduced the energetically expensive movement of the whole animal.

  19. Evidence for ship noise impacts on humpback whale foraging behaviour.

    PubMed

    Blair, Hannah B; Merchant, Nathan D; Friedlaender, Ari S; Wiley, David N; Parks, Susan E

    2016-08-01

    Noise from shipping activity in North Atlantic coastal waters has been steadily increasing and is an area of growing conservation concern, as it has the potential to disrupt the behaviour of marine organisms. This study examines the impacts of ship noise on bottom foraging humpback whales (Megaptera novaeangliae) in the western North Atlantic. Data were collected from 10 foraging whales using non-invasive archival tags that simultaneously recorded underwater movements and the acoustic environment at the whale. Using mixed models, we assess the effects of ship noise on seven parameters of their feeding behaviours. Independent variables included the presence or absence of ship noise and the received level of ship noise at the whale. We found significant effects on foraging, including slower descent rates and fewer side-roll feeding events per dive with increasing ship noise. During 5 of 18 ship passages, dives without side-rolls were observed. These findings indicate that humpback whales on Stellwagen Bank, an area with chronically elevated levels of shipping traffic, significantly change foraging activity when exposed to high levels of ship noise. This measureable reduction in within-dive foraging effort of individual whales could potentially lead to population-level impacts of shipping noise on baleen whale foraging success. © 2016 The Author(s).

  20. Sex-specific foraging behaviour in a seabird with reversed sexual dimorphism: the red-footed booby.

    PubMed

    Weimerskirch, Henri; Le Corre, Matthieu; Ropert-Coudert, Yan; Kato, Akiko; Marsac, Francis

    2006-01-01

    Most hypotheses attempting to explain the evolution of reversed sexual dimorphism (RSD) assume that size-related differences in foraging ability are of prime importance, but the studies on sex-specific differences in foraging behaviour remain scarce. We compare the foraging behaviour of males and females in a seabird species with a RSD by using several miniaturised activity and telemetry loggers. In red-footed boobies males are 5% smaller and 15% lighter than females, but have a longer tail than females. Both sexes spend similar time on the nest while incubating or brooding. When foraging at sea, males and females spend similar time foraging in oceanic waters, forage in similar areas, spend similar proportion of their foraging trip in flight, and feed on similar prey-flying fishes and flying squids-of similar size. However, compared to males, females range farther during incubation (85 km vs. 50 km), and furthermore feed mostly at the extremity of their foraging trip, whereas males actively forage throughout the trip. Males are much more active than females, landing and diving more often. During the study period, males lost mass, whereas females showed no significant changes. These results indicate that males and females of the red-footed boobies differ in several aspects in their foraging behaviour. Although some differences found in the study may be the direct result of the larger size of females, that is, the slightly higher speeds and deeper depths attained by females, others indicate clearly different foraging strategies between the sexes. The smaller size and longer tail of males confer them a higher agility, and could allow them to occupy a foraging niche different from that of females. The higher foraging effort of males related to its different foraging strategy is probably at the origin of the rapid mass loss of males during the breeding period. These results suggest that foraging differences are probably the reason for the differential breeding investment observed in boobies, and are likely to be involved in the evolution and maintenance of RSD.

  1. Traffic noise reduces foraging efficiency in wild owls

    NASA Astrophysics Data System (ADS)

    Senzaki, Masayuki; Yamaura, Yuichi; Francis, Clinton D.; Nakamura, Futoshi

    2016-08-01

    Anthropogenic noise has been increasing globally. Laboratory experiments suggest that noise disrupts foraging behavior across a range of species, but to reveal the full impacts of noise, we must examine the impacts of noise on foraging behavior among species in the wild. Owls are widespread nocturnal top predators and use prey rustling sounds for localizing prey when hunting. We conducted field experiments to examine the effect of traffic noise on owls’ ability to detect prey. Results suggest that foraging efficiency declines with increasing traffic noise levels due to acoustic masking and/or distraction and aversion to traffic noise. Moreover, we estimate that effects of traffic noise on owls’ ability to detect prey reach >120 m from a road, which is larger than the distance estimated from captive studies with bats. Our study provides the first evidence that noise reduces foraging efficiency in wild animals, and highlights the possible pervasive impacts of noise.

  2. Traffic noise reduces foraging efficiency in wild owls.

    PubMed

    Senzaki, Masayuki; Yamaura, Yuichi; Francis, Clinton D; Nakamura, Futoshi

    2016-08-18

    Anthropogenic noise has been increasing globally. Laboratory experiments suggest that noise disrupts foraging behavior across a range of species, but to reveal the full impacts of noise, we must examine the impacts of noise on foraging behavior among species in the wild. Owls are widespread nocturnal top predators and use prey rustling sounds for localizing prey when hunting. We conducted field experiments to examine the effect of traffic noise on owls' ability to detect prey. Results suggest that foraging efficiency declines with increasing traffic noise levels due to acoustic masking and/or distraction and aversion to traffic noise. Moreover, we estimate that effects of traffic noise on owls' ability to detect prey reach >120 m from a road, which is larger than the distance estimated from captive studies with bats. Our study provides the first evidence that noise reduces foraging efficiency in wild animals, and highlights the possible pervasive impacts of noise.

  3. By the Light of the Moon: North Pacific Dolphins Optimize Foraging with the Lunar Cycle

    NASA Astrophysics Data System (ADS)

    Simonis, Anne Elizabeth

    The influence of the lunar cycle on dolphin foraging behavior was investigated in the productive, southern California Current Ecosystem and the oligotrophic Hawaiian Archipelago. Passive acoustic recordings from 2009 to 2015 were analyzed to document the presence of echolocation from four dolphin species that demonstrate distinct foraging preferences and diving abilities. Visual observations of dolphins, cloud coverage, commercial landings of market squid (Doryteuthis opalescens) and acoustic backscatter of fish were also considered in the Southern California Bight. The temporal variability of echolocation is described from daily to annual timescales, with emphasis on the lunar cycle as an established behavioral driver for potential dolphin prey. For dolphins that foraged at night, the presence of echolocation was reduced during nights of the full moon and during times of night that the moon was present in the night sky. In the Southern California Bight, echolocation activity was reduced for both shallow- diving common dolphins (Delphinus delphis) and deeper-diving Risso's dolphins (Grampus griseus) during times of increased illumination. Seasonal differences in acoustic behavior for both species suggest a geographic shift in dolphin populations, shoaling scattering layers or prey switching behavior during warm months, whereby dolphins target prey that do not vertically migrate. In the Hawaiian Archipelago, deep-diving short-finned pilot whales (Globicephala macrorhynchus) and shallow-diving false killer whales (Pseudorca crassidens) also showed reduced echolocation behavior during periods of increased lunar illumination. In contrast to nocturnal foraging in the northwestern Hawaiian Islands, false killer whales in the main Hawaiian Islands mainly foraged during the day and the lunar cycle showed little influence on their nocturnal acoustic behavior. Different temporal patterns in false killer whale acoustic behavior between the main and northwestern Hawaiian Islands can likely be attributed to the presence of distinct populations or social clusters with dissimilar foraging strategies. Consistent observations of reduced acoustic activity during times of increased lunar illumination show that the lunar cycle is an important predictor for nocturnal dolphin foraging behavior. The result of this research advances the scientific understanding of how dolphins optimize their foraging behavior in response to the changing distribution and abundance of their prey.

  4. Ecological allometries and niche use dynamics across Komodo dragon ontogeny.

    PubMed

    Purwandana, Deni; Ariefiandy, Achmad; Imansyah, M Jeri; Seno, Aganto; Ciofi, Claudio; Letnic, Mike; Jessop, Tim S

    2016-04-01

    Ontogenetic allometries in ecological habits and niche use are key responses by which individuals maximize lifetime fitness. Moreover, such allometries have significant implications for how individuals influence population and community dynamics. Here, we examined how body size variation in Komodo dragons (Varanus komodoensis) influenced ecological allometries in their: (1) prey size preference, (2) daily movement rates, (3) home range area, and (4) subsequent niche use across ontogeny. With increased body mass, Komodo dragons increased prey size with a dramatic switch from small (≤10 kg) to large prey (≥50 kg) in lizards heavier than 20 kg. Rates of foraging movement were described by a non-linear concave down response with lizard increasing hourly movement rates up until ∼20 kg body mass before decreasing daily movement suggesting reduced foraging effort in larger lizards. In contrast, home range area exhibited a sigmoid response with increased body mass. Intrapopulation ecological niche use and overlap were also strongly structured by body size. Thus, ontogenetic allometries suggest Komodo dragon's transition from a highly active foraging mode exploiting small prey through to a less active sit and wait feeding strategy focused on killing large ungulates. Further, our results suggest that as body size increases across ontogeny, the Komodo dragon exhibited marked ontogenetic niche shifts that enabled it to function as an entire vertebrate predator guild by exploiting prey across multiple trophic levels.

  5. Ecological allometries and niche use dynamics across Komodo dragon ontogeny

    NASA Astrophysics Data System (ADS)

    Purwandana, Deni; Ariefiandy, Achmad; Imansyah, M. Jeri; Seno, Aganto; Ciofi, Claudio; Letnic, Mike; Jessop, Tim S.

    2016-04-01

    Ontogenetic allometries in ecological habits and niche use are key responses by which individuals maximize lifetime fitness. Moreover, such allometries have significant implications for how individuals influence population and community dynamics. Here, we examined how body size variation in Komodo dragons ( Varanus komodoensis) influenced ecological allometries in their: (1) prey size preference, (2) daily movement rates, (3) home range area, and (4) subsequent niche use across ontogeny. With increased body mass, Komodo dragons increased prey size with a dramatic switch from small (≤10 kg) to large prey (≥50 kg) in lizards heavier than 20 kg. Rates of foraging movement were described by a non-linear concave down response with lizard increasing hourly movement rates up until ˜20 kg body mass before decreasing daily movement suggesting reduced foraging effort in larger lizards. In contrast, home range area exhibited a sigmoid response with increased body mass. Intrapopulation ecological niche use and overlap were also strongly structured by body size. Thus, ontogenetic allometries suggest Komodo dragon's transition from a highly active foraging mode exploiting small prey through to a less active sit and wait feeding strategy focused on killing large ungulates. Further, our results suggest that as body size increases across ontogeny, the Komodo dragon exhibited marked ontogenetic niche shifts that enabled it to function as an entire vertebrate predator guild by exploiting prey across multiple trophic levels.

  6. Using vertebrate prey capture locations to identify cover type selection patterns of nocturnally foraging Burrowing Owls.

    PubMed

    Marsh, Alan; Bayne, Erin M; Wellicome, Troy I

    2014-07-01

    Studies of habitat selection often measure an animal's use of space via radiotelemetry or GPS-based technologies. Such data tend to be analyzed using a resource selection function, despite the fact that the actual resources acquired are typically not recorded. Without explicit proof of resource use, conclusions from RSF models are based on assumptions regarding an animal's behavior and the resources gained. Conservation initiatives are often based on space-use models, and could be detrimental to the target species if these assumptions are incorrect. We used GPS dataloggers and digital video recorders to determine precise locations where nocturnally foraging Burrowing Owls acquired food resources (vertebrate prey). We compared land cover type selection patterns using a presence-only resource selection function (RSF) to a model that incorporated prey capture locations (CRSF). We also compared net prey returns in each cover type to better measure reward relative to foraging effort. The RSF method did not reflect prey capture patterns and cover-type rankings from this model were quite different from models that used only locations where prey was known to have been obtained. Burrowing Owls successfully foraged across all cover types; however, return vs. effort models indicate that different cover types were of higher quality than those identified using resource selection functions. Conclusions about the type of resources acquired should not be made from RSF-style models without evidence that the actual resource of interest was acquired. Conservation efforts based on RSF models alone may be ineffective or detrimental to the target species if the limiting resource and where it is acquired are not properly identified.

  7. Integrating diverse forage sources reduces feed gaps on mixed crop-livestock farms.

    PubMed

    Bell, L W; Moore, A D; Thomas, D T

    2017-12-04

    Highly variable climates induce large variability in the supply of forage for livestock and so farmers must manage their livestock systems to reduce the risk of feed gaps (i.e. periods when livestock feed demand exceeds forage supply). However, mixed crop-livestock farmers can utilise a range of feed sources on their farms to help mitigate these risks. This paper reports on the development and application of a simple whole-farm feed-energy balance calculator which is used to evaluate the frequency and magnitude of feed gaps. The calculator matches long-term simulations of variation in forage and metabolisable energy supply from diverse sources against energy demand for different livestock enterprises. Scenarios of increasing the diversity of forage sources in livestock systems is investigated for six locations selected to span Australia's crop-livestock zone. We found that systems relying on only one feed source were prone to higher risk of feed gaps, and hence, would often have to reduce stocking rates to mitigate these risks or use supplementary feed. At all sites, by adding more feed sources to the farm feedbase the continuity of supply of both fresh and carry-over forage was improved, reducing the frequency and magnitude of feed deficits. However, there were diminishing returns from making the feedbase more complex, with combinations of two to three feed sources typically achieving the maximum benefits in terms of reducing the risk of feed gaps. Higher stocking rates could be maintained while limiting risk when combinations of other feed sources were introduced into the feedbase. For the same level of risk, a feedbase relying on a diversity of forage sources could support stocking rates 1.4 to 3 times higher than if they were using a single pasture source. This suggests that there is significant capacity to mitigate both risk of feed gaps at the same time as increasing 'safe' stocking rates through better integration of feed sources on mixed crop-livestock farms across diverse regions and climates.

  8. Late-instar Behavior of Aedes aegypti (Diptera: Culicidae) Larvae in Different Thermal and Nutritive Environments.

    PubMed

    Reiskind, Michael H; Janairo, M Shawn

    2015-09-01

    The effects of temperature on ectotherm growth have been well documented. How temperature affects foraging behavior is less well explored, and has not been studied in larval mosquitoes. We hypothesized that temperature changes foraging behavior in the aquatic larval phase of the mosquito, Aedes aegypti L. Based on empirical results in other systems, we predicted that foraging effort would increase at higher temperatures in these insects. We tested this prediction over three temperature conditions at two food levels. We measured behaviors by video recording replicated cohorts of fourth-instar mosquitoes and assessing individual behavior and time budgets using an ethogram. We found both food level and temperature had significant impacts on larval foraging behavior, with more time spent actively foraging at low food levels and at low temperatures, and more occurrences of active foraging at both temperature extremes. These results are contrary to some of our predictions, but fit into theoretical responses to temperature based upon dynamic energy budget models. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Competition and facilitation between a native and a domestic herbivore: trade-offs between forage quantity and quality.

    PubMed

    Augustine, David J; Springer, Tim L

    2013-06-01

    Potential competition between native and domestic herbivores is a major consideration influencing the management and conservation of native herbivores in rangeland ecosystems. In grasslands of the North American Great Plains, black-tailed prairie dogs (Cynomys ludovicianus) are widely viewed as competitors with cattle but are also important for biodiversity conservation due to their role in creating habitat for other native species. We examined spatiotemporal variation in prairie dog effects on growing-season forage quality and quantity using measurements from three colony complexes in Colorado and South Dakota and from a previous study of a fourth complex in Montana. At two complexes experiencing below-average precipitation, forage availability both on and off colonies was so low (12-54 g/m2) that daily forage intake rates of cattle were likely constrained by instantaneous intake rates and daily foraging time. Under these dry conditions, prairie dogs (1) substantially reduced forage availability, thus further limiting cattle daily intake rates, and (2) had either no or a small positive effect on forage digestibility. Under such conditions, prairie dogs are likely to compete with cattle in direct proportion to their abundance. For two complexes experiencing above-average precipitation, forage quantity on and off colonies (77-208 g/m2) was sufficient for daily forage intake of cattle to be limited by digestion rather than instantaneous forage intake. At one complex where prairie dogs enhanced forage digestibility and [N] while having no effect on forage quantity, prairie dogs are predicted to facilitate cattle mass gains regardless of prairie dog abundance. At the second complex where prairie dogs enhanced digestibility and [N] but reduced forage quantity, effects on cattle can vary from competition to facilitation depending on prairie dog abundance. Our findings show that the high spatiotemporal variation in vegetation dynamics characteristic of semiarid grasslands is paralleled by variability in the magnitude of competition between native and domestic grazers. Competitive interactions evident during dry periods may be partially or wholly offset by facilitation during periods when forage digestibility is enhanced and forage quantity does not limit the daily intake rate of cattle.

  10. New modes of use and opportunities for research in forage plants

    USDA-ARS?s Scientific Manuscript database

    Forages play an important role in the production of meat and dairy throughout the world. Forages are not only an integral part of human protein production, but they can also improve row crop production management systems, play a role in reducing the dependence on fossil fuels and mitigate environme...

  11. Improving legumes for pasture, cover crops, living mulch, and green manure

    USDA-ARS?s Scientific Manuscript database

    With growing interest in alternative legumes for uses beyond hay, farmers are requesting options to meet their needs. This article explains two efforts in which the U.S. Dairy Forage Research Center is involved. The two efforts include: 1) kura clover seed production so producers have access to kura...

  12. Foraging Behavior and Success of a Mesopelagic Predator in the Northeast Pacific Ocean: Insights from a Data-Rich Species, the Northern Elephant Seal

    PubMed Central

    Robinson, Patrick W.; Costa, Daniel P.; Crocker, Daniel E.; Gallo-Reynoso, Juan Pablo; Champagne, Cory D.; Fowler, Melinda A.; Goetsch, Chandra; Goetz, Kimberly T.; Hassrick, Jason L.; Hückstädt, Luis A.; Kuhn, Carey E.; Maresh, Jennifer L.; Maxwell, Sara M.; McDonald, Birgitte I.; Peterson, Sarah H.; Simmons, Samantha E.; Teutschel, Nicole M.; Villegas-Amtmann, Stella; Yoda, Ken

    2012-01-01

    The mesopelagic zone of the northeast Pacific Ocean is an important foraging habitat for many predators, yet few studies have addressed the factors driving basin-scale predator distributions or inter-annual variability in foraging and breeding success. Understanding these processes is critical to reveal how conditions at sea cascade to population-level effects. To begin addressing these challenging questions, we collected diving, tracking, foraging success, and natality data for 297 adult female northern elephant seal migrations from 2004 to 2010. During the longer post-molting migration, individual energy gain rates were significant predictors of pregnancy. At sea, seals focused their foraging effort along a narrow band corresponding to the boundary between the sub-arctic and sub-tropical gyres. In contrast to shallow-diving predators, elephant seals target the gyre-gyre boundary throughout the year rather than follow the southward winter migration of surface features, such as the Transition Zone Chlorophyll Front. We also assessed the impact of added transit costs by studying seals at a colony near the southern extent of the species’ range, 1,150 km to the south. A much larger proportion of seals foraged locally, implying plasticity in foraging strategies and possibly prey type. While these findings are derived from a single species, the results may provide insight to the foraging patterns of many other meso-pelagic predators in the northeast Pacific Ocean. PMID:22615801

  13. Balancing personal maintenance with parental investment in a chick-rearing seabird: physiological indicators change with foraging conditions.

    PubMed

    Storey, Anne E; Ryan, Morag G; Fitzsimmons, Michelle G; Kouwenberg, Amy-Lee; Takahashi, Linda S; Robertson, Gregory J; Wilhelm, Sabina I; McKay, Donald W; Herzberg, Gene R; Mowbray, Frances K; MacMillan, Luke; Walsh, Carolyn J

    2017-01-01

    Seabird parents use a conservative breeding strategy that favours long-term survival over intensive parental investment, particularly under harsh conditions. Here, we examine whether variation in several physiological indicators reflects the balance between parental investment and survival in common murres ( Uria aalge ) under a wide range of foraging conditions. Blood samples were taken from adults during mid-chick rearing from 2007 to 2014 and analysed for corticosterone (CORT, stress hormone), beta-hydroxybutyrate (BUTY, lipid metabolism reflecting ongoing mass loss), and haematocrit (reflecting blood oxygen capacity). These measures, plus body mass, were related to three levels of food availability (good, intermediate, and poor years) for capelin, the main forage fish for murres in this colony. Adult body mass and chick-feeding rates were higher in good years than in poor years and heavier murres were more likely to fledge a chick than lighter birds. Contrary to prediction, BUTY levels were higher in good years than in intermediate and poor years. Murres lose body mass just after their chicks hatch and these results for BUTY suggest that mass loss may be delayed in good years. CORT levels were higher in intermediate years than in good or poor years. Higher CORT levels in intermediate years may reflect the necessity of increasing foraging effort, whereas extra effort is not needed in good years and it is unlikely to increase foraging success in poor years. Haematocrit levels were higher in poor years than in good years, a difference that may reflect either their poorer condition or increased diving requirements when food is less available. Our long-term data set provided insight into how decisions about resource allocation under different foraging conditions are relating to physiological indicators, a relationship that is relevant to understanding how seabirds may respond to changes in marine ecosystems as ocean temperatures continue to rise.

  14. Maintaining social cohesion is a more important determinant of patch residence time than maximizing food intake rate in a group-living primate, Japanese macaque (Macaca fuscata).

    PubMed

    Kazahari, Nobuko

    2014-04-01

    Animals have been assumed to employ an optimal foraging strategy (e.g., rate-maximizing strategy). In patchy food environments, intake rate within patches is positively correlated with patch quality, and declines as patches are depleted through consumption. This causes patch-leaving and determines patch residence time. In group-foraging situations, patch residence times are also affected by patch sharing. Optimal patch models for groups predict that patch residence times decrease as the number of co-feeding animals increases because of accelerated patch depletion. However, group members often depart patches without patch depletion, and their patch residence time deviates from patch models. It has been pointed out that patch residence time is also influenced by maintaining social proximity with others among group-living animals. In this study, the effects of maintaining social cohesion and that of rate-maximizing strategy on patch residence time were examined in Japanese macaques (Macaca fuscata). I hypothesized that foragers give up patches to remain in the proximity of their troop members. On the other hand, foragers may stay for a relatively long period when they do not have to abandon patches to follow the troop. In this study, intake rate and foraging effort (i.e., movement) did not change during patch residency. Macaques maintained their intake rate with only a little foraging effort. Therefore, the patches were assumed to be undepleted during patch residency. Further, patch residence time was affected by patch-leaving to maintain social proximity, but not by the intake rate. Macaques tended to stay in patches for short periods when they needed to give up patches for social proximity, and remained for long periods when they did not need to leave to keep social proximity. Patch-leaving and patch residence time that prioritize the maintenance of social cohesion may be a behavioral pattern in group-living primates.

  15. Fearful Foragers: Honey Bees Tune Colony and Individual Foraging to Multi-Predator Presence and Food Quality

    PubMed Central

    Tan, Ken; Hu, Zongwen; Chen, Weiwen; Wang, Zhengwei; Wang, Yuchong; Nieh, James C.

    2013-01-01

    Fear can have strong ecosystem effects by giving predators a role disproportionate to their actual kill rates. In bees, fear is shown through foragers avoiding dangerous food sites, thereby reducing the fitness of pollinated plants. However, it remains unclear how fear affects pollinators in a complex natural scenario involving multiple predator species and different patch qualities. We studied hornets, Vespa velutina (smaller) and V. tropica (bigger) preying upon the Asian honey bee, Apis cerana in China. Hornets hunted bees on flowers and were attacked by bee colonies. Bees treated the bigger hornet species (which is 4 fold more massive) as more dangerous. It received 4.5 fold more attackers than the smaller hornet species. We tested bee responses to a three-feeder array with different hornet species and varying resource qualities. When all feeders offered 30% sucrose solution (w/w), colony foraging allocation, individual visits, and individual patch residence times were reduced according to the degree of danger. Predator presence reduced foraging visits by 55–79% and residence times by 17–33%. When feeders offered different reward levels (15%, 30%, or 45% sucrose), colony and individual foraging favored higher sugar concentrations. However, when balancing food quality against multiple threats (sweeter food corresponding to higher danger), colonies exhibited greater fear than individuals. Colonies decreased foraging at low and high danger patches. Individuals exhibited less fear and only decreased visits to the high danger patch. Contrasting individual with emergent colony-level effects of fear can thus illuminate how predators shape pollination by social bees. PMID:24098734

  16. A Primer on Foraging and the Explore/Exploit Trade-Off for Psychiatry Research.

    PubMed

    Addicott, M A; Pearson, J M; Sweitzer, M M; Barack, D L; Platt, M L

    2017-09-01

    Foraging is a fundamental behavior, and many types of animals appear to have solved foraging problems using a shared set of mechanisms. Perhaps the most common foraging problem is the choice between exploiting a familiar option for a known reward and exploring unfamiliar options for unknown rewards-the so-called explore/exploit trade-off. This trade-off has been studied extensively in behavioral ecology and computational neuroscience, but is relatively new to the field of psychiatry. Explore/exploit paradigms can offer psychiatry research a new approach to studying motivation, outcome valuation, and effort-related processes, which are disrupted in many mental and emotional disorders. In addition, the explore/exploit trade-off encompasses elements of risk-taking and impulsivity-common behaviors in psychiatric disorders-and provides a novel framework for understanding these behaviors within an ecological context. Here we explain relevant concepts and some common paradigms used to measure explore/exploit decisions in the laboratory, review clinically relevant research on the neurobiology and neuroanatomy of explore/exploit decision making, and discuss how computational psychiatry can benefit from foraging theory.

  17. Stingless bees (Melipona subnitida) adjust brood production rather than foraging activity in response to changes in pollen stores.

    PubMed

    Maia-Silva, Camila; Hrncir, Michael; Imperatriz-Fonseca, Vera Lucia; Schorkopf, Dirk Louis P

    2016-10-01

    Highly eusocial bees (honey bees and stingless bees) sustain their colonies through periods of resource scarcity by food stored within the nest. The protein supply necessary for successful brood production is ensured through adjustments of the colonies' pollen foraging according to the availability of this resource in the environment. In honey bees Apis mellifera, in addition, pollen foraging is regulated through the broods' demand for this resource. Here, we investigated the influence of the colony's pollen store level on pollen foraging and brood production in stingless bees (Melipona subnitida). When pollen was added to the nests, colonies increased their brood production and reduced their pollen foraging within 24 h. On the other hand, when pollen reserves were removed, colonies significantly reduced their brood production. In strong contrast to A. mellifera; however, M. subnitida did not significantly increase its pollen foraging activity under poor pollen store conditions. This difference concerning the regulation of pollen foraging may be due to differences regarding the mechanism of brood provisioning. Honey bees progressively feed young larvae and, consequently, require a constant pollen supply. Stingless bees, by contrast, mass-provision their brood cells and temporary absence of pollen storage will not immediately result in substantial brood loss.

  18. Environmental harshness, heat stress, and Marmota flaviventris.

    PubMed

    Webb, D R

    1979-01-01

    Yellow-bellied marmots (Marmota flaviventris) were studied at three sites in central Oregon. Juveniles substantially reduced their foraging activity when equivalent black-body temperatures exceeded their upper critical temperature. Inclusion of heat stress into estimates of environmental harshness drastically reduced the differences in available foraging time between high elevation and low elevation sites.

  19. Red-cockaded woodpecker nutritional status in relation to habitat: Evidence from ptilochronology and body mass

    Treesearch

    Richard R. Schaefer; D. Craig Rudolph; Richard N. Conner; Daniel Saenz

    2004-01-01

    Sexual divergence in foraging behavior exhibited by red-cockaded woodpeckers (Picoides borealis) should reduce intersexual competition for foraging sites. Males tend to forage at greater heights and on smaller stem diameters than females. It is well known that red-cockaded woodpeckers have an aversion to a well-developed stratum of midstory...

  20. Predator-prey interactions between the corallivorous snail Coralliophila abbreviata and the carnivorous deltoid rock snail Thais deltoidea.

    PubMed

    Sharp, William C; Delgado, Gabriel A

    2015-10-01

    Coral reefs in the Florida Keys have become highly degraded in recent decades, prompting efforts to reestablish populations of vital reef-accreting corals to restore reef structure and ecological function. However, predation on these corals by the corallivorous gastropod Coralliophila abbreviata has been a substantial and chronic impediment to these restoration efforts. We conducted laboratory experiments to determine whether Thais deltoidea, a carnivorous gastropod that commonly occurs with C. abbreviata, is a predator of C. abbreviata. We demonstrated that T. deltoidea readily preys upon C. abbreviata and preferentially targets smaller individuals, a foraging behavior that may optimize the energy gained due to reduced handling and consumption times. If this trophic relationship proves ecologically relevant, understanding the predator-prey dynamics between these species could ultimately aid in the development of a comprehensive coral reef restoration strategy for Florida.

  1. Adult survival, apparent lamb survival, and body condition of desert bighorn sheep in relation to habitat and precipitation on the Kofa National Wildlife Refuge, Arizona

    USGS Publications Warehouse

    Overstreet, Matthew; Caldwell, Colleen A.; Cain, James W.

    2014-01-01

    The decline of desert bighorn sheep on the Kofa National Wildlife Refuge (KNWR) beginning in 2003 stimulated efforts to determine the factors limiting survival and recruitment. We 1) determined pregnancy rates, body fat, and estimated survival rates of adults and lambs; 2) investigated the relationship between precipitation, forage conditions, previous year’s reproductive success, and adult body condition; 3) assessed the relative influence of body condition of adult females, precipitation, and forage characteristics on apparent survival of lambs; and 4) determined the prevalence of disease. To assess the influence of potential limiting factors on female desert bighorn sheep on the KNWR, we modeled percent body fat of adult females as a function of previous year’s reproductive effort, age class, and forage conditions (i.e., seasonal NDVI and seasonal precipitation). In addition, we assessed the relative influence of the body condition of adult females, precipitation, and forage conditions (NDVI) on length of time a lamb was observed at heel.Adult female survival was high in both 2009 (0.90 [SE = 0.05]) and 2010 (0.96 [SE = 0.03]). Apparent lamb survival to 6 months of age was 0.23 (SE = 0.05) during 2009-2010 and 0.21 (SE = 0.05) during 2010-2011 lambing seasons. Mean body fat for adult females was 12.03% (SE = 0.479) in 2009-2010 and 11.11% (SE= 0.486) in 2010-2011 and was not significantly different between years. Pregnancy rate was 100% in 2009 and 97.5% in 2010.Models containing the previous year’s reproductive effort, spring NDVI and previous year’s reproductive effort and spring precipitation best approximated data on percent body fat in adult females in 2009-2010. In 2010-2011, the two highest-ranking models included the previous year’s reproductive effort and winter NDVI and previous year’s reproductive effort, and winter and spring NDVI. None of the models assessing the influence of maternal body fat, precipitation, or forage conditions were particularly useful for predicting apparent lamb survival.The high pregnancy rates and body fat levels in excess of 11% do not indicate that this population of desert bighorn was nutritionally stressed during our study and are thus likely not contributing to the low lamb survival estimates we observed. However, body condition data during the population decline is not available and whether this population was nutritionally limited during the initial population decline remains unknown.The prevalence of disease in the Kofa herd may be a limiting factor; however, due to a lack of disease monitoring during the population decline it is uncertain if disease contributed to the decline. Further research is needed to fully understand the complex interaction of disease in this population at the individual and population level and determine to what extent disease predisposes individuals to predation or other causes of mortality.

  2. Foraging niche segregation in Malaysian babblers (Family: Timaliidae)

    PubMed Central

    Mansor, Mohammad Saiful; Ramli, Rosli

    2017-01-01

    Tropical rainforests are considered as hotspots for bird diversity, yet little is known about the system that upholds the coexistence of species. Differences in body size that are associated with foraging strategies and spatial distribution are believed to promote the coexistence of closely related species by reducing competition. However, the fact that many babbler species do not differ significantly in their morphology has challenged this view. We studied the foraging ecology of nine sympatric babbler species (i.e., Pellorneum capistratum, P. bicolor, P. malaccense, Malacopteron cinereum, M. magnum, Stachyris nigriceps, S. nigricollis, S. maculata, and Cyanoderma erythropterum) in the Krau Wildlife Reserve in Peninsular Malaysia. We investigated; i) how these babblers forage in the wild and use vegetation to obtain food, and ii) how these trophically similar species differ in spatial distribution and foraging tactics. Results indicated that most babblers foraged predominantly on aerial leaf litter and used gleaning manoeuvre in intermediate-density foliage but exhibited wide ranges of vertical strata usage, thus reducing interspecific competition. The principal component analysis indicated that two components, i.e., foraging height and substrate are important as mechanisms to allow the coexistence of sympatric babblers. The present findings revealed that these bird species have unique foraging niches that are distinct from each other, and this may apply to other insectivorous birds inhabiting tropical forests. This suggests that niche separation does occur among coexisting birds, thus following Gause’ law of competitive exclusion, which states two species occupying the same niche will not stably coexist. PMID:28253284

  3. Foraging niche segregation in Malaysian babblers (Family: Timaliidae).

    PubMed

    Mansor, Mohammad Saiful; Ramli, Rosli

    2017-01-01

    Tropical rainforests are considered as hotspots for bird diversity, yet little is known about the system that upholds the coexistence of species. Differences in body size that are associated with foraging strategies and spatial distribution are believed to promote the coexistence of closely related species by reducing competition. However, the fact that many babbler species do not differ significantly in their morphology has challenged this view. We studied the foraging ecology of nine sympatric babbler species (i.e., Pellorneum capistratum, P. bicolor, P. malaccense, Malacopteron cinereum, M. magnum, Stachyris nigriceps, S. nigricollis, S. maculata, and Cyanoderma erythropterum) in the Krau Wildlife Reserve in Peninsular Malaysia. We investigated; i) how these babblers forage in the wild and use vegetation to obtain food, and ii) how these trophically similar species differ in spatial distribution and foraging tactics. Results indicated that most babblers foraged predominantly on aerial leaf litter and used gleaning manoeuvre in intermediate-density foliage but exhibited wide ranges of vertical strata usage, thus reducing interspecific competition. The principal component analysis indicated that two components, i.e., foraging height and substrate are important as mechanisms to allow the coexistence of sympatric babblers. The present findings revealed that these bird species have unique foraging niches that are distinct from each other, and this may apply to other insectivorous birds inhabiting tropical forests. This suggests that niche separation does occur among coexisting birds, thus following Gause' law of competitive exclusion, which states two species occupying the same niche will not stably coexist.

  4. Dynamic oceanography determines fine scale foraging behavior of Masked Boobies in the Gulf of Mexico

    PubMed Central

    Harrison, Autumn-Lynn; Vallarino, Adriana; Gerard, Patrick D.; Jodice, Patrick G. R.

    2017-01-01

    During breeding, foraging marine birds are under biological, geographic, and temporal constraints. These contraints require foraging birds to efficiently process environmental cues derived from physical habitat features that occur at nested spatial scales. Mesoscale oceanography in particular may change rapidly within and between breeding seasons, and findings from well-studied systems that relate oceanography to seabird foraging may transfer poorly to regions with substantially different oceanographic conditions. Our objective was to examine foraging behavior of a pan-tropical seabird, the Masked Booby (Sula dactylatra), in the understudied Caribbean province, a moderately productive region driven by highly dynamic currents and fronts. We tracked 135 individuals with GPS units during May 2013, November 2013, and December 2014 at a regionally important breeding colony in the southern Gulf of Mexico. We measured foraging behavior using characteristics of foraging trips and used area restricted search as a proxy for foraging events. Among individual attributes, nest stage contributed to differences in foraging behavior whereas sex did not. Birds searched for prey at nested hierarchical scales ranging from 200 m—35 km. Large-scale coastal and shelf-slope fronts shifted position between sampling periods and overlapped geographically with overall foraging locations. At small scales (at the prey patch level), the specific relationship between environmental variables and foraging behavior was highly variable among individuals but general patterns emerged. Sea surface height anomaly and velocity of water were the strongest predictors of area restricted search behavior in random forest models, a finding that is consistent with the characterization of the Gulf of Mexico as an energetic system strongly influenced by currents and eddies. Our data may be combined with tracking efforts in the Caribbean province and across tropical regions to advance understanding of seabird sensing of the environment and serve as a baseline for anthropogenic based threats such as development, pollution, and commercial fisheries. PMID:28575078

  5. Dynamic oceanography determines fine scale foraging behavior of Masked Boobies in the Gulf of Mexico.

    PubMed

    Poli, Caroline L; Harrison, Autumn-Lynn; Vallarino, Adriana; Gerard, Patrick D; Jodice, Patrick G R

    2017-01-01

    During breeding, foraging marine birds are under biological, geographic, and temporal constraints. These contraints require foraging birds to efficiently process environmental cues derived from physical habitat features that occur at nested spatial scales. Mesoscale oceanography in particular may change rapidly within and between breeding seasons, and findings from well-studied systems that relate oceanography to seabird foraging may transfer poorly to regions with substantially different oceanographic conditions. Our objective was to examine foraging behavior of a pan-tropical seabird, the Masked Booby (Sula dactylatra), in the understudied Caribbean province, a moderately productive region driven by highly dynamic currents and fronts. We tracked 135 individuals with GPS units during May 2013, November 2013, and December 2014 at a regionally important breeding colony in the southern Gulf of Mexico. We measured foraging behavior using characteristics of foraging trips and used area restricted search as a proxy for foraging events. Among individual attributes, nest stage contributed to differences in foraging behavior whereas sex did not. Birds searched for prey at nested hierarchical scales ranging from 200 m-35 km. Large-scale coastal and shelf-slope fronts shifted position between sampling periods and overlapped geographically with overall foraging locations. At small scales (at the prey patch level), the specific relationship between environmental variables and foraging behavior was highly variable among individuals but general patterns emerged. Sea surface height anomaly and velocity of water were the strongest predictors of area restricted search behavior in random forest models, a finding that is consistent with the characterization of the Gulf of Mexico as an energetic system strongly influenced by currents and eddies. Our data may be combined with tracking efforts in the Caribbean province and across tropical regions to advance understanding of seabird sensing of the environment and serve as a baseline for anthropogenic based threats such as development, pollution, and commercial fisheries.

  6. Dynamic oceanography determines fine scale foraging behavior of Masked Boobies in the Gulf of Mexico

    USGS Publications Warehouse

    Poli, Caroline L.; Harrison, Autumn-Lynn; Vallarino, Adriana; Gerard, Patrick D.; Jodice, Patrick G.R.

    2017-01-01

    During breeding, foraging marine birds are under biological, geographic, and temporal constraints. These contraints require foraging birds to efficiently process environmental cues derived from physical habitat features that occur at nested spatial scales. Mesoscale oceanography in particular may change rapidly within and between breeding seasons, and findings from well-studied systems that relate oceanography to seabird foraging may transfer poorly to regions with substantially different oceanographic conditions. Our objective was to examine foraging behavior of a pan-tropical seabird, the Masked Booby (Sula dactylatra), in the understudied Caribbean province, a moderately productive region driven by highly dynamic currents and fronts. We tracked 135 individuals with GPS units during May 2013, November 2013, and December 2014 at a regionally important breeding colony in the southern Gulf of Mexico. We measured foraging behavior using characteristics of foraging trips and used area restricted search as a proxy for foraging events. Among individual attributes, nest stage contributed to differences in foraging behavior whereas sex did not. Birds searched for prey at nested hierarchical scales ranging from 200 m—35 km. Large-scale coastal and shelf-slope fronts shifted position between sampling periods and overlapped geographically with overall foraging locations. At small scales (at the prey patch level), the specific relationship between environmental variables and foraging behavior was highly variable among individuals but general patterns emerged. Sea surface height anomaly and velocity of water were the strongest predictors of area restricted search behavior in random forest models, a finding that is consistent with the characterization of the Gulf of Mexico as an energetic system strongly influenced by currents and eddies. Our data may be combined with tracking efforts in the Caribbean province and across tropical regions to advance understanding of seabird sensing of the environment and serve as a baseline for anthropogenic based threats such as development, pollution, and commercial fisheries.

  7. Growth performance and sorting characteristics of corn silage-alfalfa haylage diets with or without forage dilution offered to replacement Holstein dairy heifers

    USDA-ARS?s Scientific Manuscript database

    Gravid dairy heifers consuming high-quality forage diets are susceptible to excessive weight gains and over-conditioning. One approach for controlling this problem is to dilute diets with low-energy forages, such as straw, that reduce the caloric density and DMI of that diet by heifers. These diluti...

  8. Ungulate exclusion, conifer thinning and mule deer forage in northeastern New Mexico

    USGS Publications Warehouse

    Kramer, David W.; Sorensen, Grant E.; Taylor, Chase A.; Cox, Robert D.; Gipson, Philip S.; Cain, James W.

    2015-01-01

    The southwestern United States has experienced expansion of conifer species (Juniperus spp. and Pinus ponderosa) into areas of semi-arid grassland over the past century. The expansion of conifers can limit palatable forage and reduce grass and forb communities. Conifer species are sometimes thinned through hydraulic mulching or selective cutting. We assessed the effects of these treatments on mule deer (Odocoileus hemionus) habitat in northeastern New Mexico to determine if conifer thinning improved cover of preferred forage species for mule deer in areas with and without ungulates. We measured plant cover and occurrence of preferred forage species in the summers of 2011 and 2012. An ongoing regional drought probably reduced vegetation response, with preferred forage species and herbaceous cover responding to conifer thinning or ungulate exclusion immediately following treatment, but not the following year. In 2011, areas that received thinning treatments had a higher abundance of preferred forage when compared to sites with no treatment. Grass coverage exhibited an immediate response in 2011, with ungulate exclosures containing 8% more coverage than areas without exclosures. The results suggest that conifer thinning and ungulate exclusion may elicit a positive response, however in the presence of drought; the positive effects are only short-term.

  9. Managing uncertainty: information and insurance under the risk of starvation.

    PubMed Central

    Dall, Sasha R X; Johnstone, Rufus A

    2002-01-01

    In an uncertain world, animals face both unexpected opportunities and danger. Such outcomes can select for two potential strategies: collecting information to reduce uncertainty, or insuring against it. We investigate the relative value of information and insurance (energy reserves) under starvation risk by offering model foragers a choice between constant and varying food sources over finite foraging bouts. We show that sampling the variable option (choosing it when it is not expected to be good) should decline both with lower reserves and late in foraging bouts; in order to be able to reap the reduction in uncertainty associated with exploiting a variable resource effectively, foragers must be able to afford and compensate for an initial increase in the risk of an energetic shortfall associated with choosing the option when it is bad. Consequently, expected exploitation of the varying option increases as it becomes less variable, and when the overall risk of energetic shortfall is reduced. In addition, little activity on the variable alternative is expected until reserves are built up early in a foraging bout. This indicates that gathering information is a luxury while insurance is a necessity, at least when foraging on stochastic and variable food under the risk of starvation. PMID:12495509

  10. Coexistence of three sympatric cormorants (Phalacrocorax spp.); partitioning of time as an ecological resource

    PubMed Central

    Mahendiran, Mylswamy

    2016-01-01

    Resource partitioning is well known along food and habitat for reducing competition among sympatric species, yet a study on temporal partitioning as a viable basis for reducing resource competition is not empirically investigated. Here, I attempt to identify the mechanism of temporal partitioning by intra- and interspecific diving analyses of three sympatric cormorant species at different freshwater wetlands around the Delhi region. Diving results indicated that cormorants opted for a shallow diving; consequently, they did not face any physiological stress. Moreover, diving durations were linked with seasons, foraging time and foraging habitats. Intraspecific comparison suggested that cormorants spent a longer time underwater in early hours of the day. Therefore, time spent for dive was higher in the forenoon than late afternoon, and the interspecific analysis also yielded a similar result. When Phalacrocorax niger and Phalacrocorax fuscicollis shared the same foraging habitat, they tended to differ in their foraging time (forenoon/afternoon). However, when P. niger and Phalacrocorax carbo shared the same foraging time, they tended to use different foraging habitats (lentic/lotic) leading to a mechanism of resource partitioning. Thus, sympatric cormorants effectively use time as a resource to exploit the food resources and successful coexistence. PMID:27293799

  11. Early life adversity increases foraging and information gathering in European starlings, Sturnus vulgaris

    PubMed Central

    Andrews, Clare; Viviani, Jérémie; Egan, Emily; Bedford, Thomas; Brilot, Ben; Nettle, Daniel; Bateson, Melissa

    2015-01-01

    Animals can insure themselves against the risk of starvation associated with unpredictable food availability by storing energy reserves or gathering information about alternative food sources. The former strategy carries costs in terms of mass-dependent predation risk, while the latter trades off against foraging for food; both trade-offs may be influenced by an individual's developmental history. Here, we consider a possible role of early developmental experience in inducing different mass regulation and foraging strategies in European starlings. We measured the body mass, body condition, foraging effort, food consumption and contrafreeloading (foraging for food hidden in sand when equivalent food is freely available) of adult birds (≥10 months old) that had previously undergone a subtle early life manipulation of food competition (cross-fostering into the highest or lowest ranks in the brood size hierarchy when 2–12 days of age). We found that developmentally disadvantaged birds were fatter in adulthood and differed in foraging behaviour compared with their advantaged siblings. Disadvantaged birds were hyperphagic compared with advantaged birds, but only following a period of food deprivation, and also spent more time contrafreeloading. Advantaged birds experienced a trade-off between foraging success and time spent contrafreeloading, whereas disadvantaged birds faced no such trade-off, owing to their greater foraging efficiency. Thus, developmentally disadvantaged birds appeared to retain a phenotypic memory of increased nestling food competition, employing both energy storage and information-gathering insurance strategies to a greater extent than their advantaged siblings. Our results suggest that subtle early life disadvantage in the form of psychosocial stress and/or food insecurity can leave a lasting legacy on foraging behaviour and mass regulation even in the absence of food insufficiency during development or adulthood. PMID:26566292

  12. Chemical composition and ruminal nutrient degradability of fresh and ensiled amaranth forage.

    PubMed

    Seguin, Philippe; Mustafa, Arif F; Donnelly, Danielle J; Gélinas, Bruce

    2013-12-01

    Amaranth is a crop with potential as a source of forage for ruminants that has not been well characterized. A study was conducted to determine the impact of ensiling on the nutritional quality and ruminal degradability of forage from two amaranth cultivars adapted to North America (i.e. Plainsman and D136). In particular, quantification and some microscopic characterization of oxalate found in amaranth were performed as it is an antiquality compound of concern. There were limited interactions between cultivars and ensiling for most variables. Differences in chemical composition between amaranth cultivars were also limited. Ensiling reduced non-structural carbohydrate and true protein contents. The proportion of acid detergent protein was high in fresh and ensiled forages of both cultivars (average of 177 g kg(-1) crude protein). Total oxalate content averaged 30 and 25 g kg(-1) in fresh and ensiled forages respectively. Ensiling reduced soluble oxalate content. Crystals observed in amaranth were calcium oxalate druses found mostly in idioblast cells in leaf mesophyll and parenchyma of primary and secondary veins. In situ ruminal degradability data indicated that both fresh and ensiled amaranth are highly degradable in the rumen. This study confirms that amaranth is a suitable forage for ruminant animals. Its chemical composition is comparable, for most variables, to that of other commonly used forage species. © 2013 Society of Chemical Industry.

  13. Cotton Rats Alter Foraging in Response to an Invasive Ant.

    PubMed

    Darracq, Andrea K; Conner, L Mike; Brown, Joel S; McCleery, Robert A

    We assessed the effects of red imported fire ants (Solenopsis invicta; hereafter fire ant) on the foraging of hispid cotton rats (Sigmodon hispidus). We used a manipulative experiment, placing resource patches with a known amount of millet seed within areas with reduced (RIFA [-]) or ambient (RIFA [+]) numbers of fire ants. We measured giving up densities (the amount of food left within each patch) within the resource patches for 4 days to quantify the effects of fire ants on cotton rat foraging. We assessed the effects of fire ant treatment (RIFA), Day, and their interaction on cotton rat giving up densities. Giving up densities on RIFA [+] grids were nearly 2.2 times greater across all foraging days and ranged from 1.6 to 2.3 times greater from day 1 to day 4 than the RIFA [-] grids. From day 1 to day 4, mean giving up densities decreased significantly faster for the RIFA [-] than RIFA [+] treatments, 58% and 13%, respectively. Our results demonstrate that cotton rats perceive a risk of injury from fire ants, which is likely caused by interference competition, rather than direct predation. Envenomation from ants likely decrease the foraging efficiency of cotton rats resulting in more time spent foraging. Increased time spent foraging is likely stressful in terms of the opportunity for direct injury and encounters with other predators. These indirect effects may reduce an individual cotton rat's fitness and translate into lowered population abundances.

  14. Use of long-distance migration patterns of an endangered species to inform conservation planning for the world's largest marine protected area.

    PubMed

    Hays, Graeme C; Mortimer, Jeanne A; Ierodiaconou, Daniel; Esteban, Nicole

    2014-12-01

    Large marine protected areas (MPAs), each hundreds of thousands of square kilometers, have been set up by governments around the world over the last decade as part of efforts to reduce ocean biodiversity declines, yet their efficacy is hotly debated. The Chagos Archipelago MPA (640,000 km(2) ) (Indian Ocean) lies at the heart of this debate. We conducted the first satellite tracking of a migratory species, the green turtle (Chelonia mydas), within the MPA and assessed the species' use of protected versus unprotected areas. We developed an approach to estimate length of residence within the MPA that may have utility across migratory taxa including tuna and sharks. We recorded the longest ever published migration for an adult cheloniid turtle (3979 km). Seven of 8 tracked individuals migrated to distant foraging grounds, often ≥1000 km outside the MPA. One turtle traveled to foraging grounds within the MPA. Thus, networks of small MPAs, developed synergistically with larger MPAs, may increase the amount of time migrating species spend within protected areas. The MPA will protect turtles during the breeding season and will protect some turtles on their foraging grounds within the MPA and others during the first part of their long-distance postbreeding oceanic migrations. International cooperation will be needed to develop the network of small MPAs needed to supplement the Chagos Archipelago MPA. © 2014 Society for Conservation Biology.

  15. A flexible model of foraging by a honey bee colony: the effects of individual behaviour on foraging success.

    PubMed

    Cox, Melissa D; Myerscough, Mary R

    2003-07-21

    This paper develops and explores a model of foraging in honey bee colonies. The model may be applied to forage sources with various properties, and to colonies with different foraging-related parameters. In particular, we examine the effect of five foraging-related parameters on the foraging response and consequent nectar intake of a homogeneous colony. The parameters investigated affect different quantities critical to the foraging cycle--visit rate (affected by g), probability of dancing (mpd and bpd), duration of dancing (mcirc), or probability of abandonment (A). We show that one parameter, A, affects nectar intake in a nonlinear way. Further, we show that colonies with a midrange value of any foraging parameter perform better than the average of colonies with high- and low-range values, when profitable sources are available. Together these observations suggest that a heterogeneous colony, in which a range of parameter values are present, may perform better than a homogeneous colony. We modify the model to represent heterogeneous colonies and use it to show that the most important effect of heterogeneous foraging behaviour within the colony is to reduce the variance in the average quantity of nectar collected by heterogeneous colonies.

  16. Social foraging with partial (public) information.

    PubMed

    Mann, Ofri; Kiflawi, Moshe

    2014-10-21

    Group foragers can utilize public information to better estimate patch quality and arrive at more efficient patch-departure rules. However, acquiring such information may come at a cost; e.g. reduced search efficiency. We present a Bayesian group-foraging model in which social foragers do not require full awareness of their companions' foraging success; only of their number. In our model, patch departure is based on direct estimates of the number of remaining items. This is achieved by considering all likely combinations of initial patch-quality and group foraging-success; given the individual forager's experience within the patch. Slower rates of information-acquisition by our 'partially-aware' foragers lead them to over-utilize poor patches; more than fully-aware foragers. However, our model suggests that the ensuing loss in long-term intake-rates can be matched by a relatively low cost to the acquisition of full public information. In other words, we suggest that group-size offers sufficient information for optimal patch utilization by social foragers. We suggest, also, that our model is applicable to other situations where resources undergo 'background depletion', which is coincident but independent of the consumer's own utilization. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Suboptimal foraging behavior: A new perspective on gambling

    PubMed Central

    Addicott, Merideth A.; Pearson, John M.; Kaiser, Nicole; Platt, Michael L.; McClernon, F. Joseph

    2015-01-01

    Why do people gamble? Conventional views hold that gambling may be motivated by irrational beliefs, risk-seeking, impulsive temperament, or dysfunction within the same reward circuitry affected by drugs of abuse. An alternate, unexplored perspective is that gambling is an extension of natural foraging behavior to a financial environment. However, when these foraging algorithms are applied to stochastic gambling outcomes, undesirable results may occur. To test this hypothesis, we recruited participants based on their frequency of gambling – yearly (or less), monthly, and weekly – and investigated how gambling frequency related to irrational beliefs, risk-taking/impulsivity, and foraging behavior. We found that increased gambling frequency corresponded to greater gambling-related beliefs, more exploratory choices on an explore/exploit foraging task, and fewer points earned on a patchy foraging task. Gambling-related beliefs negatively related to performance on the patchy foraging task, indicating that individuals with more gambling-related cognitions tended to leave a patch too quickly. This indicates that frequent gamblers have reduced foraging ability to maximize rewards; however, gambling frequency- and by extension, poor foraging ability- was not related to risk-taking or impulsive behavior. These results suggest that gambling reflects the application of a dysfunctional foraging process to financial outcomes. PMID:26191945

  18. Suboptimal foraging behavior: a new perspective on gambling.

    PubMed

    Addicott, Merideth A; Pearson, John M; Kaiser, Nicole; Platt, Michael L; McClernon, F Joseph

    2015-10-01

    Why do people gamble? Conventional views hold that gambling may be motivated by irrational beliefs, risk-seeking, impulsive temperament, or dysfunction within the same reward circuitry affected by drugs of abuse. An alternate, unexplored perspective is that gambling is an extension of natural foraging behavior to a financial environment. However, when these foraging algorithms are applied to stochastic gambling outcomes, undesirable results may occur. To test this hypothesis, we recruited participants based on their frequency of gambling-yearly (or less), monthly, and weekly-and investigated how gambling frequency related to irrational beliefs, risk-taking/impulsivity, and foraging behavior. We found that increased gambling frequency corresponded to greater gambling-related beliefs, more exploratory choices on an explore/exploit foraging task, and fewer points earned on a Patchy Foraging Task. Gambling-related beliefs negatively related to performance on the Patchy Foraging Task, indicating that individuals with more gambling-related cognitions tended to leave a patch too quickly. This indicates that frequent gamblers have reduced foraging ability to maximize rewards; however, gambling frequency -and by extension, poor foraging ability- was not related to risk-taking or impulsive behavior. These results suggest that gambling reflects the application of a dysfunctional foraging process to financial outcomes. (c) 2015 APA, all rights reserved).

  19. Individual specialization in the foraging habits of female bottlenose dolphins living in a trophically diverse and habitat rich estuary

    USGS Publications Warehouse

    Rossman, Sam; Ostrom, Peggy H.; Stolen, Megan; Barros, Nélio B.; Gandhi, Hasand; Stricker, Craig A.; Wells, Randall S.

    2015-01-01

    We examine individual specialization in foraging habits (foraging habitat and trophic level) of female bottlenose dolphins (Tursiops truncatus) resident in Sarasota Bay, Florida, USA, by analyzing time series of stable isotope (δ15N and δ13C) values in sequential growth layer groups within teeth. The isotope data provide a chronology of foraging habits over the lifetime of the individual and allowed us to show that female bottlenose dolphins exhibit a high degree of individual specialization in both foraging habitat and trophic level. The foraging habits used by adult females are similar to those they used as calves and may be passed down from mother to calf through social learning. We also characterized the foraging habits and home range of each individual by constructing standard ellipses from isotope values and dolphin sightings data (latitude and longitude), respectively. These data show that Sarasota Bay bottlenose dolphins forage within a subset of the habitats in which they are observed. Moreover, females with similar observational standard ellipses often possessed different foraging specializations. Female bottlenose dolphins may demonstrate individual specialization in foraging habits because it reduces some of the cost of living in groups, such as competition for prey.

  20. Forage use to improve environmental sustainability of ruminant production.

    PubMed

    Guyader, J; Janzen, H H; Kroebel, R; Beauchemin, K A

    2016-08-01

    Ruminants raised for meat and milk are important sources of protein in human diets worldwide. Their unique digestive system allows them to derive energy and nourishment from forages, making use of vast areas of grazing lands not suitable for arable cropping or biofuel production and avoiding direct competition for grain that can be used as human food. However, sustaining an ever-growing population of ruminants consuming forages poses a dilemma: while exploiting their ecological niche, forage-fed ruminants produce large amount of enteric methane, a potent greenhouse gas. Resolving this quandary would allow ruminants an expanded role in meeting growing global demands for livestock products. One way around the dilemma is to devise forage-based diets and feeding systems that reduce methane emissions per unit of milk or meat produced. Ongoing research has made significant strides toward this objective. A wider opportunity is to look beyond methane emissions alone and consider all greenhouse gas emissions from the entire livestock-producing system. For example, by raising ruminants in systems using forages, some of the methane emissions can be offset by preserving or enhancing soil carbon reserves, thereby withholding carbon dioxide from the air. Similarly, well-managed systems based on forages may reduce synthetic fertilizer use by more effective use of manure and nitrogen-fixing plants, thereby curtailing nitrous oxide emissions. The potential environmental benefits of forage-based systems may be expanded even further by considering their other ecological benefits, such as conserving biodiversity, improving soil health, enhancing water quality, and providing wildlife habitat. The quandary, then, can be alleviated by managing ruminants within a holistic land-livestock synchrony that considers not only methane emissions but also suppression of other greenhouse gases as well as other ecological benefits. Given the complexity of such systems, there likely are no singular "best-management" practices that can be recommended everywhere. Using systems-based approaches such as life cycle analysis, ruminant production can be tuned for local lands to achieve greatest net benefits overall. In many instances, such systems, based on forages, may maintain high output of milk and meat while also furnishing other ecosystem benefits, such as reduced overall greenhouse gas emissions.

  1. Predictive ethoinformatics reveals the complex migratory behaviour of a pelagic seabird, the Manx Shearwater

    PubMed Central

    Freeman, Robin; Dean, Ben; Kirk, Holly; Leonard, Kerry; Phillips, Richard A.; Perrins, Chris M.; Guilford, Tim

    2013-01-01

    Understanding the behaviour of animals in the wild is fundamental to conservation efforts. Advances in bio-logging technologies have offered insights into the behaviour of animals during foraging, migration and social interaction. However, broader application of these systems has been limited by device mass, cost and longevity. Here, we use information from multiple logger types to predict individual behaviour in a highly pelagic, migratory seabird, the Manx Shearwater (Puffinus puffinus). Using behavioural states resolved from GPS tracking of foraging during the breeding season, we demonstrate that individual behaviours can be accurately predicted during multi-year migrations from low cost, lightweight, salt-water immersion devices. This reveals a complex pattern of migratory stopovers: some involving high proportions of foraging, and others of rest behaviour. We use this technique to examine three consecutive years of global migrations, revealing the prominence of foraging behaviour during migration and the importance of highly productive waters during migratory stopover. PMID:23635496

  2. Subglacial discharges create fluctuating foraging hotspots for sea birds in tidewater glacier bays.

    PubMed

    Urbanski, Jacek Andrzej; Stempniewicz, Lech; Węsławski, Jan Marcin; Dragańska-Deja, Katarzyna; Wochna, Agnieszka; Goc, Michał; Iliszko, Lech

    2017-03-07

    Although the processes occurring at the front of an ice face in tidewater glacier bays still await thorough investigation, their importance to the rapidly changing polar environment is spurring a considerable research effort. Glacier melting, sediment delivery and the formation of seabird foraging hotspots are governed by subglacial discharges of meltwater. We have combined the results of tracking black-legged kittiwakes Rissa tridactyla equipped with GPS loggers, analyses of satellite images and in situ measurements of water temperature, salinity and turbidity in order to examine the magnitude and variability of such hotspots in the context of glacier bay hydrology. Small though these hotspots are in size, foraging in them appears to be highly intensive. They come into existence only if the subglacial discharge reaches the surface, if the entrainment velocity at a conduit is high and if there is sufficient macroplankton in the entrainment layer. The position and type of subglacial discharges may fluctuate in time and space, thereby influencing glacier bay hydrology and the occurrence of foraging hotspots.

  3. Impacts of savanna trees on forage quality for a large African herbivore

    PubMed Central

    De Kroon, Hans; Prins, Herbert H. T.

    2008-01-01

    Recently, cover of large trees in African savannas has rapidly declined due to elephant pressure, frequent fires and charcoal production. The reduction in large trees could have consequences for large herbivores through a change in forage quality. In Tarangire National Park, in Northern Tanzania, we studied the impact of large savanna trees on forage quality for wildebeest by collecting samples of dominant grass species in open grassland and under and around large Acacia tortilis trees. Grasses growing under trees had a much higher forage quality than grasses from the open field indicated by a more favourable leaf/stem ratio and higher protein and lower fibre concentrations. Analysing the grass leaf data with a linear programming model indicated that large savanna trees could be essential for the survival of wildebeest, the dominant herbivore in Tarangire. Due to the high fibre content and low nutrient and protein concentrations of grasses from the open field, maximum fibre intake is reached before nutrient requirements are satisfied. All requirements can only be satisfied by combining forage from open grassland with either forage from under or around tree canopies. Forage quality was also higher around dead trees than in the open field. So forage quality does not reduce immediately after trees die which explains why negative effects of reduced tree numbers probably go initially unnoticed. In conclusion our results suggest that continued destruction of large trees could affect future numbers of large herbivores in African savannas and better protection of large trees is probably necessary to sustain high animal densities in these ecosystems. PMID:18309522

  4. Ozone and sulfur dioxide effects on tall fescue. II. Alteration of quality constituents. [Festuca arundinacea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flagler, R.B.; Youngner, V.B.

    A greenhouse study was conducted to determine whether ozone (O/sub 3/) and sulfur dioxide (SO/sub 2/) might alter forage quality parameters of tall fescue (Festuca arundinacea Schreb. Alta). Plants were exposed weekly to four O/sub 3/ treatments, 0, 0.10, 0.20, and 0.30 ..mu..L L/sup -1/; with or without 0.10 ..mu..L L/sup -1/ SO/sub 2/, 6 h d/sup -1/ for 12 weeks. Ozone had a much greater impact on forage quality than did SO/sub 2/. Ozone increased protein content on a g kg/sup -1/ basis and decreased protein on a weight per plant basis. Ozone reduced crude fat, crude fiber, andmore » total nonstructural carbohydrate contents of the forage. Crude ash content increased due to O/sub 3/ exposure. On a weight per plant basis, O/sub 3/ decreased the forage concentration of Ca, Mg, and P. Ozone increased Ca concentration of herbage. Sulfur dioxide increased ash content of the forage. Phosphorus concentration and weight per plant of Mg and P were all reduced by SO/sub 2/ Significant pollutant interactions occurred for crude fiber, crude ash, total Mg, and total P contents of forage. While treatments resulted in some apparent increases in forage quality, these were at the expense of yield. The most adverse effects on forage quality were an increase in ash content which resulted from an interaction of SO/sub 2/ with O/sub 3/, and a reduction in soluble carbohydrate content of shoots due to O/sub 3/.« less

  5. Foraging behaviour of juvenile female New Zealand sea lions (Phocarctos hookeri) in contrasting environments.

    PubMed

    Leung, Elaine S; Augé, Amélie A; Chilvers, B Louise; Moore, Antoni B; Robertson, Bruce C

    2013-01-01

    Foragers can show adaptive responses to changes within their environment through morphological and behavioural plasticity. We investigated the plasticity in body size, at sea movements and diving behaviour of juvenile female New Zealand (NZ) sea lions (Phocarctos hookeri) in two contrasting environments. The NZ sea lion is one of the rarest pinnipeds in the world. Most of the species is based at the subantarctic Auckland Islands (AI; considered to be marginal foraging habitat), with a recolonizing population on the Otago Peninsula, NZ mainland (considered to be more optimal habitat). We investigated how juvenile NZ sea lions adjust their foraging behaviour in contrasting environments by deploying satellite-linked platform transmitting terminals (PTTs) and time-depth recorders (TDRs) on 2-3 year-old females at AI (2007-2010) and Otago (2009-2010). Juvenile female NZ sea lions exhibited plasticity in body size and behaviour. Otago juveniles were significantly heavier than AI juveniles. Linear mixed effects models showed that study site had the most important effect on foraging behaviour, while mass and age had little influence. AI juveniles spent more time at sea, foraged over larger areas, and dove deeper and longer than Otago juveniles. It is difficult to attribute a specific cause to the observed contrasts in foraging behaviour because these differences may be driven by disparities in habitat/prey characteristics, conspecific density levels or interseasonal variation. Nevertheless, the smaller size and increased foraging effort of AI juveniles, combined with the lower productivity in this region, support the hypothesis that AI are less optimal habitat than Otago. It is more difficult for juveniles to forage in suboptimal habitats given their restricted foraging ability and lower tolerance for food limitation compared to adults. Thus, effective management measures should consider the impacts of low resource environments, along with changes that can alter food availability such as potential resource competition with fisheries.

  6. Foraging Behaviour of Juvenile Female New Zealand Sea Lions (Phocarctos hookeri) in Contrasting Environments

    PubMed Central

    Leung, Elaine S.; Augé, Amélie A.; Chilvers, B. Louise; Moore, Antoni B.; Robertson, Bruce C.

    2013-01-01

    Foragers can show adaptive responses to changes within their environment through morphological and behavioural plasticity. We investigated the plasticity in body size, at sea movements and diving behaviour of juvenile female New Zealand (NZ) sea lions (Phocarctos hookeri) in two contrasting environments. The NZ sea lion is one of the rarest pinnipeds in the world. Most of the species is based at the subantarctic Auckland Islands (AI; considered to be marginal foraging habitat), with a recolonizing population on the Otago Peninsula, NZ mainland (considered to be more optimal habitat). We investigated how juvenile NZ sea lions adjust their foraging behaviour in contrasting environments by deploying satellite-linked platform transmitting terminals (PTTs) and time-depth recorders (TDRs) on 2–3 year-old females at AI (2007–2010) and Otago (2009–2010). Juvenile female NZ sea lions exhibited plasticity in body size and behaviour. Otago juveniles were significantly heavier than AI juveniles. Linear mixed effects models showed that study site had the most important effect on foraging behaviour, while mass and age had little influence. AI juveniles spent more time at sea, foraged over larger areas, and dove deeper and longer than Otago juveniles. It is difficult to attribute a specific cause to the observed contrasts in foraging behaviour because these differences may be driven by disparities in habitat/prey characteristics, conspecific density levels or interseasonal variation. Nevertheless, the smaller size and increased foraging effort of AI juveniles, combined with the lower productivity in this region, support the hypothesis that AI are less optimal habitat than Otago. It is more difficult for juveniles to forage in suboptimal habitats given their restricted foraging ability and lower tolerance for food limitation compared to adults. Thus, effective management measures should consider the impacts of low resource environments, along with changes that can alter food availability such as potential resource competition with fisheries. PMID:23671630

  7. Drivers, challenges and opportunities of forage technology adoption by smallholder cattle households in Cambodia.

    PubMed

    Ashley, K; Wilson, S; Young, J R; Chan, H P; Vitou, S; Suon, S; Windsor, P A; Bush, R D

    2018-01-01

    Forage technology has been successfully introduced into smallholder cattle systems in Cambodia as an alternative feed source to the traditional rice straw and native pastures, improving animal nutrition and reducing labour requirements of feeding cattle. Previous research has highlighted the positive impacts of forage technology including improved growth rates of cattle and household time savings. However, further research is required to understand the drivers, challenges and opportunities of forage technology for smallholder cattle households in Cambodia to facilitate widespread adoption and identify areas for further improvement. A survey of forage-growing households (n = 40) in July-September 2016 examined forage technology adoption experiences, including reasons for forage establishment, use of inputs and labour requirements of forage plot maintenance and use of forages (feeding, fattening, sale of grass or seedlings and silage). Time savings was reported as the main driver of forage adoption with household members spending approximately 1 h per day maintaining forages and feeding it to cattle. Water availability was reported as the main challenge to this activity. A small number of households also reported lack of labour, lack of fencing, competition from natural grasses, cost of irrigation and lack of experience as challenges to forage growing. Cattle fattening and sale of cut forage grass and seedlings was not found to be a widespread activity by interviewed households, with 25 and 10% of households reporting use of forages for these activities, respectively. Currently, opportunities exist for these households to better utilise forages through expansion of forage plots and cattle activities, although assistance is required to support these households in addressing current constraints, particularly availability of water, if the sustainability of this feed technology for smallholder cattle household is to be established in Cambodia.

  8. First steps for mitigating bycatch of Pink-footed Shearwaters Ardenna creatopus: Identifying overlap of foraging areas and fisheries in Chile

    USGS Publications Warehouse

    Carle, Ryan; Felis, Jonathan J.; López, Verónica; Adams, Josh; Hodum, Peter; Beck, Jessie; Colodro, Valentina; Vega, Rodrigo; González, Andrés

    2016-01-01

    The Pink-footed Shearwater, Ardenna creatopus, is listed as in danger of extinction by Chile and under Annex 1 of ACAP, with an estimated global population of approximately 56,000 individuals. Incidental bycatch of this species in fisheries is thought to be an important cause in population decline (i.e. annual estimated mortality of >1000 adults). This species is an endemic breeder in Chile, nesting only on the Juan Fernandez Archipelago (JFI; 30% of global population), and Isla Mocha (70% of global population). Using miniature GPS and satellite transmitters, we determined foraging areas of Pink-footed Shearwaters during the chick-rearing period in 2002 (JFI) and 2015-2016 (Isla Mocha). We overlaid shearwater tracking data with data from the Instituto de Fomento Pesquero (IFOP) on fishing effort in Chile (type of fishery, number sets per day, location of sets, and target species) to identify fisheries and fishing zones with the greatest potential for Pink-footed Shearwater bycatch. During the 2002-2006 (N = 28 birds total) and 2015 (N = 18 birds) breeding periods, foraging areas were associated with the continental shelf and shelf-break, generally less than 30 km offshore. All foraging trips occurred between 31.5 and 40.0 degrees south, and birds remained in Chile territorial waters 100% of the time. We identified two primary foraging hotspots, one offshore near Talcahuano, Chile (approximately 36-37.5° south), and one offshore north of Valdivia, Chile (approximately 39-39.5° south). Birds tracked from the Juan Fernández Archipelago foraged in the Talcahuano hotspot but did not visit the southerly hotspot near Valdivia. Birds tracked from Isla Mocha used both areas, with a greater proportion of birds using the Valdivia hotspot than the Talcahuano hotspot. Other major areas of use were around the respective breeding colonies from which the birds were tracked. Overlay of these data with fisheries data is currently in progress. Preliminary results indicate extensive overlap of Pink-footed Shearwater foraging grounds with industrial and artisanal purse-seine fisheries within Chile, representing a significant risk of bycatch. Further work could be initiated to track Pink-footed Shearwaters during other life-stages (i.e. pre-breeding and incubation), and would enhance collaborative efforts with fisheries managers and fishers concerned with mitigating bycatch.

  9. Reproductive performance and diving behaviour share a common sea-ice concentration optimum in Adélie penguins (Pygoscelis adeliae).

