Liu, Na; Enkemann, Steven A; Liang, Ping; Hersmus, Remko; Zanazzi, Claudia; Huang, Junjiu; Wu, Chao; Chen, Zhisheng; Looijenga, Leendert H J; Keefe, David L; Liu, Lin
2010-12-01
Mammalian parthenogenesis could not survive but aborted during mid-gestation, presumably because of lack of paternal gene expression. To understand the molecular mechanisms underlying the failure of parthenogenesis at early stages of development, we performed global gene expression profiling and functional analysis of parthenogenetic blastocysts in comparison with those of blastocysts from normally fertilized embryos. Parthenogenetic blastocysts exhibited changes in the expression of 749 genes, of which 214 had lower expression and 535 showed higher expressions than fertilized embryos using a minimal 1.8-fold change as a cutoff. Genes important for placenta development were decreased in their expression in parthenote blastocysts. Some maternally expressed genes were up-regulated and paternal-related genes were down-regulated. Moreover, aberrantly increased Wnt signaling and reduced mitogen-activated protein kinase (MAPK) signaling were associated with early parthenogenesis. The protein level of extracellular signal-regulated kinase 2 (ERK2) was low in parthenogenetic blastocysts compared with that of fertilized blastocysts 120 h after fertilization. 6-Bromoindirubin-3'-oxime, a specific glycogen synthase kinase-3 (GSK-3) inhibitor, significantly decreased embryo hatching. The expression of several imprinted genes was altered in parthenote blastocysts. Gene expression also linked reduced expression of Xist to activation of X chromosome. Our findings suggest that failed X inactivation, aberrant imprinting, decreased ERK/MAPK signaling and possibly elevated Wnt signaling, and reduced expression of genes for placental development collectively may contribute to abnormal placenta formation and failed fetal development in parthenogenetic embryos.
Creswell, J David; Irwin, Michael R; Burklund, Lisa J; Lieberman, Matthew D; Arevalo, Jesusa M G; Ma, Jeffrey; Breen, Elizabeth Crabb; Cole, Steven W
2012-10-01
Lonely older adults have increased expression of pro-inflammatory genes as well as increased risk for morbidity and mortality. Previous behavioral treatments have attempted to reduce loneliness and its concomitant health risks, but have had limited success. The present study tested whether the 8-week Mindfulness-Based Stress Reduction (MBSR) program (compared to a Wait-List control group) reduces loneliness and downregulates loneliness-related pro-inflammatory gene expression in older adults (N = 40). Consistent with study predictions, mixed effect linear models indicated that the MBSR program reduced loneliness, compared to small increases in loneliness in the control group (treatment condition × time interaction: F(1,35) = 7.86, p = .008). Moreover, at baseline, there was an association between reported loneliness and upregulated pro-inflammatory NF-κB-related gene expression in circulating leukocytes, and MBSR downregulated this NF-κB-associated gene expression profile at post-treatment. Finally, there was a trend for MBSR to reduce C Reactive Protein (treatment condition × time interaction: (F(1,33) = 3.39, p = .075). This work provides an initial indication that MBSR may be a novel treatment approach for reducing loneliness and related pro-inflammatory gene expression in older adults. Copyright © 2012 Elsevier Inc. All rights reserved.
Creswell, J. David; Irwin, Michael R.; Burklund, Lisa J.; Lieberman, Matthew D.; Arevalo, Jesusa M. G.; Ma, Jeffrey; Breen, Elizabeth Crabb; Cole, Steven W.
2013-01-01
Lonely older adults have increased expression of pro-inflammatory genes as well as increased risk for morbidity and mortality. Previous behavioral treatments have attempted to reduce loneliness and its concomitant health risks, but have had limited success. The present study tested whether the 8-week Mindfulness-Based Stress Reduction (MBSR) program (compared to a Wait-List control group) reduces loneliness and downregulates loneliness-related pro-inflammatory gene expression in older adults (N=40). Consistent with study predictions, mixed effect linear models indicated that the MBSR program reduced loneliness, compared to small increases in loneliness in the control group (treatment condition × time interaction: F(1,35)=7.86, p=.008). Moreover, at baseline, there was an association between reported loneliness and upregulated pro-inflammatory NF-κB-related gene expression in circulating leukocytes, and MBSR downregulated this NF-κB-associated gene expression profile at post-treatment. Finally, there was a trend for MBSR to reduce C Reactive Protein (treatment condition × time interaction: (F(1,33)=3.39, p=.075). This work provides an initial indication that MBSR may be a novel treatment approach for reducing loneliness and related pro-inflammatory gene expression in older adults. PMID:22820409
Croyle, Maria A.; Chirmule, Narendra; Zhang, Yi; Wilson, James M.
2001-01-01
Most of the early gene therapy trials for cystic fibrosis have been with adenovirus vectors. First-generation viruses with E1a and E1b deleted are limited by transient expression of the transgene and substantial inflammatory responses. Gene transfer is also significantly curtailed following a second dose of virus. In an effort to reduce adenovirus-associated inflammation, capsids of first-generation vectors were modified with various activated monomethoxypolyethylene glycols. Cytotoxic T-lymphocyte production was significantly reduced in C57BL/6 mice after a single intratracheal administration of modified vectors, and length of gene expression was extended from 4 to 42 days. T-cell subsets from mice exposed to the conjugated vectors demonstrated a marked decrease in Th1 responses and slight enhancement of Th2 responses compared to animals dosed with native virus. Neutralizing antibodies (NAB) against adenovirus capsid proteins were reduced in serum and bronchoalveolar lavage fluid of animals after a single dose of modified virus, allowing significant levels of gene expression upon rechallenge with native adenovirus. Modification with polyethylene glycol (PEG) also allowed substantial gene expression from the new vectors in animals previously immunized with unmodified virus. However, gene expression was significantly reduced after two doses of the same PEG-conjugated vector. Alternating the activation group of PEG between doses did produce significant gene expression upon readministration. This technology in combination with second-generation or helper-dependent adenovirus could produce dosing strategies which promote successful readministration of vector in clinical trials and marked expression in patients with significant anti-adenovirus NAB levels and reduce the possibility of immune reactions against viral vectors for gene therapy. PMID:11312351
Aceto, Gitana Maria; Fantini, Fabiana; De Iure, Sabrina; Di Nicola, Marta; Palka, Giandomenico; Valanzano, Rosa; Di Gregorio, Patrizia; Stigliano, Vittoria; Genuardi, Maurizio; Battista, Pasquale; Cama, Alessandro; Curia, Maria Cristina
2015-10-28
Transcript dosage imbalance may influence the transcriptome. To gain insight into the role of altered gene expression in hereditary colorectal polyposis predisposition, in the present study we analyzed absolute and allele-specific expression (ASE) of adenomatous polyposis coli (APC) and mutY Homolog (MUTYH) genes. We analyzed DNA and RNA extracted from peripheral blood mononuclear cells (PBMC) of 49 familial polyposis patients and 42 healthy blood donors selected according similar gender and age. Patients were studied for germline alterations in both genes using dHPLC, MLPA and automated sequencing. APC and MUTYH mRNA expression levels were investigated by quantitative Real-Time PCR (qRT-PCR) analysis using TaqMan assay and by ASE assays using dHPLC-based primer extension. Twenty out of 49 patients showed germline mutations: 14 in APC gene and six in MUTYH gene. Twenty-nine patients did not show mutations in both genes. Results from qRT-PCR indicated that gene expression of both APC and MUTYH was reduced in patients analyzed. In particular, a significant reduction in APC expression was observed in patients without APC germline mutation vs control group (P < 0.05) while APC expression in the mutation carrier patients, although lower compared to control individuals, did not show statistical significance. On the other hand a significant reduced MUTYH expression was detected in patients with MUTYH mutations vs control group (P < 0.05). Altered ASE of APC was detected in four out of eight APC mutation carriers. In particular one case showed a complete loss of one allele. Among APC mutation negative cases, 4 out of 13 showed a moderate ASE. ASE of MUTYH did not show any altered expression in the cases analyzed. Spearman's Rho Test analysis showed a positive and significant correlation between APC and MUTYH genes both in cases and in controls (P = 0.020 and P < 0.001). APC and MUTYH showed a reduced germline expression, not always corresponding to gene mutation. Expression of APC is decreased in mutation negative cases and this appears to be a promising indicator of FAP predisposition, while for MUTYH gene, mutation is associated to reduced mRNA expression. This study could improve the predictive genetic diagnosis of at-risk individuals belonging to families with reduced mRNA expression regardless of presence of mutation.
A Review of Feature Extraction Software for Microarray Gene Expression Data
Tan, Ching Siang; Ting, Wai Soon; Mohamad, Mohd Saberi; Chan, Weng Howe; Deris, Safaai; Ali Shah, Zuraini
2014-01-01
When gene expression data are too large to be processed, they are transformed into a reduced representation set of genes. Transforming large-scale gene expression data into a set of genes is called feature extraction. If the genes extracted are carefully chosen, this gene set can extract the relevant information from the large-scale gene expression data, allowing further analysis by using this reduced representation instead of the full size data. In this paper, we review numerous software applications that can be used for feature extraction. The software reviewed is mainly for Principal Component Analysis (PCA), Independent Component Analysis (ICA), Partial Least Squares (PLS), and Local Linear Embedding (LLE). A summary and sources of the software are provided in the last section for each feature extraction method. PMID:25250315
Sjögren, Klara; Leung, Kin-Chuen; Kaplan, Warren; Gardiner-Garden, Margaret; Gibney, James; Ho, Ken K Y
2007-07-01
Muscle is a target of growth hormone (GH) action and a major contributor to whole body metabolism. Little is known about how GH regulates metabolic processes in muscle or the extent to which muscle contributes to changes in whole body substrate metabolism during GH treatment. To identify GH-responsive genes that regulate substrate metabolism in muscle, we studied six hypopituitary men who underwent whole body metabolic measurement and skeletal muscle biopsies before and after 2 wk of GH treatment (0.5 mg/day). Transcript profiles of four subjects were analyzed using Affymetrix GeneChips. Serum insulin-like growth factor I (IGF-I) and procollagens I and III were measured by RIA. GH increased serum IGF-I and procollagens I and III, enhanced whole body lipid oxidation, reduced carbohydrate oxidation, and stimulated protein synthesis. It induced gene expression of IGF-I and collagens in muscle. GH reduced expression of several enzymes regulating lipid oxidation and energy production. It reduced calpain 3, increased ribosomal protein L38 expression, and displayed mixed effects on genes encoding myofibrillar proteins. It increased expression of circadian gene CLOCK, and reduced that of PERIOD. In summary, GH exerted concordant effects on muscle expression and blood levels of IGF-I and collagens. It induced changes in genes regulating protein metabolism in parallel with a whole body anabolic effect. The discordance between muscle gene expression profiles and metabolic responses suggests that muscle is unlikely to contribute to GH-induced stimulation of whole body energy and lipid metabolism. GH may regulate circadian function in skeletal muscle by modulating circadian gene expression with possible metabolic consequences.
Downregulation of the expression of mitochondrial electron transport complex genes in autism brains.
Anitha, Ayyappan; Nakamura, Kazuhiko; Thanseem, Ismail; Matsuzaki, Hideo; Miyachi, Taishi; Tsujii, Masatsugu; Iwata, Yasuhide; Suzuki, Katsuaki; Sugiyama, Toshiro; Mori, Norio
2013-05-01
Mitochondrial dysfunction (MtD) and abnormal brain bioenergetics have been implicated in autism, suggesting possible candidate genes in the electron transport chain (ETC). We compared the expression of 84 ETC genes in the post-mortem brains of autism patients and controls. Brain tissues from the anterior cingulate gyrus, motor cortex, and thalamus of autism patients (n = 8) and controls (n = 10) were obtained from Autism Tissue Program, USA. Quantitative real-time PCR arrays were used to quantify gene expression. We observed reduced expression of several ETC genes in autism brains compared to controls. Eleven genes of Complex I, five genes each of Complex III and Complex IV, and seven genes of Complex V showed brain region-specific reduced expression in autism. ATP5A1 (Complex V), ATP5G3 (Complex V) and NDUFA5 (Complex I) showed consistently reduced expression in all the brain regions of autism patients. Upon silencing ATP5A1, the expression of mitogen-activated protein kinase 13 (MAPK13), a p38 MAPK responsive to stress stimuli, was upregulated in HEK 293 cells. This could have been induced by oxidative stress due to impaired ATP synthesis. We report new candidate genes involved in abnormal brain bioenergetics in autism, supporting the hypothesis that mitochondria, critical for neurodevelopment, may play a role in autism. © 2012 The Authors; Brain Pathology © 2012 International Society of Neuropathology.
Dean, C; Jones, J; Favreau, M; Dunsmuir, P; Bedbrook, J
1988-01-01
The petunia rbcS gene SSU301 was introduced into tobacco using Agrobacterium tumefaciens-mediated transformation. The time at which rbcS expression was maximal after transfer of the tobacco plants to the greenhouse was determined. The expression level of the SSU301 gene varied up to 9 fold between individual tobacco plants which had been standardized physiologically as much as possible. The presence of adjacent pUC plasmid sequences did not affect the expression of the SSU301 gene. In an attempt to reduce the between-transformant variability in expression, the SSU301 gene was introduced into tobacco surrounded by 10kb of 5' and 13 kb of 3' DNA sequences which normally flank SSU301 in petunia. The longer flanking regions did not reduce the between-transformant variability of SSU301 gene expression. Images PMID:3174450
2013-01-01
Background Hox genes encode transcription factors that have an ancestral role in all bilaterian animals in specifying regions along the antero-posterior axis. In arthropods (insects, crustaceans, myriapods and chelicerates), Hox genes function to specify segmental identity, and changes in Hox gene expression domains in different segments have been causal to the evolution of novel arthropod morphologies. Despite this, the roles of Hox genes in arthropods that have secondarily lost or reduced their segmental composition have been relatively unexplored. Recent data suggest that acariform mites have a reduced segmental component of their posterior body tagma, the opisthosoma, in that only two segments are patterned during embryogenesis. This is in contrast to the observation that in many extinct and extant chelicerates (that is, horseshoe crabs, scorpions, spiders and harvestmen) the opisthosoma is comprised of ten or more segments. To explore the role of Hox genes in this reduced body region, we followed the expression of the posterior-patterning Hox genes Ultrabithorax (Ubx) and Abdominal-B (Abd-B), as well as the segment polarity genes patched (ptc) and engrailed (en), in the oribatid mite Archegozetes longisetosus. Results We find that the expression patterns of ptc are in agreement with previous reports of a reduced mite opisthosoma. In comparison to the ptc and en expression patterns, we find that Ubx and Abd-B are expressed in a single segment in A. longisetosus, the second opisthosomal segment. Abd-B is initially expressed more posteriorly than Ubx, that is, into the unsegmented telson; however, this domain clears in subsequent stages where it remains in the second opisthosomal segment. Conclusions Our findings suggest that Ubx and Abd-B are expressed in a single segment in the opisthosoma. This is a novel observation, in that these genes are expressed in several segments in all studied arthropods. These data imply that a reduction in opisthosomal segmentation may be tied to a dramatically reduced Hox gene input in the opisthosoma. PMID:23991696
Plasticity-Related Gene Expression During Eszopiclone-Induced Sleep.
Gerashchenko, Dmitry; Pasumarthi, Ravi K; Kilduff, Thomas S
2017-07-01
Experimental evidence suggests that restorative processes depend on synaptic plasticity changes in the brain during sleep. We used the expression of plasticity-related genes to assess synaptic plasticity changes during drug-induced sleep. We first characterized sleep induced by eszopiclone in mice during baseline conditions and during the recovery from sleep deprivation. We then compared the expression of 18 genes and two miRNAs critically involved in synaptic plasticity in these mice. Gene expression was assessed in the cerebral cortex and hippocampus by the TaqMan reverse transcription polymerase chain reaction and correlated with sleep parameters. Eszopiclone reduced the latency to nonrapid eye movement (NREM) sleep and increased NREM sleep amounts. Eszopiclone had no effect on slow wave activity (SWA) during baseline conditions but reduced the SWA increase during recovery sleep (RS) after sleep deprivation. Gene expression analyses revealed three distinct patterns: (1) four genes had higher expression either in the cortex or hippocampus in the group of mice with increased amounts of wakefulness; (2) a large proportion of plasticity-related genes (7 out of 18 genes) had higher expression during RS in the cortex but not in the hippocampus; and (3) six genes and the two miRNAs showed no significant changes across conditions. Even at a relatively high dose (20 mg/kg), eszopiclone did not reduce the expression of plasticity-related genes during RS period in the cortex. These results indicate that gene expression associated with synaptic plasticity occurs in the cortex in the presence of a hypnotic medication. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.
Discovery and validation of a glioblastoma co-expressed gene module
Dunwoodie, Leland J.; Poehlman, William L.; Ficklin, Stephen P.; Feltus, Frank Alexander
2018-01-01
Tumors exhibit complex patterns of aberrant gene expression. Using a knowledge-independent, noise-reducing gene co-expression network construction software called KINC, we created multiple RNAseq-based gene co-expression networks relevant to brain and glioblastoma biology. In this report, we describe the discovery and validation of a glioblastoma-specific gene module that contains 22 co-expressed genes. The genes are upregulated in glioblastoma relative to normal brain and lower grade glioma samples; they are also hypo-methylated in glioblastoma relative to lower grade glioma tumors. Among the proneural, neural, mesenchymal, and classical glioblastoma subtypes, these genes are most-highly expressed in the mesenchymal subtype. Furthermore, high expression of these genes is associated with decreased survival across each glioblastoma subtype. These genes are of interest to glioblastoma biology and our gene interaction discovery and validation workflow can be used to discover and validate co-expressed gene modules derived from any co-expression network. PMID:29541392
Discovery and validation of a glioblastoma co-expressed gene module.
Dunwoodie, Leland J; Poehlman, William L; Ficklin, Stephen P; Feltus, Frank Alexander
2018-02-16
Tumors exhibit complex patterns of aberrant gene expression. Using a knowledge-independent, noise-reducing gene co-expression network construction software called KINC, we created multiple RNAseq-based gene co-expression networks relevant to brain and glioblastoma biology. In this report, we describe the discovery and validation of a glioblastoma-specific gene module that contains 22 co-expressed genes. The genes are upregulated in glioblastoma relative to normal brain and lower grade glioma samples; they are also hypo-methylated in glioblastoma relative to lower grade glioma tumors. Among the proneural, neural, mesenchymal, and classical glioblastoma subtypes, these genes are most-highly expressed in the mesenchymal subtype. Furthermore, high expression of these genes is associated with decreased survival across each glioblastoma subtype. These genes are of interest to glioblastoma biology and our gene interaction discovery and validation workflow can be used to discover and validate co-expressed gene modules derived from any co-expression network.
2017-01-01
Experiments in synthetic biology and microbiology can benefit from protein expression systems with low cell-to-cell variability (noise) and expression levels precisely tunable across a useful dynamic range. Despite advances in understanding the molecular biology of microbial gene regulation, many experiments employ protein-expression systems exhibiting high noise and nearly all-or-none responses to induction. I present an expression system that incorporates elements known to reduce gene expression noise: negative autoregulation and bicistronic transcription. I show by stochastic simulation that while negative autoregulation can produce a more gradual response to induction, bicistronic expression of a repressor and gene of interest can be necessary to reduce noise below the extrinsic limit. I synthesized a plasmid-based system incorporating these principles and studied its properties in Escherichia coli cells, using flow cytometry and fluorescence microscopy to characterize induction dose-response, induction/repression kinetics and gene expression noise. By varying ribosome binding site strengths, expression levels from 55–10,740 molecules/cell were achieved with noise below the extrinsic limit. Individual strains are inducible across a dynamic range greater than 20-fold. Experimental comparison of different regulatory networks confirmed that bicistronic autoregulation reduces noise, and revealed unexpectedly high noise for a conventional expression system with a constitutively expressed transcriptional repressor. I suggest a hybrid, low-noise expression system to increase the dynamic range. PMID:29084263
[Expression analysis of a transformer gene in Daphnia pulex after RNAi].
Guo, C Y; Chen, P; Zhang, M M; Ning, J J; Wang, С L; Wang, D L; Zhao, Y L
2016-01-01
In order to explore the importance of the transformer (tra) gene in reproductive mode switching in Daphnia pulex, we studied the effect of silencing of this gene using RNA interference (RNAi). We obtained Dptra dsRNA by constructing and using a dsRNA expression vector and transcription method in vitro. D. pulex individuals in different reproductive modes were treated by soaking in a solution of Dptra dsRNA. We then assayed the expression of the endogenous Dptra mRNA after RNAi treatment using RT-PCR and obtained the suppression ratio. Expression of the tra gene in the RNAi groups was down-regulated compared with the controls after 16 h (p < 0.05). We also analyzed the effect of RNAi on the expression of the TRA protein using Western blot, which showed that the expression level of the TRA protein was reduced after RNAi treatment. Our experimental results showed that soaking of D. pulex adults in tra-specific dsRNA transcribed in vitro can specifically reduce the level of tra mRNA and also reduce the expression of the TRA protein, demonstrating effective in vivo silencing of the tra gene.
Ge, Lin-Quan; Jiang, Yi-Ping; Xia, Ting; Song, Qi-Sheng; Stanley, David; Kuai, Peng; Lu, Xiu-Li; Yang, Guo-Qing; Wu, Jin-Cai
2015-07-17
The brown planthopper (BPH), Nilaparvata lugens, sugar transporter gene 6 (Nlst6) is a facilitative glucose/fructose transporter (often called a passive carrier) expressed in midgut that mediates sugar transport from the midgut lumen to hemolymph. The influence of down regulating expression of sugar transporter genes on insect growth, development, and fecundity is unknown. Nonetheless, it is reasonable to suspect that transporter-mediated uptake of dietary sugar is essential to the biology of phloem-feeding insects. Based on this reasoning, we posed the hypothesis that silencing, or reducing expression, of a BPH sugar transporter gene would be deleterious to the insects. To test our hypothesis, we examined the effects of Nlst6 knockdown on BPH biology. Reducing expression of Nlst6 led to profound effects on BPHs. It significantly prolonged the pre-oviposition period, shortened the oviposition period, decreased the number of eggs deposited and reduced body weight, compared to controls. Nlst6 knockdown also significantly decreased fat body and ovarian (particularly vitellogenin) protein content as well as vitellogenin gene expression. Experimental BPHs accumulated less fat body glucose compared to controls. We infer that Nlst6 acts in BPH growth and fecundity, and has potential as a novel target gene for control of phloem-feeding pest insects.
Kosters, Astrid; Tian, Feng; Wan, Yvonne Yu-Jie; Karpen, Saul J.
2013-01-01
Background Inflammation leads to transcriptional downregulation of many hepatic genes, particulary those activated by RXRα-heterodimers. Inflammation-mediated reduction of nuclear RXRα levels is a main factor in reduced nuclear receptor (NR)–regulated hepatic gene expression, eventually leading to cholestasis and liver damage. Aim To investigate roles for RXRα in hepatic gene expression during inflammation, using two complementary mouse models: ligand–activation of RXRα, and in mice expressing hepatocyte-specific expression of RXRα missing its DNA-binding-domain (DBD; hs-RxrαΔex4−/−) Methods To activate RXRα, mice were gavage-fed with LG268 or vehicle for 5 days. To inhibit RXRα function, hs-RxrαΔex4−/− were used. All mice were IP-injected with LPS or saline for 16 hrs prior to analysis of hepatic RNA, protein and NR-DNA binding. Results LG268-treatment attenuated the LPS-mediated reductions of several RXRα-regulated genes, coinciding with maintained RXRα occupancy in both Bsep and Ostβ promoters. Lacking full hepatocyte-RXRα function (hs-RxrαΔex4−/− mice) led to enhancement of LPS-mediated changes in gene expression, but surprisingly, maintenance of RNA levels of some RXRα-regulated genes. Investigations revealed that Hs-Rxrα−/− hepatocytes expressed an internally-truncated, ~44 kDa, RXRα-form. DNA-binding capacity of NR-heterodimers was equivalent in wt and hs-RxrαΔex4−/− livers, but reduced by LPS in both. ChIP-QPCR revealed reduced RXRα occupancy to the Bsep RXRα:FXR site was reduced, but not absent, in hs-RxrαΔex4−/− livers. Conclusions There are differential regulatory roles for hepatic RXRα, both in basal and inflammatory states, suggesting new and complex multi-domain roles for RXRα in regulating hepatic gene expression. Moreover, there is an unexpected non-obligate role for the DBD of RXRα. PMID:22098603
Downregulation in GATA4 and Downstream Structural and Contractile Genes in the db/db Mouse Heart
Broderick, Tom L.; Jankowski, Marek; Wang, Donghao; Danalache, Bogdan A.; Parrott, Cassandra R.; Gutkowska, Jolanta
2012-01-01
Reduced expression of GATA4, a transcriptional factor for structural and cardioprotective genes, has been proposed as a factor contributing to the development of cardiomyopathy. We investigated whether the reduction of cardiac GATA4 expression reported in diabetes alters the expression of downstream genes, namely, atrial natriuretic peptide (ANP), B-type natriuretic, peptide (BNP), and α- and β-myosin heavy chain (MHC). db/db mice, a model of type 2 diabetes, with lean littermates serving as controls, were studied. db/db mice exhibited obesity, hyperglycemia, and reduced protein expression of cardiac GLUT4 and IRAP (insulin-regulated aminopeptidase), the structural protein cosecreted with GLUT4. Hearts from db/db mice had reduced protein expression of GATA4 (~35%) with accompanying reductions in mRNA expression of ANP (~40%), BNP (~85%), and α-MHC mRNA (~50%) whereas expression of β-MHC mRNA was increased by ~60%. Low GATA4 was not explained by an increased ligase or atrogin1 expression. CHIP protein content was modestly downregulated (27%) in db/db mice whereas mRNA and protein expression of the CHIP cochaperone HSP70 was significantly decreased in db/db hearts. Our results indicate that low GATA4 in db/db mouse heart is accompanied by reduced expression of GATA4-regulated cardioprotective and structural genes, which may explain the development of cardiomyopathy in diabetes. PMID:22474596
NASA Astrophysics Data System (ADS)
Skjærven, Kaja H.; Jakt, Lars Martin; Dahl, John Arne; Espe, Marit; Aanes, Håvard; Hamre, Kristin; Fernandes, Jorge M. O.
2016-10-01
World Health Organization is concerned for parental vitamin deficiency and its effect on offspring health. This study examines the effect of a marginally dietary-induced parental one carbon (1-C) micronutrient deficiency on embryonic gene expression using zebrafish. Metabolic profiling revealed a reduced 1-C cycle efficiency in F0 generation. Parental deficiency reduced the fecundity and a total of 364 genes were differentially expressed in the F1 embryos. The upregulated genes (53%) in the deficient group were enriched in biological processes such as immune response and blood coagulation. Several genes encoding enzymes essential for the 1-C cycle and for lipid transport (especially apolipoproteins) were aberrantly expressed. We show that a parental diet deficient in micronutrients disturbs the expression in descendant embryos of genes associated with overall health, and result in inherited aberrations in the 1-C cycle and lipid metabolism. This emphasises the importance of parental micronutrient status for the health of the offspring.
Positive Selection Underlies Faster-Z Evolution of Gene Expression in Birds
Dean, Rebecca; Harrison, Peter W.; Wright, Alison E.; Zimmer, Fabian; Mank, Judith E.
2015-01-01
The elevated rate of evolution for genes on sex chromosomes compared with autosomes (Fast-X or Fast-Z evolution) can result either from positive selection in the heterogametic sex or from nonadaptive consequences of reduced relative effective population size. Recent work in birds suggests that Fast-Z of coding sequence is primarily due to relaxed purifying selection resulting from reduced relative effective population size. However, gene sequence and gene expression are often subject to distinct evolutionary pressures; therefore, we tested for Fast-Z in gene expression using next-generation RNA-sequencing data from multiple avian species. Similar to studies of Fast-Z in coding sequence, we recover clear signatures of Fast-Z in gene expression; however, in contrast to coding sequence, our data indicate that Fast-Z in expression is due to positive selection acting primarily in females. In the soma, where gene expression is highly correlated between the sexes, we detected Fast-Z in both sexes, although at a higher rate in females, suggesting that many positively selected expression changes in females are also expressed in males. In the gonad, where intersexual correlations in expression are much lower, we detected Fast-Z for female gene expression, but crucially, not males. This suggests that a large amount of expression variation is sex-specific in its effects within the gonad. Taken together, our results indicate that Fast-Z evolution of gene expression is the product of positive selection acting on recessive beneficial alleles in the heterogametic sex. More broadly, our analysis suggests that the adaptive potential of Z chromosome gene expression may be much greater than that of gene sequence, results which have important implications for the role of sex chromosomes in speciation and sexual selection. PMID:26067773
Kruczek, Cassandra; Kottapalli, Kameswara Rao; Dissanaike, Sharmila; Dzvova, Nyaradzo; Griswold, John A.; Colmer-Hamood, Jane A.; Hamood, Abdul N.
2016-01-01
Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen that causes serious infections in immunocompromised hosts including severely burned patients. After multiplying within the burn wound, P. aeruginosa translocate into the bloodstream causing bacterial sepsis frequently leading to organ dysfunction and septic shock. Although the pathogenesis of P. aeruginosa infection of thermally-injured wounds has been extensively analyzed, little is known regarding the ability of P. aeruginosa to adapt and survive within the blood of severely burned patients during systemic infection. To identify such adaptations, transcriptome analyses (RNA-seq) were conducted on P. aeruginosa strain PA14 that was grown in whole blood from a healthy volunteer or three severely burned patients. Compared with growth in blood from healthy volunteers, growth of PA14 in the blood from severely burned patients significantly altered the expression of 2596 genes, with expression of 1060 genes enhanced, while that of 1536 genes was reduced. Genes whose expression was significantly reduced included genes related to quorum sensing, quorum sensing-controlled virulence factors and transport of heme, phosphate, and phosphonate. Genes whose expression was significantly enhanced were related to the type III secretion system, the pyochelin iron-acquisition system, flagellum synthesis, and pyocyanin production. We confirmed changes in expression of many of these genes using qRT-PCR. Although severe burns altered the levels of different blood components in each patient, the growth of PA14 in their blood produced similar changes in the expression of each gene. These results suggest that, in response to changes in the blood of severely burned patients and as part of its survival strategy, P. aeruginosa enhances the expression of certain virulence genes and reduces the expression of others. PMID:26933952
Kim, Hyun Ah; Nam, Kihoon; Lee, Minhyung; Kim, Sung Wan
2013-10-10
Gene therapy is suggested as a promising alternative strategy of hepatocellular carcinoma (HCC, also called hepatoma) therapy. To achieve a successful and safe gene therapy, tight regulation of gene expression is required to minimize side-effects in normal tissues. In this study, we developed a novel hypoxia and hepatoma dual specific gene expression vector. The constructed vectors were transfected into various cell lines using bio-reducible polymer, PAM-ABP. First, pAFPS-Luc or pAFPL-Luc vector was constructed with the alpha-fectoprotein (AFP) promoter and enhancer for hepatoma tissue specific gene expression. Then, pEpo-AFPL-Luc was constructed by insertion of the erythropoietin (Epo) enhancer for hypoxic cancer specific gene expression. In vitro transfection assay showed that pEpo-AFPL-Luc transfected hepatoma cell increased gene expression under hypoxic condition. To confirm the therapeutic effect of dual specific vector, herpes simplex virus thymidine kinase (HSV-TK) gene was introduced for cancer cell killing. The pEpo-AFPL-TK was transfected into hepatoma cell lines in the presence of ganciclovir (GCV) pro-drug. Caspase-3/7, MTT and TUNEL assays elucidated that pEpo-AFPL-TK transfected cells showed significant increasing of death rate in hypoxic hepatoma cells compared to controls. Therefore, the hypoxia/hepatoma dual specific gene expression vector with the Epo enhancer and AFP promoter may be useful for hepatoma specific gene therapy. © 2013.
Troyano-Suárez, Nuria; del Nogal-Avila, María; Mora, Inés; Sosa, Patricia; López-Ongil, Susana; Rodriguez-Puyol, Diego; Olmos, Gemma; Ruíz-Torres, María Piedad
2015-01-01
Cellular senescence can be prematurely induced by oxidative stress involved in aging. In this work, we were searching for novel intermediaries in oxidative stress-induced senescence, focusing our interest on integrin-linked kinase (ILK), a scaffold protein at cell-extracellular matrix (ECM) adhesion sites, and on the Klotho gene. Cultured renal cells were treated with glucose oxidase (GOx) for long time periods. GOx induced senescence, increasing senescence associated β-galactosidase activity and the expression of p16. In parallel, GOx increased ILK protein expression and activity. Ectopic overexpression of ILK in cells increased p16 expression, even in the absence of GOx, whereas downregulation of ILK inhibited the increase in p16 due to oxidative stress. Additionally, GOx reduced Klotho gene expression and cells overexpressing Klotho protein did not undergo senescence after GOx addition. We demonstrated a direct link between ILK and Klotho since silencing ILK expression in cells and mice increases Klotho expression and reduces p53 and p16 expression in renal cortex. In conclusion, oxidative stress induces cellular senescence in kidney cells by increasing ILK protein expression and activity, which in turn reduces Klotho expression. We hereby present ILK as a novel downregulator of Klotho gene expression. PMID:26583057
Troyano-Suárez, Nuria; del Nogal-Avila, María; Mora, Inés; Sosa, Patricia; López-Ongil, Susana; Rodriguez-Puyol, Diego; Olmos, Gemma; Ruíz-Torres, María Piedad
2015-01-01
Cellular senescence can be prematurely induced by oxidative stress involved in aging. In this work, we were searching for novel intermediaries in oxidative stress-induced senescence, focusing our interest on integrin-linked kinase (ILK), a scaffold protein at cell-extracellular matrix (ECM) adhesion sites, and on the Klotho gene. Cultured renal cells were treated with glucose oxidase (GOx) for long time periods. GOx induced senescence, increasing senescence associated β-galactosidase activity and the expression of p16. In parallel, GOx increased ILK protein expression and activity. Ectopic overexpression of ILK in cells increased p16 expression, even in the absence of GOx, whereas downregulation of ILK inhibited the increase in p16 due to oxidative stress. Additionally, GOx reduced Klotho gene expression and cells overexpressing Klotho protein did not undergo senescence after GOx addition. We demonstrated a direct link between ILK and Klotho since silencing ILK expression in cells and mice increases Klotho expression and reduces p53 and p16 expression in renal cortex. In conclusion, oxidative stress induces cellular senescence in kidney cells by increasing ILK protein expression and activity, which in turn reduces Klotho expression. We hereby present ILK as a novel downregulator of Klotho gene expression.
2014-01-01
Salmonella enterica serovar Enteritidis is one of the important causes of bacterial food-borne gastroenteritis worldwide. Field strains of S. Enteritidis are relatively genetically homogeneous; however, they show extensive phenotypic diversity and differences in virulence potential. RNA sequencing (RNA-Seq) was used to characterize differences in the global transcriptome between several genetically similar but phenotypically diverse poultry-associated field strains of S. Enteritidis grown in laboratory medium at avian body temperature (42°C). These S. Enteritidis strains were previously characterized as high-pathogenicity (HP; n = 3) and low-pathogenicity (LP; n = 3) strains based on both in vitro and in vivo virulence assays. Using the negative binomial distribution-based statistical tools edgeR and DESeq, 252 genes were identified as differentially expressed in LP strains compared with their expression in the HP strains (P < 0.05). A majority of genes (235, or 93.2%) showed significantly reduced expression, whereas a few genes (17, or 6.8%) showed increased expression in all LP strains compared with HP strains. LP strains showed a unique transcriptional profile that is characterized by significantly reduced expression of several transcriptional regulators and reduced expression of genes involved in virulence (e.g., Salmonella pathogenicity island 1 [SPI-1], SPI-5, and fimbrial and motility genes) and protection against osmotic, oxidative, and other stresses, such as iron-limiting conditions commonly encountered within the host. Several functionally uncharacterized genes also showed reduced expression. This study provides a first concise view of the global transcriptional differences between field strains of S. Enteritidis with various levels of pathogenicity, providing the basis for future functional characterization of several genes with potential roles in virulence or stress regulation of S. Enteritidis. PMID:24271167
Ponce, Ninez A; Ko, Michelle; Liang, Su-Ying; Armstrong, Joanne; Toscano, Michele; Chanfreau-Coffinier, Catherine; Haas, Jennifer S
2015-04-01
With the Affordable Care Act reducing coverage disparities, social factors could prominently determine where and for whom innovations first diffuse in health care markets. Gene expression profiling is a potentially cost-effective innovation that guides chemotherapy decisions in early-stage breast cancer, but adoption has been uneven across the United States. Using a sample of commercially insured women, we evaluated whether income inequality in metropolitan areas was associated with receipt of gene expression profiling during its initial diffusion in 2006-07. In areas with high income inequality, gene expression profiling receipt was higher than elsewhere, but it was associated with a 10.6-percentage-point gap between high- and low-income women. In areas with low rates of income inequality, gene expression profiling receipt was lower, with no significant differences by income. Even among insured women, income inequality may indirectly shape diffusion of gene expression profiling, with benefits accruing to the highest-income patients in the most unequal places. Policies reducing gene expression profiling disparities should address low-inequality areas and, in unequal places, practice settings serving low-income patients. Project HOPE—The People-to-People Health Foundation, Inc.
An Integrated Approach for RNA-seq Data Normalization.
Yang, Shengping; Mercante, Donald E; Zhang, Kun; Fang, Zhide
2016-01-01
DNA copy number alteration is common in many cancers. Studies have shown that insertion or deletion of DNA sequences can directly alter gene expression, and significant correlation exists between DNA copy number and gene expression. Data normalization is a critical step in the analysis of gene expression generated by RNA-seq technology. Successful normalization reduces/removes unwanted nonbiological variations in the data, while keeping meaningful information intact. However, as far as we know, no attempt has been made to adjust for the variation due to DNA copy number changes in RNA-seq data normalization. In this article, we propose an integrated approach for RNA-seq data normalization. Comparisons show that the proposed normalization can improve power for downstream differentially expressed gene detection and generate more biologically meaningful results in gene profiling. In addition, our findings show that due to the effects of copy number changes, some housekeeping genes are not always suitable internal controls for studying gene expression. Using information from DNA copy number, integrated approach is successful in reducing noises due to both biological and nonbiological causes in RNA-seq data, thus increasing the accuracy of gene profiling.
Caetano-Anollés, Kelsey; Mishra, Sanjibita; Rodriguez-Zas, Sandra L.
2015-01-01
Levels of myostatin expression and physical activity have both been associated with transcriptome dysregulation and skeletal muscle hypertrophy. The transcriptome of triceps brachii muscles from male C57/BL6 mice corresponding to two genotypes (wild-type and myostatin-reduced) under two conditions (high and low physical activity) was characterized using RNA-Seq. Synergistic and antagonistic interaction and ortholog modes of action of myostatin genotype and activity level on genes and gene pathways in this skeletal muscle were uncovered; 1,836, 238, and 399 genes exhibited significant (FDR-adjusted P-value < 0.005) activity-by-genotype interaction, genotype and activity effects, respectively. The most common differentially expressed profiles were (i) inactive myostatin-reduced relative to active and inactive wild-type, (ii) inactive myostatin-reduced and active wild-type, and (iii) inactive myostatin-reduced and inactive wild-type. Several remarkable genes and gene pathways were identified. The expression profile of nascent polypeptide-associated complex alpha subunit (Naca) supports a synergistic interaction between activity level and myostatin genotype, while Gremlin 2 (Grem2) displayed an antagonistic interaction. Comparison between activity levels revealed expression changes in genes encoding for structural proteins important for muscle function (including troponin, tropomyosin and myoglobin) and for fatty acid metabolism (some linked to diabetes and obesity, DNA-repair, stem cell renewal, and various forms of cancer). Conversely, comparison between genotype groups revealed changes in genes associated with G1-to-S-phase transition of the cell cycle of myoblasts and the expression of Grem2 proteins that modulate the cleavage of the myostatin propeptide. A number of myostatin-feedback regulated gene products that are primarily regulatory were uncovered, including microRNA impacting central functions and Piezo proteins that make cationic current-controlling mechanosensitive ion channels. These important findings extend hypotheses of myostatin and physical activity master regulation of genes and gene pathways, impacting medical practices and therapies associated with muscle atrophy in humans and companion animal species and genome-enabled selection practices applied to food-production animal species. PMID:25710176
Kashyap, Bhavani; Pegorsch, Laurel; Frey, Ruth A.; Sun, Chi; Shelden, Eric A.; Stenkamp, Deborah L.
2014-01-01
The mechanisms through which ethanol exposure results in developmental defects remain unclear. We used the zebrafish model to elucidate eye-specific mechanisms that underlie ethanol-mediated microphthalmia (reduced eye size), through time-series microarray analysis of gene expression within eyes of embryos exposed to 1.5% ethanol. 62 genes were differentially expressed (DE) in ethanol-treated as compared to control eyes sampled during retinal neurogenesis (24-48 hours post-fertilization). The EDGE (extraction of differential gene expression) algorithm identified >3000 genes DE over developmental time in ethanol-exposed eyes as compared to controls. The DE lists included several genes indicating a mis-regulated cellular stress response due to ethanol exposure. Combined treatment with sub-threshold levels of ethanol and a morpholino targeting heat shock factor 1 mRNA resulted in microphthalmia, suggesting convergent molecular pathways. Thermal preconditioning partially prevented ethanol-mediated microphthalmia while maintaining Hsf-1 expression. These data suggest roles for reduced Hsf-1 in mediating microphthalmic effects of embryonic ethanol exposure. PMID:24355176
C-fos mediates antipsychotic-induced neurotensin gene expression in the rodent striatum.
Robertson, G S; Tetzlaff, W; Bedard, A; St-Jean, M; Wigle, N
1995-07-01
The ubiquitous inducibility of the immediate-early gene c-fos in the central nervous system has led to the search for downstream genes which are regulated by its product, Fos. Recent evidence suggests that c-fos induction by a single injection of the classical antipsychotic haloperidol may contribute to the subsequent increase in neurotensin gene expression in the rodent striatum. Consistent with this proposal, in the present study haloperidol-induced Fos-like immunoreactivity and neurotensin/neuromedin N messenger RNA were found to be expressed by the same population of striatal neurons. Moreover, inhibition of haloperidol-induced c-fos expression by intrastriatal injection of antisense phosphorothioate oligodeoxynucleotides complimentary either to bases 109-126 or 127-144 of c-fos attenuated the subsequent increase in neurotensin/neuromedin N messenger RNA. However, injection of a sense phosphorothioate oligodeoxynucleotide corresponding to bases 127-144 of c-fos did not reduce haloperidol-induced c-fos or neurotensin/neuromedin N expression. Furthermore, constitutive expression of Jun-like immunoreactivity in the striatum was not reduced by either the sense or antisense phosphorothioate oligodeoxynucleotides. Similarly, the sense and antisense phosphorothioate oligodeoxynucleotide failed to reduce proenkephalin messenger RNA, which is located in the same striatal neurons that express haloperidol-induced neurotensin/neuromedin N messenger RNA, which is located in the same striatal neurons that express haloperidol-induced neurotensin/neuromedin N messenger RNA. Lastly, haloperidol-induced increases in nerve growth factor I-A-, JunB- and FosB-like immunoreactivity and fosB messenger RNA were not decreased by intrastriatal injection of either the sense or antisense phosphorothioate oligodeoxynucleotides. These results indicate that the antisense phosphorothioate oligodeoxynucleotides attenuated haloperidol-induced neurotensin/neuromedin N expression by selectively reducing c-fos expression and emphasize the potential importance of immediate-early gene induction in the mechanism of action of this antipsychotic drug.
Hill, Matthew J; Killick, Richard; Navarrete, Katherinne; Maruszak, Aleksandra; McLaughlin, Gemma M; Williams, Brenda P; Bray, Nicholas J
2017-05-01
Common variants in the TCF4 gene are among the most robustly supported genetic risk factors for schizophrenia. Rare TCF4 deletions and loss-of-function point mutations cause Pitt-Hopkins syndrome, a developmental disorder associated with severe intellectual disability. To explore molecular and cellular mechanisms by which TCF4 perturbation could interfere with human cortical development, we experimentally reduced the endogenous expression of TCF4 in a neural progenitor cell line derived from the developing human cerebral cortex using RNA interference. Effects on genome-wide gene expression were assessed by microarray, followed by Gene Ontology and pathway analysis of differentially expressed genes. We tested for genetic association between the set of differentially expressed genes and schizophrenia using genome-wide association study data from the Psychiatric Genomics Consortium and competitive gene set analysis (MAGMA). Effects on cell proliferation were assessed using high content imaging. Genes that were differentially expressed following TCF4 knockdown were highly enriched for involvement in the cell cycle. There was a nonsignificant trend for genetic association between the differentially expressed gene set and schizophrenia. Consistent with the gene expression data, TCF4 knockdown was associated with reduced proliferation of cortical progenitor cells in vitro. A detailed mechanistic explanation of how TCF4 knockdown alters human neural progenitor cell proliferation is not provided by this study. Our data indicate effects of TCF4 perturbation on human cortical progenitor cell proliferation, a process that could contribute to cognitive deficits in individuals with Pitt-Hopkins syndrome and risk for schizophrenia.
Prediction of epigenetically regulated genes in breast cancer cell lines.
Loss, Leandro A; Sadanandam, Anguraj; Durinck, Steffen; Nautiyal, Shivani; Flaucher, Diane; Carlton, Victoria E H; Moorhead, Martin; Lu, Yontao; Gray, Joe W; Faham, Malek; Spellman, Paul; Parvin, Bahram
2010-06-04
Methylation of CpG islands within the DNA promoter regions is one mechanism that leads to aberrant gene expression in cancer. In particular, the abnormal methylation of CpG islands may silence associated genes. Therefore, using high-throughput microarrays to measure CpG island methylation will lead to better understanding of tumor pathobiology and progression, while revealing potentially new biomarkers. We have examined a recently developed high-throughput technology for measuring genome-wide methylation patterns called mTACL. Here, we propose a computational pipeline for integrating gene expression and CpG island methylation profiles to identify epigenetically regulated genes for a panel of 45 breast cancer cell lines, which is widely used in the Integrative Cancer Biology Program (ICBP). The pipeline (i) reduces the dimensionality of the methylation data, (ii) associates the reduced methylation data with gene expression data, and (iii) ranks methylation-expression associations according to their epigenetic regulation. Dimensionality reduction is performed in two steps: (i) methylation sites are grouped across the genome to identify regions of interest, and (ii) methylation profiles are clustered within each region. Associations between the clustered methylation and the gene expression data sets generate candidate matches within a fixed neighborhood around each gene. Finally, the methylation-expression associations are ranked through a logistic regression, and their significance is quantified through permutation analysis. Our two-step dimensionality reduction compressed 90% of the original data, reducing 137,688 methylation sites to 14,505 clusters. Methylation-expression associations produced 18,312 correspondences, which were used to further analyze epigenetic regulation. Logistic regression was used to identify 58 genes from these correspondences that showed a statistically significant negative correlation between methylation profiles and gene expression in the panel of breast cancer cell lines. Subnetwork enrichment of these genes has identified 35 common regulators with 6 or more predicted markers. In addition to identifying epigenetically regulated genes, we show evidence of differentially expressed methylation patterns between the basal and luminal subtypes. Our results indicate that the proposed computational protocol is a viable platform for identifying epigenetically regulated genes. Our protocol has generated a list of predictors including COL1A2, TOP2A, TFF1, and VAV3, genes whose key roles in epigenetic regulation is documented in the literature. Subnetwork enrichment of these predicted markers further suggests that epigenetic regulation of individual genes occurs in a coordinated fashion and through common regulators.
Positive Selection Underlies Faster-Z Evolution of Gene Expression in Birds.
Dean, Rebecca; Harrison, Peter W; Wright, Alison E; Zimmer, Fabian; Mank, Judith E
2015-10-01
The elevated rate of evolution for genes on sex chromosomes compared with autosomes (Fast-X or Fast-Z evolution) can result either from positive selection in the heterogametic sex or from nonadaptive consequences of reduced relative effective population size. Recent work in birds suggests that Fast-Z of coding sequence is primarily due to relaxed purifying selection resulting from reduced relative effective population size. However, gene sequence and gene expression are often subject to distinct evolutionary pressures; therefore, we tested for Fast-Z in gene expression using next-generation RNA-sequencing data from multiple avian species. Similar to studies of Fast-Z in coding sequence, we recover clear signatures of Fast-Z in gene expression; however, in contrast to coding sequence, our data indicate that Fast-Z in expression is due to positive selection acting primarily in females. In the soma, where gene expression is highly correlated between the sexes, we detected Fast-Z in both sexes, although at a higher rate in females, suggesting that many positively selected expression changes in females are also expressed in males. In the gonad, where intersexual correlations in expression are much lower, we detected Fast-Z for female gene expression, but crucially, not males. This suggests that a large amount of expression variation is sex-specific in its effects within the gonad. Taken together, our results indicate that Fast-Z evolution of gene expression is the product of positive selection acting on recessive beneficial alleles in the heterogametic sex. More broadly, our analysis suggests that the adaptive potential of Z chromosome gene expression may be much greater than that of gene sequence, results which have important implications for the role of sex chromosomes in speciation and sexual selection. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Fischer, Alexandra; Klapper, Maja; Onur, Simone; Menke, Thomas; Niklowitz, Petra; Döring, Frank
2015-05-06
Dietary restriction (DR) is a robust intervention that extends both health span and life span in many organisms. Ubiquinol and ubiquinone represent the reduced and oxidized forms of coenzyme Q (CoQ). CoQ plays a central role in energy metabolism and functions in several cellular processes including gene expression. Here we used the model organism Caenorhabditis elegans to determine level and redox state of CoQ and expression of genes in response to DR. We found that DR down-regulates the steady-state expression levels of several evolutionary conserved genes (i.e. coq-1) that encode key enzymes of the mevalonate and CoQ-synthesizing pathways. In line with this, DR decreases the levels of total CoQ and ubiquinol. This CoQ-reducing effect of DR is obvious in adult worms but not in L4 larvae and is also evident in the eat-2 mutant, a genetic model of DR. In conclusion, we propose that DR reduces the level of CoQ and ubiquinol via gene expression in the model organism C. elegans. © 2015 International Union of Biochemistry and Molecular Biology.
hnRNP L controls HPV16 RNA polyadenylation and splicing in an Akt kinase-dependent manner
Kajitani, Naoko; Glahder, Jacob; Wu, Chengjun; Yu, Haoran; Nilsson, Kersti
2017-01-01
Abstract Inhibition of the Akt kinase activates HPV16 late gene expression by reducing HPV16 early polyadenylation and by activating HPV16 late L1 mRNA splicing. We identified ‘hot spots’ for RNA binding proteins at the early polyA signal and at splice sites on HPV16 late mRNAs. We observed that hnRNP L was associated with sequences at all HPV16 late splice sites and at the early polyA signal. Akt kinase inhibition resulted in hnRNP L dephosphorylation and reduced association of hnRNP L with HPV16 mRNAs. This was accompanied by an increased binding of U2AF65 and Sam68 to HPV16 mRNAs. Furthermore, siRNA knock-down of hnRNP L or Akt induced HPV16 gene expression. Treatment of HPV16 immortalized keratinocytes with Akt kinase inhibitor reduced hnRNP L binding to HPV16 mRNAs and induced HPV16 L1 mRNA production. Finally, deletion of the hnRNP L binding sites in HPV16 subgenomic expression plasmids resulted in activation of HPV16 late gene expression. In conclusion, the Akt kinase inhibits HPV16 late gene expression at the level of RNA processing by controlling the RNA-binding protein hnRNP L. We speculate that Akt kinase activity upholds an intracellular milieu that favours HPV16 early gene expression and suppresses HPV16 late gene expression. PMID:28934469
Barts, Nicholas; Greenway, Ryan; Passow, Courtney N; Arias-Rodriguez, Lenin; Kelley, Joanna L; Tobler, Michael
2018-04-01
Hydrogen sulfide (H 2 S) is a natural toxicant in some aquatic environments that has diverse molecular targets. It binds to oxygen transport proteins, rendering them non-functional by reducing oxygen-binding affinity. Hence, organisms permanently inhabiting H 2 S-rich environments are predicted to exhibit adaptive modifications to compensate for the reduced capacity to transport oxygen. We investigated 10 lineages of fish of the family Poeciliidae that have colonized freshwater springs rich in H 2 S-along with related lineages from non-sulfidic environments-to test hypotheses about the expression and evolution of oxygen transport genes in a phylogenetic context. We predicted shifts in the expression of and signatures of positive selection on oxygen transport genes upon colonization of H 2 S-rich habitats. Our analyses indicated significant shifts in gene expression for multiple hemoglobin genes in lineages that have colonized H 2 S-rich environments, and three hemoglobin genes exhibited relaxed selection in sulfidic compared to non-sulfidic lineages. However, neither changes in gene expression nor signatures of selection were consistent among all lineages in H 2 S-rich environments. Oxygen transport genes may consequently be predictable targets of selection during adaptation to sulfidic environments, but changes in gene expression and molecular evolution of oxygen transport genes in H 2 S-rich environments are not necessarily repeatable across replicated lineages.
Oda, Hiroaki; Okuda, Yuji; Yoshida, Yukiko; Kimura, Noriko; Kakinuma, Atsushi
2015-10-23
The regulatory mechanism of phosphoenolpyruvate carboykinase (GTP) (EC 4.1.1.32) (PEPCK) gene expression and gluconeogenesis by phenobarbital (PB), which is known to induce drug-metabolizing enzymes, was investigated. Higher level of PEPCK mRNA was observed in spherical rat primary hepatocytes on EHS-gel than monolayer hepatocytes on TIC (type I collagen). We found that PB directly suppressed PEPCK gene expression in spherical hepatocytes on EHS-gel, but not in those on TIC. PB strongly suppressed cAMP-dependent induction of PEPCK gene expression. Tyrosine aminotransferase (TAT), another gluconeogenic enzyme, was induced by cAMP, but not suppressed by PB. Chronic administration of PB reduced hepatic PEPCK mRNA in streptozotocin-induced diabetic and nondiabetic rats, and PB reduced blood glucose level in diabetic rats. Increased TAT mRNA in diabetic rats was not suppressed by PB. These results indicated that PB-dependent reduction is specific to PEPCK. From pyrvate challenge test, PB suppressed the increased gluconeogenesis in diabetic rats. PEPCK gene promoter activity was suppressed by PB in HepG2 cells. In conclusion, we found that spherical hepatocytes cultured on EHS-gel are capable to respond to PB to suppress PEPCK gene expression. Moreover, our results indicate that hypoglycemic action of PB result from transcriptional repression of PEPCK gene and subsequent suppression of gluconeogenesis. Copyright © 2015. Published by Elsevier Inc.
Mechanical Loading of Articular Cartilage Reduces IL-1-Induced Enzyme Expression
Torzilli, P. A.; Bhargava, M.; Chen, C. T.
2011-01-01
Objective: Exposure of articular cartilage to interleukin-1 (IL-1) results in increased synthesis of matrix degrading enzymes. Previously mechanical load applied together with IL-1 stimulation was found to reduce aggrecan cleavage by ADAMTS-4 and 5 and MMP-1, -3, -9, and -13 and reduce proteoglycan loss from the extracellular matrix. To further delineate the inhibition mechanism the gene expression of ADAMTS-4 and 5; MMP-1, -3, -9, and -13; and TIMP-1, -2, and -3 were measured. Design: Mature bovine articular cartilage was stimulated with a 0.5 MPa compressive stress and 10 ng/ml of IL-1α for 3 days and then allowed to recover without stimulation for 1 additional day. The media was assayed for proteoglycan content on a daily basis, while chondrocyte gene expression (mRNA) was measured during stimulation and 1 day of recovery. Results: Mechanical load alone did not change the gene expression for ADAMTS, MMP, or TIMP. IL-1 caused an increase in gene expression for all enzymes after 1 day of stimulation while not affecting the TIMP levels. Load applied together with IL-1 decreased the expression levels of ADAMTS-4 and -5 and MMP-1 and -3 and increased TIMP-3 expression. Conclusions: A mechanical load appears to modify cartilage degradation by IL-1 at the cellular level by reducing mRNA. PMID:22039566
Hou, Jun-cai; Liu, Fei; Ren, Da-xi; Han, Wei-wei; Du, Yue-ou
2015-01-01
The proteolytic system of Lactobacillus bulgaricus breaks down milk proteins into peptides and amino acids, which are essential for the growth of the bacteria. The aim of this study was to determine the expressions of seven key genes in the proteolytic system under different culturing conditions (different phases, initial pH values, temperatures, and nitrogen sources) using real-time polymerase chain reaction (RT-PCR). The transcriptions of the seven genes were reduced by 30-fold on average in the stationary phase compared with the exponential growth phase. The transcriptions of the seven genes were reduced by 62.5-, 15.0-, and 59.0-fold in the strains KLDS 08006, KLDS 08007, and KLDS 08012, respectively, indicating that the expressions of the seven genes were significantly different among strains. In addition, the expressions of the seven genes were repressed in the MRS medium containing casein peptone. The effect of peptone supply on PepX transcription was the weakest compared with the other six genes, and the impact on OppD transcription was the strongest. Moreover, the expressions of the seven genes were significantly different among different strains (P<0.05). All these results indicated that the culturing conditions affected the expression of the proteolytic system genes in Lactobacillus bulgaricus at the transcription level. PMID:25845365
Jones, D L; Petty, J; Hoyle, D C; Hayes, A; Ragni, E; Popolo, L; Oliver, S G; Stateva, L I
2003-12-16
Often changes in gene expression levels have been considered significant only when above/below some arbitrarily chosen threshold. We investigated the effect of applying a purely statistical approach to microarray analysis and demonstrated that small changes in gene expression have biological significance. Whole genome microarray analysis of a pde2Delta mutant, constructed in the Saccharomyces cerevisiae reference strain FY23, revealed altered expression of approximately 11% of protein encoding genes. The mutant, characterized by constitutive activation of the Ras/cAMP pathway, has increased sensitivity to stress, reduced ability to assimilate nonfermentable carbon sources, and some cell wall integrity defects. Applying the Munich Information Centre for Protein Sequences (MIPS) functional categories revealed increased expression of genes related to ribosome biogenesis and downregulation of genes in the cell rescue, defense, cell death and aging category, suggesting a decreased response to stress conditions. A reduced level of gene expression in the unfolded protein response pathway (UPR) was observed. Cell wall genes whose expression was affected by this mutation were also identified. Several of the cAMP-responsive orphan genes, upon further investigation, revealed cell wall functions; others had previously unidentified phenotypes assigned to them. This investigation provides a statistical global transcriptome analysis of the cellular response to constitutive activation of the Ras/cAMP pathway.
Thanseem, Ismail; Anitha, Ayyappan; Nakamura, Kazuhiko; Suda, Shiro; Iwata, Keiko; Matsuzaki, Hideo; Ohtsubo, Masafumi; Ueki, Takatoshi; Katayama, Taiichi; Iwata, Yasuhide; Suzuki, Katsuaki; Minoshima, Shinsei; Mori, Norio
2012-03-01
Profound changes in gene expression can result from abnormalities in the concentrations of sequence-specific transcription factors like specificity protein 1 (Sp1). Specificity protein 1 binding sites have been reported in the promoter regions of several genes implicated in autism. We hypothesize that dysfunction of Sp1 could affect the expression of multiple autism candidate genes, contributing to the heterogeneity of autism. We assessed any alterations in the expression of Sp1 and that of autism candidate genes in the postmortem brain (anterior cingulate gyrus [ACG], motor cortex, and thalamus) of autism patients (n = 8) compared with healthy control subjects (n = 13). Alterations in the expression of candidate genes upon Sp1/DNA binding inhibition with mithramycin and Sp1 silencing by RNAi were studied in SK-N-SH neuronal cells. We observed elevated expression of Sp1 in ACG of autism patients (p = .010). We also observed altered expression of several autism candidate genes. GABRB3, RELN, and HTR2A showed reduced expression, whereas CD38, ITGB3, MAOA, MECP2, OXTR, and PTEN showed elevated expression in autism. In SK-N-SH cells, OXTR, PTEN, and RELN showed reduced expression upon Sp1/DNA binding inhibition and Sp1 silencing. The RNA integrity number was not available for any of the samples. Transcription factor Sp1 is dysfunctional in the ACG of autistic brain. Consequently, the expression of potential autism candidate genes regulated by Sp1, especially OXTR and PTEN, could be affected. The diverse downstream pathways mediated by the Sp1-regulated genes, along with the environmental and intracellular signal-related regulation of Sp1, could explain the complex phenotypes associated with autism.
Yang, H; Jiang, W; Furth, E E; Wen, X; Katz, J P; Sellon, R K; Silberg, D G; Antalis, T M; Schweinfest, C W; Wu, G D
1998-12-01
The pathogenesis of diarrhea in intestinal inflammatory states is a multifactorial process involving the effects of inflammatory mediators on epithelial transport function. The effect of colonic inflammation on the gene expression of DRA (downregulated in adenoma), a chloride-sulfate anion transporter that is mutated in patients with congenital chloridorrhea, was examined in vivo as well as in an intestinal epithelial cell line. DRA mRNA expression was diminished five- to sevenfold in the HLA-B27/beta2m transgenic rat compared with control. In situ hybridization showed that DRA, which is normally expressed in the upper crypt and surface epithelium of the colon, was dramatically reduced in the surface epithelium of the HLA-B27/beta2m transgenic rat, the interleukin-10 (IL-10) knockout mouse with spontaneous colitis, and in patients with ulcerative colitis. Immunohistochemistry demonstrated that mRNA expression of DRA reflected that of protein expression in vivo. IL-1beta reduced DRA mRNA expression in vitro by inhibiting gene transcription. The loss of transport function in the surface epithelium of the colon by attenuation of transporter gene expression, perhaps inhibited at the level of gene transcription by proinflammatory cytokines, may play a role in the pathogenesis of diarrhea in colitis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhenyu, E-mail: wzy72609@163.com; Zhao, Xiuyang, E-mail: xiuzh@psb.vib-ugent.be; Wang, Bing, E-mail: wangbing@ibcas.ac.cn
Heterogeneous nuclear ribonucleoproteins (hnRNPs) participate in diverse regulations of plant growth and environmental stress responses. In this work, an Arabidopsis hnRNP of unknown function, AtRNP1, was investigated. We found that AtRNP1 gene is highly expressed in rosette and cauline leaves, and slightly induced under drought, salt, osmotic and ABA stresses. AtRNP1 protein is localized to both the nucleus and cytoplasm. We performed homologous overexpression of AtRNP1 and found that the transgenic plants showed shortened root length and plant height, and accelerated flowering. In addition, the transgenic plants also showed reduced tolerance to drought, salt, osmotic and ABA stresses. Further studiesmore » revealed that under both normal and stress conditions, the proline contents in the transgenic plants are markedly decreased, associated with reduced expression levels of a proline synthase gene and several stress-responsive genes. These results suggested that the overexpression of AtRNP1 negatively affects plant growth and abiotic stress tolerance. - Highlights: • AtRNP1 is a widely expressed gene and its expression is slightly induced under abiotic stresses. • AtRNP1 protein is localized to both the nucleus and cytoplasm. • Overexpression of AtRNP1 affects plant growth. • Overexpression of AtRNP1 reduces plant tolerance to drought and salt stresses. • AtRNP1 overexpression plants show decreased proline accumulation and stress-responsive gene expressions.« less
The Regulatory Small RNA MarS Supports Virulence of Streptococcus pyogenes.
Pappesch, Roberto; Warnke, Philipp; Mikkat, Stefan; Normann, Jana; Wisniewska-Kucper, Aleksandra; Huschka, Franziska; Wittmann, Maja; Khani, Afsaneh; Schwengers, Oliver; Oehmcke-Hecht, Sonja; Hain, Torsten; Kreikemeyer, Bernd; Patenge, Nadja
2017-09-25
Small regulatory RNAs (sRNAs) play a role in the control of bacterial virulence gene expression. In this study, we investigated an sRNA that was identified in Streptococcus pyogenes (group A Streptococcus, GAS) but is conserved throughout various streptococci. In a deletion strain, expression of mga, the gene encoding the multiple virulence gene regulator, was reduced. Accordingly, transcript and proteome analyses revealed decreased expression of several Mga-activated genes. Therefore, and because the sRNA was shown to interact with the 5' UTR of the mga transcript in a gel-shift assay, we designated it MarS for m ga-activating regulatory sRNA. Down-regulation of important virulence factors, including the antiphagocytic M-protein, led to increased susceptibility of the deletion strain to phagocytosis and reduced adherence to human keratinocytes. In a mouse infection model, the marS deletion mutant showed reduced dissemination to the liver, kidney, and spleen. Additionally, deletion of marS led to increased tolerance towards oxidative stress. Our in vitro and in vivo results indicate a modulating effect of MarS on virulence gene expression and on the pathogenic potential of GAS.
Afgar, Ali; Fard-Esfahani, Pezhman; Mehrtash, Amirhosein; Azadmanesh, Kayhan; Khodarahmi, Farnaz; Ghadir, Mahdis; Teimoori-Toolabi, Ladan
2016-11-01
It is observed that upregulation of DNMT3B enzyme in some cancers, including colon cancer, could lead to silencing of tumor suppressor genes. MiR-339 and miR-766 have been predicted to target 3'UTR of DNMT3B gene. Luciferase reporter assay validated that individual and co-transfection of miR-766 and miR-339 into the HEK293T cell reduced luciferase activity to 26% ± 0.41%, 43% ± 0.42 and 64% ± 0.52%, respectively, compared to the control (P < 0.05). Furthermore, transduction of miR-339 and miR-766 expressing viruses into colon cancer cell lines (SW480 and HCT116) decreased DNMT3B expression (1.5, 3-fold) and (3, 4-fold), respectively. In addition, DNA methylation of some tumor suppressor genes decreased. Expression of these genes such as SFRP1 (2 and 1.6-fold), SFRP2 (0.07 and 4-fold), WIF1 (0.05 and 4-fold), and DKK2 (2 and 4-fold) increased in SW-339 and SW-766 cell lines; besides, expression increments for these genes in HCT-339 and HCT-766 cell lines were (2.8, 4-fold), (0.005, 1.5-fold), (1.7 and 3-fold) and (0.04, 1.7-fold), respectively. Also, while in SW-766, cell proliferation reduced to 2.8% and 21.7% after 24 and 48 hours, respectively, SW-339 showed no reduced proliferation. Meanwhile, HCT-766 and HCT-339 showed (3.5%, 12.8%) and (18.8%, 33.9%) reduced proliferation after 24 and 48 hours, respectively. Finally, targeting DNMT3B by these miRs, decreased methylation of tumor suppressor genes such as SFRP1, SFRP2, WIF1 and DKK2 in the mentioned cell lines, and returned the expression of these tumor suppressor genes which can contribute to lethal effect on colon cancer cells and reducing tumorigenicity of these cells.
Wan, Lei; Tan, Hsueh-Li; Thomas-Ahner, Jennifer M.; Pearl, Dennis K.; Erdman, John W.; Moran, Nancy E.; Clinton, Steven K.
2014-01-01
Consumption of tomato products containing the carotenoid lycopene is associated with a reduced risk of prostate cancer. To identify gene expression patterns associated with early testosterone-driven prostate carcinogenesis, which are impacted by dietary tomato and lycopene, wild type (WT) and transgenic adenocarcinoma of the mouse prostate (TRAMP) mice were fed control or tomato- or lycopene-containing diets from 4-10 wk-of-age. Eight-week-old mice underwent sham surgery, castration, or castration followed by testosterone-repletion (2.5 mg/kg/d initiated 1 wk after castration). Ten-wk-old intact TRAMP mice exhibit early multifocal prostatic intraepithelial neoplasia (PIN). Of the 200 prostate cancer-related genes measured by quantitative NanoString®, 189 are detectable, 164 significantly differ by genotype, 179 by testosterone status, and 30 by diet type (P<0.05). In TRAMP, expression of Birc5, Mki67, Aurkb, Ccnb2, Foxm1, and Ccne2 is greater compared to WT and is decreased by castration. In parallel, castration reduces Ki67-positive staining (P<0.0001) compared to intact and testosterone-repleted TRAMP mice. Expression of genes involved in androgen metabolism/signaling pathways are reduced by lycopene feeding (Srd5a1) and by tomato-feeding (Srd5a2, Pxn, and Srebf1). Additionally, tomato-feeding significantly reduced expression of genes associated with stem cell features, Aldh1a and Ly6a, while lycopene-feeding significantly reduced expression of neuroendocrine differentiation-related genes, Ngfr and Syp. Collectively, these studies demonstrate a profile of testosterone-regulated genes associated with early stages of prostate carcinogenesis that are potential mechanistic targets of dietary tomato components. Future studies on androgen signaling/metabolism, stem cell features, and neuroendocrine differentiation pathways may elucidate the mechanisms by which dietary tomato and lycopene impact prostate cancer risk. PMID:25315431
Lintas, C; Sacco, R; Garbett, K; Mirnics, K; Militerni, R; Bravaccio, C; Curatolo, P; Manzi, B; Schneider, C; Melmed, R; Elia, M; Pascucci, T; Puglisi-Allegra, S; Reichelt, K-L; Persico, A M
2009-07-01
Protein kinase C enzymes play an important role in signal transduction, regulation of gene expression and control of cell division and differentiation. The fsI and betaII isoenzymes result from the alternative splicing of the PKCbeta gene (PRKCB1), previously found to be associated with autism. We performed a family-based association study in 229 simplex and 5 multiplex families, and a postmortem study of PRKCB1 gene expression in temporocortical gray matter (BA41/42) of 11 autistic patients and controls. PRKCB1 gene haplotypes are significantly associated with autism (P<0.05) and have the autistic endophenotype of enhanced oligopeptiduria (P<0.05). Temporocortical PRKCB1 gene expression was reduced on average by 35 and 31% for the PRKCB1-1 and PRKCB1-2 isoforms (P<0.01 and <0.05, respectively) according to qPCR. Protein amounts measured for the PKCbetaII isoform were similarly decreased by 35% (P=0.05). Decreased gene expression characterized patients carrying the 'normal' PRKCB1 alleles, whereas patients homozygous for the autism-associated alleles displayed mRNA levels comparable to those of controls. Whole genome expression analysis unveiled a partial disruption in the coordinated expression of PKCbeta-driven genes, including several cytokines. These results confirm the association between autism and PRKCB1 gene variants, point toward PKCbeta roles in altered epithelial permeability, demonstrate a significant downregulation of brain PRKCB1 gene expression in autism and suggest that it could represent a compensatory adjustment aimed at limiting an ongoing dysreactive immune process. Altogether, these data underscore potential PKCbeta roles in autism pathogenesis and spur interest in the identification and functional characterization of PRKCB1 gene variants conferring autism vulnerability.
Yamagata, Kazuo; Izawa, Yuri; Onodera, Daiki; Tagami, Motoki
2018-04-01
Previous studies indicated that chlorogenic acid, a compound present in many fruits and vegetables, has anti-cancer activities. We report that chlorogenic acid regulates the expression of apoptosis-related genes and self-renewal-related stem cell markers in cancer cells. The lung cancer cell line A549 was cultured with or without chlorogenic acid. The presence of chlorogenic acid decreased cell proliferation as measured by MTT activity. Polymerase chain reaction (PCR) showed that treatment of cells with chlorogenic acid reduced the expression of BCL2 but increased that of both BAX and CASP3. Chlorogenic acid enhanced annexin V expression as measured using fluorescently labeled annexin V. Chlorogenic acid also induced p38 MAPK and JNK gene expression. Meanwhile, several agents, including SB203580 (p38 MAP kinase inhibitor), N-acetylcysteine (antioxidant inhibitor), dipyridamole (phosphodiesterase inhibitor), and apocynin (NADPH-oxidase inhibitor) blocked chlorogenic acid-induced BAX gene expression. Chlorogenic acid reduced gene expression levels of stem cell-associated markers NANOG, POU5F1, and SOX2. Together these results indicate that chlorogenic acid affects the expression of apoptosis-related genes that are part of oxidative stress and p38 MAP-dependent pathways, as well as genes encoding stem cell markers. In conclusion, chlorogenic acid may contribute to the polyphenolic anti-cancer effect associated with consumption of vegetables and fruits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verreth, Wim; Verhamme, Peter; Pelat, Michael
2003-09-01
Weight-loss in obese insulin-resistant, but not in insulin-sensitive, persons reduces CHD risk. It is not known to what extent changes in the adipose gene expression profile are important for reducing CHD risk. We studied the effect of diet restriction-induced weight-loss on gene expression in adipose tissue, atherosclerosis and cardiovascular function in mice with combined leptin and LDL-receptor deficiency. Obesity, hypertriglyceridemia and insulin-resistance are associated with hypertension, impaired left ventricle function and accelerated atherosclerosis in those mice. Diet restriction during 12 weeks caused a 45% weight-loss and changes in the gene expression in adipose tissue of PPARa and PPAR? and ofmore » key genes regulating glucose transport and insulin sensitivity, lipid metabolism, oxidative stress and inflammation, most of which are under the transcriptional control of PPARs. These changes were associated with increased insulin-sensitivity, decreased hypertriglyceridemia, reduced mean 24-hour blood pressure and heart rate, restored circadian variations of blood pressure and heart rate, increased ejection fraction, and reduced atherosclerosis. Thus, induction of PPARa and PPAR? in adipose tissue is a key mechanism for reducing atherosclerosis and improving cardiovascular function resulting from weight-loss. Our observations point to the critical role of PPARs in the pathogenesis of cardiovascular features of the metabolic syndrome.« less
USDA-ARS?s Scientific Manuscript database
Expression of dsRNA fragments of rust pathogen genes in wheat seedlings through the barley stripe mosaic virus (BSMV) based host-induced gene silencing (HIGS) system can reduce the expression of the corresponding genes in the rust fungus. The highest levels of suppression have generally been observe...
Cleveland, Beth M; Weber, Gregory M
2013-09-01
Identifying physiological differences between diploid and triploid rainbow trout will help define how ploidy affects mechanisms that impact growth and nutrient utilization. Juvenile diploid and triploid female rainbow trout (Oncorhynchus mykiss) were either continually fed or fasted for one week, followed by four weeks of refeeding, and indices of growth and proteolysis-related gene expression in skeletal muscle were measured. Fasting reduced growth, and based on gene expression analysis, increased capacity for protein degradation. Regardless of feeding treatment, triploids displayed slightly greater feed intake and specific growth rates than diploids. Continually fed triploids displayed lower expression of several autophagy-related genes than diploids, suggesting that reduced rates of protein degradation contributed to their faster growth. Reduced expression of ubiquitin ligases fbxo32 and fbxo25 and autophagy-related genes during refeeding implicates reduced proteolysis in recovery growth. At one week of refeeding triploids exhibited greater gains in eviscerated body weight and length, whereas diploids exhibited greater gains in gastrointestinal tract weights. During refeeding two autophagy-related genes, atg4b and lc3b, decreased within one week to continually fed levels in the triploids, but in diploids overshot in expression at one and two weeks of refeeding then rebounding above continually fed levels by week four, suggesting a delayed return to basal levels of proteolysis. Published by Elsevier Inc.
Grissell, Terry V; Chang, Anne B; Gibson, Peter G
2007-04-01
Neuro-immune interactions are increasingly relevant to human health and disease. The neuropeptide Substance P also has antibacterial activity and bears similarities to the innate immune antibacterial defensins. This suggests possible co-regulation of neuropeptide and innate immune mediators. In this study, non-bronchoscopic bronchoalveolar lavage (BAL) was performed on 69 children. BAL was examined for cellular profile, microbiology (bacteria, virus) and gene expression for TLRs 2, 3, 4; chemokine receptors (CCR3, CCR5, CXCR1); neurotrophins and neurokinin genes (TAC1, TAC3, CGRP, NGF). In children with bacterial colonization (n=10) there was an airway inflammatory response with increased BAL neutrophils, IL-8 protein, and CXCR1 expression. Substance P (TAC1) and TLR4 RNA expression were reduced in children with bacterial colonization. TLR3 mRNA was increased in 7.2% (n=5) children with rhinovirus, and there was a non-significant trend to increased TLR2. There is evidence for co-regulation of neurokinin (TAC1) and TLR4 gene expression in airway cells from children with airway bacterial colonization and their reduced expression may be associated with an impaired bacterial clearance. (c) 2007 Wiley-Liss, Inc.
Serita, Suguru; Tomokiyo, Atsushi; Hasegawa, Daigaku; Hamano, Sayuri; Sugii, Hideki; Yoshida, Shinichiro; Mizumachi, Hiroyuki; Mitarai, Hiromi; Monnouchi, Satoshi; Wada, Naohisa; Maeda, Hidefumi
2017-06-01
The aim of this study was to investigate transforming growth factor-β-induced gene product-h3 (βig-h3) expression in dental pulp tissue and its effects on odontoblastic differentiation of dental pulp cells (DPCs). A rat direct pulp capping model was prepared using perforated rat upper first molars capped with mineral trioxide aggregate cement. Human DPCs (HDPCs) were isolated from extracted teeth. βig-h3 expression in rat dental pulp tissue and HDPCs was assessed by immunostaining. Mineralization of HDPCs was assessed by Alizarin red-S staining. Odontoblast-related gene expression in HDPCs was analyzed by quantitative RT-PCR. Expression of βig-h3 was detected in rat dental pulp tissue, and attenuated by direct pulp capping, while expression of interleukin-1β and tumor necrosis factor-α was increased in exposed pulp tissue. βig-h3 expression was also detected in HDPCs, with reduced expression during odontoblastic differentiation. The above cytokines reduced βig-h3 expression in HDPCs, and promoted their mineralization. Recombinant βig-h3 inhibited the expression of odontoblast-related genes and mineralization of HDPCs, while knockdown of βig-h3 gene expression promoted the expression of odontoblast-related genes in HDPCs. The present findings suggest that βig-h3 in DPCs may be involved in reparative dentin formation and that its expression is likely to negatively regulate this process. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bakker, Astrid D.; Hogervorst, Jolanda M. A.; Nolte, Peter A.; Klein-Nulend, Jenneke
2017-01-01
Cryotherapy is successfully used in the clinic to reduce pain and inflammation after musculoskeletal damage, and might prevent secondary tissue damage under the prevalent hypoxic conditions. Whether cryotherapy reduces mesenchymal stem cell (MSC) number and differentiation under hypoxic conditions, causing impaired callus formation is unknown. We aimed to determine whether hypothermia modulates proliferation, apoptosis, nitric oxide production, VEGF gene and protein expression, and osteogenic/chondrogenic differentiation of human MSCs under hypoxia. Human adipose MSCs were cultured under hypoxia (37°C, 1% O2), hypothermia and hypoxia (30°C, 1% O2), or control conditions (37°C, 20% O2). Total DNA, protein, nitric oxide production, alkaline phosphatase activity, gene expression, and VEGF protein concentration were measured up to day 8. Hypoxia enhanced KI67 expression at day 4. The combination of hypothermia and hypoxia further enhanced KI67 gene expression compared to hypoxia alone, but was unable to prevent the 1.2-fold reduction in DNA amount caused by hypoxia at day 4. Addition of hypothermia to hypoxic cells did not alter the effect of hypoxia alone on BAX-to-BCL-2 ratio, alkaline phosphatase activity, gene expression of SOX9, COL1, or osteocalcin, or nitric oxide production. Hypothermia decreased the stimulating effect of hypoxia on VEGF-165 gene expression by 6-fold at day 4 and by 2-fold at day 8. Hypothermia also decreased VEGF protein expression under hypoxia by 2.9-fold at day 8. In conclusion, hypothermia decreased VEGF-165 gene and protein expression, but did not affect differentiation, or apoptosis of MSCs cultured under hypoxia. These in vitro results implicate that hypothermia treatment in vivo, applied to alleviate pain and inflammation, is not likely to harm early stages of callus formation. PMID:28166273
Archacki, Stephen R; Angheloiu, George; Moravec, Christine S; Liu, Hui; Topol, Eric J; Wang, Qing Kenneth
2012-03-15
Coronary artery disease (CAD) is the leading cause of death worldwide. It has been established that internal mammary arteries (IMA) are resistant to the development of atherosclerosis, whereas left anterior descending (LAD) coronary arteries are athero-prone. The contrasting properties of these two arteries provide an innovative strategy to identify the genes that play important roles in the development of atherosclerosis. We carried out microarray analysis to identify genes differentially expressed between IMA and LAD. Twenty-nine genes showed significant differences in their expression levels between IMA and LAD, which included the TES gene encoding Testin. The role of TES in the cardiovascular system is unknown. Here we show that TES is involved in endothelial cell (EC) functions relevant to atherosclerosis. Western blot analysis showed higher TES expression in IMA than in LAD. Reverse transcription polymerase chain reaction and western blot analyses showed that TES was consistently and markedly down-regulated by more than 6-fold at both mRNA and protein levels in patients with CAD compared with controls without CAD (P= 0.000049). The data suggest that reduced TES expression is associated with the development of CAD. Knockdown of TES expression by small-interfering RNA promoted oxidized-LDL-mediated monocyte adhesion to ECs, EC migration and the transendothelial migration of monocytes, while the over-expression of TES in ECs blunted these processes. These results demonstrate association between reduced TES expression and CAD, establish a novel role for TES in EC functions and raise the possibility that reduced TES expression increases susceptibility to the development of CAD.
Ji, Shuiwang
2013-07-11
The structured organization of cells in the brain plays a key role in its functional efficiency. This delicate organization is the consequence of unique molecular identity of each cell gradually established by precise spatiotemporal gene expression control during development. Currently, studies on the molecular-structural association are beginning to reveal how the spatiotemporal gene expression patterns are related to cellular differentiation and structural development. In this article, we aim at a global, data-driven study of the relationship between gene expressions and neuroanatomy in the developing mouse brain. To enable visual explorations of the high-dimensional data, we map the in situ hybridization gene expression data to a two-dimensional space by preserving both the global and the local structures. Our results show that the developing brain anatomy is largely preserved in the reduced gene expression space. To provide a quantitative analysis, we cluster the reduced data into groups and measure the consistency with neuroanatomy at multiple levels. Our results show that the clusters in the low-dimensional space are more consistent with neuroanatomy than those in the original space. Gene expression patterns and developing brain anatomy are closely related. Dimensionality reduction and visual exploration facilitate the study of this relationship.
Phthalate ester-induced gubernacular ligament lesions are associated with reduced Insl3 gene expression in the fetal rat testis during sexual differentiation.
Vickie S Wilson, Christy Lambright, Johnathan Furr, Joseph Ostby, Carmen Wood, Gary Held, L.Earl Gray Jr.
U.S. EPA,...
Phthalate ester-induced gubernacular ligament lesions are associated with reduced Insl3 gene expression in the fetal rat testis during sexual differentiation.
VS Wilson, C Lambright, J Furr, J Ostby, C Wood, G Held, LE Gray Jr.
U.S. EPA, ORD, NHEERL, Reproductive Toxicology...
Choi, Min-Yeon; Park, Sang-Hyun
2016-06-01
Experimental research in molecular biology frequently relies on the promotion or suppression of gene expression, an important tool in the study of its functions. Although yeast is among the most studied model systems with the ease of maintenance and manipulation, current experimental methods are mostly limited to gene deletion, suppression or overexpression of genes. Therefore, the ability to reduce protein expressions and then observing the effects would promote a better understanding of the exact functions and their interactions. Reducing protein expression is mainly limited by the difficulties associated with controlling the reduction level, and in some cases, the initial endogenous abundance is too low. For the under-expression to be useful as an experimental tool, repeatability and stability of reduced expression is important. We found that cis-elements in programmed -1 ribosomal frameshifting (-1RFS) of beet western yellow virus (BWYV) could be utilized to reduced protein expression in Saccharomyces cerevisiae. The two main advantages of using -1RFS are adjustable reduction rates and ease of use. To demonstrate the utility of this under-expression system, examples of reduced protein abundance were shown using yeast mating pathway components. The abundance of MAP kinase Fus3 was reduced to approximately 28-75 % of the wild-type value. Other MAP kinase mating pathway components, including Ste5, Ste11, and Ste7, were also under-expressed to verify that the -1RFS system works with different proteins. Furthermore, reduced Fus3 abundance altered the overall signal transduction outcome of the mating pathway, demonstrating the potential for further studies of signal transduction adjustment via under-expression.
The Role of Vitamin D in the Transcriptional Program of Human Pregnancy
Al-Garawi, Amal; Carey, Vincent J.; Chhabra, Divya; Morrow, Jarrett; Lasky-Su, Jessica; Qiu, Weiliang; Laranjo, Nancy; Litonjua, Augusto A.; Weiss, Scott T.
2016-01-01
Background Patterns of gene expression of human pregnancy are poorly understood. In a trial of vitamin D supplementation in pregnant women, peripheral blood transcriptomes were measured longitudinally on 30 women and used to characterize gene co-expression networks. Objective Studies suggest that increased maternal Vitamin D levels may reduce the risk of asthma in early life, yet the underlying mechanisms have not been examined. In this study, we used a network-based approach to examine changes in gene expression profiles during the course of normal pregnancy and evaluated their association with maternal Vitamin D levels. Design The VDAART study is a randomized clinical trial of vitamin D supplementation in pregnancy for reduction of pediatric asthma risk. The trial enrolled 881 women at 10–18 weeks of gestation. Longitudinal gene expression measures were obtained on thirty pregnant women, using RNA isolated from peripheral blood samples obtained in the first and third trimesters. Differentially expressed genes were identified using significance of analysis of microarrays (SAM), and clustered using a weighted gene co-expression network analysis (WGCNA). Gene-set enrichment was performed to identify major biological pathways. Results Comparison of transcriptional profiles between first and third trimesters of pregnancy identified 5839 significantly differentially expressed genes (FDR<0.05). Weighted gene co-expression network analysis clustered these transcripts into 14 co-expression modules of which two showed significant correlation with maternal vitamin D levels. Pathway analysis of these two modules revealed genes enriched in immune defense pathways and extracellular matrix reorganization as well as genes enriched in notch signaling and transcription factor networks. Conclusion Our data show that gene expression profiles of healthy pregnant women change during the course of pregnancy and suggest that maternal Vitamin D levels influence transcriptional profiles. These alterations of the maternal transcriptome may contribute to fetal immune imprinting and reduce allergic sensitization in early life. Trial Registration clinicaltrials.gov NCT00920621 PMID:27711190
Androgen receptor agonism promotes an osteogenic gene program in preadipocytes
Hartig, Sean M.; Feng, Qin; Ochsner, Scott A.; Xiao, Rui; McKenna, Neil J.; McGuire, Sean E.; He, Bin
2013-01-01
Androgens regulate body composition by interacting with the androgen receptor (AR) to control gene expression in a tissue-specific manner. To identify novel regulatory roles for AR in preadipocytes, we created a 3T3-L1 cell line stably expressing human AR. We found AR expression is required for androgen-mediated inhibition of 3T3-L1 adipogenesis. This inhibition is characterized by decreased lipid accumulation, reduced expression of adipogenic genes, and induction of genes associated with osteoblast differentiation. Collectively, our results suggest androgens promote an osteogenic gene program at the expense of adipocyte differentiation. PMID:23567971
Shen, Yun; Ruan, Qingxia; Chai, Haoxi; Yuan, Yongze; Yang, Wannian; Chen, Junping; Xin, Zhanguo; Shi, Huazhong
2016-12-01
Polyamines involve in gene regulation by interacting with and modulating the functions of various anionic macromolecules such as DNA, RNA and proteins. In this study, we identified an important function of the polyamine transporter LHR1 (LOWER EXPRESSION OF HEAT RESPONSIVE GENE1) in heat-inducible gene expression in Arabidopsis thaliana. The lhr1 mutant was isolated through a forward genetic screening for altered expression of the luciferase reporter gene driven by the promoter from the heat-inducible gene AtHSP18.2. The lhr1 mutant showed reduced induction of the luciferase gene in response to heat stress and was more sensitive to high temperature than the wild type. Map-based cloning identified that the LHR1 gene encodes the polyamine transporter PUT3 (POLYAMINE UPTAKE TRANSPORTER 3) localized in the plasma membrane. The LHR1/PUT3 is required for the uptake of extracellular polyamines and plays an important role in stabilizing the mRNAs of several crucial heat stress responsive genes under high temperature. Genome-wide gene expression analysis using RNA-seq identified an array of differentially expressed genes, among which the transcript levels of some of the heat shock protein genes significantly reduced in response to prolonged heat stress in the lhr1 mutant. Our findings revealed an important heat stress response and tolerance mechanism involving polyamine influx which modulates mRNA stability of heat-inducible genes under heat stress conditions. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.
Liscovitch, Noa; Bazak, Lily; Levanon, Erez Y; Chechik, Gal
2014-01-01
A-to-I RNA editing by adenosine deaminases acting on RNA is a post-transcriptional modification that is crucial for normal life and development in vertebrates. RNA editing has been shown to be very abundant in the human transcriptome, specifically at the primate-specific Alu elements. The functional role of this wide-spread effect is still not clear; it is believed that editing of transcripts is a mechanism for their down-regulation via processes such as nuclear retention or RNA degradation. Here we combine 2 neural gene expression datasets with genome-level editing information to examine the relation between the expression of ADAR genes with the expression of their target genes. Specifically, we computed the spatial correlation across structures of post-mortem human brains between ADAR and a large set of targets that were found to be edited in their Alu repeats. Surprisingly, we found that a large fraction of the edited genes are positively correlated with ADAR, opposing the assumption that editing would reduce expression. When considering the correlations between ADAR and its targets over development, 2 gene subsets emerge, positively correlated and negatively correlated with ADAR expression. Specifically, in embryonic time points, ADAR is positively correlated with many genes related to RNA processing and regulation of gene expression. These findings imply that the suggested mechanism of regulation of expression by editing is probably not a global one; ADAR expression does not have a genome wide effect reducing the expression of editing targets. It is possible, however, that RNA editing by ADAR in non-coding regions of the gene might be a part of a more complex expression regulation mechanism. PMID:25692240
Liscovitch, Noa; Bazak, Lily; Levanon, Erez Y; Chechik, Gal
2014-01-01
A-to-I RNA editing by adenosine deaminases acting on RNA is a post-transcriptional modification that is crucial for normal life and development in vertebrates. RNA editing has been shown to be very abundant in the human transcriptome, specifically at the primate-specific Alu elements. The functional role of this wide-spread effect is still not clear; it is believed that editing of transcripts is a mechanism for their down-regulation via processes such as nuclear retention or RNA degradation. Here we combine 2 neural gene expression datasets with genome-level editing information to examine the relation between the expression of ADAR genes with the expression of their target genes. Specifically, we computed the spatial correlation across structures of post-mortem human brains between ADAR and a large set of targets that were found to be edited in their Alu repeats. Surprisingly, we found that a large fraction of the edited genes are positively correlated with ADAR, opposing the assumption that editing would reduce expression. When considering the correlations between ADAR and its targets over development, 2 gene subsets emerge, positively correlated and negatively correlated with ADAR expression. Specifically, in embryonic time points, ADAR is positively correlated with many genes related to RNA processing and regulation of gene expression. These findings imply that the suggested mechanism of regulation of expression by editing is probably not a global one; ADAR expression does not have a genome wide effect reducing the expression of editing targets. It is possible, however, that RNA editing by ADAR in non-coding regions of the gene might be a part of a more complex expression regulation mechanism.
Papillion, Amber M.; Tatum, Arthur H.; Princiotta, Michael F.; Hayes, Sandra M.
2014-01-01
BLK, which encodes B lymphoid kinase, was recently identified in genome wide association studies as a susceptibility gene for systemic lupus erythematosus (SLE), and risk alleles mapping to the BLK locus result in reduced gene expression. To determine whether BLK is indeed a bona fide susceptibility gene, we developed an experimental mouse model, namely the Blk+/−.lpr/lpr (Blk+/−.lpr) mouse, in which Blk expression levels are reduced to levels comparable to those in individuals carrying a risk allele. Here, we report that Blk is expressed not only in B cells, but also in IL-17-producing γδ and DN αβ T cells and in plasmacytoid dendritic cells (pDCs). Moreover, we found that solely reducing Blk expression in C57BL/6-lpr/lpr mice enhanced proinflammatory cytokine production and accelerated the onset of lymphoproliferation, proteinuria, and kidney disease. Together, these findings suggest that BLK risk alleles confer susceptibility to SLE through the dysregulation of a proinflammatory cytokine network. PMID:24637841
Taeb, Mahsa; Mortazavi-Jahromi, Seyed Shahabeddin; Jafarzadeh, Abdollah; Mirzaei, Mohammad Reza; Mirshafiey, Abbas
2017-06-01
Aging is usually associated with increased levels of oxidants, and may result in damages caused by oxidative stress. There is a direct relationship between aging and increased incidence of inflammatory diseases. The present research intended to study the anti-aging and anti-inflammatory effects of the drug G2013 (guluronic acid) at low and high doses on the genes expression of a number of enzymes involved in oxidative stress (including SOD2, GPX1, CAT, GST, iNOS, and MPO) in peripheral blood mononuclear cells (PBMCs) of healthy individuals under in vitro conditions. Venous blood samples were taken from 20 healthy individuals, the PBMCs were isolated and their RNAs extracted and their cDNAs were synthesized, and the genes expression levels were measured using the qRT-PCR technique. Our results indicated that this drug could, at both low and high doses, significantly reduce the expression of the genes for SOD2, GPX1, CAT, and GST compared to the LPS group (p<0.0001). Moreover, it was noticed that the drug is able to significantly reduce gene expression levels at the high dose and at both doses (low and high), for iNOS and MPO compared to the LPS group (p<0.0001), respectively. The present research showed that G2013, as a novel NSAID drug with immunomodulatory properties, could modulate the expression levels of the genes for SOD2, GPX1, CAT, GST, iNOS, and MPO, to the level of healthy gene expression, and possibly it might reduce the pathological process of aging and age-related inflammatory diseases. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
AmyR Is a Novel Negative Regulator of Amylovoran Production in Erwinia amylovora
Wang, Dongping; Korban, Schuyler S.; Pusey, P. Lawrence; Zhao, Youfu
2012-01-01
In this study, we attempted to understand the role of an orphan gene amyR in Erwinia amylovora, a functionally conserved ortholog of ybjN in Escherichia coli, which has recently been characterized. Amylovoran, a high molecular weight acidic heteropolymer exopolysaccharide, is a virulent factor of E. amylovora. As reported earlier, amylovoran production in an amyR knockout mutant was about eight-fold higher than that in the wild type (WT) strain of E. amylovora. When a multicopy plasmid containing the amyR gene was introduced into the amyR mutant or WT strains, amylovoran production was strongly inhibited. Furthermore, amylovoran production was also suppressed in various amylovoran-over-producing mutants, such as grrSA containing multicopies of the amyR gene. Consistent with amylovoran production, an inverse correlation was observed between in vitro expression of amyR and that of amylovoran biosynthetic genes. However, both the amyR knockout mutant and over-expression strains showed reduced levan production, another exopolysaccharide produced by E. amylovora. Virulence assays demonstrated that while the amyR mutant was capable of inducing slightly greater disease severity than that of the WT strain, strains over-expressing the amyR gene did not incite disease on apple shoots or leaves, and only caused reduced disease on immature pear fruits. Microarray studies revealed that amylovoran biosynthesis and related membrane protein-encoding genes were highly expressed in the amyR mutant, but down-regulated in the amyR over-expression strains in vitro. Down-regulation of amylovoran biosynthesis genes in the amyR over-expression strain partially explained why over-expression of amyR led to non-pathogenic or reduced virulence in vivo. These results suggest that AmyR plays an important role in regulating exopolysaccharide production, and thus virulence in E. amylovora. PMID:23028751
AmyR is a novel negative regulator of amylovoran production in Erwinia amylovora.
