Sample records for reducing oxidative damage

  1. Nitric oxide ameliorates the damaging effects of oxidative stress induced by iron deficiency in cyanobacterium Anabaena 7120.

    PubMed

    Kaushik, Manish Singh; Srivastava, Meenakshi; Srivastava, Alka; Singh, Anumeha; Mishra, Arun Kumar

    2016-11-01

    In cyanobacterium Anabaena 7120, iron deficiency leads to oxidative stress with unavoidable consequences. Nitric oxide reduces pigment damage and supported the growth of Anabaena 7120 in iron-deficient conditions. Elevation in nitric oxide accumulation and reduced superoxide radical production justified the role of nitric oxide in alleviating oxidative stress in iron deficiency. Increased activities of antioxidative enzymes and higher levels of ROS scavengers (ascorbate, glutathione and thiol) in iron deficiency were also observed in the presence of nitric oxide. Nitric oxide also supported the membrane integrity of Anabaena cells and reduces protein and DNA damage caused by oxidative stress induced by iron deficiency. Results suggested that nitric oxide alleviates the damaging effects of oxidative stress induced by iron deficiency in cyanobacterium Anabaena 7120.

  2. Therapeutic Hypothermia Reduces Oxidative Damage and Alters Antioxidant Defenses after Cardiac Arrest

    PubMed Central

    Hackenhaar, Fernanda S.; Medeiros, Tássia M.; Heemann, Fernanda M.; Behling, Camile S.; Putti, Jordana S.; Mahl, Camila D.; Verona, Cleber; da Silva, Ana Carolina A.; Guerra, Maria C.; Gonçalves, Carlos A. S.; Oliveira, Vanessa M.; Riveiro, Diego F. M.; Vieira, Silvia R. R.

    2017-01-01

    After cardiac arrest, organ damage consequent to ischemia-reperfusion has been attributed to oxidative stress. Mild therapeutic hypothermia has been applied to reduce this damage, and it may reduce oxidative damage as well. This study aimed to compare oxidative damage and antioxidant defenses in patients treated with controlled normothermia versus mild therapeutic hypothermia during postcardiac arrest syndrome. The sample consisted of 31 patients under controlled normothermia (36°C) and 11 patients treated with 24 h mild therapeutic hypothermia (33°C), victims of in- or out-of-hospital cardiac arrest. Parameters were assessed at 6, 12, 36, and 72 h after cardiac arrest in the central venous blood samples. Hypothermic and normothermic patients had similar S100B levels, a biomarker of brain injury. Xanthine oxidase activity is similar between hypothermic and normothermic patients; however, it decreases posthypothermia treatment. Xanthine oxidase activity is positively correlated with lactate and S100B and inversely correlated with pH, calcium, and sodium levels. Hypothermia reduces malondialdehyde and protein carbonyl levels, markers of oxidative damage. Concomitantly, hypothermia increases the activity of erythrocyte antioxidant enzymes superoxide dismutase, glutathione peroxidase, and glutathione S-transferase while decreasing the activity of serum paraoxonase-1. These findings suggest that mild therapeutic hypothermia reduces oxidative damage and alters antioxidant defenses in postcardiac arrest patients. PMID:28553435

  3. Oxidative damage increases with reproductive energy expenditure and is reduced by food-supplementation

    PubMed Central

    Fletcher, Quinn E.; Selman, Colin; Boutin, Stan; McAdam, Andrew G.; Woods, Sarah B.; Seo, Arnold Y.; Leeuwenburgh, Christiaan; Speakman, John R.; Humphries, Murray M.

    2013-01-01

    A central principle in life-history theory is that reproductive effort negatively affects survival. Costs of reproduction are thought to be physiologically-based, but the underlying mechanisms remain poorly understood. Using female North American red squirrels (Tamiasciurus hudsonicus), we test the hypothesis that energetic investment in reproduction overwhelms investment in antioxidant protection, leading to oxidative damage. In support of this hypothesis we found that the highest levels of plasma protein oxidative damage in squirrels occurred during the energetically-demanding period of lactation. Moreover, plasma protein oxidative damage was also elevated in squirrels that expended the most energy and had the lowest antioxidant protection. Finally, we found that squirrels that were food-supplemented during lactation and winter had increased antioxidant protection and reduced plasma protein oxidative damage providing the first experimental evidence in the wild that access to abundant resources can reduce this physiological cost. PMID:23617928

  4. Testing the Effects of dl-Alpha-Tocopherol Supplementation on Oxidative Damage, Total Antioxidant Protection and the Sex-Specific Responses of Reproductive Effort and Lifespan to Dietary Manipulation in Australian Field Crickets (Teleogryllus commodus)

    PubMed Central

    Archer, C. Ruth; Hempenstall, Sarah; Royle, Nick J.; Selman, Colin; Willis, Sheridan; Rapkin, James; Blount, Jon D.; Hunt, John

    2015-01-01

    The oxidative stress theory predicts that the accumulation of oxidative damage causes aging. More generally, oxidative damage could be a cost of reproduction that reduces survival. Both of these hypotheses have mixed empirical support. To better understand the life-history consequences of oxidative damage, we fed male and female Australian field crickets (Teleogryllus commodus) four diets differing in their protein and carbohydrate content, which have sex-specific effects on reproductive effort and lifespan. We supplemented half of these crickets with the vitamin E isoform dl-alpha-tocopherol and measured the effects of nutrient intake on lifespan, reproduction, oxidative damage and antioxidant protection. We found a clear trade-off between reproductive effort and lifespan in females but not in males. In direct contrast to the oxidative stress theory, crickets fed diets that improved their lifespan had high levels of oxidative damage to proteins. Supplementation with dl-alpha-tocopherol did not significantly improve lifespan or reproductive effort. However, males fed diets that increased their reproductive investment experienced high oxidative damage to proteins. While this suggests that male reproductive effort could elevate oxidative damage, this was not associated with reduced male survival. Overall, these results provide little evidence that oxidative damage plays a central role in mediating life-history trade-offs in T. commodus. PMID:26783958

  5. Effect of T3 on metabolic response and oxidative stress in skeletal muscle from sedentary and trained rats.

    PubMed

    Venditti, Paola; Bari, Angela; Di Stefano, Lisa; Di Meo, Sergio

    2009-02-01

    We investigated whether swim training modifies the effect of T3-induced hyperthyroidism on metabolism and oxidative damage in rat muscle. Respiratory capacities, oxidative damage, levels of antioxidants, and susceptibility to oxidative challenge of homogenates were determined. Mitochondrial respiratory capacities, H2O2 release rates, and oxidative damage were also evaluated. T3-treated rats exhibited increases in muscle respiratory capacity, which were associated with enhancements in mitochondrial respiratory capacity and tissue mitochondrial protein content in sedentary and trained animals, respectively. Hormonal treatment induced muscle oxidative damage and GSH depletion. Both effects were reduced by training, which also attenuated tissue susceptibility to oxidative challenge. The changes in single antioxidant levels were slightly related to oxidative damage extent, but the examination of parameters affecting the susceptibility to oxidants indicated that training was associated with greater effectiveness of the muscle antioxidant system. Training also attenuated T3-induced increases in H2O2 production and, therefore, oxidative damage of mitochondria by lowering their content of autoxidizable electron carriers. The above results suggest that moderate training is able to reduce hyperthyroid state-linked tissue oxidative damage, increasing antioxidant protection and decreasing the ROS flow from the mitochondria to the cytoplasmic compartment.

  6. An anthocyanin/polyphenolic-rich fruit juice reduces oxidative DNA damage and increases glutathione level in healthy probands.

    PubMed

    Weisel, Tamara; Baum, Matthias; Eisenbrand, Gerhard; Dietrich, Helmut; Will, Frank; Stockis, Jean-Pierre; Kulling, Sabine; Rüfer, Corinna; Johannes, Christian; Janzowski, Christine

    2006-04-01

    Oxidative cell damage is involved in the pathogenesis of atherosclerosis, cancer, diabetes and other diseases. Uptake of fruit juice with especially high content of antioxidant flavonoids/polyphenols, might reduce oxidative cell damage. Therefore, an intervention study was performed with a red mixed berry juice [trolox equivalent antioxidative capacity (TEAC): 19.1 mmol/L trolox] and a corresponding polyphenol-depleted juice (polyphenols largely removed, TEAC 2.4 mmol/L trolox), serving as control. After a 3-week run-in period, 18 male probands daily consumed 700 mL juice, and 9 consumed control juice, in a 4-week intervention, followed by a 3-week wash-out. Samples were collected weekly to analyze DNA damage (comet assay), lipid peroxidation (plasma malondialdehyde: HPLC/fluorescence; urinary isoprostanes: GC-MS), blood glutathione (photometrically), DNA-binding activity of nuclear factor-kappaB (ELISA) and plasma carotenoid/alpha-tocopherol levels (HPLC-DAD). During intervention with the fruit juice, a decrease of oxidative DNA damage (p<5x10(-4)) and an increase of reduced glutathione (p<5x10(-4)) and of glutathione status (p<0.05) were observed, which returned to the run-in levels in the subsequent wash-out phase. The other biomarkers were not significantly modulated by the juice supplement. Intervention with the control juice did not result in reduction of oxidative damage. In conclusion, the fruit juice clearly reduces oxidative cell damage in healthy probands.

  7. Dietary supplementation with the microalga Galdieria sulphuraria (Rhodophyta) reduces prolonged exercise-induced oxidative stress in rat tissues.

    PubMed

    Carfagna, Simona; Napolitano, Gaetana; Barone, Daniela; Pinto, Gabriele; Pollio, Antonino; Venditti, Paola

    2015-01-01

    We studied the effects of ten-day 1% Galdieria sulphuraria dietary supplementation on oxidative damage and metabolic changes elicited by acute exercise (6-hour swimming) determining oxygen consumption, lipid hydroperoxides, protein bound carbonyls in rat tissue (liver, heart, and muscle) homogenates and mitochondria, tissue glutathione peroxidase and glutathione reductase activities, glutathione content, and rates of H2O2 mitochondrial release. Exercise increased oxidative damage in tissues and mitochondria and decreased tissue content of reduced glutathione. Moreover, it increased State 4 and decreased State 3 respiration in tissues and mitochondria. G. sulphuraria supplementation reduced the above exercise-induced variations. Conversely, alga supplementation was not able to modify the exercise-induced increase in mitochondrial release rate of hydrogen peroxide and in liver and heart antioxidant enzyme activities. The alga capacity to reduce lipid oxidative damage without reducing mitochondrial H2O2 release can be due to its high content of C-phycocyanin and glutathione, which are able to scavenge peroxyl radicals and contribute to phospholipid hydroperoxide metabolism, respectively. In conclusion, G. sulphuraria ability to reduce exercise-linked oxidative damage and mitochondrial dysfunction makes it potentially useful even in other conditions leading to oxidative stress, including hyperthyroidism, chronic inflammation, and ischemia/reperfusion.

  8. Dietary Supplementation with the Microalga Galdieria sulphuraria (Rhodophyta) Reduces Prolonged Exercise-Induced Oxidative Stress in Rat Tissues

    PubMed Central

    Carfagna, Simona; Napolitano, Gaetana; Barone, Daniela; Pinto, Gabriele; Venditti, Paola

    2015-01-01

    We studied the effects of ten-day 1% Galdieria sulphuraria dietary supplementation on oxidative damage and metabolic changes elicited by acute exercise (6-hour swimming) determining oxygen consumption, lipid hydroperoxides, protein bound carbonyls in rat tissue (liver, heart, and muscle) homogenates and mitochondria, tissue glutathione peroxidase and glutathione reductase activities, glutathione content, and rates of H2O2 mitochondrial release. Exercise increased oxidative damage in tissues and mitochondria and decreased tissue content of reduced glutathione. Moreover, it increased State 4 and decreased State 3 respiration in tissues and mitochondria. G. sulphuraria supplementation reduced the above exercise-induced variations. Conversely, alga supplementation was not able to modify the exercise-induced increase in mitochondrial release rate of hydrogen peroxide and in liver and heart antioxidant enzyme activities. The alga capacity to reduce lipid oxidative damage without reducing mitochondrial H2O2 release can be due to its high content of C-phycocyanin and glutathione, which are able to scavenge peroxyl radicals and contribute to phospholipid hydroperoxide metabolism, respectively. In conclusion, G. sulphuraria ability to reduce exercise-linked oxidative damage and mitochondrial dysfunction makes it potentially useful even in other conditions leading to oxidative stress, including hyperthyroidism, chronic inflammation, and ischemia/reperfusion. PMID:25874021

  9. In vivo reduction of erythrocyte oxidant stress in a murine model of beta-thalassemia.

    PubMed

    de Franceschi, Lucia; Turrini, Franco; Honczarenko, Marek; Ayi, Kojio; Rivera, Alicia; Fleming, Mark D; Law, Terry; Mannu, Franca; Kuypers, Frans A; Bast, Aalt; van der Vijgh, Wim J F; Brugnara, Carlo

    2004-11-01

    Oxidant damage is an important contributor to the premature destruction of erythrocytes and anemia in thalassemias. To assess the extent of oxidant damage of circulating erythrocytes and the effects of antioxidant therapy on erythrocyte characteristics and anemia, we used a mouse model of human beta-thalassemia intermedia (b1/b2 deletion). Several parameters indicative of oxidant damage were measured at baseline and following administration of the semi-synthetic flavonoid antioxidant, 7-monohydroxyethylrutoside (monoHER), to beta-thalassemic mice at a dose of either 500 mg/kg i.p. once a day (n=6) or 250 mg/kg i.p. twice a day (n=6) for 21 days. Significant erythrocyte oxidant damage at baseline was indicated by: (i) dehydration, reduced cell K content, and up-regulated K-Cl co-transport; (ii) marked membrane externalization of phosphatidylserine; (iii) reduced plasma and membrane content of vitamin E; and (iv) increased membrane bound IgG. MonoHER treatment increased erythrocyte K content, and markedly improved all cellular indicators of oxidant stress and of lipid membrane peroxidation. While anemia did not improve, monoHER therapy reduced reticulocyte counts, improved survival of a fraction of red cells, and reduced ineffective erythropoiesis with decreased total bilirubin, lactate dehydrogenase and plasma iron. Antioxidant therapy reverses several indicators of oxidant damage in vivo. These promising antioxidant effects of monoHER should be investigated further.

  10. N-Acetylcysteine supplementation reduces oxidative stress and DNA damage in children with β-thalassemia.

    PubMed

    Ozdemir, Zeynep Canan; Koc, Ahmet; Aycicek, Ali; Kocyigit, Abdurrahim

    2014-01-01

    There are several reports that increased oxidative stress and DNA damage were found in β-thalassemia major (β-TM) patients. In this study, we aimed to evaluate the effects of N-acetylcysteine (NAC) and vitamin E on total oxidative stress and DNA damage in children with β-TM. Seventy-five children with transfusion-dependent β-thalassemia (β-thal) were randomly chosen to receive 10 mg/kg/day of NAC or 10 IU/kg/day of vitamin E or no supplementation; 28 healthy controls were also included in the study. Serum total oxidant status (TOS) and total antioxidant capacity (TAC) were measured, oxidative stress index (OSI) was calculated, and mononuclear DNA damage was assessed by alkaline comet assay; they were determined before treatment and after 3 months of treatment. Total oxydent status, OSI, and DNA damage levels were significantly higher and TAC levels were significantly lower in the thalassemic children than in the healthy controls (p < 0.001). In both supplemented groups, mean TOS and OSI levels were decreased; TAC and pre transfusion hemoglobin (Hb) levels were significantly increased after 3 months (p ≤ 0.002). In the NAC group, DNA damage score decreased (p = 0.001). N-Acetylcysteine and vitamin E may be effective in reducing serum oxidative stress and increase pre transfusion Hb levels in children with β-thal. N-Acetylcysteine also can reduce DNA damage.

  11. Autoxidation and toxicant-induced oxidation of lipid and DNA in monkey liver: reduction of molecular damage by melatonin.

    PubMed

    Cabrer, J; Burkhardt, S; Tan, D X; Manchester, L C; Karbownik, M; Reiter, R J

    2001-11-01

    Melatonin, the main secretory product of the pineal gland, is a free radical scavenger and antioxidant which protects against oxidative damage due to a variety of toxicants. However, there is little information regarding melatonin's antioxidative capacity in tissues of primates. In this study we examined the protective effects of melatonin in monkey liver homogenates against lipid damage that occurred as a result of autoxidation or that induced by exogenous addition of H202 and ferrous iron (Fe2+). Additionally, we tested melatonin's protective effect against oxidative damage to DNA induced by chromium(III) (CrIII) plus H202. The levels of malondialdehyde and 4-hydroxyalkenals were assayed as an index of lipid peroxidation, and the concentrations of 8-hydroxydeoxyguanosine (8-OHdG) as an endpoint of oxidative DNA damage. The increases in malondialdehyde+4-hydroxyalkenals concentrations as a consequence of autoxidation or after the addition of H202 plus Fe2+ to the homogenates were time-dependent. The accumulation of these damaged products due to either auto-oxidative processes or induced by H202 and Fe2+ were significantly reduced by melatonin in a concentration-dependent-manner. The levels of 8-OHdG were elevated in purified monkey liver DNA incubated with a combination of CrCl3 plus H2O2. This rise in oxidatively damaged DNA was prevented by 10 microM concentration of melatonin. Also, melatonin reduced the damage to DNA that was caused by auto-oxidative processes. These findings in monkey liver tissue document the ability of melatonin to protect against oxidative damage to both lipid and DNA in primate tissue, as observed previously in rodent tissue. The findings provide support for the use of melatonin as suitable agent to reduce damage inflicted by free radical species in primates.

  12. Protective Effects of Gelam Honey against Oxidative Damage in Young and Aged Rats

    PubMed Central

    Sahhugi, Zulaikha; Jubri, Zakiah

    2014-01-01

    Aging is characterized by progressive decline in physiological and body function due to increase in oxidative damage. Gelam honey has been accounted to have high phenolic and nonphenolic content to attenuate oxidative damage. This study was to determine the effect of local gelam honey on oxidative damage of aged rats. Twenty-four male Spraque-Dawley rats were divided into young (2 months) and aged (19 months) groups. Each group was further divided into control (fed with plain water) and supplemented with 2.5 mg/kg body weight of gelam honey for 8 months. DNA damage level was determined by comet assay and plasma malondialdehyde (MDA) by high performance liquid chromatography (HPLC). The activity of blood and cardiac antioxidant enzymes was determined by spectrophotometer. The DNA damage and MDA level were reduced in both gelam honey supplemented groups. Gelam honey increases erythrocytes CAT and cardiac SOD activities in young and cardiac CAT activity in young and aged groups. The DNA damage was increased in the aged group compared to young group, but reduced at the end of the study. The decline of oxidative damage in rats supplemented with gelam honey might be through the modulation of antioxidant enzyme activities. PMID:25505937

  13. NECTARINE PROMOTES LONGEVITY IN DROSOPHILA MELANOGASTER

    PubMed Central

    Boyd, Olga; Weng, Peter; Sun, Xiaoping; Alberico, Thomas; Laslo, Mara; Obenland, David M.; Kern, Bradley; Zou, Sige

    2011-01-01

    Fruits containing high antioxidant capacities and other bioactivities are ideal for promoting longevity and healthspan. However, few fruits are known to improve the survival and healthspan in animals, let alone the underlying mechanisms. Here we investigate the effect of nectarine, a globally consumed fruit, on lifespan and healthspan in Drosophila melanogaster. Wild-type flies were fed the standard, dietary restriction (DR) or high fat diets supplemented with 0–4% nectarine extract. We measured lifespan, food intake, locomotor activity, fecundity, gene expression changes, and oxidative damage indicated by the level of 4-Hydroxynonenal-protein adduct in these flies. We also measured lifespan, locomotor activity and oxidative damage of sod1 mutant flies on the standard diet supplemented with 0–4% nectarine. Supplementation of 4% nectarine extended lifespan, increased fecundity and decreased expression of some metabolic genes, including a key gluconeogenesis gene PEPCK, and oxidative stress response genes, including peroxiredoxins, in female wild-type flies fed the standard, DR or high fat diet. Nectarine reduced oxidative damage in wild-type females fed the high fat diet. Moreover, nectarine improved the survival and reduced oxidative damage in female sod1 mutant flies. Together, these findings suggest that nectarine promotes longevity and healthspan partly through modulating glucose metabolism and reducing oxidative damage. PMID:21406223

  14. Oligodendroglia are particularly vulnerable to oxidative damage after neurotrauma in vivo.

    PubMed

    Giacci, Marcus K; Bartlett, Carole A; Smith, Nicole M; Iyer, K Swaminathan; Toomey, Lillian M; Jiang, Haibo; Guagliardo, Paul; Kilburn, Matt R; Fitzgerald, Melinda

    2018-06-18

    Loss of function following injury to the central nervous system is worsened by secondary degeneration of neurons and glia surrounding the injury and initiated by oxidative damage. However, it is not yet known which cellular populations and structures are most vulnerable to oxidative damage in vivo Using Nanoscale secondary ion mass spectrometry (NanoSIMS), oxidative damage was semi-quantified within cellular subpopulations and structures of optic nerve vulnerable to secondary degeneration, following a partial transection of the optic nerve in adult female PVG rats. Simultaneous assessment of cellular subpopulations and structures revealed oligodendroglia as the most vulnerable to DNA oxidation following injury. 5-ethynyl-2'-deoxyuridine (EdU) was used to label cells that proliferated in the first 3 days after injury. Injury led to increases in DNA, protein and lipid damage in OPCs and mature oligodendrocytes at 3 days, regardless of proliferative state, associated with a decline in the numbers of OPCs at 7 days. O4+ pre-oligodendrocytes also exhibited increased lipid peroxidation. Interestingly, EdU+ mature oligodendrocytes derived after injury demonstrated increased early susceptibility to DNA damage and lipid peroxidation. However, EdU- mature oligodendrocytes with high 8OHdG immunoreactivity were more likely to be caspase3+. By day 28, newly derived mature oligodendrocytes had significantly reduced MYRF mRNA indicating that the myelination potential of these cells may be reduced. The proportion of caspase3+ oligodendrocytes remained higher in EdU- cells. Innovative use of NanoSIMS together with traditional immunohistochemistry and in situ hybridisation have enabled the first demonstration of subpopulation specific oligodendroglial vulnerability to oxidative damage, due to secondary degeneration in vivo. SIGNIFICANCE STATEMENT Injury to the central nervous system is characterised by oxidative damage in areas adjacent to the injury. However, the cellular subpopulations and structures most vulnerable to this damage remain to be elucidated. Here we use powerful NanoSIMS techniques to show increased oxidative damage in oligodendroglia and axons and to demonstrate that cells early in the oligodendroglial lineage are the most vulnerable to DNA oxidation. Further immunohistochemical and in situ hybridisation investigation reveals that mature oligodendrocytes derived after injury are more vulnerable to oxidative damage than their counterparts existing at the time of injury and have reduced MYRF mRNA, yet pre-existing oligodendrocytes are more likely to die. Copyright © 2018 the authors.

  15. A Topical Mitochondria-Targeted Redox Cycling Nitroxide Mitigates Oxidative Stress Induced Skin Damage

    PubMed Central

    Brand, Rhonda M.; Epperly, Michael W.; Stottlemyer, J. Mark; Skoda, Erin M.; Gao, Xiang; Li, Song; Huq, Saiful; Wipf, Peter; Kagan, Valerian E.; Greenberger, Joel S.; Falo, Louis D.

    2017-01-01

    Skin is the largest human organ and provides a first line of defense that includes physical, chemical, and immune mechanisms to combat environmental stress. Radiation is a prevalent environmental stressor. Radiation induced skin damage ranges from photoaging and cutaneous carcinogenesis from UV exposure, to treatment-limiting radiation dermatitis associated with radiotherapy, to cutaneous radiation syndrome, a frequently fatal consequence of exposures from nuclear accidents. The major mechanism of skin injury common to these exposures is radiation induced oxidative stress. Efforts to prevent or mitigate radiation damage have included development of antioxidants capable of reducing reactive oxygen species (ROS). Mitochondria are particularly susceptible to oxidative stress, and mitochondrial dependent apoptosis plays a major role in radiation induced tissue damage. We reasoned that targeting a redox cycling nitroxide to mitochondria could prevent ROS accumulation, limiting downstream oxidative damage and preserving mitochondrial function. Here we show that in both mouse and human skin, topical application of a mitochondrial targeted antioxidant prevents and mitigates radiation induced skin damage characterized by clinical dermatitis, loss of barrier function, inflammation, and fibrosis. Further, damage mitigation is associated with reduced apoptosis, preservation of the skin’s antioxidant capacity, and reduction of irreversible DNA and protein oxidation associated with oxidative stress. PMID:27794421

  16. Thyroid hormone-induced oxidative damage on lipids, glutathione and DNA in the mouse heart.

    PubMed

    Gredilla, R; Barja, G; López-Torres, M

    2001-10-01

    Oxygen radicals of mitochondrial origin are involved in oxidative damage. In order to analyze the possible relationship between metabolic rate, oxidative stress and oxidative damage, OF1 female mice were rendered hyper- and hypothyroid by chronic administration of 0.0012% L-thyroxine (T4) and 0.05% 6-n-propyl-2-thiouracil (PTU), respectively, in their drinking water for 5 weeks. Hyperthyroidism significantly increased the sensitivity to lipid peroxidation in the heart, although the endogenous levels of lipid peroxidation were not altered. Thyroid hormone-induced oxidative stress also resulted in higher levels of GSSG and GSSG/GSH ratio. Oxidative damage to mitochondrial DNA was greater than that to genomic DNA. Hyperthyroidism decreased oxidative damage to genomic DNA. Hypothyroidism did not modify oxidative damage in the lipid fraction but significantly decreased GSSG and GSSG/GSH ratio and oxidative damage to mitochondrial DNA. These results indicate that thyroid hormones modulate oxidative damage to lipids and DNA, and cellular redox potential in the mouse heart. A higher oxidative stress in the hyperthyroid group is presumably neutralized in the case of nuclear DNA by an increase in repair activity, thus protecting this key molecule. Treatment with PTU, a thyroid hormone inhibitor, reduced oxidative damage in the different cell compartments.

  17. Substance P promotes the recovery of oxidative stress-damaged retinal pigmented epithelial cells by modulating Akt/GSK-3β signaling.