    PubMed

    Le Guen, Camille; Kato, Akiko; Raymond, Ben; Barbraud, Christophe; Beaulieu, Michaël; Bost, Charles-André; Delord, Karine; MacIntosh, Andrew J J; Meyer, Xavier; Raclot, Thierry; Sumner, Michael; Takahashi, Akinori; Thiebot, Jean-Baptiste; Ropert-Coudert, Yan

    2018-06-29

    The Southern Ocean is currently experiencing major environmental changes, including in sea-ice cover. Such changes strongly influence ecosystem structure and functioning and affect the survival and reproduction of predators such as seabirds. These effects are likely mediated by reduced availability of food resources. As such, seabirds are reliable eco-indicators of environmental conditions in the Antarctic region. Here, based on nine years of sea-ice data, we found that the breeding success of Adélie penguins (Pygoscelis adeliae) reaches a peak at intermediate sea-ice cover (ca. 20%). We further examined the effects of sea-ice conditions on the foraging activity of penguins, measured at multiple scales from individual dives to foraging trips. Analysis of temporal organisation of dives, including fractal and bout analyses, revealed an increasingly consistent behaviour during years with extensive sea-ice cover. The relationship between several dive parameters and sea-ice cover in the foraging area appears to be quadratic. In years of low and high sea-ice cover, individuals adjusted their diving effort by generally diving deeper, more frequently and by resting at the surface between dives for shorter periods of time than in years with intermediate sea-ice cover. Our study therefore suggests that sea-ice cover is likely to affect the reproductive performance of Adélie penguins through its effects on foraging behaviour, as breeding success and most diving parameters share a common optimum. Some years, however, deviated from this general trend, suggesting that other factors (e.g. precipitation during the breeding season) might sometimes become preponderant over the sea-ice effects on breeding and foraging performance. Our study highlights the value of monitoring fitness parameters and individual behaviour concomitantly over the long term to better characterize optimal environmental conditions and potential resilience of wildlife. Such an approach is crucial if we want to anticipate the effects of environmental change on Antarctic penguin populations. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  10. Foraging across the life span: is there a reduction in exploration with aging?

    PubMed Central

    Mata, Rui; Wilke, Andreas; Czienskowski, Uwe

    2013-01-01

    Does foraging change across the life span, and in particular, with aging? We report data from two foraging tasks used to investigate age differences in search in external environments as well as internal search in memory. Overall, the evidence suggests that foraging behavior may undergo significant changes across the life span across internal and external search. In particular, we find evidence of a trend toward reduced exploration with increased age. We discuss these findings in light of theories that postulate a link between aging and reductions in novelty seeking and exploratory behavior. PMID:23616741

  11. Niche separation in flycatcher-like species in the lowland rainforests of Malaysia.

    PubMed

    Mansor, Mohammad Saiful; Ramli, Rosli

    2017-07-01

    Niche theory suggests that sympatric species reduce interspecific competition through segregation of shared resources by adopting different attack manoeuvres. However, the fact that flycatcher-like bird species exclusively use the sally manoeuvre may thus challenge this view. We studied the foraging ecology of three flycatcher-like species (i.e. Paradise-flycatcher Terpsiphone sp., Black-naped Monarch Hypothymis azurea, and Rufous-winged Philentoma Philentoma pyrhoptera) in the Krau Wildlife Reserve in central Peninsular Malaysia. We investigated foraging preferences of each bird species and the potential niche partitioning via spatial or behavioural segregation. Foraging substrate was important parameter that effectively divided paradise-flycatcher from Black-naped Monarch and Rufous-winged Philentoma, where monarch and philentoma foraged mainly on live green leaves, while paradise-flycatcher foraged on the air. They also exhibited different foraging height preferences. Paradise-flycatcher, for instance, preferred the highest studied strata, while Black-naped Monarch foraged mostly in lower strata, and Rufous-winged Philentoma made use of the lowest strata. This study indicates that niche segregation occurs among sympatric species through foraging substrate and attack manoeuvres selection. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Evaluating the role of large jellyfish and forage fishes as energy pathways, and their interplay with fisheries, in the Northern Humboldt Current System

    NASA Astrophysics Data System (ADS)

    Chiaverano, Luciano M.; Robinson, Kelly L.; Tam, Jorge; Ruzicka, James J.; Quiñones, Javier; Aleksa, Katrina T.; Hernandez, Frank J.; Brodeur, Richard D.; Leaf, Robert; Uye, Shin-ichi; Decker, Mary Beth; Acha, Marcelo; Mianzan, Hermes W.; Graham, William M.

    2018-05-01

    Large jellyfish are important consumers of plankton, fish eggs and fish larvae in heavily fished ecosystems worldwide; yet they are seldom included in fisheries production models. Here we developed a trophic network model with 41 functional groups using ECOPATH re-expressed in a donor-driven, end-to-end format to directly evaluate the efficiency of large jellyfish and forage fish at transferring energy to higher trophic levels, as well as the ecosystem-wide effects of varying jellyfish and forage fish consumption rates and fishing rates, in the Northern Humboldt Current system (NHCS) off of Peru. Large jellyfish were an energy-loss pathway for high trophic-level consumers, while forage fish channelized the production of lower trophic levels directly into production of top-level consumers. A simulated jellyfish bloom resulted in a decline in productivity of all functional groups, including forage fish (12%), with the exception of sea turtles. A modeled increase in forage fish consumption rate by 50% resulted in a decrease in large jellyfish productivity (29%). A simulated increase of 40% in forage fish harvest enhanced jellyfish productivity (24%), while closure of all fisheries caused a decline in large jellyfish productivity (26%) and productivity increases in upper level consumers. These outcomes not only suggest that jellyfish blooms and fisheries have important effects on the structure of the NHCS, but they also support the hypothesis that forage fishing provides a competitive release for large jellyfish. We recommend including jellyfish as a functional group in future ecosystem modeling efforts, including ecosystem-based approaches to fishery management of coastal ecosystems worldwide.

  13. Adaptive collective foraging in groups with conflicting nutritional needs

    PubMed Central

    Senior, Alistair M.; Lihoreau, Mathieu; Charleston, Michael A.; Buhl, Jerome; Raubenheimer, David; Simpson, Stephen J.

    2016-01-01

    Collective foraging, based on positive feedback and quorum responses, is believed to improve the foraging efficiency of animals. Nutritional models suggest that social information transfer increases the ability of foragers with closely aligned nutritional needs to find nutrients and maintain a balanced diet. However, whether or not collective foraging is adaptive in a heterogeneous group composed of individuals with differing nutritional needs is virtually unexplored. Here we develop an evolutionary agent-based model using concepts of nutritional ecology to address this knowledge gap. Our aim was to evaluate how collective foraging, mediated by social retention on foods, can improve nutrient balancing in individuals with different requirements. The model suggests that in groups where inter-individual nutritional needs are unimodally distributed, high levels of collective foraging yield optimal individual fitness by reducing search times that result from moving between nutritionally imbalanced foods. However, where nutritional needs are highly bimodal (e.g. where the requirements of males and females differ) collective foraging is selected against, leading to group fission. In this case, additional mechanisms such as assortative interactions can coevolve to allow collective foraging by subgroups of individuals with aligned requirements. Our findings indicate that collective foraging is an efficient strategy for nutrient regulation in animals inhabiting complex nutritional environments and exhibiting a range of social forms. PMID:27152206

  14. Cotton Rats Alter Foraging in Response to an Invasive Ant

    PubMed Central

    Darracq, Andrea K.; Conner, L. Mike; Brown, Joel S.; McCleery, Robert A.

    2016-01-01

    We assessed the effects of red imported fire ants (Solenopsis invicta; hereafter fire ant) on the foraging of hispid cotton rats (Sigmodon hispidus). We used a manipulative experiment, placing resource patches with a known amount of millet seed within areas with reduced (RIFA [–]) or ambient (RIFA [+]) numbers of fire ants. We measured giving up densities (the amount of food left within each patch) within the resource patches for 4 days to quantify the effects of fire ants on cotton rat foraging. We assessed the effects of fire ant treatment (RIFA), Day, and their interaction on cotton rat giving up densities. Giving up densities on RIFA [+] grids were nearly 2.2 times greater across all foraging days and ranged from 1.6 to 2.3 times greater from day 1 to day 4 than the RIFA [–] grids. From day 1 to day 4, mean giving up densities decreased significantly faster for the RIFA [–] than RIFA [+] treatments, 58% and 13%, respectively. Our results demonstrate that cotton rats perceive a risk of injury from fire ants, which is likely caused by interference competition, rather than direct predation. Envenomation from ants likely decrease the foraging efficiency of cotton rats resulting in more time spent foraging. Increased time spent foraging is likely stressful in terms of the opportunity for direct injury and encounters with other predators. These indirect effects may reduce an individual cotton rat’s fitness and translate into lowered population abundances. PMID:27655320

  15. Fishing amplifies forage fish population collapses.

    PubMed

    Essington, Timothy E; Moriarty, Pamela E; Froehlich, Halley E; Hodgson, Emma E; Koehn, Laura E; Oken, Kiva L; Siple, Margaret C; Stawitz, Christine C

    2015-05-26

    Forage fish support the largest fisheries in the world but also play key roles in marine food webs by transferring energy from plankton to upper trophic-level predators, such as large fish, seabirds, and marine mammals. Fishing can, thereby, have far reaching consequences on marine food webs unless safeguards are in place to avoid depleting forage fish to dangerously low levels, where dependent predators are most vulnerable. However, disentangling the contributions of fishing vs. natural processes on population dynamics has been difficult because of the sensitivity of these stocks to environmental conditions. Here, we overcome this difficulty by collating population time series for forage fish populations that account for nearly two-thirds of global catch of forage fish to identify the fingerprint of fisheries on their population dynamics. Forage fish population collapses shared a set of common and unique characteristics: high fishing pressure for several years before collapse, a sharp drop in natural population productivity, and a lagged response to reduce fishing pressure. Lagged response to natural productivity declines can sharply amplify the magnitude of naturally occurring population fluctuations. Finally, we show that the magnitude and frequency of collapses are greater than expected from natural productivity characteristics and therefore, likely attributed to fishing. The durations of collapses, however, were not different from those expected based on natural productivity shifts. A risk-based management scheme that reduces fishing when populations become scarce would protect forage fish and their predators from collapse with little effect on long-term average catches.

  16. Learning where to feed: the use of social information in flower-visiting Pallas' long-tongued bats (Glossophaga soricina).

    PubMed

    Rose, Andreas; Kolar, Miriam; Tschapka, Marco; Knörnschild, Mirjam

    2016-03-01

    Social learning is a widespread phenomenon among vertebrates that influences various patterns of behaviour and is often reported with respect to foraging behaviour. The use of social information by foraging bats was documented in insectivorous, carnivorous and frugivorous species, but there are little data whether flower-visiting nectarivorous bats (Phyllostomidae: Glossophaginae) can acquire information about food from other individuals. In this study, we conducted an experiment with a demonstrator-observer paradigm to investigate whether flower-visiting Pallas' long-tongued bats (Glossophaga soricina) are able to socially learn novel flower positions via observation of, or interaction with, knowledgeable conspecifics. The results demonstrate that flower-visiting G. soricina are able to use social information for the location of novel flower positions and can thereby reduce energy-costly search efforts. This social transmission is explainable as a result of local enhancement; learning bats might rely on both visual and echo-acoustical perception and are likely to eavesdrop on auditory cues that are emitted by feeding conspecifics. We additionally tested the spatial memory capacity of former demonstrator bats when retrieving a learned flower position, and the results indicate that flower-visiting bats remember a learned flower position after several weeks.

  17. Habitat selection by Forster's Terns (Sterna forsteri) at multiple spatial scales in an urbanized estuary: The importance of salt ponds

    USGS Publications Warehouse

    Bluso-Demers, Jill; Ackerman, Joshua T.; Takekawa, John Y.; Peterson, Sarah

    2016-01-01

    The highly urbanized San Francisco Bay Estuary, California, USA, is currently undergoing large-scale habitat restoration, and several thousand hectares of former salt evaporation ponds are being converted to tidal marsh. To identify potential effects of this habitat restoration on breeding waterbirds, habitat selection of radiotagged Forster's Terns (Sterna forsteri) was examined at multiple spatial scales during the pre-breeding and breeding seasons of 2005 and 2006. At each spatial scale, habitat selection ratios were calculated by season, year, and sex. Forster's Terns selected salt pond habitats at most spatial scales and demonstrated the importance of salt ponds for foraging and roosting. Salinity influenced the types of salt pond habitats that were selected. Specifically, Forster's Terns strongly selected lower salinity salt ponds (0.5–30 g/L) and generally avoided higher salinity salt ponds (≥31 g/L). Forster's Terns typically used tidal marsh and managed marsh habitats in proportion to their availability, avoided upland and tidal flat habitats, and strongly avoided open bay habitats. Salt ponds provide important habitat for breeding waterbirds, and restoration efforts to convert former salt ponds to tidal marsh may reduce the availability of preferred breeding and foraging areas.

  18. Soil Carbon Recovery of Degraded Steppe Ecosystems of the Mongolian Plateau

    NASA Astrophysics Data System (ADS)

    Ojima, D. S.; Togtohyn, C.; Qi, J.

    2013-12-01

    Mongolian steppe grassland systems are critical source of ecosystem services to societal groups in temperate East Asia. These systems are characterized by their arid and semiarid environments where rainfall tends to be too variable or evaporative losses reduce water availability to reliably support cropping systems or substantial forest cover. These steppe ecosystems have supported land use practices to accommodate the variable rainfall patterns, and seasonal and spatial patterns of forage production displayed by the nomadic pastoral systems practiced across Asia. These pastoral systems are dependent on grassland ecosystem services, including forage production, wool, skins, meat and dairy products, and in many systems provide critical biodiversity and land and water protection services which serve to maintain pastoral livelihoods. Precipitation variability and associated drought conditions experienced frequently in these grassland systems are key drivers of these systems. However, during the past several decades climate change and grazing and land use conversion have resulted in degradation of ecosystem services and loss of soil organic matter. Recent efforts in China and Mongolia are investigating different grazing management practices to restore soil organic matter in these degraded systems. Simulation modeling is being applied to evaluate the long-term benefits of different grazing management regimes under various climate scenarios.

  19. Disruption of Foraging by a Dominant Invasive Species to Decrease Its Competitive Ability

    PubMed Central

    Westermann, Fabian Ludwig; Suckling, David Maxwell; Lester, Philip John

    2014-01-01

    Invasive species are a major threat to biodiversity when dominant within their newly established habitat. The globally distributed Argentine ant Linepithema humile has been reported to break the trade-off between interference and exploitative competition, achieve high population densities, and overpower nests of many endemic ant species. We have used the sensitivity of the Argentine ant to the synthetic trail pheromone (Z)-9-hexadecanal to investigate species interactions for the first time. We predicted that disrupting Argentine ant trail following behaviour would reduce their competitive ability and create an opportunity for three other resident species to increase their foraging success. Argentine ant success in the control was reduced with increasing pheromone concentration, as predicted, but interactions varied among competing resident species. These behavioural variations provide an explanation for observed differences in foraging success of the competing resident species and how much each of these individual competitors can increase their foraging if the competitive ability of the dominant invader is decreased. The mechanism for the observed increase in resource acquisition of resident species appears to be a decrease in aggressive behaviour displayed by the Argentine ant, which may create an opportunity for other resident species to forage more successfully. Our demonstration of species interactions with trail pheromone disruption is the first known case of reduced dominance under a pheromone treatment in ants. PMID:24594633

  20. Dance communication affects consistency, but not breadth, of resource use in pollen-foraging honey bees.

    PubMed

    Donaldson-Matasci, Matina; Dornhaus, Anna

    2014-01-01

    In groups of cooperatively foraging individuals, communication may improve the group's performance by directing foraging effort to where it is most useful. Honey bees (Apis mellifera) use a specialized dance to communicate the location of floral resources. Because honey bees dance longer for more rewarding resources, communication may shift the colony's foraging effort towards higher quality resources, and thus narrow the spectrum of resource types used. To test the hypothesis that dance communication changes how much honey bee colonies specialize on particular resources, we manipulated their ability to communicate location, and assessed the relative abundance of different pollen taxa they collected. This was repeated across five natural habitats that differed in floral species richness and spatial distribution. Contrary to expectation, impairing communication did not change the number or diversity of pollen (resource) types used by individual colonies per day. However, colonies with intact dance communication were more consistent in their resource use, while those with impaired communication were more likely to collect rare, novel pollen types. This suggests that communication plays an important role in shaping how much colonies invest in exploring new resources versus exploiting known ones. Furthermore, colonies that did more exploration also tended to collect less pollen overall, but only in environments with greater floral abundance per patch. In such environments, the ability to effectively exploit highly rewarding resources may be especially important-and dance communication may help colonies do just that. This could help explain how communication benefits honey bee colonies, and also why it does so only under certain environmental conditions.

  1. Dance Communication Affects Consistency, but Not Breadth, of Resource Use in Pollen-Foraging Honey Bees

    PubMed Central

    Donaldson-Matasci, Matina; Dornhaus, Anna

    2014-01-01

    In groups of cooperatively foraging individuals, communication may improve the group’s performance by directing foraging effort to where it is most useful. Honey bees (Apis mellifera) use a specialized dance to communicate the location of floral resources. Because honey bees dance longer for more rewarding resources, communication may shift the colony’s foraging effort towards higher quality resources, and thus narrow the spectrum of resource types used. To test the hypothesis that dance communication changes how much honey bee colonies specialize on particular resources, we manipulated their ability to communicate location, and assessed the relative abundance of different pollen taxa they collected. This was repeated across five natural habitats that differed in floral species richness and spatial distribution. Contrary to expectation, impairing communication did not change the number or diversity of pollen (resource) types used by individual colonies per day. However, colonies with intact dance communication were more consistent in their resource use, while those with impaired communication were more likely to collect rare, novel pollen types. This suggests that communication plays an important role in shaping how much colonies invest in exploring new resources versus exploiting known ones. Furthermore, colonies that did more exploration also tended to collect less pollen overall, but only in environments with greater floral abundance per patch. In such environments, the ability to effectively exploit highly rewarding resources may be especially important–and dance communication may help colonies do just that. This could help explain how communication benefits honey bee colonies, and also why it does so only under certain environmental conditions. PMID:25271418

  2. The Trail Less Traveled: Individual Decision-Making and Its Effect on Group Behavior

    PubMed Central

    Lanan, Michele C.; Dornhaus, Anna; Jones, Emily I.; Waser, Andrew; Bronstein, Judith L.

    2012-01-01

    Social insect colonies are complex systems in which the interactions of many individuals lead to colony-level collective behaviors such as foraging. However, the emergent properties of collective behaviors may not necessarily be adaptive. Here, we examine symmetry breaking, an emergent pattern exhibited by some social insects that can lead colonies to focus their foraging effort on only one of several available food patches. Symmetry breaking has been reported to occur in several ant species. However, it is not clear whether it arises as an unavoidable epiphenomenon of pheromone recruitment, or whether it is an adaptive behavior that can be controlled through modification of the individual behavior of workers. In this paper, we used a simulation model to test how symmetry breaking is affected by the degree of non-linearity of recruitment, the specific mechanism used by individuals to choose between patches, patch size, and forager number. The model shows that foraging intensity on different trails becomes increasingly asymmetric as the recruitment response of individuals varies from linear to highly non-linear, supporting the predictions of previous work. Surprisingly, we also found that the direction of the relationship between forager number (i.e., colony size) and asymmetry varied depending on the specific details of the decision rule used by individuals. Limiting the size of the resource produced a damping effect on asymmetry, but only at high forager numbers. Variation in the rule used by individual ants to choose trails is a likely mechanism that could cause variation among the foraging behaviors of species, and is a behavior upon which selection could act. PMID:23112880

  3. Contrafreeloading in grizzly bears: implications for captive foraging enrichment.

    PubMed

    McGowan, Ragen T S; Robbins, Charles T; Alldredge, J Richard; Newberry, Ruth C

    2010-01-01

    Although traditional feeding regimens for captive animals were focused on meeting physiological needs to assure good health, more recently emphasis has also been placed on non-nutritive aspects of feeding. The provision of foraging materials to diversify feeding behavior is a common practice in zoos but selective consumption of foraging enrichment items over more balanced "chow" diets could lead to nutrient imbalance. One alternative is to provide balanced diets in a contrafreeloading paradigm. Contrafreeloading occurs when animals choose resources that require effort to exploit when identical resources are freely available. To investigate contrafreeloading and its potential as a theoretical foundation for foraging enrichment, we conducted two experiments with captive grizzly bears (Ursus arctos horribilis). In Experiment 1, bears were presented with five foraging choices simultaneously: apples, apples in ice, salmon, salmon in ice, and plain ice under two levels of food restriction. Two measures of contrafreeloading were considered: weight of earned food consumed and time spent working for earned food. More free than earned food was eaten, with only two bears consuming food extracted from ice, but all bears spent more time manipulating ice containing salmon or apples than plain ice regardless of level of food restriction. In Experiment 2, food-restricted bears were presented with three foraging choices simultaneously: apples, apples inside a box, and an empty box. Although they ate more free than earned food, five bears consumed food from boxes and all spent more time manipulating boxes containing apples than empty boxes. Our findings support the provision of contrafreeloading opportunities as a foraging enrichment strategy for captive wildlife. (c) 2009 Wiley-Liss, Inc.

  4. Apparent ruminal synthesis of B vitamins in lactating dairy cows fed diets with different forage-to-concentrate ratios.

    PubMed

    Seck, M; Linton, J A Voelker; Allen, M S; Castagnino, D S; Chouinard, P Y; Girard, C L

    2017-03-01

    Effects of the forage-to-concentrate ratio on apparent ruminal synthesis of thiamine, riboflavin, niacin, vitamin B 6 , folates, and vitamin B 12 were evaluated in an experiment using 14 ruminally and duodenally cannulated Holstein cows. The experiment was a crossover design with two 15-d treatment periods and a 14-d preliminary period in which cows were fed a diet intermediate in composition between the treatment diets. Treatments were diets containing low-forage (44.8% forage, 32.8% starch, 24.4% neutral detergent fiber) or high-forage (61.4% forage, 22.5% starch, 30.7% neutral detergent fiber) concentrations. Both diets were formulated with different proportions of the same ingredients. Concentrations of B vitamins were analyzed in feed and duodenal digesta. Apparent ruminal synthesis of each B vitamin was calculated as the duodenal flow minus the intake. The high-forage diet had the highest concentrations of riboflavin, niacin, vitamin B 6 , and folates, whereas the low-forage diet had the highest thiamine concentration. Vitamin B 12 in the diets was under the level of detection. Consequently, despite a reduction in dry matter intake when the cows were fed the high-forage diet, increasing dietary forage concentration increased or tended to increase intakes of riboflavin, niacin, and vitamin B 6 but reduced thiamine and folate intakes. Increasing dietary forage concentration reduced apparent ruminal degradation of thiamine and apparent ruminal synthesis of riboflavin, niacin, and folates and increased ruminal degradation of vitamin B 6 , but had no effect on ruminal synthesis of vitamin B 12 . As a consequence, increasing the forage-to-concentrate ratio had no effect on the amounts of thiamine, riboflavin, and vitamin B 12 reaching the small intestine but decreased the amounts of niacin, vitamin B 6 , and folates available for absorption. Apparent ruminal syntheses of riboflavin, niacin, folates, and vitamin B 12 were correlated positively with the amount of starch digested in the rumen and duodenal flow of microbial N, whereas these correlations were negative for thiamine. Apparent ruminal syntheses of thiamine and vitamin B 6 were negatively correlated with their respective intakes, whereas folate intake was positively correlated with its synthesis in the rumen. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. Inferring Foraging Areas of Nesting Loggerhead Turtles Using Satellite Telemetry and Stable Isotopes

    PubMed Central

    Ceriani, Simona A.; Roth, James D.; Evans, Daniel R.; Weishampel, John F.; Ehrhart, Llewellyn M.

    2012-01-01

    In recent years, the use of intrinsic markers such as stable isotopes to link breeding and foraging grounds of migratory species has increased. Nevertheless, several assumptions still must be tested to interpret isotopic patterns found in the marine realm. We used a combination of satellite telemetry and stable isotope analysis to (i) identify key foraging grounds used by female loggerheads nesting in Florida and (ii) examine the relationship between stable isotope ratios and post-nesting migration destinations. We collected tissue samples for stable isotope analysis from 14 females equipped with satellite tags and an additional 57 untracked nesting females. Telemetry identified three post-nesting migratory pathways and associated non-breeding foraging grounds: (1) a seasonal continental shelf–constrained migratory pattern along the northeast U.S. coastline, (2) a non-breeding residency in southern foraging areas and (3) a residency in the waters adjacent to the breeding area. Isotopic variability in both δ13C and δ15N among individuals allowed identification of three distinct foraging aggregations. We used discriminant function analysis to examine how well δ13C and δ15N predict female post-nesting migration destination. The discriminant analysis classified correctly the foraging ground used for all but one individual and was used to predict putative feeding areas of untracked turtles. We provide the first documentation that the continental shelf of the Mid- and South Atlantic Bights are prime foraging areas for a large number (61%) of adult female loggerheads from the largest loggerhead nesting population in the western hemisphere and the second largest in the world. Our findings offer insights for future management efforts and suggest that this technique can be used to infer foraging strategies and residence areas in lieu of more expensive satellite telemetry, enabling sample sizes that are more representative at the population level. PMID:23028943

  6. Climate change, multiple stressors, and the decline of ectotherms.

    PubMed

    Rohr, Jason R; Palmer, Brent D

    2013-08-01

    Climate change is believed to be causing declines of ectothermic vertebrates, but there is little evidence that climatic conditions associated with declines have exceeded critical (i.e., acutely lethal) maxima or minima, and most relevant studies are correlative, anecdotal, or short-term (hours). We conducted an 11-week factorial experiment to examine the effects of temperature (22 °C or 27 °C), moisture (wet or dry), and atrazine (an herbicide; 0, 4, 40, 400 μg/L exposure as embryos and larvae) on the survival, growth, behavior, and foraging rates of postmetamorphic streamside salamanders (Ambystoma barbouri), a species of conservation concern. The tested climatic conditions were between the critical maxima and minima of streamside salamanders; thus, this experiment quantified the long-term effects of climate change within the noncritical range of this species. Despite a suite of behavioral adaptations to warm and dry conditions (e.g., burrowing, refuge use, huddling with conspecifics, and a reduction in activity), streamside salamanders exhibited significant loss of mass and significant mortality in all but the cool and moist conditions, which were closest to the climatic conditions in which they are most active in nature. A temperature of 27 °C represented a greater mortality risk than dry conditions; death occurred rapidly at this temperature and more gradually under cool and dry conditions. Foraging decreased under dry conditions, which suggests there were opportunity costs to water conservation. Exposure to the herbicide atrazine additively decreased water-conserving behaviors, foraging efficiency, mass, and time to death. Hence, the hypothesis that moderate climate change can cause population declines is even more plausible under scenarios with multiple stressors. These results suggest that climate change within the noncritical range of species and pollution may reduce individual performance by altering metabolic demands, hydration, and foraging effort and may facilitate population declines of amphibians and perhaps other ectothermic vertebrates. © 2013 Society for Conservation Biology.

  7. Forage quality declines with rising temperatures, with implications for livestock production and methane emissions

    NASA Astrophysics Data System (ADS)

    Lee, Mark A.; Davis, Aaron P.; Chagunda, Mizeck G. G.; Manning, Pete

    2017-03-01

    Livestock numbers are increasing to supply the growing demand for meat-rich diets. The sustainability of this trend has been questioned, and future environmental changes, such as climate change, may cause some regions to become less suitable for livestock. Livestock and wild herbivores are strongly dependent on the nutritional chemistry of forage plants. Nutrition is positively linked to weight gains, milk production and reproductive success, and nutrition is also a key determinant of enteric methane production. In this meta-analysis, we assessed the effects of growing conditions on forage quality by compiling published measurements of grass nutritive value and combining these data with climatic, edaphic and management information. We found that forage nutritive value was reduced at higher temperatures and increased by nitrogen fertiliser addition, likely driven by a combination of changes to species identity and changes to physiology and phenology. These relationships were combined with multiple published empirical models to estimate forage- and temperature-driven changes to cattle enteric methane production. This suggested a previously undescribed positive climate change feedback, where elevated temperatures reduce grass nutritive value and correspondingly may increase methane production by 0.9 % with a 1 °C temperature rise and 4.5 % with a 5 °C rise (model average), thus creating an additional climate forcing effect. Future methane production increases are expected to be largest in parts of North America, central and eastern Europe and Asia, with the geographical extent of hotspots increasing under a high emissions scenario. These estimates require refinement and a greater knowledge of the abundance, size, feeding regime and location of cattle, and the representation of heat stress should be included in future modelling work. However, our results indicate that the cultivation of more nutritious forage plants and reduced livestock farming in warming regions may reduce this additional source of pastoral greenhouse gas emissions.

  8. Risk of predation makes foragers less choosy about their food.

    PubMed

    Charalabidis, Alice; Dechaume-Moncharmont, François-Xavier; Petit, Sandrine; Bohan, David A

    2017-01-01

    Animals foraging in the wild have to balance speed of decision making and accuracy of assessment of a food item's quality. If resource quality is important for maximizing fitness, then the duration of decision making may be in conflict with other crucial and time consuming tasks, such as anti-predator behaviours or competition monitoring. Individuals facing the risk of predation and/or competition should adjust the duration of decision making and, as a consequence, their level of choosiness for resources. When exposed to predation, the forager could either maintain its level of choosiness for food items but accept a reduction in the amount of food items consumed or it could reduce its level of choosiness and accept all prey items encountered. Under competition risk, individuals are expected to reduce their level of choosiness as slow decision making exposes individuals to a higher risk of opportunity costs. To test these predictions, the level of choosiness of a seed-eating carabid beetle, Harpalus affinis, was examined under 4 different experimental conditions of risk: i) predation risk; ii) intraspecific competition; iii) interspecific competition; and, iv) control. All the risks were simulated using chemical cues from individual conspecifics or beetles of different species that are predatory or granivorous. Our results show that when foraging under the risk of predation, H. affinis individuals significantly reduce their level of choosiness for seeds. Reductions in level of choosiness for food items might serve as a sensible strategy to reduce both the total duration of a foraging task and the cognitive load of the food quality assessment. No significant differences were observed when individuals were exposed to competition cues. Competition, (i.e opportunity cost) may not be perceived as risk high enough to induce changes in the level of choosiness. Our results suggest that considering the amount of items consumed, alone, would be a misleading metric when assessing individual response to a risk of predation. Foraging studies should therefore also take in account the decision making process.

  9. Forage and sugar in dairy calves' starter diet and their interaction on performance, weaning age and rumen fermentation.

    PubMed

    Beiranvand, H; Ghorbani, G R; Khorvash, M; Kazemi-Bonchenari, M

    2014-06-01

    The effects of sugar and forage inclusion in calves' starter and their interaction on animal performance and rumen fermentation parameters were investigated. Twenty-eight neonatal Holstein male calves 3 days of age with average body weights of 42 ± 4 kg were allocated to four different treatments. All calves were fed a similar basal diet consisting of milk and concentrate. The experimental treatments were: (i) basal diet with no supplementation (Control, hereafter designated by C), (ii) basal diet plus 5% granular sugar cane (Sugar, designated by S), (iii) basal diet plus 5% forage (Forage, designated by F) and (iv) basal diet plus 5% forage with 5% granular sugar cane (F × S). Supplement ingredients were used on a dry matter (DM) basis. Rumen fluid parameters were measured twice on days 35 and 70 of the study period. The calves were weaned when they could consume 1 kg of starter for three consecutive days. The results show that starter intake was not affected by treatment; however, the lowest ADG was observed with calves in the sugar treatment. Weaning age was affected by treatments, and forage showed to reduce milk consumption period down to its shortest. Forage-sugar interaction was found to have no effects on animal performance. The structural body indices as well as the health status of the calves were similar in different treatments. Rumen pH did not differ among the treatment groups. Among the rumen parameters, total VFA concentration and molar proportions of butyrate and propionate did not exhibit any significant differences among the treatments. However, ruminal acetate concentration decreased in calves that fed sugar cane during the early weeks of the study period. Comparison of forage and sugar included in the starter diets revealed that forage reduced weaning age, while sugar cane had a negative effect on calves' performance. Journal of Animal Physiology and Animal Nutrition © 2013 Blackwell Verlag GmbH.

  10. The influence of foraging mode and arid adaptation on the basal metabolic rates of burrowing mammals.

    PubMed

    White, Craig R

    2003-01-01

    Two competing but nonexclusive hypotheses to explain the reduced basal metabolic rate (BMR) of mammals that live and forage underground (fossorial species) are examined by comparing this group with burrowing mammals that forage on the surface (semifossorial species). These hypotheses suggest that the low BMR of fossorial species either compensates for the enormous energetic demands of subterranean foraging (the cost-of-burrowing hypothesis) or prevents overheating in closed burrow systems (the thermal-stress hypothesis). Because phylogentically informed allometric analysis showed that arid burrowing mammals have a significantly lower BMR than mesic ones, fossorial and semifossorial species were compared within these groups. The BMRs of mesic fossorial and semifossorial mammals could not be reliably distinguished, nor could the BMRs of large (>77 g) arid fossorial and semifossorial mammals. This finding favours the thermal-stress hypothesis, because the groups appear to have similar BMRs despite differences in foraging costs. However, in support of the cost-of-burrowing hypothesis, small (<77 g) arid fossorial mammals were found to have a significantly lower BMR than semifossorial mammals of the similar size. Given the high mass-specific metabolic rates of small animals, they are expected to be under severe energy and water stress in arid environments. Under such conditions, the greatly reduced BMR of small fossorial species may compensate for the enormous energetic demands of subterranean foraging.

  11. Are stress hormone levels a good proxy of foraging success? An experiment with king penguins, Aptenodytes patagonicus.

    PubMed

    Angelier, Frédéric; Giraudeau, Mathieu; Bost, Charles-André; Le Bouard, Fabrice; Chastel, Olivier

    2009-09-01

    In seabirds, variations in stress hormone (corticosterone; henceforth CORT) levels have been shown to reflect changing marine conditions and, especially, changes in food availability. However, it remains unclear how CORT levels can be mechanistically affected by these changes at the individual level. Specifically, the influence of food acquisition and foraging success on CORT secretion is poorly understood. In this study, we tested whether food acquisition can reduce baseline CORT levels (;the food intake hypothesis') by experimentally reducing foraging success of King Penguins (Aptenodytes patagonicus). Although CORT levels overall decreased during a foraging trip, CORT levels did not differ between experimental birds and controls. These results demonstrate that mass gain at sea is not involved in changes in baseline CORT levels in this species. The overall decrease in CORT levels during a foraging trip could result from CORT-mediated energy regulation (;the energy utilisation hypothesis'). Along with other evidence, we suggest that the influence of foraging success and food intake on CORT levels is complex and that the ecological meaning of baseline CORT levels can definitely vary between species and ecological contexts. Therefore, further studies are needed to better understand (1) how baseline CORT levels are functionally regulated according to energetic status and energetic demands and (2) to what extent CORT can be used to aid in the conservation of seabird populations.

  12. The foraging benefits of being fat in a highly migratory marine mammal

    PubMed Central

    Adachi, Taiki; Maresh, Jennifer L.; Robinson, Patrick W.; Peterson, Sarah H.; Costa, Daniel P.; Naito, Yasuhiko; Watanabe, Yuuki Y.; Takahashi, Akinori

    2014-01-01

    Foraging theory predicts that breath-hold divers adjust the time spent foraging at depth relative to the energetic cost of swimming, which varies with buoyancy (body density). However, the buoyancy of diving animals varies as a function of their body condition, and the effects of these changes on swimming costs and foraging behaviour have been poorly examined. A novel animal-borne accelerometer was developed that recorded the number of flipper strokes, which allowed us to monitor the number of strokes per metre swam (hereafter, referred to as strokes-per-metre) by female northern elephant seals over their months-long, oceanic foraging migrations. As negatively buoyant seals increased their fat stores and buoyancy, the strokes-per-metre increased slightly in the buoyancy-aided direction (descending), but decreased significantly in the buoyancy-hindered direction (ascending), with associated changes in swim speed and gliding duration. Overall, the round-trip strokes-per-metre decreased and reached a minimum value when seals achieved neutral buoyancy. Consistent with foraging theory, seals stayed longer at foraging depths when their round-trip strokes-per-metre was less. Therefore, neutrally buoyant divers gained an energetic advantage via reduced swimming costs, which resulted in an increase in time spent foraging at depth, suggesting a foraging benefit of being fat. PMID:25377461

  13. Coastal leatherback turtles reveal conservation hotspot

    PubMed Central

    Robinson, Nathan J.; Morreale, Stephen J.; Nel, Ronel; Paladino, Frank V.

    2016-01-01

    Previous studies have shown that the world’s largest reptile – the leatherback turtle Dermochelys coriacea – conducts flexible foraging migrations that can cover thousands of kilometres between nesting sites and distant foraging areas. The vast distances that may be travelled by migrating leatherback turtles have greatly complicated conservation efforts for this species worldwide. However, we demonstrate, using a combination of satellite telemetry and stable isotope analysis, that approximately half of the nesting leatherbacks from an important rookery in South Africa do not migrate to distant foraging areas, but rather, forage in the coastal waters of the nearby Mozambique Channel. Moreover, this coastal cohort appears to remain resident year-round in shallow waters (<50 m depth) in a relatively fixed area. Stable isotope analyses further indicate that the Mozambique Channel also hosts large numbers of loggerhead turtles Caretta caretta. The rare presence of a resident coastal aggregation of leatherback turtles not only presents a unique opportunity for conservation, but alongside the presence of loggerhead turtles and other endangered marine megafauna in the Mozambique Channel, highlights the importance of this area as a marine biodiversity hotspot. PMID:27886262

  14. Subglacial discharges create fluctuating foraging hotspots for sea birds in tidewater glacier bays

    PubMed Central

    Urbanski, Jacek Andrzej; Stempniewicz, Lech; Węsławski, Jan Marcin; Dragańska-Deja, Katarzyna; Wochna, Agnieszka; Goc, Michał; Iliszko, Lech

    2017-01-01

    Although the processes occurring at the front of an ice face in tidewater glacier bays still await thorough investigation, their importance to the rapidly changing polar environment is spurring a considerable research effort. Glacier melting, sediment delivery and the formation of seabird foraging hotspots are governed by subglacial discharges of meltwater. We have combined the results of tracking black-legged kittiwakes Rissa tridactyla equipped with GPS loggers, analyses of satellite images and in situ measurements of water temperature, salinity and turbidity in order to examine the magnitude and variability of such hotspots in the context of glacier bay hydrology. Small though these hotspots are in size, foraging in them appears to be highly intensive. They come into existence only if the subglacial discharge reaches the surface, if the entrainment velocity at a conduit is high and if there is sufficient macroplankton in the entrainment layer. The position and type of subglacial discharges may fluctuate in time and space, thereby influencing glacier bay hydrology and the occurrence of foraging hotspots. PMID:28266602

  15. Human memory retrieval as Lévy foraging

    NASA Astrophysics Data System (ADS)

    Rhodes, Theo; Turvey, Michael T.

    2007-11-01

    When people attempt to recall as many words as possible from a specific category (e.g., animal names) their retrievals occur sporadically over an extended temporal period. Retrievals decline as recall progresses, but short retrieval bursts can occur even after tens of minutes of performing the task. To date, efforts to gain insight into the nature of retrieval from this fundamental phenomenon of semantic memory have focused primarily upon the exponential growth rate of cumulative recall. Here we focus upon the time intervals between retrievals. We expected and found that, for each participant in our experiment, these intervals conformed to a Lévy distribution suggesting that the Lévy flight dynamics that characterize foraging behavior may also characterize retrieval from semantic memory. The closer the exponent on the inverse square power-law distribution of retrieval intervals approximated the optimal foraging value of 2, the more efficient was the retrieval. At an abstract dynamical level, foraging for particular foods in one's niche and searching for particular words in one's memory must be similar processes if particular foods and particular words are randomly and sparsely located in their respective spaces at sites that are not known a priori. We discuss whether Lévy dynamics imply that memory processes, like foraging, are optimized in an ecological way.

  16. Turbidity interferes with foraging success of visual but not chemosensory predators

    PubMed Central

    Smee, Delbert L.

    2015-01-01

    Predation can significantly affect prey populations and communities, but predator effects can be attenuated when abiotic conditions interfere with foraging activities. In estuarine communities, turbidity can affect species richness and abundance and is changing in many areas because of coastal development. Many fish species are less efficient foragers in turbid waters, and previous research revealed that in elevated turbidity, fish are less abundant whereas crabs and shrimp are more abundant. We hypothesized that turbidity altered predatory interactions in estuaries by interfering with visually-foraging predators and prey but not with organisms relying on chemoreception. We measured the effects of turbidity on the predation rates of two model predators: a visual predator (pinfish, Lagodon rhomboides) and a chemosensory predator (blue crabs, Callinectes sapidus) in clear and turbid water (0 and ∼100 nephelometric turbidity units). Feeding assays were conducted with two prey items, mud crabs (Panopeus spp.) that rely heavily on chemoreception to detect predators, and brown shrimp (Farfantepenaus aztecus) that use both chemical and visual cues for predator detection. Because turbidity reduced pinfish foraging on both mud crabs and shrimp, the changes in predation rates are likely driven by turbidity attenuating fish foraging ability and not by affecting prey vulnerability to fish consumers. Blue crab foraging was unaffected by turbidity, and blue crabs were able to successfully consume nearly all mud crab and shrimp prey. Turbidity can influence predator–prey interactions by reducing the feeding efficiency of visual predators, providing a competitive advantage to chemosensory predators, and altering top-down control in food webs. PMID:26401444

  17. Macronutrient ratios in pollen shape bumble bee (Bombus impatiens) foraging strategies and floral preferences

    PubMed Central

    Vaudo, Anthony D.; Patch, Harland M.; Mortensen, David A.; Tooker, John F.; Grozinger, Christina M.

    2016-01-01

    To fuel their activities and rear their offspring, foraging bees must obtain a sufficient quality and quantity of nutritional resources from a diverse plant community. Pollen is the primary source of proteins and lipids for bees, and the concentrations of these nutrients in pollen can vary widely among host-plant species. Therefore we hypothesized that foraging decisions of bumble bees are driven by both the protein and lipid content of pollen. By successively reducing environmental and floral cues, we analyzed pollen-foraging preferences of Bombus impatiens in (i) host-plant species, (ii) pollen isolated from these host-plant species, and (iii) nutritionally modified single-source pollen diets encompassing a range of protein and lipid concentrations. In our semifield experiments, B. impatiens foragers exponentially increased their foraging rates of pollen from plant species with high protein:lipid (P:L) ratios; the most preferred plant species had the highest ratio (∼4.6:1). These preferences were confirmed in cage studies where, in pairwise comparisons in the absence of other floral cues, B. impatiens workers still preferred pollen with higher P:L ratios. Finally, when presented with nutritionally modified pollen, workers were most attracted to pollen with P:L ratios of 5:1 and 10:1, but increasing the protein or lipid concentration (while leaving ratios intact) reduced attraction. Thus, macronutritional ratios appear to be a primary factor driving bee pollen-foraging behavior and may explain observed patterns of host-plant visitation across the landscape. The nutritional quality of pollen resources should be taken into consideration when designing conservation habitats supporting bee populations. PMID:27357683

  18. How does the presence of a conspecific individual change the behavioral game that a predator plays with its prey?

    PubMed

    Vardi, Reut; Abramsky, Zvika; Kotler, Burt P; Altstein, Ofir; Rosenzweig, Michael L

    2017-07-01

    Behavioral games predators play among themselves may have profound effects on behavioral games predators play with their prey. We studied the behavioral game between predators and prey within the framework of social foraging among predators. We tested how conspecific interactions among predators (little egret) change the predator-prey behavioral game and foraging success. To do so, we examined foraging behavior of egrets alone and in pairs (male and female) in a specially designed aviary consisting of three equally spaced pools with identical initial prey (comet goldfish) densities. Each pool was comprised of a risky microhabitat, rich with food, and a safe microhabitat with no food, forcing the fish to trade off food and safety. When faced with two versus one egret, we found that fish significantly reduced activity in the risky habitat. Egrets in pairs suffered reduced foraging success (negative intraspecific density dependence) and responded to fish behavior and to their conspecific by changing their visiting regime at the different pools-having shorter, more frequent visits. The time egret spent on each visit allowed them to match their long-term capture success rate across the environment to their capture success rate in the pool, which satisfies one aspect of optimality. Overall, egrets in pairs allocated more time for foraging and changed their foraging tactics to focus more on fish under cover and fish 'peeping' out from their shelter. These results suggest that both prey and predator show behavioral flexibility and can adjust to changing conditions as needed in this foraging game.

  19. Turbidity interferes with foraging success of visual but not chemosensory predators.

    PubMed

    Lunt, Jessica; Smee, Delbert L

    2015-01-01

    Predation can significantly affect prey populations and communities, but predator effects can be attenuated when abiotic conditions interfere with foraging activities. In estuarine communities, turbidity can affect species richness and abundance and is changing in many areas because of coastal development. Many fish species are less efficient foragers in turbid waters, and previous research revealed that in elevated turbidity, fish are less abundant whereas crabs and shrimp are more abundant. We hypothesized that turbidity altered predatory interactions in estuaries by interfering with visually-foraging predators and prey but not with organisms relying on chemoreception. We measured the effects of turbidity on the predation rates of two model predators: a visual predator (pinfish, Lagodon rhomboides) and a chemosensory predator (blue crabs, Callinectes sapidus) in clear and turbid water (0 and ∼100 nephelometric turbidity units). Feeding assays were conducted with two prey items, mud crabs (Panopeus spp.) that rely heavily on chemoreception to detect predators, and brown shrimp (Farfantepenaus aztecus) that use both chemical and visual cues for predator detection. Because turbidity reduced pinfish foraging on both mud crabs and shrimp, the changes in predation rates are likely driven by turbidity attenuating fish foraging ability and not by affecting prey vulnerability to fish consumers. Blue crab foraging was unaffected by turbidity, and blue crabs were able to successfully consume nearly all mud crab and shrimp prey. Turbidity can influence predator-prey interactions by reducing the feeding efficiency of visual predators, providing a competitive advantage to chemosensory predators, and altering top-down control in food webs.

  20. Ant Foraging As an Indicator of Tropical Dry Forest Restoration.

    PubMed

    Hernández-Flores, J; Osorio-Beristain, M; Martínez-Garza, C

    2016-08-01

    Variation in foraging behavior may indicate differences in food availability and allow assessment of restoration actions. Ants are prominent bioindicators used in assessing ecological responses to disturbance. However, behavioral data have been poorly incorporated as an index. The foraging performance of red harvester ants was quantified in order to evaluate the success of a restoration ecology experiment in the tropical dry forest of Sierra de Huautla, Morelos, in central Mexico. Foraging performance by granivorous, Pogonomyrmex barbatus, ants was diminished after 6 and 8 years of cattle grazing and wood harvest were excluded as part of a restoration experiment in a highly degraded biome. Despite investing more time in foraging, ant colonies in exclusion plots showed lower foraging success and acquired less seed biomass than colonies in control plots. In line with the predictions of optimal foraging theory, in restored plots where ant foraging performance was poor, ants harvested a higher diversity of seeds. Reduced foraging success and increased harvest of non-preferred foods in exclusion plots were likely due to the growth of herbaceous vegetation, which impedes travel by foragers. Moreover, by 8 years of exclusion, 37% of nests in exclusion plots had disappeared compared to 0% of nests in control plots. Ants' foraging success and behavior were sensitive to changes in habitat quality due to the plant successional process triggered by a restoration intervention. This study spotlights on the utility of animal foraging behavior in the evaluation of habitat restoration programs. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Bioinformatics in the orphan crops.

    PubMed

    Armstead, Ian; Huang, Lin; Ravagnani, Adriana; Robson, Paul; Ougham, Helen

    2009-11-01

    Orphan crops are those which are grown as food, animal feed or other crops of some importance in agriculture, but which have not yet received the investment of research effort or funding required to develop significant public bioinformatics resources. Where an orphan crop is related to a well-characterised model plant species, comparative genomics and bioinformatics can often, though not always, be exploited to assist research and crop improvement. This review addresses some challenges and opportunities presented by bioinformatics in the orphan crops, using three examples: forage grasses from the genera Lolium and Festuca, forage legumes and the second generation energy crop Miscanthus.

  2. Can communication disruption of red imported fire ants reduce foraging success

    USDA-ARS?s Scientific Manuscript database

    Invasive pest ants often coordinate resource retrieval and colony expansion through the use of recruitment pheromones for information sharing to optimise their foraging; we argue that the potential for disruption of trail pheromone communication deserves investigation as a new and benign ecologicall...

  3. Heat damaged forages: effects on forage energy content

    USDA-ARS?s Scientific Manuscript database

    Traditionally, educational materials describing the effects of heat damage within baled hays have focused on reduced bioavailability of crude protein as a result of Maillard reactions. These reactions are not simple, but actually occur in complex, multi-step pathways. Typically, the initial step inv...

  4. Foraging enrichment for stabled horses: effects on behaviour and selection.

    PubMed

    Goodwin, D; Davidson, H P B; Harris, P

    2002-11-01

    The restricted access to pasture experienced by many competition horses has been linked to the exhibition of stereotypic and redirected behaviour patterns. It has been suggested that racehorses provided with more than one source of forage are less likely to perform these patterns; however, the reasons for this are currently unclear. To investigate this in 4 replicated trials, up to 12 horses were introduced into each of 2 identical stables containing a single forage, or 6 forages for 5 min. To detect novelty effects, in the first and third trials the single forage was hay. In the second and fourth, it was the preferred forage from the preceding trial. Trials were videotaped and 12 mutually exclusive behaviour patterns compared. When hay was presented as the single forage (Trials 1 and 3), all recorded behaviour patterns were significantly different between stables; e.g. during Trial 3 in the 'Single' stable, horses looked over the stable door more frequently (P<0.001), moved for longer (P<0.001), foraged on straw bedding longer (P<0.001), and exhibited behaviour indicative of motivation to search for alternative resources (P<0.001) more frequently. When a previously preferred forage was presented as the single forage (Trials 2 and 4) behaviour was also significantly different between stables, e.g in Trial 4 horses looked out over the stable door more frequently (P<0.005) and foraged for longer in their straw bedding (P<0.005). Further study is required to determine whether these effects persist over longer periods. However, these trials indicate that enrichment of the stable environment through provision of multiple forages may have welfare benefits for horses, in reducing straw consumption and facilitating the expression of highly motivated foraging behaviour.

  5. Nutritional management of replacement sheep utilizing southern forages: a review.

    PubMed

    Chappell, G L

    1993-11-01

    Intensive sheep production systems seem to be an appropriate means of fully using the available resources, particularly the forages, of the southern region. In such systems, ewes should lamb first at approximately 1 yr of age. Programs to accomplish this goal must be well-planned and carefully integrated and executed. The primary goal is to achieve two-thirds of the ewe's projected mature weight before exposure for breeding. General management must reduce heat stress and parasitism. Forage quality must be maintained at a level consistent with National Research Council requirements for energy and protein. Protein is not normally a limiting factor. Energy supplementation and grazing pressure can be used to maintain growth without over-condition, which reduces subsequent performance.

  6. Walrus distributional and foraging response to changing ice and benthic conditions in the Chukchi Sea

    USGS Publications Warehouse

    Jay, Chadwick V.; Grebmeier, Jacqueline M.; Fischbach, Anthony S.

    2012-01-01

    Arctic species such as the Pacific walrus (Odobenus rosmarus divergens) are facing a rapidly changing environment. Walruses are benthic foragers and may shift their spatial patterns of foraging in response to changes in prey distribution. We used data from satellite radio-tags attached to walruses in 2009-2010 to map walrus foraging locations with concurrent sampling of benthic infauna to examine relationships between distributions of dominant walrus prey and spatial patterns of walrus foraging. Walrus foraging was concentrated offshore in the NE Chukchi Sea, and coastal areas of northwestern Alaska when sea ice was sparse. Walrus foraging areas in August-September were coincident with the biomass of two dominant bivalve taxa (Tellinidae and Nuculidae) and sipunculid worms. Walrusforaging costs associated with increased travel time to higher biomass food patches from land may be significantly higher than the costs from sea ice haul-outs and result in reduced energy storesin walruses. Identifying what resources are selected by walruses and how those resources are distributed in space and time will improve our ability to forecast how walruses might respond to a changing climate.

  7. Energy reallocation during and after periods of nutritional stress in Steller sea lions: low-quality diet reduces capacity for physiological adjustments.

    PubMed

    Jeanniard du Dot, Tiphaine; Rosen, David A S; Trites, Andrew W

    2009-01-01

    Two groups of female Steller sea lions (groups H and P) were subjected to periods of energy restriction and subsequent refeeding during winter and summer to determine changes in energy partitioning among principal physiological functions and the potential consequences to their fitness. Both sea lion groups consumed high-quality fish (herring) before and after the energy restrictions. During restrictions, group H was fed a lower quantity of herring and group P a caloric equivalent of low-quality fish (pollock). Quantitative estimates of maintenance and production energies and qualitative estimates of thermoregulation, activity, and basal metabolic rate were measured. During summer, all animals compensated for the imposed energy deficit by releasing stored energy (production energy). Group H also optimized the energy allocation to seasonal conditions by increasing activity during summer, when fish are naturally abundant (foraging effort), and by decreasing thermoregulation capacity when waters are warmer. During winter, both groups decreased the energy allocated to overall maintenance functions (basal metabolic rate, thermoregulation, and activity together) in addition to releasing stored energy, but they preserved thermoregulatory capacity. Group H also decreased activity levels in winter, when foraging in the wild is less efficient, unlike group P. Overall, sea lions fed pollock did not change energy allocation to suit environmental conditions as readily as those fed herring. This implies that a low energy-density diet may further reduce fitness of animals in the wild during periods of nutritional stress.

  8. Genomic selection in forage breeding: designing an estimation population

    USDA-ARS?s Scientific Manuscript database

    The benefits of genomic selection to livestock, crops and forest tree breeding can be extended to forage grasses and legumes. The main benefits expected are increased selection accuracy and reduced costs per unit of genotype evaluated and breeding cycle length. Aiming at designing a training populat...

  9. Short-term prey field lability constrains individual specialisation in resource selection and foraging site fidelity in a marine predator.

    PubMed

    Courbin, Nicolas; Besnard, Aurélien; Péron, Clara; Saraux, Claire; Fort, Jérôme; Perret, Samuel; Tornos, Jérémy; Grémillet, David

    2018-04-16

    Spatio-temporally stable prey distributions coupled with individual foraging site fidelity are predicted to favour individual resource specialisation. Conversely, predators coping with dynamic prey distributions should diversify their individual diet and/or shift foraging areas to increase net intake. We studied individual specialisation in Scopoli's shearwaters (Calonectris diomedea) from the highly dynamic Western Mediterranean, using daily prey distributions together with resource selection, site fidelity and trophic-level analyses. As hypothesised, we found dietary diversification, low foraging site fidelity and almost no individual specialisation in resource selection. Crucially, shearwaters switched daily foraging tactics, selecting areas with contrasting prey of varying trophic levels. Overall, information use and plastic resource selection of individuals with reduced short-term foraging site fidelity allow predators to overcome prey field lability. Our study is an essential step towards a better understanding of individual responses to enhanced environmental stochasticity driven by global changes, and of pathways favouring population persistence. © 2018 John Wiley & Sons Ltd/CNRS.

  10. Integrating research and management to conserve wildfowl (Anatidae) and wetlands in the Mississippi Alluvial Valley, U.S.A

    USGS Publications Warehouse

    Reinecke, K.J.; Loesch, C.R.; Birkan, Marcel

    1996-01-01

    Efforts to conserve winter habitat for wildfowl, Anatidae, in the alluvial valley of the lower Mississippi River, U.S.A., are directed by the Lower Mississippi Valley (LMV) Joint Venture of the North American Waterfowl Management Plan (NA WMP). The Joint Venture is based on a biological framework developed through cooperative planning by wildfowl researchers and managers. Important elements of the framework include: (1) numeric population goals, (2) assumptions about potential limiting factors, (3) explicit relationships between wildfowl abundance and habitat characteristics, (4) numeric foraging habitat goals, and (5) criteria for evaluating success. The population goal of the Joint Venture for the Mississippi Alluvial Valley (MA V) is to enable 4.3 million ducks to, survive winter and join continental breeding populations in spring. Currently, available data suggest that foraging habitat is the primary factor limiting duck populations in the MA II. To establish a goal for foraging habitat, we assumed the length of the wintering period is 110 days and calculated that a population of 4.3 million breeding ducks (plus 15% to account for winter mortality) would need 546 million duck-days of food in the preceding winter. Then, we used estimates of daily energy requirements, food densities, and food energy values to calculate the carrying capacity or number of duck-days of food available in the three primary foraging habitats in the MAV (flooded croplands, forested wetlands, and moist-soil wetlands). Thus, availability of foraging habitat can be used as a criterion for evaluating success of the Joint Venture if accurate inventories of foraging habitat can be conducted. Development of an explicit biological framework for the Joint Venture enabled wildfowl managers and researchers to establish specific objectives for management of foraging habitat and identify priority problems requiring further study.

  11. An energy-circuit population model for great egrets (Ardea alba) at Lake Okeechobee, Florida, U.S.A

    USGS Publications Warehouse

    Smith, Jeff P.

    1997-01-01

    I simulated the annual population cycles of Great Egrets (Ardea alba) at Lake Okeechobee, Florida, to provide a framework for evaluating the local population dynamics of nesting and foraging wading birds. The external forcing functions were solar energy, minimum air temperature, water depth, surface-water drying rate, and season. Solar input controlled the production of prey at moderate to high lake stages, but water area exerted primary control during a two-year drought. Modeling prey production as a linear function of water area resulted in underestimation of prey density during the drought, suggesting that prey organisms maintained high fecundity while concentrated in submerged vegetation at the lakeward fringe of the littoral zone. Simulation confirmed that large influxes of wading birds during the drought were the combined result of a regional refuge response and the availability of concentrated prey. Modeling immigration and emigration as primarily functions of the surface-water drying rate, rather than lake stage, resulted in a closer match of observed and simulated population trends for foraging birds, suggesting that the pattern of surface-water fluctuations was a more important factor than water depth. Simulation indicated an abrupt-threshold response rather than a linear association between foraging efficiency and low temperatures, which reduce activity levels of forage fishes. Great Egret breeder recruitment is primarily a function of prey availability, climate, and hydrologic trends, but simulation confirmed the concurrent involvement of a seasonal or physiological-readiness factor. An attractor function driven by high winter lake stages was necessary to reproduce observed patterns of breeder recruitment, suggesting that Great Egrets initiate nesting based on environmental cues that lead to peak food availability when nestlings are present. Poor correspondence of reproductive effort and nest productivity suggested that the drought compromised the birds' predictive abilities. The need to model breeder recruitment as a function of a maximum rate rather than the size of the local foraging population suggested that birds may nest on the lake even though on-lake foraging conditions are poor. Simulated and observed estimates of egg and hatching production did not match, suggesting that the causes of failure during incubation were complex or more localized than could be accounted for with lakewide hydrologic and climatic data. A forced increase in prey consumption of 12% was necessary to reproduce observed, high levels of nest productivity in 1990, which corresponded to the finding that panhandled fish constituted 10–12% of the biomass fed to Great Egret nestlings that year.

  12. Woodpecker forage availability in habitat disturbances of the Black Hills

    Treesearch

    Brian E. Dickerson; Angie K. Ambourn; Mark A. Rumble; Kurt K. Allen; Chad P. Lehman

    2015-01-01

    Habitat disturbance events are critical to ecological systems in which some bird species have become specialized. The vegetation community, reduced competition, ability to avoid predators, nest site characteristics, and forage opportunities within a disturbed ecosystem are all aspects that make it desirable for selection by particular species (Svardson 1949,...

  13. High forage quality helps maintain resilience to gastrointestinal parasites in sheep and goats

    USDA-ARS?s Scientific Manuscript database

    Condensed tannins (CT) in browse and forage plants can have positive or negative effects on livestock health and performance, depending on the type and concentration of CT present in the diet. Historically, bloating in ruminants was reduced or eliminated when grazing legumes that contained CT. Con...

  14. Grazing and Land Management Strategies for Hardwood Rangelands

    Treesearch

    Melvin R. George

    1991-01-01

    Annual rangelands produce 84 percent of California's range forage which are used all year by sedentary ranching operations and seasonally by migratory operations. Environmental policy, energy and water costs may reduce traditional summer forage sources, resulting in increased grazing pressure on hardwood and annual rangelands. However, the landowner's...

  15. Anthelmintic effect of plant extracts containing condensed and hydrolyzable tannins on Caenorhabditis elegans and their antioxidant capacity

    USDA-ARS?s Scientific Manuscript database

    Although tannin-rich forages are known to increase protein uptake and to reduce gastrointestinal nematode infections in grazing ruminants, most published research involves forages with condensed tannins (CT), while published literature lacks information on the anthelmintic capacity, nutritional bene...

  16. Effects of fire and nitrogen addition on forage quality of Aristida purpurea

    USDA-ARS?s Scientific Manuscript database

    Purple threeawn (Aristida purpurea Nutt.) is a native perennial bunchgrass with limited forage value that dominates sites with disturbed soils and persists with continued severe grazing. Fire and nitrogen addition have been used to reduce threeawn and may increase grazing utilization of threeawn by...

  17. A conceptual framework that links pollinator foraging behavior to gene flow

    USDA-ARS?s Scientific Manuscript database

    In insect-pollinated crops such as alfalfa, a better understanding of how pollinator foraging behavior affects gene flow could lead to the development of management strategies to reduce gene flow and facilitate the coexistence of distinct seed-production markets. Here, we introduce a conceptual fram...

  18. The foraging benefits of being fat in a highly migratory marine mammal.

    PubMed

    Adachi, Taiki; Maresh, Jennifer L; Robinson, Patrick W; Peterson, Sarah H; Costa, Daniel P; Naito, Yasuhiko; Watanabe, Yuuki Y; Takahashi, Akinori

    2014-12-22

    Foraging theory predicts that breath-hold divers adjust the time spent foraging at depth relative to the energetic cost of swimming, which varies with buoyancy (body density). However, the buoyancy of diving animals varies as a function of their body condition, and the effects of these changes on swimming costs and foraging behaviour have been poorly examined. A novel animal-borne accelerometer was developed that recorded the number of flipper strokes, which allowed us to monitor the number of strokes per metre swam (hereafter, referred to as strokes-per-metre) by female northern elephant seals over their months-long, oceanic foraging migrations. As negatively buoyant seals increased their fat stores and buoyancy, the strokes-per-metre increased slightly in the buoyancy-aided direction (descending), but decreased significantly in the buoyancy-hindered direction (ascending), with associated changes in swim speed and gliding duration. Overall, the round-trip strokes-per-metre decreased and reached a minimum value when seals achieved neutral buoyancy. Consistent with foraging theory, seals stayed longer at foraging depths when their round-trip strokes-per-metre was less. Therefore, neutrally buoyant divers gained an energetic advantage via reduced swimming costs, which resulted in an increase in time spent foraging at depth, suggesting a foraging benefit of being fat. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  19. Comparison of common lignin methods and modifications on forage and lignocellulosic biomass materials.

    PubMed

    Goff, Ben M; Murphy, Patrick T; Moore, Kenneth J

    2012-03-15

    A variety of methods have been developed for estimating lignin concentration within plant materials. The objective of this study was to compare the lignin concentrations produced by six methods on a diverse population of forage and biomass materials and to examine the relationship between these concentrations and the portions of these materials that are available for utilisation by livestock or for ethanol conversion. Several methods produced lignin concentrations that were highly correlated with the digestibility of the forages, but there were few relationships between these methods and the available carbohydrate of the biomass materials. The use of Na₂SO₃ during preparation of residues for hydrolysis resulted in reduced lignin concentrations and decreased correlation with digestibility of forage materials, particularly the warm-season grasses. There were several methods that were well suited for predicting the digestible portion of forage materials, with the acid detergent lignin and Klason lignin method giving the highest correlation across the three types of forage. The continued use of Na₂SO₃ during preparation of Van Soest fibres needs to be evaluated owing to its ability to reduce lignin concentrations and effectiveness in predicting the utilisation of feedstuffs and feedstocks. Because there was little correlation between the lignin concentration and the biomass materials, there is a need to examine alternative or develop new methods to estimate lignin concentrations that may be used to predict the availability of carbohydrates for ethanol conversion. Copyright © 2011 Society of Chemical Industry.

  20. Effects of corn particle size and source on performance of lactating cows fed direct-cut grass-legume forage.

    PubMed

    Reis, R B; Emeterio, F S; Combs, D K; Satter, L D; Costa, H N

    2001-02-01

    We conducted two experiments to evaluate the effects of corn supplementation, source of corn, and corn particle size on performance and nutrient utilization of lactating dairy cows. In experiment 1, treatments were 1) direct-cut grass-legume forage without supplement, 2) direct-cut forage plus 10 kg DM of ground dry shelled corn-based concentrate, and 3) direct-cut forage plus 10 kg DM of coarsely ground high moisture ear corn-based concentrate. In experiment 2, treatments were 1) direct-cut grass-legume forage plus 10 kg DM of ground dry shelled corn-based concentrate, 2) direct-cut forage plus 10 kg DM of coarsely ground high moisture ear corn-based concentrate, and 3) direct-cut forage plus 10 kg of DM finely ground high moisture ear corn-based concentrate. Both experiments were designed as 3 x 3 Latin squares replicated three times. In experiment 1, yields of milk and milk protein increased with concentrate supplementation, but were not affected by source of corn. Solids-corrected milk yield tended to increase with grain supplementation. Dry matter intake increased with concentrate supplementation, but was not affected by source of corn or corn particle size. Corn supplements decreased ruminal pH and acetate to propionate ratio and increased ruminal propionate concentration. Grain supplements reduced ruminal ammonia concentration, increased concentration of urine allantoin, and increased the urinary allantoin to creatinine ratio. In the second study, fine grinding of high moisture corn reduced fecal starch plus free glucose levels and tended to increase its apparent digestibility. In both experiments, starch plus free glucose intake was higher on the diets with dry corn, but its utilization was not affected by source of corn.

  1. Age variation in the body coloration of the orb-weaver spider Alpaida tuonabo and its implications on foraging.

    PubMed

    Gálvez, Dumas; Añino, Yostin; De la O, Jorge M

    2018-02-26

    Spiders show a repertoire of strategies to increase their foraging success. In particular, some orb-weaver spiders use attractive body colorations to lure prey. Interestingly, coloration varies with age in many species, which may result in ontogenetic variation of foraging success. By using field observations, laboratory experiments and spectrophotometric analysis, we investigated whether pale juveniles and bright adults of the orb-weaver Alpaida tuonabo use different foraging strategies due to ontogenetic variation in coloration. Field observations revealed that foraging success of juveniles and adults was influenced by web properties. However, foraging success increased with body size only in adults, supporting the idea that larger individuals produce a stronger visual signal for prey. The attractiveness of the adult coloration for prey was confirmed in the laboratory with frame-web-choice experiments, in which webs bearing a spider intercepted more bees than empty webs. Our spectrophotometric analysis suggests that the yellow coloration may produce the deceiving signal for prey. Moreover, we identified potential alternative foraging strategies: cryptic juveniles at higher heights and 'attractive' adults at lower heights. This study reveals how ontogenetic colour variation may favour the use of alternative foraging strategies in orb-weaver spiders and reduces intraspecific competition.

  2. Imidacloprid slows the development of preference for rewarding food sources in bumblebees (Bombus impatiens).

    PubMed

    Phelps, Jordan D; Strang, Caroline G; Gbylik-Sikorska, Malgorzata; Sniegocki, Tomasz; Posyniak, Andrzej; Sherry, David F

    2018-03-01

    Bee pollination is economically and ecologically vital and recent declines in bee populations are therefore a concern. One possible cause of bee declines is pesticide use. Bumblebees exposed to imidacloprid, a neonicotinoid pesticide, have been shown to be less efficient foragers and collect less pollen on foraging trips than unexposed bees. We investigated whether bumblebees (Bombus impatiens) chronically exposed to imidacloprid at field-realistic levels of 2.6 and 10 ppb showed learning deficits that could affect foraging. Bumblebees were tested for their ability to associate flower colour with reward value in a simulated foraging environment. Bumblebees completed 10 foraging trips in which they collected sucrose solution from artificial flowers that varied in sucrose concentration. The reward quality of each artificial flower was predicted by corolla colour. Unexposed bumblebees acquired a preference for feeding on the most rewarding flower colour on the second foraging trip, while bumblebees exposed at 2.6 and 10 ppb did not until their third and fifth trip, respectively. The delay in preference acquisition in exposed bumblebees may be due to reduced flower sampling and shorter foraging trips. These results show that bumblebees exposed to imidacloprid are slow to learn the reward value of flowers and this may explain previously observed foraging inefficiencies associated with pesticide exposure.

  3. Conservation seeding and diverse seed species performance

    USDA-ARS?s Scientific Manuscript database

    The rehabilitation of degraded big sagebrush (Artemisia spp.) communities infested with cheatgrass (Bromus tectorum) and other competitive weeds is a daunting task facing resource managers and land owners. In an effort to improve wildlife and livestock forage on degraded rangelands, the USDA-ARS-Gr...

  4. Heat-balling wasps by honeybees

    NASA Astrophysics Data System (ADS)

    Ken, Tan; Hepburn, H. R.; Radloff, S. E.; Yusheng, Yu; Yiqiu, Liu; Danyin, Zhou; Neumann, P.

    2005-10-01

    Defensiveness of honeybee colonies of Apis cerana and Apis mellifera (actively balling the wasps but reduction of foraging) against predatory wasps, Vespa velutina, and false wasps was assessed. There were significantly more worker bees in balls of the former than latter. Core temperatures in a ball around a live wasp of A. cerana were significantly higher than those of A. mellifera, and also significantly more when exposed to false wasps. Core temperatures of bee balls exposed to false wasps were significantly lower than those exposed to V. velutina for both A. cerana and for A. mellifera. The lethal thermal limits for V. velutina, A. cerana and A. mellifera were significantly different, so that both species of honeybees have a thermal safety factor in heat-killing such wasp predators. During wasps attacks at the hives measured at 3, 6 and 12 min, the numbers of Apis cerana cerana and Apis cerana indica bees continuing to forage were significantly reduced with increased wasp attack time. Tropical lowland A. c. indica reduced foraging rates significantly more than the highland A. c. cerana bees; but, there was no significant effect on foraging by A. mellifera. The latency to recovery of honeybee foraging was significantly greater the longer the duration of wasp attacks. The results show remarkable thermal fine-tuning in a co-evolving predator prey relationship.

  5. Skills, division of labour and economies of scale among Amazonian hunters and South Indian honey collectors.

    PubMed

    Hooper, Paul L; Demps, Kathryn; Gurven, Michael; Gerkey, Drew; Kaplan, Hillard S

    2015-12-05

    In foraging and other productive activities, individuals make choices regarding whether and with whom to cooperate, and in what capacities. The size and composition of cooperative groups can be understood as a self-organized outcome of these choices, which are made under local ecological and social constraints. This article describes a theoretical framework for explaining the size and composition of foraging groups based on three principles: (i) the sexual division of labour; (ii) the intergenerational division of labour; and (iii) economies of scale in production. We test predictions from the theory with data from two field contexts: Tsimane' game hunters of lowland Bolivia, and Jenu Kuruba honey collectors of South India. In each case, we estimate the impacts of group size and individual group members' effort on group success. We characterize differences in the skill requirements of different foraging activities and show that individuals participate more frequently in activities in which they are more efficient. We evaluate returns to scale across different resource types and observe higher returns at larger group sizes in foraging activities (such as hunting large game) that benefit from coordinated and complementary roles. These results inform us that the foraging group size and composition are guided by the motivated choice of individuals on the basis of relative efficiency, benefits of cooperation, opportunity costs and other social considerations. © 2015 The Author(s).