Wang, Dongping; Korban, Schuyler S; Pusey, P Lawrence; Zhao, Youfu
2012-01-01
In this study, we attempted to understand the role of an orphan gene amyR in Erwinia amylovora, a functionally conserved ortholog of ybjN in Escherichia coli, which has recently been characterized. Amylovoran, a high molecular weight acidic heteropolymer exopolysaccharide, is a virulent factor of E. amylovora. As reported earlier, amylovoran production in an amyR knockout mutant was about eight-fold higher than that in the wild type (WT) strain of E. amylovora. When a multicopy plasmid containing the amyR gene was introduced into the amyR mutant or WT strains, amylovoran production was strongly inhibited. Furthermore, amylovoran production was also suppressed in various amylovoran-over-producing mutants, such as grrSA containing multicopies of the amyR gene. Consistent with amylovoran production, an inverse correlation was observed between in vitro expression of amyR and that of amylovoran biosynthetic genes. However, both the amyR knockout mutant and over-expression strains showed reduced levan production, another exopolysaccharide produced by E. amylovora. Virulence assays demonstrated that while the amyR mutant was capable of inducing slightly greater disease severity than that of the WT strain, strains over-expressing the amyR gene did not incite disease on apple shoots or leaves, and only caused reduced disease on immature pear fruits. Microarray studies revealed that amylovoran biosynthesis and related membrane protein-encoding genes were highly expressed in the amyR mutant, but down-regulated in the amyR over-expression strains in vitro. Down-regulation of amylovoran biosynthesis genes in the amyR over-expression strain partially explained why over-expression of amyR led to non-pathogenic or reduced virulence in vivo. These results suggest that AmyR plays an important role in regulating exopolysaccharide production, and thus virulence in E. amylovora.
Vaghjiani, Vijesh; Cain, Jason E; Lee, William; Vaithilingam, Vijayaganapathy; Tuch, Bernard E; St John, Justin C
2017-10-15
Mitochondrial deoxyribonucleic acid (mtDNA) copy number is tightly regulated during pluripotency and differentiation. There is increased demand of cellular adenosine triphosphate (ATP) during differentiation for energy-intensive cell types such as hepatocytes and neurons to meet the cell's functional requirements. During hepatocyte differentiation, mtDNA copy number should be synchronously increased to generate sufficient ATP through oxidative phosphorylation. Unlike bone marrow mesenchymal cells, mtDNA copy number failed to increase by 28 days of differentiation of human amniotic epithelial cells (hAEC) into hepatocyte-like cells (HLC) despite their expression of some end-stage hepatic markers. This was due to higher levels of DNA methylation at exon 2 of POLGA, the mtDNA-specific replication factor. Treatment with a DNA demethylation agent, 5-azacytidine, resulted in increased mtDNA copy number, reduced DNA methylation at exon 2 of POLGA, and reduced hepatic gene expression. Depletion of mtDNA followed by subsequent differentiation did not increase mtDNA copy number, but reduced DNA methylation at exon 2 of POLGA and increased expression of hepatic and pluripotency genes. We encapsulated hAEC in barium alginate microcapsules and subsequently differentiated them into HLC. Encapsulation resulted in no net increase of mtDNA copy number but a significant reduction in DNA methylation of POLGA. RNAseq analysis showed that differentiated HLC express hepatocyte-specific genes but also increased expression of inflammatory interferon genes. Differentiation in encapsulated cells showed suppression of inflammatory genes as well as increased expression of genes associated with hepatocyte function pathways and networks. This study demonstrates that an increase in classical hepatic gene expression can be achieved in HLC through encapsulation, although they fail to effectively regulate mtDNA copy number.
Bao, Yan; Wu, Xuewei; Chen, Jinjing; Hu, Xiangming; Zeng, Fuxing; Cheng, Jianjun; Jin, Hong; Lin, Xin; Chen, Lin-Feng
2017-05-16
Bromodomain-containing factor Brd4 has emerged as an important transcriptional regulator of NF-κB-dependent inflammatory gene expression. However, the in vivo physiological function of Brd4 in the inflammatory response remains poorly defined. We now demonstrate that mice deficient for Brd4 in myeloid-lineage cells are resistant to LPS-induced sepsis but are more susceptible to bacterial infection. Gene-expression microarray analysis of bone marrow-derived macrophages (BMDMs) reveals that deletion of Brd4 decreases the expression of a significant amount of LPS-induced inflammatory genes while reversing the expression of a small subset of LPS-suppressed genes, including MAP kinase-interacting serine/threonine-protein kinase 2 ( Mknk2 ). Brd4 -deficient BMDMs display enhanced Mnk2 expression and the corresponding eukaryotic translation initiation factor 4E (eIF4E) activation after LPS stimulation, leading to an increased translation of IκBα mRNA in polysomes. The enhanced newly synthesized IκBα reduced the binding of NF-κB to the promoters of inflammatory genes, resulting in reduced inflammatory gene expression and cytokine production. By modulating the translation of IκBα via the Mnk2-eIF4E pathway, Brd4 provides an additional layer of control for NF-κB-dependent inflammatory gene expression and inflammatory response.
Pester, Doris; Milčevičová, Renáta; Schaffer, Johann; Wilhelm, Eva; Blümel, Sylvia
2012-01-01
Background Pathogen entry through host blossoms is the predominant infection pathway of the Gram-negative bacterium Erwinia amylovora leading to manifestation of the disease fire blight. Like in other economically important plant pathogens, E. amylovora pathogenicity depends on a type III secretion system encoded by hrp genes. However, timing and transcriptional order of hrp gene expression during flower infections are unknown. Methodology/Principal Findings Using quantitative real-time PCR analyses, we addressed the questions of how fast, strong and uniform key hrp virulence genes and the effector dspA/E are expressed when bacteria enter flowers provided with the full defense mechanism of the apple plant. In non-invasive bacterial inoculations of apple flowers still attached to the tree, E. amylovora activated expression of key type III secretion genes in a narrow time window, mounting in a single expression peak of all investigated hrp/dspA/E genes around 24–48 h post inoculation (hpi). This single expression peak coincided with a single depression in the plant PR-1 expression at 24 hpi indicating transient manipulation of the salicylic acid pathway as one target of E. amylovora type III effectors. Expression of hrp/dspA/E genes was highly correlated to expression of the regulator hrpL and relative transcript abundances followed the ratio: hrpA>hrpN>hrpL>dspA/E. Acidic conditions (pH 4) in flower infections led to reduced virulence/effector gene expression without the typical expression peak observed under natural conditions (pH 7). Conclusion/Significance The simultaneous expression of hrpL, hrpA, hrpN, and the effector dspA/E during early floral infection indicates that speed and immediate effector transmission is important for successful plant invasion. When this delicate balance is disturbed, e.g., by acidic pH during infection, virulence gene expression is reduced, thus partly explaining the efficacy of acidification in fire blight control on a molecular level. PMID:22412891
Four out of eight genes in a mouse chromosome 7 congenic donor region are candidate obesity genes.
Sarahan, Kari A; Fisler, Janis S; Warden, Craig H
2011-09-22
We previously identified a region of mouse chromosome 7 that influences body fat mass in F2 littermates of congenic × background intercrosses. Current analyses revealed that alleles in the donor region of the subcongenic B6.C-D7Mit318 (318) promoted a twofold increase in adiposity in homozygous lines of 318 compared with background C57BL/6ByJ (B6By) mice. Parent-of-origin effects were discounted through cross-fostering studies and an F1 reciprocal cross. Mapping of the donor region revealed that it has a maximal size of 2.8 Mb (minimum 1.8 Mb) and contains a maximum of eight protein coding genes. Quantitative PCR in whole brain, liver, and gonadal white adipose tissue (GWAT) revealed differential expression between genotypes for three genes in females and two genes in males. Alpha-2,8-sialyltransferase 8B (St8sia2) showed reduced 318 mRNA levels in brain for females and males and in GWAT for females only. Both sexes of 318 mice had reduced Repulsive guidance molecule-a (Rgma) expression in GWAT. In brain, Family with sequence similarity 174 member b (Fam174b) had increased expression in 318 females, whereas Chromodomain helicase DNA binding protein 2 (Chd2-2) had reduced expression in 318 males. No donor region genes were differentially expressed in liver. Sequence analysis of coding exons for all genes in the 318 donor region revealed only one single nucleotide polymorphism that produced a nonsynonymous missense mutation, Gln7Pro, in Fam174b. Our findings highlight the difficulty of using expression and sequence to identify quantitative trait genes underlying obesity even in small genomic regions.
Cagnola, Juan Ignacio; Dumont de Chassart, Gonzalo Javier; Ibarra, Silvia Elizabeth; Chimenti, Claudio; Ricardi, Martiniano María; Delzer, Brent; Ghiglione, Hernán; Zhu, Tong; Otegui, María Elena; Estevez, José Manuel; Casal, Jorge José
2018-03-01
Abortion of fertilized ovaries at the tip of the ear can generate significant yield losses in maize crops. To investigate the mechanisms involved in this process, 2 maize hybrids were grown in field crops at 2 sowing densities and under 3 irrigation regimes (well-watered control, drought before pollination, and drought during pollination), in all possible combinations. Samples of ear tips were taken 2-6 days after synchronous hand pollination and used for the analysis of gene expression and sugars. Glucose and fructose levels increased in kernels with high abortion risk. Several FASCICLIN-LIKE ARABINOGALACTAN PROTEIN (FLA) genes showed negative correlation with abortion. The expression of ZmFLA7 responded to drought only at the tip of the ear. The abundance of arabinogalactan protein (AGP) glycan epitopes decreased with drought and pharmacological treatments that reduce AGP activity enhanced the abortion of fertilized ovaries. Drought also reduced the expression of AthFLA9 in the siliques of Arabidopsis thaliana. Gain- and loss-of-function mutants of Arabidopsis showed a negative correlation between AthFLA9 and seed abortion. On the basis of gene expression patterns, pharmacological, and genetic evidence, we propose that stress-induced reductions in the expression of selected FLA genes enhance abortion of fertilized ovaries in maize and Arabidopsis. © 2018 John Wiley & Sons Ltd.
Cathomas, F; Azzinnari, D; Bergamini, G; Sigrist, H; Buerge, M; Hoop, V; Wicki, B; Goetze, L; Soares, S; Kukelova, D; Seifritz, E; Goebbels, S; Nave, K-A; Ghandour, M S; Seoighe, C; Hildebrandt, T; Leparc, G; Klein, H; Stupka, E; Hengerer, B; Pryce, C R
2018-03-22
Oligodendrocyte gene expression is downregulated in stress-related neuropsychiatric disorders, including depression. In mice, chronic social stress (CSS) leads to depression-relevant changes in brain and emotional behavior, and the present study shows the involvement of oligodendrocytes in this model. In C57BL/6 (BL/6) mice, RNA-sequencing (RNA-Seq) was conducted with prefrontal cortex, amygdala and hippocampus from CSS and controls; a gene enrichment database for neurons, astrocytes and oligodendrocytes was used to identify cell origin of deregulated genes, and cell deconvolution was applied. To assess the potential causal contribution of reduced oligodendrocyte gene expression to CSS effects, mice heterozygous for the oligodendrocyte gene cyclic nucleotide phosphodiesterase (Cnp1) on a BL/6 background were studied; a 2 genotype (wildtype, Cnp1 +/- ) × 2 environment (control, CSS) design was used to investigate effects on emotional behavior and amygdala microglia. In BL/6 mice, in prefrontal cortex and amygdala tissue comprising gray and white matter, CSS downregulated expression of multiple oligodendroycte genes encoding myelin and myelin-axon-integrity proteins, and cell deconvolution identified a lower proportion of oligodendrocytes in amygdala. Quantification of oligodendrocyte proteins in amygdala gray matter did not yield evidence for reduced translation, suggesting that CSS impacts primarily on white matter oligodendrocytes or the myelin transcriptome. In Cnp1 mice, social interaction was reduced by CSS in Cnp1 +/- mice specifically; using ionized calcium-binding adaptor molecule 1 (IBA1) expression, microglia activity was increased additively by Cnp1 +/- and CSS in amygdala gray and white matter. This study provides back-translational evidence that oligodendrocyte changes are relevant to the pathophysiology and potentially the treatment of stress-related neuropsychiatric disorders. © 2018 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
Honma, Kazue; Hikosaka, Maki; Mochizuki, Kazuki; Goda, Toshinao
2016-04-01
Peripheral clock genes show a circadian rhythm is correlated with the timing of feeding in peripheral tissues. It was reported that these clock genes are strongly regulated by insulin action and that a high-fat diet (HFD) intake in C57BL/6J mice for 21days induced insulin secretion during the dark phase and reduced the circadian rhythm of clock genes. In this study, we examined the circadian expression patterns of these clock genes in insulin-resistant animal models with excess secretion of insulin during the day. We examined whether insulin resistance induced by a HFD intake for 80days altered blood parameters (glucose and insulin concentrations) and expression of mRNA and proteins encoded by clock and functional genes in the liver using male ICR mice. Serum insulin concentrations were continuously higher during the day in mice fed a HFD than control mice. Expression of lipogenesis-related genes (Fas and Accβ) and the transcription factor Chrebp peaked at zeitgeber time (ZT)24 in the liver of control mice. A HFD intake reduced the expression of these genes at ZT24 and disrupted the circadian rhythm. Expression of Bmal1 and Clock, transcription factors that compose the core feedback loop, showed circadian variation and were synchronously associated with Fas gene expression in control mice, but not in those fed a HFD. These results indicate that the disruption of the circadian rhythm of insulin secretion by HFD intake is closely associated with the disappearance of circadian expression of lipogenic and clock genes in the liver of mice. Copyright © 2016 Elsevier Inc. All rights reserved.
Schallner, Nils; Lieberum, Judith-Lisa; Gallo, David; LeBlanc, Robert H; Fuller, Patrick M; Hanafy, Khalid A; Otterbein, Leo E
2017-09-01
Subarachnoid hemorrhage (SAH) is associated with a temporal pattern of stroke incidence. We hypothesized that natural oscillations in gene expression controlling circadian rhythm affect the severity of neuronal injury. We moreover predict that heme oxygenase-1 (HO-1/ Hmox1 ) and its product carbon monoxide (CO) contribute to the restoration of rhythm and neuroprotection. Murine SAH model was used where blood was injected at various time points of the circadian cycle. Readouts included circadian clock gene expression, locomotor activity, vasospasm, neuroinflammatory markers, and apoptosis. In addition, cerebrospinal fluid and peripheral blood leukocytes from SAH patients and controls were analyzed for clock gene expression. Significant elevations in the clock genes Per-1 , Per-2 , and NPAS-2 were observed in the hippocampus, cortex, and suprachiasmatic nucleus in mice subjected to SAH at zeitgeber time (ZT) 12 when compared with ZT2. Clock gene expression amplitude correlated with basal expression of HO-1, which was also significantly greater at ZT12. SAH animals showed a significant reduction in cerebral vasospasm, neuronal apoptosis, and microglial activation at ZT12 compared with ZT2. In animals with myeloid-specific HO-1 deletion ( Lyz-Cre-Hmox1 fl/fl ), Per-1, Per-2 , and NPAS-2 expression was reduced in the suprachiasmatic nucleus, which correlated with increased injury. Treatment with low-dose CO rescued Lyz-Cre-Hmox1 fl/fl mice, restored Per-1, Per-2 , and NPAS-2 expression, and reduced neuronal apoptosis. Clock gene expression regulates, in part, the severity of SAH and requires myeloid HO-1 activity to clear the erythrocyte burden and inhibit neuronal apoptosis. Exposure to CO rescues the loss of HO-1 and thus merits further investigation in patients with SAH. © 2017 American Heart Association, Inc.
Day, Gregory; Szvetko, Attila; Griffiths, Lyn; McPhee, I Bruce; Tuffley, John; LaBrom, Robert; Askin, Geoffrey; Woodland, Peter; McClosky, Eamonn; Torode, Ian; Tomlinson, Francis
2009-06-01
Reduced SHOX gene expression has been demonstrated to be associated with all skeletal abnormalities in Turner syndrome, other than scoliosis (and kyphosis). There is evidence to suggest that Turner syndrome scoliosis is clinically and radiologically similar to idiopathic scoliosis, although the phenotypes are dissimilar. This pilot gene expression study used relative quantitative real-time PCR (qRT-PCR) of the SHOX (short stature on X) gene to determine whether it is expressed in vertebral body growth plates in idiopathic and congenital scoliosis. After vertebral growth plate dissection, tissue was examined histologically and RNA was extracted and its integrity was assessed using a Bio-Spec Mini, NanoDrop ND-1000 spectrophotometer and standard denaturing gel electrophoresis. Following cDNA synthesis, gene-specific optimization in a Corbett RotorGene 6000 real-time cycler was followed by qRT-PCR of vertebral tissue. Histological examination of vertebral samples confirmed that only growth plate was analyzed for gene expression. Cycling and melt curves were resolved in triplicate for all samples. SHOX abundance was demonstrated in congenital and idiopathic scoliosis vertebral body growth plates. SHOX expression was 11-fold greater in idiopathic compared to congenital (n = 3) scoliosis (p = 0.027). This study confirmed that SHOX was expressed in vertebral body growth plates, which implies that its expression may also be associated with the scoliosis (and kyphosis) of Turner syndrome. SHOX expression is reduced in Turner syndrome (short stature). In this study, increased SHOX expression was demonstrated in idiopathic scoliosis (tall stature) and congenital scoliosis. Copyright 2008 Orthopaedic Research Society
Prediction of epigenetically regulated genes in breast cancer cell lines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loss, Leandro A; Sadanandam, Anguraj; Durinck, Steffen
Methylation of CpG islands within the DNA promoter regions is one mechanism that leads to aberrant gene expression in cancer. In particular, the abnormal methylation of CpG islands may silence associated genes. Therefore, using high-throughput microarrays to measure CpG island methylation will lead to better understanding of tumor pathobiology and progression, while revealing potentially new biomarkers. We have examined a recently developed high-throughput technology for measuring genome-wide methylation patterns called mTACL. Here, we propose a computational pipeline for integrating gene expression and CpG island methylation profles to identify epigenetically regulated genes for a panel of 45 breast cancer cell lines,more » which is widely used in the Integrative Cancer Biology Program (ICBP). The pipeline (i) reduces the dimensionality of the methylation data, (ii) associates the reduced methylation data with gene expression data, and (iii) ranks methylation-expression associations according to their epigenetic regulation. Dimensionality reduction is performed in two steps: (i) methylation sites are grouped across the genome to identify regions of interest, and (ii) methylation profles are clustered within each region. Associations between the clustered methylation and the gene expression data sets generate candidate matches within a fxed neighborhood around each gene. Finally, the methylation-expression associations are ranked through a logistic regression, and their significance is quantified through permutation analysis. Our two-step dimensionality reduction compressed 90% of the original data, reducing 137,688 methylation sites to 14,505 clusters. Methylation-expression associations produced 18,312 correspondences, which were used to further analyze epigenetic regulation. Logistic regression was used to identify 58 genes from these correspondences that showed a statistically signifcant negative correlation between methylation profles and gene expression in the panel of breast cancer cell lines. Subnetwork enrichment of these genes has identifed 35 common regulators with 6 or more predicted markers. In addition to identifying epigenetically regulated genes, we show evidence of differentially expressed methylation patterns between the basal and luminal subtypes. Our results indicate that the proposed computational protocol is a viable platform for identifying epigenetically regulated genes. Our protocol has generated a list of predictors including COL1A2, TOP2A, TFF1, and VAV3, genes whose key roles in epigenetic regulation is documented in the literature. Subnetwork enrichment of these predicted markers further suggests that epigenetic regulation of individual genes occurs in a coordinated fashion and through common regulators.« less
Lee, Jae Hoon; Zhao, Youfu
2016-01-01
Erwinia amylovora requires an hrp-type III secretion system (T3SS) to cause disease. It has been reported that HrpL, the master regulator of T3SS, is transcriptionally regulated by sigma factor 54 (RpoN), YhbH, and HrpS. In this study, the role of integration host factor (IHF) in regulating hrpL and T3SS gene expression was investigated. IHF is a nucleoid-associated protein that regulates gene expression by influencing nucleoid structure and DNA bending. Our results showed that both ihfA and ihfB mutants of E. amylovora did not induce necrotic lesions on pear fruits. Growth of both mutants was greatly reduced, and expression of the hrpL and T3SS genes was significantly down-regulated as compared with those of the wild type. In addition, expression of the ihfA, but not the ihfB gene, was under auto-suppression by IHF. Furthermore, both ihfA and ihfB mutants were hypermotile, due to significantly reduced expression of small RNA (sRNA) rsmB. Electrophoresis mobility shift assay further confirmed that IHF binds to the promoters of the hrpL and ihfA genes, as well as the rsmB sRNA gene. These results indicate that IHF is required for RpoN-dependent hrpL gene expression and virulence, and controls motility by positively regulating the rsmB sRNA in E. amylovora.
Chim, Nicholas; Riley, Robert; The, Juliana; Im, Soyeon; Segelke, Brent; Lekin, Tim; Yu, Minmin; Hung, Li Wei; Terwilliger, Tom; Whitelegge, Julian P.; Goulding, Celia W.
2010-01-01
Disulfide bond forming (Dsb) proteins ensure correct folding and disulfide bond formation of secreted proteins. Previously, we showed that Mycobacterium tuberculosis DsbE (Mtb DsbE, Rv2878c) aids in vitro oxidative folding of proteins. Here we present structural, biochemical and gene expression analyses of another putative Mtb secreted disulfide bond isomerase protein homologous to Mtb DsbE, Mtb DsbF (Rv1677). The X-ray crystal structure of Mtb DsbF reveals a conserved thioredoxin fold although the active-site cysteines may be modeled in both oxidized and reduced forms, in contrast to the solely reduced form in Mtb DsbE. Furthermore, the shorter loop region in Mtb DsbF results in a more solvent-exposed active site. Biochemical analyses show that, similar to Mtb DsbE, Mtb DsbF can oxidatively refold reduced, unfolded hirudin and has a comparable pKa for the active-site solvent-exposed cysteine. However, contrary to Mtb DsbE, the Mtb DsbF redox potential is more oxidizing and its reduced state is more stable. From computational genomics analysis of the M. tuberculosis genome, we identified a potential Mtb DsbF interaction partner, Rv1676, a predicted peroxiredoxin. Complex formation is supported by protein co-expression studies and inferred by gene expression profiles, whereby Mtb DsbF and Rv1676 are upregulated under similar environments. Additionally, comparison of Mtb DsbF and Mtb DsbE gene expression data indicate anticorrelated gene expression patterns, suggesting that these two proteins and their functionally linked partners constitute analogous pathways that may function under different conditions. PMID:20060836
Steinmann, Nadja; Corona, Miguel; Neumann, Peter; Dainat, Benjamin
2015-01-01
The eusocial honey bee, Apis mellifera, has evolved remarkable abilities to survive extreme seasonal differences in temperature and availability of resources by dividing the worker caste into two groups that differ in physiology and lifespan: summer and winter bees. Most of the recent major losses of managed honey bee colonies occur during the winter, suggesting that winter bees may have compromised immune function and higher susceptibility to diseases. We tested this hypothesis by comparing the expression of eight immune genes and naturally occurring infection levels of deformed wing virus (DWV), one of the most widespread viruses in A. mellifera populations, between summer and winter bees. Possible interactions between immune response and physiological activity were tested by measuring the expression of vitellogenin and methyl farnesoate epoxidase, a gene coding for the last enzyme involved in juvenile hormone biosynthesis. Our data show that high DWV loads in winter bees correlate with reduced expression of genes involved in the cellular immune response and physiological activity and high expression of humoral immune genes involved in antibacterial defense compared with summer bees. This expression pattern could reflect evolutionary adaptations to resist bacterial pathogens and economize energy during the winter under a pathogen landscape with reduced risk of pathogenic viral infections. The outbreak of Varroa destructor infestation could have overcome these adaptations by promoting the transmission of viruses. Our results suggest that reduced cellular immune function during the winter may have increased honey bee’s susceptibility to DWV. These results contribute to our understanding of honey bee colony losses in temperate regions. PMID:26121358
Kruse, Rikke; Vienberg, Sara G; Vind, Birgitte F; Andersen, Birgitte; Højlund, Kurt
2017-10-01
Pharmacological doses of FGF21 improve glucose tolerance, lipid metabolism and energy expenditure in rodents. Induced expression and secretion of FGF21 from muscle may increase browning of white adipose tissue (WAT) in a myokine-like manner. Recent studies have reported that insulin and exercise increase FGF21 in plasma. Obesity and type 2 diabetes are potentially FGF21-resistant states, but to what extent FGF21 responses to insulin and exercise training are preserved, and whether FGF21, its receptors and target genes are altered, remains to be established. The effects of insulin during euglycaemic-hyperinsulinaemic clamps and 10 week endurance training on serum FGF21 were examined in individuals with type 2 diabetes and in glucose tolerant overweight/obese and lean individuals. Gene expression of FGF21, its receptors and target genes in muscle and WAT biopsies was evaluated by quantitative real-time PCR (qPCR). Insulin increased serum and muscle FGF21 independent of overweight/obesity or type 2 diabetes, and there were no effects associated with exercise training. The insulin-induced increases in serum FGF21 and muscle FGF21 expression correlated tightly (p < 0.001). In WAT, overweight/obesity with and without type 2 diabetes led to reduced expression of KLB, but increased FGFR1c expression. However, the expression of most FGF21 target genes was unaltered except for reduced CIDEA expression in individuals with type 2 diabetes. Insulin-induced expression of muscle FGF21 correlates strongly with a rise in serum FGF21, and this response appears intact in overweight/obesity and type 2 diabetes. FGF21 resistance may involve reduced KLB expression in WAT. However, increased FGFR1c expression or other mechanisms seem to ensure adequate expression of most FGF21 target genes in WAT.
Choi, Woon Yong; Kim, Ji Seon; Park, Sung Jin; Ma, Choong Je; Lee, Hyeon Yong
2014-04-08
In this study, the effect of Codonopsis lanceolata fermented by lactic acid on controlling gene expression levels related to obesity was observed in an oligonucleotide chip microarray. Among 8170 genes, 393 genes were up regulated and 760 genes were down regulated in feeding the fermented C. lanceolata (FCL). Another 374 genes were up regulated and 527 genes down regulated without feeding the sample. The genes were not affected by the FCL sample. It was interesting that among those genes, Chytochrome P450, Dmbt1, LOC76487, and thyroid hormones, etc., were mostly up or down regulated. These genes are more related to lipid synthesis. We could conclude that the FCL possibly controlled the gene expression levels related to lipid synthesis, which resulted in reducing obesity. However, more detailed protein expression experiments should be carried out.
Albuquerque, Lindomar J C; Alavarse, Alex C; Carlan da Silva, Maria C; Zilse, Morgana S; Barth, Maitê T; Bellettini, Ismael C; Giacomelli, Fernando C
2018-02-01
The use of sugar-functionalized polyplexes as a nonviral gene delivery vector with lower cytotoxicity than the well-known polymeric carrier branched polyethyleneimine (BPEI) is investigated. The substitution of primary amine groups in the BPEI chains with lactose residues leads to larger polyplexes, presumably due to the higher amount of polymer required to complete DNA condensation. Nevertheless, the sugar functionalization substantially reduces the cytotoxicity of the assemblies. The nanocomplexes are taken up by the cells to a greater extent, whereas the levels of gene expression are maintained compared to those obtained using BPEI, which is known for its excellent transfection efficiency. Accordingly, the preparation of lower-cytotoxicity polyplexes while maintaining gene expression, which is highly relevant to the field, is demonstrated. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Brain region-specific altered expression and association of mitochondria-related genes in autism
2012-01-01
Background Mitochondrial dysfunction (MtD) has been observed in approximately five percent of children with autism spectrum disorders (ASD). MtD could impair highly energy-dependent processes such as neurodevelopment, thereby contributing to autism. Most of the previous studies of MtD in autism have been restricted to the biomarkers of energy metabolism, while most of the genetic studies have been based on mutations in the mitochondrial DNA (mtDNA). Despite the mtDNA, most of the proteins essential for mitochondrial replication and function are encoded by the genomic DNA; so far, there have been very few studies of those genes. Therefore, we carried out a detailed study involving gene expression and genetic association studies of genes related to diverse mitochondrial functions. Methods For gene expression analysis, postmortem brain tissues (anterior cingulate gyrus (ACG), motor cortex (MC) and thalamus (THL)) from autism patients (n=8) and controls (n=10) were obtained from the Autism Tissue Program (Princeton, NJ, USA). Quantitative real-time PCR arrays were used to quantify the expression of 84 genes related to diverse functions of mitochondria, including biogenesis, transport, translocation and apoptosis. We used the delta delta Ct (∆∆Ct) method for quantification of gene expression. DNA samples from 841 Caucasian and 188 Japanese families were used in the association study of genes selected from the gene expression analysis. FBAT was used to examine genetic association with autism. Results Several genes showed brain region-specific expression alterations in autism patients compared to controls. Metaxin 2 (MTX2), neurofilament, light polypeptide (NEFL) and solute carrier family 25, member 27 (SLC25A27) showed consistently reduced expression in the ACG, MC and THL of autism patients. NEFL (P = 0.038; Z-score 2.066) and SLC25A27 (P = 0.046; Z-score 1.990) showed genetic association with autism in Caucasian and Japanese samples, respectively. The expression of DNAJC19, DNM1L, LRPPRC, SLC25A12, SLC25A14, SLC25A24 and TOMM20 were reduced in at least two of the brain regions of autism patients. Conclusions Our study, though preliminary, brings to light some new genes associated with MtD in autism. If MtD is detected in early stages, treatment strategies aimed at reducing its impact may be adopted. PMID:23116158
Brain region-specific altered expression and association of mitochondria-related genes in autism.
Anitha, Ayyappan; Nakamura, Kazuhiko; Thanseem, Ismail; Yamada, Kazuo; Iwayama, Yoshimi; Toyota, Tomoko; Matsuzaki, Hideo; Miyachi, Taishi; Yamada, Satoru; Tsujii, Masatsugu; Tsuchiya, Kenji J; Matsumoto, Kaori; Iwata, Yasuhide; Suzuki, Katsuaki; Ichikawa, Hironobu; Sugiyama, Toshiro; Yoshikawa, Takeo; Mori, Norio
2012-11-01
Mitochondrial dysfunction (MtD) has been observed in approximately five percent of children with autism spectrum disorders (ASD). MtD could impair highly energy-dependent processes such as neurodevelopment, thereby contributing to autism. Most of the previous studies of MtD in autism have been restricted to the biomarkers of energy metabolism, while most of the genetic studies have been based on mutations in the mitochondrial DNA (mtDNA). Despite the mtDNA, most of the proteins essential for mitochondrial replication and function are encoded by the genomic DNA; so far, there have been very few studies of those genes. Therefore, we carried out a detailed study involving gene expression and genetic association studies of genes related to diverse mitochondrial functions. For gene expression analysis, postmortem brain tissues (anterior cingulate gyrus (ACG), motor cortex (MC) and thalamus (THL)) from autism patients (n=8) and controls (n=10) were obtained from the Autism Tissue Program (Princeton, NJ, USA). Quantitative real-time PCR arrays were used to quantify the expression of 84 genes related to diverse functions of mitochondria, including biogenesis, transport, translocation and apoptosis. We used the delta delta Ct (∆∆Ct) method for quantification of gene expression. DNA samples from 841 Caucasian and 188 Japanese families were used in the association study of genes selected from the gene expression analysis. FBAT was used to examine genetic association with autism. Several genes showed brain region-specific expression alterations in autism patients compared to controls. Metaxin 2 (MTX2), neurofilament, light polypeptide (NEFL) and solute carrier family 25, member 27 (SLC25A27) showed consistently reduced expression in the ACG, MC and THL of autism patients. NEFL (P = 0.038; Z-score 2.066) and SLC25A27 (P = 0.046; Z-score 1.990) showed genetic association with autism in Caucasian and Japanese samples, respectively. The expression of DNAJC19, DNM1L, LRPPRC, SLC25A12, SLC25A14, SLC25A24 and TOMM20 were reduced in at least two of the brain regions of autism patients. Our study, though preliminary, brings to light some new genes associated with MtD in autism. If MtD is detected in early stages, treatment strategies aimed at reducing its impact may be adopted.
Tanno, Ana Paula; das Neves, Vander José; Rosa, Kaleizu Teodoro; Cunha, Tatiana Sousa; Giordano, Fernanda Cristina Linarello; Calil, Caroline Morini; Guzzoni, Vinicius; Fernandes, Tiago; de Oliveira, Edilamar Menezes; Novaes, Pedro Duarte; Irigoyen, Maria Cláudia; Moura, Maria José Costa Sampaio; Marcondes, Fernanda Klein
2011-10-24
This study was conducted to assess the isolated and combined effects of nandrolone and resistance training on cardiac morphology, function, and mRNA expression of pathological cardiac hypertrophy markers. Wistar rats were randomly divided into four groups and submitted to 6 weeks of treatment with nandrolone and/or resistance training. Cardiac parameters were determined by echocardiography. Heart was analyzed for collagen infiltration. Real-time RT-PCR was used to assess the pathological cardiac hypertrophy markers. Both resistance training and nandrolone induced cardiac hypertrophy. Nandrolone increased the cardiac collagen content, and reduced the cardiac index in non-trained and trained groups, when compared with the respective vehicle-treated groups. Nandrolone reduced the ratio of maximum early to late transmitral flow velocity in non-trained and trained groups, when compared with the respective vehicle-treated groups. Nandrolone reduced the alpha-myosin heavy chain gene expression in both non-trained and trained groups, when compared with the respective vehicle-treated groups. Training reduced the beta-myosin heavy chain gene expression in the groups treated with vehicle and nandrolone. Only the association between training and nandrolone increased the expression of the skeletal alpha-actin gene and atrial natriuretic peptide in the left ventricle. This study indicated that nandrolone, whether associated with resistance training or not, induces cardiac hypertrophy, which is associated with enhanced collagen content, re-expression of fetal genes the in left ventricle, and impaired diastolic and systolic function. Copyright © 2011 Elsevier Inc. All rights reserved.
Rha1, a new mutant of Arabidopsis disturbed in root slanting, gravitropism and auxin physiology.
Fortunati, Alessio; Piconese, Silvia; Tassone, Paola; Ferrari, Simone; Migliaccio, Fernando
2008-11-01
A new Arabidopsis mutant is characterized (rha1) that shows, in the roots, reduced right-handed slanting, reduced gravitropism and resistance to 2,4-D, TIBA, NPA and ethylene. It also shows reduced length in the shoot and root, reduced number of lateral roots and shorter siliques. The gene was cloned through TAIL-PCR and resulted in a HSF. Because none of the known gravitropic and auxinic mutants result from damage in a HSF, rha1 seems to belong to a new class of this group of mutants. Quantitative PCR analysis showed that the expression of the gene is increased by heat and cold shock, and by presence of 2,4-D in the media. Study of the expression through the GUS reporter gene revealed increased expression in clinostated and gravistimulated plants, but only in adult tissues, and not in the apical meristems of shoots and roots.
Rha1, a new mutant of Arabidopsis disturbed in root slanting, gravitropism and auxin physiology
Fortunati, Alessio; Piconese, Silvia; Tassone, Paola; Ferrari, Simone
2008-01-01
A new Arabidopsis mutant is characterized (rha1) that shows, in the roots, reduced right-handed slanting, reduced gravitropism and resistance to 2,4-D, TIBA, NPA and ethylene. It also shows reduced length in the shoot and root, reduced number of lateral roots and shorter siliques. The gene was cloned through TAIL-PCR and resulted in a HSF. Because none of the known gravitropic and auxinic mutants result from damage in a HSF, rha1 seems to belong to a new class of this group of mutants. Quantitative PCR analysis showed that the expression of the gene is increased by heat and cold shock, and by presence of 2,4-D in the media. Study of the expression through the GUS reporter gene revealed increased expression in clinostated and gravistimulated plants, but only in adult tissues, and not in the apical meristems of shoots and roots. PMID:19704429
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christian, A T; Coleman, M A; Tucker, J D
2001-02-08
Gene Recovery Microdissection (GRM) is a unique and cost-effective process for producing chromosome region-specific libraries of expressed genes. It accelerates the pace, reduces the cost, and extends the capabilities of functional genomic research, the means by which scientists will put to life-saving, life-enhancing use their knowledge of any plant or animal genome.
A Theoretical Lower Bound for Selection on the Expression Levels of Proteins
Price, Morgan N.; Arkin, Adam P.
2016-06-11
We use simple models of the costs and benefits of microbial gene expression to show that changing a protein's expression away from its optimum by 2-fold should reduce fitness by at least [Formula: see text], where P is the fraction the cell's protein that the gene accounts for. As microbial genes are usually expressed at above 5 parts per million, and effective population sizes are likely to be above 10(6), this implies that 2-fold changes to gene expression levels are under strong selection, as [Formula: see text], where Ne is the effective population size and s is the selection coefficient.more » Thus, most gene duplications should be selected against. On the other hand, we predict that for most genes, small changes in the expression will be effectively neutral.« less
A Theoretical Lower Bound for Selection on the Expression Levels of Proteins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, Morgan N.; Arkin, Adam P.
We use simple models of the costs and benefits of microbial gene expression to show that changing a protein's expression away from its optimum by 2-fold should reduce fitness by at least [Formula: see text], where P is the fraction the cell's protein that the gene accounts for. As microbial genes are usually expressed at above 5 parts per million, and effective population sizes are likely to be above 10(6), this implies that 2-fold changes to gene expression levels are under strong selection, as [Formula: see text], where Ne is the effective population size and s is the selection coefficient.more » Thus, most gene duplications should be selected against. On the other hand, we predict that for most genes, small changes in the expression will be effectively neutral.« less
Yim, W J; Kim, K Y; Lee, Y W; Sundaram, S P; Lee, Y; Sa, T M
2014-07-15
Biotic stress like pathogenic infection increases ethylene biosynthesis in plants and ethylene inhibitors are known to alleviate the severity of plant disease incidence. This study aimed to reduce the bacterial spot disease incidence in tomato plants caused by Xanthomonas campestris pv. vesicatoria (XCV) by modulating stress ethylene with 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity of Methylobacterium strains. Under greenhouse condition, Methylobacterium strains inoculated and pathogen challenged tomato plants had low ethylene emission compared to pathogen infected ones. ACC accumulation and ACC oxidase (ACO) activity with ACO related gene expression increased in XCV infected tomato plants over Methylobacterium strains inoculated plants. Among the Methylobacterium spp., CBMB12 resulted lowest ACO related gene expression (1.46 Normalized Fold Expression), whereas CBMB20 had high gene expression (3.42 Normalized Fold Expression) in pathogen challenged tomato. But a significant increase in ACO gene expression (7.09 Normalized Fold Expression) was observed in the bacterial pathogen infected plants. In contrast, Methylobacterium strains enhanced β-1,3-glucanase and phenylalanine ammonia-lyase (PAL) enzyme activities in pathogen challenged tomato plants. The respective increase in β-1,3-glucanase related gene expressions due to CBMB12, CBMB15, and CBMB20 strains were 66.3, 25.5 and 10.4% higher over pathogen infected plants. Similarly, PAL gene expression was high with 0.67 and 0.30 Normalized Fold Expression, in pathogen challenged tomato plants inoculated with CBMB12 and CBMB15 strains. The results suggest that ethylene is a crucial factor in bacterial spot disease incidence and that methylobacteria with ACC deaminase activity can reduce the disease severity with ultimate pathogenesis-related protein increase in tomato. Copyright © 2014 Elsevier GmbH. All rights reserved.
Novosadova, E V; Manuilova, E S; Arsen'eva, E L; Khaidarova, N V; Dolotov, O V; Inozemtseva, L S; Kozachenkov, K Yu; Tarantul, V Z; Grivennikov, I A
2005-07-01
The effects of pub gene on proliferation and initial stages of differentiation of embryonic mouse stem cells were studied in vitro. To this end we used enhanced expression of human pub gene (hpub) and suppression of expression of mouse endogenous pub gene with RNA-interference in embryonic stem cells. Proliferative activity of genetically modified polyclonal lines of the embryonic stem cells transfected with plasmids carrying expressing hpub gene or plasmids generating small interference RNA to this gene did not differ from that of the control cells. Inhibition of expression of endogenous pub gene in embryonic stem cells using small interference RNA 2-fold decreased the formation of embryoid bodies, at the same time additional expression of exogenous hpub gene almost 2-fold increased their number in comparison with the control. It was hypothesized that pub gene participates in early stages of differentiation of embryonic stem cells leading to the formation of embryoid bodies.
Nair, Aswathy; Bhargava, Sujata
2012-01-01
Comparison of the expression of 13 genes involved in arbuscular mycorrhizal (AM) symbiosis was performed in a wild type tomato (Solanum lycopersicum cv 76R) and its reduced mycorrhizal colonization mutant rmc in response to colonization with Glomus fasiculatum. Four defense-related genes were induced to a similar extent in the mutant and wild type AM colonized plants, indicating a systemic response to AM colonization. Genes related to nutrient exchange between the symbiont partners showed higher expression in the AM roots of wild type plants than the mutant plants, which correlated with their arbuscular frequency. A symbiosis receptor kinase that is involved in both nodulation and AM symbiosis was not expressed in the rmc mutant. The fact that some colonization was observed in rmc was suggestive of the existence of an alternate colonization signaling pathway for AM symbiosis in this mutant. PMID:23221680
Anderson, Matthew Z; Gerstein, Aleeza C; Wigen, Lauren; Baller, Joshua A; Berman, Judith
2014-07-01
Cell-to-cell gene expression noise is thought to be an important mechanism for generating phenotypic diversity. Furthermore, telomeric regions are major sites for gene amplification, which is thought to drive genetic diversity. Here we found that individual subtelomeric TLO genes exhibit increased variation in transcript and protein levels at both the cell-to-cell level as well as at the population-level. The cell-to-cell variation, termed Telomere-Adjacent Gene Expression Noise (TAGEN) was largely intrinsic noise and was dependent upon genome position: noise was reduced when a TLO gene was expressed at an ectopic internal locus and noise was elevated when a non-telomeric gene was expressed at a telomere-adjacent locus. This position-dependent TAGEN also was dependent on Sir2p, an NAD+-dependent histone deacetylase. Finally, we found that telomere silencing and TAGEN are tightly linked and regulated in cis: selection for either silencing or activation of a TLO-adjacent URA3 gene resulted in reduced noise at the neighboring TLO but not at other TLO genes. This provides experimental support to computational predictions that the ability to shift between silent and active chromatin states has a major effect on cell-to-cell noise. Furthermore, it demonstrates that these shifts affect the degree of expression variation at each telomere individually.
Kondoh, N.; Yamada, T.; Kihara-Negishi, F.; Yamamoto, M.; Oikawa, T.
1998-01-01
To investigate the cell biological function of PU.1, a member of the Ets family of transcription factors, a vector capable of expressing the protein was transfected into HT1080 human fibrosarcoma cells. Exogenous expression of PU.1 in HT1080 cells reduced colony-forming efficiency but stimulated cell migration in soft agar, although it did not affect cell growth in adherent culture. Expression of the urokinase-type plasminogen activator (uPA) mRNA, which is known to be correlated with cell migration and invasion, was enhanced in PU.1 transfectants compared with mock transfectants. Run-on analysis demonstrated that uPA transcription was unaffected by PU.1, suggesting that this enhancement mainly occurs at a post-transcriptional level. On the other hand, treatment of HT1080 cells with the synthetic glucocorticoid dexamethasone (DEX; 10(-7) M) significantly reduced uPA gene expression at a transcriptional level. Furthermore, DEX inhibited cell migration in soft agar without affecting cell growth. These negative effects of DEX on uPA expression and cell migration were alleviated by the expression of PU.1 in HT1080 cells, whereas expression of the N-ras oncogene, which is responsible for maintenance of the transformed phenotypes in HT1080 cells, was unaffected by PU.1 expression or DEX treatment in the cells. Our results suggest that expression of PU.1 can stimulate uPA gene expression at the post-transcriptional level, which may subsequently lead to activation of cell motility and/or reduced cell-cell adhesion, but reduces anchorage-independent growth of HT1080 cells. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:9743289
Park, Ui Jun; Kim, Hyoung Tae; Cho, Won Hyun; Park, Jae Hyoung; Jung, Hye Ra; Kim, Min Young
2016-12-01
Ischemic preconditioning (IPC), including remote IPC (rIPC) and direct IPC (dIPC), is a promising method to decrease ischemia-reperfusion (IR) injury. This study tested the effect of both rIPC and dIPC on the genes for antioxidant enzymes and endoplasmic reticulum (ER) stress-related proteins. Twenty rats were randomly divided into the control and study groups. In the control group (n=10), the right hind limb was sham-operated. The left hind limb (IscR) of the control group underwent IR injury without IPC. In the study group (n=10), the right hind limb received IR injury after 3 cycles of rIPC. The IscR received IR injury after 3 cycles of dIPC. Gene expression was analyzed by Quantitative real-time polymerase chain reaction from the anterior tibialis muscle. The expression of the antioxidant enzyme genes including glutathione peroxidase (GPx), superoxide dismutase (SOD) 1 and catalase (CAT) were significantly reduced in IscR compared with sham treatment. In comparison with IscR, rIPC enhanced the expression of GPx, SOD2, and CAT genes. dIPC enhanced the expression of SOD2 and CAT genes. The expression of SOD2 genes was consistently higher in rIPC than in dIPC, but the difference was only significant for SOD2. The expression of genes for ER stress-related proteins tended to be reduced in IscR in comparison with sham treatment. However, the difference was only significant for C/EBP homologous protein (CHOP). In comparison with IscR, rIPC significantly up-regulated activating transcription factor 4 and CHOP, whereas dIPC up-regulated CHOP. Both rIPC and dIPC enhanced expression of genes for antioxidant enzymes and ER stress-related proteins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyazaki, Toshiaki; Ikeda, Kazuhiro; Horie-Inoue, Kuniko
Highlights: • APP knockdown reduced proliferation and migration of prostate cancer cells. • APP knockdown reduced expression of metalloproteinase and EMT-related genes. • APP overexpression promoted LNCaP cell migration. • APP overexpression increased expression of metalloproteinase and EMT-related genes. - Abstract: Amyloid precursor protein (APP) is a type I transmembrane protein, and one of its processed forms, β-amyloid, is considered to play a central role in the development of Alzheimer’s disease. We previously showed that APP is a primary androgen-responsive gene in prostate cancer and that its increased expression is correlated with poor prognosis for patients with prostate cancer. APPmore » has also been implicated in several human malignancies. Nevertheless, the mechanism underlying the pro-proliferative effects of APP on cancers is still not well-understood. In the present study, we explored a pathophysiological role for APP in prostate cancer cells using siRNA targeting APP (siAPP). The proliferation and migration of LNCaP and DU145 prostate cancer cells were significantly suppressed by siAPP. Differentially expressed genes in siAPP-treated cells compared to control siRNA-treated cells were identified by microarray analysis. Notably, several metalloproteinase genes, such as ADAM10 and ADAM17, and epithelial–mesenchymal transition (EMT)-related genes, such as VIM, and SNAI2, were downregulated in siAPP-treated cells as compared to control cells. The expression of these genes was upregulated in LNCaP cells stably expressing APP when compared with control cells. APP-overexpressing LNCaP cells exhibited enhanced migration in comparison to control cells. These results suggest that APP may contribute to the proliferation and migration of prostate cancer cells by modulating the expression of metalloproteinase and EMT-related genes.« less
Łopieńska-Biernat, Elżbieta; Zaobidna, Ewa Anna
2014-01-01
The in vitro effect of ivermectin lethal dose on the activity of trehalose-6-phosphate synthase (TPS) and phosphatase (TPP) and the expression of their mRNA (tps1, tps2, and tpp genes) in the muscle of adult female Ascaris suum was investigated. The presence of ivermectin in the medium caused a decrease in TPS and TPP activities during the experiment compared with the start and control groups. The exception was the group of worms grown for 8 hours in a IVM solution, in which there was a little higher TPS activity than in the control. Real-time qPCR analysis showed reduced expression of tps1 and tps2, and unchanged tpp expression after 20 hours of incubation relative to the expression at time zero. Relative to the appropriate control groups, the expression of tps2 gene was slight increased but the other two genes were reduced after 8-hours of IVM-treatment. Then the expression of all three genes was lower at the end of cultivation. The level of gene expression was positively correlated with the activity of specific enzymes. In the case of tpp gene there was only a weak correlation. Prolonged exposure to ivermectin was effective in lowering TPS and TPP activity and their mRNA expression. However, the drug did not block the pathway. PMID:25405239
Dmitryjuk, Małgorzata; Łopieńska-Biernat, Elżbieta; Zaobidna, Ewa Anna
2014-01-01
The in vitro effect of ivermectin lethal dose on the activity of trehalose-6-phosphate synthase (TPS) and phosphatase (TPP) and the expression of their mRNA (tps1, tps2, and tpp genes) in the muscle of adult female Ascaris suum was investigated. The presence of ivermectin in the medium caused a decrease in TPS and TPP activities during the experiment compared with the start and control groups. The exception was the group of worms grown for 8 hours in a IVM solution, in which there was a little higher TPS activity than in the control. Real-time qPCR analysis showed reduced expression of tps1 and tps2, and unchanged tpp expression after 20 hours of incubation relative to the expression at time zero. Relative to the appropriate control groups, the expression of tps2 gene was slight increased but the other two genes were reduced after 8-hours of IVM-treatment. Then the expression of all three genes was lower at the end of cultivation. The level of gene expression was positively correlated with the activity of specific enzymes. In the case of tpp gene there was only a weak correlation. Prolonged exposure to ivermectin was effective in lowering TPS and TPP activity and their mRNA expression. However, the drug did not block the pathway.
Fotouhi, Omid; Adel Fahmideh, Maral; Kjellman, Magnus; Sulaiman, Luqman; Höög, Anders; Zedenius, Jan; Hashemi, Jamileh; Larsson, Catharina
2014-07-01
Aberrant DNA methylation is a feature of human cancer affecting gene expression and tumor phenotype. Here, we quantified promoter methylation of candidate genes and global methylation in 44 small intestinal-neuroendocrine tumors (SI-NETs) from 33 patients by pyrosequencing. Findings were compared with gene expression, patient outcome and known tumor copy number alterations. Promoter methylation was observed for WIF1, RASSF1A, CTNNB1, CXCL14, NKX2-3, P16, LAMA1, and CDH1. By contrast APC, CDH3, HIC1, P14, SMAD2, and SMAD4 only had low levels of methylation. WIF1 methylation was significantly increased (P = 0.001) and WIF1 expression was reduced in SI-NETs vs. normal references (P = 0.003). WIF1, NKX2-3, and CXCL14 expression was reduced in metastases vs. primary tumors (P<0.02). Low expression of RASSF1A and P16 were associated with poor overall survival (P = 0.045 and P = 0.011, respectively). Global methylation determined by pyrosequencing of LINE1 repeats was reduced in tumors vs. normal references, and was associated with loss in chromosome 18. The tumors fell into three clusters with enrichment of WIF1 methylation and LINE1 hypomethylation in Cluster I and RASSF1A and CTNNB1 methylation and loss in 16q in Cluster II. In Cluster III, these alterations were low-abundant and NKX2-3 methylation was low. Similar analyses in the SI-NET cell lines HC45 and CNDT2 showed methylation for CDH1 and WIF1 and/or P16, CXCL14, NKX2-3, LAMA1, and CTNNB1. Treatment with the demethylating agent 5-azacytidine reduced DNA methylation and increased expression of these genes in vitro. In conclusion, promoter methylation of tumor suppressor genes is associated with suppressed gene expression and DNA copy number alterations in SI-NETs, and may be restored in vitro.
2013-01-01
Background The structured organization of cells in the brain plays a key role in its functional efficiency. This delicate organization is the consequence of unique molecular identity of each cell gradually established by precise spatiotemporal gene expression control during development. Currently, studies on the molecular-structural association are beginning to reveal how the spatiotemporal gene expression patterns are related to cellular differentiation and structural development. Results In this article, we aim at a global, data-driven study of the relationship between gene expressions and neuroanatomy in the developing mouse brain. To enable visual explorations of the high-dimensional data, we map the in situ hybridization gene expression data to a two-dimensional space by preserving both the global and the local structures. Our results show that the developing brain anatomy is largely preserved in the reduced gene expression space. To provide a quantitative analysis, we cluster the reduced data into groups and measure the consistency with neuroanatomy at multiple levels. Our results show that the clusters in the low-dimensional space are more consistent with neuroanatomy than those in the original space. Conclusions Gene expression patterns and developing brain anatomy are closely related. Dimensionality reduction and visual exploration facilitate the study of this relationship. PMID:23845024
Locus ceruleus control of state-dependent gene expression.
Cirelli, Chiara; Tononi, Giulio
2004-06-09
Wakefulness and sleep are accompanied by changes in behavior and neural activity, as well as by the upregulation of different functional categories of genes. However, the mechanisms responsible for such state-dependent changes in gene expression are unknown. Here we investigate to what extent state-dependent changes in gene expression depend on the central noradrenergic (NA) system, which is active in wakefulness and reduces its firing during sleep. We measured the levels of approximately 5000 transcripts expressed in the cerebral cortex of control rats and in rats pretreated with DSP-4 [N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine], a neurotoxin that removes the noradrenergic innervation of the cortex. We found that NA depletion reduces the expression of approximately 20% of known wakefulness-related transcripts. Most of these transcripts are involved in synaptic plasticity and in the cellular response to stress. In contrast, NA depletion increased the expression of the sleep-related gene encoding the translation elongation factor 2. These results indicate that the activity of the central NA system during wakefulness modulates neuronal transcription to favor synaptic potentiation and counteract cellular stress, whereas its inactivity during sleep may play a permissive role to enhance brain protein synthesis.
Consequences of reductive evolution for gene expression in an obligate endosymbiont.
Wilcox, Jennifer L; Dunbar, Helen E; Wolfinger, Russell D; Moran, Nancy A
2003-06-01
The smallest cellular genomes are found in obligate symbiotic and pathogenic bacteria living within eukaryotic hosts. In comparison with large genomes of free-living relatives, these reduced genomes are rearranged and have lost most regulatory elements. To test whether reduced bacterial genomes incur reduced regulatory capacities, we used full-genome microarrays to evaluate transcriptional response to environmental stress in Buchnera aphidicola, the obligate endosymbiont of aphids. The 580 genes of the B. aphidicola genome represent a subset of the 4500 genes known from the related organism, Escherichia coli. Although over 20 orthologues of E. coli heat stress (HS) genes are retained by B. aphidicola, only five were differentially expressed after near-lethal heat stress treatments, and only modest shifts were observed. Analyses of upstream regulatory regions revealed loss or degradation of most HS (sigma32) promoters. Genomic rearrangements downstream of an intact HS promoter yielded upregulation of a functionally unrelated and an inactivated gene. Reanalyses of comparable experimental array data for E. coli and Bacillus subtilis revealed that genome-wide differential expression was significantly lower in B. aphidicola. Our demonstration of a diminished stress response validates reports of temperature sensitivity in B. aphidicola and suggests that this reduced bacterial genome exhibits transcriptional inflexibility.
Peiris, Heshan; Duffield, Michael D.; Fadista, Joao; Kashmir, Vinder; Genders, Amanda J.; McGee, Sean L.; Martin, Alyce M.; Saiedi, Madiha; Morton, Nicholas; Carter, Roderick; Cousin, Michael A.; Oskolkov, Nikolay; Volkov, Petr; Hough, Tertius A.; Fisher, Elizabeth M. C.; Tybulewicz, Victor L. J.; Busciglio, Jorge; Coskun, Pinar E.; Becker, Ann; Belichenko, Pavel V.; Mobley, William C.; Ryan, Michael T.; Chan, Jeng Yie; Laybutt, D. Ross; Coates, P. Toby; Yang, Sijun; Ling, Charlotte; Groop, Leif; Pritchard, Melanie A.; Keating, Damien J.
2016-01-01
Type 2 diabetes (T2D) is a complex metabolic disease associated with obesity, insulin resistance and hypoinsulinemia due to pancreatic β-cell dysfunction. Reduced mitochondrial function is thought to be central to β-cell dysfunction. Mitochondrial dysfunction and reduced insulin secretion are also observed in β-cells of humans with the most common human genetic disorder, Down syndrome (DS, Trisomy 21). To identify regions of chromosome 21 that may be associated with perturbed glucose homeostasis we profiled the glycaemic status of different DS mouse models. The Ts65Dn and Dp16 DS mouse lines were hyperglycemic, while Tc1 and Ts1Rhr mice were not, providing us with a region of chromosome 21 containing genes that cause hyperglycemia. We then examined whether any of these genes were upregulated in a set of ~5,000 gene expression changes we had identified in a large gene expression analysis of human T2D β-cells. This approach produced a single gene, RCAN1, as a candidate gene linking hyperglycemia and functional changes in T2D β-cells. Further investigations demonstrated that RCAN1 methylation is reduced in human T2D islets at multiple sites, correlating with increased expression. RCAN1 protein expression was also increased in db/db mouse islets and in human and mouse islets exposed to high glucose. Mice overexpressing RCAN1 had reduced in vivo glucose-stimulated insulin secretion and their β-cells displayed mitochondrial dysfunction including hyperpolarised membrane potential, reduced oxidative phosphorylation and low ATP production. This lack of β-cell ATP had functional consequences by negatively affecting both glucose-stimulated membrane depolarisation and ATP-dependent insulin granule exocytosis. Thus, from amongst the myriad of gene expression changes occurring in T2D β-cells where we had little knowledge of which changes cause β-cell dysfunction, we applied a trisomy 21 screening approach which linked RCAN1 to β-cell mitochondrial dysfunction in T2D. PMID:27195491
Foletta, Victoria C; Brown, Erin L; Cho, Yoshitake; Snow, Rod J; Kralli, Anastasia; Russell, Aaron P
2013-12-01
The stress-responsive, tumor suppressor N-myc downstream-regulated gene 2 (Ndrg2) is highly expressed in striated muscle. In response to anabolic and catabolic signals, Ndrg2 is suppressed and induced, respectively, in mouse C2C12 myotubes. However, little is known about the mechanisms regulating Ndrg2 expression in muscle, as well as the biological role for Ndrg2 in differentiated myotubes. Here, we show that Ndrg2 is a target of a peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) and estrogen-related receptor alpha (ERRα) transcriptional program and is induced in response to endurance exercise, a physiological stress known also to increase PGC-1α/ERRα activity. Analyses of global gene and protein expression profiles in C2C12 myotubes with reduced levels of NDRG2, suggest that NDRG2 affects muscle growth, contractile properties, MAPK signaling, ion and vesicle transport and oxidative phosphorylation. Indeed, suppression of NDRG2 in myotubes increased protein synthesis and the expression of fast glycolytic myosin heavy chain isoforms, while reducing the expression of embryonic myosin Myh3, other contractile-associated genes and the MAPK p90 RSK1. Conversely, enhanced expression of NDRG2 reduced protein synthesis, and furthermore, partially blocked the increased protein synthesis rates elicited by a constitutively active form of ERRα. In contrast, suppressing or increasing levels of NDRG2 did not affect mRNA expression of genes involved in mitochondrial biogenesis that are regulated by PGC-1α or ERRα. This study shows that in C2C12 myotubes Ndrg2 is a novel PGC-1α/ERRα transcriptional target, which influences protein turnover and the regulation of genes involved in muscle contraction and function. © 2013 Elsevier B.V. All rights reserved.
Raikwar, Sudhanshu P; Thangavel, Ramasamy; Dubova, Iuliia; Selvakumar, Govindhasamy Pushpavathi; Ahmed, Mohammad Ejaz; Kempuraj, Duraisamy; Zaheer, Smita A; Iyer, Shankar S; Zaheer, Asgar
2018-04-27
Alzheimer's disease (AD) is a devastating, progressive neurodegenerative disorder that leads to severe cognitive impairment in elderly patients. Chronic neuroinflammation plays an important role in the AD pathogenesis. Glia maturation factor (GMF), a proinflammatory molecule discovered in our laboratory, is significantly upregulated in various regions of AD brains. We have previously reported that GMF is predominantly expressed in the reactive glial cells surrounding the amyloid plaques (APs) in the mouse and human AD brain. Microglia are the major source of proinflammatory cytokines and chemokines including GMF. Recently clustered regularly interspaced short palindromic repeats (CRISPR) based genome editing has been recognized to study the functions of genes that are implicated in various diseases. Here, we investigated if CRISPR-Cas9-mediated GMF gene editing leads to inhibition of GMF expression and suppression of microglial activation. Confocal microscopy of murine BV2 microglial cell line transduced with an adeno-associated virus (AAV) coexpressing Staphylococcus aureus (Sa) Cas9 and a GMF-specific guide RNA (GMF-sgRNA) revealed few cells expressing SaCas9 while lacking GMF expression, thereby confirming successful GMF gene editing. To further improve GMF gene editing efficiency, we developed lentiviral vectors (LVs) expressing either Streptococcus pyogenes (Sp) Cas9 or GMF-sgRNAs. BV2 cells cotransduced with LVs expressing SpCas9 and GMF-sgRNAs revealed reduced GMF expression and the presence of indels in the exons 2 and 3 of the GMF coding sequence. Lipopolysaccharide (LPS) treatment of GMF-edited cells led to reduced microglial activation as shown by reduced p38 MAPK phosphorylation. We believe that targeted in vivo GMF gene editing has a significant potential for developing a unique and novel AD therapy.
2013-01-01
Background Previous experiments have shown that the reduced gravity aboard the International Space Station (ISS) causes important alterations in Drosophila gene expression. These changes were shown to be intimately linked to environmental space-flight related constraints. Results Here, we use an array of different techniques for ground-based simulation of microgravity effects to assess the effect of suboptimal environmental conditions on the gene expression of Drosophila in reduced gravity. A global and integrative analysis, using “gene expression dynamics inspector” (GEDI) self-organizing maps, reveals different degrees in the responses of the transcriptome when using different environmental conditions or microgravity/hypergravity simulation devices. Although the genes that are affected are different in each simulation technique, we find that the same gene ontology groups, including at least one large multigene family related with behavior, stress response or organogenesis, are over represented in each case. Conclusions These results suggest that the transcriptome as a whole can be finely tuned to gravity force. In optimum environmental conditions, the alteration of gravity has only mild effects on gene expression but when environmental conditions are far from optimal, the gene expression must be tuned greatly and effects become more robust, probably linked to the lack of experience of organisms exposed to evolutionary novel environments such as a gravitational free one. PMID:23806134
Hayashi, Takashi; Murakami, Kazuo
2009-07-31
This report mainly summarizes the results of our study in which the physiological effects of laughter--as a positive emotional expression--were analyzed with respect to gene expression changes to demonstrate the hypothesis that the mind and genes mutually influence each other. We observed that laughter suppressed 2-h postprandial blood glucose level increase in patients with type 2 diabetes and analyzed gene expression changes. Some genes showed specific changes in their expression. In addition, we revealed that laughter decreased the levels of prorenin in blood; prorenin is involved in the onset of diabetic complications. Further, laughter normalized the expression of the prorenin receptor gene on peripheral blood leukocytes, which had been reduced in diabetic patients; this demonstrated that the inhibitory effects of laughter on the onset/deterioration of diabetic complications at the gene-expression level. In a subsequent study, we demonstrated the effects of laughter by discriminating 14 genes, related to natural killer (NK) cell activity, to exhibit continuous increases in expression as a result of laughter. Our results supported NK cell-mediated improvement in glucose tolerance at the gene-expression level. In this report, we also review other previous studies on laughter.
Kapferer, I; Schmidt, S; Gstir, R; Durstberger, G; Huber, L A; Vietor, I
2011-02-01
During surgical periodontal treatment, EMD is topically applied in order to facilitate regeneration of the periodontal ligament, acellular cementum and alveolar bone. Suppresion of epithelial down-growth is essential for successful periodontal regeneration; however, the underlying mechanisms of how EMD influences epithelial wound healing are poorly understood. In the present study, the effects of EMD on gene-expression profiling in an epithelial cell line (HSC-2) model were investigated. Gene-expression modifications, determined using a comparative genome-wide expression-profiling strategy, were independently validated by quantitative real-time RT-PCR. Additionally, cell cycle, cell growth and in vitro wound-healing assays were conducted. A set of 43 EMD-regulated genes was defined, which may be responsible for the reduced epithelial down-growth upon EMD application. Gene ontology analysis revealed genes that could be attributed to pathways of locomotion, developmental processes and associated processes such as regulation of cell size and cell growth. Additionally, eight regulated genes have previously been reported to take part in the process of epithelial-to-mesenchymal transition. Several independent experimental assays revealed significant inhibition of cell migration, growth and cell cycle by EMD. The set of EMD-regulated genes identified in this study offers the opportunity to clarify mechanisms underlying the effects of EMD on epithelial cells. Reduced epithelial repopulation of the dental root upon periodontal surgery may be the consequence of reduced migration and cell growth, as well as epithelial-to-mesenchymal transition. © 2010 John Wiley & Sons A/S.
Bhatlekar, Seema; Viswanathan, Vignesh; Fields, Jeremy Z; Boman, Bruce M
2018-02-01
Because HOX genes encode master regulatory transcription factors that regulate stem cells (SCs) during development and aberrant expression of HOX genes occurs in various cancers, our goal was to determine if dysregulation of HOX genes is involved in the SC origin of colorectal cancer (CRC). We previously reported that HOXA4 and HOXD10 are expressed in the colonic SC niche and are overexpressed in CRC. HOX gene expression was studied in SCs from human colon tissue and CRC cells (CSCs) using qPCR and immunostaining. siRNA-mediated knockdown of HOX expression was used to evaluate the role of HOX genes in modulating cancer SC (CSC) phenotype at the level of proliferation, SC marker expression, and sphere formation. All-trans-retinoic-acid (ATRA), a differentiation-inducing agent was evaluated for its effects on HOX expression and CSC growth. We found that HOXA4 and HOXA9 are up-regulated in CRC SCs. siRNA knockdown of HOXA4 and HOXA9 reduced: (i) proliferation and sphere-formation and (ii) gene expression of known SC markers (ALDH1, CD166, LGR5). These results indicate that proliferation and self-renewal ability of CRC SCs are reduced in HOXA4 and HOXA9 knockdown cells. ATRA decreased HOXA4, HOXA9, and HOXD10 expression in parallel with reduction in ALDH1 expression, self-renewal, and proliferation. Overall, our findings indicate that overexpression of HOXA4 and HOXA9 contributes to self-renewal and overpopulation of SCs in CRC. Strategies designed to modulate HOX expression may provide ways to target malignant SCs and to develop more effective therapies for CRC. © 2017 Wiley Periodicals, Inc.
Hebelstrup, Kim H; van Zanten, Martijn; Mandon, Julien; Voesenek, Laurentius A C J; Harren, Frans J M; Cristescu, Simona M; Møller, Ian M; Mur, Luis A J
2012-09-01
Nitric oxide (NO) and ethylene are signalling molecules that are synthesized in response to oxygen depletion. Non-symbiotic plant haemoglobins (Hbs) have been demonstrated to act in roots under oxygen depletion to scavenge NO. Using Arabidopsis thaliana plants, the online emission of NO or ethylene was directly quantified under normoxia, hypoxia (0.1-1.0% O(2)), or full anoxia. The production of both gases was increased with reduced expression of either of the Hb genes GLB1 or GLB2, whereas NO emission decreased in plants overexpressing these genes. NO emission in plants with reduced Hb gene expression represented a major loss of nitrogen equivalent to 0.2mM nitrate per 24h under hypoxic conditions. Hb gene expression was greatly enhanced in flooded roots, suggesting induction by reduced oxygen diffusion. The function could be to limit loss of nitrogen under NO emission. NO reacts with thiols to form S-nitrosylated compounds, and it is demonstrated that hypoxia substantially increased the content of S-nitrosylated compounds. A parallel up-regulation of Hb gene expression in the normoxic shoots of the flooded plants may reflect signal transmission from root to shoot via ethylene and a role for Hb in the shoots. Hb gene expression was correlated with ethylene-induced upward leaf movement (hyponastic growth) but not with hypocotyl growth, which was Hb independent. Taken together the data suggest that Hb can influence flood-induced hyponasty via ethylene-dependent and, possibly, ethylene-independent pathways.
Microarray profiling of diaphyseal bone of rats suffering from hypervitaminosis A.
Lind, Thomas; Hu, Lijuan; Lind, P Monica; Sugars, Rachael; Andersson, Göran; Jacobson, Annica; Melhus, Håkan
2012-03-01
Vitamin A is the only known compound that produces spontaneous fractures in rats. In an effort to resolve the molecular mechanism behind this effect, we fed young male rats high doses of vitamin A and performed microarray analysis of diaphyseal bone with and without marrow after 1 week, i.e., just before the first fractures appeared. Of the differentially expressed genes in cortical bone, including marrow, 98% were upregulated. In contrast, hypervitaminotic cortical bone without marrow showed reduced expression of 37% of differentially expressed genes. Gene ontology (GO) analysis revealed that only samples containing bone marrow were associated with a GO term, which principally represented extracellular matrix. This is consistent with the histological findings of increased endosteal/marrow osteoblast number. Fourteen genes, including Cyp26b1, which is known to be upregulated by vitamin A, were selected and verified by real-time PCR. In addition, immunohistochemical staining of bone sections confirmed that the bone-specific molecule osteoadherin was upregulated. Further analysis of the major gene-expression changes revealed apparent augmented Wnt signaling in the sample containing bone marrow but reduced Wnt signaling in cortical bone. Moreover, induced expression of hypoxia-associated genes was found only in samples containing bone marrow. Together, these results highlight the importance of compartment-specific analysis of bone and corroborate previous observations of compartment-specific effects of vitamin A, with reduced activity in cortical bone but increased activity in the endosteal/marrow compartment. We specifically identify potential key osteoblast-, Wnt signaling-, and hypoxia-associated genes in the processes leading to spontaneous fractures.
Decker, Vicki H G; Bandau, Franziska; Gundale, Michael J; Cole, Christopher T; Albrectsen, Benedicte R
2017-02-01
Condensed tannin (CT) contents of European aspen (Populus tremula L.) vary among genotypes, and increases in nitrogen (N) availability generally reduce plants' tannin production in favor of growth, through poorly understood mechanisms. We hypothesized that intrinsic tannin production rates may co-vary with gene expression responses to soil N and resource allocation within the phenylpropanoid pathway (PPP). Thus, we examined correlations between soil N levels and both expression patterns of eight PPP genes (measured by quantitative-reverse transcription PCR) and foliar phenolic compounds (measured by liquid chromatography-mass spectrometry) in young aspen genets with intrinsically extreme CT levels. Monitored phenolics included salicinoids, lignins, flavones, flavonols, CT precursors and CTs. The PPP genes were consistently expressed more strongly in high-CT trees. Low N supplements reduced expression of genes throughout the PPP in all genets, while high N doses restored expression of genes at the beginning and end of the pathway. These PPP changes were not reflected in pools of tannin precursors, but varying correlations between gene expression and foliar phenolic pools were detected in young and mature leaves, suggesting that processes linking gene expression and the resulting phenolics vary spatially and temporally. Precursor fluxes suggested that CT-related metabolic rate or sink controls are linked to intrinsic carbon allocation strategies associated with N responses. Overall, we found more negative correlations (indicative of allocation trade-offs) between PPP gene expression and phenolic products following N additions in low-CT plants than in high-CT plants. The tannin-related expression dynamics suggest that, in addition to defense, relative tannin levels may also be indicative of intraspecific variations in the way aspen genets respond to soil fertility. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Sun, Zhongxiang; Shi, Qi; Xu, Cuicui; Wang, Rumeng; Wang, Huanhuan; Song, Yuanyuan; Zeng, Rensen
2018-06-19
The major yolk protein precursors (YPP) gene, vitellogenin (Vg), usually considered as a reproductive indicator and molecular marker for evaluating insect fecundity, is controlled by insect hormone (mainly ecdysteroids and juvenile hormone), transcription factors and many other fecundity-related genes. To better understand the underlying molecular regulation mechanisms of the NlVg in the brown planthopper Nilaparvata lugens (N. lugens), the correlation between one early ecdysone response gene E74 and one important fecundity-related gene angiotensin converting enzyme (ACE) on the regulation of Vg gene expression, was investigated. We first showed that the mRNA expression level of NlACE were significantly higher in a high-fecundity population (HFP) than a low-fecundity population (LFP) at different development stages, and knockdown of NlACE expression by RNA interference (RNAi) results in a reduced level of NlVg expression and N. lugens fecundity. Subsequently, we analyzed the promoter of NlACE and found an E74A binding site, which was also differentially expressed in HFP and LFP. Then a gene putatively encoding E74A, namely NlE74A, predominant in the ovary and fat body was cloned and characterized. Furthermore, the developmental profile during female adult and the tissue-specific expression pattern of NlACE and NlE74A were similar to the expression pattern of NlVg gene, implying that both NlACE and NlE74A may be involved in regulating the expression of NlVg. Finally, after injecting the dsRNA of NlE74A, the NlACE expression levels were significantly reduced simultaneously at 24 h and 48 h post-injection, and the NlVg expression level was significant reduced at 24 h post-injection and the downswing was more significant at 48 h post-injection. These results imply that regulation of NlE74A on NlVg transcription might be mediated by NlACE through the E74 binding site at the NlACE promoter region in N. lugens. Copyright © 2018. Published by Elsevier Inc.
Scanlon, K J; Jiao, L; Funato, T; Wang, W; Tone, T; Rossi, J J; Kashani-Sabet, M
1991-01-01
The c-fos gene product Fos has been implicated in many cellular processes, including signal transduction, DNA synthesis, and resistance to antineoplastic agents. A fos ribozyme (catalytic RNA) was designed to evaluate the effects of suppressing Fos protein synthesis on expression of enzymes involved in DNA synthesis, DNA repair, and drug resistance. DNA encoding the fos ribozyme (fosRb) was cloned into the pMAMneo expression plasmid, and the resultant vector was transfected into A2780DDP cells resistant to the chemotherapeutic agent cisplatin. The parental drug-sensitive A2780S cells were transfected with the pMMV vector containing the c-fos gene. Morphological alterations were accompanied by significant changes in pharmacological sensitivity in both c-fos- and fosRb-transfected cells. pMAMneo fosRb transfectants revealed decreased c-fos gene expression, concomitant with reduced thymidylate (dTMP) synthase, DNA polymerase beta, topoisomerase I, and metallothionein IIA mRNAs. In contrast, c-myc expression was elevated after fos ribozyme action. Insertion of a mutant ribozyme, mainly capable of antisense activity, into A2780DDP cells resulted in smaller reductions in c-fos gene expression and in cisplatin resistance than the active ribozyme. These studies establish a role for c-fos in drug resistance and in mediating DNA synthesis and repair processes by modulating expression of genes such as dTMP synthase, DNA polymerase beta, and topoisomerase I. These studies also suggest the utility of ribozymes in the analysis of cellular gene expression. Images PMID:1660142
Mastronardi, Claudio; Smiley, Gregory G; Raber, Jacob; Kusakabe, Takashi; Kawaguchi, Akio; Matagne, Valerie; Dietzel, Anja; Heger, Sabine; Mungenast, Alison E; Cabrera, Ricardo; Kimura, Shioko; Ojeda, Sergio R
2006-12-20
Thyroid transcription factor 1 (TTF1) [also known as Nkx2.1 (related to the NK-2 class of homeobox genes) and T/ebp (thyroid-specific enhancer-binding protein)], a homeodomain gene required for basal forebrain morphogenesis, remains expressed in the hypothalamus after birth, suggesting a role in neuroendocrine function. Here, we show an involvement of TTF1 in the control of mammalian puberty and adult reproductive function. Gene expression profiling of the nonhuman primate hypothalamus revealed that TTF1 expression increases at puberty. Mice in which the Ttf1 gene was ablated from differentiated neurons grew normally and had normal basal ganglia/hypothalamic morphology but exhibited delayed puberty, reduced reproductive capacity, and a short reproductive span. These defects were associated with reduced hypothalamic expression of genes required for sexual development and deregulation of a gene involved in restraining puberty. No extrapyramidal impairments associated with basal ganglia dysfunction were apparent. Thus, although TTF1 appears to fulfill only a morphogenic function in the ventral telencephalon, once this function is satisfied in the hypothalamus, TTF1 remains active as part of the transcriptional machinery controlling female sexual development.
Deng, Changwang; Li, Ying; Zhou, Lei; Cho, Joonseok; Patel, Bhavita; Terada, Nao; Li, Yangqiu; Bungert, Jörg; Qiu, Yi; Huang, Suming
2015-01-01
Summary Trithorax proteins and long-intergenic noncoding RNAs are critical regulators of embryonic stem cell pluripotency; however, how they cooperatively regulate germ layer mesoderm specification remains elusive. We report here that HoxBlinc RNA first specifies Flk1+ mesoderm and then promotes hematopoietic differentiation through regulating hoxb gene pathways. HoxBlinc binds to the hoxb genes, recruits Setd1a/MLL1 complexes, and mediates long-range chromatin interactions to activate transcription of the hoxb genes. Depletion of HoxBlinc by shRNA-mediated KD or CRISPR-Cas9-mediated genetic deletion inhibits expression of hoxb genes and other factors regulating cardiac/hematopoietic differentiation. Reduced hoxb gene expression is accompanied by decreased recruitment of Set1/MLL1 and H3K4me3 modification, as well as by reduced chromatin loop formation. Re-expression of hoxb2-b4 genes in HoxBlinc-depleted embryoid bodies rescues Flk1+ precursors that undergo hematopoietic differentiation. Thus, HoxBlinc plays an important role in controlling hoxb transcription networks that mediate specification of mesoderm-derived Flk1+ precursors and differentiation of Flk1+ cells into hematopoietic lineages. PMID:26725110
Hemoglobin genetics: recent contributions of GWAS and gene editing
Smith, Elenoe C.; Orkin, Stuart H.
2016-01-01
The β-hemoglobinopathies are inherited disorders resulting from altered coding potential or expression of the adult β-globin gene. Impaired expression of β-globin reduces adult hemoglobin (α2β2) production, the hallmark of β-thalassemia. A single-base mutation at codon 6 leads to formation of HbS (α2βS2) and sickle cell disease. While the basis of these diseases is known, therapy remains largely supportive. Bone marrow transplantation is the only curative therapy. Patients with elevated levels of fetal hemoglobin (HbF, α2γ2) as adults exhibit reduced symptoms and enhanced survival. The β-globin gene locus is a paradigm of cell- and developmental stage-specific regulation. Although the principal erythroid cell transcription factors are known, mechanisms responsible for silencing of the γ-globin gene were obscure until application of genome-wide association studies (GWAS). Here, we review findings in the field. GWAS identified BCL11A as a candidate negative regulator of γ-globin expression. Subsequent studies have established BCL11A as a quantitative repressor. GWAS-related single-nucleotide polymorphisms lie within an essential erythroid enhancer of the BCL11A gene. Disruption of a discrete region within the enhancer reduces BCL11A expression and induces HbF expression, providing the basis for gene therapy using gene editing tools. A recently identified, second silencing factor, leukemia/lymphoma-related factor/Pokemon, shares features with BCL11A, including interaction with the nucleosome remodeling deacetylase repressive complex. These findings suggest involvement of a common pathway for HbF silencing. In addition, we discuss other factors that may be involved in γ-globin gene silencing and their potential manipulation for therapeutic benefit in treating the β-hemoglobinopathies. PMID:27340226
Kishk, Abdelaziz; Anber, Helmy A I; AbdEl-Raof, Tsamoh K; El-Sherbeni, AbdEl-Hakeem D; Hamed, Sobhy; Gowda, Siddarame; Killiny, Nabil
2017-03-01
Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae), is an important pest of citrus. In addition, D. citri is the vector of Huanglongbing, a destructive disease in citrus, also known as citrus greening disease caused by Candidatus Liberibacter asiaticus. Huanglongbing causes huge losses for citrus industries. Insecticide application for D. citri is the major strategy to prevent disease spread. The heavy use of insecticides causes development of insecticide resistance. We used RNA interference (RNAi) to silence genes implicated in pesticide resistance in order to increase the susceptibility. The activity of dsRNA to reduce the expression of carboxyesterases including esterases FE4 (EstFE4) and acetylcholinesterases (AChe) in D. citri was investigated. The dsRNA was applied topically to the fourth and fifth instars of nymphs. We targeted several EstFE4 and AChe genes using dsRNA against a consensus sequence for each of them. Five concentrations (25, 50, 75, 100, 125 ng/μl) from both dsRNAs were used. The treatments with the dsRNA caused concentration dependent nymph mortality. The highest gene expression levels of both AChe and EstFE4 were found in the fourth and fifth nymphal instars. Gene expression analysis showed that AChe genes were downregulated in emerged adults from dsRNA-AChe-treated nymphs compared to controls. However, EstFE4 genes were not affected. In the same manner, treatment with dsRNA-EstFE4 reduced expression level of EstFE4 genes in emerged adults from treated nymphs, but did not affect the expression of AChe genes. In the era of environmentally friendly control strategies, RNAi is a new promising venue to reduce pesticide applications. © 2017 Wiley Periodicals, Inc.
Duraimani, Shanthi; Schneider, Robert H; Randall, Otelio S; Nidich, Sanford I; Xu, Shichen; Ketete, Muluemebet; Rainforth, Maxwell A; Gaylord-King, Carolyn; Salerno, John W; Fagan, John
2015-01-01
African Americans suffer from disproportionately high rates of hypertension and cardiovascular disease. Psychosocial stress, lifestyle and telomere dysfunction contribute to the pathogenesis of hypertension and cardiovascular disease. This study evaluated effects of stress reduction and lifestyle modification on blood pressure, telomerase gene expression and lifestyle factors in African Americans. Forty-eight African American men and women with stage I hypertension who participated in a larger randomized controlled trial volunteered for this substudy. These subjects participated in either stress reduction with the Transcendental Meditation technique and a basic health education course (SR) or an extensive health education program (EHE) for 16 weeks. Primary outcomes were telomerase gene expression (hTERT and hTR) and clinic blood pressure. Secondary outcomes included lifestyle-related factors. Data were analyzed for within-group and between-group changes. Both groups showed increases in the two measures of telomerase gene expression, hTR mRNA levels (SR: p< 0.001; EHE: p< 0.001) and hTERT mRNA levels (SR: p = 0.055; EHE: p< 0.002). However, no statistically significant between-group changes were observed. Both groups showed reductions in systolic BP. Adjusted changes were SR = -5.7 mm Hg, p< 0.01; EHE = -9.0 mm Hg, p < 0.001 with no statistically significant difference between group difference. There was a significant reduction in diastolic BP in the EHE group (-5.3 mm Hg, p< 0.001) but not in SR (-1.2 mm Hg, p = 0.42); the between-group difference was significant (p = 0.04). The EHE group showed a greater number of changes in lifestyle behaviors. In this pilot trial, both stress reduction (Transcendental Meditation technique plus health education) and extensive health education groups demonstrated increased telomerase gene expression and reduced BP. The association between increased telomerase gene expression and reduced BP observed in this high-risk population suggest hypotheses that telomerase gene expression may either be a biomarker for reduced BP or a mechanism by which stress reduction and lifestyle modification reduces BP. ClinicalTrials.gov NCT00681200.
Duraimani, Shanthi; Schneider, Robert H.; Randall, Otelio S.; Nidich, Sanford I.; Xu, Shichen; Ketete, Muluemebet; Rainforth, Maxwell A.; Gaylord-King, Carolyn; Salerno, John W.; Fagan, John
2015-01-01
Background African Americans suffer from disproportionately high rates of hypertension and cardiovascular disease. Psychosocial stress, lifestyle and telomere dysfunction contribute to the pathogenesis of hypertension and cardiovascular disease. This study evaluated effects of stress reduction and lifestyle modification on blood pressure, telomerase gene expression and lifestyle factors in African Americans. Methods Forty-eight African American men and women with stage I hypertension who participated in a larger randomized controlled trial volunteered for this substudy. These subjects participated in either stress reduction with the Transcendental Meditation technique and a basic health education course (SR) or an extensive health education program (EHE) for 16 weeks. Primary outcomes were telomerase gene expression (hTERT and hTR) and clinic blood pressure. Secondary outcomes included lifestyle-related factors. Data were analyzed for within-group and between-group changes. Results Both groups showed increases in the two measures of telomerase gene expression, hTR mRNA levels (SR: p< 0.001; EHE: p< 0.001) and hTERT mRNA levels (SR: p = 0.055; EHE: p< 0.002). However, no statistically significant between-group changes were observed. Both groups showed reductions in systolic BP. Adjusted changes were SR = -5.7 mm Hg, p< 0.01; EHE = -9.0 mm Hg, p < 0.001 with no statistically significant difference between group difference. There was a significant reduction in diastolic BP in the EHE group (-5.3 mm Hg, p< 0.001) but not in SR (-1.2 mm Hg, p = 0.42); the between-group difference was significant (p = 0.04). The EHE group showed a greater number of changes in lifestyle behaviors. Conclusion In this pilot trial, both stress reduction (Transcendental Meditation technique plus health education) and extensive health education groups demonstrated increased telomerase gene expression and reduced BP. The association between increased telomerase gene expression and reduced BP observed in this high-risk population suggest hypotheses that telomerase gene expression may either be a biomarker for reduced BP or a mechanism by which stress reduction and lifestyle modification reduces BP. Trial Registration ClinicalTrials.gov NCT00681200 PMID:26571023
Requirement for STAT1 in LPS-induced gene expression in macrophages.
Ohmori, Y; Hamilton, T A
2001-04-01
This study examines the role of the signal transducer and activator of transcription 1 (STAT1) in induction of lipopolysaccharide (LPS)-stimulated gene expression both in vitro and in vivo. LPS-induced expression of an interferon (IFN)-inducible 10-kDa protein (IP-10), IFN regulatory factor-1 (IRF-1), and inducible nitric oxide synthase (iNOS) mRNAs was severely impaired in macrophages prepared from Stat1-/- mice, whereas levels of tumor necrosis factor alpha and KC (a C-X-C chemokine) mRNA in LPS-treated cell cultures were unaffected. A similar deficiency in LPS-induced gene expression was observed in livers and spleens from Stat1-/- mice. The reduced LPS-stimulated gene expression seen in Stat1-/- macrophages was not the result of reduced activation of nuclear factor kappaB. LPS stimulated the delayed activation of both IFN-stimulated response element and IFN-gamma-activated sequence binding activity in macrophages from wild-type mice. Activation of these STAT1-containing transcription factors was mediated by the intermediate induction of type I IFNs, since the LPS-induced IP-10, IRF-1, and iNOS mRNA expression was markedly reduced in macrophages from IFN-alpha/betaR-/- mice and blocked by cotreatment with antibodies against type I IFN. These results indicate that indirect activation of STAT1 by LPS-induced type I IFN participates in promoting optimal expression of LPS-inducible genes, and they suggest that STAT1 may play a critical role in innate immunity against gram-negative bacterial infection.
Molloy, Ben; Dominguez Castro, Patricia; Cormican, Paul; Trimble, Valerie; Mahmud, Nasir; McManus, Ross
2015-01-01
Genetic studies have to date identified 43 genome wide significant coeliac disease susceptibility (CD) loci comprising over 70 candidate genes. However, how altered regulation of such disease associated genes contributes to CD pathogenesis remains to be elucidated. Recently there has been considerable emphasis on characterising cell type specific and stimulus dependent genetic variants. Therefore in this study we used RNA sequencing to profile over 70 transcriptomes of CD4+ T cells, a cell type crucial for CD pathogenesis, in both stimulated and resting samples from individuals with CD and unaffected controls. We identified extensive transcriptional changes across all conditions, with the previously established CD gene IFNy the most strongly up-regulated gene (log2 fold change 4.6; Padjusted = 2.40x10-11) in CD4+ T cells from CD patients compared to controls. We show a significant correlation of differentially expressed genes with genetic studies of the disease to date (Padjusted = 0.002), and 21 CD candidate susceptibility genes are differentially expressed under one or more of the conditions used in this study. Pathway analysis revealed significant enrichment of immune related processes. Co-expression network analysis identified several modules of coordinately expressed CD genes. Two modules were particularly highly enriched for differentially expressed genes (P<2.2x10-16) and highlighted IFNy and the genetically associated transcription factor BACH2 which showed significantly reduced expression in coeliac samples (log2FC -1.75; Padjusted = 3.6x10-3) as key regulatory genes in CD. Genes regulated by BACH2 were very significantly over-represented among our differentially expressed genes (P<2.2x10-16) indicating that reduced expression of this master regulator of T cell differentiation promotes a pro-inflammatory response and strongly corroborates genetic evidence that BACH2 plays an important role in CD pathogenesis. PMID:26444573
Pepin, Émilie; Al-Mass, Anfal; Attané, Camille; Zhang, Kezhuo; Lamontagne, Julien; Lussier, Roxane; Madiraju, S. R. Murthy; Joly, Erik; Ruderman, Neil B.; Sladek, Robert; Prentki, Marc; Peyot, Marie-Line
2016-01-01
Diet induced obese (DIO) mice can be stratified according to their weight gain in response to high fat diet as low responders (LDR) and high responders (HDR). This allows the study of β-cell failure and the transitions to prediabetes (LDR) and early diabetes (HDR). C57BL/6N mice were fed for 8 weeks with a normal chow diet (ND) or a high fat diet and stratified as LDR and HDR. Freshly isolated islets from ND, LDR and HDR mice were studied ex-vivo for mitochondrial metabolism, AMPK activity and signalling, the expression and activity of key enzymes of energy metabolism, cholesterol synthesis, and mRNA profiling. Severely compromised glucose-induced insulin secretion in HDR islets, as compared to ND and LDR islets, was associated with suppressed AMP-kinase activity. HDR islets also showed reduced acetyl-CoA carboxylase activity and enhanced activity of 3-hydroxy-3-methylglutaryl-CoA reductase, which led respectively to elevated fatty acid oxidation and increased cholesterol biosynthesis. HDR islets also displayed mitochondrial membrane hyperpolarization and reduced ATP turnover in the presence of elevated glucose. Expression of protein kinase Cε, which reduces both lipolysis and production of signals for insulin secretion, was elevated in DIO islets. Genes whose expression increased or decreased by more than 1.2-fold were minor between LDR and ND islets (17 differentially expressed), but were prominent between HDR and ND islets (1508 differentially expressed). In HDR islets, particularly affected genes were related to cell cycle and proliferation, AMPK signaling, mitochondrial metabolism and cholesterol metabolism. In conclusion, chronically reduced AMPK activity, mitochondrial dysfunction, elevated cholesterol biosynthesis in islets, and substantial alterations in gene expression accompany β-cell failure in HDR islets. The β-cell compensation process in the prediabetic state (LDR) is largely independent of transcriptional adaptive changes, whereas the transition to early diabetes (HDR) is associated with major alterations in gene expression. PMID:27043434
Baker, Katie; Bayer, Micha; Cook, Nicola; Dreißig, Steven; Dhillon, Taniya; Russell, Joanne; Hedley, Pete E; Morris, Jenny; Ramsay, Luke; Colas, Isabelle; Waugh, Robbie; Steffenson, Brian; Milne, Iain; Stephen, Gordon; Marshall, David; Flavell, Andrew J
2014-01-01
The low-recombining pericentromeric region of the barley genome contains roughly a quarter of the genes of the species, embedded in low-recombining DNA that is rich in repeats and repressive chromatin signatures. We have investigated the effects of pericentromeric region residency upon the expression, diversity and evolution of these genes. We observe no significant difference in average transcript level or developmental RNA specificity between the barley pericentromeric region and the rest of the genome. In contrast, all of the evolutionary parameters studied here show evidence of compromised gene evolution in this region. First, genes within the pericentromeric region of wild barley show reduced diversity and significantly weakened purifying selection compared with the rest of the genome. Second, gene duplicates (ohnolog pairs) derived from the cereal whole-genome duplication event ca. 60MYa have been completely eliminated from the barley pericentromeric region. Third, local gene duplication in the pericentromeric region is reduced by 29% relative to the rest of the genome. Thus, the pericentromeric region of barley is a permissive environment for gene expression but has restricted gene evolution in a sizeable fraction of barley's genes. PMID:24947331
Wiberley-Bradford, Amy E; Busse, James S; Jiang, Jiming; Bethke, Paul C
2014-11-16
Storing potato tubers at low temperatures minimizes sprouting and disease but can cause an accumulation of reducing sugars in a process called cold-induced sweetening. Tubers with increased amounts of reducing sugars produce dark-colored, bitter-tasting fried products with elevated amounts of acrylamide, a possible carcinogen. Vacuolar invertase (VInv), which converts sucrose produced by starch breakdown to glucose and fructose, is the key determinant of reducing sugar accumulation during cold-induced sweetening. In this study, wild-type tubers and tubers in which VInv expression was reduced by RNA interference were used to investigate time- and temperature-dependent changes in sugar contents, chip color, and expression of VInv and other genes involved in starch metabolism in tubers during long-term cold storage. VInv activities and tuber reducing sugar contents were much lower, and tuber sucrose contents were much higher, in transgenic than in wild-type tubers stored at 3-9°C for up to eight months. Large differences in VInv mRNA accumulation were not observed at later times in storage, especially at temperatures below 9°C, so differences in invertase activity were likely established early in the storage period and maintained by stability of the invertase protein. Sugar contents, chip color, and expression of several of the studied genes, including AGPase and GBSS, were affected by storage temperature in both wild-type and transgenic tubers. Though transcript accumulation for other sugar-metabolism genes was affected by storage temperature and duration, it was essentially unaffected by invertase silencing and altered sugar contents. Differences in stem- and bud-end sugar contents in wild-type and transgenic tubers suggested different compartmentalization of sucrose at the two ends of stored tubers. VInv silencing significantly reduced cold-induced sweetening in stored potato tubers, likely by means of differential VInv expression early in storage. Transgenic tubers retained sensitivity to storage temperature, and accumulated greater amounts of sucrose, glucose and fructose at 3°C than at 7-9°C. At each storage temperature, suppression of VInv expression and large differences in tuber sugar contents had no effect on expression of AGPase and GBSS, genes involved in starch metabolism, suggesting that transcription of these genes is not regulated by tuber sugar content.
Chatterjee, Sumantra; Kapoor, Ashish; Akiyama, Jennifer A.; ...
2016-09-29
Common sequence variants in cis-regulatory elements (CREs) are suspected etiological causes of complex disorders. We previously identified an intronic enhancer variant in the RET gene disrupting SOX10 binding and increasing Hirschsprung disease (HSCR) risk 4-fold. We now show that two other functionally independent CRE variants, one binding Gata2 and the other binding Rarb, also reduce Ret expression and increase risk 2- and 1.7-fold. By studying human and mouse fetal gut tissues and cell lines, we demonstrate that reduced RET expression propagates throughout its gene regulatory network, exerting effects on both its positive and negative feedback components. We also provide evidencemore » that the presence of a combination of CRE variants synergistically reduces RET expression and its effects throughout the GRN. These studies show how the effects of functionally independent non-coding variants in a coordinated gene regulatory network amplify their individually small effects, providing a model for complex disorders.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatterjee, Sumantra; Kapoor, Ashish; Akiyama, Jennifer A.