    PubMed

    Baek, Sang-Min; Yu, Seung-Young; Son, Youngsook; Hong, Hyun Sook

    2016-01-01

    Senescence of the retina causes an accumulation of reactive oxygen species (ROS). Oxidative stress associated with ROS can damage RPE cells, leading to neovascularization and severe ocular disorders, including age-related macular degeneration (AMD). Thus, the early treatment of the damage caused by oxidative stress is critical for preventing the development of ocular diseases such as AMD. In this study, we examined the role of substance P (SP) in the recovery of RPE cells damaged by oxidative stress. To induce oxidative stress, RPE cells were treated with H2O2 at various doses. Recovery from oxidative stress was studied following treatment with SP by analyzing cell viability, cell proliferation, cell apoptosis, and Akt/glycogen synthase kinase (GSK)-3β activation in RPE cells in vitro. H2O2 treatment reduced cellular viability in a dose-dependent manner. SP inhibited the reduction of cell viability due to H2O2 and caused increased cell proliferation and decreased cell apoptosis. Cell survival under oxidative stress requires the activation of Akt signaling that enables cells to resist oxidative stress-induced damage. SP treatment activated Akt/GSK-3β signaling in RPE cells, which were damaged due to oxidative stress, and the inhibition of Akt signaling in SP-treated RPE cells prevented SP-induced recovery. Pretreatment with the neurokinin 1 receptor (NK1R) antagonist reduced the recovery effect of SP on damaged RPE cells. SP can protect RPE cells from oxidant-induced cell death by activating Akt/GSK-3β signaling via NK1R. This study suggests the possibility of SP as a treatment for oxidative stress-related diseases.

  18. Quercitrin protects skin from UVB-induced oxidative damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Yuanqin; Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY; Li, Wenqi

    Exposure of the skin to ultraviolet B (UVB) radiation causes oxidative damage to skin, resulting in sunburn, photoaging, and skin cancer. It is generally believed that the skin damage induced by UV irradiation is a consequence of generation of reactive oxygen species (ROS). Recently, there is an increased interest in the use of natural products as chemopreventive agents for non-melanoma skin cancer (NMSC) due to their antioxidants and anti-inflammatory properties. Quercitrin, glycosylated form of quercetin, is the most common flavonoid in nature with antioxidant properties. The present study investigated the possible beneficial effects of quercitrin to inhibit UVB irradiation-induced oxidativemore » damage in vitro and in vivo. Our results showed that quercitrin decreased ROS generation induced by UVB irradiation in JB6 cells. Quercitrin restored catalase expression and GSH/GSSG ratio reduced by UVB exposure, two major antioxidant enzymes, leading to reductions of oxidative DNA damage and apoptosis and protection of the skin from inflammation caused by UVB exposure. The present study demonstrated that quercitrin functions as an antioxidant against UVB irradiation-induced oxidative damage to skin. - Highlights: • Oxidative stress plays a key role in UV-induced cell and tissue injuries. • Quercitrin decreases ROS generation and restores antioxidants irradiated by UVB. • Quercitrin reduces UVB-irradiated oxidative DNA damage, apoptosis, and inflammation. • Quercitrin functions as an antioxidant against UVB-induced skin injuries.« less

  19. Phytochemical Ginkgolide B Attenuates Amyloid-β1-42 Induced Oxidative Damage and Altered Cellular Responses in Human Neuroblastoma SH-SY5Y Cells.

    PubMed

    Gill, Iqbal; Kaur, Sukhchain; Kaur, Navrattan; Dhiman, Monisha; Mantha, Anil K

    2017-01-01

    Oxidative stress is an upsurge in reactive oxygen/nitrogen species (ROS/RNS), which aggravates damage to cellular components viz. lipids, proteins, and nucleic acids resulting in impaired cellular functions and neurological pathologies including Alzheimer's disease (AD). In the present study, we have examined amyloid-β (Aβ)-induced oxidative stress responses, a major cause for AD, in the undifferentiated and differentiated human neuroblastoma SH-SY5Y cells. Aβ1-42-induced oxidative damage was evaluated on lipids by lipid peroxidation; proteins by protein carbonyls; antioxidant status by SOD and GSH enzyme activities; and DNA and RNA damage levels by evaluating the number of AP sites and 8-OHG base damages produced. In addition, the neuro-protective role of the phytochemical ginkgolide B (GB) in countering Aβ1-42-induced oxidative stress was assessed. We report that the differentiated cells are highly vulnerable to Aβ1-42-induced oxidative stress events as exerted by the deposition of Aβ in AD. Results of the current study suggest that the pre-treatment of GB, followed by Aβ1-42 treatment for 24 h, displayed neuro-protective potential, which countered Aβ1-42-induced oxidative stress responses in both undifferentiated and differentiated SH-SY5Y neuronal cells by: 1) hampering production of ROS and RNS; 2) reducing lipid peroxidation; 3) decreasing protein carbonyl content; 4) restoring antioxidant activities of SOD and GSH enzymes; and 5) maintaining genome integrity by reducing the oxidative DNA and RNA base damages. In conclusion, Aβ1-42 induces oxidative damage to the cellular biomolecules, which are associated with AD pathology, and are protected by the pre-treatment of GB against Aβ-toxicity. Taken together, this study advocates for phytochemical-based therapeutic interventions against AD.

  20. Food-Derived Antioxidant Polysaccharides and Their Pharmacological Potential in Neurodegenerative Diseases

    PubMed Central

    Li, Haifeng; Ding, Fei; Xiao, Lingyun; Shi, Ruona; Wang, Hongyu; Han, Wenjing

    2017-01-01

    Oxidative stress is known to impair architecture and function of cells, which may lead to various chronic diseases, and therefore therapeutic and nutritional interventions to reduce oxidative damages represent a viable strategy in the amelioration of oxidative stress-related disorders, including neurodegenerative diseases. Over the past decade, a variety of natural polysaccharides from functional and medicinal foods have attracted great interest due to their antioxidant functions such as scavenging free radicals and reducing oxidative damages. Interestingly, these antioxidant polysaccharides are also found to attenuate neuronal damages and alleviate cognitive and motor decline in a range of neurodegenerative models. It has recently been established that the neuroprotective mechanisms of polysaccharides are related to oxidative stress-related pathways, including mitochondrial function, antioxidant defense system and pathogenic protein aggregation. Here, we first summarize the current status of antioxidant function of food-derived polysaccharides and then attempt to appraise their anti-neurodegeneration activities. PMID:28753972

  1. Hawkmoths use nectar sugar to reduce oxidative damage from flight.

    PubMed

    Levin, E; Lopez-Martinez, G; Fane, B; Davidowitz, G

    2017-02-17

    Nectar-feeding animals have among the highest recorded metabolic rates. High aerobic performance is linked to oxidative damage in muscles. Antioxidants in nectar are scarce to nonexistent. We propose that nectarivores use nectar sugar to mitigate the oxidative damage caused by the muscular demands of flight. We found that sugar-fed moths had lower oxidative damage to their flight muscle membranes than unfed moths. Using respirometry coupled with δ 13 C analyses, we showed that moths generate antioxidant potential by shunting nectar glucose to the pentose phosphate pathway (PPP), resulting in a reduction in oxidative damage to the flight muscles. We suggest that nectar feeding, the use of PPP, and intense exercise are causally linked and have allowed the evolution of powerful fliers that feed on nectar. Copyright © 2017, American Association for the Advancement of Science.

  2. Flies, worms and the Free Radical Theory of ageing.

    PubMed

    Clancy, David; Birdsall, John

    2013-01-01

    Drosophila and Caenorhabditis elegans have provided the largest body of evidence addressing the Free Radical Theory of ageing, however the evidence has not been unequivocally supportive. Oxidative damage to DNA is probably not a major contributor, damage to lipids is assuming greater importance and damage to proteins probably the source of pathology. On balance the evidence does not support a primary role of oxidative damage in ageing in C. elegans, perhaps because of its particular energy metabolic and stress resistance profile. Evidence is more numerous, varied and consistent and hence more compelling for Drosophila, although not conclusive. However there is good evidence for a role of oxidative damage in later life pathology. Future work should: 1/ make more use of protein oxidative damage measurements; 2/ use inducible transgenic systems or pharmacotherapy to ensure genetic equivalence of controls and avoid confounding effects during development; 3/ to try to delay ageing, target interventions which reduce and/or repair protein oxidative damage. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  3. Zinc protects HepG2 cells against the oxidative damage and DNA damage induced by ochratoxin A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Juanjuan; Zhang, Yu; Xu, Wentao, E-mail: xuwentaoboy@sina.com

    Oxidative stress and DNA damage are the most studied mechanisms by which ochratoxin A (OTA) induces its toxic effects, which include nephrotoxicity, hepatotoxicity, immunotoxicity and genotoxicity. Zinc, which is an essential trace element, is considered a potential antioxidant. The aim of this paper was to investigate whether zinc supplement could inhibit OTA-induced oxidative damage and DNA damage in HepG2 cells and the mechanism of inhibition. The results indicated that that exposure of OTA decreased the intracellular zinc concentration; zinc supplement significantly reduced the OTA-induced production of reactive oxygen species (ROS) and decrease in superoxide dismutase (SOD) activity but did notmore » affect the OTA-induced decrease in the mitochondrial membrane potential (Δψ{sub m}). Meanwhile, the addition of the zinc chelator N,N,N′,N′-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) strongly aggravated the OTA-induced oxidative damage. This study also demonstrated that zinc helped to maintain the integrity of DNA through the reduction of OTA-induced DNA strand breaks, 8-hydroxy-2′-deoxyguanosine (8-OHdG) formation and DNA hypomethylation. OTA increased the mRNA expression of metallothionein1-A (MT1A), metallothionein2-A (MT2A) and Cu/Zn superoxide dismutase (SOD1). Zinc supplement further enhanced the mRNA expression of MT1A and MT2A, but it had no effect on the mRNA expression of SOD1 and catalase (CAT). Zinc was for the first time proven to reduce the cytotoxicity of OTA through inhibiting the oxidative damage and DNA damage, and regulating the expression of zinc-associated genes. Thus, the addition of zinc can potentially be used to reduce the OTA toxicity of contaminated feeds. - Highlights: ► OTA decreased the intracellular zinc concentration. ► OTA induced the formation of 8-OHdG in HepG2 cells. ► It was testified for the first time that OTA induced DNA hypomethylation. ► Zinc protects against the oxidative damage and DNA damage induced by OTA in vitro.« less

  4. Wheat peptides reduce oxidative stress and inhibit NO production through modulating μ-opioid receptor in a rat NSAID-induced stomach damage model.

    PubMed

    Yin, Hong; Cai, Hui-Zhen; Wang, Shao-Kang; Yang, Li-Gang; Sun, Gui-Ju

    2015-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) induce tissue damage and oxidative stress in animal models of stomach damage. In the present study, the protective effects of wheat peptides were evaluated in a NSAID-induced stomach damage model in rats. Different doses of wheat peptides or distilled water were administered daily by gavage for 30 days before the rat stomach damage model was established by administration of NSAIDs (aspirin and indomethacin) into the digestive tract twice. The treatment of wheat peptides decreased the NSAID-induced gastric epithelial cell degeneration and oxidative stress and NO levels in the rats. Wheat peptides significantly increased the superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities and decreased iNOS activity in stomach. The mRNA expression level of μ-opioid receptor was significantly decreased in wheat peptides-treated rats than that in in the control rats. The results suggest that NSAID drugs induced stomach damage in rats, wchih can be prevented by wheat peptides. The mechanisms for the protective effects were most likely through reducing NSAID-induced oxidative stress. Copyright © 2015 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  5. N-Acetylcysteine and deferoxamine reduce pulmonary oxidative stress and inflammation in rats after coal dust exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinho, R.A.; Silveira, P.C.L.; Silva, L.A.

    2005-11-01

    Coal dust inhalation induces oxidative damage and inflammatory infiltration on lung parenchyma. Thus, the aim of this study was to determine whether N-acetylcysteine (NAC) administered alone or in combination with deferoxamine (DFX), significantly reduced the inflammatory infiltration and oxidative damage in the lungs of rats exposed to coal dust. Forty-two male Wistar rats (200-250 g) were exposed to the coal dust (3 mg/0.5 mL saline, 3 days/week, for 3 weeks) by intratracheal instillation. The animals were randomly divided into three groups: saline 0.9% (n = 8), supplemented with NAC (20 mg/kg of body weight/day, intraperitoneal injection (i.p.)) (n = 8),more » and supplemented with NAC (20 mg/kg of body weight/day, i.p.) plus DFX (20 mg/kg of body weight/week) (n = 8). Control animals received only saline solution (0.5 mL). Lactate dehydrogenase activity and total cell number were determined in the bronchoalveolar lavage fluid. We determined lipid peroxidation and oxidative protein damage parameters and catalase and superoxide dismutase activities in the lungs of animals. Intratracheal instillation of coal dust in the lungs of rats led to an inflammatory response and induced significant oxidative damage. The administration of NAC alone or in association with DFX reduced the inflammatory response and the oxidative stress parameters in rats exposed to coal dust.« less

  6. Maintenance of cellular ATP level by caloric restriction correlates chronological survival of budding yeast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Joon-Seok; Lee, Cheol-Koo, E-mail: cklee2005@korea.ac.kr

    Highlights: •CR decreases total ROS and mitochondrial superoxide during the chronological aging. •CR does not affect the levels of oxidative damage on protein and DNA. •CR contributes extension of chronological lifespan by maintenance of ATP level -- Abstract: The free radical theory of aging emphasizes cumulative oxidative damage in the genome and intracellular proteins due to reactive oxygen species (ROS), which is a major cause for aging. Caloric restriction (CR) has been known as a representative treatment that prevents aging; however, its mechanism of action remains elusive. Here, we show that CR extends the chronological lifespan (CLS) of budding yeastmore » by maintaining cellular energy levels. CR reduced the generation of total ROS and mitochondrial superoxide; however, CR did not reduce the oxidative damage in proteins and DNA. Subsequently, calorie-restricted yeast had higher mitochondrial membrane potential (MMP), and it sustained consistent ATP levels during the process of chronological aging. Our results suggest that CR extends the survival of the chronologically aged cells by improving the efficiency of energy metabolism for the maintenance of the ATP level rather than reducing the global oxidative damage of proteins and DNA.« less

  7. Electrolysed reduced water decreases reactive oxygen species-induced oxidative damage to skeletal muscle and improves performance in broiler chickens exposed to medium-term chronic heat stress.

    PubMed

    Azad, M A K; Kikusato, M; Zulkifli, I; Toyomizu, M

    2013-01-01

    1. The present study was designed to achieve a reduction of reactive oxygen species (ROS)-induced oxidative damage to skeletal muscle and to improve the performance of broiler chickens exposed to chronic heat stress. 2. Chickens were given a control diet with normal drinking water, or diets supplemented with cashew nut shell liquid (CNSL) or grape seed extract (GSE), or a control diet with electrolysed reduced water (ERW) for 19 d after hatch. Thereafter, chickens were exposed to a temperature of either 34°C continuously for a period of 5 d, or maintained at 24°C, on the same diets. 3. The control broilers exposed to 34°C showed decreased weight gain and feed consumption and slightly increased ROS production and malondialdehyde (MDA) concentrations in skeletal muscle. The chickens exposed to 34°C and supplemented with ERW showed significantly improved growth performance and lower ROS production and MDA contents in tissues than control broilers exposed to 34°C. Following heat exposure, CNSL chickens performed better with respect to weight gain and feed consumption, but still showed elevated ROS production and skeletal muscle oxidative damage. GSE chickens did not exhibit improved performance or reduced skeletal muscle oxidative damage. 4. In conclusion, this study suggests that ERW could partially inhibit ROS-induced oxidative damage to skeletal muscle and improve growth performance in broiler chickens under medium-term chronic heat treatment.

  8. Diabetes Impairs the Vascular Recruitment of Normal Stem Cells by Oxidant Damage, Reversed by Increases in pAMPK, Heme Oxygenase-1, and Adiponectin

    PubMed Central

    Sambuceti, Gianmario; Morbelli, Silvia; Vanella, Luca; Kusmic, Claudia; Marini, Cecilia; Massollo, Michela; Augeri, Carla; Corselli, Mirko; Ghersi, Chiara; Chiavarina, Barbara; Rodella, Luigi F; L'Abbate, Antonio; Drummond, George; Abraham, Nader G; Frassoni, Francesco

    2009-01-01

    Background Atherosclerosis progression is accelerated in diabetes mellitus (DM) by either direct endothelial damage or reduced availability and function of endothelial progenitor cells (EPCs). Both alterations are related to increased oxidant damage. Aim We examined if DM specifically impairs vascular signaling, thereby reducing the recruitment of normal EPCs, and if increases in antioxidant levels by induction of heme oxygenase-1 (HO-1) can reverse this condition. Methods Control and diabetic rats were treated with the HO-1 inducer cobalt protoporphyrin (CoPP) once a week for 3 weeks. Eight weeks after the development of diabetes, EPCs harvested from the aorta of syngenic inbred normal rats and labeled with technetium-99m-exametazime were infused via the femoral vein to estimate their blood clearance and aortic recruitment. Circulating endothelial cells (CECs) and the aortic expression of thrombomodulin (TM), CD31, and endothelial nitric oxide synthase (eNOS) were used to measure endothelial damage. Results DM reduced blood clearance and aortic recruitment of EPCs. Both parameters were returned to control levels by CoPP treatment without affecting EPC kinetics in normal animals. These abnormalities of EPCs in DM were paralleled by reduced serum adiponectin levels, increased numbers of CECs, reduced endothelial expression of phosphorylated eNOS, and reduced levels of TM, CD31, and phosphorylated AMP-activated protein kinase (pAMPK). CoPP treatment restored all of these parameters to normal levels. Conclusion Type II DM and its related oxidant damage hamper the interaction between the vascular wall and normal EPCs by mechanisms that are, at least partially, reversed by the induction of HO-1 gene expression, adiponectin, and pAMPK levels. PMID:19038792

  9. Adaptation of rat gastric tissue against indomethacin toxicity.

    PubMed

    Polat, Beyzagul; Suleyman, Halis; Alp, Hamit Hakan

    2010-06-07

    Indomethacin is used in the treatment of inflammatory diseases. But the drug toxicity limits its usage. This study investigated whether adaptation occurred after various dosages of repeated (chronic) indomethacin in rats to the gastro-toxic effects of indomethacin. It also examined whether the adaptation was related to oxidant-antioxidant mechanisms and oxidative DNA damage in gastric tissue. To illuminate the adaptation mechanism in the gastric tissue of rats given various dosages of chronic indomethacin, the levels of oxidants and antioxidants (GSH, MDA, NO, SOD and MPO), activities of COX-1 and COX-2 enzymes and oxidative DNA damage (8-OHd Gua/10(5) Gua) were measured. Results were compared to 25-mg/kg single-dose indomethacin group, and the role of oxidant and antioxidant parameters and oxidative DNA damage in the adaptation mechanism was evaluated. The average ulcer areas of gastric tissue of the 0.5-, 1-, 2-, 3-, 4-, and 5-mg/kg dosages of chronic indomethacin given to rats were 19.5+/-3.7, 12.5+/-3.3, 10+/-5.2, 4.5+/-3.6, 8.6+/-2.4, and 9.5+/-2.1mm(2), respectively. This rate was measured as 21.3+/-2.6mm(2) in the single-dose indomethacin group. Consequently, after various dosages of repeated (chronic) indomethacin administration in rats, it was observed that a clear adaptation developed against gastric damage and that gastric damage was reduced. The best adaptation was observed in the gastric tissue of the 3-mg/kg chronic indomethacin group. In parallel with the damage reduction, the oxidant parameters (MDA and MPO) and oxidative DNA damage (8-OHd Gua/10(5) Gua) were reduced, and the antioxidant parameters (GSH, NO and SOD) were increased. There is no relation between COX enzymes and adaptation mechanism. This circumstance shows that not COX-1 and COX-2 enzymes, oxidant and antioxidant parameters may play a role in the adaptation mechanism. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  10. Effects of tempol and redox-cycling nitroxides in models of oxidative stress

    PubMed Central

    Wilcox, Christopher S.

    2010-01-01

    Tempol is a redox cycling nitroxide that promotes the metabolism of many reactive oxygen species (ROS) and improves nitric oxide bioavailability. It has been studied extensively in animal models of oxidative stress. Tempol has been shown to preserve mitochondria against oxidative damage and improve tissue oxygenation. Tempol improved insulin responsiveness in models of diabetes mellitus and improved the dyslipidemia, reduced the weight gain and prevented diastolic dysfunction and heart failure in fat-fed models of the metabolic syndrome. Tempol protected many organs, including the heart and brain, from ischemia/reperfusion damage. Tempol prevented podocyte damage, glomerulosclerosis, proteinuria and progressive loss of renal function in models of salt and mineralocorticosteroid excess. It reduced brain or spinal cord damage after ischemia or trauma and exerted a spinal analgesic action. Tempol improved survival in several models of shock. It protected normal cells from radiation while maintaining radiation sensitivity of tumor cells. Its paradoxical pro-oxidant action in tumor cells accounted for a reduction in spontaneous tumor formation. Tempol was effective in some models of neurodegeneration. Thus, tempol has been effective in preventing several of the adverse consequences of oxidative stress and inflammation that underlie radiation damage and many of the diseases associated with aging. Indeed, tempol given from birth prolonged the life span of normal mice. However, presently tempol has been used only in human subjects as a topical agent to prevent radiation-induced alopecia. PMID:20153367

  11. Melatonin influences NO/NOS pathway and reduces oxidative and nitrosative stress in a model of hypoxic-ischemic brain damage.

    PubMed

    Blanco, Santos; Hernández, Raquel; Franchelli, Gustavo; Ramos-Álvarez, Manuel Miguel; Peinado, María Ángeles

    2017-01-30

    In this work, using a rat model combining ischemia and hypobaric hypoxia (IH), we evaluate the relationships between the antioxidant melatonin and the cerebral nitric oxide/nitric oxide synthase (NO/NOS) system seeking to ascertain whether melatonin exerts its antioxidant protective action by balancing this key pathway, which is highly involved in the cerebral oxidative and nitrosative damage underlying these pathologies. The application of the IH model increases the expression of the three nitric oxide synthase (NOS) isoforms, as well as nitrogen oxide (NOx) levels and nitrotyrosine (n-Tyr) impacts on the cerebral cortex. However, melatonin administration before IH makes nNOS expression response earlier and stronger, but diminishes iNOS and n-Tyr expression, while both eNOS and NOx remain unchanged. These results were corroborated by nicotine adenine dinucleotide phosphate diaphorase (NADPH-d) staining, as indicative of in situ NOS activity. In addition, the rats previously treated with melatonin exhibited a reduction in the oxidative impact evaluated by thiobarbituric acid reactive substances (TBARS). Finally, IH also intensified glial fibrillary acidic protein (GFAP) expression, reduced hypoxia-inducible factor-1alpha (HIF-1α), but did not change nuclear factor kappa B (NF-κB); meanwhile, melatonin did not significantly affect any of these patterns after the application of the IH model. The antioxidant melatonin acts on the NO/NOS system after IH injury balancing the release of NO, reducing peroxynitrite formation and protecting from nitrosative/oxidative damage. In addition, this paper raises questions concerning the classical role of some controversial molecules such as NO, which are of great consequence in the final fate of hypoxic neurons. We conclude that melatonin protects the brain from hypoxic/ischemic-derived damage in the first steps of the ischemic cascade, influencing the NO/NOS pathway and reducing oxidative and nitrosative stress. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. New Perspectives on Oxidized Genome Damage and Repair Inhibition by Pro-Oxidant Metals in Neurological Diseases

    PubMed Central

    Mitra, Joy; Guerrero, Erika N.; Hegde, Pavana M.; Wang, Haibo; Boldogh, Istvan; Rao, Kosagi Sharaf; Mitra, Sankar; Hegde, Muralidhar L.

    2014-01-01

    The primary cause(s) of neuronal death in most cases of neurodegenerative diseases, including Alzheimer’s and Parkinson’s disease, are still unknown. However, the association of certain etiological factors, e.g., oxidative stress, protein misfolding/aggregation, redox metal accumulation and various types of damage to the genome, to pathological changes in the affected brain region(s) have been consistently observed. While redox metal toxicity received major attention in the last decade, its potential as a therapeutic target is still at a cross-roads, mostly because of the lack of mechanistic understanding of metal dyshomeostasis in affected neurons. Furthermore, previous studies have established the role of metals in causing genome damage, both directly and via the generation of reactive oxygen species (ROS), but little was known about their impact on genome repair. Our recent studies demonstrated that excess levels of iron and copper observed in neurodegenerative disease-affected brain neurons could not only induce genome damage in neurons, but also affect their repair by oxidatively inhibiting NEIL DNA glycosylases, which initiate the repair of oxidized DNA bases. The inhibitory effect was reversed by a combination of metal chelators and reducing agents, which underscore the need for elucidating the molecular basis for the neuronal toxicity of metals in order to develop effective therapeutic approaches. In this review, we have focused on the oxidative genome damage repair pathway as a potential target for reducing pro-oxidant metal toxicity in neurological diseases. PMID:25036887

  13. Oxidative costs of reproduction: Oxidative stress in mice fed standard and low antioxidant diets.

    PubMed

    Vaanholt, L M; Milne, A; Zheng, Y; Hambly, C; Mitchell, S E; Valencak, T G; Allison, D B; Speakman, J R

    2016-02-01

    Lactation is one of the most energetically expensive behaviours, and trade-offs may exist between the energy devoted to it and somatic maintenance, including protection against oxidative damage. However, conflicting data exist for the effects of reproduction on oxidative stress. In the wild, a positive relationship is often observed, but in laboratory studies oxidative damage is often lower in lactating than in non-breeding animals. We hypothesised that this discrepancy may exist because during lactation food intake increases many-fold resulting in a large increase in the intake of dietary antioxidants which are typically high in laboratory rodent chow where they are added as a preservative. We supplied lactating and non-breeding control mice with either a standard or low antioxidant diet and studied how this affected the activity of endogenous antioxidants (catalase, superoxide dismutase; SOD, and glutathione peroxidise; GPx) and oxidative damage to proteins (protein carbonyls, PC) in liver and brain tissue. The low antioxidant diet did not significantly affect activities of antioxidant enzymes in brain or liver, and generally did not result in increased protein damage, except in livers of control mice on low antioxidant diet. Catalase activity, but not GPx or SOD, was decreased in both control and lactating mice on the low antioxidant diet. Lactating mice had significantly reduced oxidative damage to both liver and brain compared to control mice, independent of the diet they were given. In conclusion, antioxidant content of the diet did not affect oxidative stress in control or reproductive mice, and cannot explain the previously observed reduction in oxidative stress in lactating mammals studied in the laboratory. The reduced oxidative stress in the livers of lactating mice even under low antioxidant diet treatment was consistent with the 'shielding' hypothesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Reduced 3,4-Methylenedioxymethamphetamine (MDMA, Ecstasy)-Initiated Oxidative DNA Damage and Neurodegeneration in Prostaglandin H Synthase-1 Knockout Mice

    PubMed Central

    2010-01-01

    The neurodegenerative potential of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) and underlying mechanisms are under debate. Here, we show that MDMA is a substrate for CNS prostaglandin H synthase (PHS)-catalyzed bioactivation to a free radical intermediate that causes reactive oxygen species (ROS) formation and neurodegenerative oxidative DNA damage. In vitro PHS-1-catalyzed bioactivation of MDMA stereoselectively produced free radical intermediate formation and oxidative DNA damage that was blocked by the PHS inhibitor eicosatetraynoic acid. In vivo, MDMA stereoselectively caused gender-independent DNA oxidation and dopaminergic nerve terminal degeneration in several brain regions, dependent on regional PHS-1 levels. Conversely, MDMA-initiated striatal DNA oxidation, nerve terminal degeneration, and motor coordination deficits were reduced in PHS-1 +/− and −/− knockout mice in a gene dose-dependent fashion. These results confirm the neurodegenerative potential of MDMA and provide the first direct evidence for a novel molecular mechanism involving PHS-catalyzed formation of a neurotoxic MDMA free radical intermediate. PMID:22778832

  15. Modification of smoke toxicant yields alters the effects of cigarette smoke extracts on endothelial migration: an in vitro study using a cardiovascular disease model.