  6. DNA barcoding reveals seasonal shifts in diet and consumption of deep-sea fishes in wedge-tailed shearwaters

    PubMed Central

    Ando, Haruko; Horikoshi, Kazuo; Suzuki, Hajime; Isagi, Yuji

    2018-01-01

    The foraging ecology of pelagic seabirds is difficult to characterize because of their large foraging areas. In the face of this difficulty, DNA metabarcoding may be a useful approach to analyze diet compositions and foraging behaviors. Using this approach, we investigated the diet composition and its seasonal variation of a common seabird species on the Ogasawara Islands, Japan: the wedge-tailed shearwater Ardenna pacifica. We collected fecal samples during the prebreeding (N = 73) and rearing (N = 96) periods. The diet composition of wedge-tailed shearwater was analyzed by Ion Torrent sequencing using two universal polymerase chain reaction primers for the 12S and 16S mitochondrial DNA regions that targeted vertebrates and mollusks, respectively. The results of a BLAST search of obtained sequences detected 31 and 1 vertebrate and mollusk taxa, respectively. The results of the diet composition analysis showed that wedge-tailed shearwaters frequently consumed deep-sea fishes throughout the sampling season, indicating the importance of these fishes as a stable food resource. However, there was a marked seasonal shift in diet, which may reflect seasonal changes in food resource availability and wedge-tailed shearwater foraging behavior. The collected data regarding the shearwater diet may be useful for in situ conservation efforts. Future research that combines DNA metabarcoding with other tools, such as data logging, may provide further insight into the foraging ecology of pelagic seabirds. PMID:29630670

  7. Trade-offs between energy maximization and parental care in a central place forager, the sea otter

    USGS Publications Warehouse

    Thometz, N M; Staedler, M.M.; Tomoleoni, Joseph; Bodkin, James L.; Bentall, G.B.; Tinker, M. Tim

    2016-01-01

    Between 1999 and 2014, 126 archival time–depth recorders (TDRs) were used to examine the foraging behavior of southern sea otters (Enhydra lutris nereis) off the coast of California, in both resource-abundant (recently occupied, low sea otter density) and resource-limited (long-occupied, high sea otter density) locations. Following predictions of foraging theory, sea otters generally behaved as energy rate maximizers. Males and females without pups employed similar foraging strategies to optimize rates of energy intake in resource-limited habitats, with some exceptions. Both groups increased overall foraging effort and made deeper, longer and more energetically costly dives as resources became limited, but males were more likely than females without pups to utilize extreme dive profiles. In contrast, females caring for young pups (≤10 weeks) prioritized parental care over energy optimization. The relative importance of parental care versus energy optimization for adult females with pups appeared to reflect developmental changes as dependent young matured. Indeed, contrary to females during the initial stages of lactation, females with large pups approaching weaning once again prioritized optimizing energy intake. The increasing prioritization of energy optimization over the course of lactation was possible due to the physiological development of pups and likely driven by the energetic deficit incurred by females early in lactation. Our results suggest that regardless of resource availability, females at the end of lactation approach a species-specific ceiling for percent time foraging and that reproductive females in the central portion of the current southern sea otter range are disproportionately affected by resource limitation.

  8. Boldness predicts an individual's position along an exploration-exploitation foraging trade-off.

    PubMed

    Patrick, Samantha C; Pinaud, David; Weimerskirch, Henri

    2017-09-01

    Individuals do not have complete information about the environment and therefore they face a trade-off between gathering information (exploration) and gathering resources (exploitation). Studies have shown individual differences in components of this trade-off but how stable these strategies are in a population and the intrinsic drivers of these differences is not well understood. Top marine predators are expected to experience a particularly strong trade-off as many species have large foraging ranges and their prey often have a patchy distribution. This environment leads these species to exhibit pronounced exploration and exploitation phases but differences between individuals are poorly resolved. Personality differences are known to be important in foraging behaviour but also in the trade-off between exploration and exploitation. Here we test whether personality predicts an individual exploration-exploitation strategy using wide ranging wandering albatrosses (Diomedea exulans) as a model system. Using GPS tracking data from 276 wandering albatrosses, we extract foraging parameters indicative of exploration (searching) and exploitation (foraging) and show that foraging effort, time in patch and size of patch are strongly correlated, demonstrating these are indicative of an exploration-exploitation (EE) strategy. Furthermore, we show these are consistent within individuals and appear stable in the population, with no reproductive advantage. The searching and foraging behaviour of bolder birds placed them towards the exploration end of the trade-off, whereas shy birds showed greater exploitation. This result provides a mechanism through which individual foraging strategies may emerge. Age and sex affected components of the trade-off, but not the trade-off itself, suggesting these factors may drive behavioural compensation to maintain resource acquisition and this was supported by the evidence that there were no fitness consequence of any EE trait nor the trade-off itself. These results demonstrate a clear trade-off between information gathering and exploitation of prey patches, and reveals for the first time that boldness may drive these differences. This provides a mechanism through which widely reported links between personality and foraging may emerge. © 2017 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.

  9. Foraging areas, offshore habitat use, and colony overlap by incubating Leach’s storm-petrels Oceanodroma leucorhoa in the Northwest Atlantic

    PubMed Central

    Hedd, April; Pollet, Ingrid L.; Mauck, Robert A.; Burke, Chantelle M.; Mallory, Mark L.; McFarlane Tranquilla, Laura A.; Montevecchi, William A.; Robertson, Gregory J.; Ronconi, Robert A.; Shutler, Dave; Wilhelm, Sabina I.; Burgess, Neil M.

    2018-01-01

    Despite their importance in marine food webs, much has yet to be learned about the spatial ecology of small seabirds. This includes the Leach’s storm-petrel Oceanodroma leucorhoa, a species that is declining throughout its Northwest Atlantic breeding range. In 2013 and 2014, we used global location sensors to track foraging movements of incubating storm-petrels from 7 eastern Canadian breeding colonies. We determined and compared the foraging trip and at-sea habitat characteristics, analysed spatial overlap among colonies, and determined whether colony foraging ranges intersected with offshore oil and gas operations. Individuals tracked during the incubation period made 4.0 ± 1.4 day foraging trips, travelling to highly pelagic waters over and beyond continental slopes which ranged, on average, 400 to 830 km from colonies. Cumulative travel distances ranged from ~900 to 2,100 km among colonies. While colony size did not influence foraging trip characteristics or the size of areas used at sea, foraging distances tended to be shorter for individuals breeding at the southern end of the range. Core areas did not overlap considerably among colonies, and individuals from all sites except Kent Island in the Bay of Fundy foraged over waters with median depths > 1,950 m and average chlorophyll a concentrations ≤ 0.6 mg/m3. Sea surface temperatures within colony core areas varied considerably (11–23°C), coincident with the birds’ use of cold waters of the Labrador Current or warmer waters of the Gulf Stream Current. Offshore oil and gas operations intersected with the foraging ranges of 5 of 7 colonies. Three of these, including Baccalieu Island, Newfoundland, which supports the species’ largest population, have experienced substantial declines in the last few decades. Future work should prioritize modelling efforts to incorporate information on relative predation risk at colonies, spatially explicit risks at-sea on the breeding and wintering grounds, effects of climate and marine ecosystem change, as well as lethal and sub-lethal effects of environmental contaminants, to better understand drivers of Leach’s storm-petrel populations trends in Atlantic Canada. PMID:29742124

  10. Sub-lethal effects of dietary neonicotinoid insecticide exposure on honey bee queen fecundity and colony development

    NASA Astrophysics Data System (ADS)

    Wu-Smart, Judy; Spivak, Marla

    2016-08-01

    Many factors can negatively affect honey bee (Apis mellifera L.) health including the pervasive use of systemic neonicotinoid insecticides. Through direct consumption of contaminated nectar and pollen from treated plants, neonicotinoids can affect foraging, learning, and memory in worker bees. Less well studied are the potential effects of neonicotinoids on queen bees, which may be exposed indirectly through trophallaxis, or food-sharing. To assess effects on queen productivity, small colonies of different sizes (1500, 3000, and 7000 bees) were fed imidacloprid (0, 10, 20, 50, and 100 ppb) in syrup for three weeks. We found adverse effects of imidacloprid on queens (egg-laying and locomotor activity), worker bees (foraging and hygienic activities), and colony development (brood production and pollen stores) in all treated colonies. Some effects were less evident as colony size increased, suggesting that larger colony populations may act as a buffer to pesticide exposure. This study is the first to show adverse effects of imidacloprid on queen bee fecundity and behavior and improves our understanding of how neonicotinoids may impair short-term colony functioning. These data indicate that risk-mitigation efforts should focus on reducing neonicotinoid exposure in the early spring when colonies are smallest and queens are most vulnerable to exposure.

  11. Sub-lethal effects of dietary neonicotinoid insecticide exposure on honey bee queen fecundity and colony development

    PubMed Central

    Wu-Smart, Judy; Spivak, Marla

    2016-01-01

    Many factors can negatively affect honey bee (Apis mellifera L.) health including the pervasive use of systemic neonicotinoid insecticides. Through direct consumption of contaminated nectar and pollen from treated plants, neonicotinoids can affect foraging, learning, and memory in worker bees. Less well studied are the potential effects of neonicotinoids on queen bees, which may be exposed indirectly through trophallaxis, or food-sharing. To assess effects on queen productivity, small colonies of different sizes (1500, 3000, and 7000 bees) were fed imidacloprid (0, 10, 20, 50, and 100 ppb) in syrup for three weeks. We found adverse effects of imidacloprid on queens (egg-laying and locomotor activity), worker bees (foraging and hygienic activities), and colony development (brood production and pollen stores) in all treated colonies. Some effects were less evident as colony size increased, suggesting that larger colony populations may act as a buffer to pesticide exposure. This study is the first to show adverse effects of imidacloprid on queen bee fecundity and behavior and improves our understanding of how neonicotinoids may impair short-term colony functioning. These data indicate that risk-mitigation efforts should focus on reducing neonicotinoid exposure in the early spring when colonies are smallest and queens are most vulnerable to exposure. PMID:27562025

  12. Sub-lethal effects of dietary neonicotinoid insecticide exposure on honey bee queen fecundity and colony development.

    PubMed

    Wu-Smart, Judy; Spivak, Marla

    2016-08-26

    Many factors can negatively affect honey bee (Apis mellifera L.) health including the pervasive use of systemic neonicotinoid insecticides. Through direct consumption of contaminated nectar and pollen from treated plants, neonicotinoids can affect foraging, learning, and memory in worker bees. Less well studied are the potential effects of neonicotinoids on queen bees, which may be exposed indirectly through trophallaxis, or food-sharing. To assess effects on queen productivity, small colonies of different sizes (1500, 3000, and 7000 bees) were fed imidacloprid (0, 10, 20, 50, and 100 ppb) in syrup for three weeks. We found adverse effects of imidacloprid on queens (egg-laying and locomotor activity), worker bees (foraging and hygienic activities), and colony development (brood production and pollen stores) in all treated colonies. Some effects were less evident as colony size increased, suggesting that larger colony populations may act as a buffer to pesticide exposure. This study is the first to show adverse effects of imidacloprid on queen bee fecundity and behavior and improves our understanding of how neonicotinoids may impair short-term colony functioning. These data indicate that risk-mitigation efforts should focus on reducing neonicotinoid exposure in the early spring when colonies are smallest and queens are most vulnerable to exposure.

  13. Can cover crops pull double duty: Conservation and profitable forage production in the Midwestern U.S.?

    USDA-ARS?s Scientific Manuscript database

    Data from a recent survey suggests that the major reasons Nebraska farmer’s plant cover crops are to: improve soil organic matter, reduce erosion, improve soil water holding capacity, produce forage, and increase soil microbial biomass. Many of these benefits appear to be positively correlated with...

  14. Potential for increased use of cereal grain forages on dairy operations

    USDA-ARS?s Scientific Manuscript database

    Farmers are increasingly using cereal grain cover crops, which allows them to take advantage of additional growing days in early spring and late fall. The use of cereal grain forages, such as rye, wheat, or triticale as cover crops helps to reduce soil and nutrient losses, and also allows for addit...

  15. The tremble dance of honey bees can be caused by hive-external foraging experience.

    PubMed

    Thom, Corinna

    2003-07-01

    The tremble dance of honey bee nectar foragers is part of the communication system that regulates a colony's foraging efficiency. A forager that returns to the hive with nectar, but then experiences a long unloading delay because she has difficulty finding a nectar receiver bee, will perform a tremble dance to recruit additional nectar receiver bees. A forager that experiences a short unloading delay will perform a waggle dance to recruit more nectar foragers. A long unloading delay was until now the only known cause of tremble dancing. However, several studies suggested that factors at the food source may also cause tremble dancing. Here I test whether one of these factors, crowding of nectar foragers at the food source, stimulates tremble dancing because it causes long unloading delays. To do so, I increased the density of nectar foragers at a food source by suddenly reducing the size of an artificial feeder, and recorded the unloading delay experienced by each forager, as well as the dance she performed, if any. A forager's unloading delay was measured as the time interval between entering the hive and either (1) the first unloading contact with a nectar receiver bee, or (2) the start of the first dance, if dancing began before the first unloading contact. I also recorded the unloading delays and dances of nectar foragers that returned from natural food sources. The results show that crowding of nectar foragers at the food source increases the probability of tremble dancing, but does not cause long unloading delays, and that tremble dancers that foraged at natural food sources also often have short unloading delays. When the cause of the tremble dance is not a low supply of nectar receiver bees, the tremble dance may have a function in addition to the recruitment of nectar receiver bees.

  16. The effect of prey density on foraging mode selection in juvenile lumpfish: balancing food intake with the metabolic cost of foraging.

    PubMed

    Killen, Shaun S; Brown, Joseph A; Gamperl, A Kurt

    2007-07-01

    1. In many species, individuals will alter their foraging strategy in response to changes in prey density. However, previous work has shown that prey density has differing effects on the foraging mode decisions of ectotherms as compared with endotherms. This is likely due to differences in metabolic demand; however, the relationship between metabolism and foraging mode choice in ectotherms has not been thoroughly studied. 2. Juvenile lumpfish Cyclopterus lumpus forage using one of two modes: they can actively search for prey while swimming, or they can 'sit-and-wait' for prey while clinging to the substrate using a ventral adhesive disk. The presence of these easily distinguishable foraging modes makes juvenile lumpfish ideal for the study of foraging mode choice in ectotherms. 3. Behavioural observations conducted during laboratory experiments showed that juvenile lumpfish predominantly use the 'cling' foraging mode when prey is abundant, but resort to the more costly 'swim' mode to seek out food when prey is scarce. The metabolic cost of active foraging was also quantified for juvenile lumpfish using swim-tunnel respirometry, and a model was devised to predict the prey density at which lumpfish should switch between the swim and cling foraging modes to maximize energy intake. 4. The results of this model do not agree with previous observations of lumpfish behaviour, and thus it appears that juvenile lumpfish do not try to maximize their net energetic gain. Instead, our data suggest that juvenile lumpfish forage in a manner that reduces activity and conserves space in their limited aerobic scope. This behavioural flexibility is of great benefit to this species, as it allows young individuals to divert energy towards growth as opposed to activity. In a broader context, our results support previous speculation that ectotherms often forage in a manner that maintains a minimum prey encounter rate, but does not necessarily maximize net energy gain.

  17. Resource depletion through primate stone technology

    PubMed Central

    Tan, Amanda; Haslam, Michael; Kulik, Lars; Proffitt, Tomos; Malaivijitnond, Suchinda; Gumert, Michael

    2017-01-01

    Tool use has allowed humans to become one of the most successful species. However, tool-assisted foraging has also pushed many of our prey species to extinction or endangerment, a technology-driven process thought to be uniquely human. Here, we demonstrate that tool-assisted foraging on shellfish by long-tailed macaques (Macaca fascicularis) in Khao Sam Roi Yot National Park, Thailand, reduces prey size and prey abundance, with more pronounced effects where the macaque population size is larger. We compared availability, sizes and maturation stages of shellfish between two adjacent islands inhabited by different-sized macaque populations and demonstrate potential effects on the prey reproductive biology. We provide evidence that once technological macaques reach a large enough group size, they enter a feedback loop – driving shellfish prey size down with attendant changes in the tool sizes used by the monkeys. If this pattern continues, prey populations could be reduced to a point where tool-assisted foraging is no longer beneficial to the macaques, which in return may lessen or extinguish the remarkable foraging technology employed by these primates. PMID:28884681

  18. Effects of habitat composition and landscape structure on worker foraging distances of five bumble bee species.

    PubMed

    Redhead, John W; Dreier, Stephanie; Bourke, Andrew F G; Heard, Matthew S; Jordan, William C; Sumner, Seirian; Wang, Jinliang; Carvell, Claire

    2016-04-01

    Bumble bees (Bombus spp.) are important pollinators of both crops and wildflowers. Their contribution to this essential ecosystem service has been threatened over recent decades by changes in land use, which have led to declines in their populations. In order to design effective conservation measures, it is important to understand the effects of variation in landscape composition and structure on the foraging activities of worker bumble bees. This is because the viability of individual colonies is likely to be affected by the trade-off between the energetic costs of foraging over greater distances and the potential gains from access to additional resources. We used field surveys, molecular genetics, and fine resolution remote sensing to estimate the locations of wild bumble bee nests and to infer foraging distances across a 20-km² agricultural landscape in southern England, UK. We investigated five species, including the rare B. ruderatus and ecologically similar but widespread B. hortorum. We compared worker foraging distances between species and examined how variation in landscape composition and structure affected foraging distances at the colony level. Mean worker foraging distances differed significantly between species. Bombus terrestris, B. lapidarius, and B. ruderatus exhibited significantly greater mean foraging distances (551, 536, and 501 m, respectively) than B. hortorum and B. pascuorum (336 and 272 m, respectively). There was wide variation in worker foraging distances between colonies of the same species, which was in turn strongly influenced by the amount and spatial configuration of available foraging habitats. Shorter foraging distances were found for colonies where the local landscape had high coverage and low fragmentation of semi-natural vegetation, including managed agri-environmental field margins. The strength of relationships between different landscape variables and foraging distance varied between species, for example the strongest relationship for B. ruderatus being with floral cover of preferred forage plants. Our findings suggest that management of landscape composition and configuration has the potential to reduce foraging distances across a range of bumble bee species. There is thus potential for improvements in the design and implementation of landscape management options, such as agri-environment schemes, aimed at providing foraging habitat for bumble bees and enhancing crop pollination services.

  19. Extremely Low Frequency Electromagnetic Fields impair the Cognitive and Motor Abilities of Honey Bees.

    PubMed

    Shepherd, S; Lima, M A P; Oliveira, E E; Sharkh, S M; Jackson, C W; Newland, P L

    2018-05-21

    Extremely low frequency electromagnetic field (ELF EMF) pollution from overhead powerlines is known to cause biological effects across many phyla, but these effects are poorly understood. Honey bees are important pollinators across the globe and due to their foraging flights are exposed to relatively high levels of ELF EMF in proximity to powerlines. Here we ask how acute exposure to 50 Hz ELF EMFs at levels ranging from 20-100 µT, found at ground level below powerline conductors, to 1000-7000 µT, found within 1 m of the conductors, affects honey bee olfactory learning, flight, foraging activity and feeding. ELF EMF exposure was found to reduce learning, alter flight dynamics, reduce the success of foraging flights towards food sources, and feeding. The results suggest that 50 Hz ELF EMFs emitted from powerlines may represent a prominent environmental stressor for honey bees, with the potential to impact on their cognitive and motor abilities, which could in turn reduce their ability to pollinate crops.

  20. The oxidative debt of fasting: evidence for short- to medium-term costs of advanced fasting in adult king penguins.

    PubMed

    Schull, Quentin; Viblanc, Vincent A; Stier, Antoine; Saadaoui, Hédi; Lefol, Emilie; Criscuolo, François; Bize, Pierre; Robin, Jean-Patrice

    2016-10-15

    In response to prolonged periods of fasting, animals have evolved metabolic adaptations helping to mobilize body reserves and/or reduce metabolic rate to ensure a longer usage of reserves. However, those metabolic changes can be associated with higher exposure to oxidative stress, raising the question of how species that naturally fast during their life cycle avoid an accumulation of oxidative damage over time. King penguins repeatedly cope with fasting periods of up to several weeks. Here, we investigated how adult male penguins deal with oxidative stress after an experimentally induced moderate fasting period (PII) or an advanced fasting period (PIII). After fasting in captivity, birds were released to forage at sea. We measured plasmatic oxidative stress on the same individuals at the start and end of the fasting period and when they returned from foraging at sea. We found an increase in activity of the antioxidant enzyme superoxide dismutase along with fasting. However, PIII individuals showed higher oxidative damage at the end of the fast compared with PII individuals. When they returned from re-feeding at sea, all birds had recovered their initial body mass and exhibited low levels of oxidative damage. Notably, levels of oxidative damage after the foraging trip were correlated to the rate of mass gain at sea in PIII individuals but not in PII individuals. Altogether, our results suggest that fasting induces a transitory exposure to oxidative stress and that effort to recover in body mass after an advanced fasting period may be a neglected carryover cost of fasting. © 2016. Published by The Company of Biologists Ltd.

  1. Evaluating Agronomic Performance and Investigating Molecular Structure of Drought and Heat Tolerant Wild Alfalfa (Medicago sativa L.) Collection from the Southeastern Turkey.

    PubMed

    Basbag, Mehmet; Aydin, Ali; Sakiroglu, Muhammet

    2017-02-01

    Drought is a major stress factor for agricultural production including alfalfa production. One way to counterbalance the yield losses is the introgression of drought tolerant germplasm into breeding programs. As an effort to exploit such germplasm, 16 individual plants were selected from the Southeastern Turkey from their natural habitat and clonally propagated in field trials with an ultimate goal to use the germplasm as parents for releasing a synthetic cultivar. Forage yield and forage quality traits were evaluated and molecular genetic diversity among genotypes were determined using inter simple sequence repeat markers. Genotypes showed a variation from growth habit to yield and quality traits indicating sufficient phenotypic variation for diverse breeding efforts (for grazing or harvesting) and long term selection schemes. A large amount of genetic variation was observed even with a limited number of marker and genotypes. However, no pattern of spatial genetic structure was observed for the scale of the study when genetic variation is linked to the geographic origin. We conclude that ex situ natural variation provides a wealth of germplasm that could be incorporated into breeding programs aiming to improve drought tolerance. We also suggest an extensive collection of seeds/plant tissue from unique plants with desirable traits rather than putting more efforts to create a spatial germplasm sampling efforts in narrow regions.

  2. Growth performance and sorting characteristics of corn silage-alfalfa haylage diets with or without forage dilution offered to replacement Holstein dairy heifers.

    PubMed

    Coblentz, W K; Esser, N M; Hoffman, P C; Akins, M S

    2015-11-01

    Gravid heifers consuming high-quality forage diets are susceptible to excessive weight gains and overconditioning. One approach for controlling this problem is to dilute diets with low-energy forages, such as straw, that reduce the caloric density and dry matter intake (DMI) of that diet by heifers. These diluting agents are often sortable by dairy heifers, but previous visual evidence has suggested that eastern gamagrass haylage may be a nonsortable alternative. Our objectives were (1) to compare the growth performance of dairy heifers offered a high-quality forage diet (control) with diets containing 1 of 3 diluting agents [eastern gamagrass haylage (EGH), chopped wheat straw (WS), or chopped corn fodder (CF)]; and (2) evaluate sorting behaviors of heifers offered these forage diets. Holstein heifers (n=128) were stratified (32 heifers/block) on the basis of initial body weight (heavy, 560 ± 27.7 kg; medium-heavy, 481 ± 17.7 kg; medium-light, 441 ± 22.0 kg; and light, 399 ± 14.4 kg), and then assigned to 1 of 16 identical research pens (4 pens/block; 8 heifers/pen), where each of the 4 research diets were assigned to 1 pen within each block. Diets were offered in a 118-d feeding trial with heifers crowded to 133% of capacity at the feed bunk. Inclusion of low-energy forages was effective in reducing both diet energy density and DMI. Concentrations of physically effective fiber (pef) particles did not change during the 24-h period following feeding for either the control or EGH diets; however, this response for pef particles masked the competing (and cancelling) responses for individual large and medium particles, which heifers sorted with discrimination and preference, respectively. Sorting against pef particles was detected for WS, and much more severely for the CF diet. Sorting of forage particles by heifers could not be related to heifer performance. Compared with control (1.16 kg/d), average daily gains (ADG) were reduced by dilution in all cases, but were virtually identical between EGH (0.98 kg/d) and CF (0.97 kg/d), which exhibited no sorting and extensive sorting of pef, respectively. Furthermore, ADG for WS was approximately 0.2 kg/d less than EGH or CF, despite exhibiting sorting characteristics intermediate between EGH and CF. Diets diluted with low-energy forages were formulated to be isonitrogenous and isocaloric; within that context, WS was most effective in reducing DMI and maintaining ADG within typical recommendations for Holstein heifers. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Examining short-term nutritional status among BaAka foragers in transitional economies.

    PubMed

    Remis, Melissa J; Jost Robinson, Carolyn A

    2014-07-01

    Foragers in transitioning economies are at an increased risk of negative health outcomes as they undergo changes in subsistence patterns and diet. Here, we provide anthropometric data and examine the nutrition and health of adult BaAka foragers in relationship to declining wildlife and economic change in the Dzanga Sangha Protected Areas (APDS), Central African Republic. From June to August 2012, we collected biological data and dietary recall surveys from individuals in Mossapoula (MS) and Yandoumbé (YDBE) villages using standard anthropometric techniques and a single capillary blood finger prick. In our analysis, we identified variation in anthropometric measurements and hemoglobin levels by village (MS = 66, YDBE = 75) and gender (64 men, 77 women). Immigration, increased gun hunting and wildlife trades have reduced forager reliance on forest resources. These changes are evidenced in the marginal health of contemporary BaAka foragers of APDS. Although anthropometric measures of nutritional status do not significantly differ between communities, hemoglobin data highlight inequities in access to forest products between villages with different proximity to community hunting zones. Further, poor dietary diversity and low frequency of purchased foods in the diet indicate that the transition to a market economy has not been fully realized and diets are impoverished. Economic changes appear to have had the most impact at MS village, where forest use is most restricted and consumption of meat and forest products was reduced. This work highlights the nutritional and health needs of foragers in rapidly transitioning economies; especially those impacted by conservation management and zoning policies. © 2014 Wiley Periodicals, Inc.

  4. The Fungus Aspergillus aculeatus Enhances Salt-Stress Tolerance, Metabolite Accumulation, and Improves Forage Quality in Perennial Ryegrass

    PubMed Central

    Li, Xiaoning; Han, Shijuan; Wang, Guangyang; Liu, Xiaoying; Amombo, Erick; Xie, Yan; Fu, Jinmin

    2017-01-01

    Perennial ryegrass (Lolium perenne) is an important forage grass with high yield and superior quality in temperate regions which is widely used in parks, sport field, and other places. However, perennial ryegrass is moderately tolerant to salinity stress compared to other commercial cultivars and salt stress reduces their growth and productivity. Aspergillus aculeatus has been documented to participate in alleviating damage induced by salinity. Therefore, the objective of this study was to investigate the mechanisms underlying A. aculeatus-mediated salt tolerance, and forage quality of perennial ryegrass exposed to 0, 200, and 400 mM NaCl concentrations. Physiological markers and forage quality of perennial ryegrass to salt stress were evaluated based on the growth rate, photosynthesis, antioxidant enzymes activity, lipid peroxidation, ionic homeostasis, the nutritional value of forage, and metabolites. Plants inoculated with A. aculeatus exhibited higher relative growth rate (RGR), turf and forage quality under salt stress than un-inoculated plants. Moreover, in inoculated plants, the fungus remarkably improved plant photosynthetic efficiency, reduced the antioxidant enzymes activity (POD and CAT), and attenuated lipid peroxidation (decreased H2O2 and MDA accumulation) induced by salinity, compared to un-inoculated plants. Furthermore, the fungus also acts as an important role in maintaining the lower Na/K ratio and metabolites and lower the amino acids (Alanine, Proline, GABA, and Asparagine), and soluble sugars (Glucose and Fructose) for inoculated plants than un-inoculated ones. Our results suggest that A. aculeatus may be involved in modulating perennial ryegrass tolerance to salinity in various ways. PMID:28936200

  5. Under the sea ice: Exploring the relationship between sea ice and the foraging behaviour of southern elephant seals in East Antarctica

    NASA Astrophysics Data System (ADS)

    Labrousse, Sara; Sallée, Jean-Baptiste; Fraser, Alexander D.; Massom, Robert A.; Reid, Phillip; Sumner, Michael; Guinet, Christophe; Harcourt, Robert; McMahon, Clive; Bailleul, Frédéric; Hindell, Mark A.; Charrassin, Jean-Benoit

    2017-08-01

    Investigating ecological relationships between predators and their environment is essential to understand the response of marine ecosystems to climate variability and change. This is particularly true in polar regions, where sea ice (a sensitive climate variable) plays a crucial yet highly dynamic and variable role in how it influences the whole marine ecosystem, from phytoplankton to top predators. For mesopredators such as seals, sea ice both supports a rich (under-ice) food resource, access to which depends on local to regional coverage and conditions. Here, we investigate sex-specific relationships between the foraging strategies of southern elephant seals (Mirounga leonina) in winter and spatio-temporal variability in sea ice concentration (SIC) and coverage in East Antarctica. We satellite-tracked 46 individuals undertaking post-moult trips in winter from Kerguelen Islands to the peri-Antarctic shelf between 2004 and 2014. These data indicate distinct general patterns of sea ice usage: while females tended to follow the sea ice edge as it extended northward, the males remained on the continental shelf despite increasing sea ice. Seal hunting time, a proxy of foraging activity inferred from the diving behaviour, was longer for females in late autumn in the outer part of the pack ice, ∼150-370 km south of the ice edge. Within persistent regions of compact sea ice, females had a longer foraging activity (i) in the highest sea ice concentration at their position, but (ii) their foraging activity was longer when there were more patches of low concentration sea ice around their position (either in time or in space; 30 days & 50 km). The high spatio-temporal variability of sea ice around female positions is probably a key factor allowing them to exploit these concentrated patches. Despite lack of information on prey availability, females may exploit mesopelagic finfishes and squids that concentrate near the ice-water interface or within the water column (from diurnal vertical migration) in the pack ice region, likely attracted by an ice algal autumn bloom that sustains an under-ice ecosystem. In contrast, male foraging effort increased when they remained deep within the sea ice (420-960 km from the ice edge) over the shelf. Males had a longer foraging activity (i) in the lowest sea ice concentration at their position, and (ii) when there were more patches of low concentration sea ice around their position (either in time or in space; 30 days & 50 km) presumably in polynyas or flaw leads between land fast and pack ice. This provides access to zones of enhanced resources in autumn or in early spring such as polynyas, the Antarctic shelf and slope. Our results suggest that some seals utilized a highly sea ice covered environment, which is key for their foraging effort, sustaining or concentrating resources during winter.

  6. Implementing unpredictability in feeding enrichment for Malayan sun bears (Helarctos malayanus).

    PubMed

    Schneider, Marion; Nogge, Gunther; Kolter, Lydia

    2014-01-01

    Bears in the wild spend large proportions of time in foraging activities. In zoos their time budgets differ markedly from those of their wild counterparts. Feeding enrichment has been documented to increase foraging behavior and to reduce stereotypies. But in general these procedures have no long-term effects and result in habituation. As can be expected by the predictions of the optimal foraging theory, foraging activities are restricted as long as the availability of food is predictable. To quantify the effect of spatial unpredictability, three feeding methods have been designed to stimulate functional foraging behavior in captive Malayan sun bears in the long-term. In order to examine if habituation occurs, the most effective method was tested for 12 consecutive days. Activities of four adult sun bears at the Cologne Zoo were recorded by focal animal recording of foraging behaviors and time sampling of activities for a total of 360 hr. Implementing unpredictability significantly increased the time the bears spent foraging and led to a higher diversity of foraging behaviors. The effects lasted throughout the entire day and no habituation occurred in the course of 12 consecutive days. The study shows how functional species typical behavior in captive Malayan sun bears can be stimulated in the long-term by simulating natural characteristics of food availability. © 2014 Wiley Periodicals, Inc.

  7. Physiologic effects of ergot alkaloids: What happens when excretion does not equal absorption?

    USDA-ARS?s Scientific Manuscript database

    Increased persistence of tall fescue (Lolium arundinaceum) infested with an endophytic fungus Epichloë coenophiala (formerly Neotyphodium coenophialum) in forage-based agriculture has led to increased effort in understanding the negative effects caused by consumption of ergot alkaloids by animals co...

  8. Planning pastures: taking species attributes to the landscape

    USDA-ARS?s Scientific Manuscript database

    Winter hardiness limits the use of the productive forage grass perennial ryegrass (Lolium perenne L.) in the northeastern United States. Both efforts to breed more cold-tolerant varieties and the changing climate increase the potential of this grass in pastures. Growth chamber studies of thirteen co...

  9. Physiologic effects of ergot alkaloids: What happens when excretion does not equal consumption?

    USDA-ARS?s Scientific Manuscript database

    Increased persistence of tall fescue (Lolium arundinaceum) infested with an endophytic fungus Epichloë coenophiala (formerly Neotyphodium coenophialum) in forage-based agriculture has led to increased effort in understanding the negative effects caused by consumption of ergot alkaloids by animals co...

  10. Interactions of multiple predators with different foraging modes in an aquatic food web.

    PubMed

    Carey, Michael P; Wahl, David H

    2010-02-01

    Top predators can have different foraging modes that may alter their interactions and effects on food webs. Interactions between predators may be non-additive resulting from facilitation or interference, whereas their combined effects on a shared prey may result in emergent effects that are risk enhanced or risk reduced. To test the importance of multiple predators with different foraging modes, we examined the interaction between a cruising predator (largemouth bass, Micropterus salmoides) and an ambush predator (muskellunge, Esox masquinongy) foraging on a shared prey (bluegill sunfish, Lepomis macrochirus) with strong anti-predator defense behaviors. Additive and substitution designs were used to compare individual to combined predator treatments in experimental ponds. The multiple predator interaction facilitated growth of the cruising predator in the combined predator treatments, whereas predator species had substitutable effects on the growth of the ambush predator. The combined predator treatments created an emergent effect on the prey; however, the direction was dependent on the experimental design. The additive design found a risk-reducing effect, whereas the substitution design found a risk-enhancing effect for prey fish. Indirect effects from the predators weakly extended to lower trophic levels (i.e., zooplankton community). Our results highlight the need to consider differences in foraging mode of top predators, interactions between predators, and emergent effects on prey to understand food webs.

  11. Air pollutants degrade floral scents and increase insect foraging times

    NASA Astrophysics Data System (ADS)

    Fuentes, Jose D.; Chamecki, Marcelo; Roulston, T.'ai; Chen, Bicheng; Pratt, Kenneth R.

    2016-09-01

    Flowers emit mixtures of scents that mediate plant-insect interactions such as attracting insect pollinators. Because of their volatile nature, however, floral scents readily react with ozone, nitrate radical, and hydroxyl radical. The result of such reactions is the degradation and the chemical modification of scent plumes downwind of floral sources. Large Eddy Simulations (LES) are developed to investigate dispersion and chemical degradation and modification of floral scents due to reactions with ozone, hydroxyl radical, and nitrate radical within the atmospheric surface layer. Impacts on foraging insects are investigated by utilizing a random walk model to simulate insect search behavior. Results indicate that even moderate air pollutant levels (e.g., ozone mixing ratios greater than 60 parts per billion on a per volume basis, ppbv) substantially degrade floral volatiles and alter the chemical composition of released floral scents. As a result, insect success rates of locating plumes of floral scents were reduced and foraging times increased in polluted air masses due to considerable degradation and changes in the composition of floral scents. Results also indicate that plant-pollinator interactions could be sensitive to changes in floral scent composition, especially if insects are unable to adapt to the modified scentscape. The increase in foraging time could have severe cascading and pernicious impacts on the fitness of foraging insects by reducing the time devoted to other necessary tasks.

  12. Foraging habitat for shorebirds in southeastern Missouri and its predicted future availability

    USGS Publications Warehouse

    Twedt, Daniel J.

    2013-01-01

    Water management to protect agriculture in alluvial floodplains often conflicts with wildlife use of seasonal floodwater. Such is the case along the Mississippi River in southeastern Missouri where migrating shorebirds forage in shallow-flooded fields. I estimated the current availability of habitat for foraging shorebirds within the New Madrid and St. Johns Basins based on daily river elevations (1943–2009), under assumptions that shorebirds forage in open habitat with water depth <15 cm and use mudflats for 3 days after exposure. The area of shorebird foraging habitat, based on replicated 50-year random samples, averaged 975 ha per day during spring and 33 ha per day during fall. Adjustments to account for habitat quality associated with different water depths, duration of mudflat exposure, intra-seasonal availability, and state of agricultural crops, indicated the equivalent of 494 ha daily of optimal habitat during spring and 11 ha during fall. Proposed levees and pumps to protect cropland would reduce shorebird foraging habitat by 80 %: to 211 ha (108 optimal ha) per day during spring and 9 ha (<3 optimal ha) per day during fall. Alternative water management that allows natural flooding below a prescribed elevation would retain nearly all existing shorebird foraging habitat during fall and about 60 % of extant habitat during spring.

  13. Non-cultivated plants present a season-long route of pesticide exposure for honey bees

    PubMed Central

    Long, Elizabeth Y.; Krupke, Christian H.

    2016-01-01

    Recent efforts to evaluate the contribution of neonicotinoid insecticides to worldwide pollinator declines have focused on honey bees and the chronic levels of exposure experienced when foraging on crops grown from neonicotinoid-treated seeds. However, few studies address non-crop plants as a potential route of pollinator exposure to neonicotinoid and other insecticides. Here we show that pollen collected by honey bee foragers in maize- and soybean-dominated landscapes is contaminated throughout the growing season with multiple agricultural pesticides, including the neonicotinoids used as seed treatments. Notably, however, the highest levels of contamination in pollen are pyrethroid insecticides targeting mosquitoes and other nuisance pests. Furthermore, pollen from crop plants represents only a tiny fraction of the total diversity of pollen resources used by honey bees in these landscapes, with the principle sources of pollen originating from non-cultivated plants. These findings provide fundamental information about the foraging habits of honey bees in these landscapes. PMID:27240870

  14. Variation and correlations among European and North American orchardgrass germplasm for herbage yield and nutritive value

    USDA-ARS?s Scientific Manuscript database

    Efforts to improve water soluble carbohydrate (WSC) concentrations have come to the forefront of perennial forage grass breeding over the last decades. Perennial ryegrass (Lolium perenne L.) breeding has been very successful in developing new cultivars with high WSC and high agronomic performance. ...

  15. Cognitive Performance across the Life Course of Bolivian Forager-Farmers with Limited Schooling

    ERIC Educational Resources Information Center

    Gurven, Michael; Fuerstenberg, Eric; Trumble, Benjamin; Stieglitz, Jonathan; Beheim, Bret; Davis, Helen; Kaplan, Hillard

    2017-01-01

    Cognitive performance is characterized by at least two distinct life course trajectories. Many cognitive abilities (e.g., "effortful processing" abilities, including fluid reasoning and processing speed) improve throughout early adolescence and start declining in early adulthood, whereas other abilities (e.g., "crystallized"…

  16. Feeding ecology of arctic-nesting sandpipers during spring migration through the prairie pothole region

    USGS Publications Warehouse

    Eldridge, J.L.; Krapu, G.L.; Johnson, D.H.

    2009-01-01

    We evaluated food habits of 4 species of spring-migrant calidrid sandpipers in the Prairie Pothole Region (PPR) of North Dakota. Sandpipers foraged in several wetland classes and fed primarily on aquatic dipterans, mostly larvae, and the midge family Chironomidae was the primary food eaten. Larger sandpiper species foraged in deeper water and took larger larvae than did smaller sandpipers. The diverse wetland habitats that migrant shorebirds use in the PPR suggest a landscape-level approach be applied to wetland conservation efforts. We recommend that managers use livestock grazing and other tools, where applicable, to keep shallow, freshwater wetlands from becoming choked with emergent vegetation limiting chironomid production and preventing shorebird use.

  17. Effects of dietary forage level and monensin on lactation performance, digestibility and fecal excretion of nutrients, and efficiency of feed nitrogen utilization of Holstein dairy cows.

    PubMed

    Martinez, C M; Chung, Y-H; Ishler, V A; Bailey, K W; Varga, G A

    2009-07-01

    Two experiments (Exp. 1 and 2) were conducted using a 4 x 4 Latin square design with 2 replications (n = 8) to evaluate effects of feeding Holstein dairy cows a total mixed ration containing 50 or 60% of ration dry matter (DM) from forages with or without supplementation of monensin. In Exp. 1, alfalfa silage (AS) was used as the major forage (55% forage DM), and corn silage (CS; 45% forage DM) was used to make up the rest of the forage portion of diets (55AS:45CS). In Exp. 2, CS was used as the major forage (70% forage DM) and alfalfa hay (AH; 30% forage DM) was used to make up the rest of the forage portion of diets (70CS:30AH). Experimental diets were arranged in a 2 x 2 factorial with 50 or 60% ration DM from forages and monensin supplemented at 0 or 300 mg/cow daily. In Exp. 1 (55AS:45CS), feeding 60% forage diets decreased DM intake (DMI; 27.3 vs. 29.6 kg/d) but maintained the same levels of milk (45.8 vs. 47.0 kg/d) compared with 50% forage diets. The efficiency of converting feed to milk or 3.5% fat-corrected milk was greater for cows fed 60% compared with 50% forage diets (1.7 vs. 1.6 kg milk or 3.5% fat-corrected milk/kg of DMI, respectively). Increasing dietary forage level from 50 to 60% of ration DM increased milk fat percentage (3.4 to 3.5%); however, adding monensin to the 60% forage diet inhibited the increase in milk fat percentage. Feeding 60% forage diets decreased feed cost, but this decrease ($0.5/head per day) in feed cost did not affect income over feed cost. Feeding 60% forage diets decreased fecal excretion of DM (10.6 to 9.6 kg/d) and nitrogen (N; 354 to 324 g/d) and improved apparent digestibility of neutral detergent fiber from 43 to 49% and apparent efficiency of feed N utilization from 32.3 to 35.9% compared with 50% forage diets. In Exp. 2 (70CS:30AH), feeding 60% forage diets decreased DMI from 29.6 to 28.2 kg but maintained the same level of milk (41.1 vs. 40.8 kg/d) and therefore increased the efficiency of converting feed to milk (1.46 vs. 1.38 kg milk/kg DMI) compared with 50% forage diets. Daily feed cost for feeding 60% forage diets was $0.3/head lower than for the 50% forage diets. Fecal excretion of DM (10.3 vs. 11.5 kg/d) was lower and fecal excretion of N (299 vs. 328 g/d) tended to be lower for 60% compared with 50% forage diets. Results from these 2 experiments suggest that a 60% forage diet consisting of either AS or CS as the major forage can be fed to high producing Holstein dairy cows without affecting milk production while improving or maintaining the efficiency of converting feed to milk and the apparent efficiency of utilization of feed N. Cows receiving a 60% forage diet had a similar or improved digestibility of nutrients with a similar or reduced fecal excretion of nutrients. Effects of monensin under the conditions of the current experiments were minimal.

  18. Foraging in subterranean termites (Isoptera: Rhinotermitidae): how do Heterotermes tenuis and Coptotermes gestroi behave when they locate equivalent food resources?

    PubMed

    Lima, J T; Costa-Leonardo, A M

    2014-08-01

    A previous research suggests that when subterranean termites locate equivalent food they consume the initial food resource. However, little is known about the movement of foragers among these food sources. For this reason, this study analyzed the feeding behavior of Heterotermes tenuis and Coptotermes gestroi in the presence of equivalent foods. The experimental arenas were composed of a release chamber connected to food chambers. The consumption of each wood block and percentage of the foraging individuals recruited for the food chambers were observed in relation to the total survival rate. The results showed that in the multiple-choice tests, wood block consumptions and the recruitment of individuals did not differ between replicates of each termite species. However, in different tests of tenacity, the chambers with the first food presented higher feeding rates by both H. tenuis and C. gestroi and resulted in a higher recruitment of workers and soldiers. In these conditions, it may be concluded that foragers of either species do not concentrate their efforts on the consumption of only one food resource when they are able to reach multiple cellulosic sources simultaneously. Additionally, the data concerning tenacity tests suggest that there is a chronologic priority of consumption in relation to the discovery of available food sources. Knowledge about the foraging biology of subterranean termites is important for future studies of their feeding behavior, and it is indispensable for improving control strategies.

  19. Foraging responses of black-legged kittiwakes to prolonged food-shortages around colonies on the Bering Sea shelf.

    PubMed

    Paredes, Rosana; Orben, Rachael A; Suryan, Robert M; Irons, David B; Roby, Daniel D; Harding, Ann M A; Young, Rebecca C; Benoit-Bird, Kelly; Ladd, Carol; Renner, Heather; Heppell, Scott; Phillips, Richard A; Kitaysky, Alexander

    2014-01-01

    We hypothesized that changes in southeastern Bering Sea foraging conditions for black-legged kittiwakes (Rissa tridactyla) have caused shifts in habitat use with direct implications for population trends. To test this, we compared at-sea distribution, breeding performance, and nutritional stress of kittiwakes in three years (2008-2010) at two sites in the Pribilof Islands, where the population has either declined (St. Paul) or remained stable (St. George). Foraging conditions were assessed from changes in (1) bird diets, (2) the biomass and distribution of juvenile pollock (Theragra chalcogramma) in 2008 and 2009, and (3) eddy kinetic energy (EKE; considered to be a proxy for oceanic prey availability). In years when biomass of juvenile pollock was low and patchily distributed in shelf regions, kittiwake diets included little or no neritic prey and a much higher occurrence of oceanic prey (e.g. myctophids). Birds from both islands foraged on the nearby shelves, or made substantially longer-distance trips overnight to the basin. Here, feeding was more nocturnal and crepuscular than on the shelf, and often occurred near anticyclonic, or inside cyclonic eddies. As expected from colony location, birds from St. Paul used neritic waters more frequently, whereas birds from St. George typically foraged in oceanic waters. Despite these distinctive foraging patterns, there were no significant differences between colonies in chick feeding rates or fledging success. High EKE in 2010 coincided with a 63% increase in use of the basin by birds from St. Paul compared with 2008 when EKE was low. Nonetheless, adult nutritional stress, which was relatively high across years at both colonies, peaked in birds from St. Paul in 2010. Diminishing food resources in nearby shelf habitats may have contributed to kittiwake population declines at St Paul, possibly driven by increased adult mortality or breeding desertion due to high foraging effort and nutritional stress.

  20. Evaluating the impacts of wildland fires on caribou in interior Alaska

    USGS Publications Warehouse

    Joly, Kyle; Adams, Layne G.; Dale, Bruce W.; Collins, William

    2002-01-01

    Caribou are found throughout the boreal forests of interior Alaska, a region subject to chronic and expansive wildland fires. Fruticose lichens, if available, constitute the majority of the winter diet of caribou throughout their range and are common in mature boreal forests but largely absent from early successional stages. Fire, the dominant ecological driving force, increases vegetative diversity and productivity across the landscape but may reduce the availability of caribou winter forage for decades.Increasingly, wildland fire regimes are influenced by humans seeking to reduce fire hazards or mitigate the effects of years of fire suppression. Consequently, biologists have debated the importance of forage lichens to the dynamics of caribou populations, and land managers have questioned the importance of fire regime to wintering caribou. To better understand the impacts of wildland fire on caribou, we are simultaneously investigating the relationships between fire history, caribou movements, forage lichen availability, and caribou nutritional performance on their winter range.

  1. Ecosystem features determine seagrass community response to sea otter foraging

    USGS Publications Warehouse

    Hessing-Lewis, Margot; Rechsteiner, Erin U.; Hughes, Brent B.; Tinker, M. Tim; Monteith, Zachary L.; Olson, Angeleen M.; Henderson, Matthew Morgan; Watson, Jane C.

    2017-01-01

    Comparing sea otter recovery in California (CA) and British Columbia (BC) reveals key ecosystem properties that shape top-down effects in seagrass communities. We review potential ecosystem drivers of sea otter foraging in CA and BC seagrass beds, including the role of coastline complexity and environmental stress on sea otter effects. In BC, we find greater species richness across seagrass trophic assemblages. Furthermore, Cancer spp. crabs, an important link in the seagrass trophic cascade observed in CA, are less common. Additionally, the more recent reintroduction of sea otters, more complex coastline, and reduced environmental stress in BC seagrass habitats supports the hypotheses that sea otter foraging pressure is currently reduced there. In order to manage the ecosystem features that lead to regional differences in top predator effects in seagrass communities, we review our findings, their spatial and temporal constraints, and present a social-ecological framework for future research.

  2. Physical barrier to reduce WP mortalities of foraging waterfowl

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pochop, P.A.; Cummings, J.L.; Yoder, C.A.

    White phosphorus (WP) has been identified as the cause of mortality to certain species of water-fowl at Eagle River Flats, a tidal marsh in Alaska, used as an ordinance impact area by the US Army. A blend of calcium bentonite/organo clays, gravel, and binding polymers was tested for effectiveness as a barrier to reduce duck foraging and mortality. Following the application of the barrier to one of two contaminated ponds, the authors observed greater duck foraging and higher mortality in the untreated pond and no mortality in the treated pond after a year of tidal inundations and ice effects. Emergentmore » vegetation recovered within a year of treatment. WP levels in the barrier were less than the method limit of detection, indicating no migration of WP into the materials. Barrier thickness remained relatively stable over a period of 4 years, and vegetation was found to be important in stabilizing the barrier material.« less

  3. Fuels reduction in a western coniferous forest: effects on quantity and quality of forage for elk

    Treesearch

    Ryan A. Long; Janet L. Rachlow; John G. Kie; Martin Vavra

    2008-01-01

    Use of mechanical thinning and prescribed fire to reduce fuels in dry forest ecosystems has become increasingly common in western North America. Nevertheless, few studies have quantified effects of fuels reduction treatments on wildlife. We evaluated effects of fuels reduction on quantity and quality of forage available to elk (Cervus elaphus) in...

  4. Best practices to hasten field drying of grasses and alfalfa

    USDA-ARS?s Scientific Manuscript database

    Rapid drying of hay and silage shortens the harvest window, enhances forage quality, and reduces the chance for rain damage. Forage generally has about 75% moisture when it is cut. This means the crop must lose 2.3 to 3 tons of water per acre (550 to 720 gal/acre) to dry to haylage at 60 to 65% mois...

  5. Testosterone and paternal care in East African foragers and pastoralists

    PubMed Central

    Muller, Martin N.; Marlowe, Frank W.; Bugumba, Revocatus; Ellison, Peter T.

    2008-01-01

    The ‘challenge hypothesis’ posits that testosterone facilitates reproductive effort (investment in male–male competition and mate-seeking) at the expense of parenting effort (investment in offspring and mates). Multiple studies, primarily in North America, have shown that men in committed relationships, fathers, or both maintain lower levels of testosterone than unpaired men. Data from non-western populations, however, show inconsistent results. We hypothesized that much of this cross-cultural variation can be attributed to differential investment in mating versus parenting effort, even among married fathers. Here, we directly test this idea by comparing two neighbouring Tanzanian groups that exhibit divergent styles of paternal involvement: Hadza foragers and Datoga pastoralists. We predicted that high levels of paternal care by Hadza fathers would be associated with decreased testosterone in comparison with non-fathers, and that no such difference between fathers and non-fathers would be evident in Datoga men, who provide minimal direct paternal care. Twenty-seven Hadza men and 80 Datoga men between the ages of 17 and 60 provided morning and afternoon saliva samples from which testosterone was assayed. Measurements in both populations confirmed these predictions, adding further support to the hypothesis that paternal care is associated with decreased testosterone production in men. PMID:18826936

  6. An integrated approch to the foraging ecology of marine birds and mammals

    NASA Astrophysics Data System (ADS)

    Croll, Donald A.; Tershy, Bernie R.; Hewitt, Roger P.; Demer, David A.; Fiedler, Paul C.; Smith, Susan E.; Armstrong, Wesley; Popp, Jacqueline M.; Kiekhefer, Thomas; Lopez, Vanesa R.; Urban, Jorge; Gendron, Diane

    Birds and mammals are important components of pelagic marine ecosystems, but our knowledge of their foraging ecology is limited. We distinguish six distinct types of data that can be used in various combinations to understand their foraging behavior and ecology. We describe methods that combine concurrent dive recorder deployment, oceanographic sampling, and hydroacoustic surveys to generate hypotheses about interactions between the physical environment and the distribution, abundance, and behavior of pelagic predators and their prey. Our approach is to (1) map the distribution of whales in relation to the distribution of their prey and the physical features of the study area (bottom topography, temperature, and salinity); and (2) measure the foraging behavior and diet of instrumented whales in the context of the fine-scale distribution and composition of their prey and the physical environment. We use this approach to demonstrate a relationship between blue whale distribution, sea surface temperature, and concentrations of their euphausiid prey at different spatial scales offshore of the Channel Islands, California. Blue whale horizontal spatial distribution was correlated with regions of high acoustic backscatter. Blue whale dive depths closely tracked the depth distribution of krill. Net sampling and whale diet revealed that whales fed exclusively upon dense schools of Euphausia pacifica (between 100 and 200 m) and Thysanoessa spinifera (from the surface to 100 m). Whales concentrated foraging efforts upon those dense euphausiid schools that form downstream from an upwelling center in close proximity to regions of steep topographic relief. We propose that (1) the distribution of Balaenoptera whales in the coastal California Current region is defined by their attraction to areas of predictably high prey density; (2) the preferred prey of these whales are several species of euphausiids ( E. pacifica, T. spinifera, and N. simplex) that are abundant in the California Current region; (3) blue whales concentrate their foraging efforts on dense aggregations of euphausiids found at discrete depths in the water column; (4) these localized areas of high euphausiid densities are predictable and sustained by enhanced levels of primary productivity in regions which are located downstream from coastal upwelling centers (indicated by sea surface temperature); (5) topographic breaks in the continental shelf located downstream from these upwelling centers work in concert with euphausiid behavior to collect and maintain large concentrations of euphausiids swarms, and (6) despite seasonal and inter-annual variability, these processes are sufficiently consistent that the distribution of Balaenoptera whales can be predicted.

  7. Persistent producer-scrounger relationships in bats.

    PubMed

    Harten, Lee; Matalon, Yasmin; Galli, Naama; Navon, Hagit; Dor, Roi; Yovel, Yossi

    2018-02-01

    Social foraging theory suggests that group-living animals gain from persistent social bonds, which lead to increased tolerance in competitive foraging and information sharing. Bats are among the most social mammals, often living in colonies of tens to thousands of individuals for dozens of years, yet little is known about their social foraging dynamics. We observed three captive bat colonies for over a year, quantifying >13,000 social foraging interactions. We found that individuals consistently used one of two foraging strategies, either producing (collecting) food themselves or scrounging it directly from the mouth of other individuals. Individual foraging types were consistent over at least 16 months except during the lactation period when females shifted toward producing. Scroungers intentionally selected whom to interact with when socially foraging, thus generating persistent nonrandom social relationships with two to three specific producers. These persistent producer-scrounger relationships seem to reduce aggression over time. Finally, scrounging was highly correlated with vigilance, and we hypothesize that vigilant-prone individuals turn to scrounging in the wild to mitigate the risk of landing on a potentially unsafe fruit tree. We find the bat colony to be a rich and dynamic social system, which can serve as a model to study the role that social foraging plays in the evolution of mammalian sociality. Our results highlight the importance of considering individual tendencies when exploring social behavior patterns of group-living animals. These tendencies further emphasize the necessity of studying social networks over time.

  8. Persistent producer-scrounger relationships in bats

    PubMed Central

    Harten, Lee; Matalon, Yasmin; Galli, Naama; Navon, Hagit; Dor, Roi; Yovel, Yossi

    2018-01-01

    Social foraging theory suggests that group-living animals gain from persistent social bonds, which lead to increased tolerance in competitive foraging and information sharing. Bats are among the most social mammals, often living in colonies of tens to thousands of individuals for dozens of years, yet little is known about their social foraging dynamics. We observed three captive bat colonies for over a year, quantifying >13,000 social foraging interactions. We found that individuals consistently used one of two foraging strategies, either producing (collecting) food themselves or scrounging it directly from the mouth of other individuals. Individual foraging types were consistent over at least 16 months except during the lactation period when females shifted toward producing. Scroungers intentionally selected whom to interact with when socially foraging, thus generating persistent nonrandom social relationships with two to three specific producers. These persistent producer-scrounger relationships seem to reduce aggression over time. Finally, scrounging was highly correlated with vigilance, and we hypothesize that vigilant-prone individuals turn to scrounging in the wild to mitigate the risk of landing on a potentially unsafe fruit tree. We find the bat colony to be a rich and dynamic social system, which can serve as a model to study the role that social foraging plays in the evolution of mammalian sociality. Our results highlight the importance of considering individual tendencies when exploring social behavior patterns of group-living animals. These tendencies further emphasize the necessity of studying social networks over time. PMID:29441356

  9. Assessing sex-related chick provisioning in greater flamingo Phoenicopterus roseus parents using capture-recapture models.

    PubMed

    Rendón, Miguel A; Garrido, Araceli; Rendón-Martos, Manuel; Ramírez, José M; Amat, Juan A

    2014-03-01

    In sexually dimorphic species, the parental effort of the smaller sex may be reduced due to competitive exclusion in the feeding areas by the larger sex or physiological constraints. However, to determine gender effects on provisioning patterns, other intrinsic and extrinsic factors affecting parental effort should be accounted for. Greater flamingos (Phoenicopterus roseus) exhibit sexual size dimorphism. In Fuente de Piedra colony, the lake dries out almost completely during the breeding season and both parents commute between breeding and foraging sites >130 km away during the chick-rearing period. Applying multistate capture-recapture models to daily observations of marked parents, we determined the effects of sex, and their interactions with other intrinsic and extrinsic factors, on the probability of chick desertion and sojourn in the colony and feeding areas. Moreover, using stable isotopes in the secretions that parents produce to feed their chicks, we evaluated sex-specific use of wetlands. The probability of chick attendance (complementary to chick desertion) was >0.98. Chick desertion was independent of parental sex, but decreased with parental age. Females stayed in the feeding areas for shorter periods [mean: 7.5 (95% CI: 6.0-9.4) days] than males [9.2 (7.3-11.8) days]. Isotopic signatures of secretions did not show sex differences in δ(13)C, but males' secretions were enriched in δ(15)N, suggesting they fed on prey of higher trophic levels than females. Both parents spent approximately 1 day in the colony, but females prolonged their mean stay when the lake dried out. Females also allocated more time to foraging in the flooded areas remaining in the colony, likely because they were energetically more stressed than males. The results indicate that sex-specific provisioning behaviour in greater flamingo is related to differential effects of both intrinsic and extrinsic factors. Males seem forage less efficiently than females, whereas females' body condition seems to be lower after feeding the chick. Our methodology may be extended to species that feed on distant food sources and that do not visit their offspring daily, to elucidate patterns of chick-provisioning behaviour. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.

  10. Modelling Pasture-based Automatic Milking System Herds: Grazeable Forage Options

    PubMed Central

    Islam, M. R.; Garcia, S. C.; Clark, C. E. F.; Kerrisk, K. L.

    2015-01-01

    One of the challenges to increase milk production in a large pasture-based herd with an automatic milking system (AMS) is to grow forages within a 1-km radius, as increases in walking distance increases milking interval and reduces yield. The main objective of this study was to explore sustainable forage option technologies that can supply high amount of grazeable forages for AMS herds using the Agricultural Production Systems Simulator (APSIM) model. Three different basic simulation scenarios (with irrigation) were carried out using forage crops (namely maize, soybean and sorghum) for the spring-summer period. Subsequent crops in the three scenarios were forage rape over-sown with ryegrass. Each individual simulation was run using actual climatic records for the period from 1900 to 2010. Simulated highest forage yields in maize, soybean and sorghum- (each followed by forage rape-ryegrass) based rotations were 28.2, 22.9, and 19.3 t dry matter/ha, respectively. The simulations suggested that the irrigation requirement could increase by up to 18%, 16%, and 17% respectively in those rotations in El-Niño years compared to neutral years. On the other hand, irrigation requirement could increase by up to 25%, 23%, and 32% in maize, soybean and sorghum based rotations in El-Nino years compared to La-Nina years. However, irrigation requirement could decrease by up to 8%, 7%, and 13% in maize, soybean and sorghum based rotations in La-Nina years compared to neutral years. The major implication of this study is that APSIM models have potentials in devising preferred forage options to maximise grazeable forage yield which may create the opportunity to grow more forage in small areas around the AMS which in turn will minimise walking distance and milking interval and thus increase milk production. Our analyses also suggest that simulation analysis may provide decision support during climatic uncertainty. PMID:25924963

  11. Modelling Pasture-based Automatic Milking System Herds: Grazeable Forage Options.

    PubMed

    Islam, M R; Garcia, S C; Clark, C E F; Kerrisk, K L

    2015-05-01

    One of the challenges to increase milk production in a large pasture-based herd with an automatic milking system (AMS) is to grow forages within a 1-km radius, as increases in walking distance increases milking interval and reduces yield. The main objective of this study was to explore sustainable forage option technologies that can supply high amount of grazeable forages for AMS herds using the Agricultural Production Systems Simulator (APSIM) model. Three different basic simulation scenarios (with irrigation) were carried out using forage crops (namely maize, soybean and sorghum) for the spring-summer period. Subsequent crops in the three scenarios were forage rape over-sown with ryegrass. Each individual simulation was run using actual climatic records for the period from 1900 to 2010. Simulated highest forage yields in maize, soybean and sorghum- (each followed by forage rape-ryegrass) based rotations were 28.2, 22.9, and 19.3 t dry matter/ha, respectively. The simulations suggested that the irrigation requirement could increase by up to 18%, 16%, and 17% respectively in those rotations in El-Niño years compared to neutral years. On the other hand, irrigation requirement could increase by up to 25%, 23%, and 32% in maize, soybean and sorghum based rotations in El-Nino years compared to La-Nina years. However, irrigation requirement could decrease by up to 8%, 7%, and 13% in maize, soybean and sorghum based rotations in La-Nina years compared to neutral years. The major implication of this study is that APSIM models have potentials in devising preferred forage options to maximise grazeable forage yield which may create the opportunity to grow more forage in small areas around the AMS which in turn will minimise walking distance and milking interval and thus increase milk production. Our analyses also suggest that simulation analysis may provide decision support during climatic uncertainty.

  12. Long foraging distances impose high costs on offspring production in solitary bees.

    PubMed

    Zurbuchen, Antonia; Cheesman, Stephanie; Klaiber, Jeannine; Müller, Andreas; Hein, Silke; Dorn, Silvia

    2010-05-01

    1. Solitary bees are central place foragers returning to their nests several times a day with pollen and nectar to provision their brood cells. They are especially susceptible to landscape changes that lead to an increased spatial separation of suitable nesting sites and flower rich host plant stands. While knowledge of bee foraging ranges is currently growing, quantitative data on the costs of foraging flights are very scarce, although such data are crucial to understand bee population dynamics. 2. In this study, the impact of increased foraging distance on the duration of foraging bouts and on the number of brood cells provisioned per time unit was experimentally quantified in the two pollen specialist solitary bee species Hoplitis adunca and Chelostoma rapunculi. Females nesting at different sites foraged under the same environmental conditions on a single large and movable flowering host plant patch in an otherwise host plant free landscape. 3. The number of brood cells provisioned per time unit by H. adunca was found to decrease by 23%, 31% and 26% with an increase in the foraging distance by 150, 200 and 300 m, respectively. The number of brood cells provisioned by C. rapunculi decreased by 46% and 36% with an increase in the foraging distance by 500 and 600 m, respectively. 4. Contrary to expectation, a widely scattered arrangement of host plants did not result in longer mean duration of a foraging bout in H. adunca compared to a highly aggregated arrangement, which might be due to a reduced flight directionality combined with a high rate of revisitation of already depleted flowers in the aggregated plant arrangement or by a stronger competition and disturbance by other flower visitors. 5. The results of this study clearly indicate that a close neighbourhood of suitable nesting and foraging habitats is crucial for population persistence and thus conservation of endangered solitary bee species.

  13. A predator equalizes rate of capture of a schooling prey in a patchy environment.

    PubMed

    Vijayan, Sundararaj; Kotler, Burt P; Abramsky, Zvika

    2017-05-01

    Prey individuals are often distributed heterogeneously in the environment, and their abundances and relative availabilities vary among patches. A foraging predator should maximize energetic gains by selectively choosing patches with higher prey density. However, catching behaviorally responsive and group-forming prey in patchy environments can be a challenge for predators. First, they have to identify the profitable patches, and second, they must manage the prey's sophisticated anti-predator behavior. Thus, the forager and its prey have to continuously adjust their behavior to that of their opponent. Given these conditions, the foraging predator's behavior should be dynamic with time in terms of foraging effort and prey capture rates across different patches. Theoretically, the allocation of its time among patches of behaviorally responsive prey should be such that it equalizes its prey capture rates across patches through time. We tested this prediction in a model system containing a predator (little egret) and group-forming prey (common gold fish) in two sets of experiments in which (1) patches (pools) contained equal numbers of prey, or in which (2) patches contained unequal densities of prey. The egret equalized the prey capture rate through time in both equal and different density experiments. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Prey state shapes the effects of temporal variation in predation risk

    PubMed Central

    Matassa, Catherine M.; Trussell, Geoffrey C.

    2014-01-01

    The ecological impacts of predation risk are influenced by how prey allocate foraging effort across periods of safety and danger. Foraging decisions depend on current danger, but also on the larger temporal, spatial or energetic context in which prey manage their risks of predation and starvation. Using a rocky intertidal food chain, we examined the responses of starved and fed prey (Nucella lapillus dogwhelks) to different temporal patterns of risk from predatory crabs (Carcinus maenas). Prey foraging activity declined during periods of danger, but as dangerous periods became longer, prey state altered the magnitude of risk effects on prey foraging and growth, with likely consequences for community structure (trait-mediated indirect effects on basal resources, Mytilus edulis mussels), prey fitness and trophic energy transfer. Because risk is inherently variable over time and space, our results suggest that non-consumptive predator effects may be most pronounced in productive systems where prey can build energy reserves during periods of safety and then burn these reserves as ‘trophic heat’ during extended periods of danger. Understanding the interaction between behavioural (energy gain) and physiological (energy use) responses to risk may illuminate the context dependency of trait-mediated trophic cascades and help explain variation in food chain length. PMID:25339716

  15. Effect of forage supplements on the incidence of bloat in dairy cows grazing high clover pastures.

    PubMed

    Phillips, C J; James, N L; Murray-Evans, J P

    1996-08-17

    The effect of offering forage supplements of different compositions was examined in two experiments with cows grazing high clover swards. In the first experiment strawmix supplements of high or low energy content (11 and 9 MJ metabolisable energy/kg dry matter [DM]) and high or low crude protein content (17 and 4 g/kg DM) were offered for periods of three weeks. The energy and protein contents were varied by the content of molasses and soyabean meal, respectively. The high energy, high protein supplement increased the incidence of bloat, and the low energy, high protein supplement reduced it, compared with grazing alone. Bloat was most evident in the first two weeks of each feeding period, suggesting that the cows partially adapted to the diets within three weeks. In the second experiment silage supplements reduced the incidence of bloat among cows grazing both tall and short swards. The most suitable forages to feed when there is a risk of bloat are those that are slowly fermented in the rumen but are eaten in sufficient quantity to reduce periods of rapid herbage intake.

  16. The Main Suppressing Factors of Dry Forage Intake in Large-type Goats

    PubMed Central

    Van Thang, Tran; Sunagawa, Katsunori; Nagamine, Itsuki; Kishi, Tetsuya; Ogura, Go

    2012-01-01

    In large-type goats that were fed on dry forage twice daily, dry forage intake was markedly suppressed after 40 min of feeding had elapsed. The objective of this study was to determine whether or not marked decreases in dry forage intake after 40 min of feeding are mainly caused by the two factors, that is, ruminal distension and increased plasma osmolality induced thirst produced by dry forage feeding. Six large-type male esophageal- and ruminal-fistulated goats (crossbred Japanese Saanen/Nubian, aged 2 to 6 years, weighing 85.1±4.89 kg) were used in two experiments. The animals were fed ad libitum a diet of roughly crushed alfalfa hay cubes for 2 h from 10:00 to 12:00 am during two experiments. Water was withheld during feeding in both experiments but was available for a period of 30 min after completion of the 2 h feeding period. In experiment 1, saliva lost via the esophageal fistula was replenished by an intraruminal infusion of artificial parotid saliva (RIAPS) in sham feeding conditions (SFC) control, and the treatment was maintained under normal feeding conditions (NFC). In experiment 2, a RIAPS and non-insertion of a balloon (RIAPS-NB) control was conducted in the same manner as the SFC control of experiment 1. The intraruminal infusion of hypertonic solution and insertion of a balloon (RIHS-IB) treatment was carried out simultaneously to reproduce the effects of changing salt content and ruminal distension due to feed entering the rumen. The results of experiment 1 showed that due to the effects of multiple dry forage suppressing factors when feed boluses entered the rumen, eating rates in the NFC treatment decreased (p<0.05) after 40 min of feeding and cumulative dry forage intake for the 2 h feeding period reduced to 43.8% of the SFC control (p<0.01). The results of experiment 2 indicated that due to the two suppressing factors of ruminal distension and increased plasma osmolality induced thirst, eating rates in the RIHS-IB treatment were, as observed under NFC, reduced (p<0.05) and cumulative dry forage intake for the 2 h feeding period decreased to 34.0% of the RIAPS-NB control (p<0.01). The combined effects of ruminal distension and increased plasma osmolality accounted for 77.5% of the suppression of dry forage intake 40 min after the start of dry forage feeding. The results indicate that ruminal distension and increased plasma osmolality induced thirst are the main factors in the suppression of dry forage intake in large-type goats. PMID:25049572

  17. Waggle Dance Distances as Integrative Indicators of Seasonal Foraging Challenges

    PubMed Central

    Couvillon, Margaret J.; Schürch, Roger; Ratnieks, Francis L. W.

    2014-01-01

    Even as demand for their services increases, honey bees (Apis mellifera) and other pollinating insects continue to decline in Europe and North America. Honey bees face many challenges, including an issue generally affecting wildlife: landscape changes have reduced flower-rich areas. One way to help is therefore to supplement with flowers, but when would this be most beneficial? We use the waggle dance, a unique behaviour in which a successful forager communicates to nestmates the location of visited flowers, to make a 2-year survey of food availability. We “eavesdropped” on 5097 dances to track seasonal changes in foraging, as indicated by the distance to which the bees as economic foragers will recruit, over a representative rural-urban landscape. In year 3, we determined nectar sugar concentration. We found that mean foraging distance/area significantly increase from springs (493 m, 0.8 km2) to summers (2156 m, 15.2 km2), even though nectar is not better quality, before decreasing in autumns (1275 m, 5.1 km2). As bees will not forage at long distances unnecessarily, this suggests summer is the most challenging season, with bees utilizing an area 22 and 6 times greater than spring or autumn. Our study demonstrates that dancing bees as indicators can provide information relevant to helping them, and, in particular, can show the months when additional forage would be most valuable. PMID:24695678

  18. Effects of corn straw or mixed forage diet on rumen fermentation parameters of lactating cows using a wireless data logger.