Common sequence variants in cis-regulatory elements (CREs) are suspected etiological causes of complex disorders. We previously identified an intronic enhancer variant in the RET gene disrupting SOX10 binding and increasing Hirschsprung disease (HSCR) risk 4-fold. We now show that two other functionally independent CRE variants, one binding Gata2 and the other binding Rarb, also reduce Ret expression and increase risk 2- and 1.7-fold. By studying human and mouse fetal gut tissues and cell lines, we demonstrate that reduced RET expression propagates throughout its gene regulatory network, exerting effects on both its positive and negative feedback components. We also provide evidencemore » that the presence of a combination of CRE variants synergistically reduces RET expression and its effects throughout the GRN. These studies show how the effects of functionally independent non-coding variants in a coordinated gene regulatory network amplify their individually small effects, providing a model for complex disorders.« less
Kirsten, Karina Schreiner; Canova, Raíssa; Soveral, Lucas de Figueiredo; Friedrich, Maria Tereza; Frandoloso, Rafael; Kreutz, Luiz Carlos
2017-05-01
The effect of atrazine (ATZ) and its metabolites on aquatic vertebrate species has been a matter of concern to researchers and environmentalist. In this study we exposed head kidney monocytes to sublethal concentrations of atrazine (1 and 10 μg/ml -1 ), corresponding to 1% and 10% of the LC 50-96h , to evaluate the expression of immune-related genes central to immune stimulation. The mRNA levels of TNF-α, Mieloperoxidase and Mx genes were significantly reduced following 24 h exposure to both concentrations of ATZ. The mRNA levels of iRAK4 were reduced only at the higher ATZ concentration and the mRNA levels of IL-1β were not affected. The results reported here support our previous findings on the immunosuppressive effect of ATZ indicating its potential to interfere with the expression of immune-related genes, and strengthen the need to regulate ATZ usage aiming to preserve animal and human health. Copyright © 2017 Elsevier Ltd. All rights reserved.
da Silva, Paula Renata Alves; Vidal, Marcia Soares; de Paula Soares, Cleiton; Polese, Valéria; Simões-Araújo, Jean Luís; Baldani, José Ivo
2016-11-01
Among the members of the genus Burkholderia, Burkholderia tropica has the ability to fix nitrogen and promote sugarcane plant growth as well as act as a biological control agent. There is little information about how this bacterium metabolizes carbohydrates as well as those carbon sources found in the sugarcane juice that accumulates in stems during plant growth. Reverse transcription quantitative PCR (RT-qPCR) can be used to evaluate changes in gene expression during bacterial growth on different carbon sources. Here we tested the expression of six reference genes, lpxC, gyrB, recA, rpoA, rpoB, and rpoD, when cells were grown with glucose, fructose, sucrose, mannitol, aconitic acid, and sugarcane juice as carbon sources. The lpxC, gyrB, and recA were selected as the most stable reference genes based on geNorm and NormFinder software analyses. Validation of these three reference genes during strain Ppe8 growth on the same carbon sources showed that genes involved in glycogen biosynthesis (glgA, glgB, glgC) and trehalose biosynthesis (treY and treZ) were highly expressed when Ppe8 was grown in aconitic acid relative to other carbon sources, while otsA expression (trehalose biosynthesis) was reduced with all carbon sources. In addition, the expression level of the ORF_6066 (gluconolactonase) gene was reduced on sugarcane juice. The results confirmed the stability of the three selected reference genes (lpxC, gyrB, and recA) during the RT-qPCR and also their robustness by evaluating the relative expression of genes involved in glycogen and trehalose biosynthesis when strain Ppe8 was grown on different carbon sources and sugarcane juice.
Reduced opsin gene expression in a cave-dwelling fish
Tobler, Michael; Coleman, Seth W.; Perkins, Brian D.; Rosenthal, Gil G.
2010-01-01
Regressive evolution of structures associated with vision in cave-dwelling organisms is the focus of intense research. Most work has focused on differences between extreme visual phenotypes: sighted, surface animals and their completely blind, cave-dwelling counterparts. We suggest that troglodytic systems, comprising multiple populations that vary along a gradient of visual function, may prove critical in understanding the mechanisms underlying initial regression in visual pathways. Gene expression assays of natural and laboratory-reared populations of the Atlantic molly (Poecilia mexicana) revealed reduced opsin expression in cave-dwelling populations compared with surface-dwelling conspecifics. Our results suggest that the reduction in opsin expression in cave-dwelling populations is not phenotypically plastic but reflects a hardwired system not rescued by exposure to light during retinal ontogeny. Changes in opsin gene expression may consequently represent a first evolutionary step in the regression of eyes in cave organisms. PMID:19740890
Nitschke, Silvia; Cortleven, Anne; Iven, Tim; Havaux, Michel; Schmülling, Thomas
2016-01-01
The circadian clock helps plants measure daylength and adapt to changes in the day-night rhythm. We found that changes in the light-dark regime triggered stress responses, eventually leading to cell death, in leaves of Arabidopsis thaliana plants with reduced cytokinin levels or defective cytokinin signaling. Prolonged light treatment followed by a dark period induced stress and cell death marker genes while reducing photosynthetic efficiency. This response, called circadian stress, is also characterized by altered expression of clock and clock output genes. In particular, this treatment strongly reduced the expression of CIRCADIAN CLOCK ASSOCIATED1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY). Intriguingly, similar changes in gene expression and cell death were observed in clock mutants lacking proper CCA1 and LHY function. Circadian stress caused strong changes in reactive oxygen species- and jasmonic acid (JA)-related gene expression. The activation of the JA pathway, involving the accumulation of JA metabolites, was crucial for the induction of cell death, since the cell death phenotype was strongly reduced in the jasmonate resistant1 mutant background. We propose that adaptation to circadian stress regimes requires a normal cytokinin status which, acting primarily through the AHK3 receptor, supports circadian clock function to guard against the detrimental effects of circadian stress. PMID:27354555
de Barros, Patrícia Pimentel; Freire, Fernanda; Rossoni, Rodnei Dennis; Junqueira, Juliana Campos; Jorge, Antonio Olavo Cardoso
2017-07-01
Pathogenicity of Candida albicans is associated with its capacity switch from yeast-like to hyphal growth. The hyphal form is capable to penetrate the epithelial surfaces and to damage the host tissues. Therefore, many investigations have focused on mechanisms that control the morphological transitions of C. albicans. Recently, certain studies have showed that non-albicans Candida species can reduce the capacity of C. albicans to form biofilms and to develop candidiasis in animal models. Then, the objective of this study was to evaluate the effects of Candida krusei and Candida glabrata on the morphogenesis of C. albicans. Firstly, the capacity of reference and clinical strains of C. albicans in forming hyphae was tested in vitro. After that, the expression of HWP1 (hyphal wall protein 1) gene was determined by quantitative real-time PCR (polymerase chain reaction) assay. For both reference and clinical strains, a significant inhibition of the hyphae formation was observed when C. albicans was incubated in the presence of C. krusei or C. glabrata compared to the control group composed only by C. albicans. In addition, the culture mixed of C. albicans-C. krusei or C. albicans-C. glabrata reduced significantly the expression of HWP1 gene of C. albicans in relation to single cultures of this specie. In both filamentation and gene expression assays, C. krusei showed the higher inhibitory activity on the morphogenesis of C. albicans compared to C. glabrata. C. krusei and C. glabrata are capable to reduce the filamentation of C. albicans and consequently decrease the expression of the HWP1 gene.
USDA-ARS?s Scientific Manuscript database
In our previous study with the brown planthopper (BPH), Nilaparvata lugens, triazophos (tzp, organophosphate) treatments led to substantial up-regulation of a male spermatogenesis-associated protein 5-like gene (NlSPATA5) compared to untreated controls. Mating with tzp-treated males significantly in...
Kaurilind, Eve; Brosché, Mikael
2017-01-01
Plants are exposed to abiotic and biotic stress conditions throughout their lifespans that activates various defense programs. Programmed cell death (PCD) is an extreme defense strategy the plant uses to manage unfavorable environments as well as during developmentally induced senescence. Here we investigated the role of leaf age on the regulation of defense gene expression in Arabidopsis thaliana. Two lesion mimic mutants with misregulated cell death, catalase2 (cat2) and defense no death1 (dnd1) were used together with several double mutants to dissect signaling pathways regulating defense gene expression associated with cell death and leaf age. PCD marker genes showed leaf age dependent expression, with the highest expression in old leaves. The salicylic acid (SA) biosynthesis mutant salicylic acid induction deficient2 (sid2) had reduced expression of PCD marker genes in the cat2 sid2 double mutant demonstrating the importance of SA biosynthesis in regulation of defense gene expression. While the auxin- and jasmonic acid (JA)- insensitive auxin resistant1 (axr1) double mutant cat2 axr1 also led to decreased expression of PCD markers; the expression of several marker genes for SA signaling (ISOCHORISMATE SYNTHASE 1, PR1 and PR2) were additionally decreased in cat2 axr1 compared to cat2. The reduced expression of these SA markers genes in cat2 axr1 implicates AXR1 as a regulator of SA signaling in addition to its known role in auxin and JA signaling. Overall, the current study reinforces the important role of SA signaling in regulation of leaf age-related transcript signatures.
Wang, Zhanwei; Katsaros, Dionyssios; Shen, Yi; Fu, Yuanyuan; Canuto, Emilie Marion; Benedetto, Chiara; Lu, Lingeng; Chu, Wen-Ming; Risch, Harvey A.; Yu, Herbert
2015-01-01
To investigate the biologic relevance and clinical implication of genes involved in multiple gene expression signatures for breast cancer prognosis, we identified 16 published gene expression signatures, and selected two genes, MAD2L1 and BUB1. These genes appeared in 5 signatures and were involved in cell-cycle regulation. We analyzed the expression of these genes in relation to tumor features and disease outcomes. In vitro experiments were also performed in two breast cancer cell lines, MDA-MB-231 and MDA-MB-468, to assess cell proliferation, migration and invasion after knocking down the expression of these genes. High expression of these genes was found to be associated with aggressive tumors and poor disease-free survival of 203 breast cancer patients in our study, and the association with survival was confirmed in an online database consisting of 914 patients. In vitro experiments demonstrated that lowering the expression of these genes by siRNAs reduced tumor cell growth and inhibited cell migration and invasion. Our investigation suggests that MAD2L1 and BUB1 may play important roles in breast cancer progression, and measuring the expression of these genes may assist the prediction of breast cancer prognosis. PMID:26287798
BMP8B Is a Tumor Suppressor Gene Regulated by Histone Acetylation in Gastric Cancer.
Wisnieski, Fernanda; Leal, Mariana Ferreira; Calcagno, Danielle Queiroz; Santos, Leonardo Caires; Gigek, Carolina Oliveira; Chen, Elizabeth Suchi; Artigiani, Ricardo; Demachki, Sâmia; Assumpção, Paulo Pimentel; Lourenço, Laércio Gomes; Burbano, Rommel Rodríguez; Smith, Marília Cardoso
2017-04-01
Different from genetic alterations, the reversible nature of epigenetic modifications provides an interesting opportunity for the development of clinically relevant therapeutics in different tumors. In this study, we aimed to screen and validate candidate genes regulated by the epigenetic marker associated with transcriptional activation, histone acetylation, in gastric cancer (GC). We first compared gene expression profile of trichostatin A-treated and control GC cell lines using microarray assay. Among the 55 differentially expressed genes identified in this analysis, we chose the up-regulated genes BMP8B and BAMBI for further analyses, that included mRNA and histone acetylation quantification in paired GC and nontumor tissue samples. BMP8B expression was reduced in GC compared to nontumor samples (P < 0.01). In addition, reduced BMP8B expression was associated with poorly differentiated GC (P = 0.02). No differences or histopathological associations were identified concerning BAMBI expression. Furthermore, acetylated H3K9 and H4K16 levels at BMP8B were increased in GC compared to nontumors (P < 0.05). However, reduced levels of acetylated H3K9 and H4K16 were associated with poorly differentiated GC (P < 0.05). Reduced levels of acetylated H3K9 was also associated with diffuse-type histological GC (P < 0.05). Notably, reduced BMP8B mRNA and acetylated H4K16 levels were positively correlated in poorly differentiated GC (P < 0.05). Our study demonstrated that BMP8B seems to be a tumor suppressor gene regulated by H4K16 acetylation in poorly differentiated GC. Therefore, BMP8B may be a potential target for TSA-based therapies in this GC sample subset. J. Cell. Biochem. 118: 869-877, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wuddineh, Wegi A.; Mazarei, Mitra; Zhang, Ji -Yi
High biomass production and wide adaptation has made switchgrass ( Panicum virgatum L.) an important candidate lignocellulosic bioenergy crop. One major limitation of this and other lignocellulosic feedstocks is the recalcitrance of complex carbohydrates to hydrolysis for conversion to biofuels. Lignin is the major contributor to recalcitrance as it limits the accessibility of cell wall carbohydrates to enzymatic breakdown into fermentable sugars. Therefore, genetic manipulation of the lignin biosynthesis pathway is one strategy to reduce recalcitrance. Here, we identified a switchgrass Knotted1 transcription factor, PvKN1, with the aim of genetically engineering switchgrass for reduced biomass recalcitrance for biofuel production. Genemore » expression of the endogenous PvKN1 gene was observed to be highest in young inflorescences and stems. Ectopic overexpression of PvKN1 in switchgrass altered growth, especially in early developmental stages. Transgenic lines had reduced expression of most lignin biosynthetic genes accompanied by a reduction in lignin content suggesting the involvement of PvKN1 in the broad regulation of the lignin biosynthesis pathway. Moreover, the reduced expression of the Gibberellin 20-oxidase (GA20ox) gene in tandem with the increased expression of Gibberellin 2-oxidase (GA2ox) genes in transgenic PvKN1 lines suggest that PvKN1 may exert regulatory effects via modulation of GA signaling. Furthermore, overexpression of PvKN1 altered the expression of cellulose and hemicellulose biosynthetic genes and increased sugar release efficiency in transgenic lines. Our findings demonstrated that switchgrass PvKN1 is a putative ortholog of maize KN1 that is linked to plant lignification and cell wall and development traits as a major regulatory gene. Therefore, targeted overexpression of PvKN1 in bioenergy feedstocks may provide one feasible strategy for reducing biomass recalcitrance and simultaneously improving plant growth characteristics.« less
Wuddineh, Wegi A.; Mazarei, Mitra; Zhang, Ji -Yi; ...
2016-04-28
High biomass production and wide adaptation has made switchgrass ( Panicum virgatum L.) an important candidate lignocellulosic bioenergy crop. One major limitation of this and other lignocellulosic feedstocks is the recalcitrance of complex carbohydrates to hydrolysis for conversion to biofuels. Lignin is the major contributor to recalcitrance as it limits the accessibility of cell wall carbohydrates to enzymatic breakdown into fermentable sugars. Therefore, genetic manipulation of the lignin biosynthesis pathway is one strategy to reduce recalcitrance. Here, we identified a switchgrass Knotted1 transcription factor, PvKN1, with the aim of genetically engineering switchgrass for reduced biomass recalcitrance for biofuel production. Genemore » expression of the endogenous PvKN1 gene was observed to be highest in young inflorescences and stems. Ectopic overexpression of PvKN1 in switchgrass altered growth, especially in early developmental stages. Transgenic lines had reduced expression of most lignin biosynthetic genes accompanied by a reduction in lignin content suggesting the involvement of PvKN1 in the broad regulation of the lignin biosynthesis pathway. Moreover, the reduced expression of the Gibberellin 20-oxidase (GA20ox) gene in tandem with the increased expression of Gibberellin 2-oxidase (GA2ox) genes in transgenic PvKN1 lines suggest that PvKN1 may exert regulatory effects via modulation of GA signaling. Furthermore, overexpression of PvKN1 altered the expression of cellulose and hemicellulose biosynthetic genes and increased sugar release efficiency in transgenic lines. Our findings demonstrated that switchgrass PvKN1 is a putative ortholog of maize KN1 that is linked to plant lignification and cell wall and development traits as a major regulatory gene. Therefore, targeted overexpression of PvKN1 in bioenergy feedstocks may provide one feasible strategy for reducing biomass recalcitrance and simultaneously improving plant growth characteristics.« less
Des Marteaux, Lauren E; McKinnon, Alexander H; Udaka, Hiroko; Toxopeus, Jantina; Sinclair, Brent J
2017-05-08
Cold tolerance is a key determinant of temperate insect distribution and performance. Chill-susceptible insects lose ion and water homeostasis during cold exposure, but prior cold acclimation improves both cold tolerance and defense of homeostasis. The mechanisms underlying these processes are mostly unknown; cold acclimation is thought to enhance ion transport in the cold and/or prevent leak of water and ions. To identify candidate mechanisms of cold tolerance plasticity we generated transcriptomes of ionoregulatory tissues (hindgut and Malpighian tubules) from Gryllus pennsylvanicus crickets and compared gene expression in warm- and cold-acclimated individuals. We assembled a G. pennsylvanicus transcriptome de novo from 286 million 50-bp reads, yielding 70,037 contigs (~44% of which had putative BLAST identities). We compared the transcriptomes of warm- and cold-acclimated hindguts and Malpighian tubules. Cold acclimation led to a ≥ 2-fold change in the expression of 1493 hindgut genes (733 downregulated, 760 upregulated) and 2008 Malpighian tubule genes (1009 downregulated, 999 upregulated). Cold-acclimated crickets had altered expression of genes putatively associated with ion and water balance, including: a downregulation of V-ATPase and carbonic anhydrase in the Malpighian tubules and an upregulation of Na + -K + ATPase in the hindgut. We also observed acclimation-related shifts in the expression of cytoskeletal genes in the hindgut, including actin and actin-anchoring/stabilizing proteins, tubulin, α-actinin, and genes involved in adherens junctions organization. In both tissues, cold acclimation led to differential expression of genes encoding cytochrome P450s, glutathione-S-transferases, apoptosis factors, DNA repair, and heat shock proteins. This is the first G. pennsylvanicus transcriptome, and our tissue-specific approach yielded new candidate mechanisms of cold tolerance plasticity. Cold acclimation may reduce loss of hemolymph volume in the cold by 1) decreasing primary urine production via reduced expression of carbonic anhydrase and V-ATPase in the Malpighian tubules and 2) by increasing Na + (and therefore water) reabsorption across the hindgut via increase in Na + -K + ATPase expression. Cold acclimation may reduce chilling injury by remodeling and stabilizing the hindgut epithelial cytoskeleton and cell-to-cell junctions, and by increasing the expression of genes involved in DNA repair, detoxification, and protein chaperones.
Psychological Well-Being and the Human Conserved Transcriptional Response to Adversity
Fredrickson, Barbara L.; Grewen, Karen M.; Algoe, Sara B.; Firestine, Ann M.; Arevalo, Jesusa M. G.; Ma, Jeffrey; Cole, Steve W.
2015-01-01
Research in human social genomics has identified a conserved transcriptional response to adversity (CTRA) characterized by up-regulated expression of pro-inflammatory genes and down-regulated expression of Type I interferon- and antibody-related genes. This report seeks to identify the specific aspects of positive psychological well-being that oppose such effects and predict reduced CTRA gene expression. In a new confirmation study of 122 healthy adults that replicated the approach of a previously reported discovery study, mixed effect linear model analyses identified a significant inverse association between expression of CTRA indicator genes and a summary measure of eudaimonic well-being from the Mental Health Continuum – Short Form. Analyses of a 2- representation of eudaimonia converged in finding correlated psychological and social subdomains of eudaimonic well-being to be the primary carriers of CTRA associations. Hedonic well-being showed no consistent CTRA association independent of eudaimonic well-being, and summary measures integrating hedonic and eudaimonic well-being showed less stable CTRA associations than did focal measures of eudaimonia (psychological and social well-being). Similar results emerged from analyses of pooled discovery and confirmation samples (n = 198). Similar results also emerged from analyses of a second new generalization study of 107 healthy adults that included the more detailed Ryff Scales of Psychological Well-being and found this more robust measure of eudaimonic well-being to also associate with reduced CTRA gene expression. Five of the 6 major sub-domains of psychological well-being predicted reduced CTRA gene expression when analyzed separately, and 3 remained distinctively prognostic in mutually adjusted analyses. All associations were independent of demographic characteristics, health-related confounders, and RNA indicators of leukocyte subset distribution. These results identify specific sub-dimensions of eudaimonic well-being as promising targets for future interventions to mitigate CTRA gene expression, and provide no support for any independent favorable contribution from hedonic well-being. PMID:25811656
Castresana, C; Garcia-Luque, I; Alonso, E; Malik, V S; Cashmore, A R
1988-01-01
We have analyzed promoter regulatory elements from a photoregulated CAB gene (Cab-E) isolated from Nicotiana plumbaginifolia. These studies have been performed by introducing chimeric gene constructs into tobacco cells via Agrobacterium tumefaciens-mediated transformation. Expression studies on the regenerated transgenic plants have allowed us to characterize three positive and one negative cis-acting elements that influence photoregulated expression of the Cab-E gene. Within the upstream sequences we have identified two positive regulatory elements (PRE1 and PRE2) which confer maximum levels of photoregulated expression. These sequences contain multiple repeated elements related to the sequence-ACCGGCCCACTT-. We have also identified within the upstream region a negative regulatory element (NRE) extremely rich in AT sequences, which reduces the level of gene expression in the light. We have defined a light regulatory element (LRE) within the promoter region extending from -396 to -186 bp which confers photoregulated expression when fused to a constitutive nopaline synthase ('nos') promoter. Within this region there is a 132-bp element, extending from -368 to -234 bp, which on deletion from the Cab-E promoter reduces gene expression from high levels to undetectable levels. Finally, we have demonstrated for a full length Cab-E promoter conferring high levels of photoregulated expression, that sequences proximal to the Cab-E TATA box are not replaceable by corresponding sequences from a 'nos' promoter. This contrasts with the apparent equivalence of these Cab-E and 'nos' TATA box-proximal sequences in truncated promoters conferring low levels of photoregulated expression. Images PMID:2901343
Mallery, Susan R.; Zwick, Jared C.; Pei, Ping; Tong, Meng; Larsen, Peter E.; Shumway, Brian S.; Lu, Bo; Fields, Henry W.; Mumper, Russell J.; Stoner, Gary D.
2010-01-01
Reduced expression of proapoptotic and terminal differentiation genes in conjunction with increased levels of the proinflammatory and angiogenesis-inducing enzymes, cyclooxygenase 2 (COX-2) and inducible nitric oxide synthase (iNOS), correlate with malignant transformation of oral intraepithelial neoplasia (IEN). Accordingly, this study investigated the effects of a 10% (w/w) freeze-dried black raspberry gel on oral IEN histopathology, gene expression profiles, intraepithelial COX-2 and iNOS proteins, and microvascular densities. Our laboratories have shown that freeze-dried black raspberries possess antioxidant properties and also induce keratinocyte apoptosis and terminal differentiation. Oral IEN tissues were hemisected to provide samples for pretreatment diagnoses and establish baseline biochemical and molecular variables. Treatment of the remaining lesional tissue (0.5 g gel applied four times daily for 6 weeks) began 1 week after the initial biopsy. RNA was isolated from snap-frozen IEN lesions for microarray analyses, followed by quantitative reverse transcription-PCR validation. Additional epithelial gene-specific quantitative reverse transcription-PCR analyses facilitated the assessment of target tissue treatment effects. Surface epithelial COX-2 and iNOS protein levels and microvascular densities were determined by image analysis quantified immunohistochemistry. Topical berry gel application uniformly suppressed genes associated with RNA processing, growth factor recycling, and inhibition of apoptosis. Although the majority of participants showed posttreatment decreases in epithelial iNOS and COX-2 proteins, only COX-2 reductions were statistically significant. These data show that berry gel application modulated oral IEN gene expression profiles, ultimately reducing epithelial COX-2 protein. In a patient subset, berry gel application also reduced vascular densities in the superficial connective tissues and induced genes associated with keratinocyte terminal differentiation. PMID:18559542
Vitushynska, M V; Matiytsiv, N P; Chernyk, Y
2015-01-01
The study has shown that both functional gene knockout Sodl and Sod2 and their overexpression in neurons and glial tissue increase the sensitivity of Drosophila melanogaster to oxidative stress (OS) conditions. The lowest survival rate was only 20.5% in insects with Sod2 knockout in neurons. Comparative analysis of the survival curves showed that adults with altered tissue-specific expression of the studied genes had reduced average and maximum life span. Under OS conditions induced by 5% hydrogen peroxide the life spans of wild type Oregon R and transgenic insects were significantly reduced. Altered Sod gene expression in glial tissue leads to degenerative changes in Drosophila brain at the young age. During the aging of insects and the action of pro-oxidants increasing of neurodegenerative phenotype is observed.
[Effect of methyl tertiary butyl ether on the expression of proto-oncogenes and function genes].
Zhou, W; Huang, G; Zhang, H
1999-05-30
Methyl tertiary butyl ether (MTBE) is a new gasoline additive, which is used to increase the combustion of gasoline and to reduce the emission of harmful exhaust from automobile. The mechanism for the carcinogenesis of MTBE in animals is not clear. Immunohistochemistry method was used to detect the effect of MTBE on the expression of c-myc and p21 proteins in NIH3T3 cells. Dot hybridization method was used to explore the expression of c-myc gene and GST-P(glutathione S-transferase-P) gene in the of MTBE treated rats. The results showed that MTBE could enhance the expression of c-myc protein, but had no effect on p21 protein. MTBE could induce high expression of c-myc gene, and had no effect on the expression of GST-P gene. These results suggest that the high expression of c-myc gene induced by MTBE might be one of the mechanisms of its carcinogenicity in animal.
Levels of Lycopene β-Cyclase 1 Modulate Carotenoid Gene Expression and Accumulation in Daucus carota
Moreno, Juan Camilo; Pizarro, Lorena; Fuentes, Paulina; Handford, Michael; Cifuentes, Victor; Stange, Claudia
2013-01-01
Plant carotenoids are synthesized and accumulated in plastids through a highly regulated pathway. Lycopene β-cyclase (LCYB) is a key enzyme involved directly in the synthesis of α-carotene and β-carotene through the cyclization of lycopene. Carotenoids are produced in both carrot (Daucus carota) leaves and reserve roots, and high amounts of α-carotene and β-carotene accumulate in the latter. In some plant models, the presence of different isoforms of carotenogenic genes is associated with an organ-specific function. D. carota harbors two Lcyb genes, of which DcLcyb1 is expressed in leaves and storage roots during carrot development, correlating with an increase in carotenoid levels. In this work, we show that DcLCYB1 is localized in the plastid and that it is a functional enzyme, as demonstrated by heterologous complementation in Escherichia coli and over expression and post transcriptional gene silencing in carrot. Transgenic plants with higher or reduced levels of DcLcyb1 had incremented or reduced levels of chlorophyll, total carotenoids and β-carotene in leaves and in the storage roots, respectively. In addition, changes in the expression of DcLcyb1 are accompanied by a modulation in the expression of key endogenous carotenogenic genes. Our results indicate that DcLcyb1 does not possess an organ specific function and modulate carotenoid gene expression and accumulation in carrot leaves and storage roots. PMID:23555569
NASA Astrophysics Data System (ADS)
Rosado, Helena; O'Neill, Alex J.; Blake, Katy L.; Walther, Meik; Long, Paul F.; Hinds, Jason; Taylor, Peter W.
2012-04-01
Staphylococcus aureus is routinely recovered from air and surface samples taken aboard the International Space Station (ISS) and poses a health threat to crew. As bacteria respond to the low shear forces engendered by continuous rotation conditions in a Rotating Wall Vessel (RWV) and the reduced gravitational field of near-Earth flight by altering gene expression, we examined the effect of low-shear RWV growth on protein secretion and gene expression by three S. aureus isolates. When cultured under 1 g, the total amount of protein secreted by these strains varied up to fourfold; under continuous rotation conditions, protein secretion by all three strains was significantly reduced. Concentrations of individual proteins were differentially reduced and no evidence was found for increased lysis. These data suggest that growth under continuous rotation conditions reduces synthesis or secretion of proteins. A limited number of changes in gene expression under continuous rotation conditions were noted: in all isolates vraX, a gene encoding a polypeptide associated with cell wall stress, was down-regulated. A vraX deletion mutant of S. aureus SH1000 was constructed: no differences were found between SH1000 and ΔvraX with respect to colony phenotype, viability, protein export, antibiotic susceptibility, vancomycin kill kinetics, susceptibility to cold or heat and gene modulation. An ab initio protein-ligand docking simulation suggests a major binding site for β-lactam drugs such as imipenem. If such changes to the bacterial phenotype occur during spaceflight, they will compromise the capacity of staphylococci to cause systemic infection and to circumvent antibacterial chemotherapy.
Khani, Afsaneh; Popp, Nicole; Kreikemeyer, Bernd; Patenge, Nadja
2018-01-01
Regulatory RNAs play important roles in the control of bacterial gene expression. In this study, we investigated gene expression regulation by a putative glycine riboswitch located in the 5'-untranslated region of a sodium:alanine symporter family (SAF) protein gene in the group A Streptococcus pyogenes serotype M49 strain 591. Glycine-dependent gene expression mediated by riboswitch activity was studied using a luciferase reporter gene system. Maximal reporter gene expression was observed in the absence of glycine and in the presence of low glycine concentrations. Differences in glycine-dependent gene expression were not based on differential promoter activity. Expression of the SAF protein gene and the downstream putative cation efflux protein gene was investigated in wild-type bacteria by RT-qPCR transcript analyses. During growth in the presence of glycine (≥1 mM), expression of the genes were downregulated. Northern blot analyses revealed premature transcription termination in the presence of high glycine concentrations. Growth in the presence of 0.1 mM glycine led to the production of a full-length transcript. Furthermore, stability of the SAF protein gene transcript was drastically reduced in the presence of glycine. We conclude that the putative glycine riboswitch in S. pyogenes serotype M49 strain 591 represses expression of the SAF protein gene and the downstream putative cation efflux protein gene in the presence of high glycine concentrations. Sequence and secondary structure comparisons indicated that the streptococcal riboswitch belongs to the class of tandem aptamer glycine riboswitches.
Modularity and evolutionary constraints in a baculovirus gene regulatory network
2013-01-01
Background The structure of regulatory networks remains an open question in our understanding of complex biological systems. Interactions during complete viral life cycles present unique opportunities to understand how host-parasite network take shape and behave. The Anticarsia gemmatalis multiple nucleopolyhedrovirus (AgMNPV) is a large double-stranded DNA virus, whose genome may encode for 152 open reading frames (ORFs). Here we present the analysis of the ordered cascade of the AgMNPV gene expression. Results We observed an earlier onset of the expression than previously reported for other baculoviruses, especially for genes involved in DNA replication. Most ORFs were expressed at higher levels in a more permissive host cell line. Genes with more than one copy in the genome had distinct expression profiles, which could indicate the acquisition of new functionalities. The transcription gene regulatory network (GRN) for 149 ORFs had a modular topology comprising five communities of highly interconnected nodes that separated key genes that are functionally related on different communities, possibly maximizing redundancy and GRN robustness by compartmentalization of important functions. Core conserved functions showed expression synchronicity, distinct GRN features and significantly less genetic diversity, consistent with evolutionary constraints imposed in key elements of biological systems. This reduced genetic diversity also had a positive correlation with the importance of the gene in our estimated GRN, supporting a relationship between phylogenetic data of baculovirus genes and network features inferred from expression data. We also observed that gene arrangement in overlapping transcripts was conserved among related baculoviruses, suggesting a principle of genome organization. Conclusions Albeit with a reduced number of nodes (149), the AgMNPV GRN had a topology and key characteristics similar to those observed in complex cellular organisms, which indicates that modularity may be a general feature of biological gene regulatory networks. PMID:24006890
Ckurshumova, Wenzislava; Scarpella, Enrico; Goldstein, Rochelle S; Berleth, Thomas
2011-08-01
Genes expressed in vascular tissues have been identified by several strategies, usually with a focus on mature vascular cells. In this study, we explored the possibility of using two opposite types of altered tissue compositions in combination with a double-filter selection to identify genes with a high probability of vascular expression in early organ primordia. Specifically, we generated full-transcriptome microarray profiles of plants with (a) genetically strongly reduced and (b) pharmacologically vastly increased vascular tissues and identified a reproducible cohort of 158 transcripts that fulfilled the dual requirement of being underrepresented in (a) and overrepresented in (b). In order to assess the predictive value of our identification scheme for vascular gene expression, we determined the expression patterns of genes in two unbiased subsamples. First, we assessed the expression patterns of all twenty annotated transcription factor genes from the cohort of 158 genes and found that seventeen of the twenty genes were preferentially expressed in leaf vascular cells. Remarkably, fifteen of these seventeen vascular genes were clearly expressed already very early in leaf vein development. Twelve genes with published leaf expression patterns served as a second subsample to monitor the representation of vascular genes in our cohort. Of those twelve genes, eleven were preferentially expressed in leaf vascular tissues. Based on these results we propose that our compendium of 158 genes represents a sample that is highly enriched for genes expressed in vascular tissues and that our approach is particularly suited to detect genes expressed in vascular cell lineages at early stages of their inception. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Soleimani, Maryam Zohour; Jalali Mashayekhi, Farideh; Mousavi Hasanzade, Morteza; Baazm, Maryam
2018-03-01
CatSper gene, a member of cation channel sperm family, has an essential role in sperm motility and male fertility. Following varicocele, sperm parameters especially sperm movement decreases. For this reason, we hypothesized that CatSper gene expression might be reduced after varicocele induction in an animal model. The aim of this study was to evaluate the expression of CatSper 1 and 2 genes, sperm parameters and testis histology following varicocele induction . A total of 30 Wistar male rats were randomly divided into three following groups (n=10/ each): control, sham, and varicocele group. Experimental varicocele was induced by partial ligation of the left renal vein. The epididymal sperm parameters, CatSper 1 and 2 genes expression, and testes histology were studied two months after varicocele induction. Our results revealed that motility (32.73±16.14%), morphology (48.80±17%) and viability (31.23±9.82%) of sperms significantly reduced following varicocele induction. In addition, we showed a significant decrease in the number of spermatogonia (43.63±5.31) and seminiferous tubules diameters (190.51±19.23 mm) in experimental varicocele rats. The level of CatSper 1 and 2 genes expression evaluated using real-time polymerase chain reaction was significantly downregulated 2 months after varicocele induction. Our data indicated that experimental varicocele has deleterious effects on sperm parameters, testis structure as well as the expression of CatSper 1 and 2 genes.
Verheecke, C; Liboz, T; Anson, P; Diaz, R; Mathieu, F
2015-05-01
The aim of this study is to investigate aflatoxin gene expression during Streptomyces-Aspergillus interaction. Aflatoxins are carcinogenic compounds produced mainly by Aspergillus flavus and Aspergillus parasiticus. A previous study has shown that Streptomyces-A. flavus interaction can reduce aflatoxin content in vitro. Here, we first validated this same effect in the interaction with A. parasiticus. Moreover, we showed that growth reduction and aflatoxin content were correlated in A. parasiticus but not in A. flavus. Secondly, we investigated the mechanisms of action by reverse-transcriptase quantitative PCR. As microbial interaction can lead to variations in expression of household genes, the most stable [act1, βtub (and cox5 for A. parasiticus)] were chosen using geNorm software. To shed light on the mechanisms involved, we studied during the interaction the expression of five genes (aflD, aflM, aflP, aflR and aflS). Overall, the results of aflatoxin gene expression showed that Streptomyces repressed gene expression to a greater level in A. parasiticus than in A. flavus. Expression of aflR and aflS was generally repressed in both Aspergillus species. Expression of aflM was repressed and was correlated with aflatoxin B1 content. The results suggest that aflM expression could be a potential aflatoxin indicator in Streptomyces species interactions. Therefore, we demonstrate that Streptomyces can reduce aflatoxin production by both Aspergillus species and that this effect can be correlated with the repression of aflM expression. © 2015 The Authors.
Khosla, S; Dean, W; Brown, D; Reik, W; Feil, R
2001-03-01
Culture of preimplantation mammalian embryos and cells can influence their subsequent growth and differentiation. Previously, we reported that culture of mouse embryonic stem cells is associated with deregulation of genomic imprinting and affects the potential for these cells to develop into normal fetuses. The purpose of our current study was to determine whether culture of preimplantation mouse embryos in a chemically defined medium (M16) with or without fetal calf serum (FCS) can affect their subsequent development and imprinted gene expression. Only one third of the blastocysts that had been cultured from two-cell embryos in M16 medium complemented with FCS developed into viable Day 14 fetuses after transfer into recipients. These M16 + FCS fetuses were reduced in weight as compared with controls and M16 fetuses and had decreased expression of the imprinted H19 and insulin-like growth factor 2 genes associated with a gain of DNA methylation at an imprinting control region upstream of H19. They also displayed increased expression of the imprinted gene Grb10. The growth factor receptor binding gene Grb7, in contrast, was strongly reduced in its expression in most of the M16 + FCS fetuses. No alterations were detected for the imprinted gene MEST: Preimplantation culture in the presence of serum can influence the regulation of multiple growth-related imprinted genes, thus leading to aberrant fetal growth and development.
KLF4-dependent epigenetic remodeling modulates podocyte phenotypes and attenuates proteinuria
Hayashi, Kaori; Sasamura, Hiroyuki; Nakamura, Mari; Azegami, Tatsuhiko; Oguchi, Hideyo; Sakamaki, Yusuke; Itoh, Hiroshi
2014-01-01
The transcription factor Kruppel-like factor 4 (KLF4) has the ability, along with other factors, to reprogram somatic cells into induced pluripotent stem (iPS) cells. Here, we determined that KLF4 is expressed in kidney glomerular podocytes and is decreased in both animal models and humans exhibiting a proteinuric. Transient restoration of KLF4 expression in podocytes of diseased glomeruli in vivo, either by gene transfer or transgenic expression, resulted in a sustained increase in nephrin expression and a decrease in albuminuria. In mice harboring podocyte-specific deletion of Klf4, adriamycin-induced proteinuria was substantially exacerbated, although these animals displayed minimal phenotypical changes prior to adriamycin administration. KLF4 overexpression in cultured human podocytes increased expression of nephrin and other epithelial markers and reduced mesenchymal gene expression. DNA methylation profiling and bisulfite genomic sequencing revealed that KLF4 expression reduced methylation at the nephrin promoter and the promoters of other epithelial markers; however, methylation was increased at the promoters of genes encoding mesenchymal markers, suggesting selective epigenetic regulation of podocyte gene expression. Together, these results suggest that KLF4 epigenetically modulates podocyte phenotype and function and that the podocyte epigenome can be targeted for direct intervention and reduction of proteinuria. PMID:24812666
Ni, Zixin; Yang, Fan; Cao, Weijun; Zhang, Xiangle; Jin, Ye; Mao, Ruoqing; Du, Xiaoli; Li, Weiwei; Guo, Jianhong; Liu, Xiangtao; Zhu, Zixiang; Zheng, Haixue
2016-06-01
Foot-and-mouth disease virus (FMDV) is the causative agent of a highly contagious disease in livestock. The viral proteinase L(pro) of FMDV is involved in pathogenicity, and mutation of the L(pro) SAP domain reduces FMDV pathogenicity in pigs. To determine the gene expression profiles associated with decreased pathogenicity in porcine cells, we performed transcriptome analysis using next-generation sequencing technology and compared differentially expressed genes in SK6 cells infected with FMDV containing L(pro) with either a wild-type or mutated version of the SAP domain. This analysis yielded 1,853 genes that exhibited a ≥ 2-fold change in expression and was validated by real-time quantitative PCR detection of several differentially expressed genes. Many of the differentially expressed genes correlated with antiviral responses corresponded to genes associated with transcription factors, immune regulation, cytokine production, inflammatory response, and apoptosis. Alterations in gene expression profiles may be responsible for the variations in pathogenicity observed between the two FMDV variants. Our results provided genes of interest for the further study of antiviral pathways and pathogenic mechanisms related to FMDV L(pro).
Wang, Xiaoyu; Wang, Xianling; Hu, Qingnan; ...
2015-06-17
In Arabidopsis, anthocyanin biosynthesis is controlled by a MYB-bHLH-WD40 (MBW) transcriptional activator complex. The MBW complex activates the transcription of late biosynthesis genes in the flavonoid pathway, leading to the production of anthocyanins. A similar MBW complex regulates epidermal cell fate by activating the transcription of GLABRA2 (GL2), a homeodomain transcription factor required for trichome formation in shoots and non-hair cell formation in roots. Here we provide experimental evidence to show that GL2 also plays a role in regulating anthocyanin biosynthesis in Arabidopsis. From an activation-tagged mutagenized population of Arabidopsis plants, we isolated a dominant, gain-of-function mutant with reduced anthocyanins.more » Molecular cloning revealed that this phenotype is caused by an elevated expression of GL2, thus the mutant was named gl2-1D. Consistent with the view that GL2 acts as a negative regulator of anthocyanin biosynthesis, gl2-1D seedlings accumulated less whereas gl2-3 seedlings accumulated more anthocyanins in response to sucrose. Gene expression analysis indicated that expression of late, but not early, biosynthesis genes in the flavonoid pathway was dramatically reduced in gl2-1D but elevated in gl2-3 mutants. Further analysis showed that expression of some MBW component genes involved in the regulation of late biosynthesis genes was reduced in gl2-1D but elevated in gl2-3 mutants, and chromatin immunoprecipitation results indicated that some MBW component genes are targets of GL2. We also showed that GL2 functions as a transcriptional repressor. Altogether, these results indicate that GL2 negatively regulates anthocyanin biosynthesis in Arabidopsis by directly repressing the expression of some MBW component genes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xiaoyu; Wang, Xianling; Hu, Qingnan
In Arabidopsis, anthocyanin biosynthesis is controlled by a MYB-bHLH-WD40 (MBW) transcriptional activator complex. The MBW complex activates the transcription of late biosynthesis genes in the flavonoid pathway, leading to the production of anthocyanins. A similar MBW complex regulates epidermal cell fate by activating the transcription of GLABRA2 (GL2), a homeodomain transcription factor required for trichome formation in shoots and non-hair cell formation in roots. Here we provide experimental evidence to show that GL2 also plays a role in regulating anthocyanin biosynthesis in Arabidopsis. From an activation-tagged mutagenized population of Arabidopsis plants, we isolated a dominant, gain-of-function mutant with reduced anthocyanins.more » Molecular cloning revealed that this phenotype is caused by an elevated expression of GL2, thus the mutant was named gl2-1D. Consistent with the view that GL2 acts as a negative regulator of anthocyanin biosynthesis, gl2-1D seedlings accumulated less whereas gl2-3 seedlings accumulated more anthocyanins in response to sucrose. Gene expression analysis indicated that expression of late, but not early, biosynthesis genes in the flavonoid pathway was dramatically reduced in gl2-1D but elevated in gl2-3 mutants. Further analysis showed that expression of some MBW component genes involved in the regulation of late biosynthesis genes was reduced in gl2-1D but elevated in gl2-3 mutants, and chromatin immunoprecipitation results indicated that some MBW component genes are targets of GL2. We also showed that GL2 functions as a transcriptional repressor. Altogether, these results indicate that GL2 negatively regulates anthocyanin biosynthesis in Arabidopsis by directly repressing the expression of some MBW component genes.« less
Chandley, Michelle J; Szebeni, Katalin; Szebeni, Attila; Crawford, Jessica; Stockmeier, Craig A; Turecki, Gustavo; Miguel-Hidalgo, Jose Javier; Ordway, Gregory A
2013-07-01
Norepinephrine and glutamate are among several neurotransmitters implicated in the neuropathology of major depressive disorder (MDD). Glia deficits have also been demonstrated in people with MDD, and glia are critical modulators of central glutamatergic transmission. We studied glia in men with MDD in the region of the brain (locus coeruleus; LC) where noradrenergic neuronal cell bodies reside and receive glutamatergic input. The expression of 3 glutamate-related genes (SLC1A3, SLC1A2, GLUL) concentrated in glia and a glia gene (GFAP) were measured in postmortem tissues from men with MDD and from paired psychiatrically healthy controls. Initial gene expression analysis of RNA isolated from homogenized tissue (n = 9-10 pairs) containing the LC were followed by detailed analysis of gene expressions in astrocytes and oligodendrocytes (n = 6-7 pairs) laser captured from the LC region. We assessed protein changes in GFAP using immunohistochemistry and immunoblotting (n = 7-14 pairs). Astrocytes, but not oligodendrocytes, demonstrated robust reductions in the expression of SLC1A3 and SLC1A2, whereas GLUL expression was unchanged. GFAP expression was lower in astrocytes, and we confirmed reduced GFAP protein in the LC using immunostaining methods. Reduced expression of protein products of SLC1A3 and SLC1A2 could not be confirmed because of insufficient amounts of LC tissue for these assays. Whether gene expression abnormalities were associated with only MDD and not with suicide could not be confirmed because most of the decedents who had MDD died by suicide. Major depressive disorder is associated with unhealthy astrocytes in the noradrenergic LC, characterized here by a reduction in astrocyte glutamate transporter expression. These findings suggest that increased glutamatergic activity in the LC occurs in men with MDD.
Botton, Alessandro; Lezzer, Paolo; Dorigoni, Alberto; Barcaccia, Gianni; Ruperti, Benedetto; Ramina, Angelo
2008-08-13
Freshly consumed apples can cause allergic reactions because of the presence of four classes of allergens, namely, Mal d 1, Mal d 2, Mal d 3, and Mal d 4, and their cross-reactivity with sensitizing allergens of other species. Knowledge of environmental and endogenous factors affecting the allergenic potential of apples would provide important information to apple breeders, growers, and consumers for the selection of hypoallergenic genotypes, the adoption of agronomical practices decreasing the allergenic potential, and the consumption of fruits with reduced amount of allergens. In the present research, expression studies were performed by means of real-time PCR for all the known allergen-encoding genes in apple. Fruit samples were collected from 15 apple varieties and from fruits of three different trials, set up to assess the effect of shadowing, elevation, storage, and water stress on the expression of allergen genes. Principal components analysis (PCA) was performed for the classification of varieties according to gene expression values, pointing out that the cultivars Fuji and Brina were two good hypoallergenic candidates. Shadowing, elevation, and storage significantly affected the transcription of the allergen-encoding genes, whereas water stress slightly influenced the expression of only two genes, in spite of the dramatic effect on both fruit size and vegetative growth of the trees. In particular, shadowing may represent an important cultural practice aimed at reducing apple cortex allergenicity. Moreover, elevation and storage may be combined to reduce the allergenic potential of apple fruits. The possible implications of the results for breeders, growers, and consumers are discussed critically.
Taki, Kenji; Fukushima, Tamio; Ise, Ryota; Horii, Ikuo; Yoshida, Takemi
2013-02-01
MicroRNAs (miRNAs) are small single-stranded RNAs of 19-25 nucleotides and are important in posttranscriptional regulation of genes. Recently, the role of miRNAs in toxicity incidence is reported to be a regulator of key-stopper of gene expression, however the detailed mechanism of miRNAs is not well known yet. 6-Mercaptopurine (6-MP), the anti-leukemic and immunosuppressive drug, produced teratogenicity and pregnancy loss. We focused on the placenta to evaluate toxicity in embryo/fetal development produced by 6-MP treatment. MiRNA expression in the placenta was analyzed by miRNA microarray. Fifteen miRNAs were upregulated on GD13 and 5 miRNAs were downregulated on GD15 in 6-MP treatment rat placentas. Some miRNAs may have functions in apoptosis (miR-195, miR-21, miR-29c and miR-34a), inflammation (miR-146b), and ischemia (miR-144 and miR-451). In the maternal plasma, expression of miR-144 was significantly reduced by 6-MP treatment when examined by real-time RT-PCR. We determined toxicity-related gene expression in the rat placenta. Gene expression analysis was carried out by DNA oligo microarray using rat placenta total RNAs. Compared between predicted targets of miRNAs and microarray data in 6-MP-treated rat placenta, expressions of hormone receptor genes (estrogen receptor 1; Esr1, progesterone receptor; Pgr, and prolactin receptor; Prlr), xanthine oxidase (Xdh), Slc38a5 and Phlda2 genes were changed. The histopathologically found increase in trophoblastic giant cells and reduced placental growth by 6-MP treatment were well correlated to these gene expressions. These data suggest that some miRNAs may link to toxicological reactions in 6-MP-induced placental toxicity.
Higashi, Koichi; Tobe, Toru; Kanai, Akinori; Uyar, Ebru; Ishikawa, Shu; Suzuki, Yutaka; Ogasawara, Naotake; Kurokawa, Ken; Oshima, Taku
2016-01-01
Bacteria can acquire new traits through horizontal gene transfer. Inappropriate expression of transferred genes, however, can disrupt the physiology of the host bacteria. To reduce this risk, Escherichia coli expresses the nucleoid-associated protein, H-NS, which preferentially binds to horizontally transferred genes to control their expression. Once expression is optimized, the horizontally transferred genes may actually contribute to E. coli survival in new habitats. Therefore, we investigated whether and how H-NS contributes to this optimization process. A comparison of H-NS binding profiles on common chromosomal segments of three E. coli strains belonging to different phylogenetic groups indicated that the positions of H-NS-bound regions have been conserved in E. coli strains. The sequences of the H-NS-bound regions appear to have diverged more so than H-NS-unbound regions only when H-NS-bound regions are located upstream or in coding regions of genes. Because these regions generally contain regulatory elements for gene expression, sequence divergence in these regions may be associated with alteration of gene expression. Indeed, nucleotide substitutions in H-NS-bound regions of the ybdO promoter and coding regions have diversified the potential for H-NS-independent negative regulation among E. coli strains. The ybdO expression in these strains was still negatively regulated by H-NS, which reduced the effect of H-NS-independent regulation under normal growth conditions. Hence, we propose that, during E. coli evolution, the conservation of H-NS binding sites resulted in the diversification of the regulation of horizontally transferred genes, which may have facilitated E. coli adaptation to new ecological niches. PMID:26789284
Higashi, Koichi; Tobe, Toru; Kanai, Akinori; Uyar, Ebru; Ishikawa, Shu; Suzuki, Yutaka; Ogasawara, Naotake; Kurokawa, Ken; Oshima, Taku
2016-01-01
Bacteria can acquire new traits through horizontal gene transfer. Inappropriate expression of transferred genes, however, can disrupt the physiology of the host bacteria. To reduce this risk, Escherichia coli expresses the nucleoid-associated protein, H-NS, which preferentially binds to horizontally transferred genes to control their expression. Once expression is optimized, the horizontally transferred genes may actually contribute to E. coli survival in new habitats. Therefore, we investigated whether and how H-NS contributes to this optimization process. A comparison of H-NS binding profiles on common chromosomal segments of three E. coli strains belonging to different phylogenetic groups indicated that the positions of H-NS-bound regions have been conserved in E. coli strains. The sequences of the H-NS-bound regions appear to have diverged more so than H-NS-unbound regions only when H-NS-bound regions are located upstream or in coding regions of genes. Because these regions generally contain regulatory elements for gene expression, sequence divergence in these regions may be associated with alteration of gene expression. Indeed, nucleotide substitutions in H-NS-bound regions of the ybdO promoter and coding regions have diversified the potential for H-NS-independent negative regulation among E. coli strains. The ybdO expression in these strains was still negatively regulated by H-NS, which reduced the effect of H-NS-independent regulation under normal growth conditions. Hence, we propose that, during E. coli evolution, the conservation of H-NS binding sites resulted in the diversification of the regulation of horizontally transferred genes, which may have facilitated E. coli adaptation to new ecological niches.
Gentamicin induces efaA expression and biofilm formation in Enterococcus faecalis.
Kafil, Hossein Samadi; Mobarez, Ashraf Mohabati; Moghadam, Mehdi Forouzandeh; Hashemi, Zahra Sadat; Yousefi, Mehdi
2016-03-01
Enterococci have been ranked among the leading causes of nosocomial bacteremia and urinary tract infection. This study aimed to investigate the effect of ampicillin, vancomycin, gentamicin and ceftizoxime on biofilm formation and gene expression of colonization factors on Enterococcus faecalis. Twelve clinical isolates of E. faecalis were used to investigate the effect of antibiotics on biofilm formation and gene expression of efaA, asa1, ebpA, esp and ace. Flow system assay and Microtiter plates were used for biofilm assay. Two hundred clinical isolates were used for confirming the effect of antibiotics on biofilm formation. Ampicillin, vancomycin and ceftizoxime did not have any significant effect on biofilm formation, but gentamicin induced biofilm formation in 89% of isolates. In twelve selected isolate gentamicin increased expression of esp (+50.9%) and efaA (+33.9%) genes and reduced or maintained expression of others (asa1:-47.4%, ebpA: 0, ace:-19.2%). Vancomycin increased expression of esp (+89.1%) but reduced the others (asa1: -34.9%, ebpA:-11%, ace:-30%, efaA:-60%). Ceftizoxime increased slightly ebpA (+19.7%) and reduced others (asa1:-66.2%, esp:-35%, ace:-28.1%, efaA:-38.4%). and ampicillin strongly increased expression of ace (+231%), esp (+131%) and ebpA (+83%) but reduced others (asa1:-85.5%, efaA:-47.4%). The findings of the present study showed that antibiotics may have a role in biofilm formation and sustainability of enterococci, especially in case of gentamicin. efaA gene may have an important role, especially in antibiotic induced biofilm formation by gentamicin. Experiments with efaA mutants are needed to investigate the exact effect of efaA on biofilm formation with antibiotic induced cells. Copyright © 2015 Elsevier Ltd. All rights reserved.
2012-01-01
Background S. aureus is one of the main pathogens responsible for the intra-mammary infection in dairy ruminants. Although much work has been carried out to understand the complex physiological and cellular events that occur in the mammary gland in response to S. aureus, the protective mechanisms are still poorly understood. The objectives of the present study were to investigate gene expression during the early response of the goat mammary gland to an experimental challenge with S. aureus, in order to better understand the local and systemic response and to compare them in two divergent lines of goat selected for high and low milk somatic cell scores. Results No differences in gene expression were found between high and low SCS (Somatic Cells Score) selection lines. Analysing the two groups together, an expression of 300 genes were found to change from T0 before infection, and T4 at 24 hours and T5 at 30 hours following challenge. In blood derived white blood cells 8 genes showed increased expression between T0 and T5 and 1 gene has reduced expression. The genes showing the greatest increase in expression following challenge (5.65 to 3.16 fold change) play an important role in (i) immune and inflammatory response (NFKB1, TNFAIP6, BASP1, IRF1, PLEK, BATF3); (ii) the regulation of innate resistance to pathogens (PTX3); and (iii) the regulation of cell metabolism (CYTH4, SLC2A6, ARG2). The genes with reduced expression (−1.5 to −2.5 fold) included genes involved in (i) lipid metabolism (ABCG2, FASN), (ii) chemokine, cytokine and intracellular signalling (SPPI), and (iii) cell cytoskeleton and extracellular matrix (KRT19). Conclusions Analysis of genes with differential expression following infection showed an inverse relationship between immune response and lipid metabolism in the early response of the mammary gland to the S. aureus challenge. PTX3 showed a large change in expression in both milk and blood, and is therefore a candidate for further studies on immune response associated with mastitis. PMID:23046560
Futagami, Taiki; Mori, Kazuki; Wada, Shotaro; Ida, Hiroko; Kajiwara, Yasuhiro; Takashita, Hideharu; Tashiro, Kosuke; Yamada, Osamu; Omori, Toshiro; Kuhara, Satoru
2014-01-01
The koji mold Aspergillus kawachii is used for making the Japanese distilled spirit shochu. During shochu production, A. kawachii is grown in solid-state culture (koji) on steamed grains, such as rice or barley, to convert the grain starch to glucose and produce citric acid. During this process, the cultivation temperature of A. kawachii is gradually increased to 40°C and is then lowered to 30°C. This temperature modulation is important for stimulating amylase activity and the accumulation of citric acid. However, the effects of temperature on A. kawachii at the gene expression level have not been elucidated. In this study, we investigated the effect of solid-state cultivation temperature on gene expression for A. kawachii grown on barley. The results of DNA microarray and gene ontology analyses showed that the expression of genes involved in the glycerol, trehalose, and pentose phosphate metabolic pathways, which function downstream of glycolysis, was downregulated by shifting the cultivation temperature from 40 to 30°C. In addition, significantly reduced expression of genes related to heat shock responses and increased expression of genes related with amino acid transport were also observed. These results suggest that solid-state cultivation at 40°C is stressful for A. kawachii and that heat adaptation leads to reduced citric acid accumulation through activation of pathways branching from glycolysis. The gene expression profile of A. kawachii elucidated in this study is expected to contribute to the understanding of gene regulation during koji production and optimization of the industrially desirable characteristics of A. kawachii. PMID:25501485
Futagami, Taiki; Mori, Kazuki; Wada, Shotaro; Ida, Hiroko; Kajiwara, Yasuhiro; Takashita, Hideharu; Tashiro, Kosuke; Yamada, Osamu; Omori, Toshiro; Kuhara, Satoru; Goto, Masatoshi
2015-02-01
The koji mold Aspergillus kawachii is used for making the Japanese distilled spirit shochu. During shochu production, A. kawachii is grown in solid-state culture (koji) on steamed grains, such as rice or barley, to convert the grain starch to glucose and produce citric acid. During this process, the cultivation temperature of A. kawachii is gradually increased to 40 °C and is then lowered to 30 °C. This temperature modulation is important for stimulating amylase activity and the accumulation of citric acid. However, the effects of temperature on A. kawachii at the gene expression level have not been elucidated. In this study, we investigated the effect of solid-state cultivation temperature on gene expression for A. kawachii grown on barley. The results of DNA microarray and gene ontology analyses showed that the expression of genes involved in the glycerol, trehalose, and pentose phosphate metabolic pathways, which function downstream of glycolysis, was downregulated by shifting the cultivation temperature from 40 to 30 °C. In addition, significantly reduced expression of genes related to heat shock responses and increased expression of genes related with amino acid transport were also observed. These results suggest that solid-state cultivation at 40 °C is stressful for A. kawachii and that heat adaptation leads to reduced citric acid accumulation through activation of pathways branching from glycolysis. The gene expression profile of A. kawachii elucidated in this study is expected to contribute to the understanding of gene regulation during koji production and optimization of the industrially desirable characteristics of A. kawachii.
Shahnejat-Bushehri, Sara; Allu, Annapurna D.; Mehterov, Nikolay; Thirumalaikumar, Venkatesh P.; Alseekh, Saleh; Fernie, Alisdair R.; Mueller-Roeber, Bernd; Balazadeh, Salma
2017-01-01
The Arabidopsis thaliana NAC transcription factor JUNGBRUNNEN1 (AtJUB1) regulates growth by directly repressing GA3ox1 and DWF4, two key genes involved in gibberellin (GA) and brassinosteroid (BR) biosynthesis, respectively, leading to GA and BR deficiency phenotypes. AtJUB1 also reduces the expression of PIF4, a bHLH transcription factor that positively controls cell elongation, while it stimulates the expression of DELLA genes, which are important repressors of growth. Here, we extend our previous findings by demonstrating that AtJUB1 induces similar GA and BR deficiency phenotypes and changes in gene expression when overexpressed in tomato (Solanum lycopersicum). Importantly, and in accordance with the growth phenotypes observed, AtJUB1 inhibits the expression of growth-supporting genes, namely the tomato orthologs of GA3ox1, DWF4 and PIF4, but activates the expression of DELLA orthologs, by directly binding to their promoters. Overexpression of AtJUB1 in tomato delays fruit ripening, which is accompanied by reduced expression of several ripening-related genes, and leads to an increase in the levels of various amino acids (mostly proline, β-alanine, and phenylalanine), γ-aminobutyric acid (GABA), and major organic acids including glutamic acid and aspartic acid. The fact that AtJUB1 exerts an inhibitory effect on the GA/BR biosynthesis and PIF4 genes but acts as a direct activator of DELLA genes in both, Arabidopsis and tomato, strongly supports the model that the molecular constituents of the JUNGBRUNNEN1 growth control module are considerably conserved across species. PMID:28326087
Proof of Concept Study to Assess Fetal Gene Expression in Amniotic Fluid by NanoArray PCR
Massingham, Lauren J.; Johnson, Kirby L.; Bianchi, Diana W.; Pei, Shermin; Peter, Inga; Cowan, Janet M.; Tantravahi, Umadevi; Morrison, Tom B.
2011-01-01
Microarray analysis of cell-free RNA in amniotic fluid (AF) supernatant has revealed differential fetal gene expression as a function of gestational age and karyotype. Once informative genes are identified, research moves to a more focused platform such as quantitative reverse transcriptase-PCR. Standardized NanoArray PCR (SNAP) is a recently developed gene profiling technology that enables the measurement of transcripts from samples containing reduced quantities or degraded nucleic acids. We used a previously developed SNAP gene panel as proof of concept to determine whether fetal functional gene expression could be ascertained from AF supernatant. RNA was extracted and converted to cDNA from 19 AF supernatant samples of euploid fetuses between 15 to 20 weeks of gestation, and transcript abundance of 21 genes was measured. Statistically significant differences in expression, as a function of advancing gestational age, were observed for 5 of 21 genes. ANXA5, GUSB, and PPIA showed decreasing gene expression over time, whereas CASC3 and ZNF264 showed increasing gene expression over time. Statistically significantly increased expression of MTOR and STAT2 was seen in female compared with male fetuses. This study demonstrates the feasibility of focused fetal gene expression analysis using SNAP technology. In the future, this technique could be optimized to examine specific genes instrumental in fetal organ system function, which could be a useful addition to prenatal care. PMID:21827969
Heat shock protein 90{beta}: A novel mediator of vitamin D action
DOE Office of Scientific and Technical Information (OSTI.GOV)
Angelo, Giana; Mineral Bioavailability Laboratory, 711 Washington Street, Boston, MA 02111; Lamon-Fava, Stefania
2008-03-14
We investigated the role of Heat shock protein 90 (Hsp90) in vitamin D action in Caco-2 cells using geldanamycin (GA) to block Hsp90 function and RNA interference to reduce Hsp90{beta} expression. When cells were exposed to GA, vitamin D-mediated gene expression and transcriptional activity were inhibited by 69% and 54%, respectively. Gel shift analysis indicated that GA reduced vitamin D-mediated DNA binding activity of the vitamin D receptor (VDR). We tested the specific role of Hsp90{beta} by knocking down its expression with stably expressed short hairpin RNA. Vitamin D-induced gene expression and transcriptional activity were reduced by 90% and 80%,more » respectively, in Hsp90{beta}-deficient cells. Nuclear protein for VDR and RXR{alpha}, its heterodimer partner, were not reduced in Hsp90{beta}-deficient cells. These findings indicate that Hsp90{beta} is needed for optimal vitamin D responsiveness in the enterocyte and demonstrate a specific role for Hsp90{beta} in VDR signaling.« less
Comparison of Glomerular and Podocyte mRNA Profiles in Streptozotocin-Induced Diabetes
Fu, Jia; Wei, Chengguo; Lee, Kyung; Zhang, Weijia; He, Wu; Chuang, Peter
2016-01-01
Evaluating the mRNA profile of podocytes in the diabetic kidney may indicate genes involved in the pathogenesis of diabetic nephropathy. To determine if the podocyte-specific gene information contained in mRNA profiles of the whole glomerulus of the diabetic kidney accurately reflects gene expression in the isolated podocytes, we crossed Nos3−/− IRG mice with podocin-rtTA and TetON-Cre mice for enhanced green fluorescent protein labeling of podocytes before diabetic injury. Diabetes was induced by streptozotocin, and mRNA profiles of isolated glomeruli and sorted podocytes from diabetic and control mice were examined 10 weeks later. Expression of podocyte-specific markers in glomeruli was downregulated in diabetic mice compared with controls. However, expression of these markers was not altered in sorted podocytes from diabetic mice. When mRNA levels of glomeruli were corrected for podocyte number per glomerulus, the differences in podocyte marker expression disappeared. Analysis of the differentially expressed genes in diabetic mice also revealed distinct upregulated pathways in the glomeruli (mitochondrial function, oxidative stress) and in podocytes (actin organization). In conclusion, our data suggest reduced expression of podocyte markers in glomeruli is a secondary effect of reduced podocyte number, thus podocyte-specific gene expression detected in the whole glomerulus may not represent that in podocytes in the diabetic kidney. PMID:26264855
Gustavsson, Carolina; Parini, Paolo; Ostojic, Jovanca; Cheung, Louisa; Hu, Jin; Zadjali, Fahad; Tahir, Faheem; Brismar, Kerstin; Norstedt, Gunnar; Tollet-Egnell, Petra
2009-11-01
The aim of this study was to compare the effects of cocoa butter and safflower oil on hepatic transcript profiles, lipid metabolism and insulin sensitivity in healthy rats. Cocoa butter-based high-fat feeding for 3 days did not affect plasma total triglyceride (TG) levels or TG-rich VLDL particles or hepatic insulin sensitivity, but changes in hepatic gene expression were induced that might lead to increased lipid synthesis, lipotoxicity, inflammation and insulin resistance if maintained. Safflower oil increased hepatic beta-oxidation, was beneficial in terms of circulating TG-rich VLDL particles, but led to reduced hepatic insulin sensitivity. The effects of safflower oil on hepatic gene expression were partly overlapping with those exerted by cocoa butter, but fewer transcripts from anabolic pathways were altered. Increased hepatic cholesterol levels and increased expression of hepatic CYP7A1 and ABCG5 mRNA, important gene products in bile acid production and cholesterol excretion, were specific effects elicited by safflower oil only. Common effects on gene expression included increased levels of p8, DIG-1 IGFBP-1 and FGF21, and reduced levels of SCD-1 and SCD-2. This indicates that a lipid-induced program for hepatic lipid disposal and cell survival was induced by 3 days of high-fat feeding, independent on the lipid source. Based on the results, we speculate that hepatic TG infiltration leads to reduced expression of SCD-1, which might mediate either neutral, beneficial or unfavorable effects on hepatic metabolism upon high-fat feeding, depending on which fatty acids were provided by the diet.
Caffrey, Sean M.; Park, Hyung Soo; Been, Jenny; Gordon, Paul; Sensen, Christoph W.; Voordouw, Gerrit
2008-01-01
The genome sequence of the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough was reanalyzed to design unique 70-mer oligonucleotide probes against 2,824 probable protein-coding regions. These included three genes not previously annotated, including one that encodes a c-type cytochrome. Using microarrays printed with these 70-mer probes, we analyzed the gene expression profile of wild-type D. vulgaris grown on cathodic hydrogen, generated at an iron electrode surface with an imposed negative potential of −1.1 V (cathodic protection conditions). The gene expression profile of cells grown on cathodic hydrogen was compared to that of cells grown with gaseous hydrogen bubbling through the culture. Relative to the latter, the electrode-grown cells overexpressed two hydrogenases, the hyn-1 genes for [NiFe] hydrogenase 1 and the hyd genes, encoding [Fe] hydrogenase. The hmc genes for the high-molecular-weight cytochrome complex, which allows electron flow from the hydrogenases across the cytoplasmic membrane, were also overexpressed. In contrast, cells grown on gaseous hydrogen overexpressed the hys genes for [NiFeSe] hydrogenase. Cells growing on the electrode also overexpressed genes encoding proteins which promote biofilm formation. Although the gene expression profiles for these two modes of growth were distinct, they were more closely related to each other than to that for cells grown in a lactate- and sulfate-containing medium. Electrochemically measured corrosion rates were lower for iron electrodes covered with hyn-1, hyd, and hmc mutant biofilms than for wild-type biofilms. This confirms the importance, suggested by the gene expression studies, of the corresponding gene products in D. vulgaris-mediated iron corrosion. PMID:18310429
Das, Amitabh; Chai, Jin Choul; Yang, Chul-su; Lee, Young Seek; Das, Nando Dulal; Jung, Kyoung Hwa; Chai, Young Gyu
2015-01-01
Persistent macrophage activation is associated with the expression of various pro-inflammatory genes, cytokines and chemokines, which may initiate or amplify inflammatory disorders. A novel synthetic BET inhibitor, JQ1, was proven to exert immunosuppressive activities in macrophages. However, a genome-wide search for JQ1 molecular targets has not been undertaken. The present study aimed at evaluating the anti-inflammatory function and underlying genes that are targeted by JQ1 in LPS-stimulated primary bone marrow-derived macrophages (BMDMs) using global transcriptomic RNA sequencing and quantitative real-time PCR. Among the annotated genes, transcriptional sequencing of BMDMs that were treated with JQ1 revealed a selective effect on LPS-induced gene expression in which the induction of cytokines/chemokines, interferon-stimulated genes, and prominent (transcription factors) TFs was suppressed. Additionally, we found that JQ1 reduced the expression of previously unidentified genes that are important in inflammation. Importantly, these inflammatory genes were not affected by JQ1 treatment alone. Furthermore, we confirmed that JQ1 reduced cytokines/chemokines in the supernatants of LPS treated BMDMs. Moreover, the biological pathways and gene ontology of the differentially expressed genes were determined in the JQ1 treatment of BMDMs. These unprecedented results suggest that the BET inhibitor JQ1 is a candidate for the prevention or therapeutic treatment of inflammatory disorders. PMID:26582142
Zarria-Romero, Jacquelyne; Osorio, Ana; Pino, José; Shiga, Betty; Vivas-Ruiz, Dan
2017-01-01
To evaluate the effect of ZnO, TiO2 and SiO2 nanoparticles on cell viability and expression of the interleukin 7, interleukin 3, and granulocyte-macrophage colony stimulating factor (GM-CSF) genes in Mus musculus. Red bone marrow was extracted from five Balb/c mice for the analysis of cell viability using the MTT test. The mice were divided into two groups of five each: one group was inoculated intraperitoneally with 0.5, 1.0, 2.5, 5.0, and 10 mg/kg of ZnO and SiO2 nanoparticles, respectively, and the other group was inoculated with 5.0, 10.0, 15.0, 20.0, and 25 mg/kg of TiO2 nanoparticles, respectively. Thirty hours later, RNA was extracted from the red bone marrow of the mice in both groups for gene expression analysis using quantitative PCR and RT-PCR. ZnO and SiO2 nanoparticles reduced cell viability in a dose-dependent manner by 37% and 26%, respectively, starting at a dose of 1 mg/kg. TiO2 nanoparticles at 5 mg/kg and 10 mg/kg reduced the gene expression of interleukins 7 and 3 by 55.3% and 70.2%, respectively, and SiO2 nanoparticles caused the greatest decrease (91%) in the expression of GM-CSF. ZnO nanoparticles reduced the expression of GM-CSF starting at doses of 20 mg/kg and 25 mg/kg. ZnO, SiO2 and TiO2 nanoparticles affect cell viability and gene expression in the mouse bone marrow.
Cheng, Kevin P.; Kiernan, Elizabeth A.; Eliceiri, Kevin W.; Williams, Justin C.; Watters, Jyoti J.
2016-01-01
Neural optogenetic applications over the past decade have steadily increased; however the effects of commonly used blue light paradigms on surrounding, non-optogenetic protein-expressing CNS cells are rarely considered, despite their simultaneous exposure. Here we report that blue light (450 nm) repetitively delivered in both long-duration boluses and rapid optogenetic bursts gene-specifically altered basal expression of inflammatory and neurotrophic genes in immortalized and primary murine wild type microglial cultures. In addition, blue light reduced pro-inflammatory gene expression in microglia activated with lipopolysaccharide. These results demonstrate previously unreported, off-target effects of blue light in cells not expressing optogenetic constructs. The unexpected gene modulatory effects of blue light on wild type CNS resident immune cells have novel and important implications for the neuro-optogenetic field. Further studies are needed to elucidate the molecular mechanisms and potential therapeutic utility of blue light modulation of the wild type CNS. PMID:26883795
Sriraj, Pranee; Boonmars, Thidarut; Boonjaraspinyo, Sirintip; Kaewsamut, Butsara; Srisawangwong, Tuanchai; Sithithaworn, Paiboon; Wu, Zhiliang
2009-11-01
The present study investigated the effect of curcumin, a phenolic compound with yellow color from Curcuma longa L., on the expression of the apoptosis-related genes [BAX (Bcl-2 associated protein X), PKB, p53, MDM2 (mouse double minute 2), caspase 9, c-Ski, smad1 and smad4] in hamster opisthorchiasis. On Opisthorchis viverrini infection treated with dietary curcumin apoptosis-related gene expression profiles were similar to O. viverrini-infected group, but the expression levels seemed lower. Light microscopic observation revealed that aggregation of inflammatory cells surrounding the hepatic bile ducts in the groups infected with O. viverrini and treated with dietary curcumin was lower than in infected group. The intensity of the response is correlated with expression of the genes studied. The results suggest that curcumin reduces pathogenesis in hamster-opisthorchiasis by controlling apoptosis-related gene expression.
Cheng, Kevin P; Kiernan, Elizabeth A; Eliceiri, Kevin W; Williams, Justin C; Watters, Jyoti J
2016-02-17
Neural optogenetic applications over the past decade have steadily increased; however the effects of commonly used blue light paradigms on surrounding, non-optogenetic protein-expressing CNS cells are rarely considered, despite their simultaneous exposure. Here we report that blue light (450 nm) repetitively delivered in both long-duration boluses and rapid optogenetic bursts gene-specifically altered basal expression of inflammatory and neurotrophic genes in immortalized and primary murine wild type microglial cultures. In addition, blue light reduced pro-inflammatory gene expression in microglia activated with lipopolysaccharide. These results demonstrate previously unreported, off-target effects of blue light in cells not expressing optogenetic constructs. The unexpected gene modulatory effects of blue light on wild type CNS resident immune cells have novel and important implications for the neuro-optogenetic field. Further studies are needed to elucidate the molecular mechanisms and potential therapeutic utility of blue light modulation of the wild type CNS.
Identification and consequences of miRNA-target interactions--beyond repression of gene expression.
Hausser, Jean; Zavolan, Mihaela
2014-09-01
Comparative genomics analyses and high-throughput experimental studies indicate that a microRNA (miRNA) binds to hundreds of sites across the transcriptome. Although the knockout of components of the miRNA biogenesis pathway has profound phenotypic consequences, most predicted miRNA targets undergo small changes at the mRNA and protein levels when the expression of the miRNA is perturbed. Alternatively, miRNAs can establish thresholds in and increase the coherence of the expression of their target genes, as well as reduce the cell-to-cell variability in target gene expression. Here, we review the recent progress in identifying miRNA targets and the emerging paradigms of how miRNAs shape the dynamics of target gene expression.
Wang, Tianyu; Nabavi, Sheida
2018-04-24
Differential gene expression analysis is one of the significant efforts in single cell RNA sequencing (scRNAseq) analysis to discover the specific changes in expression levels of individual cell types. Since scRNAseq exhibits multimodality, large amounts of zero counts, and sparsity, it is different from the traditional bulk RNA sequencing (RNAseq) data. The new challenges of scRNAseq data promote the development of new methods for identifying differentially expressed (DE) genes. In this study, we proposed a new method, SigEMD, that combines a data imputation approach, a logistic regression model and a nonparametric method based on the Earth Mover's Distance, to precisely and efficiently identify DE genes in scRNAseq data. The regression model and data imputation are used to reduce the impact of large amounts of zero counts, and the nonparametric method is used to improve the sensitivity of detecting DE genes from multimodal scRNAseq data. By additionally employing gene interaction network information to adjust the final states of DE genes, we further reduce the false positives of calling DE genes. We used simulated datasets and real datasets to evaluate the detection accuracy of the proposed method and to compare its performance with those of other differential expression analysis methods. Results indicate that the proposed method has an overall powerful performance in terms of precision in detection, sensitivity, and specificity. Copyright © 2018 Elsevier Inc. All rights reserved.
Shear stress reduces protease activated receptor-1 expression in human endothelial cells
NASA Technical Reports Server (NTRS)
Nguyen, K. T.; Eskin, S. G.; Patterson, C.; Runge, M. S.; McIntire, L. V.
2001-01-01
Shear stress has been shown to regulate several genes involved in the thrombotic and proliferative functions of endothelial cells. Thrombin receptor (protease-activated receptor-1: PAR-1) increases at sites of vascular injury, which suggests an important role for PAR-1 in vascular diseases. However, the effect of shear stress on PAR-1 expression has not been previously studied. This work investigates effects of shear stress on PAR-1 gene expression in both human umbilical vein endothelial cells (HUVECs) and microvascular endothelial cells (HMECs). Cells were exposed to different shear stresses using a parallel plate flow system. Northern blot and flow cytometry analysis showed that shear stress down-regulated PAR-1 messenger RNA (mRNA) and protein levels in both HUVECs and HMECs but with different thresholds. Furthermore, shear-reduced PAR-1 mRNA was due to a decrease of transcription rate, not increased mRNA degradation. Postshear stress release of endothelin-1 in response to thrombin was reduced in HUVECs and HMECs. Moreover, inhibitors of potential signaling pathways applied during shear stress indicated mediation of the shear-decreased PAR-1 expression by protein kinases. In conclusion, shear stress exposure reduces PAR-1 gene expression in HMECs and HUVECs through a mechanism dependent in part on protein kinases, leading to altered endothelial cell functional responses to thrombin.
Arunkumar, Ramesh; Josephs, Emily B; Williamson, Robert J; Wright, Stephen I
2013-11-01
Selection on the gametophyte can be a major force shaping plant genomes as 7-11% of genes are expressed only in that phase and 60% of genes are expressed in both the gametophytic and sporophytic phases. The efficacy of selection on gametophytic tissues is likely to be influenced by sexual selection acting on male and female functions of hermaphroditic plants. Moreover, the haploid nature of the gametophytic phase allows selection to be efficient in removing recessive deleterious mutations and fixing recessive beneficial mutations. To assess the importance of gametophytic selection, we compared the strength of purifying selection and extent of positive selection on gametophyte- and sporophyte-specific genes in the highly outcrossing plant Capsella grandiflora. We found that pollen-exclusive genes had a larger fraction of sites under strong purifying selection, a greater proportion of adaptive substitutions, and faster protein evolution compared with seedling-exclusive genes. In contrast, sperm cell-exclusive genes had a smaller fraction of sites under strong purifying selection, a lower proportion of adaptive substitutions, and slower protein evolution compared with seedling-exclusive genes. Observations of strong selection acting on pollen-expressed genes are likely explained by sexual selection resulting from pollen competition aided by the haploid nature of that tissue. The relaxation of selection in sperm might be due to the reduced influence of intrasexual competition, but reduced gene expression may also be playing an important role.
Dhungel, Bidur; Ohno, Yoshikazu; Matayoshi, Rie; Otaki, Joji M
2013-03-25
Candidate genes for color pattern formation in butterfly wings have been known based on gene expression patterns since the 1990s, but their functions remain elusive due to a lack of a functional assay. Several methods of transferring and expressing a foreign gene in butterfly wings have been reported, but they have suffered from low success rates or low expression levels. Here, we developed a simple, practical method to efficiently deliver and express a foreign gene using baculovirus-mediated gene transfer in butterfly wings in vivo. A recombinant baculovirus containing a gene for green fluorescent protein (GFP) was injected into pupae of the blue pansy butterfly Junonia orithya (Nymphalidae). GFP fluorescence was detected in the pupal wings and other body parts of the injected individuals three to five days post-injection at various degrees of fluorescence. We obtained a high GFP expression rate at relatively high virus titers, but it was associated with pupal death before color pattern formation in wings. To reduce the high mortality rate caused by the baculovirus treatment, we administered an anti-gp64 antibody, which was raised against baculovirus coat protein gp64, to infected pupae after the baculovirus injection. This treatment greatly reduced the mortality rate of the infected pupae. GFP fluorescence was observed in pupal and adult wings and other body parts of the antibody-treated individuals at various degrees of fluorescence. Importantly, we obtained completely developed wings with a normal color pattern, in which fluorescent signals originated directly from scales or the basal membrane after the removal of scales. GFP fluorescence in wing tissues spatially coincided with anti-GFP antibody staining, confirming that the fluorescent signals originated from the expressed GFP molecules. Our baculovirus-mediated gene transfer system with an anti-gp64 antibody is reasonably efficient, and it can be an invaluable tool to transfer, express, and functionally examine foreign genes in butterfly wings and also in other non-model insect systems.
Piotrowska, H; Kujawska, M; Nowicki, M; Petzke, E; Ignatowicz, E; Krajka-Kuźniak, V; Zawierucha, P; Wierzchowski, M; Murias, M; Jodynis-Liebert, J
2017-02-01
The aim of the study was to examine whether antioxidant properties of 3,4,4',5-tetramethoxystilbene (DMU-212) contribute to its anticarcinogenic activity and whether DMU-212 affects the expression of apoptosis-related genes. Two-stage model of hepatocarcinogenesis was used; male Wistar rats were challenged with N-nitrosodiethylamine (NDEA), 200 mg/kg body weight (b.w.), intraperitoneal, then phenobarbital (PB) in drinking water (0.05%) was administered. Simultaneously, DMU-212 was given per os at a dose 20 or 50 mg/kg b.w. two times a week for 16 weeks. DMU-212 caused a moderate decrease in hepatic thiobarbituric acid reactive substances and protein carbonyls concentration elevated in rats treated with NDEA/PB. The activity of antioxidant enzymes examined reduced by NDEA/PB treatment was not restored in rats coadministered with DMU-212. Effects of DMU-212 on messenger RNA (mRNA) expression of antioxidant enzymes in rats challenged with NDEA/PB were diversified; no changes in their protein expression were noted in any of the groups. The expression of 17,000 genes was analyzed by Affymetrix® Rat Gene 1.1 ST Array; 15 apoptosis-related genes were selected and validated by RT-q PCR. The combined treatment with NDEA/PB and DMU-212 increased the mRNA level of some genes driving mitochondria-mediated apoptosis, whereas the mRNA expression of some anti-apoptotic genes triggering receptor-mediated apoptosis was reduced. The expression of genes encoding caspases-4, -8, -9, and -12 was also increased in rats treated with DMU-212. Although antioxidant effect of DMU-212 in rats challenged with NDEA/PB was moderate, its potential anticarcinogenic properties were demonstrated as evidenced by modulation of apoptosis-related genes.
Cabeza, Ricardo; Koester, Beke; Liese, Rebecca; Lingner, Annika; Baumgarten, Vanessa; Dirks, Jan; Salinas-Riester, Gabriela; Pommerenke, Claudia; Dittert, Klaus; Schulze, Joachim
2014-01-01
The mechanism through which nitrate reduces the activity of legume nodules is controversial. The objective of the study was to follow Medicago truncatula nodule activity after nitrate provision continuously and to identify molecular mechanisms, which down-regulate the activity of the nodules. Nodule H2 evolution started to decline after about 4 h of nitrate application. At that point in time, a strong shift in nodule gene expression (RNA sequencing) had occurred (1,120 differentially expressed genes). The most pronounced effect was the down-regulation of 127 genes for nodule-specific cysteine-rich peptides. Various other nodulins were also strongly down-regulated, in particular all the genes for leghemoglobins. In addition, shifts in the expression of genes involved in cellular iron allocation and mitochondrial ATP synthesis were observed. Furthermore, the expression of numerous genes for the formation of proteins and glycoproteins with no obvious function in nodules (e.g. germins, patatin, and thaumatin) was strongly increased. This occurred in conjunction with an up-regulation of genes for proteinase inhibitors, in particular those containing the Kunitz domain. The additionally formed proteins might possibly be involved in reducing nodule oxygen permeability. Between 4 and 28 h of nitrate exposure, a further reduction in nodule activity occurred, and the number of differentially expressed genes almost tripled. In particular, there was a differential expression of genes connected with emerging senescence. It is concluded that nitrate exerts rapid and manifold effects on nitrogenase activity. A certain degree of nitrate tolerance might be achieved when the down-regulatory effect on late nodulins can be alleviated. PMID:24285852
Gene Rearrangement Attenuates Expression and Lethality of a Nonsegmented Negative Strand RNA Virus
NASA Astrophysics Data System (ADS)
Williams Wertz, Gail; Perepelitsa, Victoria P.; Ball, L. Andrew
1998-03-01
The nonsegmented negative strand RNA viruses comprise hundreds of human, animal, insect, and plant pathogens. Gene expression of these viruses is controlled by the highly conserved order of genes relative to the single transcriptional promoter. We utilized this regulatory mechanism to alter gene expression levels of vesicular stomatitis virus by rearranging the gene order. This report documents that gene expression levels and the viral phenotype can be manipulated in a predictable manner. Translocation of the promoter-proximal nucleocapsid protein gene N, whose product is required stoichiometrically for genome replication, to successive positions down the genome reduced N mRNA and protein expression in a stepwise manner. The reduction in N gene expression resulted in a stepwise decrease in genomic RNA replication. Translocation of the N gene also attenuated the viruses to increasing extents for replication in cultured cells and for lethality in mice, without compromising their ability to elicit protective immunity. Because monopartite negative strand RNA viruses have not been reported to undergo homologous recombination, gene rearrangement should be irreversible and may provide a rational strategy for developing stably attenuated live vaccines against this type of virus.
Functional Analysis of Promoter Region from Eel Cytochrome P450 1A1 Gene in Transgenic Medaka.
Ogino; Itakura; Kato; Aoki; Sato
1999-07-01
: Transcription of the CYP1A1 genes in mammals and fish is stimulated by polyaromatic hydrocarbons. DNA sequencing analysis revealed that CYP1A1 gene in eel (Anguilla japonica) contains two kinds of putative cis-acting regulatory elements, XRE (xenobiotic-responsive element) and ERE (estrogen-responsive element). XRE is known as the enhancer that is responsible for the inducibility of the genes of CYP1A1 and some other drug-metabolizing enzymes. In the eel CYP1A1 gene, XRE motifs are distributed as follows: five times in the region from -2136 to -1125 bp, XRE(-6) to (-2); once in the proximal basal promoter region, XRE(-1); and once in the first intron, XRE(+1). The region between XRE(-2) and XRE(-1) contains three ERE motifs. To investigate the function of the cis-acting regulatory elements in the eel CYP1A1 gene, recombinant plasmids prepared with its 5' upstream sequence and the structural gene for luciferase were microinjected into fertilized eggs of medaka at the one-cell stage. Hatched fry were treated with 3-methylcholanthrene, and the transcription efficiency was assayed using competitive polymerase chain reaction analysis. Deletion of the region containing the five XREs, XRE(-6) to XRE(-2), and the point mutation of XRE(-1) reduced the inducible expressions by 75% and 56%, respectively, showing apparent dependency of the drug induction on the XREs. Constitutive expression, however, was not significantly affected by deletion or disruption of the XREs. When the region between XRE(-2) and XRE(-1) containing no XREs but three ERE motifs was internally deleted, the inducible expression and the constitutive expression were reduced by 88% and 75%, respectively. Replacement of this region with a partial fragment of eel CYP1A1 complementary DNA, with slight alteration of the distance between the five XREs and XRE(-1), reduced the inducible expression and the constitutive expression by 91% and 60%, respectively. These results strongly suggest that not only XRE but also other regulatory elements, possibly ERE, play an important role in induced and constitutive expressions of the eel CYP1A1 gene.
Reduced Abd-B Hox function during kidney development results in lineage infidelity.
Magella, Bliss; Mahoney, Robert; Adam, Mike; Potter, S Steven
2018-06-15
Hox genes can function as key drivers of segment identity, with Hox mutations in Drosophila often resulting in dramatic homeotic transformations. In addition, however, they can serve other essential functions. In mammals, the study of Hox gene roles in development is complicated by the presence of four Hox clusters with a total of 39 genes showing extensive functional overlap. In this study, in order to better understand shared core Hox functions, we examined kidney development in mice with frameshift mutations of multiple Abd-B type Hox genes. The resulting phenotypes included dramatically reduced branching morphogenesis of the ureteric bud, premature depletion of nephron progenitors and abnormal development of the stromal compartment. Most unexpected, however, we also observed a cellular level lineage infidelity in nephron segments. Scattered cells within the proximal tubules, for example, expressed genes normally expressed only in collecting ducts. Multiple combinations of inappropriate nephron segment specific marker expression were found. In some cases, cells within a tubule showed incorrect identity, while in other cases cells showed ambiguous character, with simultaneous expression of genes associated with more than one nephron segment. These results give evidence that Hox genes have an overlapping core function at the cellular level in driving and/or maintaining correct differentiation decisions. Copyright © 2018 Elsevier Inc. All rights reserved.
He, Rong-Quan; Yang, Xia; Liang, Liang; Chen, Gang; Ma, Jie
2018-04-01
The present study aimed to explore the potential clinical significance of microRNA (miR)-124-3p expression in the hepatocarcinogenesis and development of hepatocellular carcinoma (HCC), as well as the potential target genes of functional HCC pathways. Reverse transcription-quantitative polymerase chain reaction was performed to evaluate the expression of miR-124-3p in 101 HCC and adjacent non-cancerous tissue samples. Additionally, the association between miR-124-3p expression and clinical parameters was also analyzed. Differentially expressed genes identified following miR-124-3p transfection, the prospective target genes predicted in silico and the key genes of HCC obtained from Natural Language Processing (NLP) were integrated to obtain potential target genes of miR-124-3p in HCC. Relevant signaling pathways were assessed with protein-protein interaction (PPI) networks, Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Protein Annotation Through Evolutionary Relationships (PANTHER) pathway enrichment analysis. miR-124-3p expression was significantly reduced in HCC tissues compared with expression in adjacent non-cancerous liver tissues. In HCC, miR-124-3p was demonstrated to be associated with clinical stage. The mean survival time of the low miR-124-3p expression group was reduced compared with that of the high expression group. A total of 132 genes overlapped from differentially expressed genes, miR-124-3p predicted target genes and NLP identified genes. PPI network construction revealed a total of 109 nodes and 386 edges, and 20 key genes were identified. The major enriched terms of three GO categories included regulation of cell proliferation, positive regulation of cellular biosynthetic processes, cell leading edge, cytosol and cell projection, protein kinase activity, transcription activator activity and enzyme binding. KEGG analysis revealed pancreatic cancer, prostate cancer and non-small cell lung cancer as the top three terms. Angiogenesis, the endothelial growth factor receptor signaling pathway and the fibroblast growth factor signaling pathway were identified as the most significant terms in the PANTHER pathway analysis. The present study confirmed that miR-124-3p acts as a tumor suppressor in HCC. miR-124-3p may target multiple genes, exerting its effect spatiotemporally, or in combination with a diverse range of processes in HCC. Functional characterization of miR-124-3p targets will offer novel insight into the molecular changes that occur in HCC progression.
Grimes, Daniel T.
2016-01-01
Left–right (L-R) asymmetry of the internal organs of vertebrates is presaged by domains of asymmetric gene expression in the lateral plate mesoderm (LPM) during somitogenesis. Ciliated L-R coordinators (LRCs) are critical for biasing the initiation of asymmetrically expressed genes, such as nodal and pitx2, to the left LPM. Other midline structures, including the notochord and floorplate, are then required to maintain these asymmetries. Here we report an unexpected role for the zebrafish EGF-CFC gene one-eyed pinhead (oep) in the midline to promote pitx2 expression in the LPM. Late zygotic oep (LZoep) mutants have strongly reduced or absent pitx2 expression in the LPM, but this expression can be rescued to strong levels by restoring oep in midline structures only. Furthermore, removing midline structures from LZoep embryos can rescue pitx2 expression in the LPM, suggesting the midline is a source of an LPM pitx2 repressor that is itself inhibited by oep. Reducing lefty1 activity in LZoep embryos mimics removal of the midline, implicating lefty1 in the midline-derived repression. Together, this suggests a model where Oep in the midline functions to overcome a midline-derived repressor, involving lefty1, to allow for the expression of left side-specific genes in the LPM. This article is part of the themed issue ‘Provocative questions in left–right asymmetry’. PMID:27821532
An incoherent feedforward loop facilitates adaptive tuning of gene expression.
Hong, Jungeui; Brandt, Nathan; Abdul-Rahman, Farah; Yang, Ally; Hughes, Tim; Gresham, David
2018-04-05
We studied adaptive evolution of gene expression using long-term experimental evolution of Saccharomyces cerevisiae in ammonium-limited chemostats. We found repeated selection for non-synonymous variation in the DNA binding domain of the transcriptional activator, GAT1, which functions with the repressor, DAL80 in an incoherent type-1 feedforward loop (I1-FFL) to control expression of the high affinity ammonium transporter gene, MEP2. Missense mutations in the DNA binding domain of GAT1 reduce its binding to the GATAA consensus sequence. However, we show experimentally, and using mathematical modeling, that decreases in GAT1 binding result in increased expression of MEP2 as a consequence of properties of I1-FFLs. Our results show that I1-FFLs, one of the most commonly occurring network motifs in transcriptional networks, can facilitate adaptive tuning of gene expression through modulation of transcription factor binding affinities. Our findings highlight the importance of gene regulatory architectures in the evolution of gene expression. © 2018, Hong et al.
Zhang, L; Liu, X J
2016-06-03
With the rapid development of next-generation high-throughput sequencing technology, RNA-seq has become a standard and important technique for transcriptome analysis. For multi-sample RNA-seq data, the existing expression estimation methods usually deal with each single-RNA-seq sample, and ignore that the read distributions are consistent across multiple samples. In the current study, we propose a structured sparse regression method, SSRSeq, to estimate isoform expression using multi-sample RNA-seq data. SSRSeq uses a non-parameter model to capture the general tendency of non-uniformity read distribution for all genes across multiple samples. Additionally, our method adds a structured sparse regularization, which not only incorporates the sparse specificity between a gene and its corresponding isoform expression levels, but also reduces the effects of noisy reads, especially for lowly expressed genes and isoforms. Four real datasets were used to evaluate our method on isoform expression estimation. Compared with other popular methods, SSRSeq reduced the variance between multiple samples, and produced more accurate isoform expression estimations, and thus more meaningful biological interpretations.
Kelly, Gilor; Sade, Nir; Doron-Faigenboim, Adi; Lerner, Stephen; Shatil-Cohen, Arava; Yeselson, Yelena; Egbaria, Aiman; Kottapalli, Jayaram; Schaffer, Arthur A; Moshelion, Menachem; Granot, David
2017-07-01
Sugars affect central aspects of plant physiology, including photosynthesis, stomatal behavior and the loss of water through the stomata. Yet, the potential effects of sugars on plant aquaporins (AQPs) and water conductance have not been examined. We used database and transcriptional analyses, as well as cellular and whole-plant functional techniques to examine the link between sugar-related genes and AQPs. Database analyses revealed a high level of correlation between the expression of AQPs and that of sugar-related genes, including the Arabidopsis hexokinases 1 (AtHXK1). Increased expression of AtHXK1, as well as the addition of its primary substrate, glucose (Glc), repressed the expression of 10 AQPs from the plasma membrane-intrinsic proteins (PIP) subfamily (PIP-AQPs) and induced the expression of two stress-related PIP-AQPs. The osmotic water permeability of mesophyll protoplasts of AtHXK1-expressing plants and the leaf hydraulic conductance of those plants were significantly reduced, in line with the decreased expression of PIP-AQPs. Conversely, hxk1 mutants demonstrated a higher level of hydraulic conductance, with increased water potential in their leaves. In addition, the presence of Glc reduced leaf water potential, as compared with an osmotic control, indicating that Glc reduces the movement of water from the xylem into the mesophyll. The production of sugars entails a significant loss of water and these results suggest that sugars and AtHXK1 affect the expression of AQP genes and reduce leaf water conductance, to coordinate sugar levels with the loss of water through transpiration. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
Logue, Mark W.; Smith, Alicia K.; Baldwin, Clinton; Wolf, Erika J.; Guffanti, Guia; Ratanatharathorn, Andrew; Stone, Annjanette; Schichman, Steven A.; Humphries, Donald; Binder, Elisabeth B.; Arloth, Janine; Menke, Andreas; Uddin, Monica; Wildman, Derek; Galea, Sandro; Aiello, Allison E.; Koenen, Karestan C.; Miller, Mark W.