    PubMed

    Fearon, Ian M; Acheampong, Daniel O; Bishop, Emma

    2012-01-01

    Endothelial damage plays a key role in atherosclerosis and this is impacted upon by numerous risk factors including cigarette smoking. A potential measure to reduce the cardiovascular burden associated with smoking is to reduce smoke toxicant exposure. In an in vitro endothelial damage repair assay, endothelial cell migration was inhibited by cigarette smoke particulate matter (PM) generated from several cigarette types. This inhibition was reduced when cells were exposed to PM from an experimental cigarette with reduced smoke toxicant levels. As a number of toxicants induce oxidative stress and since oxidative stress may link cigarette smoke and endothelial damage, we hypothesized that PM effects were dependent on elevated cellular oxidants. However, although PM-induced cellular oxidant production could be inhibited by ascorbic acid or n-acetylcysteine, both these antioxidants were without effect on migration responses to PM. Furthermore, reactive oxygen species production, as indicated by dihydroethidium fluorescence, was not different in cells exposed to smoke from cigarettes with different toxicant levels. In summary, our data demonstrate that a cardiovascular disease-related biological response may be modified when cells are exposed to smoke containing different levels of toxicants. This appeared independent of the induction of oxidative stress.

  16. The effect of thalidomide on ethanol-induced gastric mucosal damage in mice: involvement of inflammatory cytokines and nitric oxide.

    PubMed

    Amirshahrokhi, Keyvan; Khalili, Ali-Reza

    2015-01-05

    Excessive ethanol ingestion causes gastric mucosal damage through the inflammatory and oxidative processes. The present study was aimed to evaluate the protective effect of thalidomide on ethanol-induced gastric mucosal damage in mice. The animals were pretreated with vehicle or thalidomide (30 or 60 mg/kg, orally), and one hour later, the gastric mucosal injury was induced by oral administration of acidified ethanol. The animals were euthanized one hour after ethanol ingestion, and gastric tissues were collected to biochemical analyzes. The gastric mucosal lesions were assessed by macroscopic and histopathological examinations. The results showed that treatment of mice with thalidomide prior to the administration of ethanol dose-dependently reduced the gastric ulcer index. Thalidomide pretreatment significantly reduced the levels of pro-inflammatory cytokines [tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6], malondialdehyde (MDA) and myeloperoxidase (MPO) activity. In addition, thalidomide significantly inhibited ethanol-induced nitric oxide (NO) overproduction in gastric tissue. Histological observations showed that ethanol-induced gastric mucosal damage was attenuated by thalidomide pretreatment. It seems that thalidomide as an anti-inflammatory agent may have a protective effect against alcohol-induced mucosal damage by inhibition of neutrophil infiltration and reducing the production of nitric oxide and inflammatory cytokines in gastric tissue. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Endothelium-derived relaxing factor (nitric oxide) has protective actions in the stomach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacNaughton, W.K.; Wallace, J.L.; Cirino, G.

    1989-01-01

    The role that nitric oxide, an endothelium-derived relaxing factor, may play in the regulation of gastric mucosal defense was investigated by assessing the potential protective actions of this factor against the damage caused by ethanol in an ex vivo chamber preparation of the rat stomach. Topical application of glyceryl trinitrate and sodium nitroprusside, which have been shown to release nitric oxide, markedly reduced the area of 70% ethanol-induced hemorrhagic damage. Topical application of a 0.01% solution of authentic nitric oxide also significantly reduced the severity of mucosal damage. Pretreatment with indomethacin precluded the involvement of endogenous prostaglandins in the protectivemore » effects of these agents. The protective effects of NO were transient, since a delay of 5 minutes between NO administration and ethanal administration resulted in a complete loss of the protective activity. The protection against ethanol afforded by 10 ug/ml nitroprusside could be completely reversed by intravenous infusion of either 1% methylene blue or 1 mM hemoglobin, both of which inhibit vasodilation induced by nitric oxide. Intravenous infusion of 1% methylene blue significantly increased the susceptibility of the mucosa to damage induced by topical 20% ethanol.« less

  18. Thioredoxin 2 haploinsufficiency in mice results in impaired mitochondrial function and increased oxidative stress.

    PubMed

    Pérez, Viviana I; Lew, Christie M; Cortez, Lisa A; Webb, Celeste R; Rodriguez, Marisela; Liu, Yuhong; Qi, Wenbo; Li, Yan; Chaudhuri, Asish; Van Remmen, Holly; Richardson, Arlan; Ikeno, Yuji

    2008-03-01

    The mitochondrial form of thioredoxin, thioredoxin 2 (Txn2), plays an important role in redox control and protection against ROS-induced mitochondrial damage. To evaluate the effect of reduced levels of Txn2 in vivo, we measured oxidative damage and mitochondrial function using mice heterozygous for the Txn2 gene (Txn2(+/-)). The Txn2(+/-) mice showed approximately 50% decrease in Trx-2 protein expression in all tissues without upregulating the other major components of the antioxidant defense system. Reduced levels of Txn2 resulted in decreased mitochondrial function as shown by reduced ATP production by isolated mitochondria and reduced activity of electron transport chain complexes (ETCs). Mitochondria isolated from Txn2(+/-) mice also showed increased ROS production compared to wild type mice. The Txn2(+/-) mice showed increased oxidative damage to nuclear DNA, lipids, and proteins in liver. In addition, we observed an increase in apoptosis in liver from Txn2(+/-) mice compared with wild type mice after diquat treatment. Our results suggest that Txn2 plays an important role in protecting the mitochondria against oxidative stress and in sensitizing the cells to ROS-induced apoptosis.

  19. Differential effects of experimental and cold-induced hyperthyroidism on factors inducing rat liver oxidative damage.

    PubMed

    Venditti, P; Pamplona, R; Ayala, V; De Rosa, R; Caldarone, G; Di Meo, S

    2006-03-01

    Thyroid hormone-induced increase in metabolic rates is often associated with increased oxidative stress. The aim of the present study was to investigate the contribution of iodothyronines to liver oxidative stress in the functional hyperthyroidism elicited by cold, using as models cold-exposed and 3,5,3'-triiodothyronine (T3)- or thyroxine (T4)-treated rats. The hyperthyroid state was always associated with increases in both oxidative capacity and oxidative damage of the tissue. The most extensive damage to lipids and proteins was found in T3-treated and cold-exposed rats, respectively. Increase in oxygen reactive species released by mitochondria and microsomes was found to contribute to tissue oxidative damage, whereas the determination of single antioxidants did not provide information about the possible contribution of a reduced effectiveness of the antioxidant defence system. Indeed, liver oxidative damage in hyperthyroid rats was scarcely related to levels of the liposoluble antioxidants and activities of antioxidant enzymes. Conversely, other biochemical changes, such as the degree of fatty acid unsaturation and hemoprotein content, appeared to predispose hepatic tissue to oxidative damage associated with oxidative challenge elicited by hyperthyroid state. As a whole, our results confirm the idea that T3 plays a key role in metabolic changes and oxidative damage found in cold liver. However, only data concerning changes in glutathione peroxidase activity and mitochondrial protein content favour the idea that dissimilarities in effects of cold exposure and T3 treatment could depend on differences in serum levels of T4.

  20. [The correlations between aging of the human body, oxidative stress and reduced efficiency of repair systems].

    PubMed

    Michalak, Aleksandra; Krzeszowiak, Jakub; Markiewicz-Górka, Iwona

    2014-12-15

    The article presents an current knowledge overview about the importance of oxidative stress and reduced efficiency of repair processes during the aging process of the human body. Oxidative damage to cellular macromolecules (proteins, lipids, nucleic acids), are formed under the influence of reactive oxygen species (ROS). They are the part of important mechanism which is responsible for the process of aging and the development of many diseases. The most important effects result from DNA damage, due to the mutations formation, which can lead to the development of tumors. However, a well-functioning repair systems (i.a. homologous recombination) remove the damage and prevent harmful changes in the cells. Lipid peroxidation products also cause oxidative modification of nucleic acids (and proteins). Proteins and fats also have repair systems, but much simpler than those responsible for the repair of nucleic acids. Unfortunately, with increasing age, they are more weakened, which contributes to increase numbers of cell damage, and consequently development of diseases specific to old age: cancer, neurodegenerative diseases or atherosclerosis.

  1. An investigation of the effects of MitoQ on human peripheral mononuclear cells.

    PubMed

    Marthandan, Shiva; Murphy, Michael P; Billett, Ellen; Barnett, Yvonne

    2011-03-01

    MitoQ is a ubiquinone derivative targeted to mitochondria which is known to have both antioxidant and anti-apoptotic properties within mammalian cells. Previous research has suggested that the age-related increase in oxidative DNA damage in T lymphocytes might contribute to their functional decline with age. This paper describes the impact of mitoQ on unchallenged or oxidatively challenged ex vivo human peripheral blood mononuclear cells from healthy 25-30 or 55-60 year old volunteers. When cells were challenged with hydrogen peroxide (H(2)O(2)), following mitoQ treatment (0.1-1.0 μM), the ratio of reduced to oxidized forms of glutathione increased, the levels of oxidative DNA damage decreased and there was an increase in the mitochondrial membrane potential. Low levels of mitoQ (0.1 or 0.25 μM) had no impact on endogenous DNA damage, whilst higher levels (0.5 and 1.0 μM) of mitoQ significantly reduced endogenous levels of DNA damage. The results of this investigation suggest that mitoQ may have anti-immunosenescent potential.

  2. Oxidative stress-dependent contribution of HMGB1 to the interplay between apoptosis and autophagy in diabetic rat liver.

    PubMed

    Petrović, Anja; Bogojević, Desanka; Korać, Aleksandra; Golić, Igor; Jovanović-Stojanov, Sofija; Martinović, Vesna; Ivanović-Matić, Svetlana; Stevanović, Jelena; Poznanović, Goran; Grigorov, Ilijana

    2017-11-01

    The progression of oxidative stress, resulting cell damage, and cell death underlies the etiology of liver damage/dysfunction as a complication of diabetes. High-mobility group box 1 (HMGB1) protein, a chromatin-binding nuclear protein and damage-associated molecular pattern molecule, is integral to oxidative stress and signaling pathways regulating cell death and cell survival. We previously found that in streptozotocin (STZ)-induced diabetic rats, reduction of oxidative stress after melatonin administration lowered necrotic cell death and increased expression of HMGB1 and hepatocellular damage. In the present study, we examined whether alleviation of diabetes-attendant oxidative stress and ensuing change in HMGB1 expression influence the dynamic equilibrium between apoptosis/autophagy and liver damage. We observed that elevated HMGB1 protein levels in diabetic rat liver accompanied increased interactions of HMGB1 with TLR4 and RAGE, and activation of the intrinsic apoptotic pathway and Beclin 1-dependent autophagy. The absence of p62 degradation in diabetic rat liver pointed to defective autophagy which was responsible for lower autophagosome/autophagolysosome formation and an increased apoptosis/autophagy ratio. Compared to diabetic rats, in melatonin-treated diabetic rats, the structure of liver cells was preserved, HMGB1/TLR4 interaction and downstream apoptotic signaling were significantly reduced, HMGB1/Beclin 1 colocalization and interactions were augmented and Beclin 1-mediated autophagy, mithophagy in particular, were increased. We concluded that in mild oxidative stress, HMGB1 is cytoprotective, whereas in intense oxidative stress, HMGB1 actions promote cell death and liver damage. Since reduced HMGB1 binds to RAGE but not to TLR4, redox modification of HMGB1 as a mechanism regulating the cross-talk between apoptosis and autophagy in diabetes is discussed.

  3. Oxidative Stress, DNA Damage and DNA Repair in Female Patients with Diabetes Mellitus Type 2

    PubMed Central

    Grindel, Annemarie; Guggenberger, Bianca; Eichberger, Lukas; Pöppelmeyer, Christina; Gschaider, Michaela; Tosevska, Anela; Mare, George; Briskey, David; Brath, Helmut; Wagner, Karl-Heinz

    2016-01-01

    Background Diabetes mellitus type 2 (T2DM) is associated with oxidative stress which in turn can lead to DNA damage. The aim of the present study was to analyze oxidative stress, DNA damage and DNA repair in regard to hyperglycemic state and diabetes duration. Methods Female T2DM patients (n = 146) were enrolled in the MIKRODIAB study and allocated in two groups regarding their glycated hemoglobin (HbA1c) level (HbA1c≤7.5%, n = 74; HbA1c>7.5%, n = 72). In addition, tertiles according to diabetes duration (DD) were created (DDI = 6.94±3.1 y, n = 49; DDII = 13.35±1.1 y, n = 48; DDIII = 22.90±7.3 y, n = 49). Oxidative stress parameters, including ferric reducing ability potential, malondialdehyde, oxidized and reduced glutathione, reduced thiols, oxidized LDL and F2-Isoprostane as well as the activity of antioxidant enzymes superoxide dismutase, catalase and glutathione peroxidase were measured. Damage to DNA was analyzed in peripheral blood mononuclear cells and whole blood with single cell gel electrophoresis. DNA base excision repair capacity was tested with the modified comet repair assay. Additionally, mRNA expressions of nine genes related to base excision repair were analyzed in a subset of 46 matched individuals. Results No significant differences in oxidative stress parameters, antioxidant enzyme activities, damage to DNA and base excision repair capacity, neither between a HbA1c cut off />7.5%, nor between diabetes duration was found. A significant up-regulation in mRNA expression was found for APEX1, LIG3 and XRCC1 in patients with >7.5% HbA1c. Additionally, we observed higher total cholesterol, LDL-cholesterol, LDL/HDL-cholesterol, triglycerides, Framingham risk score, systolic blood pressure, BMI and lower HDL-cholesterol in the hyperglycemic group. Conclusion BMI, blood pressure and blood lipid status were worse in hyperglycemic individuals. However, no major disparities regarding oxidative stress, damage to DNA and DNA repair were present which might be due to good medical treatment with regular health checks in T2DM patients in Austria. PMID:27598300

  4. Oxidative Stress, DNA Damage and DNA Repair in Female Patients with Diabetes Mellitus Type 2.

    PubMed

    Grindel, Annemarie; Guggenberger, Bianca; Eichberger, Lukas; Pöppelmeyer, Christina; Gschaider, Michaela; Tosevska, Anela; Mare, George; Briskey, David; Brath, Helmut; Wagner, Karl-Heinz

    2016-01-01

    Diabetes mellitus type 2 (T2DM) is associated with oxidative stress which in turn can lead to DNA damage. The aim of the present study was to analyze oxidative stress, DNA damage and DNA repair in regard to hyperglycemic state and diabetes duration. Female T2DM patients (n = 146) were enrolled in the MIKRODIAB study and allocated in two groups regarding their glycated hemoglobin (HbA1c) level (HbA1c≤7.5%, n = 74; HbA1c>7.5%, n = 72). In addition, tertiles according to diabetes duration (DD) were created (DDI = 6.94±3.1 y, n = 49; DDII = 13.35±1.1 y, n = 48; DDIII = 22.90±7.3 y, n = 49). Oxidative stress parameters, including ferric reducing ability potential, malondialdehyde, oxidized and reduced glutathione, reduced thiols, oxidized LDL and F2-Isoprostane as well as the activity of antioxidant enzymes superoxide dismutase, catalase and glutathione peroxidase were measured. Damage to DNA was analyzed in peripheral blood mononuclear cells and whole blood with single cell gel electrophoresis. DNA base excision repair capacity was tested with the modified comet repair assay. Additionally, mRNA expressions of nine genes related to base excision repair were analyzed in a subset of 46 matched individuals. No significant differences in oxidative stress parameters, antioxidant enzyme activities, damage to DNA and base excision repair capacity, neither between a HbA1c cut off />7.5%, nor between diabetes duration was found. A significant up-regulation in mRNA expression was found for APEX1, LIG3 and XRCC1 in patients with >7.5% HbA1c. Additionally, we observed higher total cholesterol, LDL-cholesterol, LDL/HDL-cholesterol, triglycerides, Framingham risk score, systolic blood pressure, BMI and lower HDL-cholesterol in the hyperglycemic group. BMI, blood pressure and blood lipid status were worse in hyperglycemic individuals. However, no major disparities regarding oxidative stress, damage to DNA and DNA repair were present which might be due to good medical treatment with regular health checks in T2DM patients in Austria.

  5. Chronic predation risk reduces escape speed by increasing oxidative damage: a deadly cost of an adaptive antipredator response.

    PubMed

    Janssens, Lizanne; Stoks, Robby

    2014-01-01

    Prey organisms evolved a multitude of plastic responses to avoid being eaten by predators. Besides the evolution of plastic morphological responses to escape predation, prey also evolved a set of physiological stress responses to avoid dying because of chronic predator stress per se due to disruption of cellular homeostasis. As physiological stress theory predicts increased energy consumption and the inhibition of essential nonemergency body functions, we tested whether chronic predation risk may increase oxidative damage thereby generating negative effects on escape performance. Specifically, we evaluated whether predation risk reduces escape swimming speed in damselfly larvae and whether this operates through stress-associated increases in oxidative damage. Counterintuitively and in contrast with many empirical studies, chronic predation risk decreased escape performance. This is however entirely consistent with the expectation of it being a long-term cost of responding to predation risk (e.g. by increasing respiration or upregulating the stress protein levels). The decreased swimming speed could be explained by an increased oxidative damage to proteins, thereby providing one of the poorly studied ecological links between oxidative damage and whole-animal performance. This likely widespread, understudied cost of chronic predation risk may provide an important pathway of non-consumptive predator effects on prey population dynamics. Moreover, it could play an evolutionary role by acting as a selective force causing prey organisms to adjust the magnitude of the physiological stress response and should be considered when evaluating life history trade-offs thought to be mediated by oxidative damage.

  6. Chronic Predation Risk Reduces Escape Speed by Increasing Oxidative Damage: A Deadly Cost of an Adaptive Antipredator Response

    PubMed Central

    Janssens, Lizanne; Stoks, Robby

    2014-01-01

    Prey organisms evolved a multitude of plastic responses to avoid being eaten by predators. Besides the evolution of plastic morphological responses to escape predation, prey also evolved a set of physiological stress responses to avoid dying because of chronic predator stress per se due to disruption of cellular homeostasis. As physiological stress theory predicts increased energy consumption and the inhibition of essential nonemergency body functions, we tested whether chronic predation risk may increase oxidative damage thereby generating negative effects on escape performance. Specifically, we evaluated whether predation risk reduces escape swimming speed in damselfly larvae and whether this operates through stress-associated increases in oxidative damage. Counterintuitively and in contrast with many empirical studies, chronic predation risk decreased escape performance. This is however entirely consistent with the expectation of it being a long-term cost of responding to predation risk (e.g. by increasing respiration or upregulating the stress protein levels). The decreased swimming speed could be explained by an increased oxidative damage to proteins, thereby providing one of the poorly studied ecological links between oxidative damage and whole-animal performance. This likely widespread, understudied cost of chronic predation risk may provide an important pathway of non-consumptive predator effects on prey population dynamics. Moreover, it could play an evolutionary role by acting as a selective force causing prey organisms to adjust the magnitude of the physiological stress response and should be considered when evaluating life history trade-offs thought to be mediated by oxidative damage. PMID:24968142

  7. Nrf2-ARE activator carnosic acid decreases mitochondrial dysfunction, oxidative damage and neuronal cytoskeletal degradation following traumatic brain injury in mice.

    PubMed

    Miller, Darren M; Singh, Indrapal N; Wang, Juan A; Hall, Edward D

    2015-02-01

    The importance of free radical-induced oxidative damage after traumatic brain injury (TBI) has been well documented. Despite multiple clinical trials with radical-scavenging antioxidants that are neuroprotective in TBI models, none is approved for acute TBI patients. As an alternative antioxidant target, Nrf2 is a transcription factor that activates expression of antioxidant and cytoprotective genes by binding to antioxidant response elements (AREs) within DNA. Previous research has shown that neuronal mitochondria are susceptible to oxidative damage post-TBI, and thus the current study investigates whether Nrf2-ARE activation protects mitochondrial function when activated post-TBI. It was hypothesized that administration of carnosic acid (CA) would reduce oxidative damage biomarkers in the brain tissue and also preserve cortical mitochondrial respiratory function post-TBI. A mouse controlled cortical impact (CCI) model was employed with a 1.0mm cortical deformation injury. Administration of CA at 15 min post-TBI reduced cortical lipid peroxidation, protein nitration, and cytoskeletal breakdown markers in a dose-dependent manner at 48 h post-injury. Moreover, CA preserved mitochondrial respiratory function compared to vehicle animals. This was accompanied by decreased oxidative damage to mitochondrial proteins, suggesting the mechanistic connection of the two effects. Lastly, delaying the initial administration of CA up to 8h post-TBI was still capable of reducing cytoskeletal breakdown, thereby demonstrating a clinically relevant therapeutic window for this approach. This study demonstrates that pharmacological Nrf2-ARE induction is capable of neuroprotective efficacy when administered after TBI. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Quercitrin Protects Skin from UVB-induced Oxidative Damage

    PubMed Central

    Yin, Yuanqin; Li, Wenqi; Son, Yong-Ok; Sun, Lijuan; Lu, Jian; Kim, Donghern; Wang, Xin; Yao, Hua; Wang, Lei; Pratheeshkumar, Poyil; Hitron, Andrew J; Luo, Jia; Gao, Ning; Shi, Xianglin; Zhang, Zhuo

    2013-01-01

    Exposure of the skin to ultraviolet B (UVB) radiation causes oxidative damage to skin, resulting in sunburn, photoaging, and skin cancer. It is generally believed that the skin damage induced by UV irradiation is a consequence of generation of reactive oxygen species (ROS). Recently, there is an increased interest in the use of natural products as chemopreventive agents for non-melanoma skin cancer (NMSC) due to their antioxidants and anti-inflammatory properties. Quercitrin, glycosylated form of quercetin, is the most common flavonoid in nature with antioxidant properties. The present study investigated the possible beneficial effects of quercitrin to inhibit UVB irradiation-induced oxidative damage in vitro and in vivo. Our results showed that quercitrin decreased ROS generation induced by UVB irradiation in JB6 cells. Quercitrin restored catalase expression and GSH/GSSG ratio reduced by UVB exposure, two major antioxidant enzymes, leading to reductions of oxidative DNA damage and apoptosis and protection of the skin from inflammation caused by UVB exposure. The present study demonstrated that quercitrin functions as an antioxidant against UVB irradiation-induced oxidative damage to skin. PMID:23545178

  9. Quercitrin protects skin from UVB-induced oxidative damage.

    PubMed

    Yin, Yuanqin; Li, Wenqi; Son, Young-Ok; Sun, Lijuan; Lu, Jian; Kim, Donghern; Wang, Xin; Yao, Hua; Wang, Lei; Pratheeshkumar, Poyil; Hitron, Andrew J; Luo, Jia; Gao, Ning; Shi, Xianglin; Zhang, Zhuo

    2013-06-01

    Exposure of the skin to ultraviolet B (UVB) radiation causes oxidative damage to skin, resulting in sunburn, photoaging, and skin cancer. It is generally believed that the skin damage induced by UV irradiation is a consequence of generation of reactive oxygen species (ROS). Recently, there is an increased interest in the use of natural products as chemopreventive agents for non-melanoma skin cancer (NMSC) due to their antioxidants and anti-inflammatory properties. Quercitrin, glycosylated form of quercetin, is the most common flavonoid in nature with antioxidant properties. The present study investigated the possible beneficial effects of quercitrin to inhibit UVB irradiation-induced oxidative damage in vitro and in vivo. Our results showed that quercitrin decreased ROS generation induced by UVB irradiation in JB6 cells. Quercitrin restored catalase expression and GSH/GSSG ratio reduced by UVB exposure, two major antioxidant enzymes, leading to reductions of oxidative DNA damage and apoptosis and protection of the skin from inflammation caused by UVB exposure. The present study demonstrated that quercitrin functions as an antioxidant against UVB irradiation-induced oxidative damage to skin. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Parkin elimination of mitochondria is important for maintenance of lens epithelial cell ROS levels and survival upon oxidative stress exposure.