    PubMed

    Qin, Chunfu; Bu, Dengpan; Sun, Peng; Zhao, Xiaowei; Zhang, Peihua; Wang, Jiaqi

    2017-02-01

    The objective of this study was to evaluate the effect of two different forage types on rumen fermentation parameters and profiles using a wireless data logger. Eight lactating cows were randomly assigned to one of two dietary treatments with a low forage diet with corn straw (CS) or a high forage diet with mixed forage (MF) as the forage source, respectively. Dietary physically effective neutral detergent fiber (peNDF) content was 11.3% greater in CS. Dry matter intake and milk fatty acid content decreased upon CS (P < 0.05). Ruminal pH, temperature and oxidation reduction potential (ORP) were monitored for 14 weeks. The CS group had significantly higher pH but lower temperature and ORP compared to MF (P < 0.01). With the CS diet regime, pH at the time before morning feeding, rumination and post-ingestion were significantly higher than those in the MF group (P < 0.05). However, times with the ruminal pH below 6.0 and 5.8 were significantly reduced (P < 0.05), whereas ruminal pH below 5.6 tended to be lower (P = 0.07). The results indicated that rumen fermentation parameters were affected by forage types and dietary peNDF content might be predominant in ruminal pH regulation. © 2016 Japanese Society of Animal Science.

  19. Evidence for foraging -site fidelity and individual foraging behavior of pelagic cormorants rearing chicks in the gulf of Alaska

    USGS Publications Warehouse

    Kotzerka, J.; Hatch, Shyla A.; Garthe, S.

    2011-01-01

    The Pelagic Cormorant (Phalacrocorax pelagicus) is the most widespread cormorant in the North Pacific, but little is known about its foraging and diving behavior. However, knowledge of seabirds' foraging behavior is important to understanding their function in the marine environment. In 2006, using GPS dataloggers, we studied the foraging behavior of 14 male Pelagic Cormorants rearing chicks on Middleton Island, Alaska. For foraging, the birds had high fidelity to a small area 8 km north of the colony. Within that area, the cormorants' diving activity was of two distinct kinds-near-surface dives (1-6 m) and benthic dives (28-33 m). Individuals were consistent in the depths of their dives, either mostly shallow or mostly deep. Few showed no depth preference. Dive duration, time at maximum depth, and pauses at the water surface between consecutive dives were shorter for shallow dives than for deep dives. The cormorants made dives of both types throughout the day, but the frequency of deep dives increased toward evening. Maximum foraging range was 9 km; maximum total distance traveled per trip was 43.4 km. Trip durations ranged from 0.3 to 7.7 hr. Maximum depth of a dive was 42.2 m, and duration of dives ranged from 4 to 120 sec. We found that Pelagic Cormorants at Middleton Island were faithful to one particular foraging area and individuals dived in distinct patterns. Distinct, specialized foraging behavior may be advantageous in reducing intra- and interspecific competition but may also render the species vulnerable to changing environmental conditions. Copyright ?? The Cooper Ornithological Society 2011.

  20. Effects of forage species or concentrate finishing on animal performance, carcass and meat quality.

    PubMed

    Duckett, S K; Neel, J P S; Lewis, R M; Fontenot, J P; Clapham, W M

    2013-03-01

    Angus-cross steers (n = 128; initial BW = 270 ± 3.8 kg) were used in a 3-yr study to assess effects of forage species grazed before slaughter versus concentrate finishing on carcass and meat quality. At the completion of the stockering phase, steers were randomly allotted to mixed pasture (MP; n = 36/yr) or corn-silage concentrate (CON; n = 12/yr) finishing treatments. At 40 d before harvest, MP steers were randomly divided into 3 forage species treatments: alfalfa (AL), pearl millet (PM), or mixed pasture (MP). Average daily BW gain was greater (P = 0.001) for CON than for forage-finished (FOR) steers during the early and overall finishing phase. During the late finishing phase when FOR steers were grazing difference forage species, ADG was greater (P = 0.03) for PM than MP or AL. Harvest weight and HCW were greater (P < 0.001) for CON than FOR due to the differences in animal performance. Total fat percentage of the 9th to 11th rib section was 46% less(P = 0.028) for FOR than CON due to reductions (P < 0.001) in the percentage of subcutaneous fat. Warner-Bratzler shear force (WBS) values at 14 d and 28 d of aging did not differ (P > 0.78) between CON and FOR and were not altered (P > 0.40) by forage species. Trained sensory panel juiciness, initial tenderness, and overall tenderness scores did not differ (P > 0.17) by finishing treatment or forage species. Beef flavor intensity was greater (P < 0.001) for CON than FOR. Beef flavor intensity was greater (P < 0.02) for AL and PM than MP. Off-flavor intensity was greater (P < 0.001) for all forage-fed steaks, regardless of forage species, than CON. Finishing on forages reduced (P = 0.003) total lipid content by 61% for the LM compared with CON finished cattle. Forage species grazed before harvest did not alter (P > 0.05) total lipid content of the LM. Oleic acid concentration and total MUFA of the LM were 21% and 22% less (P = 0.001) for FOR than CON. Concentrations of all individual [linolenic acid, eicosapentaenoic (EPA), docosapentaenoic (DPA), and docosadexaenoic (DHA) acids] and total n-3 fatty acids were greater (P < 0.001) for FOR than CON. Finishing on AL increased (P = 0.017) the concentration of linolenic acid compared with MP or PM. The ratio of n-6 to n-3 fatty acids was greater (P = 0.001) for CON than FOR and did not differ (P = 0.88) by forage species. Concentrate finishing increases carcass weight with same time endpoints and accelerates deposition of MUFA in comparison with FOR, which reduces carcass weight and fat deposition but maintains high concentrations of n-3 and CLA fatty acids. Finishing system or forage species grazed 40 d before slaughter did not alter beef tenderness but FOR had greater off-flavors according to both trained and descriptive sensory panelists.

  1. The status of the Willow and Pacific-slope flycatchers in northwestern California and southern Oregon

    Treesearch

    C. John Ralph; K. Hollinger

    2003-01-01

    The Willow (Empidonax traillii) and Pacific-slope (E. dificilis) flycatchers are generally similar in their morphology and foraging, but differ in their habitat and population dynamics. Through a concentration of constant-effort mist-netting stations, we documented the movements and composition of populations over a relatively...

  2. Effect of introducing legumes containing condensed tannins in an orchardgrass diet on forage nutritive value and enteric methane output in continuous culture

    USDA-ARS?s Scientific Manuscript database

    Legumes containing condensed tannins (CT) have been shown to reduce enteric CH4 in ruminants; however, research is lacking on how increased CT levels affect forage nutritive value and CH4 output. A 4-unit, dual-flow continuous culture fermentor system was used to assess CH4 output of CT legumes in a...

  3. Manipulations of Start and Food Locations Affect Navigation on a Foraging Task

    ERIC Educational Resources Information Center

    Martin, Gerard M.; Pirzada, Ashar; Bridger, Alexander; Tomlin, Julian; Thorpe, Christina M.; Skinner, Darlene M.

    2011-01-01

    Rats were able to search multiple food cups in a foraging task and successfully return to a fixed, but not a variable, start location. Reducing the number of food cups to be searched resulted in an improvement in performance in the variable start condition. Performance was better when only one or two food cups had to be visited but was still…

  4. Albatrosses Following Fishing Vessels: How Badly Hooked Are They on an Easy Meal?

    PubMed Central

    Granadeiro, José P.; Phillips, Richard A.; Brickle, Paul; Catry, Paulo

    2011-01-01

    Fisheries have major impacts on seabirds, both by changing food availability and by causing direct mortality of birds during trawling and longline setting. However, little is known about the nature and the spatial-temporal extent of the interactions between individual birds and vessels. By studying a system in which we had fine-scale data on bird movements and activity, and near real-time information on vessel distribution, we provide new insights on the association of a threatened albatross with fisheries. During early chick-rearing, black-browed albatrosses Thalassarche melanophris from two different colonies (separated by only 75 km) showed significant differences in the degree of association with fisheries, despite being nearly equidistant to the Falklands fishing fleet. Most foraging trips from either colony did not bring tracked individuals close to vessels, and proportionally little time and foraging effort was spent near ships. Nevertheless, a few individuals repeatedly visited fishing vessels, which may indicate they specialise on fisheries-linked food sources and so are potentially more vulnerable to bycatch. The evidence suggests that this population has little reliance on fisheries discards at a critical stage of its nesting cycle, and hence measures to limit fisheries waste on the Patagonian shelf that also reduce vessel attractiveness and the risk of incidental mortality, would be of high overall conservation benefit. PMID:21399696

  5. Feeding-Related Traits Are Affected by Dosage of the foraging Gene in Drosophila melanogaster

    PubMed Central

    Allen, Aaron M.; Anreiter, Ina; Neville, Megan C.; Sokolowski, Marla B.

    2017-01-01

    Nutrient acquisition and energy storage are critical parts of achieving metabolic homeostasis. The foraging gene in Drosophila melanogaster has previously been implicated in multiple feeding-related and metabolic traits. Before foraging’s functions can be further dissected, we need a precise genetic null mutant to definitively map its amorphic phenotypes. We used homologous recombination to precisely delete foraging, generating the for0 null allele, and used recombineering to reintegrate a full copy of the gene, generating the {forBAC} rescue allele. We show that a total loss of foraging expression in larvae results in reduced larval path length and food intake behavior, while conversely showing an increase in triglyceride levels. Furthermore, varying foraging gene dosage demonstrates a linear dose-response on these phenotypes in relation to foraging gene expression levels. These experiments have unequivocally proven a causal, dose-dependent relationship between the foraging gene and its pleiotropic influence on these feeding-related traits. Our analysis of foraging’s transcription start sites, termination sites, and splicing patterns using rapid amplification of cDNA ends (RACE) and full-length cDNA sequencing, revealed four independent promoters, pr1–4, that produce 21 transcripts with nine distinct open reading frames (ORFs). The use of alternative promoters and alternative splicing at the foraging locus creates diversity and flexibility in the regulation of gene expression, and ultimately function. Future studies will exploit these genetic tools to precisely dissect the isoform- and tissue-specific requirements of foraging’s functions and shed light on the genetic control of feeding-related traits involved in energy homeostasis. PMID:28007892

  6. Foraging patterns of Caspian terns and double-crested cormorants in the Columbia River estuary

    USGS Publications Warehouse

    Lyons, Donald E.; Roby, D.D.; Collis, K.

    2007-01-01

    We examined spatial and temporal foraging patterns of Caspian terns and double-crested cormorants nesting in the Columbia River estuary, to potentially identify circumstances where juvenile salmonids listed under the U.S. Endangered Species Act might be more vulnerable to predation by these avian piscivores. Data were collected during the 1998 and 1999 breeding seasons, using point count surveys of foraging birds at 40 sites along the river's banks, and using aerial strip transect counts throughout the estuary for terns. In 1998, terns selected tidal flats and sites with roosting beaches nearby for foraging, making greater use of the marine/mixing zone of the estuary later in the season, particularly areas near the ocean jetties. In 1999, cormorants selected foraging sites in freshwater along the main channel with pile dikes present, particularly early in the season. Foraging trends in the other year for each species were generally similar to the above but usually not significant. During aerial surveys we observed 50% of foraging and commuting terns within 8 km of the Rice Island colony, and ??? 5% of activity occurred ??? 27 km from this colony in both years. Disproportionately greater cormorant foraging activity at pile dikes may indicate greater vulnerability of salmonids to predation at those features. Colony relocations to sites at sufficient distance from areas of relatively high salmonid abundance may be a straightforward means of reducing impacts of avian predation on salmonids than habitat alterations within the Columbia River estuary, at least for terns. ?? 2007 by the Northwest Scientific Association. All rights reserved.

  7. Caffeinated forage tricks honeybees into increasing foraging and recruitment behaviors.

    PubMed

    Couvillon, Margaret J; Al Toufailia, Hasan; Butterfield, Thomas M; Schrell, Felix; Ratnieks, Francis L W; Schürch, Roger

    2015-11-02

    In pollination, plants provide food reward to pollinators who in turn enhance plant reproduction by transferring pollen, making the relationship largely cooperative; however, because the interests of plants and pollinators do not always align, there exists the potential for conflict, where it may benefit both to cheat the other [1, 2]. Plants may even resort to chemistry: caffeine, a naturally occurring, bitter-tasting, pharmacologically active secondary compound whose main purpose is to detract herbivores, is also found in lower concentrations in the nectar of some plants, even though nectar, unlike leaves, is made to be consumed by pollinators. [corrected]. A recent laboratory study showed that caffeine may lead to efficient and effective foraging by aiding honeybee memory of a learned olfactory association [4], suggesting that caffeine may enhance bee reward perception. However, without field data, the wider ecological significance of caffeinated nectar remains difficult to interpret. Here we demonstrate in the field that caffeine generates significant individual- and colony-level effects in free-flying worker honeybees. Compared to a control, a sucrose solution with field-realistic doses of caffeine caused honeybees to significantly increase their foraging frequency, waggle dancing probability and frequency, and persistency and specificity to the forage location, resulting in a quadrupling of colony-level recruitment. An agent-based model also demonstrates how caffeine-enhanced foraging may reduce honey storage. Overall, caffeine causes bees to overestimate forage quality, tempting the colony into sub-optimal foraging strategies, which makes the relationship between pollinator and plant less mutualistic and more exploitative. VIDEO ABSTRACT. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. The Role of Natural Enemy Foraging Guilds in Controlling Cereal Aphids in Michigan Wheat

    PubMed Central

    Safarzoda, Shahlo; Bahlai, Christine A.; Fox, Aaron F.; Landis, Douglas A.

    2014-01-01

    Insect natural enemies (predators and parasitoids) provide important ecosystem services by suppressing populations of insect pests in many agricultural crops. However, the role of natural enemies against cereal aphids in Michigan winter wheat (Triticum aestivum L.) is largely unknown. The objectives of this research were to characterize the natural enemy community in wheat fields and evaluate the role of different natural enemy foraging guilds (foliar-foraging versus ground-dwelling predators) in regulating cereal aphid population growth. We investigated these objectives during the spring and summer of 2012 and 2013 in four winter wheat fields on the Michigan State University campus farm in East Lansing, Michigan. We monitored and measured the impact of natural enemies by experimentally excluding or allowing their access to wheat plants infested with Rhopalosiphum padi (L.) and Sitobion avenae (F.) (Hemiptera: Aphidae). Our results indicate that the natural enemy community in the wheat fields consisted mostly of foliar-foraging and ground-dwelling predators with relatively few parasitoids. In combination, these natural enemy groups were very effective at reducing cereal aphid populations. We also investigated the role of each natural enemy foraging guild (foliar-foraging versus ground-dwelling predators) independently. Overall, our results suggest that, in combination, natural enemies can almost completely halt early-season aphid population increase. Independently, ground-dwelling predators were more effective at suppressing cereal aphid populations than foliar-foraging predators under the conditions we studied. Our results differ from studies in Europe and the US Great Plains where foliar foraging predators and parasitoids are frequently more important cereal aphid natural enemies. PMID:25473951

  9. Marination with natural curing ingredients, storage time, and serving temperature effects on the sensory characteristics of forage-finished or commercially-sourced beef roasts.

    PubMed

    McMurtrie, K E; Kerth, C R; Bratcher, C L; Curtis, P A; Smith, B

    2012-03-01

    Beef inside round roasts (n=144) were cut from rounds obtained from both forage-finished cattle (n=72) and commercially-sourced beef (n=72). Roasts were portioned to weigh 0.45-0.68kg each. Each roast was then randomly assigned one of the following treatments: control, injected-no cure, or injected-cured. Additionally, roasts were assigned a serving temperature (hot or cold) and storage treatments (0d or 28d post cooking). Roasts from forage-fed beef had a more red interior color and higher shear values, and also retained more brine than commercially-sourced beef (P<0.05). Curing roasts improved TBARS values in roasts served hot and significantly reduced sensory warmed-over and grassy flavors (P<0.05). Marinating forage-finished beef roasts significantly improves tenderness and flavor characteristics. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Recruitment-dance signals draw larger audiences when honey bee colonies have multiple patrilines

    PubMed Central

    Mattila, H. R.; Seeley, T. D.

    2010-01-01

    Honey bee queens (Apis mellifera) who mate with multiple males produce colonies that are filled with numerous genetically distinct patrilines of workers. A genetically diverse colony benefits from an enhanced foraging effort, fuelled in part by an increase in the number of recruitment signals that are produced by foragers. However, the influence of patriline diversity on the attention paid to these signals by audiences of potentially receptive workers remains unexplored. To determine whether recruitment dances performed by foragers in multiple-patriline colonies attract a greater number of dance followers than dances in colonies that lack patriline diversity, we trained workers from multiple- and single-patriline colonies to forage in a greenhouse and monitored their dance-following activity back in the hives. On average, more workers followed a dance if it was performed in a multiple-patriline colony rather than a single-patriline colony (33% increase), and for a greater number of dance circuits per follower. Furthermore, dance-following workers in multiple-patriline colonies were more likely to exit their hive after following a dance, although this did not translate to a difference in colony-level exit rates between treatment types. Recruiting nest mates to profitable food sources through dance communication is critical to a colony’s foraging success and long-term fitness; polyandrous queens produce colonies that benefit not only from increased recruitment signalling, but also from the generation of larger and more attentive audiences of signal receivers. This study highlights the importance of integrating responses of both signal senders and receivers to understand more fully the success of animal-communication systems. PMID:21350596

  11. Recruitment-dance signals draw larger audiences when honey bee colonies have multiple patrilines.

    PubMed

    Girard, M B; Mattila, H R; Seeley, T D

    2011-02-01

    Honey bee queens (Apis mellifera) who mate with multiple males produce colonies that are filled with numerous genetically distinct patrilines of workers. A genetically diverse colony benefits from an enhanced foraging effort, fuelled in part by an increase in the number of recruitment signals that are produced by foragers. However, the influence of patriline diversity on the attention paid to these signals by audiences of potentially receptive workers remains unexplored. To determine whether recruitment dances performed by foragers in multiple-patriline colonies attract a greater number of dance followers than dances in colonies that lack patriline diversity, we trained workers from multiple- and single-patriline colonies to forage in a greenhouse and monitored their dance-following activity back in the hives. On average, more workers followed a dance if it was performed in a multiple-patriline colony rather than a single-patriline colony (33% increase), and for a greater number of dance circuits per follower. Furthermore, dance-following workers in multiple-patriline colonies were more likely to exit their hive after following a dance, although this did not translate to a difference in colony-level exit rates between treatment types. Recruiting nest mates to profitable food sources through dance communication is critical to a colony's foraging success and long-term fitness; polyandrous queens produce colonies that benefit not only from increased recruitment signalling, but also from the generation of larger and more attentive audiences of signal receivers. This study highlights the importance of integrating responses of both signal senders and receivers to understand more fully the success of animal-communication systems.

  12. Linking extreme interannual changes in prey availability to foraging behaviour and breeding investment in a marine predator, the macaroni penguin.

    PubMed

    Horswill, Cat; Trathan, Philip N; Ratcliffe, Norman

    2017-01-01

    Understanding the mechanisms that link prey availability to predator behaviour and population change is central to projecting how a species may respond to future environmental pressures. We documented the behavioural responses and breeding investment of macaroni penguins Eudyptes chrysolophus across five breeding seasons where local prey density changed by five-fold; from very low to highly abundant. When prey availability was low, foraging trips were significantly longer and extended overnight. Birds also foraged farther from the colony, potentially in order to reach more distant foraging grounds and allow for increased search times. These extended foraging trips were also linked to a marked decrease in fledgling weights, most likely associated with reduced rates of provisioning. Furthermore, by comparing our results with previous work on this population, it appears that lowered first-year survival rates associated, at least partially, with fledging masses were also evident for this cohort. This study integrates a unique set of prey density, predator behaviour and predator breeding investment data to highlight a possible behavioural mechanism linking perturbations in prey availability to population demography.

  13. Individual Foraging Strategies Reveal Niche Overlap between Endangered Galapagos Pinnipeds

    PubMed Central

    Villegas-Amtmann, Stella; Jeglinski, Jana W. E.; Costa, Daniel P.; Robinson, Patrick W.; Trillmich, Fritz

    2013-01-01

    Most competition studies between species are conducted from a population-level approach. Few studies have examined inter-specific competition in conjunction with intra-specific competition, with an individual-based approach. To our knowledge, none has been conducted on marine top predators. Sympatric Galapagos fur seals (Arctocephalus galapagoensis) and sea lions (Zalophus wollebaeki) share similar geographic habitats and potentially compete. We studied their foraging niche overlap at Cabo Douglas, Fernandina Island from simultaneously collected dive and movement data to examine spatial and temporal inter- and intra-specific competition. Sea lions exhibited 3 foraging strategies (shallow, intermediate and deep) indicating intra-specific competition. Fur seals exhibited one foraging strategy, diving predominantly at night, between 0–80 m depth and mostly at 19–22 h. Most sea lion dives also occurred at night (63%), between 0–40 m, within fur seals' diving depth range. 34% of sea lions night dives occurred at 19–22 h, when fur seals dived the most, but most of them occurred at dawn and dusk, when fur seals exhibited the least amount of dives. Fur seals and sea lions foraging behavior overlapped at 19 and 21 h between 0–30 m depths. Sea lions from the deep diving strategy exhibited the greatest foraging overlap with fur seals, in time (19 h), depth during overlapping time (21–24 m), and foraging range (37.7%). Fur seals foraging range was larger. Cabo Douglas northwest coastal area, region of highest diving density, is a foraging “hot spot” for both species. Fur seals and sea lions foraging niche overlap occurred, but segregation also occurred; fur seals primarily dived at night, while sea lions exhibited night and day diving. Both species exploited depths and areas exclusive to their species. Niche breadth generally increases with environmental uncertainty and decreased productivity. Potential competition between these species could be greater during warmer periods when prey availability is reduced. PMID:23967096

  14. Distribution Patterns Predict Individual Specialization in the Diet of Dolphin Gulls

    PubMed Central

    Masello, Juan F.; Wikelski, Martin; Voigt, Christian C.; Quillfeldt, Petra

    2013-01-01

    Many animals show some degree of individual specialization in foraging strategies and diet. This has profound ecological and evolutionary implications. For example, populations containing diverse individual foraging strategies will respond in different ways to changes in the environment, thus affecting the capacity of the populations to adapt to environmental changes and to diversify. However, patterns of individual specialization have been examined in few species. Likewise it is usually unknown whether specialization is maintained over time, because examining the temporal scale at which specialization occurs can prove difficult in the field. In the present study, we analyzed individual specialization in foraging in Dolphin Gulls Leucophaeus scoresbii, a scavenger endemic to the southernmost coasts of South America. We used GPS position logging and stable isotope analyses (SIA) to investigate individual specialization in feeding strategies and their persistence over time. The analysis of GPS data indicated two major foraging strategies in Dolphin Gulls from New I. (Falkland Is./Islas Malvinas). Tagged individuals repeatedly attended either a site with mussel beds or seabird and seal colonies during 5 to 7 days of tracking. Females foraging at mussel beds were heavier than those foraging at seabird colonies. Nitrogen isotope ratios (δ15N) of Dolphin Gull blood cells clustered in two groups, showing that individuals were consistent in their preferred foraging strategies over a period of at least several weeks. The results of the SIA as well as the foraging patterns recorded revealed a high degree of specialization for particular feeding sites and diets by individual Dolphin Gulls. Individual differences in foraging behavior were not related to sex. Specialization in Dolphin Gulls may be favored by the advantages of learning and memorizing optimal feeding locations and behaviors. Specialized individuals may reduce search and handling time and thus, optimize their energy gain and/or minimize time spent foraging. PMID:23844073

  15. Neural encoding of competitive effort in the anterior cingulate cortex.

    PubMed

    Hillman, Kristin L; Bilkey, David K

    2012-09-01

    In social environments, animals often compete to obtain limited resources. Strategically electing to work against another animal represents a cost-benefit decision. Is the resource worth an investment of competitive effort? The anterior cingulate cortex (ACC) has been implicated in cost-benefit decision-making, but its role in competitive effort has not been examined. We recorded ACC neurons in freely moving rats as they performed a competitive foraging choice task. When at least one of the two choice options demanded competitive effort, the majority of ACC neurons exhibited heightened and differential firing between the goal trajectories. Inter- and intrasession manipulations revealed that differential firing was not attributable to effort or reward in isolation; instead ACC encoding patterns appeared to indicate net utility assessments of available choice options. Our findings suggest that the ACC is important for encoding competitive effort, a cost-benefit domain that has received little neural-level investigation despite its predominance in nature.

  16. Interspecific signalling between mutualists: food-thieving drongos use a cooperative sentinel call to manipulate foraging partners

    PubMed Central

    Baigrie, Bruce D.; Thompson, Alex M.; Flower, Tom P.

    2014-01-01

    Interspecific communication is common in nature, particularly between mutualists. However, whether signals evolved for communication with other species, or are in fact conspecific signals eavesdropped upon by partners, is often unclear. Fork-tailed drongos (Dicrurus adsimilis) associate with mixed-species groups and often produce true alarms at predators, whereupon associating species flee to cover, but also false alarms to steal associating species' food (kleptoparasitism). Despite such deception, associating species respond to drongo non-alarm calls by increasing their foraging and decreasing vigilance. Yet, whether these calls represent interspecific sentinel signals remains unknown. We show that drongos produced a specific sentinel call when foraging with a common associate, the sociable weaver (Philetairus socius), but not when alone. Weavers increased their foraging and decreased vigilance when naturally associating with drongos, and in response to sentinel call playback. Further, drongos sentinel-called more often when weavers were moving, and weavers approached sentinel calls, suggesting a recruitment function. Finally, drongos sentinel-called when weavers fled following false alarms, thereby reducing disruption to weaver foraging time. Results therefore provide evidence of an ‘all clear’ signal that mitigates the cost of inaccurate communication. Our results suggest that drongos enhance exploitation of a foraging mutualist through coevolution of interspecific sentinel signals. PMID:25080343

  17. Linking root traits to nutrient foraging in arbuscular mycorrhizal trees in a temperate forest.

    PubMed

    Eissenstat, David M; Kucharski, Joshua M; Zadworny, Marcin; Adams, Thomas S; Koide, Roger T

    2015-10-01

    The identification of plant functional traits that can be linked to ecosystem processes is of wide interest, especially for predicting vegetational responses to climate change. Root diameter of the finest absorptive roots may be one plant trait that has wide significance. Do species with relatively thick absorptive roots forage in nutrient-rich patches differently from species with relatively fine absorptive roots? We measured traits related to nutrient foraging (root morphology and architecture, root proliferation, and mycorrhizal colonization) across six coexisting arbuscular mycorrhizal (AM) temperate tree species with and without nutrient addition. Root traits such as root diameter and specific root length were highly correlated with root branching intensity, with thin-root species having higher branching intensity than thick-root species. In both fertilized and unfertilized soil, species with thin absorptive roots and high branching intensity showed much greater root length and mass proliferation but lower mycorrhizal colonization than species with thick absorptive roots. Across all species, fertilization led to increased root proliferation and reduced mycorrhizal colonization. These results suggest that thin-root species forage more by root proliferation, whereas thick-root species forage more by mycorrhizal fungi. In mineral nutrient-rich patches, AM trees seem to forage more by proliferating roots than by mycorrhizal fungi. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  18. Shy herbivores forage more efficiently than bold ones regardless of information-processing overload.

    PubMed

    Tan, Ming Kai; Chang, Chia-Chen; Tan, Hugh T W

    2018-04-01

    The neural constraint hypothesis is central to understanding decision-making by foraging herbivorous insects which make decisions less efficiently when they face multiple choices for numerous resource types and/or at high densities instead of a fewer choices. Previous studies have also shown the relationship between personality type and decision-making style. How personality types correlate with foraging efficiency among herbivores is however, largely untested. To answer this question, we used a widespread, polyphagous, floriphilic katydid, Phaneroptera brevis (Orthoptera: Tettigoniidae) and two naturalised, Asteraceae, food plants, Bidens pilosa and Sphagneticola trilobata, as model systems. After we determined each katydid's exploration and boldness levels, we examined its foraging efficiency across different combinations of floral resource choice and density. We showed: (1) For the first time within the Tettigonioidea lineage that this katydid exhibits different personality types in exploration and boldness. (2) Contrary to our prediction, we did not find any support for the neural constraint hypothesis because more floral resource choice at a high density did not reduce foraging efficiency. (3) Surprisingly, bold katydids tend to be less efficient foragers than shy ones. Our findings have enhanced understanding of herbivore behavioural ecology and knowledge to better deal with potential pest herbivores. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. A NEW NITROGEN INDEX: An Adaptive Management Tool for Reducing Nitrogen Losses to the Environment from Mexican Forage Production Systems

    USDA-ARS?s Scientific Manuscript database

    Mexico has about 2 million ha planted in forage, which is used to feed 2.2 million dairy cows. It is estimated that up to 70% of the ingested nitrogen (N) is cycled back into the system via manure and urea depositions. This contributes to an undesirably high ratio of manure N to land available to us...

  20. Relationship of coarse woody debris to arthropod availability for red-cockaded woodpeckers and other bark-foraging birds on loblolly pine boles

    Treesearch

    Scott Horn; James L. Hanula

    2008-01-01

    This study determined if short-term removal of coarse woody debris would reduce prey available to red-cockaded woodpeckers (Picoides borealis Vieillot) and other bark-foraging 1 birds at the Savannah River Site in Aiken and Barnwell counties, SC. All coarse woody debris was removed from four 9-ha plots of mature loblolly pine (Pinus taeda...

  1. Improved forage digestibility of tall fescue (Festuca arundinacea) by transgenic down-regulation of cinnamyl alcohol dehydrogenase.

    PubMed

    Chen, Lei; Auh, Chung-Kyoon; Dowling, Paul; Bell, Jeremey; Chen, Fang; Hopkins, Andrew; Dixon, Richard A; Wang, Zeng-Yu

    2003-11-01

    Lignification of cell walls during plant development has been identified as the major factor limiting forage digestibility and concomitantly animal productivity. cDNA sequences encoding a key lignin biosynthetic enzyme, cinnamyl alcohol dehydrogenase (CAD), were cloned from the widely grown monocotyledonous forage species tall fescue (Festuca arundinacea Schreb.). Recombinant tall fescue CAD expressed in E. coli exhibited the highest V(max)/K(m) values when coniferaldehyde and sinapaldehyde were used as substrates. Transgenic tall fescue plants carrying either sense or antisense CAD gene constructs were obtained by microprojectile bombardment of single genotype-derived embryogenic suspension cells. Severely reduced levels of mRNA transcripts and significantly reduced CAD enzymatic activities were found in two transgenic plants carrying sense and antisense CAD transgenes, respectively. These CAD down-regulated transgenic lines had significantly decreased lignin content and altered ratios of syringyl (S) to guaiacyl (G), G to p-hydroxyphenyl (H) and S to H units. No significant changes in cellulose, hemicellulose, neutral sugar composition, p-coumaric acid and ferulic acid levels were observed in the transgenic plants. Increases of in vitro dry matter digestibility of 7.2-9.5% were achieved in the CAD down-regulated lines, thus providing a novel germplasm to be used for the development of grass cultivars with improved forage quality.

  2. Forage polyphenol oxidase and ruminant livestock nutrition

    PubMed Central

    Lee, Michael R. F.

    2014-01-01

    Polyphenol oxidase (PPO) is predominately associated with the detrimental effect of browning fruit and vegetables, however, interest within PPO containing forage crops (crops to be fed to animals) has grown since the browning reaction was associated with reduced nitrogen (N) losses in silo and the rumen. The reduction in protein breakdown in silo of red clover (high PPO forage) increased the quality of protein, improving N-use efficiency [feed N into product N (e.g., Milk): NUE] when fed to ruminants. A further benefit of red clover silage feeding is a significant reduction in lipolysis (cleaving of glycerol-based lipid) in silo and an increase in the deposition of beneficial C18 polyunsaturated fatty acid (PUFA) in animal products, which has also been linked to PPO activity. PPOs protection of plant protein and glycerol based-PUFA in silo is related to the deactivation of plant proteases and lipases. This deactivation occurs through PPO catalyzing the conversion of diphenols to quinones which bind with cellular nucleophiles such as protein reforming a protein-bound phenol (PBP). If the protein is an enzyme (e.g., protease or lipase) the complexing denatures the enzyme. However, PPO is inactive in the anaerobic rumen and therefore any subsequent protection of plant protein and glycerol based-PUFA in the rumen must be as a result of events that occurred to the forage pre-ingestion. Reduced activity of plant proteases and lipases would have little effect on NUE and glycerol based-PUFA in the rumen due to the greater concentration of rumen microbial proteases and lipases. The mechanism for PPOs protection of plant protein in the rumen is a consequence of complexing plant protein, rather than protease deactivation per se. These complexed proteins reduce protein digestibility in the rumen and subsequently increase undegraded dietary protein flow to the small intestine. The mechanism for protecting glycerol-based PUFA has yet to be fully elucidated but may be associated with entrapment within PBP reducing access to microbial lipases or differences in rumen digestion kinetics of the forage and therefore not related to PPO activity. PMID:25538724

  3. Can reducing tillage and increasing crop diversity benefit grain and forage production?

    USDA-ARS?s Scientific Manuscript database

    Benefits of reduced tillage and diverse rotation cropping systems include reversing soil C loss, mitigating greenhouse gas production, and improving soil health. However, adoption of these strategies is lagging, particularly in the upper Midwest, due to a perception that reduced tillage reduces cro...

  4. Influence of finishing systems on hydrophilic and lipophilic oxygen radical absorbance capacity (ORAC) in beef.

    PubMed

    Wu, C; Duckett, S K; Neel, J P S; Fontenot, J P; Clapham, W M

    2008-11-01

    The aim of this research was to: (1) develop a reliable extraction procedure and assay to determine antioxidant activity in meat products, and (2) assess the effect of beef finishing system (forage-finished: alfalfa, pearl millet or mixed pastures vs. concentrate-finished) on longissimus muscle antioxidant activity. The effect of extraction method (ethanol concentration and extraction time), protein removal, and sample preparation method (pulverization or freeze drying) were first evaluated to develop an antioxidant assay for meat products. Beef extracts prepared with low ethanol concentrations (20%) demonstrated higher hydrophilic ORAC. Protein removal prior to extraction reduced hydrophilic ORAC values. Sample preparation method influenced both hydrophilic and lipophilic ORAC, with pulverized samples containing higher hydrophilic and lipophilic ORAC values. Beef cattle finishing system (Forage: alfalfa, pearl millet, or natural pasture vs. concentrates) had little impact on muscle hydrophilic ORAC, but muscle from forage finished beef contained greater lipophilic ORAC. In addition, broiling of steaks reduced hydrophilic ORAC.

  5. Global seabird responses to forage fish depletion - One-third for the birds

    USGS Publications Warehouse

    Cury, Philippe M.; Boyd, Ian L.; Bonhommeau, Sylvain; Anker-Nilssen, Tycho; Crawford, Robert J.M.; Furness, Robert W.; Mills, James A.; Murphy, Eugene J.; Österblom, Henrik; Paleczny, Michelle; Piatt, John F.; Roux, Jean-Paul; Shannon, Lynne; Sydeman, William J.

    2011-01-01

    Determining the form of key predator-prey relationships is critical for understanding marine ecosystem dynamics. Using a comprehensive global database, we quantified the effect of fluctuations in food abundance on seabird breeding success. We identified a threshold in prey (fish and krill, termed “forage fish”) abundance below which seabirds experience consistently reduced and more variable productivity. This response was common to all seven ecosystems and 14 bird species examined within the Atlantic, Pacific, and Southern Oceans. The threshold approximated one-third of the maximum prey biomass observed in long-term studies. This provides an indicator of the minimal forage fish biomass needed to sustain seabird productivity over the long term.

  6. Global seabird response to forage fish depletion--one-third for the birds.

    PubMed

    Cury, Philippe M; Boyd, Ian L; Bonhommeau, Sylvain; Anker-Nilssen, Tycho; Crawford, Robert J M; Furness, Robert W; Mills, James A; Murphy, Eugene J; Osterblom, Henrik; Paleczny, Michelle; Piatt, John F; Roux, Jean-Paul; Shannon, Lynne; Sydeman, William J

    2011-12-23

    Determining the form of key predator-prey relationships is critical for understanding marine ecosystem dynamics. Using a comprehensive global database, we quantified the effect of fluctuations in food abundance on seabird breeding success. We identified a threshold in prey (fish and krill, termed "forage fish") abundance below which seabirds experience consistently reduced and more variable productivity. This response was common to all seven ecosystems and 14 bird species examined within the Atlantic, Pacific, and Southern Oceans. The threshold approximated one-third of the maximum prey biomass observed in long-term studies. This provides an indicator of the minimal forage fish biomass needed to sustain seabird productivity over the long term.

  7. The implications of condensed tannins on the nutritive value of temperate forages fed to ruminants.

    PubMed

    Barry, T N; McNabb, W C

    1999-04-01

    New methodology for measuring forage condensed tannin (CT) content is described and the effects of CT upon forage feeding and nutritive value for ruminant animals are reviewed. CT react with forage proteins in a pH-reversible manner, with reactivity determined by the concentration, structure and molecular mass of the CT. Increasing concentrations of CT in Lotus corniculatus and Lotus pedunculatus reduce the rates of solubilization and degradation of fraction 1 leaf protein in the rumen and increase duodenal non-NH3 N flow. Action of medium concentrations of total CT in Lotus corniculatus (30-40 g/kg DM) increased the absorption of essential amino acids from the small intestine and increased wool growth, milk secretion and reproductive rate in grazing sheep without affecting voluntary feed intake, thus improving the efficiency of food conversion. High concentrations of CT in Lotus pedunculatus (75-100 g/kg DM) depressed voluntary feed intake and rumen carbohydrate digestion and depressed rates of body and wool growth in grazing sheep. The minimum concentration of CT to prevent rumen frothy bloat in cattle is defined as 5 g/kg DM and sheep grazing CT-containing legumes were shown to better tolerate internal parasite infections than sheep grazing non CT-containing forages. It was concluded that defined concentrations of forage CT can be used to increase the efficiencies of protein digestion and animal productivity in forage-fed ruminants and to develop more ecologically sustainable systems of controlling some diseases under grazing.

  8. Environmental Fate and the Effects of Herbicides in Forest, Chaparral, and Range Ecosystems of the Southwest

    Treesearch

    J.L. Michael; D.G. Neary

    1995-01-01

    Biological methods, fire, herbicides, and mechanical methods have all been studied in an effort to determine appropriate ways of manipulating arid land vegetation for improvement of wildlife habitat, streamflow and water yield, increasing forage for livestock, and enhancing recreational benefits and scenic diversity. Because water is ultimately essential for all of...

  9. Particle length of silages affects apparent ruminal synthesis of B vitamins in lactating dairy cows.

    PubMed

    Castagnino, D S; Kammes, K L; Allen, M S; Gervais, R; Chouinard, P Y; Girard, C L

    2016-08-01

    Effects of particle length of silages on apparent ruminal synthesis (ARS) and postruminal supply of B vitamins were evaluated in 2 feeding trials. Diets containing alfalfa (trial 1) or orchardgrass (trial 2) silages, chopped to either 19mm (long cut, LC) or 10mm (short cut, SC) theoretical particle length, as the sole forage were offered to ruminally and duodenally cannulated lactating Holstein cows in crossover design experiments. Forages chopped to a theoretical particle length of 19 and 10mm had mean particles sizes of 14.1 and 8.1mm, respectively, in trial 1, and 15.3 and 11.3mm, respectively, in trial 2. Trial 1 was conducted with 13 multiparous cows in two 19-d treatment periods; both diets contained approximately 20% forage neutral detergent fiber (NDF), 25% total NDF, and forage-to-concentrate ratios were approximately 47:53. Trial 2 was conducted with 15 cows in two 18-d treatment periods; both diets contained approximately 23% forage NDF, 28% total NDF, and had a forage-to-concentrate ratio of 50:50. Thiamine, riboflavin, niacin, vitamin B6, folates, and vitamin B12 were measured in feed and duodenal content. Daily ARS was calculated as the duodenal flow minus the intake. In trial 1, daily intake of individual B vitamins was increased with the LC diet, but ARS of thiamine, riboflavin, vitamin B6, and folates was reduced. In trial 2, except for folates, intakes of the other B vitamins were decreased with the LC diets, whereas ARS of riboflavin, niacin, and vitamin B6 was increased. Daily ARS of thiamine, riboflavin, niacin, and vitamin B6 were correlated negatively with their intake, suggesting that ruminal bacteria reduced their synthesis when dietary supply increased. Microbial activity could have also reduced degradation of thiamine, riboflavin, and niacin, which is supported by (1) the negative correlation between ARS of these vitamins and ruminal pH or microbial N duodenal flow; and (2) the positive correlation between ARS and ruminal concentrations of volatile fatty acids. Folate ARS followed the opposite correlation pattern. Nevertheless, in spite of differences in intake and ARS, with both forages, decreasing particle length of silages had limited effects on the amounts of B vitamins reaching the sites of absorption in the small intestine of dairy cows. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Use of non-natal estuaries by migratory striped bass (Morone saxatilis) in summer

    USGS Publications Warehouse

    Mather, M. E.; Finn, John T.; Ferry, K.H.; Deegan, Linda A.; Nelson, G.A.

    2009-01-01

    For most migratory fish, little is known about the location and size of foraging areas or how long individuals remain in foraging areas, even though these attributes may affect their growth, survival, and impact on local prey. We tested whether striped bass (Morone saxatilis Walbaum), found in Massachusetts in summer, were migratory, how long they stayed in non-natal estuaries, whether observed spatial patterns differed from random model predictions, whether fish returned to the same area across multiple years, and whether fishing effort could explain recapture patterns. Anchor tags were attached to striped bass that were caught and released in Massachusetts in 1999 and 2000, and recaptured between 1999 and 2007. In fall, tagged striped bass were caught south of where they were released in summer, confirming that fish were coastal migrants. In the first summer, 77% and 100% of the recaptured fish in the Great Marsh and along the Massachusetts coast, respectively, were caught in the same place where they were released. About two thirds of all fish recaptured near where they were released were caught 2-7 years after tagging. Our study shows that smaller (400-500 mm total length) striped bass migrate hundreds of kilometers along the Atlantic Ocean coast, cease their mobile lifestyle in summer when they use a relatively localized area for foraging (<20 km2), and return to these same foraging areas in subsequent years.

  11. Reproductive constraints influence habitat accessibility, segregation, and preference of sympatric albatross species.

    PubMed

    Kappes, Michelle A; Shaffer, Scott A; Tremblay, Yann; Foley, David G; Palacios, Daniel M; Bograd, Steven J; Costa, Daniel P

    2015-01-01

    The spatiotemporal distribution of animals is dependent on a suite of factors, including the distribution of resources, interactions within and between species, physiological limitations, and requirements for reproduction, dispersal, or migration. During breeding, reproductive constraints play a major role in the distribution and behavior of central place foragers, such as pelagic seabirds. We examined the foraging behavior and marine habitat selection of Laysan (Phoebastria immutabilis) and black-footed (P. nigripes) albatrosses throughout their eight month breeding cycle at Tern Island, Northwest Hawaiian Islands to evaluate how variable constraints of breeding influenced habitat availability and foraging decisions. We used satellite tracking and light-based geolocation to determine foraging locations of individuals, and applied a biologically realistic null usage model to generate control locations and model habitat preference under a case-control design. Remotely sensed oceanographic data were used to characterize albatross habitats in the North Pacific. Individuals of both species ranged significantly farther and for longer durations during incubation and chick-rearing compared to the brooding period. Interspecific segregation of core foraging areas was observed during incubation and chick-rearing, but not during brooding. At-sea activity patterns were most similar between species during brooding; neither species altered foraging effort to compensate for presumed low prey availability and high energy demands during this stage. Habitat selection during long-ranging movements was most strongly associated with sea surface temperature for both species, with a preference for cooler ocean temperatures compared to overall availability. During brooding, lower explanatory power of habitat models was likely related to the narrow range of ocean temperatures available for selection. Laysan and black-footed albatrosses differ from other albatross species in that they breed in an oligotrophic marine environment. During incubation and chick-rearing, they travel to cooler, more productive waters, but are restricted to the low-productivity environment near the colony during brooding, when energy requirements are greatest. Compared to other albatross species, Laysan and black-footed albatrosses spend a greater proportion of time in flight when foraging, especially during the brooding period; this strategy may be adaptive for locating dispersed prey in an oligotrophic environment.

  12. The structure of western warbler assemblages: Analysis of foraging behavior and habitat selection in Oregon

    USGS Publications Warehouse

    Morrison, Michael L.

    1981-01-01

    This study examines the foraging behavior and habitat selection of a MacGillivray's (Oporornis tolmiei)-Orange-crowned (Vermivora celata)-Wilson's (Wilsonia pusilla) warbler assemblage that occurred on early-growth clearcuts in western Oregon during breeding. Sites were divided into two groups based on the presence or absence of deciduous trees. Density estimates for each species were nearly identical between site classes except for Wilson's, whose density declined on nondeciduous tree sites. Analysis of vegetation parameters within the territories of the species identified deciduous tree cover as the variable of primary importance in the separation of warblers on each site, so that the assemblage could be arranged on a continuum of increasing deciduous tree cover. MacGillivray's and Wilson's extensively used shrub cover and deciduous tree cover, respectively; Orange-crowns were associated with both vegetation types. When the deciduous tree cover was reduced, Orange-crowns concentrated foraging activities in shrub cover and maintained nondisturbance densities. Indices of foraging-height diversity showed a marked decrease after the removal of deciduous trees. All species except MacGillivray's foraged lower in the vegatative substrate on the nondeciduous tree sites; MacGillivray's concentrated foraging activities in the low shrub cover on both sites. Indices of foraging overlap revealed a general pattern of decreased segregation by habitat after removal of deciduous trees. I suggest that the basic patterns of foraging behavior and habitat selection evidenced today in western North America were initially developed by ancestral warblers before their invasion of the west. Species successfully colonizing western habitats were probably preadapted to the conditions they encountered, with new habitats occupied without obvious evolutionary modifications.

  13. Differential adult survival at close seabird colonies: The importance of spatial foraging segregation and bycatch risk during the breeding season.

    PubMed

    Genovart, Meritxell; Bécares, Juan; Igual, José-Manuel; Martínez-Abraín, Alejandro; Escandell, Raul; Sánchez, Antonio; Rodríguez, Beneharo; Arcos, José M; Oro, Daniel

    2018-03-01

    Marine megafauna, including seabirds, are critically affected by fisheries bycatch. However, bycatch risk may differ on temporal and spatial scales due to the uneven distribution and effort of fleets operating different fishing gear, and to focal species distribution and foraging behavior. Scopoli's shearwater Calonectris diomedea is a long-lived seabird that experiences high bycatch rates in longline fisheries and strong population-level impacts due to this type of anthropogenic mortality. Analyzing a long-term dataset on individual monitoring, we compared adult survival (by means of multi-event capture-recapture models) among three close predator-free Mediterranean colonies of the species. Unexpectedly for a long-lived organism, adult survival varied among colonies. We explored potential causes of this differential survival by (1) measuring egg volume as a proxy of food availability and parental condition; (2) building a specific longline bycatch risk map for the species; and (3) assessing the distribution patterns of breeding birds from the three study colonies via GPS tracking. Egg volume was very similar between colonies over time, suggesting that environmental variability related to habitat foraging suitability was not the main cause of differential survival. On the other hand, differences in foraging movements among individuals from the three colonies expose them to differential mortality risk, which likely influenced the observed differences in adult survival. The overlap of information obtained by the generation of specific bycatch risk maps, the quantification of population demographic parameters, and the foraging spatial analysis should inform managers about differential sensitivity to the anthropogenic impact at mesoscale level and guide decisions depending on the spatial configuration of local populations. The approach would apply and should be considered in any species where foraging distribution is colony-specific and mortality risk varies spatially. © 2017 John Wiley & Sons Ltd.

  14. Multinational tagging efforts illustrate regional scale of distribution and threats for east pacific green turtles (Chelonia mydas agassizii).

    PubMed

    Hart, Catherine E; Blanco, Gabriela S; Coyne, Michael S; Delgado-Trejo, Carlos; Godley, Brendan J; Jones, T Todd; Resendiz, Antonio; Seminoff, Jeffrey A; Witt, Matthew J; Nichols, Wallace J

    2015-01-01

    To further describe movement patterns and distribution of East Pacific green turtles (Chelonia mydas agassizii) and to determine threat levels for this species within the Eastern Pacific. In order to do this we combined published data from existing flipper tagging and early satellite tracking studies with data from an additional 12 satellite tracked green turtles (1996-2006). Three of these were tracked from their foraging grounds in the Gulf of California along the east coast of the Baja California peninsula to their breeding grounds in Michoacán (1337-2928 km). In addition, three post-nesting females were satellite tracked from Colola beach, Michoacán to their foraging grounds in southern Mexico and Central America (941.3-3020 km). A further six turtles were tracked in the Gulf of California within their foraging grounds giving insights into the scale of ranging behaviour. Turtles undertaking long-distance migrations showed a tendency to follow the coastline. Turtles tracked within foraging grounds showed that foraging individuals typically ranged up to 691.6 km (maximum) from release site location. Additionally, we carried out threat analysis (using the cumulative global human impact in the Eastern Pacific) clustering pre-existing satellite tracking studies from Galapagos, Costa Rica, and data obtained from this study; this indicated that turtles foraging and nesting in Central American waters are subject to the highest anthropogenic impact. Considering that turtles from all three rookeries were found to migrate towards Central America, it is highly important to implement conservation plans in Central American coastal areas to ensure the survival of the remaining green turtles in the Eastern Pacific. Finally, by combining satellite tracking data from this and previous studies, and data of tag returns we created the best available distributional patterns for this particular sea turtle species, which emphasized that conservation measures in key areas may have positive consequences on a regional scale.

  15. Factors influencing elk recruitment across ecotypes in the Western United States

    USGS Publications Warehouse

    Lukacs, Paul M.; Mitchell, Michael S.; Hebblewhite, Mark; Johnson, Bruce K.; Johnson, Heather; Kauffman, Matthew J.; Proffitt, Kelly M.; Zager, Peter; Brodie, Jedediah; Hersey, Kent R.; Holland, A. Andrew; Hurley, Mark; McCorquodale, Scott; Middleton, Arthur; Nordhagen, Matthew; Nowak, J. Joshua; Walsh, Daniel P.; White, P.J.

    2018-01-01

    Ungulates are key components in ecosystems and economically important for sport and subsistence harvest. Yet the relative importance of the effects of weather conditions, forage productivity, and carnivores on ungulates are not well understood. We examined changes in elk (Cervus canadensis) recruitment (indexed as age ratios) across 7 states and 3 ecotypes in the northwestern United States during 1989–2010, while considering the effects of predator richness, forage productivity, and precipitation. We found a broad‐scale, long‐term decrease in elk recruitment of 0.48 juveniles/100 adult females/year. Weather conditions (indexed as summer and winter precipitation) showed small, but measurable, influences on recruitment. Forage productivity on summer and winter ranges (indexed by normalized difference vegetation index [NDVI] metrics) had the strongest effect on elk recruitment relative to other factors. Relationships between forage productivity and recruitment varied seasonally and regionally. The productivity of winter habitat was more important in southern parts of the study area, whereas annual variation in productivity of summer habitat had more influence on recruitment in northern areas. Elk recruitment varied by up to 15 juveniles/100 adult females across the range of variation in forage productivity. Areas with more species of large carnivores had relatively low elk recruitment, presumably because of increased predation. Wolves (Canis lupus) were associated with a decrease of 5 juveniles/100 adult females, whereas grizzly bears (Ursus arctos) were associated with an additional decrease of 7 juveniles/100 adult females. Carnivore species can have a critical influence on ungulate recruitment because their influence rivals large ranges of variation in environmental conditions. A more pressing concern, however, stems from persistent broad‐scale decreases in recruitment across the distribution of elk in the northwestern United States, irrespective of carnivore richness. Our results suggest that wildlife managers interested in improving recruitment of elk consider the combined effects of habitat and predators. Efforts to manage summer and winter ranges to increase forage productivity may have a positive effect on recruitment. 

  16. Multinational Tagging Efforts Illustrate Regional Scale of Distribution and Threats for East Pacific Green Turtles (Chelonia mydas agassizii)

    PubMed Central

    Hart, Catherine E.; Blanco, Gabriela S.; Coyne, Michael S.; Delgado-Trejo, Carlos; Godley, Brendan J.; Jones, T. Todd; Resendiz, Antonio; Seminoff, Jeffrey A.; Witt, Matthew J.; Nichols, Wallace J.

    2015-01-01

    To further describe movement patterns and distribution of East Pacific green turtles (Chelonia mydas agassizii) and to determine threat levels for this species within the Eastern Pacific. In order to do this we combined published data from existing flipper tagging and early satellite tracking studies with data from an additional 12 satellite tracked green turtles (1996-2006). Three of these were tracked from their foraging grounds in the Gulf of California along the east coast of the Baja California peninsula to their breeding grounds in Michoacán (1337-2928 km). In addition, three post-nesting females were satellite tracked from Colola beach, Michoacán to their foraging grounds in southern Mexico and Central America (941.3-3020 km). A further six turtles were tracked in the Gulf of California within their foraging grounds giving insights into the scale of ranging behaviour. Turtles undertaking long-distance migrations showed a tendency to follow the coastline. Turtles tracked within foraging grounds showed that foraging individuals typically ranged up to 691.6 km (maximum) from release site location. Additionally, we carried out threat analysis (using the cumulative global human impact in the Eastern Pacific) clustering pre-existing satellite tracking studies from Galapagos, Costa Rica, and data obtained from this study; this indicated that turtles foraging and nesting in Central American waters are subject to the highest anthropogenic impact. Considering that turtles from all three rookeries were found to migrate towards Central America, it is highly important to implement conservation plans in Central American coastal areas to ensure the survival of the remaining green turtles in the Eastern Pacific. Finally, by combining satellite tracking data from this and previous studies, and data of tag returns we created the best available distributional patterns for this particular sea turtle species, which emphasized that conservation measures in key areas may have positive consequences on a regional scale. PMID:25646803

  17. Polymorphisms in monolignol biosynthetic genes are associated with biomass yield and agronomic traits in European maize (Zea mays L.).

    PubMed

    Chen, Yongsheng; Zein, Imad; Brenner, Everton Alen; Andersen, Jeppe Reitan; Landbeck, Mathias; Ouzunova, Milena; Lübberstedt, Thomas

    2010-01-15

    Reduced lignin content leads to higher cell wall digestibility and, therefore, better forage quality and increased conversion of lignocellulosic biomass into ethanol. However, reduced lignin content might lead to weaker stalks, lodging, and reduced biomass yield. Genes encoding enzymes involved in cell wall lignification have been shown to influence both cell wall digestibility and yield traits. In this study, associations between monolignol biosynthetic genes and plant height (PHT), days to silking (DTS), dry matter content (DMC), and dry matter yield (DMY) were identified by using a panel of 39 European elite maize lines. In total, 10 associations were detected between polymorphisms or tight linkage disequilibrium (LD) groups within the COMT, CCoAOMT2, 4CL1, 4CL2, F5H, and PAL genomic fragments, respectively, and the above mentioned traits. The phenotypic variation explained by these polymorphisms or tight LD groups ranged from 6% to 25.8% in our line collection. Only 4CL1 and F5H were found to have polymorphisms associated with both yield and forage quality related characters. However, no pleiotropic polymorphisms affecting both digestibility of neutral detergent fiber (DNDF), and PHT or DMY were discovered, even under less stringent statistical conditions. Due to absence of pleiotropic polymorphisms affecting both forage yield and quality traits, identification of optimal monolignol biosynthetic gene haplotype(s) combining beneficial quantitative trait polymorphism (QTP) alleles for both quality and yield traits appears possible within monolignol biosynthetic genes. This is beneficial to maximize forage and bioethanol yield per unit land area.

  18. Polymorphisms in monolignol biosynthetic genes are associated with biomass yield and agronomic traits in European maize (Zea mays L.)

    PubMed Central

    2010-01-01

    Background Reduced lignin content leads to higher cell wall digestibility and, therefore, better forage quality and increased conversion of lignocellulosic biomass into ethanol. However, reduced lignin content might lead to weaker stalks, lodging, and reduced biomass yield. Genes encoding enzymes involved in cell wall lignification have been shown to influence both cell wall digestibility and yield traits. Results In this study, associations between monolignol biosynthetic genes and plant height (PHT), days to silking (DTS), dry matter content (DMC), and dry matter yield (DMY) were identified by using a panel of 39 European elite maize lines. In total, 10 associations were detected between polymorphisms or tight linkage disequilibrium (LD) groups within the COMT, CCoAOMT2, 4CL1, 4CL2, F5H, and PAL genomic fragments, respectively, and the above mentioned traits. The phenotypic variation explained by these polymorphisms or tight LD groups ranged from 6% to 25.8% in our line collection. Only 4CL1 and F5H were found to have polymorphisms associated with both yield and forage quality related characters. However, no pleiotropic polymorphisms affecting both digestibility of neutral detergent fiber (DNDF), and PHT or DMY were discovered, even under less stringent statistical conditions. Conclusion Due to absence of pleiotropic polymorphisms affecting both forage yield and quality traits, identification of optimal monolignol biosynthetic gene haplotype(s) combining beneficial quantitative trait polymorphism (QTP) alleles for both quality and yield traits appears possible within monolignol biosynthetic genes. This is beneficial to maximize forage and bioethanol yield per unit land area. PMID:20078869

  19. Niche overlap, threshold food densities, and limits to prey depletion for a diving duck assemblage in an estuarine bay

    USGS Publications Warehouse

    Lovvorn, James R.; De La Cruz, Susan; Takekawa, John Y.; Shaskey, Laura E.; Richman, Samantha E.

    2013-01-01

    Planning for marine conservation often requires estimates of the amount of habitat needed to support assemblages of interacting species. During winter in subtidal San Pablo Bay, California, the 3 main diving duck species are lesser scaup Aythya affinis (LESC), greater scaup A. marila (GRSC), and surf scoter Melanitta perspicillata (SUSC), which all feed almost entirely on the bivalve Corbula amurensis. Decreased body mass and fat, increased foraging effort, and major departures of these birds appeared to result from food limitation. Broad overlap in prey size, water depth, and location suggested that the 3 species responded similarly to availability of the same prey. However, an energetics model that accounts for differing body size, locomotor mode, and dive behavior indicated that each species will become limited at different stages of prey depletion in the order SUSC, then GRSC, then LESC. Depending on year, 35 to 66% of the energy in Corbula standing stocks was below estimated threshold densities for profitable foraging. Ectothermic predators, especially flounders and sturgeons, could reduce excess carrying capacity for different duck species by 4 to 10%. A substantial quantity of prey above profitability thresholds was not exploited before most ducks left San Pablo Bay. Such pre-depletion departure has been attributed in other taxa to foraging aggression. However, in these diving ducks that showed no overt aggression, this pattern may result from high costs of locating all adequate prey patches, resulting reliance on existing flocks to find food, and propensity to stay near dense flocks to avoid avian predation. For interacting species assemblages, modeling profitability thresholds can indicate the species most vulnerable to food declines. However, estimates of total habitat needed require better understanding of factors affecting the amount of prey above thresholds that is not depleted before the predators move elsewhere.

  20. Early harvest and ensilage of forage sorghum infected with ergot (Claviceps africana) reduces the risk of livestock poisoning.

    PubMed

    Blaney, B J; Ryley, M J; Boucher, B D

    2010-08-01

    Sorghum ergot produces dihydroergosine (DHES) and related alkaloids, which cause hyperthermia in cattle. Proportions of infected panicles (grain heads), leaves and stems were determined in two forage sorghum crops extensively infected 2 to 4 weeks prior to sampling and the panicles were assayed for DHES. Composite samples from each crop, plus a third grain variety crop, were coarsely chopped and half of each sealed in plastic buckets for 6 weeks to simulate ensilation. The worst-infected panicles contained up to 55 mg DHES/kg, but dilution reduced average concentrations of DHES in crops to approximately 1 mg/kg, a relatively safe level for cattle. Ensilation significantly (P = 0.043) reduced mean DHES concentrations from 0.85 to 0.46 mg/kg.

  1. A junk-food hypothesis for gannets feeding on fishery waste

    PubMed Central

    Grémillet, David; Pichegru, Lorien; Kuntz, Grégoire; Woakes, Anthony G; Wilkinson, Sarah; Crawford, Robert J.M; Ryan, Peter G

    2008-01-01

    Worldwide fisheries generate large volumes of fishery waste and it is often assumed that this additional food is beneficial to populations of marine top-predators. We challenge this concept via a detailed study of foraging Cape gannets Morus capensis and of their feeding environment in the Benguela upwelling zone. The natural prey of Cape gannets (pelagic fishes) is depleted and birds now feed extensively on fishery wastes. These are beneficial to non-breeding birds, which show reduced feeding effort and high survival. By contrast, breeding gannets double their diving effort in an attempt to provision their chicks predominantly with high-quality, live pelagic fishes. Owing to a scarcity of this resource, they fail and most chicks die. Our study supports the junk-food hypothesis for Cape gannets since it shows that non-breeding birds can survive when complementing their diet with fishery wastes, but that they struggle to reproduce if live prey is scarce. This is due to the negative impact of low-quality fishery wastes on the growth patterns of gannet chicks. Marine management policies should not assume that fishery waste is generally beneficial to scavenging seabirds and that an abundance of this artificial resource will automatically inflate their populations. PMID:18270155

  2. The three-dimensional flight of red-footed boobies: adaptations to foraging in a tropical environment?

    PubMed Central

    Weimerskirch, H.; Le Corre, M.; Ropert-Coudert, Y.; Kato, A.; Marsac, F.

    2005-01-01

    In seabirds a broad variety of morphologies, flight styles and feeding methods exist as an adaptation to optimal foraging in contrasted marine environments for a wide variety of prey types. Because of the low productivity of tropical waters it is expected that specific flight and foraging techniques have been selected there, but very few data are available. By using five different types of high-precision miniaturized logger (global positioning systems, accelerometers, time depth recorders, activity recorders, altimeters) we studied the way a seabird is foraging over tropical waters. Red-footed boobies are foraging in the day, never foraging at night, probably as a result of predation risks. They make extensive use of wind conditions, flying preferentially with crosswinds at median speed of 38 km h−1, reaching highest speeds with tail winds. They spent 66% of the foraging trip in flight, using a flap–glide flight, and gliding 68% of the flight. Travelling at low costs was regularly interrupted by extremely active foraging periods where birds are very frequently touching water for landing, plunge diving or surface diving (30 landings h−1). Dives were shallow (maximum 2.4 m) but frequent (4.5 dives h−1), most being plunge dives. While chasing for very mobile prey like flying fishes, boobies have adopted a very active and specific hunting behaviour, but the use of wind allows them to reduce travelling cost by their extensive use of gliding. During the foraging and travelling phases birds climb regularly to altitudes of 20–50 m to spot prey or congeners. During the final phase of the flight, they climb to high altitudes, up to 500 m, probably to avoid attacks by frigatebirds along the coasts. This study demonstrates the use by boobies of a series of very specific flight and activity patterns that have probably been selected as adaptations to the conditions of tropical waters. PMID:15875570

  3. The three-dimensional flight of red-footed boobies: adaptations to foraging in a tropical environment?

    PubMed

    Weimerskirch, H; Le Corre, M; Ropert-Coudert, Y; Kato, A; Marsac, F

    2005-01-07

    In seabirds a broad variety of morphologies, flight styles and feeding methods exist as an adaptation to optimal foraging in contrasted marine environments for a wide variety of prey types. Because of the low productivity of tropical waters it is expected that specific flight and foraging techniques have been selected there, but very few data are available. By using five different types of high-precision miniaturized logger (global positioning systems, accelerometers, time depth recorders, activity recorders, altimeters) we studied the way a seabird is foraging over tropical waters. Red-footed boobies are foraging in the day, never foraging at night, probably as a result of predation risks. They make extensive use of wind conditions, flying preferentially with crosswinds at median speed of 38 km h(-1), reaching highest speeds with tail winds. They spent 66% of the foraging trip in flight, using a flap-glide flight, and gliding 68% of the flight. Travelling at low costs was regularly interrupted by extremely active foraging periods where birds are very frequently touching water for landing, plunge diving or surface diving (30 landings h(-1)). Dives were shallow (maximum 2.4 m) but frequent (4.5 dives h(-1)), most being plunge dives. While chasing for very mobile prey like flying fishes, boobies have adopted a very active and specific hunting behaviour, but the use of wind allows them to reduce travelling cost by their extensive use of gliding. During the foraging and travelling phases birds climb regularly to altitudes of 20-50 m to spot prey or congeners. During the final phase of the flight, they climb to high altitudes, up to 500 m, probably to avoid attacks by frigatebirds along the coasts. This study demonstrates the use by boobies of a series of very specific flight and activity patterns that have probably been selected as adaptations to the conditions of tropical waters.

  4. Trapline foraging by pollinators: its ontogeny, economics and possible consequences for plants.

    PubMed

    Ohashi, Kazuharu; Thomson, James D

    2009-06-01

    Trapline foraging (repeated sequential visits to a series of feeding locations) has been often observed in pollinators collecting nectar or pollen from flowers. Although field studies on bumble-bees and hummingbirds have clarified fundamental aspects of this behaviour, trapline foraging still poses several difficult questions from the perspectives of both animals and plants. These questions include whether and how traplining improves foraging performance, how animals develop traplines with accumulating foraging experience, and how traplining affects pollen flow or plant reproduction. First, we review our previous work performed by using computer simulations and indoor flight-cage experiments with bumble-bees foraging from arrays of automated feeders. Our findings include the following: (1) traplining benefits foragers that are competing for resources that replenish in a decelerating way, (2) traplining is a learned behaviour that develops over a period of hours and (3) the establishment of traplines could be hampered by spatial configuration of plants such as zigzags. Second, using a simulation model linking pollinator movement and pollen transfer, we consider how service by pollinators with different foraging patterns (searchers or trapliners) would affect pollen flow. Traplining increases mating distance and mate diversity, and reduces 'iterogamy' (self-pollination caused by return visits) at the population level. Furthermore, increased visitation rates can have opposite effects on the reproductive success of a plant, depending on whether the visitors are traplining or searching. Finally, we discuss possible consequences of traplining for plants in the light of new experimental work and modelling. We suggest that trapline foraging by pollinators increases variation among plant populations in genetic diversity, inbreeding depression and contributions of floral traits to plant fitness, which should in turn affect the rates and directions of floral evolution. More theoretical and empirical studies are needed to clarify possible outcomes of such a neglected side of pollination.

  5. Retrospective analysis of bottlenose dolphin foraging: a legacy of anthropogenic ecosystem disturbance

    USGS Publications Warehouse

    Rossman, Sam; Barros, Nélio B.; Ostrom, Peggy H.; Stricker, Craig A.; Hohn, Aleta A.; Gandhi, Hasand; Wells, Randall S.

    2013-01-01

    We used stable isotope analysis to investigate the foraging ecology of coastal bottlenose dolphins (Tursiops truncatus) in relation to a series of anthropogenic disturbances. We first demonstrated that stable isotopes are a faithful indicator of habitat use by comparing muscle isotope values to behavioral foraging data from the same individuals. δ13C values increased, while δ34S and δ15N values decreased with the percentage of feeding observations in seagrass habitat. We then utilized stable isotope values of muscle to assess temporal variation in foraging habitat from 1991 to 2010 and collagen from tooth crown tips to assess the time period 1944 to 2007. From 1991 to 2010, δ13C values of muscle decreased while δ34S values increased indicating reduced utilization of seagrass habitat. From 1944 to 1989 δ13C values of the crown tip declined significantly, likely due to a reduction in the coverage of seagrass habitat and δ15N values significantly increased, a trend we attribute to nutrient loading from a rapidly increasing human population. Our results demonstrate the utility of using marine mammal foraging habits to retrospectively assess the extent to which anthropogenic disturbance impacts coastal food webs.

  6. State of emergency: behavior of gerbils is affected by the hunger state of their predators.

    PubMed

    Berger-Tal, Oded; Kotler, Burt P

    2010-02-01

    Predator-prey interactions are usually composed of behaviorally sophisticated games in which the values of the strategies of foraging prey individuals may depend on those of their predators, and vice versa. Therefore, any change in the behavior of the predator should result in changes to the behavior of the prey. However, this key prediction has rarely been tested. To examine the effects of the predator state on prey behavior, we manipulated the state of captive Barn Owls, Tyto alba, and released them into an enclosure containing Allenby's gerbils, Gerbillus andersoni allenbyi, a common prey of the owls. The owls were significantly more active when hungry. In response, the gerbils altered their behavior according to the state of the owl. When the owl was hungry, the gerbils visited fewer food patches, foraged in fewer patches, and harvested less food from each patch. Moreover, the gerbils kept their foraging bouts closer to their burrow, which reduced the overlap among foraging ranges of individual gerbils. Thus, changes in the state of the predator affect the foraging behavior of its prey and can also mediate competition among prey individuals.

  7. The reduced brood nursing by mite-infested honey bees depends on their accelerated behavioral maturation.

    PubMed

    Zanni, V; Değirmenci, L; Annoscia, D; Scheiner, R; Nazzi, F

    2018-06-19

    The parasitic mite Varroa destructor is regarded as the most important parasite of honey bees and plays a fundamental role in the decline of bee colonies observed in the last decade in the Northern hemisphere. Parasitization has a number of detrimental effects on bees, including reduced nursing, which can have important impacts on colony balance. In this work we investigated at the individual level the causes of this abnormal behavior and found that the reduced nursing activity in mite-infested workers is associated with impaired learning performance and a series of physiological traits that are typical of foragers, including reduced response to brood pheromone, limited development of hypopharyngeal glands and higher juvenile hormone titre in the haemolymph. Altogether our data confirm the premature transition to foraging already postulated based on previous genomics studies, from a physiological point of view. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. A nicotinic acetylcholine receptor agonist affects honey bee sucrose responsiveness and decreases waggle dancing.

    PubMed

    Eiri, Daren M; Nieh, James C

    2012-06-15

    A nicotinic acetylcholine receptor agonist, imidacloprid, impairs memory formation in honey bees and has general effects on foraging. However, little is known about how this agonist affects two specific aspects of foraging: sucrose responsiveness (SR) and waggle dancing (which recruits nestmates). Using lab and field experiments, we tested the effect of sublethal doses of imidacloprid on (1) bee SR with the proboscis extension response assay, and (2) free-flying foragers visiting and dancing for a sucrose feeder. Bees that ingested imidacloprid (0.21 or 2.16 ng bee(-1)) had higher sucrose response thresholds 1 h after treatment. Foragers that ingested imidacloprid also produced significantly fewer waggle dance circuits (10.5- and 4.5-fold fewer for 50% and 30% sucrose solutions, respectively) 24 h after treatment as compared with controls. However, there was no significant effect of imidacloprid on the sucrose concentrations that foragers collected at a feeder 24 h after treatment. Thus, imidacloprid temporarily increased the minimum sucrose concentration that foragers would accept (short time scale, 1 h after treatment) and reduced waggle dancing (longer time scale, 24 h after treatment). The effect of time suggests different neurological effects of imidacloprid resulting from the parent compound and its metabolites. Waggle dancing can significantly increase colony food intake, and thus a sublethal dose (0.21 ng bee(-1), 24 p.p.b.) of this commonly used pesticide may impair colony fitness.

  9. Foraging-Based Enrichment Promotes More Varied Behaviour in Captive Australian Fur Seals (Arctocephalus pusillus doriferus)

    PubMed Central

    Hocking, David P.; Salverson, Marcia; Evans, Alistair R.