2015-01-01
We examined the association between posttraumatic stress disorder (PTSD) and gene expression using whole blood samples from a cohort of trauma-exposed white non-Hispanic male veterans (115 cases and 28 controls). 10,264 probes of genes and gene transcripts were analyzed. We found 41 that were differentially expressed in PTSD cases versus controls (multiple-testing corrected p<0.05). The most significant was DSCAM, a neurological gene expressed widely in the developing brain and in the amygdala and hippocampus of the adult brain. We then examined the 41 differentially expressed genes in a meta-analysis using two replication cohorts and found significant associations with PTSD for 7 of the 41 (p<0.05), one of which (ATP6AP1L) survived multiple-testing correction. There was also broad evidence of overlap across the discovery and replication samples for the entire set of genes implicated in the discovery data based on the direction of effect and an enrichment of p<0.05 significant probes beyond what would be expected under the null. Finally, we found that the set of differentially expressed genes from the discovery sample was enriched for genes responsive to glucocorticoid signaling with most showing reduced expression in PTSD cases compared to controls. PMID:25867994
Nitschke, Silvia; Cortleven, Anne; Iven, Tim; Feussner, Ivo; Havaux, Michel; Riefler, Michael; Schmülling, Thomas
2016-07-01
The circadian clock helps plants measure daylength and adapt to changes in the day-night rhythm. We found that changes in the light-dark regime triggered stress responses, eventually leading to cell death, in leaves of Arabidopsis thaliana plants with reduced cytokinin levels or defective cytokinin signaling. Prolonged light treatment followed by a dark period induced stress and cell death marker genes while reducing photosynthetic efficiency. This response, called circadian stress, is also characterized by altered expression of clock and clock output genes. In particular, this treatment strongly reduced the expression of CIRCADIAN CLOCK ASSOCIATED1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY). Intriguingly, similar changes in gene expression and cell death were observed in clock mutants lacking proper CCA1 and LHY function. Circadian stress caused strong changes in reactive oxygen species- and jasmonic acid (JA)-related gene expression. The activation of the JA pathway, involving the accumulation of JA metabolites, was crucial for the induction of cell death, since the cell death phenotype was strongly reduced in the jasmonate resistant1 mutant background. We propose that adaptation to circadian stress regimes requires a normal cytokinin status which, acting primarily through the AHK3 receptor, supports circadian clock function to guard against the detrimental effects of circadian stress. © 2016 American Society of Plant Biologists. All rights reserved.
Yang, Xiaojian; Brisbin, Jennifer; Yu, Hai; Wang, Qi; Yin, Fugui; Zhang, Yonggang; Sabour, Parviz; Sharif, Shayan; Gong, Joshua
2014-01-01
Probiotics have been used to control Salmonella colonization/infection in chickens. Yet the mechanisms of probiotic effects are not fully understood. This study has characterized our previously-selected lactic acid-producing bacterial (LAB) isolates for controlling Salmonella infection in chickens, particularly the mechanism underlying the control. In vitro studies were conducted to characterize 14 LAB isolates for their tolerance to low pH (2.0) and high bile salt (0.3-1.5%) and susceptibility to antibiotics. Three chicken infection trials were subsequently carried out to evaluate four of the isolates for reducing the burden of Salmonella enterica serovar Typhimurium in the broiler cecum. Chicks were gavaged with LAB cultures (10(6-7) CFU/chick) or phosphate-buffered saline (PBS) at 1 day of age followed by Salmonella challenge (10(4) CFU/chick) next day. Samples of cecal digesta, spleen, and liver were examined for Salmonella counts on days 1, 3, or 4 post-challenge. Salmonella in the cecum from Trial 3 was also assessed for the expression of ten virulence genes located in its pathogenicity island-1 (SPI-1). These genes play a role in Salmonella intestinal invasion. Tested LAB isolates (individuals or mixed cultures) were unable to lower Salmonella burden in the chicken cecum, but able to attenuate Salmonella infection in the spleen and liver. The LAB treatments also reduced almost all SPI-1 virulence gene expression (9 out of 10) in the chicken cecum, particularly at the low dose. In vitro treatment with the extracellular culture fluid from a LAB culture also down-regulated most SPI-1 virulence gene expression. The possible correlation between attenuation of Salmonella infection in the chicken spleen and liver and reduction of Salmonella SPI-1 virulence gene expression in the chicken cecum by LAB isolates is a new observation. Suppression of Salmonella virulence gene expression in vivo can be one of the strategies for controlling Salmonella infection in chickens.
Beumer, Wouter; Welzen-Coppens, Jojanneke M. C.; van Helden-Meeuwsen, Cornelia G.; Gibney, Sinead M.; Drexhage, Hemmo A.; Versnel, Marjan A.
2014-01-01
Two major dendritic cell (DC) subsets have been described in the pancreas of mice: The CD11c+CD8α− DCs (strong CD4+ T cell proliferation inducers) and the CD8α+CD103+ DCs (T cell apoptosis inducers). Here we analyzed the larger subset of CD11c+CD8α− DCs isolated from the pancreas of pre-diabetic NOD mice for genome-wide gene expression (validated by Q-PCR) to elucidate abnormalities in underlying gene expression networks. CD11c+CD8α− DCs were isolated from 5 week old NOD and control C57BL/6 pancreas. The steady state pancreatic NOD CD11c+CD8α− DCs showed a reduced expression of several gene networks important for the prime functions of these cells, i.e. for cell renewal, immune tolerance induction, migration and for the provision of growth factors including those for beta cell regeneration. A functional in vivo BrdU incorporation test showed the reduced proliferation of steady state pancreatic DC. The reduced expression of tolerance induction genes (CD200R, CCR5 and CD24) was supported on the protein level by flow cytometry. Also previously published functional tests on maturation, immune stimulation and migration confirm the molecular deficits of NOD steady state DC. Despite these deficiencies NOD pancreas CD11c+CD8α− DCs showed a hyperreactivity to LPS, which resulted in an enhanced pro-inflammatory state characterized by a gene profile of an enhanced expression of a number of classical inflammatory cytokines. The enhanced up-regulation of inflammatory genes was supported by the in vitro cytokine production profile of the DCs. In conclusion, our data show that NOD pancreatic CD11c+CD8α− DCs show various deficiencies in steady state, while hyperreactive when encountering a danger signal such as LPS. PMID:25166904
An, Dong; Ma, Qiuxiang; Yan, Wei; Zhou, Wenzhi; Liu, Guanghua; Zhang, Peng
2016-01-01
Cassava is a tropical origin plant that is sensitive to chilling stress. In order to understand the CBF cold response pathway, a well-recognized regulatory mechanism in temperate plants, in cassava, overexpression of an Arabidopsis CBF3 gene is studied. This gene renders cassava increasingly tolerant to cold and drought stresses but is associated with retarded plant growth, leaf curling, reduced storage root yield, and reduced anthocyanin accumulation in a transcript abundance-dependent manner. Physiological analysis revealed that the transgenic cassava increased proline accumulation, reduced malondialdehyde production, and electrolyte leakage under cold stress. These transgenic lines also showed high relative water content when faced with drought. The expression of partial CBF-targeted genes in response to cold displayed temporal and spatial variations in the wild-type and transgenic plants: highly inducible in leaves and less altered in apical buds. In addition, anthocyanin accumulation was inhibited by downregulating the expression of genes involved in its biosynthesis and by interplaying between the CBF3 and the endogenous transcription factors. Thus, the heterologous CBF3 modulates the expression of stress-related genes and carries out a series of physiological adjustments under stressful conditions, showing a varied regulation pattern of CBF regulon from that of cassava CBFs.
Schiro, Michelle M.; Stauber, Sara E.; Peterson, Tami L.; Krueger, Chateen; Darnell, Steven J.; Satyshur, Kenneth A.; Drinkwater, Norman R.; Newton, Michael A.; Hoffmann, F. Michael
2011-01-01
Background Hub proteins are connected through binding interactions to many other proteins. Smad3, a mediator of signal transduction induced by transforming growth factor beta (TGF-β), serves as a hub protein for over 50 protein-protein interactions. Different cellular responses mediated by Smad3 are the product of cell-type and context dependent Smad3-nucleated protein complexes acting in concert. Our hypothesis is that perturbation of this spectrum of protein complexes by mutation of single protein-binding hot-spots on Smad3 will have distinct consequences on Smad3-mediated responses. Methodology/Principal Findings We mutated 28 amino acids on the surface of the Smad3 MH2 domain and identified 22 Smad3 variants with reduced binding to subsets of 17 Smad3-binding proteins including Smad4, SARA, Ski, Smurf2 and SIP1. Mutations defective in binding to Smad4, e.g., D408H, or defective in nucleocytoplasmic shuttling, e.g., W406A, were compromised in modulating the expression levels of a Smad3-dependent reporter gene or six endogenous Smad3-responsive genes: Mmp9, IL11, Tnfaip6, Fermt1, Olfm2 and Wnt11. However, the Smad3 mutants Y226A, Y297A, W326A, K341A, and E267A had distinct differences on TGF-β signaling. For example, K341A and Y226A both reduced the Smad3-mediated activation of the reporter gene by ∼50% but K341A only reduced the TGF-β inducibilty of Olfm2 in contrast to Y226A which reduced the TGF-β inducibility of all six endogenous genes as severely as the W406A mutation. E267A had increased protein binding but reduced TGF-β inducibility because it caused higher basal levels of expression. Y297A had increased TGF-β inducibility because it caused lower Smad3-induced basal levels of gene expression. Conclusions/Significance Mutations in protein binding hot-spots on Smad3 reduced the binding to different subsets of interacting proteins and caused a range of quantitative changes in the expression of genes induced by Smad3. This approach should be useful for unraveling which Smad3 protein complexes are critical for specific biological responses. PMID:21949838
Schiro, Michelle M; Stauber, Sara E; Peterson, Tami L; Krueger, Chateen; Darnell, Steven J; Satyshur, Kenneth A; Drinkwater, Norman R; Newton, Michael A; Hoffmann, F Michael
2011-01-01
Hub proteins are connected through binding interactions to many other proteins. Smad3, a mediator of signal transduction induced by transforming growth factor beta (TGF-β), serves as a hub protein for over 50 protein-protein interactions. Different cellular responses mediated by Smad3 are the product of cell-type and context dependent Smad3-nucleated protein complexes acting in concert. Our hypothesis is that perturbation of this spectrum of protein complexes by mutation of single protein-binding hot-spots on Smad3 will have distinct consequences on Smad3-mediated responses. We mutated 28 amino acids on the surface of the Smad3 MH2 domain and identified 22 Smad3 variants with reduced binding to subsets of 17 Smad3-binding proteins including Smad4, SARA, Ski, Smurf2 and SIP1. Mutations defective in binding to Smad4, e.g., D408H, or defective in nucleocytoplasmic shuttling, e.g., W406A, were compromised in modulating the expression levels of a Smad3-dependent reporter gene or six endogenous Smad3-responsive genes: Mmp9, IL11, Tnfaip6, Fermt1, Olfm2 and Wnt11. However, the Smad3 mutants Y226A, Y297A, W326A, K341A, and E267A had distinct differences on TGF-β signaling. For example, K341A and Y226A both reduced the Smad3-mediated activation of the reporter gene by ∼50% but K341A only reduced the TGF-β inducibilty of Olfm2 in contrast to Y226A which reduced the TGF-β inducibility of all six endogenous genes as severely as the W406A mutation. E267A had increased protein binding but reduced TGF-β inducibility because it caused higher basal levels of expression. Y297A had increased TGF-β inducibility because it caused lower Smad3-induced basal levels of gene expression. Mutations in protein binding hot-spots on Smad3 reduced the binding to different subsets of interacting proteins and caused a range of quantitative changes in the expression of genes induced by Smad3. This approach should be useful for unraveling which Smad3 protein complexes are critical for specific biological responses.
Hong, Hyerim; Jung, Jaejoon; Park, Woojun
2014-01-01
Acquisition of the extracellular tetracycline (TC) resistance plasmid pAST2 affected host gene expression and phenotype in the oil-degrading soil bacterium, Acinetobacter oleivorans DR1. Whole-transcriptome profiling of DR1 cells harboring pAST2 revealed that all the plasmid genes were highly expressed under TC conditions, and the expression levels of many host chromosomal genes were modulated by the presence of pAST2. The host energy burden imposed by replication of pAST2 led to (i) lowered ATP concentrations, (ii) downregulated expression of many genes involved in cellular growth, and (iii) reduced growth rate. Interestingly, some phenotypes were restored by deleting the plasmid-encoded efflux pump gene tetH, suggesting that the membrane integrity changes resulting from the incorporation of efflux pump proteins also resulted in altered host response under the tested conditions. Alteration of membrane integrity by tetH deletion was shown by measuring permeability of fluorescent probe and membrane hydrophobicity. The presence of the plasmid conferred peroxide and superoxide resistance to cells, but only peroxide resistance was diminished by tetH gene deletion, suggesting that the plasmid-encoded membrane-bound efflux pump protein provided peroxide resistance. The downregulation of fimbriae-related genes presumably led to reduced swimming motility, but this phenotype was recovered by tetH gene deletion. Our data suggest that not only the plasmid replication burden, but also its encoded efflux pump protein altered host chromosomal gene expression and phenotype, which also alters the ecological fitness of the host in the environment. PMID:25229538
Hong, Hyerim; Jung, Jaejoon; Park, Woojun
2014-01-01
Acquisition of the extracellular tetracycline (TC) resistance plasmid pAST2 affected host gene expression and phenotype in the oil-degrading soil bacterium, Acinetobacter oleivorans DR1. Whole-transcriptome profiling of DR1 cells harboring pAST2 revealed that all the plasmid genes were highly expressed under TC conditions, and the expression levels of many host chromosomal genes were modulated by the presence of pAST2. The host energy burden imposed by replication of pAST2 led to (i) lowered ATP concentrations, (ii) downregulated expression of many genes involved in cellular growth, and (iii) reduced growth rate. Interestingly, some phenotypes were restored by deleting the plasmid-encoded efflux pump gene tetH, suggesting that the membrane integrity changes resulting from the incorporation of efflux pump proteins also resulted in altered host response under the tested conditions. Alteration of membrane integrity by tetH deletion was shown by measuring permeability of fluorescent probe and membrane hydrophobicity. The presence of the plasmid conferred peroxide and superoxide resistance to cells, but only peroxide resistance was diminished by tetH gene deletion, suggesting that the plasmid-encoded membrane-bound efflux pump protein provided peroxide resistance. The downregulation of fimbriae-related genes presumably led to reduced swimming motility, but this phenotype was recovered by tetH gene deletion. Our data suggest that not only the plasmid replication burden, but also its encoded efflux pump protein altered host chromosomal gene expression and phenotype, which also alters the ecological fitness of the host in the environment.
Sechman, Andrzej; Batoryna, Marta; Antos, Piotr A; Hrabia, Anna
2016-12-15
The objective of this study was to assess the in vitro effects of dioxin-like PCB 126 and non-dioxin-like PCB 153 on basal and ovine LH (oLH)-stimulated testosterone (T) and estradiol (E2) secretion and expression of steroidogenic genes (STAR, HSD3B and CYP19A1) and estrogen receptors α (ERα) and β (ERβ) in white (WF) and yellowish (YF) prehierarchical follicles of the hen ovary. Steroid concentrations in a medium and gene expression in follicles following 6h of exposition were determined by RIA and real-time qPCR, respectively. Both PCBs increased basal and oLH-stimulated T secretion by the WF follicles. PCB 126 reduced basal E2 secretion by the WF follicles. PCB 153 elevated but PCB 126 reduced oLH-stimulated E2 secretion by the prehierarchical follicles. PCB 126 increased basal STAR and HSD3B and reduced CYP19A1 mRNA expression in these follicles. PCB 153 increased basal expression of STAR and HSD3B in YF follicles, but diminished HSD3B mRNA levels in the WF. The studied PCBs had an opposite effect on basal and oLH-stimulated CYP19A1 mRNA expression in prehierarchical follicles. Both PCBs modulated basal and inhibited oLH-stimulated ERα and ERβ gene expression in the prehierarchical follicles. In conclusion, data of the current study demonstrate the congener-specific effects of PCBs on sex steroid secretion by prehierarchical follicles of the chicken ovary, which are at least partly related to STAR, HSD3B and CYP19A1 gene expression. It is suggested that PCBs, by influencing follicular steroidogenesis and expression of estrogen receptors, may impair development and selection of yellowish follicles to the preovulatory hierarchy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Cytokinin signaling regulates cambial development in poplar
Nieminen, Kaisa; Immanen, Juha; Laxell, Marjukka; Kauppinen, Leila; Tarkowski, Petr; Dolezal, Karel; Tähtiharju, Sari; Elo, Annakaisa; Decourteix, Mélanie; Ljung, Karin; Bhalerao, Rishikesh; Keinonen, Kaija; Albert, Victor A.; Helariutta, Ykä
2008-01-01
Although a substantial proportion of plant biomass originates from the activity of vascular cambium, the molecular basis of radial plant growth is still largely unknown. To address whether cytokinins are required for cambial activity, we studied cytokinin signaling across the cambial zones of 2 tree species, poplar (Populus trichocarpa) and birch (Betula pendula). We observed an expression peak for genes encoding cytokinin receptors in the dividing cambial cells. We reduced cytokinin levels endogenously by engineering transgenic poplar trees (P. tremula × tremuloides) to express a cytokinin catabolic gene, Arabidopsis CYTOKININ OXIDASE 2, under the promoter of a birch CYTOKININ RECEPTOR 1 gene. Transgenic trees showed reduced concentration of a biologically active cytokinin, correlating with impaired cytokinin responsiveness. In these trees, both apical and radial growth was compromised. However, radial growth was more affected, as illustrated by a thinner stem diameter than in WT at same height. To dissect radial from apical growth inhibition, we performed a reciprocal grafting experiment. WT scion outgrew the diameter of transgenic stock, implicating cytokinin activity as a direct determinant of radial growth. The reduced radial growth correlated with a reduced number of cambial cell layers. Moreover, expression of a cytokinin primary response gene was dramatically reduced in the thin-stemmed transgenic trees. Thus, a reduced level of cytokinin signaling is the primary basis for the impaired cambial growth observed. Together, our results show that cytokinins are major hormonal regulators required for cambial development. PMID:19064928
Dąbrowska, Aleksandra; Lech, Gustaw; Słodkowski, Maciej; Słotwińska, Sylwia M.
2014-01-01
The study was carried out to investigate changes in gene expression of innate antibacterial signaling pathways in patients with pancreatic cancer. Expression of the following genes was measured in peripheral blood leukocytes of 55 patients with pancreatic adenocarcinoma using real-time polymerase chain reaction (RT-PCR): TLR4, NOD1, MyD88, TRAF6 and HMGB1. The levels of expression of TLR4, NOD1 and TRAF6 genes were significantly elevated (p = 0.007; p = 0.001 and p = 0.01, respectively), while MyD88 expression was markedly reduced (p = 0.0002), as compared to controls. Expression of TLR4 and NOD1 exceeded the normal level more than 3.5-fold and there was a significant correlation found between the expression of these genes (r = 0.558, p < 0.001). TLR4, NOD1 and MyD88 genes were expressed at a similar level both before and after surgery. No significant changes in the expression of HMGB1 gene were observed. The results of the study clearly indicate abnormal expression of genes belonging to innate antibacterial signaling pathways in peripheral blood leukocytes of patients with pancreatic cancer, which may lead to leukocyte dysfunction. Overexpression of TLR4, NOD1 and TRAF6 genes, and decreased MyD88 gene expression may contribute to chronic inflammation and tumor progression by up-regulation of the innate antibacterial response. The parameters tested are useful for monitoring innate immunity gene disorders and pancreatic cancer progression. PMID:26155170
Bonner, Caroline; Farrelly, Angela M.; Concannon, Caoimhín G.; Dussmann, Heiko; Baquié, Mathurin; Virard, Isabelle; Wobser, Hella; Kögel, Donat; Wollheim, Claes B.; Rupnik, Marjan; Byrne, Maria M.; König, Hans-Georg; Prehn, Jochen H. M.
2011-01-01
Inactivating mutations in the transcription factor hepatocyte nuclear factor (HNF) 1A cause HNF1A–maturity-onset diabetes of the young (HNF1A-MODY), the most common monogenic form of diabetes. To examine HNF1A-MODY-induced defects in gene expression, we performed a microarray analysis of the transcriptome of rat INS-1 cells inducibly expressing the common hot spot HNF1A frameshift mutation, Pro291fsinsC-HNF1A. Real-time quantitative PCR (qPCR), Western blotting, immunohistochemistry, reporter assays, and chromatin immunoprecipitation (ChIP) were used to validate alterations in gene expression and to explore biological activities of target genes. Twenty-four hours after induction of the mutant HNF1A protein, we identified a prominent down-regulation of the bone morphogenetic protein 3 gene (Bmp-3) mRNA expression. Reporter assays, qPCR, and Western blot analysis validated these results. In contrast, inducible expression of wild-type HNF1A led to a time-dependent increase in Bmp-3 mRNA and protein levels. Moreover, reduced protein levels of BMP-3 and insulin were detected in islets of transgenic HNF1A-MODY mice. Interestingly, treatment of naïve INS-1 cells or murine organotypic islet cultures with recombinant human BMP-3 potently increased their insulin levels and restored the decrease in SMAD2 phosphorylation and insulin gene expression induced by the HNF1A frameshift mutation. Our study suggests a critical link between HNF1A-MODY-induced alterations in Bmp-3 expression and insulin gene levels in INS-1 cells and indicates that the reduced expression of growth factors involved in tissue differentiation may play an important role in the pathophysiology of HNF1A-MODY. PMID:21628466
Transcription-dependent radial distribution of TCF7L2 regulated genes in chromosome territories.
Torabi, Keyvan; Wangsa, Darawalee; Ponsa, Immaculada; Brown, Markus; Bosch, Anna; Vila-Casadesús, Maria; Karpova, Tatiana S; Calvo, Maria; Castells, Antoni; Miró, Rosa; Ried, Thomas; Camps, Jordi
2017-10-01
Human chromosomes occupy distinct territories in the interphase nucleus. Such chromosome territories (CTs) are positioned according to gene density. Gene-rich CTs are generally located in the center of the nucleus, while gene-poor CTs are positioned more towards the nuclear periphery. However, the association between gene expression levels and the radial positioning of genes within the CT is still under debate. In the present study, we performed three-dimensional fluorescence in situ hybridization experiments in the colorectal cancer cell lines DLD-1 and LoVo using whole chromosome painting probes for chromosomes 8 and 11 and BAC clones targeting four genes with different expression levels assessed by gene expression arrays and RT-PCR. Our results confirmed that the two over-expressed genes, MYC on chromosome 8 and CCND1 on chromosome 11, are located significantly further away from the center of the CT compared to under-expressed genes on the same chromosomes, i.e., DLC1 and SCN3B. When CCND1 expression was reduced after silencing the major transcription factor of the WNT/β-catenin signaling pathway, TCF7L2, the gene was repositioned and mostly detected in the interior of the CT. Thus, we suggest a non-random distribution in which over-expressed genes are located more towards the periphery of the respective CTs.
Gilbert, Matthew K; Majumdar, Rajtilak; Rajasekaran, Kanniah; Chen, Zhi-Yuan; Wei, Qijian; Sickler, Christine M; Lebar, Matthew D; Cary, Jeffrey W; Frame, Bronwyn R; Wang, Kan
2018-06-01
Expressing an RNAi construct in maize kernels that targets the gene for alpha-amylase in Aspergillus flavus resulted in suppression of alpha-amylase (amy1) gene expression and decreased fungal growth during in situ infection resulting in decreased aflatoxin production. Aspergillus flavus is a saprophytic fungus and pathogen to several important food and feed crops, including maize. Once the fungus colonizes lipid-rich seed tissues, it has the potential to produce toxic secondary metabolites, the most dangerous of which is aflatoxin. The pre-harvest control of A. flavus contamination and aflatoxin production is an area of intense research, which includes breeding strategies, biological control, and the use of genetically-modified crops. Host-induced gene silencing, whereby the host crop produces siRNA molecules targeting crucial genes in the invading fungus and targeting the gene for degradation, has shown to be promising in its ability to inhibit fungal growth and decrease aflatoxin contamination. Here, we demonstrate that maize inbred B104 expressing an RNAi construct targeting the A. flavus alpha-amylase gene amy1 effectively reduces amy1 gene expression resulting in decreased fungal colonization and aflatoxin accumulation in kernels. This work contributes to the development of a promising technology for reducing the negative economic and health impacts of A. flavus growth and aflatoxin contamination in food and feed crops.
Nur77 coordinately regulates expression of genes linked to glucose metabolism in skeletal muscle.
Chao, Lily C; Zhang, Zidong; Pei, Liming; Saito, Tsugumichi; Tontonoz, Peter; Pilch, Paul F
2007-09-01
Innervation is important for normal metabolism in skeletal muscle, including insulin-sensitive glucose uptake. However, the transcription factors that transduce signals from the neuromuscular junction to the nucleus and affect changes in metabolic gene expression are not well defined. We demonstrate here that the orphan nuclear receptor Nur77 is a regulator of gene expression linked to glucose utilization in muscle. In vivo, Nur77 is preferentially expressed in glycolytic compared with oxidative muscle and is responsive to beta-adrenergic stimulation. Denervation of rat muscle compromises expression of Nur77 in parallel with that of numerous genes linked to glucose metabolism, including glucose transporter 4 and genes involved in glycolysis, glycogenolysis, and the glycerophosphate shuttle. Ectopic expression of Nur77, either in rat muscle or in C2C12 muscle cells, induces expression of a highly overlapping set of genes, including glucose transporter 4, muscle phosphofructokinase, and glycogen phosphorylase. Furthermore, selective knockdown of Nur77 in rat muscle by small hairpin RNA or genetic deletion of Nur77 in mice reduces the expression of a battery of genes involved in skeletal muscle glucose utilization in vivo. Finally, we show that Nur77 binds the promoter regions of multiple genes involved in glucose metabolism in muscle. These results identify Nur77 as a potential mediator of neuromuscular signaling in the control of metabolic gene expression.
Nur77 coordinately regulates expression of genes linked to glucose metabolism in skeletal muscle
Chao, Lily C.; Zhang, Zidong; Pei, Liming; Saito, Tsugumichi; Tontonoz, Peter; Pilch, Paul F.
2008-01-01
Innervation is important for normal metabolism in skeletal muscle, including insulin-sensitive glucose uptake. However, the transcription factors that transduce signals from the neuromuscular junction to the nucleus and affect changes in metabolic gene expression are not well defined. We demonstrate here that the orphan nuclear receptor Nur77 is a regulator of gene expression linked to glucose utilization in muscle. In vivo, Nur77 is preferentially expressed in glycolytic compared to oxidative muscle and is responsive to β-adrenergic stimulation. Denervation of rat muscle compromises expression of Nur77 in parallel with that of numerous genes linked to glucose metabolism, including GLUT4 and genes involved in glycolysis, glycogenolysis, and the glycerophosphate shuttle. Ectopic expression of Nur77, either in rat muscle or in C2C12 muscle cells, induces expression of a highly overlapping set of genes, including GLUT4, muscle phosphofructokinase, and glycogen phosphorylase. Furthermore, selective knockdown of Nur77 in rat muscle by shRNA or genetic deletion of Nur77 in mice reduces the expression of a battery of genes involved in skeletal muscle glucose utilization in vivo. Finally, we show that Nur77 binds the promoter regions of multiple innervation-dependent genes in muscle. These results identify Nur77 as a potential mediator of neuromuscular signaling in the control of metabolic gene expression. PMID:17550977
The Triple Functions of D2 Silencing in Treatment of Periapical Disease.
Pan, Jie; Wang, Jue; Hao, Liang; Zhu, Guochun; Nguyen, Diep N; Li, Qian; Liu, Yuehua; Zhao, Zhihe; Li, Yi-Ping; Chen, Wei
2017-02-01
Dental caries is the most widespread chronic infectious disease. Inflammation in pulp tissues caused by dental caries will lead to periapical granulomas, bone erosion, loss of the tooth, and severe pain. Despite numerous efforts in recent studies to develop effective treatments for dental caries, the need for a potent therapy is still urgent. In this study, we applied a gene-based therapy approach by administering recombinant adeno-associated virus (AAV)-mediated Atp6v0d2 (d2) RNA interference knockdown of d2 gene expression to prevent periapical bone loss and suppress periapical inflammation simultaneously. The results showed that d2 depletion is simultaneously capable of reducing bone resorption with 75% protection through reducing osteoclasts, enhancing bone formation by increasing osterix expression, and inhibiting inflammation by decreasing T-cell infiltration. Notably, AAV-mediated gene therapy of d2 knockdown significantly reduced proinflammatory cytokine expression, including tumor necrosis factor α, interferon-γ, interleukin-1α, and interleukin 6 levels in periapical diseases caused by bacterial infection. Quantitative real-time polymerase chain reaction revealed that d2 knockdown reduced osteoclast-specific functional genes (ie, Acp5 and Ctsk) and increased osteoblast marker genes (ie, Osx and Opg) in periapical tissues. Collectively, our results showed that AAV-mediated d2 depletion in the periapical lesion area can prevent the progression of endodontic disease and bone erosion while significantly reducing the inflammatory over-response. These findings show that the depletion of d2 simultaneously reduces bone resorption, enhances bone formation, and inhibits inflammation caused by periapical diseases and provide significant insights into the potential effectiveness of AAV-sh-d2-mediated d2 silencing gene therapy as a major endodontic treatment. Copyright © 2016. Published by Elsevier Inc.
DeSmet, Marsha L; Fleet, James C
2017-10-01
High vitamin D status is associated with reduced colon cancer risk but these studies ignore the diversity in the molecular etiology of colon cancer. RAS activating mutations are common in colon cancer and they activate pro-proliferative signaling pathways. We examined the impact of RAS activating mutations on 1,25 dihydroxyvitamin D (1,25(OH) 2 D)-mediated gene expression in cultured colon and intestinal cell lines. Transient transfection of Caco-2 cells with a constitutively active mutant K-RAS (G12 V) significantly reduced 1,25(OH) 2 D-induced activity of both a human 25-hydroxyvitamin D, 24 hydroxyase (CYP24A1) promoter-luciferase and an artificial 3X vitamin D response element (VDRE) promoter-luciferase reporter gene. Young Adult Mouse Colon (YAMC) and Rat Intestinal Epithelial (RIE) cell lines with stable expression of mutant H-RAS had suppressed 1,25(OH) 2 D-mediated induction of CYP24A1 mRNA. The RAS effects were associated with lower Vitamin D receptor (VDR) mRNA and protein levels in YAMC and RIE cells and they could be partially reversed by VDR overexpression. RAS-mediated suppression of VDR levels was not due to either reduced VDR mRNA stability or increased VDR gene methylation. However, chromatin accessibility to the VDR gene at the proximal promoter (-300bp), an enhancer region at -6kb, and an enhancer region located in exon 3 was significantly reduced in RAS transformed YAMC cells (YAMC-RAS). These data show that constitutively active RAS signaling suppresses 1,25(OH) 2 D-mediated gene transcription in colon epithelial cells by reducing VDR gene transcription but the mechanism for this suppression is not yet known. These data suggest that cancers with RAS-activating mutations may be less responsive to vitamin D mediated treatment or chemoprevention. Copyright © 2017 Elsevier Ltd. All rights reserved.
Totsuka, Akane; Okamoto, Emi; Miyahara, Taira; Kouno, Takanobu; Cano, Emilio A.; Sasaki, Nobuhiro; Watanabe, Aiko; Tasaki, Keisuke; Nishihara, Masahiro; Ozeki, Yoshihiro
2018-01-01
In a previous study, two genes responsible for white flower phenotypes in carnation were identified. These genes encoded enzymes involved in anthocyanin synthesis, namely, flavanone 3-hydroxylase (F3H) and dihydroflavonol 4-reductase (DFR), and showed reduced expression in the white flower phenotypes. Here, we identify another candidate gene for white phenotype in carnation flowers using an RNA-seq analysis followed by RT-PCR. This candidate gene encodes a transcriptional regulatory factor of the basic helix-loop-helix (bHLH) type. In the cultivar examined here, both F3H and DFR genes produced active enzyme proteins; however, expression of DFR and of genes for enzymes involved in the downstream anthocyanin synthetic pathway from DFR was repressed in the absence of bHLH expression. Occasionally, flowers of the white flowered cultivar used here have red speckles and stripes on the white petals. We found that expression of bHLH occurred in these red petal segments and induced expression of DFR and the following downstream enzymes. Our results indicate that a member of the bHLH superfamily is another gene involved in anthocyanin synthesis in addition to structural genes encoding enzymes. PMID:29681756
Miller, Nichol L G; Wevrick, Rachel; Mellon, Pamela L
2009-01-15
Prader-Willi syndrome (PWS) is a complex genetic disorder characterized by hyperphagia, obesity and hypogonadotrophic hypogonadism, all highly suggestive of hypothalamic dysfunction. The NDN gene, encoding the MAGE family protein, necdin, maps to the PWS chromosome region and is highly expressed in mature hypothalamic neurons. Adult mice lacking necdin have reduced numbers of gonadotropin-releasing hormone (GnRH) neurons, but the mechanism for this reduction is unknown. Herein, we show that, although necdin is not expressed in an immature, migratory GnRH neuronal cell line (GN11), high levels are present in a mature GnRH neuronal cell line (GT1-7). Furthermore, overexpression of necdin activates GnRH transcription through cis elements bound by the homeodomain repressor Msx that are located in the enhancer and promoter of the GnRH gene, and knock-down of necdin expression reduces GnRH gene expression. In fact, overexpression of Necdin relieves Msx repression of GnRH transcription through these elements and necdin co-immunoprecipitates with Msx from GnRH neuronal cells, indicating that necdin may activate GnRH gene expression by preventing repression of GnRH gene expression by Msx. Finally, necdin is necessary for generation of the full complement of GnRH neurons during mouse development and extension of GnRH axons to the median eminence. Together, these results indicate that lack of necdin during development likely contributes to the hypogonadotrophic hypogonadal phenotype in individuals with PWS.
Miller, Nichol L.G.; Wevrick, Rachel; Mellon, Pamela L.
2009-01-01
Prader–Willi syndrome (PWS) is a complex genetic disorder characterized by hyperphagia, obesity and hypogonadotrophic hypogonadism, all highly suggestive of hypothalamic dysfunction. The NDN gene, encoding the MAGE family protein, necdin, maps to the PWS chromosome region and is highly expressed in mature hypothalamic neurons. Adult mice lacking necdin have reduced numbers of gonadotropin-releasing hormone (GnRH) neurons, but the mechanism for this reduction is unknown. Herein, we show that, although necdin is not expressed in an immature, migratory GnRH neuronal cell line (GN11), high levels are present in a mature GnRH neuronal cell line (GT1-7). Furthermore, overexpression of necdin activates GnRH transcription through cis elements bound by the homeodomain repressor Msx that are located in the enhancer and promoter of the GnRH gene, and knock-down of necdin expression reduces GnRH gene expression. In fact, overexpression of Necdin relieves Msx repression of GnRH transcription through these elements and necdin co-immunoprecipitates with Msx from GnRH neuronal cells, indicating that necdin may activate GnRH gene expression by preventing repression of GnRH gene expression by Msx. Finally, necdin is necessary for generation of the full complement of GnRH neurons during mouse development and extension of GnRH axons to the median eminence. Together, these results indicate that lack of necdin during development likely contributes to the hypogonadotrophic hypogonadal phenotype in individuals with PWS. PMID:18930956
Taniguchi, Hiroaki; Okamuro, Shota; Koji, Misaki; Waku, Tsuyoshi; Kubo, Kaori; Hatanaka, Atsushi; Sun, Yimeng; Chowdhury, A M Masudul Azad; Fukamizu, Akiyoshi; Kobayashi, Akira
2017-02-26
The transcription factor Nrf1 (NFE2L1) maintains protein homeostasis (proteostasis) by regulating the gene expression of proteasome subunits in response to proteasome inhibition. The deletion of the Nrf1 gene in neural stem/progenitor cells causes severe neurodegeneration due to the accumulation of ubiquitinated proteins in Purkinje cells and motor neurons (Nrf1 NKO mice). However, the molecular mechanisms governing this neurodegenerative process remain unclear. We demonstrate herein that the loss of Nrf1 leads to the reduced gene expression of the deubiquitinating enzymes (DUBs) but not proteasome subunits in Nrf1 NKO mice between P7 and P18. First, we show that K48-linked polyubiquitinated proteins accumulate in Nrf1-deficient Purkinje cells and cerebral cortex neurons. Nevertheless, loss of Nrf1 does not alter the expression and proteolytic activity of proteasome. A significantly reduced expression of deubiquitinating enzymes was also demonstrated in Nrf1-deficient cerebellar tissue using microarray analysis. The genome database further reveals species-conserved ARE, a Nrf1 recognition element, in the regulatory region of certain DUB genes. Furthermore, we show that Nrf1 can activate Usp9x gene expression related to neurodegeneration. Altogether these findings suggest that neurodegeneration in Nrf1 NKO mice may stem from the dysfunction of the ubiquitin-mediated regulation of neuronal proteins. Copyright © 2017 Elsevier Inc. All rights reserved.
Transcriptional deregulation of homeobox gene ZHX2 in Hodgkin lymphoma.
Nagel, Stefan; Schneider, Björn; Meyer, Corinna; Kaufmann, Maren; Drexler, Hans G; Macleod, Roderick A F
2012-05-01
Recently, we identified a novel chromosomal rearrangement in Hodgkin lymphoma (HL), t(4;8)(q27;q24), which targets homeobox gene ZHX2 at the recurrent breakpoint 8q24. This aberration deletes the far upstream region of ZHX2 and results in silenced transcription pinpointing loss of activatory elements. Here, we have looked for potential binding sites within this deleted region to analyze the transcriptional deregulation of this tumor suppressor gene in B-cell malignancies. SiRNA-mediated knockdown and reporter gene analyses identified two transcription factors, homeodomain protein MSX1 and bZIP protein XBP1, directly regulating ZHX2 expression. Furthermore, MSX1-cofactor histone H1C mediated repression of ZHX2 and showed enhanced expression levels in cell line L-1236. As demonstrated by fluorescence in situ hybridization and genomic array analysis, the gene loci of MSX1 at 4p16 and H1C at 6p22 were rearranged in several HL cell lines, correlating with their altered expression activity. The expression of XBP1 was reduced in 6/7 HL cell lines as compared to primary hematopoietic cells. Taken together, our results demonstrate multiple mechanisms decreasing expression of tumor suppressor gene ZHX2 in HL cell lines: loss of enhancing binding sites, reduced expression of activators MSX1 and XBP1, and overexpression of MSX1-corepressor H1C. Moreover, chromosomal deregulations of genes involved in this regulative network highlight their role in development and malignancy of B-cells. Copyright © 2011 Elsevier Ltd. All rights reserved.
The imprinted gene Magel2 regulates normal circadian output.
Kozlov, Serguei V; Bogenpohl, James W; Howell, Maureen P; Wevrick, Rachel; Panda, Satchin; Hogenesch, John B; Muglia, Louis J; Van Gelder, Russell N; Herzog, Erik D; Stewart, Colin L
2007-10-01
Mammalian circadian rhythms of activity are generated within the suprachiasmatic nucleus (SCN). Transcripts from the imprinted, paternally expressed Magel2 gene, which maps to the chromosomal region associated with Prader-Willi Syndrome (PWS), are highly enriched in the SCN. The Magel2 message is circadianly expressed and peaks during the subjective day. Mice deficient in Magel2 expression entrain to light cycles and express normal running-wheel rhythms, but with markedly reduced amplitude of activity and increased daytime activity. These changes are associated with reductions in food intake and male fertility. Orexin levels and orexin-positive neurons in the lateral hypothalamus are substantially reduced, suggesting that some of the consequences of Magel2 loss are mediated through changes in orexin signaling. The robust rhythmicity of Magel2 expression in the SCN and the altered behavioral rhythmicity of null mice reveal Magel2 to be a clock-controlled circadian output gene whose disruption results in some of the phenotypes characteristic of PWS.
Amador, A; Papaceit, M; Juan, E
2001-06-01
The Adh locus of Drosophilidae is organized as a single gene transcribed from two spatially and temporally regulated promoters except in species of the repleta group, which have two single promoter genes. Here we show that in Drosophila funebris the Adh gene is transcribed from a single promoter, in both larva and adult, with qualitative and quantitative species specific-differences in tissue distribution. The gene is expressed in larval fat body but in other tissues such as gastric caeca, midgut and Malpighian tubules its expression is reduced compared to most Drosophilidae species, and in adults it is almost limited to the fat body. The comparative analysis of gene expression of two strains, which differ by a duplication, indicates that the cis elements necessary for this pattern of expression in larvae are included in the region of 1.55 kb upstream of the transcription initiation site. This new organization reveals the evolution of a different regulatory strategy to express the Adh gene in the subgenus Drosophila.
Hoelting, Lisa; Scheinhardt, Benjamin; Bondarenko, Olesja; Schildknecht, Stefan; Kapitza, Marion; Tanavde, Vivek; Tan, Betty; Lee, Qian Yi; Mecking, Stefan; Leist, Marcel; Kadereit, Suzanne
2013-04-01
Nanoparticles (NPs) have been shown to accumulate in organs, cross the blood-brain barrier and placenta, and have the potential to elicit developmental neurotoxicity (DNT). Here, we developed a human embryonic stem cell (hESC)-derived 3-dimensional (3-D) in vitro model that allows for testing of potential developmental neurotoxicants. Early central nervous system PAX6(+) precursor cells were generated from hESCs and differentiated further within 3-D structures. The 3-D model was characterized for neural marker expression revealing robust differentiation toward neuronal precursor cells, and gene expression profiling suggested a predominantly forebrain-like development. Altered neural gene expression due to exposure to non-cytotoxic concentrations of the known developmental neurotoxicant, methylmercury, indicated that the 3-D model could detect DNT. To test for specific toxicity of NPs, chemically inert polyethylene NPs (PE-NPs) were chosen. They penetrated deep into the 3-D structures and impacted gene expression at non-cytotoxic concentrations. NOTCH pathway genes such as HES5 and NOTCH1 were reduced in expression, as well as downstream neuronal precursor genes such as NEUROD1 and ASCL1. FOXG1, a patterning marker, was also reduced. As loss of function of these genes results in severe nervous system impairments in mice, our data suggest that the 3-D hESC-derived model could be used to test for Nano-DNT.
Chen, Bin; Wei, Wei; Ma, Li; Yang, Bin; Gill, Ryan M; Chua, Mei-Sze; Butte, Atul J; So, Samuel
2017-06-01
Drug repositioning offers a shorter approval process than new drug development. We therefore searched large public datasets of drug-induced gene expression signatures to identify agents that might be effective against hepatocellular carcinoma (HCC). We searched public databases of messenger RNA expression patterns reported from HCC specimens from patients, HCC cell lines, and cells exposed to various drugs. We identified drugs that might specifically increase expression of genes that are down-regulated in HCCs and reduce expression of genes up-regulated in HCCs using a nonparametric, rank-based pattern-matching strategy based on the Kolmogorov-Smirnov statistic. We evaluated the anti-tumor activity of niclosamide and its ethanolamine salt (NEN) in HCC cell lines (HepG2, Huh7, Hep3B, Hep40, and PLC/PRF/5), primary human hepatocytes, and 2 mouse models of HCC. In one model of HCC, liver tumor development was induced by hydrodynamic delivery of a sleeping beauty transposon expressing an activated form of Ras (v12) and truncated β-catenin (N90). In another mouse model, patient-derived xenografts were established by implanting HCC cells from patients into livers of immunocompromised mice. Tumor growth was monitored by bioluminescence imaging. Tumor-bearing mice were fed a regular chow diet or a chow diet containing niclosamide or NEN. In a separate experiment using patient-derived xenografts, tumor-bearing mice were given sorafenib (the standard of care for patients with advanced HCC), NEN, or niclosamide alone; a combination of sorafenib and NEN; or a combination sorafenib and niclosamide in their drinking water, or regular water (control), and tumor growth was monitored. Based on gene expression signatures, we identified 3 anthelmintics that significantly altered the expression of genes that are up- or down-regulated in HCCs. Niclosamide and NEN specifically reduced the viability of HCC cells: the agents were at least 7-fold more cytotoxic to HCCs than primary hepatocytes. Oral administration of NEN to mice significantly slowed growth of genetically induced liver tumors and patient-derived xenografts, whereas niclosamide did not, coinciding with the observed greater bioavailability of NEN compared with niclosamide. The combination of NEN and sorafenib was more effective at slowing growth of patient-derived xenografts than either agent alone. In HepG2 cells and in patient-derived xenografts, administration of niclosamide or NEN increased expression of 20 genes down-regulated in HCC and reduced expression of 29 genes up-regulated in the 274-gene HCC signature. Administration of NEN to mice with patient-derived xenografts reduced expression of proteins in the Wnt-β-catenin, signal transducer and activator of transcription 3, AKT-mechanistic target of rapamycin, epidermal growth factor receptor-Ras-Raf signaling pathways. Using immunoprecipitation assays, we found NEN to bind cell division cycle 37 protein and disrupt its interaction with heat shock protein 90. In a bioinformatics search for agents that alter the HCC-specific gene expression pattern, we identified the anthelmintic niclosamide as a potential anti-tumor agent. Its ethanolamine salt, with greater bioavailability, was more effective than niclosamide at slowing the growth of genetically induced liver tumors and patient-derived xenografts in mice. Both agents disrupted interaction between cell division cycle 37 and heat shock protein 90 in HCC cells, with concomitant inhibition of their downstream signaling pathways. NEN might be effective for treatment of patients with HCC. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.
2012-01-01
Background RNA-silencing is a conserved gene regulation and surveillance machinery, which in plants, is also used as major defence mechanism against viruses. Various virus-specific dsRNA structures are recognized by the silencing machinery leading to degradation of the viral RNAs or, as in case of begomoviruses, to methylation of their DNA genomes. Viruses produce specific RNA silencing suppressor (RSS) proteins to prevent these host defence mechanisms, and as these interfere with the silencing machinery they also disturb the endogenous silencing reactions. In this paper, we describe how expression of AC2 RSS, derived from African cassava mosaic geminivirus changes transcription profile in tobacco (Nicotiana tabacum) leaves and in flowers. Results Expression of AC2 RSS in transgenic tobacco plants induced clear phenotypic changes both in leaves and in flowers. Transcriptomes of these plants were strongly altered, with total of 1118 and 251 differentially expressed genes in leaves and flowers, respectively. The three most up-regulated transcript groups were related to stress, cell wall modifications and signalling, whereas the three most down-regulated groups were related to translation, photosynthesis and transcription. It appears that many of the gene expression alterations appeared to be related to enhanced biosynthesis of jasmonate and ethylene, and consequent enhancement of the genes and pathways that are regulated by these hormones, or to the retrograde signalling caused by the reduced photosynthetic activity and sugar metabolism. Comparison of these results to a previous transcriptional profiling of HC-Pro RSS-expressing plants revealed that some of same genes were induced by both RSSs, but their expression levels were typically higher in AC2 than in HC-Pro RSS expressing plants. All in all, a large number of transcript alterations were found to be specific to each of the RSS expressing transgenic plants. Conclusions AC2 RSS in transgenic tobacco plants interferes with the silencing machinery. It causes stress and defence reactions for instance via induction of the jasmonate and ethylene biosynthesis, and by consequent gene expression alteration regulated by these hormones. The changed sugar metabolism may cause significant down-regulation of genes encoding ribosomal proteins, thus reducing the general translation level. PMID:23130567
Kakinuma, Yoshihiko; Katare, Rajesh G; Arikawa, Mikihiko; Muramoto, Kazuyo; Yamasaki, Fumiyasu; Sato, Takayuki
2008-01-23
Recently, we reported that acetylcholine-induced hypoxia-inducible factor-1alpha protects cardiomyocytes from hypoxia; however, the downstream factors reducing hypoxic stress are unknown. We identified apoptosis inhibitor (AI) gene as being differentially expressed between von Hippel Lindau (VHL) protein-positive cells with high levels of GRP78 expression and VHL-negative cells with lower GRP levels, using cDNA subtraction. AI decreased GRP78 level, suppressed mitochondrial function, reduced oxygen consumption and, ultimately, suppressed hypoxia-induced apoptosis. By contrast, knockdown of the AI gene increased mitochondrial function. Hypoxic cardiomyocytes and ischemic myocardium showed increased AI mRNA expression. These findings suggest that AI is involved in suppressing mitochondrial function, thereby leading to cellular stress eradication and consequently to protection during hypoxia.
Caserta, R; Souza-Neto, R R; Takita, M A; Lindow, S E; De Souza, A A
2017-11-01
The pathogenicity of Xylella fastidiosa is associated with its ability to colonize the xylem of host plants. Expression of genes contributing to xylem colonization are suppressed, while those necessary for insect vector acquisition are increased with increasing concentrations of diffusible signal factor (DSF), whose production is dependent on RpfF. We previously demonstrated that transgenic citrus plants ectopically expressing rpfF from a citrus strain of X. fastidiosa subsp. pauca exhibited less susceptibility to Xanthomonas citri subsp. citri, another pathogen whose virulence is modulated by DSF accumulation. Here, we demonstrate that ectopic expression of rpfF in both transgenic tobacco and sweet orange also confers a reduction in disease severity incited by X. fastidiosa and reduces its colonization of those plants. Decreased disease severity in the transgenic plants was generally associated with increased expression of genes conferring adhesiveness to the pathogen and decreased expression of genes necessary for active motility, accounting for the reduced population sizes achieved in the plants, apparently by limiting pathogen dispersal through the plant. Plant-derived DSF signal molecules in a host plant can, therefore, be exploited to interfere with more than one pathogen whose virulence is controlled by DSF signaling.
Reduced expression of DNA repair genes and chemosensitivity in 1p19q codeleted lower-grade gliomas.
Tang, Lei; Deng, Lu; Bai, Harrison X; Sun, James; Neale, Natalie; Wu, Jing; Wang, Yinyan; Chang, Ken; Huang, Raymond Y; Zhang, Paul J; Li, Xuejun; Xiao, Bo; Cao, Ya; Tao, Yongguang; Yang, Li
2018-06-19
Lower-grade gliomas (LGGs, defined as WHO grades II and III) with 1p19q codeletion have increased chemosensitivity when compared to LGGs without 1p19q codeletion, but the mechanism is currently unknown. RNAseq data from 515 LGG patients in the Cancer Genome Atlas (TCGA) were analyzed to compare the effect of expression of the 9 DNA repair genes located on chromosome arms 1p and 19q on progression free survival (PFS) and overall survival (OS) between patients who received chemotherapy and those who did not. Chemosensitivity of cells with DNA repair genes knocked down was tested using MTS cell proliferation assay in HS683 cell line and U251 cell line. The expression of 9 DNA repair genes on 1p and 19q was significantly lower in 1p19q-codeleted tumors (n = 175) than in tumors without the codeletion (n = 337) (p < 0.001). In LGG patients who received chemotherapy, lower expression of LIG1, POLD1, PNKP, RAD54L and MUTYH was associated with longer PFS and OS. This difference between chemotherapy and non-chemotherapy groups in the association of gene expression with survival was not observed in non-DNA repair genes located on chromosome arms 1p and 19q. MTS assays showed that knockdown of DNA repair genes LIG1, POLD1, PNKP, RAD54L and MUTYH significantly inhibited recovery in response to temozolomide when compared with control group (p < 0.001). Our results suggest that reduced expression of DNA repair genes on chromosome arms 1p and 19q may account for the increased chemosensitivity of LGGs with 1p19q codeletion.
The expression of proinflammatory genes in epidermal keratinocytes is regulated by hydration status.
Xu, Wei; Jia, Shengxian; Xie, Ping; Zhong, Aimei; Galiano, Robert D; Mustoe, Thomas A; Hong, Seok J
2014-04-01
Mucosal wounds heal more rapidly, exhibit less inflammation, and are associated with minimal scarring when compared with equivalent cutaneous wounds. We previously demonstrated that cutaneous epithelium exhibits an exaggerated response to injury compared with mucosal epithelium. We hypothesized that treatment of injured skin with a semiocclusive dressing preserves the hydration of the skin and results in a wound healing phenotype that more closely resembles that of mucosa. Here we explored whether changes in hydration status alter epidermal gene expression patterns in rabbit partial-thickness incisional wounds. Using microarray studies on injured epidermis, we showed that global gene expression patterns in highly occluded versus non-occluded wounds are distinct. Many genes including IL-1β, IL-8, TNF-α (tumor necrosis factor-α), and COX-2 (cyclooxygenase 2) are upregulated in non-occluded wounds compared with highly occluded wounds. In addition, decreased levels of hydration resulted in an increased expression of proinflammatory genes in human ex vivo skin culture (HESC) and stratified keratinocytes. Hierarchical analysis of genes using RNA interference showed that both TNF-α and IL-1β regulate the expression of IL-8 through independent pathways in response to reduced hydration. Furthermore, both gene knockdown and pharmacological inhibition studies showed that COX-2 mediates the TNF-α/IL-8 pathway by increasing the production of prostaglandin E2 (PGE2). IL-8 in turn controls the production of matrix metalloproteinase-9 in keratinocytes. Our data show that hydration status directly affects the expression of inflammatory signaling in the epidermis. The identification of genes involved in the epithelial hydration pathway provides an opportunity to develop strategies to reduce scarring and optimize wound healing.
Csomós, Krisztián; Német, István; Fésüs, László; Balajthy, Zoltán
2010-11-11
Treatment of acute promyelocytic leukemia (APL) with all-trans-retinoic acid (ATRA) results in terminal differentiation of leukemic cells toward neutrophil granulocytes. Administration of ATRA leads to massive changes in gene expression, including down-regulation of cell proliferation-related genes and induction of genes involved in immune function. One of the most induced genes in APL NB4 cells is transglutaminase 2 (TG2). RNA interference-mediated stable silencing of TG2 in NB4 cells (TG2-KD NB4) coupled with whole genome microarray analysis revealed that TG2 is involved in the expression of a large number of ATRA-regulated genes. The affected genes participate in granulocyte functions, and their silencing lead to reduced adhesive, migratory, and phagocytic capacity of neutrophils and less superoxide production. The expression of genes related to cell-cycle control also changed, suggesting that TG2 regulates myeloid cell differentiation. CC chemokines CCL2, CCL3, CCL22, CCL24, and cytokines IL1B and IL8 involved in the development of differentiation syndrome are expressed at significantly lower level in TG2-KD NB4 than in wild-type NB4 cells upon ATRA treatment. Based on our results, we propose that reduced expression of TG2 in differentiating APL cells may suppress effector functions of neutrophil granulocytes and attenuate the ATRA-induced inflammatory phenotype of differentiation syndrome.
Lin, Yang; Lewallen, Eric A; Camilleri, Emily T; Bonin, Carolina A; Jones, Dakota L; Dudakovic, Amel; Galeano-Garces, Catalina; Wang, Wei; Karperien, Marcel J; Larson, Annalise N; Dahm, Diane L; Stuart, Michael J; Levy, Bruce A; Smith, Jay; Ryssman, Daniel B; Westendorf, Jennifer J; Im, Hee-Jeong; van Wijnen, Andre J; Riester, Scott M; Krych, Aaron J
2016-11-01
Preservation of osteochondral allografts used for transplantation is critical to ensure favorable outcomes for patients after surgical treatment of cartilage defects. To study the biological effects of protocols currently used for cartilage storage, we investigated differences in gene expression between stored allograft cartilage and fresh cartilage from living donors using high throughput molecular screening strategies. We applied next generation RNA sequencing (RNA-seq) and real-time reverse transcription quantitative polymerase chain reaction (RT-qPCR) to assess genome-wide differences in mRNA expression between stored allograft cartilage and fresh cartilage tissue from living donors. Gene ontology analysis was used to characterize biological pathways associated with differentially expressed genes. Our studies establish reduced levels of mRNAs encoding cartilage related extracellular matrix (ECM) proteins (i.e., COL1A1, COL2A1, COL10A1, ACAN, DCN, HAPLN1, TNC, and COMP) in stored cartilage. These changes occur concomitantly with increased expression of "early response genes" that encode transcription factors mediating stress/cytoprotective responses (i.e., EGR1, EGR2, EGR3, MYC, FOS, FOSB, FOSL1, FOSL2, JUN, JUNB, and JUND). The elevated expression of "early response genes" and reduced levels of ECM-related mRNAs in stored cartilage allografts suggests that tissue viability may be maintained by a cytoprotective program that reduces cell metabolic activity. These findings have potential implications for future studies focused on quality assessment and clinical optimization of osteochondral allografts used for cartilage transplantation. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1950-1959, 2016. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Bouma, G; Baggen, J M; van Bodegraven, A A; Mulder, C J J; Kraal, G; Zwiers, A; Horrevoets, A J; van der Pouw Kraan, C T M
2013-07-01
Crohn's disease (CD) is characterized by chronic inflammation of the gastrointestinal tract, as a result of aberrant activation of the innate immune system through TLR stimulation by bacterial products. The conventional immunosuppressive thiopurine derivatives (azathioprine and mercaptopurine) are used to treat CD. The effects of thiopurines on circulating immune cells and TLR responsiveness are unknown. To obtain a global view of affected gene expression of the immune system in CD patients and the treatment effect of thiopurine derivatives, we performed genome-wide transcriptome analysis on whole blood samples from 20 CD patients in remission, of which 10 patients received thiopurine treatment, compared to 16 healthy controls, before and after TLR4 stimulation with LPS. Several immune abnormalities were observed, including increased baseline interferon activity, while baseline expression of ribosomal genes was reduced. After LPS stimulation, CD patients showed reduced cytokine and chemokine expression. None of these effects were related to treatment. Strikingly, only one highly correlated set of 69 genes was affected by treatment, not influenced by LPS stimulation and consisted of genes reminiscent of effector cytotoxic NK cells. The most reduced cytotoxicity-related gene in CD was the cell surface marker CD160. Concordantly, we could demonstrate an in vivo reduction of circulating CD160(+)CD3(-)CD8(-) cells in CD patients after treatment with thiopurine derivatives in an independent cohort. In conclusion, using genome-wide profiling, we identified a disturbed immune activation status in peripheral blood cells from CD patients and a clear treatment effect of thiopurine derivatives selectively affecting effector cytotoxic CD160-positive cells. Copyright © 2013 Elsevier Ltd. All rights reserved.
Gotoh, Masahiro; Ichikawa, Hitoshi; Arai, Eri; Chiku, Suenori; Sakamoto, Hiromi; Fujimoto, Hiroyuki; Hiramoto, Masaki; Nammo, Takao; Yasuda, Kazuki; Yoshida, Teruhiko; Kanai, Yae
2014-01-01
The aim of this study was to clarify the participation of expression of chimeric transcripts in renal carcinogenesis. Whole transcriptome analysis (RNA sequencing) and exploration of candidate chimeric transcripts using the deFuse program were performed on 68 specimens of cancerous tissue (T) and 11 specimens of non-cancerous renal cortex tissue (N) obtained from 68 patients with clear cell renal cell carcinomas (RCCs) in an initial cohort. As positive controls, two RCCs associated with Xp11.2 translocation were analyzed. After verification by reverse transcription (RT)-PCR and Sanger sequencing, 26 novel chimeric transcripts were identified in 17 (25%) of the 68 clear cell RCCs. Genomic breakpoints were determined in five of the chimeric transcripts. Quantitative RT-PCR analysis revealed that the mRNA expression levels for the MMACHC, PTER, EPC2, ATXN7, FHIT, KIFAP3, CPEB1, MINPP1, TEX264, FAM107A, UPF3A, CDC16, MCCC1, CPSF3, and ASAP2 genes, being partner genes involved in the chimeric transcripts in the initial cohort, were significantly reduced in 26 T samples relative to the corresponding 26 N samples in the second cohort. Moreover, the mRNA expression levels for the above partner genes in T samples were significantly correlated with tumor aggressiveness and poorer patient outcome, indicating that reduced expression of these genes may participate in malignant progression of RCCs. As is the case when their levels of expression are reduced, these partner genes also may not fully function when involved in chimeric transcripts. These data suggest that generation of chimeric transcripts may participate in renal carcinogenesis by inducing dysfunction of tumor-related genes. PMID:25230976
Green tea polyphenols reduce body weight in rats by modulating obesity-related genes.
Lu, Chuanwen; Zhu, Wenbin; Shen, Chwan-Li; Gao, Weimin
2012-01-01
Beneficial effects of green tea polyphenols (GTP) against obesity have been reported, however, the mechanism of this protection is not clear. Therefore, the objective of this study was to identify GTP-targeted genes in obesity using the high-fat-diet-induced obese rat model. A total of three groups (n = 12/group) of Sprague Dawley (SD) female rats were tested, including the control group (rats fed with low-fat diet), the HF group (rats fed with high-fat diet), and the HF+GTP group (rats fed with high-fat diet and GTP in drinking water). The HF group increased body weight as compared to the control group. Supplementation of GTP in the drinking water in the HF+GTP group reduced body weight as compared to the HF group. RNA from liver samples was extracted for gene expression analysis. A total of eighty-four genes related to obesity were analyzed using PCR array. Compared to the rats in the control group, the rats in the HF group had the expression levels of 12 genes with significant changes, including 3 orexigenic genes (Agrp, Ghrl, and Nr3c1); 7 anorectic genes (Apoa4, Cntf, Ghr, IL-1β, Ins1, Lepr, and Sort); and 2 genes that relate to energy expenditure (Adcyap1r1 and Adrb1). Intriguingly, the HF+GTP group restored the expression levels of these genes in the high-fat-induced obese rats. The protein expression levels of IL-1β and IL-6 in the serum samples from the control, HF, and HF+GTP groups confirmed the results of gene expression. Furthermore, the protein expression levels of superoxide dismutase-1 (SOD1) and catechol-O-methyltransferase (COMT) also showed GTP-regulated protective changes in this obese rat model. Collectively, this study revealed the beneficial effects of GTP on body weight via regulating obesity-related genes, anti-inflammation, anti-oxidant capacity, and estrogen-related actions in high-fat-induced obese rats.
Green Tea Polyphenols Reduce Body Weight in Rats by Modulating Obesity-Related Genes
Lu, Chuanwen; Zhu, Wenbin; Shen, Chwan-Li; Gao, Weimin
2012-01-01
Beneficial effects of green tea polyphenols (GTP) against obesity have been reported, however, the mechanism of this protection is not clear. Therefore, the objective of this study was to identify GTP-targeted genes in obesity using the high-fat-diet-induced obese rat model. A total of three groups (n = 12/group) of Sprague Dawley (SD) female rats were tested, including the control group (rats fed with low-fat diet), the HF group (rats fed with high-fat diet), and the HF+GTP group (rats fed with high-fat diet and GTP in drinking water). The HF group increased body weight as compared to the control group. Supplementation of GTP in the drinking water in the HF+GTP group reduced body weight as compared to the HF group. RNA from liver samples was extracted for gene expression analysis. A total of eighty-four genes related to obesity were analyzed using PCR array. Compared to the rats in the control group, the rats in the HF group had the expression levels of 12 genes with significant changes, including 3 orexigenic genes (Agrp, Ghrl, and Nr3c1); 7 anorectic genes (Apoa4, Cntf, Ghr, IL-1β, Ins1, Lepr, and Sort); and 2 genes that relate to energy expenditure (Adcyap1r1 and Adrb1). Intriguingly, the HF+GTP group restored the expression levels of these genes in the high-fat-induced obese rats. The protein expression levels of IL-1β and IL-6 in the serum samples from the control, HF, and HF+GTP groups confirmed the results of gene expression. Furthermore, the protein expression levels of superoxide dismutase-1 (SOD1) and catechol-O-methyltransferase (COMT) also showed GTP-regulated protective changes in this obese rat model. Collectively, this study revealed the beneficial effects of GTP on body weight via regulating obesity-related genes, anti-inflammation, anti-oxidant capacity, and estrogen-related actions in high-fat-induced obese rats. PMID:22715380
Garvin, Lindsay M; Chen, Yajun; Damsker, Jesse M; Rose, Mary C
2016-06-01
Overproduction of secretory mucins contributes to morbidity/mortality in inflammatory lung diseases. Inflammatory mediators directly increase expression of mucin genes, but few drugs have been shown to directly repress mucin gene expression. IL-1β upregulates the MUC5AC mucin gene in part via the transcription factors NFκB while the glucocorticoid Dexamethasone (Dex) transcriptionally represses MUC5AC expression by Dex-activated GR binding to two GRE cis-sites in the MUC5AC promoter in lung epithelial cells. VBP compounds (ReveraGen BioPharma) maintain anti-inflammatory activity through inhibition of NFκB but exhibit reduced GRE-mediated transcriptional properties associated with adverse side-effects and thus have potential to minimize harmful side effects of long-term steroid therapy in inflammatory lung diseases. We investigated VBP15 efficacy as an anti-mucin agent in two types of airway epithelial cells and analyzed the transcription factor activity and promoter binding associated with VBP15-induced MUC5AC repression. VBP15 reduced MUC5AC mRNA abundance in a dose- and time-dependent manner similar to Dex in the presence or absence of IL-1β in A549 and differentiated human bronchial epithelial cells. Repression was abrogated in the presence of RU486, demonstrating a requirement for GR in the VBP15-induced repression of MUC5AC. Inhibition of NFκB activity resulted in reduced baseline expression of MUC5AC indicating that constitutive activity maintains MUC5AC production. Chromatin immunoprecipitation analysis demonstrated lack of GR and of p65 (NFκB) binding to composite GRE domains in the MUC5AC promoter following VBP15 exposure of cells, in contrast to Dex. These data demonstrate that VBP15 is a novel anti-mucin agent that mediates the reduction of MUC5AC gene expression differently than the classical glucocorticoid, Dex. Copyright © 2016 Elsevier Ltd. All rights reserved.
Jones, Jennifer C; Kroscher, Kellie A; Dilger, Anna C
2014-03-28
Genes that decline in expression with age and are thought to coordinate growth cessation have been identified in various organs, but their expression in skeletal muscle is unknown. Therefore, our objective was to determine expression of these genes (Ezh2, Gpc3, Mdk, Mest, Mycn, Peg3, and Plagl1) in skeletal muscle from birth to maturity. We hypothesized that expression of these genes would decline with age in skeletal muscle but differ between sexes and between wild type and myostatin null mice. Female and male wild type and myostatin null mice (C57BL/6J background) were sacrificed by carbon dioxide asphyxiation followed by decapitation at d -7, 0, 21, 42, and 70 days of age. Whole bodies at d -7, all muscles from both hind limbs at d 0, and bicep femoris muscle from d 21, 42 and 70 were collected. Gene expression was determined by quantitative real-time PCR. In general, expression of these growth-regulating genes was reduced at d 21 compared with day 0 and d -7. Expression of Gpc3, Mest, and Peg3 was further reduced at d 42 and 70 compared with d 21, however the expression of Mycn increased from d 21 to d 42 and 70. Myostatin null mice, as expected, were heavier with increased biceps femoris weight at d 70. However, with respect to sex and genotype, there were few differences in expression. Expression of Ezh2 was increased at d 70 and expression of Mdk was increased at d 21 in myostatin null mice compared with wild type, but no other genotype effects were present. Expression of Mdk was increased in females compared to males at d 70, but no other sex effects were present. Overall, these data suggest the downregulation of these growth-regulating genes with age might play a role in the coordinated cessation of muscle growth similar to organ growth but likely have a limited role in the differences between sexes or genotypes.
Klocko, Amy L.; Borejsza-Wysocka, Ewa; Brunner, Amy M.; Shevchenko, Olga; Aldwinckle, Herb; Strauss, Steven H.
2016-01-01
We investigated the ability of RNA interference (RNAi) directed against two co-orthologs of AGAMOUS (AG) from Malus domestica (domestic apple, MdAG) to reduce the risks of invasiveness and provide genetic containment of transgenes, while also promoting the attractiveness of flowers for ornamental usage. Suppression of two MdAG-like genes, MdMADS15 and MdMADS22, led to the production of trees with highly showy, polypetalous flowers. These “double-flowers” had strongly reduced expression of both MdAG-like genes. Members of the two other clades within in the MdAG subfamily showed mild to moderate differences in gene expression, or were unchanged, with the level of suppression approximately proportional to the level of sequence identity between the gene analyzed and the RNAi fragment. The double-flowers also exhibited reduced male and female fertility, had few viable pollen grains, a decreased number of stigmas, and produced few viable seeds after cross-pollination. Despite these floral alterations, RNAi-AG trees with double-flowers set full-sized fruit. Suppression or mutation of apple AG-like genes appears to be a promising method for combining genetic containment with improved floral attractiveness. PMID:27500731
Expression of DNA repair genes in burned skin exposed to low-level red laser.
Trajano, Eduardo Tavares Lima; Mencalha, Andre Luiz; Monte-Alto-Costa, Andréa; Pôrto, Luís Cristóvão; de Souza da Fonseca, Adenilson
2014-11-01
Although red laser lights lie in the region of non-ionizing radiations in the electromagnetic spectrum, there are doubts whether absorption of these radiations causes lesions in the DNA molecule. Our aim was to investigate the expression of the genes involved with base excision and nucleotide excision repair pathways in skin tissue submitted to burn injury and exposed to low-level red laser. Wistar rats were divided as follows: control group-rats burned and not irradiated, laser group-rats burned and irradiated 1 day after injury for five consecutive days, and later laser group-rats injured and treated 4 days after injury for five consecutive days. Irradiation was performed according to a clinical protocol (20 J/cm(2), 100 mW, continuous wave emission mode). The animals were sacrificed on day 10, and scarred tissue samples were withdrawn for total RNA extraction, complementary DNA (cDNA) synthesis, and evaluation of gene expression by quantitative polymerase chain reaction. Low-level red laser exposure (1) reduces the expression of APE1 messenger (mRNA), (2) increases the expression of OGG1 mRNA, (3) reduces the expression of XPC mRNA, and (4) increases the expression of XPA mRNA both in laser and later laser groups. Red laser exposure at therapeutic fluences alters the expression of genes related to base excision and nucleotide excision pathways of DNA repair during wound healing of burned skin.
Pescatori, Mario; Broccolini, Aldobrando; Minetti, Carlo; Bertini, Enrico; Bruno, Claudio; D'amico, Adele; Bernardini, Camilla; Mirabella, Massimiliano; Silvestri, Gabriella; Giglio, Vincenzo; Modoni, Anna; Pedemonte, Marina; Tasca, Giorgio; Galluzzi, Giuliana; Mercuri, Eugenio; Tonali, Pietro A; Ricci, Enzo
2007-04-01
Genome-wide gene expression profiling of skeletal muscle from Duchenne muscular dystrophy (DMD) patients has been used to describe muscle tissue alterations in DMD children older than 5 years. By studying the expression profile of 19 patients younger than 2 years, we describe with high resolution the gene expression signature that characterizes DMD muscle during the initial or "presymptomatic" phase of the disease. We show that in the first 2 years of the disease, DMD muscle is already set to express a distinctive gene expression pattern considerably different from the one expressed by normal, age-matched muscle. This "dystrophic" molecular signature is characterized by a coordinate induction of genes involved in the inflammatory response, extracellular matrix (ECM) remodeling and muscle regeneration, and the reduced transcription of those involved in energy metabolism. Despite the lower degree of muscle dysfunction experienced, our younger patients showed abnormal expression of most of the genes reported as differentially expressed in more advanced stages of the disease. By analyzing our patients as a time series, we provide evidence that some genes, including members of three pathways involved in morphogenetic signaling-Wnt, Notch, and BMP-are progressively induced or repressed in the natural history of DMD.
Fu, Shijie; Pan, Xufeng; Fang, Wentao
2014-08-01
Lung cancer severely reduces the quality of life worldwide and causes high socioeconomic burdens. However, key genes leading to the generation of pulmonary adenocarcinoma remain elusive despite intensive research efforts. The present study aimed to identify the potential associations between transcription factors (TFs) and differentially co‑expressed genes (DCGs) in the regulation of transcription in pulmonary adenocarcinoma. Gene expression profiles of pulmonary adenocarcinoma were downloaded from the Gene Expression Omnibus, and gene expression was analyzed using a computational method. A total of 37,094 differentially co‑expressed links (DCLs) and 251 DCGs were identified, which were significantly enriched in 10 pathways. The construction of the regulatory network and the analysis of the regulatory impact factors revealed eight crucial TFs in the regulatory network. These TFs regulated the expression of DCGs by promoting or inhibiting their expression. In addition, certain TFs and target genes associated with DCGs did not appear in the DCLs, which indicated that those TFs could be synergistic with other factors. This is likely to provide novel insights for research into pulmonary adenocarcinoma. In conclusion, the present study may enhance the understanding of disease mechanisms and lead to an improved diagnosis of lung cancer. However, further studies are required to confirm these observations.
Identification of repaglinide as a therapeutic drug for glioblastoma multiforme
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Zui Xuan; Chen, Ruo Qiao; Hu, Dian Xing
Glioblastoma multiforme (GBM) is a highly aggressive brain tumor with a median survival time of only 14 months after treatment. It is urgent to find new therapeutic drugs that increase survival time of GBM patients. To achieve this goal, we screened differentially expressed genes between long-term and short-term survived GBM patients from Gene Expression Omnibus database and found gene expression signature for the long-term survived GBM patients. The signaling networks of all those differentially expressed genes converged to protein binding, extracellular matrix and tissue development as revealed in BiNGO and Cytoscape. Drug repositioning in Connectivity Map by using the genemore » expression signature identified repaglinide, a first-line drug for diabetes mellitus, as the most promising novel drug for GBM. In vitro experiments demonstrated that repaglinide significantly inhibited the proliferation and migration of human GBM cells. In vivo experiments demonstrated that repaglinide prominently prolonged the median survival time of mice bearing orthotopic glioma. Mechanistically, repaglinide significantly reduced Bcl-2, Beclin-1 and PD-L1 expression in glioma tissues, indicating that repaglinide may exert its anti-cancer effects via apoptotic, autophagic and immune checkpoint signaling. Taken together, repaglinide is likely to be an effective drug to prolong life span of GBM patients. - Highlights: • Gene expression signarue in long-term survived GBM patients are identified from Gene Expression Omnibus database. • Repaglinide is identified as a survival-related drug for GBM via drug repositioning in CMap. • Repaglinide effectively kills GBM cells, inhibits GBM cell migration and increases survival of mice bearing orthotopic glioma. • Repaglinide reduces Bcl-2, Beclin-1 and PD-L1 in GBM tissues.« less
Wargelius, A; Fjelldal, P G; Nordgarden, U; Grini, A; Krossøy, C; Grotmol, S; Totland, G K; Hansen, T
2010-04-01
Atlantic salmon (Salmo salar L.) vertebral bone displays plasticity in structure, osteoid secretion and mineralization in response to photoperiod. Other properties of the vertebral bone, such as mineral content and mechanical strength, are also associated with common malformations in farmed Atlantic salmon. The biological mechanisms that underlie these changes in bone physiology are unknown, and in order to elucidate which factors might be involved in this process, microarray assays were performed on vertebral bone of Atlantic salmon reared under natural or continuous light. Eight genes were upregulated in response to continuous light treatment, whereas only one of them was upregulated in a duplicate experiment. The transcriptionally regulated gene was predicted to code for collagen type XI alpha1, a protein known to be involved in controlling the diameter of fibrillar collagens in mammals. Furthermore, the gene was highly expressed in the vertebrae, where spatial expression was found in trabecular and compact bone osteoblasts and in the chordoblasts of the notochordal sheath. When we measured the expression level of the gene in the tissue compartments of the vertebrae, the collagen turned out to be 150 and 25 times more highly expressed in the notochord and compact bone respectively, relative to the expression in the trabecular bone. Gene expression was induced in response to continuous light, and reduced in compressed vertebrae. The downregulation in compressed vertebrae was due to reduced expression in the compact bone, while expression in the trabecular bone and the notochord was unaffected. These data support the hypothesis that this gene codes for a presumptive collagen type XI alpha1, which may be involved in the regulatory pathway leading to structural adaptation of the vertebral architecture.
Bank, Jonathan H H; Cubuk, Ceyda; Wilson, Dana; Rijntjes, Eddy; Kemmling, Julia; Markovsky, Hanna; Barrett, Perry; Herwig, Annika
2017-07-01
Thyroid hormones play an important role in regulating seasonal adaptations of mammals. Several studies suggested that reduced availability of 3,3',5-triiodothyronine (T3) in the hypothalamus is required for the physiological adaptation to winter in Djungarian hamsters. We have previously shown that T3 is involved in the regulation of daily torpor, but it remains unclear, whether T3 affects torpor by central or peripheral mechanisms. To determine the effect of T3 concentrations within the hypothalamus in regulating daily torpor, we tested the hypothesis that low hypothalamic T3 metabolism would favour torpor and high T3 concentrations would not. In experiment 1 gene expression in torpid hamsters was assessed for transporters carrying thyroid hormones between cerebrospinal fluid and hypothalamic cells and for deiodinases enzymes, activating or inactivating T3 within hypothalamic cells. Gene expression analysis suggests reduced T3 in hypothalamic cells during torpor. In experiment 2, hypothalamic T3 concentrations were altered via microdialysis and torpor behaviour was continuously monitored by implanted body temperature transmitters. Increased T3 concentrations in the hypothalamus reduced expression of torpor as well as torpor bout duration and depth. Subsequent analysis of gene expression in the ependymal layer of the third ventricle showed clear up-regulation of T3 inactivating deiodinase 3 but no changes in several other genes related to photoperiodic adaptations in hamsters. Finally, serum analysis revealed that increased total T3 serum concentrations were not necessary to inhibit torpor expression. Taken together, our results are consistent with the hypothesis that T3 availability within the hypothalamus significantly contributes to the regulation of daily torpor via a central pathway.
Identification and function analysis of contrary genes in Dupuytren's contracture.
Ji, Xianglu; Tian, Feng; Tian, Lijie
2015-07-01
The present study aimed to analyze the expression of genes involved in Dupuytren's contracture (DC), using bioinformatic methods. The profile of GSE21221 was downloaded from the gene expression ominibus, which included six samples, derived from fibroblasts and six healthy control samples, derived from carpal-tunnel fibroblasts. A Distributed Intrusion Detection System was used in order to identify differentially expressed genes. The term contrary genes is proposed. Contrary genes were the genes that exhibited opposite expression patterns in the positive and negative groups, and likely exhibited opposite functions. These were identified using Coexpress software. Gene ontology (GO) function analysis was conducted for the contrary genes. A network of GO terms was constructed using the reduce and visualize gene ontology database. Significantly expressed genes (801) and contrary genes (98) were screened. A significant association was observed between Chitinase-3-like protein 1 and ten genes in the positive gene set. Positive regulation of transcription and the activation of nuclear factor-κB (NF-κB)-inducing kinase activity exhibited the highest degree values in the network of GO terms. In the present study, the expression of genes involved in the development of DC was analyzed, and the concept of contrary genes proposed. The genes identified in the present study are involved in the positive regulation of transcription and activation of NF-κB-inducing kinase activity. The contrary genes and GO terms identified in the present study may potentially be used for DC diagnosis and treatment.
Separate enrichment analysis of pathways for up- and downregulated genes.
Hong, Guini; Zhang, Wenjing; Li, Hongdong; Shen, Xiaopei; Guo, Zheng
2014-03-06
Two strategies are often adopted for enrichment analysis of pathways: the analysis of all differentially expressed (DE) genes together or the analysis of up- and downregulated genes separately. However, few studies have examined the rationales of these enrichment analysis strategies. Using both microarray and RNA-seq data, we show that gene pairs with functional links in pathways tended to have positively correlated expression levels, which could result in an imbalance between the up- and downregulated genes in particular pathways. We then show that the imbalance could greatly reduce the statistical power for finding disease-associated pathways through the analysis of all-DE genes. Further, using gene expression profiles from five types of tumours, we illustrate that the separate analysis of up- and downregulated genes could identify more pathways that are really pertinent to phenotypic difference. In conclusion, analysing up- and downregulated genes separately is more powerful than analysing all of the DE genes together.
Jiang, Jieyun; Creasy, Kate Townsend; Purnell, Justin; Peterson, Martha L.; Spear, Brett T.
2017-01-01
The mouse major urinary proteins (Mups) are encoded by a large family of highly related genes clustered on chromosome 4. Mups, synthesized primarily and abundantly in the liver and secreted through the kidneys, exhibit male-biased expression. Mups bind a variety of volatile ligands; these ligands, and Mup proteins themselves, influence numerous behavioral traits. Although urinary Mup protein levels vary between inbred mouse strains, this difference is most pronounced in BALB/cJ mice, which have dramatically low urinary Mup levels; this BALB/cJ trait had been mapped to a locus on chromosome 15. We previously identified Zhx2 (zinc fingers and homeoboxes 2) as a regulator of numerous liver-enriched genes. Zhx2 is located on chromosome 15, and a natural hypomorphic mutation in the BALB/cJ Zhx2 allele dramatically reduces Zhx2 expression. Based on these data, we hypothesized that reduced Zhx2 levels are responsible for lower Mup expression in BALB/cJ mice. Using both transgenic and knock-out mice along with in vitro assays, our data show that Zhx2 binds Mup promoters and is required for high levels of Mup expression in the adult liver. In contrast to previously identified Zhx2 targets that appear to be repressed by Zhx2, Mup genes are positively regulated by Zhx2. These data identify Zhx2 as a novel regulator of Mup expression and indicate that Zhx2 activates as well as represses expression of target genes. PMID:28258223
Deng, Changwang; Li, Ying; Zhou, Lei; Cho, Joonseok; Patel, Bhavita; Terada, Naohiro; Li, Yangqiu; Bungert, Jörg; Qiu, Yi; Huang, Suming
2016-01-05
Trithorax proteins and long-intergenic noncoding RNAs are critical regulators of embryonic stem cell pluripotency; however, how they cooperatively regulate germ layer mesoderm specification remains elusive. We report here that HoxBlinc RNA first specifies Flk1(+) mesoderm and then promotes hematopoietic differentiation through regulation of hoxb pathways. HoxBlinc binds to the hoxb genes, recruits Setd1a/MLL1 complexes, and mediates long-range chromatin interactions to activate transcription of the hoxb genes. Depletion of HoxBlinc by shRNA-mediated knockdown or CRISPR-Cas9-mediated genetic deletion inhibits expression of hoxb genes and other factors regulating cardiac/hematopoietic differentiation. Reduced hoxb expression is accompanied by decreased recruitment of Set1/MLL1 and H3K4me3 modification, as well as by reduced chromatin loop formation. Re-expression of hoxb2-b4 genes in HoxBlinc-depleted embryoid bodies rescues Flk1(+) precursors that undergo hematopoietic differentiation. Thus, HoxBlinc plays an important role in controlling hoxb transcription networks that mediate specification of mesoderm-derived Flk1(+) precursors and differentiation of Flk1(+) cells into hematopoietic lineages. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Wang, Li; Mu, Chun; Du, Mingwei; Chen, Yin; Tian, Xiaoli; Zhang, Mingcai; Li, Zhaohu
2014-08-01
The growth regulator mepiquat chloride (MC) is globally used in cotton (Gossypium hirsutum L.) canopy manipulation to avoid excess growth and yield loss. However, little information is available as to whether the modification of plant architecture by MC is related to alterations in gibberellic acid (GA) metabolism and signaling. Here, the role of GA metabolism and signaling was investigated in cotton seedlings treated with MC. The MC significantly decreased endogenous GA3 and GA4 levels in the elongating internode, which inhibited cell elongation by downregulating GhEXP and GhXTH2, and then reducing plant height. Biosynthetic and metabolic genes of GA were markedly suppressed within 2-10d of MC treatment, which also downregulated the expression of DELLA-like genes. A remarkable feedback regulation was observed at the early stage of MC treatment when GA biosynthetic and metabolic genes expression was evidently upregulated. Mepiquat chloride action was controlled by temporal translocation and spatial accumulation which regulated GA biosynthesis and signal expression for maintaining GA homeostasis. The results suggested that MC application could reduce endogenous GA levels in cotton through controlled GA biosynthetic and metabolic genes expression, which might inhibit cell elongation, thereby shortening the internode and reducing plant height. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Badrzadeh, Fariba; Akbarzadeh, Abolfazl; Zarghami, Nosratollah; Yamchi, Mohammad Rahmati; Zeighamian, Vahide; Tabatabae, Fateme Sadate; Taheri, Morteza; Kafil, Hossein Samadi
2014-01-01
Herbal compounds such as curcumin which decrease telomerase and gene expression have been considered as beneficial tools for lung cancer treatment. In this article, we compared the effects of pure curcumin and curcumin-loaded NIPAAm-MAA nanoparticles on telomerase and PinX1 gene expression in a lung cancer cell line. A tetrazolium-based assay was used for determination of cytotoxic effects of curcumin on the Calu-6 lung cancer cell line and telomerase and pinX1 gene expression was measured with real-time PCR. MTT assay showed that Curcumin-loaded NIPAAm-MAA inhibited the growth of the Calu-6 lung cancer cell line in a time and dose-dependent manner. Our q-PCR results showed that the expression of telomerase gene was effectively reduced as the concentration of curcumin-loaded NIPAAm-MAA increased while expression of the PinX1 gene became elevated. The results showed that curcumin- loaded- NIPAAm-MAA exerted cytotoxic effects on the Calu-6 cell line through down-regulation of telomerase and stimulation of pinX1 gene expression. NIPPAm-MAA could be good carrier for such kinds of hydrophobic agent.
Solomon, Lauren A; Podder, Shreya; He, Jessica; Jackson-Chornenki, Nicholas L; Gibson, Kristen; Ziliotto, Rachel G; Rhee, Jess; DeKoter, Rodney P
2017-05-15
During macrophage development, myeloid progenitor cells undergo terminal differentiation coordinated with reduced cell cycle progression. Differentiation of macrophages from myeloid progenitors is accompanied by increased expression of the E26 transformation-specific transcription factor PU.1. Reduced PU.1 expression leads to increased proliferation and impaired differentiation of myeloid progenitor cells. It is not understood how PU.1 coordinates macrophage differentiation with reduced cell cycle progression. In this study, we utilized cultured PU.1-inducible myeloid cells to perform genome-wide chromatin immunoprecipitation sequencing (ChIP-seq) analysis coupled with gene expression analysis to determine targets of PU.1 that may be involved in regulating cell cycle progression. We found that genes encoding cell cycle regulators and enzymes involved in lipid anabolism were directly and inducibly bound by PU.1 although their steady-state mRNA transcript levels were reduced. Inhibition of lipid anabolism was sufficient to reduce cell cycle progression in these cells. Induction of PU.1 reduced expression of E2f1 , an important activator of genes involved in cell cycle and lipid anabolism, indirectly through microRNA 223. Next-generation sequencing identified microRNAs validated as targeting cell cycle and lipid anabolism for downregulation. These results suggest that PU.1 coordinates cell cycle progression with differentiation through induction of microRNAs targeting cell cycle regulators and lipid anabolism. Copyright © 2017 American Society for Microbiology.
Kuuluvainen, Emilia; Domènech-Moreno, Eva; Niemelä, Elina H; Mäkelä, Tomi P
2018-06-01
In cancer, oncogene activation is partly mediated by acquired superenhancers, which therefore represent potential targets for inhibition. Superenhancers are enriched for BRD4 and Mediator, and both BRD4 and the Mediator MED12 subunit are disproportionally required for expression of superenhancer-associated genes in stem cells. Here we show that depletion of Mediator kinase module subunit MED12 or MED13 together with MED13L can be used to reduce expression of cancer-acquired superenhancer genes, such as the MYC gene, in colon cancer cells, with a concomitant decrease in proliferation. Whereas depletion of MED12 or MED13/MED13L caused a disproportional decrease of superenhancer gene expression, this was not seen with depletion of the kinases cyclin-dependent kinase 9 (CDK8) and CDK19. MED12-MED13/MED13L-dependent superenhancer genes were coregulated by β-catenin, which has previously been shown to associate with MED12. Importantly, β-catenin depletion caused reduced binding of MED12 at the MYC superenhancer. The effect of MED12 or MED13/MED13L depletion on cancer-acquired superenhancer gene expression was more specific than and partially distinct from that of BRD4 depletion, with the most efficient inhibition seen with combined targeting. These results identify a requirement of MED12 and MED13/MED13L for expression of acquired superenhancer genes in colon cancer, implicating these Mediator subunits as potential therapeutic targets for colon cancer, alone or together with BRD4. Copyright © 2018 American Society for Microbiology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pols, Thijs W.H.; Ottenhoff, Roelof; Vos, Mariska
NR4A nuclear receptors are induced in the liver upon fasting and regulate hepatic gluconeogenesis. Here, we studied the role of nuclear receptor Nur77 (NR4A1) in hepatic lipid metabolism. We generated mice expressing hepatic Nur77 using adenoviral vectors, and demonstrate that these mice exhibit a modulation of the plasma lipid profile and a reduction in hepatic triglyceride. Expression analysis of >25 key genes involved in lipid metabolism revealed that Nur77 inhibits SREBP1c expression. This results in decreased SREBP1c activity as is illustrated by reduced expression of its target genes stearoyl-coA desaturase-1, mitochondrial glycerol-3-phosphate acyltransferase, fatty acid synthase and the LDL receptor,more » and provides a mechanism for the physiological changes observed in response to Nur77. Expression of LXR target genes Abcg5 and Abcg8 is reduced by Nur77, and may suggest involvement of LXR in the inhibitory action of Nur77 on SREBP1c expression. Taken together, our study demonstrates that Nur77 modulates hepatic lipid metabolism through suppression of SREBP1c activity.« less
Guo, Chun Yu; Yin, Hui Jun; Jiang, Yue Rong; Xue, Mei; Zhang, Lu; Shi, Da Zhuo
2008-06-18
To construct the differential genes expressed profile in the ischemic myocardium tissue reduced from acute myocardial infarction(AMI), and determine the biological functions of target genes. AMI model was generated by ligation of the left anterior descending coronary artery in Wistar rats. Total RNA was extracted from the normal and the ischemic heart tissues under the ligation point 7 days after the operation. Differential gene expression profiles of the two samples were constructed using Long Serial Analysis of Gene Expression(LongSAGE). Real time fluorescence quantitative PCR was used to verify gene expression profile and to identify the expression of 2 functional genes. The activities of enzymes from functional genes were determined by histochemistry. A total of 15,966 tags were screened from the normal and the ischemic LongSAGE maps. The similarities of the sequences were compared using the BLAST algebra in NCBI and 7,665 novel tags were found. In the ischemic tissue 142 genes were significantly changed compared with those in the normal tissue (P<0.05). These differentially expressed genes represented the proteins which might play important roles in the pathways of oxidation and phosphorylation, ATP synthesis and glycolysis. The partial genes identified by LongSAGE were confirmed using real time fluorescence quantitative PCR. Two genes related to energy metabolism, COX5a and ATP5e, were screened and quantified. Expression of two functional genes down-regulated at their mRNA levels and the activities of correlative functional enzymes decreased compared with those in the normal tissue. AMI causes a series of changes in gene expression, in which the abnormal expression of genes related to energy metabolism could be one of the molecular mechanisms of AMI. The intervention of the expressions of COX5a and ATP5e may be a new target for AMI therapy.
Ethanol-induced changes in Poly (ADP ribose) Polymerase and neuronal developmental gene expression
Gavin, David P.; Kusumo, Handojo; Sharma, Rajiv P.; Guizzetti, Marina
2016-01-01
Prenatal alcohol exposure has profound effects on neuronal growth and development. Poly-ADP Ribose Polymerase (PARP) enzymes are perhaps unique in the field of epigenetics in that they directly participate in histone modifications, transcription factor modifications, DNA methylation/demethylation and are highly inducible by ethanol. It was our hypothesis that ethanol would induce PARP enzymatic activity leading to alterations in neurodevelopmental gene expression. Mouse E18 cortical neurons were treated with ethanol, PARP inhibitors, and nuclear hormone receptor transcription factor PPARγ agonists and antagonists. Subsequently, we measured PARP activity and changes in Bdnf, OKSM (Oct4, Klf4, Sox2, c-Myc), DNA methylating/demethylating factors, and Pparγ mRNA expression, promoter 5-methylcytosine (5MC) and 5-hydroxymethylcytosine (5HMC), and PPARγ promoter binding. We found that ethanol reduced Bdnf4, 9a, and Klf4 mRNA expression, and increased c-Myc expression. These changes were reversed with a PARP inhibitor. In agreement with its role in DNA demethylation PARP inhibition increased 5MC levels at the c-Myc promoter. In addition, we found that elevated PARP enzymatic activity reduced PPARγ promoter binding, and this corresponded to decreased Bdnf and Klf4 mRNA expression. Our results suggest that PARP participates in DNA demethylation and reduces PPARγ promoter binding. The current study underscores the importance of PARP in ethanol-induced changes to neurodevelopmental gene expression. PMID:27497606
Dong, Xiangshu; Kim, Wan Kyu; Lim, Yong-Pyo; Kim, Yeon-Ki; Hur, Yoonkang
2013-02-01
We investigated the mechanism regulating cytoplasmic male sterility (CMS) in Brassica rapa ssp. pekinensis using floral bud transcriptome analyses of Ogura-CMS Chinese cabbage and its maintainer line in B. rapa 300-K oligomeric probe (Br300K) microarrays. Ogura-CMS Chinese cabbage produced few and infertile pollen grains on indehiscent anthers. Compared to the maintainer line, CMS plants had shorter filaments and plant growth, and delayed flowering and pollen development. In microarray analysis, 4646 genes showed different expression, depending on floral bud size, between Ogura-CMS and its maintainer line. We found 108 and 62 genes specifically expressed in Ogura-CMS and its maintainer line, respectively. Ogura-CMS line-specific genes included stress-related, redox-related, and B. rapa novel genes. In the maintainer line, genes related to pollen coat and germination were specifically expressed in floral buds longer than 3mm, suggesting insufficient expression of these genes in Ogura-CMS is directly related to dysfunctional pollen. In addition, many nuclear genes associated with auxin response, ATP synthesis, pollen development and stress response had delayed expression in Ogura-CMS plants compared to the maintainer line, which is consistent with the delay in growth and development of Ogura-CMS plants. Delayed expression may reduce pollen grain production and/or cause sterility, implying that mitochondrial, retrograde signaling delays nuclear gene expression. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Zhou, Min; Ding, Yong; Cai, Liang; Wang, Yonggang; Lin, Changpo; Shi, Zhenyu
2018-05-01
Low molecular weight fucoidan (LMWF) is a sulfated polysaccharide extracted from Saccharina Japonica that presents high affinity for P-selectin and abolish selectin-dependent recruitment of leukocytes. We hypothesized that dietary intake of LMWF, as a competitive binding agent of P‑selectin, could limit the inflammatory infiltration and aneurysmal growth in an Angiotensin II‑induced abdominal aortic aneurysm (AAA) mouse model. The Gene Expression Omnibus database was used for gene expressions and gene set enrichment analysis. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed that focal adhesion was involved in the development of AAA. However, dietary intake of LMWF could limit the enlargement of AAA, decreasing maximal aortic diameter and preserving elastin lamellae. Although LMWF did not decrease the circulatory monocytes count and lower the expression of P‑selectin in endothelium, it reduced macrophages infiltration in media and adventitia. Furthermore, matrix metalloproteinase expression was markedly downregulated, accompanied with reduced expression of inflammatory mediators, including interleukin 1β, tumor necrosis factor‑α and monocyte chemotactic protein‑1. The present study revealed a novel target for the treatment of AAA and the anti‑inflammatory effects of LMWF.
Hannemann, Holger; Rosenke, Kyle; O'Dowd, John M; Fortunato, Elizabeth A
2009-05-01
Human cytomegalovirus (HCMV) is a common cause of morbidity and mortality in immunocompromised and immunosuppressed individuals. During infection, HCMV is known to employ host transcription factors to facilitate viral gene expression. To further understand the previously observed delay in viral replication and protein expression in p53 knockout cells, we conducted microarray analyses of p53(+/+) and p53(-/-) immortalized fibroblast cell lines. At a multiplicity of infection (MOI) of 1 at 24 h postinfection (p.i.), the expression of 22 viral genes was affected by the absence of p53. Eleven of these 22 genes (group 1) were examined by real-time reverse transcriptase, or quantitative, PCR (q-PCR). Additionally, five genes previously determined to have p53 bound to their nearest p53-responsive elements (group 2) and three control genes without p53 binding sites in their upstream sequences (group 3) were also examined. At an MOI of 1, >3-fold regulation was found for five group 1 genes. The expression of group 2 and 3 genes was not changed. At an MOI of 5, all genes from group 1 and four of five genes from group 2 were found to be regulated. The expression of control genes from group 3 remained unchanged. A q-PCR time course of four genes revealed that p53 influences viral gene expression most at immediate-early and early times p.i., suggesting a mechanism for the reduced and delayed production of virions in p53(-/-) cells.