    PubMed

    Brennan, Lisa; Khoury, Josef; Kantorow, Marc

    2017-01-01

    Age-related cataract is associated with oxidative stress and death of lens epithelial cells (LECs) whose survival is dependent on functional mitochondrial populations. Oxidative stress-induced depolarization/damage of LEC mitochondria results in increased reactive oxygen species (ROS) levels and cell death suggesting the need for a LEC mechanism to remove mitochondria depolarized/damaged upon oxidative stress exposure to prevent ROS release and LEC death. To date, a mechanism(s) for removal of depolarized/damaged LEC mitochondria has yet to be identified and the importance of eliminating oxidative stress-damaged mitochondria to prevent LEC ROS release and death has not been established. Here, we demonstrate that Parkin levels increase in LECs exposed to H 2 O 2 -oxidative stress. We establish that Parkin translocates to LEC mitochondria depolarized upon oxidative stress exposure and that Parkin recruits p62/SQSTM1 to depolarized LEC mitochondria. We demonstrate that translocation of Parkin results in the elimination of depolarized/damaged mitochondria and that Parkin clearance of LEC mitochondria is dependent on its ubiquitin ligase activity. Importantly, we demonstrate that Parkin elimination of damaged LEC mitochondria results in reduced ROS levels and increased survival upon oxidative stress exposure. These results establish that Parkin functions to eliminate LEC mitochondria depolarized/damaged upon oxidative stress exposure and that elimination of damaged mitochondria by Parkin is important for LEC homeostasis and survival. The data also suggest that mitochondrial quality control by Parkin could play a role in lens transparency. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Lutein and zeaxanthin supplementation reduces photo-oxidative damage and modulates the expression of inflammation related genes in retinal pigment epithelial cells

    USDA-ARS?s Scientific Manuscript database

    Oxidative damage and inflammation are related to the pathogenesis of age-related macular degeneration (AMD). Epidemiologic studies suggest that insufficient dietary lutein and zeaxanthin intake or lower serum zeaxanthin levels are associated with increased risk for AMD. The objective of this work w...

  12. Effect of complex polyphenols and tannins from red wine (WCPT) on chemically induced oxidative DNA damage in the rat.

    PubMed

    Casalini, C; Lodovici, M; Briani, C; Paganelli, G; Remy, S; Cheynier, V; Dolara, P

    1999-08-01

    Flavonoids are polyphenolic antioxidants occurring in vegetables and fruits as well as beverages such as tea and wine which have been thought to influence oxidative damage. We wanted to verify whether a complex mixture of wine tannins (wine complex polyphenols and tannins, WCPT) prevent chemically-induced oxidative DNA damage in vivo. Oxidative DNA damage was evaluated by measuring the ratio of 8-hydroxy-2'-deoxyguanosine (80HdG)/ 2-deoxyguanosine (2dG) x 10(-6) in hydrolyzed DNA using HPLC coupled with electrochemical and UV detectors. We treated rats with WCPT (57 mg/kg p.o.) for 14 d, a dose 10-fold higher than what a moderate wine drinker would be exposed to. WCPT administration significantly reduced the ratio of 80HdG/2dG x 10(-6) in liver DNA obtained from rats treated with 2-nitropropane (2NP) relative to controls administered 2NP only (33. 3 +/- 2.5 vs. 44.9 +/- 3.2 x 10(-6) 2dG; micro +/- SE; p<0.05). On the contrary, pretreatment with WCPT for 10 d did not protect the colon mucosa from oxidative DNA damage induced by 1, 2-dimethylhydrazine (DMH). 2NP and DMH are hepatic and colon carcinogens, respectively, capable of inducing oxidative DNA damage. WCPT have protective action against some types of chemically-induced oxidative DNA damage in vivo.

  13. Chlorpyrifos-induced oxidative damage is reduced under warming and predation risk: Explaining antagonistic interactions with a pesticide.

    PubMed

    Janssens, Lizanne; Stoks, Robby

    2017-07-01

    Interactions with pollutants and environmental factors are poorly studied for physiological traits. Yet physiological traits are important for explaining and predicting interactions at higher levels of organization. We investigated the single and combined impact of the pesticide chlorpyrifos, predation risk and warming on endpoints related to oxidative stress in the damselfly Enallagma cyathigerum. We thereby integrated information on reactive oxygen species (ROS), antioxidant enzymes and oxidative damage. All three treatments impacted the oxidative stress levels and for most traits the pesticide interacted antagonistically with warming or predation risk. Chlorpyrifos exposure resulted in increased ROS levels, decreased antioxidant defence and increased oxidative damage compared to the control situation. Under warming, the pesticide-induced increase in oxidative stress was less strong and the investment in antioxidant defence higher. Although both the pesticide and predation risk increased oxidative damage, the effects of the pesticide on oxidative damage were less strong in the presence of predator cues (at 20 °C). Despite the weaker pesticide-induced effects under predation risk, the combination of the pesticide and predator cues consistently caused the highest ROS levels, the lowest antioxidant defence and the highest oxidative damage, indicating the importance of cumulative stressor effects for impairing fitness. Our results provide the first evidence for antagonistic interactions of warming and predation risk with a pollutant for physiological traits. We identified two general mechanisms that may generate antagonistic interactions for oxidative stress: cross-tolerance and the maximum cumulative levels of damage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. The FA pathway counteracts oxidative stress through selective protection of antioxidant defense gene promoters.

    PubMed

    Du, Wei; Rani, Reena; Sipple, Jared; Schick, Jonathan; Myers, Kasiani C; Mehta, Parinda; Andreassen, Paul R; Davies, Stella M; Pang, Qishen

    2012-05-03

    Oxidative stress has been implicated in the pathogenesis of many human diseases including Fanconi anemia (FA), a genetic disorder associated with BM failure and cancer. Here we show that major antioxidant defense genes are down-regulated in FA patients, and that gene down-regulation is selectively associated with increased oxidative DNA damage in the promoters of the antioxidant defense genes. Assessment of promoter activity and DNA damage repair kinetics shows that increased initial damage, rather than a reduced repair rate, contributes to the augmented oxidative DNA damage. Mechanistically, FA proteins act in concert with the chromatin-remodeling factor BRG1 to protect the promoters of antioxidant defense genes from oxidative damage. Specifically, BRG1 binds to the promoters of the antioxidant defense genes at steady state. On challenge with oxidative stress, FA proteins are recruited to promoter DNA, which correlates with significant increase in the binding of BRG1 within promoter regions. In addition, oxidative stress-induced FANCD2 ubiquitination is required for the formation of a FA-BRG1-promoter complex. Taken together, these data identify a role for the FA pathway in cellular antioxidant defense.

  15. Efficacy of DL-alpha-lipoic acid on methanol induced free radical changes, protein oxidative damages and hsp70 expression in folate deficient rat nervous tissue.

    PubMed

    Rajamani, Rathinam; Muthuvel, Arumugam; Manikandan, Sundaramahalingam; Srikumar, Ramasundaram; Sheeladevi, Rathinasamy

    2007-05-01

    DL-alpha-Lipoic acid (LPA) was reported to be effective in reducing free radicals generated by oxidative stress. The protective of effect of LPA on methanol (MeOH) induced free radical changes and oxidative damages in discrete regions of rat brain have been reported in this study. Folate deficient rat (FDD) model was used. The five animal groups (saline control, FDD control, FDD+MeOH, FDD+LPA+MeOH, LPA control) were used. The FDD+MeOH and FDD+LPA+MeOH animals were injected intraperitoneally with methanol (3gm/kg). After 24h, the level of free radical scavengers such as, superoxide dismutase, catalase, glutathione peroxidase, reduced glutathione was estimated in six discrete regions of brain, retina and optic nerve. Level of protein thiol, protein carbonyl and lipid peroxidation was also estimated. Expression of heat shock protein 70 mRNA (hsp70) was studied in the cerebellum and hippocampus by reverse transcriptase PCR. All the samples showed elevation in the level of free radical scavenging enzymes and reduced level of glutathione in the FDD+MeOH group in relation to the other groups. hsp70 expression was more in FDD+MeOH group when compared to FDD+LPA+MeOH group. In conclusion, MeOH exposure leads to increased free radical generation and protein oxidative damages in the rat nervous tissue. Treatment with LPA prevents oxidative damage induced by MeOH exposure.

  16. Protection against UVB-induced oxidative stress in human skin cells and skin models by methionine sulfoxide reductase A.

    PubMed

    Pelle, Edward; Maes, Daniel; Huang, Xi; Frenkel, Krystyna; Pernodet, Nadine; Yarosh, Daniel B; Zhang, Qi

    2012-01-01

    Environmental trauma to human skin can lead to oxidative damage of proteins and affect their activity and structure. When methionine becomes oxidized to its sulfoxide form, methionine sulfoxide reductase A (MSRA) reduces it back to methionine. We report here the increase in MSRA in normal human epidermal keratinocytes (NHEK) after ultraviolet B (UVB) radiation, as well as the reduction in hydrogen peroxide levels in NHEK pre-treated with MSRA after exposure. Further, when NHEK were pre-treated with a non-cytotoxic pentapeptide containing methionine sulfoxide (metSO), MSRA expression increased by 18.2%. Additionally, when the media of skin models were supplemented with the metSO pentapeptide and then exposed to UVB, a 31.1% reduction in sunburn cells was evident. We conclude that the presence of MSRA or an externally applied peptide reduces oxidative damage in NHEK and skin models and that MSRA contributes to the protection of proteins against UVB-induced damage in skin.

  17. Protection by the flavonoids quercetin and luteolin against peroxide- or menadione-induced oxidative stress in MC3T3-E1 osteoblast cells.

    PubMed

    Fatokun, Amos A; Tome, Mercedes; Smith, Robert A; Darlington, L Gail; Stone, Trevor W

    2015-01-01

    Potential protective effects of the flavonoids quercetin and luteolin have been examined against the oxidative stress of MC3T3-E1 osteoblast-like cells. Although hydrogen peroxide and menadione reduced cell viability, the toxicity was prevented by desferrioxamine or catalase but not superoxide dismutase, suggesting the involvement of hydrogen peroxide in both cases. Quercetin and luteolin reduced the oxidative damage, especially that caused by hydrogen peroxide. When cultures were pre-incubated with quercetin or luteolin, protection was reduced or lost. Protection was also reduced when a 24 h pre-incubation with the flavonoids was followed by exposure to menadione alone. Pretreating cultures with luteolin impaired protection by quercetin, whereas quercetin pretreatment did not affect protection by luteolin. It is concluded that quercetin and luteolin suppress oxidative damage to MC3T3-E1 cells, especially caused by peroxide. The reduction in protection by pretreatment implies a down-regulation of part of the toxic transduction pathway.

  18. SIRT3 mediates decrease of oxidative damage and prevention of ageing in porcine fetal fibroblasts.

    PubMed

    Xie, Xiaoxian; Wang, Liangliang; Zhao, Binggong; Chen, Yangyang; Li, Jiaqi

    2017-05-15

    Sirtuin 3 (SIRT3) is a mitochondria-specific protein required for the deacetylation of metabolic enzymes and the action of oxidative phosphorylation by acting as a nicotinamide adenine dinucleotide (NAD + )-dependent deacetylase. SIRT3 increases oxidative stress resistance and prevents mitochondrial decay associated with ageing in response to caloric restriction. However, the effects of SIRT3 on oxidative damage and ageing are not well understood. We investigated the physiological functions of porcine SIRT3 on the damage and ageing in porcine fetal fibroblasts (PFFs). Overexpression and knockdown of SIRT3 were confirmed by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot analysis, respectively. All cells were treated with three different stress reagents 12-o-tetradecanoylphorbol-13-acetate (TPA), methanesulfonic acid methylester (MMS), and tert-butylhydroperoxide (t-BHP), respectively, and then examined by flow cytometry following JC-1 (5, 5', 6, 6'-tetrachloro-1, 1', 3, 3'-tetraethylbenzimidazol-carbocyanine iodide) staining. SIRT3 overexpression enhanced the ability of superoxide dismutase 2 (SOD2) to reduce cellular reactive oxygen species (ROS), which further decreased the damage to the membranes and the organelles of the cells, especially to mitochondria. It inhibited the initial decrease of mitochondrial membrane potential, and prevented the decrease of adenosine triphosphate (ATP) production and activity of Nampt. In contrast, SIRT3 knockdown reduced the ability of SOD2 to increase cellular ROS which was directly correlated with stress-induced oxidative damage and ageing in PFFs. Our findings identify one function of SIRT3 in PFFs was to dampen cytotoxicity, and, therefore, to decrease oxidative damage and attenuate ageing possibly by enhancing the activity of SOD2. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Curcumin ameliorates dopaminergic neuronal oxidative damage via activation of the Akt/Nrf2 pathway.

    PubMed

    Cui, Qunli; Li, Xin; Zhu, Hongcan

    2016-02-01

    Parkinson's disease (PD) is an age-related complex neurodegenerative disease that affects ≤ 80% of dopaminergic neurons in the substantia nigra pars compacta (SNpc). It has previously been suggested that mitochondrial dysfunction, oxidative stress and oxidative damage underlie the pathogenesis of PD. Curcumin, which is a major active polyphenol component extracted from the rhizomes of Curcuma longa (Zingiberaceae), has been reported to exert neuroprotective effects on an experimental model of PD. The present study conducted a series of in vivo experiments, in order to investigate the effects of curcumin on behavioral deficits, oxidative damage and related mechanisms. The results demonstrated that curcumin was able to significantly alleviate motor dysfunction and increase suppressed tyrosine hydroxylase (TH) activity in the SNpc of rotenone (ROT)-injured rats. Biochemical measurements indicated that rats pretreated with curcumin exhibited increased glutathione (GSH) levels, and reduced reactive oxygen species activity and malondialdehyde content. Mechanistic studies demonstrated that curcumin significantly restored the expression levels of heme oxygenase-1 and quinone oxidoreductase 1, thus ameliorating ROT-induced damage in vivo, via the phosphorylation of Akt and nuclear factor erythroid 2-related factor 2 (Nrf2). Further studies indicated that the Akt/Nrf2 signaling pathway was associated with the protective role of curcumin in ROT-treated rats. Inhibiting the Akt/Nrf2 pathway using a lentiviral vector containing Nrf2-specific short hairpin RNA, or the phosphoinositide 3-kinase inhibitor LY294002, markedly reduced the expression levels of TH and GSH, ultimately attenuating the neuroprotective effects of curcumin against oxidative damage. These results indicated that curcumin was able to significantly ameliorate ROT-induced dopaminergic neuronal oxidative damage in the SNpc of rats via activation of the Akt/Nrf2 signaling pathway.

  20. Vitamin-E reduces the oxidative damage on delta-aminolevulinic dehydratase induced by lead intoxication in rat erythrocytes.

    PubMed

    Rendón-Ramirez, A; Cerbón-Solórzano, J; Maldonado-Vega, M; Quintanar-Escorza, M A; Calderón-Salinas, J V

    2007-09-01

    Lead intoxication induces oxidative damage on lipids and proteins. In the present paper we study in vivo and in vitro the antioxidant effect of vitamin-E and trolox, on the oxidative effects of lead intoxication in rat erythrocytes. Vitamin-E simultaneously administered to erythrocytes treated with lead was capable to prevent the inhibition of delta-aminolevulinic dehydratase activity and lipid oxidation. Partial but important protective effects were found when vitamin-E was administered either after or before lead exposure in rats. In vitro, the antioxidant trolox protected delta-ALA-D activity against damage induced by lead or menadione. These results indicate that vitamin-E could be useful in order to protect membrane-lipids and, notably, to prevent protein oxidation produced by lead intoxication.

  1. Protein and lipid oxidative damage in streptozotocin-induced diabetic rats submitted to forced swimming test: the insulin and clonazepam effect.

    PubMed

    Wayhs, Carlos Alberto Yasin; Manfredini, Vanusa; Sitta, Angela; Deon, Marion; Ribas, Graziela; Vanzin, Camila; Biancini, Giovana; Ferri, Marcelo; Nin, Maurício; Barros, Helena Maria Tannhauser; Vargas, Carmen Regla

    2010-09-01

    Diabetes may modify central nervous system functions and is associated with moderate cognitive deficits and changes in the brain, a condition that may be referred to as diabetic encephalopathy. The prevalence of depression in diabetic patients is higher than in the general population, and clonazepam is being used to treat this complication. Oxidative stress may play a role in the development of diabetes complications. We investigated oxidative stress parameters in streptozotocin-induced diabetic rats submitted to forced swimming test (STZ) and evaluated the effect of insulin (STZ-INS) and/or clonazepam (STZ-CNZ and STZ-INS-CNZ) acute treatment on these animal model. Oxidative damage to proteins measured as carbonyl content in plasma was significantly increased in STZ group compared to STZ treated groups. Malondialdehyde plasma levels were significantly reduced in STZ-INS and STZ-INS-CNZ groups when compared to STZ rats, being significantly reduced in STZ-INS-CNZ than STZ-INS rats. The activities of the antioxidant enzymes catalase, superoxide dismutase and glutathione peroxidase showed no significant differences among all groups of animals. These findings showed that protein and lipid damage occurs in this diabetes/depression animal model and that the associated treatment of insulin and clonazepam is capable to protect against oxidative damage in this experimental model.

  2. Spirulina improves antioxidant status by reducing oxidative stress in rabbits fed a high-cholesterol diet.

    PubMed

    Kim, Mi Yeon; Cheong, Sun Hee; Lee, Jeung Hee; Kim, Min Ji; Sok, Dai-Eun; Kim, Mee Ree

    2010-04-01

    The beneficial effect of Spirulina (Spirulina platensis) on tissue lipid peroxidation and oxidative DNA damage was tested in the hypercholesterolemic New Zealand White rabbit model. After hypercholesterolemia was induced by feeding a high cholesterol (0.5%) diet (HCD) for 4 weeks, then HCD supplemented with 1% or 5% Spirulina (SP1 or SP5, respectively) was provided for an additional 8 weeks. Spirulina supplementation significantly reduced the increased lipid peroxidation level in HCD-fed rabbits, and levels recovered to control values. Oxidative stress biomarkers such as glutathione, glutathione peroxidase, glutathione reductase, and glutathione S-transferase were significantly improved in the liver and red blood cells of rabbits fed SP1. Furthermore, SP5 induced antioxidant enzyme activity by 3.1-fold for glutathione, 2.5-fold for glutathione peroxidase, 2.7-fold for glutathione reductase, and 2.3-fold for glutathione S-transferase in liver, compared to the HCD group. DNA damage in lymphocytes was significantly reduced in both the SP1 and SP5 groups, based on the comet assay. Findings from the present study suggest that dietary supplementation with Spirulina may be useful to protect the cells from lipid peroxidation and oxidative DNA damage.

  3. Mitochondrial targeting of XJB-5-131 attenuates or improves pathophysiology in HdhQ150 animals with well-developed disease phenotypes

    DOE PAGES

    Polyzos, Aris; Holt, Amy; Brown, Christopher; ...

    2016-02-21

    Oxidative damage to mitochondria (MT) is a major mechanism for aging and neurodegeneration. We have developed a novel synthetic antioxidant, XJB-5-131, which directly targets MT, the primary site and primary target of oxidative damage. XJB-5-131 prevents the onset of motor decline in an HdhQ(150/150) mouse model for Huntington's disease (HD) if treatment starts early. Here, we report that XJB-5-131 attenuates or reverses disease progression if treatment occurs after disease onset. In animals with well-developed pathology, XJB-5-131 promotes weight gain, prevents neuronal death, reduces oxidative damage in neurons, suppresses the decline of motor performance or improves it, and reduces a grayingmore » phenotype in treated HdhQ(150/150) animals relative to matched littermate controls. XJB-5-131 holds promise as a clinical candidate for the treatment of HD.« less

  4. Mitochondrial targeting of XJB-5-131 attenuates or improves pathophysiology in HdhQ150 animals with well-developed disease phenotypes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polyzos, Aris; Holt, Amy; Brown, Christopher

    Oxidative damage to mitochondria (MT) is a major mechanism for aging and neurodegeneration. We have developed a novel synthetic antioxidant, XJB-5-131, which directly targets MT, the primary site and primary target of oxidative damage. XJB-5-131 prevents the onset of motor decline in an HdhQ(150/150) mouse model for Huntington's disease (HD) if treatment starts early. Here, we report that XJB-5-131 attenuates or reverses disease progression if treatment occurs after disease onset. In animals with well-developed pathology, XJB-5-131 promotes weight gain, prevents neuronal death, reduces oxidative damage in neurons, suppresses the decline of motor performance or improves it, and reduces a grayingmore » phenotype in treated HdhQ(150/150) animals relative to matched littermate controls. XJB-5-131 holds promise as a clinical candidate for the treatment of HD.« less

  5. Exogenous calcium improves viability of biocontrol yeasts under heat stress by reducing ROS accumulation and oxidative damage of cellular protein.

    PubMed

    An, Bang; Li, Boqiang; Qin, Guozheng; Tian, Shiping

    2012-08-01

    In this article, we investigated the effect of exogenous calcium on improving viability of Debaryomyces hansenii and Pichia membranaefaciens under heat stress, and evaluated the role of calcium in reducing oxidant damage of proteins in the yeast cells. The results indicated that high concentration of exogenous calcium in culture medium was beneficial for enhancing the tolerance of the biocontrol yeasts to heat stress. The possible mechanism of calcium improving the viability of yeasts was attributed to enhancement of antioxidant enzyme activities, decrease in ROS accumulation and reduction of oxidative damage of intracellular protein in yeast cells under heat stress. D. hansenii is more sensitive to calcium as compared to P. membranaefaciens. Our results suggest that application of exogenous calcium combined with biocontrol yeasts is a practical approach for the control of postharvest disease in fruit.

  6. The RNA surveillance protein SMG1 activates p53 in response to DNA double-strand breaks but not exogenously oxidized mRNA

    PubMed Central

    Gewandter, Jennifer S; Bambara, Robert A

    2011-01-01

    DNA damage, stalled replication forks, errors in mRNA splicing and availability of nutrients activate specific phosphatidylinositiol-3-kinase-like kinases (PIKKs) that in turn phosphorylate downstream targets such as p53 on serine 15. While the PIKK proteins ATM and ATR respond to specific DNA lesions, SMG1 responds to errors in mRNA splicing and when cells are exposed to genotoxic stress. Yet, whether genotoxic stress activates SMG1 through specific types of DNA lesions or RNA damage remains poorly understood. Here, we demonstrate that siRNA oligonucleotides targeting the mRNA surveillance proteins SMG1, Upf1, Upf2 or the PIKK protein ATM attenuated p53 (ser15) phosphorylation in cells damaged by high oxygen (hyperoxia), a model of persistent oxidative stress that damages nucleotides. In contrast, loss of SMG1 or ATM, but not Upf1 or Upf2 reduced p53 (ser15) phosphorylation in response to DNA double strand breaks produced by expression of the endonuclease I-PpoI. To determine whether SMG1-dependent activation of p53 was in response to oxidative mRNA damage, mRNA encoding green fluorescence protein (GFP) transcribed in vitro was oxidized by Fenton chemistry and transfected into cells. Although oxidation of GFP mRNA resulted in dose-dependent fragmentation of the mRNA and reduced expression of GFP, it did not stimulate p53 or the p53-target gene p21. These findings establish SMG1 activates p53 in response to DNA double strand breaks independent of the RNA surveillance proteins Upf1 or Upf2; however, these proteins can stimulate p53 in response to oxidative stress but not necessarily oxidized RNA. PMID:21701263

  7. Interacting effects of early dietary conditions and reproductive effort on the oxidative costs of reproduction

    PubMed Central

    2017-01-01

    The hypothesis that oxidative damage accumulation can mediate the trade-off between reproduction and lifespan has recently been questioned. However, in captive conditions, studies reporting no evidence in support of this hypothesis have usually provided easy access to food which may have mitigated the cost of reproduction. Here, I test the hypothesis that greater investment in reproduction should lead to oxidative damage accumulation and telomere loss in domestic zebra finches Taeniopygia guttata. Moreover, since the change or fluctuation in diet composition between early and late postnatal period can impair the ability to produce antioxidant defences in zebra finches, I also tested if early nutritional conditions (constant vs fluctuating early diet) influenced the magnitude of any subsequent costs of reproduction (e.g., oxidative damage and/or telomere shortening). In comparison to pairs with reduced broods, the birds that had to feed enlarged broods showed a higher level of oxidative DNA damage (8-OHdG), but brood size had no effect on telomeres. Fluctuating early diet composition reduced the capacity to maintain the activity of endogenous antioxidants (GPx), particularly when reproductive costs were increased (enlarged brood). The decline in GPx in birds feeding enlarged broods was accompanied by a change in bill colouration. This suggests that birds with lower endogenous antioxidant defences might have strategically increased the mobilization of antioxidants previously stored in other tissues (i.e., bill and liver) and thus, preventing an excessive accumulation of damage during reproduction. PMID:28316895

  8. Essential fatty acid-rich diets protect against striatal oxidative damage induced by quinolinic acid in rats.

    PubMed

    Morales-Martínez, Adriana; Sánchez-Mendoza, Alicia; Martínez-Lazcano, Juan Carlos; Pineda-Farías, Jorge Baruch; Montes, Sergio; El-Hafidi, Mohammed; Martínez-Gopar, Pablo Eliasib; Tristán-López, Luis; Pérez-Neri, Iván; Zamorano-Carrillo, Absalom; Castro, Nelly; Ríos, Camilo; Pérez-Severiano, Francisca

    2017-09-01

    Essential fatty acids have an important effect on oxidative stress-related diseases. The Huntington's disease (HD) is a hereditary neurologic disorder in which oxidative stress caused by free radicals is an important damage mechanism. The HD experimental model induced by quinolinic acid (QUIN) has been widely used to evaluate therapeutic effects of antioxidant compounds. The aim of this study was to test whether the fatty acid content in olive- or fish-oil-rich diet prevents against QUIN-related oxidative damage in rats. Rats were fed during 20 days with an olive- or a fish-oil-rich diet (15% w/w). Posterior to diet period, rats were striatally microinjected with QUIN (240 nmol/µl) or saline solution. Then, we evaluated the neurological damage, oxidative status, and gamma isoform of the peroxisome proliferator-activated receptor (PPARγ) expression. Results showed that fatty acid-rich diet, mainly by fish oil, reduced circling behavior, prevented the fall in GABA levels, increased PPARγ expression, and prevented oxidative damage in striatal tissue. In addition none of the enriched diets exerted changes neither on triglycerides or cholesterol blood levels, nor or hepatic function. This study suggests that olive- and fish-oil-rich diets exert neuroprotective effects.

  9. The effect of green, black and white tea on the level of alpha and gamma tocopherols in free radical-induced oxidative damage of human red blood cells.