    2015-01-01

    During wild foraging, Australian fur seals (Arctocephalus pusillus doriferus) encounter many different types of prey in a wide range of scenarios, yet in captive environments they are typically provided with a narrower range of opportunities to display their full repertoire of behaviours. This study aimed to quantitatively explore the effect of foraging-based enrichment on the behaviour and activity patterns displayed by two captive Australian fur seals at Melbourne Zoo, Australia. Food was presented as a scatter in open water, in a free-floating ball device, or in a static box device, with each treatment separated by control trials with no enrichment. Both subjects spent more time interacting with the ball and static box devices than the scatter feed. The total time spent pattern swimming was reduced in the enrichment treatments compared to the controls, while the time spent performing random swimming behaviours increased. There was also a significant increase in the total number of bouts of behaviour performed in all three enrichment treatments compared to controls. Each enrichment method also promoted a different suit of foraging behaviours. Hence, rather than choosing one method, the most effective way to increase the diversity of foraging behaviours, while also increasing variation in general activity patterns, is to provide seals with a wide range of foraging scenarios where food is encountered in different ways. PMID:25946412

  10. JPRS Report, Science & Technology Europe & Latin America.

    DTIC Science & Technology

    1988-02-22

    and a diagnostic test for paracetamol poisoning. Encouraged by this first experi- ence, the company focused its efforts on biosensors capable of...information about the microscopic mechanism responsible for the observed Tc- degradation . The step by step modification of the properties of a...of microorganisms. 5. Bibliographical References Akin, D.E. Forage cell wall degradation and p-coumaric, ferulic, and sinaptic acids. Agron. J

  11. 75 FR 57496 - Notice of Proposed Supplementary Rule To Require the Use of Certified Noxious-Weed-Free Forage...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-21

    ... mulch for project work. This action is a cooperative effort between the BLM, the U.S. Forest Service... a week. SUPPLEMENTARY INFORMATION: I. Public Comment Procedures You may mail comments to Roger... work. Once this rule becomes effective, there will be a 60-day grace period for enforcement of this...

  12. Search path of a fossorial herbivore, Geomys bursarius, foraging in structurally complex plant communities

    USGS Publications Warehouse

    Andersen, Douglas C.

    1990-01-01

    The influence of habitat patchiness and unpalatable plants on the search path of the plains pocket gopher (Geomys bursarius) was examined in outdoor enclosures. Separate experiments were used to evaluate how individual animals explored (by tunnel excavation) enclosures free of plants except for one or more dense patches of a palatable plant (Daucus carota), a dense patch of an unpalatable species (Pastinaca sativa) containing a few palatable plants (D. carota), or a relatively sparse mixture of palatable (D. carota) and unpalatable (Raphanus sativus) species. Only two of eight individuals tested showed the predicted pattern of concentrating search effort in patches of palatable plants. The maintenance of relatively high levels of effort in less profitable sites may reflect the security afforded food resources by the solitary social system and fossorial lifestyle of G. bursarius. Unpalatable plants repelled animals under some conditions, but search paths in the sparsely planted mixed-species treatment suggest animals can use visual or other cues to orient excavations. Evidence supporting area-restricted search was weak. More information about the use of visual cues by G. bursarius and the influence of experience on individual search mode is needed for refining current models of foraging behavior in this species.

  13. Does food availability affect energy expenditure rates of nesting seabirds? A supplemental-feeding experiment with Black-Legged Kittiwakes (Rissa tridactyla)

    USGS Publications Warehouse

    Jodice, Patrick G.R.; Roby, Daniel D.; Hatch, Scott A.; Gill, Verena A.; Lanctot, Richard B.; Visser, G. Henk

    2002-01-01

    We used a supplemental-feeding experiment, the doubly labeled water technique, and a model-selection approach based upon the Akaike Information Criterion to examine effects of food availability on energy expenditure rates of Black-legged Kittiwakes (Rissa tridactyla) raising young. Energy expenditure rates of supplementally fed females (n = 14) and males (n = 16) were 34 and 20% lower than those of control females (n = 14) and males (n = 18), respectively. Energy expenditure rates of females were more responsive to fluctuations in food availability than those of males. Fed males likely expended more energy while off the nest than fed females, possibly because of nest defense. Energy expenditure rates of fed kittiwakes were similar to values reported for kittiwakes that were either not raising young or not foraging. Parent kittiwakes, therefore, adjusted parental effort in response to variation in breeding conditions due to changes in food availability. Adjustments in reproductive effort in response to variable foraging conditions may have significant effects on the survival and productivity of individuals, and thus provide substantial fitness benefits for long-lived seabirds such as Black-legged Kittiwakes.

  14. Long-term declines in dietary nutritional quality for North American cattle

    NASA Astrophysics Data System (ADS)

    Craine, Joseph M.; Elmore, Andrew; Angerer, Jay P.

    2017-04-01

    With over 1 billion cattle in the world as well as over 2 billion sheep, goats and buffalo, these animals contribute approximately 15% of the global human protein supply while producing a significant proportion of anthropogenic emissions of greenhouse gases and global nutrient fluxes. Despite increasing reliance on grazers for protein production globally, the future of grazers in a changing world is uncertain. Factors such as increased prevalence of drought, rising atmospheric CO2 concentrations, and sustained nutrient export all have the potential to reduce cattle performance by reducing the nutritional quality of forage. However, there are no analyses to quantify changes in diet quality, subsequent impact on cattle performance and cost of supplementation necessary to mitigate any predicted protein deficiency. To quantify the trajectory of nutritional stress in cattle, we examined more than 36 000 measurements of dietary quality taken over 22 yr for US cattle. Here, we show that standardizing for spatial and temporal variation in drought and its effects on forage quality, cattle have been becoming increasingly stressed for protein over the past two decades, likely reducing cattle weight gain. In economic terms, the replacement costs of reduced protein provision to US cattle are estimated to be the equivalent of 1.9 billion annually. Given these trends, nitrogen enrichment of grasslands might be necessary if further reduction in protein content of forages is to be prevented.

  15. Diffusion of novel foraging behaviour in Amazon parrots through social learning.

    PubMed

    Morales Picard, Alejandra; Hogan, Lauren; Lambert, Megan L; Wilkinson, Anna; Seed, Amanda M; Slocombe, Katie E

    2017-03-01

    While social learning has been demonstrated in species across many taxa, the role it plays in everyday foraging decisions is not well understood. Investigating social learning during foraging could shed light on the emergence of cultural variation in different groups. We used an open diffusion experiment to examine the spread of a novel foraging technique in captive Amazon parrots. Three groups were tested using a two-action foraging box, including experimental groups exposed to demonstrators using different techniques and control birds. We also examined the influence of agonistic and pilfering behaviour on task acquisition. We found evidence of social learning: more experimental birds than control birds interacted with and opened the box. The birds were, however, no more likely to use the demonstrated technique than the non-demonstrated one, making local or stimulus enhancement the most likely mechanism. Exhibiting aggression was positively correlated with box opening, whilst receiving aggression did not reduce motivation to engage with the box, indicating that willingness to defend access to the box was important in task acquisition. Pilfering food and success in opening the box were also positively correlated; however, having food pilfered did not affect victims' motivation to interact with the box. In a group context, pilfering may promote learning of new foraging opportunities. Although previous studies have demonstrated that psittacines are capable of imitation, in this naturalistic set-up there was no evidence that parrots copied the demonstrated opening technique. Foraging behaviour in wild populations of Amazons could therefore be facilitated by low-fidelity social learning mechanisms.

  16. Visual field shape and foraging ecology in diurnal raptors.

    PubMed

    Potier, Simon; Duriez, Olivier; Cunningham, Gregory B; Bonhomme, Vincent; O'Rourke, Colleen; Fernández-Juricic, Esteban; Bonadonna, Francesco

    2018-05-18

    Birds, particularly raptors, are believed to forage primarily using visual cues. However, raptor foraging tactics are highly diverse - from chasing mobile prey to scavenging - which may reflect adaptations of their visual systems. To investigate this, we studied the visual field configuration of 15 species of diurnal Accipitriformes that differ in such tactics, first focusing on the binocular field and blind area by using a single traits approach, and then exploring the shape of the binocular field with morphometric approaches. While the maximum binocular field width did not differ in species of different foraging tactics, the overall shape of their binocular fields did. In particular, raptors chasing terrestrial prey (ground predators) had a more protruding binocular field and a wider blind area above the head than did raptors chasing aerial or aquatic prey and obligate scavengers. Ground predators that forage on mammals from above have a wide but short bill - which increases ingestion rate - and large suborbital ridge to avoid sun glare. This may explain the protruding binocular field and the wide blind area above the head. By contrast, species from the two other groups have long but narrow bills used to pluck, flake or tear food and may need large visual coverage (and reduced suborbital ridges) to increase their foraging efficiency ( e.g. using large visual coverage to follow the escaping prey in three dimensions or detect conspecifics). We propose that binocular field shape is associated with bill and suborbital ridge shape and, ultimately, foraging strategies. © 2018. Published by The Company of Biologists Ltd.

  17. The effects of ingested aqueous aluminum on floral fidelity and foraging strategy in honey bees (Apis mellifera).

    PubMed

    Chicas-Mosier, Ana M; Cooper, Bree A; Melendez, Alexander M; Pérez, Melina; Oskay, Devrim; Abramson, Charles I

    2017-09-01

    Pollinator decline is of international concern because of the economic services these organisms provide. Commonly cited sources of decline are toxicants, habitat fragmentation, and parasites. Toxicant exposure can occur through uptake and distribution from plant tissues and resources such as pollen and nectar. Metals such as aluminum can be distributed to pollinators and other herbivores through this route especially in acidified or mined areas. A free-flying artificial flower patch apparatus was used to understand how two concentrations of aluminum (2mg/L and 20mg/L) may affect the learning, orientation, and foraging behaviors of honey bees (Apis mellifera) in Turkey. The results show that a single dose of aluminum immediately affects the floral decision making of honey bees potentially by altering sucrose perception, increasing activity level, or reducing the likelihood of foraging on safer or uncontaminated resource patches. We conclude that aluminum exposure may be detrimental to foraging behaviors and potentially to other ecologically relevant behaviors. Copyright © 2017. Published by Elsevier Inc.

  18. Distribution of selenoglucosinolates and their metabolites in Brassica treated with sodium selenate.

    PubMed

    Matich, Adam J; McKenzie, Marian J; Lill, Ross E; McGhie, Tony K; Chen, Ronan K-Y; Rowan, Daryl D

    2015-02-25

    In Brassica species, hydrolysis of (methylthio)glucosinolates produces sulfur-containing aglycons which have demonstrated anticancer benefits. Selenized Brassicaceae contain (methylseleno)glucosinolates and their selenium-containing aglycons. As a prelude to biological testing, broccoli, cauliflower, and forage rape plants were treated with sodium selenate and their tap roots, stems, leaves, and florets analyzed for selenoglucosinolates and their Se aglycons. Two new selenoglucosinolates were identified: glucoselenoraphanin in broccoli florets and glucoselenonasturtiin in forage rape roots. A new aglycon, selenoberteroin nitrile, was identified in forage rape. The major selenoglucosinolates were glucoselenoerucin in broccoli, glucoselenoiberverin in cauliflower, and glucoselenoerucin and glucoselenoberteroin in forage rape roots. In broccoli florets, the concentrations of selenglucosinolates exceeded those of their sulfur analogues. Fertilization with selenium slightly reduced (methylthio)glucosinolates and aglycons in the roots, but increased them in the florets, the leaves, and sometimes the stems. These discoveries provide a new avenue for investigating how consumption of Brassica vegetables and their organoselenides may promote human health.

  19. Deposition of carotenoids in egg yolk by short-term supplement of coloured carrot (Daucus carota) varieties as forage material for egg-laying hens.

    PubMed

    Hammershøj, Marianne; Kidmose, Ulla; Steenfeldt, Sanna

    2010-05-01

    Supplying egg-laying hens with different forage materials may influence egg production and quality. The aim of this study was to examine the short-term effects of standard feed plus 70 g day(-1) per hen of three coloured carrot varieties (orange, yellow and purple) as forage material in comparison with a standard feed control on egg production, egg yolk colour and deposition of carotenoids in the yolk. Carrot supplementation reduced feed intakes significantly, but not on a dry matter basis. Orange carrot treatment significantly reduced egg mass production, whereas yellow and purple carrot treatments did not differ from the control. Egg and yolk weights of all carrot-supplemented treatments were significantly lower than those of the control, but yolk percentages were similar. Yolk redness increased significantly in the order control < yellow < orange < purple. A similar trend was seen for yolk yellowness, but yellow and orange carrots reached the same level. Yolk colour and carotenoid contents correlated positively and significantly. In particular, purple carrot treatment increased the yolk content of lutein (>1.5-fold) and beta-carotene (>100-fold) compared with the control. Supplementing the feed of egg-laying hens with coloured carrots efficiently increased yolk colour parameters and carotenoid contents, which gives opportunities for improved nutritional value of eggs from forage material-supplemented hens.

  20. The price of associating with breeders in the cooperatively breeding chestnut-crowned babbler: foraging constraints, survival and sociality.

    PubMed

    Sorato, Enrico; Griffith, Simon C; Russell, Andy F

    2016-09-01

    Understanding the costs of living with breeders might offer new insights into the factors that counter evolutionary transitions from selfish individuals to cooperative societies. While selection on early dispersal is well understood, it is less clear whether costs are also associated with remaining with family members during subsequent breeding, a prerequisite to the evolution of kin-based cooperation. We propose and test the hypothesis that living in groups containing breeders is costly and that such costs are exacerbated by increasing group size. For example, in group-living central-place foragers, group members might suffer from resource depletion when foraging in a restricted area during breeding and significant costs of repeatedly travelling between foraging patches and the site of offspring. Using the cooperatively breeding chestnut-crowned babbler (Pomatostomus ruficeps), for which grouping during breeding is obligatory, we show that reproduction is associated with substantially reduced foraging areas and evidence of resource depletion, particularly in larger groups. Such effects largely persisted from the onset of incubation through to offspring independence 4-5 months later. All group members, irrespective of their breeder or helper status, lost significant body mass over this period, and, in males, mass loss was associated with reduced interannual survival. Although babblers are constrained from living outside of breeding groups due to high risks of predation and the poor success of breeding without helpers, we suggest that the effects we describe may generally select against group living during breeding attempts in species where constraints to independent breeding and costs of dispersal are less acute. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.

  1. Fall-grown oat to extend the fall grazing season for replacement dairy heifers.

    PubMed

    Coblentz, W K; Brink, G E; Hoffman, P C; Esser, N M; Bertram, M G

    2014-03-01

    Our objective was to assess the pasture productivity and forage characteristics of 2 fall-grown oat (Avena sativa L.) cultivars, specifically for extending the grazing season and reducing reliance on harvested forages by replacement dairy heifers. A total of 160 gravid Holstein heifers (80 heifers/yr) were stratified by weight, and assigned to 1 of 10 identical research pens (8 heifers/pen). Initial body weights were 480 ± 43.5 kg in 2011 and 509 ± 39.4 kg in 2012. During both years of the trial, four 1.0-ha pasture replicates were seeded in August with Ogle oat (Schumitsch Seed Inc., Antigo, WI), and 4 separate, but similarly configured, pasture replicates were seeded with Forage Plus oat (Kratz Farms, Slinger, WI). Heifer groups were maintained as units, assigned to specific pastures, and then allowed to graze fall-oat pastures for 6h daily before returning to the barn, where they were offered a forage-based basal total mixed ration. Two heifer groups were retained in confinement (without grazing) as controls and offered the identical total mixed ration as pasture groups. During 2011, available forage mass increased with strong linear and quadratic effects for both cultivars, peaking at almost 9 Mg/ha on October 31. In contrast, forage mass was not affected by evaluation date in 2012, remaining ≤ 2,639 kg/ha across all dates because of droughty climatic conditions. During 2012, Ogle exhibited greater forage mass than Forage Plus across all sampling dates (2,678 vs. 1,856 kg/ha), largely because of its more rapid maturation rate and greater canopy height. Estimates of energy density for oat forage ranged from 59.6 to 69.1% during 2011, and ranged narrowly from 68.4 to 70.4% during 2012. For 2011, responses for both cultivars had strong quadratic character, in which the most energy-dense forages occurred in mid November, largely due to accumulation of water-soluble carbohydrates that reached maximum concentrations of 18.2 and 15.1% for Forage Plus and Ogle, respectively. Across the 2-yr trial, average daily gain for grazing heifer groups tended to be greater than heifers remaining in confinement (0.85 vs. 0.74 kg/d), but both management strategies produced weight gains within reasonable proximity to normal targets for heifers in this weight range. Fall-grown oat should be managed as stockpiled forage for deferred grazing, and good utilization of fall-oat forage can be accomplished by a one-time removal of standing forage, facilitated by a single lead wire advanced daily to prevent waste. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Interim medusahead management guide for the intermountain west

    USDA-ARS?s Scientific Manuscript database

    Medusahead is an exotic annual grass that is decreasing livestock forage production, increasing wildfire frequency, and reducing biodiversity in sagebrush rangelands. The spread of medusahead should be reduced by treating infestations along roads, increasing or maintaining high perennial bunchgrass...

  3. Medusahead management guide for the Intermountain West

    USDA-ARS?s Scientific Manuscript database

    Medusahead is an exotic annual grass that is decreasing livestock forage production, increasing wildfire frequency, and reducing biodiversity in sagebrush rangelands. The spread of medusahead should be reduced by treating infestations along roads, increasing or maintaining perennial bunchgrass abun...

  4. Windscapes shape seabird instantaneous energy costs but adult behavior buffers impact on offspring.

    PubMed

    Elliott, Kyle Hamish; Chivers, Lorraine S; Bessey, Lauren; Gaston, Anthony J; Hatch, Scott A; Kato, Akiko; Osborne, Orla; Ropert-Coudert, Yan; Speakman, John R; Hare, James F

    2014-01-01

    Windscapes affect energy costs for flying animals, but animals can adjust their behavior to accommodate wind-induced energy costs. Theory predicts that flying animals should decrease air speed to compensate for increased tailwind speed and increase air speed to compensate for increased crosswind speed. In addition, animals are expected to vary their foraging effort in time and space to maximize energy efficiency across variable windscapes. We examined the influence of wind on seabird (thick-billed murre Uria lomvia and black-legged kittiwake Rissa tridactyla) foraging behavior. Airspeed and mechanical flight costs (dynamic body acceleration and wing beat frequency) increased with headwind speed during commuting flights. As predicted, birds adjusted their airspeed to compensate for crosswinds and to reduce the effect of a headwind, but they could not completely compensate for the latter. As we were able to account for the effect of sampling frequency and wind speed, we accurately estimated commuting flight speed with no wind as 16.6 ms(?1) (murres) and 10.6 ms(?1) (kittiwakes). High winds decreased delivery rates of schooling fish (murres), energy (murres) and food (kittiwakes) but did not impact daily energy expenditure or chick growth rates. During high winds, murres switched from feeding their offspring with schooling fish, which required substantial above-water searching, to amphipods, which required less above-water searching. Adults buffered the adverse effect of high winds on chick growth rates by switching to other food sources during windy days or increasing food delivery rates when weather improved.

  5. On the evolution of intergenerational division of labor, menopause and transfers among adults and offspring

    PubMed Central

    Cyrus Chu, C.Y.; Lee, Ronald D.

    2013-01-01

    We explain how upward transfers from adult children to their elderly parents might evolve as an interrelated feature of a deepening intergenerational division of labor. Humans have a particularly long period of juvenile dependence requiring both food and care time provided mainly by younger and older adults. We suggest that the division of labor evolves to exploit comparative advantage between young and old adults in fertility, childcare and foraging. Eventually the evolving division of labor reaches a limit when the grandmother's fertility reaches zero (menopause). Continuing, it may hit another limit when the grandmother's foraging time has been reduced to her subsistence needs. Further specialization can occur only with food transfers to the grandmother, enabling her to reduce her foraging time to concentrate on additional childcare. We prove that this outcome can arise only after menopause has evolved. We describe the conditions necessary for both group selection (comparative steady state reproductive fitness) and individual selection (successful invasion by a mutation), and interpret these conditions in terms of comparative advantages. PMID:23648187

  6. Hunting behaviour and breeding performance of northern goshawks Accipiter gentilis, in relation to resource availability, sex, age and morphology

    NASA Astrophysics Data System (ADS)

    Penteriani, Vincenzo; Rutz, Christian; Kenward, Robert

    2013-10-01

    Animal territories that differ in the availability of food resources will require (all other things being equal) different levels of effort for successful reproduction. As a consequence, breeding performance may become most strongly dependent on factors that affect individual foraging where resources are poor. We investigated potential links between foraging behaviour, reproductive performance and morphology in a goshawk Accipiter gentilis population, which experienced markedly different resource levels in two different parts of the study area (rabbit-rich vs. rabbit-poor areas). Our analyses revealed (1) that rabbit abundance positively affected male reproductive output; (2) that age, size and rabbit abundance (during winter) positively affected different components of female reproductive output; (3) that foraging movements were inversely affected by rabbit abundance for both sexes (for females, this may mainly have reflected poor provisioning by males in the rabbit-poor area); (4) that younger breeders (both in males and females) tended to move over larger distances than older individuals (which may have reflected both a lack of hunting experience and mate searching); and (5) that male body size (wing length) showed some covariation with resource conditions (suggesting possible adaptations to hunting agile avian prey in the rabbit-poor area). Although we are unable to establish firm causal relationships with our observational data set, our results provide an example of how territory quality (here, food abundance) and individual features (here, age and morphology) may combine to shape a predator's foraging behaviour and, ultimately, its breeding performance.

  7. Effect of acarbose on milk yield and composition in early-lactation dairy cattle fed a ration to induce subacute ruminal acidosis.

    PubMed

    McLaughlin, C L; Thompson, A; Greenwood, K; Sherington, J; Bruce, C

    2009-09-01

    Subacute ruminal acidosis reduces lactation performance in dairy cattle and most often occurs in animals fed a high concentrate:forage ration with large amounts of readily fermentable starch, which results in increased production of volatile fatty acids and lactic acid and a reduction in ruminal pH. Acarbose is commercially available (Glucobay, Bayer, Wuppertal, Germany) and indicated for the control of blood glucose in diabetic patients. In cattle, acarbose acts as an alpha-amylase and glucosidase inhibitor that slows the rate of degradation of starch to glucose, thereby reducing the rate of volatile fatty acid production and maintaining rumen pH at higher levels. The ability of acarbose to reverse the reduced feed intake and milk fat percentage and yield associated with a high concentrate:forage ration with a high risk of inducing subacute ruminal acidosis was evaluated in 2 experiments with lactating dairy cattle. In 2 preliminary experiments, the effects of a 70:30 concentrate:forage ration on ruminal pH and lactation were evaluated. Ruminal pH was monitored in 5 Holstein steers with ruminal cannulas every 10 min for 5 d. Ruminal pH was <5.5 for at least 4 h in 79% of the animal days. In dairy cows, the 70:30 concentrate:forage ration decreased feed intake 5%, milk fat percentage 7%, and milk fat yield 8% compared with a 50:50 concentrate:forage ration but did not affect milk yield. Early lactating dairy cattle were offered the 70:30 concentrate:forage ration with 0 or 0.75 g/d of acarbose added in a crossover design in 2 experiments. In the first experiment, acarbose increased dry matter feed intake (23.1 vs. 21.6 kg/d) and 3.5% fat-corrected milk yield (33.7 vs. 31.7 kg/d) because of an increase in percentage milk fat (3.33 vs. 3.04%) compared with control cows. In the second experiment, cows were fasted for 3 h before the morning feeding to induce consumption of a large meal to mimic conditions that might be associated with unplanned delayed feeding. In this experiment, acarbose also increased feed intake (22.5 vs. 21.8 kg/d) and 3.5% fat-corrected milk yield (36.9 vs. 33.9 kg/d) due to increased percentage milk fat (3.14 vs. 2.66%) compared with controls. Thus, acarbose reversed the decreased feed intake and low milk fat percentage and yield associated with feeding a high concentrate:forage ration shown to induce subacute ruminal acidosis in Holstein steers.

  8. Western Juniper Management: Assessing Strategies for Improving Greater Sage-grouse Habitat and Rangeland Productivity

    NASA Astrophysics Data System (ADS)

    Farzan, Shahla; Young, Derek J. N.; Dedrick, Allison G.; Hamilton, Matthew; Porse, Erik C.; Coates, Peter S.; Sampson, Gabriel

    2015-09-01

    Western juniper ( Juniperus occidentalis subsp. occidentalis) range expansion into sagebrush steppe ecosystems has affected both native wildlife and economic livelihoods across western North America. The potential listing of the greater sage-grouse ( Centrocercus urophasianus) under the U.S. Endangered Species Act has spurred a decade of juniper removal efforts, yet limited research has evaluated program effectiveness. We used a multi-objective spatially explicit model to identify optimal juniper removal sites in Northeastern California across weighted goals for ecological (sage-grouse habitat) and economic (cattle forage production) benefits. We also extended the analysis through alternative case scenarios that tested the effects of coordination among federal agencies, budgetary constraints, and the use of fire as a juniper treatment method. We found that sage-grouse conservation and forage production goals are somewhat complementary, but the extent of complementary benefits strongly depends on spatial factors and management approaches. Certain management actions substantially increase achievable benefits, including agency coordination and the use of prescribed burns to remove juniper. Critically, our results indicate that juniper management strategies designed to increase cattle forage do not necessarily achieve measurable sage-grouse benefits, underscoring the need for program evaluation and monitoring.

  9. Western juniper management: assessing strategies for improving greater sage-grouse habitat and rangeland productivity

    USGS Publications Warehouse

    Farzan, Shahla; Young, Derek J.N.; Dedrick, Allison G.; Hamilton, Mattew; Porse, Erik C.; Coates, Peter S.; Sampson, Gabriel

    2015-01-01

    Western juniper (Juniperus occidentalis subsp. occidentalis) range expansion into sagebrush steppe ecosystems has affected both native wildlife and economic livelihoods across western North America. The potential listing of the greater sage-grouse (Centrocercus urophasianus) under the U.S. Endangered Species Act has spurred a decade of juniper removal efforts, yet limited research has evaluated program effectiveness. We used a multi-objective spatially explicit model to identify optimal juniper removal sites in Northeastern California across weighted goals for ecological (sage-grouse habitat) and economic (cattle forage production) benefits. We also extended the analysis through alternative case scenarios that tested the effects of coordination among federal agencies, budgetary constraints, and the use of fire as a juniper treatment method. We found that sage-grouse conservation and forage production goals are somewhat complementary, but the extent of complementary benefits strongly depends on spatial factors and management approaches. Certain management actions substantially increase achievable benefits, including agency coordination and the use of prescribed burns to remove juniper. Critically, our results indicate that juniper management strategies designed to increase cattle forage do not necessarily achieve measurable sage-grouse benefits, underscoring the need for program evaluation and monitoring.

  10. Sexual differences in post-hatching Saunders's gulls: size, locomotor activity, and foraging skill.

    PubMed

    Yoon, Jongmin; Lee, Seung-Hee; Joo, Eun-Jin; Na, Ki-Jeong; Park, Shi-Ryong

    2013-04-01

    Various selection pressures induce the degree and direction of sexual size dimorphism in animals. Selection favors either larger males for contests over mates or resources, or smaller males are favored for maneuverability; whereas larger females are favored for higher fecundity, or smaller females for earlier maturation for reproduction. In the genus of Larus (seagulls), adult males are generally known to be larger in size than adult females. However, the ontogeny of sexual size dimorphism is not well understood, compared to that in adults. The present study investigates the ontogeny of sexual size dimorphism in Saunders's gulls (Larus saundersi) in captivity. We artificially incubated fresh eggs collected in Incheon, South Korea, and measured body size, locomotor activity, and foraging skill in post-hatching chicks in captivity. Our results indicated that the sexual differences in size and locomotor activity occurred with the post-hatching development. Also, larger males exhibited greater foraging skills for food acquisition than smaller females at 200 days of age. Future studies should assess how the adaptive significance of the sexual size dimorphism in juveniles is linked with sexual divergence in survival rates, intrasexual contests, or parental effort in sexes.

  11. Avoidance of seismic survey activities by penguins.

    PubMed

    Pichegru, Lorien; Nyengera, Reason; McInnes, Alistair M; Pistorius, Pierre

    2017-11-24

    Seismic surveys in search for oil or gas under the seabed, produce the most intense man-made ocean noise with known impacts on invertebrates, fish and marine mammals. No evidence to date exists, however, about potential impacts on seabirds. Penguins may be expected to be particularly affected by loud underwater sounds, due to their largely aquatic existence. This study investigated the behavioural response of breeding endangered African Penguins Spheniscus demersus to seismic surveys within 100 km of their colony in South Africa, using a multi-year GPS tracking dataset. Penguins showed a strong avoidance of their preferred foraging areas during seismic activities, foraging significantly further from the survey vessel when in operation, while increasing their overall foraging effort. The birds reverted to normal behaviour when the operation ceased, although longer-term repercussions on hearing capacities cannot be precluded. The rapid industrialization of the oceans has increased levels of underwater anthropogenic noises globally, a growing concern for a wide range of taxa, now also including seabirds. African penguin numbers have decreased by 70% in the last 10 years, a strong motivation for precautionary management decisions, including the exclusion of seismic exploratory activities within at least 100 km of their breeding colonies.

  12. Western Juniper Management: Assessing Strategies for Improving Greater Sage-grouse Habitat and Rangeland Productivity.

    PubMed

    Farzan, Shahla; Young, Derek J N; Dedrick, Allison G; Hamilton, Matthew; Porse, Erik C; Coates, Peter S; Sampson, Gabriel

    2015-09-01

    Western juniper (Juniperus occidentalis subsp. occidentalis) range expansion into sagebrush steppe ecosystems has affected both native wildlife and economic livelihoods across western North America. The potential listing of the greater sage-grouse (Centrocercus urophasianus) under the U.S. Endangered Species Act has spurred a decade of juniper removal efforts, yet limited research has evaluated program effectiveness. We used a multi-objective spatially explicit model to identify optimal juniper removal sites in Northeastern California across weighted goals for ecological (sage-grouse habitat) and economic (cattle forage production) benefits. We also extended the analysis through alternative case scenarios that tested the effects of coordination among federal agencies, budgetary constraints, and the use of fire as a juniper treatment method. We found that sage-grouse conservation and forage production goals are somewhat complementary, but the extent of complementary benefits strongly depends on spatial factors and management approaches. Certain management actions substantially increase achievable benefits, including agency coordination and the use of prescribed burns to remove juniper. Critically, our results indicate that juniper management strategies designed to increase cattle forage do not necessarily achieve measurable sage-grouse benefits, underscoring the need for program evaluation and monitoring.

  13. Larval traits carry over to affect post-settlement behaviour in a common coral reef fish.

    PubMed

    Dingeldein, Andrea L; White, J Wilson

    2016-07-01

    Most reef fishes begin life as planktonic larvae before settling to the reef, metamorphosing and entering the benthic adult population. Different selective forces determine survival in the planktonic and benthic life stages, but traits established in the larval stage may carry over to affect post-settlement performance. We tested the hypothesis that larval traits affect two key post-settlement fish behaviours: social group-joining and foraging. Certain larval traits of reef fishes are permanently recorded in the rings in their otoliths. In the bluehead wrasse (Thalassoma bifasciatum), prior work has shown that key larval traits recorded in otoliths (growth rate, energetic condition at settlement) carry over to affect post-settlement survival on the reef, with higher-larval-condition fish experiencing less post-settlement mortality. We hypothesized that this selective mortality is mediated by carry-over effects on post-settlement antipredator behaviours. We predicted that better-condition fish would forage less and be more likely to join groups, both behaviours that would reduce predation risk. We collected 550 recently settled bluehead wrasse (Thalassoma bifasciatum) from three reef sites off St. Croix (USVI) and performed two analyses. First, we compared each settler's larval traits to the size of its social group to determine whether larval traits influenced group-joining behaviour. Secondly, we observed foraging behaviour in a subset of grouped and solitary fish (n = 14) for 1-4 days post-settlement. We then collected the fish and tested whether larval traits influenced the proportion of time spent foraging. Body length at settlement, but not condition, affected group-joining behaviour; smaller fish were more likely to remain solitary or in smaller groups. However, both greater length and better condition were associated with greater proportions of time spent foraging over four consecutive days post-settlement. Larval traits carry over to affect post-settlement behaviour, although not as we expected: higher quality larvae join groups more frequently (safer) but then forage more. Foraging is risky but may allow faster post-settlement growth, reducing mortality risk in the long run. This shows that behaviour likely serves as a mechanistic link connecting larval traits to post-settlement selective mortality. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.

  14. Implementing the expanded prescribed fire program on the Gila National Forest, New Mexico: implications for snag management

    Treesearch

    Paul F. Boucher; William M. Block; Gary V. Benavidez; L. E. Wiebe

    2000-01-01

    Efforts to return natural fire to the Gila National Forest, New Mexico, have resulted in controversy regarding management of snags (standing dead trees). The importance of snags for wildlife, especially cavity-dependent birds, is well documented. Although general uses of snags by birds are known (nesting, roosting, perching, and foraging), we know little about the...

  15. Modeling of Habitat and Foraging Behavior of Beaked Whales in the Southern California Bight

    DTIC Science & Technology

    2014-09-30

    preference. APPROACH High-Frequency Acoustic Recording Packages ( HARPs , Wiggins & Hildebrand 2007) have collected acoustic data at 17 sites...signal processing for HARP data is performed using the MATLAB (Mathworks, Natick, MA) based custom program Triton (Wiggins & Hildebrand 2007) and... HARP data are stored with the remainder of metadata (e.g. project name, instrument location, detection settings, detection effort) in the database

  16. Patch dynamics of a foraging assemblage of bees.

    PubMed

    Wright, David Hamilton

    1985-03-01

    The composition and dynamics of foraging assemblages of bees were examined from the standpoint of species-level arrival and departure processes in patches of flowers. Experiments with bees visiting 4 different species of flowers in subalpine meadows in Colorado gave the following results: 1) In enriched patches the rates of departure of bees were reduced, resulting in increases in both the number of bees per species and the average number of species present. 2) The reduction in bee departure rates from enriched patches was due to mechanical factors-increased flower handling time, and to behavioral factors-an increase in the number of flowers visited per inflorescence and in the number of inflorescences visited per patch. Bees foraging in enriched patches could collect nectar 30-45% faster than those foraging in control patches. 3) The quantitative changes in foraging assemblages due to enrichment, in terms of means and variances of species population sizes, fraction of time a species was present in a patch, and in mean and variance of the number of species present, were in reasonable agreement with predictions drawn from queuing theory and studies in island biogeography. 4) Experiments performed with 2 species of flowers with different corolla tube lengths demonstrated that manipulation of resources of differing availability had unequal effects on particular subsets of the larger foraging community. The arrival-departure process of bees on flowers and the immigration-extinction process of species on islands are contrasted, and the value of the stochastic, species-level approach to community composition is briefly discussed.

  17. Increased olfactory search costs change foraging behaviour in an alien mustelid: a precursor to prey switching?

    PubMed

    Price, Catherine J; Banks, Peter B

    2016-09-01

    If generalist predators are to hunt efficiently, they must track the changing costs and benefits of multiple prey types. Decisions to switch from hunting preferred prey to alternate prey have been assumed to be driven by decreasing availability of preferred prey, with less regard for accessibility of alternate prey. Olfactory cues from prey provide information about prey availability and its location, and are exploited by many predators to reduce search costs. We show that stoats Mustela erminea, an alien olfactory predator in New Zealand, are sensitive to the search costs of hunting both their preferred rodent prey (mice) and a less desirable alternate prey (locust). We manipulated search costs for stoats using a novel form of olfactory camouflage of both prey, and found that stoats altered their foraging strategy depending on whether mice were camouflaged or conspicuous, but only when locusts were also camouflaged. Stoats gave up foraging four times more often when both prey were camouflaged, compared to when mice were conspicuous and locusts camouflaged. There were no differences in the foraging strategies used to hunt camouflaged or conspicuous mice when locusts were easy to find. Consequently, camouflaged mice survived longer than conspicuous mice when locusts were hard to find, but not when locusts were easy to find. Our results demonstrate that predators can integrate search costs from multiple prey types when making foraging decisions. Manipulating olfactory search costs to alter foraging strategies offers new methods for understanding the factors that foreshadow prey switching.

  18. Comparison of in vitro and in situ methods in evaluation of forage digestibility in ruminants.

    PubMed

    Krizsan, S J; Nyholm, L; Nousiainen, J; Südekum, K-H; Huhtanen, P

    2012-09-01

    The objective of this study was to compare the application of different in vitro and in situ methods in empirical and mechanistic predictions of in vivo OM digestibility (OMD) and their associations to near-infrared reflectance spectroscopy spectra for a variety of forages. Apparent in vivo OMD of silages made from alfalfa (n = 2), corn (n = 9), corn stover (n = 2), grass (n = 11), whole crops of wheat and barley (n = 8) and red clover (n = 7), and fresh alfalfa (n = 1), grass hays (n = 5), and wheat straws (n = 5) had previously been determined in sheep. Concentrations of indigestible NDF (iNDF) in all forage samples were determined by a 288-h ruminal in situ incubation. Gas production of isolated forage NDF was measured by in vitro incubations for 72 h. In vitro pepsin-cellulase OM solubility (OMS) of the forages was determined by a 2-step gravimetric digestion method. Samples were also subjected to a 2-step determination of in vitro OMD based on buffered rumen fluid and pepsin. Further, rumen fluid digestible OM was determined from a single 96-h incubation at 38°C. Digestibility of OM from the in situ and the in vitro incubations was calculated according to published empirical equations, which were either forage specific or general (1 equation for all forages) within method. Indigestible NDF was also used in a mechanistic model to predict OMD. Predictions of OMD were evaluated by residual analysis using the GLM procedure in SAS. In vitro OMS in a general prediction equation of OMD did not display a significant forage-type effect on the residuals (observed - predicted OMD; P = 0.10). Predictions of OMD within forage types were consistent between iNDF and the 2-step in vitro method based on rumen fluid. Root mean square error of OMD was least (0.032) when the prediction was based on a general forage equation of OMS. However, regenerating a simple regression for iNDF by omitting alfalfa and wheat straw reduced the root mean square error of OMD to 0.025. Indigestible NDF in a general forage equation predicted OMD without any bias (P ≥ 0.16), and root mean square error of prediction was smallest among all methods when alfalfa and wheat straw samples were excluded. Our study suggests that compared with the in vitro laboratory methods, iNDF used in forage-specific equations will improve overall predictions of forage in vivo OMD. The in vitro and in situ methods performed equally well in calibrations of iNDF or OMD by near-infrared reflectance spectroscopy.

  19. Environmental conditions and prey-switching by a seabird predator impact juvenile salmon survival

    USGS Publications Warehouse

    Wells, Brian K.; Santora, Jarrod A.; Henderson, Mark J.; Warzybok, Pete; Jahncke, Jaime; Bradley, Russell W.; Huff, David D.; Schroeder, Isaac D.; Nelson, Peter; Field, John C.; Ainley, David G.

    2017-01-01

    Due to spatio-temporal variability of lower trophic-level productivity along the California Current Ecosystem (CCE), predators must be capable of switching prey or foraging areas in response to changes in environmental conditions and available forage. The Gulf of the Farallones in central California represents a biodiversity hotspot and contains the largest common murre (Uria aalge) colonies along the CCE. During spring, one of the West Coast's most important Chinook salmon (Oncorhynchus tshawytscha) populations out-migrates into the Gulf of the Farallones. We quantify the effect of predation on juvenile Chinook salmon associated with ecosystem-level variability by integrating long-term time series of environmental conditions (upwelling, river discharge), forage species abundance within central CCE, and population size, at-sea distribution, and diet of the common murre. Our results demonstrate common murres typically forage in the vicinity of their offshore breeding sites, but in years in which their primary prey, pelagic young-of-year rockfish (Sebastesspp.), are less available they forage for adult northern anchovies (Engraulis mordax) nearshore. Incidentally, while foraging inshore, common murre consumption of out-migrating juvenile Chinook salmon, which are collocated with northern anchovy, increases and population survival of the salmon is significantly reduced. Results support earlier findings that show timing and strength of upwelling, and the resultant forage fish assemblage, is related to Chinook salmon recruitment variability in the CCE, but we extend those results by demonstrating the significance of top-down impacts associated with these bottom-up dynamics. Our results demonstrate the complexity of ecosystem interactions and impacts between higher trophic-level predators and their prey, complexities necessary to quantify in order to parameterize ecosystem models and evaluate likely outcomes of ecosystem management options.

  20. Breeding for genetic improvement of forage plants in relation to increasing animal production with reduced environmental footprint.

    PubMed

    Kingston-Smith, A H; Marshall, A H; Moorby, J M

    2013-03-01

    Animal production is a fundamental component of the food supply chain, and with an increasing global population production levels are set to increase. Ruminant animals in particular are valuable in their ability to convert a fibre-rich forage diet into a high-quality protein product for human consumption, although this benefit is offset by inefficiencies in rumen fermentation that contribute to emission of significant quantities of methane and nitrogenous waste. Through co-operation between plant and animal sciences, we can identify how the nutritional requirements of ruminants can be satisfied by high-quality forages for the future. Selective forage plant breeding has supported crop improvement for nearly a century. Early plant breeding programmes were successful in terms of yield gains (4% to 5% per decade), with quality traits becoming increasingly important breeding targets (e.g. enhanced disease resistance and digestibility). Recently, demands for more sustainable production systems have required high yielding, high-quality forages that enable efficient animal production with minimal environmental impact. Achieving this involves considering the entire farm system and identifying opportunities for maximising nutrient use efficiency in both forage and animal components. Forage crops of the future must be able to utilise limited resources (water and nutrients) to maximise production on a limited land area and this may require us to consider alternative plant species to those currently in use. Furthermore, new breeding targets will be identified as the interactions between plants and the animals that consume them become better understood. This will ensure that available resources are targeted at delivering maximum benefits to the animal through enhanced transformation efficiency.

  1. Environmental conditions and prey-switching by a seabird predator impact juvenile salmon survival

    NASA Astrophysics Data System (ADS)

    Wells, Brian K.; Santora, Jarrod A.; Henderson, Mark J.; Warzybok, Pete; Jahncke, Jaime; Bradley, Russell W.; Huff, David D.; Schroeder, Isaac D.; Nelson, Peter; Field, John C.; Ainley, David G.

    2017-10-01

    Due to spatio-temporal variability of lower trophic-level productivity along the California Current Ecosystem (CCE), predators must be capable of switching prey or foraging areas in response to changes in environmental conditions and available forage. The Gulf of the Farallones in central California represents a biodiversity hotspot and contains the largest common murre (Uria aalge) colonies along the CCE. During spring, one of the West Coast's most important Chinook salmon (Oncorhynchus tshawytscha) populations out-migrates into the Gulf of the Farallones. We quantify the effect of predation on juvenile Chinook salmon associated with ecosystem-level variability by integrating long-term time series of environmental conditions (upwelling, river discharge), forage species abundance within central CCE, and population size, at-sea distribution, and diet of the common murre. Our results demonstrate common murres typically forage in the vicinity of their offshore breeding sites, but in years in which their primary prey, pelagic young-of-year rockfish (Sebastes spp.), are less available they forage for adult northern anchovies (Engraulis mordax) nearshore. Incidentally, while foraging inshore, common murre consumption of out-migrating juvenile Chinook salmon, which are collocated with northern anchovy, increases and population survival of the salmon is significantly reduced. Results support earlier findings that show timing and strength of upwelling, and the resultant forage fish assemblage, is related to Chinook salmon recruitment variability in the CCE, but we extend those results by demonstrating the significance of top-down impacts associated with these bottom-up dynamics. Our results demonstrate the complexity of ecosystem interactions and impacts between higher trophic-level predators and their prey, complexities necessary to quantify in order to parameterize ecosystem models and evaluate likely outcomes of ecosystem management options.

  2. Interactions between rate processes with different timescales explain counterintuitive foraging patterns of arctic wintering eiders

    PubMed Central

    Heath, Joel P.; Gilchrist, H. Grant; Ydenberg, Ronald C.

    2010-01-01

    To maximize fitness, animals must respond to a variety of processes that operate at different rates or timescales. Appropriate decisions could therefore involve complex interactions among these processes. For example, eiders wintering in the arctic sea ice must consider locomotion and physiology of diving for benthic invertebrates, digestive processing rate and a nonlinear decrease in profitability of diving as currents increase over the tidal cycle. Using a multi-scale dynamic modelling approach and continuous field observations of individuals, we demonstrate that the strategy that maximizes long-term energy gain involves resting during the most profitable foraging period (slack currents). These counterintuitive foraging patterns are an adaptive trade-off between multiple overlapping rate processes and cannot be explained by classical rate-maximizing optimization theory, which only considers a single timescale and predicts a constant rate of foraging. By reducing foraging and instead digesting during slack currents, eiders structure their activity in order to maximize long-term energetic gain over an entire tide cycle. This study reveals how counterintuitive patterns and a complex functional response can result from a simple trade-off among several overlapping rate processes, emphasizing the necessity of a multi-scale approach for understanding adaptive routines in the wild and evaluating mechanisms in ecological time series. PMID:20504814

  3. The Impact of Using Alternative Forages on the Nutrient Value within Slurry and Its Implications for Forage Productivity in Agricultural Systems

    PubMed Central

    Crotty, Felicity V.; Fychan, Rhun; Theobald, Vince J.; Sanderson, Ruth; Chadwick, David R.; Marley, Christina L.

    2014-01-01

    Alternative forages can be used to provide valuable home-grown feed for ruminant livestock. Utilising these different forages could affect the manure value and the implications of incorporating these forages into farming systems, needs to be better understood. An experiment tested the hypothesis that applying slurries from ruminants, fed ensiled red clover (Trifolium pratense), lucerne (Medicago sativa) or kale (Brassica oleracea) would improve the yield of hybrid ryegrass (Lolium hybridicum), compared with applying slurries from ruminants fed ensiled hybrid ryegrass, or applying inorganic N alone. Slurries from sheep offered one of four silages were applied to ryegrass plots (at 35 t ha−1) with 100 kg N ha−1 inorganic fertiliser; dry matter (DM) yield was compared to plots only receiving ammonium nitrate at rates of 0, 100 and 250 kg N ha−1 year−1. The DM yield of plots treated with 250 kg N, lucerne or red clover slurry was significantly higher than other treatments (P<0.001). The estimated relative fertiliser N equivalence (FNE) (fertiliser-N needed to produce same yield as slurry N), was greatest for lucerne (114 kg) >red clover (81 kg) >kale (44 kg) >ryegrass (26 kg ha−1 yr−1). These FNE values represent relative efficiencies of 22% (ryegrass), 52% (kale), 47% (red clover) and 60% for lucerne slurry, with the ryegrass slurry efficiency being lowest (P = 0.005). Soil magnesium levels in plots treated with legume slurry were higher than other treatments (P<0.001). Overall, slurries from ruminants fed alternative ensiled forages increased soil nutrient status, forage productivity and better N efficiency than slurries from ruminants fed ryegrass silage. The efficiency of fertiliser use is one of the major factors influencing the sustainability of farming systems, these findings highlight the cascade in benefits from feeding ruminants alternative forages, and the need to ensure their value is effectively captured to reduce environmental risks. PMID:24830777

  4. A Strong Immune Response in Young Adult Honeybees Masks Their Increased Susceptibility to Infection Compared to Older Bees

    PubMed Central

    Bull, James C.; Ryabov, Eugene V.; Prince, Gill; Mead, Andrew; Zhang, Cunjin; Baxter, Laura A.; Pell, Judith K.; Osborne, Juliet L.; Chandler, Dave

    2012-01-01

    Honeybees, Apis mellifera, show age-related division of labor in which young adults perform maintenance (“housekeeping”) tasks inside the colony before switching to outside foraging at approximately 23 days old. Disease resistance is an important feature of honeybee biology, but little is known about the interaction of pathogens and age-related division of labor. We tested a hypothesis that older forager bees and younger “house” bees differ in susceptibility to infection. We coupled an infection bioassay with a functional analysis of gene expression in individual bees using a whole genome microarray. Forager bees treated with the entomopathogenic fungus Metarhizium anisopliae s.l. survived for significantly longer than house bees. This was concomitant with substantial differences in gene expression including genes associated with immune function. In house bees, infection was associated with differential expression of 35 candidate immune genes contrasted with differential expression of only two candidate immune genes in forager bees. For control bees (i.e. not treated with M. anisopliae) the development from the house to the forager stage was associated with differential expression of 49 candidate immune genes, including up-regulation of the antimicrobial peptide gene abaecin, plus major components of the Toll pathway, serine proteases, and serpins. We infer that reduced pathogen susceptibility in forager bees was associated with age-related activation of specific immune system pathways. Our findings contrast with the view that the immunocompetence in social insects declines with the onset of foraging as a result of a trade-off in the allocation of resources for foraging. The up-regulation of immune-related genes in young adult bees in response to M. anisopliae infection was an indicator of disease susceptibility; this also challenges previous research in social insects, in which an elevated immune status has been used as a marker of increased disease resistance and fitness without considering the effects of age-related development. PMID:23300441

  5. Effects of feeding salt-tolerant forage cultivated in saline-alkaline land on rumen fermentation, feed digestibility and nitrogen balance in lamb.

    PubMed

    Wang, Cong; Dong, Kuan Hu; Liu, Qiang; Yang, Wen Zhu; Zhao, Xiang; Liu, Sheng Qiang; He, Ting Ting; Liu, Zhuang Yu

    2011-05-01

    Mixing salt-tolerant plants with other plants may affect rumen fermentation, which could result in an increase of feed conversion rate. The objective of this study was to evaluate the effects of partially or entirely replacing the corn stover with a mixture of salt-tolerant forage (Dahurian wildrye grass, weeping alkaligrass and erect milkvetch) in the diet of lambs on ruminal fermentation, feed digestibility and nitrogen (N) balance. Ratios of corn stover to the mixture of salt-tolerant forages in the four experimental diets were 100:0, 67:33, 33:67 and 0:100, respectively, for control, low (LF), medium (MF) and high (HF). Ruminal pH was lower (P = 0.048) with LF and MF than with control and HF diets. Total VFA concentration was consistently higher (P = 0.039) for LF and MF than for control and HF with increasing amount of salt-tolerant forage. Ratio of acetate to propionate was linearly (P = 0.019) decreased due to the decrease in acetate production. Digestibilities of OM, NDF and CP in the whole tract linearly (P < 0.002) decreased with increasing amount of salt-tolerant forage. Similarly, retained N and ratio of retained N to digestible N also linearly (P < 0.005) decreased. Feeding salt-tolerant forage cultivated in saline-alkaline land improved rumen fermentation with increased total VFA production, and changed the rumen fermentation pattern to increased butyrate production. However, the decreased feed digestibility in the whole digestive tract of lamb may reduce nutrient availability to animals and thus adversely affect animal productivity. Additionally, feeding salt-tolerant forages may require more protein supplement to meet animal requirements, because of the low protein content and low protein digestibility of the salt-tolerant forages. Copyright © 2011 Society of Chemical Industry.

  6. Reproductive success is energetically linked to foraging efficiency in Antarctic fur seals

    PubMed Central

    2017-01-01

    The efficiency with which individuals extract energy from their environment defines their survival and reproductive success, and thus their selective contribution to the population. Individuals that forage more efficiently (i.e., when energy gained exceeds energy expended) are likely to be more successful at raising viable offspring than individuals that forage less efficiently. Our goal was to test this prediction in large long-lived mammals under free-ranging conditions. To do so, we equipped 20 lactating Antarctic fur seals (Arctocephalus gazella) breeding on Kerguelen Island in the Southern Ocean with tags that recorded GPS locations, depth and tri-axial acceleration to determine at-sea behaviours and detailed time-activity budgets during their foraging trips. We also simultaneously measured energy spent at sea using the doubly-labeled water (DLW) method, and estimated the energy acquired while foraging from 1) type and energy content of prey species present in scat remains, and 2) numbers of prey capture attempts determined from head acceleration. Finally, we followed the growth of 36 pups from birth until weaning (of which 20 were the offspring of our 20 tracked mothers), and used the relative differences in body mass of pups at weaning as an index of first year survival and thus the reproductive success of their mothers. Our results show that females with greater foraging efficiencies produced relatively bigger pups at weaning. These mothers achieved greater foraging efficiency by extracting more energy per minute of diving rather than by reducing energy expenditure. This strategy also resulted in the females spending less time diving and less time overall at sea, which allowed them to deliver higher quality milk to their pups, or allowed their pups to suckle more frequently, or both. The linkage we demonstrate between reproductive success and the quality of individuals as foragers provides an individual-based quantitative framework to investigate how changes in the availability and accessibility of prey can affect fitness of animals. PMID:28453563

  7. Assignment tests, telemetry and tag-recapture data converge to identify natal origins of leatherback turtles foraging in Atlantic Canadian waters.

    PubMed

    Stewart, Kelly R; James, Michael C; Roden, Suzanne; Dutton, Peter H

    2013-07-01

    Investigating migratory connectivity between breeding and foraging areas is critical to effective management and conservation of highly mobile marine taxa, particularly threatened, endangered, or economically important species that cross through regional, national and international boundaries. The leatherback turtle (Dermochelys coriacea, Vandelli 1761) is one such transboundary species that spends time at breeding areas at low latitudes in the northwest Atlantic during spring and summer. From there, they migrate widely throughout the North Atlantic, but many show fidelity to one region off eastern Canada, where critical foraging habitat has been proposed. Our goal was to identify nesting beach origins for turtles foraging here. Using genetics, we identified natal beaches for 288 turtles that were live-captured off the coast of Nova Scotia, Canada. Turtles were sampled (skin or blood) and genotyped using 17 polymorphic microsatellite markers. Results from three assignment testing programs (ONCOR, GeneClass2 and Structure) were compared. Our nesting population reference data set included 1417 individuals from nine Atlantic nesting assemblages. A supplementary data set for 83 foraging turtles traced to nesting beaches using flipper tags and/or PIT tags (n = 72), or inferred from satellite telemetry (n = 11), enabled ground-truthing of the assignments. We first assigned turtles using only genetic information and then used the supplementary recapture information to verify assignments. ONCOR performed best, assigning 64 of the 83 recaptured turtles to natal beaches (77·1%). Turtles assigned to Trinidad (164), French Guiana (72), Costa Rica (44), St. Croix (7), and Florida (1) reflect the relative size of those nesting populations, although none of the turtles were assigned to four other potential source nesting assemblages. Our results demonstrate the utility of genetic approaches for determining source populations of foraging marine animals and include the first identification of natal rookeries of male leatherbacks, identified through satellite telemetry and verified with genetics. This work highlights the importance of long-term monitoring and tagging programmes in nesting and high-use foraging areas. Moreover, it provides a scientific basis for evaluating stock-specific effects of fisheries on migratory marine species, thus identifying where coordinated international recovery efforts may be most effective. © 2013 NOAA ‐ National Marine Fisheries Service. Journal of Animal Ecology © 2013 British Ecological Society.

  8. Marine predators and persistent prey in the southeast Bering Sea

    NASA Astrophysics Data System (ADS)

    Sigler, Michael F.; Kuletz, Kathy J.; Ressler, Patrick H.; Friday, Nancy A.; Wilson, Christopher D.; Zerbini, Alexandre N.

    2012-06-01

    Predictable prey locations reduce search time and energetic costs of foraging; thus marine predators often exploit locations where prey concentrations persist. In our study, we examined whether this association is influenced by differences among predator species in foraging modes (travel cost, surface feeder or diver) or whether the predator species is a central place forager or not. We examined distributions of two seabird species during their nesting period, the surface-feeding black-legged kittiwake (Rissa tridactyla) and the pursuit-diving thick-billed murre (Uria lomvia), and two baleen whale species, the humpback whale (Megaptera novaeangliae) and the fin whale (Balaenoptera physalus), in relation to two key prey, age-1 walleye pollock (Theragra chalcogramma) and euphausiids (Euphausiidae). Prey surveys were conducted once each year during 2004 and 2006-2010. Concurrent predator surveys were conducted in 2006-2010 (seabirds) and 2008 and 2010 (whales). We compared the seabird and whale foraging locations to where age-1 pollock and euphausiids were concentrated and considered the persistence of these concentrations, where the time-scale of persistence is year (i.e., a comparison among surveys that are conducted once each year). Euphausiids were widespread and concentrations often were reliably found within specific 37 km×37 km blocks ('persistent hot spots of prey'). In contrast, age-1 pollock were more concentrated and their hot spots were persistent only on coarser scales (>37 km). Both seabird species, regardless of foraging mode, were associated with age-1 pollock but not with euphausiids, even though age-1 pollock were less persistent than euphausiids. The higher travel cost central place foragers, thick-billed murres, foraged at prey concentrations nearer their island colonies than black-legged kittiwakes, which were more widespread foragers. Humpback whales were not tied to a central place and mostly were located only where euphausiids were concentrated, and further, often in locations where these concentrations were persistent. Fin whales were associated with locations where age-1 pollock were more likely, similar to black-legged kittiwakes and thick-billed murres, but their association with euphausiids was unclear. Our results suggest that a predator's foraging mode and their restrictions during breeding affect their response to prey persistence.

  9. Bull Trout Forage Investigations in Beulah Reservoir, Oregon - Annual Report for 2006

    USGS Publications Warehouse

    Rose, Brien P.; Mesa, Mathew G.

    2009-01-01

    Beulah Reservoir on the north fork of the Malheur River in northeastern Oregon provides irrigation water to nearby farms and ranches and supports an adfluvial population of bull trout (Salvelinus confluentus), which are listed as threatened under the Endangered Species Act. Water management in Beulah Reservoir results in seasonal and annual fluctuations of water volume that may affect forage availability for bull trout. Because no minimum pool requirements currently exist, the reservoir is occasionally reduced to run-of-river levels, which may decimate forage fish populations and ultimately affect bull trout. We sampled fish and aquatic insects in Beulah Reservoir in the spring, before the annual drawdown of 2006, and afterward, in the late fall. We also collected samples 1.5 years after the reservoir was dewatered for three consecutive summers. Overall, the moderate drawdown of 2006 (32 percent of full pool) did not drastically alter the fish community in Beulah Reservoir. We did document, however, decreases in abundance and sizes of chironomids in areas of the reservoir that were frequently dewatered, increased catch rates of fish with gillnets, and decreases in population estimates for smaller fishes after drawdown. In 2006, after the dewaterings of 2002-04, species composition was similar to that prior to the dewaterings, but the size distributions of most species were biased toward small juvenile or subyearling fishes and larger fishes were rare. Our results indicate that repeated reservoir drawdown reduces aquatic insect forage for bull trout and probably affects forage fish populations at least temporarily. The high catch rates of juvenile fishes 1.5 years after consecutive dewaterings suggests good reproductive success for any remaining adult fish, and shows that the fish community in Beulah Reservoir is resilient to such disturbances. There is, however, a period of time after serious drawdowns before significant numbers of juvenile fishes start to appear in the reservoir. Because Beulah Reservoir experiences a wide variety of drawdown scenarios in consecutive years, the forage fish community may never reach a state of equilibrium.

  10. Reduced aggression and foraging efficiency of invasive signal crayfish (Pacifastacus leniusculus) infested with non-native branchiobdellidans (Annelida: Clitellata).

    PubMed

    James, J; Davidson, K E; Richardson, G; Grimstead, C; Cable, J

    2015-11-17

    Biological invasions are a principal threat to global biodiversity and identifying the determinants of non-native species' success is a conservation priority. Through their ability to regulate host populations, parasites are increasingly considered as important in determining the outcome of species' invasions. Here, we present novel evidence that the common crayfish ecto-symbiont, Xironogiton victoriensis (Annelida: Clitellata) can affect the behaviour of a widespread and ecologically important invader, the signal crayfish (Pacifastacus leniusculus). To assess the signal crayfish-X. victoriensis relationship naïve crayfish were infested with an intensity of worms typically observed under natural conditions. Over a 10-week period the growth rate and survivorship of these animals was monitored and compared to those of uninfested counterparts. Complementary dyadic competition and foraging experiments were run to assess the behaviour of infested compared to uninfested animals. These data were analysed using General Linear Models and Generalized Linear Mixed Models. Whilst X. victoriensis did not affect the growth rate or survivorship of signal crayfish under laboratory conditions, infested animals were significantly less aggressive and poorer foragers than uninfested individuals. Through reducing aggression and foraging efficiency, infestation with X. victoriensis may disrupt the social structure, and potentially growth rate and/or dispersal of afflicted crayfish populations, with potential effects on their invasion dynamics. This is important given the widespread invasive range of crayfish and their functional roles as ecosystem engineers and keystone species.

  11. Foraging enrichment modulates open field response to monosodium glutamate in mice.

    PubMed

    Onaolapo, Olakunle J; Onaolapo, Adejoke Y; Akanmu, Moses A; Olayiwola, Gbola

    2015-07-01

    Environmental enrichment can enhance expression of species-specific behaviour. While foraging enrichment is encouraged in laboratory animals, its impact on novelty induced behaviour remain largely unknown. Here, we studied behavioural response of mice to acute and subchronic oral monosodium glutamate (MSG) in an open field with /without foraging enrichment. Adult male mice, assigned to five groups were administered vehicle (distilled water), or one of four selected doses of MSG (10, 20, 40 and 80 mg/kg) for 21 days. Open field novelty induced behaviours i.e. horizontal locomotion, rearing and grooming were assessed after the first and last doses of MSG. Results were analysed using MANOVA followed by Tukey HSD multiple comparison test and expressed as mean ± S.E.M. Following acute MSG administration without enrichment, locomotor activity reduced, grooming increased, while rearing activity reduced at lower doses and increased at higher doses. Subchronic administration without enrichment was associated with increased locomotor activity and reduction in grooming, rearing activity however still showed a biphasic response. Addition of enrichment with acute administration resulted in sustained reduction in locomotor and rearing activities with a biphasic grooming response. Subchronically, there was reduction in horizontal locomotion, biphasic rearing response and sustained increase in grooming activity. Behavioural response to varying doses of MSG as observed in the open field is affected by modifications such as foraging enrichment, which can reverse or dampen the central effects seen irrespective of duration of administration.

  12. Population-level plasticity in foraging behavior of western gulls (Larus occidentalis)

    USGS Publications Warehouse

    Shaffer, Scott A.; Cockerham, Sue; Warzybok, Pete; Bradley, Russell W.; Jahncke, Jaime; Clatterbuck, Corey A.; Lucia, Magali; Jelincic, Jennifer A.; Cassell, Anne L.; Kelsey, Emily; Adams, Josh

    2017-01-01

    BackgroundPlasticity in foraging behavior among individuals, or across populations may reduce competition. As a generalist carnivore, western gulls (Larus occidentalis) consume a wide range of marine and terrestrial foods. However, the foraging patterns and habitat selection (ocean or land) of western gulls is not well understood, despite their ubiquity in coastal California. Here, we used GPS loggers to compare the foraging behavior and habitat use of western gulls breeding at two island colonies in central California.ResultsGulls from offshore Southeast Farallon Island (SFI; n = 41 gulls) conducted more oceanic trips (n = 90) of shorter duration (3.8 ± 3.3 SD hours) and distance (27.1 ± 20.3 km) than trips to the mainland (n = 41) which were nearly 4 times longer and 2 times farther away. In contrast, gulls from coastal Año Nuevo Island (ANI; n = 20 gulls) foraged at sites on land more frequently (n = 103) but trip durations (3.6 ± 2.4 h) and distances (20.8 ± 9.4 km) did not differ significantly from oceanic trips (n = 42) where trip durations were only slightly shorter (2.9 ± 2.7 h) and equidistant (20.6 ± 12.1 km). Gulls from both colonies visited more sites while foraging at sea but spent significantly longer (3–5 times) durations at each site visited on land. Foraging at sea was also more random compared to foraging trips over land where gulls from both colonies visited the same sites on multiple trips. The total home range of gulls from SFI (14,230 km2) was 4.5 times larger than that of gulls from ANI, consistent with greater resource competition resulting from a larger abundance of seabirds at SFI.ConclusionsPopulation-level plasticity in foraging behavior was evident and dependent on habitat type. In addition, gulls from SFI were away foraging longer than gulls from ANI (22% vs. 7.5%, respectively), which impacts the defense of territories and attempts at nest predation by conspecifics. Our results can be used to explain lower chick productivity at SFI, and can provide insight into increased gull activity in urban areas.

  13. Constraints on productivity of wild Nene or Hawaiian geese Branta sandvicensis

    USGS Publications Warehouse

    Banko, P.C.

    1992-01-01

    I investigated constraints on the productivity of wild Nene on Hawaii and Maui during 1978-81. These populations were composed largely of captive-reared birds. Recruitment of young was low. Of 140 breeding attempts, 36% resulted in successful nests and 7% produced fledglings. Annual productivity was limited because: 1) relatively few available pairs attempted to breed (58% on Hawaii; 46% on Maui), 2) average rate of nest success was low (44%), and 3) gosling survival was low <39%). Low incidence of nesting suggests that many females could not accumulate sufficient body reserves for egg-laying and incubation due to poor foraging conditions or poorly developed foraging skills. Nest failure was high due to predation on eggs and incubating females by the introduced mongoose. Gosling mortality was high because of poor foraging conditions near many nests, forcing broods to travel over rugged, volcanic terrain to distant rearing areas. In addition, some goslings were killed by predators. Nene populations would benefit most from improved foraging opportunities for adult females and goslings and from reduced predator populations.

  14. Domestic cats and dogs create a landscape of fear for pest rodents around rural homesteads.

    PubMed

    Mahlaba, Themb'alilahlwa A M; Monadjem, Ara; McCleery, Robert; Belmain, Steven R

    2017-01-01

    Using domestic predators such as cats to control rodent pest problems around farms and homesteads is common across the world. However, practical scientific evidence on the impact of such biological control in agricultural settings is often lacking. We tested whether the presence of domestic cats and/or dogs in rural homesteads would affect the foraging behaviour of pest rodents. We estimated giving up densities (GUDs) from established feeding patches and estimated relative rodent activity using tracking tiles at 40 homesteads across four agricultural communities. We found that the presence of cats and dogs at the same homestead significantly reduced activity and increased GUDs (i.e. increased perception of foraging cost) of pest rodent species. However, if only cats or dogs alone were present at the homestead there was no observed difference in rodent foraging activity in comparison to homesteads with no cats or dogs. Our results suggest that pest rodent activity can be discouraged through the presence of domestic predators. When different types of predator are present together they likely create a heightened landscape of fear for foraging rodents.

  15. The Socioecology of Territory Size and a "Work-Around" Hypothesis for the Adoption of Farming

    PubMed Central

    Freeman, Jacob

    2016-01-01

    This paper combines theory from ecology and anthropology to investigate variation in the territory sizes of subsistence oriented agricultural societies. The results indicate that population and the dependence of individuals within a society on “wild” foods partly determine the territory sizes of agricultural societies. In contrast, the productivity of an agroecosystem is not an important determinant of territory size. A comparison of the population-territory size scaling dynamics of agricultural societies and human foragers indicates that foragers and farmers face the same constraints on their ability to expand their territory and intensify their use of resources within a territory. However, the higher density of food in an agroecosystem allows farmers, on average, to live at much higher population densities than human foragers. These macroecological patterns are consistent with a “work-around hypothesis” for the adoption of farming. This hypothesis is that as residential groups of foragers increase in size, farming can sometimes better reduce the tension between an individual’s autonomy over resources and the need for social groups to function to provide public goods like defense and information. PMID:27391955

  16. Fragmentation of nest and foraging habitat affects time budgets of solitary bees, their fitness and pollination services, depending on traits: Results from an individual-based model

    PubMed Central

    Settele, Josef; Dormann, Carsten F.

    2018-01-01

    Solitary bees are important but declining wild pollinators. During daily foraging in agricultural landscapes, they encounter a mosaic of patches with nest and foraging habitat and unsuitable matrix. It is insufficiently clear how spatial allocation of nesting and foraging resources and foraging traits of bees affect their daily foraging performance. We investigated potential brood cell construction (as proxy of fitness), number of visited flowers, foraging habitat visitation and foraging distance (pollination proxies) with the model SOLBEE (simulating pollen transport by solitary bees, tested and validated in an earlier study), for landscapes varying in landscape fragmentation and spatial allocation of nesting and foraging resources. Simulated bees varied in body size and nesting preference. We aimed to understand effects of landscape fragmentation and bee traits on bee fitness and the pollination services bees provide, as well as interactions between them, and the general consequences it has to our understanding of the system. This broad scope gives multiple key results. 1) Body size determines fitness more than landscape fragmentation, with large bees building fewer brood cells. High pollen requirements for large bees and the related high time budgets for visiting many flowers may not compensate for faster flight speeds and short handling times on flowers, giving them overall a disadvantage compared to small bees. 2) Nest preference does affect distribution of bees over the landscape, with cavity-nesting bees being restricted to nesting along field edges, which inevitably leads to performance reductions. Fragmentation mitigates this for cavity-nesting bees through increased edge habitat. 3) Landscape fragmentation alone had a relatively small effect on all responses. Instead, the local ratio of nest to foraging habitat affected bee fitness positively through reduced local competition. The spatial coverage of pollination increases steeply in response to this ratio for all bee sizes. The nest to foraging habitat ratio, a strong habitat proxy incorporating fragmentation could be a promising and practical measure for comparing landscape suitability for pollinators. 4) The number of flower visits was hardly affected by resource allocation, but predominantly by bee size. 5) In landscapes with the highest visitation coverage, bees flew least far, suggesting that these pollination proxies are subject to a trade-off between either longer pollen transport distances or a better pollination coverage, linked to how nests are distributed over the landscape rather than being affected by bee size. PMID:29444076

  17. Fragmentation of nest and foraging habitat affects time budgets of solitary bees, their fitness and pollination services, depending on traits: Results from an individual-based model.

    PubMed

    Everaars, Jeroen; Settele, Josef; Dormann, Carsten F

    2018-01-01

    Solitary bees are important but declining wild pollinators. During daily foraging in agricultural landscapes, they encounter a mosaic of patches with nest and foraging habitat and unsuitable matrix. It is insufficiently clear how spatial allocation of nesting and foraging resources and foraging traits of bees affect their daily foraging performance. We investigated potential brood cell construction (as proxy of fitness), number of visited flowers, foraging habitat visitation and foraging distance (pollination proxies) with the model SOLBEE (simulating pollen transport by solitary bees, tested and validated in an earlier study), for landscapes varying in landscape fragmentation and spatial allocation of nesting and foraging resources. Simulated bees varied in body size and nesting preference. We aimed to understand effects of landscape fragmentation and bee traits on bee fitness and the pollination services bees provide, as well as interactions between them, and the general consequences it has to our understanding of the system. This broad scope gives multiple key results. 1) Body size determines fitness more than landscape fragmentation, with large bees building fewer brood cells. High pollen requirements for large bees and the related high time budgets for visiting many flowers may not compensate for faster flight speeds and short handling times on flowers, giving them overall a disadvantage compared to small bees. 2) Nest preference does affect distribution of bees over the landscape, with cavity-nesting bees being restricted to nesting along field edges, which inevitably leads to performance reductions. Fragmentation mitigates this for cavity-nesting bees through increased edge habitat. 3) Landscape fragmentation alone had a relatively small effect on all responses. Instead, the local ratio of nest to foraging habitat affected bee fitness positively through reduced local competition. The spatial coverage of pollination increases steeply in response to this ratio for all bee sizes. The nest to foraging habitat ratio, a strong habitat proxy incorporating fragmentation could be a promising and practical measure for comparing landscape suitability for pollinators. 4) The number of flower visits was hardly affected by resource allocation, but predominantly by bee size. 5) In landscapes with the highest visitation coverage, bees flew least far, suggesting that these pollination proxies are subject to a trade-off between either longer pollen transport distances or a better pollination coverage, linked to how nests are distributed over the landscape rather than being affected by bee size.