Majumder, Pritha; Chattopadhyay, Biswanath; Mazumder, Arindam; Das, Pradeep; Bhattacharyya, Nitai P
2006-05-01
To decipher the pathway of apoptosis induction downstream to caspase-8 activation by exogenous expression of Hippi, an interactor of huntingtin-interacting protein Hip1, we studied apoptosis in HeLa and Neuro2A cells expressing GFP-tagged Hippi. Nuclear fragmentation, caspase-1, caspase-8, caspase-9/caspase-6 and caspase-3 activation were increased significantly in Hippi expressing cells. Cleavage of Bid, release of cytochrome c and apoptosis inducing factor (AIF) from mitochondria were also increased in GFP-Hippi expressing cells. It was observed that caspase-1 and caspase-8 activation was earlier than caspase-3 activation and nuclear fragmentation. Expression of caspase-1, caspase-3 and caspase-7 was increased while anti-apoptotic gene Bcl-2 and mitochondrial genes ND1 and ND4 were reduced in Hippi expressing cells. Besides, the expression SDHA and SDHB, nuclear genes, subunits of mitochondrial complex II were decreased in GFP-Hippi expressing cells. Taken together, we concluded that Hippi expression induced apoptosis by releasing AIF and cytochrome c from mitochondria, activation of caspase-1 and caspase-3, and altering the expression of apoptotic genes and genes involved in mitochondrial complex I and II.
Expression of Innate Immune Response Genes in Liver and Three Types of Adipose Tissue in Cloned Pigs
Rødgaard, Tina; Skovgaard, Kerstin; Stagsted, Jan
2012-01-01
Abstract The pig has been proposed as a relevant model for human obesity-induced inflammation, and cloning may improve the applicability of this model. We tested the assumptions that cloning would reduce interindividual variation in gene expression of innate immune factors and that their expression would remain unaffected by the cloning process. We investigated the expression of 40 innate immune factors by high-throughput quantitative real-time PCR in samples from liver, abdominal subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), and neck SAT in cloned pigs compared to normal outbred pigs. The variation in gene expression was found to be similar for the two groups, and the expression of a small number of genes was significantly affected by cloning. In the VAT and abdominal SAT, six out of seven significantly differentially expressed genes were downregulated in the clones. In contrast, most differently expressed genes in both liver and neck SAT were upregulated (seven out of eight). Remarkably, acute phase proteins (APPs) dominated the upregulated genes in the liver, whereas APP expression was either unchanged or downregulated in abdominal SAT and VAT. The general conclusion from this work is that cloning leads to subtle changes in specific subsets of innate immune genes. Such changes, even if minor, may have phenotypic effects over time, e.g., in models of long-term inflammation related to obesity. PMID:22928970
Fitzpatrick, Terry; Huang, Sui
2012-01-01
Alu repeats within human genes may potentially alter gene expression. Here, we show that 3′-UTR-located inverted Alu repeats significantly reduce expression of an AcGFP reporter gene. Mutational analysis demonstrates that the secondary structure, but not the primary nucleotide sequence, of the inverted Alu repeats is critical for repression. The expression levels and nucleocytoplasmic distribution of reporter mRNAs with or without 3′-UTR inverted Alu repeats are similar; suggesting that reporter gene repression is not due to changes in mRNA levels or mRNA nuclear sequestration. Instead, reporter gene mRNAs harboring 3′-UTR inverted Alu repeats accumulate in cytoplasmic stress granules. These findings may suggest a novel mechanism whereby 3′-UTR-located inverted Alu repeats regulate human gene expression through sequestration of mRNAs within stress granules. PMID:22688648
In vitro effects of triiodothyronine on gene expression in mouse trophoblast cells.
Silva, J F; Ocarino, N M; Serakides, R
2015-01-01
The objective of the present study was to evaluate the effects of different doses of T3 (10(-4) M, 10(-7) M, 10(-9) M) on the in vitro gene expression of Tpbp, Prl3b1, VEGF, PGF, PL-1, and INFy in mouse trophoblast cells by real-time RT-PCR. Doses of 10(-7) and 10(-9) M T3 increased the mRNA levels of Tpbp, Pl3b1, VEGF, PGF, INFy and PL-1. In contrast, the dose of 10(-4) M reduced the gene expression of PL-1 and VEGF. T3 affected the gene expression of differentiation, hormonal, immune and angiogenic factors in mouse trophoblast cells. Copyright © 2014 Elsevier Ltd. All rights reserved.
BCOR regulates myeloid cell proliferation and differentiation
Cao, Qi; Gearhart, Micah D.; Gery, Sigal; Shojaee, Seyedmehdi; Yang, Henry; Sun, Haibo; Lin, De-chen; Bai, Jing-wen; Mead, Monica; Zhao, Zhiqiang; Chen, Qi; Chien, Wen-wen; Alkan, Serhan; Alpermann, Tamara; Haferlach, Torsten; Müschen, Markus; Bardwell, Vivian J.; Koeffler, H. Phillip
2016-01-01
BCOR is a component of a variant Polycomb group repressive complex 1 (PRC1). Recently, we and others reported recurrent somatic BCOR loss-of-function mutations in myelodysplastic syndrome and acute myelogenous leukaemia (AML). However, the role of BCOR in normal hematopoiesis is largely unknown. Here, we explored the function of BCOR in myeloid cells using myeloid murine models with Bcor conditional loss-of-function or overexpression alleles. Bcor mutant bone marrow cells showed significantly higher proliferation and differentiation rates with upregulated expression of Hox genes. Mutation of Bcor reduced protein levels of RING1B, an H2A ubiquitin ligase subunit of PRC1 family complexes and reduced H2AK119ub upstream of upregulated HoxA genes. Global RNA expression profiling in murine cells and AML patient samples with BCOR loss-of-function mutation suggested that loss of BCOR expression is associated with enhanced cell proliferation and myeloid differentiation. Our results strongly suggest that BCOR plays an indispensable role in hematopoiesis by inhibiting myeloid cell proliferation and differentiation and offer a mechanistic explanation for how BCOR regulates gene expression such as Hox genes. PMID:26847029
Macromolecular Crowding Regulates the Gene Expression Profile by Limiting Diffusion
Golkaram, Mahdi; Hellander, Stefan; Drawert, Brian; ...
2016-11-28
We seek to elucidate the role of macromolecular crowding in transcription and translation. It is well known that stochasticity in gene expression can lead to differential gene expression and heterogeneity in a cell population. Recent experimental observations by Tan et al. have improved our understanding of the functional role of macromolecular crowding. It can be inferred from their observations that macromolecular crowding can lead to robustness in gene expression, resulting in a more homogeneous cell population. We introduce a spatial stochastic model to provide insight into this process. Our results show that macromolecular crowding reduces noise (as measured by themore » kurtosis of the mRNA distribution) in a cell population by limiting the diffusion of transcription factors (i.e. removing the unstable intermediate states), and that crowding by large molecules reduces noise more efficiently than crowding by small molecules. Finally, our simulation results provide evidence that the local variation in chromatin density as well as the total volume exclusion of the chromatin in the nucleus can induce a homogenous cell population« less
Coleman, J. Robert; Papamichail, Dimitris; Yano, Masahide; García-Suárez, María del Mar
2011-01-01
In this study, we used a previously described method of controlling gene expression with computer-based gene design and de novo DNA synthesis to attenuate the virulence of Streptococcus pneumoniae. We produced 2 S. pneumoniae serotype 3 (SP3) strains in which the pneumolysin gene (ply) was recoded with underrepresented codon pairs while retaining its amino acid sequence and determined their ply expression and pneumolysin production in vitro and their virulence in a mouse pulmonary infection model. Expression of ply and production of pneumolysin of the recoded SP3 strains were decreased, and the recoded SP3 strains were less virulent in mice than the wild-type SP3 strain or a Δply SP3 strain. Further studies showed that the least virulent recoded strain induced a markedly reduced inflammatory response in the lungs compared with the wild-type or Δply strain. These findings suggest that reducing pneumococcal virulence gene expression by altering codon-pair bias could hold promise for rational design of live-attenuated pneumococcal vaccines. PMID:21343143
Ali, Shahin S; Melnick, Rachel L; Crozier, Jayne; Phillips-Mora, Wilberth; Strem, Mary D; Shao, Jonathan; Zhang, Dapeng; Sicher, Richard; Meinhardt, Lyndel; Bailey, Bryan A
2014-09-01
An understanding of the tolerance mechanisms of Theobroma cacao used against Moniliophthora roreri, the causal agent of frosty pod rot, is important for the generation of stable disease-tolerant clones. A comparative view was obtained of transcript populations of infected pods from two susceptible and two tolerant clones using RNA sequence (RNA-Seq) analysis. A total of 3009 transcripts showed differential expression among clones. KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis of differentially expressed genes indicated shifts in 152 different metabolic pathways between the tolerant and susceptible clones. Real-time quantitative reverse transcription polymerase chain reaction (real-time qRT-PCR) analyses of 36 genes verified the differential expression. Regression analysis validated a uniform progression in gene expression in association with infection levels and fungal loads in the susceptible clones. Expression patterns observed in the susceptible clones diverged in tolerant clones, with many genes showing higher expression at a low level of infection and fungal load. Principal coordinate analyses of real-time qRT-PCR data separated the gene expression patterns between susceptible and tolerant clones for pods showing malformation. Although some genes were constitutively differentially expressed between clones, most results suggested that defence responses were induced at low fungal load in the tolerant clones. Several elicitor-responsive genes were highly expressed in tolerant clones, suggesting rapid recognition of the pathogen and induction of defence genes. Expression patterns suggested that the jasmonic acid-ethylene- and/or salicylic acid-mediated defence pathways were activated in the tolerant clones, being enhanced by reduced brassinosteroid (BR) biosynthesis and catabolic inactivation of both BR and abscisic acids. Finally, several genes associated with hypersensitive response-like cell death were also induced in tolerant clones. © 2014 BSPP AND JOHN WILEY & SONS LTD.
Executioner Caspase-3 and 7 Deficiency Reduces Myocyte Number in the Developing Mouse Heart
Cardona, Maria; López, Juan Antonio; Serafín, Anna; Rongvaux, Anthony; Inserte, Javier; García-Dorado, David; Flavell, Richard; Llovera, Marta; Cañas, Xavier; Vázquez, Jesús; Sanchis, Daniel
2015-01-01
Executioner caspase-3 and -7 are proteases promoting cell death but non-apoptotic roles are being discovered. The heart expresses caspases only during development, suggesting they contribute to the organ maturation process. Therefore, we aimed at identifying novel functions of caspases in heart development. We induced simultaneous deletion of executioner caspase-3 and -7 in the mouse myocardium and studied its effects. Caspase knockout hearts are hypoplastic at birth, reaching normal weight progressively through myocyte hypertrophy. To identify the molecular pathways involved in these effects, we used microarray-based transcriptomics and multiplexed quantitative proteomics to compare wild type and executioner caspase-deficient myocardium at different developmental stages. Transcriptomics showed reduced expression of genes promoting DNA replication and cell cycle progression in the neonatal caspase-deficient heart suggesting reduced myocyte proliferation, and expression of non-cardiac isoforms of structural proteins in the adult null myocardium. Proteomics showed reduced abundance of proteins involved in oxidative phosphorylation accompanied by increased abundance of glycolytic enzymes underscoring retarded metabolic maturation of the caspase-null myocardium. Correlation between mRNA expression and protein abundance of relevant genes was confirmed, but transcriptomics and proteomics indentified complementary molecular pathways influenced by caspases in the developing heart. Forced expression of wild type or proteolytically inactive caspases in cultured cardiomyocytes induced expression of genes promoting cell division. The results reveal that executioner caspases can modulate heart’s cellularity and maturation during development, contributing novel information about caspase biology and heart development. PMID:26121671
Kienle, Dirk; Katzenberger, Tiemo; Ott, German; Saupe, Doreen; Benner, Axel; Kohlhammer, Holger; Barth, Thomas F E; Höller, Sylvia; Kalla, Jörg; Rosenwald, Andreas; Müller-Hermelink, Hans Konrad; Möller, Peter; Lichter, Peter; Döhner, Hartmut; Stilgenbauer, Stephan
2007-07-01
There is evidence for a direct role of quantitative gene expression deregulation in mantle-cell lymphoma (MCL) pathogenesis. Our aim was to investigate gene expression associations with other pathogenic factors and the significance of gene expression in a multivariate survival analysis. Quantitative expression of 20 genes of potential relevance for MCL prognosis and pathogenesis were analyzed using real-time reverse transcriptase polymerase chain reaction and correlated with clinical and genetic factors, tumor morphology, and Ki-67 index in 65 MCL samples. Genomic losses at the loci of TP53, RB1, and P16 were associated with reduced transcript levels of the respective genes, indicating a gene-dosage effect as the pathomechanism. Analysis of gene expression correlations between the candidate genes revealed a separation into two clusters, one dominated by proliferation activators, another by proliferation inhibitors and regulators of apoptosis. Whereas only weak associations were identified between gene expression and clinical parameters or blastoid morphology, several genes were correlated closely with the Ki-67 index, including the short CCND1 variant (positive correlation) and RB1, ATM, P27, and BMI (negative correlation). In multivariate survival analysis, expression levels of MYC, MDM2, EZH2, and CCND1 were the strongest prognostic factors independently of tumor proliferation and clinical factors. These results indicate a pathogenic contribution of several gene transcript levels to the biology and clinical course of MCL. Genes can be differentiated into factors contributing to proliferation deregulation, either by enhancement or loss of inhibition, and proliferation-independent factors potentially contributing to MCL pathogenesis by apoptosis impairment.
DFP: a Bioconductor package for fuzzy profile identification and gene reduction of microarray data
Glez-Peña, Daniel; Álvarez, Rodrigo; Díaz, Fernando; Fdez-Riverola, Florentino
2009-01-01
Background Expression profiling assays done by using DNA microarray technology generate enormous data sets that are not amenable to simple analysis. The greatest challenge in maximizing the use of this huge amount of data is to develop algorithms to interpret and interconnect results from different genes under different conditions. In this context, fuzzy logic can provide a systematic and unbiased way to both (i) find biologically significant insights relating to meaningful genes, thereby removing the need for expert knowledge in preliminary steps of microarray data analyses and (ii) reduce the cost and complexity of later applied machine learning techniques being able to achieve interpretable models. Results DFP is a new Bioconductor R package that implements a method for discretizing and selecting differentially expressed genes based on the application of fuzzy logic. DFP takes advantage of fuzzy membership functions to assign linguistic labels to gene expression levels. The technique builds a reduced set of relevant genes (FP, Fuzzy Pattern) able to summarize and represent each underlying class (pathology). A last step constructs a biased set of genes (DFP, Discriminant Fuzzy Pattern) by intersecting existing fuzzy patterns in order to detect discriminative elements. In addition, the software provides new functions and visualisation tools that summarize achieved results and aid in the interpretation of differentially expressed genes from multiple microarray experiments. Conclusion DFP integrates with other packages of the Bioconductor project, uses common data structures and is accompanied by ample documentation. It has the advantage that its parameters are highly configurable, facilitating the discovery of biologically relevant connections between sets of genes belonging to different pathologies. This information makes it possible to automatically filter irrelevant genes thereby reducing the large volume of data supplied by microarray experiments. Based on these contributions GENECBR, a successful tool for cancer diagnosis using microarray datasets, has recently been released. PMID:19178723
DFP: a Bioconductor package for fuzzy profile identification and gene reduction of microarray data.
Glez-Peña, Daniel; Alvarez, Rodrigo; Díaz, Fernando; Fdez-Riverola, Florentino
2009-01-29
Expression profiling assays done by using DNA microarray technology generate enormous data sets that are not amenable to simple analysis. The greatest challenge in maximizing the use of this huge amount of data is to develop algorithms to interpret and interconnect results from different genes under different conditions. In this context, fuzzy logic can provide a systematic and unbiased way to both (i) find biologically significant insights relating to meaningful genes, thereby removing the need for expert knowledge in preliminary steps of microarray data analyses and (ii) reduce the cost and complexity of later applied machine learning techniques being able to achieve interpretable models. DFP is a new Bioconductor R package that implements a method for discretizing and selecting differentially expressed genes based on the application of fuzzy logic. DFP takes advantage of fuzzy membership functions to assign linguistic labels to gene expression levels. The technique builds a reduced set of relevant genes (FP, Fuzzy Pattern) able to summarize and represent each underlying class (pathology). A last step constructs a biased set of genes (DFP, Discriminant Fuzzy Pattern) by intersecting existing fuzzy patterns in order to detect discriminative elements. In addition, the software provides new functions and visualisation tools that summarize achieved results and aid in the interpretation of differentially expressed genes from multiple microarray experiments. DFP integrates with other packages of the Bioconductor project, uses common data structures and is accompanied by ample documentation. It has the advantage that its parameters are highly configurable, facilitating the discovery of biologically relevant connections between sets of genes belonging to different pathologies. This information makes it possible to automatically filter irrelevant genes thereby reducing the large volume of data supplied by microarray experiments. Based on these contributions GENECBR, a successful tool for cancer diagnosis using microarray datasets, has recently been released.
A gene expression resource generated by genome-wide lacZ profiling in the mouse
Tuck, Elizabeth; Estabel, Jeanne; Oellrich, Anika; Maguire, Anna Karin; Adissu, Hibret A.; Souter, Luke; Siragher, Emma; Lillistone, Charlotte; Green, Angela L.; Wardle-Jones, Hannah; Carragher, Damian M.; Karp, Natasha A.; Smedley, Damian; Adams, Niels C.; Bussell, James N.; Adams, David J.; Ramírez-Solis, Ramiro; Steel, Karen P.; Galli, Antonella; White, Jacqueline K.
2015-01-01
ABSTRACT Knowledge of the expression profile of a gene is a critical piece of information required to build an understanding of the normal and essential functions of that gene and any role it may play in the development or progression of disease. High-throughput, large-scale efforts are on-going internationally to characterise reporter-tagged knockout mouse lines. As part of that effort, we report an open access adult mouse expression resource, in which the expression profile of 424 genes has been assessed in up to 47 different organs, tissues and sub-structures using a lacZ reporter gene. Many specific and informative expression patterns were noted. Expression was most commonly observed in the testis and brain and was most restricted in white adipose tissue and mammary gland. Over half of the assessed genes presented with an absent or localised expression pattern (categorised as 0-10 positive structures). A link between complexity of expression profile and viability of homozygous null animals was observed; inactivation of genes expressed in ≥21 structures was more likely to result in reduced viability by postnatal day 14 compared with more restricted expression profiles. For validation purposes, this mouse expression resource was compared with Bgee, a federated composite of RNA-based expression data sets. Strong agreement was observed, indicating a high degree of specificity in our data. Furthermore, there were 1207 observations of expression of a particular gene in an anatomical structure where Bgee had no data, indicating a large amount of novelty in our data set. Examples of expression data corroborating and extending genotype-phenotype associations and supporting disease gene candidacy are presented to demonstrate the potential of this powerful resource. PMID:26398943
paraGSEA: a scalable approach for large-scale gene expression profiling
Peng, Shaoliang; Yang, Shunyun
2017-01-01
Abstract More studies have been conducted using gene expression similarity to identify functional connections among genes, diseases and drugs. Gene Set Enrichment Analysis (GSEA) is a powerful analytical method for interpreting gene expression data. However, due to its enormous computational overhead in the estimation of significance level step and multiple hypothesis testing step, the computation scalability and efficiency are poor on large-scale datasets. We proposed paraGSEA for efficient large-scale transcriptome data analysis. By optimization, the overall time complexity of paraGSEA is reduced from O(mn) to O(m+n), where m is the length of the gene sets and n is the length of the gene expression profiles, which contributes more than 100-fold increase in performance compared with other popular GSEA implementations such as GSEA-P, SAM-GS and GSEA2. By further parallelization, a near-linear speed-up is gained on both workstations and clusters in an efficient manner with high scalability and performance on large-scale datasets. The analysis time of whole LINCS phase I dataset (GSE92742) was reduced to nearly half hour on a 1000 node cluster on Tianhe-2, or within 120 hours on a 96-core workstation. The source code of paraGSEA is licensed under the GPLv3 and available at http://github.com/ysycloud/paraGSEA. PMID:28973463
Anderson, Ashley K.; Ohler, Uwe; Wassarman, David A.
2012-01-01
To investigate the importance of core promoter elements for tissue-specific transcription of RNA polymerase II genes, we examined testis-specific transcription in Drosophila melanogaster. Bioinformatic analyses of core promoter sequences from 190 genes that are specifically expressed in testes identified a 10 bp A/T-rich motif that is identical to the translational control element (TCE). The TCE functions in the 5′ untranslated region of Mst(3)CGP mRNAs to repress translation, and it also functions in a heterologous gene to regulate transcription. We found that among genes with focused initiation patterns, the TCE is significantly enriched in core promoters of genes that are specifically expressed in testes but not in core promoters of genes that are specifically expressed in other tissues. The TCE is variably located in core promoters and is conserved in melanogaster subgroup species, but conservation dramatically drops in more distant species. In transgenic flies, short (300–400 bp) genomic regions containing a TCE directed testis-specific transcription of a reporter gene. Mutation of the TCE significantly reduced but did not abolish reporter gene transcription indicating that the TCE is important but not essential for transcription activation. Finally, mutation of testis-specific TFIID (tTFIID) subunits significantly reduced the transcription of a subset of endogenous TCE-containing but not TCE-lacking genes, suggesting that tTFIID activity is limited to TCE-containing genes but that tTFIID is not an obligatory regulator of TCE-containing genes. Thus, the TCE is a core promoter element in a subset of genes that are specifically expressed in testes. Furthermore, the TCE regulates transcription in the context of short genomic regions, from variable locations in the core promoter, and both dependently and independently of tTFIID. These findings set the stage for determining the mechanism by which the TCE regulates testis-specific transcription and understanding the dual role of the TCE in translational and transcriptional regulation. PMID:22984601
Katzenberger, Rebeccah J; Rach, Elizabeth A; Anderson, Ashley K; Ohler, Uwe; Wassarman, David A
2012-01-01
To investigate the importance of core promoter elements for tissue-specific transcription of RNA polymerase II genes, we examined testis-specific transcription in Drosophila melanogaster. Bioinformatic analyses of core promoter sequences from 190 genes that are specifically expressed in testes identified a 10 bp A/T-rich motif that is identical to the translational control element (TCE). The TCE functions in the 5' untranslated region of Mst(3)CGP mRNAs to repress translation, and it also functions in a heterologous gene to regulate transcription. We found that among genes with focused initiation patterns, the TCE is significantly enriched in core promoters of genes that are specifically expressed in testes but not in core promoters of genes that are specifically expressed in other tissues. The TCE is variably located in core promoters and is conserved in melanogaster subgroup species, but conservation dramatically drops in more distant species. In transgenic flies, short (300-400 bp) genomic regions containing a TCE directed testis-specific transcription of a reporter gene. Mutation of the TCE significantly reduced but did not abolish reporter gene transcription indicating that the TCE is important but not essential for transcription activation. Finally, mutation of testis-specific TFIID (tTFIID) subunits significantly reduced the transcription of a subset of endogenous TCE-containing but not TCE-lacking genes, suggesting that tTFIID activity is limited to TCE-containing genes but that tTFIID is not an obligatory regulator of TCE-containing genes. Thus, the TCE is a core promoter element in a subset of genes that are specifically expressed in testes. Furthermore, the TCE regulates transcription in the context of short genomic regions, from variable locations in the core promoter, and both dependently and independently of tTFIID. These findings set the stage for determining the mechanism by which the TCE regulates testis-specific transcription and understanding the dual role of the TCE in translational and transcriptional regulation.
Digital gene expression for non-model organisms
Hong, Lewis Z.; Li, Jun; Schmidt-Küntzel, Anne; Warren, Wesley C.; Barsh, Gregory S.
2011-01-01
Next-generation sequencing technologies offer new approaches for global measurements of gene expression but are mostly limited to organisms for which a high-quality assembled reference genome sequence is available. We present a method for gene expression profiling called EDGE, or EcoP15I-tagged Digital Gene Expression, based on ultra-high-throughput sequencing of 27-bp cDNA fragments that uniquely tag the corresponding gene, thereby allowing direct quantification of transcript abundance. We show that EDGE is capable of assaying for expression in >99% of genes in the genome and achieves saturation after 6–8 million reads. EDGE exhibits very little technical noise, reveals a large (106) dynamic range of gene expression, and is particularly suited for quantification of transcript abundance in non-model organisms where a high-quality annotated genome is not available. In a direct comparison with RNA-seq, both methods provide similar assessments of relative transcript abundance, but EDGE does better at detecting gene expression differences for poorly expressed genes and does not exhibit transcript length bias. Applying EDGE to laboratory mice, we show that a loss-of-function mutation in the melanocortin 1 receptor (Mc1r), recognized as a Mendelian determinant of yellow hair color in many different mammals, also causes reduced expression of genes involved in the interferon response. To illustrate the application of EDGE to a non-model organism, we examine skin biopsy samples from a cheetah (Acinonyx jubatus) and identify genes likely to control differences in the color of spotted versus non-spotted regions. PMID:21844123
GENOMIC IMPRINTING, DISRUPTED PLACENTAL EXPRESSION, AND SPECIATION
Brekke, Thomas D.; Henry, Lindy A.; Good, Jeffrey M.
2016-01-01
The importance of regulatory incompatibilities to the early stages of speciation remains unclear. Hybrid mammals often show extreme parent-of-origin growth effects that are thought to be a consequence of disrupted genetic imprinting (parent-specific epigenetic gene silencing) during early development. Here we test the long-standing hypothesis that abnormal hybrid growth reflects disrupted gene expression due to loss of imprinting (LOI) in hybrid placentas, resulting in dosage imbalances between paternal growth factors and maternal growth repressors. We analyzed placental gene expression in reciprocal dwarf hamster hybrids that show extreme parent-of-origin growth effects relative to their parental species. In massively enlarged hybrid placentas, we observed both extensive transgressive expression of growth-related genes and bi-allelic expression of many genes that were paternally silenced in normal sized hybrids. However, the apparent widespread disruption of paternal silencing was coupled with reduced gene expression levels overall. These patterns are contrary to the predictions of the LOI model and indicate that hybrid misexpression of dosage sensitive genes is caused by other regulatory mechanisms in this system. Collectively, our results support a central role for disrupted gene expression and imprinting in the evolution of mammalian hybrid inviability, but call into question the generality of the widely invoked LOI model. PMID:27714796
Pérez-Belmonte, Luis M; Moreno-Santos, Inmaculada; Gómez-Doblas, Juan J; García-Pinilla, José M; Morcillo-Hidalgo, Luis; Garrido-Sánchez, Lourdes; Santiago-Fernández, Concepción; Crespo-Leiro, María G; Carrasco-Chinchilla, Fernando; Sánchez-Fernández, Pedro L; de Teresa-Galván, Eduardo; Jiménez-Navarro, Manuel
2017-01-01
Epicardial adipose tissue has been proposed to participate in the pathogenesis of heart failure. The aim of our study was to assess the expression of thermogenic genes (Uncoupling protein 1 (UCP1), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α), and PR-domain-missing 16 (PRDM16) in epicardial adipose tissue in patients with heart failure, stablishing the difference according to left ventricular ejection fraction (reduced or preserved). Among the 75 patients in our study, 42.7% (n=32) had reduced left ventricular ejection fraction. UCP1, PGC1α and PRDM16 mRNA in EAT were significantly lower in patients with reduced left ventricular ejection fraction. Multiple regression analysis showed that age, male gender, body max index, presence of obesity, type-2-diabetes mellitus, hypertension and coronary artery disease and left ventricular ejection fraction were associated with the expression levels of UCP1, PGC1α and PRDM16 mRNA. Thermogenic genes expressions in epicardial adipose tissue (UCP1: OR 0.617, 95%CI 0.103-0.989, p=0.042; PGC1α: OR 0.416, 95%CI 0.171-0.912, p=0.031; PRDM16: OR 0.643, 95%CI 0.116-0.997, p=0.044) were showed as protective factors against the presence of heart failure with reduced left ventricular ejection fraction, and age (OR 1.643, 95%CI 1.001-3.143, p=0.026), presence of coronary artery disease (OR 6.743, 95%CI 1.932-15.301, p<0.001) and type-2-diabetes mellitus (OR 4.031, 95%CI 1.099-7.231, p<0.001) were associated as risk factors. The adequate expression of thermogenic genes has been shown as possible protective factors against heart failure with reduced ejection fraction, suggesting that a loss of functional epicardial adipose tissue brown-like features would participate in a deleterious manner on heart metabolism. Thermogenic genes could represent a future novel therapeutic target in heart failure.
Kalinina, T S; Kononchuk, V V; Gulyaeva, L F
2017-10-01
The insecticide dichlorodiphenyltrichloroethane (DDT) is a nonmutagenic xenobiotic compound able to exert estrogen-like effects resulting in activation of estrogen receptor-α (ERα) followed by changed expression of its downstream target genes. In addition, studies performed over recent years suggest that DDT may also influence expression of microRNAs. However, an impact of DDT on expression of ER, microRNAs, and related target genes has not been fully elucidated. Here, using real-time PCR, we assessed changes in expression of key genes involved in hormonal carcinogenesis as well as potentially related regulatory oncogenic/tumor suppressor microRNAs and their target genes in the uterus and ovaries of female Wistar rats during single and chronic multiple-dose DDT exposure. We found that applying DDT results in altered expression of microRNAs-221, -222, -205, -126a, and -429, their target genes (Pten, Dicer1), as well as genes involved in hormonal carcinogenesis (Esr1, Pgr, Ccnd1, Cyp19a1). Notably, Cyp19a1 expression seems to be also regulated by microRNAs-221, -222, and -205. The data suggest that epigenetic effects induced by DDT as a potential carcinogen may be based on at least two mechanisms: (i) activation of ERα followed by altered expression of the target genes encoding receptor Pgr and Ccnd1 as well as impaired expression of Cyp19a1, affecting, thereby, cell hormone balance; and (ii) changed expression of microRNAs resulting in impaired expression of related target genes including reduced level of Cyp19a1 mRNA.
Greenup, Aaron G.; Sasani, Shahryar; Oliver, Sandra N.; Talbot, Mark J.; Dennis, Elizabeth S.; Hemming, Megan N.; Trevaskis, Ben
2010-01-01
In temperate cereals, such as wheat (Triticum aestivum) and barley (Hordeum vulgare), the transition to reproductive development can be accelerated by prolonged exposure to cold (vernalization). We examined the role of the grass-specific MADS box gene ODDSOC2 (OS2) in the vernalization response in cereals. The barley OS2 gene (HvOS2) is expressed in leaves and shoot apices but is repressed by vernalization. Vernalization represses OS2 independently of VERNALIZATION1 (VRN1) in a VRN1 deletion mutant of einkorn wheat (Triticum monococcum), but VRN1 is required to maintain down-regulation of OS2 in vernalized plants. Furthermore, barleys that carry active alleles of the VRN1 gene (HvVRN1) have reduced expression of HvOS2, suggesting that HvVRN1 down-regulates HvOS2 during development. Overexpression of HvOS2 delayed flowering and reduced spike, stem, and leaf length in transgenic barley plants. Plants overexpressing HvOS2 showed reduced expression of barley homologs of the Arabidopsis (Arabidopsis thaliana) gene FLOWERING PROMOTING FACTOR1 (FPF1) and increased expression of RNase-S-like genes. FPF1 promotes floral development and enhances cell elongation, so down-regulation of FPF1-like genes might explain the phenotypes of HvOS2 overexpression lines. We present an extended model of the genetic pathways controlling vernalization-induced flowering in cereals, which describes the regulatory relationships between VRN1, OS2, and FPF1-like genes. Overall, these findings highlight differences and similarities between the vernalization responses of temperate cereals and the model plant Arabidopsis. PMID:20431086
Voelker, T A; Staswick, P; Chrispeels, M J
1986-12-01
Phytohemagglutinin (PHA), the seed lectin of the common bean, Phaseolus vulgaris, is encoded by two highly homologous, tandemly linked genes, dlec1 and dlec2, which are coordinately expressed at high levels in developing cotyledons. Their respective transcripts translate into closely related polypeptides, PHA-E and PHA-L, constituents of the tetrameric lectin which accumulates at high levels in developing seeds. In the bean cultivar Pinto UI111, PHA-E is not detectable, and PHA-L accumulates at very reduced levels. To investigate the cause of the Pinto phenotype, we cloned and sequenced the two PHA genes of Pinto, called Pdlec1 and Pdlec2, and determined the abundance of their respective mRNAs in developing cotyledons. Both genes are more than 90% homologous to the normal PHA genes found in other cultivars. Pdlec1 carries a 1-bp frameshift mutation close to the 5' end of its coding sequence. Only very truncated polypeptides could be made from its mRNA. The gene Pdlec2 encodes a polypeptide, which resembles PHA-L and its predicted amino acid sequence agrees with the available Pinto PHA amino acid sequence data. Analysis of the mRNA of developing cotyledons revealed that the Pdlec1 message is reduced 600-fold, and Pdlec2 mRNA is reduced 20-fold with respect to mRNA levels in normal cultivars. A comparison of the sequences which are upstream from the coding sequence shows that Pdlec2 has a 100-bp deletion compared to the other genes (dlec1, dlec2 and Pdlec1). This deletion which contains a large tandem repeat may be responsible for the low level of expression of Pdlec2. The very low expression of Pdlec1 is as yet unexplained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ono, Kenji; Fuma, Kazuya; Tabata, Kaori
Magnetic resonance imaging (MRI) is a minimally invasive way to provide high spatial resolution tomograms. However, MRI has been considered to be useless for gene expression imaging compared to optical imaging. In this study, we used a ferritin reporter, binding with biogenic iron, to make it a powerful tool for gene expression imaging in MRI studies. GL261 mouse glioma cells were over-expressed with dual-reporter ferritin-DsRed under {beta}-actin promoter, then gene expression was observed by optical imaging and MRI in a brain tumor model. GL261 cells expressing ferritin-DsRed fusion protein showed enhanced visualizing effect by reducing T2-weighted signal intensity for inmore » vitro and in vivo MRI studies, as well as DsRed fluorescence for optical imaging. Furthermore, a higher contrast was achieved on T2-weighted images when permeating the plasma membrane of ferritin-DsRed-expressing GL261. Thus, a ferritin expression vector can be used as an MRI reporter to monitor in vivo gene expression.« less
Bravenboer, Nathalie
2016-01-01
During the initial stages of bone repair, proinflammatory cytokines are released within the injury site, quickly followed by a shift to anti-inflammatory cytokines. The effect of pro- and anti-inflammatory cytokines on osteogenic differentiation of mesenchymal stem cells is controversial. Here, we investigated the effect of the proinflammatory cytokines TNF-α, IL-6, IL-8, and IL-17F and the anti-inflammatory cytokine IL-4 on proliferation and osteogenic differentiation of human adipose stem cells (hASCs). hASCs were treated with TNF-α, IL-6, IL-8, IL-17F, or IL-4 (10 ng/mL) for 72 h mimicking bone repair. TNF-α reduced collagen type I gene expression but increased hASC proliferation and ALP activity. IL-6 also strongly enhanced ALP activity (18-fold), as well as bone nodule formation by hASCs. IL-8 did not affect proliferation or osteogenic gene expression but reduced bone nodule formation. IL-17F decreased hASC proliferation but enhanced ALP activity. IL-4 enhanced osteocalcin gene expression and ALP activity but reduced RUNX2 gene expression and bone nodule formation. In conclusion, all cytokines studied have both enhancing and reducing effects on osteogenic differentiation of hASCs, even when applied for 72 h only. Some cytokines, specifically IL-6, may be suitable to induce osteogenic differentiation of mesenchymal stem cells as a strategy for enhancing bone repair. PMID:27667999
Deletion and reduced expression of the Fanconi anemia FANCA gene in sporadic acute myeloid leukemia.
Tischkowitz, M D; Morgan, N V; Grimwade, D; Eddy, C; Ball, S; Vorechovsky, I; Langabeer, S; Stöger, R; Hodgson, S V; Mathew, C G
2004-03-01
Fanconi anemia (FA) is an autosomal recessive chromosomal instability disorder caused by mutations in one of seven known genes (FANCA,C,D2,E,F,G and BRCA2). Mutations in the FANCA gene are the most prevalent, accounting for two-thirds of FA cases. Affected individuals have greatly increased risks of acute myeloid leukemia (AML). This raises the question as to whether inherited or acquired mutations in FA genes might be involved in the development of sporadic AML. Quantitative fluorescent PCR was used to screen archival DNA from sporadic AML cases for FANCA deletions, which account for 40% of FANCA mutations in FA homozygotes. Four heterozygous deletions were found in 101 samples screened, which is 35-fold higher than the expected population frequency for germline FANCA deletions (P<0.0001). Sequencing FANCA in the AML samples with FANCA deletions did not detect mutations in the second allele and there was no evidence of epigenetic silencing by hypermethylation. However, real-time quantitative PCR analysis in these samples showed reduced expression of FANCA compared to nondeleted AML samples and to controls. These findings suggest that gene deletions and reduced expression of FANCA may be involved in the promotion of genetic instability in a subset of cases of sporadic AML.
Morris, Jay; Moseley, Vondina R; Cabang, April B; Coleman, Katie; Wei, Wei; Garrett-Mayer, Elizabeth; Wargovich, Michael J
2016-06-07
Silencing of regulatory genes through hypermethylation of CpG islands is an important mechanism in tumorigenesis. In colon cancer, RXRα, an important dimerization partner with other nuclear transcription factors, is silenced through this mechanism. We previously found that colon tumors in ApcMin/+ mice had diminished levels of RXRα protein and expression levels of this gene were restored by treatment with a green tea intervention, due to reduced promoter methylation of RXRα. We hypothesized that CIMP+ cell lines, which epigenetically silence key regulatory genes would also evidence silencing of RXRα and EGCG treatment would restore its expression. We indeed found EGCG to restore RXRα activity levels in the human cell lines, in a dose dependent manner and reduced RXRα promoter methylation. EGCG induced methylation changes in several other colon cancer related genes but did not cause a decrease in global methylation. Numerous epidemiological reports have shown the benefits of green tea consumption in reducing colon cancer risk but to date no studies have shown that the risk reduction may be related to the epigenetic restoration by tea polyphenols. Our results show that EGCG modulates the reversal of gene silencing involved in colon carcinogenesis providing a possible avenue for colon cancer prevention and treatment.
Folate, Alcohol, and Liver Disease
Medici, Valentina; Halsted, Charles H.
2013-01-01
Alcoholic liver disease (ALD) is typically associated with folate deficiency, which is the result of reduced dietary folate intake, intestinal malabsorption, reduced liver uptake and storage, and increased urinary folate excretion. Folate deficiency favors the progression of liver disease through mechanisms that include its effects on methionine metabolism with consequences for DNA synthesis and stability and the epigenetic regulation of gene expression involved in pathways of liver injury. This paper reviews the pathogenesis of alcoholic liver disease with particular focus on ethanol-induced alterations in methionine metabolism which may act in synergy with folate deficiency to decrease antioxidant defense as well as DNA stability while regulating epigenetic mechanisms of relevant gene expressions. We also review the current evidence available on potential treatments of alcoholic liver disease based on correcting abnormalities in methionine metabolism and the methylation regulation of relevant gene expressions. PMID:23136133
Mortensen, Simon A; Grasser, Klaus D
2014-01-03
TFIIS is a transcript elongation factor that facilitates transcription by RNA polymerase II, as it assists the enzyme to bypass blocks to mRNA synthesis. Previously, we have reported that Arabidopsis plants lacking TFIIS exhibit reduced seed dormancy. Among the genes differentially expressed in tfIIs seeds, the DOG1 gene was identified that is a known QTL for seed dormancy. Here we have analysed plants that overexpress TFIIS in wild type background, or that harbour an additional copy of DOG1 in tfIIs mutant background. These experiments demonstrate that the down-regulation of DOG1 expression causes the seed dormancy phenotype of tfIIs mutants. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Tumor targeting RGD conjugated bio-reducible polymer for VEGF siRNA expressing plasmid delivery
Kim, Hyun Ah; Nam, Kihoon; Kim, Sung Wan
2014-01-01
Targeted delivery of therapeutic genes to the tumor site is critical for successful and safe cancer gene therapy. The arginine grafted bio-reducible poly (cystamine bisacrylamide-diaminohexane, CBA-DAH) polymer (ABP) conjugated poly (amido amine) (PAMAM), PAM-ABP (PA) was designed previously as an efficient gene delivery carrier. To achieve high efficacy in cancer selective delivery, we developed the tumor targeting bio-reducible polymer, PA-PEG1k-RGD, by conjugating cyclic RGDfC (RGD) peptides, which bind αvβ3/5 integrins, to the PAM-ABP using polyethylene glycol (PEG,1kDa) as a spacer. Physical characterization showed nanocomplex formation with bio-reducible properties between PA-PEG1k-RGD and plasmid DNA (pDNA). In transfection assays, PA-PEG1k-RGD showed significantly higher transfection efficiency in comparison with PAM-ABP or PA-PEG1k-RGD in αvβ3/5 positive MCF7 breast cancer and PANC-1 pancreatic cancer cells. The targeting ability of PA-PEG1k-RGD was further established using a competition assay. To confirm the therapeutic effect, the VEGF siRNA expressing plasmid was constructed and then delivered into cancer cells using PA-PEG1k-RGD. PA-PEG1k-RGD showed 20-59% higher cellular uptake rate into MCF7 and PANC-1 than that of non-targeted polymers. In addition, MCF7 and PANC-1 cancer cells transfected with PA-PEG1k-RGD/pshVEGF complexes had significantly decreased VEGF gene expression (51-71%) and cancer cell viability (35-43%) compared with control. These results demonstrate that a tumor targeting bio-reducible polymer with an anti-angiogenic therapeutic gene could be used for efficient and safe cancer gene therapy. PMID:24894645
Pinho, Andreia V; Mawson, Amanda; Gill, Anthony; Arshi, Mehreen; Warmerdam, Max; Giry-Laterriere, Marc; Eling, Nils; Lie, Triyana; Kuster, Evelyne; Camargo, Simone; Biankin, Andrew V; Wu, Jianmin; Rooman, Ilse
2016-11-15
Metabolic reprogramming is a feature of neoplasia and tumor growth. Sirtuin 1 (SIRT1) is a lysine deacetylase of multiple targets including metabolic regulators such as p53. SIRT1 regulates metaplasia in the pancreas. Nevertheless, it is unclear if SIRT1 affects the development of neoplastic lesions and whether metabolic gene expression is altered.To assess neoplastic lesion development, mice with a pancreas-specific loss of Sirt1 (Pdx1-Cre;Sirt1-lox) were bred into a KrasG12D mutant background (KC) that predisposes to the development of pancreatic intra-epithelial neoplasia (PanIN) and ductal adenocarcinoma (PDAC). Similar grade PanIN lesions developed in KC and KC;Sirt1-lox mice but specifically early mucinous PanINs occupied 40% less area in the KC;Sirt1-lox line, attributed to reduced proliferation. This was accompanied by reduced expression of proteins in the glycolysis pathway, such as GLUT1 and GAPDH.The stimulatory effect of SIRT1 on proliferation and glycolysis gene expression was confirmed in a human PDAC cell line. In resected PDAC samples, higher proliferation and expression of glycolysis genes correlated with poor patient survival. SIRT1 expression per se was not prognostic but low expression of Cell Cycle and Apoptosis Regulator 2 (CCAR2), a reported SIRT1 inhibitor, corresponded to poor patient survival.These findings open perspectives for novel targeted therapies in pancreatic cancer.
Molecular Mechanisms of Increased Heart Rate in Shenxianshengmai-treated Bradycardia Rabbits.
Liu, Zhou-Ying; Huang, Jian; Liu, Na-Na; Zheng, Min; Zhao, Tao; Zhao, Bu-Chang; Wang, Yi-Min; Pu, Jie-Lin
2017-01-20
The molecular mechanisms of Shenxianshengmai (SXSM), a traditional Chinese medicine, on bradycardia have been incompletely understood. The study tried to investigate the gene expression profile and proteomics of bradycardia rabbits' hearts after SXSM treatment. Twenty-four adult rabbits were randomly assigned in four groups: sham, model, model plus SXSM treatment, and sham plus SXSM treatment groups. Heart rate was recorded in all rabbits. Then, total RNA of atria and proteins of ventricle were isolated and quantified, respectively. Gene expression profiling was conducted by gene expression chip, and quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR) was performed to confirm the results of gene expression chip. We used isobaric tags for elative and absolute quantitation and Western blotting to identify altered proteins after SXSM treatment. There was a constant decrease in the mean heart rate (32%, from 238 ± 6 beats/min to 149 ± 12 beats/min) after six weeks in model compared with that in sham group. This effect was partially reversed by 4-week SXSM treatment. Complementary DNA microarray demonstrated that the increased acetylcholinesterase and reduced nicotinic receptor were take responsibility for the increased heart rate. In addition, proteins involved in calcium handling and signaling were affected by SXSM treatment. Real-time RT-PCR verified the results from gene chip. Results from proteomics demonstrated that SXSM enhanced oxidative phosphorylation and tricarboxylic acid (TCA) cycle in ventricular myocardium to improve ATP generation. Long-term SXSM stimulates sympathetic transmission by increasing the expression of acetylcholinesterase and reduces the expression of nicotinic receptor to increase heart rate. SXSM also restored the calcium handling genes and altered genes involved in signaling. In addition, SXSM improves the ATP supply of ventricular myocardium by increasing proteins involved in TCA cycle and oxidation-respiratory chain.
Molecular Mechanisms of Increased Heart Rate in Shenxianshengmai-treated Bradycardia Rabbits
Liu, Zhou-Ying; Huang, Jian; Liu, Na-Na; Zheng, Min; Zhao, Tao; Zhao, Bu-Chang; Wang, Yi-Min; Pu, Jie-Lin
2017-01-01
Background: The molecular mechanisms of Shenxianshengmai (SXSM), a traditional Chinese medicine, on bradycardia have been incompletely understood. The study tried to investigate the gene expression profile and proteomics of bradycardia rabbits’ hearts after SXSM treatment. Methods: Twenty-four adult rabbits were randomly assigned in four groups: sham, model, model plus SXSM treatment, and sham plus SXSM treatment groups. Heart rate was recorded in all rabbits. Then, total RNA of atria and proteins of ventricle were isolated and quantified, respectively. Gene expression profiling was conducted by gene expression chip, and quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR) was performed to confirm the results of gene expression chip. We used isobaric tags for elative and absolute quantitation and Western blotting to identify altered proteins after SXSM treatment. Results: There was a constant decrease in the mean heart rate (32%, from 238 ± 6 beats/min to 149 ± 12 beats/min) after six weeks in model compared with that in sham group. This effect was partially reversed by 4-week SXSM treatment. Complementary DNA microarray demonstrated that the increased acetylcholinesterase and reduced nicotinic receptor were take responsibility for the increased heart rate. In addition, proteins involved in calcium handling and signaling were affected by SXSM treatment. Real-time RT-PCR verified the results from gene chip. Results from proteomics demonstrated that SXSM enhanced oxidative phosphorylation and tricarboxylic acid (TCA) cycle in ventricular myocardium to improve ATP generation. Conclusions: Long-term SXSM stimulates sympathetic transmission by increasing the expression of acetylcholinesterase and reduces the expression of nicotinic receptor to increase heart rate. SXSM also restored the calcium handling genes and altered genes involved in signaling. In addition, SXSM improves the ATP supply of ventricular myocardium by increasing proteins involved in TCA cycle and oxidation-respiratory chain. PMID:28091410
Sánchez, Juana; Bonet, M Luisa; Keijer, Jaap; van Schothorst, Evert M; Mölller, Ingrid; Chetrit, Carles; Martinez-Puig, Daniel; Palou, Andreu
2014-09-01
The aim of the study was to explore peripheral blood gene expression as a source of biomarkers of joint health improvement related to glycosaminoglycan (GAG) intake in humans. Healthy individuals with joint discomfort were enrolled in a randomized, double-blind, placebo-controlled intervention study in humans. Subjects ate control yoghurt or yoghurt supplemented with a recently authorized novel food in Europe containing hyaluronic acid (65 %) from rooster comb (Mobilee™ as commercial name) for 90 days. Effects on functional quality-of-life parameters related to joint health were assessed. Whole-genome microarray analysis of peripheral blood samples from a subset of 20 subjects (10 placebo and 10 supplemented) collected pre- and post-intervention was performed. Mobilee™ supplementation reduced articular pain intensity and synovial effusion and improved knee muscular strength indicators as compared to placebo. About 157 coding genes were differentially expressed in blood cells between supplemented and placebo groups post-intervention, but not pre-intervention (p < 0.05; fold change ≥1.2). Among them, a reduced gene expression of glucuronidase-beta (GUSB), matrix metallopeptidase 23B (MMP23B), xylosyltransferase II (XYLT2), and heparan sulfate 6-O-sulfotransferase 1 (HS6ST1) was found in the supplemented group. Correlation analysis indicated a direct relationship between blood cell gene expression of MMP23B, involved in the breakdown of the extracellular matrix, and pain intensity, and an inverse relationship between blood cell gene expression of HS6ST1, responsible for 6-O-sulfation of heparan sulfate, and indicators of knee muscular strength. Expression levels of specific genes in blood cells, in particular genes related to GAG metabolism and extracellular matrix dynamics, are potential biomarkers of beneficial effects on articular health.
Naumenko, Vladimir S; Kondaurova, Elena M; Bazovkina, Daria V; Tsybko, Anton S; Ilchibaeva, Tatyana V; Khotskin, Nikita V; Semenova, Alina A; Popova, Nina K
2014-11-01
The effect of glial cell line-derived neurotrophic factor (GDNF) on behavior and brain dopamine system in predisposed to depressive-like behavior ASC (Antidepressant Sensitive Cataleptics) mice in comparison with the parental "nondepressive" CBA mice was studied. In 7days after administration (800ng, i.c.v.) GDNF decreased escape latency time and the path traveled to reach hidden platform in Morris water maze in ASC mice. GDNF enhanced depressive-like behavioral traits in both "nondepressive" CBA and "depressive" ASC mice. In CBA mice, GDNF decreased functional response to agonists of D1 (chloro-APB hydrobromide) and D2 (sumanirole maleate) receptors in tail suspension test, reduced D2 receptor gene expression in the substantia nigra and increased monoamine oxydase A (MAO A) gene expression in the striatum. GDNF increased D1 and D2 receptor genes expression in the nucleus accumbens of ASC mice but failed to alter expression of catechol-O-methyltransferase, dopamine transporter, MAO B and tyrosine hydroxylase genes in both investigated mouse strains. Thus, GDNF produced long-term genotype-dependent effect on behavior and the brain dopamine system. GDNF pretreatment (1) reduced D1 and D2 receptors functional responses and D2 receptor gene expression in s. nigra of CBA mice; (2) increased D1 and D2 receptor genes expression in n. accumbens of ASC mice and (3) improved spatial learning in ASC mice. GDNF enhanced depressive-like behavior both in CBA and ASC mice. The data suggest that genetically defined variance in the cross-talk between GDNF and brain dopamine system contributes to the variability of GDNF-induced responses and might be responsible for controversial GDNF effects. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Zheng; Jin, Bo; Jin, Yaqiong
Androgens (AR) play an important role in initiation and progression of prostate cancer. It has been shown that AR exert their effects mainly through the androgen-activated AR which binds to androgen response elements (AREs) in the regulatory regions of target genes to regulate the transcription of androgen-responsive genes, thus, identification of AR downstream target gene is critical to understand androgen function in prostate cancer. In this study, our results showed that androgen treatment of LNCaP cells induced PTTG1 expression, which was blocked by the androgen receptor antagonist, Casodex. Bioinformatics analysis and experiments using PTTG1 promoter deletion mutants showed that themore » PTTG1 promoter contains a putative androgen response element (ARE), which localizes in the −851 to −836 region of the promoter. Androgen activated androgen receptor (AR) binding to this ARE was confirmed by Chromatin immunoprecipitation (ChIP) assay. Furthermore, Knockdown of PTTG1 expression using short hairpin RNA significantly reduced androgen-induced LNCaP cell growth and invasion. In addition, we showed PTTG1 is highly expressed in metastasis prostate cancer tissue. These results suggest that PTTG1 is a novel downstream target gene of androgen receptor and take part in prostate cancer proliferation and metastasis. - Highlights: • Androgen treatment of LNCaP cells induced PTTG1 expression. • Knockdown of PTTG1 expression significantly reduced androgen-induced LNCaP cell growth and invasion. • PTTG1 is highly expressed in metastasis prostate cancer tissue. • PTTG1 is a novel downstream target gene of androgen receptor.« less
Khosravi, Claire; Kun, Roland Sándor; Visser, Jaap; Aguilar-Pontes, María Victoria; de Vries, Ronald P; Battaglia, Evy
2017-11-06
The genes of the non-phosphorylative L-rhamnose catabolic pathway have been identified for several yeast species. In Schefferomyces stipitis, all L-rhamnose pathway genes are organized in a cluster, which is conserved in Aspergillus niger, except for the lra-4 ortholog (lraD). The A. niger cluster also contains the gene encoding the L-rhamnose responsive transcription factor (RhaR) that has been shown to control the expression of genes involved in L-rhamnose release and catabolism. In this paper, we confirmed the function of the first three putative L-rhamnose utilisation genes from A. niger through gene deletion. We explored the identity of the inducer of the pathway regulator (RhaR) through expression analysis of the deletion mutants grown in transfer experiments to L-rhamnose and L-rhamnonate. Reduced expression of L-rhamnose-induced genes on L-rhamnose in lraA and lraB deletion strains, but not on L-rhamnonate (the product of LraB), demonstrate that the inducer of the pathway is of L-rhamnonate or a compound downstream of it. Reduced expression of these genes in the lraC deletion strain on L-rhamnonate show that it is in fact a downstream product of L-rhamnonate. This work showed that the inducer of RhaR is beyond L-rhamnonate dehydratase (LraC) and is likely to be the 2-keto-3-L-deoxyrhamnonate.
Transposon integration enhances expression of stress response genes.
Feng, Gang; Leem, Young-Eun; Levin, Henry L
2013-01-01
Transposable elements possess specific patterns of integration. The biological impact of these integration profiles is not well understood. Tf1, a long-terminal repeat retrotransposon in Schizosaccharomyces pombe, integrates into promoters with a preference for the promoters of stress response genes. To determine the biological significance of Tf1 integration, we took advantage of saturated maps of insertion activity and studied how integration at hot spots affected the expression of the adjacent genes. Our study revealed that Tf1 integration did not reduce gene expression. Importantly, the insertions activated the expression of 6 of 32 genes tested. We found that Tf1 increased gene expression by inserting enhancer activity. Interestingly, the enhancer activity of Tf1 could be limited by Abp1, a host surveillance factor that sequesters transposon sequences into structures containing histone deacetylases. We found the Tf1 promoter was activated by heat treatment and, remarkably, only genes that themselves were induced by heat could be activated by Tf1 integration, suggesting a synergy of Tf1 enhancer sequence with the stress response elements of target promoters. We propose that the integration preference of Tf1 for the promoters of stress response genes and the ability of Tf1 to enhance the expression of these genes co-evolved to promote the survival of cells under stress.
Transposon integration enhances expression of stress response genes
Feng, Gang; Leem, Young-Eun; Levin, Henry L.
2013-01-01
Transposable elements possess specific patterns of integration. The biological impact of these integration profiles is not well understood. Tf1, a long-terminal repeat retrotransposon in Schizosaccharomyces pombe, integrates into promoters with a preference for the promoters of stress response genes. To determine the biological significance of Tf1 integration, we took advantage of saturated maps of insertion activity and studied how integration at hot spots affected the expression of the adjacent genes. Our study revealed that Tf1 integration did not reduce gene expression. Importantly, the insertions activated the expression of 6 of 32 genes tested. We found that Tf1 increased gene expression by inserting enhancer activity. Interestingly, the enhancer activity of Tf1 could be limited by Abp1, a host surveillance factor that sequesters transposon sequences into structures containing histone deacetylases. We found the Tf1 promoter was activated by heat treatment and, remarkably, only genes that themselves were induced by heat could be activated by Tf1 integration, suggesting a synergy of Tf1 enhancer sequence with the stress response elements of target promoters. We propose that the integration preference of Tf1 for the promoters of stress response genes and the ability of Tf1 to enhance the expression of these genes co-evolved to promote the survival of cells under stress. PMID:23193295
Sharma, Vijay K; Bearson, Shawn M D; Bearson, Bradley L
2010-05-01
Quorum-sensing (QS) signalling pathways are important regulatory networks for controlling the expression of genes promoting adherence of enterohaemorrhagic Escherichia coli (EHEC) O157 : H7 to epithelial cells. A recent study has shown that EHEC O157 : H7 encodes a luxR homologue, called sdiA, which upon overexpression reduces the expression of genes encoding flagellar and locus of enterocyte effacement (LEE) proteins, thus negatively impacting on the motility and intimate adherence phenotypes, respectively. Here, we show that the deletion of sdiA from EHEC O157 : H7 strain 86-24, and from a hha (a negative regulator of ler) mutant of this strain, enhanced bacterial adherence to HEp-2 epithelial cells of the sdiA mutant strains relative to the strains containing a wild-type copy of sdiA. Quantitative reverse transcription PCR showed that the expression of LEE-encoded genes ler, espA and eae in strains with the sdiA deletions was not significantly different from that of the strains wild-type for sdiA. Similarly, no additional increases in the expression of LEE genes were observed in a sdiA hha double mutant strain relative to that observed in the hha deletion mutant. While the expression of fliC, which encodes flagellin, was enhanced in the sdiA mutant strain, the expression of fliC was reduced by several fold in the hha mutant strain, irrespective of the presence or absence of sdiA, indicating that the genes sdiA and hha exert opposing effects on the expression of fliC. The strains with deletions in sdiA or hha showed enhanced expression of csgA, encoding curlin of the curli fimbriae, with the expression of csgA highest in the sdiA hha double mutant, suggesting an additive effect of these two gene deletions on the expression of csgA. No significant differences were observed in the expression of the genes lpfA and fimA of the operons encoding long polar and type 1 fimbriae in the sdiA mutant strain. These data indicate that SdiA has no significant effect on the expression of LEE genes, but that it appears to act as a strong repressor of genes encoding flagella and curli fimbriae, and the alleviation of the SdiA-mediated repression of these genes in an EHEC O157 : H7 sdiA mutant strain contributes to enhanced bacterial motility and increased adherence to HEp-2 epithelial cells.
Kelly, MM; King, EM; Rider, CF; Gwozd, C; Holden, NS; Eddleston, J; Zuraw, B; Leigh, R; O'Byrne, PM; Newton, R
2012-01-01
BACKGROUND AND PURPOSE Inhaled corticosteroids (ICS) are the cornerstone of asthma pharmacotherapy and, acting via the glucocorticoid receptor (GR), reduce inflammatory gene expression. While this is often attributed to a direct inhibitory effect of the GR on inflammatory gene transcription, corticosteroids also induce the expression of anti-inflammatory genes in vitro. As there are no data to support this effect in asthmatic subjects taking ICS, we have assessed whether ICS induce anti-inflammatory gene expression in subjects with atopic asthma. EXPERIMENTAL APPROACH Bronchial biopsies from allergen-challenged atopic asthmatic subjects taking inhaled budesonide or placebo were subjected to gene expression analysis using real-time reverse transcriptase-PCR for the corticosteroid-inducible genes (official gene symbols with aliases in parentheses): TSC22D3 [glucocorticoid-induced leucine zipper (GILZ)], dual-specificity phosphatase-1 (MAPK phosphatase-1), both anti-inflammatory effectors, and FKBP5 [FK506-binding protein 51 (FKBP51)], a regulator of GR function. Cultured pulmonary epithelial and smooth muscle cells were also treated with corticosteroids before gene expression analysis. KEY RESULTS Compared with placebo, GILZ and FKBP51 mRNA expression was significantly elevated in budesonide-treated subjects. Budesonide also increased GILZ expression in human epithelial and smooth muscle cells in culture. Immunostaining of bronchial biopsies revealed GILZ expression in the airways epithelium and smooth muscle of asthmatic subjects. CONCLUSIONS AND IMPLICATIONS Expression of the corticosteroid-induced genes, GILZ and FKBP51, is up-regulated in the airways of allergen-challenged asthmatic subjects taking inhaled budesonide. Consequently, the biological effects of corticosteroid-induced genes should be considered when assessing the actions of ICS. Treatment modalities that increase or decrease GR-dependent transcription may correspondingly affect corticosteroid efficacy. PMID:21827450
Schnurbusch, Thorsten; Hayes, Julie; Hrmova, Maria; Baumann, Ute; Ramesh, Sunita A; Tyerman, Stephen D; Langridge, Peter; Sutton, Tim
2010-08-01
Boron (B) toxicity is a significant limitation to cereal crop production in a number of regions worldwide. Here we describe the cloning of a gene from barley (Hordeum vulgare), underlying the chromosome 6H B toxicity tolerance quantitative trait locus. It is the second B toxicity tolerance gene identified in barley. Previously, we identified the gene Bot1 that functions as an efflux transporter in B toxicity-tolerant barley to move B out of the plant. The gene identified in this work encodes HvNIP2;1, an aquaporin from the nodulin-26-like intrinsic protein (NIP) subfamily that was recently described as a silicon influx transporter in barley and rice (Oryza sativa). Here we show that a rice mutant for this gene also shows reduced B accumulation in leaf blades compared to wild type and that the mutant protein alters growth of yeast (Saccharomyces cerevisiae) under high B. HvNIP2;1 facilitates significant transport of B when expressed in Xenopus oocytes compared to controls and to another NIP (NOD26), and also in yeast plasma membranes that appear to have relatively high B permeability. We propose that tolerance to high soil B is mediated by reduced expression of HvNIP2;1 to limit B uptake, as well as by increased expression of Bot1 to remove B from roots and sensitive tissues. Together with Bot1, the multifunctional aquaporin HvNIP2;1 is an important determinant of B toxicity tolerance in barley.
Gilding, Edward K; Marks, M David
2010-10-01
Transcriptome analysis using the Affymetrix ATH1 platform has been completed on purified trichomes from the gl3-sst mutant. These trichomes display immature features, such as glassy cell walls and blunted branches. The gl3-sst trichome transcriptome was greatly enriched for genes involved in lipid biosynthesis, including those mediating the synthesis of fatty acids and wax. In addition, gl3-sst trichomes displayed reduced expression of the R3 MYBs TRY and CPC, which normally function to limit trichome development. The expression of the MIXTA-like MYB gene NOK was elevated. Members of the MIXTA-like family promote conical cell outgrowth, and in some cases, trichome initiation in diverse plant species. In contrast, NOK limits trichome outgrowth in wild-type Arabidopsis plants. Similar to other MIXTA-like genes, NOK was required for the expansion of gl3-sst trichomes, as the gl3-sst nok double mutant trichomes were greatly reduced in size. Expression of NOK in nok mutants reduced branch formation, whereas in gl3-sst nok, NOK expression promoted trichome cell outgrowth, illustrating duel roles for NOK in both promoting and limiting trichome development. MIXTA-like genes from phylogenetically diverse plant species could substitute for NOK in both nok and gl3-sst nok backgrounds. These findings suggest that certain aspects of NOK and MIXTA-like gene function have been conserved. © 2010 The Authors. Journal compilation © 2010 Blackwell Publishing Ltd.
Jaeger, Doris; Schoiswohl, Gabriele; Hofer, Peter; Schreiber, Renate; Schweiger, Martina; Eichmann, Thomas O.; Pollak, Nina M.; Poecher, Nadja; Grabner, Gernot F.; Zierler, Kathrin A.; Eder, Sandra; Kolb, Dagmar; Radner, Franz P.W.; Preiss-Landl, Karina; Lass, Achim; Zechner, Rudolf; Kershaw, Erin E.; Haemmerle, Guenter
2015-01-01
Background & Aims Adipose tissue (AT)-derived fatty acids (FAs) are utilized for hepatic triacylglycerol (TG) generation upon fasting. However, their potential impact as signaling molecules is not established. Herein we examined the role of exogenous AT-derived FAs in the regulation of hepatic gene expression by investigating mice with a defect in AT-derived FA supply to the liver. Methods Plasma FA levels, tissue TG hydrolytic activities and lipid content were determined in mice lacking the lipase co-activator comparative gene identification-58 (CGI-58) selectively in AT (CGI-58-ATko) applying standard protocols. Hepatic expression of lipases, FA oxidative genes, transcription factors, ER stress markers, hormones and cytokines were determined by qRT-PCR, Western blotting and ELISA. Results Impaired AT-derived FA supply upon fasting of CGI-58-ATko mice causes a marked defect in liver PPARα-signaling and nuclear CREBH translocation. This severely reduced the expression of respective target genes such as the ATGL inhibitor G0/G1 switch gene-2 (G0S2) and the endocrine metabolic regulator FGF21. These changes could be reversed by lipid administration and raising plasma FA levels. Impaired AT-lipolysis failed to induce hepatic G0S2 expression in fasted CGI-58-ATko mice leading to enhanced ATGL-mediated TG-breakdown strongly reducing hepatic TG deposition. On high fat diet, impaired AT-lipolysis counteracts hepatic TG accumulation and liver stress linked to improved systemic insulin sensitivity. Conclusions AT-derived FAs are a critical regulator of hepatic fasting gene expression required for the induction of G0S2-expression in the liver to control hepatic TG-breakdown. Interfering with AT-lipolysis or hepatic G0S2 expression represents an effective strategy for the treatment of hepatic steatosis. PMID:25733154
Sánchez-Hernández, Diana; Cho, Clara E; Kubant, Ruslan; Reza-López, Sandra A; Poon, Abraham N; Wang, Jingzhou; Huot, Pedro S P; Smith, Christopher E; Anderson, G Harvey
2014-10-01
High multivitamin gestational diets (HV, 10-fold AIN-93G levels) increase body weight (BW) and food intake (FI) in rat offspring weaned to a recommended multivitamin (RV), but not to a HV diet. We hypothesized that high vitamin A (HA) alone, similar to HV, in post-weaning diets would prevent these effects of the HV maternal diet consistent with gene expression in FI and reward pathways. Male offspring from dams fed HV diets were weaned to a high vitamin A (HA, 10-fold AIN-93G levels), HV or RV diet for 29 weeks. BW, FI, expression of genes involved in regulation of FI and reward and global and gene-specific DNA methylation of pro-opiomelanocortin (POMC) in the hypothalamus were measured. Both HV and HA diets slowed post-weaning weight gain and modified gene expression in offspring compared to offspring fed an RV post-weaning diet. Hypothalamic POMC expression in HA offspring was not different from either HV or RV, and dopamine receptor 1 was 30% (P<.05) higher in HA vs. HV, but not different from RV group. Hippocampal expression of serotonin receptor 1A (40%, P<.01), dopamine receptor 2 (40%, P<.05) and dopamine receptor 5 (70%, P<.0001) was greater in HA vs. RV fed pups and is 40% (P<.01), 50% (P<.05) and 40% (P<.0001) in HA vs. HV pups, respectively. POMC DNA methylation was lower in HA vs. RV offspring (P<.05). We conclude that high vitamin A in post-weaning diets reduces post-weaning weight gain and FI and modifies gene expression in FI and reward pathways. Copyright © 2014 Elsevier Inc. All rights reserved.
Chakravarthy, Suma; Tuori, Robert P.; D'Ascenzo, Mark D.; Fobert, Pierre R.; Després, Charles; Martin, Gregory B.
2003-01-01
The tomato transcription factor Pti4, an ethylene-responsive factor (ERF), interacts physically with the disease resistance protein Pto and binds the GCC box cis element that is present in the promoters of many pathogenesis-related (PR) genes. We reported previously that Arabidopsis plants expressing Pti4 constitutively express several GCC box–containing PR genes and show reduced disease symptoms compared with wild-type plants after inoculation with Pseudomonas syringae pv tomato or Erysiphe orontii. To gain insight into how genome-wide gene expression is affected by Pti4, we used serial analysis of gene expression (SAGE) to compare transcripts in wild-type and Pti4-expressing Arabidopsis plants. SAGE provided quantitative measurements of >20,000 transcripts and identified the 50 most highly expressed genes in Arabidopsis vegetative tissues. Comparison of the profiles from wild-type and Pti4-expressing Arabidopsis plants revealed 78 differentially abundant transcripts encoding defense-related proteins, protein kinases, ribosomal proteins, transporters, and two transcription factors (TFs). Many of the genes identified were expressed differentially in wild-type Arabidopsis during infection by Pseudomonas syringae pv tomato, supporting a role for them in defense-related processes. Unexpectedly, the promoters of most Pti4-regulated genes did not have a GCC box. Chromatin immunoprecipitation experiments confirmed that Pti4 binds in vivo to promoters lacking this cis element. Potential binding sites for ERF, MYB, and GBF TFs were present in statistically significantly increased numbers in promoters regulated by Pti4. Thus, Pti4 appears to regulate gene expression directly by binding the GCC box and possibly a non-GCC box element and indirectly by either activating the expression of TF genes or interacting physically with other TFs. PMID:14630974
Nakata, Shinsuke; Imagawa, Akihisa; Miyata, Yugo; Yoshikawa, Atsushi; Kozawa, Junji; Okita, Kohei; Funahashi, Tohru; Nakamura, Seiji; Matsubara, Kenichi; Iwahashi, Hiromi; Shimomura, Iichiro
2013-01-01
Fulminant type 1 diabetes is an independent subtype of type 1 diabetes characterized by extremely rapid onset and absence of islet-related autoantibodies. However, detailed pathophysiology of this subtype is poorly understood. In this study, a comprehensive approach was applied to understand the pathogenesis of fulminant type 1 diabetes. We determined the genes that were differentially expressed in fulminant type 1 diabetes compared with type 1A diabetes and healthy control, using gene expression microarray in peripheral blood cells. Using volcano plot analysis, we found reduced expression of killer cell lectin-like receptor subfamily C, member 3 (KLRC3) which encodes NKG2E, a natural killer (NK) cell activating receptor, in fulminant type 1 diabetes, compared with healthy controls. This difference was confirmed by real-time RT-PCR among NK-enriched cells. The expression of KLRD1 (CD94), which forms heterodimer with NKG2E (KLRC3), was also reduced in NK-enriched cells in fulminant type 1 diabetes. Furthermore, flow cytometry showed significantly lower proportion of NK cells among peripheral blood mononuclear cells (PBMCs) in fulminant type 1 diabetes than in healthy controls. In patients with fulminant type 1 diabetes, the relative proportion of NK cells correlated significantly with the time period between onset of fever to the appearance of hyperglycemic-related symptoms. We conclude the presence of reduced NK activating receptor gene expression and low proportion of NK cells in fulminant type 1 diabetes. Copyright © 2013 Elsevier B.V. All rights reserved.
2013-01-01
Background Candidate genes for color pattern formation in butterfly wings have been known based on gene expression patterns since the 1990s, but their functions remain elusive due to a lack of a functional assay. Several methods of transferring and expressing a foreign gene in butterfly wings have been reported, but they have suffered from low success rates or low expression levels. Here, we developed a simple, practical method to efficiently deliver and express a foreign gene using baculovirus-mediated gene transfer in butterfly wings in vivo. Results A recombinant baculovirus containing a gene for green fluorescent protein (GFP) was injected into pupae of the blue pansy butterfly Junonia orithya (Nymphalidae). GFP fluorescence was detected in the pupal wings and other body parts of the injected individuals three to five days post-injection at various degrees of fluorescence. We obtained a high GFP expression rate at relatively high virus titers, but it was associated with pupal death before color pattern formation in wings. To reduce the high mortality rate caused by the baculovirus treatment, we administered an anti-gp64 antibody, which was raised against baculovirus coat protein gp64, to infected pupae after the baculovirus injection. This treatment greatly reduced the mortality rate of the infected pupae. GFP fluorescence was observed in pupal and adult wings and other body parts of the antibody-treated individuals at various degrees of fluorescence. Importantly, we obtained completely developed wings with a normal color pattern, in which fluorescent signals originated directly from scales or the basal membrane after the removal of scales. GFP fluorescence in wing tissues spatially coincided with anti-GFP antibody staining, confirming that the fluorescent signals originated from the expressed GFP molecules. Conclusions Our baculovirus-mediated gene transfer system with an anti-gp64 antibody is reasonably efficient, and it can be an invaluable tool to transfer, express, and functionally examine foreign genes in butterfly wings and also in other non-model insect systems. PMID:23522444
Moraxella osloensis gene expression in the slug host Deroceras reticulatum.
An, Ruisheng; Sreevatsan, Srinand; Grewal, Parwinder S
2008-01-28
The bacterium Moraxella osloensis is a mutualistic symbiont of the slug-parasitic nematode Phasmarhabditis hermaphrodita. In nature, P. hermaphrodita vectors M. osloensis into the shell cavity of the slug host Deroceras reticulatum in which the bacteria multiply and kill the slug. As M. osloensis is the main killing agent, genes expressed by M. osloensis in the slug are likely to play important roles in virulence. Studies on pathogenic interactions between bacteria and lower order hosts are few, but such studies have the potential to shed light on the evolution of bacterial virulence. Therefore, we investigated such an interaction by determining gene expression of M. osloensis in its slug host D. reticulatum by selectively capturing transcribed sequences. Thirteen M. osloensis genes were identified to be up-regulated post infection in D. reticulatum. Compared to the in vitro expressed genes in the stationary phase, we found that genes of ubiquinone synthetase (ubiS) and acyl-coA synthetase (acs) were up-regulated in both D. reticulatum and stationary phase in vitro cultures, but the remaining 11 genes were exclusively expressed in D. reticulatum and are hence infection specific. Mutational analysis on genes of protein-disulfide isomerase (dsbC) and ubiS showed that the virulence of both mutants to slugs was markedly reduced and could be complemented. Further, compared to the growth rate of wild-type M. osloensis, the dsbC and ubiS mutants showed normal and reduced growth rate in vitro, respectively. We conclude that 11 out of the 13 up-regulated M. osloensis genes are infection specific. Distribution of these identified genes in various bacterial pathogens indicates that the virulence genes are conserved among different pathogen-host interactions. Mutagenesis, growth rate and virulence bioassays further confirmed that ubiS and dsbC genes play important roles in M. osloensis survival and virulence, respectively in D. reticulatum.
Moraxella osloensis Gene Expression in the Slug Host Deroceras reticulatum
An, Ruisheng; Sreevatsan, Srinand; Grewal, Parwinder S
2008-01-01
Background The bacterium Moraxella osloensis is a mutualistic symbiont of the slug-parasitic nematode Phasmarhabditis hermaphrodita. In nature, P. hermaphrodita vectors M. osloensis into the shell cavity of the slug host Deroceras reticulatum in which the bacteria multiply and kill the slug. As M. osloensis is the main killing agent, genes expressed by M. osloensis in the slug are likely to play important roles in virulence. Studies on pathogenic interactions between bacteria and lower order hosts are few, but such studies have the potential to shed light on the evolution of bacterial virulence. Therefore, we investigated such an interaction by determining gene expression of M. osloensis in its slug host D. reticulatum by selectively capturing transcribed sequences. Results Thirteen M. osloensis genes were identified to be up-regulated post infection in D. reticulatum. Compared to the in vitro expressed genes in the stationary phase, we found that genes of ubiquinone synthetase (ubiS) and acyl-coA synthetase (acs) were up-regulated in both D. reticulatum and stationary phase in vitro cultures, but the remaining 11 genes were exclusively expressed in D. reticulatum and are hence infection specific. Mutational analysis on genes of protein-disulfide isomerase (dsbC) and ubiS showed that the virulence of both mutants to slugs was markedly reduced and could be complemented. Further, compared to the growth rate of wild-type M. osloensis, the dsbC and ubiS mutants showed normal and reduced growth rate in vitro, respectively. Conclusion We conclude that 11 out of the 13 up-regulated M. osloensis genes are infection specific. Distribution of these identified genes in various bacterial pathogens indicates that the virulence genes are conserved among different pathogen-host interactions. Mutagenesis, growth rate and virulence bioassays further confirmed that ubiS and dsbC genes play important roles in M. osloensis survival and virulence, respectively in D. reticulatum. PMID:18226222
Reduced COX-2 expression in aged mice is associated with impaired fracture healing.
Naik, Amish A; Xie, Chao; Zuscik, Michael J; Kingsley, Paul; Schwarz, Edward M; Awad, Hani; Guldberg, Robert; Drissi, Hicham; Puzas, J Edward; Boyce, Brendan; Zhang, Xinping; O'Keefe, Regis J
2009-02-01
The cellular and molecular events responsible for reduced fracture healing with aging are unknown. Cyclooxygenase 2 (COX-2), the inducible regulator of prostaglandin E(2) (PGE(2)) synthesis, is critical for normal bone repair. A femoral fracture repair model was used in mice at either 7-9 or 52-56 wk of age, and healing was evaluated by imaging, histology, and gene expression studies. Aging was associated with a decreased rate of chondrogenesis, decreased bone formation, reduced callus vascularization, delayed remodeling, and altered expression of genes involved in repair and remodeling. COX-2 expression in young mice peaked at 5 days, coinciding with the transition of mesenchymal progenitors to cartilage and the onset of expression of early cartilage markers. In situ hybridization and immunohistochemistry showed that COX-2 is expressed primarily in early cartilage precursors that co-express col-2. COX-2 expression was reduced by 75% and 65% in fractures from aged mice compared with young mice on days 5 and 7, respectively. Local administration of an EP4 agonist to the fracture repair site in aged mice enhanced the rate of chondrogenesis and bone formation to levels observed in young mice, suggesting that the expression of COX-2 during the early inflammatory phase of repair regulates critical subsequent events including chondrogenesis, bone formation, and remodeling. The findings suggest that COX-2/EP4 agonists may compensate for deficient molecular signals that result in the reduced fracture healing associated with aging.
Osteocalcin protects pancreatic beta cell function and survival under high glucose conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kover, Karen, E-mail: kkover@cmh.edu; University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108; Yan, Yun
Diabetes is characterized by progressive beta cell dysfunction and loss due in part to oxidative stress that occurs from gluco/lipotoxicity. Treatments that directly protect beta cell function and survival in the diabetic milieu are of particular interest. A growing body of evidence suggests that osteocalcin, an abundant non-collagenous protein of bone, supports beta cell function and proliferation. Based on previous gene expression data by microarray, we hypothesized that osteocalcin protects beta cells from glucose-induced oxidative stress. To test our hypothesis we cultured isolated rat islets and INS-1E cells in the presence of normal, high, or high glucose ± osteocalcin for up tomore » 72 h. Oxidative stress and viability/mitochondrial function were measured by H{sub 2}O{sub 2} assay and Alamar Blue assay, respectively. Caspase 3/7 activity was also measured as a marker of apoptosis. A functional test, glucose stimulated insulin release, was conducted and expression of genes/protein was measured by qRT-PCR/western blot/ELISA. Osteocalcin treatment significantly reduced high glucose-induced H{sub 2}O{sub 2} levels while maintaining viability/mitochondrial function. Osteocalcin also significantly improved glucose stimulated insulin secretion and insulin content in rat islets after 48 h of high glucose exposure compared to untreated islets. As expected sustained high glucose down-regulated gene/protein expression of INS1 and BCL2 while increasing TXNIP expression. Interestingly, osteocalcin treatment reversed the effects of high glucose on gene/protein expression. We conclude that osteocalcin can protect beta cells from the negative effects of glucose-induced oxidative stress, in part, by reducing TXNIP expression, thereby preserving beta cell function and survival. - Highlights: • Osteocalcin reduces glucose-induced oxidative stress in beta cells. • Osteocalcin preserves beta cell function and survival under stress conditions. • Osteocalcin reduces glucose-induced TXNIP expression in beta cells.« less
Martín, Juan F; Rodríguez-García, Antonio; Liras, Paloma
2017-05-01
Phosphate limitation is important for production of antibiotics and other secondary metabolites in Streptomyces. Phosphate control is mediated by the two-component system PhoR-PhoP. Following phosphate depletion, PhoP stimulates expression of genes involved in scavenging, transport and mobilization of phosphate, and represses the utilization of nitrogen sources. PhoP reduces expression of genes for aerobic respiration and activates nitrate respiration genes. PhoP activates genes for teichuronic acid formation and reduces expression of genes for phosphate-rich teichoic acid biosynthesis. In Streptomyces coelicolor, PhoP repressed several differentiation and pleiotropic regulatory genes, which affects development and indirectly antibiotic biosynthesis. A new bioinformatics analysis of the putative PhoP-binding sequences in Streptomyces avermitilis was made. Many sequences in S. avermitilis genome showed high weight values and were classified according to the available genetic information. These genes encode phosphate scavenging proteins, phosphate transporters and nitrogen metabolism genes. Among of the genes highlighted in the new studies was aveR, located in the avermectin gene cluster, encoding a LAL-type regulator, and afsS, which is regulated by PhoP and AfsR. The sequence logo for S. avermitilis PHO boxes is similar to that of S. coelicolor, with differences in the weight value for specific nucleotides in the sequence.
Soy isoflavones interfere with thyroid hormone homeostasis in orchidectomized middle-aged rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Šošić-Jurjević, Branka, E-mail: brankasj@ibiss.bg.ac.rs; Filipović, Branko; Wirth, Eva Katrin
We previously reported that genistein (G) and daidzein (D) administered subcutaneously (10 mg/kg) induce changes in the angio-follicular units of the thyroid gland, reduce concentration of total thyroid hormones (TH) and increase thyrotropin (TSH) in serum of orchidectomized middle-aged (16-month-old) rats. To further investigate these effects, we now examined expression levels of the thyroglobulin (Tg), thyroperoxidase (Tpo), vascular endothelial growth factor A (Vegfa) and deiodinase type 1 (Dio 1) genes in the thyroid; in the pituitary, genes involved in TH feedback control (Tsh β, Dio 1, Dio 2, Trh receptor); and in the liver and kidney, expression of T{sub 3}-activatedmore » genes Dio 1 and Spot 14, as well as transthyretin (Ttr), by quantitative real-time PCR. We also analyzed TPO-immunopositivity and immunofluorescence of T{sub 4} bound to Tg, determined thyroid T{sub 4} levels and measured deiodinase enzyme activities in examined organs. Decreased expression of Tg and Tpo genes (p < 0.05) correlated with immunohistochemical staining results, and together with decreased serum total T{sub 4} levels, indicates decreased Tg and TH synthesis following treatments with both isoflavones. However, expression of Spot 14 (p < 0.05) gene in liver and kidney was up-regulated, and liver Dio 1 expression and activity (p < 0.05) increased. At the level of pituitary, no significant change in gene expression levels, or Dio 1 and 2 enzyme activities was observed. In conclusion, both G and D impaired Tg and TH synthesis, but at the same time increased tissue availability of TH in peripheral tissues of Orx middle-aged rats. - Highlights: • We tested how genistein and daidzein interfere with thyroid hormone homeostasis. • Thyroid: decreased expression of Tg and TPO genes correlated with IHC results. • Serum: total T{sub 4} reduced and TSH increased. • Liver and kidney: expression of Spot 14 and liver Dio 1 activity increased. • Pituitary: expression of T{sub 3}-regulated genes and Dio 1 and 2 activities unchanged.« less
Lin, Yang; Lewallen, Eric A.; Camilleri, Emily T.; Bonin, Carolina A.; Jones, Dakota L.; Dudakovic, Amel; Galeano-Garces, Catalina; Wang, Wei; Karperien, Marcel J.; Larson, Annalise N.; Dahm, Diane L.; Stuart, Michael J.; Levy, Bruce A.; Smith, Jay; Ryssman, Daniel B.; Westendorf, Jennifer J.; Im, Hee-Jeong; van Wijnen, Andre J.; Riester, Scott M.; Krych, Aaron J.
2016-01-01
Preservation of osteochondral allografts used for transplantation is critical to ensure favorable outcomes for patients after surgical treatment of cartilage defects. To study the biological effects of protocols currently used for cartilage storage, we investigated differences in gene expression between stored allograft cartilage and fresh cartilage from living donors using high throughput molecular screening strategies. We applied next generation RNA sequencing (RNA-seq) and real-time reverse transcription quantitative polymerase chain reaction (RT-qPCR) to assess genome-wide differences in mRNA expression between stored allograft cartilage and fresh cartilage tissue from living donors. Gene ontology analysis was used to characterize biological pathways associated with differentially expressed genes. Our studies establish reduced levels of mRNAs encoding cartilage related extracellular matrix (ECM) proteins (i.e., COL1A1, COL2A1, COL10A1, ACAN, DCN, HAPLN1, TNC, and COMP) in stored cartilage. These changes occur concomitantly with increased expression of “early response genes” that encode transcription factors mediating stress/cytoprotective responses (i.e., EGR1, EGR2, EGR3, MYC, FOS, FOSB, FOSL1, FOSL2, JUN, JUNB, and JUND). The elevated expression of “early response genes” and reduced levels of ECM-related mRNAs in stored cartilage allografts suggests that tissue viability may be maintained by a cytoprotective program that reduces cell metabolic activity. These findings have potential implications for future studies focused on quality assessment and clinical optimization of osteochondral allografts used for cartilage transplantation. PMID:26909883
Soleymaninejad, Masoume; Joursaraei, Seyed Gholamali; Feizi, Farideh; Jafari Anarkooli, Iraj
2017-01-01
The aim of this study was to evaluate the effects of antioxidants lycopene and insulin on histological changes and expression of Bcl-2 family genes in the hippocampus of streptozotocin-induced type 1 diabetic rats. Forty-eight Wistar rats were divided into six groups of control (C), control treated with lycopene (CL), diabetic (D), diabetic treated with insulin (DI), diabetic treated with lycopene (DL), and diabetic treated with insulin and lycopene (DIL). Diabetes was induced by an injection of streptozotocin (60 mg/kg, IP), lycopene (4 mg/kg/day) was given to the lycopene treated groups as gavages, and insulin (Sc, 1-2 U/kg/day) was injected to the groups treated with insulin. The number of hippocampus neurons undergoing cell death in group D had significant differences with groups C and DIL ( p < 0.001). Furthermore, insulin and lycopene alone or together reduced the expression of Bax , but increased Bcl-2 and Bcl-x L levels in DI, DL, and DIL rats, especially when compared to group D ( p < 0.001). The ratios of Bax/Bcl-2 and Bax/Bcl-xL in DI, DL, and DIL rats were also reduced ( p < 0.001). Our results indicate that treatment with insulin and/or lycopene contribute to the prevention of cell death by reducing the expression of proapoptotic genes and increasing the expression of antiapoptotic genes in the hippocampus.
Factors affecting expression of the recF gene of Escherichia coli K-12.
Sandler, S J; Clark, A J
1990-01-31
This report describes four factors which affect expression of the recF gene from strong upstream lambda promoters under temperature-sensitive cIAt2-encoded repressor control. The first factor was the long mRNA leader sequence consisting of the Escherichia coli dnaN gene and 95% of the dnaA gene and lambda bet, N (double amber) and 40% of the exo gene. When most of this DNA was deleted, RecF became detectable in maxicells. The second factor was the vector, pBEU28, a runaway replication plasmid. When we substituted pUC118 for pBEU28, RecF became detectable in whole cells by the Coomassie blue staining technique. The third factor was the efficiency of initiation of translation. We used site-directed mutagenesis to change the mRNA leader, ribosome-binding site and the 3 bp before and after the translational start codon. Monitoring the effect of these mutational changes by translational fusion to lacZ, we discovered that the efficiency of initiation of translation was increased 30-fold. Only an estimated two- or threefold increase in accumulated levels of RecF occurred, however. This led us to discover the fourth factor, namely sequences in the recF gene itself. These sequences reduce expression of the recF-lacZ fusion genes 100-fold. The sequences responsible for this decrease in expression occur in four regions in the N-terminal half of recF. Expression is reduced by some sequences at the transcriptional level and by others at the translational level.
An Evolutionarily Conserved DOF-CONSTANS Module Controls Plant Photoperiodic Signaling1[OPEN
2015-01-01
The response to daylength is a crucial process that evolved very early in plant evolution, entitling the early green eukaryote to predict seasonal variability and attune its physiological responses to the environment. The photoperiod responses evolved into the complex signaling pathways that govern the angiosperm floral transition today. The Chlamydomonas reinhardtii DNA-Binding with One Finger (CrDOF) gene controls transcription in a photoperiod-dependent manner, and its misexpression influences algal growth and viability. In short days, CrDOF enhances CrCO expression, a homolog of plant CONSTANS (CO), by direct binding to its promoter, while it reduces the expression of cell division genes in long days independently of CrCO. In Arabidopsis (Arabidopsis thaliana), transgenic plants overexpressing CrDOF show floral delay and reduced expression of the photoperiodic genes CO and FLOWERING LOCUS T. The conservation of the DOF-CO module during plant evolution could be an important clue to understanding diversification by the inheritance of conserved gene toolkits in key developmental programs. PMID:25897001
Efficient Reverse-Engineering of a Developmental Gene Regulatory Network
Cicin-Sain, Damjan; Ashyraliyev, Maksat; Jaeger, Johannes
2012-01-01
Understanding the complex regulatory networks underlying development and evolution of multi-cellular organisms is a major problem in biology. Computational models can be used as tools to extract the regulatory structure and dynamics of such networks from gene expression data. This approach is called reverse engineering. It has been successfully applied to many gene networks in various biological systems. However, to reconstitute the structure and non-linear dynamics of a developmental gene network in its spatial context remains a considerable challenge. Here, we address this challenge using a case study: the gap gene network involved in segment determination during early development of Drosophila melanogaster. A major problem for reverse-engineering pattern-forming networks is the significant amount of time and effort required to acquire and quantify spatial gene expression data. We have developed a simplified data processing pipeline that considerably increases the throughput of the method, but results in data of reduced accuracy compared to those previously used for gap gene network inference. We demonstrate that we can infer the correct network structure using our reduced data set, and investigate minimal data requirements for successful reverse engineering. Our results show that timing and position of expression domain boundaries are the crucial features for determining regulatory network structure from data, while it is less important to precisely measure expression levels. Based on this, we define minimal data requirements for gap gene network inference. Our results demonstrate the feasibility of reverse-engineering with much reduced experimental effort. This enables more widespread use of the method in different developmental contexts and organisms. Such systematic application of data-driven models to real-world networks has enormous potential. Only the quantitative investigation of a large number of developmental gene regulatory networks will allow us to discover whether there are rules or regularities governing development and evolution of complex multi-cellular organisms. PMID:22807664
notch3 is essential for oligodendrocyte development and vascular integrity in zebrafish
Zaucker, Andreas; Mercurio, Sara; Sternheim, Nitzan; Talbot, William S.; Marlow, Florence L.
2013-01-01
SUMMARY Mutations in the human NOTCH3 gene cause CADASIL syndrome (cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy). CADASIL is an inherited small vessel disease characterized by diverse clinical manifestations including vasculopathy, neurodegeneration and dementia. Here we report two mutations in the zebrafish notch3 gene, one identified in a previous screen for mutations with reduced expression of myelin basic protein (mbp) and another caused by a retroviral insertion. Reduced mbp expression in notch3 mutant embryos is associated with fewer oligodendrocyte precursor cells (OPCs). Despite an early neurogenic phenotype, mbp expression recovered at later developmental stages and some notch3 homozygous mutants survived to adulthood. These mutants, as well as adult zebrafish carrying both mutant alleles together, displayed a striking stress-associated accumulation of blood in the head and fins. Histological analysis of mutant vessels revealed vasculopathy, including: an enlargement (dilation) of vessels in the telencephalon and fin, disorganization of the normal stereotyped arrangement of vessels in the fin, and an apparent loss of arterial morphological structure. Expression of hey1, a well-known transcriptional target of Notch signaling, was greatly reduced in notch3 mutant fins, suggesting that Notch3 acts via a canonical Notch signaling pathway to promote normal vessel structure. Ultrastructural analysis confirmed the presence of dilated vessels in notch3 mutant fins and revealed that the vessel walls of presumed arteries showed signs of deterioration. Gaps in the arterial wall and the presence of blood cells outside of vessels in mutants indicated that compromised vessel structure led to hemorrhage. In notch3 heterozygotes, we found elevated expression of both notch3 itself and target genes, indicating that specific alterations in gene expression due to partial loss of Notch3 function might contribute to the abnormalities observed in heterozygous larvae and adults. Our analysis of zebrafish notch3 mutants indicates that Notch3 regulates OPC development and mbp gene expression in larvae, and maintains vascular integrity in adults. PMID:23720232
Wang, Haihai; Jiang, Chunmei; Wang, Cuiting; Yang, Yang; Yang, Lei; Gao, Xiaoyan; Zhang, Hongxia
2015-01-01
Fasciclin-like arabinogalactan proteins (FLAs) play important roles in the growth and development of roots, stems, and seeds in Arabidopsis. However, their biological functions in woody plants are largely unknown. In this work, we investigated the possible function of PtFLA6 in poplar. Quantitative real-time PCR, PtFLA6–yellow fluorescent protein (YFP) fusion protein subcellular localization, Western blotting, and immunohistochemical analyses demonstrated that the PtFLA6 gene was expressed specifically in the xylem of mature stem, and PtFLA6 protein was distributed ubiquitous in plant cells and accumulated predominantly in stem xylem fibres. Antisense expression of PtFLA6 in the aspen hybrid clone Poplar davidiana×Poplar bolleana reduced the transcripts of PtFLA6 and its homologous genes. Transgenic plants that showed a significant reduction in the transcripts of PtFLAs accumulated fewer PtFLA6 and arabinogalactan proteins than did the non-transgenic plants, leading to reduced stem flexural strength and stiffness. Further studies revealed that the altered stem biomechanics of transgenic plants could be attributed to the decreased cellulose and lignin composition in the xylem. In addition expression of some xylem-specific genes involved in cell wall biosynthesis was downregulated in these transgenic plants. All these results suggest that engineering the expression of PtFLA6 and its homologues could modulate stem mechanical properties by affecting cell wall composition in trees. PMID:25428999
Pan, Fengshan; Meng, Qian; Wang, Qiong; Luo, Sha; Chen, Bao; Khan, Kiran Yasmin; Yang, Xiaoe; Feng, Ying
2016-07-01
A hydroponic experiment was conducted to verify the effects of inoculation with endophytic bacteria Sphingomonas SaMR12 on root growth, cadmium (Cd) uptake, reactive oxygen species (ROS), antioxidases, glutathione (GSH) and the related gene expression of Sedum alfredii Hance under different levels of Cd such as 0, 10, 25, 100 and 400 μM. The results showed that inoculation of SaMR12 improved Cd accumulation and upregulated glutathione synthase (GS) expression, but slightly reduced malondialdehyde (MDA) concentration and alleviated Cd-induced damage in roots. However it didn't alter the activities of antioxidant enzymes. When Cd concentration exceeded 25 μM, SaMR12 increased the concentration of GSH and the expression level of GSH1. At high Cd treatment levels (100 and 400 μM), SaMR12 significantly reduced H2O2 concentration and enhanced expression level of 1-Cys peroxiredoxin PER1 and ATPS genes. These results indicate that although SaMR12 has no significant effects on antioxidases activities, it reduces H2O2 concentration by enhancing GSH concentration and relevant genes expression, and subsequently improves Cd tolerance and accumulation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Molinier, Cécile; Reisser, Céline M.O.; Fields, Peter; Ségard, Adeline; Galimov, Yan; Haag, Christoph R.