    PubMed

    Gawlik, Małgorzata; Czajka, Aneta

    2007-01-01

    The present study was undertaken to investigate the effect of aqueous tea extracts on lipid peroxidation and alpha and gamma tocopherols concentration in the oxidative damage of human red blood cells (RBC). RBC was taken as the model for study of the oxidative damage was induced by cumene hydroperoxide (cumOOH). The antioxidative property of leaf green tea, leaf and granulate of black tea and white tea at levels 1, 2, 4 g/150 mL of water were evaluated. The correlation was observed between reducing power of tea extract and formation of malondialdehyde--MDA (an indicator of lipid peroxidation) in oxidative damage of RBC. All tea extracts at level of 4 g/150 mL of water significantly decreased concentration of MDA. The extract of green tea in comparison to black and white tea extracts at the same levels seems to be a better protective agent against oxidative stress. The antioxidant synergism between components extracted from leaves of green tea and endogenous alpha tocopherol in the oxidative damage of red blood cells was observed. The consumption of alpha tocopherol in oxidative damage of RBC was the lowest after treatment with the highest dose of green tea extract. All tea extracts did not protect against decrease of gamma tocopherol in human erythrocytes treated with cumOOH.

  10. Oxidative DNA damage during sleep periods among nightshift workers.

    PubMed

    Bhatti, Parveen; Mirick, Dana K; Randolph, Timothy W; Gong, Jicheng; Buchanan, Diana Taibi; Zhang, Junfeng Jim; Davis, Scott

    2016-08-01

    Oxidative DNA damage may be increased among nightshift workers because of suppression of melatonin, a cellular antioxidant, and/or inflammation related to sleep disruption. However, oxidative DNA damage has received limited attention in previous studies of nightshift work. From two previous cross-sectional studies, urine samples collected during a night sleep period for 217 dayshift workers and during day and night sleep (on their first day off) periods for 223 nightshift workers were assayed for 8-hydroxydeoxyguanosine (8-OH-dG), a marker of oxidative DNA damage, using high-performance liquid chromatography with electrochemical detection. Urinary measures of 6-sulfatoxymelatonin (aMT6s), a marker of circulating melatonin levels, and actigraphy-based sleep quality data were also available. Nightshift workers during their day sleep periods excreted 83% (p=0.2) and 77% (p=0.03) of the 8-OH-dG that dayshift workers and they themselves, respectively, excreted during their night sleep periods. Among nightshift workers, higher aMT6s levels were associated with higher urinary 8-OH-dG levels, and an inverse U-shaped trend was observed between 8-OH-dG levels and sleep efficiency and sleep duration. Reduced excretion of 8-OH-dG among nightshift workers during day sleep may reflect reduced functioning of DNA repair machinery, which could potentially lead to increased cellular levels of oxidative DNA damage. Melatonin disruption among nightshift workers may be responsible for the observed effect, as melatonin is known to enhance repair of oxidative DNA damage. Quality of sleep may similarly impact DNA repair. Cellular levels of DNA damage will need to be evaluated in future studies to help interpret these findings. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  11. Effect of vitamin E and C supplementation on oxidative damage and total antioxidant capacity in lead-exposed workers.

    PubMed

    Rendón-Ramírez, Adela-Leonor; Maldonado-Vega, María; Quintanar-Escorza, Martha-Angelica; Hernández, Gerardo; Arévalo-Rivas, Bertha-Isabel; Zentella-Dehesa, Alejandro; Calderón-Salinas, José-Víctor

    2014-01-01

    The molecular response of the antioxidant system and the effects of antioxidant supplementation against oxidative insult in lead-exposed workers has not been sufficiently studied. In this work, antioxidants (vitamin E 400 IU+vitamin C 1g/daily) were supplemented for one year to 15 workers exposed to lead (73 μg of lead/dl of blood) and the results were compared with those on 19 non-lead exposed workers (6.7 μg of lead/dl). Lead intoxication was accompanied by a high oxidative damage and an increment in the erythrocyte antioxidant response due to increased activity of catalase and superoxide dismutase. Antioxidant supplementations decreased significantly the oxidative damage as well as the total antioxidant capacity induced by lead intoxication with reduction of the antioxidant enzyme activities. We conclude that antioxidant supplementation is effective in reducing oxidative damage and induces modifications in the physiopathological status of the antioxidant response in lead-exposed workers. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Biomarkers of oxidative stress and DNA damage in agricultural workers: A pilot study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muniz, Juan F.; McCauley, Linda; Scherer, J.

    Oxidative stress and DNA damage have been proposed as mechanisms linking pesticide exposure to health effects such as cancer and neurological diseases. A study of pesticide applicators and farmworkers was conducted to examine the relationship between organophosphate pesticide exposure and biomarkers of oxidative stress and DNA damage. Urine samples were analyzed for OP metabolites and 8-hydroxy-2'-deoxyguanosine (8-OH-dG). Lymphocytes were analyzed for oxidative DNA repair activity and DNA damage (Comet assay), and serum was analyzed for lipid peroxides (i.e., malondialdehyde, MDA). Cellular damage in agricultural workers was validated using lymphocyte cell cultures. Urinary OP metabolites were significantly higher in farmworkers andmore » applicators (p < 0.001) when compared to controls. 8-OH-dG levels were 8.5 times and 2.3 times higher in farmworkers or applicators (respectively) than in controls. Serum MDA levels were 4.9 times and 24 times higher in farmworkers or applicators (respectively) than in controls. DNA damage (Comet assay) and oxidative DNA repair were significantly greater in lymphocytes from applicators and farmworkers when compared with controls. Markers of oxidative stress (i.e., increased reactive oxygen species and reduced glutathione levels) and DNA damage were also observed in lymphocyte cell cultures treated with an OP. The findings from these in vivo and in vitro studies indicate that organophosphate pesticides induce oxidative stress and DNA damage in agricultural workers. These biomarkers may be useful for increasing our understanding of the link between pesticides and a number of health effects.« less

  13. Hypocaloric diet and regular moderate aerobic exercise is an effective strategy to reduce anthropometric parameters and oxidative stress in obese patients.

    PubMed

    Gutierrez-Lopez, Liliana; Garcia-Sanchez, Jose Ruben; Rincon-Viquez, Maria de Jesus; Lara-Padilla, Eleazar; Sierra-Vargas, Martha P; Olivares-Corichi, Ivonne M

    2012-01-01

    Studies show that diet and exercise are important in the treatment of obesity. The aim of this study was to determine whether additional regular moderate aerobic exercise during a treatment with hypocaloric diet has a beneficial effect on oxidative stress and molecular damage in the obese patient. Oxidative stress of 16 normal-weight (NW) and 32 obese 1 (O1) subjects (BMI 30-34.9 kg/m(2)) were established by biomarkers of oxidative stress in plasma. Recombinant human insulin was incubated with blood from NW or O1 subjects, and the molecular damage to the hormone was analyzed. Two groups of treatment, hypocaloric diet (HD) and hypocaloric diet plus regular moderate aerobic exercise (HDMAE), were formed, and their effects in obese subjects were analyzed. The data showed the presence of oxidative stress in O1 subjects. Molecular damage and polymerization of insulin was observed more frequently in the blood from O1 subjects. The treatment of O1 subjects with HD decreased the anthropometric parameters as well as oxidative stress and molecular damage, which was more effectively prevented by the treatment with HDMAE. HD and HDMAE treatments decreased anthropometric parameters, oxidative stress, and molecular damage in O1 subjects. Copyright © 2012 S. Karger GmbH, Freiburg.

  14. Ebselen by modulating oxidative stress improves hypoxia-induced macroglial Müller cell and vascular injury in the retina.

    PubMed

    Tan, Sih Min; Deliyanti, Devy; Figgett, William A; Talia, Dean M; de Haan, Judy B; Wilkinson-Berka, Jennifer L

    2015-07-01

    Oxidative stress is an important contributor to glial and vascular cell damage in ischemic retinopathies. We hypothesized that ebselen via its ability to reduce reactive oxygen species (ROS) and augment nuclear factor-like 2 (Nrf2) anti-oxidants would attenuate hypoxia-induced damage to macroglial Müller cells and also lessen retinal vasculopathy. Primary cultures of rat Müller cells were exposed to normoxia (21% O2), hypoxia (0.5% O2) and ebselen (2.5 μM) for up to 72 h. Oxygen-induced retinopathy (OIR) was induced in C57BL/6J mice while control mice were housed in room air. Mice received vehicle (saline, 5% dimethyl sulfoxide) or ebselen (10 mg/kg) each day between postnatal days 6-18. In cultured Müller cells, flow cytometry for dihydroethidium revealed that ebselen reduced the hypoxia-induced increase in ROS levels, whilst increasing the expression of Nrf2-regulated anti-oxidant genes, heme oxygenase 1, glutathione peroxidase-1, NAD(P)H dehydrogenase quinone oxidoreductase 1 and glutamate-cysteine ligase. Moreover, in Müller cells, ebselen reduced the hypoxia-induced increase in protein levels of pro-angiogenic and pro-inflammatory factors including vascular endothelial growth factor, interleukin-6, monocyte chemoattractant-protein 1 and intercellular adhesion molecule-1, and the mRNA levels of glial fibrillary acidic protein (GFAP), a marker of Müller cell injury. Ebselen improved OIR by attenuating capillary vaso-obliteration and neovascularization and a concomitant reduction in Müller cell gliosis and GFAP. We conclude that ebselen protects against hypoxia-induced injury of retinal Müller cells and the microvasculature, which is linked to its ability to reduce oxidative stress, vascular damaging factors and inflammation. Agents such as ebselen may be potential treatments for retinopathies that feature oxidative stress-mediated damage to glia and the microvasculature. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Molecular Mechanisms Responsible for Increased Vulnerability of the Ageing Oocyte to Oxidative Damage

    PubMed Central

    Redgrove, Kate A.; McLaughlin, Eileen A.

    2017-01-01

    In their midthirties, women experience a decline in fertility, coupled to a pronounced increase in the risk of aneuploidy, miscarriage, and birth defects. Although the aetiology of such pathologies are complex, a causative relationship between the age-related decline in oocyte quality and oxidative stress (OS) is now well established. What remains less certain are the molecular mechanisms governing the increased vulnerability of the aged oocyte to oxidative damage. In this review, we explore the reduced capacity of the ageing oocyte to mitigate macromolecular damage arising from oxidative insults and highlight the dramatic consequences for oocyte quality and female fertility. Indeed, while oocytes are typically endowed with a comprehensive suite of molecular mechanisms to moderate oxidative damage and thus ensure the fidelity of the germline, there is increasing recognition that the efficacy of such protective mechanisms undergoes an age-related decline. For instance, impaired reactive oxygen species metabolism, decreased DNA repair, reduced sensitivity of the spindle assembly checkpoint, and decreased capacity for protein repair and degradation collectively render the aged oocyte acutely vulnerable to OS and limits their capacity to recover from exposure to such insults. We also highlight the inadequacies of our current armoury of assisted reproductive technologies to combat age-related female infertility, emphasising the need for further research into mechanisms underpinning the functional deterioration of the ageing oocyte. PMID:29312475

  16. Protective activity of Panduratin A against Thioacetamide-induced oxidative damage: demonstration with in vitro experiments using WRL-68 liver cell line

    PubMed Central

    2013-01-01

    Background Chalcone Panduratin A (PA) has been known for its antioxidant property, but its merits against oxidative damage in liver cells has yet to be investigated. Hence, the paper aimed at accomplishing this task with normal embryonic cell line WRL-68. Methods PA was isolated from Boesenbergia rotunda rhizomes and its 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging and ferric reducing power (FRAP) activities were measured in comparison with that of the standard reference drug Silymarin (SI). Oxidative damage was induced by treating the cells with 0.04 g/ml of toxic thioacetamide for 60 minutes followed by treatment with 1, 10 and 100 μg/ml concentrations of either PA or SI. The severities of oxidative stress in the control and experimental groups of cells were measured by Malondialdehyde (MDA) levels, superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) activities. Results PA exhibited an acceptable DPPH scavenging and FRAP activities close to that of Silymarin. Treating the injured cells with PA significantly reduced the MDA level and increased the cell viability, comparable to SI. The activities of SOD, CAT and GPx were significantly elevated in the PA-treated cells in a dose dependent manner and again similar to SI. Conclusion Collectively, data suggested that PA has capacity to protect normal liver cells from oxidative damage, most likely via its antioxidant scavenging ability. PMID:24156366

  17. Pulmonary dysfunctions, oxidative stress and DNA damage in brick kiln workers.

    PubMed

    Kaushik, R; Khaliq, F; Subramaneyaan, M; Ahmed, R S

    2012-11-01

    Brick kilns in the suburban areas in developing countries pose a big threat to the environment and hence the health of their workers and people residing around them. The present study was planned to assess the lung functions, oxidative stress parameters and DNA damage in brick kiln workers. A total of 31 male subjects working in brick kiln, and 32 age, sex and socioeconomic status matched controls were included in the study. The lung volumes, capacities and flow rates, namely, forced expiratory volume in first second (FEV(1)), forced vital capacity (FVC), FEV(1)/FVC, expiratory reserve volume, inspiratory capacity (IC), maximal expiratory flow when 50% of FVC is remaining to be expired, maximum voluntary ventilation, peak expiratory flow rate and vital capacity were significantly decreased in the brick kiln workers. Increased oxidative stress as evidenced by increased malonedialdehyde levels and reduced glutathione content, glutathione S-transferase activity and ferric reducing ability of plasma were observed in the study group when compared with controls. Our results indicate a significant correlation between oxidative stress parameters and pulmonary dysfunction, which may be due to silica-induced oxidative stress and resulting lung damage.

  18. Honest sexual signalling mediated by parasite and testosterone effects on oxidative balance.

    PubMed

    Mougeot, Francois; Martínez-Padilla, Jesús; Webster, Lucy M I; Blount, Jonathan D; Pérez-Rodríguez, Lorenzo; Piertney, Stuart B

    2009-03-22

    Extravagant ornaments evolved to advertise their bearers' quality, the honesty of the signal being ensured by the cost paid to produce or maintain it. The oxidation handicap hypothesis (OHH) proposes that a main cost of testosterone-dependent ornamentation is oxidative stress, a condition whereby the production of reactive oxygen and nitrogen species (ROS/RNS) overwhelms the capacity of antioxidant defences. ROS/RNS are unstable, very reactive by-products of normal metabolic processes that can cause extensive damage to key biomolecules (cellular proteins, lipids and DNA). Oxidative stress has been implicated in the aetiology of many diseases and could link ornamentation and genetic variation in fitness-related traits. We tested the OHH in a free-living bird, the red grouse. We show that elevated testosterone enhanced ornamentation and increased circulating antioxidant levels, but caused oxidative damage. Males with smaller ornaments suffered more oxidative damage than those with larger ornaments when forced to increase testosterone levels, consistent with a handicap mechanism. Parasites depleted antioxidant defences, caused oxidative damage and reduced ornament expression. Oxidative damage extent and the ability of males to increase antioxidant defences also explained the impacts of testosterone and parasites on ornamentation within treatment groups. Because oxidative stress is intimately linked to immune function, parasite resistance and fitness, it provides a reliable currency in the trade-off between individual health and ornamentation. The costs induced by oxidative stress can apply to a wide range of signals, which are testosterone-dependent or coloured by pigments with antioxidant properties.

  19. Honest sexual signalling mediated by parasite and testosterone effects on oxidative balance

    PubMed Central

    Mougeot, Francois; Martínez-Padilla, Jesu´s; Webster, Lucy M.I.; Blount, Jonathan D.; Pérez-Rodríguez, Lorenzo; Piertney, Stuart B.

    2008-01-01

    Extravagant ornaments evolved to advertise their bearers' quality, the honesty of the signal being ensured by the cost paid to produce or maintain it. The oxidation handicap hypothesis (OHH) proposes that a main cost of testosterone-dependent ornamentation is oxidative stress, a condition whereby the production of reactive oxygen and nitrogen species (ROS/RNS) overwhelms the capacity of antioxidant defences. ROS/RNS are unstable, very reactive by-products of normal metabolic processes that can cause extensive damage to key biomolecules (cellular proteins, lipids and DNA). Oxidative stress has been implicated in the aetiology of many diseases and could link ornamentation and genetic variation in fitness-related traits. We tested the OHH in a free-living bird, the red grouse. We show that elevated testosterone enhanced ornamentation and increased circulating antioxidant levels, but caused oxidative damage. Males with smaller ornaments suffered more oxidative damage than those with larger ornaments when forced to increase testosterone levels, consistent with a handicap mechanism. Parasites depleted antioxidant defences, caused oxidative damage and reduced ornament expression. Oxidative damage extent and the ability of males to increase antioxidant defences also explained the impacts of testosterone and parasites on ornamentation within treatment groups. Because oxidative stress is intimately linked to immune function, parasite resistance and fitness, it provides a reliable currency in the trade-off between individual health and ornamentation. The costs induced by oxidative stress can apply to a wide range of signals, which are testosterone-dependent or coloured by pigments with antioxidant properties. PMID:19129122

  20. Ebselen reduces autophagic activation and cell death in the ipsilateral thalamus following focal cerebral infarction.

    PubMed

    Li, Yiliang; Zhang, Jian; Chen, Li; Xing, Shihui; Li, Jingjing; Zhang, Yusheng; Li, Chuo; Pei, Zhong; Zeng, Jinsheng

    2015-07-23

    Previous studies have demonstrated that both oxidative stress and autophagy play important roles in secondary neuronal degeneration in the ipsilateral thalamus after distal middle cerebral artery occlusion (MCAO). This study aimed to investigate whether oxidative stress is associated with autophagy activation within the ipsilateral thalamus after distal MCAO. Sixty stroke-prone renovascular hypertensive rats were subjected to distal MCAO or sham operation, and were killed at 14 days after MCAO. Mn-SOD, LC3-II, Beclin-1 and p62 expression were evaluated by immunostaining and immunoblotting. Secondary damage in the thalamus was assessed with Nissl staining and immunostaining. The association of oxidative stress with autophagy activation was investigated by the antioxidant, ebselen. We found that treatment with ebselen at 24h after MCAO significantly reduced the expression of Mn-SOD in the ipsilateral thalamus at 14 days following focal cerebral infarction. In parallel, it prevented the elevation of LC3-II and Beclin-1, and the reduction of p62. Furthermore, ebselen attenuated the neuronal loss and gliosis in the ipsilateral thalamus. These results suggested that ebselen reduced oxidative stress, autophagy activation and secondary damage in the ipsilateral thalamus following MCAO. There are associations between oxidative stress, autophagy activation and secondary damage in the thalamus after MCAO. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Preventive Effects of Poloxamer 188 on Muscle Cell Damage Mechanics Under Oxidative Stress.

    PubMed

    Wong, Sing Wan; Yao, Yifei; Hong, Ye; Ma, Zhiyao; Kok, Stanton H L; Sun, Shan; Cho, Michael; Lee, Kenneth K H; Mak, Arthur F T

    2017-04-01

    High oxidative stress can occur during ischemic reperfusion and chronic inflammation. It has been hypothesized that such oxidative challenges could contribute to clinical risks such as deep tissue pressure ulcers. Skeletal muscles can be challenged by inflammation-induced or reperfusion-induced oxidative stress. Oxidative stress reportedly can lower the compressive damage threshold of skeletal muscles cells, causing actin filament depolymerization, and reduce membrane sealing ability. Skeletal muscles thus become easier to be damaged by mechanical loading under prolonged oxidative exposure. In this study, we investigated the preventive effect of poloxamer 188 (P188) on skeletal muscle cells against extrinsic oxidative challenges (H 2 O 2 ). It was found that with 1 mM P188 pre-treatment for 1 h, skeletal muscle cells could maintain their compressive damage threshold. The actin polymerization dynamics largely remained stable in term of the expression of cofilin, thymosin beta 4 and profilin. Laser photoporation demonstrated that membrane sealing ability was preserved even as the cells were challenged by H 2 O 2 . These findings suggest that P188 pre-treatment can help skeletal muscle cells retain their normal mechanical integrity in oxidative environments, adding a potential clinical use of P188 against the combined challenge of mechanical-oxidative stresses. Such effect may help to prevent deep tissue ulcer development.

  2. Oxalomalate, a competitive inhibitor of NADP+-dependent isocitrate dehydrogenase, enhances lipid peroxidation-mediated oxidative damage in U937 cells.

    PubMed

    Yang, Joon-Hyuck; Park, Jeen-Woo

    2003-08-01

    Membrane lipid peroxidation processes yield products that may react with DNA and proteins to cause oxidative modifications. Cytosolic NADP+-dependent isocitrate dehydrogenase (ICDH) in U937 cells produces NADPH, an essential reducing equivalent for the antioxidant system. The protective role of ICDH against lipid peroxidation-mediated oxidative damage in U937 cells was investigated in control cells pre-treated with oxalomalate, a competitive inhibitor of ICDH. Upon exposure to 2,2'-azobis(2-amidinopropane) hydrochloride (AAPH) to U937 cells, which induces lipid peroxidation in membranes, the viability was lower and the protein oxidation, lipid peroxidation, and oxidative DNA damage, reflected by an increase in 8-hydroxy-2'-deoxyguanosine, were higher in oxalomalate-treated cells as compared to control cells. We also observed the significant increase in the endogenous production of reactive oxygen species, as measured by the oxidation of 2',7'-dichlorodihydrofluorescin, as well as the significant decrease in the intracellular GSH level in oxalomalate-treated U937 cells upon exposure to AAPH. These results suggest that ICDH plays an important role as an antioxidant enzyme in cellular defense against lipid peroxidation-mediated oxidative damage through the removal of reactive oxygen species.

  3. Antioxidant Protective Effect of Honey in Cigarette Smoke-Induced Testicular Damage in Rats

    PubMed Central

    Mohamed, Mahaneem; Sulaiman, Siti Amrah; Jaafar, Hasnan; Sirajudeen, Kuttulebbai Nainamohamed Salam

    2011-01-01

    Cigarette smoke (CS) can cause testicular damage and we investigated the possible protective effect of honey against CS-induced testicular damage and oxidative stress in rats. CS exposure (8 min, 3 times daily) and honey supplementation (1.2 g/kg daily) were given for 13 weeks. Rats exposed to CS significantly had smaller seminiferous tubules diameter and epithelial height, lower Leydig cell count and increased percentage of tubules with germ cell loss. CS also produced increased lipid peroxidation (TBARS) and glutathione peroxidase (GPx) activity, as well as reduced total antioxidant status (TAS) and activities of superoxide dismutase (SOD) and catalase (CAT). However, supplementation of honey significantly reduced histological changes and TBARS level, increased TAS level, as well as significantly restored activities of GPx, SOD and CAT in rat testis. These findings may suggest that honey has a protective effect against damage and oxidative stress induced by CS in rat testis. PMID:22016605

  4. Antioxidant protective effect of honey in cigarette smoke-induced testicular damage in rats.

    PubMed

    Mohamed, Mahaneem; Sulaiman, Siti Amrah; Jaafar, Hasnan; Sirajudeen, Kuttulebbai Nainamohamed Salam

    2011-01-01

    Cigarette smoke (CS) can cause testicular damage and we investigated the possible protective effect of honey against CS-induced testicular damage and oxidative stress in rats. CS exposure (8 min, 3 times daily) and honey supplementation (1.2 g/kg daily) were given for 13 weeks. Rats exposed to CS significantly had smaller seminiferous tubules diameter and epithelial height, lower Leydig cell count and increased percentage of tubules with germ cell loss. CS also produced increased lipid peroxidation (TBARS) and glutathione peroxidase (GPx) activity, as well as reduced total antioxidant status (TAS) and activities of superoxide dismutase (SOD) and catalase (CAT). However, supplementation of honey significantly reduced histological changes and TBARS level, increased TAS level, as well as significantly restored activities of GPx, SOD and CAT in rat testis. These findings may suggest that honey has a protective effect against damage and oxidative stress induced by CS in rat testis.

  5. The mitochondria-targeted anti-oxidant MitoQ decreases ischemia-reperfusion injury in a murine syngeneic heart transplant model.

    PubMed

    Dare, Anna J; Logan, Angela; Prime, Tracy A; Rogatti, Sebastian; Goddard, Martin; Bolton, Eleanor M; Bradley, J Andrew; Pettigrew, Gavin J; Murphy, Michael P; Saeb-Parsy, Kourosh

    2015-11-01

    Free radical production and mitochondrial dysfunction during cardiac graft reperfusion is a major factor in post-transplant ischemia-reperfusion (IR) injury, an important underlying cause of primary graft dysfunction. We therefore assessed the efficacy of the mitochondria-targeted anti-oxidant MitoQ in reducing IR injury in a murine heterotopic cardiac transplant model. Hearts from C57BL/6 donor mice were flushed with storage solution alone, solution containing the anti-oxidant MitoQ, or solution containing the non-anti-oxidant decyltriphenylphosphonium control and exposed to short (30 minutes) or prolonged (4 hour) cold preservation before transplantation. Grafts were transplanted into C57BL/6 recipients and analyzed for mitochondrial reactive oxygen species production, oxidative damage, serum troponin, beating score, and inflammatory markers 120 minutes or 24 hours post-transplant. MitoQ was taken up by the heart during cold storage. Prolonged cold preservation of donor hearts before IR increased IR injury (troponin I, beating score) and mitochondrial reactive oxygen species, mitochondrial DNA damage, protein carbonyls, and pro-inflammatory cytokine release 24 hours after transplant. Administration of MitoQ to the donor heart in the storage solution protected against this IR injury by blocking graft oxidative damage and dampening the early pro-inflammatory response in the recipient. IR after heart transplantation results in mitochondrial oxidative damage that is potentiated by cold ischemia. Supplementing donor graft perfusion with the anti-oxidant MitoQ before transplantation should be studied further to reduce IR-related free radical production, the innate immune response to IR injury, and subsequent donor cardiac injury. Copyright © 2015 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  6. The mitochondria-targeted anti-oxidant MitoQ decreases ischemia-reperfusion injury in a murine syngeneic heart transplant model

    PubMed Central

    Dare, Anna J.; Logan, Angela; Prime, Tracy A.; Rogatti, Sebastian; Goddard, Martin; Bolton, Eleanor M.; Bradley, J. Andrew; Pettigrew, Gavin J.; Murphy, Michael P.; Saeb-Parsy, Kourosh

    2015-01-01

    Background Free radical production and mitochondrial dysfunction during cardiac graft reperfusion is a major factor in post-transplant ischemia-reperfusion (IR) injury, an important underlying cause of primary graft dysfunction. We therefore assessed the efficacy of the mitochondria-targeted anti-oxidant MitoQ in reducing IR injury in a murine heterotopic cardiac transplant model. Methods Hearts from C57BL/6 donor mice were flushed with storage solution alone, solution containing the anti-oxidant MitoQ, or solution containing the non–anti-oxidant decyltriphenylphosphonium control and exposed to short (30 minutes) or prolonged (4 hour) cold preservation before transplantation. Grafts were transplanted into C57BL/6 recipients and analyzed for mitochondrial reactive oxygen species production, oxidative damage, serum troponin, beating score, and inflammatory markers 120 minutes or 24 hours post-transplant. Results MitoQ was taken up by the heart during cold storage. Prolonged cold preservation of donor hearts before IR increased IR injury (troponin I, beating score) and mitochondrial reactive oxygen species, mitochondrial DNA damage, protein carbonyls, and pro-inflammatory cytokine release 24 hours after transplant. Administration of MitoQ to the donor heart in the storage solution protected against this IR injury by blocking graft oxidative damage and dampening the early pro-inflammatory response in the recipient. Conclusions IR after heart transplantation results in mitochondrial oxidative damage that is potentiated by cold ischemia. Supplementing donor graft perfusion with the anti-oxidant MitoQ before transplantation should be studied further to reduce IR-related free radical production, the innate immune response to IR injury, and subsequent donor cardiac injury. PMID:26140808

  7. Protective effect of alprazolam against sleep deprivation-induced behavior alterations and oxidative damage in mice.

    PubMed

    Singh, Anant; Kumar, Anil

    2008-04-01

    Sleep deprivation is considered as a risk factor for various diseases. Sleep deprivation leads to behavioral, hormonal, neurochemical and biochemical alterations in the animals. The present study was designed to explore the possible involvement of GABAergic mechanism in protective effect of alprazolam against 72h sleep deprivation-induced behavior alterations and oxidative damage in mice. In the present study, sleep deprivation caused anxiety-like behavior, weight loss, impaired ambulatory movements and oxidative damage as indicated by increase in lipid peroxidation, nitrite level and depletion of reduced glutathione and catalase activity in sleep-deprived mice brain. Treatment with alprazolam (0.25 and 0.5 mg/kg, ip) significantly improved behavioral alterations. Biochemically, alprazolam treatment significantly restored depleted reduced glutathione, catalase activity, reversed raised lipid peroxidation and nitrite level. Combination of flumazenil (0.5 mg/kg) and picrotoxin (0.5 mg/kg) with lower dose of alprazolam (0.25mg/kg) significantly antagonized protective effect of alprazolam. However, combination of muscimol (0.05 mg/kg) with alprazolam (0.25 mg/kg, ip) potentiated protective effect of alprazolam. On the basis of these results, it might be suggested that alprazolam might produce protective effect by involving GABAergic system against sleep deprivation-induced behavior alterations and related oxidative damage.