  18. Foraging to settled life: a comparative study of anthropometry and nutrition of Onges of Little Andaman Island.

    PubMed

    Sahani, Ramesh

    2013-10-01

    The aim of this study is to examine the impact of forced settlement among the foraging Onges, which induced them to change their subsistence from full time foragers to settled consumer. Anthropometric study along with dietary investigation was considered before and afterwards they were forcibly settled. The anthropometric variables and indices show gradual increase among the Onges males but not so much in females. High prevalence of overweight and obesity is also reported. Comparison with other Andaman Islanders indicates that the group which was under the developmental schemes (forced to settle), is showing more mean values of anthropometric variables with prevalence of overweight and obesity than the group, which was not under the influence of developmental programme. Their dietary pattern and physical activity changed to a great extent. The protein content of the diets reduced significantly and the fat along with carbohydrates increased to a substantial amount. The contribution of protein to calories has been reduced substantially and now it is only around 10%, whereas in the past it was above 30%. Caloric intakes increased more than two times, while the physical activity level reduced to about half time. Decreased mobility and altered food habits are the probable reason for the gradual increase of body dimensions and prevalent overweight and obesity, which are the outcomes of forced settlement. Copyright © 2013 Elsevier GmbH. All rights reserved.

  19. Effects of bottom trawling on fish foraging and feeding.

    PubMed

    Johnson, Andrew Frederick; Gorelli, Giulia; Jenkins, Stuart Rees; Hiddink, Jan Geert; Hinz, Hilmar

    2015-01-22

    The effects of bottom trawling on benthic invertebrates include reductions of biomass, diversity and body size. These changes may negatively affect prey availability for demersal fishes, potentially leading to reduced food intake, body condition and yield of fishes in chronically trawled areas. Here, the effect of trawling on the prey availability and diet of two commercially important flatfish species, plaice (Pleuronectes platessa) and dab (Limanda limanda), was investigated over a trawling intensity gradient in the Irish Sea. Previous work in this area has shown that trawling negatively affects the condition of plaice but not of dab. This study showed that reductions in local prey availability did not result in reduced feeding of fish. As trawling frequency increased, both fish and prey biomass declined, such that the ratio of fish to prey remained unchanged. Consequently, even at frequently trawled sites with low prey biomass, both plaice and dab maintained constant levels of stomach fullness and gut energy contents. However, dietary shifts in plaice towards energy-poor prey items were evident when prey species were analysed individually. This, together with a potential decrease in foraging efficiency due to low prey densities, was seen as the most plausible cause for the reduced body condition observed. Understanding the relationship between trawling, benthic impacts, fish foraging and resultant body condition is an important step in designing successful mitigation measures for future management strategies in bottom trawl fisheries.

  20. Effects of bottom trawling on fish foraging and feeding

    PubMed Central

    Johnson, Andrew Frederick; Gorelli, Giulia; Jenkins, Stuart Rees; Hiddink, Jan Geert; Hinz, Hilmar

    2015-01-01

    The effects of bottom trawling on benthic invertebrates include reductions of biomass, diversity and body size. These changes may negatively affect prey availability for demersal fishes, potentially leading to reduced food intake, body condition and yield of fishes in chronically trawled areas. Here, the effect of trawling on the prey availability and diet of two commercially important flatfish species, plaice (Pleuronectes platessa) and dab (Limanda limanda), was investigated over a trawling intensity gradient in the Irish Sea. Previous work in this area has shown that trawling negatively affects the condition of plaice but not of dab. This study showed that reductions in local prey availability did not result in reduced feeding of fish. As trawling frequency increased, both fish and prey biomass declined, such that the ratio of fish to prey remained unchanged. Consequently, even at frequently trawled sites with low prey biomass, both plaice and dab maintained constant levels of stomach fullness and gut energy contents. However, dietary shifts in plaice towards energy-poor prey items were evident when prey species were analysed individually. This, together with a potential decrease in foraging efficiency due to low prey densities, was seen as the most plausible cause for the reduced body condition observed. Understanding the relationship between trawling, benthic impacts, fish foraging and resultant body condition is an important step in designing successful mitigation measures for future management strategies in bottom trawl fisheries. PMID:25621336

  1. Perennial peanut (Arachis glabrata Benth.) contains polyphenol oxidase (PPO) and PPO substrates that can reduce post-harvest proteolysis.

    PubMed

    Sullivan, Michael L; Foster, Jamie L

    2013-08-15

    Studies of perennial peanut (Arachis glabrata Benth.) suggest its hay and haylage have greater levels of rumen undegraded protein (RUP) than other legume forages such as alfalfa (Medicago sativa L.). Greater RUP can result in more efficient nitrogen utilization by ruminant animals with positive economic and environmental effects. We sought to determine whether, like red clover (Trifolium pretense L.), perennial peanut contains polyphenol oxidase (PPO) and PPO substrates that might be responsible for increased RUP. Perennial peanut extracts contain immunologically detectible PPO protein and high levels of PPO activity (>100 nkatal mg(-1) protein). Addition of caffeic acid (PPO substrate) to perennial peanut extracts depleted of endogenous substrates reduced proteolysis by 90%. Addition of phenolics prepared from perennial peanut leaves to extracts of either transgenic PPO-expressing or control (non-expressing) alfalfa showed peanut phenolics could reduce proteolysis >70% in a PPO-dependent manner. Two abundant likely PPO substrates are present in perennial peanut leaves including caftaric acid. Perennial peanut contains PPO and PPO substrates that together are capable of inhibiting post-harvest proteolysis, suggesting a possible mechanism for increased RUP in this forage. Research related to optimizing the PPO system in other forage crops will likely be applicable to perennial peanut. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  2. Entanglement of Australian sea lions and New Zealand fur seals in lost fishing gear and other marine debris before and after Government and industry attempts to reduce the problem.

    PubMed

    Page, Brad; McKenzie, Jane; McIntosh, Rebecca; Baylis, Alastair; Morrissey, Adam; Calvert, Norna; Haase, Tami; Berris, Mel; Dowie, Dave; Shaughnessy, Peter D; Goldsworthy, Simon D

    2004-07-01

    In recent years, Australian governments and fishing industry associations have developed guiding principles aimed at reducing the impact of fishing on non-target species and the benthos and increasing community awareness of their efforts. To determine whether they reduced seal entanglement in lost fishing gear and other marine debris, we analysed Australian sea lion and New Zealand fur seal entanglement data collected from Kangaroo Island, South Australia. Contrary to our expectations, we found that entanglement rates did not decrease in recent years. The Australian sea lion entanglement rate (1.3% in 2002) and the New Zealand fur seal entanglement rate (0.9% in 2002) are the third and fourth highest reported for any seal species. Australian sea lions were most frequently entangled in monofilament gillnet that most likely originated from the shark fishery, which operates in the region where sea lions forage--south and east of Kangaroo Island. In contrast, New Zealand fur seals were most commonly entangled in loops of packing tape and trawl net fragments suspected to be from regional rock lobster and trawl fisheries. Based on recent entanglement studies, we estimate that 1478 seals die from entanglement each year in Australia. We discuss remedies such as education programs and government incentives that may reduce entanglements.

  3. QTL detection for forage quality and stem histology in four connected mapping populations of the model legume Medicago truncatula.

    PubMed

    Lagunes Espinoza, Luz Del Carmen; Julier, Bernadette

    2013-02-01

    Forage quality combines traits related to protein content and energy value. High-quality forages contribute to increase farm autonomy by reducing the use of energy or protein-rich supplements. Genetic analyses in forage legume species are complex because of their tetraploidy and allogamy. Indeed, no genetic studies of quality have been published at the molecular level on these species. Nonetheless, mapping populations of the model species M. truncatula can be used to detect QTL for forage quality. Here, we studied a crossing design involving four connected populations of M. truncatula. Each population was composed of ca. 200 recombinant inbred lines (RIL). We sought population-specific QTL and QTL explaining the whole design variation. We grew parents and RIL in a greenhouse for 2 or 3 seasons and analysed plants for chemical composition of vegetative organs (protein content, digestibility, leaf-to-stem ratio) and stem histology (stem cross-section area, tissue proportions). Over the four populations and all the traits, QTL were found on all chromosomes. Among these QTL, only four genomic regions, on chromosomes 1, 3, 7 and 8, contributed to explaining the variations in the whole crossing design. Surprisingly, we found that quality QTL were located in the same genomic regions as morphological QTL. We thus confirmed the quantitative inheritance of quality traits and tight relationships between quality and morphology. Our findings could be explained by a co-location of genes involved in quality and morphology. This study will help to detect candidate genes involved in quantitative variation for quality in forage legume species.

  4. Foraging behaviour of the exotic wasp Vespula germanica (Hymenoptera: Vespidae) on a native caterpillar defoliator.

    PubMed

    Pietrantuono, A L; Moreyra, S; Lozada, M

    2018-06-01

    Vespula germanica is a social wasp and an opportunistic predator. While foraging, these wasps learn and integrate different kinds of cues. They have successfully invaded many parts of the world, including native Nothofagus and Lophozonia forests located in the Andean-Patagonian region, where they forage on native arthropods. Perzelia arda, a lepidopteron defoliator of Lophozonia obliqua, uses the foliage to hide in and feed on. The purpose of this work is to study whether V. germanica use olfactory cues when foraging on P. arda. To do this, we used a Y-tube olfactometer and established three treatments to compare pairs of all combinations of stimuli (larvae, leaves with larval traces, and leaves without larval traces) and controls. Data were analysed via two developed models that showed decisions made by V. germanica and allowed to establish a scale of preferences between the stimuli. The analysis demonstrates that V. germanica wasps choose P. arda as larval prey and are capable of discriminating between the offered stimuli (deviance information criterion (DIC) null model = 873.97; DIC simple model = 84.5, n = 152). According to the preference scale, V. germanica preferred leaves with traces of larvae, suggesting its ability to associate these traces with the presence of the prey. This may be because, under natural conditions, larvae are never exposed outside their shelters of leaves and therefore V. germanica uses indirect signals. The presence of V. germanica foraging on P. arda highlights the flexible foraging behaviour of this wasp which may also act as a positive biological control, reducing lepidopteran populations.

  5. Ethanol concentration in food and body condition affect foraging behavior in Egyptian fruit bats ( Rousettus aegyptiacus)

    NASA Astrophysics Data System (ADS)

    Sánchez, Francisco; Korine, Carmi; Kotler, Burt P.; Pinshow, Berry

    2008-06-01

    Ethanol occurs in fleshy fruit as a result of sugar fermentation by both microorganisms and the plant itself; its concentration [EtOH] increases as fruit ripens. At low concentrations, ethanol is a nutrient, whereas at high concentrations, it is toxic. We hypothesized that the effects of ethanol on the foraging behavior of frugivorous vertebrates depend on its concentration in food and the body condition of the forager. We predicted that ethanol stimulates food consumption when its concentration is similar to that found in ripe fruit, whereas [EtOH] below or above that of ripe fruit has either no effect, or else deters foragers, respectively. Moreover, we expected that the amount of food ingested on a particular day of feeding influences the toxic effects of ethanol on a forager, and consequently shapes its feeding decisions on the following day. We therefore predicted that for a food-restricted forager, ethanol-rich food is of lower value than ethanol-free food. We used Egyptian fruit bats ( Rousettus aegyptiacus) as a model to test our hypotheses, and found that ethanol did not increase the value of food for the bats. High [EtOH] reduced the value of food for well-fed bats. However, for food-restricted bats, there was no difference between the value of ethanol-rich and ethanol-free food. Thus, microorganisms, via their production of ethanol, may affect the patterns of feeding of seed-dispersing frugivores. However, these patterns could be modified by the body condition of the animals because they might trade-off the costs of intoxication against the value of nutrients acquired.

  6. Guild-specific responses of avian species richness to LiDAR-derived habitat heterogeneity

    USGS Publications Warehouse

    Weisberg, Peter J.; Dilts, Thomas E.; Becker, Miles E.; Young, Jock S.; Wong-Kone, Diane C.; Newton, Wesley E.; Ammon, Elisabeth M.

    2014-01-01

    Ecological niche theory implies that more heterogeneous habitats have the potential to support greater biodiversity. Positive heterogeneity-diversity relationships have been found for most studies investigating animal taxa, although negative relationships also occur and the scale dependence of heterogeneity-diversity relationships is little known. We investigated multi-scale, heterogeneity-diversity relationships for bird communities in a semi-arid riparian landscape, using airborne LiDAR data to derive key measures of structural habitat complexity. Habitat heterogeneity-diversity relationships were generally positive, although the overall strength of relationships varied across avian life history guilds (R2 range: 0.03–0.41). Best predicted were the species richness indices of cavity nesters, habitat generalists, woodland specialists, and foliage foragers. Heterogeneity-diversity relationships were also strongly scale-dependent, with strongest associations at the 200-m scale (4 ha) and weakest associations at the 50-m scale (0.25 ha). Our results underscore the value of LiDAR data for fine-grained quantification of habitat structure, as well as the need for biodiversity studies to incorporate variation among life-history guilds and to simultaneously consider multiple guild functional types (e.g. nesting, foraging, habitat). Results suggest that certain life-history guilds (foliage foragers, cavity nesters, woodland specialists) are more susceptible than others (ground foragers, ground nesters, low nesters) to experiencing declines in local species richness if functional elements of habitat heterogeneity are lost. Positive heterogeneity-diversity relationships imply that riparian conservation efforts need to not only provide high-quality riparian habitat locally, but also to provide habitat heterogeneity across multiple scales.

  7. Preparation and use of varied natural tools for extractive foraging by bonobos (Pan Paniscus).

    PubMed

    Roffman, Itai; Savage-Rumbaugh, Sue; Rubert-Pugh, Elizabeth; Stadler, André; Ronen, Avraham; Nevo, Eviatar

    2015-09-01

    The tool-assisted extractive foraging capabilities of captive (zoo) and semi-captive (sanctuary) bonobo (Pan paniscus) groups were compared to each other and to those known in wild chimpanzee (Pan troglodytes) cultures. The bonobos were provided with natural raw materials and challenged with tasks not previously encountered, in experimental settings simulating natural contexts where resources requiring special retrieval efforts were hidden. They were shown that food was buried underground or inserted into long bone cavities, and left to tackle the tasks without further intervention. The bonobos used modified branches and unmodified antlers or stones to dig under rocks and in the ground or to break bones to retrieve the food. Antlers, short sticks, long sticks, and rocks were effectively used as mattocks, daggers, levers, and shovels, respectively. One bonobo successively struck a long bone with an angular hammer stone, completely bisecting it longitudinally. Another bonobo modified long branches into spears and used them as attack weapons and barriers. Bonobos in the sanctuary, unlike those in the zoo, used tool sets to perform sequential actions. The competent and diverse tool-assisted extractive foraging by the bonobos corroborates and complements the extensive information on similar tool use by chimpanzees, suggesting that such competence is a shared trait. Better performance by the sanctuary bonobos than the zoo group was probably due to differences in their cultural exposure and housing conditions. The bonobos' foraging techniques resembled some of those attributed to Oldowan hominins, implying that they can serve as referential models. © 2015 Wiley Periodicals, Inc.

  8. Guild-specific responses of avian species richness to LiDAR-derived habitat heterogeneity

    NASA Astrophysics Data System (ADS)

    Weisberg, Peter J.; Dilts, Thomas E.; Becker, Miles E.; Young, Jock S.; Wong-Kone, Diane C.; Newton, Wesley E.; Ammon, Elisabeth M.

    2014-08-01

    Ecological niche theory implies that more heterogeneous habitats have the potential to support greater biodiversity. Positive heterogeneity-diversity relationships have been found for most studies investigating animal taxa, although negative relationships also occur and the scale dependence of heterogeneity-diversity relationships is little known. We investigated multi-scale, heterogeneity-diversity relationships for bird communities in a semi-arid riparian landscape, using airborne LiDAR data to derive key measures of structural habitat complexity. Habitat heterogeneity-diversity relationships were generally positive, although the overall strength of relationships varied across avian life history guilds (R2 range: 0.03-0.41). Best predicted were the species richness indices of cavity nesters, habitat generalists, woodland specialists, and foliage foragers. Heterogeneity-diversity relationships were also strongly scale-dependent, with strongest associations at the 200-m scale (4 ha) and weakest associations at the 50-m scale (0.25 ha). Our results underscore the value of LiDAR data for fine-grained quantification of habitat structure, as well as the need for biodiversity studies to incorporate variation among life-history guilds and to simultaneously consider multiple guild functional types (e.g. nesting, foraging, habitat). Results suggest that certain life-history guilds (foliage foragers, cavity nesters, woodland specialists) are more susceptible than others (ground foragers, ground nesters, low nesters) to experiencing declines in local species richness if functional elements of habitat heterogeneity are lost. Positive heterogeneity-diversity relationships imply that riparian conservation efforts need to not only provide high-quality riparian habitat locally, but also to provide habitat heterogeneity across multiple scales.

  9. Hatching asynchrony vs. foraging efficiency: the response to food availability in specialist vs. generalist tit species

    PubMed Central

    Barrientos, R.; Bueno-Enciso, J.; Sanz, J. J.

    2016-01-01

    Breeding mistiming is increasingly frequent in several ecosystems in the face of current climate change. Species belonging to higher trophic levels must employ mechanisms to reduce it. One of these mechanisms is hatching asynchrony, with the eggs in a clutch hatching over a period of several days. Some authors have suggested it to be adaptive when food is unpredictable. However, these birds can also suffer associated costs. We tested whether a species with higher foraging efficiency avoid hatching asynchrony compared to its sister species. We studied hatching asynchrony and nestling provisioning in relation to food availability in sympatric populations of blue and great tits. For the first time, we show that sister species respond to food availability with different strategies. Blue tit feeding rates readily responded to the abundance of their main prey, and also reduced the impact of nestling size hierarchy on mean nestling weight, consequently increasing fledging rate. Our results suggest that levels of hatching asynchrony seem to be influenced by species-specific life history traits, as generalist foragers rely less on it. They also highlight the importance of multi-species approaches when studying the response of organisms to environmental unpredictability. PMID:27892941

  10. Stable Isotope Tracking of Endangered Sea Turtles: Validation with Satellite Telemetry and δ15N Analysis of Amino Acids

    PubMed Central

    Seminoff, Jeffrey A.; Benson, Scott R.; Arthur, Karen E.; Eguchi, Tomoharu; Dutton, Peter H.; Tapilatu, Ricardo F.; Popp, Brian N.

    2012-01-01

    Effective conservation strategies for highly migratory species must incorporate information about long-distance movements and locations of high-use foraging areas. However, the inherent challenges of directly monitoring these factors call for creative research approaches and innovative application of existing tools. Highly migratory marine species, such as marine turtles, regularly travel hundreds or thousands of kilometers between breeding and feeding areas, but identification of migratory routes and habitat use patterns remains elusive. Here we use satellite telemetry in combination with compound-specific isotope analysis of amino acids to confirm that insights from bulk tissue stable isotope analysis can reveal divergent migratory strategies and within-population segregation of foraging groups of critically endangered leatherback sea turtles (Dermochelys coriacea) across the Pacific Ocean. Among the 78 turtles studied, we found a distinct dichotomy in δ15N values of bulk skin, with distinct “low δ15N” and “high δ15N” groups. δ15N analysis of amino acids confirmed that this disparity resulted from isotopic differences at the base of the food chain and not from differences in trophic position between the two groups. Satellite tracking of 13 individuals indicated that their bulk skin δ15N value was linked to the particular foraging region of each turtle. These findings confirm that prevailing marine isoscapes of foraging areas can be reflected in the isotopic compositions of marine turtle body tissues sampled at nesting beaches. We use a Bayesian mixture model to show that between 82 and 100% of the 78 skin-sampled turtles could be assigned with confidence to either the eastern Pacific or western Pacific, with 33 to 66% of all turtles foraging in the eastern Pacific. Our forensic approach validates the use of stable isotopes to depict leatherback turtle movements over broad spatial ranges and is timely for establishing wise conservation efforts in light of this species’ imminent risk of extinction in the Pacific. PMID:22666354

  11. Stable isotope tracking of endangered sea turtles: validation with satellite telemetry and δ15N analysis of amino acids.

    PubMed

    Seminoff, Jeffrey A; Benson, Scott R; Arthur, Karen E; Eguchi, Tomoharu; Dutton, Peter H; Tapilatu, Ricardo F; Popp, Brian N

    2012-01-01

    Effective conservation strategies for highly migratory species must incorporate information about long-distance movements and locations of high-use foraging areas. However, the inherent challenges of directly monitoring these factors call for creative research approaches and innovative application of existing tools. Highly migratory marine species, such as marine turtles, regularly travel hundreds or thousands of kilometers between breeding and feeding areas, but identification of migratory routes and habitat use patterns remains elusive. Here we use satellite telemetry in combination with compound-specific isotope analysis of amino acids to confirm that insights from bulk tissue stable isotope analysis can reveal divergent migratory strategies and within-population segregation of foraging groups of critically endangered leatherback sea turtles (Dermochelys coriacea) across the Pacific Ocean. Among the 78 turtles studied, we found a distinct dichotomy in δ(15)N values of bulk skin, with distinct "low δ(15)N" and "high δ(15)N" groups. δ(15)N analysis of amino acids confirmed that this disparity resulted from isotopic differences at the base of the food chain and not from differences in trophic position between the two groups. Satellite tracking of 13 individuals indicated that their bulk skin δ(15)N value was linked to the particular foraging region of each turtle. These findings confirm that prevailing marine isoscapes of foraging areas can be reflected in the isotopic compositions of marine turtle body tissues sampled at nesting beaches. We use a Bayesian mixture model to show that between 82 and 100% of the 78 skin-sampled turtles could be assigned with confidence to either the eastern Pacific or western Pacific, with 33 to 66% of all turtles foraging in the eastern Pacific. Our forensic approach validates the use of stable isotopes to depict leatherback turtle movements over broad spatial ranges and is timely for establishing wise conservation efforts in light of this species' imminent risk of extinction in the Pacific.

  12. Evaluating EFSA protection goals for honey bees (Apis mellifera): what do they mean for pollination?

    PubMed

    Croft, Simon; Brown, Mike; Wilkins, Selwyn; Hart, Andy; Smith, Graham C

    2018-06-20

    In recent years there has been growing concern regarding the sudden and unexplained failure of honeybee (Apis mellifera) colonies. Several factors have been suggested including pesticides. In an effort to regulate their impact guidance has been published by the European Food Safety Authority (EFSA) recommending that the magnitude of effects on exposed colonies should not exceed 7% reduction in colony size after 2 brood cycles. However, fears have been raised regarding the practicality of measuring such a loss in the field. It is also unclear how this protection goal relates to maintaining the ecosystem services provided by bees, which we argue should be a primary objective for regulators. Here, we evaluate what these protection goals mean in relation to ecosystems performance using a computational colony model incorporating mechanisms to simulate both lethal and sub-lethal pesticide effects. To these simulations we apply a testing regime similar to that commonly used in field trials to produce standard assessment metrics. By relating these measures to losses in forager activity we aim to identify which could be used as effective indicators of reduced ecoservice and to quantify acceptable limits below which performance can be maintained. Our findings show that loss of colony size is the best indicator of reduced ecoservice. Metrics which focus on specific colony functions such as increased brood or forager mortality are ineffective indicators for all types of simulated pesticide effects. At the levels of colony loss recommended by EFSA, using our default parameterisation, we predict a loss of ecosystems performance of 3-4%. However, based on an extensive sensitivity analysis it is clear that this estimate is subject to substantial uncertainty with losses under alternative parameterisations of up to 14%. Nevertheless, our model provides a valuable framework for assessing protection goals, allowing regulators to test relevant impacts and quantify their magnitude. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. Efficacy of Maxforce bait for control of the Argentine ant (Hymenoptera: Formicidae) in Haleakala National Park, Maui, Hawaii

    USGS Publications Warehouse

    Krushelnycky, Paul D.; Reimer, Neil J.

    1998-01-01

    In an effort to develop a chemical control strategy for the invasive Argentine ant, Linepithema humile (Mayr), in Haleakala National Park, Maxforce, which is formulated with 0.9% hydramethylnon, was used in test plots to determine the efficacy of the ant bait in the field. Initially, Maxforce was tested at 2 application rates: broadcast at 2.25 kg/ha (2 lb/acre) and 4.5 kg/ha (4 lb/acre). Later, the following treatments were also tested: a Maxforce and honey granule mix, Maxforce with 0.5% hydramethylnon, Maxforce with a different solvent, Maxforce distributed in exposed piles, and Maxforce distributed in covered piles. Although there were significant differences in the magnitude of ant reduction among the various treatments, all yielded the same general result. Foraging ant numbers at monitoring bait stations declined an average maximum of 97.0% in the test plots, with no plots achieving 100% reduction. At 2 mo after treatment the mean number of foraging ants was reduced by 92.1%. Nest survival in the plots appeared to be affected to a lesser degree, but could not be monitored accurately over the longer term because of the phenomenon of nest movement. A 2nd identical application 1 mo after the initial application in plots treated with Maxforce at 2.25 and 4.5 kg/ha did not result in eradication. Bait molding, quick mortality, and toxicant breakdown from UV radiation created a short exposure time to the bait and toxicant, which may have been the main obstacle to achieving eradication.

  14. Social foraging and individual consistency in following behaviour: testing the information centre hypothesis in free-ranging vultures.

    PubMed

    Harel, Roi; Spiegel, Orr; Getz, Wayne M; Nathan, Ran

    2017-04-12

    Uncertainties regarding food location and quality are among the greatest challenges faced by foragers and communal roosting may facilitate success through social foraging. The information centre hypothesis (ICH) suggests that uninformed individuals at shared roosts benefit from following informed individuals to previously visited resources. We tested several key prerequisites of the ICH in a social obligate scavenger, the Eurasian griffon vulture ( Gyps fulvus ), by tracking movements and behaviour of sympatric individuals over extended periods and across relatively large spatial scales, thereby precluding alternative explanations such as local enhancement. In agreement with the ICH, we found that 'informed' individuals returning to previously visited carcasses were followed by 'uninformed' vultures that consequently got access to these resources. When a dyad (two individuals that depart from the same roost within 2 min of each other) included an informed individual, they spent a higher proportion of the flight time close to each other at a shorter distance between them than otherwise. Although all individuals occasionally profited from following others, they differed in their tendencies to be informed or uninformed. This study provides evidence for 'following behaviour' in natural conditions and demonstrates differential roles and information states among foragers within a population. Moreover, demonstrating the possible reliance of vultures on following behaviour emphasizes that individuals in declining populations may suffer from reduced foraging efficiency. © 2017 The Author(s).

  15. Complementarity in nutrient foraging strategies of absorptive fine roots and arbuscular mycorrhizal fungi across 14 coexisting subtropical tree species.

    PubMed

    Liu, Bitao; Li, Hongbo; Zhu, Biao; Koide, Roger T; Eissenstat, David M; Guo, Dali

    2015-10-01

    In most cases, both roots and mycorrhizal fungi are needed for plant nutrient foraging. Frequently, the colonization of roots by arbuscular mycorrhizal (AM) fungi seems to be greater in species with thick and sparsely branched roots than in species with thin and densely branched roots. Yet, whether a complementarity exists between roots and mycorrhizal fungi across these two types of root system remains unclear. We measured traits related to nutrient foraging (root morphology, architecture and proliferation, AM colonization and extramatrical hyphal length) across 14 coexisting AM subtropical tree species following root pruning and nutrient addition treatments. After root pruning, species with thinner roots showed more root growth, but lower mycorrhizal colonization, than species with thicker roots. Under multi-nutrient (NPK) addition, root growth increased, but mycorrhizal colonization decreased significantly, whereas no significant changes were found under nitrogen or phosphate additions. Moreover, root length proliferation was mainly achieved by altering root architecture, but not root morphology. Thin-root species seem to forage nutrients mainly via roots, whereas thick-root species rely more on mycorrhizal fungi. In addition, the reliance on mycorrhizal fungi was reduced by nutrient additions across all species. These findings highlight complementary strategies for nutrient foraging across coexisting species with contrasting root traits. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  16. Foraging behaviour of coypus Myocastor coypus: why do coypus consume aquatic plants?

    NASA Astrophysics Data System (ADS)

    Guichón, M. L.; Benítez, V. B.; Abba, A.; Borgnia, M.; Cassini, M. H.

    2003-12-01

    Foraging behaviour of wild coypu was studied to examine two hypotheses that had been previously proposed to explain the species' preference for aquatic plants. First, the nutritional benefit hypothesis which states that aquatic plants are more nutritional than terrestrial plants. Second, the behavioural trade-off hypothesis which states that coypus avoid foraging far from the water because of the costs associated with other types of behaviour. In order to test the nutritional benefit hypothesis, we studied the diet composition of coypus in relation to the protein content of the diet and of the plants available in the environment. Fieldwork was conducted seasonally from November 1999 to August 2000 at one study site located in the Province of Buenos Aires, east central Argentina. Behavioural observations showed that coypus remained foraging in the water and microhistological analysis of faeces indicated that their diet was principally composed of hygrophilic monocotyledons ( Lemna spp. and Eleocharis spp.) throughout the year. We did not find support for the nutritional benefit hypothesis: nutritional quality (based on nitrogen content) of hygrophilic plants was not higher than that of terrestrial plants, and seasonal changes in diet quality did not match either fluctuations in vegetation quality or proportion of hygrophilic plants in the diet. Although not directly tested, the behavioural trade-off hypothesis may explain why coypus prefer to forage in or near the water as a mechanism for reducing predation risk.

  17. Whole lactation production responses in high-yielding dairy cows using high-quality grass/clover silage.

    PubMed

    Patel, Mikaela; Wredle, Ewa; Spörndly, Eva; Bertilsson, Jan

    2017-07-01

    Limiting the use of purchased concentrate for livestock and replacing it with home-grown forage without compromising milk production can offer benefits in both organic and conventional dairy systems. A full lactation trial was conducted with 92 cows over two years comparing three diets, each differing in the mean forage proportion over the lactation, 500 (500F), 600 (600F) and 700 (700F) g kg -1 dry matter (DM) respectively. The diets were designed to represent common conventional feeding, current regulations for organic production and more extreme high-forage-based production respectively. The aims were to determine the effects of forage proportion in the diet on milk production and feed utilisation. Compared with 500F, daily milk yield did not differ in 600F but was lower in 700F (31.3, 31.1 and 29.2 kg energy-corrected milk respectively). Daily dry matter intake (DMI) was similar between treatments (20.3, 20.4 and 19.9 kg in 500F, 600F and 700F respectively). Increasing the forage proportion from 500 to 600 g kg -1 DM did not have any adverse effects on milk production or DMI. Thus it is possible to produce the same quantity of milk with less concentrate and reduce the use of potential human feeds in dairy production. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  18. Inorganic fertilizers after broiler litter amendment reduce surplus nutrients in orchardgrass soils

    USDA-ARS?s Scientific Manuscript database

    The common producer practice to dispose of broiler litter at high rates to forage crops allow excessive accumulation of soil nutrients. A remediation study was developed to examine if inorganic fertilizer application over the residual fertility of broiler litter would reduce surplus soil nutrients i...

  19. Effects of acoustic deterrents on foraging bats

    Treesearch

    Joshua B. Johnson; W. Mark Ford; Jane L. Rodrigue; John W. Edwards

    2012-01-01

    Significant bat mortality events associated with wind energy expansion, particularly in the Appalachians, have highlighted the need for development of possible mitigation practices to reduce or prevent strike mortality. Other than increasing turbine cut-in speed, acoustic deterrents probably hold the greatest promise for reducing bat mortality. However, acoustic...

  20. Can foraging behavior of Criollo cattle help increase agricultural production and reduce environmental impacts in the arid Southwest?

    USDA-ARS?s Scientific Manuscript database

    The Longterm Agroecosystem Research Network (LTAR) was formed to help the nation’s agricultural systems simultaneously increase production and reduce environmental impacts. Eighteen networked sites are conducting a Common Experiment to understand the environmental and economic problems associated wi...

  1. Predictions replaced by facts: a keystone species' behavioural responses to declining arctic sea-ice.

    PubMed

    Hamilton, Charmain D; Lydersen, Christian; Ims, Rolf A; Kovacs, Kit M

    2015-11-01

    Since the first documentation of climate-warming induced declines in arctic sea-ice, predictions have been made regarding the expected negative consequences for endemic marine mammals. But, several decades later, little hard evidence exists regarding the responses of these animals to the ongoing environmental changes. Herein, we report the first empirical evidence of a dramatic shift in movement patterns and foraging behaviour of the arctic endemic ringed seal (Pusa hispida), before and after a major collapse in sea-ice in Svalbard, Norway. Among other changes to the ice-regime, this collapse shifted the summer position of the marginal ice zone from over the continental shelf, northward to the deep Arctic Ocean Basin. Following this change, which is thought to be a 'tipping point', subadult ringed seals swam greater distances, showed less area-restricted search behaviour, dived for longer periods, exhibited shorter surface intervals, rested less on sea-ice and did less diving directly beneath the ice during post-moulting foraging excursions. In combination, these behavioural changes suggest increased foraging effort and thus also likely increases in the energetic costs of finding food. Continued declines in sea-ice are likely to result in distributional changes, range reductions and population declines in this keystone arctic species. © 2015 The Author(s).

  2. Environmental and genetic influences on flight metabolic rate in the honey bee, Apis mellifera.

    PubMed

    Harrison, Jon F; Fewell, Jennifer H

    2002-10-01

    Flying honey bees demonstrate highly variable metabolic rates. The lowest reported values (approximately 0.3 Wg(-1)) occur in tethered bees generating the minimum lift to support their body weight, free-flying 2-day old bees, winter bees, or bees flying at high air temperatures (45 degrees C). The highest values (approximately 0.8 Wg(-1)) occur in foragers that are heavily loaded or flying in low-density air. In different studies, flight metabolic rate has increased, decreased, or remained constant with air temperature. Current research collectively suggests that this variation occurs because flight metabolic rates decrease at thorax temperatures above or below 38 degrees C. At 30 degrees C, approximately 30% of colonial energy is spent during typical foraging, so variation in flight metabolic rate can strongly affect colony-level energy balance. Higher air temperatures tend to increase colonial net gain rates, efficiencies and honey storage rates due to lower metabolic rates during flight and in the hive. Variation in flight metabolism has a clear genetic basis. Different genetic strains of honey bees often differ in flight metabolic rate, and these differences in flight physiology can be correlated with foraging effort, suggesting a possible pathway for selection effects on flight metabolism.

  3. Nighttime foraging by deep diving echolocating odontocetes off the Hawaiian islands of Kauai and Ni'ihau as determined by passive acoustic monitors.

    PubMed

    Au, Whitlow W L; Giorli, Giacomo; Chen, Jessica; Copeland, Adrienne; Lammers, Marc; Richlen, Michael; Jarvis, Susan; Morrissey, Ronald; Moretti, David; Klinck, Holger

    2013-05-01

    Remote autonomous ecological acoustic recorders (EARs) were deployed in deep waters at five locations around the island of Kauai and one in waters off Ni'ihau in the main Hawaiian island chain. The EARs were moored to the bottom at depths between 400 and 800 m. The data acquisition sampling rate was 80 kHz and acoustic signals were recorded for 30 s every 5 min to conserve battery power and disk space. The acoustic data were analyzed with the M3R (Marine Mammal Monitoring on Navy Ranges) software, an energy-ratio-mapping algorithm developed at Oregon State University and custom MATLAB programs. A variety of deep diving odontocetes, including pilot whales, Risso's dolphins, sperm whales, spinner and pan-tropical spotted dolphins, and beaked whales were detected at all sites. Foraging activity typically began to increase after dusk, peaked in the middle of the night and began to decrease toward dawn. Between 70% and 84% of biosonar clicks were detected at night. At present it is not clear why some of the known deep diving species, such as sperm whales and beaked whales, concentrate their foraging efforts at night.

  4. Turbidity on the Shallow Reef off Kaulana and Hakioawa Watersheds, North Coast of Kaho`olawe, Hawai`iMeasurements of Turbidity and Ancillary Data on Winds, Waves, Precipitation, and Stream flow Discharge, November 2005 to June 2008

    USGS Publications Warehouse

    Presto, M. Katherine; Storlazzi, Curt D.; Field, Michael E.; Abbott, Lyman L.

    2010-01-01

    The island of Kaho`olawe has particular cultural and religious significance for native Hawaiians. Once known as Kanaloa, the island was a center for native Hawaiian navigation. In the mid-20th century, the island was used as a bombing range by the U.S. Navy, and that practice, along with the foraging by feral goats, led to a near-complete decimation of vegetation. The loss of ground cover led to greatly increased erosion and run-off of sediment-laden water onto the island's adjacent coral reefs. Litigation in 1990 ended the U.S. Navy's use of the island as a bombing range, and in 1994 the island was transferred to the Kaho`olawe Island Reserve Commission (KIRC), http://kahoolawe.hawaii.gov/. As a result of the litigation, the U.S. Navy began a 10-year clean-up effort that was the foundation for the present restoration effort by KIRC (Slay, 2009). The restoration effort is centered on revegetating the island, reducing erosion, and limiting run-off onto adjacent reefs. Restoration efforts to mitigate sediment runoff to streams and gulches by restoring native vegetation and minimizing erosion have focused on two watersheds, Kaulana and Hakioawa, on the northeast and northwest sides of the island, respectively. Stream flow and sediment gages were installed by the U.S. Geological Survey Pacific Islands Water Science Center in each of the watersheds, and a weather station was established upland of the watersheds. For this study, turbidity monitors were installed on the insular shelf off the two watersheds to monitor the overall quality of reef waters and their changes in response to rain and stream flow discharge events.

  5. Contrary seasonal changes of rates of nutrient uptake, organ mass, and voluntary food intake in red deer (Cervus elaphus)

    PubMed Central

    Beiglböck, Christoph; Burmester, Marion; Guschlbauer, Maria; Lengauer, Astrid; Schröder, Bernd; Wilkens, Mirja; Breves, Gerhard

    2015-01-01

    Northern ungulates acclimatize to winter conditions with restricted food supply and unfavorable weather conditions by reducing energy expenditure and voluntary food intake. We investigated in a study on red deer whether rates of peptide and glucose transport in the small intestines are also reduced during winter as part of the thrifty phenotype of winter-acclimatized animals, or whether transport rates are increased during winter in order to exploit poor forage more efficiently. Our results support the latter hypothesis. We found in a feeding experiment that total energy intake was considerably lower during winter despite ad libitum feeding. Together with reduced food intake, mass of visceral organs was significantly lower and body fat reserves were used as metabolic fuel in addition to food. However, efficacy of nutrient absorption seemed to be increased simultaneously. Extraction of crude protein from forage was higher in winter animals, at any level of crude protein intake, as indicated by the lower concentration of crude protein in feces. In line with these in vivo results, Ussing chamber experiments revealed greater electrogenic responses to both peptides and glucose in the small intestines of winter-acclimatized animals, and peptide uptake into jejunal brush-border membrane vesicles was increased. We conclude that reduced appetite of red deer during winter avoids energy expenditure for unproductive search of scarcely available food and further renders the energetically costly maintenance of a large gut and visceral organs unnecessary. Nevertheless, extraction of nutrients from forage is more efficient in the winter to attenuate an inevitably negative energy balance. PMID:26017492

  6. Selective defecation and selective foraging: Antiparasite behavior in wild ungulates?

    USGS Publications Warehouse

    Ezenwa, V.O.

    2004-01-01

    Selective defecation and selective foraging are two potential antiparasite behaviors used by grazing ungulates to reduce infection by fecal-oral transmitted parasites. While there is some evidence that domestic species use these strategies, less is known about the occurrence and efficacy of these behaviors in wild ungulates. In this study, I examined whether wild antelope use selective defecation and selective foraging strategies to reduce exposure to gastrointestinal nematode parasites. By quantifying parasite levels in the environment in relation to the defecation patterns of three species, dik-dik (Madoqua kirkii), Grant's gazelle (Gazella granti), and impala (Aepyceros melampus), I found that nematode larval concentrations in pasture were higher in the vicinity of clusters of feces (dung middens) compared to single fecal pellet groups or dung-free areas. In addition, experimental feeding trials in free-ranging dik-dik showed that individuals selectively avoided feeding near concentrations of feces. Given that increased parasite contamination was found in the immediate vicinity of fecal clusters, fecal avoidance could help reduce host consumption of parasites and may therefore be an effective antiparasite behavior for certain species. On the other hand, while the concentration of parasite larvae in the vicinity of middens coupled with host avoidance of these areas during grazing could reduce host contact with parasites, results showing a positive correlation between the number of middens in a habitat and larval abundance at control sites suggest that dung middens might increase and not decrease overall host exposure to parasites. If this is the case, dung midden formation may not be a viable antiparasite strategy.

  7. Latitudinal variation in ambient UV-B radiation is an important determinant of Lolium perenne forage production, quality, and digestibility

    PubMed Central

    Comont, David; Winters, Ana; Gomez, Leonardo D; McQueen-Mason, Simon J; Gwynn-Jones, Dylan

    2013-01-01

    Few studies to date have considered the responses of agriculturally important forage grasses to UV-B radiation. Yet grasses such as Lolium perenne have a wide current distribution, representing exposure to a significant variation in ambient UV-B. The current study investigated the responses of L. perenne (cv. AberDart) to a simulated latitudinal gradient of UV-B exposure, representing biologically effective UV-B doses at simulated 70, 60, 50, 40, and 30° N latitudes. Aspects of growth, soluble compounds, and digestibility were assessed, and results are discussed in relation to UV-B effects on forage properties and the implications for livestock and bio-ethanol production. Aboveground biomass production was reduced by approximately 12.67% with every 1 kJ m–2 day–1 increase in biologically weighted UV-B. As a result, plants grown in the highest UV-B treatment had a total biomass of just 13.7% of controls. Total flavonoids were increased by approximately 76% by all UV-B treatments, while hydroxycinnamic acids increased in proportion to the UV-B dose. Conversely, the digestibility of the aboveground biomass and concentrations of soluble fructans were reduced by UV-B exposure, although soluble sucrose, glucose, and fructose concentrations were unaffected. These results highlight the capacity for UV-B to directly affect forage productivity and chemistry, with negative consequences for digestibility and bioethanol production. Results emphasize the need for future development and distribution of L. perenne varieties to take UV-B irradiance into consideration. PMID:23580749

  8. Five decades on: Use of historical weaning size data reveals that a decrease in maternal foraging success underpins the long-term decline in population of southern elephant seals (Mirounga leonina).

    PubMed

    Clausius, Ella; McMahon, Clive R; Hindell, Mark A

    2017-01-01

    The population of Southern elephant seals (Mirounga leonina) at Macquarie Island has declined since the 1960s, and is thought to be due to changing oceanic conditions leading to reductions in the foraging success of Macquarie Island breeding females. To test this hypothesis, we used a 55-year-old data set on weaning size of southern elephant seals to quantify a decrease in weaning size from a period of population stability in 1950s to its present state of on-going decline. Being capital breeders, the size of elephant seal pups at weaning is a direct consequence of maternal foraging success in the preceding year. During the 1940-1950s, the mean of female pups at weaning was similar between the Heard and Macquarie Island populations, while the snout-tail-length length of male weaners from Heard Island were longer than their conspecifics at Macquarie Island. Additionally, the snout-tail-length of pups at weaning decreased by 3cm between the 1950s and 1990s in the Macquarie Island population, concurrent with the observed population decline. Given the importance of weaning size in determining first-year survival and recruitment rates, the decline in the size at weaning suggests that the decline in the Macquarie Island population has, to some extent, been driven by reduced maternal foraging success, consequent declines in the size of pups at weaning, leading to reduced first-year survival rates and recruitment of breeding females into the population 3 to 4 years later.

  9. A Temporal Dimension to the Influence of Pollen Rewards on Bee Behaviour and Fecundity in Aloe tenuior

    PubMed Central

    Duffy, Karl J.; Johnson, Steven D.; Peter, Craig I.

    2014-01-01

    The net effect of pollen production on fecundity in plants can range from negative – when self-pollen interferes with fecundity due to incompatibility mechanisms, to positive – when pollen availability is associated with increased pollinator visitation and fecundity due to its utilization as a reward. We investigated the responses of bees to pollen and nectar rewards, and the effects of these rewards on pollen deposition and fecundity in the hermaphroditic succulent shrub Aloe tenuior. Self-pollinated plants failed to set fruit, but their ovules were regularly penetrated by self-pollen tubes, which uniformly failed to develop into seeds as expected from ovarian self-incompatibility (or strong early inbreeding depression). Bees consistently foraged for pollen during the morning and early afternoon, but switched to nectar in the late afternoon. As a consequence of this differential foraging, we were able to test the relative contribution to fecundity of pollen- versus nectar-collecting flower visitors. We exposed emasculated and intact flowers in either the morning or late afternoon to foraging bees and showed that emasculation reduced pollen deposition by insects in the morning, but had little effect in the afternoon. Despite the potential for self-pollination to result in ovule discounting due to late-acting self-sterility, fecundity was severely reduced in artificially emasculated plants. Although there were temporal fluctuations in reward preference, most bee visits were for pollen rewards. Therefore the benefit of providing pollen that is accessible to bee foragers outweighs any potential costs to fitness in terms of gender interference in this species. PMID:24755611

  10. Recycling stabilised/solidified drill cuttings for forage production in acidic soils.

    PubMed

    Kogbara, Reginald B; Dumkhana, Bernard B; Ayotamuno, Josiah M; Okparanma, Reuben N

    2017-10-01

    Stabilisation/solidification (S/S), which involves fixation and immobilisation of contaminants using cementitious materials, is one method of treating drill cuttings before final fate. This work considers reuse of stabilised/solidified drill cuttings for forage production in acidic soils. It sought to improve the sustainability of S/S technique through supplementation with the phytoremediation potential of plants, eliminate the need for landfill disposal and reduce soil acidity for better plant growth. Drill cuttings with an initial total petroleum hydrocarbon (TPH) concentration of 17,125 mg kg -1 and low concentrations of metals were treated with 5%, 10%, and 20% cement dosages. The treated drill cuttings were reused in granular form for growing a forage, elephant grass (Pennisetum purpureum), after mixing with uncontaminated soil. The grasses were also grown in uncontaminated soil. The phytoremediation and growth potential of the plants was assessed over a 12-week period. A mix ratio of one part drill cuttings to three parts uncontaminated soil was required for active plant growth. The phytoremediation ability of elephant grass (alongside abiotic losses) reduced the TPH level (up to 8795 mg kg -1 ) in the soil-treated-drill cuttings mixtures below regulatory (1000 mg kg -1 ) levels. There were also decreased concentrations of metals. The grass showed better heights and leaf lengths in soil containing drill cuttings treated with 5% cement dosage than in uncontaminated soil. The results suggest that recycling S/S treated drill cuttings for forage production may be a potential end use of the treated waste. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Market forces influence helping behaviour in cooperatively breeding paper wasps

    PubMed Central

    Grinsted, Lena; Field, Jeremy

    2017-01-01

    Biological market theory is potentially useful for understanding helping behaviour in animal societies. It predicts that competition for trading partners will affect the value of commodities exchanged. It has gained empirical support in cooperative breeders, where subordinates help dominant breeders in exchange for group membership, but so far without considering one crucial aspect: outside options. We find support for a biological market in paper wasps, Polistes dominula. We first show that females have a choice of cooperative partners. Second, by manipulating entire subpopulations in the field, we increase the supply of outside options for subordinates, freeing up suitable nesting spots and providing additional nesting partners. We predicted that by intensifying competition for help, our manipulation would force dominants to accept a lower price for group membership. As expected, subordinates reduce their foraging effort following our treatments. We conclude that to accurately predict the amount of help provided, social units cannot be viewed in isolation: the surrounding market must also be considered. PMID:28117836

  12. Diel distribution of age-0 largemouth bass, Micropterus salmoides, in B. E. Jordan Lake, North Carolina (USA) and its relation to cover

    USGS Publications Warehouse

    Irwin, E.R.; Noble, R.L.

    2000-01-01

    We used prepositioned area electrofishers (PAEs, 10X1.5 m) to assess diel differences in distribution of age-0 largemouth bass, Micropterus salmoides, in August 1992-1993 in a paired sampling design. PAEs were placed parallel to shore in an embayment of an unvegetated reservoir (B. E. Jordan Lake, North Carolina, USA). The catch per unit effort (CPUE=fish/PAE) was significantly higher at night than during the day in both years, indicating that age-0 largemouth bass exhibit nocturnal inshore movements. Age-0 largemouth bass captured inshore during day were smaller than those captured at night, indicating that movement patterns may change ontogenetically. Inshore-offshore movements of age-0 largemouth bass were significantly reduced in the presence of cover, suggesting that diel movements were influenced by specific habitat components. Diel movements likely were related to foraging, resting and predator avoidance behavior and could affect population dynamics and introduce bias in assessment programs.

  13. Windscapes and olfactory foraging in a large carnivore

    PubMed Central

    Togunov, Ron R.; Derocher, Andrew E.; Lunn, Nicholas J.

    2017-01-01

    The theoretical optimal olfactory search strategy is to move cross-wind. Empirical evidence supporting wind-associated directionality among carnivores, however, is sparse. We examined satellite-linked telemetry movement data of adult female polar bears (Ursus maritimus) from Hudson Bay, Canada, in relation to modelled winds, in an effort to understand olfactory search for prey. In our results, the predicted cross-wind movement occurred most frequently at night during winter, the time when most hunting occurs, while downwind movement dominated during fast winds, which impede olfaction. Migration during sea ice freeze-up and break-up was also correlated with wind. A lack of orientation during summer, a period with few food resources, likely reflected reduced cross-wind search. Our findings represent the first quantitative description of anemotaxis, orientation to wind, for cross-wind search in a large carnivore. The methods are widely applicable to olfactory predators and their prey. We suggest windscapes be included as a habitat feature in habitat selection models for olfactory animals when evaluating what is considered available habitat. PMID:28402340

  14. Bees do not use nearest-neighbour rules for optimization of multi-location routes.

    PubMed

    Lihoreau, Mathieu; Chittka, Lars; Le Comber, Steven C; Raine, Nigel E

    2012-02-23

    Animals collecting patchily distributed resources are faced with complex multi-location routing problems. Rather than comparing all possible routes, they often find reasonably short solutions by simply moving to the nearest unvisited resources when foraging. Here, we report the travel optimization performance of bumble-bees (Bombus terrestris) foraging in a flight cage containing six artificial flowers arranged such that movements between nearest-neighbour locations would lead to a long suboptimal route. After extensive training (80 foraging bouts and at least 640 flower visits), bees reduced their flight distances and prioritized shortest possible routes, while almost never following nearest-neighbour solutions. We discuss possible strategies used during the establishment of stable multi-location routes (or traplines), and how these could allow bees and other animals to solve complex routing problems through experience, without necessarily requiring a sophisticated cognitive representation of space.

  15. LOW MINERAL DENSITY OF A WEIGHT-BEARING BONE AMONG ADULT WOMEN IN A HIGH FERTILITY POPULATION

    PubMed Central

    Stieglitz, Jonathan; Beheim, Bret A.; Trumble, Benjamin C.; Madimenos, Felicia C.; Kaplan, Hillard; Gurven, Michael

    2014-01-01

    Evolutionary theories of aging posit that greater reproductive effort causes somatic decline given a fundamental trade-off between investing energy in reproduction and repair. Few studies in high fertility human populations support this hypothesis, and problems of phenotypic correlation can obscure the expected trade-off between reproduction and somatic condition. This cross-sectional study investigates whether greater reproductive effort is associated with reduced calcaneal bone mineral density (BMD) among female Tsimane forager-farmers of lowland Bolivia. We also investigate whether female Tsimane BMD values are lower than sex- and age-matched US reference values, despite the fact that Tsimane engage in higher physical activity levels that can increase mechanical loading. To measure calcaneal BMD, quantitative ultrasonography was performed on 130 women (mean ± SD age = 36.6 ± 15.7, range = 15 – 75) that were recruited regardless of past or current reproductive status. Anthropometric and demographic data were collected during routine medical exams. As predicted, higher parity, short inter-birth interval, and earlier age at first birth are associated with reduced BMD among Tsimane women after adjusting for potential confounders. Population-level differences are apparent prior to the onset of reproduction, and age-related decline in BMD is greater among Tsimane compared to American women. Greater cumulative reproductive burden may lower calcaneal BMD individually and jointly with other lifestyle and heritable factors. Fitness impacts of kin transfers in adulthood may determine the value of investments in bone remodeling, and thus affect selection on age-profiles of bone mineral loss. PMID:25488367

  16. Why Do Kestrels Soar?

    PubMed Central

    Hernández-Pliego, Jesús; Rodríguez, Carlos; Bustamante, Javier

    2015-01-01

    Individuals allocate considerable amounts of energy to movement, which ultimately affects their ability to survive and reproduce. Birds fly by flapping their wings, which is dependent on the chemical energy produced by muscle work, or use soaring-gliding flight, in which chemical energy is replaced with energy harvested from moving air masses, such as thermals. Flapping flight requires more energy than soaring-gliding flight, and this difference in the use of energy increases with body mass. However, soaring-gliding results in lower speeds than flapping, especially for small species. Birds therefore face a trade-off between energy and time costs when deciding which flight strategy to use. Raptors are a group of large birds that typically soar. As relatively light weight raptors, falcons can either soar on weak thermals or fly by flapping with low energy costs. In this paper, we study the flight behavior of the insectivorous lesser kestrel (Falco naumanni) during foraging trips and the influence of solar radiation, which we have adopted as a proxy for thermal formation, on kestrel flight variables. We tracked 35 individuals from two colonies using high frequency GPS-dataloggers over four consecutive breeding seasons. Contrary to expectations, kestrels relied heavily on thermal soaring when foraging, especially during periods of high solar radiation. This produced a circadian pattern in the kestrel flight strategy that led to a spatial segregation of foraging areas. Kestrels flapped towards foraging areas close to the colony when thermals were not available. However, as soon as thermals were formed, they soared on them towards foraging areas far from the colony, especially when they were surrounded by poor foraging habitats. This reduced the chick provisioning rate at the colony. Given that lesser kestrels have a preference for feeding on large insects, and considering the average distance they cover to capture them during foraging trips, to commute using flapping flight would result in a negative energy balance for the family group. Our results show that lesser kestrels prioritize saving energy when foraging, suggesting that kestrels are more energy than time-constrained during the breeding season. PMID:26689780

  17. Aging- and task-related resilience decline is linked to food responsiveness in highly social honey bees.

    PubMed

    Speth, Martin T; Kreibich, Claus D; Amdam, Gro V; Münch, Daniel

    2015-05-01

    Conventional invertebrate models of aging have provided striking examples for the influence of food- and nutrient-sensing on lifespan and stress resilience. On the other hand, studies in highly social insects, such as honey bees, have revealed how social context can shape very plastic life-history traits, for example flexible aging dynamics in the helper caste (workers). It is, however, not understood how food perception and stress resilience are connected in honey bee workers with different social task behaviors and aging dynamics. To explore this linkage, we tested if starvation resilience, which normally declines with age, depends on food responsiveness in honey bees. We studied two typically non-senesced groups of worker bees with different social task behaviors: mature nurses (caregivers) and mature foragers (food collectors). In addition, we included a group of old foragers for which functional senescence is well-established. Bees were individually scored for their food perception by measuring the gustatory response to different sucrose concentrations. Subsequently, individuals were tested for survival under starvation stress. We found that starvation stress resilience, but not gustatory responsiveness differed between workers with different social task behaviors (mature nurses vs. mature foragers). In addition starvation stress resilience differed between foragers with different aging progressions (mature foragers vs. old foragers). Control experiments confirmed that differences in starvation resilience between mature nurses and mature foragers were robust against changing experimental conditions, such as water provision and activity. For all worker groups we established that individuals with low gustatory responsiveness were more resilient to starvation stress. Finally, for the group of rapidly aging foragers we found that low food responsiveness was linked to a delayed age-related decline in starvation resilience. Our study highlights associations between reduced food perception, increased survival capacity and delayed aging in highly social honey bees. We discuss that these associations may involve canonical internal nutrient sensing pathways, which are shared between honey bees and animal models with less plastic aging dynamics. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Context-dependent planktivory: interacting effects of turbidity and predation risk on adaptive foraging

    USGS Publications Warehouse

    Pangle, Kevin L.; Malinich, Timothy D.; Bunnell, David B.; DeVries, Dennis R.; Ludsin, Stuart A.

    2012-01-01

    By shaping species interactions, adaptive phenotypic plasticity can profoundly influence ecosystems. Predicting such outcomes has proven difficult, however, owing in part to the dependence of plasticity on the environmental context. Of particular relevance are environmental factors that affect sensory performance in organisms in ways that alter the tradeoffs associated with adaptive phenotypic responses. We explored the influence of turbidity, which simultaneously and differentially affects the sensory performance of consumers at multiple trophic levels, on the indirect effect of a top predator (piscivorous fish) on a basal prey resource (zooplankton) that is mediated through changes in the plastic foraging behavior of an intermediate consumer (zooplanktivorous fish). We first generated theoretical predictions of the adaptive foraging response of a zooplanktivore across wide gradients of turbidity and predation risk by a piscivore. Our model predicted that predation risk can change the negative relationship between intermediate consumer foraging and turbidity into a humped-shaped (unimodal) one in which foraging is low in both clear and highly turbid conditions due to foraging-related risk and visual constraints, respectively. Consequently, the positive trait-mediated indirect effect (TMIE) of the top predator on the basal resource is predicted to peak at low turbidity and decline thereafter until it reaches an asymptote of zero at intermediate turbidity levels (when foraging equals that which is predicted when the top predator is absent). We used field observations and a laboratory experiment to test our model predictions. In support, we found humped-shaped relationships between planktivory and turbidity for several zooplanktivorous fishes from diverse freshwater ecosystems with predation risk. Further, our experiment demonstrated that predation risk reduced zooplanktivory by yellow perch (Perca flavescens) at a low turbidity, but had no effect on consumption at an intermediate turbidity. Together, our theoretical and empirical findings show how the environmental context can govern the strength of TMIEs by influencing consumer sensory performance and how these effects can become realized in nature over wide environmental gradients. Additionally, our hump-shaped foraging curve represents an important departure from the conventional view of turbidity's effect on planktivorous fishes, thus potentially requiring a reconceptualization of turbidity's impact on aquatic food-web interactions.

  19. Further assessment of the protozoal contribution to the nutrition of the ruminant animal.

    PubMed

    Hook, Sarah E; France, James; Dijkstra, Jan

    2017-03-07

    The flow of protozoa from the reticulo-rumen is lower than expected, due to ability of protozoa to prevent washout through sequestration on feed particles and the rumen epithelium. In order to estimate the distribution of protozoa within the reticulo-rumen and passage to the omasum, Czerkawski (1987) developed a model containing pools for the rumen liquid phase, rumen solid phase, and the omasum. This model was used to estimate loss of protozoa in the omasum as well as the amount of protozoal protein available to the animal in the lower gut. A number of assumptions were incorporated into the model, some of which appear unsupported by current research. This paper represents an update, revision, and re-evaluation of Czerkawski's model, where the assumptions that all protozoa in the 'attached' phase are in solid digesta, and that protozoa only leave the rumen in the liquid, have been relaxed. Therefore, the revised model allows for sequestration of protozoa on the rumen epithelium and protozoal passage with particulate outflow. Using experimental observations with inputs within biological limits, the revised model and Czerkawski's original model were verified. The effect of diet on the model was then assessed using inputs from a 100% forage diet and a 35-65% concentrate diet. The extent of sequestration was also varied from complete sequestration, to partial sequestration, and no sequestration. A sensitivity analysis was conducted through a linear regression of perturbed mean inputs versus outputs. The results from the revised model indicate that within the reticulo-rumen, the concentrate diet has a greater fractional flow rate of protozoa from the liquid to solid phase, but a lesser fractional flow rate back to the liquid phase, compared to the forage diet. As well, the concentrate diet has a slower net growth rate of protozoa in the attached phase, compared to the forage diet. In the omasum, the forage diet has a less negative net growth rate, compared to the concentrate diet. The forage diet was also associated with smaller loss of protozoa from the omasum. There are limited data from the omasum to be incorporated into the revised model, especially for quantity of protozoa in the omasum. Further research on quantification of protozoa in the omasum could strengthen the predictions made by the model. Despite this, the revised model found a loss of protozoa in the omasum similar to that suggested by Czerkawski's original model 65-73% versus 66%. The revised model results indicate that efforts to increase protozoal flow to the duodenum should focus on reduced sequestration and increased outflow rate from the rumen, although more research is needed to quantify protozoa in the omasum, and to investigate the role of sequestration onto the wall of the reticulo-rumen. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Advancing the match-mismatch framework for large herbivores in the Arctic: Evaluating the evidence for a trophic mismatch in caribou

    PubMed Central

    Barboza, Perry; Adams, Layne; Griffith, Brad; Whitten, Kenneth

    2017-01-01

    Climate-induced shifts in plant phenology may adversely affect animals that cannot or do not shift the timing of their reproductive cycle. The realized effect of potential trophic “mismatches” between a consumer and its food varies with the degree to which species rely on dietary income and stored capital. Large Arctic herbivores rely heavily on maternal capital to reproduce and give birth near the onset of the growing season but are they vulnerable to trophic mismatch? We evaluated the long-term changes in the temperatures and characteristics of the growing seasons (1970–2013), and compared growing conditions and dynamics of forage quality for caribou at peak parturition, peak lactation, and peak forage biomass, and plant senescence between two distinct time periods over 36 years (1977 and 2011–13). Despite advanced thaw dates (7−12 days earlier), increased growing season lengths (15−21 days longer), and consistent parturition dates, we found no decline in forage quality and therefore no evidence within this dataset for a trophic mismatch at peak parturition or peak lactation from 1977 to 2011–13. In Arctic ungulates that use stored capital for reproduction, reproductive demands are largely met by body stores deposited in the previous summer and autumn, which reduces potential adverse effects of any mismatch between food availability and timing of parturition. Climate-induced effects on forages growing in the summer and autumn ranges, however, do correspond with the demands of female caribou and their offspring to gain mass for the next reproductive cycle and winter. Therefore, we suggest the window of time to examine the match-mismatch framework in Arctic ungulates is not at parturition but in late summer-autumn, where the multiplier effects of small changes in forage quality are amplified by forage abundance, peak forage intake, and resultant mass gains in mother-offspring pairs. PMID:28231256

  1. Determination of Phytoestrogen Content in Fresh-Cut Legume Forage

    PubMed Central

    Hloucalová, Pavlína; Skládanka, Jiří; Horký, Pavel; Klejdus, Bořivoj; Pelikán, Jan; Knotová, Daniela

    2016-01-01

    Simple Summary Phytoestrogens comprise a group of substances negatively influencing the development and function of animal reproductive organs. Their appearance in forage crops can reduce feeding values, cause dietary disorders, and lead to animal health damage. This study evaluated the occurrence of individual phytoestrogens in various species of annual and perennial legumes and their levels in dry forage. It appeared that feeding large amounts of red clover presents a potential risk, but red clover can be replaced with the annual Persian clover, in which markedly lower phytoestrogen levels were detected. Abstract The aim of the study was to determine phytoestrogen content in fresh-cut legume forage. This issue has been much discussed in recent years in connection with the health and safety of feedstuffs and thus livestock health. The experiments were carried out on two experimental plots at Troubsko and Vatín, Czech Republic during June and July in 2015. Samples were collected of the four forage legume species perennial red clover (variety “Amos”), alfalfa (variety “Holyně”), and annuals Persian clover and Alexandrian clover. Forage was sampled twice at regular three to four day intervals leading up to harvest and a third time on the day of harvest. Fresh and wilted material was analyzed using liquid chromatography–mass spectrometry (LC-MS). Higher levels (p < 0.05) of isoflavones biochanin A (3.697 mg·g−1 of dry weight) and formononetin (4.315 mg·g−1 of dry weight) were found in red clover than in other species. The highest isoflavone content was detected in red clover, reaching 1.001% of dry matter (p < 0.05), representing a risk for occurrence of reproduction problems and inhibited secretion of animal estrogen. The phytoestrogen content was particularly increased in wilted forage. Significant isoflavone reduction was observed over three to four day intervals leading up to harvest. PMID:27429009

  2. Advancing the match-mismatch framework for large herbivores in the Arctic: Evaluating the evidence for a trophic mismatch in caribou

    USGS Publications Warehouse

    Gustine, David D.; Barboza, Perry; Adams, Layne G.; Griffith, Brad; Cameron, Raymond D.; Whitten, Kenneth R.

    2017-01-01

    Climate-induced shifts in plant phenology may adversely affect animals that cannot or do not shift the timing of their reproductive cycle. The realized effect of potential trophic “mismatches” between a consumer and its food varies with the degree to which species rely on dietary income and stored capital. Large Arctic herbivores rely heavily on maternal capital to reproduce and give birth near the onset of the growing season but are they vulnerable to trophic mismatch? We evaluated the long-term changes in the temperatures and characteristics of the growing seasons (1970–2013), and compared growing conditions and dynamics of forage quality for caribou at peak parturition, peak lactation, and peak forage biomass, and plant senescence between two distinct time periods over 36 years (1977 and 2011–13). Despite advanced thaw dates (7−12 days earlier), increased growing season lengths (15−21 days longer), and consistent parturition dates, we found no decline in forage quality and therefore no evidence within this dataset for a trophic mismatch at peak parturition or peak lactation from 1977 to 2011–13. In Arctic ungulates that use stored capital for reproduction, reproductive demands are largely met by body stores deposited in the previous summer and autumn, which reduces potential adverse effects of any mismatch between food availability and timing of parturition. Climate-induced effects on forages growing in the summer and autumn ranges, however, do correspond with the demands of female caribou and their offspring to gain mass for the next reproductive cycle and winter. Therefore, we suggest the window of time to examine the match-mismatch framework in Arctic ungulates is not at parturition but in late summer-autumn, where the multiplier effects of small changes in forage quality are amplified by forage abundance, peak forage intake, and resultant mass gains in mother-offspring pairs.

  3. Food resources of the California condor

    USGS Publications Warehouse

    Wilbur, S.R.

    1972-01-01

    Conclusions and Recommendations: Although much of the above information is imprecise and inconclusive, it is evident that the condors foraging habitat is diminishing. Food supply probably is still adequate for free-ranging nonbreeding birds, but could become limited if current land use trends continue. Congregating condors on fewer and fewer acres could be detrimental in other ways. It seems the needs of condors can best be met by maintaining a continuous band of :foraging country throughout the species' horseshoe-shaped range. Public needs for open space and livestock agriculture can also be served by land use zoning, cooperative agreements, easements or other land controls implemented with consideration :for the condors' welfare. Of immediate concern is the declining food situation in the general vicinity of the active condor nests in the Sespe-Piru region. Reproduction is definitely depressed, and the reduced local food supply is the only apparent cause. Predicted future developments can only worsen the situation. A concerted effort should be made immediately to slow the loss of food and foraging area closest to the Sespe Condor Sanctuary including: (1) the Big Mountain-Newhall Ranch regions of southern Ventura County; (2) the arc of grassland around the southern and eastern boundaries of the Sespe Sanctuary; and (3) the Tejon Ranch. Within these areas efforts should be made to increase the amount of condor food by: (1) increasing the amount of livestock, if compatible with proper land use; (2) modifying procedures for disposal of dead livestock, so that more are available to condors; (3) encouraging (subsidizing) ranchers to sacrifice livestock for condor food at certain times o:f the year; and (4) developing a state or Federal supplemental feeding program utilizing cattle, deer or other carrion regularly distributed at close, protected feeding sites. If a convenient food supply is as important to reproduction as it appears, those nest sites closest to the best food source may become most productive and significant in the preservation of this species. These sites, which are in the Piru Creek area, are outside the boundaries o:f the Sespe Condor Sanctuary, but are recognized by the U.S. Forest Service (1971) as extremely important to condor survival. Protective measures recommended in the Forest Service plan should be implemented as soon as possible to preserve this area's usefulness as condor nesting habitat. Food may not be the factor currently limiting condor reproduction. However, the reproductive rate is inadequate to sustain the condor population for long. As food shortage has been shown to limit breeding in many species (Lack 1954, 1966), and as it is something which can be manipulated, it is a logical factor for further study and experimentation.

  4. Behavioural correlates of urbanisation in the Cape ground squirrel Xerus inauris

    NASA Astrophysics Data System (ADS)

    Chapman, Tarryn; Rymer, Tasmin; Pillay, Neville

    2012-11-01

    Urbanisation critically threatens biodiversity because of habitat destruction and novel selection pressures. Some animals can respond to these challenges by modifying their behaviour, particularly anti-predator behaviour, allowing them to persist in heavily transformed urban areas. We investigated whether the anti-predator behaviour of the Cape ground squirrel Xerus inauris differed in three localities that differed in their level of urbanisation. According to the habituation hypothesis, we predicted that ground squirrels in urban areas would: (a) be less vigilant and forage more; (b) trade-off flight/vigilance in favour of foraging; and (c) have shorter flight initiation distances (FID) when approached by a human observer. Observations were made in winter and summer at each locality. As expected, ground squirrels in urbanised areas were less vigilant and had shorter FIDs but did not trade-off between foraging and vigilance. In contrast, a population in a non-urbanised locality showed greater levels of vigilance, FID and traded-off vigilance and foraging. A population in a peri-urban locality showed mixed responses. Our results indicate that Cape ground squirrels reduce their anti-predator behaviour in urban areas and demonstrate a flexible behavioural response to urbanisation.

  5. Behavioural correlates of urbanisation in the Cape ground squirrel Xerus inauris.

    PubMed

    Chapman, Tarryn; Rymer, Tasmin; Pillay, Neville

    2012-11-01

    Urbanisation critically threatens biodiversity because of habitat destruction and novel selection pressures. Some animals can respond to these challenges by modifying their behaviour, particularly anti-predator behaviour, allowing them to persist in heavily transformed urban areas. We investigated whether the anti-predator behaviour of the Cape ground squirrel Xerus inauris differed in three localities that differed in their level of urbanisation. According to the habituation hypothesis, we predicted that ground squirrels in urban areas would: (a) be less vigilant and forage more; (b) trade-off flight/vigilance in favour of foraging; and (c) have shorter flight initiation distances (FID) when approached by a human observer. Observations were made in winter and summer at each locality. As expected, ground squirrels in urbanised areas were less vigilant and had shorter FIDs but did not trade-off between foraging and vigilance. In contrast, a population in a non-urbanised locality showed greater levels of vigilance, FID and traded-off vigilance and foraging. A population in a peri-urban locality showed mixed responses. Our results indicate that Cape ground squirrels reduce their anti-predator behaviour in urban areas and demonstrate a flexible behavioural response to urbanisation.

  6. Effects of pasture renovation on hydrology, nutrient runoff, and forage yield.

    PubMed

    de Koff, J P; Moore, P A; Formica, J; Van Eps, M; DeLaune, P B

    2011-01-01

    Proper pasture management is important in promoting optimal forage growth and reducing runoff and nutrient loss. Pasture renovation is a management tool that improves aeration by mechanically creating holes or pockets within the soil. Pasture renovation was performed before manure application (poultry litter or swine slurry) on different pasture soils and rainfall simulations were conducted to identify the effects of pasture renovation on nutrient runoff and forage growth. Renovation of small plots resulted in significant and beneficial hydrological changes. During the first rainfall simulation, runoff volumes were 45 to 74% lower for seven out of eight renovated treatments, and infiltration rates increased by 3 to 87% for all renovated treatments as compared with nonrenovated treatments. Renovation of pasture soils fertilized with poultry litter led to significant reductions in dissolved reactive P (DRP) (74-87%), total P (TP) (76-85%), and total nitrogen (TN) (72-80%) loads in two of the three soils studied during the first rainfall simulation. Renovation did not result in any significant differences in forage yields. Overall, beneficial impacts of renovation lasted up to 3 mo, the most critical period for nutrient runoff following manure application. Therefore, renovation could be an important best management practice in these areas.