2018-01-01
Daphnia reproduce by cyclic-parthenogenesis, where phases of asexual reproduction are intermitted by sexual production of diapause stages. This life cycle, together with environmental sex determination, allow the comparison of gene expression between genetically identical males and females. We investigated gene expression differences between males and females in four genotypes of Daphnia magna and compared the results with published data on sex-biased gene expression in two other Daphnia species, each representing one of the major phylogenetic clades within the genus. We found that 42% of all annotated genes showed sex-biased expression in D. magna. This proportion is similar both to estimates from other Daphnia species as well as from species with genetic sex determination, suggesting that sex-biased expression is not reduced under environmental sex determination. Among 7453 single copy, one-to-one orthologs in the three Daphnia species, 707 consistently showed sex-biased expression and 675 were biased in the same direction in all three species. Hence these genes represent a core-set of genes with consistent sex-differential expression in the genus. A functional analysis identified that several of them are involved in known sex determination pathways. Moreover, 75% were overexpressed in females rather than males, a pattern that appears to be a general feature of sex-biased gene expression in Daphnia. PMID:29535148
Molinier, Cécile; Reisser, Céline M O; Fields, Peter; Ségard, Adeline; Galimov, Yan; Haag, Christoph R
2018-05-04
Daphnia reproduce by cyclic-parthenogenesis, where phases of asexual reproduction are intermitted by sexual production of diapause stages. This life cycle, together with environmental sex determination, allow the comparison of gene expression between genetically identical males and females. We investigated gene expression differences between males and females in four genotypes of Daphnia magna and compared the results with published data on sex-biased gene expression in two other Daphnia species, each representing one of the major phylogenetic clades within the genus. We found that 42% of all annotated genes showed sex-biased expression in D. magna This proportion is similar both to estimates from other Daphnia species as well as from species with genetic sex determination, suggesting that sex-biased expression is not reduced under environmental sex determination. Among 7453 single copy, one-to-one orthologs in the three Daphnia species, 707 consistently showed sex-biased expression and 675 were biased in the same direction in all three species. Hence these genes represent a core-set of genes with consistent sex-differential expression in the genus. A functional analysis identified that several of them are involved in known sex determination pathways. Moreover, 75% were overexpressed in females rather than males, a pattern that appears to be a general feature of sex-biased gene expression in Daphnia . Copyright © 2018 Molinier et al.
Phthalate ester-induced gubernacular ligament lesions are associated with reduced Insl3 gene expression in the fetal rat testis during sexual differentiation.
Vickie S Wilson, Christy Lambright, Johnathan Furr, Joseph Ostby, Carmen Wood, Gary Held, L.Earl Gray Jr.
U.S. EPA,...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hatta, Mitsutoki, E-mail: hatta@college.fdcnet.ac.jp; Naganuma, Kaori; Kato, Kenichi
In tumor tissues, alterations of gene expression caused by aberrant epigenetic modifications confer phenotypic diversity on malignant cells. Although 3-deazaneplanocin A (DZNep) has been shown to reactivate tumor suppressor genes in several cancer cells, it remains unclear whether DZNep attenuates the malignant phenotypes of oral squamous cell carcinoma (OSCC) cells. In this study, we investigated the effect of DZNep on the expression of genes related to aggressive phenotypes, such as epithelial–mesenchymal transition, in OSCC cells. We found that DZNep reduced the cellular levels of polycomb group proteins (EZH2, SUZ12, BMI1, and RING1A) and the associated trimethylation of Lys27 on histonemore » H3 and monoubiquitination of Lys119 on histone H2A in the poorly differentiated OSCC cell line SAS. Immunocytochemical staining demonstrated that DZNep induced the reorganization of filamentous actin and the membrane localization of E-cadherin associated with cell–cell adhesions. We also found an inhibitory effect of DZNep on cell proliferation using a WST assay. Finally, quantitative RT-PCR analysis demonstrated that genes involved in the aggressive phenotypes (TWIST2, EGFR, ACTA2, TGFB1, WNT5B, and APLIN) were down-regulated, whereas epithelial phenotype genes (CDH1, CLDN4, IVL, and TGM1) were up-regulated in SAS cells treated with DZNep. Collectively, our findings suggest that DZNep reverses the aggressive characteristics of OSCC cells through the dynamic regulation of epithelial plasticity via the reprogramming of gene expression patterns. - Highlights: • DZNep reduced PcG proteins and associated histone modifications in OSCC cells. • DZNep enhanced cell–cell adhesion indicative of epithelial phenotype in OSCC cells. • DZNep suppressed the aggressive phenotype-related gene expression in OSCC cells. • DZNep activated the gene expression of epithelial markers in OSCC cells.« less
Effects of high temperature on photosynthesis and related gene expression in poplar
2014-01-01
Background High temperature, whether transitory or constant, causes physiological, biochemical and molecular changes that adversely affect tree growth and productivity by reducing photosynthesis. To elucidate the photosynthetic adaption response and examine the recovery capacity of trees under heat stress, we measured gas exchange, chlorophyll fluorescence, electron transport, water use efficiency, and reactive oxygen-producing enzyme activities in heat-stressed plants. Results We found that photosynthesis could completely recover after less than six hours of high temperature treatment, which might be a turning point in the photosynthetic response to heat stress. Genome-wide gene expression analysis at six hours of heat stress identified 29,896 differentially expressed genes (15,670 up-regulated and 14,226 down-regulated), including multiple classes of transcription factors. These interact with each other and regulate the expression of photosynthesis-related genes in response to heat stress, controlling carbon fixation and changes in stomatal conductance. Heat stress of more than twelve hours caused reduced electron transport, damaged photosystems, activated the glycolate pathway and caused H2O2 production; as a result, photosynthetic capacity did not recover completely. Conclusions This study provides a systematic physiological and global gene expression profile of the poplar photosynthetic response to heat stress and identifies the main limitations and threshold of photosynthesis under heat stress. It will expand our understanding of plant thermostability and provides a robust dataset for future studies. PMID:24774695
Effects of high temperature on photosynthesis and related gene expression in poplar.
Song, Yuepeng; Chen, Qingqing; Ci, Dong; Shao, Xinning; Zhang, Deqiang
2014-04-28
High temperature, whether transitory or constant, causes physiological, biochemical and molecular changes that adversely affect tree growth and productivity by reducing photosynthesis. To elucidate the photosynthetic adaption response and examine the recovery capacity of trees under heat stress, we measured gas exchange, chlorophyll fluorescence, electron transport, water use efficiency, and reactive oxygen-producing enzyme activities in heat-stressed plants. We found that photosynthesis could completely recover after less than six hours of high temperature treatment, which might be a turning point in the photosynthetic response to heat stress. Genome-wide gene expression analysis at six hours of heat stress identified 29,896 differentially expressed genes (15,670 up-regulated and 14,226 down-regulated), including multiple classes of transcription factors. These interact with each other and regulate the expression of photosynthesis-related genes in response to heat stress, controlling carbon fixation and changes in stomatal conductance. Heat stress of more than twelve hours caused reduced electron transport, damaged photosystems, activated the glycolate pathway and caused H2O2 production; as a result, photosynthetic capacity did not recover completely. This study provides a systematic physiological and global gene expression profile of the poplar photosynthetic response to heat stress and identifies the main limitations and threshold of photosynthesis under heat stress. It will expand our understanding of plant thermostability and provides a robust dataset for future studies.
Watanabe, Chika; Seino, Yusuke; Miyahira, Hiroki; Yamamoto, Michiyo; Fukami, Ayako; Ozaki, Nobuaki; Takagishi, Yoshiko; Sato, Jun; Fukuwatari, Tsutomu; Shibata, Katsumi; Oiso, Yutaka; Murata, Yoshiharu; Hayashi, Yoshitaka
2012-01-01
Glucagon is believed to be one of the most important peptides for upregulating blood glucose levels. However, homozygous glucagon–green fluorescent protein (gfp) knock-in mice (Gcggfp/gfp: GCGKO) are normoglycemic despite the absence of proglucagon-derived peptides, including glucagon. To characterize metabolism in the GCGKO mice, we analyzed gene expression and metabolome in the liver. The expression of genes encoding rate-limiting enzymes for gluconeogenesis was only marginally altered. On the other hand, genes encoding enzymes involved in conversion of amino acids to metabolites available for the tricarboxylic acid cycle and/or gluconeogenesis showed lower expression in the GCGKO liver. The expression of genes involved in the metabolism of fatty acids and nicotinamide was also altered. Concentrations of the metabolites in the GCGKO liver were altered in manners concordant with alteration in the gene expression patterns, and the plasma concentrations of amino acids were elevated in the GCGKO mice. The insulin concentration in serum and phosphorylation of Akt protein kinase in liver were reduced in GCGKO mice. These results indicated that proglucagon-derived peptides should play important roles in regulating various metabolic pathways, especially that of amino acids. Serum insulin concentration is lowered to compensate the impacts of absent proglucagon-derived peptide on glucose metabolism. On the other hand, impacts on other metabolic pathways are only partially compensated by reduced insulin action. PMID:22187375
Almatrafi, Manal Mused; Vergara-Jimenez, Marcela; Murillo, Ana Gabriela; Norris, Gregory H.; Blesso, Christopher N.; Fernandez, Maria Luz
2017-01-01
To investigate the mechanisms by which Moringa oleifera leaves (ML) modulate hepatic lipids, guinea pigs were allocated to either control (0% ML), 10% Low Moringa (LM) or 15% High Moringa (HM) diets with 0.25% dietary cholesterol to induce hepatic steatosis. After 6 weeks, guinea pigs were sacrificed and liver and plasma were collected to determine plasma lipids, hepatic lipids, cytokines and the expression of genes involved in hepatic cholesterol (CH) and triglyceride (TG) metabolism. There were no differences in plasma lipids among groups. A dose-response effect of ML was observed in hepatic lipids (CH and TG) with the lowest concentrations in the HM group (p < 0.001), consistent with histological evaluation of lipid droplets. Hepatic gene expression of diglyceride acyltransferase-2 and peroxisome proliferator activated receptor-γ, as well as protein concentrations interleukin (IL)-1β and interferon-γ, were lowest in the HM group (p < 0.005). Hepatic gene expression of cluster of differentiation-68 and sterol regulatory element binding protein-1c were 60% lower in both the LM and HM groups compared to controls (p < 0.01). This study demonstrates that ML may prevent hepatic steatosis by affecting gene expression related to hepatic lipids synthesis resulting in lower concentrations of cholesterol and triglycerides and reduced inflammation in the liver. PMID:28640194
Almatrafi, Manal Mused; Vergara-Jimenez, Marcela; Murillo, Ana Gabriela; Norris, Gregory H; Blesso, Christopher N; Fernandez, Maria Luz
2017-06-22
To investigate the mechanisms by which Moringa oleifera leaves (ML) modulate hepatic lipids, guinea pigs were allocated to either control (0% ML), 10% Low Moringa (LM) or 15% High Moringa (HM) diets with 0.25% dietary cholesterol to induce hepatic steatosis. After 6 weeks, guinea pigs were sacrificed and liver and plasma were collected to determine plasma lipids, hepatic lipids, cytokines and the expression of genes involved in hepatic cholesterol (CH) and triglyceride (TG) metabolism. There were no differences in plasma lipids among groups. A dose-response effect of ML was observed in hepatic lipids (CH and TG) with the lowest concentrations in the HM group ( p < 0.001), consistent with histological evaluation of lipid droplets. Hepatic gene expression of diglyceride acyltransferase-2 and peroxisome proliferator activated receptor-γ, as well as protein concentrations interleukin (IL)-1β and interferon-γ, were lowest in the HM group ( p < 0.005). Hepatic gene expression of cluster of differentiation-68 and sterol regulatory element binding protein-1c were 60% lower in both the LM and HM groups compared to controls ( p < 0.01). This study demonstrates that ML may prevent hepatic steatosis by affecting gene expression related to hepatic lipids synthesis resulting in lower concentrations of cholesterol and triglycerides and reduced inflammation in the liver.
Majumder, Kaustav; Liang, Guanxiang; Chen, Yanhong; Guan, LeLuo; Davidge, Sandra T; Wu, Jianping
2015-09-01
Egg ovotransferrin-derived angiotensin converting enzyme (ACE) inhibitory peptide IRW was previously shown to reduce blood pressure in spontaneously hypertensive rats through reduced vascular inflammation and increased nitric oxide-mediated vasorelaxation. The main objective of the present study was to investigate the molecular mechanism of this peptide through transcriptome analysis by RNAseq technique. Total RNA was extracted from kidney and mesenteric arteries; the RNAseq libraries (from untreated and IRW-treated groups) were constructed and subjected to sequence using HiSeq 2000 system (Illumina) system. A total of 12 764 and 13 352 genes were detected in kidney and mesenteric arteries, respectively. The differentially expressed (DE) genes between untreated and IRW-treated groups were identified and the functional analysis through ingenuity pathway analysis revealed a greater role of DE genes identified from mesenteric arteries than that of kidney in modulating various cardiovascular functions. Subsequent qPCR analysis further confirmed that IRW significantly increased the expression of ACE-2, ABCB-1, IRF-8, and CDH-1 while significantly decreased the expression ICAM-1 and VCAM-1 in mesenteric arteries. Our research showed for the first time that ACE inhibitory peptide IRW could contribute to its antihypertensive activity through increased ACE2 and decreased proinflammatory genes expression. © 2015 The Authors. Molecular Nutrition & Food Research published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ferriero, Rosa; Nusco, Edoardo; De Cegli, Rossella; Carissimo, Annamaria; Manco, Giuseppe; Brunetti-Pierri, Nicola
2018-03-24
Acute liver failure is a rapidly progressive deterioration of hepatic function resulting in high mortality and morbidity. Metabolic enzymes can translocate to the nucleus to regulate histone acetylation and gene expression. Levels and activities of pyruvate dehydrogenase complex (PDHC) and lactate dehydrogenase (LDH) were evaluated in nuclear fractions of livers of mice exposed to various hepatotoxins including CD95-antibody, α-amanitin, and acetaminophen. Whole-genome gene expression profiling by RNA-seq was performed in livers of mice with acute liver failure and analyzed by gene ontology enrichment analysis. Cell viability was evaluated in cell lines knocked-down for PDHA1 or LDH-A and in cells incubated with the LDH inhibitor galloflavin after treatment with CD95-antibody. We evaluated whether the histone acetyltransferase inhibitor garcinol or galloflavin could reduce liver damage in mice with acute liver failure. Levels and activities of PDHC and LDH were increased in nuclear fractions of livers of mice with acute liver failure. The increase of nuclear PDHC and LDH was associated with increased concentrations of acetyl-CoA and lactate in nuclear fractions, and histone H3 hyper-acetylation. Gene expression in livers of mice with acute liver failure suggested that increased histone H3 acetylation induces the expression of genes related to damage response. Reduced histone acetylation by the histone acetyltransferase inhibitor garcinol decreased liver damage and improved survival in mice with acute liver failure. Knock-down of PDHC or LDH improved viability in cells exposed to a pro-apoptotic stimulus. Treatment with the LDH inhibitor galloflavin that was also found to inhibit PDHC, reduced hepatic necrosis, apoptosis, and expression of pro-inflammatory cytokines in mice with acute liver failure. Mice treated with galloflavin also showed a dose-response increase in survival. PDHC and LDH translocate to the nucleus, leading to increased nuclear concentrations of acetyl-CoA and lactate. This results in histone H3 hyper-acetylation and expression of damage response genes. Inhibition of PDHC and LDH reduces liver damage and improves survival in mice with acute liver failure. Thus, PDHC and LDH are targets for therapy of acute liver failure. Acute liver failure is a rapidly progressive deterioration of liver function resulting in high mortality. In experimental mouse models of acute liver failure, we found that two metabolic enzymes, namely pyruvate dehydrogenase complex and lactic dehydrogenase, translocate to the nucleus resulting in detrimental gene expression. Treatment with an inhibitor of these two enzymes was found to reduce liver damage and to improve survival. Copyright © 2018 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
ATP7A is a novel target of retinoic acid receptor β2 in neuroblastoma cells
Bohlken, A; Cheung, B B; Bell, J L; Koach, J; Smith, S; Sekyere, E; Thomas, W; Norris, M; Haber, M; Lovejoy, D B; Richardson, D R; Marshall, G M
2009-01-01
Increased retinoic acid receptor β (RARβ2) gene expression is a hallmark of cancer cell responsiveness to retinoid anticancer effects. Moreover, low basal or induced RARβ2 expression is a common feature of many human cancers, suggesting that RARβ2 may act as a tumour suppressor gene in the absence of supplemented retinoid. We have previously shown that low RARβ2 expression is a feature of advanced neuroblastoma. Here, we demonstrate that the ABC domain of the RARβ2 protein alone was sufficient for the growth inhibitory effects of RARβ2 on neuroblastoma cells. ATP7A, the copper efflux pump, is a retinoid-responsive gene, was upregulated by ectopic overexpression of RARβ2. The ectopic overexpression of the RARβ2 ABC domain was sufficient to induce ATP7A expression, whereas, RARβ2 siRNA blocked the induction of ATP7A expression in retinoid-treated neuroblastoma cells. Forced downregulation of ATP7A reduced copper efflux and increased viability of retinoid-treated neuroblastoma cells. Copper supplementation enhanced cell growth and reduced retinoid-responsiveness, whereas copper chelation reduced the viability and proliferative capacity. Taken together, our data demonstrates ATP7A expression is regulated by retinoic acid receptor β and it has effects on intracellular copper levels, revealing a link between the anticancer action of retinoids and copper metabolism. PMID:19127267
Hook, Vivian Y H; Kindy, Mark; Reinheckel, Thomas; Peters, Christoph; Hook, Gregory
2009-08-21
Neurotoxic beta-amyloid (Abeta) peptides participate in Alzheimer's disease (AD); therefore, reduction of Abeta generated from APP may provide a therapeutic approach for AD. Gene knockout studies in transgenic mice producing human Abeta may identify targets for reducing Abeta. This study shows that knockout of the cathepsin B gene in mice expressing human wild-type APP (hAPPwt) results in substantial decreases in brain Abeta40 and Abeta42 by 67% and decreases in levels of the C-terminal beta-secretase fragment (CTFbeta) derived from APP. In contrast, knockout of cathepsin B in mice expressing hAPP with the rare Swedish (Swe) and Indiana (Ind) mutations had no effect on Abeta. The difference in reduction of Abeta in hAPPwt mice, but not in hAPPSwe/Ind mice, shows that the transgenic model can affect cathepsin B gene knockout results. Since most AD patients express hAPPwt, these data validate cathepsin B as a target for development of inhibitors to lower Abeta in AD.
Hofbauer, Roland; Pasching, Eva; Moser, Doris; Frass, Michael
2010-07-01
Previous studies have shown the stimulating effect of Helicobacter pylori on the gene expression of heparin-binding epidermal growth factor (HB-EGF) using the gastric epithelial cell line KATO-III. Strychnos Nux vomica (Nux vomica) and Calendula officinalis are used in highly diluted form in homeopathic medicine to treat patients suffering from gastritis and gastric ulcers. To investigate the influence of Nux vomica and Calendula officinalis on HB-EGF-like growth factor gene expression in KATO-III cells under the stimulation of H. pylori strain N6 using real-time PCR with and without addition of Nux vomica and Calendula officinalis as a 10c or 12c potency. Baseline expression and stimulation were similar to previous experiments, addition of Nux vomica 10c and Calendula officinalis 10c in a 43% ethanolic solution led to a significant reduction of H. pylori induced increase in gene expression of HB-EGF (reduced to 53.12+/-0.95% and 75.32+/-1.16% vs. control; p<0.05), respectively. Nux vomica 12c reduced HB-EGF gene expression even in dilutions beyond Avogadro's number (55.77+/-1.09%; p<0.05). Nux vomica 12c in a 21.5% ethanol showed a smaller effect (71.80+/-3.91%, p<0.05). This effect was only be observed when the drugs were primarily prepared in ethanol, not in aqueous solutions. The data suggest that both drugs prepared in ethanolic solution are potent inhibitors of H. pylori induced gene expression. 2010 Elsevier Ltd. All rights reserved.
Lee, Eun-Kyu; Oh, Hyun-Hee; Choi, Cheol Soo; Kim, Sujong; Jun, Hee-Sook
2014-01-01
Sodium meta-arsenite (SA) is implicated in the regulation of hepatic gluconeogenesis-related genes in vitro; however, the effects in vivo have not been studied. We investigated whether SA has antidiabetic effects in a type 2 diabetic mouse model. Diabetic db/db mice were orally intubated with SA (10 mg kg−1 body weight/day) for 8 weeks. We examined hemoglobin A1c (HbA1c), blood glucose levels, food intake, and body weight. We performed glucose, insulin, and pyruvate tolerance tests and analyzed glucose production and the expression of gluconeogenesis-related genes in hepatocytes. We analyzed energy metabolism using a comprehensive animal metabolic monitoring system. SA-treated diabetic db/db mice had reduced concentrations of HbA1c and blood glucose levels. Exogenous glucose was quickly cleared in glucose tolerance tests. The mRNA expressions of genes for gluconeogenesis-related enzymes, glucose 6-phosphatase (G6Pase), and phosphoenolpyruvate carboxykinase (PEPCK) were significantly reduced in the liver of SA-treated diabetic db/db mice. In primary hepatocytes, SA treatment decreased glucose production and the expression of G6Pase, PEPCK, and hepatocyte nuclear factor 4 alpha (HNF-4α) mRNA. Small heterodimer partner (SHP) mRNA expression was increased in hepatocytes dependent upon the SA concentration. The expression of Sirt1 mRNA and protein was reduced, and acetylated forkhead box protein O1 (FoxO1) was induced by SA treatment in hepatocytes. In addition, SA-treated diabetic db/db mice showed reduced energy expenditure. Oral intubation of SA ameliorates hyperglycemia in db/db mice by reducing hepatic gluconeogenesis through the decrease of Sirt1 expression and increase in acetylated FoxO1. PMID:25610880
Khanna-Gupta, Arati; Sun, Hong; Zibello, Theresa; Lee, Han Myung; Dahl, Richard; Boxer, Laurence A.
2007-01-01
Neutrophil-specific granule deficiency (SGD) is a rare congenital disorder marked by recurrent bacterial infections. Neutrophils from SGD patients lack secondary and tertiary granules and their content proteins and lack normal neutrophil functions. Gene-inactivating mutations in the C/EBPϵ gene have been identified in 2 SGD patients. Our studies on a third SGD patient revealed a heterozygous mutation in the C/EBPϵ gene. However, we demonstrate elevated levels of C/EBPϵ and PU.1 proteins in the patient's peripheral blood neutrophils. The expression of the transcription factor growth factor independence-1 (Gfi-1), however, was found to be markedly reduced in our SGD patient despite the absence of an obvious mutation in this gene. This may explain the elevated levels of both C/EBPϵ and PU.1, which are targets of Gfi-1 transcriptional repression. We have generated a growth factor–dependent EML cell line from the bone marrow of Gfi-1+/− and Gfi-1+/+ mice as a model for Gfi-1–deficient SGD, and demonstrate that lower levels of Gfi-1 expression in the Gfi-1+/− EML cells is associated with reduced levels of secondary granule protein (SGP) gene expression. Furthermore, we demonstrate a positive role for Gfi-1 in SGP expression, in that Gfi-1 binds to and up-regulates the promoter of neutrophil collagenase (an SGP gene), in cooperation with wild-type but not with mutant C/EBPϵ. We hypothesize that decreased Gfi-1 levels in our SGD patient, together with the mutant C/EBPϵ, block SGP expression, thereby contributing to the underlying etiology of the disease in our patient. PMID:17244686
PPAR agonists regulate brain gene expression: relationship to their effects on ethanol consumption.
Ferguson, Laura B; Most, Dana; Blednov, Yuri A; Harris, R Adron
2014-11-01
Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that act as ligand-activated transcription factors. Although prescribed for dyslipidemia and type-II diabetes, PPAR agonists also possess anti-addictive characteristics. PPAR agonists decrease ethanol consumption and reduce withdrawal severity and susceptibility to stress-induced relapse in rodents. However, the cellular and molecular mechanisms facilitating these properties have yet to be investigated. We tested three PPAR agonists in a continuous access two-bottle choice (2BC) drinking paradigm and found that tesaglitazar (PPARα/γ; 1.5 mg/kg) and fenofibrate (PPARα; 150 mg/kg) decreased ethanol consumption in male C57BL/6J mice while bezafibrate (PPARα/γ/β; 75 mg/kg) did not. We hypothesized that changes in brain gene expression following fenofibrate and tesaglitazar treatment lead to reduced ethanol drinking. We studied unbiased genomic profiles in areas of the brain known to be important for ethanol dependence, the prefrontal cortex (PFC) and amygdala, and also profiled gene expression in liver. Genomic profiles from the non-effective bezafibrate treatment were used to filter out genes not associated with ethanol consumption. Because PPAR agonists are anti-inflammatory, they would be expected to target microglia and astrocytes. Surprisingly, PPAR agonists produced a strong neuronal signature in mouse brain, and fenofibrate and tesaglitazar (but not bezafibrate) targeted a subset of GABAergic interneurons in the amygdala. Weighted gene co-expression network analysis (WGCNA) revealed co-expression of treatment-significant genes. Functional annotation of these gene networks suggested that PPAR agonists might act via neuropeptide and dopaminergic signaling pathways in the amygdala. Our results reveal gene targets through which PPAR agonists can affect alcohol consumption behavior. Copyright © 2014 Elsevier Ltd. All rights reserved.
Compound Leaf Development and Evolution in the Legumes[W
Champagne, Connie E.M.; Goliber, Thomas E.; Wojciechowski, Martin F.; Mei, Raymond W.; Townsley, Brad T.; Wang, Kan; Paz, Margie M.; Geeta, R.; Sinha, Neelima R.
2007-01-01
Across vascular plants, Class 1 KNOTTED1-like (KNOX1) genes appear to play a critical role in the development of compound leaves. An exception to this trend is found in the Fabaceae, where pea (Pisum sativum) uses UNIFOLIATA, an ortholog of the floral regulators FLORICAULA (FLO) and LEAFY (LFY), in place of KNOX1 genes to regulate compound leaf development. To assess the phylogenetic distribution of KNOX1-independent compound leaf development, a survey of KNOX1 protein expression across the Fabaceae was undertaken. The majority of compound-leafed Fabaceae have expression of KNOX1 proteins associated with developing compound leaves. However, in a large subclade of the Fabaceae, the inverted repeat–lacking clade (IRLC), of which pea is a member, KNOX1 expression is not associated with compound leaves. These data suggest that the FLO/LFY gene may function in place of KNOX1 genes in generating compound leaves throughout the IRLC. The contribution of FLO/LFY to leaf complexity in a member of the Fabaceae outside of the IRLC was examined by reducing expression of FLO/LFY orthologs in transgenic soybean (Glycine max). Transgenic plants with reduced FLO/LFY expression showed only slight reductions in leaflet number. Overexpression of a KNOX1 gene in alfalfa (Medicago sativa), a member of the IRLC, resulted in an increase in leaflet number. This implies that KNOX1 targets, which promote compound leaf development, are present in alfalfa and are still sensitive to KNOX1 regulation. These data suggest that KNOX1 genes and the FLO/LFY gene may have played partially overlapping roles in compound leaf development in ancestral Fabaceae but that the FLO/LFY gene took over this role in the IRLC. PMID:17993625
Schaffer, Robert J.; Ireland, Hilary S.; Ross, John J.; Ling, Toby J.; David, Karine M.
2012-01-01
Background and aims Fruit ripening is an important developmental trait in fleshy fruits, making the fruit palatable for seed dispersers. In some fruit species, there is a strong association between auxin concentrations and fruit ripening. We investigated the relationship between auxin concentrations and the onset of ethylene-related ripening in Malus × domestica (apples) at both the hormone and transcriptome levels. Methodology Transgenic apples suppressed for the SEPALLATA1/2 (SEP1/2) class of gene (MADS8/9) that showed severely reduced ripening were compared with untransformed control apples. In each apple type, free indole-3-acetic acid (IAA) concentrations were measured during early ripening. The changes observed in auxin were assessed in light of global changes in gene expression. Principal results It was found that mature MADS8/9-suppressed apples had a higher concentration of free IAA. This was associated with increased expression of the auxin biosynthetic genes in the indole-3-acetamide pathway. Additionally, in the MADS8/9-suppressed apples, there was less expression of the GH3 auxin-conjugating enzymes. A number of genes involved in the auxin-regulated transcription (AUX/IAA and ARF classes of genes) were also observed to change in expression, suggesting a mechanism for signal transduction at the start of ripening. Conclusions The delay in ripening observed in MADS8/9-suppressed apples may be partly due to high auxin concentrations. We propose that, to achieve low auxin associated with fruit maturation, the auxin homeostasis is controlled in a two-pronged manner: (i) by the reduction in biosynthesis and (ii) by an increase in auxin conjugation. This is associated with the change in expression of auxin-signalling genes and the up-regulation of ripening-related genes. PMID:23346344
Altamirano, Francisco; López, Jose R.; Henríquez, Carlos; Molinski, Tadeusz; Allen, Paul D.; Jaimovich, Enrique
2012-01-01
Duchenne muscular dystrophy (DMD) is a genetic disorder caused by dystrophin mutations, characterized by chronic inflammation and severe muscle wasting. Dystrophic muscles exhibit activated immune cell infiltrates, up-regulated inflammatory gene expression, and increased NF-κB activity, but the contribution of the skeletal muscle cell to this process has been unclear. The aim of this work was to study the pathways that contribute to the increased resting calcium ([Ca2+]rest) observed in mdx myotubes and its possible link with up-regulation of NF-κB and pro-inflammatory gene expression in dystrophic muscle cells. [Ca2+]rest was higher in mdx than in WT myotubes (308 ± 6 versus 113 ± 2 nm, p < 0.001). In mdx myotubes, both the inhibition of Ca2+ entry (low Ca2+ solution, Ca2+-free solution, and Gd3+) and blockade of either ryanodine receptors or inositol 1,4,5-trisphosphate receptors reduced [Ca2+]rest. Basal activity of NF-κB was significantly up-regulated in mdx versus WT myotubes. There was an increased transcriptional activity and p65 nuclear localization, which could be reversed when [Ca2+]rest was reduced. Levels of mRNA for TNFα, IL-1β, and IL-6 were similar in WT and mdx myotubes, whereas inducible nitric-oxide synthase (iNOS) expression was increased 5-fold. Reducing [Ca2+]rest using different strategies reduced iNOS gene expression presumably as a result of decreased activation of NF-κB. We propose that NF-κB, modulated by increased [Ca2+]rest, is constitutively active in mdx myotubes, and this mechanism can account for iNOS overexpression and the increase in reactive nitrogen species that promote damage in dystrophic skeletal muscle cells. PMID:22549782
USDA-ARS?s Scientific Manuscript database
Curcumin, a polyphenol from turmeric (Curcuma longa), reduces inflammation, atherosclerosis, and obesity in several animal studies. In Ldlr-/- mice fed a high-fat diet (HFD), curcumin reduces plasma lipid levels, therefore contributing to a lower accumulation of lipids and to reduced expression of f...
Kim, Dongkyu; Ku, Sook Hee; Kim, Hyosuk; Jeong, Ji Hoon; Lee, Minhyung; Kwon, Ick Chan; Choi, Donghoon; Kim, Sun Hwa
2016-12-10
Gene therapy is aimed at selectively knocking up or knocking down the target genes involved in the development of diseases. In many human diseases, dysregulation of disease-associated genes is occurred concurrently: some genes are abnormally turned up and some are turned down. In the field of non-viral gene therapy, plasmid DNA (pDNA) and small interfering RNA (siRNA) are suggested as representative regulation tools for activating and silencing the expression of genes of interest, representatively. Herein, we simultaneously loaded both siRNA (Src homology region 2 domain-containing tyrosine phosphatase-1 siRNA, siSHP-1) for anti-apoptosis and pDNA (hypoxia-inducible vascular endothelial growth factor expression vector, pHI-VEGF) for angiogenesis in a single polymeric nanocarrier and used to synergistically attenuate ischemia-reperfusion (IR)-induced myocardial infarction, which is mainly caused by dysregulating of cardiac apoptosis and angiogenesis. For dual-modality cardiac gene delivery, siSHP-1 and pHI-VEGF were sequentially incorporated into a stable nanocomplex by using deoxycholic acid-modified polyethylenimine (DA-PEI). The resulting DA-PEI/siSHP-1/pHI-VEGF complexes exhibited the high structural stability against polyanion competition and the improved resistance to digestion by nucleases. The cardiac administration of DA-PEI/siSHP-1/pHI-VEGF reduced cardiomyocyte apoptosis and enhanced cardiac microvessel formation, thereby reducing infarct size in rat ischemia-reperfusion model. The simultaneous anti-apoptotic and angiogenic gene therapies synergized the cardioprotective effects of each strategy; thus our dual-modal single-carrier gene delivery system can be considered as a promising candidate for treating ischemic heart diseases. Copyright © 2016 Elsevier B.V. All rights reserved.
Mariscal, Ana M; Kakizawa, Shigeyuki; Hsu, Jonathan Y; Tanaka, Kazuki; González-González, Luis; Broto, Alicia; Querol, Enrique; Lluch-Senar, Maria; Piñero-Lambea, Carlos; Sun, Lijie; Weyman, Philip D; Wise, Kim S; Merryman, Chuck; Tse, Gavin; Moore, Adam J; Hutchison, Clyde A; Smith, Hamilton O; Tomita, Masaru; Venter, J Craig; Glass, John I; Piñol, Jaume; Suzuki, Yo
2018-05-22
Functional genomics studies in minimal mycoplasma cells enable unobstructed access to some of the most fundamental processes in biology. Conventional transposon bombardment and gene knockout approaches often fail to reveal functions of genes that are essential for viability, where lethality precludes phenotypic characterization. Conditional inactivation of genes is effective for characterizing functions central to cell growth and division, but tools are limited for this purpose in mycoplasmas. Here we demonstrate systems for inducible repression of gene expression based on clustered regularly interspaced short palindromic repeats-mediated interference (CRISPRi) in Mycoplasma pneumoniae and synthetic Mycoplasma mycoides, two organisms with reduced genomes actively used in systems biology studies. In the synthetic cell, we also demonstrate inducible gene expression for the first time. Time-course data suggest rapid kinetics and reversible engagement of CRISPRi. Targeting of six selected endogenous genes with this system results in lowered transcript levels or reduced growth rates that agree with lack or shortage of data in previous transposon bombardment studies, and now produces actual cells to analyze. The ksgA gene encodes a methylase that modifies 16S rRNA, rendering it vulnerable to inhibition by the antibiotic kasugamycin. Targeting the ksgA gene with CRISPRi removes the lethal effect of kasugamycin and enables cell growth, thereby establishing specific and effective gene modulation with our system. The facile methods for conditional gene activation and inactivation in mycoplasmas open the door to systematic dissection of genetic programs at the core of cellular life.
Matsui, H; Nakamura, G; Ishiga, Y; Toshima, H; Inagaki, Y; Toyoda, K; Shiraishi, T; Ichinose, Y
2004-02-01
Recently, we observed that expression of a pea gene (S64) encoding an oxophytodienoic acid reductase (OPR) was induced by a suppressor of pea defense responses, secreted by the pea pathogen Mycosphaerella pinodes. Because it is known that OPRs are usually encoded by families of homologous genes, we screened for genomic and cDNA clones encoding members of this putative OPR family in pea. We isolated five members of the OPR gene family from a pea genomic DNA library, and amplified six cDNA clones, including S64, by RT-PCR (reverse transcriptase-PCR). Sequencing analysis revealed that S64 corresponds to PsOPR2, and the amino acid sequences of the predicted products of the six OPR-like genes shared more than 80% identity with each other. Based on their sequence similarity, all these OPR-like genes code for OPRs of subgroup I, i.e., enzymes which are not required for jasmonic acid biosynthesis. However, the genes varied in their exon/intron organization and in their promoter sequences. To investigate the expression of each individual OPR-like gene, RT-PCR was performed using gene-specific primers. The results indicated that the OPR-like gene most strongly induced by the inoculation of pea plants with a compatible pathogen and by treatment with the suppressor from M. pinodes was PsOPR2. Furthermore, the ability of the six recombinant OPR-like proteins to reduce a model substrate, 2-cyclohexen-1-one (2-CyHE), was investigated. The results indicated that PsOPR1, 4 and 6 display robust activity, and PsOPR2 has a most remarkable ability to reduce 2-CyHE, whereas PsOPR3 has little and PsOPR5 does not reduce this compound. Thus, the six OPR-like proteins can be classified into four types. Interestingly, the gene structures, expression profiles, and enzymatic activities used to classify each member of the pea OPR-like gene family are clearly correlated, indicating that each member of this OPR-like family has a distinct function.
Mizuno, Tooru M; Kelley, Kevin A; Pasinetti, Giulio M; Roberts, James L; Mobbs, Charles V
2003-11-01
Hypothalamic proopiomelanocortin (POMC) gene expression is reduced in many forms of obesity and diabetes, particularly in those attributable to deficiencies in leptin or its receptor. To assess the functional significance of POMC in mediating metabolic phenotypes associated with leptin deficiency, leptin-deficient mice bearing a transgene expressing the POMC gene under control of the neuron-specific enolase promoter were produced. The POMC transgene attenuated fasting-induced hyperphagia in wild-type mice. Furthermore, the POMC transgene partially reversed obesity, hyperphagia, and hypothermia and effectively normalized hyperglycemia, glucosuria, glucose intolerance, and insulin resistance in leptin-deficient mice. Effects of the POMC transgene on glucose homeostasis were independent of the partial correction of hyperphagia and obesity. Furthermore, the POMC transgene normalized the profile of hepatic and adipose gene expression associated with gluconeogenesis, glucose output, and insulin sensitivity. These results indicate that central POMC is a key modulator of glucose homeostasis and that agonists of POMC products may provide effective therapy in treating impairments in glucose homeostasis when hypothalamic POMC expression is reduced, as occurs with leptin deficiency, hypothalamic damage, and aging.
Sangha, Susan; Ilenseer, Jasmin; Sosulina, Ludmila; Lesting, Jörg; Pape, Hans-Christian
2012-04-17
Extinction reduces fear to stimuli that were once associated with an aversive event by no longer coupling the stimulus with the aversive event. Extinction learning is supported by a network comprising the amygdala, hippocampus, and prefrontal cortex. Previous studies implicate a critical role of GABA in extinction learning, specifically the GAD65 isoform of the GABA synthesizing enzyme glutamic acid decarboxylase (GAD). However, a detailed analysis of changes in gene expression of GAD in the subregions comprising the extinction network has not been undertaken. Here, we report changes in gene expression of the GAD65 and GAD67 isoforms of GAD, as measured by relative quantitative real-time RT-PCR, in subregions of the amygdala, hippocampus, and prefrontal cortex 24-26 h after extinction of a recent (1-d) or intermediate (14-d) fear memory. Our results show that extinction of a recent memory induces a down-regulation of Gad65 gene expression in the hippocampus (CA1, dentate gyrus) and an up-regulation of Gad67 gene expression in the infralimbic cortex. Extinguishing an intermediate memory increased Gad65 gene expression in the central amygdala. These results indicate a differential regulation of Gad gene expression after extinction of a recent memory vs. intermediate memory.
Yang, Xiaojian; Brisbin, Jennifer; Yu, Hai; Wang, Qi; Yin, Fugui; Zhang, Yonggang; Sabour, Parviz; Sharif, Shayan; Gong, Joshua
2014-01-01
Background Probiotics have been used to control Salmonella colonization/infection in chickens. Yet the mechanisms of probiotic effects are not fully understood. This study has characterized our previously-selected lactic acid-producing bacterial (LAB) isolates for controlling Salmonella infection in chickens, particularly the mechanism underlying the control. Methodology/Principal Findings In vitro studies were conducted to characterize 14 LAB isolates for their tolerance to low pH (2.0) and high bile salt (0.3–1.5%) and susceptibility to antibiotics. Three chicken infection trials were subsequently carried out to evaluate four of the isolates for reducing the burden of Salmonella enterica serovar Typhimurium in the broiler cecum. Chicks were gavaged with LAB cultures (106–7 CFU/chick) or phosphate-buffered saline (PBS) at 1 day of age followed by Salmonella challenge (104 CFU/chick) next day. Samples of cecal digesta, spleen, and liver were examined for Salmonella counts on days 1, 3, or 4 post-challenge. Salmonella in the cecum from Trial 3 was also assessed for the expression of ten virulence genes located in its pathogenicity island-1 (SPI-1). These genes play a role in Salmonella intestinal invasion. Tested LAB isolates (individuals or mixed cultures) were unable to lower Salmonella burden in the chicken cecum, but able to attenuate Salmonella infection in the spleen and liver. The LAB treatments also reduced almost all SPI-1 virulence gene expression (9 out of 10) in the chicken cecum, particularly at the low dose. In vitro treatment with the extracellular culture fluid from a LAB culture also down-regulated most SPI-1 virulence gene expression. Conclusions/Significance The possible correlation between attenuation of Salmonella infection in the chicken spleen and liver and reduction of Salmonella SPI-1 virulence gene expression in the chicken cecum by LAB isolates is a new observation. Suppression of Salmonella virulence gene expression in vivo can be one of the strategies for controlling Salmonella infection in chickens. PMID:24728092
Kusaka, M; Okamoto, M; Takenaka, M; Sasaki, H; Fukami, N; Kataoka, K; Ito, T; Kenmochi, T; Hoshinaga, K; Shiroki, R
2017-06-01
Kidney transplant recipients are at increased risk of developing cancer in comparison with the general population. To effectively manage post-transplantation malignancies, it is essential to proactively monitor patients. A long-term intensive screening program was associated with a reduced incidence of cancer after transplantation. This study evaluated the usefulness of the gene expression profiling of peripheral blood samples obtained from kidney transplant patients and adopted a screening test for detecting cancer of the digestive system (gastric, colon, pancreas, and biliary tract). Nineteen patients were included in this study and a total of 53 gene expression screening tests were performed. The gene expression profiles of blood-delivered total RNA and whole genome human gene expression profiles were obtained. We investigated the expression levels of 2665 genes associated with digestive cancers and counted the number of genes in which expression was altered. A hierarchical clustering analysis was also performed. The final prediction of the cancer possibility was determined according to an algorithm. The number of genes in which expression was altered was significantly increased in the kidney transplant recipients in comparison with the general population (1091 ± 63 vs 823 ± 94; P = .0024). The number of genes with altered expression decreased after the induction of mechanistic target of rapamycin (mTOR) inhibitor (1484 ± 227 vs 883 ± 154; P = .0439). No cases of possible digestive cancer were detected in this study period. The gene expression profiling of peripheral blood samples may be a useful and noninvasive diagnostic tool that allows for the early detection of cancer of the digestive system. Copyright © 2017 Elsevier Inc. All rights reserved.
VH gene family expression in mice with the xid defect
1991-01-01
Preferential use of particular VH gene families in the response to specific antigens has been demonstrated in several systems. The lack of responses to certain types of antigens, therefore, could be the result of deletion of or failure to express some VH genes. Because CBA/N mice, which carry the X-linked immunodeficiency (xid) gene defect, have been shown to be unresponsive to thymus-independent polysaccharide antigens, it was of interest to examine if this unresponsiveness could be accounted for by abnormal expression of particular VH gene families. Using in situ hybridization on B cell colonies, we determined the expression of nine VH gene families in CBA/CaHN females (genotypically normal), CBA/N males (xid) and females (xid), and (CBA/N x CBA/CaHN)F1 males (xid) and females (phenotypically normal). Our results indicate that VH gene family expression, including the S107 family, in CBA/N males and F1 males, is similar to that of CBA/CaHN and F1 females with predominant expression of J558, the largest gene family, in all individuals. Interestingly, CBA/N female mice, which carry two defective X chromosomes, as a group expressed significantly reduced levels of the J558 gene family, and as individuals showed variation in which family was predominantly expressed. We conclude that the unresponsiveness of mice with the xid defect to polysaccharide antigens can not attributed to a failure to express the nine VH gene families that we examined. Our findings do not support previous studies (Primi, D., and P.-A. Cazenave 1986. J. Exp. Med. 165:357), which found an absence of expression of the S107 family in xid mice. PMID:1711566
NASA Astrophysics Data System (ADS)
Wang, Ze; Zhang, Hui
As research previously demonstrated, suppression of AFP expression or its biological activities might inhibit the proliferation of AFP positive human hepatocellular carcinoma cells. In this study, we constructed an anti-AFP gene vector and transfected it to HepG2 cells. RT-PCR showed AFP gene expression in the transfected cells was reduced. MTT assay suggested the proliferation of the transfected cells was also inhibited comparing with the untransfected cells. This result provides a new insight into AFP as the target for preventing and treating hepatocellular carcinoma.
Ramamoorthy, Vellaisamy; Dhingra, Sourabh; Kincaid, Alexander; Shantappa, Sourabha; Feng, Xuehuan; Calvo, Ana M.
2013-01-01
Secondary metabolism in the model fungus Aspergillus nidulans is controlled by the conserved global regulator VeA, which also governs morphological differentiation. Among the secondary metabolites regulated by VeA is the mycotoxin sterigmatocystin (ST). The presence of VeA is necessary for the biosynthesis of this carcinogenic compound. We identified a revertant mutant able to synthesize ST intermediates in the absence of VeA. The point mutation occurred at the coding region of a gene encoding a novel putative C2H2 zinc finger domain transcription factor that we denominated mtfA. The A. nidulans mtfA gene product localizes at nuclei independently of the illumination regime. Deletion of the mtfA gene restores mycotoxin biosynthesis in the absence of veA, but drastically reduced mycotoxin production when mtfA gene expression was altered, by deletion or overexpression, in A. nidulans strains with a veA wild-type allele. Our study revealed that mtfA regulates ST production by affecting the expression of the specific ST gene cluster activator aflR. Importantly, mtfA is also a regulator of other secondary metabolism gene clusters, such as genes responsible for the synthesis of terrequinone and penicillin. As in the case of ST, deletion or overexpression of mtfA was also detrimental for the expression of terrequinone genes. Deletion of mtfA also decreased the expression of the genes in the penicillin gene cluster, reducing penicillin production. However, in this case, over-expression of mtfA enhanced the transcription of penicillin genes, increasing penicillin production more than 5 fold with respect to the control. Importantly, in addition to its effect on secondary metabolism, mtfA also affects asexual and sexual development in A. nidulans. Deletion of mtfA results in a reduction of conidiation and sexual stage. We found mtfA putative orthologs conserved in other fungal species. PMID:24066102
Predicting effects of structural stress in a genome-reduced model bacterial metabolism
NASA Astrophysics Data System (ADS)
Güell, Oriol; Sagués, Francesc; Serrano, M. Ángeles
2012-08-01
Mycoplasma pneumoniae is a human pathogen recently proposed as a genome-reduced model for bacterial systems biology. Here, we study the response of its metabolic network to different forms of structural stress, including removal of individual and pairs of reactions and knockout of genes and clusters of co-expressed genes. Our results reveal a network architecture as robust as that of other model bacteria regarding multiple failures, although less robust against individual reaction inactivation. Interestingly, metabolite motifs associated to reactions can predict the propagation of inactivation cascades and damage amplification effects arising in double knockouts. We also detect a significant correlation between gene essentiality and damages produced by single gene knockouts, and find that genes controlling high-damage reactions tend to be expressed independently of each other, a functional switch mechanism that, simultaneously, acts as a genetic firewall to protect metabolism. Prediction of failure propagation is crucial for metabolic engineering or disease treatment.
Liu, Jing; Hernandez-Ono, Antonio; Graham, Mark J.; Galton, Valerie Anne; Ginsberg, Henry N.
2016-01-01
Objective Plasma levels of high density lipoprotein cholesterol (HDLC) and apolipoprotein A-I (ApoA-I) are reduced in individuals with defective insulin signaling. Initial studies using liver-specific insulin receptor (InsR) knockout mice (LIRKO) identified reduced expression of Type 1 Deiodinase (Dio1) as a potentially novel link between defective hepatic insulin signaling and reduced expression of the ApoA-I gene. Our objective was to examine the regulation of ApoA-I expression by Dio1. Approach and Results Acute inactivation of InsR by adenoviral delivery of Cre recombinase to InsR floxed mice reduced HDLC and expression of both ApoA-I and Dio1. Overexpression of Dio1 in LIRKO restored HDLC and ApoA-I levels and increased the expression of ApoA-I. Dio1 knockout (D1KO) mice had very low expression of ApoA-I and reduced serum levels of HDLC and ApoA-I. Treatment of C57BL/6J mice with anti-sense to Dio1 reduced ApoA-I mRNA, HDLC, and serum ApoA-I. Hepatic 3,5,3′-triiodothyronine (T3) content was normal or elevated in LIRKO or D1KO mice. Knockdown of either InsR or Dio1 by siRNA in HepG2 cells decreased expression of ApoA-I as well as ApoA-I synthesis and secretion. siRNA knockdown of InsR or Dio1 decreased activity of a region of the ApoA-I promoter lacking thyroid hormone response elements (TREs) (Region B). Electrophoretic mobility shift assay demonstrated that reduced Dio1 expression decreased the binding of nuclear proteins to Region B. Conclusions Reductions in Dio1 expression reduce expression of ApoA-I in a T3/TRE independent manner. PMID:27150392
Liu, Jing; Hernandez-Ono, Antonio; Graham, Mark J; Galton, Valerie Anne; Ginsberg, Henry N
2016-07-01
Plasma levels of high-density lipoprotein cholesterol (HDL-C) and apolipoprotein A-I (ApoA-I) are reduced in individuals with defective insulin signaling. Initial studies using liver-specific insulin receptor (InsR) knockout mice identified reduced expression of type 1 deiodinase (Dio1) as a potentially novel link between defective hepatic insulin signaling and reduced expression of the ApoA-I gene. Our objective was to examine the regulation of ApoA-I expression by Dio1. Acute inactivation of InsR by adenoviral delivery of Cre recombinase to InsR floxed mice reduced HDL-C and expression of both ApoA-I and Dio1. Overexpression of Dio1 in InsR knockout mice restored HDL-C and ApoA-I levels and increased the expression of ApoA-I. Dio1 knockout mice had low expression of ApoA-I and reduced serum levels of HDL-C and ApoA-I. Treatment of C57BL/6J mice with antisense to Dio1 reduced ApoA-I mRNA, HDL-C, and serum ApoA-I. Hepatic 3,5,3'-triiodothyronine content was normal or elevated in InsR knockout mice or Dio1 knockout mice. Knockdown of either InsR or Dio1 by siRNA in HepG2 cells decreased the expression of ApoA-I and ApoA-I synthesis and secretion. siRNA knockdown of InsR or Dio1 decreased activity of a region of the ApoA-I promoter lacking thyroid hormone response elements (region B). Electrophoretic mobility shift assay demonstrated that reduced Dio1 expression decreased the binding of nuclear proteins to region B. Reductions in Dio1 expression reduce the expression of ApoA-I in a 3,5,3'-triiodothyronine-/thyroid hormone response element-independent manner. © 2016 American Heart Association, Inc.
Effect of fetal exposure to bisphenol A on brain mediated by X-chromosome inactivation.
Kumamoto, Takayuki; Oshio, Shigeru
2013-01-01
Recent studies have reported that bisphenol A (BPA) influences brain development in fetal exposure to mice. The X-chromosome codes many neurodevelopment-related genes leading to abnormal development, such as mental retardation and intellectual deficiency. For females, most of expressions of X-linked genes are regulated by X-chromosome inactivation (XCI), which occurs during fetal period, and this mechanism is regulated by Xist and its antisense, Tsix. To clarify the possibility of X-mediated effect as a mechanism of neurodevelopmental disorders by BPA, pregnant ICR mice were orally administered 0.02 or 50 mg/kg of BPA on gestational days 6 and 15. Postnatally at days 2, 4 and weeks 3 and 7, mRNA expression of XCI-regulating factors (Xist and Tsix), X-linked neurodevelopment-related genes (Fmr1, Gdi1, Nlgn3, Pak3 and Ophn1), and sexual differentiation-related genes (ERα, ERβ and AR) were examined in cerebrums of female pups. Anogenital distance (AGD) and serum estradiol were also examined. In the 50 mg/kg exposed-group, reduced Xist, Fmr1, Gdi1, Nlgn3, and Pak3 and increased Tsix were observed simultaneously. Moderately reduced Xist, Gdi1, Nlgn3 and Pak3 were observed at 0.02 mg/kg BPA. ERα, ERβ and AR expression changes, shortened AGDs and reduced estradiol levels were observed in each exposure group. Fetal exposure to BPA changed expression of XCI-regulating factors and may alter the expression levels of X-linked neurodevelopment-related genes disrupting the XCI mechanism and function. This X-mediated effect is considered one of the mechanisms of various BPA-induced neurodevelopmental disorders.
Knobloch, Thomas J.; Uhrig, Lana K.; Pearl, Dennis K.; Casto, Bruce C.; Warner, Blake M.; Clinton, Steven K.; Sardo-Molmenti, Christine L.; Ferguson, Jeanette M.; Daly, Brett T.; Riedl, Kenneth; Schwartz, Steven J.; Vodovotz, Yael; Buchta, Anthony J.; Schuller, David E.; Ozer, Enver; Agrawal, Amit; Weghorst, Christopher M.
2016-01-01
Black raspberries (BRBs) demonstrate potent inhibition of aerodigestive tract carcinogenesis in animal models. However, translational clinical trials evaluating the ability of BRB phytochemicals to impact molecular biomarkers in the oral mucosa remain limited. The present phase 0 study addresses a fundamental question for oral cancer food-based prevention: Do BRB phytochemicals successfully reach the targeted oral tissues and reduce pro-inflammatory and anti-apoptotic gene expression profiles? Patients with biopsy-confirmed oral squamous cell carcinomas (OSCCs) administered oral troches containing freeze-dried BRB powder from the time of enrollment to the date of curative intent surgery (13.9 ± 1.27 days). Transcriptional biomarkers were evaluated in patient-matched OSCCs and non-involved high at-risk mucosa (HARM) for BRB-associated changes. Significant expression differences between baseline OSCC and HARM tissues were confirmed using a panel of genes commonly deregulated during oral carcinogenesis. Following BRB troche administration, the expression of pro-survival genes (AURKA, BIRC5, EGFR) and pro-inflammatory genes (NFKB1, PTGS2) were significantly reduced. There were no BRB-associated Grade 3–4 toxicities or adverse events and 79.2% (N = 30) of patients successfully completed the study with high levels of compliance (97.2%). The BRB phytochemicals cyanidin-3-rutinoside and cyanidin-3-xylosylrutinoside were detected in all OSCC tissues analyzed, demonstrating that bioactive components were successfully reaching targeted OSCC tissues. We confirmed that hallmark anti-apoptotic and pro-inflammatory molecular biomarkers were over-expressed in OSCCs and that their gene expression was significantly reduced following BRB troche administration. Since these molecular biomarkers are fundamental to oral carcinogenesis and are modifiable, they may represent emerging biomarkers of molecular efficacy for BRB-mediated oral cancer chemoprevention. PMID:26701664
Mallik, Saurav; Bhadra, Tapas; Maulik, Ujjwal
2017-01-01
Epigenetic Biomarker discovery is an important task in bioinformatics. In this article, we develop a new framework of identifying statistically significant epigenetic biomarkers using maximal-relevance and minimal-redundancy criterion based feature (gene) selection for multi-omics dataset. Firstly, we determine the genes that have both expression as well as methylation values, and follow normal distribution. Similarly, we identify the genes which consist of both expression and methylation values, but do not follow normal distribution. For each case, we utilize a gene-selection method that provides maximal-relevant, but variable-weighted minimum-redundant genes as top ranked genes. For statistical validation, we apply t-test on both the expression and methylation data consisting of only the normally distributed top ranked genes to determine how many of them are both differentially expressed andmethylated. Similarly, we utilize Limma package for performing non-parametric Empirical Bayes test on both expression and methylation data comprising only the non-normally distributed top ranked genes to identify how many of them are both differentially expressed and methylated. We finally report the top-ranking significant gene-markerswith biological validation. Moreover, our framework improves positive predictive rate and reduces false positive rate in marker identification. In addition, we provide a comparative analysis of our gene-selection method as well as othermethods based on classificationperformances obtained using several well-known classifiers.
Puri, Jyoti; Vinothini, Priya; Reuben, Jayne; Bellinger, Larry L.; Ailing, Li; Peng, Yuan B.; Kramer, Phillip R.
2012-01-01
Trigeminal ganglia neurons express the GABAA receptor subunit alpha 6 (Gabrα6) but the role of this particular subunit in orofacial hypersensitivity is unknown. In this report the function of Gabrα6 was tested by reducing its expression in the trigeminal ganglia and measuring the effect of this reduction on inflammatory temporomandibular joint (TMJ) hypersensitivity. Gabrα6 expression was reduced by infusing the trigeminal ganglia of male Sprague Dawley rats with small interfering RNA (siRNA) having homology to either the Gabrα6 gene (Gabrα6 siRNA) or no known gene (control siRNA). Sixty hours after siRNA infusion the rats received a bilateral TMJ injection of complete Freund’s adjuvant to induce an inflammatory response. Hypersensitivity was then quantitated by measuring meal duration, which lengthens when hypersensitivity increases. Neuronal activity in the trigeminal ganglia was also measured by quantitating the amount of phosphorylated ERK. Rats in a different group that did not have TMJ inflammation had an electrode placed in the spinal cord at the level of C1 sixty hours after siRNA infusion to record extracellular electrical activity of neurons that responded to TMJ stimulation. Our results show that Gabrα6 was expressed in both neurons and satellite glia of the trigeminal ganglia and that Gabrα6 positive neurons within the trigeminal ganglia have afferents in the TMJ. Gabrα6 siRNA infusion reduced Gabrα6 gene expression by 30% and significantly lengthened meal duration in rats with TMJ inflammation. Gabrα6 siRNA infusion also significantly increased p-ERK expression in the trigeminal ganglia of rats with TMJ inflammation and increased electrical activity in the spinal cord of rats without TMJ inflammation. These results suggest that maintaining Gabrα6 expression was necessary to inhibit primary sensory afferents in the trigeminal pathway and reduce inflammatory orofacial nociception. PMID:22521829
Sibout, Richard; Proost, Sebastian; Hansen, Bjoern Oest; Vaid, Neha; Giorgi, Federico M; Ho-Yue-Kuang, Severine; Legée, Frédéric; Cézart, Laurent; Bouchabké-Coussa, Oumaya; Soulhat, Camille; Provart, Nicholas; Pasha, Asher; Le Bris, Philippe; Roujol, David; Hofte, Herman; Jamet, Elisabeth; Lapierre, Catherine; Persson, Staffan; Mutwil, Marek
2017-08-01
While Brachypodium distachyon (Brachypodium) is an emerging model for grasses, no expression atlas or gene coexpression network is available. Such tools are of high importance to provide insights into the function of Brachypodium genes. We present a detailed Brachypodium expression atlas, capturing gene expression in its major organs at different developmental stages. The data were integrated into a large-scale coexpression database ( www.gene2function.de), enabling identification of duplicated pathways and conserved processes across 10 plant species, thus allowing genome-wide inference of gene function. We highlight the importance of the atlas and the platform through the identification of duplicated cell wall modules, and show that a lignin biosynthesis module is conserved across angiosperms. We identified and functionally characterised a putative ferulate 5-hydroxylase gene through overexpression of it in Brachypodium, which resulted in an increase in lignin syringyl units and reduced lignin content of mature stems, and led to improved saccharification of the stem biomass. Our Brachypodium expression atlas thus provides a powerful resource to reveal functionally related genes, which may advance our understanding of important biological processes in grasses. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Kim, Ha-Kun; Chun, Dae-Sik; Kim, Joon-Sik; Yun, Cheol-Ho; Lee, Ju-Hoon; Hong, Soon-Kwang; Kang, Dae-Kyung
2006-09-01
Direct expression of lactoferricin, an antimicrobial peptide, is lethal to Escherichia coli. For the efficient production of lactoferricin in E. coli, we developed an expression system in which the gene for the lysine- and arginine-rich cationic lactoferricin was fused to an anionic peptide gene to neutralize the basic property of lactoferricin, and successfully overexpressed the concatemeric fusion gene in E. coli. The lactoferricin gene was linked to a modified magainin intervening sequence gene by a recombinational polymerase chain reaction, thus producing an acidic peptide-lactoferricin fusion gene. The monomeric acidic peptide-lactoferricin fusion gene was multimerized and expressed in E. coli BL21(DE3) upon induction with isopropyl-beta-D-thiogalactopyranoside. The expression levels of the fusion peptide reached the maximum at the tetramer, while further increases in the copy number of the fusion gene substantially reduced the peptide expression level. The fusion peptides were isolated and cleaved to generate the separate lactoferricin and acidic peptide. About 60 mg of pure recombinant lactoferricin was obtained from 1 L of E. coli culture. The purified recombinant lactoferricin was found to have a molecular weight similar to that of chemically synthesized lactoferricin. The recombinant lactoferricin showed antimicrobial activity and disrupted bacterial membrane permeability, as the native lactoferricin peptide does.
Biotechnological uses of RNAi in plants: risk assessment considerations.
Casacuberta, Josep M; Devos, Yann; du Jardin, Patrick; Ramon, Matthew; Vaucheret, Hervé; Nogué, Fabien
2015-03-01
RNAi offers opportunities to generate new traits in genetically modified (GM) plants. Instead of expressing novel proteins, RNAi-based GM plants reduce target gene expression. Silencing of off-target genes may trigger unintended effects, and identifying these genes would facilitate risk assessment. However, using bioinformatics alone is not reliable, due to the lack of genomic data and insufficient knowledge of mechanisms governing mRNA-small (s)RNA interactions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Sources of Variance in Baseline Gene Expression in the Rodent Liver
Corton, J. Christopher; Bushel, Pierre R.; Fostel, Jennifer; O'Lone, Raegan B.
2012-01-01
The use of gene expression profiling in both clinical and laboratory settings would be enhanced by better characterization of variation due to individual, environmental, and technical factors. Analysis of microarray data from untreated or vehicle-treated animals within the control arm of toxicogenomics studies has yielded useful information on baseline fluctuations in liver gene expression in the rodent. Here, studies which highlight contributions of different factors to gene expression variability in the rodent liver are discussed including a large meta-analysis of rat liver, which identified genes that vary in control animals in the absence of chemical treatment. Genes and their pathways that are the most and least variable were identified in a number of these studies. Life stage, fasting, sex, diet, circadian rhythm and liver lobe source can profoundly influence gene expression in the liver. Recognition of biological and technical factors that contribute to variability of background gene expression can help the investigator in the design of an experiment that maximizes sensitivity and reduces the influence of confounders that may lead to misinterpretation of genomic changes. The factors that contribute to variability in liver gene expression in rodents are likely analogous to those contributing to human interindividual variability in drug response and chemical toxicity. Identification of batteries of genes that are altered in a variety of background conditions could be used to predict responses to drugs and chemicals in appropriate models of the human liver. PMID:22230429
Cataldo, L R; Mizgier, M L; Busso, D; Olmos, P; Galgani, J E; Valenzuela, R; Mezzano, D; Aranda, E; Cortés, V A; Santos, J L
2016-01-01
High circulating nonesterified fatty acids (NEFAs) concentration, often reported in diabetes, leads to impaired glucose-stimulated insulin secretion (GSIS) through not yet well-defined mechanisms. Serotonin and dopamine might contribute to NEFA-dependent β-cell dysfunction, since extracellular signal of these monoamines decreases GSIS. Moreover, palmitate-treated β-cells may enhance the expression of the serotonin receptor Htr2c, affecting insulin secretion. Additionally, the expression of monoamine-oxidase type B (Maob) seems to be lower in islets from humans and mice with diabetes compared to nondiabetic islets, which may lead to increased monoamine concentrations. We assessed the expression of serotonin- and dopamine-related genes in islets from db/db and wild-type (WT) mice. In addition, the effect of palmitate and oleate on the expression of such genes, 5HT content, and GSIS in MIN6 β-cell was determined. Lower Maob expression was found in islets from db/db versus WT mice and in MIN6 β-cells in response to palmitate and oleate treatment compared to vehicle. Reduced 5HT content and impaired GSIS in response to palmitate (-25%; p < 0.0001) and oleate (-43%; p < 0.0001) were detected in MIN6 β-cells. In conclusion, known defects of GSIS in islets from db/db mice and MIN6 β-cells treated with NEFAs are accompanied by reduced Maob expression and reduced 5HT content.
Townsend, Brigitte E; Johnson, Rodney W
2016-01-01
Increased neuroinflammation and oxidative stress resulting from heightened microglial activation are associated with age-related cognitive impairment. The objectives of this study were to examine the effects of the bioactive sulforaphane (SFN) on the nuclear factor E2-related factor 2 (Nrf2) pathway in BV2 microglia and primary microglia, and to evaluate proinflammatory cytokine expression in lipopolysaccharide (LPS)-stimulated primary microglia from adult and aged mice. BV2 microglia and primary microglia isolated from young adult and aged mice were treated with SFN and LPS. Changes in Nrf2 activity, expression of Nrf2 target genes, and levels of proinflammatory markers were assessed by quantitative PCR and immunoassay. SFN increased Nrf2 DNA-binding activity and upregulated Nrf2 target genes in BV2 microglia, while reducing LPS-induced interleukin (IL-)1β, IL-6, and inducible nitric oxide synthase (iNOS). In primary microglia from adult and aged mice, SFN increased expression of Nrf2 target genes and attenuated IL-1β, IL-6, and iNOS induced by LPS. These data indicate that SFN is a potential beneficial supplement that may be useful for reducing microglial mediated neuroinflammation and oxidative stress associated with aging. Copyright © 2015 Elsevier Inc. All rights reserved.
Manokawinchoke, Jeeranan; Nattasit, Praphawi; Thongngam, Tanutchaporn; Pavasant, Prasit; Tompkins, Kevin A; Egusa, Hiroshi; Osathanon, Thanaphum
2017-08-31
Notch signaling regulates diverse biological processes in dental pulp tissue. The present study investigated the response of human dental pulp cells (hDPs) to the indirect immobilized Notch ligand Jagged1 in vitro. The indirect immobilized Jagged1 effectively activated Notch signaling in hDPs as confirmed by the upregulation of HES1 and HEY1 expression. Differential gene expression profiling using an RNA sequencing technique revealed that the indirect immobilized Jagged1 upregulated genes were mainly involved in extracellular matrix organization, disease, and signal transduction. Downregulated genes predominantly participated in the cell cycle, DNA replication, and DNA repair. Indirect immobilized Jagged1 significantly reduced cell proliferation, colony forming unit ability, and the number of cells in S phase. Jagged1 treated hDPs exhibited significantly higher ALP enzymatic activity, osteogenic marker gene expression, and mineralization compared with control. Pretreatment with a γ-secretase inhibitor attenuated the Jagged1-induced ALP activity and mineral deposition. NOTCH2 shRNA reduced the Jagged1-induced osteogenic marker gene expression, ALP enzymatic activity, and mineral deposition. In conclusion, indirect immobilized Jagged1 suppresses cell cycle progression and induces the odonto/osteogenic differentiation of hDPs via the canonical Notch signaling pathway.
Reduced Dermatopontin Expression Is a Molecular Link Between Uterine Leiomyomas and Keloids
Catherino, William H.; Leppert, Phyllis C.; Stenmark, Matthew H.; Payson, Mark; Potlog-Nahari, Clariss; Nieman, Lynnette K.; Segars, James H.
2014-01-01
Uterine leiomyomas are prevalent estrogen-responsive clonal tumors, but the specific genetic alterations that contribute to their development have not been elucidated. To identify genes involved in the formation of leiomyomas, we used global expression profiling to compare clonal tumors with normal myometrium. Contrary to expectation, genes involved in estrogen action were not differentially expressed between leiomyoma and normal myometrium. Genes encoding extracellular-matrix proteins were prominently featured, suggesting their involvement in formation of a myofibroblast phenotype. Analysis of the extracellular matrix in the leiomyomas revealed a disordered collagen fibril orientation. Expression of the collagen-binding protein dermatopontin was found to be consistently decreased in leiomyoma by both reverse transcriptase-polymerase chain reaction (RT-PCR) and real-time RT-PCR (mean underexpression = 9.41-fold) regardless of leiomyoma size, leiomyoma location, patient race, and patient age. This expression pattern was observed in 11 subjects and a total of 23 leiomyoma: myometrium pairs. Decreased expression of dermatopontin was also associated with keloid formation, a fibrotic disease that shares epidemiologic similarities with leiomyoma. Immunohistochemical studies of leiomyomas and keloids demonstrated reduced levels of dermatopontin in both tissues. In addition, ultrastructural analysis revealed that the orientation of the collagen fibrils in the keloid tissues strongly resembled that in the leiomyomas. Reduction in dermatopontin was associated with an increase in transforming growth factor–β3 (TGFB3) mRNA levels in leiomyomas, whereas other genes involved in dermatopontin signaling were not differentially expressed. These findings suggest that leiomyoma development involves a myofibroblast cell phenotype characterized by dysregulation of genes encoding extracellular-matrix proteins. In particular, decreased expression of dermatopontin represents a molecular link between the leiomyoma and keloid phenotypes. PMID:15139000
DOE Office of Scientific and Technical Information (OSTI.GOV)
Czarnecki, Olaf; Bryan, Anthony C.; Jawdy, Sara S.
Genetic engineering of plants that results in successful establishment of new biochemical or regulatory pathways requires stable introduction of one or more genes into the plant genome. It might also be necessary to down-regulate or turn off expression of endogenous genes in order to reduce activity of competing pathways. An established way to knockdown gene expression in plants is expressing a hairpin-RNAi construct, eventually leading to degradation of a specifically targeted mRNA. Knockdown of multiple genes that do not share homologous sequences is still challenging and involves either sophisticated cloning strategies to create vectors with different serial expression constructs ormore » multiple transformation events that is often restricted by a lack of available transformation markers. Synthetic RNAi fragments were assembled in yeast carrying homologous sequences to six or seven non-family genes and introduced into pAGRIKOLA. Transformation of Arabidopsis thaliana and subsequent expression analysis of targeted genes proved efficient knockdown of all target genes. In conclusion, we present a simple and cost-effective method to create constructs to simultaneously knockdown multiple non-family genes or genes that do not share sequence homology. The presented method can be applied in plant and animal synthetic biology as well as traditional plant and animal genetic engineering.« less
Namkung, Junghyun; Nam, Jin-Wu; Park, Taesung
2007-01-01
Many genes with major effects on quantitative traits have been reported to interact with other genes. However, finding a group of interacting genes from thousands of SNPs is challenging. Hence, an efficient and robust algorithm is needed. The genetic algorithm (GA) is useful in searching for the optimal solution from a very large searchable space. In this study, we show that genome-wide interaction analysis using GA and a statistical interaction model can provide a practical method to detect biologically interacting loci. We focus our search on transcriptional regulators by analyzing gene x gene interactions for cancer-related genes. The expression values of three cancer-related genes were selected from the expression data of the Genetic Analysis Workshop 15 Problem 1 data set. We implemented a GA to identify the expression quantitative trait loci that are significantly associated with expression levels of the cancer-related genes. The time complexity of the GA was compared with that of an exhaustive search algorithm. As a result, our GA, which included heuristic methods, such as archive, elitism, and local search, has greatly reduced computational time in a genome-wide search for gene x gene interactions. In general, the GA took one-fifth the computation time of an exhaustive search for the most significant pair of single-nucleotide polymorphisms.
Namkung, Junghyun; Nam, Jin-Wu; Park, Taesung
2007-01-01
Many genes with major effects on quantitative traits have been reported to interact with other genes. However, finding a group of interacting genes from thousands of SNPs is challenging. Hence, an efficient and robust algorithm is needed. The genetic algorithm (GA) is useful in searching for the optimal solution from a very large searchable space. In this study, we show that genome-wide interaction analysis using GA and a statistical interaction model can provide a practical method to detect biologically interacting loci. We focus our search on transcriptional regulators by analyzing gene × gene interactions for cancer-related genes. The expression values of three cancer-related genes were selected from the expression data of the Genetic Analysis Workshop 15 Problem 1 data set. We implemented a GA to identify the expression quantitative trait loci that are significantly associated with expression levels of the cancer-related genes. The time complexity of the GA was compared with that of an exhaustive search algorithm. As a result, our GA, which included heuristic methods, such as archive, elitism, and local search, has greatly reduced computational time in a genome-wide search for gene × gene interactions. In general, the GA took one-fifth the computation time of an exhaustive search for the most significant pair of single-nucleotide polymorphisms. PMID:18466570
Czarnecki, Olaf; Bryan, Anthony C.; Jawdy, Sara S.; ...
2016-02-17
Genetic engineering of plants that results in successful establishment of new biochemical or regulatory pathways requires stable introduction of one or more genes into the plant genome. It might also be necessary to down-regulate or turn off expression of endogenous genes in order to reduce activity of competing pathways. An established way to knockdown gene expression in plants is expressing a hairpin-RNAi construct, eventually leading to degradation of a specifically targeted mRNA. Knockdown of multiple genes that do not share homologous sequences is still challenging and involves either sophisticated cloning strategies to create vectors with different serial expression constructs ormore » multiple transformation events that is often restricted by a lack of available transformation markers. Synthetic RNAi fragments were assembled in yeast carrying homologous sequences to six or seven non-family genes and introduced into pAGRIKOLA. Transformation of Arabidopsis thaliana and subsequent expression analysis of targeted genes proved efficient knockdown of all target genes. In conclusion, we present a simple and cost-effective method to create constructs to simultaneously knockdown multiple non-family genes or genes that do not share sequence homology. The presented method can be applied in plant and animal synthetic biology as well as traditional plant and animal genetic engineering.« less
Shamekova, Malika; Mendoza, Maria R; Hsieh, Yi-Cheng; Lindbo, John; Omarov, Rustem T; Scholthof, Herman B
2014-03-01
A next generation Tomato bushy stunt virus (TBSV) coat protein gene replacement vector system is described that can be applied by either RNA inoculation or through agroinfiltration. A vector expressing GFP rapidly yields high levels of transient gene expression in inoculated leaves of various plant species, as illustrated for Nicotiana benthamiana, cowpea, tomato, pepper, and lettuce. A start-codon mutation to down-regulate the dose of the P19 silencing suppressor reduces GFP accumulation, whereas mutations that result in undetectable levels of P19 trigger rapid silencing of GFP. Compared to existing virus vectors the TBSV system has a unique combination of a very broad host range, rapid and high levels of replication and gene expression, and the ability to regulate its suppressor. These features are attractive for quick transient assays in numerous plant species for over-expression of genes of interest, or as a sensor to monitor the efficacy of antiviral RNA silencing. Copyright © 2014. Published by Elsevier Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xiaohan; Ye, Chuyu; Bisaria, Anjali
2011-01-01
Populus is an important bioenergy crop for bioethanol production. A greater understanding of cell wall biosynthesis processes is critical in reducing biomass recalcitrance, a major hindrance in efficient generation of ethanol from lignocellulosic biomass. Here, we report the identification of candidate cell wall biosynthesis genes through the development and application of a novel bioinformatics pipeline. As a first step, via text-mining of PubMed publications, we obtained 121 Arabidopsis genes that had the experimental evidences supporting their involvement in cell wall biosynthesis or remodeling. The 121 genes were then used as bait genes to query an Arabidopsis co-expression database and additionalmore » genes were identified as neighbors of the bait genes in the network, increasing the number of genes to 548. The 548 Arabidopsis genes were then used to re-query the Arabidopsis co-expression database and re-construct a network that captured additional network neighbors, expanding to a total of 694 genes. The 694 Arabidopsis genes were computationally divided into 22 clusters. Queries of the Populus genome using the Arabidopsis genes revealed 817 Populus orthologs. Functional analysis of gene ontology and tissue-specific gene expression indicated that these Arabidopsis and Populus genes are high likelihood candidates for functional genomics in relation to cell wall biosynthesis.« less
Ahmed, M R; Mehmood, A; Bhatti, F-ur-R; Khan, S N; Riazuddin, S
2014-11-01
To evaluate the therapeutic efficacy of Adipose derived MSCs (ADMSCs) in combination with chondrocytes in counteracting oxidative stress in chondrocytes in vitro and in rat model of osteoarthritis (OA). Cultured chondrocytes were exposed to oxidative stress with 200 μM Hydrogen peroxide (H2O2), followed by co-culture with ADMSCs or chondrocytes or combination of both cell types in a transwell culture system for 36 h. The cytoprotective effect was assessed by immunocytochemistry and gene expression analysis. In vivo study evaluated therapeutic effect of the above mentioned three treatments after transplantation in OA rats. The Combination of ADMSCs + Chondrocytes decreased the extent of oxidative stress-induced damage of chondrocytes. Enhanced expression level of Acan and Collagen type-II alpha (Col2a1) with a correspondingly decreased expression of Collagen type-I alpha (Col1a1) and Matrix metallopeptidase 13 (Mmp13) was maximally observed in this group. Moreover, reduced count of annexin-V positive cells, Caspase (Casp3) gene expression and Lactate dehydrogenase (LDH) release with concomitantly enhanced viability and expression of proliferating cell nuclear antigen (PCNA) gene was observed. In vivo study showed that homing of cells and proteoglycan contents of knee joints were significantly better in ADMSCs + Chondrocytes transplanted rats. Increased expression of Acan and Col2a1 along with decreased expression of Col1a1 and Mmp13 indicated formation of hyaline cartilage in this group. These rats also demonstrated significantly reduced expression of Casp3 while increased expression of PCNA genes than the other cell transplanted groups. Our results demonstrated that a combination of ADMSCs and chondrocytes may be a more effective therapeutic strategy against OA than the use of ADMSCs or chondrocytes separately. Copyright © 2014 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Deuschle, Ulrich; Schüler, Julia; Schulz, Andreas; Schlüter, Thomas; Kinzel, Olaf; Abel, Ulrich; Kremoser, Claus
2012-01-01
The farnesoid X receptor (FXR) is expressed predominantly in tissues exposed to high levels of bile acids and controls bile acid and lipid homeostasis. FXR(-/-) mice develop hepatocellular carcinoma (HCC) and show an increased prevalence for intestinal malignancies, suggesting a role of FXR as a tumor suppressor in enterohepatic tissues. The N-myc downstream-regulated gene 2 (NDRG2) has been recognized as a tumor suppressor gene, which is downregulated in human hepatocellular carcinoma, colorectal carcinoma and many other malignancies.We show reduced NDRG2 mRNA in livers of FXR(-/-) mice compared to wild type mice and both, FXR and NDRG2 mRNAs, are reduced in human HCC compared to normal liver. Gene reporter assays and Chromatin Immunoprecipitation data support that FXR directly controls NDRG2 transcription via IR1-type element(s) identified in the first introns of the human, mouse and rat NDRG2 genes. NDRG2 mRNA was induced by non-steroidal FXR agonists in livers of mice and the magnitude of induction of NDRG2 mRNA in three different human hepatoma cell lines was increased when ectopically expressing human FXR. Growth and metastasis of SK-Hep-1 cells was strongly reduced by non-steroidal FXR agonists in an orthotopic liver xenograft tumor model. Ectopic expression of FXR in SK-Hep1 cells reduced tumor growth and metastasis potential of corresponding cells and increased the anti-tumor efficacy of FXR agonists, which may be partly mediated via increased NDRG2 expression. FXR agonists may show a potential in the prevention and/or treatment of human hepatocellular carcinoma, a devastating malignancy with increasing prevalence and limited therapeutic options.
Loss of CTRP1 disrupts glucose and lipid homeostasis
Rodriguez, Susana; Lei, Xia; Petersen, Pia S.; Tan, Stefanie Y.; Little, Hannah C.
2016-01-01
C1q/TNF-related protein 1 (CTRP1) is a conserved plasma protein of the C1q family with notable metabolic and cardiovascular functions. We have previously shown that CTRP1 infusion lowers blood glucose and that transgenic mice with elevated circulating CTRP1 are protected from diet-induced obesity and insulin resistance. Here, we used a genetic loss-of-function mouse model to address the requirement of CTRP1 for metabolic homeostasis. Despite similar body weight, food intake, and energy expenditure, Ctrp1 knockout (KO) mice fed a low-fat diet developed insulin resistance and hepatic steatosis. Impaired glucose metabolism in Ctrp1 KO mice was associated with increased hepatic gluconeogenic gene expression and decreased skeletal muscle glucose transporter glucose transporter 4 levels and AMP-activated protein kinase activation. Loss of CTRP1 enhanced the clearance of orally administered lipids but did not affect intestinal lipid absorption, hepatic VLDL-triglyceride export, or lipoprotein lipase activity. In contrast to triglycerides, hepatic cholesterol levels were reduced in Ctrp1 KO mice, paralleling the reduced expression of cholesterol synthesis genes. Contrary to expectations, when challenged with a high-fat diet to induce obesity, Ctrp1 KO mice had increased physical activity and reduced body weight, adiposity, and expression of lipid synthesis and fibrotic genes in adipose tissue; these phenotypes were linked to elevated FGF-21 levels. Due in part to increased hepatic AMP-activated protein kinase activation and reduced expression of lipid synthesis genes, Ctrp1 KO mice fed a high-fat diet also had reduced liver and serum triglyceride and cholesterol levels. Taken together, these results provide genetic evidence to establish the significance of CTRP1 to systemic energy metabolism in different metabolic and dietary contexts. PMID:27555298
Negative Regulation of NF-κB by the ING4 Tumor Suppressor in Breast Cancer
Byron, Sara A.; Min, Elizabeth; Thal, Tanya S.; Hostetter, Galen; Watanabe, Aprill T.; Azorsa, David O.; Little, Tanya H.; Tapia, Coya; Kim, Suwon
2012-01-01
Nuclear Factor kappa B (NF-κB) is a key mediator of normal immune response but contributes to aggressive cancer cell phenotypes when aberrantly activated. Here we present evidence that the Inhibitor of Growth 4 (ING4) tumor suppressor negatively regulates NF-κB in breast cancer. We surveyed primary breast tumor samples for ING4 protein expression using tissue microarrays and a newly generated antibody. We found that 34% of tumors expressed undetectable to low levels of the ING4 protein (n = 227). Tumors with low ING4 expression were frequently large in size, high grade, and lymph node positive, suggesting that down-regulation of ING4 may contribute to breast cancer progression. In the same tumor set, we found that low ING4 expression correlated with high levels of nuclear phosphorylated p65/RelA (p-p65), an activated form of NF-κB (p = 0.018). Fifty seven percent of ING4-low/p-p65-high tumors were lymph node-positive, indicating a high metastatic tendency of these tumors. Conversely, ectopic expression of ING4 inhibited p65/RelA phosphorylation in T47D and MCF7 breast cancer cells. In addition, ING4 suppressed PMA-induced cell invasion and NF-κB-target gene expression in T47D cells, indicating that ING4 inhibited NF-κB activity in breast cancer cells. Supportive of the ING4 function in the regulation of NF-κB-target gene expression, we found that ING4 expression levels inversely correlated with the expression of NF-κB-target genes in primary breast tumors by analyzing public gene expression datasets. Moreover, low ING4 expression or high expression of the gene signature composed of a subset of ING4-repressed NF-κB-target genes was associated with reduced disease-free survival in breast cancer patients. Taken together, we conclude that ING4 negatively regulates NF-κB in breast cancer. Consequently, down-regulation of ING4 leads to activation of NF-κB, contributing to tumor progression and reduced disease-free patient survival in breast cancer. PMID:23056468
Aging alters mRNA expression of amyloid transporter genes at the blood-brain barrier.
Osgood, Doreen; Miller, Miles C; Messier, Arthur A; Gonzalez, Liliana; Silverberg, Gerald D
2017-09-01
Decreased clearance of potentially toxic metabolites, due to aging changes, likely plays a significant role in the accumulation of amyloid-beta (Aβ) peptides and other macromolecules in the brain of the elderly and in the patients with Alzheimer's disease (AD). Aging is the single most important risk factor for AD development. Aβ transport receptor proteins expressed at the blood-brain barrier are significantly altered with age: the efflux transporters lipoprotein receptor-related protein 1 and P-glycoprotein are reduced, whereas the influx transporter receptor for advanced glycation end products is increased. These receptors play an important role in maintaining brain biochemical homeostasis. We now report that, in a rat model of aging, gene transcription is altered in aging, as measured by Aβ receptor gene messenger RNA (mRNA) at 3, 6, 9, 12, 15, 20, 30, and 36 months. Gene mRNA expression from isolated cerebral microvessels was measured by quantitative polymerase chain reaction. Lipoprotein receptor-related protein 1 and P-glycoprotein mRNA were significantly reduced in aging, and receptor for advanced glycation end products was increased, in parallel with the changes seen in receptor protein expression. Transcriptional changes appear to play a role in aging alterations in blood-brain barrier receptor expression and Aβ accumulation. Copyright © 2017 Elsevier Inc. All rights reserved.
Gli function is essential for motor neuron induction in zebrafish.
Vanderlaan, Gary; Tyurina, Oksana V; Karlstrom, Rolf O; Chandrasekhar, Anand
2005-06-15
The Gli family of zinc-finger transcription factors mediates Hedgehog (Hh) signaling in all vertebrates. However, their roles in ventral neural tube patterning, in particular motor neuron induction, appear to have diverged across species. For instance, cranial motor neurons are essentially lost in zebrafish detour (gli1(-)) mutants, whereas motor neuron development is unaffected in mouse single gli and some double gli knockouts. Interestingly, the expression of some Hh-regulated genes (ptc1, net1a, gli1) is mostly unaffected in the detour mutant hindbrain, suggesting that other Gli transcriptional activators may be involved. To better define the roles of the zebrafish gli genes in motor neuron induction and in Hh-regulated gene expression, we examined these processes in you-too (yot) mutants, which encode dominant repressor forms of Gli2 (Gli2(DR)), and following morpholino-mediated knockdown of gli1, gli2, and gli3 function. Motor neuron induction at all axial levels was reduced in yot (gli2(DR)) mutant embryos. In addition, Hh target gene expression at all axial levels except in rhombomere 4 was also reduced, suggesting an interference with the function of other Glis. Indeed, morpholino-mediated knockdown of Gli2(DR) protein in yot mutants led to a suppression of the defective motor neuron phenotype. However, gli2 knockdown in wild-type embryos generated no discernable motor neuron phenotype, while gli3 knockdown reduced motor neuron induction in the hindbrain and spinal cord. Significantly, gli2 or gli3 knockdown in detour (gli1(-)) mutants revealed roles for Gli2 and Gli3 activator functions in ptc1 expression and spinal motor neuron induction. Similarly, gli1 or gli3 knockdown in yot (gli2(DR)) mutants resulted in severe or complete loss of motor neurons, and of ptc1 and net1a expression, in the hindbrain and spinal cord. In addition, gli1 expression was greatly reduced in yot mutants following gli3, but not gli1, knockdown, suggesting that Gli3 activator function is specifically required for gli1 expression. These observations demonstrate that Gli activator function (encoded by gli1, gli2, and gli3) is essential for motor neuron induction and Hh-regulated gene expression in zebrafish.
Expression, Delivery and Function of Insecticidal Proteins Expressed by Recombinant Baculoviruses
Kroemer, Jeremy A.; Bonning, Bryony C.; Harrison, Robert L.
2015-01-01
Since the development of methods for inserting and expressing genes in baculoviruses, a line of research has focused on developing recombinant baculoviruses that express insecticidal peptides and proteins. These recombinant viruses have been engineered with the goal of improving their pesticidal potential by shortening the time required for infection to kill or incapacitate insect pests and reducing the quantity of crop damage as a consequence. A wide variety of neurotoxic peptides, proteins that regulate insect physiology, degradative enzymes, and other potentially insecticidal proteins have been evaluated for their capacity to reduce the survival time of baculovirus-infected lepidopteran host larvae. Researchers have investigated the factors involved in the efficient expression and delivery of baculovirus-encoded insecticidal peptides and proteins, with much effort dedicated to identifying ideal promoters for driving transcription and signal peptides that mediate secretion of the expressed target protein. Other factors, particularly translational efficiency of transcripts derived from recombinant insecticidal genes and post-translational folding and processing of insecticidal proteins, remain relatively unexplored. The discovery of RNA interference as a gene-specific regulation mechanism offers a new approach for improvement of baculovirus biopesticidal efficacy through genetic modification. PMID:25609310
Expression, delivery and function of insecticidal proteins expressed by recombinant baculoviruses.
Kroemer, Jeremy A; Bonning, Bryony C; Harrison, Robert L
2015-01-21
Since the development of methods for inserting and expressing genes in baculoviruses, a line of research has focused on developing recombinant baculoviruses that express insecticidal peptides and proteins. These recombinant viruses have been engineered with the goal of improving their pesticidal potential by shortening the time required for infection to kill or incapacitate insect pests and reducing the quantity of crop damage as a consequence. A wide variety of neurotoxic peptides, proteins that regulate insect physiology, degradative enzymes, and other potentially insecticidal proteins have been evaluated for their capacity to reduce the survival time of baculovirus-infected lepidopteran host larvae. Researchers have investigated the factors involved in the efficient expression and delivery of baculovirus-encoded insecticidal peptides and proteins, with much effort dedicated to identifying ideal promoters for driving transcription and signal peptides that mediate secretion of the expressed target protein. Other factors, particularly translational efficiency of transcripts derived from recombinant insecticidal genes and post-translational folding and processing of insecticidal proteins, remain relatively unexplored. The discovery of RNA interference as a gene-specific regulation mechanism offers a new approach for improvement of baculovirus biopesticidal efficacy through genetic modification.
Hiss, Manuel; Laule, Oliver; Meskauskiene, Rasa M; Arif, Muhammad A; Decker, Eva L; Erxleben, Anika; Frank, Wolfgang; Hanke, Sebastian T; Lang, Daniel; Martin, Anja; Neu, Christina; Reski, Ralf; Richardt, Sandra; Schallenberg-Rüdinger, Mareike; Szövényi, Peter; Tiko, Theodhor; Wiedemann, Gertrud; Wolf, Luise; Zimmermann, Philip; Rensing, Stefan A
2014-08-01
The moss Physcomitrella patens is an important model organism for studying plant evolution, development, physiology and biotechnology. Here we have generated microarray gene expression data covering the principal developmental stages, culture forms and some environmental/stress conditions. Example analyses of developmental stages and growth conditions as well as abiotic stress treatments demonstrate that (i) growth stage is dominant over culture conditions, (ii) liquid culture is not stressful for the plant, (iii) low pH might aid protoplastation by reduced expression of cell wall structure genes, (iv) largely the same gene pool mediates response to dehydration and rehydration, and (v) AP2/EREBP transcription factors play important roles in stress response reactions. With regard to the AP2 gene family, phylogenetic analysis and comparison with Arabidopsis thaliana shows commonalities as well as uniquely expressed family members under drought, light perturbations and protoplastation. Gene expression profiles for P. patens are available for the scientific community via the easy-to-use tool at https://www.genevestigator.com. By providing large-scale expression profiles, the usability of this model organism is further enhanced, for example by enabling selection of control genes for quantitative real-time PCR. Now, gene expression levels across a broad range of conditions can be accessed online for P. patens. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.
Transcriptional response of Pasteurella multocida to defined iron sources.
Paustian, Michael L; May, Barbara J; Cao, Dongwei; Boley, Daniel; Kapur, Vivek
2002-12-01
Pasteurella multocida was grown in iron-free chemically defined medium supplemented with hemoglobin, transferrin, ferritin, and ferric citrate as iron sources. Whole-genome DNA microarrays were used to monitor global gene expression over seven time points after the addition of the defined iron source to the medium. This resulted in a set of data containing over 338,000 gene expression observations. On average, 12% of P. multocida genes were differentially expressed under any single condition. A majority of these genes encoded P. multocida proteins that were involved in either transport and binding or were annotated as hypothetical proteins. Several trends are evident when the data from different iron sources are compared. In general, only two genes (ptsN and sapD) were expressed at elevated levels under all of the conditions tested. The results also show that genes with increased expression in the presence of hemoglobin did not respond to transferrin or ferritin as an iron source. Correspondingly, genes with increased expression in the transferrin and ferritin experiments were expressed at reduced levels when hemoglobin was supplied as the sole iron source. Finally, the data show that genes that were most responsive to the presence of ferric citrate did not follow a trend similar to that of the other iron sources, suggesting that different pathways respond to inorganic or organic sources of iron in P. multocida. Taken together, our results demonstrate that unique subsets of P. multocida genes are expressed in response to different iron sources and that many of these genes have yet to be functionally characterized.
Terragni, Jolyon; Zhang, Guoqiang; Sun, Zhiyi; Pradhan, Sriharsa; Song, Lingyun; Crawford, Gregory E; Lacey, Michelle; Ehrlich, Melanie
2014-01-01
Notch intercellular signaling is critical for diverse developmental pathways and for homeostasis in various types of stem cells and progenitor cells. Because Notch gene products need to be precisely regulated spatially and temporally, epigenetics is likely to help control expression of Notch signaling genes. Reduced representation bisulfite sequencing (RRBS) indicated significant hypomethylation in myoblasts, myotubes, and skeletal muscle vs. many nonmuscle samples at intragenic or intergenic regions of the following Notch receptor or ligand genes: NOTCH1, NOTCH2, JAG2, and DLL1. An enzymatic assay of sites in or near these genes revealed unusually high enrichment of 5-hydroxymethylcytosine (up to 81%) in skeletal muscle, heart, and cerebellum. Epigenetics studies and gene expression profiles suggest that hypomethylation and/or hydroxymethylation help control expression of these genes in heart, brain, myoblasts, myotubes, and within skeletal muscle myofibers. Such regulation could promote cell renewal, cell maintenance, homeostasis, and a poised state for repair of tissue damage. PMID:24670287
Analysis of hepatic gene transcription in mice expressing insulin-insensitive GSK3
2005-01-01
GSK3 (glycogen synthase kinase-3) regulation is proposed to play a key role in the hormonal control of many cellular processes. Inhibition of GSK3 in animal models of diabetes leads to normalization of blood glucose levels, while high GSK3 activity has been reported in Type II diabetes. Insulin inhibits GSK3 by promoting phosphorylation of a serine residue (Ser-21 in GSK3α, Ser-9 in GSK3β), thereby relieving GSK3 inhibition of glycogen synthesis in muscle. GSK3 inhibition in liver reduces expression of the gluconeogenic genes PEPCK (phosphoenolpyruvate carboxykinase), G6Pase (glucose-6-phosphatase), as well as IGFBP1 (insulin-like growth factor binding protein-1). Overexpression of GSK3 in cells antagonizes insulin regulation of these genes. In the present study we demonstrate that regulation of these three genes by feeding is normal in mice that express insulin-insensitive GSK3. Therefore inactivation of GSK3 is not a prerequisite for insulin repression of these genes, despite the previous finding that GSK3 activity is absolutely required for maintaining their expression. Interestingly, insulin injection of wild-type mice, which activates PKB (protein kinase B) and inhibits GSK3 to a greater degree than feeding (50% versus 25%), does not repress these genes. We suggest for the first time that although pharmacological inhibition of GSK3 reduces hepatic glucose production even in insulin-resistant states, feeding can repress the gluconeogenic genes without inhibiting GSK3. PMID:16176184
20-Hydroxyecdysone upregulates Atg genes to induce autophagy in the Bombyx fat body.
Tian, Ling; Ma, Li; Guo, Enen; Deng, Xiaojuan; Ma, Sanyuan; Xia, Qingyou; Cao, Yang; Li, Sheng
2013-08-01
Autophagy is finely regulated at multiple levels and plays crucial roles in development and disease. In the fat body of the silkworm, Bombyx mori, autophagy occurs and Atg gene expression peaks during the nonfeeding molting and pupation stages when the steroid hormone (20-hydroxyecdysone; 20E) is high. Injection of 20E into the feeding larvae upregulated Atg genes and reduced TORC1 activity resulting in autophagy induction in the fat body. Conversely, RNAi knockdown of the 20E receptor partner (USP) or targeted overexpression of a dominant negative mutant of the 20E receptor (EcR (DN) ) in the larval fat body reduced autophagy and downregulated the Atg genes, confirming the importance of 20E-induction of Atg gene expression during pupation. Moreover, in vitro treatments of the larval fat body with 20E upregulated the Atg genes. Five Atg genes were potentially 20E primary-responsive, and a 20E response element was identified in the Atg1 (ortholog of human ULK1) promoter region. Furthermore, RNAi knockdown of 4 key genes (namely Br-C, E74, HR3 and βftz-F1) in the 20E-triggered transcriptional cascade reduced autophagy and downregulated Atg genes to different levels. Taken together, we conclude that in addition to blocking TORC1 activity for autophagosome initiation, 20E upregulates Atg genes to induce autophagy in the Bombyx fat body.