  8. The mitochondria-targeted antioxidant MitoQ protects against organ damage in a lipopolysaccharide-peptidoglycan model of sepsis.

    PubMed

    Lowes, Damon A; Thottakam, Bensita M V; Webster, Nigel R; Murphy, Michael P; Galley, Helen F

    2008-12-01

    Sepsis is characterised by a systemic dysregulated inflammatory response and oxidative stress, often leading to organ failure and death. Development of organ dysfunction associated with sepsis is now accepted to be due at least in part to oxidative damage to mitochondria. MitoQ is an antioxidant selectively targeted to mitochondria that protects mitochondria from oxidative damage and which has been shown to decrease mitochondrial damage in animal models of oxidative stress. We hypothesised that if oxidative damage to mitochondria does play a significant role in sepsis-induced organ failure, then MitoQ should modulate inflammatory responses, reduce mitochondrial oxidative damage, and thereby ameliorate organ damage. To assess this, we investigated the effects of MitoQ in vitro in an endothelial cell model of sepsis and in vivo in a rat model of sepsis. In vitro MitoQ decreased oxidative stress and protected mitochondria from damage as indicated by a lower rate of reactive oxygen species formation (P=0.01) and by maintenance of the mitochondrial membrane potential (P<0.005). MitoQ also suppressed proinflammatory cytokine release from the cells (P<0.05) while the production of the anti-inflammatory cytokine interleukin-10 was increased by MitoQ (P<0.001). In a lipopolysaccharide-peptidoglycan rat model of the organ dysfunction that occurs during sepsis, MitoQ treatment resulted in lower levels of biochemical markers of acute liver and renal dysfunction (P<0.05), and mitochondrial membrane potential was augmented (P<0.01) in most organs. These findings suggest that the use of mitochondria-targeted antioxidants such as MitoQ may be beneficial in sepsis.

  9. Defining the Relationship Between Biomarkers of Oxidation and Inflammatory Stress and the Risk for Atherosclerosis in Astronauts During and After Long-Duration Spaceflight

    NASA Technical Reports Server (NTRS)

    Lee, Stuart M. C.; Stenger, Michael B.; Smith, Scott M.; Zwart, Sara R.

    2016-01-01

    Future human space travel will consist primarily of long-duration missions onboard the International Space Station (ISS) or exploration-class missions to Mars, its moons, or nearby asteroids. These missions will expose astronauts to increased risk of oxidative and inflammatory damage from a variety of sources, including radiation, psychological stress, reduced physical activity, diminished nutritional status, and hyperoxic exposure during extravehicular activity. Evidence exists that increased oxidative damage and inflammation can accelerate the development of atherosclerosis.

  10. Antioxidative effects of fermented sesame sauce against hydrogen peroxide-induced oxidative damage in LLC-PK1 porcine renal tubule cells

    PubMed Central

    Song, Jia-Le; Choi, Jung-Ho; Seo, Jae-Hoon; Kil, Jeung-Ha

    2014-01-01

    BACKGROUND/OBJECTIVES This study was performed to investigate the in vitro antioxidant and cytoprotective effects of fermented sesame sauce (FSeS) against hydrogen peroxide (H2O2)-induced oxidative damage in renal proximal tubule LLC-PK1 cells. MATERIALS/METHODS 1,1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl radical (•OH), and H2O2 scavenging assay was used to evaluate the in vitro antioxidant activity of FSeS. To investigate the cytoprotective effect of FSeS against H2O2-induced oxidative damage in LLC-PK1 cells, the cellular levels of reactive oxygen species (ROS), lipid peroxidation, and endogenous antioxidant enzymes including catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-px) were measured. RESULTS The ability of FSeS to scavenge DPPH, •OH and H2O2 was greater than that of FSS and AHSS. FSeS also significantly inhibited H2O2-induced (500 µM) oxidative damage in the LLC-PK1 cells compared to FSS and AHSS (P < 0.05). Following treatment with 100 µg/mL of FSeS and FSS to prevent H2O2-induced oxidation, cell viability increased from 56.7% (control) to 83.7% and 75.6%, respectively. However, AHSS was not able to reduce H2O2-induced cell damage (viability of the AHSS-treated cells was 54.6%). FSeS more effectively suppressed H2O2-induced ROS generation and lipid peroxidation compared to FSS and AHSS (P < 0.05). Compared to the other sauces, FSeS also significantly increased cellular CAT, SOD, and GSH-px activities and mRNA expression (P < 0.05). CONCULUSIONS These results from the present study suggest that FSeS is an effective radical scavenger and protects against H2O2-induced oxidative damage in LLC-PK1 cells by reducing ROS levels, inhibiting lipid peroxidation, and stimulating antioxidant enzyme activity. PMID:24741396

  11. Hydrocaffeic and p-coumaric acids, natural phenolic compounds, inhibit UV-B damage in WKD human conjunctival cells in vitro and rabbit eye in vivo.

    PubMed

    Larrosa, Mar; Lodovici, Maura; Morbidelli, Lucia; Dolara, Piero

    2008-10-01

    This paper studied the effect on UV-B ocular damage of 10microM hydrocaffeic acid (HCAF) alone and as a mixture (MIX) (5 microM HCAF+5 microM p-coumaric acid). Since ocular UV-B damage is mediated by reactive oxygen species, the aim was to test if HCAF and MIX could reduce oxidation damage in human conjunctival cells (WKD) in vitro and in cornea and sclera of rabbits in vivo. After UVB irradiation (44 J/m(2)) of WKD cells, 8-oxodG levels in DNA were markedly increased and this effect was attenuated by HCAF and MIX. Rabbit eyes were treated by application of HCAF and MIX drops before UV-B exposure (79 J/m(2)). Corneal and scleral DNA oxidation damage, xanthine-oxidase (XO) activity and malondialdehyde levels (MDA) in corneal tissue and prostaglandin E(2) (PGE(2)) in the aqueous humour were reduced by HCAF alone and in combination with p-coumaric acid, showing their potential as a topical treatment against UV-B damage.

  12. Protective effects of total saponins from stem and leaf of Panax ginseng against cyclophosphamide-induced genotoxicity and apoptosis in mouse bone marrow cells and peripheral lymphocyte cells.

    PubMed

    Zhang, Qiu Hua; Wu, Chun Fu; Duan, Lian; Yang, Jing Yu

    2008-01-01

    Cyclophosphamide (CP), commonly used anti-cancer, induces oxidative stress and is cytotoxic to normal cells. It is very important to choice the protective agent combined CP to reduce the side effects in cancer treatment. Ginsenosides are biological active constituents of Panax ginseng C.A. Meyer that acts as the tonic agent for the cancer patients to reduce the side effects in the clinic application. Because CP is a pro-oxidant agent and induces oxidative stress by the generation of free radicals to decrease the activities of anti-oxidant enzymes, the protective effects of the total saponins from stem and leaf of P. ginseng C.A. Meyer (TSPG) act as an anti-oxidant agent against the decreased anti-oxidant enzymes, the genotoxicity and apoptosis induced by CP was carried out. The alkaline single cell gel electrophoresis was employed to detect DNA damage; flow cytometry assay and AO/EB staining assay were employed to measure cell apoptosis; the enzymatic anti-oxidants (T-SOD, CAT and GPx) and non-enzymatic anti-oxidant (GSH) were measured by the various colorimetric methods. CP induced the significant DNA damage in mouse peripheral lymphocytes in time- and dose-dependent manners, inhibited the activities of T-SOD, GPx and CAT, and decreased the contents of GSH in mouse blood, triggered bone marrow cell apoptosis at 6 and 12h. TSPG significantly reduced CP-induced DNA damages in bone marrow cells and peripheral lymphocyte cells, antagonized CP-induced reduction of T-SOD, GPx, CAT activities and the GSH contents, decreased the bone marrow cell apoptosis induced by CP. TSPG, significantly reduced the genotoxicity of CP in bone marrow cells and peripheral lymphocyte cells, and decreased the apoptotic cell number induced by CP in bone marrow cells. The effects of TSPG on T-SOD, GPx, CAT activities and GSH contents might partially contribute to its protective effects on CP-induced cell toxicities.

  13. Magmas functions as a ROS regulator and provides cytoprotection against oxidative stress-mediated damages

    PubMed Central

    Srivastava, S; Sinha, D; Saha, P P; Marthala, H; D'Silva, P

    2014-01-01

    Redox imbalance generates multiple cellular damages leading to oxidative stress-mediated pathological conditions such as neurodegenerative diseases and cancer progression. Therefore, maintenance of reactive oxygen species (ROS) homeostasis is most important that involves well-defined antioxidant machinery. In the present study, we have identified for the first time a component of mammalian protein translocation machinery Magmas to perform a critical ROS regulatory function. Magmas overexpression has been reported in highly metabolically active tissues and cancer cells that are prone to oxidative damage. We found that Magmas regulates cellular ROS levels by controlling its production as well as scavenging. Magmas promotes cellular tolerance toward oxidative stress by enhancing antioxidant enzyme activity, thus preventing induction of apoptosis and damage to cellular components. Magmas enhances the activity of electron transport chain (ETC) complexes, causing reduced ROS production. Our results suggest that J-like domain of Magmas is essential for maintenance of redox balance. The function of Magmas as a ROS sensor was found to be independent of its role in protein import. The unique ROS modulatory role of Magmas is highlighted by its ability to increase cell tolerance to oxidative stress even in yeast model organism. The cytoprotective capability of Magmas against oxidative damage makes it an important candidate for future investigation in therapeutics of oxidative stress-related diseases. PMID:25165880

  14. Manuka honey protects middle-aged rats from oxidative damage

    PubMed Central

    Jubri, Zakiah; Rahim, Noor Baitee Abdul; Aan, Goon Jo

    2013-01-01

    OBJECTIVE: This study aimed to determine the effect of manuka honey on the oxidative status of middle-aged rats. METHOD: Twenty-four male Sprague-Dawley rats were divided into young (2 months) and middle-aged (9 months) groups. They were further divided into two groups each, which were either fed with plain water (control) or supplemented with 2.5 g/kg body weight of manuka honey for 30 days. The DNA damage level was determined via the comet assay, the plasma malondialdehyde level was determined using high performance liquid chromatography, and the antioxidant enzyme activities (superoxide dismutase, glutathione peroxidase, glutathione peroxidase and catalase) were determined spectrophotometrically in the erythrocytes and liver. The antioxidant activities were measured using 1,1-diphenyl-2-picrylhydrazyl and ferric reducing/antioxidant power assays, and the total phenolic content of the manuka was analyzed using UV spectrophotometry and the Folin-Ciocalteu method, respectively. RESULTS: Supplementation with manuka honey reduced the level of DNA damage, the malondialdehyde level and the glutathione peroxidase activity in the liver of both the young and middle-aged groups. However, the glutathione peroxidase activity was increased in the erythrocytes of middle-aged rats given manuka honey supplementation. The catalase activity was reduced in the liver and erythrocytes of both young and middle-aged rats given supplementation. Manuka honey was found to have antioxidant activity and to have a high total phenolic content. These findings showed a strong correlation between the total phenolic content and antioxidant activity. CONCLUSIONS: Manuka honey reduces oxidative damage in young and middle-aged rats; this effect could be mediated through the modulation of its antioxidant enzyme activities and its high total phenolic content. Manuka honey can be used as an alternative supplement at an early age to improve the oxidative status. PMID:24270958

  15. Manuka honey protects middle-aged rats from oxidative damage.

    PubMed

    Jubri, Zakiah; Rahim, Noor Baitee Abdul; Aan, Goon Jo

    2013-11-01

    This study aimed to determine the effect of manuka honey on the oxidative status of middle-aged rats. Twenty-four male Sprague-Dawley rats were divided into young (2 months) and middle-aged (9 months) groups. They were further divided into two groups each, which were either fed with plain water (control) or supplemented with 2.5 g/kg body weight of manuka honey for 30 days. The DNA damage level was determined via the comet assay, the plasma malondialdehyde level was determined using high performance liquid chromatography, and the antioxidant enzyme activities (superoxide dismutase, glutathione peroxidase, glutathione peroxidase and catalase) were determined spectrophotometrically in the erythrocytes and liver. The antioxidant activities were measured using 1,1-diphenyl-2-picrylhydrazyl and ferric reducing/antioxidant power assays, and the total phenolic content of the manuka was analyzed using UV spectrophotometry and the Folin-Ciocalteu method, respectively. Supplementation with manuka honey reduced the level of DNA damage, the malondialdehyde level and the glutathione peroxidase activity in the liver of both the young and middle-aged groups. However, the glutathione peroxidase activity was increased in the erythrocytes of middle-aged rats given manuka honey supplementation. The catalase activity was reduced in the liver and erythrocytes of both young and middle-aged rats given supplementation. Manuka honey was found to have antioxidant activity and to have a high total phenolic content. These findings showed a strong correlation between the total phenolic content and antioxidant activity. Manuka honey reduces oxidative damage in young and middle-aged rats; this effect could be mediated through the modulation of its antioxidant enzyme activities and its high total phenolic content. Manuka honey can be used as an alternative supplement at an early age to improve the oxidative status.

  16. Effect of date seeds on oxidative damage and antioxidant status in vivo.

    PubMed

    Habib, Hosam M; Ibrahim, Wissam H

    2011-07-01

    Date seeds have been shown to contain high amounts of antioxidants. However, in vivo studies on date seeds are lacking. Therefore the purpose of this study was to determine the effect of date seeds on oxidative damage and antioxidant status in vivo. Male Wistar rats were fed a basal diet containing 0, 70 or 140 g kg(-1) date seeds for 30 days. All three diets were isonitrogenous and isocaloric. Indication of oxidative damage was assessed in the liver and serum, and antioxidant status was assessed in the liver. Serum biochemical parameters, including indicators of tissue cellular damage and complete blood count with differential, were also determined. The results showed that date seeds significantly (P<0.05) reduced liver and serum malondialdehyde (a lipid peroxidative damage product) and serum lactate dehydrogenase and creatine kinase. Liver antioxidants (vitamin E, vitamin C, glutathione, superoxide dismutase, glutathione peroxidase and catalase), complete blood count with differential and other serum biochemical parameters assessed were not significantly altered by date seeds. The results obtained suggest a protective effect of date seeds against in vivo oxidative damage, possibly through the action of their bioactive antioxidants. Copyright © 2011 Society of Chemical Industry.

  17. Oxidative Stress and Nucleic Acid Oxidation in Patients with Chronic Kidney Disease

    PubMed Central

    Sung, Chih-Chien; Hsu, Yu-Chuan; Lin, Yuh-Feng

    2013-01-01

    Patients with chronic kidney disease (CKD) have high cardiovascular mortality and morbidity and a high risk for developing malignancy. Excessive oxidative stress is thought to play a major role in elevating these risks by increasing oxidative nucleic acid damage. Oxidative stress results from an imbalance between reactive oxygen/nitrogen species (RONS) production and antioxidant defense mechanisms and can cause vascular and tissue injuries as well as nucleic acid damage in CKD patients. The increased production of RONS, impaired nonenzymatic or enzymatic antioxidant defense mechanisms, and other risk factors including gene polymorphisms, uremic toxins (indoxyl sulfate), deficiency of arylesterase/paraoxonase, hyperhomocysteinemia, dialysis-associated membrane bioincompatibility, and endotoxin in patients with CKD can inhibit normal cell function by damaging cell lipids, arachidonic acid derivatives, carbohydrates, proteins, amino acids, and nucleic acids. Several clinical biomarkers and techniques have been used to detect the antioxidant status and oxidative stress/oxidative nucleic acid damage associated with long-term complications such as inflammation, atherosclerosis, amyloidosis, and malignancy in CKD patients. Antioxidant therapies have been studied to reduce the oxidative stress and nucleic acid oxidation in patients with CKD, including alpha-tocopherol, N-acetylcysteine, ascorbic acid, glutathione, folic acid, bardoxolone methyl, angiotensin-converting enzyme inhibitor, and providing better dialysis strategies. This paper provides an overview of radical production, antioxidant defence, pathogenesis and biomarkers of oxidative stress in patients with CKD, and possible antioxidant therapies. PMID:24058721

  18. Oxidant and antioxidant status in children with subacute sclerosing panencephalitis.

    PubMed

    Caksen, Hüseyin; Ozkan, Mustafa; Cemek, Mustafa; Cemek, Fatma

    2014-11-01

    We analyzed serum alpha-tocopherol, beta-carotene, retinol, and ascorbic acid levels and malondialdehyde and reduced glutathione concentrations on erythrocyte and cerebrospinal fluid in 30 patients with subacute sclerosing panencephalitis to evaluate oxidant and antioxidant status. Serum alpha-tocopherol, beta-carotene, retinol, ascorbic acid levels, and erythrocyte and cerebrospinal fluid reduced glutathione concentrations were decreased; however, erythrocyte and cerebrospinal fluid malondialdehyde levels were increased in the patients. Cerebrospinal fluid malondialdehyde levels were different between clinical stages of the disease (P < .05). Higher cerebrospinal fluid malondialdehyde level was associated with the more severe clinical stage. A positive correlation was found between cerebrospinal fluid malondialdehyde level and clinical stages (r = 0.42; P < .05) and between erythrocyte malondialdehyde level and clinical stages (r = 0.40; P < .05). Our findings showed presence of oxidative damage in subacute sclerosing panencephalitis and that antioxidants were increased as defense mechanisms of the organism against oxidative damage. © The Author(s) 2013.

  19. Effects of Aging and Oxidative Stress on Spermatozoa of Superoxide-Dismutase 1- and Catalase-Null Mice1

    PubMed Central

    Selvaratnam, Johanna S.; Robaire, Bernard

    2016-01-01

    Advanced paternal age is linked to complications in pregnancy and genetic diseases in offspring. Aging results in excess reactive oxygen species (ROS) and DNA damage in spermatozoa; this damage can be transmitted to progeny with detrimental consequences. Although there is a loss of antioxidants with aging, the impact on aging male germ cells of the complete absence of either catalase (CAT) or superoxide dismutase 1 (SOD1) has not been investigated. We used CAT-null (Cat−/−) and SOD1-null (Sod−/−) mice to determine whether loss of these antioxidants increases germ cell susceptibility to redox dysfunction with aging. Aging reduced fertility and the numbers of Sertoli and germ cells in all mice. Aged Sod−/− mice displayed an increased loss of fertility compared to aged wild-type mice. Treatment with the pro-oxidant SIN-10 increased ROS in spermatocytes of aged wild-type and Sod−/− mice, while aged Cat−/− mice were able to neutralize this ROS. The antioxidant peroxiredoxin 1 (PRDX1) increased with age in wild-type and Cat−/− mice but was consistently low in young and aged Sod−/− mice. DNA damage and repair markers (γ-H2AX and 53BP1) were reduced with aging and lower in young Sod−/− and Cat−/− mice. Colocalization of γ-H2AX and 53BP1 suggested active repair in young wild-type mice but reduced in young Cat−/− and in Sod−/− mice and with age. Oxidative DNA damage (8-oxodG) increased in young Sod−/− mice and with age in all mice. These studies show that aged Sod−/− mice display severe redox dysfunction, while wild-type and Cat−/− mice have compensatory mechanisms to partially alleviate oxidative stress and reduce age-related DNA damage in spermatozoa. Thus, SOD1 but not CAT is critical to the maintenance of germ cell quality with aging. PMID:27465136

  20. Effects of Aging and Oxidative Stress on Spermatozoa of Superoxide-Dismutase 1- and Catalase-Null Mice.

    PubMed

    Selvaratnam, Johanna S; Robaire, Bernard

    2016-09-01

    Advanced paternal age is linked to complications in pregnancy and genetic diseases in offspring. Aging results in excess reactive oxygen species (ROS) and DNA damage in spermatozoa; this damage can be transmitted to progeny with detrimental consequences. Although there is a loss of antioxidants with aging, the impact on aging male germ cells of the complete absence of either catalase (CAT) or superoxide dismutase 1 (SOD1) has not been investigated. We used CAT-null (Cat(-/-)) and SOD1-null (Sod(-/-)) mice to determine whether loss of these antioxidants increases germ cell susceptibility to redox dysfunction with aging. Aging reduced fertility and the numbers of Sertoli and germ cells in all mice. Aged Sod(-/-) mice displayed an increased loss of fertility compared to aged wild-type mice. Treatment with the pro-oxidant SIN-10 increased ROS in spermatocytes of aged wild-type and Sod(-/-) mice, while aged Cat(-/-) mice were able to neutralize this ROS. The antioxidant peroxiredoxin 1 (PRDX1) increased with age in wild-type and Cat(-/-) mice but was consistently low in young and aged Sod(-/-) mice. DNA damage and repair markers (γ-H2AX and 53BP1) were reduced with aging and lower in young Sod(-/-) and Cat(-/-) mice. Colocalization of γ-H2AX and 53BP1 suggested active repair in young wild-type mice but reduced in young Cat(-/-) and in Sod(-/-) mice and with age. Oxidative DNA damage (8-oxodG) increased in young Sod(-/-) mice and with age in all mice. These studies show that aged Sod(-/-) mice display severe redox dysfunction, while wild-type and Cat(-/-) mice have compensatory mechanisms to partially alleviate oxidative stress and reduce age-related DNA damage in spermatozoa. Thus, SOD1 but not CAT is critical to the maintenance of germ cell quality with aging. © 2016 by the Society for the Study of Reproduction, Inc.

  1. Protective effect of Carica papaya L leaf extract against alcohol induced acute gastric damage and blood oxidative stress in rats.

    PubMed

    Indran, M; Mahmood, A A; Kuppusamy, U R

    2008-09-01

    The effects of Carica papaya leaf (CPL) aqueous extract on alcohol induced acute gastric damage and the immediate blood oxidative stress level were studied in rats. The results showed that gastric ulcer index was significantly reduced in rats pretreated with CPL extract as compared with alcohol treated controls. The in vitro studies using 2,2-Diphenyl-1-Picryl-Hydrazyl (DPPH) assay showed strong antioxidant nature of CPL extract. Biochemical analysis indicated that the acute alcohol induced damage is reflected in the alterations of blood oxidative indices and CPL extract offered some protection with reduction in plasma lipid peroxidation level and increased erythrocyte glutathione peroxidase activity. Carica papaya leaf may potentially serve as a good therapeutic agent for protection against gastric ulcer and oxidative stress.