  7. Are Dispersal Mechanisms Changing the Host-Parasite Relationship and Increasing the Virulence of Varroa destructor (Mesostigmata: Varroidae) in Managed Honey Bee (Hymenoptera: Apidae) Colonies?

    PubMed

    DeGrandi-Hoffman, Gloria; Ahumada, Fabiana; Graham, Henry

    2017-08-01

    Varroa (Varroa destructor Anderson and Trueman) are a serious pest of European honey bees (Apis mellifera L.), and difficult to control in managed colonies. In our 11-mo longitudinal study, we applied multiple miticide treatments, yet mite numbers remained high and colony losses exceeded 55%. High mortality from varroa in managed apiaries is a departure from the effects of the mite in feral colonies where bees and varroa can coexist. Differences in mite survival strategies and dispersal mechanisms may be contributing factors. In feral colonies, mites can disperse through swarming. In managed apiaries, where swarming is reduced, mites disperse on foragers robbing or drifting from infested hives. Using a honey bee-varroa population model, we show that yearly swarming curtails varroa population growth, enabling colony survival for >5 yr. Without swarming, colonies collapsed by the third year. To disperse, varroa must attach to foragers that then enter other hives. We hypothesize that stress from parasitism and virus infection combined with effects that viruses have on cognitive function may contribute to forager drift and mite and virus dispersal. We also hypothesize that drifting foragers with mites can measurably increase mite populations. Simulations initialized with field data indicate that low levels of drifting foragers with mites can create sharp increases in mite populations in the fall and heavily infested colonies in the spring. We suggest new research directions to investigate factors leading to mite dispersal on foragers, and mite management strategies with consideration of varroa as a migratory pest. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by US Government employees and is in the public domain in the US.

  8. Forage plants of an Arctic-nesting herbivore show larger warming response in breeding than wintering grounds, potentially disrupting migration phenology.

    PubMed

    Lameris, Thomas K; Jochems, Femke; van der Graaf, Alexandra J; Andersson, Mattias; Limpens, Juul; Nolet, Bart A

    2017-04-01

    During spring migration, herbivorous waterfowl breeding in the Arctic depend on peaks in the supply of nitrogen-rich forage plants, following a "green wave" of grass growth along their flyway to fuel migration and reproduction. The effects of climate warming on forage plant growth are expected to be larger at the Arctic breeding grounds than in temperate wintering grounds, potentially disrupting this green wave and causing waterfowl to mistime their arrival on the breeding grounds. We studied the potential effect of climate warming on timing of food peaks along the migratory flyway of the Russian population of barnacle geese using a warming experiment with open-top chambers. We measured the effect of 1.0-1.7°C experimental warming on forage plant biomass and nitrogen concentration at three sites along the migratory flyway (temperate wintering site, temperate spring stopover site, and Arctic breeding site) during 2 months for two consecutive years. We found that experimental warming increased biomass accumulation and sped up the decline in nitrogen concentration of forage plants at the Arctic breeding site but not at temperate wintering and stop-over sites. Increasing spring temperatures in the Arctic will thus shorten the food peak of nitrogen-rich forage at the breeding grounds. Our results further suggest an advance of the local food peak in the Arctic under 1-2°C climate warming, which will likely cause migrating geese to mistime their arrival at the breeding grounds, particularly considering the Arctic warms faster than the temperate regions. The combination of a shorter food peak and mistimed arrival is likely to decrease goose reproductive success under climate warming by reducing growth and survival of goslings after hatching.

  9. Energetic Optimisation of Foraging Honeybees: Flexible Change of Strategies in Response to Environmental Challenges

    PubMed Central

    Stabentheiner, Anton; Kovac, Helmut

    2014-01-01

    Heterothermic insects like honeybees, foraging in a variable environment, face the challenge of keeping their body temperature high to enable immediate flight and to promote fast exploitation of resources. Because of their small size they have to cope with an enormous heat loss and, therefore, high costs of thermoregulation. This calls for energetic optimisation which may be achieved by different strategies. An ‘economizing’ strategy would be to reduce energetic investment whenever possible, for example by using external heat from the sun for thermoregulation. An ‘investment-guided’ strategy, by contrast, would be to invest additional heat production or external heat gain to optimize physiological parameters like body temperature which promise increased energetic returns. Here we show how honeybees balance these strategies in response to changes of their local microclimate. In a novel approach of simultaneous measurement of respiration and body temperature foragers displayed a flexible strategy of thermoregulatory and energetic management. While foraging in shade on an artificial flower they did not save energy with increasing ambient temperature as expected but acted according to an ‘investment-guided’ strategy, keeping the energy turnover at a high level (∼56–69 mW). This increased thorax temperature and speeded up foraging as ambient temperature increased. Solar heat was invested to increase thorax temperature at low ambient temperature (‘investment-guided’ strategy) but to save energy at high temperature (‘economizing’ strategy), leading to energy savings per stay of ∼18–76% in sunshine. This flexible economic strategy minimized costs of foraging, and optimized energetic efficiency in response to broad variation of environmental conditions. PMID:25162211

  10. Odours from marine plastic debris induce food search behaviours in a forage fish.

    PubMed

    Savoca, Matthew S; Tyson, Chris W; McGill, Michael; Slager, Christina J

    2017-08-16

    Plastic pollution is an anthropogenic stressor in marine ecosystems globally. Many species of marine fish (more than 50) ingest plastic debris. Ingested plastic has a variety of lethal and sublethal impacts and can be a route for bioaccumulation of toxic compounds throughout the food web. Despite its pervasiveness and severity, our mechanistic understanding of this maladaptive foraging behaviour is incomplete. Recent evidence suggests that the chemical signature of plastic debris may explain why certain species are predisposed to mistaking plastic for food. Anchovy ( Engraulis sp.) are abundant forage fish in coastal upwelling systems and a critical prey resource for top predators. Anchovy ingest plastic in natural conditions, though the mechanism they use to misidentify plastic as prey is unknown. Here, we presented wild-caught schools of northern anchovy ( Engraulis mordax ) with odour solutions made of plastic debris and clean plastic to compare school-wide aggregation and rheotactic responses relative to food and food odour presentations. Anchovy schools responded to plastic debris odour with increased aggregation and reduced rheotaxis. These results were similar to the effects food and food odour presentations had on schools. Conversely, these behavioural responses were absent in clean plastic and control treatments. To our knowledge, this is the first experimental evidence that adult anchovy use odours to forage. We conclude that the chemical signature plastic debris acquires in the photic zone can induce foraging behaviours in anchovy schools. These findings provide further support for a chemosensory mechanism underlying plastic consumption by marine wildlife. Given the trophic position of forage fish, these findings have considerable implications for aquatic food webs and possibly human health. © 2017 The Author(s).

  11. Facilitation and Dominance in a Schooling Predator: Foraging Behavior of Florida Pompano, Trachinotus carolinus

    PubMed Central

    2015-01-01

    Presumably an individual’s risk of predation is reduced by group membership and this ‘safety in numbers’ concept has been readily applied to investigations of schooling prey; however, foraging in groups may also be beneficial. We tested the hypothesis that, when feeding in groups, foraging of a coastal fish (Florida Pompano, Trachinotus carolinus) on a benthic prey source would be facilitated (i.e. fish feeding in groups will consume more prey items). Although this question has been addressed for other fish species, it has not been previously addressed for Florida Pompano, a fish known to exhibit schooling behavior and that is used for aquaculture, where understanding the feeding ecology is important for healthy and efficient grow-out. In this experiment, juvenile Florida Pompano were offered a fixed number of coquina clams (Donax spp.) for one hour either in a group or as individuals. The following day they were tested in the opposite configuration. Fish in groups achieved greater consumption (average of 26 clams consumed by the entire group) than the individuals comprising the group (average of 14 clams consumed [sum of clams consumed by all individuals of the group]). Fish in groups also had fewer unsuccessful foraging attempts (2.75 compared to 4.75 hr-1) and tended to have a shorter latency until the first feeding activity. Our results suggest fish in groups were more comfortable feeding and more successful in their feeding attempts. Interestingly, the consumption benefit of group foraging was not shared by all – not all fish within a group consumed equal numbers of clams. Taken together, the results support our hypothesis that foraging in a group provides facilitation, but the short-term benefits are not equally shared by all individuals. PMID:26068114

  12. Induced Effects on Red Imported Fire Ant (Hymenoptera: Formicidae) Forager Size Ratios by Pseudacteon spp. (Diptera: Phoridae): Implications on Bait Size Selection.

    PubMed

    Reed, J J; Puckett, R T; Gold, R E

    2015-10-01

    Red imported fire ants, Solenopsis invicta Buren, are adversely affected by phorid flies in the genus Pseudacteon by instigating defensive behaviors in their hosts, and in turn reducing the efficiency of S. invicta foraging. Multiple Pseudacteon species have been released in Texas, and research has been focused on the establishment and spread of these introduced biological control agents. Field experiments were conducted to determine bait particle size selection of S. invicta when exposed to phorid populations. Four different particle sizes of two candidate baits were offered to foragers (one provided by a pesticide manufacturer, and a laboratory-created bait). Foragers selectively were attracted to, and removed more 1-1.4-mm particles than any other bait size. The industry-provided bait is primarily made of particles in the 1.4-2.0 mm size, larger than what was selected by the ants in this study. While there was a preference for foragers to be attracted to and rest on the industry-provided blank bait, S. invicta removed more of the laboratory-created bait from the test vials. There was an abundance of workers with head widths ranging from 0.5-0.75 mm collected from baits. This was dissimilar from a previous study wherein phorid flies were not active and in which large workers were collected in higher abundance at the site. This implies that phorid fly activity caused a shift for red imported fire ant colonies to have fewer large foragers. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Density dependence and phenological mismatch: consequences for growth and survival of sub-arctic nesting Canada Geese

    USGS Publications Warehouse

    Brook, Rodney W.; Leafloor, James O.; Douglas, David C.; Abraham, Kenneth F.

    2015-01-01

    The extent to which species are plastic in the timing of their reproductive events relative to phenology suggests how change might affect their demography. An ecological mismatch between the timing of hatch for avian species and the peak availability in quality and quantity of forage for rapidly growing offspring might ultimately affect recruitment to the breeding population unless individuals can adjust the timing of breeding to adapt to changing phenology. We evaluated effects of goose density, hatch timing relative to forage plant phenology, and weather indices on annual growth of pre-fledging Canada geese (Branta canadensis) from 1993-2010 at Akimiski Island, Nunavut. We found effects of both density and hatch timing relative to forage plant phenology; the earlier that eggs hatched relative to forage plant phenology, the larger the mean gosling size near fledging. Goslings were smallest in years when hatch was latest relative to forage plant phenology, and when local abundance of breeding adults was highest. We found no evidence for a trend in relative hatch timing, but it was apparent that in early springs, Canada geese tended to hatch later relative to vegetation phenology, suggesting that geese were not always able to adjust the timing of nesting as rapidly as vegetation phenology was advanced. Analyses using forage biomass information revealed a positive relationship between gosling size and per capita biomass availability, suggesting a causal mechanism for the density effect. The effects of weather parameters explained additional variation in mean annual gosling size, although total June and July rainfall had a small additive effect on gosling size. Modelling of annual first year survival probability using mean annual gosling size as an annual covariate revealed a positive relationship, suggesting that reduced gosling growth negatively impacts recruitment.

  14. Summing the strokes: energy economy in northern elephant seals during large-scale foraging migrations.

    PubMed

    Maresh, J L; Adachi, T; Takahashi, A; Naito, Y; Crocker, D E; Horning, M; Williams, T M; Costa, D P

    2015-01-01

    The energy requirements of free-ranging marine mammals are challenging to measure due to cryptic and far-ranging feeding habits, but are important to quantify given the potential impacts of high-level predators on ecosystems. Given their large body size and carnivorous lifestyle, we would predict that northern elephant seals (Mirounga angustirostris) have elevated field metabolic rates (FMRs) that require high prey intake rates, especially during pregnancy. Disturbance associated with climate change or human activity is predicted to further elevate energy requirements due to an increase in locomotor costs required to accommodate a reduction in prey or time available to forage. In this study, we determined the FMRs, total energy requirements, and energy budgets of adult, female northern elephant seals. We also examined the impact of increased locomotor costs on foraging success in this species. Body size, time spent at sea and reproductive status strongly influenced FMR. During the short foraging migration, FMR averaged 90.1 (SE = 1.7) kJ kg(-1)d(-1) - only 36 % greater than predicted basal metabolic rate. During the long migration, when seals were pregnant, FMRs averaged 69.4 (±3.0) kJ kg(-1)d(-1) - values approaching those predicted to be necessary to support basal metabolism in mammals of this size. Low FMRs in pregnant seals were driven by hypometabolism coupled with a positive feedback loop between improving body condition and reduced flipper stroking frequency. In contrast, three additional seals carrying large, non-streamlined instrumentation saw a four-fold increase in energy partitioned toward locomotion, resulting in elevated FMRs and only half the mass gain of normally-swimming study animals. These results highlight the importance of keeping locomotion costs low for successful foraging in this species. In preparation for lactation and two fasting periods with high demands on energy reserves, migrating elephant seals utilize an economical foraging strategy whereby energy savings from reduced locomotion costs are shuttled towards somatic growth and fetal gestation. Remarkably, the energy requirements of this species, particularly during pregnancy, are 70-80 % lower than expected for mammalian carnivores, approaching or even falling below values predicted to be necessary to support basal metabolism in mammals of this size.

  15. Sediment-induced turbidity impairs foraging performance and prey choice of planktivorous coral reef fishes.

    PubMed

    Johansen, J L; Jones, G P

    2013-09-01

    Sedimentation is a substantial threat to aquatic ecosystems and a primary cause of habitat degradation on near-shore coral reefs. Although numerous studies have demonstrated major impacts of sedimentation and turbidity on corals, virtually nothing is known of the sensitivity of reef fishes. Planktivorous fishes are an important trophic group that funnels pelagic energy sources into reef ecosystems. These fishes are visual predators whose foraging is likely to be impaired by turbidity, but the threshold for such effects and their magnitude are unknown. This study examined the effect of sediment-induced turbidity on foraging in four species of planktivorous damselfishes (Pomacentridae) of the Great Barrier Reef, including inshore and offshore species that potentially differ in tolerance for turbidity. An experimental flow tunnel was used to quantify their ability to catch mobile and immobile planktonic prey under different levels of turbidity and velocity in the range encountered on natural and disturbed reefs. Turbidity of just 4 NTU (nephelometric turbidity units) reduced average attack success by up to 56%, with higher effect sizes for species with offshore distributions. Only the inshore species (Neopomacentrus bankieri), which frequently encounters this turbidity on coastal reefs, could maintain high prey capture success. At elevated turbidity similar to that found on disturbed reefs (8 NTU), attack success was reduced in all species examined by up to 69%. These reductions in attack success led to a 21-24% decrease in foraging rates for all mid to outer-shelf species, in spite of increasing attack rates at high turbidity. Although effects of turbidity varied among species, it always depended heavily on prey mobility and ambient velocity. Attack success was up to 14 times lower on mobile prey, leaving species relatively incapable of foraging on anything but immobile prey at high turbidity. Effects of turbidity were particularly prominent at higher velocities, as attack success was overall 20-fold lower and foraging rates 3.3-fold lower at flow velocities > 30 cm/s relative to < or = 10 cm/s. Given that many planktivorous reef fishes predominantly occupy exposed, high-flow habitats, these results provide a reasonable explanation for the lack of planktivores on inshore coral reefs and warn that the performance of visual predators could be impaired at turbidity levels of only 4 NTU.

  16. 78 FR 23738 - Monsanto Company and Forage Genetics International (FGI); Availability of Petition for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-22

    ... pathway. Suppression of the CCOMT gene expression leads to lower CCOMT protein expression resulting in reduced synthesis of G lignin subunit compared to conventional alfalfa at the same stage of growth. The reduction in G lignin subunit synthesis leads to reduced accumulation of total lignin, measured as acid...

  17. Proceedings of the 2015 international summit on fibropapillomatosis: Global status, trends, and population impacts

    USGS Publications Warehouse

    Hargrove, Stacy A.; Work, Thierry M.; Brunson, Shandell; Foley, Allen M.; Balazs, George H.

    2016-01-01

    The 2015 International Summit on Fibropapillomatosis (FP) was convened in Honolulu, Hawaii June 11-14, 2015. Scientists from around the world were invited to present results from sea turtle monitoring and research programs as they relate to the global status, trends, and population impacts of FP on green turtles. The participants engaged in discussions that resulted in the following conclusions: 1.Globally, FP has long been present in wild sea turtle populations the earliest mention was in the late 1800s in the Florida Keys. 2.FP primarily affects medium-sized immature turtles in coastal foraging pastures. 3.Expression of FP differs across ocean basins and to some degree within basins. Turtles in the Southeast US, Caribbean, Brazil, and Australia rarely have oral tumors (inside the mouth cavity), whereas they are common and often severe in Hawaii. Internal tumors (on vital organs) occur in the Atlantic and Hawaii, but only rarely in Australia. Liver tumors are common in Florida but not in Hawaii. 4.Recovery from FP through natural processes, when the affliction is not severe, has been documented in wild populations globally. 5.FP causes reduced survivorship, but documented mortality rates in Australia and Hawaii are low. The mortality impact of FP is not currently exceeding population growth rates in some intensively monitored populations (e.g., Florida, Hawaii) as evidenced by increasing nesting trends despite the incidence of FP in immature foraging populations. 6.Pathogens, hosts, and potential disease and environmental cofactors have the capacity to change; while we are having success now, there needs to be continued monitoring to detect changes in the distribution, occurrence, and severity of the disease. 7.While we do not have clear evidence to provide the direct link, globally, the preponderance of sites with a high frequency of FP tumors are areas with some degree of degradation resulting from altered watersheds. Watershed management and responsible coastal development may be the best approach for reducing the spread and prevalence of the disease. 8.Future research efforts should employ a multi-factorial ecological approach (e.g., virology, parasitology, genetics, health, diet, habitat use, water quality, etc.) since there are likely several environmental cofactors involved in the expression of the disease, which is still thought to be caused by a herpesvirus. 9.Minimum FP data collection in new areas should include: individual identification (photo ID, PIT tags, etc.), standard measurements (length and weight), presence/absence of tumors, tumor severity, body condition, oral examination, method of capture, and effort

  18. Apparent changes in body insulation of juvenile king penguins suggest an energetic challenge during their early life at sea.

    PubMed

    Enstipp, Manfred R; Bost, Charles-André; Le Bohec, Céline; Bost, Caroline; Le Maho, Yvon; Weimerskirch, Henri; Handrich, Yves

    2017-07-15

    Little is known about the early life at sea of marine top predators, like deep-diving king penguins ( Aptenodytes patagonicus ), although this dispersal phase is probably a critical phase in their life. Apart from finding favourable foraging sites, they have to develop effective prey search patterns as well as physiological capacities that enable them to capture sufficient prey to meet their energetic needs. To investigate the ontogeny of their thermoregulatory responses at sea, we implanted 30 juvenile king penguins and 8 adult breeders with a small data logger that recorded pressure and subcutaneous temperature continuously for up to 2.5 years. We found important changes in the development of peripheral temperature patterns of foraging juvenile king penguins throughout their first year at sea. Peripheral temperature during foraging bouts fell to increasingly lower levels during the first 6 months at sea, after which it stabilized. Most importantly, these changes re-occurred during their second year at sea, after birds had fasted for ∼4 weeks on land during their second moult. Furthermore, similar peripheral temperature patterns were also present in adult birds during foraging trips throughout their breeding cycle. We suggest that rather than being a simple consequence of concurrent changes in dive effort or an indication of a physiological maturation process, these seasonal temperature changes mainly reflect differences in thermal insulation. Heat loss estimates for juveniles at sea were initially high but declined to approximately half after ∼6 months at sea, suggesting that juvenile king penguins face a strong energetic challenge during their early oceanic existence. © 2017. Published by The Company of Biologists Ltd.

  19. Determining forage availability and use patterns for bison in the Hayden Valley of Yellowstone National Park

    USGS Publications Warehouse

    Olenicki, Thomas J.; Irby, Lynn R.

    2005-01-01

    4. Estimate annual production and standing crop available during non-growing seasons for herbaceous and shrub layers in major habitat types in the Hayden Valley. Our efforts to describe forage use by bison focused on assessing finer scale habitat use is a core summer range for bison in YNP. We also collected information on bison food habits and forage quality to begin to explain the “whys” of bison distribution. Short-term impacts of bison forage utilization were addressed by comparing standing biomass in plots protected from grazing with plots exposed to grazing. Historical data were not available to directly address long-term effects of ungulate foraging in the Hayden Valley, but we were able to indirectly assess some aspects of this question by determining the frequency of repeat grazing over a 3-year period and the rate at which trees along the margins of the Hayden Valley were being killed by bison rubbing The third objective, determining the relative efficacy of different vegetation monitoring approaches, was accomplished by comparing estimates of standing biomass and biomas: utilization obtained via conventional exclosure techniques with estimates based on remote sensing techniques (ground-based and satellite-borne multi-spectral radiometry|[MSR]). We addressed efficacy in terms of precision and accuracy of estimates, reliability, and logistical costs at different coverage scales. The fourth objective, estimation of forage available for ungulates in the Hayden Valley, was achieved using conventional exclosure methodology and remote sensing. We were able to estimate herbaceous biomass production during 3 different years. Exclosures allowed us to estimated changes instanding crop of herbaceous vegetation at the plant community (conventional cover types, moisture plant growth form groups, and communities defined by dominant graminoids) and catena (a repeating sequence of communities tied to landscape physiognomy) scales. We developed empirical approaches that allowed us to estimate standing biomass of herbaceous plants from reflectance data obtained from ground-based and satellite-borne multi-spectral radiometry (MSR) units. We demonstrated the potential to estimate biomass of shrubs using the same approaches. We did not have time and resources to complete vegetation maps that would optimize estimates from remote sources, but we have outlined procedures that can be followed in the future to obtain biomass estimates at the landscape scale.

  20. Niche dynamics of shorebirds in Delaware Bay: Foraging behavior, habitat choice and migration timing

    NASA Astrophysics Data System (ADS)

    Novcic, Ivana

    2016-08-01

    Niche differentiation through resource partitioning is seen as one of the most important mechanisms of diversity maintenance contributing to stable coexistence of different species within communities. In this study, I examined whether four species of migrating shorebirds, dunlins (Calidris alpina), semipalmated sandpipers (Calidris pusilla), least sandpipers (Calidris minutilla) and short-billed dowitchers (Limnodromus griseus), segregate by time of passage, habitat use and foraging behavior at their major stopover in Delaware Bay during spring migration. I tested the prediction that most of the separation between morphologically similar species will be achieved by differential migration timing. Despite the high level of overlap along observed niche dimensions, this study demonstrates a certain level of ecological separation between migrating shorebirds. The results of analyses suggest that differential timing of spring migration might be the most important dimension along which shorebird species segregate while at stopover in Delaware Bay. Besides differences in time of passage, species exhibited differences in habitat use, particularly least sandpipers that foraged in vegetated areas of tidal marshes more frequently than other species, as well as short-billed dowitchers that foraged in deeper water more often than small sandpipers did. Partitioning along foraging techniques was less prominent than segregation along temporal or microhabitat dimensions. Such ranking of niche dimensions emphasizes significance of temporal segregation of migratory species - separation of species by time of passage may reduce the opportunity for interspecific aggressive encounters, which in turn can have positive effects on birds' time and energy budget during stopover period.

  1. Optimal web investment in sub-optimal foraging conditions.

    PubMed

    Harmer, Aaron M T; Kokko, Hanna; Herberstein, Marie E; Madin, Joshua S

    2012-01-01

    Orb web spiders sit at the centre of their approximately circular webs when waiting for prey and so face many of the same challenges as central-place foragers. Prey value decreases with distance from the hub as a function of prey escape time. The further from the hub that prey are intercepted, the longer it takes a spider to reach them and the greater chance they have of escaping. Several species of orb web spiders build vertically elongated ladder-like orb webs against tree trunks, rather than circular orb webs in the open. As ladder web spiders invest disproportionately more web area further from the hub, it is expected they will experience reduced prey gain per unit area of web investment compared to spiders that build circular webs. We developed a model to investigate how building webs in the space-limited microhabitat on tree trunks influences the optimal size, shape and net prey gain of arboricolous ladder webs. The model suggests that as horizontal space becomes more limited, optimal web shape becomes more elongated, and optimal web area decreases. This change in web geometry results in decreased net prey gain compared to webs built without space constraints. However, when space is limited, spiders can achieve higher net prey gain compared to building typical circular webs in the same limited space. Our model shows how spiders optimise web investment in sub-optimal conditions and can be used to understand foraging investment trade-offs in other central-place foragers faced with constrained foraging arenas.

  2. Optimal web investment in sub-optimal foraging conditions

    NASA Astrophysics Data System (ADS)

    Harmer, Aaron M. T.; Kokko, Hanna; Herberstein, Marie E.; Madin, Joshua S.

    2012-01-01

    Orb web spiders sit at the centre of their approximately circular webs when waiting for prey and so face many of the same challenges as central-place foragers. Prey value decreases with distance from the hub as a function of prey escape time. The further from the hub that prey are intercepted, the longer it takes a spider to reach them and the greater chance they have of escaping. Several species of orb web spiders build vertically elongated ladder-like orb webs against tree trunks, rather than circular orb webs in the open. As ladder web spiders invest disproportionately more web area further from the hub, it is expected they will experience reduced prey gain per unit area of web investment compared to spiders that build circular webs. We developed a model to investigate how building webs in the space-limited microhabitat on tree trunks influences the optimal size, shape and net prey gain of arboricolous ladder webs. The model suggests that as horizontal space becomes more limited, optimal web shape becomes more elongated, and optimal web area decreases. This change in web geometry results in decreased net prey gain compared to webs built without space constraints. However, when space is limited, spiders can achieve higher net prey gain compared to building typical circular webs in the same limited space. Our model shows how spiders optimise web investment in sub-optimal conditions and can be used to understand foraging investment trade-offs in other central-place foragers faced with constrained foraging arenas.

  3. Male group size, female distribution and changes in sexual segregation by Roosevelt elk

    PubMed Central

    Peterson, Leah M.

    2017-01-01

    Sexual segregation, or the differential use of space by males and females, is hypothesized to be a function of body size dimorphism. Sexual segregation can also manifest at small (social segregation) and large (habitat segregation) spatial scales for a variety of reasons. Furthermore, the connection between small- and large-scale sexual segregation has rarely been addressed. We studied a population of Roosevelt elk (Cervus elaphus roosevelti) across 21 years in north coastal California, USA, to assess small- and large-scale sexual segregation in winter. We hypothesized that male group size would associate with small-scale segregation and that a change in female distribution would associate with large-scale segregation. Variation in forage biomass might also be coupled to small and large-scale sexual segregation. Our findings were consistent with male group size associating with small-scale segregation and a change in female distribution associating with large-scale segregation. Females appeared to avoid large groups comprised of socially dominant males. Males appeared to occupy a habitat vacated by females because of a wider forage niche, greater tolerance to lethal risks, and, perhaps, to reduce encounters with other elk. Sexual segregation at both spatial scales was a poor predictor of forage biomass. Size dimorphism was coupled to change in sexual segregation at small and large spatial scales. Small scale segregation can seemingly manifest when all forage habitat is occupied by females and large scale segregation might happen when some forage habitat is not occupied by females. PMID:29121076

  4. Ontogenetic prey size selection in snakes: predator size and functional limitations to handling minimum prey sizes.

    PubMed

    Hampton, Paul M

    2018-02-01

    As body size increases, some predators eliminate small prey from their diet exhibiting an ontogenetic shift toward larger prey. In contrast, some predators show a telescoping pattern of prey size in which both large and small prey are consumed with increasing predator size. To explore a functional explanation for the two feeding patterns, I examined feeding effort as both handling time and number of upper jaw movements during ingestion of fish of consistent size. I used a range of body sizes from two snake species that exhibit ontogenetic shifts in prey size (Nerodia fasciata and N. rhombifer) and a species that exhibits telescoping prey size with increased body size (Thamnophis proximus). For the two Nerodia species, individuals with small or large heads exhibited greater difficulty in feeding effort compared to snakes of intermediate size. However, for T. proximus measures of feeding effort were negatively correlated with head length and snout-vent length (SVL). These data indicate that ontogenetic shifters of prey size develop trophic morphology large enough that feeding effort increases for disproportionately small prey. I also compared changes in body size among the two diet strategies for active foraging snake species using data gleaned from the literature to determine if increased change in body size and thereby feeding morphology is observable in snakes regardless of prey type or foraging habitat. Of the 30 species sampled from literature, snakes that exhibit ontogenetic shifts in prey size have a greater magnitude of change in SVL than species that have telescoping prey size patterns. Based upon the results of the two data sets above, I conclude that ontogenetic shifts away from small prey occur in snakes due, in part, to growth of body size and feeding structures beyond what is efficient for handling small prey. Copyright © 2017. Published by Elsevier GmbH.

  5. Predator crypsis enhances behaviourally mediated indirect effects on plants by altering bumblebee foraging preferences

    PubMed Central

    Ings, Thomas C.; Chittka, Lars

    2009-01-01

    Predators of pollinators can influence pollination services and plant fitness via both consumptive (reducing pollinator density) and non-consumptive (altering pollinator behaviour) effects. However, a better knowledge of the mechanisms underlying behaviourally mediated indirect effects of predators is necessary to properly understand their role in community dynamics. We used the tripartite relationship between bumblebees, predatory crab spiders and flowers to ask whether behaviourally mediated effects are localized to flowers harbouring predators, or whether bees extend their avoidance to entire plant species. In a tightly controlled laboratory environment, bumblebees (Bombus terrestris) were exposed to a random mixture of equally rewarding yellow and white artificial flowers, but foraging on yellow flowers was very risky: bees had a 25 per cent chance of receiving a simulated predation attempt by ‘robotic’ crab spiders. As bees learnt to avoid ‘dangerous’ flowers, their foraging preferences changed and they began to visit fewer yellow flowers than expected by chance. Bees avoided spider-free yellow flowers as well as dangerous yellow flowers when spiders were more difficult to detect (the colour of yellow spiders was indistinguishable from that of yellow flowers). Therefore, this interaction between bee learning and predator crypsis could lead flower species harbouring cryptic predators to suffer from reduced reproductive success. PMID:19324797

  6. Adapted to change: Low energy requirements in a low and unpredictable productivity environment, the case of the Galapagos sea lion

    NASA Astrophysics Data System (ADS)

    Villegas-Amtmann, Stella; McDonald, Birgitte I.; Páez-Rosas, Diego; Aurioles-Gamboa, David; Costa, Daniel P.

    2017-06-01

    The rate of energy expenditure and acquisition are fundamental components of an animals' life history. Within mammals, the otariids (sea lions and fur seals) exhibit energetically expensive life styles, which can be challenging in equatorial regions where resources are particularly limited and unpredictable. To better understand how this energetically expensive life history pattern functions in an energetically challenging equatorial system, we concurrently measured the field metabolic rate (FMR) and foraging behavior of lactating Galapagos sea lions (GSL) rearing pups and yearlings. Females with pups tended to forage to the north, diving deeper, epi and mesopelagically compared to females with yearlings, which foraged to the west and performed dives to the sea bed that were shallower. FMR did not differ between females with pups or yearlings but, increased significantly with % time spent at-sea. Females with yearlings had higher water influx, suggesting greater food intake, but had lower body condition. The FMR (4.08±0.6 W/kg) of GSL is the lowest measured for any otariid, but is consistent with Galapagos fur seals which also exhibit low FMR. The observation that these two otariids have reduced energy requirements is consistent with an adaptation to the reduced prey availability of the Galapagos marine environment compared to other more productive marine systems.

  7. Does the Earth's Magnetic Field Serve as a Reference for Alignment of the Honeybee Waggle Dance?

    PubMed Central

    Lambinet, Veronika; Hayden, Michael E.; Bieri, Marco; Gries, Gerhard

    2014-01-01

    The honeybee (Apis mellifera) waggle dance, which is performed inside the hive by forager bees, informs hive mates about a potent food source, and recruits them to its location. It consists of a repeated figure-8 pattern: two oppositely directed turns interspersed by a short straight segment, the “waggle run”. The waggle run consists of a single stride emphasized by lateral waggling motions of the abdomen. Directional information pointing to a food source relative to the sun's azimuth is encoded in the angle between the waggle run line and a reference line, which is generally thought to be established by gravity. Yet, there is tantalizing evidence that the local (ambient) geomagnetic field (LGMF) could play a role. We tested the effect of the LGMF on the recruitment success of forager bees by placing observation hives inside large Helmholtz coils, and then either reducing the LGMF to 2% or shifting its apparent declination. Neither of these treatments reduced the number of nest mates that waggle dancing forager bees recruited to a feeding station located 200 m north of the hive. These results indicate that the LGMF does not act as the reference for the alignment of waggle-dancing bees. PMID:25541731

  8. Potassium sorbate reduces production of ethanol and 2 esters in corn silage.

    PubMed

    Hafner, Sasha D; Franco, Roberta B; Kung, Limin; Rotz, C Alan; Mitloehner, Frank

    2014-12-01

    The objective of this work was to evaluate the effects of biological and chemical silage additives on the production of volatile organic compounds (VOC; methanol, ethanol, 1-propanol, methyl acetate, and ethyl acetate) within corn silage. Recent work has shown that silage VOC can contribute to poor air quality and reduce feed intake. Silage additives may reduce VOC production in silage by inhibiting the activity of bacteria or yeasts that produce them. We produced corn silage in 18.9-L bucket silos using the following treatments: (1) control (distilled water); (2) Lactobacillus buchneri 40788, with 400,000 cfu/g of wet forage; (3) Lactobacillus plantarum MTD1, with 100,000 cfu/g; (4) a commercial buffered propionic acid-based preservative (68% propionic acid, containing ammonium and sodium propionate and acetic, benzoic, and sorbic acids) at a concentration of 1 g/kg of wet forage (0.1%); (5) a low dose of potassium sorbate at a concentration of 91 mg/kg of wet forage (0.0091%); (6) a high dose of potassium sorbate at a concentration of 1g/kg of wet forage (0.1%); and (7) a mixture of L. plantarum MTD1 (100,000 cfu/g) and a low dose of potassium sorbate (91 mg/kg). Volatile organic compound concentrations within silage were measured after ensiling and sample storage using a headspace gas chromatography method. The high dose of potassium sorbate was the only treatment that inhibited the production of multiple VOC. Compared with the control response, it reduced ethanol by 58%, ethyl acetate by 46%, and methyl acetate by 24%, but did not clearly affect production of methanol or 1-propanol. The effect of this additive on ethanol production was consistent with results from a small number of earlier studies. A low dose of this additive does not appear to be effective. Although it did reduce methanol production by 24%, it increased ethanol production by more than 2-fold and did not reduce the ethyl acetate concentration. All other treatments increased ethanol production at least 2-fold relative to the control, and L. buchneri addition also increased the 1-propanol concentration to approximately 1% of dry matter. No effects of any treatments on fiber fractions or protein were observed. However, L. buchneri addition resulted in slightly more ammonia compared with the control. If these results hold under different conditions, a high dose of potassium sorbate will be an effective treatment for reducing VOC production in and emission from silage. Regulations aimed at reducing VOC emission could be ineffective or even increase emission if they promote silage additives without recognition of different types of additives. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. Flexibility in the parental effort of an Arctic-breeding seabird

    USGS Publications Warehouse

    Harding, A.M.A.; Kitaysky, A.S.; Hall, M.E.; Welcker, J.; Karnovsky, N.J.; Talbot, S.L.; Hamer, K.C.; Gremillet, D.

    2009-01-01

    Parental investment strategies are considered to represent a trade-off between the benefits of investment in current offspring and costs to future reproduction. Due to their high residual reproductive value, long-lived organisms are predicted to be more reluctant to increase parental effort. 2. We tested the hypothesis that breeding little auks (Alle alle) have a fixed level of reproductive investment, and thus reduce parental effort when costs associated with reproduction increase. 3. To test this hypothesis we experimentally increased the flight costs of breeding little auks via feather clipping. In 2005 we examined changes in the condition of manipulated parents, of the mates of manipulated parents, and of their chick as direct measures of change in parental resource allocation between self-maintenance and current reproduction. In 2007 we increased sample sizes to determine whether there was a physiological cost (elevated corticosterone, CORT) associated with the manipulation. 4. We found that: (i) clipped birds and their mates lost more body mass than controls, but there was no difference in mass loss between members of a pair; (ii) clipped birds had higher CORT levels than control birds; (iii) there were no inter-annual differences in body mass and CORT levels between clipped individuals and their mates at recapture, and (iv) chicks with a clipped parent had lower peak and fledging mass, and higher CORT levels than control chicks in both years. 5. Contrary to our hypothesis, the reduction in body mass of partners to clipped birds suggests that little auks can increase parental effort to some extent. Nonetheless, the lower fledging mass and higher CORT of chicks with a clipped parent indicates provisioning rates may not have been fully maintained. 6. As predicted by life-history theory, there may be a threshold to the additional reproductive costs breeders will accept, with parents prioritizing self-maintenance over increased provisioning effort when foraging costs become too high. ?? 2008 British Ecological Society.

  10. Invited review: Sustainable forage and grain crop production for the US dairy industry.

    PubMed

    Martin, N P; Russelle, M P; Powell, J M; Sniffen, C J; Smith, S I; Tricarico, J M; Grant, R J

    2017-12-01

    A resilient US dairy industry will be underpinned by forage and crop production systems that are economically, environmentally, and socially sustainable. Land use for production of perennial and annual forages and grains for dairy cattle must evolve in response to multiple food security and environmental sustainability issues. These include increasing global populations; higher incomes and demand for dairy and other animal products; climate change with associated temperature and moisture changes; necessary reductions in carbon and water footprints; maintenance of soil quality and soil nutrient concerns; and competition for land. Likewise, maintaining producer profitability and utilizing practices accepted by consumers and society generally must also be considered. Predicted changes in climate and water availability will likely challenge current feed and dairy production systems and their national spatial distribution, particularly the western migration of dairy production in the late 20th century. To maintain and stabilize profitability while reducing carbon footprint, particularly reductions in methane emission and enhancements in soil carbon sequestration, dairy production will need to capitalize on genetic and management innovations that enhance forage and grain production and nutritive value. Improved regional and on-farm integration of feed production and manure utilization is needed to reduce environmental nitrogen and phosphorus losses and mitigate greenhouse gas emissions. Resilient and flexible feed production strategies are needed to address each of these challenges and opportunities to ensure profitable feeding of dairy cattle and a sustainable dairy industry. The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

  11. Production and feeding strategies for phosphorus management on dairy farms.

    PubMed

    Rotz, C A; Sharpley, A N; Satter, L D; Gburek, W J; Sanderson, M A

    2002-11-01

    Long-term accumulation of soil phosphorus (P) is becoming a concern on some watersheds heavily populated with animal feeding facilities, including dairy farms. Management changes in crop production and feeding may help reduce the accumulation of excess P, but farm profitability must be maintained or improved to assure adoption of such changes. Whole-farm simulation was used to evaluate the long-term effects of changes in feeding, cropping, and other production strategies on P loading and the economics of 100-cow and 800-cow dairy farms in southeastern New York. Simulated farms maintained a long-term P balance if the following occurred: 1) animals were fed to meet recommended minimum amounts of dietary P, 2) the cropping strategy and land base supplied all of the forage needed, 3) all animals were fed a high forage diet, and 4) replacement heifers were produced on the farm to utilize more forage. The most easily implemented change was to reduce the supplemental mineral P fed to that required to meet current NRC recommended amounts, and this provided an annual increase in farm profit of about $22/cow. Intensifying the use of grassland and improving grazing practices increased profit along with a small reduction in excess P. Conversion from dairy production to heifer raising or expansion from 100 cows to a 250-cow "state-of-the-art" confinement facility (with a 70% increase in land area) were also profitable options. These options provided a long-term P balance for the farm as long as the production and use of forage was maximized and minimum dietary P amounts were those recommended by the NRC. Thus, management changes can be made to prevent the long-term accumulation of soil P on dairy farms while improving farm profitability.

  12. Inter-Cohort Cannibalism of Early Benthic Phase Blue King Crabs (Paralithodes platypus): Alternate Foraging Strategies in Different Habitats Lead to Different Functional Responses

    PubMed Central

    Daly, Benjamin; Long, W. Christopher

    2014-01-01

    Blue king crabs (Paralithodes platypus) are commercially and ecologically important in Alaska, USA, but population abundances have fluctuated over the past several decades likely resulting from a combination of environmental and biological factors, including recruitment variability. Cannibalism between cohorts may be a source of mortality limiting recruitment success in the wild, but the degree of inter-cohort cannibalism is unknown for early benthic phase blue king crabs. In laboratory experiments, we evaluated the effects of habitat type (sand and shell) on the predator functional response and foraging behavior of year-1 blue king crabs as predators of year-0 conspecifics and examined the effects of predator presence on crypsis of prey crabs. In sand, consumption rates increased with predator size and prey density until satiation, while predation rates in shell were low regardless of predator size or prey density. These differential predation rates yielded a type III functional response in sand but a type I functional response in shell habitat. Crypsis of prey crabs was generally high and did not change in the presence of predators. Predator foraging activity was reduced in shell and may be an adaptive behavior to balance foraging efficiency and susceptibility to larger predators. Our results demonstrate that early benthic phase blue king crabs are cannibalistic between cohorts in the laboratory and that shell material is extremely effective for reducing encounter rates with conspecific predators. The distribution and abundance of such habitat may be important for recruitment success in some populations. Future studies should compare benthic habitat and species assemblages in areas with variable abundances, such as the Pribilof Islands and Saint Matthew Island in the eastern Bering Sea, to better understand possible mechanisms for recruitment variability. PMID:24558414

  13. Improving diet and activity of insectivorous primates in captivity: Naturalizing the diet of Northern Ceylon gray slender loris, Loris lydekkerianus nordicus.

    PubMed

    Williams, Emma; Cabana, Francis; Nekaris, K A I

    2015-01-01

    Data on in-situ diet and nutritional requirements should inform the provision of food to captive insectivorous primates. Despite the growing availability of such information an over-reliance on commercially available primate foods and fruit continues in many captive establishments. Wild slender lorises are almost exclusively insectivorous, yet captive conspecifics are fed a primarily frugivorous diet that is likely to contribute to behavioral and health problems. We investigated the effect of naturalizing diet in the Northern Ceylon grey slender loris (Loris lydekkerianus nordicus) by providing live insect prey to a captive group of five individuals. We calculated activity budgets in accordance with six established categories and recorded positional behaviors. We collected data over 30 hours for each of three conditions: pre-enrichment, enrichment, post-enrichment. We hypothesized that increased opportunity for the display of natural behaviors would be stimulated by the dietary enrichment of live insects and made the following predictions; 1) Percentage time spent foraging would increase and time spent inactive would decrease; 2) behavioral repertoires would increase; 3) foraging patterns would be more constant over time with reduced feeding-time peaks. We analyzed time budget and behavioral changes using Friedman tests. We found significant changes in activity budgets with inactivity reduced and foraging levels increased to levels seen in wild slender lorises. We found a significant increase in postures used in foraging and a wider behavioral repertoire. We discuss the benefits of providing free-ranging live food in relation to enhancing the temporal-spatial distribution of food acquisition, satisfying nutritional requirements, balancing energy intake, and expenditure, expanding sensory stimulation, and promoting behavioral competence. We discuss our findings in relation to other insectivorous primates. © 2015 Wiley Periodicals, Inc.

  14. Inter-cohort cannibalism of early benthic phase blue king crabs (Paralithodes platypus): alternate foraging strategies in different habitats lead to different functional responses.

    PubMed

    Daly, Benjamin; Long, W Christopher

    2014-01-01

    Blue king crabs (Paralithodes platypus) are commercially and ecologically important in Alaska, USA, but population abundances have fluctuated over the past several decades likely resulting from a combination of environmental and biological factors, including recruitment variability. Cannibalism between cohorts may be a source of mortality limiting recruitment success in the wild, but the degree of inter-cohort cannibalism is unknown for early benthic phase blue king crabs. In laboratory experiments, we evaluated the effects of habitat type (sand and shell) on the predator functional response and foraging behavior of year-1 blue king crabs as predators of year-0 conspecifics and examined the effects of predator presence on crypsis of prey crabs. In sand, consumption rates increased with predator size and prey density until satiation, while predation rates in shell were low regardless of predator size or prey density. These differential predation rates yielded a type III functional response in sand but a type I functional response in shell habitat. Crypsis of prey crabs was generally high and did not change in the presence of predators. Predator foraging activity was reduced in shell and may be an adaptive behavior to balance foraging efficiency and susceptibility to larger predators. Our results demonstrate that early benthic phase blue king crabs are cannibalistic between cohorts in the laboratory and that shell material is extremely effective for reducing encounter rates with conspecific predators. The distribution and abundance of such habitat may be important for recruitment success in some populations. Future studies should compare benthic habitat and species assemblages in areas with variable abundances, such as the Pribilof Islands and Saint Matthew Island in the eastern Bering Sea, to better understand possible mechanisms for recruitment variability.

  15. Hypothermic stunning of green sea turtles in a western Gulf of Mexico foraging habitat.

    PubMed

    Shaver, Donna J; Tissot, Philippe E; Streich, Mary M; Walker, Jennifer Shelby; Rubio, Cynthia; Amos, Anthony F; George, Jeffrey A; Pasawicz, Michelle R

    2017-01-01

    Texas waters provide one of the most important developmental and foraging habitats for juvenile green turtles (Chelonia mydas) in the western Gulf of Mexico, but hypothermic stunning is a significant threat and was the largest cause of green turtle strandings in Texas from 1980 through 2015; of the 8,107 green turtles found stranded, 4,529 (55.9%) were victims of hypothermic stunning. Additionally, during this time, 203 hypothermic stunned green turtles were found incidentally captured due to power plant water intake entrapment. Overall, 63.9% of 4,529 hypothermic stunned turtles were found alive, and 92.0% of those survived rehabilitation and were released. Numbers of green turtles recorded as stranded and as affected by hypothermic stunning increased over time, and were most numerous from 2007 through 2015. Large hypothermic stunning events (with more than 450 turtles documented) occurred during the winters of 2009-2010, 2010-2011, 2013-2014, and 2014-2015. Hypothermic stunning was documented between November and March, but peaked at various times depending on passage of severe weather systems. Hypothermic stunning occurred state-wide, but was most prevalent in South Texas, particularly the Laguna Madre. In the Laguna Madre, hypothermic stunning was associated with an abrupt drop in water temperatures strong northerly winds, and a threshold mean water temperature of 8.0°C predicted large turtle hypothermic stunning events. Knowledge of environmental parameters contributing to hypothermic stunning and the temporal and spatial distribution of turtles affected in the past, can aid with formulation of proactive, targeted search and rescue efforts that can ultimately save the lives of many affected individuals, and aid with recovery efforts for this bi-national stock. Such rescue efforts are required under the U.S. Endangered Species Act and respond to humanitarian concerns of the public.

  16. Trade-Offs between Economic and Environmental Impacts of Introducing Legumes into Cropping Systems

    PubMed Central

    Reckling, Moritz; Bergkvist, Göran; Watson, Christine A.; Stoddard, Frederick L.; Zander, Peter M.; Walker, Robin L.; Pristeri, Aurelio; Toncea, Ion; Bachinger, Johann

    2016-01-01

    Europe's agriculture is highly specialized, dependent on external inputs and responsible for negative environmental impacts. Legume crops are grown on less than 2% of the arable land and more than 70% of the demand for protein feed supplement is imported from overseas. The integration of legumes into cropping systems has the potential to contribute to the transition to a more resource-efficient agriculture and reduce the current protein deficit. Legume crops influence the production of other crops in the rotation making it difficult to evaluate the overall agronomic effects of legumes in cropping systems. A novel assessment framework was developed and applied in five case study regions across Europe with the objective of evaluating trade-offs between economic and environmental effects of integrating legumes into cropping systems. Legumes resulted in positive and negative impacts when integrated into various cropping systems across the case studies. On average, cropping systems with legumes reduced nitrous oxide emissions by 18 and 33% and N fertilizer use by 24 and 38% in arable and forage systems, respectively, compared to systems without legumes. Nitrate leaching was similar with and without legumes in arable systems and reduced by 22% in forage systems. However, grain legumes reduced gross margins in 3 of 5 regions. Forage legumes increased gross margins in 3 of 3 regions. Among the cropping systems with legumes, systems could be identified that had both relatively high economic returns and positive environmental impacts. Thus, increasing the cultivation of legumes could lead to economic competitive cropping systems and positive environmental impacts, but achieving this aim requires the development of novel management strategies informed by the involvement of advisors and farmers. PMID:27242870

  17. Trade-Offs between Economic and Environmental Impacts of Introducing Legumes into Cropping Systems.

    PubMed

    Reckling, Moritz; Bergkvist, Göran; Watson, Christine A; Stoddard, Frederick L; Zander, Peter M; Walker, Robin L; Pristeri, Aurelio; Toncea, Ion; Bachinger, Johann

    2016-01-01

    Europe's agriculture is highly specialized, dependent on external inputs and responsible for negative environmental impacts. Legume crops are grown on less than 2% of the arable land and more than 70% of the demand for protein feed supplement is imported from overseas. The integration of legumes into cropping systems has the potential to contribute to the transition to a more resource-efficient agriculture and reduce the current protein deficit. Legume crops influence the production of other crops in the rotation making it difficult to evaluate the overall agronomic effects of legumes in cropping systems. A novel assessment framework was developed and applied in five case study regions across Europe with the objective of evaluating trade-offs between economic and environmental effects of integrating legumes into cropping systems. Legumes resulted in positive and negative impacts when integrated into various cropping systems across the case studies. On average, cropping systems with legumes reduced nitrous oxide emissions by 18 and 33% and N fertilizer use by 24 and 38% in arable and forage systems, respectively, compared to systems without legumes. Nitrate leaching was similar with and without legumes in arable systems and reduced by 22% in forage systems. However, grain legumes reduced gross margins in 3 of 5 regions. Forage legumes increased gross margins in 3 of 3 regions. Among the cropping systems with legumes, systems could be identified that had both relatively high economic returns and positive environmental impacts. Thus, increasing the cultivation of legumes could lead to economic competitive cropping systems and positive environmental impacts, but achieving this aim requires the development of novel management strategies informed by the involvement of advisors and farmers.

  18. Individual lifetime pollen and nectar foraging preferences in bumble bees

    NASA Astrophysics Data System (ADS)

    Hagbery, Jessica; Nieh, James C.

    2012-10-01

    Foraging specialization plays an important role in the ability of social insects to efficiently allocate labor. However, relatively little is known about the degree to which individual bumble bees specialize on collecting nectar or pollen, when such preferences manifest, and if individuals can alter their foraging preferences in response to changes in the colony workforce. Using Bombus impatiens, we monitored all foraging visits made by every bee in multiple colonies and showed that individual foragers exhibit consistent lifetime foraging preferences. Based upon the distribution of foraging preferences, we defined three forager types (pollen specialists, nectar specialists, and generalists). In unmanipulated colonies, 16-36 % of individuals specialized (≥90 % of visits) on nectar or pollen only. On its first day of foraging, an individual's foraging choices (nectar only, pollen only, or nectar and pollen) significantly predicted its lifetime foraging preferences. Foragers that only collected pollen on their first day of foraging made 1.61- to 1.67-fold more lifetime pollen foraging visits (as a proportion of total trips) than foragers that only collected nectar on their first foraging day. Foragers were significantly larger than bees that stayed only in the nest. We also determined the effect of removing pollen specialists at early (brood present) or later (brood absent) stages in colony life. These results suggest that generalists can alter their foraging preferences in response to the loss of a small subset of foragers. Thus, bumble bees exhibit individual lifetime foraging preferences that are established early in life, but generalists may be able to adapt to colony needs.

  19. Low Lignin (Brown Mid-rib) Sorghum Genotypes Restrict Growth of Fusarium Spp. as Compared with Near-Isogenic Wild-Type Sorghum

    USDA-ARS?s Scientific Manuscript database

    To increase usability of sorghum for bioenergy and forages, two different brown midrib (bmr) genes, bmr-6 and bmr-12, were backcrossed into five elite backgrounds, resulting in reduced lignin near-isogenic genotypes. Field-grown grain from bmr-6 and bmr-12 plants had significantly reduced colonizati...

  20. Interactions Increase Forager Availability and Activity in Harvester Ants.

    PubMed

    Pless, Evlyn; Queirolo, Jovel; Pinter-Wollman, Noa; Crow, Sam; Allen, Kelsey; Mathur, Maya B; Gordon, Deborah M

    2015-01-01

    Social insect colonies use interactions among workers to regulate collective behavior. Harvester ant foragers interact in a chamber just inside the nest entrance, here called the 'entrance chamber'. Previous studies of the activation of foragers in red harvester ants show that an outgoing forager inside the nest experiences an increase in brief antennal contacts before it leaves the nest to forage. Here we compare the interaction rate experienced by foragers that left the nest and ants that did not. We found that ants in the entrance chamber that leave the nest to forage experienced more interactions than ants that descend to the deeper nest without foraging. Additionally, we found that the availability of foragers in the entrance chamber is associated with the rate of forager return. An increase in the rate of forager return leads to an increase in the rate at which ants descend to the deeper nest, which then stimulates more ants to ascend into the entrance chamber. Thus a higher rate of forager return leads to more available foragers in the entrance chamber. The highest density of interactions occurs near the nest entrance and the entrances of the tunnels from the entrance chamber to the deeper nest. Local interactions with returning foragers regulate both the activation of waiting foragers and the number of foragers available to be activated.

  1. Nutritional composition and in vitro digestibility of grass and legume winter (cover) crops.

    PubMed

    Brown, A N; Ferreira, G; Teets, C L; Thomason, W E; Teutsch, C D

    2018-03-01

    In dairy farming systems, growing winter crops for forage is frequently limited to annual grasses grown in monoculture. The objectives of this study were to determine how cropping grasses alone or in mixtures with legumes affects the yield, nutritional composition, and in vitro digestibility of fresh and ensiled winter crops and the yield, nutritional composition, and in vitro digestibility of the subsequent summer crops. Experimental plots were planted with 15 different winter crops at 3 locations in Virginia. At each site, 4 plots of each treatment were planted in a randomized complete block design. The 15 treatments included 5 winter annual grasses [barley (BA), ryegrass (RG), rye (RY), triticale (TR), and wheat (WT)] in monoculture [i.e., no legumes (NO)] or with 1 of 2 winter annual legumes [crimson clover (CC) and hairy vetch (HV)]. After harvesting the winter crops, corn and forage sorghum were planted within the same plots perpendicular to the winter crop plantings. The nutritional composition and the in vitro digestibility of winter and summer crops were determined for fresh and ensiled samples. Growing grasses in mixtures with CC increased forage dry matter (DM) yield (2.84 Mg/ha), but the yield of mixtures with HV (2.47 Mg/ha) was similar to that of grasses grown in monoculture (2.40 Mg/ha). Growing grasses in mixtures with legumes increased the crude protein concentration of the fresh forage from 13.0% to 15.5% for CC and to 17.3% for HV. For neutral detergent fiber (NDF) concentrations, the interaction between grasses and legumes was significant for both fresh and ensiled forages. Growing BA, RY, and TR in mixtures with legumes decreased NDF concentrations, whereas growing RG and WT with legumes did not affect the NDF concentrations of either the fresh or the ensiled forages. Growing grasses in mixtures with legumes decreased the concentration of sugars of fresh forages relative to grasses grown in monoculture. Primarily, this decrease can be attributed to low concentrations of sugars of mixtures with HV (10.5%). Growing grasses in mixtures with legumes reduced the fiber digestibility of both winter crops (75.7% to 72.8% NDF). Growing grasses in mixtures with legumes did not affect estimated DM yield, nutritional composition, or digestibility of the succeeding summer crops. In conclusion, growing grasses in mixtures with legumes as winter forage crops can increase forage estimated DM yields and its nutritional quality in dairy farming sytems. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. More lessons from the Hadza about men's work.

    PubMed

    Hawkes, Kristen; O'Connell, James F; Jones, Nicholas G Blurton

    2014-12-01

    Unlike other primate males, men invest substantial effort in producing food that is consumed by others. The Hunting Hypothesis proposes this pattern evolved in early Homo when ancestral mothers began relying on their mates' hunting to provision dependent offspring. Evidence for this idea comes from hunter-gatherer ethnography, but data we collected in the 1980s among East African Hadza do not support it. There, men targeted big game to the near exclusion of other prey even though they were rarely successful and most of the meat went to others, at significant opportunity cost to their own families. Based on Hadza data collected more recently, Wood and Marlowe contest our position, affirming the standard view of men's foraging as family provisioning. Here we compare the two studies, identify similarities, and show that emphasis on big game results in collective benefits that would not be supplied if men foraged mainly to provision their own households. Male status competition remains a likely explanation for Hadza focus on big game, with implications for hypotheses about the deeper past.

  3. Associations between male testosterone and immune function in a pathogenically stressed forager-horticultural population

    PubMed Central

    Trumble, Benjamin C; Blackwell, Aaron D; Stieglitz, Jonathan; Thompson, Melissa Emery; Suarez, Ivan Maldonado; Kaplan, Hillard; Gurven, Michael

    2016-01-01

    Objectives Despite well-known fitness advantages to males who produce and maintain high endogenous testosterone levels, such phenotypes may be costly if testosterone-mediated investment in reproductive effort trade-off against investment in somatic maintenance. Previous studies of androgen-mediated trade-offs in human immune function find mixed results, in part because most studies either focus on a few indicators of immunity, are confounded by phenotypic correlation, or are observational. Here the association between male endogenous testosterone and 13 circulating cytokines are examined before and after ex vivo antigen stimulation with phytohaemagglutinin (PHA) and lipopolysaccharides (LPS) in a high pathogen population of Bolivian forager-horticulturalists. Materials and Methods A Milliplex 13-plex cytokine panel measured cytokine concentration in whole blood samples from 109 Tsimane men aged 40–89 (median=50 years) before and after antigen stimulation with PHA and LPS. Urinary testosterone was measured via enzyme immunoassay; demographic and anthropometric data were collected as part of the Tsimane Health and Life History Project. Results Higher endogenous testosterone was associated with down-regulated responses in all cytokines after PHA stimulation (but significantly in only 2/13 cytokines), controlling for age and body mass index. In contrast, testosterone was not significantly associated with down-regulation of cytokines after LPS stimulation. MANOVAs indicate that men with higher testosterone showed reduced cytokine responses to PHA compared to LPS (p=0.0098). Discussion Endogenous testosterone appears to be immunomodulatory rather than immunosuppressive. Potentially costlier forms of immune activation like those induced by PHA (largely T-cell biased immune activation) are down-regulated in men with higher testosterone, but testosterone has less impact on potentially less costly immune activation following LPS stimulation (largely B-cell mediated immunity). PMID:27465811

  4. How long will honey bees (Apis mellifera L.) be stimulated by scent to revisit past-profitable forage sites?

    PubMed

    Beekman, Madeleine

    2005-12-01

    Honey bees utilise floral food sources that vary temporally in their relative and absolute quality. Via a sophisticated colony organisation, a honey bee colony allocates its foragers such that the colony focuses on the most profitable forage sites while keeping track of changes within its foraging environment. One important mechanism of the allocation of foragers is the ability of experienced foragers to revisit past-profitable forage sites after a period of temporary dearth caused by, for example, inclement weather. The scent of past-profitable forage within the colony brought back by other foragers is sufficient to reactivate these experienced foragers. Here I determine for how long bees react to the scent of a past-profitable forage site. I show that the ability of foragers to revisit the location of a past-profitable food source diminishes rapidly over a period of 10 days, until no forager reacts to the cue (scent). I discuss the implications of these findings with respect to the colony's ability to react rapidly to changing foraging conditions.

  5. Amygdala Signaling during Foraging in a Hazardous Environment.

    PubMed

    Amir, Alon; Lee, Seung-Chan; Headley, Drew B; Herzallah, Mohammad M; Pare, Denis

    2015-09-23

    We recorded basolateral amygdala (BL) neurons in a seminaturalistic foraging task. Rats had to leave their nest to retrieve food in an elongated arena inhabited by a mechanical predator. There were marked trial-to-trial variations in behavior. After poking their head into the foraging arena and waiting there for a while, rats either retreated to their nest or initiated foraging. Before initiating foraging, rats waited longer on trials that followed failed than successful trials indicating that prior experience influenced behavior. Upon foraging initiation, most principal cells (Type-1) reduced their firing rate, while in a minority (Type-2) it increased. When rats aborted foraging, Type-1 cells increased their firing rates, whereas in Type-2 cells it did not change. Surprisingly, the opposite activity profiles of Type-1 and Type-2 units were also seen in control tasks devoid of explicit threats or rewards. The common correlate of BL activity across these tasks was movement velocity, although an influence of position was also observed. Thus depending on whether rats initiated movement or not, the activity of BL neurons decreased or increased, regardless of whether threat or rewards were present. Therefore, BL activity not only encodes threats or rewards, but is closely related to behavioral output. We propose that higher order cortical areas determine task-related changes in BL activity as a function of reward/threat expectations and internal states. Because Type-1 and Type-2 cells likely form differential connections with the central amygdala (controlling freezing), this process would determine whether movement aimed at attaining food or exploration is suppressed or facilitated. Significance statement: For decades, amygdala research has been dominated by pavlovian and operant conditioning paradigms. This work has led to the view that amygdala neurons signal threats or rewards, in turn causing defensive or approach behaviors. However, the artificial circumstances of conditioning studies bear little resemblance to normal life. In natural conditions, subjects are simultaneously presented with potential threats and rewards, forcing them to engage in a form of risk assessment. We examined this process using a seminaturalistic foraging task. In constant conditions of threats and rewards, amygdala activity could be high or low, depending on the rats' decisions on a given trial. Therefore, amygdala activity does not only encode threats or rewards but is also closely related to behavioral output. Copyright © 2015 the authors 0270-6474/15/3512994-12$15.00/0.

  6. Specialization on pollen or nectar in bumblebee foragers is not associated with ovary size, lipid reserves or sensory tuning

    PubMed Central

    Graystock, Peter; Hughes, William O.H.

    2016-01-01

    Foraging specialization allows social insects to more efficiently exploit resources in their environment. Recent research on honeybees suggests that specialization on pollen or nectar among foragers is linked to reproductive physiology and sensory tuning (the Reproductive Ground-Plan Hypothesis; RGPH). However, our understanding of the underlying physiological relationships in non-Apis bees is still limited. Here we show that the bumblebee Bombus terrestris has specialist pollen and nectar foragers, and test whether foraging specialization in B. terrestris is linked to reproductive physiology, measured as ovarian activation. We show that neither ovary size, sensory sensitivity, measured through proboscis extension response (PER), or whole-body lipid stores differed between pollen foragers, nectar foragers, or generalist foragers. Body size also did not differ between any of these three forager groups. Non-foragers had significantly larger ovaries than foragers. This suggests that potentially reproductive individuals avoid foraging. PMID:27812411

  7. Bush tucker, shop tucker: production, consumption, and diet at an Aboriginal outstation.

    PubMed

    Scelza, Brooke A; Bird, Douglas W; Bird, Rebecca Bliege

    2014-01-01

    Foraging models have rarely been used to address how behavior is altered by the presence of non-foraged foods. Here, choices of store-bought and hunted foods in one Aboriginal community are analyzed. Hunting occurs frequently, but community residents also purchase food from the shop. Increases in the frequency of hunting certain large and small prey are associated with reduced access to food in the shop. Higher-variance hunt types are not associated with shop purchases, but continue to be acquired due to their cultural significance. The variation in these results highlights the complexity of dietary behavior in a mixed economy.

  8. What are plants doing and when? Using plant phenology to facilitate sustainable natural resources management

    USGS Publications Warehouse

    Chong, Geneva W.; Allen, Leslie A.

    2012-01-01

    Climate change models for the northern Rocky Mountains predict changes in temperature and water availability that in turn will alter vegetation. Changes include timing of plant life-history events, or phenology, such as green-up, flowering and senescence, and shifts in species composition. Moreover, climate changes may favor different species, such as nonnative, annual grasses over native species. Changes in vegetation could make forage for ungulates, sage-grouse, and livestock available earlier in the growing season, but shifts in species composition and phenology may also result in earlier senescence (die-off or dormancy) and reduced overall forage production.

  9. Changes in photosynthetic pigments and chlorophyll-a fluorescence attributes of sweet-forage and grain sorghum cultivars under salt stress.

    PubMed

    Sayyad-Amin, Parvaneh; Jahansooz, Mohammad-Reza; Borzouei, Azam; Ajili, Fatemeh

    2016-10-01

    Water shortage leads to a low quality of water, especially saline water in most parts of agricultural regions. This experiment was designed to determine the effects of saline irrigation on sorghum as a moderately salt-tolerant crop. To study salinity effects on photosynthetic pigment attributes including the chlorophyll content and chlorophyll fluorescence, an experiment was performed in a climate-controlled greenhouse at two vegetative and reproductive stages. The experimental design was factorial based on a completely randomized design with five NaCl concentrations (control, 50, 100, 150, and 200 mM), two grain and sweet-forage sorghum cultivars (Kimia and Pegah, respectively) and four replications. According to the experimental data, there were no significant differences between two grain and sweet-forage cultivars. Except for 100 and 150 mM NaCl, salinity significantly decreased the chlorophyll index and pigment contents of the leaf, while it increased the chlorophyll-a fluorescence characteristics. Although salinity reduced photosynthetic pigments and the crop yield, either grain or sweet-forage cultivars could significantly control the effect of salinity between 100 and 150 mM NaCl at both developmental stages, showing the possibility of using saline water in sorghum cultivation up to 150 mM NaCl.

  10. Designing the ideal habitat for entomopathogen use in nursery production.

    PubMed

    Nielsen, Anne L; Lewis, Edwin E

    2012-07-01

    Greenhouse and nursery producers use entomopathogens (nematodes and fungi) to control soil pests. Although it is known that the physical and chemical properties of mineral soil significantly impact upon soil pathogens, the influence of soilless media used for plant production on entomopathogen performance is poorly understood. Survival and foraging distance were differently affected by sand:peat, bark and sawdust media for entomopathogenic nematodes, but not for the immobile fungus Metarhizium anisopliae. Redwood sawdust medium consistently had a negative impact upon entomopathogenic nematodes. Dividing media into individual components supported the hypothesis that redwood sawdust reduced foraging and infection abilities of S. riobrave and H. bacteriophora. Physically altering the components by adding sand significantly improved foraging and infection success for S. riobrave in media not optimum for foraging. This study is the first to highlight the importance of selecting the appropriate soilless media and pathogen species combinations to increase efficacy of biological control. H. bacteriophora was able to find hosts in a wider diversity of medium components than S. riobrave, although both nematode species performed well in peat moss and recycled plant material. These results suggest that peat moss, recycled plant material and hardwood bark are components amenable to EPN biological control programs. Copyright © 2012 Society of Chemical Industry.

  11. Morphological Complexity as a Floral Signal: From Perception by Insect Pollinators to Co-Evolutionary Implications.

    PubMed

    Krishna, Shivani; Keasar, Tamar

    2018-06-06

    Morphologically complex flowers are characterized by bilateral symmetry, tube-like shapes, deep corolla tubes, fused petals, and/or poricidal anthers, all of which constrain the access of insect visitors to floral nectar and pollen rewards. Only a subset of potential pollinators, mainly large bees, learn to successfully forage on such flowers. Thus, complexity may comprise a morphological filter that restricts the range of visitors and thereby increases food intake for successful foragers. Such pollinator specialization, in turn, promotes flower constancy and reduces cross-species pollen transfer, providing fitness benefits to plants with complex flowers. Since visual signals associated with floral morphological complexity are generally honest (i.e., indicate food rewards), pollinators need to perceive and process them. Physiological studies show that bees detect distant flowers through long-wavelength sensitive photoreceptors. Bees effectively perceive complex shapes and learn the positions of contours based on their spatial frequencies. Complex flowers require long handling times by naive visitors, and become highly profitable only for experienced foragers. To explore possible pathways towards the evolution of floral complexity, we discuss cognitive mechanisms that potentially allow insects to persist on complex flowers despite low initial foraging gains, suggest experiments to test these mechanisms, and speculate on their adaptive value.

  12. Context-dependent ‘safekeeping’ of foraging tools in New Caledonian crows

    PubMed Central

    Klump, Barbara C.; van der Wal, Jessica E. M.; St Clair, James J. H.; Rutz, Christian

    2015-01-01

    Several animal species use tools for foraging, such as sticks to extract embedded arthropods and honey, or stones to crack open nuts and eggs. While providing access to nutritious foods, these behaviours may incur significant costs, such as the time and energy spent searching for, manufacturing and transporting tools. These costs can be reduced by re-using tools, keeping them safe when not needed. We experimentally investigated what New Caledonian crows do with their tools between successive prey extractions, and whether they express tool ‘safekeeping’ behaviours more often when the costs (foraging at height), or likelihood (handling of demanding prey), of tool loss are high. Birds generally took care of their tools (84% of 176 prey extractions, nine subjects), either trapping them underfoot (74%) or storing them in holes (26%)—behaviours we also observed in the wild (19 cases, four subjects). Moreover, tool-handling behaviour was context-dependent, with subjects: keeping their tools safe significantly more often when foraging at height; and storing tools significantly more often in holes when extracting more demanding prey (under these conditions, foot-trapping proved challenging). In arboreal environments, safekeeping can prevent costly tool losses, removing a potentially important constraint on the evolution of habitual and complex tool behaviour. PMID:25994674

  13. Steers performance in dwarf elephant grass pastures alone or mixed with Arachis pintoi.

    PubMed

    Crestani, Steben; Ribeiro Filho, Henrique Mendonça Nunes; Miguel, Marcolino Frederico; de Almeida, Edison Xavier; Santos, Flávio Augusto Portela

    2013-08-01

    The inclusion of legumes in pasture reduces the need for mineral nitrogen applications and the pollution of groundwater; however, the agronomic and animal husbandry advantages with tropical legumes are still little known. The objective of this study was to quantify the effect of the use of forage peanut (Arachis pintoi cv. Amarillo) in dwarf elephant grass pastures (Pennisetum purpureum cv. BRS Kurumi) on forage intake and animal performance. The experimental treatments were dwarf elephant grass fertilized with 200 kg N/ha, and dwarf elephant grass mixed with forage peanut without mineral fertilizers. The animals used for the experiment were 12 Charolais steers (body weight (BW) = 288 ± 5.2 kg) divided into four lots (two per treatment). Pastures were managed under intermittent stocking with an herbage allowance of 5.4 kg dry matter of green leaves/100 kg BW. Dry matter intake (mean = 2.44% BW), the average daily gain (mean = 0.76 kg), and the stocking rate (mean = 3.8 AU/ha) were similar between the studied pastures, but decreased drastically in last grazing cycle with the same herbage allowance. The presence of peanut in dwarf elephant grass pastures was enough to sustain the stocking rate, but did not allow increasing forage intake and animal performance.

  14. Group cohesion in foraging meerkats: follow the moving 'vocal hot spot'.

    PubMed

    Gall, Gabriella E C; Manser, Marta B

    2017-04-01

    Group coordination, when 'on the move' or when visibility is low, is a challenge faced by many social living animals. While some animals manage to maintain cohesion solely through visual contact, the mechanism of group cohesion through other modes of communication, a necessity when visual contact is reduced, is not yet understood. Meerkats ( Suricata suricatta ), a small, social carnivore, forage as a cohesive group while moving continuously. While foraging, they frequently emit 'close calls', soft close-range contact calls. Variations in their call rates based on their local environment, coupled with individual movement, produce a dynamic acoustic landscape with a moving 'vocal hotspot' of the highest calling activity. We investigated whether meerkats follow such a vocal hotspot by playing back close calls of multiple individuals to foraging meerkats from the front and back edge of the group simultaneously. These two artificially induced vocal hotspots caused the group to spatially elongate and split into two subgroups. We conclude that meerkats use the emergent dynamic call pattern of the group to adjust their movement direction and maintain cohesion. Our study describes a highly flexible mechanism for the maintenance of group cohesion through vocal communication, for mobile species in habitats with low visibility and where movement decisions need to be adjusted continuously to changing environmental conditions.