20-hydroxyecdysone upregulates Atg genes to induce autophagy in the Bombyx fat body
Tian, Ling; Ma, Li; Guo, Enen; Deng, Xiaojuan; Ma, Sanyuan; Xia, Qingyou; Cao, Yang; Li, Sheng
2013-01-01
Autophagy is finely regulated at multiple levels and plays crucial roles in development and disease. In the fat body of the silkworm, Bombyx mori, autophagy occurs and Atg gene expression peaks during the nonfeeding molting and pupation stages when the steroid hormone (20-hydroxyecdysone; 20E) is high. Injection of 20E into the feeding larvae upregulated Atg genes and reduced TORC1 activity resulting in autophagy induction in the fat body. Conversely, RNAi knockdown of the 20E receptor partner (USP) or targeted overexpression of a dominant negative mutant of the 20E receptor (EcRDN) in the larval fat body reduced autophagy and downregulated the Atg genes, confirming the importance of 20E-induction of Atg gene expression during pupation. Moreover, in vitro treatments of the larval fat body with 20E upregulated the Atg genes. Five Atg genes were potentially 20E primary-responsive, and a 20E response element was identified in the Atg1 (ortholog of human ULK1) promoter region. Furthermore, RNAi knockdown of 4 key genes (namely Br-C, E74, HR3 and βftz-F1) in the 20E-triggered transcriptional cascade reduced autophagy and downregulated Atg genes to different levels. Taken together, we conclude that in addition to blocking TORC1 activity for autophagosome initiation, 20E upregulates Atg genes to induce autophagy in the Bombyx fat body. PMID:23674061
Huang, Ke jian; Wu, Wei dong; Jiang, Tao; Cao, Jun; Feng, Zhen zhong; Qiu, Zheng jun
2011-01-01
Aims Transducer and activator of transcription-3 (STAT3) plays an important role in tumor cell invasion and metastasis. The aim of the present study was to investigate the effects of STAT3 knockdown in nude mouse xenografts of pancreatic cancer cells and underlying gene expression. Methods A STAT3 shRNA lentiviral vector was constructed and infected into SW1990 cells. qRT-PCR and western immunoblot were performed to detect gene expression. Nude mouse xenograft assays were used to assess changes in phenotypes of these stable cells in vivo. HE staining was utilized to evaluate tumor cell invasion and immunohistochemistry was performed to analyze gene expression. Results STAT3 shRNA successfully silenced expression of STAT3 mRNA and protein in SW1990 cells compared to control cells. Growth rate of the STAT3-silenced tumor cells in nude mice was significantly reduced compared to in the control vector tumors and parental cells-generated tumors. Tumor invasion into the vessel and muscle were also suppressed in the STAT3-silenced tumors compared to controls. Collagen IV expression was complete and continuous surrounding the tumors of STAT3-silenced SW1990 cells, whereas collagen IV expression was incomplete and discontinuous surrounding the control tumors. Moreover, microvessel density was significantly lower in STAT3-silenced tumors than parental or control tumors of SW1990 cells. In addition, MMP-7 expression was reduced in STAT3-silenced tumors compared to parental SW1990 xenografts and controls. In contrast, expression of IL-1β and IgT7α was not altered. Conclusion These data clearly demonstrate that STAT3 plays an important role in regulation of tumor growth, invasion, and angiogenesis, which could be act by reducing MMP-7 expression in pancreatic cancer cells. PMID:21991388
Zhang, Bo; Tieman, Denise M; Jiao, Chen; Xu, Yimin; Chen, Kunsong; Fei, Zhangjun; Giovannoni, James J; Klee, Harry J
2016-11-01
Commercial tomatoes are widely perceived by consumers as lacking flavor. A major part of that problem is a postharvest handling system that chills fruit. Low-temperature storage is widely used to slow ripening and reduce decay. However, chilling results in loss of flavor. Flavor-associated volatiles are sensitive to temperatures below 12 °C, and their loss greatly reduces flavor quality. Here, we provide a comprehensive view of the effects of chilling on flavor and volatiles associated with consumer liking. Reduced levels of specific volatiles are associated with significant reductions in transcripts encoding key volatile synthesis enzymes. Although expression of some genes critical to volatile synthesis recovers after a return to 20 °C, some genes do not. RNAs encoding transcription factors essential for ripening, including RIPENING INHIBITOR (RIN), NONRIPENING, and COLORLESS NONRIPENING are reduced in response to chilling and may be responsible for reduced transcript levels in many downstream genes during chilling. Those reductions are accompanied by major changes in the methylation status of promoters, including RIN Methylation changes are transient and may contribute to the fidelity of gene expression required to provide maximal beneficial environmental response with minimal tangential influence on broader fruit developmental biology.
Zhang, Qingyang
2018-05-16
Differential co-expression analysis, as a complement of differential expression analysis, offers significant insights into the changes in molecular mechanism of different phenotypes. A prevailing approach to detecting differentially co-expressed genes is to compare Pearson's correlation coefficients in two phenotypes. However, due to the limitations of Pearson's correlation measure, this approach lacks the power to detect nonlinear changes in gene co-expression which is common in gene regulatory networks. In this work, a new nonparametric procedure is proposed to search differentially co-expressed gene pairs in different phenotypes from large-scale data. Our computational pipeline consisted of two main steps, a screening step and a testing step. The screening step is to reduce the search space by filtering out all the independent gene pairs using distance correlation measure. In the testing step, we compare the gene co-expression patterns in different phenotypes by a recently developed edge-count test. Both steps are distribution-free and targeting nonlinear relations. We illustrate the promise of the new approach by analyzing the Cancer Genome Atlas data and the METABRIC data for breast cancer subtypes. Compared with some existing methods, the new method is more powerful in detecting nonlinear type of differential co-expressions. The distance correlation screening can greatly improve computational efficiency, facilitating its application to large data sets.
Arnardottir, Erna S.; Nikonova, Elena V.; Shockley, Keith R.; Podtelezhnikov, Alexei A.; Anafi, Ron C.; Tanis, Keith Q.; Maislin, Greg; Stone, David J.; Renger, John J.; Winrow, Christopher J.; Pack, Allan I.
2014-01-01
Study Objectives: To address whether changes in gene expression in blood cells with sleep loss are different in individuals resistant and sensitive to sleep deprivation. Design: Blood draws every 4 h during a 3-day study: 24-h normal baseline, 38 h of continuous wakefulness and subsequent recovery sleep, for a total of 19 time-points per subject, with every 2-h psychomotor vigilance task (PVT) assessment when awake. Setting: Sleep laboratory. Participants: Fourteen subjects who were previously identified as behaviorally resistant (n = 7) or sensitive (n = 7) to sleep deprivation by PVT. Intervention: Thirty-eight hours of continuous wakefulness. Measurements and Results: We found 4,481 unique genes with a significant 24-h diurnal rhythm during a normal sleep-wake cycle in blood (false discovery rate [FDR] < 5%). Biological pathways were enriched for biosynthetic processes during sleep. After accounting for circadian effects, two genes (SREBF1 and CPT1A, both involved in lipid metabolism) exhibited small, but significant, linear changes in expression with the duration of sleep deprivation (FDR < 5%). The main change with sleep deprivation was a reduction in the amplitude of the diurnal rhythm of expression of normally cycling probe sets. This reduction was noticeably higher in behaviorally resistant subjects than sensitive subjects, at any given P value. Furthermore, blood cell type enrichment analysis showed that the expression pattern difference between sensitive and resistant subjects is mainly found in cells of myeloid origin, such as monocytes. Conclusion: Individual differences in behavioral effects of sleep deprivation are associated with differences in diurnal amplitude of gene expression for genes that show circadian rhythmicity. Citation: Arnardottir ES, Nikonova EV, Shockley KR, Podtelezhnikov AA, Anafi RC, Tanis KQ, Maislin G, Stone DJ, Renger JJ, Winrow CJ, Pack AI. Blood-gene expression reveals reduced circadian rhythmicity in individuals resistant to sleep deprivation. SLEEP 2014;37(10):1589-1600. PMID:25197809
Fleming, J V; Hay, S M; Harries, D N; Rees, W D
1998-01-01
The growth-arrest genes (gas and gadd) are widely expressed during mammalian embryogenesis and may be useful as markers of nutritional stress in the embryo. F9 embryonal carcinoma cells have been used to characterize the effect of serum or amino acid deficiency on growth-arrest gene expression in a differentiating embryonic cell. The differentiation markers, homeobox B2 (HoxB2), collagen type IV and laminin B2, were not induced by growth arrest. Treatment with all-trans retinoic acid (RA) produced a dose-dependent increase in alkaline phosphatase activity, which was unchanged in lysine-deficient medium and reduced in low-serum medium. Low-serum medium also reduced HoxB2 expression. There was a transient 2-6-fold increase in mRNAs for C/EBP-beta, gadd153/CHOP-10 and gas5 genes 24 h after transfer to amino-acid-deficient media. The mRNAs for the gas2 and gas6 genes began to rise slowly by 5-10-fold after a delay of approx. 24 h. The transient increases did not occur in low-serum medium where there was a much smaller and slower increase. Differentiation caused 1-2-fold increases in gas2, gas3 and gas6 mRNA levels. The transient overexpression of gas5, gadd153/CHOP-10 and CCAAT-enhancer-binding protein-beta, and the later expression of gas6 mRNAs in response to amino acid deficiency, were not affected by differentiation. RA treatment increased the expression of gas3 and caused gas2 to be transiently overexpressed in amino-acid-deficient medium. Differentiation in serum-deficient medium did not significantly alter the levels of the growth-arrest gene mRNAs. These results show that in F9 cells the growth-arrest genes are expressed sequentially as a result of nutrient stress. PMID:9461558
Fleming, J V; Hay, S M; Harries, D N; Rees, W D
1998-02-15
The growth-arrest genes (gas and gadd) are widely expressed during mammalian embryogenesis and may be useful as markers of nutritional stress in the embryo. F9 embryonal carcinoma cells have been used to characterize the effect of serum or amino acid deficiency on growth-arrest gene expression in a differentiating embryonic cell. The differentiation markers, homeobox B2 (HoxB2), collagen type IV and laminin B2, were not induced by growth arrest. Treatment with all-trans retinoic acid (RA) produced a dose-dependent increase in alkaline phosphatase activity, which was unchanged in lysine-deficient medium and reduced in low-serum medium. Low-serum medium also reduced HoxB2 expression. There was a transient 2-6-fold increase in mRNAs for C/EBP-beta, gadd153/CHOP-10 and gas5 genes 24 h after transfer to amino-acid-deficient media. The mRNAs for the gas2 and gas6 genes began to rise slowly by 5-10-fold after a delay of approx. 24 h. The transient increases did not occur in low-serum medium where there was a much smaller and slower increase. Differentiation caused 1-2-fold increases in gas2, gas3 and gas6 mRNA levels. The transient overexpression of gas5, gadd153/CHOP-10 and CCAAT-enhancer-binding protein-beta, and the later expression of gas6 mRNAs in response to amino acid deficiency, were not affected by differentiation. RA treatment increased the expression of gas3 and caused gas2 to be transiently overexpressed in amino-acid-deficient medium. Differentiation in serum-deficient medium did not significantly alter the levels of the growth-arrest gene mRNAs. These results show that in F9 cells the growth-arrest genes are expressed sequentially as a result of nutrient stress.
Hind, Sarah R; Pulliam, Sarah E; Veronese, Paola; Shantharaj, Deepak; Nazir, Azka; Jacobs, Nekaiya S; Stratmann, Johannes W
2011-02-01
The COP9 signalosome (CSN) is a multi-protein complex that regulates the activities of cullin-RING E3 ubiquitin ligases (CRLs). CRLs ubiquitinate proteins in order to target them for proteasomal degradation. The CSN is required for proper plant development. Here we show that the CSN also has a profound effect on plant defense responses. Silencing of genes for CSN subunits in tomato plants resulted in a mild morphological phenotype and reduced expression of wound-responsive genes in response to mechanical wounding, attack by Manduca sexta larvae, and Prosystemin over-expression. In contrast, expression of pathogenesis-related genes was increased in a stimulus-independent manner in these plants. The reduced wound response in CSN-silenced plants corresponded with reduced synthesis of jasmonic acid (JA), but levels of salicylic acid (SA) were unaltered. As a consequence, these plants exhibited reduced resistance against herbivorous M. sexta larvae and the necrotrophic fungal pathogen Botrytis cinerea. In contrast, susceptibility to tobacco mosaic virus (TMV) was not altered in CSN-silenced plants. These data demonstrate that the CSN orchestrates not only plant development but also JA-dependent plant defense responses. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.
Competitive Performance of Transgenic Wheat Resistant to Powdery Mildew
Kalinina, Olena; Zeller, Simon L.; Schmid, Bernhard
2011-01-01
Genetically modified (GM) plants offer an ideal model system to study the influence of single genes that confer constitutive resistance to pathogens on the ecological behaviour of plants. We used phytometers to study competitive interactions between GM lines of spring wheat Triticum aestivum carrying such genes and control lines. We hypothesized that competitive performance of GM lines would be reduced due to enhanced transgene expression under pathogen levels typically encountered in the field. The transgenes pm3b from wheat (resistance against powdery mildew Blumeria graminis) or chitinase and glucanase genes from barley (resistance against fungi in general) were introduced with the ubiquitin promoter from maize (pm3b and chitinase genes) or the actin promoter from rice (glucanase gene). Phytometers of 15 transgenic and non-transgenic wheat lines were transplanted as seedlings into plots sown with the same 15 lines as competitive environments and subject to two soil nutrient levels. Pm3b lines had reduced mildew incidence compared with control lines. Chitinase and chitinase/glucanase lines showed the same high resistance to mildew as their control in low-nutrient treatment and slightly lower mildew rates than the control in high-nutrient environment. Pm3b lines were weaker competitors than control lines. This resulted in reduced yield and seed number. The Pm3b line with the highest transgene expression had 53.2% lower yield than the control whereas the Pm3b line which segregated in resistance and had higher mildew rates showed only minor costs under competition. The line expressing both chitinase and glucanase genes also showed reduced yield and seed number under competition compared with its control. Our results suggest that single transgenes conferring constitutive resistance to pathogens can have ecological costs and can weaken plant competitiveness even in the presence of the pathogen. The magnitude of these costs appears related to the degree of expression of the transgenes. PMID:22132219
Fenske, Myles P.; Hewett Hazelton, Kristen D.; Hempton, Andrew K.; Shim, Jae Sung; Yamamoto, Breanne M.; Riffell, Jeffrey A.; Imaizumi, Takato
2015-01-01
Flowers present a complex display of signals to attract pollinators, including the emission of floral volatiles. Volatile emission is highly regulated, and many species restrict emissions to specific times of the day. This rhythmic emission of scent is regulated by the circadian clock; however, the mechanisms have remained unknown. In Petunia hybrida, volatile emissions are dominated by products of the floral volatile benzenoid/phenylpropanoid (FVBP) metabolic pathway. Here we demonstrate that the circadian clock gene P. hybrida LATE ELONGATED HYPOCOTYL (LHY; PhLHY) regulates the daily expression patterns of the FVBP pathway genes and floral volatile production. PhLHY expression peaks in the morning, antiphasic to the expression of P. hybrida GIGANTEA (PhGI), the master scent regulator ODORANT1 (ODO1), and many other evening-expressed FVBP genes. Overexpression phenotypes of PhLHY in Arabidopsis caused an arrhythmic clock phenotype, which resembles those of LHY overexpressors. In Petunia, constitutive expression of PhLHY depressed the expression levels of PhGI, ODO1, evening-expressed FVBP pathway genes, and FVBP emission in flowers. Additionally, in the Petunia lines in which PhLHY expression was reduced, the timing of peak expression of PhGI, ODO1, and the FVBP pathway genes advanced to the morning. Moreover, PhLHY protein binds to cis-regulatory elements called evening elements that exist in promoters of ODO1 and other FVBP genes. Thus, our results imply that PhLHY directly sets the timing of floral volatile emission by restricting the expression of ODO1 and other FVBP genes to the evening in Petunia. PMID:26124104
Fenske, Myles P; Hewett Hazelton, Kristen D; Hempton, Andrew K; Shim, Jae Sung; Yamamoto, Breanne M; Riffell, Jeffrey A; Imaizumi, Takato
2015-08-04
Flowers present a complex display of signals to attract pollinators, including the emission of floral volatiles. Volatile emission is highly regulated, and many species restrict emissions to specific times of the day. This rhythmic emission of scent is regulated by the circadian clock; however, the mechanisms have remained unknown. In Petunia hybrida, volatile emissions are dominated by products of the floral volatile benzenoid/phenylpropanoid (FVBP) metabolic pathway. Here we demonstrate that the circadian clock gene P. hybrida LATE ELONGATED HYPOCOTYL (LHY; PhLHY) regulates the daily expression patterns of the FVBP pathway genes and floral volatile production. PhLHY expression peaks in the morning, antiphasic to the expression of P. hybrida GIGANTEA (PhGI), the master scent regulator ODORANT1 (ODO1), and many other evening-expressed FVBP genes. Overexpression phenotypes of PhLHY in Arabidopsis caused an arrhythmic clock phenotype, which resembles those of LHY overexpressors. In Petunia, constitutive expression of PhLHY depressed the expression levels of PhGI, ODO1, evening-expressed FVBP pathway genes, and FVBP emission in flowers. Additionally, in the Petunia lines in which PhLHY expression was reduced, the timing of peak expression of PhGI, ODO1, and the FVBP pathway genes advanced to the morning. Moreover, PhLHY protein binds to cis-regulatory elements called evening elements that exist in promoters of ODO1 and other FVBP genes. Thus, our results imply that PhLHY directly sets the timing of floral volatile emission by restricting the expression of ODO1 and other FVBP genes to the evening in Petunia.
Darlington, Todd M; McCarthy, Riley D; Cox, Ryan J; Miyamoto-Ditmon, Jill; Gallego, Xavier; Ehringer, Marissa A
2016-01-01
Hedonic substitution, where wheel running reduces voluntary ethanol consumption has been observed in prior studies. Here we replicate and expand on previous work showing that mice decrease voluntary ethanol consumption and preference when given access to a running wheel. While earlier work has been limited mainly to behavioral studies, here we assess the underlying molecular mechanisms that may account for this interaction. From four groups of female C57BL/6J mice (control, access to two-bottle choice ethanol, access to a running wheel, and access to both two-bottle choice ethanol and a running wheel), mRNA-sequencing of the striatum identified differential gene expression. Many genes in ethanol preference quantitative trait loci were differentially expressed due to running. Furthermore, we conducted Weighted Gene Co-expression Network Analysis and identified gene networks corresponding to each effect behavioral group. Candidate genes for mediating the behavioral interaction between ethanol consumption and wheel running include multiple potassium channel genes, Oprm1, Prkcg, Stxbp1, Crhr1, Gabra3, Slc6a13, Stx1b, Pomc, Rassf5, Polr2a, and Camta2. After observing an overlap of many genes and functional groups previously identified in studies of initial sensitivity to ethanol, we hypothesized that wheel running may induce a change in sensitivity, thereby affecting ethanol consumption. A behavioral study examining Loss of Righting Reflex to ethanol following exercise trended toward supporting this hypothesis. These data provide a rich resource for future studies that may better characterize the observed transcriptional changes in gene networks in response to ethanol consumption and wheel running. PMID:27063791
Daly, Paul; van Munster, Jolanda M; Blythe, Martin J; Ibbett, Roger; Kokolski, Matt; Gaddipati, Sanyasi; Lindquist, Erika; Singan, Vasanth R; Barry, Kerrie W; Lipzen, Anna; Ngan, Chew Yee; Petzold, Christopher J; Chan, Leanne Jade G; Pullan, Steven T; Delmas, Stéphane; Waldron, Paul R; Grigoriev, Igor V; Tucker, Gregory A; Simmons, Blake A; Archer, David B
2017-01-01
The capacity of fungi, such as Aspergillus niger, to degrade lignocellulose is harnessed in biotechnology to generate biofuels and high-value compounds from renewable feedstocks. Most feedstocks are currently pretreated to increase enzymatic digestibility: improving our understanding of the transcriptomic responses of fungi to pretreated lignocellulosic substrates could help to improve the mix of activities and reduce the production costs of commercial lignocellulose saccharifying cocktails. We investigated the responses of A. niger to untreated, ionic liquid and hydrothermally pretreated wheat straw over a 5-day time course using RNA-seq and targeted proteomics. The ionic liquid pretreatment altered the cellulose crystallinity while retaining more of the hemicellulosic sugars than the hydrothermal pretreatment. Ionic liquid pretreatment of straw led to a dynamic induction and repression of genes, which was correlated with the higher levels of pentose sugars saccharified from the ionic liquid-pretreated straw. Hydrothermal pretreatment of straw led to reduced levels of transcripts of genes encoding carbohydrate-active enzymes as well as the derived proteins and enzyme activities. Both pretreatments abolished the expression of a large set of genes encoding pectinolytic enzymes. These reduced levels could be explained by the removal of parts of the lignocellulose by the hydrothermal pretreatment. The time course also facilitated identification of temporally limited gene induction patterns. The presented transcriptomic and biochemical datasets demonstrate that pretreatments caused modifications of the lignocellulose, to both specific structural features as well as the organisation of the overall lignocellulosic structure, that determined A. niger transcript levels. The experimental setup allowed reliable detection of substrate-specific gene expression patterns as well as hitherto non-expressed genes. Our data suggest beneficial effects of using untreated and IL-pretreated straw, but not HT-pretreated straw, as feedstock for CAZyme production.
Circadian rhythm of the Leydig cells endocrine function is attenuated during aging.
Baburski, Aleksandar Z; Sokanovic, Srdjan J; Bjelic, Maja M; Radovic, Sava M; Andric, Silvana A; Kostic, Tatjana S
2016-01-01
Although age-related hypofunction of Leydig cells is well illustrated across species, its circadian nature has not been analyzed. Here we describe changes in circadian behavior in Leydig cells isolated from adult (3-month) and aged (18- and 24-month) rats. The results showed reduced circadian pattern of testosterone secretion in both groups of aged rats despite unchanged LH circadian secretion. Although arrhythmic, the expression of Insl3, another secretory product of Leydig cells, was decreased in both groups. Intracellular cAMP and most important steroidogenic genes (Star, Cyp11a1 and Cyp17a1), together with positive steroidogenic regulator (Nur77), showed preserved circadian rhythm in aging although rhythm robustness and expression level were attenuated in both aged groups. Aging compromised cholesterol mobilization and uptake by Leydig cells: the oscillatory transcription pattern of genes encoding HDL-receptor (Scarb1), hormone sensitive lipase (Lipe, enzyme that converts cholesterol esters from lipid droplets into free cholesterol) and protein responsible for forming the cholesterol esters (Soat2) were flattened in 24-month group. The majority of examined clock genes displayed circadian behavior in expression but only a few of them (Bmal1, Per1, Per2, Per3 and Rev-Erba) were reduced in 24-month-old group. Furthermore, aging reduced oscillatory expression pattern of Sirt1 and Nampt, genes encoding key enzymes that connect cellular metabolism and circadian network. Altogether circadian amplitude of Leydig cell's endocrine function decreased during aging. The results suggest that clock genes are more resistant to aging than genes involved in steroidogenesis supporting the hypothesis about peripheral clock involvement in rhythm maintenance during aging. Copyright © 2015 Elsevier Inc. All rights reserved.
Guo, Zhaojiang; Kang, Shi; Zhu, Xun; Xia, Jixing; Wu, Qingjun; Wang, Shaoli; Xie, Wen; Zhang, Youjun
2015-04-01
Biopesticides or transgenic crops based on Cry toxins from the soil bacterium Bacillus thuringiensis (Bt) effectively control agricultural insect pests. The sustainable use of Bt biopesticides and Bt crops is threatened, however, by the development of Cry resistance in the target pests. The diamondback moth, Plutella xylostella (L.), is the first pest that developed resistance to a Bt biopesticide in the field, and a recent study has shown that the resistance of P. xylostella to Cry1Ac is caused by a mutation in an ATP-binding cassette (ABC) transporter gene (ABCC2). In this study, we report that down-regulation of a novel ABC transporter gene from ABCG subfamily (Pxwhite) is associated with Cry1Ac resistance in P. xylostella. The full-length cDNA sequence of Pxwhite was cloned and analyzed. Spatial-temporal expression detection revealed that Pxwhite was expressed in all tissues and developmental stages, and highest expressed in Malpighian tubule tissue and in egg stage. Sequence variation analysis of Pxwhite indicated the absence of constant non-synonymous mutations between susceptible and resistant strains, whereas midgut transcript analysis showed that Pxwhite was remarkably reduced in all resistant strains and further reduced when larvae of the moderately resistant SZ-R strain were subjected to selection with Cry1Ac toxin. Furthermore, RNA interference (RNAi)-mediated suppression of Pxwhite gene expression significantly reduced larval susceptibility to Cry1Ac toxin, and genetic linkage analysis confirmed that down-regulation of Pxwhite gene is tightly linked to Cry1Ac resistance in P. xylostella. To our knowledge, this is the first report indicating that Pxwhite gene is involved in Cry1Ac resistance in P. xylostella. Copyright © 2015 Elsevier Ltd. All rights reserved.
Wang, Qi; Li, Jiancai; Hu, Lingfei; Zhang, Tongfang; Zhang, Guren; Lou, Yonggen
2013-07-01
KEY MESSAGE : Silencing OsMPK3 decreased elicited JA levels, which subsequently reduced levels of herbivore-induced trypsin protease inhibitors (TrypPIs) and improved the performance of SSB larvae, but did not influence BPH. Mitogen-activated protein kinases (MPKs) are known to play an important role in plant defense by transferring biotic and abiotic signals into programmed cellular responses. However, their functions in the herbivore-induced defense response in rice remain largely unknown. Here, we identified a MPK3 gene from rice, OsMPK3, and found that its expression levels were up-regulated in response to infestation by the larvae of the striped stem borer (SSB) (Chilo suppressalis), to mechanical wounding and to treatment with jasmonic acid (JA), but not to infestation by the brown planthopper (BPH) Nilaparvata lugens or to treatment with salicylic acid. Moreover, mechanical wounding and SSB infestation induced the expression of OsMPK3 strongly and quickly, whereas JA treatment induced the gene more weakly and slowly. Silencing OsMPK3 (ir-mpk3) reduced the expression of the gene by 50-70 %, decreased elicited levels of JA and diminished the expression of a lipoxygenase gene OsHI-LOX and an allene oxide synthase gene OsAOS1. The reduced JA signaling in ir-mpk3 plants decreased the levels of herbivore-induced trypsin protease inhibitors (TrypPIs) and improved the performance of SSB larvae, but did not influence BPH. Our findings suggest that the gene OsMPK3 responds early in herbivore-induced defense and can be regulated by rice plants to activate a specific and appropriate defense response to different herbivores.
Avci, Cigir Biray; Dodurga, Yavuz; Gundogdu, Gulsah; Caglar, Hasan Onur; Kucukatay, Vural; Gunduz, Cumhur; Satiroglu-Tufan, N Lale
2013-12-01
Neuroblastoma (NB), originating from neural crest cells, is the most common extracranial tumor of childhood. Retinoic acid (RA) which is the biological active form of vitamin A regulates differentiation of NB cells, and RA derivatives have been used for NB treatment. PPARα (peroxisome proliferator-activated receptor) plays an important role in the oxidation of fatty acids, carcinogenesis, and differentiation. URG4/URGCP gene is a proto-oncogene and that overexpression of URG4/URGCP is associated with metastasis and tumor recurrence in osteosarcoma. It has been known that URG4/URGCP gene is an overexpressed gene in hepatocellular carcinoma and gastric cancers. This study aims to detect gene expression patterns of PPARα and URG4/URGCP genes in SH-SY5Y NB cell line after RA treatment. Expressions levels of PPARα and URG4/URGCP genes were analyzed after RA treatment for reducing differentiation in SH-SY5Y NB cell line. To induce differentiation, the cells were treated with 10 μM RA in the dark for 3-10 days. Gene expression of URG4/URGCP and PPARα genes were presented as the yield of polymerase chain reaction (PCR) products from target genes compared with the yield of PCR products from the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene. SH-SY5Y cells possess small processes in an undifferentiated state, and after treatment with RA, the cells developed long neurites, resembling a neuronal phenotype. PPARα gene expression increased in RA-treated groups; URG4/URGCP gene expression decreased in SH-SY5Y cells after RA treatment compared with that in the control cells. NB cell differentiation might associate with PPARα and URG4/URGCP gene expression profile after RA treatment.
Hofmann, Alejandro; Gosemann, Jan-Hendrik; Takahashi, Toshiaki; Friedmacher, Florian; Duess, Johannes W; Puri, Prem
2014-08-01
Caveolin-1 (Cav-1) exerts major regulatory functions on intracellular signaling pathways originating at the plasma membrane. Cav-1 is a key regulator in adverse lung remodeling and the development of pulmonary hypertension (PH) regulating vasomotor tone through its ability to reduce nitric oxide (NO) production. This low-output endothelial NO synthase (eNOS) derived NO maintains normal pulmonary vascular homeostasis. Cav-1 deficiency leads to increased bioavailability of NO, which has been linked to increased nitrosative stress. Inhibition of eNOS reduced oxidant production and reversed PH, supporting the concept that Cav-1 regulation of eNOS activity is crucial to endothelial homeostasis in lungs. We designed this study to investigate the hypothesis that expression of Cav-1 is downregulated while eNOS expression is upregulated by the pulmonary endothelium in the nitrofen-induced congenital diaphragmatic hernia (CDH). Pregnant rats were exposed to nitrofen or vehicle on day 9.5 (D9.5). Fetuses were sacrificed on D21 and divided into nitrofen and control groups. Quantitative real-time polymerase chain reaction, Western blotting, and confocal immunofluorescence were performed to determine pulmonary gene expression levels and protein expression of Cav-1 and eNOS. Pulmonary Cav-1 gene expression levels were significantly decreased, while eNOS gene expression was significantly increased in nitrofen-induced CDH(+). Western blotting and confocal microscopy revealed decreased pulmonary Cav-1 protein expression, while eNOS protein expression was increased in CDH(+) compared to controls. The striking evidence of markedly decreased gene and protein expression of Cav-1 with concurrently increased eNOS gene and protein expression in the pulmonary vasculature suggests that activation of eNOS secondary to Cav-1 deficiency may play an important role in the pathogenesis of PH in the nitrofen-induced CDH. © 2014 Wiley Periodicals, Inc.
Araos, Patricio; Mondaca, David; Jalil, Jorge E; Yañez, Cristián; Novoa, Ulises; Mora, Italo; Ocaranza, María Paz
2016-12-01
Diuretics are current antihypertensive drugs since they reduce blood pressure and cardiovascular risk. Increased vascular tone is modulated in a relevant way by the RhoA/Rho-kinase (ROCK) pathway, by acting on vascular smooth muscle cell contraction. This pathway has also proremodeling vascular effects. There are few data on the role of diuretics on both vascular ROCK activation and on proremodeling effects. We assessed the effects of hydrochlorothiazide (HCTZ) and spironolactone (spiro) alone and in combination with the ROCK inhibitor fasudil (FAS) on ROCK activation, gene expression of proremodeling markers and on hypertrophy in the aortic wall of hypertensive rats. Deoxycorticosterone acetate (DOCA)-salt hypertensive rats (male, Sprague-Dawley) were randomized to the specific ROCK inhibitor FAS, HCTZ, spiro or the combinations of FAS/HCTZ or FAS/spiro for 3 weeks. At the end of the study, ROCK activation (by western blot), gene expression of proremodeling markers (by reverse transcription polymerase chain reaction, RT-PCR) and vascular hypertrophy (by morphometry) were determined in the aortic wall. All treatments significantly reduced blood pressure. In the DOCA rats the p-myosin phosphatase target protein-1 (MYPT1)/t-MYPT1 ratio, index of ROCK activation was higher by 2.8 fold (p < 0.05) compared with control rats. All treatments reduced ROCK activation in the aortic wall to control levels (p < 0.05). Besides, significantly increased protein levels of transforming growth factor β1 (TGF-β 1 ), gene expression of TGF-β 1 , connective tissue growth factor (CTGF), p22 phox and gp91 phox subunits of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, as well as increased media thickness and aortic media area/lumen area (AM/LA) in the untreated hypertensive rats were significantly reduced (p < 0.05) to control levels by all treatments. Similar effects were observed using both diuretics alone or in combination with FAS. In the aortic wall, both HCTZ and spiro in antihypertensive doses reduce ROCK activation, subsequent expression of genes that promote vascular remodeling and hypertrophy in this experimental model of hypertension. These effects could explain some of their clinical benefits in hypertensive patients. © The Author(s), 2016.
Araos, Patricio; Mondaca, David; Jalil, Jorge E.; Yañez, Cristián; Novoa, Ulises; Mora, Italo; Ocaranza, María Paz
2016-01-01
Background: Diuretics are current antihypertensive drugs since they reduce blood pressure and cardiovascular risk. Increased vascular tone is modulated in a relevant way by the RhoA/Rho-kinase (ROCK) pathway, by acting on vascular smooth muscle cell contraction. This pathway has also proremodeling vascular effects. There are few data on the role of diuretics on both vascular ROCK activation and on proremodeling effects. We assessed the effects of hydrochlorothiazide (HCTZ) and spironolactone (spiro) alone and in combination with the ROCK inhibitor fasudil (FAS) on ROCK activation, gene expression of proremodeling markers and on hypertrophy in the aortic wall of hypertensive rats. Methods: Deoxycorticosterone acetate (DOCA)-salt hypertensive rats (male, Sprague–Dawley) were randomized to the specific ROCK inhibitor FAS, HCTZ, spiro or the combinations of FAS/HCTZ or FAS/spiro for 3 weeks. At the end of the study, ROCK activation (by western blot), gene expression of proremodeling markers (by reverse transcription polymerase chain reaction, RT-PCR) and vascular hypertrophy (by morphometry) were determined in the aortic wall. Results: All treatments significantly reduced blood pressure. In the DOCA rats the p-myosin phosphatase target protein-1 (MYPT1)/t-MYPT1 ratio, index of ROCK activation was higher by 2.8 fold (p < 0.05) compared with control rats. All treatments reduced ROCK activation in the aortic wall to control levels (p < 0.05). Besides, significantly increased protein levels of transforming growth factor β1 (TGF-β1), gene expression of TGF-β1, connective tissue growth factor (CTGF), p22 phox and gp91 phox subunits of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, as well as increased media thickness and aortic media area/lumen area (AM/LA) in the untreated hypertensive rats were significantly reduced (p < 0.05) to control levels by all treatments. Similar effects were observed using both diuretics alone or in combination with FAS. Conclusions: In the aortic wall, both HCTZ and spiro in antihypertensive doses reduce ROCK activation, subsequent expression of genes that promote vascular remodeling and hypertrophy in this experimental model of hypertension. These effects could explain some of their clinical benefits in hypertensive patients. PMID:27587602
Adkins, Amy E.; Hack, Laura M.; Bigdeli, Tim B.; Williamson, Vernell S.; McMichael, G. Omari; Mamdani, Mohammed; Edwards, Alexis; Aliev, Fazil; Chan, Robin F.; Bhandari, Poonam; Raabe, Richard C.; Alaimo, Joseph T.; Blackwell, GinaMari G.; Moscati, Arden A.; Poland, Ryan S.; Rood, Benjamin; Patterson, Diana G.; Walsh, Dermot; Whitfield, John B.; Zhu, Gu; Montgomery, Grant W.; Henders, Anjali K.; Martin, Nicholas G.; Heath, Andrew C.; Madden, Pamela A.F.; Frank, Josef; Ridinger, Monika; Wodarz, Norbert; Soyka, Michael; Zill, Peter; Ising, Marcus; Nöthen, Markus M; Kiefer, Falk; Rietschel, Marcella; Gelernter, Joel; Sherva, Richard; Koesterer, Ryan; Almasy, Laura; Zhao, Hongyu; Kranzler, Henry R.; Farrer, Lindsay A.; Maher, Brion S.; Prescott, Carol A.; Dick, Danielle M.; Bacanu, Silviu A.; Mathies, Laura D.; Davies, Andrew G.; Vladimirov, Vladimir I.; Grotewiel, Mike; Bowers, M. Scott; Bettinger, Jill C.; Webb, Bradley T.; Miles, Michael F.; Kendler, Kenneth S.; Riley, Brien P.
2017-01-01
Background Alcohol Dependence (AD) shows evidence for genetic liability, but genes influencing risk remain largely unidentified. Methods We conducted a genomewide association study in 706 related AD cases and 1748 unscreened population controls from Ireland. We sought replication in 15,496 samples of European descent. We used model organisms to assess the role of orthologous genes in ethanol response behaviors. We tested one primate-specific gene for expression differences in case/control post-mortem brain tissue. Results We detected significant association in COL6A3 and suggestive association in two previously implicated loci, KLF12 and RYR3. None of these signals are significant in replication. A suggestive signal in the long noncoding RNA LOC339975 is significant in case:control meta-analysis, but not in a population sample. Knockdown of a COL6A3 ortholog in C. elegans reduced ethanol sensitivity. Col6a3 expression correlated with handling-induced convulsions in mice. Loss of function of the KLF12 ortholog in C. elegans impaired development of acute functional tolerance. Klf12 expression correlated with locomotor activation following ethanol injection in mice. Loss of function of the RYR3 ortholog reduced ethanol sensitivity in C. elegans and rapid tolerance in Drosophila. The ryanodine receptor antagonist dantrolene reduced motivation to self-administer ethanol in rats. Expression of LOC339975 does not differ between cases and controls but is reduced in carriers of the associated rs11726136 allele in nucleus accumbens. Conclusions We detect association between AD and COL6A3, KLF12, RYR3 and LOC339975. Despite non-replication of COL6A3, KLF12 and RYR3 signals, orthologs of these genes influence behavioral response to ethanol in model organisms, suggesting potential involvement in human ethanol response and AD liability. The associated LOC339975 allele may influence gene expression in human nucleus accumbens. Although the functions of long noncoding RNAs are poorly understood, there is mounting evidence implicating these genes in multiple brain functions and disorders. PMID:28226201
ATM-dependent DNA damage checkpoint functions regulate gene expression in human fibroblasts
Zhou, Tong; Chou, Jeff; Zhou, Yingchun; Simpson, Dennis A.; Cao, Feng; Bushel, Pierre R.; Paules, Richard S.; Kaufmann, William K.
2013-01-01
The relationships between profiles of global gene expression and DNA damage checkpoint functions were studied in cells from patients with ataxia telangiectasia (AT). Three telomerase-expressing AT fibroblast lines displayed the expected hypersensitivity to ionizing radiation (IR) and defects in DNA damage checkpoints. Profiles of global gene expression in AT cells were determined at 2, 6 and 24 h after treatment with 1.5 Gy IR or sham-treatment, and were compared to those previously recognized in normal human fibroblasts. Under basal conditions 160 genes or ESTs were differentially expressed in AT and normal fibroblasts, and these were associated by gene ontology with insulin-like growth factor binding and regulation of cell growth. Upon DNA damage, 1091 gene mRNAs were changed in at least two of the three AT cell lines. When compared with the 1811 genes changed in normal human fibroblasts after the same treatment, 715 were found in both AT and normal fibroblasts, including most genes categorized by gene ontology into cell cycle, cell growth and DNA damage response pathways. However, the IR-induced changes in these 715 genes in AT cells usually were delayed or attenuated in comparison to normal cells. The reduced change in DNA-damage-response genes and the attenuated repression of cell-cycle-regulated genes may account for the defects in cell cycle checkpoint function in AT cells. PMID:17699107
McGowan, Ian; Janocko, Laura; Burneisen, Shaun; Bhat, Anand; Richardson-Harman, Nicola
2015-01-01
To determine the intra- and inter-subject variability of mucosal cytokine gene expression in rectal biopsies from healthy volunteers and to screen cytokine and chemokine mRNA as potential biomarkers of mucosal inflammation. Rectal biopsies were collected from 8 participants (3 biopsies per participant) and 1 additional participant (10 biopsies). Quantitative reverse transcription polymerase chain reaction (RT-qPCR) was used to quantify IL-1β, IL-6, IL-12p40, IL-8, IFN-γ, MIP-1α, MIP-1β, RANTES, and TNF-α gene expression in the rectal tissue. The intra-assay, inter-biopsy and inter-subject variance was measured in the eight participants. Bootstrap re-sampling of the biopsy measurements was performed to determine the accuracy of gene expression data obtained for 10 biopsies obtained from one participant. Cytokines were both non-normalized and normalized using four reference genes (GAPDH, β-actin, β2 microglobulin, and CD45). Cytokine measurement accuracy was increased with the number of biopsy samples, per person; four biopsies were typically needed to produce a mean result within a 95% confidence interval of the subject's cytokine level approximately 80% of the time. Intra-assay precision (% geometric standard deviation) ranged between 8.2 and 96.9 with high variance between patients and even between different biopsies from the same patient. Variability was not greatly reduced with the use of reference genes to normalize data. The number of biopsy samples required to provide an accurate result varied by target although 4 biopsy samples per subject and timepoint, provided for >77% accuracy across all targets tested. Biopsies within the same subjects and between subjects had similar levels of variance while variance within a biopsy (intra-assay) was generally lower. Normalization of inflammatory cytokines against reference genes failed to consistently reduce variance. The accuracy and reliability of mRNA expression of inflammatory cytokines will set a ceiling on the ability of these measures to predict mucosal inflammation. Techniques to reduce variability should be developed within a larger cohort of individuals before normative reference values can be validated. Copyright © 2014 Elsevier Ltd. All rights reserved.
Sex differentiation of the male reproductive tract in mammals is driven, in part, by fetal androgen production. In utero, some phthalate esters (PEs) alter fetal Leydig cell differentiation, reducing the expression of several genes associated with steroid synthesis/transport, and...
USDA-ARS?s Scientific Manuscript database
Plums normally begin to flower and fruit three to seven years from seed. To shorten this generation time, early flowering plum genotypes were produced by transforming plum hypocotyls with the poplar (Populus trichocarpa) Flowering Locus T1 (PtFT1) gene. Ectopic expression of 35S::PtFT1 induced ear...
Utsumi, Yoshinori; Utsumi, Chikako; Tanaka, Maho; Ha, Vu The; Matsui, Akihiro; Takahashi, Satoshi; Seki, Motoaki
2017-01-01
Agrobacterium-mediated transformation is an important research tool for the genetic improvement of cassava. The induction of friable embryogenic callus (FEC) is considered as a key step in cassava transformation. In the present study, the media composition was optimized for enhancing the FEC induction, and the effect of the optimized medium on gene expression was evaluated. In relative comparison to MS medium, results demonstrated that using a medium with reducing nutrition (a 10-fold less concentration of nitrogen, potassium, and phosphate), the increased amount of vitamin B1 (10 mg/L) and the use of picrolam led to reprogram non-FEC to FEC. Gene expression analyses revealed that FEC on modified media increased the expression of genes related to the regulation of polysaccharide biosynthesis and breakdown of cell wall components in comparison to FEC on normal CIM media, whereas the gene expression associated with energy flux was not dramatically altered. It is hypothesized that we reprogram non-FEC to FEC under low nitrogen, potassium and phosphate and high vitamin B1. These findings were more effective in inducing FEC formation than the previous protocol. It might contribute to development of an efficient transformation strategy in cassava. PMID:28806727
Li, Liangtao; Miao, Ren; Bertram, Sophie; Jia, Xuan; Ward, Diane M.; Kaplan, Jerry
2012-01-01
Yeast respond to increased cytosolic iron by activating the transcription factor Yap5 increasing transcription of CCC1, which encodes a vacuolar iron importer. Using a genetic screen to identify genes involved in Yap5 iron sensing, we discovered that a mutation in SSQ1, which encodes a mitochondrial chaperone involved in iron-sulfur cluster synthesis, prevented expression of Yap5 target genes. We demonstrated that mutation or reduced expression of other genes involved in mitochondrial iron-sulfur cluster synthesis (YFH1, ISU1) prevented induction of the Yap5 response. We took advantage of the iron-dependent catalytic activity of Pseudaminobacter salicylatoxidans gentisate 1,2-dioxygenase expressed in yeast to measure changes in cytosolic iron. We determined that reductions in iron-sulfur cluster synthesis did not affect the activity of cytosolic gentisate 1,2-dioxygenase. We show that loss of activity of the cytosolic iron-sulfur cluster assembly complex proteins or deletion of cytosolic glutaredoxins did not reduce expression of Yap5 target genes. These results suggest that the high iron transcriptional response, as well as the low iron transcriptional response, senses iron-sulfur clusters. PMID:22915593
Fully moderated T-statistic for small sample size gene expression arrays.
Yu, Lianbo; Gulati, Parul; Fernandez, Soledad; Pennell, Michael; Kirschner, Lawrence; Jarjoura, David
2011-09-15
Gene expression microarray experiments with few replications lead to great variability in estimates of gene variances. Several Bayesian methods have been developed to reduce this variability and to increase power. Thus far, moderated t methods assumed a constant coefficient of variation (CV) for the gene variances. We provide evidence against this assumption, and extend the method by allowing the CV to vary with gene expression. Our CV varying method, which we refer to as the fully moderated t-statistic, was compared to three other methods (ordinary t, and two moderated t predecessors). A simulation study and a familiar spike-in data set were used to assess the performance of the testing methods. The results showed that our CV varying method had higher power than the other three methods, identified a greater number of true positives in spike-in data, fit simulated data under varying assumptions very well, and in a real data set better identified higher expressing genes that were consistent with functional pathways associated with the experiments.
Differential expression of genes during mastitis in Holstein-Zebu crossbreed dairy cows.
Fonseca, I; Antunes, G R; Paiva, D S; Lange, C C; Guimarães, S E F; Martins, M F
2011-07-05
Among the potential public health problems of animal production, infectious-contagious diseases stand out. Mastitis is among the main diseases affecting dairy cattle. One of the most promising options to reduce the problems caused by this disease, besides proper sanitary and management practices, is selective breeding of resistant animals. To shed light on the immune response mechanisms involved in the resistance/susceptibility phenotype to this disease, we quantified the relative expression of the genes IL-2, IL-6, IL-8, IL-12, IFN-γ, TNF-α, TLR-2, SEMA5A, and FEZL in cells of crossbreed dairy cows, divided into two groups, one healthy and the other suffering from clinical mastitis. Total RNA was extracted from the cells in the milk from the animals in each group (with and without clinical mastitis). Gene expression was determined using the real-time PCR method. The levels of gene expression were compared, and the cows with mastitis were found to express 2.5 times more TLR-2 than those free of mastitis (P < 0.05). There were no significant differences in the expression of the other genes.
Rubel, Cory A; Wu, San-Pin; Lin, Lin; Wang, Tianyuan; Lanz, Rainer B; Li, Xilong; Kommagani, Ramakrishna; Franco, Heather L; Camper, Sally A; Tong, Qiang; Jeong, Jae-Wook; Lydon, John P; DeMayo, Francesco J
2016-10-25
Altered progesterone responsiveness leads to female infertility and cancer, but underlying mechanisms remain unclear. Mice with uterine-specific ablation of GATA binding protein 2 (Gata2) are infertile, showing failures in embryo implantation, endometrial decidualization, and uninhibited estrogen signaling. Gata2 deficiency results in reduced progesterone receptor (PGR) expression and attenuated progesterone signaling, as evidenced by genome-wide expression profiling and chromatin immunoprecipitation. GATA2 not only occupies at and promotes expression of the Pgr gene but also regulates downstream progesterone responsive genes in conjunction with the PGR. Additionally, Gata2 knockout uteri exhibit abnormal luminal epithelia with ectopic TRP63 expressing squamous cells and a cancer-related molecular profile in a progesterone-independent manner. Lastly, we found a conserved GATA2-PGR regulatory network in both human and mice based on gene signature and path analyses using gene expression profiles of human endometrial tissues. In conclusion, uterine Gata2 regulates a key regulatory network of gene expression for progesterone signaling at the early pregnancy stage. Published by Elsevier Inc.
Kidokoro, Satoshi; Watanabe, Keitaro; Ohori, Teppei; Moriwaki, Takashi; Maruyama, Kyonoshin; Mizoi, Junya; Myint Phyu Sin Htwe, Nang; Fujita, Yasunari; Sekita, Sachiko; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko
2015-02-01
Soybean (Glycine max) is a globally important crop, and its growth and yield are severely reduced by abiotic stresses, such as drought, heat, and cold. The cis-acting element DRE (dehydration-responsive element)/CRT plays an important role in activating gene expression in response to these stresses. The Arabidopsis DREB1/CBF genes that encode DRE-binding proteins function as transcriptional activators in the cold stress responsive gene expression. In this study, we identified 14 DREB1-type transcription factors (GmDREB1s) from a soybean genome database. The expression of most GmDREB1 genes in soybean was strongly induced by a variety of abiotic stresses, such as cold, drought, high salt, and heat. The GmDREB1 proteins activated transcription via DREs (dehydration-responsive element) in Arabidopsis and soybean protoplasts. Transcriptome analyses using transgenic Arabidopsis plants overexpressing GmDREB1s indicated that many of the downstream genes are cold-inducible and overlap with those of Arabidopsis DREB1A. We then comprehensively analyzed the downstream genes of GmDREB1B;1, which is closely related to DREB1A, using a transient expression system in soybean protoplasts. The expression of numerous genes induced by various abiotic stresses were increased by overexpressing GmDREB1B;1 in soybean, and DREs were the most conserved element in the promoters of these genes. The downstream genes of GmDREB1B;1 included numerous soybean-specific stress-inducible genes that encode an ABA receptor family protein, GmPYL21, and translation-related genes, such as ribosomal proteins. We confirmed that GmDREB1B;1 directly activates GmPYL21 expression and enhances ABRE-mediated gene expression in an ABA-independent manner. These results suggest that GmDREB1 proteins activate the expression of numerous soybean-specific stress-responsive genes under diverse abiotic stress conditions. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.
Citral reduces breast tumor growth by inhibiting the cancer stem cell marker ALDH1A3.
Thomas, Margaret Lois; de Antueno, Roberto; Coyle, Krysta Mila; Sultan, Mohammad; Cruickshank, Brianne Marie; Giacomantonio, Michael Anthony; Giacomantonio, Carman Anthony; Duncan, Roy; Marcato, Paola
2016-11-01
Breast cancer stem cells (CSCs) can be identified by increased Aldefluor fluorescence caused by increased expression of aldehyde dehydrogenase 1A3 (ALDH1A3), as well as ALDH1A1 and ALDH2. In addition to being a CSC marker, ALDH1A3 regulates gene expression via retinoic acid (RA) signaling and plays a key role in the progression and chemotherapy resistance of cancer. Therefore, ALDH1A3 represents a druggable anti-cancer target of interest. Since to date, there are no characterized ALDH1A3 isoform inhibitors, drugs that were previously described as inhibiting the activity of other ALDH isoforms were tested for anti-ALDH1A3 activity. Twelve drugs (3-hydroxy-dl-kynurenine, benomyl, citral, chloral hydrate, cyanamide, daidzin, DEAB, disulfiram, gossypol, kynurenic acid, molinate, and pargyline) were compared for their efficacy in inducing apoptosis and reducing ALDH1A3, ALDH1A1 and ALDH2-associated Aldefluor fluorescence in breast cancer cells. Citral was identified as the best inhibitor of ALDH1A3, reducing the Aldefluor fluorescence in breast cancer cell lines and in a patient-derived tumor xenograft. Nanoparticle encapsulated citral specifically reduced the enhanced tumor growth of MDA-MB-231 cells overexpressing ALDH1A3. To determine the potential mechanisms of citral-mediated tumor growth inhibition, we performed cell proliferation, clonogenic, and gene expression assays. Citral reduced ALDH1A3-mediated colony formation and expression of ALDH1A3-inducible genes. In conclusion, citral is an effective ALDH1A3 inhibitor and is able to block ALDH1A3-mediated breast tumor growth, potentially via blocking its colony forming and gene expression regulation activity. The promise of ALDH1A3 inhibitors as adjuvant therapies for patients with tumors that have a large population of high-ALDH1A3 CSCs is discussed. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.
Xu, Haoming; Moni, Mohammad Ali; Liò, Pietro
2015-12-01
In cancer genomics, gene expression levels provide important molecular signatures for all types of cancer, and this could be very useful for predicting the survival of cancer patients. However, the main challenge of gene expression data analysis is high dimensionality, and microarray is characterised by few number of samples with large number of genes. To overcome this problem, a variety of penalised Cox proportional hazard models have been proposed. We introduce a novel network regularised Cox proportional hazard model and a novel multiplex network model to measure the disease comorbidities and to predict survival of the cancer patient. Our methods are applied to analyse seven microarray cancer gene expression datasets: breast cancer, ovarian cancer, lung cancer, liver cancer, renal cancer and osteosarcoma. Firstly, we applied a principal component analysis to reduce the dimensionality of original gene expression data. Secondly, we applied a network regularised Cox regression model on the reduced gene expression datasets. By using normalised mutual information method and multiplex network model, we predict the comorbidities for the liver cancer based on the integration of diverse set of omics and clinical data, and we find the diseasome associations (disease-gene association) among different cancers based on the identified common significant genes. Finally, we evaluated the precision of the approach with respect to the accuracy of survival prediction using ROC curves. We report that colon cancer, liver cancer and renal cancer share the CXCL5 gene, and breast cancer, ovarian cancer and renal cancer share the CCND2 gene. Our methods are useful to predict survival of the patient and disease comorbidities more accurately and helpful for improvement of the care of patients with comorbidity. Software in Matlab and R is available on our GitHub page: https://github.com/ssnhcom/NetworkRegularisedCox.git. Copyright © 2015. Published by Elsevier Ltd.
Müller, Christian; Schillert, Arne; Röthemeier, Caroline; Trégouët, David-Alexandre; Proust, Carole; Binder, Harald; Pfeiffer, Norbert; Beutel, Manfred; Lackner, Karl J.; Schnabel, Renate B.; Tiret, Laurence; Wild, Philipp S.; Blankenberg, Stefan
2016-01-01
Technical variation plays an important role in microarray-based gene expression studies, and batch effects explain a large proportion of this noise. It is therefore mandatory to eliminate technical variation while maintaining biological variability. Several strategies have been proposed for the removal of batch effects, although they have not been evaluated in large-scale longitudinal gene expression data. In this study, we aimed at identifying a suitable method for batch effect removal in a large study of microarray-based longitudinal gene expression. Monocytic gene expression was measured in 1092 participants of the Gutenberg Health Study at baseline and 5-year follow up. Replicates of selected samples were measured at both time points to identify technical variability. Deming regression, Passing-Bablok regression, linear mixed models, non-linear models as well as ReplicateRUV and ComBat were applied to eliminate batch effects between replicates. In a second step, quantile normalization prior to batch effect correction was performed for each method. Technical variation between batches was evaluated by principal component analysis. Associations between body mass index and transcriptomes were calculated before and after batch removal. Results from association analyses were compared to evaluate maintenance of biological variability. Quantile normalization, separately performed in each batch, combined with ComBat successfully reduced batch effects and maintained biological variability. ReplicateRUV performed perfectly in the replicate data subset of the study, but failed when applied to all samples. All other methods did not substantially reduce batch effects in the replicate data subset. Quantile normalization plus ComBat appears to be a valuable approach for batch correction in longitudinal gene expression data. PMID:27272489
Wang, Long; Lin, Qinlu; Yang, Tao; Liang, Ying; Nie, Ying; Luo, Yi; Shen, Junjun; Fu, Xiangjin; Tang, Yiping; Luo, Feijun
2017-09-27
In Western countries and China, the dietary habit of high calories usually results in hyperlipidemia, which is closely associated with cardiovascular diseases. In the study, we investigated the antihyperlipidemic effect of oryzanol and its molecular mechanism in the high fat diet (HFD) mouse model. In total, 60 ICR mice were randomly divided into control group, HFD group, and HFD+Ory group. The mice from the HFD+Ory group were additionally fed with 100 mg/kg of oryzanol by intragastric administration. Our data indicated that oryzanol treatment for 10 weeks significantly reduced bodyweight, liver weight, and adipose tissues weight of the mice; lowered the contents of total cholesterol (TC), triglycerides (TG), and low density lipoprotein-cholesterol (LDL-C); and elevated high density lipoprotein-cholesterol (HDL-C) in the plasma of HFD mice. Compared with the HFD group, H&E staining showed that oryzanol treatment decreased the size of fat droplets of liver tissues and the size of adipocytes. Gene chip data found that oryzanol administration caused 32 genes to increase expressions while 60 genes had reduced expressions in the liver tissues of HFD mice. IPA software was used to analyze the protein interaction network and found that transcript factor NF-κB located in the central role of network, meaning NF-κB may have important function in the lipid-lowering effect of oryzanol. Western blotting and RT-qPCR confirmed that lipid metabolism-related gene expressions were obviously regulated by oryzanol administration. Oryzanol also inhibited expressions of inflammatory factor in the liver tissues of HDF mice. Taken together, our data indicate that oryzanol treatment can regulate lipid metabolism-related gene expressions and inhibit HDF-caused obesity in mice.
Leister, Dario; Kleine, Tatjana
2016-07-01
Retrograde signaling can be triggered by changes in organellar gene expression (OGE) induced by inhibitors such as lincomycin (LIN) or mutations that perturb OGE. Thus, an insufficiency of the organelle-targeted prolyl-tRNA synthetase PRORS1 in Arabidopsis thaliana activates retrograde signaling and reduces the expression of nuclear genes for photosynthetic proteins. Recently, we showed that mTERF6, a member of the so-called mitochondrial transcription termination factor (mTERF) family, is involved in the formation of chloroplast (cp) isoleucine-tRNA. To obtain further insights into its functions, co-expression analysis of MTERF6, PRORS1 and two other genes for organellar aminoacyl-tRNA synthetases was conducted. The results suggest a prominent role of mTERF6 in aminoacylation activity, light signaling and seed storage. Analysis of changes in whole-genome transcriptomes in the mterf6-1 mutant showed that levels of nuclear transcripts for cp OGE proteins were particularly affected. Comparison of the mterf6-1 transcriptome with that of prors1-2 showed that reduced aminoacylation of proline (prors1-2) and isoleucine (mterf6-1) tRNAs alters retrograde signaling in similar ways. Database analyses indicate that comparable gene expression changes are provoked by treatment with LIN, norflurazon or high light. A core OGE response module was defined by identifying genes that were differentially expressed under at least four of six conditions relevant to OGE signaling. Based on this module, overexpressors of the Golden2-like transcription factors GLK1 and GLK2 were identified as genomes uncoupled mutants. © 2016 Scandinavian Plant Physiology Society.
The Early Effects of Rapid Androgen Deprivation on Human Prostate Cancer.
Shaw, Greg L; Whitaker, Hayley; Corcoran, Marie; Dunning, Mark J; Luxton, Hayley; Kay, Jonathan; Massie, Charlie E; Miller, Jodi L; Lamb, Alastair D; Ross-Adams, Helen; Russell, Roslin; Nelson, Adam W; Eldridge, Matthew D; Lynch, Andrew G; Ramos-Montoya, Antonio; Mills, Ian G; Taylor, Angela E; Arlt, Wiebke; Shah, Nimish; Warren, Anne Y; Neal, David E
2016-08-01
The androgen receptor (AR) is the dominant growth factor in prostate cancer (PCa). Therefore, understanding how ARs regulate the human transcriptome is of paramount importance. The early effects of castration on human PCa have not previously been studied 27 patients medically castrated with degarelix 7 d before radical prostatectomy. We used mass spectrometry, immunohistochemistry, and gene expression array (validated by reverse transcription-polymerase chain reaction) to compare resected tumour with matched, controlled, untreated PCa tissue. All patients had levels of serum androgen, with reduced levels of intraprostatic androgen at prostatectomy. We observed differential expression of known androgen-regulated genes (TMPRSS2, KLK3, CAMKK2, FKBP5). We identified 749 genes downregulated and 908 genes upregulated following castration. AR regulation of α-methylacyl-CoA racemase expression and three other genes (FAM129A, RAB27A, and KIAA0101) was confirmed. Upregulation of oestrogen receptor 1 (ESR1) expression was observed in malignant epithelia and was associated with differential expression of ESR1-regulated genes and correlated with proliferation (Ki-67 expression). This first-in-man study defines the rapid gene expression changes taking place in prostate cancer (PCa) following castration. Expression levels of the genes that the androgen receptor regulates are predictive of treatment outcome. Upregulation of oestrogen receptor 1 is a mechanism by which PCa cells may survive despite castration. Copyright © 2015 European Association of Urology. Published by Elsevier B.V. All rights reserved.
SPP1 and AGER as potential prognostic biomarkers for lung adenocarcinoma.
Zhang, Weiguo; Fan, Junli; Chen, Qiang; Lei, Caipeng; Qiao, Bin; Liu, Qin
2018-05-01
Overdue treatment and prognostic evaluation lead to low survival rates in patients with lung adenocarcinoma (LUAD). To date, effective biomarkers for prognosis are still required. The aim of the present study was to screen differentially expressed genes (DEGs) as biomarkers for prognostic evaluation of LUAD. DEGs in tumor and normal samples were identified and analyzed for Kyoto Encyclopedia of Genes and Genomes/Gene Ontology functional enrichments. The common genes that are up and downregulated were selected for prognostic analysis using RNAseq data in The Cancer Genome Atlas. Differential expression analysis was performed with 164 samples in GSE10072 and GSE7670 datasets. A total of 484 DEGs that were present in GSE10072 and GSE7670 datasets were screened, including secreted phosphoprotein 1 (SPP1) that was highly expressed and DEGs ficolin 3, advanced glycosylation end-product specific receptor (AGER), transmembrane protein 100 that were lowly expressed in tumor tissues. These four key genes were subsequently verified using an independent dataset, GSE19804. The gene expression model was consistent with GSE10072 and GSE7670 datasets. The dysregulation of highly expressed SPP1 and lowly expressed AGER significantly reduced the median survival time of patients with LUAD. These findings suggest that SPP1 and AGER are risk factors for LUAD, and these two genes may be utilized in the prognostic evaluation of patients with LUAD. Additionally, the key genes and functional enrichments may provide a reference for investigating the molecular expression mechanisms underlying LUAD.
Personality and gene expression: Do individual differences exist in the leukocyte transcriptome?
Vedhara, Kavita; Gill, Sana; Eldesouky, Lameese; Campbell, Bruce K; Arevalo, Jesusa M G; Ma, Jeffrey; Cole, Steven W
2015-02-01
The temporal and situational stability of personality has led generations of researchers to hypothesize that personality may have enduring effects on health, but the biological mechanisms of such relationships remain poorly understood. In the present study, we utilized a functional genomics approach to examine the relationship between the 5 major dimensions of personality and patterns of gene expression as predicted by 'behavioural immune response' theory. We specifically focussed on two sets of genes previously linked to stress, threat, and adverse socio-environmental conditions: pro-inflammatory genes and genes involved in Type I interferon and antibody responses. An opportunity sample of 121 healthy individuals was recruited (86 females; mean age 24 years). Individuals completed a validated measure of personality; questions relating to current health behaviours; and provided a 5ml sample of peripheral blood for gene expression analysis. Extraversion was associated with increased expression of pro-inflammatory genes and Conscientiousness was associated with reduced expression of pro-inflammatory genes. Both associations were independent of health behaviours, negative affect, and leukocyte subset distributions. Antiviral and antibody-related gene expression was not associated with any personality dimension. The present data shed new light on the long-observed epidemiological associations between personality, physical health, and human longevity. Further research is required to elucidate the biological mechanisms underlying these associations. Copyright © 2014 Elsevier Ltd. All rights reserved.
Personality and gene expression: Do individual differences exist in the leukocyte transcriptome?
Vedhara, Kavita; Gill, Sana; Eldesouky, Lameese; Campbell, Bruce K.; Arevalo, Jesusa M. G.; Ma, Jeffrey; Cole, Steven W.
2014-01-01
Background The temporal and situational stability of personality has led generations of researchers to hypothesise that personality may have enduring effects on health, but the biological mechanisms of such relationships remain poorly understood. In the present study, we utilized a functional genomics approach to examine the relationship between the 5 major dimensions of personality and patterns of gene expression as predicted by ‘behavioural immune response’ theory. We specifically focussed on two sets of genes previously linked to stress, threat, and adverse socio-environmental conditions: pro-inflammatory genes and genes involved in Type I interferon and antibody responses. Methods An opportunity sample of 121 healthy individuals was recruited (86 females; mean age 24 years). Individuals completed a validated measure of personality; questions relating to current health behaviours; and provided a 5 ml sample of peripheral blood for gene expression analysis. Results Extraversion was associated with increased expression of pro-inflammatory genes and Conscientiousness was associated with reduced expression of pro-inflammatory genes. Both associations were independent of health behaviours, negative affect, and leukocyte subset distributions. Antiviral and antibody-related gene expression was not associated with any personality dimension. Conclusions The present data shed new light on the long-observed epidemiological associations between personality, physical health, and human longevity. Further research is required to elucidate the biological mechanisms underlying these associations. PMID:25459894
Molecular and Functional Characterization of Broccoli EMBRYONIC FLOWER 2 Genes
Chen, Long-Fang O.; Lin, Chun-Hung; Lai, Ying-Mi; Huang, Jia-Yuan; Sung, Zinmay Renee
2012-01-01
Polycomb group (PcG) proteins regulate major developmental processes in Arabidopsis. EMBRYONIC FLOWER 2 (EMF2), the VEFS domain-containing PcG gene, regulates diverse genetic pathways and is required for vegetative development and plant survival. Despite widespread EMF2-like sequences in plants, little is known about their function other than in Arabidopsis and rice. To study the role of EMF2 in broccoli (Brassica oleracea var. italica cv. Elegance) development, we identified two broccoli EMF2 (BoEMF2) genes with sequence homology to and a similar gene expression pattern to that in Arabidopsis (AtEMF2). Reducing their expression in broccoli resulted in aberrant phenotypes and gene expression patterns. BoEMF2 regulates genes involved in diverse developmental and stress programs similar to AtEMF2 in Arabidopsis. However, BoEMF2 differs from AtEMF2 in the regulation of flower organ identity, cell proliferation and elongation, and death-related genes, which may explain the distinct phenotypes. The expression of BoEMF2.1 in the Arabidopsis emf2 mutant (Rescued emf2) partially rescued the mutant phenotype and restored the gene expression pattern to that of the wild type. Many EMF2-mediated molecular and developmental functions are conserved in broccoli and Arabidopsis. Furthermore, the restored gene expression pattern in Rescued emf2 provides insights into the molecular basis of PcG-mediated growth and development. PMID:22537758
Ahn, Suzie E.; Lim, Chul-Hong; Lee, Jin-Young; Bae, Seung-Min; Kim, Jinyoung; Bazer, Fuller W.; Song, Gwonhwa
2013-01-01
The reproductive system of chickens undergoes dynamic morphological and functional tissue remodeling during the molting period. The present study identified global gene expression profiles following oviductal tissue regression and regeneration in laying hens in which molting was induced by feeding high levels of zinc in the diet. During the molting and recrudescence processes, progressive morphological and physiological changes included regression and re-growth of reproductive organs and fluctuations in concentrations of testosterone, progesterone, estradiol and corticosterone in blood. The cDNA microarray analysis of oviductal tissues revealed the biological significance of gene expression-based modulation in oviductal tissue during its remodeling. Based on the gene expression profiles, expression patterns of selected genes such as, TF, ANGPTL3, p20K, PTN, AvBD11 and SERPINB3 exhibited similar patterns in expression with gradual decreases during regression of the oviduct and sequential increases during resurrection of the functional oviduct. Also, miR-1689* inhibited expression of Sp1, while miR-17-3p, miR-22* and miR-1764 inhibited expression of STAT1. Similarly, chicken miR-1562 and miR-138 reduced the expression of ANGPTL3 and p20K, respectively. These results suggest that these differentially regulated genes are closely correlated with the molecular mechanism(s) for development and tissue remodeling of the avian female reproductive tract, and that miRNA-mediated regulation of key genes likely contributes to remodeling of the avian reproductive tract by controlling expression of those genes post-transcriptionally. The discovered global gene profiles provide new molecular candidates responsible for regulating morphological and functional recrudescence of the avian reproductive tract, and provide novel insights into understanding the remodeling process at the genomic and epigenomic levels. PMID:24098561
Modulation of gene expression in heart and liver of hibernating black bears (Ursus americanus)
2011-01-01
Background Hibernation is an adaptive strategy to survive in highly seasonal or unpredictable environments. The molecular and genetic basis of hibernation physiology in mammals has only recently been studied using large scale genomic approaches. We analyzed gene expression in the American black bear, Ursus americanus, using a custom 12,800 cDNA probe microarray to detect differences in expression that occur in heart and liver during winter hibernation in comparison to summer active animals. Results We identified 245 genes in heart and 319 genes in liver that were differentially expressed between winter and summer. The expression of 24 genes was significantly elevated during hibernation in both heart and liver. These genes are mostly involved in lipid catabolism and protein biosynthesis and include RNA binding protein motif 3 (Rbm3), which enhances protein synthesis at mildly hypothermic temperatures. Elevated expression of protein biosynthesis genes suggests induction of translation that may be related to adaptive mechanisms reducing cardiac and muscle atrophies over extended periods of low metabolism and immobility during hibernation in bears. Coordinated reduction of transcription of genes involved in amino acid catabolism suggests redirection of amino acids from catabolic pathways to protein biosynthesis. We identify common for black bears and small mammalian hibernators transcriptional changes in the liver that include induction of genes responsible for fatty acid β oxidation and carbohydrate synthesis and depression of genes involved in lipid biosynthesis, carbohydrate catabolism, cellular respiration and detoxification pathways. Conclusions Our findings show that modulation of gene expression during winter hibernation represents molecular mechanism of adaptation to extreme environments. PMID:21453527
Dong, Xinran; Hao, Yun; Wang, Xiao; Tian, Weidong
2016-01-01
Pathway or gene set over-representation analysis (ORA) has become a routine task in functional genomics studies. However, currently widely used ORA tools employ statistical methods such as Fisher’s exact test that reduce a pathway into a list of genes, ignoring the constitutive functional non-equivalent roles of genes and the complex gene-gene interactions. Here, we develop a novel method named LEGO (functional Link Enrichment of Gene Ontology or gene sets) that takes into consideration these two types of information by incorporating network-based gene weights in ORA analysis. In three benchmarks, LEGO achieves better performance than Fisher and three other network-based methods. To further evaluate LEGO’s usefulness, we compare LEGO with five gene expression-based and three pathway topology-based methods using a benchmark of 34 disease gene expression datasets compiled by a recent publication, and show that LEGO is among the top-ranked methods in terms of both sensitivity and prioritization for detecting target KEGG pathways. In addition, we develop a cluster-and-filter approach to reduce the redundancy among the enriched gene sets, making the results more interpretable to biologists. Finally, we apply LEGO to two lists of autism genes, and identify relevant gene sets to autism that could not be found by Fisher. PMID:26750448
Dong, Xinran; Hao, Yun; Wang, Xiao; Tian, Weidong
2016-01-11
Pathway or gene set over-representation analysis (ORA) has become a routine task in functional genomics studies. However, currently widely used ORA tools employ statistical methods such as Fisher's exact test that reduce a pathway into a list of genes, ignoring the constitutive functional non-equivalent roles of genes and the complex gene-gene interactions. Here, we develop a novel method named LEGO (functional Link Enrichment of Gene Ontology or gene sets) that takes into consideration these two types of information by incorporating network-based gene weights in ORA analysis. In three benchmarks, LEGO achieves better performance than Fisher and three other network-based methods. To further evaluate LEGO's usefulness, we compare LEGO with five gene expression-based and three pathway topology-based methods using a benchmark of 34 disease gene expression datasets compiled by a recent publication, and show that LEGO is among the top-ranked methods in terms of both sensitivity and prioritization for detecting target KEGG pathways. In addition, we develop a cluster-and-filter approach to reduce the redundancy among the enriched gene sets, making the results more interpretable to biologists. Finally, we apply LEGO to two lists of autism genes, and identify relevant gene sets to autism that could not be found by Fisher.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-22
... pathway. Suppression of the CCOMT gene expression leads to lower CCOMT protein expression resulting in reduced synthesis of G lignin subunit compared to conventional alfalfa at the same stage of growth. The reduction in G lignin subunit synthesis leads to reduced accumulation of total lignin, measured as acid...
A Pipeline for High-Throughput Concentration Response Modeling of Gene Expression for Toxicogenomics
House, John S.; Grimm, Fabian A.; Jima, Dereje D.; Zhou, Yi-Hui; Rusyn, Ivan; Wright, Fred A.
2017-01-01
Cell-based assays are an attractive option to measure gene expression response to exposure, but the cost of whole-transcriptome RNA sequencing has been a barrier to the use of gene expression profiling for in vitro toxicity screening. In addition, standard RNA sequencing adds variability due to variable transcript length and amplification. Targeted probe-sequencing technologies such as TempO-Seq, with transcriptomic representation that can vary from hundreds of genes to the entire transcriptome, may reduce some components of variation. Analyses of high-throughput toxicogenomics data require renewed attention to read-calling algorithms and simplified dose–response modeling for datasets with relatively few samples. Using data from induced pluripotent stem cell-derived cardiomyocytes treated with chemicals at varying concentrations, we describe here and make available a pipeline for handling expression data generated by TempO-Seq to align reads, clean and normalize raw count data, identify differentially expressed genes, and calculate transcriptomic concentration–response points of departure. The methods are extensible to other forms of concentration–response gene-expression data, and we discuss the utility of the methods for assessing variation in susceptibility and the diseased cellular state. PMID:29163636
Rhee, Nicolai A; Wahlgren, Camilla D; Pedersen, Jens; Mortensen, Brynjulf; Langholz, Ebbe; Wandall, Erik P; Friis, Steffen U; Vilmann, Peter; Paulsen, Sarah J; Kristiansen, Viggo B; Jelsing, Jacob; Dalbøge, Louise S; Poulsen, Steen S; Holst, Jens J; Vilsbøll, Tina; Knop, Filip K
2015-10-01
We studied the impact of Roux-en-Y gastric bypass (RYGB) on the density and hormonal gene expression of small-intestinal enteroendocrine cells in obese patients with type 2 diabetes. Twelve patients with diabetes and 11 age- and BMI-matched controls underwent RYGB followed by enteroscopy ~10 months later. Mucosal biopsies taken during surgery and enteroscopy were immunohistochemically stained for glucagon-like peptide-1 (GLP-1), peptide YY (PYY), cholecystokinin (CCK), glucose-dependent insulinotropic polypeptide (GIP) and prohormone convertase 2 (PC2) and the expression of GCG (encoding preproglucagon), PYY, CCK, GIP, GHRL (encoding ghrelin), SCT (encoding secretin), NTS (encoding neurotensin) and NR1H4 (encoding farnesoid X receptor) was evaluated. The density of cells immunoreactive for GLP-1, CCK and GIP increased in patients after RYGB and the density of those immunoreactive for GLP-1, PYY, CCK and PC2 increased in controls. In both groups, GHRL, SCT and GIP mRNA was reduced after RYGB while PYY, CCK, NTS and NR1H4 gene expression was unaltered. GCG mRNA was upregulated in both groups. Numerous alterations in the distribution of enteroendocrine cells and their expression of hormonal genes are seen after RYGB and include increased density of GLP-1-, PYY-, CCK-, GIP- and PC2-positive cells, reduced gene expression of GHRL, SCT and GIP and increased expression of GCG.
Zhang, Yaochen; Kim, Don-Kyu; Lee, Ji-Min; Park, Seung Bum; Jeong, Won-IL; Kim, Seong Heon; Lee, In-Kyu; Lee, Chul-Ho; Chiang, John Y.L.; Choi, Hueng-Sik
2017-01-01
Bile acids are primarily synthesized from cholesterol in the liver and have important roles in dietary lipid absorption and cholesterol homoeostasis. Detailed roles of the orphan nuclear receptors regulating cholesterol 7α-hydroxylase (CYP7A1), the rate-limiting enzyme in bile acid synthesis, have not yet been fully elucidated. In the present study, we report that oestrogen-related receptor γ (ERRγ) is a novel transcriptional regulator of CYP7A1 expression. Activation of cannabinoid receptor type 1 (CB1 receptor) signalling induced ERRγ-mediated transcription of the CYP7A1 gene. Overexpression of ERRγ increased CYP7A1 expression in vitro and in vivo, whereas knockdown of ERRγ attenuated CYP7A1 expression. Deletion analysis of the CYP7A1 gene promoter and a ChIP assay revealed an ERRγ -binding site on the CYP7A1 gene promoter. Small heterodimer partner (SHP) inhibited the transcriptional activity of ERRγ and thus regulated CYP7A1 expression. Overexpression of ERRγ led to increased bile acid levels, whereas an inverse agonist of ERRγ, GSK5182, reduced CYP7A1 expression and bile acid synthesis. Finally, GSK5182 significantly reduced hepatic CB1 receptor-mediated induction of CYP7A1 expression and bile acid synthesis in alcohol-treated mice. These results provide the molecular mechanism linking ERRγ and bile acid metabolism. PMID:26348907
Lee, Elaine Choung-Hee
2012-01-01
Increased gpdh-1 transcription is required for accumulation of the organic osmolyte glycerol and survival of Caenorhabditis elegans during hypertonic stress. Our previous work has shown that regulators of gpdh-1 (rgpd) gene knockdown constitutively activates gpdh-1 expression. Fifty-five rgpd genes play essential roles in translation suggesting that inhibition of protein synthesis is an important signal for regulating osmoprotective gene transcription. We demonstrate here that translation is reduced dramatically by hypertonic stress or knockdown of rgpd genes encoding aminoacyl-tRNA synthetases and eukaryotic translation initiation factors (eIFs). Toxin-induced inhibition of translation also activates gpdh-1 expression. Hypertonicity-induced translation inhibition is mediated by general control nonderepressible (GCN)-2 kinase signaling and eIF-2α phosphoryation. Loss of gcn-1 or gcn-2 function prevents eIF-2α phosphorylation, completely blocks reductions in translation, and inhibits gpdh-1 transcription. gpdh-1 expression is regulated by the highly conserved with-no-lysine kinase (WNK) and Ste20 kinases WNK-1 and GCK-3, which function in the GCN-2 signaling pathway downstream from eIF-2α phosphorylation. Our previous work has shown that hypertonic stress causes rapid and dramatic protein damage in C. elegans and that inhibition of translation reduces this damage. The current studies demonstrate that reduced translation also serves as an essential signal for activation of WNK-1/GCK-3 kinase signaling and subsequent transcription of gpdh-1 and possibly other osmoprotective genes. PMID:23076791
Hypothalamic Agouti-Related Peptide mRNA is Elevated During Natural and Stress-Induced Anorexia.
Dunn, I C; Wilson, P W; D'Eath, R B; Boswell, T
2015-09-01
As part of their natural lives, animals can undergo periods of voluntarily reduced food intake and body weight (i.e. animal anorexias) that are beneficial for survival or breeding, such as during territorial behaviour, hibernation, migration and incubation of eggs. For incubation, a change in the defended level of body weight or 'sliding set point' appears to be involved, although the neural mechanisms reponsible for this are unknown. We investigated how neuropeptide gene expression in the arcuate nucleus of the domestic chicken responded to a 60-70% voluntary reduction in food intake measured both after incubation and after an environmental stressor involving transfer to unfamiliar housing. We hypothesised that gene expression would not change in these circumstances because the reduced food intake and body weight represented a defended level in birds with free access to food. Unexpectedly, we observed increased gene expression of the orexigenic peptide agouti-related peptide (AgRP) in both incubating and transferred animals compared to controls. Also pro-opiomelanocortin (POMC) mRNA was higher in incubating hens and significantly increased 6 days after exposure to the stressor. Conversely expression of neuropeptide Y and cocaine- and amphetamine-regulated transcript gene was unchanged in both experimental situations. We conclude that AgRP expression remains sensitive to the level of energy stores during natural anorexias, which is of adaptive advantage, although its normal orexigenic effects are over-ridden by inhibitory signals. In the case of stress-induced anorexia, increased POMC may contribute to this inhibitory role, whereas, for incubation, reduced feeding may also be associated with increased expression in the hypothalamus of the anorexigenic peptide vasoactive intestinal peptide. © 2015 British Society for Neuroendocrinology.
The small tellurium-based compound SAS suppresses inflammation in human retinal pigment epithelium
Livnat, Tami; Halpert, Gilad; Jawad, Shayma; Nisgav, Yael; Azar-Avivi, Shirley; Liu, Baoying; Nussenblatt, Robert B.; Weinberger, Dov; Sredni, Benjamin
2016-01-01
Purpose Pathological angiogenesis and chronic inflammation greatly contribute to the development of choroidal neovascularization (CNV) in chorioretinal diseases involving abnormal contact between retinal pigment epithelial (RPE) and endothelial cells (ECs), associated with Bruch’s membrane rupture. We explored the ability of the small organotellurium compound octa-O-bis-(R,R)-tartarate ditellurane (SAS) to mitigate inflammatory processes in human RPE cells. Methods Cell adhesion assays and analyses of gene and protein expression were used to examine the effect of SAS on ARPE-19 cells or primary human RPE cells that were grown alone or in an RPE-EC co-culture. Results Adhesion assays showed that SAS inhibited αv integrins expressed on RPE cells. Co-cultures of RPE cells with ECs significantly reduced the gene expression of PEDF, as compared to RPE cells cultured alone. Both SAS and the anti-αvβ3 antibody LM609 significantly enhanced the production of PEDF at both mRNA and protein levels in RPE cells. RPE cells co-cultured with EC exhibited increased gene expression of CXCL5, COX1, MMP2, IGF1, and IL8, all of which are involved in both angiogenesis and inflammation. The enhanced expression of these genes was greatly suppressed by SAS, but interestingly, remained unaffected by LM609. Zymography assay showed that SAS reduced the level of MMP-2 activity in RPE cells. We also found that SAS significantly suppressed IL-1β-induced IL-6 expression and secretion from RPE cells by reducing the protein levels of phospho-IkappaBalpha (pIκBα). Conclusions Our results suggest that SAS is a promising anti-inflammatory agent in RPE cells, and may be an effective therapeutic approach for controlling chorioretinal diseases. PMID:27293373
The small tellurium-based compound SAS suppresses inflammation in human retinal pigment epithelium.
Dardik, Rima; Livnat, Tami; Halpert, Gilad; Jawad, Shayma; Nisgav, Yael; Azar-Avivi, Shirley; Liu, Baoying; Nussenblatt, Robert B; Weinberger, Dov; Sredni, Benjamin
2016-01-01
Pathological angiogenesis and chronic inflammation greatly contribute to the development of choroidal neovascularization (CNV) in chorioretinal diseases involving abnormal contact between retinal pigment epithelial (RPE) and endothelial cells (ECs), associated with Bruch's membrane rupture. We explored the ability of the small organotellurium compound octa-O-bis-(R,R)-tartarate ditellurane (SAS) to mitigate inflammatory processes in human RPE cells. Cell adhesion assays and analyses of gene and protein expression were used to examine the effect of SAS on ARPE-19 cells or primary human RPE cells that were grown alone or in an RPE-EC co-culture. Adhesion assays showed that SAS inhibited αv integrins expressed on RPE cells. Co-cultures of RPE cells with ECs significantly reduced the gene expression of PEDF, as compared to RPE cells cultured alone. Both SAS and the anti-αvβ3 antibody LM609 significantly enhanced the production of PEDF at both mRNA and protein levels in RPE cells. RPE cells co-cultured with EC exhibited increased gene expression of CXCL5, COX1, MMP2, IGF1, and IL8, all of which are involved in both angiogenesis and inflammation. The enhanced expression of these genes was greatly suppressed by SAS, but interestingly, remained unaffected by LM609. Zymography assay showed that SAS reduced the level of MMP-2 activity in RPE cells. We also found that SAS significantly suppressed IL-1β-induced IL-6 expression and secretion from RPE cells by reducing the protein levels of phospho-IkappaBalpha (pIκBα). Our results suggest that SAS is a promising anti-inflammatory agent in RPE cells, and may be an effective therapeutic approach for controlling chorioretinal diseases.
ABCA Transporter Gene Expression and Poor Outcome in Epithelial Ovarian Cancer
Hedditch, Ellen L.; Gao, Bo; Russell, Amanda J.; Lu, Yi; Emmanuel, Catherine; Beesley, Jonathan; Johnatty, Sharon E.; Chen, Xiaoqing; Harnett, Paul; George, Joshy; Williams, Rebekka T.; Flemming, Claudia; Lambrechts, Diether; Despierre, Evelyn; Lambrechts, Sandrina; Vergote, Ignace; Karlan, Beth; Lester, Jenny; Orsulic, Sandra; Walsh, Christine; Fasching, Peter; Beckmann, Matthias W.; Ekici, Arif B.; Hein, Alexander; Matsuo, Keitaro; Hosono, Satoyo; Nakanishi, Toru; Yatabe, Yasushi; Pejovic, Tanja; Bean, Yukie; Heitz, Florian; Harter, Philipp; du Bois, Andreas; Schwaab, Ira; Hogdall, Estrid; Kjaer, Susan K.; Jensen, Allan; Hogdall, Claus; Lundvall, Lene; Engelholm, Svend Aage; Brown, Bob; Flanagan, James; Metcalf, Michelle D; Siddiqui, Nadeem; Sellers, Thomas; Fridley, Brooke; Cunningham, Julie; Schildkraut, Joellen; Iversen, Ed; Weber, Rachel P.; Berchuck, Andrew; Goode, Ellen; Bowtell, David D.; Chenevix-Trench, Georgia; deFazio, Anna; Norris, Murray D.; MacGregor, Stuart; Haber, Michelle; Henderson, Michelle J.
2014-01-01
Background ATP-binding cassette (ABC) transporters play various roles in cancer biology and drug resistance, but their association with outcomes in serous epithelial ovarian cancer (EOC) is unknown. Methods The relationship between clinical outcomes and ABC transporter gene expression in two independent cohorts of high-grade serous EOC tumors was assessed with real-time quantitative polymerase chain reaction, analysis of expression microarray data, and immunohistochemistry. Associations between clinical outcomes and ABCA transporter gene single nucleotide polymorphisms were tested in a genome-wide association study. Impact of short interfering RNA–mediated gene suppression was determined by colony forming and migration assays. Association with survival was assessed with Kaplan–Meier analysis and log-rank tests. All statistical tests were two-sided. Results Associations with outcome were observed with ABC transporters of the “A” subfamily, but not with multidrug transporters. High-level expression of ABCA1, ABCA6, ABCA8, and ABCA9 in primary tumors was statistically significantly associated with reduced survival in serous ovarian cancer patients. Low levels of ABCA5 and the C-allele of rs536009 were associated with shorter overall survival (hazard ratio for death = 1.50; 95% confidence interval [CI] =1.26 to 1.79; P = 6.5e−6). The combined expression pattern of ABCA1, ABCA5, and either ABCA8 or ABCA9 was associated with particularly poor outcome (mean overall survival in group with adverse ABCA1, ABCA5 and ABCA9 gene expression = 33.2 months, 95% CI = 26.4 to 40.1; vs 55.3 months in the group with favorable ABCA gene expression, 95% CI = 49.8 to 60.8; P = .001), independently of tumor stage or surgical debulking status. Suppression of cholesterol transporter ABCA1 inhibited ovarian cancer cell growth and migration in vitro, and statin treatment reduced ovarian cancer cell migration. Conclusions Expression of ABCA transporters was associated with poor outcome in serous ovarian cancer, implicating lipid trafficking as a potentially important process in EOC. PMID:24957074
Tabassum, Shahina; Ullah Munshi, Saif; Hossain, Marufa; Imam, Akhter
2014-01-01
ABSTRACT Background and aim Assessment of therapeutic response is important for monitoring the prognosis and to take decision for cessation of nucleoside analogues therapy in chronic hepatitis B patients. In addition to serum alanine aminotransferase (ALT), hepatitis B virus (HBV) deoxyribonucleic acid (DNA) load and HBeAg status, identification of molecular markers associated with host immune response would be essential to assess therapeutic response. In this regard the current study was performed with the aim to detect expression of platelet endothelial cell adhesion molecule (PECAM)-I gene in peripheral blood monocytes (PBMCs) of treated chronic hepatitis B patients and also to correlate expression of this gene with serum HBV DNA load and serum ALT levels. Materials and methods The study analyzed 60 chronic hepatitis B (CHB) patients, including 30 untreated and 30 nucleoside analogs treated and 10 healthy controls. PECAM-1 gene expression/ transcripts were detected by conventional RT-PCR. Results The expression PECAM-1 mRNA in the PBMCs of CHB patients was significantly higher in untreated (3.17 ± 0.75) than the treated patients (1.64 ± 0.29) (p < 0.01). Expression of PECAM-1 was positively correlated with serum ALT levels of both untreated (r = 0.580) and treated (r = 0.566) CHB patients. Moreover, in both untreated and treated groups, these gene expressions were positively correlated to serum HBV DNA load with the correlation coefficient r = 0.545 and r = 0.591 respectively. Conclusion PECAM-1 may be used as a biomarker for assessment of inflammatory activity as well as therapeutic response in CHB patients. How to cite this article: Sultana N, Tabassum S, Munshi SU, Hossain M, Imam A. Nucleoside Analog-treated Chronic Hepatitis B Patients showed Reduced Expression of PECAM-1 Gene in Peripheral Blood Mononuclear Cells in Bangladesh. Euroasian J Hepato-Gastroenterol 2014;4(2):87-91. PMID:29699354
Tripp, Adam; Oh, Hyunjung; Guilloux, Jean-Philippe; Martinowich, Keri; Lewis, David A; Sibille, Etienne
2012-11-01
The subgenual anterior cingulate cortex is implicated in the pathology and treatment response of major depressive disorder. Low levels of brain-derived neurotrophic factor (BDNF) and reduced markers for GABA function, including in the amygdala, are reported in major depression, but their contribution to subgenual anterior cingulate cortex dysfunction is not known. Using polymerase chain reaction, we first assessed the degree to which BDNF controls mRNA expression (defined as BDNF dependency) of 15 genes relating to GABA and neuropeptide functions in the cingulate cortex of mice with reduced BDNF function (BDNF-heterozygous [Bdnf(+/-)] mice and BDNF exon-IV knockout [Bdnf(KIV)] mice). Gene expression was then quantified in the subgenual anterior cingulate cortex of 51 postmortem subjects with major depressive disorder and comparison subjects (total subjects, N=102; 49% were women) and compared with previous amygdala results. Based on the results in Bdnf(+/-) and Bdnf(KIV) mice, genes were sorted into high, intermediate, and no BDNF dependency sets. In postmortem human subjects with major depression, BDNF receptor (TRKB) expression, but not BDNF, was reduced. Postmortem depressed subjects exhibited down-regulation in genes with high and intermediate BDNF dependency, including markers of dendritic targeting interneurons (SST, NPY, and CORT) and a GABA synthesizing enzyme (GAD2). Changes extended to BDNF-independent genes (PVALB and GAD1). Changes were greater in men (potentially because of low baseline expression in women), displayed notable differences from prior amygdala results, and were not explained by demographic or clinical factors other than sex. These parallel human/mouse analyses provide direct (low TRKB) and indirect (low expression of BDNF-dependent genes) evidence in support of decreased BDNF signaling in the subgenual anterior cingulate cortex in individuals with major depressive disorder, implicate dendritic targeting GABA neurons and GABA synthesis, and, together, suggest a common BDNF-/GABA-related pathology in major depression with sex- and brain region-specific features.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gindhart, J.G. Jr.; Kaufman, T.C.
1995-02-01
The Drosophilia homeotic gene Sex combs reduced (Scr) is necessary for the establishment and maintenance of the morphological identity of the labial and prothoracic segments. In the early embryo, its expression pattern is established through the activity of several gap and segmentation gene products, as well as other transcription factors. Once established, the Polycomb group (Pc-G) and trithorax group (trx-G) gene products maintain the spatial pattern of Scr expression for the remainder of development. We report the identification of DNA fragments in the Scr regulatory region that may be important for its regulation by Polycomb and trithorax group gene products.more » When DNA fragments containing these regulatory sequences are subcloned into P-element vectors containing a white minigene, transformants containing these constructs exhibit mosaic patterns of pigmentation in the adult eye, indicating that white minigene expression is repressed in a clonally heritable manner. The size of pigmented and nonpigmented clones in the adult eye suggests that the event determining whether a cell in the eye anlagen will express white occurs at least as early as the first larval instar. The amount of white minigene repression is reduced in some Polycomb group mutants, whereas repression is enhanced in flies mutant for a subset of trithorax group loci. The repressor activity of one fragment, normally located in Scr Intron 2, is increased when it is able to homologously pair, a property consistent with genetic data suggesting that Scr exhibits transvection. Another Scr regulatory fragment, normally located 40 kb upstream of the Scr promoter, silences ectopic expression of an Scr-lacZ fusion gene in the embryo and does so in a Polycomb-dependent manner. We propose that the regulatory sequences located within these DNA fragments may normally mediate the regulation of Scr by proteins encoded by members of Polycomb and trithorax group loci. 98 refs., 6 figs., 4 tabs.« less
Beinke, C; Port, M; Ullmann, R; Gilbertz, K; Majewski, M; Abend, M
2018-06-01
Dicentric chromosome analysis (DCA) is the gold standard for individual radiation dose assessment. However, DCA is limited by the time-consuming phytohemagglutinin (PHA)-mediated lymphocyte activation. In this study using human peripheral blood lymphocytes, we investigated PHA-associated whole genome gene expression changes to elucidate this process and sought to identify suitable gene targets as a means of meeting our long-term objective of accelerating cell cycle kinetics to reduce DCA culture time. Human peripheral whole blood from three healthy donors was separately cultured in RPMI/FCS/antibiotics with BrdU and PHA-M. Diluted whole blood samples were transferred into PAXgene tubes at 0, 12, 24 and 36 h culture time. RNA was isolated and aliquots were used for whole genome gene expression screening. Microarray results were validated using qRT-PCR and differentially expressed genes [significantly (FDR corrected) twofold different from the 0 h value reference] were analyzed using several bioinformatic tools. The cell cycle positions and DNA-synthetic activities of lymphocytes were determined by analyzing the correlated total DNA content and incorporated BrdU level with flow cytometry after continued BrdU incubation. From 42,545 transcripts of the whole genome microarray 47.6%, on average, appeared expressed. The number of differentially expressed genes increased linearly from 855 to 2,858 and 4,607 at 12, 24 and 36 h after PHA addition, respectively. Approximately 2-3 times more up- than downregulated genes were observed with several hundred genes differentially expressed at each time point. Earliest enrichment was observed for gene sets related to the nucleus (12 h) followed by genes assigned to intracellular structures such as organelles (24 h) and finally genes related to the membrane and the extracellular matrix were enriched (36 h). Early gene expression changes at 12 h, in particular, were associated with protein classes such as chemokines/cytokines (e.g., CXCL1, CXCL2) and chaperones. Genes coding for biological processes involved in cell cycle control (e.g., MYBL2, RBL1, CCNA, CCNE) and DNA replication (e.g., POLA, POLE, MCM) appeared enriched at 24 h and later, but many more biological processes (42 altogether) showed enrichment as well. Flow cytometry data fit together with gene expression and bioinformatic analyses as cell cycle transition into S phase was observed with interindividual differences from 12 h onward, whereas progression into G 2 as well as into the second G 1 occurred from 36 h onward after activation. Gene set enrichment analysis over time identifies, in particular, two molecular categories of PHA-responsive gene targets (cytokine and cell cycle control genes). Based on that analysis target genes for cell cycle acceleration in lymphocytes have been identified ( CDKN1A/B/C, RBL-1/RBL-2, E2F2, Deaf-1), and it remains undetermined whether the time expenditure for DCA can be reduced by influencing gene expression involved in the regulatory circuits controlling PHA-associated cell cycle entry and/or progression at a specific early cell cycle phase.