  2. Good Stress, Bad Stress and Oxidative Stress: Insights from Anticipatory Cortisol Reactivity

    PubMed Central

    Aschbacher, Kirstin; O'Donovan, Aoife; Wolkowitz, Owen M.; Dhabhar, Firdaus S.; Su, Yali; Epel, Elissa

    2014-01-01

    Chronic psychological stress appears to accelerate biological aging, and oxidative damage is an important potential mediator of this process. However, the mechanisms by which psychological stress promotes oxidative damage are poorly understood. This study investigates the theory that cortisol increases in response to an acutely stressful event have the potential to either enhance or undermine psychobiological resilience to oxidative damage, depending on the body's prior exposure to chronic psychological stress. In order to achieve a range of chronic stress exposure, forty-eight post-menopausal women were recruited in a case-control design that matched women caring for spouses with dementia (a chronic stress model) with similarly aged control women whose spouses were healthy. Participants completed a questionnaire assessing perceived stress over the previous month and provided fasting blood. Three markers of oxidative damage were assessed: 8-iso-prostaglandin F2α (IsoP), lipid peroxidation, 8-hydroxyguanosine (8-OxoG) and 8-hydroxy-2′-deoxyguanosine (8-OHdG), reflecting oxidative damage to RNA/DNA respectively. Within approximately one week, participants completed a standardized acute laboratory stress task while salivary cortisol responses were measured. The increase from 0 to 30 min was defined as “peak” cortisol reactivity, while the increase from 0 to 15 min was defined as “anticipatory” cortisol reactivity, representing a cortisol response that began while preparing for the stress task. Women under chronic stress had higher 8-oxoG, oxidative damage to RNA (p<.01). A moderated mediation model was tested, in which it was hypothesized that heightened anticipatory cortisol reactivity would mediate the relationship between perceived stress and elevated oxidative stress damage, but only among women under chronic stress. Consistent with this model, bootstrapped path analysis found significant indirect paths from perceived stress to 8-OxoG and IsoP (but not 8-OHdG) via anticipatory cortisol reactivity, showing the expected relations among chronically stressed participants (p≤.01.) Intriguingly, among those with low chronic stress exposure, moderate (compared to low) levels of perceived stress were associated with reduced levels of oxidative damage. Hence, this study supports the emerging model that chronic stress exposure promotes oxidative damage through frequent and sustained activation of the Hypothalamic-Pituitary-Adrenal axis. It also supports the less studied model of ‘eustress’ - that manageable levels of life stress may enhance psychobiological resilience to oxidative damage. PMID:23490070

  3. Good stress, bad stress and oxidative stress: insights from anticipatory cortisol reactivity.

    PubMed

    Aschbacher, Kirstin; O'Donovan, Aoife; Wolkowitz, Owen M; Dhabhar, Firdaus S; Su, Yali; Epel, Elissa

    2013-09-01

    Chronic psychological stress appears to accelerate biological aging, and oxidative damage is an important potential mediator of this process. However, the mechanisms by which psychological stress promotes oxidative damage are poorly understood. This study investigates the theory that cortisol increases in response to an acutely stressful event have the potential to either enhance or undermine psychobiological resilience to oxidative damage, depending on the body's prior exposure to chronic psychological stress. In order to achieve a range of chronic stress exposure, forty-eight post-menopausal women were recruited in a case-control design that matched women caring for spouses with dementia (a chronic stress model) with similarly aged control women whose spouses were healthy. Participants completed a questionnaire assessing perceived stress over the previous month and provided fasting blood. Three markers of oxidative damage were assessed: 8-iso-prostaglandin F(2α) (IsoP), lipid peroxidation, 8-hydroxyguanosine (8-oxoG) and 8-hydroxy-2'-deoxyguanosine (8-OHdG), reflecting oxidative damage to RNA/DNA respectively. Within approximately one week, participants completed a standardized acute laboratory stress task while salivary cortisol responses were measured. The increase from 0 to 30 min was defined as "peak" cortisol reactivity, while the increase from 0 to 15 min was defined as "anticipatory" cortisol reactivity, representing a cortisol response that began while preparing for the stress task. Women under chronic stress had higher 8-oxoG, oxidative damage to RNA (p<.01). A moderated mediation model was tested, in which it was hypothesized that heightened anticipatory cortisol reactivity would mediate the relationship between perceived stress and elevated oxidative stress damage, but only among women under chronic stress. Consistent with this model, bootstrapped path analysis found significant indirect paths from perceived stress to 8-oxoG and IsoP (but not 8-OHdG) via anticipatory cortisol reactivity, showing the expected relations among chronically stressed participants (p≤.01) Intriguingly, among those with low chronic stress exposure, moderate (compared to low) levels of perceived stress were associated with reduced levels of oxidative damage. Hence, this study supports the emerging model that chronic stress exposure promotes oxidative damage through frequent and sustained activation of the hypothalamic-pituitary-adrenal axis. It also supports the less studied model of 'eustress' - that manageable levels of life stress may enhance psychobiological resilience to oxidative damage. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Fructose-Rich Diet Affects Mitochondrial DNA Damage and Repair in Rats.

    PubMed

    Cioffi, Federica; Senese, Rosalba; Lasala, Pasquale; Ziello, Angela; Mazzoli, Arianna; Crescenzo, Raffaella; Liverini, Giovanna; Lanni, Antonia; Goglia, Fernando; Iossa, Susanna

    2017-03-24

    Evidence indicates that many forms of fructose-induced metabolic disturbance are associated with oxidative stress and mitochondrial dysfunction. Mitochondria are prominent targets of oxidative damage; however, it is not clear whether mitochondrial DNA (mtDNA) damage and/or its lack of repair are events involved in metabolic disease resulting from a fructose-rich diet. In the present study, we evaluated the degree of oxidative damage to liver mtDNA and its repair, in addition to the state of oxidative stress and antioxidant defense in the liver of rats fed a high-fructose diet. We used male rats feeding on a high-fructose or control diet for eight weeks. Our results showed an increase in mtDNA damage in the liver of rats fed a high-fructose diet and this damage, as evaluated by the expression of DNA polymerase γ, was not repaired; in addition, the mtDNA copy number was found to be significantly reduced. A reduction in the mtDNA copy number is indicative of impaired mitochondrial biogenesis, as is the finding of a reduction in the expression of genes involved in mitochondrial biogenesis. In conclusion, a fructose-rich diet leads to mitochondrial and mtDNA damage, which consequently may have a role in liver dysfunction and metabolic diseases.

  5. Mitochondrial Respiration Is Reduced in Atherosclerosis, Promoting Necrotic Core Formation and Reducing Relative Fibrous Cap Thickness.

    PubMed

    Yu, Emma P K; Reinhold, Johannes; Yu, Haixiang; Starks, Lakshi; Uryga, Anna K; Foote, Kirsty; Finigan, Alison; Figg, Nichola; Pung, Yuh-Fen; Logan, Angela; Murphy, Michael P; Bennett, Martin

    2017-12-01

    Mitochondrial DNA (mtDNA) damage is present in murine and human atherosclerotic plaques. However, whether endogenous levels of mtDNA damage are sufficient to cause mitochondrial dysfunction and whether decreasing mtDNA damage and improving mitochondrial respiration affects plaque burden or composition are unclear. We examined mitochondrial respiration in human atherosclerotic plaques and whether augmenting mitochondrial respiration affects atherogenesis. Human atherosclerotic plaques showed marked mitochondrial dysfunction, manifested as reduced mtDNA copy number and oxygen consumption rate in fibrous cap and core regions. Vascular smooth muscle cells derived from plaques showed impaired mitochondrial respiration, reduced complex I expression, and increased mitophagy, which was induced by oxidized low-density lipoprotein. Apolipoprotein E-deficient (ApoE -/- ) mice showed decreased mtDNA integrity and mitochondrial respiration, associated with increased mitochondrial reactive oxygen species. To determine whether alleviating mtDNA damage and increasing mitochondrial respiration affects atherogenesis, we studied ApoE -/- mice overexpressing the mitochondrial helicase Twinkle (Tw + /ApoE -/- ). Tw + /ApoE -/- mice showed increased mtDNA integrity, copy number, respiratory complex abundance, and respiration. Tw + /ApoE -/- mice had decreased necrotic core and increased fibrous cap areas, and Tw + /ApoE -/- bone marrow transplantation also reduced core areas. Twinkle increased vascular smooth muscle cell mtDNA integrity and respiration. Twinkle also promoted vascular smooth muscle cell proliferation and protected both vascular smooth muscle cells and macrophages from oxidative stress-induced apoptosis. Endogenous mtDNA damage in mouse and human atherosclerosis is associated with significantly reduced mitochondrial respiration. Reducing mtDNA damage and increasing mitochondrial respiration decrease necrotic core and increase fibrous cap areas independently of changes in reactive oxygen species and may be a promising therapeutic strategy in atherosclerosis. © 2017 The Authors.

  6. Activation of Hypoxia-Inducible Factors Prevents Diabetic Nephropathy

    PubMed Central

    Nordquist, Lina; Friederich-Persson, Malou; Fasching, Angelica; Liss, Per; Shoji, Kumi; Nangaku, Masaomi; Hansell, Peter

    2015-01-01

    Hyperglycemia results in increased oxygen consumption and decreased oxygen tension in the kidney. We tested the hypothesis that activation of hypoxia-inducible factors (HIFs) protects against diabetes-induced alterations in oxygen metabolism and kidney function. Experimental groups consisted of control and streptozotocin-induced diabetic rats treated with or without chronic cobalt chloride to activate HIFs. We elucidated the involvement of oxidative stress by studying the effects of acute administration of the superoxide dismutase mimetic tempol. Compared with controls, diabetic rats displayed tissue hypoxia throughout the kidney, glomerular hyperfiltration, increased oxygen consumption, increased total mitochondrial leak respiration, and decreased tubular sodium transport efficiency. Diabetic kidneys showed proteinuria and tubulointerstitial damage. Cobalt chloride activated HIFs, prevented the diabetes-induced alterations in oxygen metabolism, mitochondrial leak respiration, and kidney function, and reduced proteinuria and tubulointerstitial damage. The beneficial effects of tempol were less pronounced after activation of HIFs, indicating improved oxidative stress status. In conclusion, activation of HIFs prevents diabetes-induced alteration in kidney oxygen metabolism by normalizing glomerular filtration, which reduces tubular electrolyte load, preventing mitochondrial leak respiration and improving tubular transport efficiency. These improvements could be related to reduced oxidative stress and account for the reduced proteinuria and tubulointerstitial damage. Thus, pharmacologic activation of the HIF system may prevent development of diabetic nephropathy. PMID:25183809

  7. Role of NADP+-dependent isocitrate dehydrogenase (NADP+-ICDH) on cellular defence against oxidative injury by gamma-rays.

    PubMed

    Lee, S H; Jo, S H; Lee, S M; Koh, H J; Song, H; Park, J W; Lee, W H; Huh, T L

    2004-09-01

    To investigate the regulation of NADPH-producing isocitrate dehydrogenase (ICDH) in cytosol (IDPc) and mitochondria (IDPm) upon gamma-ray irradiation, and the roles of IDPc and IDPm in the protection against cellular damage induced by gamma-ray irradiation. Changes of IDPc and IDPm proteins upon gamma-ray irradiation to NIH3T3 cells were analysed by immunoblotting. To increase or decrease the expression of IDPc or IDPm, NIH3T3 cells were stably transfected with mouse IDPc or IDPm cDNA in either the sense or the antisense direction. The transfected cells with either increased or decreased IDPc or IDPm were exposed to gamma-rays, and the levels of reactive oxygen species generation, protein oxidation and lipid peroxidation were measured. Both IDPc and IDPm activities were induced by gamma-ray in NIH3T3 cells. Cells with decreased expression of IDPc or IDPm had elevated reactive oxygen species generation, lipid peroxidation and protein oxidation. Conversely, overproduction of IDPc or IDPm protein partially protected the cells from oxidative damage induced by gamma-ray irradiation. The protective role of IDPc and IDPm against gamma-ray-induced cellular damage can be attributed to elevated NADPH, reducing equivalents needed for recycling reduced glutathione in the cytosol and mitochondria. Thus, a primary biological function of the ICDHs may be production of NADPH, which is a prerequisite for some cellular defence systems against oxidative damage.

  8. Clustered DNA damages induced in isolated DNA and in human cells by low doses of ionizing radiation

    NASA Technical Reports Server (NTRS)

    Sutherland, B. M.; Bennett, P. V.; Sidorkina, O.; Laval, J.; Lowenstein, D. I. (Principal Investigator)

    2000-01-01

    Clustered DNA damages-two or more closely spaced damages (strand breaks, abasic sites, or oxidized bases) on opposing strands-are suspects as critical lesions producing lethal and mutagenic effects of ionizing radiation. However, as a result of the lack of methods for measuring damage clusters induced by ionizing radiation in genomic DNA, neither the frequencies of their production by physiological doses of radiation, nor their repairability, nor their biological effects are known. On the basis of methods that we developed for quantitating damages in large DNAs, we have devised and validated a way of measuring ionizing radiation-induced clustered lesions in genomic DNA, including DNA from human cells. DNA is treated with an endonuclease that induces a single-strand cleavage at an oxidized base or abasic site. If there are two closely spaced damages on opposing strands, such cleavage will reduce the size of the DNA on a nondenaturing gel. We show that ionizing radiation does induce clustered DNA damages containing abasic sites, oxidized purines, or oxidized pyrimidines. Further, the frequency of each of these cluster classes is comparable to that of frank double-strand breaks; among all complex damages induced by ionizing radiation, double-strand breaks are only about 20%, with other clustered damage constituting some 80%. We also show that even low doses (0.1-1 Gy) of high linear energy transfer ionizing radiation induce clustered damages in human cells.

  9. Transgenic Mouse Model for Reducing Oxidative Damage in Bone

    NASA Technical Reports Server (NTRS)

    Schreurs, Ann-Sofie; Torres, S.; Truong, T.; Moyer, E. L.; Kumar, A.; Tahimic, Candice C. G.; Alwood, J. S.; Limoli, C. L.; Globus, R. K.

    2016-01-01

    Bone loss can occur due to many challenges such age, radiation, microgravity, and Reactive Oxygen Species (ROS) play a critical role in bone resorption by osteoclasts (Bartell et al. 2014). We hypothesize that suppression of excess ROS in skeletal cells, both osteoblasts and osteoclasts, regulates skeletal growth and remodeling. To test our hypothesis, we used transgenic mCAT mice which overexpress the human anti-oxidant catalase gene targeted to the mitochondria, the main site for endogenous ROS production. mCAT mice have a longer life-span than wildtype controls and have been used to study various age-related disorders. To stimulate remodeling, 16 week old mCAT mice or wildtype mice were exposed to treatment (hindlimb-unloading and total body-irradiation) or sham treatment conditions (control). Tissues were harvested 2 weeks later for skeletal analysis (microcomputed tomography), biochemical analysis (gene expression and oxidative damage measurements), and ex vivo bone marrow derived cell culture (osteoblastogenesis and osteoclastogenesis). mCAT mice expressed the transgene and displayed elevated catalase activity in skeletal tissue and marrow-derived osteoblasts and osteoclasts grown ex vivo. In addition, when challenged with treatment, bone tissues from wildtype mice showed elevated levels of malondialdehyde (MDA), indicating oxidative damage) whereas mCAT mice did not. Correlation analysis revealed that increased catalase activity significantly correlated with decreased MDA levels and that increased oxidative damage correlated with decreased percent bone volume (BVTV). In addition, ex-vivo cultured osteoblast colony growth correlated with catalase activity in the osteoblasts. Thus, we showed that these transgenic mice can be used as a model to study the relationship between markers of oxidative damage and skeletal properties. mCAT mice displayed reduced BVTV and trabecular number relative to wildtype mice, as well as increased structural model index in the cancellous tibia. Treatment caused bone loss in wildtype mice, as expected. Treatment also caused deficits in microarchitecture of mCAT mice, although less severe than wildtype mice in some parameters (percent bone volume, structural model index and cortical area). In conclusion, our results indicate that endogenous ROS signaling in both osteoblast and osteoclast lineage cells contributes to skeletal growth and remodeling, and quenching oxidative damage could play a role in bone loss prevention.

  10. Broccoli (Brassica oleracea) Reduces Oxidative Damage to Pancreatic Tissue and Combats Hyperglycaemia in Diabetic Rats

    PubMed Central

    Suresh, Sithara; Waly, Mostafa Ibrahim; Rahman, Mohammad Shafiur; Guizani, Nejib; Al-Kindi, Mohamed Abdullah Badar; Al-Issaei, Halima Khalfan Ahmed; Al-Maskari, Sultan Nasser Mohd; Al-Ruqaishi, Bader Rashid Said; Al-Salami, Ahmed

    2017-01-01

    Oxidative stress plays a pivotal role in the development of diabetes and hyperglycaemia. The protective effects of natural extracts against diabetes are mainly dependent on their antioxidant and hypoglycaemic properties. Broccoli (Brassica oleracea) exerts beneficial health effects in several diseases including diabetes; however, the mechanism has not been elucidated yet. The present study was carried out to evaluate the potential hypoglycaemic and antioxidant properties of aqueous broccoli extracts (BEs) in diabetic rats. Streptozotocin (STZ) drug was used as a diabetogenic agent in a single intraperitoneal injection dose of 50 mg/kg body weight. The blood glucose level for each rat was measured twice a week. After 8 weeks, all animals were fasted overnight and sacrificed; pancreatic tissues were homogenized and used for measuring oxidative DNA damage, biochemical assessment of glutathione (GSH), and total antioxidant capacity (TAC) as well as histopathological examination for pancreatic tissues was examined. Diabetic rats showed significantly higher levels of DNA damage, GSH depletion, and impaired TAC levels in comparison to non-diabetics (P<0.05). The treatment of diabetic rats with BE significantly reduced DNA damage and conserved GSH and TAC values (P<0.01). BE attenuated pancreatic histopathological changes in diabetic rats. The results of this study indicated that BE reduced the STZ mediated hyperglycaemia and the STZ-induced oxidative injury to pancreas tissue. The used in vivo model confirmed the efficacy of BE as an anti-diabetic herbal medicine and provided insights into the capacity of BE to be used for phytoremediation purposes for human type 2 diabetes. PMID:29333379

  11. Broccoli (Brassica oleracea) Reduces Oxidative Damage to Pancreatic Tissue and Combats Hyperglycaemia in Diabetic Rats.

    PubMed

    Suresh, Sithara; Waly, Mostafa Ibrahim; Rahman, Mohammad Shafiur; Guizani, Nejib; Al-Kindi, Mohamed Abdullah Badar; Al-Issaei, Halima Khalfan Ahmed; Al-Maskari, Sultan Nasser Mohd; Al-Ruqaishi, Bader Rashid Said; Al-Salami, Ahmed

    2017-12-01

    Oxidative stress plays a pivotal role in the development of diabetes and hyperglycaemia. The protective effects of natural extracts against diabetes are mainly dependent on their antioxidant and hypoglycaemic properties. Broccoli ( Brassica oleracea ) exerts beneficial health effects in several diseases including diabetes; however, the mechanism has not been elucidated yet. The present study was carried out to evaluate the potential hypoglycaemic and antioxidant properties of aqueous broccoli extracts (BEs) in diabetic rats. Streptozotocin (STZ) drug was used as a diabetogenic agent in a single intraperitoneal injection dose of 50 mg/kg body weight. The blood glucose level for each rat was measured twice a week. After 8 weeks, all animals were fasted overnight and sacrificed; pancreatic tissues were homogenized and used for measuring oxidative DNA damage, biochemical assessment of glutathione (GSH), and total antioxidant capacity (TAC) as well as histopathological examination for pancreatic tissues was examined. Diabetic rats showed significantly higher levels of DNA damage, GSH depletion, and impaired TAC levels in comparison to non-diabetics ( P <0.05). The treatment of diabetic rats with BE significantly reduced DNA damage and conserved GSH and TAC values ( P <0.01). BE attenuated pancreatic histopathological changes in diabetic rats. The results of this study indicated that BE reduced the STZ mediated hyperglycaemia and the STZ-induced oxidative injury to pancreas tissue. The used in vivo model confirmed the efficacy of BE as an anti-diabetic herbal medicine and provided insights into the capacity of BE to be used for phytoremediation purposes for human type 2 diabetes.

  12. Telomere attrition and genomic instability in xeroderma pigmentosum type-b deficient fibroblasts under oxidative stress

    PubMed Central

    Ting, Aloysius Poh Leong; Low, Grace Kah Mun; Gopalakrishnan, Kalpana; Hande, M Prakash

    2010-01-01

    Abstract Xeroderma pigmentosum B (XPB/ERCC3/p89) is an ATP-dependent 3′→5′ directed DNA helicase involved in basal RNA transcription and the nucleotide excision repair (NER) pathway. While the role of NER in alleviating oxidative DNA damage has been acknowledged it remains poorly understood. To study the involvement of XPB in repair of oxidative DNA damage, we utilized primary fibroblasts from a patient suffering from XP with Cockayne syndrome and hydrogen peroxide (H2O2) to induce oxidative stress. Mutant cells retained higher viability and cell cycle dysfunction after H2O2 exposure. Cytokinesis blocked micronucleus assay revealed increased genome instability induced by H2O2. Single cell gel electrophoresis (comet) assay showed that the missense mutation caused a reduced repair capacity for oxidative DNA damage. Mutant fibroblasts also displayed decreased population doubling rate, increased telomere attrition rate and early emergence of senescent characteristics under chronic low dose exposure to H2O2. Fibroblasts from a heterozygous individual displayed intermediate traits in some assays and normal traits in others, indicating possible copy number dependence. The results show that a deficiency in functional XPB paradoxically renders cells more sensitive to the genotoxic effects of oxidative stress while reducing the cytotoxic effects. These findings have implications in the mechanisms of DNA repair, mutagenesis and carcinogenesis and ageing in normal physiological systems. PMID:19840190

  13. Swimming training attenuates oxidative damage and increases enzymatic but not non-enzymatic antioxidant defenses in the rat brain.

    PubMed

    Nonato, L F; Rocha-Vieira, E; Tossige-Gomes, R; Soares, A A; Soares, B A; Freitas, D A; Oliveira, M X; Mendonça, V A; Lacerda, A C; Massensini, A R; Leite, H R

    2016-09-29

    Although it is well known that physical training ameliorates brain oxidative function after injuries by enhancing the levels of neurotrophic factors and oxidative status, there is little evidence addressing the influence of exercise training itself on brain oxidative damage and data is conflicting. This study investigated the effect of well-established swimming training protocol on lipid peroxidation and components of antioxidant system in the rat brain. Male Wistar rats were randomized into trained (5 days/week, 8 weeks, 30 min; n=8) and non-trained (n=7) groups. Forty-eight hours after the last session of exercise, animals were euthanized and the brain was collected for oxidative stress analysis. Swimming training decreased thiobarbituric acid reactive substances (TBARS) levels (P<0.05) and increased the activity of the antioxidant enzyme superoxide dismutase (SOD) (P<0.05) with no effect on brain non-enzymatic total antioxidant capacity, estimated by FRAP (ferric-reducing antioxidant power) assay (P>0.05). Moreover, the swimming training promoted metabolic adaptations, such as increased maximal workload capacity (P<0.05) and maintenance of body weight. In this context, the reduced TBARS content and increased SOD antioxidant activity induced by 8 weeks of swimming training are key factors in promoting brain resistance. In conclusion, swimming training attenuated oxidative damage and increased enzymatic antioxidant but not non-enzymatic status in the rat brain.

  14. DNA oxidative damage and life expectancy in houseflies.

    PubMed Central

    Agarwal, S; Sohal, R S

    1994-01-01

    The objective of this study was to explore the relationship between oxidative molecular damage and the aging process by determining whether such damage is associated with the rate of aging, using the adult housefly as the experimental organism. Because the somatic tissues in the housefly consist of long-lived postmitotic cells, it provides an excellent model system for studying cumulative age-related cellular alterations. Rate of aging in the housefly was manipulated by varying the rate of metabolism (physical activity). The concentration of 8-hydroxydeoxyguanosine (80HdG) was used as an indicator of DNA oxidation. Exposure of live flies to x-rays and hyperoxia elevated the level of 8OHdG. The level of 8OHdG in mitochondrial as well as total DNA increased with the age of flies. Mitochondrial DNA was 3 times more susceptible to age-related oxidative damage than nuclear DNA. A decrease in the level of physical activity of the flies was found to prolong the life-span and corresponding reduce the level of 8OHdG in both mitochondrial and total DNA. Under all conditions examined, mitochondrial DNA exhibited a higher level of oxidative damage than total DNA. The 8OHdG levels were found to be inversely associated with the life expectancy of houseflies. The pattern of age-associated accrural of 8OHdG was virtually identical to that of protein carbonyl content. Altoghether, results of this study support the hypothesis that oxidative molecular damage is a causal factor in senescence. PMID:7991627

  15. Higher levels of oxidative DNA damage in cervical cells are correlated with the grade of dysplasia and HPV infection.

    PubMed

    Visalli, Giuseppa; Riso, Romana; Facciolà, Alessio; Mondello, Placido; Caruso, Carmela; Picerno, Isa; Di Pietro, Angela; Spataro, Pasquale; Bertuccio, Maria Paola

    2016-02-01

    The Human papillomavirus is responsible for the most common sexually transmitted infection and is also known to be an oncogenic virus that is associated with cervical, anogenital, and head-neck cancers. The present study aims to assess whether oxidative DNA damage is correlated with the grade of HPV-related lesions. Moreover, we evaluated clinical data and unhealthy lifestyles to verify their possible influence on the genesis of oxidative DNA damage in cervical cells. We quantified the amount of 8-Oxo-2'-deoxyguanosine in DNA as a biomarker of oxidative damage in women with and without HPV infection. We also correlated oxidative damage with different stages of cervical lesions and available clinical data (e.g., HPV genotypes). To identify HPV infections, in which proteins with a transforming potential are produced, we performed a qualitative detection of HPV E6/E7 mRNA. Our results showed greater oxidative damage in HPV-related dysplastic cervical lesions compared to samples with normal cytology, especially in women with high-grade squamous intraepithelial lesions. The latter showed a closed link with high-risk HPV genotypes. Reactive oxygen species can induce DNA double-strand breaks in both the host DNA and in the circular viral episome; this could facilitate the integration of the virus, promoting HPV carcinogenesis. Therefore, in HPV-infected women, it could be useful to reduce additional resources of reactive oxygen/nitrogen species (RONS) with a healthy lifestyle. © 2015 Wiley Periodicals, Inc.

  16. Comparison of the Protective Effects of Radix Astragali, α-Lipoic Acid, and Vitamin E on Acute Acoustic Trauma.

    PubMed

    Xiong, Min; Lai, Huangwen; Yang, Chuanhong; Huang, Weiyi; Wang, Jian; Fu, Xiaoyan; He, Qinglian

    2012-01-01

    Oxidative damage is a critical role which involves hearing loss induced by impulse noise. That exogenous antioxidant agents reduce noise induced hearing loss (NIHL) has been well demonstrated in both animal studies and clinical practices. Choosing a stronger and more effective antioxidant is very important for treatment of NIHL. Vitamin E, α-lipoic acid, and radix astragali are the most commonly used anti-oxidants for cochlear oxidative damage from acoustic trauma. In this study, the protective effects of radix astragali, α-lipoic acid, and vitamin E on acute acoustic trauma are investigated. Guinea pigs in the experimental groups were intragastrically administered vitamin E, α-lipoic acid, and radix astragali. Auditory thresholds were assessed by sound-evoked auditory brainstem response (ABR) at click and tone bursts of 8, 16 and 32 kHz, 24 hours before and 72 hours after exposure to impulse noise. Cochlear malondialdehyde (MDA) concentrations were detected. Hair cell damage was analyzed by scanning electron microscopy. Vitamin E, α-lipoic acid, and radix astragali significantly reduced ABR deficits, reduced hair cell damage, and decreased the concentrations of MDA. α-lipoic acid and radix astragali were better than vitamin E, and there were no significant differences between α-lipoic acid and radix astragali. α-lipoic acid or radix astragali are recommended for treatment of NIHL.