  15. Use of created snags by cavity‐nesting birds across 25 years

    USGS Publications Warehouse

    Barry, Amy M.; Hagar, Joan; Rivers, James W.

    2018-01-01

    Snags are important habitat features for many forest‐dwelling species, so reductions in the number of snags can lead to the loss of biodiversity in forest ecosystems. Intentional snag creation is often used in managed forests to mitigate the long‐term declines of naturally created snags, yet information regarding the use of snags by wildlife across long timescales (>20 yr) is lacking and prevents a complete understanding of how the value of created snags change through time. We used a long‐term experiment to assess how harvest treatment (i.e., small‐patch group selection, 2‐story, and clearcut) and snag configuration (i.e., scattered and clustered) influenced nesting in and foraging on 25–27‐year‐old Douglas‐fir (Pseudotsuga menziesii) snags by cavity‐nesting birds. In addition, we compared our contemporary measures of bird use to estimates obtained from historical surveys conducted on the same group of snags to quantify how bird use changed over time. Despite observing created snags for >750 hours across 2 consecutive breeding seasons, we found limited evidence of nesting activity. Only 11% of created snags were used for breeding, with nesting attempts by 4 bird species (n = 36 nests); however, we detected 12 cavity‐nesting species present on our study sites. Furthermore, nearly all nests (94%) belonged to the chestnut‐backed chickadee (Poecile rufescens), a weak cavity‐excavating species that requires well‐decayed wood for creating nest cavities. Our surveys also recorded few observations of birds using created snags as foraging substrates, with only 1 foraging event recorded for every 20 hours of observation. We detected 82% fewer nests and recorded 7% fewer foraging observations during contemporary field work despite spending >7.5 times more effort observing created snags relative to historical surveys. We conclude that 25–27‐year‐old created Douglas‐fir snags provided limited opportunities for nesting and foraging by most cavity‐nesting birds, and that the period of greatest use by this group occurred within 5–15 years of creation. 

  16. Building beef cow nutritional programs with the 1996 NRC beef cattle requirements model.

    PubMed

    Lardy, G P; Adams, D C; Klopfenstein, T J; Patterson, H H

    2004-01-01

    Designing a sound cow-calf nutritional program requires knowledge of nutrient requirements, diet quality, and intake. Effectively using the NRC (1996) beef cattle requirements model (1996NRC) also requires knowledge of dietary degradable intake protein (DIP) and microbial efficiency. Objectives of this paper are to 1) describe a framework in which 1996NRC-applicable data can be generated, 2) describe seasonal changes in nutrients on native range, 3) use the 1996NRC to predict nutrient balance for cattle grazing these forages, and 4) make recommendations for using the 1996NRC for forage-fed cattle. Extrusa samples were collected over 2 yr on native upland range and subirrigated meadow in the Nebraska Sandhills. Samples were analyzed for CP, in vitro OM digestibility (IVOMD), and DIP. Regression equations to predict nutrients were developed from these data. The 1996NRC was used to predict nutrient balances based on the dietary nutrient analyses. Recommendations for model users were also developed. On subirrigated meadow, CP and IVOMD increased rapidly during March and April. On native range, CP and IVOMD increased from April through June but decreased rapidly from August through September. Degradable intake protein (DM basis) followed trends similar to CP for both native range and subirrigated meadow. Predicted nutrient balances for spring- and summer-calving cows agreed with reported values in the literature, provided that IVOMD values were converted to DE before use in the model (1.07 x IVOMD - 8.13). When the IVOMD-to-DE conversion was not used, the model gave unrealistically high NE(m) balances. To effectively use the 1996NRC to estimate protein requirements, users should focus on three key estimates: DIP, microbial efficiency, and TDN intake. Consequently, efforts should be focused on adequately describing seasonal changes in forage nutrient content. In order to increase use of the 1996NRC, research is needed in the following areas: 1) cost-effective and accurate commercial laboratory procedures to estimate DIP, 2) reliable estimates or indicators of microbial efficiency for various forage types and qualities, 3) improved estimates of dietary TDN for forage-based diets, 4) validation work to improve estimates of DIP and MP requirements, and 5) incorporation of nitrogen recycling estimates.

  17. Ecology shapes the evolutionary trade-off between predator avoidance and defence in coral reef butterflyfishes.

    PubMed

    Hodge, Jennifer R; Alim, Chidera; Bertrand, Nick G; Lee, Wesley; Price, Samantha A; Tran, Binh; Wainwright, Peter C

    2018-07-01

    Antipredator defensive traits are thought to trade-off evolutionarily with traits that facilitate predator avoidance. However, complexity and scale have precluded tests of this prediction in many groups, including fishes. Using a macroevolutionary approach, we test this prediction in butterflyfishes, an iconic group of coral reef inhabitants with diverse social behaviours, foraging strategies and antipredator adaptations. We find that several antipredator traits have evolved adaptively, dependent primarily on foraging strategy. We identify a previously unrecognised axis of diversity in butterflyfishes where species with robust morphological defences have riskier foraging strategies and lack sociality, while species with reduced morphological defences feed in familiar territories, have adaptations for quick escapes and benefit from the vigilance provided by sociality. Furthermore, we find evidence for the constrained evolution of fin spines among species that graze solely on corals, highlighting the importance of corals, as both prey and structural refuge, in shaping fish morphology. © 2018 John Wiley & Sons Ltd/CNRS.

  18. Mercury in birds of San Francisco Bay-Delta, California: trophic pathways, bioaccumulation, and ecotoxicological risk to avian reproduction

    USGS Publications Warehouse

    Ackerman, Joshua T.; Eagles-Smith, Collin A.; Heinz, Gary; De La Cruz, Susan E. W.; Takekawa, John Y.; Miles, A. Keith; Adelsbach, Terrence L.; Herzog, Mark P.; Bluso-Demers, Jill D.; Demers, Scott A.; Herring, Garth; Hoffman, David J.; Hartman, Christopher A.; Willacker, James J.; Suchanek, Thomas H.; Schwarzbach, Steven E.; Maurer, Thomas C.

    2014-01-01

    San Francisco Bay Estuary in northern California has a legacy of mercury contamination, which could reduce the health and reproductive success of waterbirds in the estuary. The goal of this study was to use an integrated field and laboratory approach to evaluate the risks of mercury exposure to birds in the estuary. We examined mercury bioaccumulation, and other contaminants of concern, in five waterbird species that depend heavily on San Francisco Bay Estuary for foraging and breeding habitat: American avocets (Recurvirostra americana), black-necked stilts (Himantopus mexicanus), Forster’s terns (Sterna forsteri), Caspian terns (Hydroprogne caspia), and surf scoters (Melanitta perspicillata). These species have different foraging habitats and diets that represent three distinct foraging guilds within the estuary’s food web. In this report, we provide an integrated synthesis of the primary findings from this study and results are synthesized from 54 peer-reviewed publications generated to date with other unpublished results.

  19. Interactions Increase Forager Availability and Activity in Harvester Ants

    PubMed Central

    Pinter-Wollman, Noa; Crow, Sam; Allen, Kelsey; Mathur, Maya B.; Gordon, Deborah M.

    2015-01-01

    Social insect colonies use interactions among workers to regulate collective behavior. Harvester ant foragers interact in a chamber just inside the nest entrance, here called the 'entrance chamber'. Previous studies of the activation of foragers in red harvester ants show that an outgoing forager inside the nest experiences an increase in brief antennal contacts before it leaves the nest to forage. Here we compare the interaction rate experienced by foragers that left the nest and ants that did not. We found that ants in the entrance chamber that leave the nest to forage experienced more interactions than ants that descend to the deeper nest without foraging. Additionally, we found that the availability of foragers in the entrance chamber is associated with the rate of forager return. An increase in the rate of forager return leads to an increase in the rate at which ants descend to the deeper nest, which then stimulates more ants to ascend into the entrance chamber. Thus a higher rate of forager return leads to more available foragers in the entrance chamber. The highest density of interactions occurs near the nest entrance and the entrances of the tunnels from the entrance chamber to the deeper nest. Local interactions with returning foragers regulate both the activation of waiting foragers and the number of foragers available to be activated. PMID:26539724

  20. "Hummingbird" floral traits interact synergistically to discourage visitation by bumble bee foragers.

    PubMed

    Gegear, Robert J; Burns, Rebecca; Swoboda-Bhattarai, Katharine A

    2017-02-01

    Pollination syndromes are suites of floral traits presumed to reflect adaptations to attract and utilize a "primary" type of animal pollinator. However, syndrome traits may also function to deter "secondary" flower visitors that reduce plant fitness through their foraging activities. Here we use the hummingbird-pollinated plant species Mimulus cardinalis as a model to investigate the potential deterrent effects of classic bird syndrome traits on bumble bee foragers. To establish that M. cardinalis flowers elicit an avoidance response in bees, we assessed the choice behavior of individual foragers on a mixed experimental array of M. cardinalis and its bee-pollinated sister species M. lewisii. As expected, bees showed a strong preference against M. cardinalis flowers (only 22% of total bee visits were to M. cardinalis), but surprisingly also showed a high degree of individual specialization (95.2% of total plant transitions were between conspecifics). To determine M. cardinalis floral traits that discourage bee visitation, we then assessed foraging responses of individuals to M. cardinalis-like and M. lewisii-like floral models differing in color, orientation, reward, and combinations thereof. Across experiments, M. cardinalis-like trait combinations consistently produced a higher degree of flower avoidance behavior and individual specialization than expected based on bee responses to each trait in isolation. We then conducted a series of flower discrimination experiments to assess the ability of bees to utilize traits and trait combinations associated with each species. Relative to M. lewisii-like alternatives, M. cardinalis-like traits alone had a minimal effect on bee foraging proficiency but together increased the time bees spent searching for rewarding flowers from 1.49 to 2.65 s per visit. Collectively, our results show that M. cardinalis flowers impose foraging costs on bumble bees sufficient to discourage visitation and remarkably, generate such costs through synergistic color-orientation and color-reward trait interactions. Floral syndromes therefore represent complex adaptations to multiple pollinator groups, rather than simply the primary pollinator. © 2016 by the Ecological Society of America.

  1. Depletion of deep marine food patches forces divers to give up early.

    PubMed

    Thums, Michele; Bradshaw, Corey J A; Sumner, Michael D; Horsburgh, Judy M; Hindell, Mark A

    2013-01-01

    Many optimal foraging models for diving animals examine strategies that maximize time spent in the foraging zone, assuming that prey acquisition increases linearly with search time. Other models have considered the effect of patch quality and predict a net energetic benefit if dives where no prey is encountered early in the dive are abandoned. For deep divers, however, the energetic benefit of giving up is reduced owing to the elevated energy costs associated with descending to physiologically hostile depths, so patch residence time should be invariant. Others consider an asymptotic gain function where the decision to leave a patch is driven by patch-depletion effects - the marginal value theorem. As predator behaviour is increasingly being used as an index of marine resource density and distribution, it is important to understand the nature of this gain function. We investigated the dive behaviour of the world's deepest-diving seal, the southern elephant seal Mirounga leonina, in response to patch quality. Testing these models has largely been limited to controlled experiments on captive animals. By integrating in situ measurements of the seal's relative lipid content obtained from drift rate data (a measure of foraging success) with area-restricted search behaviour identified from first-passage time analysis, we identified regions of high- and low-quality patches. Dive durations and bottom times were not invariant and did not increase in regions of high quality; rather, both were longer when patches were of relatively low quality. This is consistent with the predictions of the marginal value theorem and provides support for a nonlinear relationship between search time and prey acquisition. We also found higher descent and ascent rates in high-quality patches suggesting that seals minimized travel time to the foraging patch when quality was high; however, this was not achieved by increasing speed or dive angle. Relative body lipid content was an important predictor of dive behaviour. Seals did not schedule their diving to maximize time spent in the foraging zone in higher-quality patches, challenging the widely held view that maximizing time in the foraging zone translates to greater foraging success. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.

  2. Reduced neophobia: a potential mechanism explaining the emergence of self-medicative behavior in sheep.

    PubMed

    Egea, A Vanina; Hall, Jeffery O; Miller, James; Spackman, Casey; Villalba, Juan J

    2014-08-01

    Gastrointestinal helminths challenge ruminants in ways that reduce their fitness. In turn, ruminants have evolved physiological and behavioral adaptations that counteract this challenge. For instance, emerging behavioral evidence suggests that ruminants self-select medicinal compounds and foods that reduce parasitic burdens. However, the mechanism/s leading to self-medicative behaviors in sick animals is still unknown. We hypothesized that when homeostasis is disturbed by a parasitic infection, consumers should respond by increasing the acceptability of novel foods relative to healthy individuals. Three groups of lambs (N=10) were dosed with 0 (Control-C), 5000 (Medium-M) and 15000 (High-H) L3 stage larvae of Haemonchus contortus. When parasites had reached the adult stage, all animals were offered novel foods and flavors in pens and then novel forages at pasture. Ingestive responses by parasitized lambs were different from non-parasitized Control animals and they varied with the type of food and flavor on offer. Parasitized lambs consumed initially more novel beet pulp and less novel beet pulp mixed with tannins than Control lambs, but the pattern reversed after 9d of exposure to these foods. Parasitized lambs ingested more novel umami-flavored food and less novel bitter-flavored food than Control lambs. When offered choices of novel unflavored and bitter-flavored foods or different forage species to graze, parasitized lambs selected a more diverse array of foods than Control lambs. Reductions in food neophobia or selection of a more diverse diet may enhance the likelihood of sick herbivores encountering novel medicinal plants and nutritious forages that contribute to restore health. Published by Elsevier Inc.

  3. Disproportionate Declines in Ground-Foraging Insectivorous Birds after Mistletoe Removal

    PubMed Central

    Watson, David M.

    2015-01-01

    Insectivorous birds have been recognized as disproportionately sensitive to land-use intensification and habitat loss, with those species feeding primarily on the ground exhibiting some of the most dramatic declines. Altered litter inputs and availability of epigeic arthropods have been suggested to underlie reduced abundances and shrinking distributions but direct evidence is lacking. I used a patch-scale removal experiment in southern Australia to evaluate whether ground-feeding insectivores are especially vulnerable to altered litter-fall. Building on work demonstrating the importance of mistletoe litter to nutrient dynamics, litter was reduced by removing mistletoe (Loranthaceae) from one set of eucalypt woodlands, responses of birds three years after mistletoe removal compared with otherwise similar control woodlands containing mistletoe. Despite not feeding on mistletoes directly, insectivores exhibited the greatest response to mistletoe removal. Among woodland residents, ground-foraging insectivores showed the most dramatic response; treatment woodlands losing an average of 37.4% of their pre-treatment species richness. Once these 19 species of ground-foraging insectivores were excluded, remaining woodland species showed no significant effect of mistletoe removal. This response reflects greater initial losses in treatment woodlands during the study (which coincided with a severe drought) and double the number of species returning to control woodlands (where mistletoe numbers and litter were not manipulated) post-drought. These findings support the productivity-based explanation of declining insectivores, suggesting diminished litter-fall reduced habitat quality for these birds via decreased availability of their preferred prey. In addition to altered prey availability, interactions between litter-fall and epigeic arthropods exemplify the importance of below-ground / above-ground linkages driving ecosystem function. PMID:26640895

  4. Individual honey bee (Apis cerana) foragers adjust their fuel load to match variability in forage reward.

    PubMed

    Tan, Ken; Latty, Tanya; Dong, Shihao; Liu, Xiwen; Wang, Chao; Oldroyd, Benjamin P

    2015-11-09

    Animals may adjust their behavior according to their perception of risk. Here we show that free-flying honey bee (Apis cerana) foragers mitigate the risk of starvation in the field when foraging on a food source that offers variable rewards by carrying more 'fuel' food on their outward journey. We trained foragers to a feeder located 1.2 km from each of four colonies. On average foragers carried 12.7% greater volume of fuel, equivalent to 30.2% more glucose when foraging on a variable source (a random sequence of 0.5, 1.5 and 2.5 M sucrose solution, average sucrose content 1.5 M) than when forging on a consistent source (constant 1.5 M sucrose solution). Our findings complement an earlier study that showed that foragers decrease their fuel load as they become more familiar with a foraging place. We suggest that honey bee foragers are risk sensitive, and carry more fuel to minimize the risk of starvation in the field when a foraging trip is perceived as being risky, either because the forager is unfamiliar with the foraging site, or because the forage available at a familiar site offers variable rewards.

  5. Dispersal and Diving Adjustments of the Green Turtle Chelonia mydas in Response to Dynamic Environmental Conditions during Post-Nesting Migration

    PubMed Central

    Chambault, Philippine; Pinaud, David; Vantrepotte, Vincent; Kelle, Laurent; Entraygues, Mathieu; Guinet, Christophe; Berzins, Rachel; Bilo, Karin; Gaspar, Philippe; de Thoisy, Benoît; Le Maho, Yvon; Chevallier, Damien

    2015-01-01

    In response to seasonality and spatial segregation of resources, sea turtles undertake long journeys between their nesting sites and foraging grounds. While satellite tracking has made it possible to outline their migration routes, we still have little knowledge of how they select their foraging grounds and adapt their migration to dynamic environmental conditions. Here, we analyzed the trajectories and diving behavior of 19 adult green turtles (Chelonia mydas) during their post-nesting migration from French Guiana and Suriname to their foraging grounds off the coast of Brazil. First Passage Time analysis was used to identify foraging areas located off Ceará state of Brazil, where the associated habitat corresponds to favorable conditions for seagrass growth, i.e. clear and shallow waters. The dispersal and diving patterns of the turtles revealed several behavioral adaptations to the strong hydrodynamic processes induced by both the North Brazil current and the Amazon River plume. All green turtles migrated south-eastward after the nesting season, confirming that they coped with the strong counter North Brazil current by using a tight corridor close to the shore. The time spent within the Amazon plume also altered the location of their feeding habitats as the longer individuals stayed within the plume, the sooner they initiated foraging. The green turtles performed deeper and shorter dives while crossing the mouth of the Amazon, a strategy which would help turtles avoid the most turbulent upper surface layers of the plume. These adjustments reveal the remarkable plasticity of this green turtle population when reducing energy costs induced by migration. PMID:26398528

  6. Relationship of Caspian tern foraging ecology to nesting success in the Columbia River estuary, Oregon, USA

    NASA Astrophysics Data System (ADS)

    Anderson, Scott K.; Roby, Daniel D.; Lyons, Donald E.; Collis, Ken

    2007-07-01

    The prevalence of juvenile salmonids ( Oncorhynchus spp.) and marine forage fishes in the diet of Caspian terns ( Hydroprogne caspia) nesting in the Columbia River estuary has been established, but the relationship between diet composition, foraging distribution, and productivity of these birds has received little attention. We used radio-telemetry and on-colony observations to relate changes in off-colony distribution to patterns of colony attendance, diet composition, and productivity of adult terns nesting on East Sand Island during two years of different river and prey conditions. Average distance from the East Sand Island colony (located in the marine zone of the estuary) was 38% (6.6 km) greater in 2000 compared to 2001, associated with lower availability of marine forage fish near East Sand Island and lower prevalence of marine prey in tern diets. Colony attendance was much lower (37.0% vs. 62.5% of daylight hours), average trip duration was 40% longer (38.9 min), and nesting success was much lower (0.57 young fledged pair -1 vs. 1.40 young fledged pair -1) in 2000 compared to 2001. Higher proportions of juvenile salmonids in the diet were associated with relatively high use of the freshwater zone of the estuary by radio-tagged terns, which occurred prior to chick-rearing and when out-migrating salmonid smolts were relatively abundant. Lower availability of marine prey in 2000 apparently limited Caspian tern nesting success by markedly reducing colony attendance and lengthening foraging trips by nesting terns, thereby increasing chick mortality rates from predation, exposure, and starvation.

  7. Relationship of Caspian tern foraging ecology to nesting success in the Columbia River estuary, Oregon, USA

    USGS Publications Warehouse

    Anderson, Scott K.; Roby, D.D.; Lyons, Donald E.; Collis, K.

    2007-01-01

    The prevalence of juvenile salmonids (Oncorhynchus spp.) and marine forage fishes in the diet of Caspian terns (Hydroprogne caspia) nesting in the Columbia River estuary has been established, but the relationship between diet composition, foraging distribution, and productivity of these birds has received little attention. We used radio-telemetry and on-colony observations to relate changes in off-colony distribution to patterns of colony attendance, diet composition, and productivity of adult terns nesting on East Sand Island during two years of different river and prey conditions. Average distance from the East Sand Island colony (located in the marine zone of the estuary) was 38% (6.6 km) greater in 2000 compared to 2001, associated with lower availability of marine forage fish near East Sand Island and lower prevalence of marine prey in tern diets. Colony attendance was much lower (37.0% vs. 62.5% of daylight hours), average trip duration was 40% longer (38.9 min), and nesting success was much lower (0.57 young fledged pair-1 vs. 1.40 young fledged pair-1) in 2000 compared to 2001. Higher proportions of juvenile salmonids in the diet were associated with relatively high use of the freshwater zone of the estuary by radio-tagged terns, which occurred prior to chick-rearing and when out-migrating salmonid smolts were relatively abundant. Lower availability of marine prey in 2000 apparently limited Caspian tern nesting success by markedly reducing colony attendance and lengthening foraging trips by nesting terns, thereby increasing chick mortality rates from predation, exposure, and starvation. ?? 2007 Elsevier Ltd. All rights reserved.

  8. Dispersal and Diving Adjustments of the Green Turtle Chelonia mydas in Response to Dynamic Environmental Conditions during Post-Nesting Migration.

    PubMed

    Chambault, Philippine; Pinaud, David; Vantrepotte, Vincent; Kelle, Laurent; Entraygues, Mathieu; Guinet, Christophe; Berzins, Rachel; Bilo, Karin; Gaspar, Philippe; de Thoisy, Benoît; Le Maho, Yvon; Chevallier, Damien

    2015-01-01

    In response to seasonality and spatial segregation of resources, sea turtles undertake long journeys between their nesting sites and foraging grounds. While satellite tracking has made it possible to outline their migration routes, we still have little knowledge of how they select their foraging grounds and adapt their migration to dynamic environmental conditions. Here, we analyzed the trajectories and diving behavior of 19 adult green turtles (Chelonia mydas) during their post-nesting migration from French Guiana and Suriname to their foraging grounds off the coast of Brazil. First Passage Time analysis was used to identify foraging areas located off Ceará state of Brazil, where the associated habitat corresponds to favorable conditions for seagrass growth, i.e. clear and shallow waters. The dispersal and diving patterns of the turtles revealed several behavioral adaptations to the strong hydrodynamic processes induced by both the North Brazil current and the Amazon River plume. All green turtles migrated south-eastward after the nesting season, confirming that they coped with the strong counter North Brazil current by using a tight corridor close to the shore. The time spent within the Amazon plume also altered the location of their feeding habitats as the longer individuals stayed within the plume, the sooner they initiated foraging. The green turtles performed deeper and shorter dives while crossing the mouth of the Amazon, a strategy which would help turtles avoid the most turbulent upper surface layers of the plume. These adjustments reveal the remarkable plasticity of this green turtle population when reducing energy costs induced by migration.

  9. Effect of Phenotypic Residual Feed Intake and Dietary Forage Content on the Rumen Microbial Community of Beef Cattle

    PubMed Central

    Carberry, Ciara A.; Kenny, David A.; Han, Sukkyan; McCabe, Matthew S.

    2012-01-01

    Feed-efficient animals have lower production costs and reduced environmental impact. Given that rumen microbial fermentation plays a pivotal role in host nutrition, the premise that rumen microbiota may contribute to host feed efficiency is gaining momentum. Since diet is a major factor in determining rumen community structure and fermentation patterns, we investigated the effect of divergence in phenotypic residual feed intake (RFI) on ruminal community structure of beef cattle across two contrasting diets. PCR-denaturing gradient gel electrophoresis (DGGE) and quantitative PCR (qPCR) were performed to profile the rumen bacterial population and to quantify the ruminal populations of Entodinium spp., protozoa, Fibrobacter succinogenes, Ruminococcus flavefaciens, Ruminococcus albus, Prevotella brevis, the genus Prevotella, and fungi in 14 low (efficient)- and 14 high (inefficient)-RFI animals offered a low-energy, high-forage diet, followed by a high-energy, low-forage diet. Canonical correspondence and Spearman correlation analyses were used to investigate associations between physiological variables and rumen microbial structure and specific microbial populations, respectively. The effect of RFI on bacterial profiles was influenced by diet, with the association between RFI group and PCR-DGGE profiles stronger for the higher forage diet. qPCR showed that Prevotella abundance was higher (P < 0.0001) in inefficient animals. A higher (P < 0.0001) abundance of Entodinium and Prevotella spp. and a lower (P < 0.0001) abundance of Fibrobacter succinogenes were observed when animals were offered the low-forage diet. Thus, differences in the ruminal microflora may contribute to host feed efficiency, although this effect may also be modulated by the diet offered. PMID:22562991

  10. Effect of phenotypic residual feed intake and dietary forage content on the rumen microbial community of beef cattle.

    PubMed

    Carberry, Ciara A; Kenny, David A; Han, Sukkyan; McCabe, Matthew S; Waters, Sinead M

    2012-07-01

    Feed-efficient animals have lower production costs and reduced environmental impact. Given that rumen microbial fermentation plays a pivotal role in host nutrition, the premise that rumen microbiota may contribute to host feed efficiency is gaining momentum. Since diet is a major factor in determining rumen community structure and fermentation patterns, we investigated the effect of divergence in phenotypic residual feed intake (RFI) on ruminal community structure of beef cattle across two contrasting diets. PCR-denaturing gradient gel electrophoresis (DGGE) and quantitative PCR (qPCR) were performed to profile the rumen bacterial population and to quantify the ruminal populations of Entodinium spp., protozoa, Fibrobacter succinogenes, Ruminococcus flavefaciens, Ruminococcus albus, Prevotella brevis, the genus Prevotella, and fungi in 14 low (efficient)- and 14 high (inefficient)-RFI animals offered a low-energy, high-forage diet, followed by a high-energy, low-forage diet. Canonical correspondence and Spearman correlation analyses were used to investigate associations between physiological variables and rumen microbial structure and specific microbial populations, respectively. The effect of RFI on bacterial profiles was influenced by diet, with the association between RFI group and PCR-DGGE profiles stronger for the higher forage diet. qPCR showed that Prevotella abundance was higher (P < 0.0001) in inefficient animals. A higher (P < 0.0001) abundance of Entodinium and Prevotella spp. and a lower (P < 0.0001) abundance of Fibrobacter succinogenes were observed when animals were offered the low-forage diet. Thus, differences in the ruminal microflora may contribute to host feed efficiency, although this effect may also be modulated by the diet offered.

  11. Foraging area fidelity for Kemp's ridleys in the Gulf of Mexico.

    PubMed

    Shaver, Donna J; Hart, Kristen M; Fujisaki, Ikuko; Rubio, Cynthia; Sartain, Autumn R; Peña, Jaime; Burchfield, Patrick M; Gamez, Daniel Gomez; Ortiz, Jaime

    2013-07-01

    For many marine species, locations of key foraging areas are not well defined. We used satellite telemetry and switching state-space modeling (SSM) to identify distinct foraging areas used by Kemp's ridley turtles (Lepidochelys kempii) tagged after nesting during 1998-2011 at Padre Island National Seashore, Texas, USA (PAIS; N = 22), and Rancho Nuevo, Tamaulipas, Mexico (RN; N = 9). Overall, turtles traveled a mean distance of 793.1 km (±347.8 SD) to foraging sites, where 24 of 31 turtles showed foraging area fidelity (FAF) over time (N = 22 in USA, N = 2 in Mexico). Multiple turtles foraged along their migratory route, prior to arrival at their "final" foraging sites. We identified new foraging "hotspots" where adult female Kemp's ridley turtles spent 44% of their time during tracking (i.e., 2641/6009 tracking days in foraging mode). Nearshore Gulf of Mexico waters served as foraging habitat for all turtles tracked in this study; final foraging sites were located in water <68 m deep and a mean distance of 33.2 km (±25.3 SD) from the nearest mainland coast. Distance to release site, distance to mainland shore, annual mean sea surface temperature, bathymetry, and net primary production were significant predictors of sites where turtles spent large numbers of days in foraging mode. Spatial similarity of particular foraging sites selected by different turtles over the 13-year tracking period indicates that these areas represent critical foraging habitat, particularly in waters off Louisiana. Furthermore, the wide distribution of foraging sites indicates that a foraging corridor exists for Kemp's ridleys in the Gulf. Our results highlight the need for further study of environmental and bathymetric components of foraging sites and prey resources contained therein, as well as international cooperation to protect essential at-sea foraging habitats for this imperiled species.

  12. Foraging area fidelity for Kemp's ridleys in the Gulf of Mexico

    USGS Publications Warehouse

    Shaver, Donna J.; Hart, Kristen M.; Fujisaki, Ikuko; Rubio, Cynthia; Sartain-Iverson, Autumn R.; Peña, Jaime; Burchfield, Patrick M.; Gamez, Daniel Gomez; Ortiz, Jaime

    2013-01-01

    For many marine species, locations of key foraging areas are not well defined. We used satellite telemetry and switching state-space modeling (SSM) to identify distinct foraging areas used by Kemp's ridley turtles (Lepidochelys kempii) tagged after nesting during 1998–2011 at Padre Island National Seashore, Texas, USA (PAIS; N = 22), and Rancho Nuevo, Tamaulipas, Mexico (RN; N = 9). Overall, turtles traveled a mean distance of 793.1 km (±347.8 SD) to foraging sites, where 24 of 31 turtles showed foraging area fidelity (FAF) over time (N = 22 in USA, N = 2 in Mexico). Multiple turtles foraged along their migratory route, prior to arrival at their "final" foraging sites. We identified new foraging "hotspots" where adult female Kemp's ridley turtles spent 44% of their time during tracking (i.e., 2641/6009 tracking days in foraging mode). Nearshore Gulf of Mexico waters served as foraging habitat for all turtles tracked in this study; final foraging sites were located in water <68 m deep and a mean distance of 33.2 km (±25.3 SD) from the nearest mainland coast. Distance to release site, distance to mainland shore, annual mean sea surface temperature, bathymetry, and net primary production were significant predictors of sites where turtles spent large numbers of days in foraging mode. Spatial similarity of particular foraging sites selected by different turtles over the 13-year tracking period indicates that these areas represent critical foraging habitat, particularly in waters off Louisiana. Furthermore, the wide distribution of foraging sites indicates that a foraging corridor exists for Kemp's ridleys in the Gulf. Our results highlight the need for further study of environmental and bathymetric components of foraging sites and prey resources contained therein, as well as international cooperation to protect essential at-sea foraging habitats for this imperiled species.

  13. Review: Optimizing ruminant conversion of feed protein to human food protein.

    PubMed

    Broderick, G A

    2017-11-20

    Ruminant livestock have the ability to produce high-quality human food from feedstuffs of little or no value for humans. Balanced essential amino acid composition of meat and milk from ruminants makes those protein sources valuable adjuncts to human diets. It is anticipated that there will be increasing demand for ruminant proteins in the future. Increasing productivity per animal dilutes out the nutritional and environmental costs of maintenance and rearing dairy animals up to production. A number of nutritional strategies improve production per animal such as ration balancing in smallholder operations and small grain supplements to ruminants fed high-forage diets. Greenhouse gas emission intensity is reduced by increased productivity per animal; recent research has developed at least one effective inhibitor of methane production in the rumen. There is widespread over-feeding of protein to dairy cattle; milk and component yields can be maintained, and sometimes even increased, at lower protein intake. Group feeding dairy cows according to production and feeding diets higher in rumen-undegraded protein can improve milk and protein yield. Supplementing rumen-protected essential amino acids will also improve N efficiency in some cases. Better N utilization reduces urinary N, which is the most environmentally unstable form of excretory N. Employing nutritional models to more accurately meet animal requirements improves nutrient efficiency. Although smallholder enterprises, which are concentrated in tropical and semi-tropical regions of developing countries, are subject to different economic pressures, nutritional biology is similar at all production levels. Rather than milk volume, nutritional strategies should maximize milk component yield, which is proportional to market value as well as food value when milk nutrients are consumed directly by farmers and their families. Moving away from Holsteins toward smaller breeds such as Jerseys, Holstein-Jersey crosses or locally adapted breeds (e.g. Vechur) would also reduce lactose production and improve metabolic, environmental and economic efficiencies. Forages containing condensed tannins or polyphenol oxidase enzymes have reduced rumen protein degradation; ruminants capture this protein more efficiently for meat and milk. Although these forages generally have lower yields and persistence, genetic modification would allow insertion of these traits into more widely cultivated forages. Ruminants will retain their niches because of their ability to produce valuable human food from low value feedstuffs. Employing these emerging strategies will allow improved productive efficiency of ruminants in both developing and developed countries.

  14. Silvies Valley Ranch, OR: using artificial beaver dams to restore incised streams

    Treesearch

    Rachael Davee; Susan Charnley; Hannah Gosnell

    2017-01-01

    The Silvies Valley Ranch is an example of using local innovation to combat the global problem of incised streams on rangelands. Incised channels reduce the flow between water in the channel and water in the surrounding soils, which reduces the vegetation available for wildlife habitat and cattle forage. One of the ranch owners, Scott Campbell, a doctor of veterinary...

  15. Sexual segregation in Roosevelt Elk: Cropping rates and aggression in mixed sex groups

    USGS Publications Warehouse

    Weckerly, Floyd F.; Ricca, Mark A.; Meyer, Katherin P.

    2001-01-01

    Few studies of sexual segregation in ruminants have tested widely invoked mechanisms of segregation in mixed-sex groups. In a sexually segregated population of Roosevelt elk (Cervus elaphus roosevelti), we examined if adult males had reduced intake of forage when in mixed-sex groups and if intersexual differences in aggression caused females to avoid males. Based on a mechanistic model of forage intake, animals with lower instantaneous feed intake should have higher cropping rates. Focal animal sampling indicated that adult males and females in summer and winter had similar cropping rates in mixed-sex groups, whereas males in male-only groups had lower rates of cropping than males in mixed-sex groups. Outside the mating season, males in male groups spent proportionally less time ≤1 body length of congenders than females in female groups, and the rate of aggression ≤1 body length was higher for males. Female–female aggression was higher in mixed-sex groups that contained more males than the median proportion of males in mixed-sex groups. Female and mixed-sex groups walked away when groups of males numbering >6 were ≤50 m but did not walk away when male groups ≤50 m had ≤5 individuals. Sexual segregation was associated with behaviors of sexes in mixed-sex groups: reduced intake of forage by males and increased female–female aggression with more males.

  16. Does greed help a forager survive?

    NASA Astrophysics Data System (ADS)

    Bhat, U.; Redner, S.; Bénichou, O.

    2017-06-01

    We investigate the role of greed on the lifetime of a random-walking forager on an initially resource-rich lattice. Whenever the forager lands on a food-containing site, all the food there is eaten and the forager can hop S more steps without food before starving. Upon reaching an empty site, the forager comes one time unit closer to starvation. The forager is also greedy—given a choice to move to an empty or to a food-containing site in its local neighborhood, the forager moves preferentially toward food. Surprisingly, the forager lifetime varies nonmonotonically with greed, with different senses of the nonmonotonicity in one and two dimensions. Also unexpectedly, the forager lifetime in one dimension has a huge peak for very negative greed where the forager is food averse.

  17. Attention as foraging for information and value

    PubMed Central

    Manohar, Sanjay G.; Husain, Masud

    2013-01-01

    What is the purpose of attention? One avenue of research has led to the proposal that attention might be crucial for gathering information about the environment, while other lines of study have demonstrated how attention may play a role in guiding behavior to rewarded options. Many experiments that study attention require participants to make a decision based on information acquired discretely at one point in time. In real-world situations, however, we are usually not presented with information about which option to select in such a manner. Rather we must initially search for information, weighing up reward values of options before we commit to a decision. Here, we propose that attention plays a role in both foraging for information and foraging for value. When foraging for information, attention is guided toward the unknown. When foraging for reward, attention is guided toward high reward values, allowing decision-making to proceed by accept-or-reject decisions on the currently attended option. According to this account, attention can be regarded as a low-cost alternative to moving around and physically interacting with the environment—“teleforaging”—before a decision is made to interact physically with the world. To track the timecourse of attention, we asked participants to seek out and acquire information about two gambles by directing their gaze, before choosing one of them. Participants often made multiple refixations on items before making a decision. Their eye movements revealed that early in the trial, attention was guided toward information, i.e., toward locations that reduced uncertainty about value. In contrast, late in the trial, attention was guided by expected value of the options. At the end of the decision period, participants were generally attending to the item they eventually chose. We suggest that attentional foraging shifts from an uncertainty-driven to a reward-driven mode during the evolution of a decision, permitting decisions to be made by an engage-or-search strategy. PMID:24204335

  18. Influence of landscape structure and human modifications on insect biomass and bat foraging activity in an urban landscape.

    PubMed

    Threlfall, Caragh G; Law, Bradley; Banks, Peter B

    2012-01-01

    Urban landscapes are often located in biologically diverse, productive regions. As such, urbanization may have dramatic consequences for this diversity, largely due to changes in the structure and function of urban communities. We examined the influence of landscape productivity (indexed by geology), housing density and vegetation clearing on the spatial distribution of nocturnal insect biomass and the foraging activity of insectivorous bats in the urban landscape of Sydney, Australia. Nocturnal insect biomass (g) and bat foraging activity were sampled from 113 sites representing backyard, open space, bushland and riparian landscape elements, across urban, suburban and vegetated landscapes within 60 km of Sydney's Central Business District. We found that insect biomass was at least an order of magnitude greater within suburban landscapes in bushland and backyard elements located on the most fertile shale influenced geologies (both p<0.001) compared to nutrient poor sandstone landscapes. Similarly, the feeding activity of bats was greatest in bushland, and riparian elements within suburbs on fertile geologies (p = 0.039). Regression tree analysis indicated that the same three variables explained the major proportion of the variation in insect biomass and bat foraging activity. These were ambient temperature (positive), housing density (negative) and the percent of fertile shale geologies (positive) in the landscape; however variation in insect biomass did not directly explain bat foraging activity. We suggest that prey may be unavailable to bats in highly urbanized areas if these areas are avoided by many species, suggesting that reduced feeding activity may reflect under-use of urban habitats by bats. Restoration activities to improve ecological function and maintain the activity of a diversity of bat species should focus on maintaining and restoring bushland and riparian habitat, particularly in areas with fertile geology as these were key bat foraging habitats.

  19. Influence of Landscape Structure and Human Modifications on Insect Biomass and Bat Foraging Activity in an Urban Landscape

    PubMed Central

    Threlfall, Caragh G.; Law, Bradley; Banks, Peter B.

    2012-01-01

    Urban landscapes are often located in biologically diverse, productive regions. As such, urbanization may have dramatic consequences for this diversity, largely due to changes in the structure and function of urban communities. We examined the influence of landscape productivity (indexed by geology), housing density and vegetation clearing on the spatial distribution of nocturnal insect biomass and the foraging activity of insectivorous bats in the urban landscape of Sydney, Australia. Nocturnal insect biomass (g) and bat foraging activity were sampled from 113 sites representing backyard, open space, bushland and riparian landscape elements, across urban, suburban and vegetated landscapes within 60 km of Sydney's Central Business District. We found that insect biomass was at least an order of magnitude greater within suburban landscapes in bushland and backyard elements located on the most fertile shale influenced geologies (both p<0.001) compared to nutrient poor sandstone landscapes. Similarly, the feeding activity of bats was greatest in bushland, and riparian elements within suburbs on fertile geologies (p = 0.039). Regression tree analysis indicated that the same three variables explained the major proportion of the variation in insect biomass and bat foraging activity. These were ambient temperature (positive), housing density (negative) and the percent of fertile shale geologies (positive) in the landscape; however variation in insect biomass did not directly explain bat foraging activity. We suggest that prey may be unavailable to bats in highly urbanized areas if these areas are avoided by many species, suggesting that reduced feeding activity may reflect under-use of urban habitats by bats. Restoration activities to improve ecological function and maintain the activity of a diversity of bat species should focus on maintaining and restoring bushland and riparian habitat, particularly in areas with fertile geology as these were key bat foraging habitats. PMID:22685608

  20. Foraging decisions of bison for rapid energy gains can explain the relative risk to neighboring plants in complex swards.

    PubMed

    Courant, Sabrina; Fortin, Daniel

    2010-06-01

    Herbivores commonly base their foraging decisions not only on the intrinsic characteristics of plants, but also on the attributes of neighboring species. Although herbivores commonly orient their food choices toward the maximization of energy intake, the impact of such choices on neighboring plants remains largely unexplored. We evaluated whether foraging decisions by herbivores aiming at a rapid intake of digestible energy could explain multiple neighboring effects in complex swards. Specifically, we assessed how spatial patterns of occurrence of Carex atherodes, a highly profitable sedge species, could control the risk of bison (Bison bison) herbivory for seven other plant species. The foraging behavior of 70 free-ranging bison was evaluated in their natural environment during summer, and then related to plant characteristics. We used this information to estimate the instantaneous intake rate of digestible energy at individual feeding stations. We found that neighbor contrast defense and associational susceptibility can both be explained by simple foraging rules of energy maximization. Energy gains were higher when C. atherodes was consumed while avoiding the species for which we detected neighbor contrast defense. The lower intake rate associated with their consumption was due to an increase in handling time caused by their small size relative to C. atherodes. Bison also had higher energy gains by consuming instead of avoiding the plant species that experienced associational susceptibility. Because most of these plants were at least as tall as C. atherodes, their presence increased the heterogeneity of the grazed stratum. Avoiding their consumption increased handling time thereby reducing the instantaneous rate of energy intake. Overall, we found that bison adjust their fine-scale foraging decisions to vertical and horizontal sward structures in a way that maximizes their energy intake rate. Energy maximization principles thus provide a valuable framework to evaluate a broad-range of neighboring effects for prey faced with generalist consumers.

  1. Thigmotaxis Mediates Trail Odour Disruption.

    PubMed

    Stringer, Lloyd D; Corn, Joshua E; Sik Roh, Hyun; Jiménez-Pérez, Alfredo; Manning, Lee-Anne M; Harper, Aimee R; Suckling, David M

    2017-05-10

    Disruption of foraging using oversupply of ant trail pheromones is a novel pest management application under investigation. It presents an opportunity to investigate the interaction of sensory modalities by removal of one of the modes. Superficially similar to sex pheromone-based mating disruption in moths, ant trail pheromone disruption lacks an equivalent mechanistic understanding of how the ants respond to an oversupply of their trail pheromone. Since significant compromise of one sensory modality essential for trail following (chemotaxis) has been demonstrated, we hypothesised that other sensory modalities such as thigmotaxis could act to reduce the impact on olfactory disruption of foraging behaviour. To test this, we provided a physical stimulus of thread to aid trailing by Argentine ants otherwise under disruptive pheromone concentrations. Trail following success was higher using a physical cue. While trail integrity reduced under continuous over-supply of trail pheromone delivered directly on the thread, provision of a physical cue in the form of thread slightly improved trail following and mediated trail disruption from high concentrations upwind. Our results indicate that ants are able to use physical structures to reduce but not eliminate the effects of trail pheromone disruption.

  2. Effect of fall-grazed sericea lespedeza (Lespedeza cuneata) on gastrointestinal nematode infections of growing goats.

    PubMed

    Mechineni, A; Kommuru, D S; Gujja, S; Mosjidis, J A; Miller, J E; Burke, J M; Ramsay, A; Mueller-Harvey, I; Kannan, G; Lee, J H; Kouakou, B; Terrill, T H

    2014-08-29

    High prevalence of anthelmintic-resistant gastrointestinal nematodes (GIN) in goats has increased pressure to find effective, alternative non-synthetic control methods, one of which is adding forage of the high condensed tannin (CT) legume sericea lespedeza (SL; Lespedeza cuneata) to the animal's diet. Previous work has demonstrated good efficacy of dried SL (hay, pellets) against small ruminant GIN, but information is lacking on consumption of fresh SL, particularly during the late summer-autumn period in the southern USA when perennial warm-season grass pastures are often low in quality. A study was designed to determine the effects of autumn (September-November) consumption of fresh SL forage, grass pasture (predominantly bermudagrass, BG; Cynodon dactylon), or a combination of SL+BG forage by young goats [intact male Spanish kids, 9 months old (20.7 ± 1.1 kg), n = 10/treatment group] on their GIN infection status. Three forage paddocks (0.40 ha) were set up at the Fort Valley State University Agricultural Research Station (Fort Valley, GA) for an 8-week trial. The goats in each paddock were supplemented with a commercial feed pellet at 0.45 kg/head/d for the first 4 weeks of the trial, and 0.27 kg/head/d for the final 4 weeks. Forage samples taken at the start of the trial were analyzed for crude protein (CP), neutral detergent fiber (NDF), and acid detergent fiber (ADF) content, and a separate set of SL samples was analyzed for CT in leaves, stems, and whole plant using the benzyl mercaptan thiolysis method. Animal weights were taken at the start and end of the trial, and fecal and blood samples were collected weekly for determination of fecal egg counts (FEC) and packed cell volume (PCV), respectively. Adult GIN was recovered from the abomasum and small intestines of all goats at the end of the experiment for counting and speciation. The CP levels were highest for SL forage, intermediate for SL+BG, and lowest for BG forage samples, while NDF and ADF values were the opposite, with highest levels in BG and lowest in SL forage samples. Sericea lespedeza leaves had more CT than stems (16.0 g vs. 3.3g/100g dry weight), a slightly higher percentage of PDs (98% vs. 94%, respectively) and polymers of larger mean degrees of polymerization (42 vs. 18, respectively). There were no differences in average daily gain or blood PCV between the treatment groups, but SL goats had lower FEC (P < 0.05) than the BG or SL+BG forage goats throughout most of the trial. The SL+BG goats had lower FEC than the BG forage animals by the end of the trial (week 8, P < 0.05). The SL goats had lower numbers (P < 0.05) of male Haemonchus contortus and tended to have fewer female (P < 0.10) and total (P < 0.07) H. contortus compared with the BG goats. The predominant GIN in all the goats was Trichostrongylus colubriformis (73% of total GIN). As a low-input forage with activity against pathogenic GIN (H. contortus), SL has a potential to reduce producers' dependence upon synthetic anthelmintics and also to fill the autumn 'window' in good-quality fresh forages for goat grazing in the southern USA. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Parental care in Tundra Swans during the pre-fledgling period

    USGS Publications Warehouse

    Earnst, Susan L.

    2002-01-01

    Among studies that have quantified the care of precocial young, few have investigated forms of parental care other than vigilance. During the pre-fledging period, Tundra Swan (Cygnus columbianus columbianus) parents provided simultaneous biparental care by foraging near each other and their cygnets, and cygnets spent more time foraging during bouts in which both parents were foraging nearby than when only one parent was foraging nearby. Parents spent nearly twice as much foraging time on land than did non-parents, a habitat in which cygnets foraged more intensely than parents (i.e., spent more time foraging during foraging bouts) and could graze on protein-rich sedges rather than use more difficult below-water foraging methods. Parents also spent more than twice as much time being vigilant and more than three times as much time defending their territory than non-parents, behaviors that presumably benefited cygents by decreasing predation risk and indirect foraging competition, respectively. Parents therefore incurred the costs of foraging less intensely during foraging bouts, spending more time interacting, more time in vigilance, and less time sleeping/preening than non-parents.

  4. Subalpine bumble bee foraging distances and densities in relation to flower availability.

    PubMed

    Elliott, Susan E

    2009-06-01

    Bees feed almost exclusively on nectar and pollen from flowers. However, little is known about how food availability limits bee populations, especially in high elevation areas. Foraging distances and relationships between forager densities and resource availability can provide insights into the potential for food limitation in mobile consumer populations. For example, if floral resources are limited, bee consumers should fly farther to forage, and they should be more abundant in areas with more flowers. I estimated subalpine bumble bee foraging distances by calculating forager recapture probabilities at increasing distances from eight marking locations. I measured forager and flower densities over the flowering season in six half-hectare plots. Because subalpine bumble bees have little time to build their colonies, they may forage over short distances and forager density may not be constrained by flower density. However, late in the season, when floral resources dwindle, foraging distances may increase, and there may be stronger relationships between forager and flower densities. Throughout the flowering season, marked bees were primarily found within 100 m (and never >1,000 m) from their original marking location, suggesting that they typically did not fly far to forage. Although the density of early season foraging queens increased with early-season flower density, the density of mid- and late-season workers and males did not vary with flower density. Short foraging distances and no relationships between mid- and late-season forager and flower densities suggest that high elevation bumble bees may have ample floral resources for colony growth reproduction.

  5. Worker honey bee pheromone regulation of foraging ontogeny

    NASA Astrophysics Data System (ADS)

    Pankiw, Tanya

    The evolution of sociality has configured communication chemicals, called primer pheromones, which play key roles in regulating the organization of social life. Primer pheromones exert relatively slow effects that fundamentally alter developmental, physiological, and neural systems. Here, I demonstrate how substances extracted from the surface of foraging and young pre-foraging worker bees regulated age at onset of foraging, a developmental process. Hexane-extractable compounds washed from foraging workers increased foraging age compared with controls, whereas extracts of young pre-foraging workers decreased foraging age. This represents the first known direct demonstration of primer pheromone activity derived from adult worker bees.

  6. Vulnerability of China's nearshore ecosystems under intensive mariculture development.

    PubMed

    Liu, Hui; Su, Jilan

    2017-04-01

    Rapid economic development and increasing population in China have exerted tremendous pressures on the coastal ecosystems. In addition to land-based pollutants and reclamation, fast expansion of large-scale intensive mariculture activities has also brought about additional effects. So far, the ecological impact of rapid mariculture development and its large-scale operations has not drawn enough attention. In this paper, the rapid development of mariculture in China is reviewed, China's effort in the application of ecological mariculture is examined, and the vulnerability of marine ecosystem to mariculture impact is evaluated through a number of examples. Removal or reduced large and forage fish, due to both habitat loss to reclamation/mariculture and overfishing for food or fishmeal, may have far-reaching effects on the coastal and shelf ecosystems in the long run. Large-scale intensive mariculture operations carry with them undesirable biological and biochemical characteristics, which may have consequences on natural ecosystems beyond normally perceived spatial and temporal boundaries. As our understanding of possible impacts of large-scale intensive mariculture is lagging far behind its development, much research is urgently needed.

  7. Growth and physiological condition of black ducks reared on acidified wetlands

    USGS Publications Warehouse

    Rattner, B.A.; Haramis, G.M.; Chu, D.S.; Bunck, C.M.; Scanes, C.G.

    1987-01-01

    Acid deposition has been identified as one of several possible factors contributing to the decline of some waterfowl populations in North America. In an effort to examine the effects of acidification on black duck (Anas rubripes) recruitment, growth and physiological condition were monitored in ducklings foraging for a 10-day trial (days 10-20 of life) on acidified (pH 5.0) and : circumneutral (pH 6.8) fish-free emergent wetlands. Acidification of these wetlands suppressed phytoplankton and algal growth, and reduced invertebrate biomass. Ducklings maintained on acidified wetlands grew poorly compared with ducklings reared on circumneutral wetlands, as evidenced by lower final body weight and culmen and tarsus length. Plasma growth hormone concentration was elevated and triiodothyronine levels were lower in stunted ducklings, in part substantiating impairment of growth-regulating processes. Ducklings exhibiting poor growth tended to have lower hematocrit, lower plasma protein, glucose, and cholesterol concentrations, and higher uric acid levels, presumably reflecting alterations in metabolism and development due to inanition. These findings suggest that acid deposition may lower food production in wetlands and ultimately impair duckling growth, condition, and survival.

  8. Altering physically effective fiber intake through forage proportion and particle length: chewing and ruminal pH.

    PubMed

    Yang, W Z; Beauchemin, K A

    2007-06-01

    Alfalfa silages varying in theoretical chop length and diets high and low in forage proportion were used to evaluate whether increasing the physically effective (pe) neutral detergent fiber (NDF) content of dairy cow diets reduces the risk of acidosis. The experiment was designed as a replicated 4 x 4 Latin square using 8 ruminally cannulated lactating dairy cows. Treatments were arranged in a 2 x 2 factorial design; 2 forage particle lengths (FPL) of alfalfa silage (short and long) were combined with low (35:65) and high (60:40) forage:concentrate (F:C) ratios [dry matter (DM) basis]. Dietary peNDF content (DM basis) was determined from the sum of the proportion of dietary DM retained on either the 2 sieves (8 and 19 mm) or the 3 sieves (1.18, 8, and 19 mm) of the Penn State Particle Separator multiplied by the NDF content of the diet. The dietary peNDF contents ranged from 9.6 to 19.8% using 2 sieves, or from 28.6 to 34.0% using 3 sieves. Intake of peNDF was increased by increasing both the F:C ratio and the FPL of the diets. However, F:C ratio and FPL affected chewing activity differently; increasing F:C ratio increased chewing time but increasing FPL only increased chewing when a high-forage diet was fed. Mean ruminal pH was increased by 0.5 and 0.2 units with increasing F:C ratio and FPL, respectively. Cows fed the low F:C diet had > 10 or 7 h daily in which ruminal pH was below 5.8 or 5.5, respectively, compared with 1.2 and 0.1 h for cows fed the high F:C ratio diet. Increased F:C ratio reduced ruminal VFA concentration from 135 to 121 mM but increased the acetate:propionate ratio from 1.82 to 3.13. Dietary peNDF content when measured using 2 sieves was positively correlated to chewing time (r = 0.61) and mean ruminal pH (r = 0.73), and negatively correlated to the time that pH was below 5.8 or 5.5 (r = -0.46). This study shows that the risk of ruminal acidosis is high for cows fed a low F:C diet, particularly when finely chopped silage is used. Intake of dietary peNDF is a good indicator of ruminal pH status of dairy cows. Increasing the proportion of forage in the diet helps prevent ruminal acidosis through increased chewing time, a change in meal patterns, and decreased ruminal acid production. Increasing FPL elevates ruminal pH, but in low-forage diets increased FPL does not completely alleviate subacute acidosis because the fermentability of the diet is high and changes in chewing activity are marginal.

  9. Restoring mountain big sagebrush communities after prescribed fire in juniper encroached rangelands

    USDA-ARS?s Scientific Manuscript database

    Western juniper encroachment into sagebrush steppe communities has reduced livestock forage production, increased erosion and runoff risk, and degraded sagebrush-associated wildlife habitat. We evaluated seeding perennial herbaceous vegetation and sagebrush at five sites where juniper was controlle...

  10. Men's status and reproductive success in 33 nonindustrial societies: Effects of subsistence, marriage system, and reproductive strategy.

    PubMed

    von Rueden, Christopher R; Jaeggi, Adrian V

    2016-09-27

    Social status motivates much of human behavior. However, status may have been a relatively weak target of selection for much of human evolution if ancestral foragers tended to be more egalitarian. We test the "egalitarianism hypothesis" that status has a significantly smaller effect on reproductive success (RS) in foragers compared with nonforagers. We also test between alternative male reproductive strategies, in particular whether reproductive benefits of status are due to lower offspring mortality (parental investment) or increased fertility (mating effort). We performed a phylogenetic multilevel metaanalysis of 288 statistical associations between measures of male status (physical formidability, hunting ability, material wealth, political influence) and RS (mating success, wife quality, fertility, offspring mortality, and number of surviving offspring) from 46 studies in 33 nonindustrial societies. We found a significant overall effect of status on RS (r = 0.19), though this effect was significantly lower than for nonhuman primates (r = 0.80). There was substantial variation due to marriage system and measure of RS, in particular status associated with offspring mortality only in polygynous societies (r = -0.08), and with wife quality only in monogamous societies (r = 0.15). However, the effects of status on RS did not differ significantly by status measure or subsistence type: foraging, horticulture, pastoralism, and agriculture. These results suggest that traits that facilitate status acquisition were not subject to substantially greater selection with domestication of plants and animals, and are part of reproductive strategies that enhance fertility more than offspring well-being.

  11. Amoeboid organism solves complex nutritional challenges

    PubMed Central

    Dussutour, Audrey; Latty, Tanya; Beekman, Madeleine; Simpson, Stephen J.

    2010-01-01

    A fundamental question in nutritional biology is how distributed systems maintain an optimal supply of multiple nutrients essential for life and reproduction. In the case of animals, the nutritional requirements of the cells within the body are coordinated by the brain in neural and chemical dialogue with sensory systems and peripheral organs. At the level of an insect society, the requirements for the entire colony are met by the foraging efforts of a minority of workers responding to cues emanating from the brood. Both examples involve components specialized to deal with nutrient supply and demand (brains and peripheral organs, foragers and brood). However, some of the most species-rich, largest, and ecologically significant heterotrophic organisms on earth, such as the vast mycelial networks of fungi, comprise distributed networks without specialized centers: How do these organisms coordinate the search for multiple nutrients? We address this question in the acellular slime mold Physarum polycephalum and show that this extraordinary organism can make complex nutritional decisions, despite lacking a coordination center and comprising only a single vast multinucleate cell. We show that a single slime mold is able to grow to contact patches of different nutrient quality in the precise proportions necessary to compose an optimal diet. That such organisms have the capacity to maintain the balance of carbon- and nitrogen-based nutrients by selective foraging has considerable implications not only for our understanding of nutrient balancing in distributed systems but for the functional ecology of soils, nutrient cycling, and carbon sequestration. PMID:20142479

  12. Parasitoid Diaeretiella rapae (Hymenoptera: Braconidae) Adjusts Reproductive Strategy When Competing for Hosts.

    PubMed

    Kant, Rashmi; Minor, Maria A

    2017-06-01

    Parasitoid fitness depends on its ability to manipulate reproductive strategies when in competition. This study investigated the parasitism and sex allocation strategies of the parasitic wasp Diaeretiella rapae McIntosh at a range of host (Brevicoryne brassicae L.) and conspecific densities. The results suggest that D. rapae females adjust their progeny production and progeny sex ratio with changing competition. When foraging alone, female D. rapae parasitize larger number of B. brassicae nymphs when the number of available hosts is increased, but the overall proportion of parasitized hosts decreases with increase in host density. The proportion of female offspring also decreases with elevated host density. Increase in the number of female D. rapae foraging together increased total parasitism, but reduced relative contribution of each individual female. The number of female progeny decreased when multiple females competed for the same host. However, foraging experience in the presence of one or more conspecifics increased the parasitism rate and proportion of female progeny. Competing females were more active during oviposition and had shorter lives. The study suggests that both host and foundress (female parasitoid) densities have significant effect on progeny production, sex allocation, and longevity of foraging females. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Opportunities and roadblocks in utilizing forages and small grains for liquid fuels.

    PubMed

    Sarath, Gautam; Mitchell, Robert B; Sattler, Scott E; Funnell, Deanna; Pedersen, Jeffery F; Graybosch, Robert A; Vogel, Kenneth P

    2008-05-01

    This review focuses on the potential advantages and disadvantages of forages such as switchgrass (Panicum virgatum), and two small grains: sorghum (Sorghum bicolor), and wheat (Triticum aesitvum), as feedstocks for biofuels. It highlights the synergy provided by applying what is known from forage digestibility and wheat and sorghum starch properties studies to the biofuels sector. Opportunities therefore, exist to improve biofuel qualities in these crops via genetics and agronomics. In contrast to cereal crops, switchgrass still retains tremendous exploitable genetic diversity, and can be specifically improved to fit a particular agronomic, management, and conversion platform. Combined with emerging studies on switchgrass genomics, conversion properties and management, the future for genetic modification of this species through conventional and molecular breeding strategies appear to be bright. The presence of brown-midrib mutations in sorghum that alter cell wall composition by reducing lignin and other attributes indicate that sorghum could serve as an important model species for C(4)-grasses. Utilization of the brown-midrib traits could lead to the development of forage and sweet sorghums as novel biomass crops. Additionally, wheat crop residue, and wheat and sorghum with improved starch content and composition represent alternate biofuel sources. However, the use of wheat starch as a biofuel is unlikely but its value as a model to study starch properties on biofuel yields holds significant promise.

  14. Anatomy, nutritional value and cell wall chemical analysis of foliage leaves of Guadua chacoensis (Poaceae, Bambusoideae, Bambuseae), a promising source of forage.

    PubMed

    Panizzo, Cecilia C; Fernández, Paula V; Colombatto, Darío; Ciancia, Marina; Vega, Andrea S

    2017-03-01

    The present study combines morphological and anatomical studies, cell wall chemical composition analysis, as well as assessment of the nutritional value of Guadua chacoensis foliage leaves. Foliage leaves of G. chacoensis are a promising source of forage because: (a) as a native woody bamboo, it is adapted to and helps maintain environmental conditions in America; (b) leaf anatomical studies exhibit discontinuous sclerenchyma, scarcely developed, while pilose indumentum, silica cells, prickles and hooks are also scarce; (c) it has a high protein content, similar to that of Medicago sativa, while other nutritional parameters are similar to those of common forages; and (d) glucuronoarabinoxylan, the major extracted polysaccharide, has one-third of the 4-linked β-d-xylopyranosyl units of the backbone substituted mainly with α-l-arabinofuranose as single stubs or non-reducing end of short chains, but also 5-linked α-l-arabinofuranose units, terminal β-d-xylopyranose and d-galactopyranose units, as well as α-d-glucuronic acid residues and small amounts of its 4-O-methylated derivative. These results constitute the first report on this species, and as culms are utilized in constructions and crafts, the remaining leaves, when used as forage, constitute a byproduct that allows an additional income opportunity. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  15. Population-level consequences of antipredator behavior: a metaphysiological model based on the functional ecology of the leaf-eared mouse.

    PubMed

    Ramos-Jiliberto, Rodrigo; González-Olivares, Eduardo; Bozinovic, Francisco

    2002-08-01

    We present a predator-prey metaphysiological model, based on the available behavioral and physiological information of the sigmodontine rodent Phyllotis darwini. The model is focused on the population-level consequences of the antipredator behavior, performed by the rodent population, which is assumed to be an inducible response of predation avoidance. The decrease in vulnerability is explicitly considered to have two associated costs: a decreasing foraging success and an increasing metabolic loss. The model analysis was carried out on a reduced form of the system by means of numerical and analytical tools. We evaluated the stability properties of equilibrium points in the phase plane, and carried out bifurcation analyses of rodent equilibrium density under varying conditions of three relevant parameters. The bifurcation parameters chosen represent predator avoidance effectiveness (A), foraging cost of antipredator behavior (C(1)'), and activity-metabolism cost (C(4)'). Our analysis suggests that the trade-offs involved in antipredator behavior plays a fundamental role in the stability properties of the system. Under conditions of high foraging cost, stability decreases as antipredator effectiveness increases. Under the complementary scenario (not considering the highest foraging costs), the equilibria are either stable when both costs are low, or unstable when both costs are higher, independent of antipredator effectiveness. No evidence of stabilizing effects of antipredator behavior was found. Copyright 2002 Elsevier Science (USA).

  16. Predator Foraging in Response to the Mcmurdo Sound Preyscape

    NASA Astrophysics Data System (ADS)

    Daly, K. L.; Ainley, D. G.; Saenz, B.; Ballard, G.; Kim, S.; Jongsomjit, D.

    2016-02-01

    Growing recent evidence indicates that the Ross Sea, Antarctica, food web is structured as a `wasp-waist' system, in which krill and fish constitute the restriction. The abundance/availability of these prey appears to be affected by top-down predation, and to have only minimal coupling with phytoplankton/primary productivity processes. We investigated this issue further by quantifying prey abundance, depth and distribution along the McMurdo Sound fast-ice edge, using an ROV equipped with acoustic sensors and fluorescence sensors and a CTD equipped with a fluorometer, at the same time that we bio-logged the foraging behavior of Adélie Penguins from an adjacent colony and logged the abundance of trophically competing cetaceans and seals. Early in the study period, concentrations of seals and emperor penguins coincided with a location at which high abundance of an under-ice dwelling fish occurred; these predators disappeared with reduction in that prey's abundance and/or the arrival of seal/penguin-eating killer whales at the fast ice edge. The diet of Adélie penguins changed from 100% krill to 50% krill-fish upon the arrival of minke and fish-eating killer whales. Penguin diving depth did not change, nor did they lengthen foraging range as has been observed in the past upon cetacean arrival. However, the prevalence of the mid-water dwelling forage fish (silverfish) decreased within the penguins' foraging range. Apparently, given the chance penguins and cetaceans appear to have targeted the high-energy dense fish instead of krill, and as a result changed prey availability. Penguin diving depth was just beneath an intense phytoplankton bloom of markedly reduced visibility. Our study brings added support for a food web in which top-down forcing is as important as primary production, having implications for managing fisheries in the region.

  17. Anthropogenic noise disrupts use of vocal information about predation risk.

    PubMed

    Kern, Julie M; Radford, Andrew N

    2016-11-01

    Anthropogenic noise is rapidly becoming a universal environmental feature. While the impacts of such additional noise on avian sexual signals are well documented, our understanding of its effect in other terrestrial taxa, on other vocalisations, and on receivers is more limited. Little is known, for example, about the influence of anthropogenic noise on responses to vocalisations relating to predation risk, despite the potential fitness consequences. We use playback experiments to investigate the impact of traffic noise on the responses of foraging dwarf mongooses (Helogale parvula) to surveillance calls produced by sentinels, individuals scanning for danger from a raised position whose presence usually results in reduced vigilance by foragers. Foragers exhibited a lessened response to surveillance calls in traffic-noise compared to ambient-sound playback, increasing personal vigilance. A second playback experiment, using noise playbacks without surveillance calls, suggests that the increased vigilance could arise in part from the direct influence of additional noise as there was an increase in response to traffic-noise playback alone. Acoustic masking could also play a role. Foragers maintained the ability to distinguish between sentinels of different dominance class, increasing personal vigilance when presented with subordinate surveillance calls compared to calls of a dominant groupmate in both noise treatments, suggesting complete masking was not occurring. However, an acoustic-transmission experiment showed that while surveillance calls were potentially audible during approaching traffic noise, they were probably inaudible during peak traffic intensity noise. While recent work has demonstrated detrimental effects of anthropogenic noise on defensive responses to actual predatory attacks, which are relatively rare, our results provide evidence of a potentially more widespread influence since animals should constantly assess background risk to optimise the foraging-vigilance trade-off. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Foraging strategies of black-fronted titi monkeys (Callicebus nigrifrons) in relation to food availability in a seasonal tropical forest.

    PubMed

    Nagy-Reis, Mariana B; Setz, Eleonore Z F

    2017-01-01

    Many primates have to cope with a temporal scarcity in food availability that shapes their foraging strategies. Here we investigated the changes in diet, activity, and ranging behavior of a group of black-fronted titi monkeys (Callicebus nigrifrons) according to the availability of the main high-nutritional-density item in their diet and the foraging strategy adopted when this food is scarce. We monitored one habituated group using instantaneous scan sampling over 1 year (533 h of observation, 61 days) in a seasonal tropical forest fragment (245 ha). We simultaneously collected data on food availability with fruit traps. The titi monkeys consumed fleshy fruits, the main high-nutritional-density item of their diet, in accordance with its availability, and the availability of this item modulated the ingestion of vegetative plant parts, a relatively low-nutritional-density food. During high fleshy fruit availability, the titi monkeys consumed more fleshy fruits, flowers, and invertebrates. They also traveled more, but concentrated their activity in a central area of their home range. Conversely, during fleshy fruit scarcity, they increased the breadth of their diet, switching to one richer in seeds and vegetative plant parts, and with greater plant diversity. At the same time, they reduced most energy-demanding activities, traveling less and over shorter distances, but using their home range more broadly. Corroborating the optimal foraging theory, titi monkeys altered foraging strategies according to temporal food fluctuations and responded to low fleshy fruit availability by changing their diet, activity, and ranging behavior. The adoption of a low-cost/low-yield strategy allowed us to classify them as energy minimizers.

  19. Characterization of rumen bacterial diversity and fermentation parameters in concentrate fed cattle with and without forage.

    PubMed

    Petri, R M; Forster, R J; Yang, W; McKinnon, J J; McAllister, T A

    2012-06-01

    To determine the effects of the removal of forage in high-concentrate diets on rumen fermentation conditions and rumen bacterial populations using culture-independent methods. Detectable bacteria and fermentation parameters were measured in the solid and liquid fractions of digesta from cattle fed two dietary treatments, high concentrate (HC) and high concentrate without forage (HCNF). Comparison of rumen fermentation conditions showed that duration of time spent below pH 5·2 and rumen osmolality were higher in the HCNF treatment. Simpson's index of 16S PCR-DGGE images showed a greater diversity of dominant species in the HCNF treatment. Real-time qPCR showed populations of Fibrobacter succinogenes (P = 0·01) were lower in HCNF than HC diets. Ruminococcus spp., F. succinogenes and Selenomonas ruminantium were at higher (P ≤ 0·05) concentrations in the solid vs the liquid fraction of digesta regardless of diet. The detectable bacterial community structure in the rumen is highly diverse. Reducing diet complexity by removing forage increased bacterial diversity despite the associated reduction in ruminal pH being less conducive for fibrolytic bacterial populations. Quantitative PCR showed that removal of forage from the diet resulted in a decline in the density of some, but not all fibrolytic bacterial species examined. Molecular techniques such as DGGE and qPCR provide an increased understanding of the impacts of dietary changes on the nature of rumen bacterial populations, and conclusions derived using these techniques may not match those previously derived using traditional laboratory culturing techniques. © 2012 The Authors. Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  20. Effect of Gynosaponin on Rumen In vitro Methanogenesis under Different Forage-Concentrate Ratios

    PubMed Central

    Manatbay, Bakhetgul; Cheng, Yanfen; Mao, Shengyong; Zhu, Weiyun

    2014-01-01

    The study aimed to investigate the effects of gynosaponin on in vitro methanogenesis under different forage-concentrate ratios (F:C ratios). Experiment was conducted with two kinds of F:C ratios (F:C = 7:3 and F:C = 3:7) and gynosaponin addition (0 mg and 16 mg) in a 2×2 double factorial design. In the presence of gynosaponin, methane production and acetate concentration were significantly decreased, whereas concentration of propionate tended to be increased resulting in a significant reduction (p<0.05) of acetate:propionate ratio (A:P ratio), in high-forage substrate. Gynosaponin treatment increased (p<0.05) the butyrate concentration in both F:C ratios. Denaturing gradient gel electrophoresis (DGGE) analysis showed there was no apparent shift in the composition of total bacteria, protozoa and methanogens after treated by gynosaponin under both F:C ratios. The real-time polymerase chain reaction (PCR) analysis indicated that variable F:C ratios significantly affected the abundances of Fibrobacter succinogenes, Rumninococcus flavefaciens, total fungi and counts of protozoa (p<0.05), but did not affect the mcrA gene copies of methanogens and abundance of total bacteria. Counts of protozoa and abundance of F.succinogenes were decreased significantly (p<0.05), whereas mcrA gene copies of methanogens were decreased slightly (p<0.10) in high-forage substrate after treated by gynosaponin. However, gynosaponin treatment under high-concentrate level did not affect the methanogenesis, fermentation characteristics and tested microbes. Accordingly, overall results suggested that gynosaponin supplementation reduced the in vitro methanogenesis and improved rumen fermentation under high-forage condition by changing the abundances of related rumen microbes. PMID:25083102

Top