Bao, Wenqi; Wang, Xiaowei; Chen, Mo; Chai, Tuanyao; Wang, Hong
2018-07-01
PcWRKY33 is a transcription factor which can reduce salt tolerance by decreasing the expression of stress-related genes and increasing the cellular levels of reactive oxygen species (ROS). WRKY transcription factors play important roles in the regulation of biotic and abiotic stresses. Here, we report a group I WRKY gene from Polygonum cuspidatum, PcWRKY33, that encodes a nucleoprotein, which specifically binds to the W-box in the promoter of target genes to regulate their expression. The results from qPCR and promoter analysis show that expression of PcWRKY33 can be induced by various abiotic stresses, including NaCl and plant hormones. Overexpression of PcWRKY33 in Arabidopsis thaliana reduced tolerance to salt stress. More specifically, several physiological parameters (such as root length, seed germination rate, seedling survival rate, and chlorophyll concentration) of the transgenic lines were significantly lower than those of the wild type under salt stress. In addition, following exposure to salt stress, transgenic plants showed decreased expression of stress-related genes, a weakened ability to maintain Na + /K + homeostasis, decreased activities of reactive oxygen species- (ROS-) scavenging enzymes, and increased accumulation of ROS. Taken together, these results suggest that PcWRKY33 negatively regulates the salt tolerance in at least two ways: by down-regulating the induction of stress-related genes and by increasing the level of cellular ROS. In sum, our results indicate that PcWRKY33 is a group I WRKY transcription factor involved in abiotic stress regulation.
Schnurbusch, Thorsten; Hayes, Julie; Hrmova, Maria; Baumann, Ute; Ramesh, Sunita A.; Tyerman, Stephen D.; Langridge, Peter; Sutton, Tim
2010-01-01
Boron (B) toxicity is a significant limitation to cereal crop production in a number of regions worldwide. Here we describe the cloning of a gene from barley (Hordeum vulgare), underlying the chromosome 6H B toxicity tolerance quantitative trait locus. It is the second B toxicity tolerance gene identified in barley. Previously, we identified the gene Bot1 that functions as an efflux transporter in B toxicity-tolerant barley to move B out of the plant. The gene identified in this work encodes HvNIP2;1, an aquaporin from the nodulin-26-like intrinsic protein (NIP) subfamily that was recently described as a silicon influx transporter in barley and rice (Oryza sativa). Here we show that a rice mutant for this gene also shows reduced B accumulation in leaf blades compared to wild type and that the mutant protein alters growth of yeast (Saccharomyces cerevisiae) under high B. HvNIP2;1 facilitates significant transport of B when expressed in Xenopus oocytes compared to controls and to another NIP (NOD26), and also in yeast plasma membranes that appear to have relatively high B permeability. We propose that tolerance to high soil B is mediated by reduced expression of HvNIP2;1 to limit B uptake, as well as by increased expression of Bot1 to remove B from roots and sensitive tissues. Together with Bot1, the multifunctional aquaporin HvNIP2;1 is an important determinant of B toxicity tolerance in barley. PMID:20581256
Wen, Shuxiang; Chen, Xiaoling; Xu, Fuzhou; Sun, Huiling
2016-01-01
Real-time quantitative reverse transcription PCR (qRT-PCR) offers a robust method for measurement of gene expression levels. Selection of reliable reference gene(s) for gene expression study is conducive to reduce variations derived from different amounts of RNA and cDNA, the efficiency of the reverse transcriptase or polymerase enzymes. Until now reference genes identified for other members of the family Pasteurellaceae have not been validated for Avibacterium paragallinarum. The aim of this study was to validate nine reference genes of serovars A, B, and C strains of A. paragallinarum in different growth phase by qRT-PCR. Three of the most widely used statistical algorithms, geNorm, NormFinder and ΔCT method were used to evaluate the expression stability of reference genes. Data analyzed by overall rankings showed that in exponential and stationary phase of serovar A, the most stable reference genes were gyrA and atpD respectively; in exponential and stationary phase of serovar B, the most stable reference genes were atpD and recN respectively; in exponential and stationary phase of serovar C, the most stable reference genes were rpoB and recN respectively. This study provides recommendations for stable endogenous control genes for use in further studies involving measurement of gene expression levels.
Rhinovirus infection induces distinct transcriptome profiles in polarized human macrophages.
Rajput, Charu; Walsh, Megan P; Eder, Breanna N; Metitiri, Ediri E; Popova, Antonia P; Hershenson, Marc B
2018-05-01
Infections with rhinovirus (RV) cause asthma exacerbations. Recent studies suggest that macrophages play a role in asthmatic airway inflammation and the innate immune response to RV infection. Macrophages exhibit phenotypes based on surface markers and gene expression. We hypothesized that macrophage polarization state alters gene expression in response to RV infection. Cells were derived from human peripheral blood derived monocytes. M1 and M2 polarization was carried out by using IFN-γ and IL-4, respectively, and RNA was extracted for Affymetrix Human Gene ST2.1 exon arrays. Selected genes were validated by quantitative (q)PCR. Treatment of nonactivated (M0) macrophages with IFN-γ and IL-4 induced the expression of 252 and 153 distinct genes, respectively, including previously-identified M1 and M2 markers. RV infection of M0 macrophages induced upregulation of 232 genes; pathway analysis showed significant overrepresentation of genes involved in IFN-α/β signaling and cytokine signaling in the immune system. RV infection induced differential expression of 195 distinct genes in M1-like macrophages but only seven distinct genes in M2-like-polarized cells. In a secondary analysis, comparison between M0-, RV-infected, and M1-like-polarized, RV-infected macrophages revealed differential expression of 227 genes including those associated with asthma and its exacerbation. qPCR demonstrated increased expression of CCL8, CXCL10, TNFSF10, TNFSF18, IL6, NOD2, and GSDMD and reduced expression of VNN1, AGO1, and AGO2. Together, these data show that, in contrast to M2-like-polarized macrophages, gene expression of M1-like macrophages is highly regulated by RV.
A common haplotype lowers PU.1 expression in myeloid cells and delays onset of Alzheimer's disease.
Huang, Kuan-Lin; Marcora, Edoardo; Pimenova, Anna A; Di Narzo, Antonio F; Kapoor, Manav; Jin, Sheng Chih; Harari, Oscar; Bertelsen, Sarah; Fairfax, Benjamin P; Czajkowski, Jake; Chouraki, Vincent; Grenier-Boley, Benjamin; Bellenguez, Céline; Deming, Yuetiva; McKenzie, Andrew; Raj, Towfique; Renton, Alan E; Budde, John; Smith, Albert; Fitzpatrick, Annette; Bis, Joshua C; DeStefano, Anita; Adams, Hieab H H; Ikram, M Arfan; van der Lee, Sven; Del-Aguila, Jorge L; Fernandez, Maria Victoria; Ibañez, Laura; Sims, Rebecca; Escott-Price, Valentina; Mayeux, Richard; Haines, Jonathan L; Farrer, Lindsay A; Pericak-Vance, Margaret A; Lambert, Jean Charles; van Duijn, Cornelia; Launer, Lenore; Seshadri, Sudha; Williams, Julie; Amouyel, Philippe; Schellenberg, Gerard D; Zhang, Bin; Borecki, Ingrid; Kauwe, John S K; Cruchaga, Carlos; Hao, Ke; Goate, Alison M
2017-08-01
A genome-wide survival analysis of 14,406 Alzheimer's disease (AD) cases and 25,849 controls identified eight previously reported AD risk loci and 14 novel loci associated with age at onset. Linkage disequilibrium score regression of 220 cell types implicated the regulation of myeloid gene expression in AD risk. The minor allele of rs1057233 (G), within the previously reported CELF1 AD risk locus, showed association with delayed AD onset and lower expression of SPI1 in monocytes and macrophages. SPI1 encodes PU.1, a transcription factor critical for myeloid cell development and function. AD heritability was enriched within the PU.1 cistrome, implicating a myeloid PU.1 target gene network in AD. Finally, experimentally altered PU.1 levels affected the expression of mouse orthologs of many AD risk genes and the phagocytic activity of mouse microglial cells. Our results suggest that lower SPI1 expression reduces AD risk by regulating myeloid gene expression and cell function.
Gene-Expression Biomarkers for Application to High-Throughput Radiation Biodosimetry
2005-01-01
nuclear disaster . Even with the delayed onset of symptoms, sometimes several days after exposure, gene-expression biomarkers can identify these exposed individuals very early after exposure, allowing for prompt medical intervention. This early assessment of a radiation dose after exposure would enhance the operational commander’s situational awareness of the radiation exposure status of deployed units and increase the prospect of reduced morbidity and mortality through early medical intervention. Candidate gene targets were selected from microarray studies of ex
Zamorina, S A; Litvinova, L S; Yurova, K A; Khaziakhmatova, O G; Timganova, V P; Bochkova, M S; Khramtsov, P V; Rayev, M B
2018-01-01
The role of human chorionic gonadotropin (hCG) in the regulation of molecular genetics factors determining the functional activity of human naïve and memory T cells in vitro was studied. It was found that hCG (10 and 100IU/ml) inhibited CD28 and CD25 expression on the naïve T cells (CD45RA+) and CD25 expression on the memory T cells (CD45R0+). hCG didn't affect the CD71 proliferation marker expression in total. Nevertheless, hCG reduced the percentage of proliferating memory T cells with simultaneous suppression of CD71 expression on proliferating CD45R0+cells. In parallel, expression of U2af1l4, Gfi1, and hnRNPLL genes, which are Ptprc gene alternative splicing regulators was evaluated. It was established that hCG stimulated the expression of U2af1l4 and hnRNPLL genes, responsible for the assembly of CD45R0 in memory T cells, but reduced the expression of Gfi1 in these cells. In general, hCG promotes the differentiation of memory T cells by increasing of CD45R0 expression, but inhibits proliferation and CD25 expression which reflects their functional activity. Copyright © 2017 Elsevier B.V. All rights reserved.
Early immune response and regulation of IL-2 receptor subunits
NASA Technical Reports Server (NTRS)
Hughes-Fulford, Millie; Sugano, Eiko; Schopper, Thomas; Li, Chai-Fei; Boonyaratanakornkit, J. B.; Cogoli, Augusto
2005-01-01
Affymetrix oligonucleotide arrays were used to monitor expression of 8796 genes and probe sets in activated T-cells; analysis revealed that 217 genes were significantly upregulated within 4 h. Induced genes included transcription factors, cytokines and their receptor genes. Analysis by semi-quantitative RT-PCR confirmed the significant induction of IL-2, IL-2R(gamma) and IL-2R(alpha). Forty-eight of the 217 induced genes are known to or predicted to be regulated by a CRE promoter/enhancer. We found that T-cell activation caused a significant increase in CREB phosphorylation furthermore, inhibition of the PKC pathway by GF109203 reduced CREB activation by 50% and inhibition of the PKA pathway caused a total block of CREB phosphorylation and significantly reduced IFN(gamma), IL-2 and IL-2R(alpha) gene expression by approximately 40% (p<0.001). PKC(theta) plays a major role in T-cell activation: inhibition of PKC significantly reduced the expression of IFN(gamma), IL-2 and IL-2R(alpha). Since PKC blocked activation of CREB, we studied potential cross-talk between the PKC and the PKA/MAPK pathways, PMA-stimulated Jurkat cells were studied with specific signal pathway inhibitors. Extracellular signal-regulated kinase-2 (ERK2) pathway was found to be significantly activated greater than seven-fold within 30 min; however, there was little activation of ERK-1 and no activation of JNK or p38 MAPK. Inhibition of the PKA pathway, but not the PKC pathway, resulted in inhibition of ERK1/2 activation at all time points, inhibition of MEK1 and 2 significantly blocked expression of IL-2 and IL-2R(alpha). Gene expression of IL-2R(alpha) and IFN(gamma) was dependent on PKA in S49 wt cells but not in kin- mutants. Using gel shift analysis, we found that forskolin activation of T-cells resulted in activation of AP1 sites; this increase in nuclear extract AP1 was significantly blocked by MEK1 inhibitor U0126. Taken together, these results suggest that the PKA in addition to PKC and MAPK pathways plays a role in early T-cell activation and induction of IL-2, IL-2R(alpha) and IFN(gamma) gene expression.
Early immune response and regulation of IL-2 receptor subunits.
Hughes-Fulford, Millie; Sugano, Eiko; Schopper, Thomas; Li, Chai-Fei; Boonyaratanakornkit, J B; Cogoli, Augusto
2005-09-01
Affymetrix oligonucleotide arrays were used to monitor expression of 8796 genes and probe sets in activated T-cells; analysis revealed that 217 genes were significantly upregulated within 4 h. Induced genes included transcription factors, cytokines and their receptor genes. Analysis by semi-quantitative RT-PCR confirmed the significant induction of IL-2, IL-2R(gamma) and IL-2R(alpha). Forty-eight of the 217 induced genes are known to or predicted to be regulated by a CRE promoter/enhancer. We found that T-cell activation caused a significant increase in CREB phosphorylation furthermore, inhibition of the PKC pathway by GF109203 reduced CREB activation by 50% and inhibition of the PKA pathway caused a total block of CREB phosphorylation and significantly reduced IFN(gamma), IL-2 and IL-2R(alpha) gene expression by approximately 40% (p<0.001). PKC(theta) plays a major role in T-cell activation: inhibition of PKC significantly reduced the expression of IFN(gamma), IL-2 and IL-2R(alpha). Since PKC blocked activation of CREB, we studied potential cross-talk between the PKC and the PKA/MAPK pathways, PMA-stimulated Jurkat cells were studied with specific signal pathway inhibitors. Extracellular signal-regulated kinase-2 (ERK2) pathway was found to be significantly activated greater than seven-fold within 30 min; however, there was little activation of ERK-1 and no activation of JNK or p38 MAPK. Inhibition of the PKA pathway, but not the PKC pathway, resulted in inhibition of ERK1/2 activation at all time points, inhibition of MEK1 and 2 significantly blocked expression of IL-2 and IL-2R(alpha). Gene expression of IL-2R(alpha) and IFN(gamma) was dependent on PKA in S49 wt cells but not in kin- mutants. Using gel shift analysis, we found that forskolin activation of T-cells resulted in activation of AP1 sites; this increase in nuclear extract AP1 was significantly blocked by MEK1 inhibitor U0126. Taken together, these results suggest that the PKA in addition to PKC and MAPK pathways plays a role in early T-cell activation and induction of IL-2, IL-2R(alpha) and IFN(gamma) gene expression.
Hussain, Ahtesham; Yadav, Mukesh Kumar; Bose, Shambhunath; Wang, Jing-Hua; Lim, Dongwoo; Song, Yun-Kyung; Ko, Seong-Gyu; Kim, Hojun
2016-01-01
Obesity has become a major global health challenge due to its increasing prevalence, and the associated health risk. It is the main cause of various metabolic diseases including diabetes, hypertension, cardiovascular disease, stroke and certain forms of cancer. In the present study we evaluated the anti-obesity property of Daesiho-tang (DSHT), an herbal medicine, using high fat diet (HFD)-induced obese mice as a model. Our results showed that DSHT ameliorated body weight gain, decreased total body fat, regulated expression of leptin and adiponectin genes of adipose tissue and exerted an anti-diabetic effect by attenuating fasting glucose level and serum insulin level in HFD-fed animals. In addition, DSHT-treatment significantly reduced total cholesterol (TC), triglycerides (TG) and increased high density lipoprotein-cholesterol (HDL), glutamic pyruvic transaminase (GPT) and glutamic oxaloacetic transaminase (GOT) levels in serum and reduced deposition of fat droplets in liver. DSHT treatment resulted in significantly increased relative abundance of bacteria including Bacteroidetes, Bacteroidetes/Firmicutes ratio, Akkermansia Bifidobacterium., Lactobacillus, and decreased the level of Firmicutes. Using RT2 profiler PCR array, 39 (46%) genes were found to be differentially expressed in HFD-fed mice compared to normal control. However, normal gene expressions were restored in 36 (92%) genes of HFD-fed mice, when co-exposed to DSHT. The results of this study demonstrated that DSHT is an effective herbal formulation in attenuation of obesity in HFD-fed mice through alteration of gene expressions and modulation of intestinal microbiota.
Epigenetic control of skin differentiation genes by phytocannabinoids
Pucci, Mariangela; Rapino, Cinzia; Di Francesco, Andrea; Dainese, Enrico; D'Addario, Claudio; Maccarrone, Mauro
2013-01-01
BACKGROUND AND PURPOSE Endocannabinoid signalling has been shown to have a role in the control of epidermal physiology, whereby anandamide is able to regulate the expression of skin differentiation genes through DNA methylation. Here, we investigated the possible epigenetic regulation of these genes by several phytocannabinoids, plant-derived cannabinoids that have the potential to be novel therapeutics for various human diseases. EXPERIMENTAL APPROACH The effects of cannabidiol, cannabigerol and cannabidivarin on the expression of skin differentiation genes keratins 1 and 10, involucrin and transglutaminase 5, as well as on DNA methylation of keratin 10 gene, were investigated in human keratinocytes (HaCaT cells). The effects of these phytocannabinoids on global DNA methylation and the activity and expression of four major DNA methyltransferases (DNMT1, 3a, 3b and 3L) were also examined. KEY RESULTS Cannabidiol and cannabigerol significantly reduced the expression of all the genes tested in differentiated HaCaT cells, by increasing DNA methylation of keratin 10 gene, but cannabidivarin was ineffective. Remarkably, cannabidiol reduced keratin 10 mRNA through a type-1 cannabinoid (CB1) receptor-dependent mechanism, whereas cannabigerol did not affect either CB1 or CB2 receptors of HaCaT cells. In addition, cannabidiol, but not cannabigerol, increased global DNA methylation levels by selectively enhancing DNMT1 expression, without affecting DNMT 3a, 3b or 3L. CONCLUSIONS AND IMPLICATIONS These findings show that the phytocannabinoids cannabidiol and cannabigerol are transcriptional repressors that can control cell proliferation and differentiation. This indicates that they (especially cannabidiol) have the potential to be lead compounds for the development of novel therapeutics for skin diseases. PMID:23869687
Altered Expression of Porcine Piwi Genes and piRNA during Development
Kowalczykiewicz, Dorota; Pawlak, Piotr; Lechniak, Dorota; Wrzesinski, Jan
2012-01-01
Three Sus scrofa Piwi genes (Piwil1, Piwil2 and Piwil4) encoding proteins of 861, 985 and 853 aminoacids, respectively, were cloned and sequenced. Alignment of the Piwi proteins showed the high identity between Sus scrofa and Homo sapiens. Relative transcript abundance of porcine Piwil1, Piwil2 and Piwil4 genes in testes, ovaries and oocytes derived from sexually immature and mature animals was examined using Real-Time PCR. Expression of the three Piwi mRNAs was proved to be tissue specific and restricted exclusively to the gonads. In testes of adult pigs the highest relative transcript abundance was observed for the Sus scrofa Piwil1 gene. On the other hand, in testes of neonatal pigs the Piwil1 transcript level was over 2–fold reduced while the level of Piwil2 transcript was higher. As regards the expression of the Piwil4 transcript, its level was 34-fold elevated in testes of neonatal piglet when compared to adult male. In ovaries of prepubertal and pubertal female pigs transcript abundance of the three Piwi genes was significantly reduced in comparison with testes. However, similarly to testes, in ovaries of neonatal pigs the Piwil2 gene was characterized by the highest relative transcript abundance among the three Piwi genes analysed. In prepubertal and pubertal oocytes Piwil1 transcript was the most abundant whereas the expression of Piwil4 was undetectable. We also demonstrated that expression of piRNA occurs preferentially in the gonads of adult male and female pigs. Moreover, a piRNA subset isolated from ovaries was 2–3 nucleotides longer than the piRNA from testes. PMID:22952772
Bhagat, Rahul; Kumar, Sandeep Sriram; Vaderhobli, Shilpa; Premalata, Chennagiri S; Pallavi, Venkateshaiah Reddihalli; Ramesh, Gawari; Krishnamoorthy, Lakshmi
2014-09-01
Silencing of tumor suppressor and tumor-related genes by promoter hypermethylation is one of the major events in ovarian carcinogenesis. In this study, we analyzed aberrant promoter methylation of p16 and RAR-β genes in 134 epithelial ovarian carcinomas (EOCs), 23 low malignant potential (LMP) tumors, 26 benign cystadenomas, and 15 normal ovarian tissues. Methylation was investigated by methylation-specific PCR (MSP), and the results were confirmed by bisulfite DNA sequencing. Relative gene expression of p16 and RAR-β was done using quantitative reverse transcriptase PCR (qRT-PCR) on 51 EOC cases, 9 LMP tumors, and 7 benign cystadenomas with 5 normal ovarian tissues. Aberrant methylation for p16 and RAR-β was present in 43 % (58/134) and 31 % (41/134) in carcinoma cases, 22 % (05/23) and 52 % (12/23) in LMP tumors, and 42 % (11/26) and 69 % (18/26) in benign cystadenomas. No methylation was observed in any of the normal ovarian tissues. The mRNA expression level of p16 and RAR-β was significantly downregulated in EOC and LMP tumors than the corresponding normal tissues whereas the expression level was normal in benign cystadenomas for p16 and slightly reduced for RAR-β. A significant correlation of p16 promoter methylation was observed with reduced gene expression in EOC. For RAR-β, no significant correlation was observed between promoter methylation and gene expression. Our results suggest that epigenetic alterations of p16 and RAR-β have an important role in ovarian carcinogenesis and that mechanism along with methylation plays a significant role in downregulation of RAR-β gene in ovarian cancer.
Vitamin K2 improves proliferation and migration of bovine skeletal muscle cells in vitro.
Rønning, Sissel Beate; Pedersen, Mona Elisabeth; Berg, Ragnhild Stenberg; Kirkhus, Bente; Rødbotten, Rune
2018-01-01
Skeletal muscle function is highly dependent on the ability to regenerate, however, during ageing or disease, the proliferative capacity is reduced, leading to loss of muscle function. We have previously demonstrated the presence of vitamin K2 in bovine skeletal muscles, but whether vitamin K has a role in muscle regulation and function is unknown. In this study, we used primary bovine skeletal muscle cells, cultured in monolayers in vitro, to assess a potential effect of vitamin K2 (MK-4) during myogenesis of muscle cells. Cell viability experiments demonstrate that the amount of ATP produced by the cells was unchanged when MK-4 was added, indicating viable cells. Cytotoxicity analysis show that MK-4 reduced the lactate dehydrogenase (LDH) released into the media, suggesting that MK-4 was beneficial to the muscle cells. Cell migration, proliferation and differentiation was characterised after MK-4 incubation using wound scratch analysis, immunocytochemistry and real-time PCR analysis. Adding MK-4 to the cells led to an increased muscle proliferation, increased gene expression of the myogenic transcription factor myod as well as increased cell migration. In addition, we observed a reduction in the fusion index and relative gene expression of muscle differentiation markers, with fewer complex myotubes formed in MK-4 stimulated cells compared to control cells, indicating that the MK-4 plays a significant role during the early phases of muscle proliferation. Likewise, we see the same pattern for the relative gene expression of collagen 1A, showing increased gene expression in proliferating cells, and reduced expression in differentiating cells. Our results also suggest that MK-4 incubation affect low density lipoprotein receptor-related protein 1 (LRP1) and the low-density lipoprotein receptor (LDLR) with a peak in gene expression after 45 min of MK-4 incubation. Altogether, our experiments show that MK-4 has a positive effect on muscle cell migration and proliferation, which are two important steps during early myogenesis.
Zhang, Zhiyuan; Ruan, Yong-Ling; Zhou, Na; Wang, Fang; Guan, Xueying; Fang, Lei; Shang, Xiaoguang; Guo, Wangzhen; Zhu, Shuijin; Zhang, Tianzhen
2017-08-01
Plasmodesmata (PDs) play vital roles in cell-to-cell communication and plant development. Emerging evidence suggests that sterols are involved in PD activity during cytokinesis. However, whether sterols contribute to PD gating between established cells remains unknown. Here, we isolated GhSCP2D , a putative sterol carrier protein gene from elongating cotton ( Gossypium hirsutum ) fibers. In contrast to wild-type fiber PDs, which opened at 5 to 10 d postanthesis (DPA) and closed only at 15 to 25 DPA, plants with suppressed GhSCP2D expression had reduced sterol contents and closed PDs at 5 through 25 DPA The GhSCP2D- suppressed fibers exhibited callose deposition at the PDs, likely due to reduced expression of GhPdBG3-2A/D , which encodes a PD-targeting β-1,3-glucanase. Both GhPdBG3-2A/D expression and callose deposition were sensitive to a sterol biosynthesis inhibitor. Moreover, suppressing GhSCP2D upregulated a cohort of SUT and SWEET sucrose transporter genes in fiber cells. Collectively, our results indicate that (1) GhSCP2D is required for GhPdBG3-2A/D expression to degrade callose at the PD, thereby contributing to the establishment of the symplasmic pathway; and (2) blocking the symplasmic pathway by downregulating GhSCP2D activates or increases the expression of SUTs and SWEETs , leading to the switch from symplasmic to apoplasmic pathways. © 2017 American Society of Plant Biologists. All rights reserved.
Lu, Zhi Hong; Kaliberov, Sergey; Zhang, Jingzhu; Muz, Barbara; Azab, Abdel K; Sohn, Rebecca E; Kaliberova, Lyudmila; Du, Yingqiu; Curiel, David T; Arbeit, Jeffrey M
2014-08-01
Vascular endothelial cells (ECs) are ideal gene therapy targets as they provide widespread tissue access and are the first contact surfaces following intravenous vector administration. Human recombinant adenovirus serotype 5 (Ad5) is the most frequently used gene transfer system because of its appreciable transgene payload capacity and lack of somatic mutation risk. However, standard Ad5 vectors predominantly transduce liver but not the vasculature following intravenous administration. We recently developed an Ad5 vector with a myeloid cell-binding peptide (MBP) incorporated into the knob-deleted, T4 fibritin chimeric fiber (Ad.MBP). This vector was shown to transduce pulmonary ECs presumably via a vector handoff mechanism. Here we tested the body-wide tropism of the Ad.MBP vector, its myeloid cell necessity, and vector-EC expression dose response. Using comprehensive multi-organ co-immunofluorescence analysis, we discovered that Ad.MBP produced widespread EC transduction in the lung, heart, kidney, skeletal muscle, pancreas, small bowel, and brain. Surprisingly, Ad.MBP retained hepatocyte tropism albeit at a reduced frequency compared with the standard Ad5. While binding specifically to myeloid cells ex vivo, multi-organ Ad.MBP expression was not dependent on circulating monocytes or macrophages. Ad.MBP dose de-escalation maintained full lung-targeting capacity but drastically reduced transgene expression in other organs. Swapping the EC-specific ROBO4 for the CMV promoter/enhancer abrogated hepatocyte expression but also reduced gene expression in other organs. Collectively, our multilevel targeting strategy could enable therapeutic biological production in previously inaccessible organs that pertain to the most debilitating or lethal human diseases.
Ellsworth, Darrell L; Croft, Daniel T; Weyandt, Jamie; Sturtz, Lori A; Blackburn, Heather L; Burke, Amy; Haberkorn, Mary Jane; McDyer, Fionnuala A; Jellema, Gera L; van Laar, Ryan; Mamula, Kimberly A; Chen, Yaqin; Vernalis, Marina N
2014-04-01
Healthy lifestyle changes are thought to mediate cardiovascular disease risk through pathways affecting endothelial function and progression of atherosclerosis; however, the extent, persistence, and clinical significance of molecular change during lifestyle modification are not well known. We examined the effect of a rigorous cardiovascular disease risk reduction program on peripheral blood gene expression profiles in 63 participants and 63 matched controls to characterize molecular responses and identify regulatory pathways important to cardiovascular health. Dramatic changes in dietary fat intake (-61%; P<0.001 versus controls) and physical fitness (+34%; P<0.001) led to significant improvements in cardiovascular disease risk factors. Analysis of variance with false discovery rate correction for multiple testing (P<0.05) identified 26 genes after 12 weeks and 143 genes after 52 weeks that were differentially expressed from baseline in participants. Controls showed little change in cardiovascular disease risk factors or gene expression. Quantitative reverse transcription polymerase chain reaction validated differential expression for selected transcripts. Lifestyle modification effectively reduced expression of proinflammatory genes associated with neutrophil activation and molecular pathways important to vascular function, including cytokine production, carbohydrate metabolism, and steroid hormones. Prescription medications did not significantly affect changes in gene expression. Successful and sustained modulation of gene expression through lifestyle changes may have beneficial effects on the vascular system not apparent from traditional risk factors. Healthy lifestyles may restore homeostasis to the leukocyte transcriptome by downregulating lactoferrin and other genes important in the pathogenesis of atherosclerosis. Clinical Trial Registration- URL: www.clinicaltrials.gov. Unique identifier: NCT01805492.
An Oomycete CRN Effector Reprograms Expression of Plant HSP Genes by Targeting their Promoters
Song, Tianqiao; Ma, Zhenchuan; Shen, Danyu; Li, Qi; Li, Wanlin; Su, Liming; Ye, Tingyue; Zhang, Meixiang; Wang, Yuanchao; Dou, Daolong
2015-01-01
Oomycete pathogens produce a large number of CRN effectors to manipulate plant immune responses and promote infection. However, their functional mechanisms are largely unknown. Here, we identified a Phytophthora sojae CRN effector PsCRN108 which contains a putative DNA-binding helix-hairpin-helix (HhH) motif and acts in the plant cell nucleus. Silencing of the PsCRN108 gene reduced P. sojae virulence to soybean, while expression of the gene in Nicotiana benthamiana and Arabidopsis thaliana enhanced plant susceptibility to P. capsici. Moreover, PsCRN108 could inhibit expression of HSP genes in A. thaliana, N. benthamiana and soybean. Both the HhH motif and nuclear localization signal of this effector were required for its contribution to virulence and its suppression of HSP gene expression. Furthermore, we found that PsCRN108 targeted HSP promoters in an HSE- and HhH motif-dependent manner. PsCRN108 could inhibit the association of the HSE with the plant heat shock transcription factor AtHsfA1a, which initializes HSP gene expression in response to stress. Therefore, our data support a role for PsCRN108 as a nucleomodulin in down-regulating the expression of plant defense-related genes by directly targeting specific plant promoters. PMID:26714171
An Oomycete CRN Effector Reprograms Expression of Plant HSP Genes by Targeting their Promoters.
Song, Tianqiao; Ma, Zhenchuan; Shen, Danyu; Li, Qi; Li, Wanlin; Su, Liming; Ye, Tingyue; Zhang, Meixiang; Wang, Yuanchao; Dou, Daolong
2015-12-01
Oomycete pathogens produce a large number of CRN effectors to manipulate plant immune responses and promote infection. However, their functional mechanisms are largely unknown. Here, we identified a Phytophthora sojae CRN effector PsCRN108 which contains a putative DNA-binding helix-hairpin-helix (HhH) motif and acts in the plant cell nucleus. Silencing of the PsCRN108 gene reduced P. sojae virulence to soybean, while expression of the gene in Nicotiana benthamiana and Arabidopsis thaliana enhanced plant susceptibility to P. capsici. Moreover, PsCRN108 could inhibit expression of HSP genes in A. thaliana, N. benthamiana and soybean. Both the HhH motif and nuclear localization signal of this effector were required for its contribution to virulence and its suppression of HSP gene expression. Furthermore, we found that PsCRN108 targeted HSP promoters in an HSE- and HhH motif-dependent manner. PsCRN108 could inhibit the association of the HSE with the plant heat shock transcription factor AtHsfA1a, which initializes HSP gene expression in response to stress. Therefore, our data support a role for PsCRN108 as a nucleomodulin in down-regulating the expression of plant defense-related genes by directly targeting specific plant promoters.
Huber, M C; Bosch, F X; Sippel, A E; Bonifer, C
1994-01-01
The complete chicken lysozyme gene locus is expressed copy number dependently and at a high level in macrophages of transgenic mice. Gene expression independent of genomic position can only be achieved by the concerted action of all cis regulatory elements located on the lysozyme gene domain. Position independency of expression is lost if one essential cis regulatory region is deleted. Here we compared the DNase I hypersensitive site (DHS) pattern formed on the chromatin of position independently and position dependently expressed transgenes in order to assess the influence of deletions within the gene domain on active chromatin formation. We demonstrate, that in position independently expressed transgene all DHSs are formed with the authentic relative frequency on all genes. This is not the case for position dependently expressed transgenes. Our results show that the formation of a DHS during cellular differentiation does not occur autonomously. In case essential regulatory elements of the chicken lysozyme gene domain are lacking, the efficiency of DHS formation on remaining cis regulatory elements during myeloid differentiation is reduced and influenced by the chromosomal position. Hence, no individual regulatory element on the lysozyme domain is capable of organizing the chromatin structure of the whole locus in a dominant fashion. Images PMID:7937145
Wang, Haihai; Jiang, Chunmei; Wang, Cuiting; Yang, Yang; Yang, Lei; Gao, Xiaoyan; Zhang, Hongxia
2015-03-01
Fasciclin-like arabinogalactan proteins (FLAs) play important roles in the growth and development of roots, stems, and seeds in Arabidopsis. However, their biological functions in woody plants are largely unknown. In this work, we investigated the possible function of PtFLA6 in poplar. Quantitative real-time PCR, PtFLA6-yellow fluorescent protein (YFP) fusion protein subcellular localization, Western blotting, and immunohistochemical analyses demonstrated that the PtFLA6 gene was expressed specifically in the xylem of mature stem, and PtFLA6 protein was distributed ubiquitous in plant cells and accumulated predominantly in stem xylem fibres. Antisense expression of PtFLA6 in the aspen hybrid clone Poplar davidiana×Poplar bolleana reduced the transcripts of PtFLA6 and its homologous genes. Transgenic plants that showed a significant reduction in the transcripts of PtFLAs accumulated fewer PtFLA6 and arabinogalactan proteins than did the non-transgenic plants, leading to reduced stem flexural strength and stiffness. Further studies revealed that the altered stem biomechanics of transgenic plants could be attributed to the decreased cellulose and lignin composition in the xylem. In addition expression of some xylem-specific genes involved in cell wall biosynthesis was downregulated in these transgenic plants. All these results suggest that engineering the expression of PtFLA6 and its homologues could modulate stem mechanical properties by affecting cell wall composition in trees. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Lamas, A; Miranda, J M; Vázquez, B; Cepeda, A; Franco, C M
2016-12-05
Salmonella enterica subsp. enterica is one of the main food-borne pathogens. This microorganism combines an aerobic life outside the host with an anaerobic life within the host. One of the main concerns related to S. enterica is biofilm formation and cellulose production. In this study, biofilm formation, morphotype, cellulose production and transcription of biofilm and quorum sensing-related genes of 11 S. enterica strains were tested under three different conditions: aerobiosis, microaerobiosis, and anaerobiosis. The results showed an influence of oxygen levels on biofilm production. Biofilm formation was significantly higher (P<0.05) in aerobiosis than in microaerobiosis and anaerobiosis. Cellulose production and RDAR (red, dry, and rough) were expressed only in aerobiosis. In microaerobiosis, the strains expressed the SAW (smooth and white) morphotype, while in anaerobiosis the colonies appeared small and red. The expression of genes involved in cellulose synthesis (csgD and adrA) and quorum sensing (sdiA and luxS) was reduced in microaerobiosis and anaerobiosis in all S. enterica strains tested. This gene expression levels were less reduced in S. Typhimurium and S. Enteritidis compared to the tested serotypes. There was a relationship between the expression of biofilm and quorum sensing-related genes. Thus, the results from this study indicate that biofilm formation and cellulose production are highly influenced by atmospheric conditions. This must be taken into account as contamination with these bacteria can occur during food processing under vacuum or modified atmospheres. Copyright © 2016 Elsevier B.V. All rights reserved.
Function and Evolution of DNA Methylation in Nasonia vitripennis
Wang, Xu; Wheeler, David; Avery, Amanda; Rago, Alfredo; Choi, Jeong-Hyeon; Colbourne, John K.; Clark, Andrew G.; Werren, John H.
2013-01-01
The parasitoid wasp Nasonia vitripennis is an emerging genetic model for functional analysis of DNA methylation. Here, we characterize genome-wide methylation at a base-pair resolution, and compare these results to gene expression across five developmental stages and to methylation patterns reported in other insects. An accurate assessment of DNA methylation across the genome is accomplished using bisulfite sequencing of adult females from a highly inbred line. One-third of genes show extensive methylation over the gene body, yet methylated DNA is not found in non-coding regions and rarely in transposons. Methylated genes occur in small clusters across the genome. Methylation demarcates exon-intron boundaries, with elevated levels over exons, primarily in the 5′ regions of genes. It is also elevated near the sites of translational initiation and termination, with reduced levels in 5′ and 3′ UTRs. Methylated genes have higher median expression levels and lower expression variation across development stages than non-methylated genes. There is no difference in frequency of differential splicing between methylated and non-methylated genes, and as yet no established role for methylation in regulating alternative splicing in Nasonia. Phylogenetic comparisons indicate that many genes maintain methylation status across long evolutionary time scales. Nasonia methylated genes are more likely to be conserved in insects, but even those that are not conserved show broader expression across development than comparable non-methylated genes. Finally, examination of duplicated genes shows that those paralogs that have lost methylation in the Nasonia lineage following gene duplication evolve more rapidly, show decreased median expression levels, and increased specialization in expression across development. Methylation of Nasonia genes signals constitutive transcription across developmental stages, whereas non-methylated genes show more dynamic developmental expression patterns. We speculate that loss of methylation may result in increased developmental specialization in evolution and acquisition of methylation may lead to broader constitutive expression. PMID:24130511
Yu, Zheng; Peng, Sun; Hong-Ming, Pan; Kai-Feng, Wang
2012-01-01
To investigate the expression of multi-drug resistance-related genes, MDR3 and MRP, in clinical specimens of primary liver cancer and their potential as prognostic factors in liver cancer patients. A total of 26 patients with primary liver cancer were enrolled. The expression of MDR3 and MRP genes was measured by real-time PCR and the association between gene expression and the prognosis of patients was analyzed by the Kaplan-Meier method and COX regression model. This study showed that increases in MDR3 gene expression were identified in cholangiocellular carcinoma, cirrhosis and HBsAg-positive patients, while MRP expression increased in hepatocellular carcinoma, non-cirrhosis and HBsAg-negative patients. Moreover, conjugated bilirubin and total bile acid in the serum were significantly reduced in patients with high MRP expression compared to patients with low expression. The overall survival tended to be longer in patients with high MDR3 and MRP expression compared to the control group. MRP might be an independent prognostic factor in patients with liver cancer by COX regression analysis. MDR3 and MRP may play important roles in liver cancer patients as prognostic factors and their underlying mechanisms in liver cancer are worthy of further investigation.
New target genes of MITF-induced microRNA-211 contribute to melanoma cell invasion.
Margue, Christiane; Philippidou, Demetra; Reinsbach, Susanne E; Schmitt, Martina; Behrmann, Iris; Kreis, Stephanie
2013-01-01
The non-coding microRNAs (miRNA) have tissue- and disease-specific expression patterns. They down-regulate target mRNAs, which likely impacts on most fundamental cellular processes. Differential expression patterns of miRNAs are currently being exploited for identification of biomarkers for early disease diagnosis, prediction of progression for melanoma and other cancers and as promising drug targets, since they can easily be inhibited or replaced in a given cellular context. Before successfully manipulating miRNAs in clinical settings, their precise expression levels, endogenous functions and thus their target genes have to be determined. MiR-211, a melanocyte lineage-specific small non-coding miRNA, is located in an intron of TRPM1, a target gene of the microphtalmia-associated transcription factor (MITF). By transcriptionally up-regulating TRPM1, MITF, which is critical for both melanocyte differentiation and survival and for melanoma progression, indirectly drives the expression of miR-211. Expression of this miRNA is often reduced in melanoma samples. Here, we investigated functional roles of miR-211 by identifying and studying new target genes. We show that MITF-correlated miR-211 expression levels are mostly but not always reduced in a panel of 11 melanoma cell lines and in primary and metastatic melanoma compared to normal melanocytes and nevi, respectively. MiR-211 itself only marginally impacted on cell invasion and migration, while perturbation of some new miR-211 target genes, such as AP1S2, SOX11, IGFBP5, and SERINC3 significantly increased invasion. These results and the variable expression levels of miR-211 raise serious doubts on the value of miR-211 as a melanoma tumor-suppressing miRNA and/or as a biomarker for melanoma.
Effect of Dietary Fatty Acids on Inflammatory Gene Expression in Healthy Humans*
Weaver, Kelly L.; Ivester, Priscilla; Seeds, Michael; Case, L. Douglas; Arm, Jonathan P.; Chilton, Floyd H.
2009-01-01
Over the past 100 years, changes in the food supply in Western nations have resulted in alterations in dietary fatty acid consumption, leading to a dramatic increase in the ratio of omega-6 (ω6) to ω3 polyunsaturated fatty acids (PUFA) in circulation and in tissues. Increased ω6/ω3 ratios are hypothesized to increase inflammatory mediator production, leading to higher incidence of inflammatory diseases, and may impact inflammatory gene expression. To determine the effect of reducing the ω6/ω3 ratio on expression of inflammatory pathway genes in mononuclear cells, healthy humans were placed on a controlled diet for 1 week, then given fish oil and borage oil for an additional 4 weeks. Serum and neutrophil fatty acid composition and ex vivo leukotriene B4 production from stimulated neutrophils were measured at the start and end of the supplementation period and after a 2-week washout. RNA was isolated from mononuclear cells and expression of PI3K, Akt, NFκB, and inflammatory cytokines was measured by real-time PCR. A marked increase was seen in serum and neutrophil levels of long-chain ω3 PUFA concomitant with a reduction in the ω6/ω3 PUFA ratio (40%). The ex vivo capacity of stimulated neutrophils to produce leukotriene B4 was decreased by 31%. Expression of PI3Kα and PI3Kγ and the quantity of PI3Kα protein in mononuclear cells was reduced after supplementation, as was the expression of several proinflammatory cytokines. These data reveal that PUFA may exert their clinical effects via their capacity to regulate the expression of signal transduction genes and genes for proinflammatory cytokines. PMID:19359242
Guo, Lin; Frost, Michael R; Siegwart, John T; Norton, Thomas T
2014-01-01
During postnatal refractive development, the sclera receives retinally generated signals that regulate its biochemical properties. Hyperopic refractive error causes the retina to produce "GO" signals that, through the direct emmetropization pathway, cause scleral remodeling that increases the axial elongation rate of the eye, reducing the hyperopia. Myopia causes the retina to generate "STOP" signals that produce scleral remodeling, slowing the axial elongation rate and reducing the myopia. Our aim was to compare the pattern of gene expression produced in the sclera by the STOP signals with the GO gene expression signature we described previously. The GO gene expression signature was produced by monocular -5 diopter (D) lens wear for 2 days (ML-2) or 4 days (ML-4); an additional "STAY" condition was examined after eyes had fully compensated for a -5 D lens after 11 days of lens wear (ML-11). After 11 days of -5 D lens wear had produced full refractive compensation, gene expression in the STOP condition was examined during recovery (without the lens) for 2 days (REC-2) or 4 days (REC-4). The untreated contralateral eyes served as a control in all groups. Two age-matched normal groups provided a comparison with the treated groups. Quantitative real-time PCR was used to measure mRNA levels for 55 candidate genes. The STAY group compensated fully for the lens (treated eye versus control eye, -5.1±0.2 D). Wearing the lens, the hyperopic signal for elongation had dissipated (-0.3±0.3 D). In the STOP groups, the refraction in the recovering eyes became less myopic relative to the control eyes (REC-2, +1.3±0.3 D; REC-4, +2.6±0.4 D). In the STAY group, three genes showed significant downregulation. However, many genes that were significantly altered in GO showed smaller, nonsignificant, expression differences in the same direction in STAY, suggesting the gene expression signature in STAY is a greatly weakened form of the GO signature. In the STOP groups, a different gene expression pattern was observed, characterized by mostly upregulation with larger fold differences after 4 days than after 2 days of recovery. Eleven of the 55 genes examined showed significant bidirectional GO/STOP regulation in the ML-2 and REC-2 groups, and 13 genes showed bidirectional regulation in the ML-4 and REC-4 groups. Eight of these genes (NPR3, CAPNS1, NGEF, TGFB1, CTGF, NOV, TIMP1, and HS6ST1) were bidirectionally regulated at both time points in the GO and STOP conditions. An additional 15 genes showed significant regulation in either GO or STOP conditions but not in both. Many genes are involved in scleral remodeling and the control of axial length. The STOP (recovery) gene expression signature in the sclera involves some of the same genes, bidirectionally regulated, as the GO signature. However, other genes, regulated in GO, are not differentially regulated in STOP, and others show differential regulation only in STOP.
Hallajian, Zeinab; Mahjoubi, Frouzandeh; Nafissi, Nahid
2017-07-01
DNA double-strand breaks (DSBs) as a serious lesion are repaired by non-homologous end-joining and homologous recombination pathways. ATM, BRCA1, RAD51 genes are involved in HR pathways. While some studies have revealed individual expression changes of these genes in different types of cancer, there are limited studies attempting to evaluate correlation of expression variations of these genes in breast cancer pathogenesis. This study aimed to determine RAD51, ATM and BRCA1 gene expression level and its association with clinicopathological factors in fresh breast cancer tissues. Moreover, this study evaluates potential correlations among expression levels of these genes. 50 breast cancer tissues were collected and examined for BRCA1, RAD51 and ATM gene expression by Real Time PCR. Expression changes were analyzed with REST software version 2009. mRNA expression was reduced in all these three genes when compared with β-Actin as a control gene (P value < 0.001). Spearman's test demonstrated a significant positive correlation among ATM, BRCA1 and RAD51 gene down expression (P value < 0.0001). There was a significant association between down expression of ATM with stage (P value < 0.05), necrosis (P value < 0.05), perineural invasion (P value < 0.05), vascular invasion (P value < 0.01), malignancy (P value ≤ 0.001), PR (P value < 0.05) and ER status (P value < 0.01). In addition, there was a significant association between down expression of BRCA1 with Ki67 (P value ≤ 0.001). Moreover, there was a significant association between down expression of RAD51 with lymph node involvement (P value < 0.01), auxiliary lymph node metastasis (P value = 0.01), age (P = 0.001), grade (P value < 0.05) and PR status (P value < 0.05). This study suggests association between expression changes in several DSB repair genes in a common functional pathway in breast cancer and the significant association between abnormal expression of these genes and important clinical prognostic factors.
A network of heterochronic genes including Imp1 regulates temporal changes in stem cell properties
Nishino, Jinsuke; Kim, Sunjung; Zhu, Yuan; Zhu, Hao; Morrison, Sean J
2013-01-01
Stem cell properties change over time to match the changing growth and regeneration demands of tissues. We showed previously that adult forebrain stem cell function declines during aging because of increased expression of let-7 microRNAs, evolutionarily conserved heterochronic genes that reduce HMGA2 expression. Here we asked whether let-7 targets also regulate changes between fetal and adult stem cells. We found a second let-7 target, the RNA binding protein IMP1, that is expressed by fetal, but not adult, neural stem cells. IMP1 expression was promoted by Wnt signaling and Lin28a expression and opposed by let-7 microRNAs. Imp1-deficient neural stem cells were prematurely depleted in the dorsal telencephalon due to accelerated differentiation, impairing pallial expansion. IMP1 post-transcriptionally inhibited the expression of differentiation-associated genes while promoting the expression of self-renewal genes, including Hmga2. A network of heterochronic gene products including Lin28a, let-7, IMP1, and HMGA2 thus regulates temporal changes in stem cell properties. DOI: http://dx.doi.org/10.7554/eLife.00924.001 PMID:24192035
Alternative-splicing-mediated gene expression
NASA Astrophysics Data System (ADS)
Wang, Qianliang; Zhou, Tianshou
2014-01-01
Alternative splicing (AS) is a fundamental process during gene expression and has been found to be ubiquitous in eukaryotes. However, how AS impacts gene expression levels both quantitatively and qualitatively remains to be fully explored. Here, we analyze two common models of gene expression, each incorporating a simple splice mechanism that a pre-mRNA is spliced into two mature mRNA isoforms in a probabilistic manner. In the constitutive expression case, we show that the steady-state molecular numbers of two mature mRNA isoforms follow mutually independent Poisson distributions. In the bursting expression case, we demonstrate that the tail decay of the steady-state distribution for both mature mRNA isoforms that in general are not mutually independent can be characterized by the product of mean burst size and splicing probability. In both cases, we find that AS can efficiently modulate both the variability (measured by variance) and the noise level of the total mature mRNA, and in particular, the latter is always lower than the noise level of the pre-mRNA, implying that AS always reduces the noise. These results altogether reveal that AS is a mechanism of efficiently controlling the gene expression noise.
sae is essential for expression of the staphylococcal adhesins Eap and Emp.
Harraghy, Niamh; Kormanec, Jan; Wolz, Christiane; Homerova, Dagmar; Goerke, Christiane; Ohlsen, Knut; Qazi, Saara; Hill, Philip; Herrmann, Mathias
2005-06-01
Eap and Emp are two Staphylococcus aureus adhesins initially described as extracellular matrix binding proteins. Eap has since emerged as being important in adherence to and invasion of eukaryotic cells, as well as being described as an immunomodulator and virulence factor in chronic infections. This paper describes the mapping of the transcription start point of the eap and emp promoters. Moreover, using reporter-gene assays and real-time PCR in defined regulatory mutants, environmental conditions and global regulators affecting expression of eap and emp were investigated. Marked differences were found in expression of eap and emp between strain Newman and the 8325 derivatives SH1000 and 8325-4. Moreover, both genes were repressed in the presence of glucose. Analysis of expression of both genes in various regulatory mutants revealed that sarA and agr were involved in their regulation, but the data suggested that there were additional regulators of both genes. In a sae mutant, expression of both genes was severely repressed. sae expression was also reduced in the presence of glucose, suggesting that repression of eap and emp in glucose-containing medium may, in part, be a consequence of a decrease in expression of sae.
Highly multiplexed subcellular RNA sequencing in situ
Lee, Je Hyuk; Daugharthy, Evan R.; Scheiman, Jonathan; Kalhor, Reza; Ferrante, Thomas C.; Yang, Joyce L.; Terry, Richard; Jeanty, Sauveur S. F.; Li, Chao; Amamoto, Ryoji; Peters, Derek T.; Turczyk, Brian M.; Marblestone, Adam H.; Inverso, Samuel A.; Bernard, Amy; Mali, Prashant; Rios, Xavier; Aach, John; Church, George M.
2014-01-01
Understanding the spatial organization of gene expression with single nucleotide resolution requires localizing the sequences of expressed RNA transcripts within a cell in situ. Here we describe fluorescent in situ RNA sequencing (FISSEQ), in which stably cross-linked cDNA amplicons are sequenced within a biological sample. Using 30-base reads from 8,742 genes in situ, we examined RNA expression and localization in human primary fibroblasts using a simulated wound healing assay. FISSEQ is compatible with tissue sections and whole mount embryos, and reduces the limitations of optical resolution and noisy signals on single molecule detection. Our platform enables massively parallel detection of genetic elements, including gene transcripts and molecular barcodes, and can be used to investigate cellular phenotype, gene regulation, and environment in situ. PMID:24578530
Chronic psychosocial stressors and salivary biomarkers in emerging adults.
Bergen, Andrew W; Mallick, Aditi; Nishita, Denise; Wei, Xin; Michel, Martha; Wacholder, Aaron; David, Sean P; Swan, Gary E; Reid, Mark W; Simons, Anne; Andrews, Judy A
2012-08-01
We investigated whole saliva as a source of biomarkers to distinguish individuals who have, and who have not, been chronically exposed to severe and threatening life difficulties. We evaluated RNA and DNA metrics, expression of 37 candidate genes, and cortisol release in response to the Trier Social Stress Test, as well as clinical characteristics, from 48 individuals stratified on chronic exposure to psychosocial stressors within the last year as measured by the Life Events and Difficulties Schedule. Candidate genes were selected based on their differential gene expression ratio in circulating monocytes from a published genome-wide analysis of adults experiencing different levels of exposure to a chronic stressor. In univariate analyses, we observed significantly decreased RNA integrity (RIN) score (P = 0.04), and reduced expression of glucocorticoid receptor-regulated genes (Ps < 0.05) in whole saliva RNA from individuals exposed to chronic stressors, as compared to those with no exposure. In those exposed, we observed significantly decreased BMI (P < 0.001), increased ever-smoking and increased lifetime alcohol abuse or dependence (P ≤ 0.03), and a reduction of cortisol release. In post hoc multivariate analyses including clinical and biospecimen-derived variables, we consistently observed significantly decreased expression of IL8 (Ps<0.05) in individuals exposed, with no significant association to RIN score. Alcohol use disorders, tobacco use, a reduced acute stress response and decreased salivary IL8 gene expression characterize emerging adults chronically exposed to severe and threatening psychosocial stressors. Copyright © 2011 Elsevier Ltd. All rights reserved.
Ashley, Noah T; Walton, James C; Haim, Achikam; Zhang, Ning; Prince, Laura A; Fruchey, Allison M; Lieberman, Rebecca A; Weil, Zachary M; Magalang, Ulysses J; Nelson, Randy J
2013-07-15
Sleep is restorative, whereas reduced sleep leads to negative health outcomes, such as increased susceptibility to disease. Sleep deprivation tends to attenuate inflammatory responses triggered by infection or exposure to endotoxin, such as bacterial lipopolysaccharide (LPS). Previous studies have demonstrated that Siberian hamsters (Phodopus sungorus), photoperiodic rodents, attenuate LPS-induced fever, sickness behavior and upstream pro-inflammatory gene expression when adapted to short day lengths. Here, we tested whether manipulation of photoperiod alters the suppressive effects of sleep deprivation upon cytokine gene expression after LPS challenge. Male Siberian hamsters were adapted to long (16 h:8 h light:dark) or short (8 h:16 h light:dark) photoperiods for >10 weeks, and were deprived of sleep for 24 h using the multiple platform method or remained in their home cage. Hamsters received an intraperitoneal injection of LPS or saline (control) 18 h after starting the protocol, and were killed 6 h later. LPS increased liver and hypothalamic interleukin-1 (IL-1) and tumor necrosis factor-alpha (TNF) gene expression compared with vehicle. Among LPS-challenged hamsters, sleep deprivation reduced IL-1 mRNA levels in liver and hypothalamus, but not TNF. IL-1 attenuation was independent of circulating baseline cortisol, which did not increase after sleep deprivation. Conversely, photoperiod altered baseline cortisol, but not pro-inflammatory gene expression in sleep-deprived hamsters. These results suggest that neither photoperiod nor glucocorticoids influence the suppressive effect of sleep deprivation upon LPS-induced inflammation.
The Essential Role of the Deinococcus radiodurans ssb Gene in Cell Survival and Radiation Tolerance
Lockhart, J. Scott; DeVeaux, Linda C.
2013-01-01
Recent evidence has implicated single-stranded DNA-binding protein (SSB) expression level as an important factor in microbial radiation resistance. The genome of the extremely radiation resistant bacterium Deinococcus radiodurans contains genes for two SSB homologs: the homodimeric, canonical Ssb, encoded by the gene ssb, and a novel pentameric protein encoded by the gene ddrB. ddrB is highly induced upon exposure to radiation, and deletions result in decreased radiation-resistance, suggesting an integral role of the protein in the extreme resistance exhibited by this organism. Although expression of ssb is also induced after irradiation, Ssb is thought to be involved primarily in replication. In this study, we demonstrate that Ssb in D. radiodurans is essential for cell survival. The lethality of an ssb deletion cannot be complemented by providing ddrB in trans. In addition, the radiation-sensitive phenotype conferred by a ddrB deletion is not alleviated by providing ssb in trans. By altering expression of the ssb gene, we also show that lower levels of transcription are required for optimal growth than are necessary for high radiation resistance. When expression is reduced to that of E. coli, ionizing radiation resistance is similarly reduced. UV resistance is also decreased under low ssb transcript levels where growth is unimpaired. These results indicate that the expression of ssb is a key component of both normal cellular metabolism as well as pathways responsible for the high radiation tolerance of D. radiodurans. PMID:23951213
Sestak, Karol; Conroy, Lauren; Aye, Pyone P.; Mehra, Smriti; Doxiadis, Gaby G.; Kaushal, Deepak
2011-01-01
Background A non-human primate (NHP) model of gluten sensitivity was employed to study the gene perturbations associated with dietary gluten changes in small intestinal tissues from gluten-sensitive rhesus macaques (Macaca mulatta). Methodology Stages of remission and relapse were accomplished in gluten-sensitive animals by administration of gluten-free (GFD) and gluten-containing (GD) diets, as described previously. Pin-head-sized biopsies, obtained non-invasively by pediatric endoscope from duodenum while on GFD or GD, were used for preparation of total RNA and gene profiling, using the commercial Rhesus Macaque Microarray (Agilent Technologies),targeting expression of over 20,000 genes. Principal Findings When compared with normal healthy control, gluten-sensitive macaques showed differential gene expressions induced by GD. While observed gene perturbations were classified into one of 12 overlapping categories - cancer, metabolism, digestive tract function, immune response, cell growth, signal transduction, autoimmunity, detoxification of xenobiotics, apoptosis, actin-collagen deposition, neuronal and unknown function - this study focused on cancer-related gene networks such as cytochrome P450 family (detoxification function) and actin-collagen-matrix metalloproteinases (MMP) genes. Conclusions/Significance A loss of detoxification function paralleled with necessity to metabolize carcinogens was revealed in gluten-sensitive animals while on GD. An increase in cancer-promoting factors and a simultaneous decrease in cancer-preventing factors associated with altered expression of actin-collagen-MMP gene network were noted. In addition, gluten-sensitive macaques showed reduced number of differentially expressed genes including the cancer-associated ones upon withdrawal of dietary gluten. Taken together, these findings indicate potentially expanded utility of gluten-sensitive rhesus macaques in cancer research. PMID:21533263
Selvakumar, Ponniah; Owens, Tori A; David, Justin M; Petrelli, Nicholas J; Christensen, Brock C; Lakshmikuttyamma, Ashakumary; Rajasekaran, Ayyappan K
2014-04-01
The Na,K-ATPase or sodium pump carries out the coupled extrusion of Na(+) and uptake of K(+) across the plasma membranes of cells of most higher eukaryotes. We have shown earlier that Na,K-ATPase-β 1 (NaK-β) protein levels are highly reduced in poorly differentiated kidney carcinoma cells in culture and in patients' tumor samples. The mechanism(s) regulating the expression of NaK-β in tumor tissues has yet to be explored. We hypothesized that DNA methylation plays a role in silencing the NaK-β gene (ATP1B1) expression in kidney cancers. In this study, to the best of our knowledge we provide the first evidence that ATP1B1 is epigenetically silenced by promoter methylation in both renal cell carcinoma (RCC) patients' tissues and cell lines. We also show that knockdown of the von Hippel-Lindau (VHL) tumor suppressor gene in RCC cell lines results in enhanced ATP1B1 promoter AT hypermethylation, which is accompanied by reduced expression of NaK-β. Furthermore, treatment with 5-Aza-2'-deoxycytidine rescued the expression of ATP1B1 mRNA as well as NaK-β protein in these cells. These data demonstrate that promoter hypermethylation is associated with reduced NaK-β expression, which might contribute to RCC initiation and/or disease progression.
Clark, Neil R.; Szymkiewicz, Maciej; Wang, Zichen; Monteiro, Caroline D.; Jones, Matthew R.; Ma’ayan, Avi
2016-01-01
Gene set analysis of differential expression, which identifies collectively differentially expressed gene sets, has become an important tool for biology. The power of this approach lies in its reduction of the dimensionality of the statistical problem and its incorporation of biological interpretation by construction. Many approaches to gene set analysis have been proposed, but benchmarking their performance in the setting of real biological data is difficult due to the lack of a gold standard. In a previously published work we proposed a geometrical approach to differential expression which performed highly in benchmarking tests and compared well to the most popular methods of differential gene expression. As reported, this approach has a natural extension to gene set analysis which we call Principal Angle Enrichment Analysis (PAEA). PAEA employs dimensionality reduction and a multivariate approach for gene set enrichment analysis. However, the performance of this method has not been assessed nor its implementation as a web-based tool. Here we describe new benchmarking protocols for gene set analysis methods and find that PAEA performs highly. The PAEA method is implemented as a user-friendly web-based tool, which contains 70 gene set libraries and is freely available to the community. PMID:26848405
Clark, Neil R; Szymkiewicz, Maciej; Wang, Zichen; Monteiro, Caroline D; Jones, Matthew R; Ma'ayan, Avi
2015-11-01
Gene set analysis of differential expression, which identifies collectively differentially expressed gene sets, has become an important tool for biology. The power of this approach lies in its reduction of the dimensionality of the statistical problem and its incorporation of biological interpretation by construction. Many approaches to gene set analysis have been proposed, but benchmarking their performance in the setting of real biological data is difficult due to the lack of a gold standard. In a previously published work we proposed a geometrical approach to differential expression which performed highly in benchmarking tests and compared well to the most popular methods of differential gene expression. As reported, this approach has a natural extension to gene set analysis which we call Principal Angle Enrichment Analysis (PAEA). PAEA employs dimensionality reduction and a multivariate approach for gene set enrichment analysis. However, the performance of this method has not been assessed nor its implementation as a web-based tool. Here we describe new benchmarking protocols for gene set analysis methods and find that PAEA performs highly. The PAEA method is implemented as a user-friendly web-based tool, which contains 70 gene set libraries and is freely available to the community.
Location of Promoter and Operator Sites in the Biotin Gene Cluster of Escherichia coli
Cleary, Paul P.; Campbell, Allan; Chang, Robin
1972-01-01
Biotin independence in E. coli requires five closely linked genes, bioA, bioB, bioF, bioC, and bioD. The residual gene activity of deletion mutants has been studied by complementation and enzyme assays. Deletion of the left end of the bioA gene does not impair expression of the remaining genes, but deletions from the left extending into bioB abolish all gene expression. Nonsense mutations in bioB reduce expression of bioC, bioF, and bioD. Therefore, the four genes, bioB, bioF, bioC, and bioD, are transcribed as a unit from left to right, from a promotor located between bioA and bioB. Expression of the bio genes is repressible by added biotin. Deletions removing the left end of bioA do not affect repressibility of bioD. Therefore the operator, as well as the promoter, lie to the right of bioA. One deletion that removes bioA, bioB, and bioF renders the bioD gene constitutive, presumably by fusion to an unknown operon. Therefore, the operator lies to the left of bioC. PMID:4559599
Jung, Ki-Hong; Dardick, Christopher; Bartley, Laura E; Cao, Peijian; Phetsom, Jirapa; Canlas, Patrick; Seo, Young-Su; Shultz, Michael; Ouyang, Shu; Yuan, Qiaoping; Frank, Bryan C; Ly, Eugene; Zheng, Li; Jia, Yi; Hsia, An-Ping; An, Kyungsook; Chou, Hui-Hsien; Rocke, David; Lee, Geun Cheol; Schnable, Patrick S; An, Gynheung; Buell, C Robin; Ronald, Pamela C
2008-10-06
Studies of gene function are often hampered by gene-redundancy, especially in organisms with large genomes such as rice (Oryza sativa). We present an approach for using transcriptomics data to focus functional studies and address redundancy. To this end, we have constructed and validated an inexpensive and publicly available rice oligonucleotide near-whole genome array, called the rice NSF45K array. We generated expression profiles for light- vs. dark-grown rice leaf tissue and validated the biological significance of the data by analyzing sources of variation and confirming expression trends with reverse transcription polymerase chain reaction. We examined trends in the data by evaluating enrichment of gene ontology terms at multiple false discovery rate thresholds. To compare data generated with the NSF45K array with published results, we developed publicly available, web-based tools (www.ricearray.org). The Oligo and EST Anatomy Viewer enables visualization of EST-based expression profiling data for all genes on the array. The Rice Multi-platform Microarray Search Tool facilitates comparison of gene expression profiles across multiple rice microarray platforms. Finally, we incorporated gene expression and biochemical pathway data to reduce the number of candidate gene products putatively participating in the eight steps of the photorespiration pathway from 52 to 10, based on expression levels of putatively functionally redundant genes. We confirmed the efficacy of this method to cope with redundancy by correctly predicting participation in photorespiration of a gene with five paralogs. Applying these methods will accelerate rice functional genomics.
Yang, Fan; Korban, Schuyler S; Pusey, P Lawrence; Elofsson, Michael; Sundin, George W; Zhao, Youfu
2014-01-01
The type III secretion system (T3SS) and exopolysaccharide (EPS) amylovoran are two essential pathogenicity factors in Erwinia amylovora, the causal agent of the serious bacterial disease fire blight. In this study, small molecules that inhibit T3SS gene expression in E. amylovora under hrp (hypersensitive response and pathogenicity)-inducing conditions were identified and characterized using green fluorescent protein (GFP) as a reporter. These compounds belong to salicylidene acylhydrazides and also inhibit amylovoran production. Microarray analysis of E. amylovora treated with compounds 3 and 9 identified a total of 588 significantly differentially expressed genes. Among them, 95 and 78 genes were activated and suppressed by both compounds, respectively, when compared with the dimethylsulphoxide (DMSO) control. The expression of the majority of T3SS genes in E. amylovora, including hrpL and the avrRpt2 effector gene, was suppressed by both compounds. Compound 3 also suppressed the expression of amylovoran precursor and biosynthesis genes. However, both compounds induced significantly the expression of glycogen biosynthesis genes and siderophore biosynthesis, regulatory and transport genes. Furthermore, many membrane, lipoprotein and exported protein-encoding genes were also activated by both compounds. Similar expression patterns were observed for compounds 1, 2 and 4. Using crab apple flower as a model, compound 3 was capable of reducing disease development in pistils. These results suggest a common inhibition mechanism shared by salicylidene acylhydrazides and indicate that small-molecule inhibitors that disable T3SS function could be explored to control fire blight disease. © 2013 BSPP AND JOHN WILEY & SONS LTD.
Zhu, Bin; Shao, Yujiao; Pan, Qi; Ge, Xianhong; Li, Zaiyun
2015-01-01
Aneuploidy with loss of entire chromosomes from normal complement disrupts the balanced genome and is tolerable only by polyploidy plants. In this study, the monosomic and nullisomic plants losing one or two copies of C2 chromosome from allotetraploid Brassica napus L. (2n = 38, AACC) were produced and compared for their phenotype and transcriptome. The monosomics gave a plant phenotype very similar to the original donor, but the nullisomics had much smaller stature and also shorter growth period. By the comparative analyses on the global transcript profiles with the euploid donor, genome-wide alterations in gene expression were revealed in two aneuploids, and their majority of differentially expressed genes (DEGs) resulted from the trans-acting effects of the zero and one copy of C2 chromosome. The higher number of up-regulated genes than down-regulated genes on other chromosomes suggested that the genome responded to the C2 loss via enhancing the expression of certain genes. Particularly, more DEGs were detected in the monosomics than nullisomics, contrasting with their phenotypes. The gene expression of the other chromosomes was differently affected, and several dysregulated domains in which up- or downregulated genes obviously clustered were identifiable. But the mean gene expression (MGE) for homoeologous chromosome A2 reduced with the C2 loss. Some genes and their expressions on C2 were correlated with the phenotype deviations in the aneuploids. These results provided new insights into the transcriptomic perturbation of the allopolyploid genome elicited by the loss of individual chromosome. PMID:26442076
Sun, Meng; Lu, Ming-Xing; Tang, Xiao-Tian; Du, Yu-Zhou
2015-01-01
The pink stem borer, Sesamia inferens, which is endemic in China and other parts of Asia, is a major pest of rice and causes significant yield loss in this host plant. Very few studies have addressed gene expression in S. inferens. Quantitative real-time PCR (qRT-PCR) is currently the most accurate and sensitive method for gene expression analysis. In qRT-PCR, data are normalized using reference genes, which help control for internal differences and reduce error between samples. In this study, seven candidate reference genes, 18S ribosomal RNA (18S rRNA), elongation factor 1 (EF1), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ribosomal protein S13 (RPS13), ribosomal protein S20 (RPS20), tubulin (TUB), and β-actin (ACTB) were evaluated for their suitability in normalizing gene expression under different experimental conditions. The results indicated that three genes (RPS13, RPS20, and EF1) were optimal for normalizing gene expression in different insect tissues (head, epidermis, fat body, foregut, midgut, hindgut, Malpighian tubules, haemocytes, and salivary glands). 18S rRNA, EF1, and GAPDH were best for normalizing expression with respect to developmental stages and sex (egg masses; first, second, third, fourth, fifth, and sixth instar larvae; male and female pupae; and one-day-old male and female adults). 18S rRNA, RPS20, and TUB were optimal for fifth instars exposed to different temperatures (-8, -6, -4, -2, 0, and 27°C). To validate this recommendation, the expression profile of a target gene heat shock protein 83 gene (hsp83) was investigated, and results showed the selection was necessary and effective. In conclusion, this study describes reference gene sets that can be used to accurately measure gene expression in S. inferens.
Knockdown of RNA interference pathway genes impacts the fitness of western corn rootworm.
Davis-Vogel, Courtney; Ortiz, Angel; Procyk, Lisa; Robeson, Jonathan; Kassa, Adane; Wang, Yiwei; Huang, Emily; Walker, Carl; Sethi, Amit; Nelson, Mark E; Sashital, Dipali G
2018-05-18
Western corn rootworm (Diabrotica virgifera virgifera) is a serious agricultural pest known for its high adaptability to various management strategies, giving rise to a continual need for new control options. Transgenic maize expressing insecticidal RNAs represents a novel mode of action for rootworm management that is dependent on the RNA interference (RNAi) pathways of the insect for efficacy. Preliminary evidence suggests that western corn rootworm could develop broad resistance to all insecticidal RNAs through changes in RNAi pathway genes; however, the likelihood of field-evolved resistance occurring through this mechanism remains unclear. In the current study, eight key genes involved in facilitating interference in the microRNA and small interfering RNA pathways were targeted for knockdown in order to evaluate impact on fitness of western corn rootworm. These genes include drosha, dicer-1, dicer-2, pasha, loquacious, r2d2, argonaute 1, and argonaute 2. Depletion of targeted transcripts in rootworm larvae led to changes in microRNA expression, decreased ability to pupate, reduced adult beetle emergence, and diminished reproductive capacity. The observed effects do not support evolution of resistance through changes in expression of these eight genes due to reduced insect fitness.
Andino, Gladys K; Gribskov, Michael; Anderson, Denis L; Evans, Jay D; Hunt, Greg J
2016-11-16
Varroa mites are widely considered the biggest honey bee health problem worldwide. Until recently, Varroa jacobsoni has been found to live and reproduce only in Asian honey bee (Apis cerana) colonies, while V. destructor successfully reproduces in both A. cerana and A. mellifera colonies. However, we have identified an island population of V. jacobsoni that is highly destructive to A. mellifera, the primary species used for pollination and honey production. The ability of these populations of mites to cross the host species boundary potentially represents an enormous threat to apiculture, and is presumably due to genetic variation that exists among populations of V. jacobsoni that influences gene expression and reproductive status. In this work, we investigate differences in gene expression between populations of V. jacobsoni reproducing on A. cerana and those either reproducing or not capable of reproducing on A. mellifera, in order to gain insight into differences that allow V. jacobsoni to overcome its normal species tropism. We sequenced and assembled a de novo transcriptome of V. jacobsoni. We also performed a differential gene expression analysis contrasting biological replicates of V. jacobsoni populations that differ in their ability to reproduce on A. mellifera. Using the edgeR, EBSeq and DESeq R packages for differential gene expression analysis, we found 287 differentially expressed genes (FDR ≤ 0.05), of which 91% were up regulated in mites reproducing on A. mellifera. In addition, mites found reproducing on A. mellifera showed substantially more variation in expression among replicates. We searched for orthologous genes in public databases and were able to associate 100 of these 287 differentially expressed genes with a functional description. There is differential gene expression between the two mite groups, with more variation in gene expression among mites that were able to reproduce on A. mellifera. A small set of genes showed reduced expression in mites on the A. mellifera host, including putative transcription factors and digestive tract developmental genes. The vast majority of differentially expressed genes were up-regulated in this host. This gene set showed enrichment for genes associated with mitochondrial respiratory function and apoptosis, suggesting that mites on this host may be experiencing higher stress, and may be less optimally adapted to parasitize it. Some genes involved in reproduction and oogenesis were also overexpressed, which should be further studied in regards to this host shift.
Pan, Dongli; Pesola, Jean M; Li, Gang; McCarron, Seamus; Coen, Donald M
2017-01-15
Herpes simplex virus 1 (HSV-1) latency entails the repression of productive ("lytic") gene expression. An attractive hypothesis to explain some of this repression involves inhibition of the expression of ICP0, a lytic gene activator, by a viral microRNA, miR-H2, which is completely complementary to ICP0 mRNA. To test this hypothesis, we engineered mutations that disrupt miR-H2 without affecting ICP0 in HSV-1. The mutant virus exhibited drastically reduced expression of miR-H2 but showed wild-type levels of infectious virus production and no increase in ICP0 expression in lytically infected cells, which is consistent with the weak expression of miR-H2 relative to the level of ICP0 mRNA in that setting. Following corneal inoculation of mice, the mutant was not significantly different from wild-type virus in terms of infectious virus production in the trigeminal ganglia during acute infection, mouse mortality, or the rate of reactivation from explanted latently infected ganglia. Critically, the mutant was indistinguishable from wild-type virus for the expression of ICP0 and other lytic genes in acutely and latently infected mouse trigeminal ganglia. The latter result may be related to miR-H2 being less effective in inhibiting ICP0 expression in transfection assays than a host microRNA, miR-138, which has previously been shown to inhibit lytic gene expression in infected ganglia by targeting ICP0 mRNA. Additionally, transfected miR-138 reduced lytic gene expression in infected cells more effectively than miR-H2. While this study provides little support for the hypothesis that miR-H2 promotes latency by inhibiting ICP0 expression, the possibility remains that miR-H2 might target other genes during latency. Herpes simplex virus 1 (HSV-1), which causes a variety of diseases, can establish lifelong latent infections from which virus can reactivate to cause recurrent disease. Latency is the most biologically interesting and clinically vexing feature of the virus. Ever since miR-H2's discovery as a viral microRNA bearing complete sequence complementarity to the mRNA for the important viral gene activator ICP0, inhibition of ICP0 expression by miR-H2 has been a major hypothesis to help explain the repression of lytic gene expression during latency. However, this hypothesis remained untested in latently infected animals. Using a miR-H2-deficient mutant virus, we found no evidence that miR-H2 represses the expression of ICP0 or other lytic genes in cells or mice infected with HSV-1. Although miR-H2 can repress ICP0 expression in transfection assays, such repression is weak. The results suggest that other mechanisms for miR-H2 activity and for the repression of lytic gene expression during latency deserve investigation. Copyright © 2017 American Society for Microbiology.
Theis, Torsten; Skurray, Ronald A; Brown, Melissa H
2007-08-01
Quantitative real-time PCR (qRT-PCR) has become a routine technique for gene expression analysis. Housekeeping genes are customarily used as endogenous references for the relative quantification of genes of interest. The aim of this study was to develop a quantitative real-time PCR assay to analyze gene expression in multidrug resistant Staphylococcus aureus in the presence of cationic lipophilic substrates of multidrug transport proteins. Eleven different housekeeping genes were analyzed for their expression stability in the presence of a range of concentrations of four structurally different antimicrobial compounds. This analysis demonstrated that the genes rho, pyk and proC were least affected by rhodamine 6G and crystal violet, whereas fabD, tpiA and gyrA or fabD, proC and pyk were stably expressed in cultures grown in the presence of ethidium or berberine, respectively. Subsequently, these housekeeping genes were used as internal controls to analyze expression of the multidrug transport protein QacA and its transcriptional regulator QacR in the presence of the aforementioned compounds. Expression of qacA was induced by all four compounds, whereas qacR expression was found to be unaffected, reduced or enhanced. This study demonstrates that staphylococcal gene expression, including housekeeping genes previously used to normalize qRT-PCR data, is affected by growth in the presence of different antimicrobial compounds. Thus, identification of suitable genes usable as a control set requires rigorous testing. Identification of a such a set enabled them to be utilized as internal standards for accurate quantification of transcripts of the qac multidrug resistance system from S. aureus grown under different inducing conditions. Moreover, the qRT-PCR assay presented in this study may also be applied to gene expression studies of other multidrug transporters from S. aureus.
Ji, Chang Yoon; Kim, Yun-Hee; Kim, Ho Soo; Ke, Qingbo; Kim, Gun-Woo; Park, Sung-Chul; Lee, Haeng-Soon; Jeong, Jae Cheol; Kwak, Sang-Soo
2016-09-01
Tocopherol (vitamin E) is a chloroplast lipid that is presumed to be involved in the plant response to oxidative stress. In this study, we isolated and characterized five tocopherol biosynthetic genes from sweetpotato (Ipomoea batatas [L.] Lam) plants, including genes encoding 4-hydroxyphenylpyruvate dioxygenase (IbHPPD), homogentisate phytyltransferase (IbHPT), 2-methyl-6-phytylbenzoquinol methyltransferase (IbMPBQ MT), tocopherol cyclase (IbTC) and γ-tocopherol methyltransferase (IbTMT). Fluorescence microscope analysis indicated that four proteins localized into the chloroplast, whereas IbHPPD observed in the nuclear. Quantitative RT-PCR analysis revealed that the expression patterns of the five tocopherol biosynthetic genes varied in different plant tissues and under different stress conditions. All five genes were highly expressed in leaf tissues, whereas IbHPPD and IbHPT were highly expressed in the thick roots. The expression patterns of these five genes significantly differed in response to PEG, NaCl and H2O2-mediated oxidative stress. IbHPPD was strongly induced following PEG and H2O2 treatment and IbHPT was strongly induced following PEG treatment, whereas IbMPBQ MT and IbTC were highly expressed following NaCl treatment. Upon infection of the bacterial pathogen Pectobacterium chrysanthemi, the expression of IbHPPD increased sharply in sweetpotato leaves, whereas the expression of the other genes was reduced or unchanged. Additionally, transient expression of the five tocopherol biosynthetic genes in tobacco (Nicotiana bentamiana) leaves resulted in increased transcript levels of the transgenes expressions and tocopherol production. Therefore, our results suggested that the five tocopherol biosynthetic genes of sweetpotato play roles in the stress defense response as transcriptional regulators of the tocopherol production. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Thomassen, Mads; Tan, Qihua; Kruse, Torben A
2009-01-01
Breast cancer cells exhibit complex karyotypic alterations causing deregulation of numerous genes. Some of these genes are probably causal for cancer formation and local growth whereas others are causal for the various steps of metastasis. In a fraction of tumors deregulation of the same genes might be caused by epigenetic modulations, point mutations or the influence of other genes. We have investigated the relation of gene expression and chromosomal position, using eight datasets including more than 1200 breast tumors, to identify chromosomal regions and candidate genes possibly causal for breast cancer metastasis. By use of "Gene Set Enrichment Analysis" we have ranked chromosomal regions according to their relation to metastasis. Overrepresentation analysis identified regions with increased expression for chromosome 1q41-42, 8q24, 12q14, 16q22, 16q24, 17q12-21.2, 17q21-23, 17q25, 20q11, and 20q13 among metastasizing tumors and reduced gene expression at 1p31-21, 8p22-21, and 14q24. By analysis of genes with extremely imbalanced expression in these regions we identified DIRAS3 at 1p31, PSD3, LPL, EPHX2 at 8p21-22, and FOS at 14q24 as candidate metastasis suppressor genes. Potential metastasis promoting genes includes RECQL4 at 8q24, PRMT7 at 16q22, GINS2 at 16q24, and AURKA at 20q13.
Wang, Bo; Chen, Yanhong; Guo, Baojian; Kabir, Muhammad Rezaul; Yao, Yingyin; Peng, Huiru; Xie, Chaojie; Zhang, Yirong; Sun, Qixin; Ni, Zhongfu
2014-08-01
Cytokinin signaling is vital for plant growth and development which function via the two-component system (TCS). As one of the key component of TCS, transmembrane histidine kinases (HK) are encoded by a small gene family in plants. In this study, we focused on expression and functional analysis of cytokinin receptor-like HK genes (ZmHK) in maize. Firstly, bioinformatics analysis revealed that seven cloned ZmHK genes have different expression patterns during maize development. Secondly, ectopic expression by CaMV35S promoter in Arabidopsis further revealed that functional differentiation exists among these seven members. Among them, the ZmHK1a2-OX transgenic line has the lowest germination rate in the dark, ZmHK1-OX and ZmHK2a2-OX can delay leaf senescence, and seed size of ZmHK1-OX, ZmHK1a2-OX, ZmHK2-OX, ZmHK3b-OX and ZmHK2a2-OX was obviously reduced as compared to wild type. Additionally, ZmHK genes play opposite roles in shoot and root development; all ZmHK-OX transgenic lines display obvious shorter root length and reduced number of lateral roots, but enhanced shoot development compared with the wild type. Most notably, Arabidopsis response regulator ARR5 gene was up-regulated in ZmHK1-OX, ZmHK1a2-OX, ZmHK2-OX, ZmHK3b-OX and ZmHK2a2-OX as compared to wild type. Although the causal link between ZmHK genes and cytokinin signaling pathway is still an area to be further elucidated, these findings reflected that the diversification of ZmHK genes expression patterns and functions occurred in the course of maize evolution, indicating that some ZmHK genes might play different roles during maize development.
Liu, Xiufang; Song, Yunzhi; Xing, Fangyu; Wang, Ning; Wen, Fujiang; Zhu, Changxiang
2016-09-01
WRKY transcription factors are involved in various processes, ranging from plant growth to abiotic and biotic stress responses. Group I WRKY members have been rarely reported compared with group II or III members, particularly in cotton (Gossypium hirsutum). In this study, a group I WRKY gene, namely, GhWRKY25, was cloned from cotton and characterized. Expression analysis revealed that GhWRKY25 can be induced or deduced by the treatments of abiotic stresses and multiple defense-related signaling molecules. Overexpression of GhWRKY25 in Nicotiana benthamiana reduced plant tolerance to drought stress but enhanced tolerance to salt stress. Moreover, more MDA and ROS accumulated in transgenic plants after drought treatment with lower activities of SOD, POD, and CAT. Our study further demonstrated that GhWRKY25 overexpression in plants enhanced sensitivity to the fungal pathogen Botrytis cinerea by reducing the expression of SA or ET signaling related genes and inducing the expression of genes involved in the JA signaling pathway. These results indicated that GhWRKY25 plays negative or positive roles in response to abiotic stresses, and the reduced pathogen resistance may be related to the crosstalk of the SA and JA/ET signaling pathways.
Cafiso, Viviana; Bertuccio, Taschia; Spina, Daniela; Purrello, Simona; Campanile, Floriana; Di Pietro, Cinzia; Purrello, Michele; Stefani, Stefania
2012-01-01
Glycopeptides are still the gold standard to treat MRSA (Methicillin Resistant Staphylococcus aureus) infections, but their widespread use has led to vancomycin-reduced susceptibility [heterogeneous Vancomycin-Intermediate-Staphylococcus aureus (hVISA) and Vancomycin-Intermediate-Staphylococcus aureus (VISA)], in which different genetic loci (regulatory, autolytic, cell-wall turnover and cell-envelope positive charge genes) are involved. In addition, reduced susceptibility to vancomycin can influence the development of resistance to daptomycin. Although the phenotypic and molecular changes of hVISA/VISA have been the focus of different papers, the molecular mechanisms responsible for these different phenotypes and for the vancomycin and daptomycin cross-resistance are not clearly understood. The aim of our study was to investigate, by real time RT-PCR, the relative quantitative expression of genes involved in autolysis (atl-lytM), cell-wall turnover (sceD), membrane charges (mprF-dltA) and regulatory mechanisms (agr-locus-graRS-walKR), in hVISA and VISA cultured with or without vancomycin and daptomycin, in order to better understand the molecular basis of vancomycin-reduced susceptibility and the modulating activity of vancomycin and daptomycin on the expression of genes implicated in their reduced susceptibility mechanisms. Our results show that hVISA and VISA present common features that distinguish them from Vancomycin-Susceptible Staphylococcus aureus (VSSA), responsible for the intermediate glycopeptide resistance i.e. an increased cell-wall turnover, an increased positive cell-wall charge responsible for a repulsion mechanism towards vancomycin and daptomycin, and reduced agr-functionality. Indeed, VISA emerges from hVISA when VISA acquires a reduced autolysis caused by a down-regulation of autolysin genes, atl/lytM, and a reduction of the net negative cell-envelope charge via dltA over-expression. Vancomycin and daptomycin, acting in a similar manner in hVISA and VISA, can influence their cross-resistance mechanisms promoting VISA behavior in hVISA and enhancing the cell-wall pathways responsible for the intermediate vancomycin resistance in VISA. Daptomycin can also induce a charge repulsion mechanism both in hVISA and VISA increasing the activity of the mprF.
Wang, Yupeng; Wang, Xiyin; Tang, Haibao; Tan, Xu; Ficklin, Stephen P; Feltus, F Alex; Paterson, Andrew H
2011-01-01
Both single gene and whole genome duplications (WGD) have recurred in angiosperm evolution. However, the evolutionary effects of different modes of gene duplication, especially regarding their contributions to genetic novelty or redundancy, have been inadequately explored. In Arabidopsis thaliana and Oryza sativa (rice), species that deeply sample botanical diversity and for which expression data are available from a wide range of tissues and physiological conditions, we have compared expression divergence between genes duplicated by six different mechanisms (WGD, tandem, proximal, DNA based transposed, retrotransposed and dispersed), and between positional orthologs. Both neo-functionalization and genetic redundancy appear to contribute to retention of duplicate genes. Genes resulting from WGD and tandem duplications diverge slowest in both coding sequences and gene expression, and contribute most to genetic redundancy, while other duplication modes contribute more to evolutionary novelty. WGD duplicates may more frequently be retained due to dosage amplification, while inferred transposon mediated gene duplications tend to reduce gene expression levels. The extent of expression divergence between duplicates is discernibly related to duplication modes, different WGD events, amino acid divergence, and putatively neutral divergence (time), but the contribution of each factor is heterogeneous among duplication modes. Gene loss may retard inter-species expression divergence. Members of different gene families may have non-random patterns of origin that are similar in Arabidopsis and rice, suggesting the action of pan-taxon principles of molecular evolution. Gene duplication modes differ in contribution to genetic novelty and redundancy, but show some parallels in taxa separated by hundreds of millions of years of evolution.
Wang, Yupeng; Wang, Xiyin; Tang, Haibao; Tan, Xu; Ficklin, Stephen P.; Feltus, F. Alex; Paterson, Andrew H.
2011-01-01
Background Both single gene and whole genome duplications (WGD) have recurred in angiosperm evolution. However, the evolutionary effects of different modes of gene duplication, especially regarding their contributions to genetic novelty or redundancy, have been inadequately explored. Results In Arabidopsis thaliana and Oryza sativa (rice), species that deeply sample botanical diversity and for which expression data are available from a wide range of tissues and physiological conditions, we have compared expression divergence between genes duplicated by six different mechanisms (WGD, tandem, proximal, DNA based transposed, retrotransposed and dispersed), and between positional orthologs. Both neo-functionalization and genetic redundancy appear to contribute to retention of duplicate genes. Genes resulting from WGD and tandem duplications diverge slowest in both coding sequences and gene expression, and contribute most to genetic redundancy, while other duplication modes contribute more to evolutionary novelty. WGD duplicates may more frequently be retained due to dosage amplification, while inferred transposon mediated gene duplications tend to reduce gene expression levels. The extent of expression divergence between duplicates is discernibly related to duplication modes, different WGD events, amino acid divergence, and putatively neutral divergence (time), but the contribution of each factor is heterogeneous among duplication modes. Gene loss may retard inter-species expression divergence. Members of different gene families may have non-random patterns of origin that are similar in Arabidopsis and rice, suggesting the action of pan-taxon principles of molecular evolution. Conclusion Gene duplication modes differ in contribution to genetic novelty and redundancy, but show some parallels in taxa separated by hundreds of millions of years of evolution. PMID:22164235
NASA Astrophysics Data System (ADS)
Gershovich, P. M.; Gershovich, J. G.; Zhambalova, A. P.; Romanov, Yu. A.; Buravkova, L. B.
2012-01-01
Mesenchymal stem (stromal) cells (MSCs) are present in a variety of tissues during prenatal and postnatal human development. In adult organism, they are prevalent in bone marrow and supposed to be involved in space-flight induced osteopenia. We studied expression of various genes in human bone marrow MSCs after different terms of simulated microgravity (SMG) provided by Random Positioning Machine. Simulated microgravity induced transient changes in expression level of genes associated with actin cytoskeleton, especially after 48 h of SMG. However, after 120 h exposure in SMG partial restoration of gene expression levels (relative to the control) was found. Similar results were obtained with bmMSCs subjected to 24 h readaptation in static state after 24 h in SMG. Analysis of 84 genes related to identification, growth and differentiation of stem cells revealed that expression of nine genes was changed slightly after 48 h in SMG. More pronounced changes in gene expression of "stem cells markers" were observed after 120 h of simulated microgravity. Among 84 investigated genes, 30 were up-regulated and 24 were down-regulated. Finally, MSCs osteogenesis induced by long-term (10-20 days) simulation of microgravity was accompanied by down-regulation of gene expression of the main osteogenic differentiation markers ( ALPL, OMD) and master transcription osteogenic factor of MSCs ( Runx2). Thus, our study demonstrated that changes in expression level of some genes associated with actin cytoskeleton and stem cell markers are supposed to be one of the mechanisms, which contribute to precursor's cellular adaptation to the microgravity conditions. These results can clarify genomic mechanisms through which SMG reduces osteogenic differentiation of bmMSCs.
Influence of Morinda citrifolia (Noni) on Expression of DNA Repair Genes in Cervical Cancer Cells.
Gupta, Rakesh Kumar; Bajpai, Deepti; Singh, Neeta
2015-01-01
Previous studies have suggested that Morinda citrifolia (Noni) has potential to reduce cancer risk. The purpose of this study was to investigate the effect of Noni, cisplatin, and their combination on DNA repair genes in the SiHa cervical cancer cell line. SiHa cells were cultured and treated with 10% Noni, 10 μg/dl cisplatin or their combination for 24 hours. Post culturing, the cells were pelleted, RNA extracted, and processed for investigating DNA repair genes by real time PCR. The expression of nucleotide excision repair genes ERCC1, ERCC2, and ERCC4 and base excision repair gene XRCC1 was increased 4 fold, 8.9 fold, 4 fold, and 5.5 fold, respectively, on treatment with Noni as compared to untreated controls (p<0.05). In contrast, expression was found to be decreased 22 fold, 13 fold, 16 fold, and 23 fold on treatment with cisplatin (p<0.05). However, the combination of Noni and cisplatin led to an increase of 2 fold, 1.6 fold, 3 fold, 1.2 fold, respectively (p<0.05). Noni enhanced the expression of DNA repair genes by itself and in combination with cisplatin. However, high expression of DNA repair genes at mRNA level only signifies efficient DNA transcription of the above mentioned genes; further investigations are needed to evaluate the DNA repair protein expression.
Diurnal oscillations of soybean circadian clock and drought responsive genes.
Marcolino-Gomes, Juliana; Rodrigues, Fabiana Aparecida; Fuganti-Pagliarini, Renata; Bendix, Claire; Nakayama, Thiago Jonas; Celaya, Brandon; Molinari, Hugo Bruno Correa; de Oliveira, Maria Cristina Neves; Harmon, Frank G; Nepomuceno, Alexandre
2014-01-01
Rhythms produced by the endogenous circadian clock play a critical role in allowing plants to respond and adapt to the environment. While there is a well-established regulatory link between the circadian clock and responses to abiotic stress in model plants, little is known of the circadian system in crop species like soybean. This study examines how drought impacts diurnal oscillation of both drought responsive and circadian clock genes in soybean. Drought stress induced marked changes in gene expression of several circadian clock-like components, such as LCL1-, GmELF4- and PRR-like genes, which had reduced expression in stressed plants. The same conditions produced a phase advance of expression for the GmTOC1-like, GmLUX-like and GmPRR7-like genes. Similarly, the rhythmic expression pattern of the soybean drought-responsive genes DREB-, bZIP-, GOLS-, RAB18- and Remorin-like changed significantly after plant exposure to drought. In silico analysis of promoter regions of these genes revealed the presence of cis-elements associated both with stress and circadian clock regulation. Furthermore, some soybean genes with upstream ABRE elements were responsive to abscisic acid treatment. Our results indicate that some connection between the drought response and the circadian clock may exist in soybean since (i) drought stress affects gene expression of circadian clock components and (ii) several stress responsive genes display diurnal oscillation in soybeans.
Diurnal Oscillations of Soybean Circadian Clock and Drought Responsive Genes
Marcolino-Gomes, Juliana; Rodrigues, Fabiana Aparecida; Fuganti-Pagliarini, Renata; Bendix, Claire; Nakayama, Thiago Jonas; Celaya, Brandon; Molinari, Hugo Bruno Correa; de Oliveira, Maria Cristina Neves; Harmon, Frank G.; Nepomuceno, Alexandre
2014-01-01
Rhythms produced by the endogenous circadian clock play a critical role in allowing plants to respond and adapt to the environment. While there is a well-established regulatory link between the circadian clock and responses to abiotic stress in model plants, little is known of the circadian system in crop species like soybean. This study examines how drought impacts diurnal oscillation of both drought responsive and circadian clock genes in soybean. Drought stress induced marked changes in gene expression of several circadian clock-like components, such as LCL1-, GmELF4- and PRR-like genes, which had reduced expression in stressed plants. The same conditions produced a phase advance of expression for the GmTOC1-like, GmLUX-like and GmPRR7-like genes. Similarly, the rhythmic expression pattern of the soybean drought-responsive genes DREB-, bZIP-, GOLS-, RAB18- and Remorin-like changed significantly after plant exposure to drought. In silico analysis of promoter regions of these genes revealed the presence of cis-elements associated both with stress and circadian clock regulation. Furthermore, some soybean genes with upstream ABRE elements were responsive to abscisic acid treatment. Our results indicate that some connection between the drought response and the circadian clock may exist in soybean since (i) drought stress affects gene expression of circadian clock components and (ii) several stress responsive genes display diurnal oscillation in soybeans. PMID:24475115
An Evolutionarily Conserved DOF-CONSTANS Module Controls Plant Photoperiodic Signaling.
Lucas-Reina, Eva; Romero-Campero, Francisco J; Romero, José M; Valverde, Federico
2015-06-01
The response to daylength is a crucial process that evolved very early in plant evolution, entitling the early green eukaryote to predict seasonal variability and attune its physiological responses to the environment. The photoperiod responses evolved into the complex signaling pathways that govern the angiosperm floral transition today. The Chlamydomonas reinhardtii DNA-Binding with One Finger (CrDOF) gene controls transcription in a photoperiod-dependent manner, and its misexpression influences algal growth and viability. In short days, CrDOF enhances CrCO expression, a homolog of plant CONSTANS (CO), by direct binding to its promoter, while it reduces the expression of cell division genes in long days independently of CrCO. In Arabidopsis (Arabidopsis thaliana), transgenic plants overexpressing CrDOF show floral delay and reduced expression of the photoperiodic genes CO and FLOWERING LOCUS T. The conservation of the DOF-CO module during plant evolution could be an important clue to understanding diversification by the inheritance of conserved gene toolkits in key developmental programs. © 2015 American Society of Plant Biologists. All Rights Reserved.