  17. Tumour necrosis factor-α inhibition with lenalidomide alleviates tissue oxidative injury and apoptosis in ob/ob obese mice.

    PubMed

    Zhu, Xiaoling; Jiang, Shasha; Hu, Nan; Luo, Fuling; Dong, Hailong; Kang, Yu-Ming; Jones, Kyla R; Zou, Yunzeng; Xiong, Lize; Ren, Jun

    2014-07-01

    Lenalidomide (Revlimid; Selleck Chemicals, Houston, TX, USA), an analogue of thalidomide, possesses potent cytokine modulatory capacity through inhibition of cytokines such as tumour necrosis factor (TNF)-α, a cytokine pivotal for the onset and development of complications in obesity and diabetes mellitus. The present study was designed to evaluate the effect of lenalidomide on oxidative stress, protein and DNA damage in multiple organs in an ob/ob murine model of obesity. To this end, C57BL/6 lean and ob/ob obese mice were administered lenalidomide (50 mg/kg per day, p.o.) for 5 days. Oxidative stress, protein and DNA damage were assessed using the conversion of reduced glutathione (GSH) to oxidized glutathione (GSSG), carbonyl formation and Comet assay, respectively. Apoptosis was evaluated using caspase 3 activity, and levels of Bax, Bcl-2, Bip, caspase 8, caspase 9 and TNF-α were assessed using western blot analysis. Lenalidomide treatment did not affect glucose clearance in lean or ob/ob mice. Obese mice exhibited a reduced GSH/GSSG ratio in the liver, gastrocnemius skeletal muscle and small intestine, as well as enhanced protein carbonyl formation, DNA damage and caspase 3 activity in the liver, kidney, skeletal muscle and intestine; these effects were alleviated by lenalidomide, with the exception of obesity-associated DNA damage in the liver and kidney. Western blot analysis revealed elevated TNF-α, Bax, Bcl-2, Bip, caspase 8 and caspase 9 in ob/ob mice with various degrees of reversal by lenalidomide treatment. Together, these data indicate that lenalidomide protects against obesity-induced tissue injury and protein damage, possibly in association with antagonism of cytokine production and cytokine-induced apoptosis and oxidative stress. © 2014 Wiley Publishing Asia Pty Ltd.

  18. The mitochondria-targeted antioxidant MitoQ decreases features of the metabolic syndrome in ATM+/-/ApoE-/- mice.

    PubMed

    Mercer, John R; Yu, Emma; Figg, Nichola; Cheng, Kian-Kai; Prime, Tracy A; Griffin, Julian L; Masoodi, Mojgan; Vidal-Puig, Antonio; Murphy, Michael P; Bennett, Martin R

    2012-03-01

    A number of recent studies suggest that mitochondrial oxidative damage may be associated with atherosclerosis and the metabolic syndrome. However, much of the evidence linking mitochondrial oxidative damage and excess reactive oxygen species (ROS) with these pathologies is circumstantial. Consequently the importance of mitochondrial ROS in the etiology of these disorders is unclear. Furthermore, the potential of decreasing mitochondrial ROS as a therapy for these indications is not known. We assessed the impact of decreasing mitochondrial oxidative damage and ROS with the mitochondria-targeted antioxidant MitoQ in models of atherosclerosis and the metabolic syndrome (fat-fed ApoE(-/-) mice and ATM(+/-)/ApoE(-/-) mice, which are also haploinsufficient for the protein kinase, ataxia telangiectasia mutated (ATM). MitoQ administered orally for 14weeks prevented the increased adiposity, hypercholesterolemia, and hypertriglyceridemia associated with the metabolic syndrome. MitoQ also corrected hyperglycemia and hepatic steatosis, induced changes in multiple metabolically relevant lipid species, and decreased DNA oxidative damage (8-oxo-G) in multiple organs. Although MitoQ did not affect overall atherosclerotic plaque area in fat-fed ATM(+/+)/ApoE(-/-) and ATM(+/-)/ApoE(-/-) mice, MitoQ reduced the macrophage content and cell proliferation within plaques and 8-oxo-G. MitoQ also significantly reduced mtDNA oxidative damage in the liver. Our data suggest that MitoQ inhibits the development of multiple features of the metabolic syndrome in these mice by affecting redox signaling pathways that depend on mitochondrial ROS such as hydrogen peroxide. These findings strengthen the growing view that elevated mitochondrial ROS contributes to the etiology of the metabolic syndrome and suggest a potential therapeutic role for mitochondria-targeted antioxidants. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Single Event Effects (SEE) for Power Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs)

    NASA Technical Reports Server (NTRS)

    Lauenstein, Jean-Marie

    2011-01-01

    Single-event gate rupture (SEGR) continues to be a key failure mode in power MOSFETs. (1) SEGR is complex, making rate prediction difficult SEGR mechanism has two main components: (1) Oxide damage-- Reduces field required for rupture (2) Epilayer response -- Creates transient high field across the oxide.

  20. Oxidative damage induced by heat stress could be relieved by nitric oxide in Trichoderma harzianum LTR-2.

    PubMed

    Yu, Yang; Yang, Zijun; Guo, Kai; Li, Zhe; Zhou, Hongzi; Wei, Yanli; Li, Jishun; Zhang, Xinjian; Harvey, Paul; Yang, Hetong

    2015-04-01

    Trichoderma harzianum is an important commercial biocontrol fungal agent. The temperature has been shown to be an important parameter and strain-specific to the mycelia growth of fungi, but less report makes the known of the mechanisms in T. harzianum. In our study, a 6-h treatment of heat increased the thiobarbituric acid reactive substances (TBARS) and nitric oxide (NO) concentration in mycelia to 212 and 230 % the level of the control, respectively. The exogenous NO donor sodium nitroprusside (150 μM) reduced the TBARS concentration to 53 % of that under heat stress (HS). At the same time, the NO-specific scavenger at 250 μM, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-1-oxyl-3-oxide, prevented the exogenous NO-relieved TBARS accumulation under HS. The increased NO concentration under HS was reduced 41 % by the NO synthase (NOS) inhibitor L-N(G)-nitroarginine methyl ester, but not the nitrate reductase (NR) inhibitor tungstate. Our study exhibited that NO can protect the mycelia of T. harzianum from HS and reduce the oxidative damage by enhancing the activity of NOS and NR.

  1. Protective Effects of Chlorogenic Acid against Experimental Reflux Esophagitis in Rats

    PubMed Central

    Kang, Jung-Woo; Lee, Sun-Mee

    2014-01-01

    Esophageal reflux of gastric contents causes esophageal mucosal damage and inflammation. Recent studies show that oxygen-derived free radicals mediate mucosal damage in reflux esophagitis (RE). Chlorogenic acid (CGA), an ester of caffeic acid and quinic acid, is one of the most abundant polyphenols in the human diet and possesses anti-inflammatory, antibacterial and anti-oxidant activities. In this context, we investigated the effects of CGA against experimental RE in rats. RE was produced by ligating the transitional region between the forestomach and the glandular portion and covering the duodenum near the pylorus ring with a small piece of catheter. CGA (10, 30 and 100 mg/kg) and omeprazole (positive control, 10 mg/kg) were administered orally 48 h after the RE operation for 12 days. CGA reduced the severity of esophageal lesions, and this beneficial effect was confirmed by histopathological observations. CGA reduced esophageal lipid peroxidation and increased the reduced glutathione/oxidized glutathione ratio. CGA attenuated increases in the serum level of tumor necrosis factor-α, and expressions of inducible nitric oxide synthase and cyclooxygenase-2 protein. CGA alleviates RE-induced mucosal injury, and this protection is associated with reduced oxidative stress and the anti-inflammatory properties of CGA. PMID:25414772

  2. Oxidative damage and brain concentrations of free amino acid in chicks exposed to high ambient temperature.

    PubMed

    Chowdhury, Vishwajit S; Tomonaga, Shozo; Ikegami, Taro; Erwan, Edi; Ito, Kentaro; Cockrem, John F; Furuse, Mitsuhiro

    2014-03-01

    High ambient temperatures (HT) reduce food intake and body weight in young chickens, and HT can cause increased expression of hypothalamic neuropeptides. The mechanisms by which HT act, and the effects of HT on cellular homeostasis in the brain, are however not well understood. In the current study lipid peroxidation and amino acid metabolism were measured in the brains of 14 d old chicks exposed to HT (35 °C for 24- or 48-h) or to control thermoneutral temperature (CT; 30 °C). Malondialdehyde (MDA) was measured in the brain to determine the degree of oxidative damage. HT increased body temperature and reduced food intake and body weight gain. HT also increased diencephalic oxidative damage after 48 h, and altered some free amino acid concentrations in the diencephalon. Diencephalic MDA concentrations were increased by HT and time, with the effect of HT more prominent with increasing time. HT altered cystathionine, serine, tyrosine and isoleucine concentrations. Cystathionine was lower in HT birds compared with CT birds at 24h, whilst serine, tyrosine and isoleucine were higher at 48 h in HT birds. An increase in oxidative damage and alterations in amino acid concentrations in the diencephalon may contribute to the physiological, behavioral and thermoregulatory responses of heat-exposed chicks. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. The benefit of a supplement with the antioxidant melatonin on redox status and muscle damage in resistance-trained athletes.

    PubMed

    Leonardo-Mendonça, Roberto C; Ocaña-Wilhelmi, Javier; de Haro, Tomás; de Teresa-Galván, Carlos; Guerra-Hernández, Eduardo; Rusanova, Iryna; Fernández-Ortiz, Marisol; Sayed, Ramy K A; Escames, Germaine; Acuña-Castroviejo, Darío

    2017-07-01

    Previous data showed that the administration of high doses of melatonin improved the circadian system in athletes. Here, we investigated in the same experimental paradigm whether the antioxidant properties of melatonin has also beneficial effects against exercise-induced oxidative stress and muscle damage in athletes. Twenty-four athletes were treated with 100 mg·day -1 of melatonin or placebo 30 min before bedtime during 4 weeks in a randomized double-blind scheme. Exercise intensity was higher during the study that before starting it. Blood samples were collected before and after treatment, and plasma was used for oxygen radical absorption capacity (ORAC), lipid peroxidation (LPO), nitrite plus nitrate (NOx), and advanced oxidation protein products (AOPP) determinations. Glutathione (GSH), glutathione disulphide (GSSG) levels, and glutathione peroxidase (GPx) and reductase (GRd) activities, were measured in erythrocytes. Melatonin intake increased ORAC, reduced LPO and NOx levels, and prevented the increase of AOPP, compared to placebo group. Melatonin was also more efficient than placebo in reducing GSSG·GSH -1 and GPx·GRd -1 ratios. Melatonin, but not placebo, reduced creatine kinase, lactate dehydrogenase, creatinine, and total cholesterol levels. Overall, the data reflect a beneficial effect of melatonin treatment in resistance-training athletes, preventing extra- and intracellular oxidative stress induced by exercise, and yielding further skeletal muscle protection against exercise-induced oxidative damage.

  4. Global Protein Oxidation Profiling Suggests Efficient Mitochondrial Proteome Homeostasis During Aging*

    PubMed Central

    Ramallo Guevara, Carina; Philipp, Oliver; Hamann, Andrea; Werner, Alexandra; Osiewacz, Heinz D.; Rexroth, Sascha; Rögner, Matthias; Poetsch, Ansgar

    2016-01-01

    The free radical theory of aging is based on the idea that reactive oxygen species (ROS) may lead to the accumulation of age-related protein oxidation. Because themajority of cellular ROS is generated at the respiratory electron transport chain, this study focuses on the mitochondrial proteome of the aging model Podospora anserina as target for ROS-induced damage. To ensure the detection of even low abundant modified peptides, separation by long gradient nLC-ESI-MS/MS and an appropriate statistical workflow for iTRAQ quantification was developed. Artificial protein oxidation was minimized by establishing gel-free sample preparation in the presence of reducing and iron-chelating agents. This first large scale, oxidative modification-centric study for P. anserina allowed the comprehensive quantification of 22 different oxidative amino acid modifications, and notably the quantitative comparison of oxidized and nonoxidized protein species. In total 2341 proteins were quantified. For 746 both protein species (unmodified and oxidatively modified) were detected and the modification sites determined. The data revealed that methionine residues are preferably oxidized. Further prominent identified modifications in decreasing order of occurrence were carbonylation as well as formation of N-formylkynurenine and pyrrolidinone. Interestingly, for the majority of proteins a positive correlation of changes in protein amount and oxidative damage were noticed, and a general decrease in protein amounts at late age. However, it was discovered that few proteins changed in oxidative damage in accordance with former reports. Our data suggest that P. anserina is efficiently capable to counteract ROS-induced protein damage during aging as long as protein de novo synthesis is functioning, ultimately leading to an overall constant relationship between damaged and undamaged protein species. These findings contradict a massive increase in protein oxidation during aging and rather suggest a protein damage homeostasis mechanism even at late age. PMID:26884511

  5. CaNa2EDTA chelation attenuates cell damage in workers exposed to lead--a pilot study.

    PubMed

    Čabarkapa, A; Borozan, S; Živković, L; Stojanović, S; Milanović-Čabarkapa, M; Bajić, V; Spremo-Potparević, B

    2015-12-05

    Lead induced oxidative cellular damage and long-term persistence of associated adverse effects increases risk of late-onset diseases. CaNa2EDTA chelation is known to remove contaminating metals and to reduce free radical production. The objective was to investigate the impact of chelation therapy on modulation of lead induced cellular damage, restoration of altered enzyme activities and lipid homeostasis in peripheral blood of workers exposed to lead, by comparing the selected biomarkers obtained prior and after five-day CaNa2EDTA chelation intervention. The group of smelting factory workers diagnosed with lead intoxication and current lead exposure 5.8 ± 1.2 years were administered five-day CaNa2EDTA chelation. Elevated baseline activity of antioxidant enzymes Cu, Zn-SOD and CAT as well as depleted thiols and increased protein degradation products-carbonyl groups and nitrites, pointing to Pb induced oxidative damage, were restored toward normal values following the treatment. Lead showed inhibitor potency on both RBC AChE and BChE in exposed workers, and chelation re-established the activity of BChE, while RBC AChE remained unaffected. Also, genotoxic effect of lead detected in peripheral blood lymphocytes was significantly decreased after therapy, exhibiting 18.9% DNA damage reduction. Administration of chelation reversed the depressed activity of serum PON 1 and significantly decreased lipid peroxidation detected by the post-chelation reduction of MDA levels. Lactate dehydrogenase LDH1-5 isoenzymes levels showed evident but no significant trend of restoring toward normal control values following chelation. CaNa2EDTA chelation ameliorates the alterations linked with Pb mediated oxidative stress, indicating possible benefits in reducing health risks associated with increased oxidative damage in lead exposed populations. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Oxidative Damage to the Salivary Glands of Rats with Streptozotocin-Induced Diabetes-Temporal Study: Oxidative Stress and Diabetic Salivary Glands.

    PubMed

    Knaś, M; Maciejczyk, M; Daniszewska, I; Klimiuk, A; Matczuk, J; Kołodziej, U; Waszkiel, D; Ładny, J R; Żendzian-Piotrowska, M; Zalewska, A

    2016-01-01

    Objective. This study evaluated oxidative damage caused to the salivary glands in streptozotocin-induced diabetes (DM). Materials and Methods. Rats were divided into 4 groups: groups 1 and 2, control rats, and groups 3 and 4, DM rats. 8-Hydroxy-2'-deoxyguanosine (8-OHdG), protein carbonyl (PC), 4-hydroxynonenal protein adduct (4-HNE), oxidized and/or MDA-modified LDL-cholesterol (oxy-LDL/MDA), 8-isoprostanes (8-isoP), and oxidative stress index (OSI) were measured at 7 (groups 1 and 3) and 14 (groups 2 and 4) days of experiment. Results. The unstimulated salivary flow in DM rats was reduced in the 2nd week, while the stimulated flow was decreased throughout the duration of the experiment versus control. OSI was elevated in both diabetic glands in the 1st and 2nd week, whereas 8-isoP and 8-OHdG were higher only in the parotid gland in the second week. PC and 4-HNE were increased in the 1st and 2nd week, whereas oxy-LDL/MDA was increased in the 2nd week in the diabetic parotid glands. Conclusions. Diabetes induces oxidative damage of the salivary glands, which seems to be caused by processes taking place in the salivary glands, independently of general oxidative stress. The parotid glands are more vulnerable to oxidative damage in these conditions.

  7. Crocin attenuates hemorrhagic shock-induced oxidative stress and organ injuries in rats.

    PubMed

    Yang, Long; Dong, Xiujuan

    2017-06-01

    We aimed to evaluate the effect of natural antioxidant crocin in alleviating hemorrhagic shock (HS)-induced organ damages. HS rats were treated with crocin during resuscitation. Mortality at 12h and 24h post resuscitation was documented. HS and resuscitation induced organ injuries, as characterized by elevated wet/dry ratio, quantitative assessment ratio, blood urea nitrogen, creatinine, aspartate aminotransferase and alanine aminotransferase, whereas rats received crocin treatment demonstrated improvements in all the above characteristics. This protective effect coincided with reduced malondialdehyde and increased glutathione in both serum and lung tissues, indicating attenuated oxidative stress in crocin-treated rats. Myeloperoxide levels in lung, kidney and liver were also reduced. Crocin can potentially be used to protect organs from HS-induced damages during resuscitation due to its anti-oxidative role. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Amelioration of oxidative DNA damage in mouse peritoneal macrophages by Hippophae salicifolia due to its proton (H+) donation capability: Ex vivo and in vivo studies

    PubMed Central

    Chakraborty, Mainak; Karmakar, Indrajit; Haldar, Sagnik; Das, Avratanu; Bala, Asis; Haldar, Pallab Kanti

    2016-01-01

    Introduction: The present study evaluates the antioxidant effect of methanol extract of Hippophae salicifolia (MEHS) bark with special emphasis on its role on oxidative DNA damage in mouse peritoneal macrophages. Material and Methods: In vitro antioxidant activity was estimated by standard antioxidant assays whereas the antioxidant activity concluded the H+ donating capacity. Mouse erythrocytes’ hemolysis and peritoneal macrophages’ DNA damage were determined spectrophotometrically. In vivo antioxidant activity of MEHS was determined in carbon tetrachloride-induced mice by studying its effect on superoxide anion production in macrophages cells, superoxide dismutase in the cell lysate, DNA damage, lipid peroxidation, and reduces glutathione. Results: The extract showed good in vitro antioxidant activities whereas the inhibitory concentrations values ranged from 5.80 to 106.5 μg/ml. MEHS significantly (P < 0.05) attenuated the oxidative DNA damage. It also attenuated the oxidative conversion of hemoglobin to methemoglobin and elevation of enzymatic and nonenzymatic antioxidant in cells. Conclusion: The result indicates MEHS has good in vitro-in vivo antioxidant property as well as the protective effect on DNA and red blood cell may be due to its H+ donating property. PMID:27413349

  9. Effect of prolonged exercise on oxidative damage and susceptibility to oxidants of rat tissues in severe hyperthyroidism.

    PubMed

    Venditti, P; De Rosa, R; Caldarone, G; Di Meo, S

    2005-10-15

    We investigated effects of prolonged aerobic exercise and severe hyperthyroidism on indices of oxidative damage, susceptibility to oxidants, and respiratory capacity of homogenates from rat liver, heart and skeletal muscle. Both treatments induced increases in hydroperoxide and protein-bound carbonyl levels. Moreover, the highest increases were found when hyperthyroid animals were subjected to exercise. These changes, which were associated to reduced exercise endurance capacity, were in part due to higher susceptibility to oxidants of hyperthyroid tissues. Levels of oxidative damage indices were scarcely related to changes in antioxidant enzyme activities and lipid-soluble antioxidant concentrations. However, the finding that, following exercise the scavenger levels generally decreased in liver homogenates and increased in heart and muscles ones, suggested a net shuttle of antioxidants from liver to other tissues under need. Aerobic capacity, evaluated by cytochrome oxidase activity, was not modified by exercise, which, conversely, affected the rates of oxygen consumption of hyperthyroid preparations. These results seem to confirm the higher susceptibility of hyperthyroid tissues to oxidative challenge, because the mechanisms underlying the opposite changes in respiration rates during State 4 and State 3 likely involve oxidative modifications of components of mitochondrial respiratory chain, different from cytochrome aa3.

  10. Yolk testosterone reduces oxidative damages during postnatal development

    PubMed Central

    Noguera, José Carlos; Alonso-Alvarez, Carlos; Kim, Sin-Yeon; Morales, Judith; Velando, Alberto

    2011-01-01

    Conditions experienced during early life can influence the development of an organism and several physiological traits, even in adulthood. An important factor is the level of oxidative stress experienced during early life. In birds, extra-genomic egg substances, such as the testosterone hormone, may exert a widespread influence over the offspring phenotype. Interestingly, testosterone can also upregulate the bioavailability of certain antioxidants but simultaneously increases the susceptibility to oxidative stress in adulthood. However, little is known about the effects of maternally derived yolk testosterone on oxidative stress in developing birds. Here, we investigated the role of yolk testosterone on oxidative stress of yellow-legged gull chicks during their early development by experimentally increasing yolk testosterone levels. Levels of antioxidants, reactive oxygen species and lipid oxidative damage were determined in plasma during nestlings' growth. Our results revealed that, contrary to control chicks, birds hatched from testosterone-treated eggs did not show an increase in the levels of oxidative damage during postnatal development. Moreover, the same birds showed a transient increase in plasma antioxidant levels. Our results suggest that yolk testosterone may shape the oxidative stress-resistance phenotype of the chicks during early development owing to an increase in antioxidant defences and repair processes. PMID:20659922

  11. Extract from Armoracia rusticana and its flavonoid components protect human lymphocytes against oxidative damage induced by hydrogen peroxide.

    PubMed

    Gafrikova, Michala; Galova, Eliska; Sevcovicova, Andrea; Imreova, Petronela; Mucaji, Pavel; Miadokova, Eva

    2014-03-14

    DNA damage prevention is an important mechanism involved in cancer prevention by dietary compounds. Armoracia rusticana is cultivated mainly for its roots that are used in the human diet as a pungent spice. The roots represent rich sources of biologically active phytocompounds, which are beneficial for humans. In this study we investigated the modulation of H₂O₂ genotoxicity using the A. rusticana root aqueous extract (AE) and two flavonoids (kaempferol or quercetin). Human lymphocytes pre-treated with AE, kaempferol and quercetin were challenged with H₂O₂ and the DNA damage was assessed by the comet assay. At first we assessed a non-genotoxic concentration of AE and flavonoids, respectively. In lymphocytes challenged with H₂O₂ we proved that the 0.0025 mg·mL⁻¹ concentration of AE protected human DNA. It significantly reduced H₂O₂-induced oxidative damage (from 78% to 35.75%). Similarly, a non-genotoxic concentration of kaempferol (5 μg·mL⁻¹) significantly diminished oxidative DNA damage (from 83.3% to 19.4%), and the same concentration of quercetin also reduced the genotoxic effect of H₂O₂ (from 83.3% to 16.2%). We conclude that AE, kaempferol and quercetin probably act as antimutagens. The molecular mechanisms underlying their antimutagenic activity might be explained by their antioxidant properties.

  12. High basal metabolic rate does not elevate oxidative stress during reproduction in laboratory mice.

    PubMed

    Brzęk, Paweł; Książek, Aneta; Ołdakowski, Łukasz; Konarzewski, Marek

    2014-05-01

    Increased oxidative stress (OS) has been suggested as a physiological cost of reproduction. However, previous studies reported ambiguous results, with some even showing a reduction of oxidative damage during reproduction. We tested whether the link between reproduction and OS is mediated by basal metabolic rate (BMR), which has been hypothesized to affect both the rate of radical oxygen species production and antioxidative capacity. We studied the effect of reproduction on OS in females of laboratory mice divergently selected for high (H-BMR) and low (L-BMR) BMR, previously shown to differ with respect to parental investment. Non-reproducing L-BMR females showed higher oxidative damage to lipids (quantified as the level of malondialdehyde in internal organ tissues) and DNA (quantified as the level of 8-oxodG in blood serum) than H-BMR females. Reproduction did not affect oxidative damage to lipids in either line; however, it reduced damage to DNA in L-BMR females. Reproduction increased catalase activity in liver (significantly stronger in L-BMR females) and decreased it in kidneys. We conclude that the effect of reproduction on OS depends on the initial variation in BMR and varies between studied internal organs and markers of OS.

  13. Influence of deformation behavior, oxydation, and temperature on the long time cyclic stress behavior of high temperature steels

    NASA Technical Reports Server (NTRS)

    Maile, K.

    1982-01-01

    The influence of different parameters on the creep-fatigue behavior of several steel alloys was investigated. The higher the temperature the lower the crack initiation value. Pauses during the cycle reduce the damage. Oxidation reduces and protective gas increases the lifetime. Prior loading and prior deformation reduce the lifetime. Short annealing slightly affects the cycle stress behavior. The test results do not satisfactorily agree with methods of extrapolation and damage accumulation.

  14. Protective effect of Anoectochilus roxburghii polysaccharide against CCl4-induced oxidative liver damage in mice.

    PubMed

    Yang, Zhenguo; Zhang, Xiaohui; Yang, Lawei; Pan, Qunwen; Li, Juan; Wu, Yongfu; Chen, Meizhen; Cui, Shichao; Yu, Jie

    2017-03-01

    This study investigated the isolation and characterization of Anoectochilus roxburghii polysaccharides (ARP), and further evaluated whether ARP possessed hepatoprotective activities against CCl 4 -induced oxidative liver damage in mice. ARP is comprised of glucose and galactose in a 1.9:1 molar ratio, and the molecular weight is 19.5kDa. ARP displayed significant scavenging effects against hydroxyl radical, superoxide anion radical, DPPH radical and a strong reducing power. In vivo experiment demonstrated ARP (150mg/kg) administrated to mice for 7days prior to carbon tetrachloride treatment, attenuated the elevated expression levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), triglyceride (TG) in serum and inhibited the formation of hepatic malondialdehyde (MDA). ARP pretreatment also increased antioxidant enzyme activities such as glutathione (GSH), superoxide dismutase (SOD), and total antioxidant capacity (T-AOC) in the liver of CCl 4 -induced mice. Furthermore, hepatic histopathological changes induced by CCl 4 were significantly normalized by ARP pretreatment. These findings demonstrated that ARP possessed hepatoprotective effect against acute CCl 4 -induced liver damage by reducing lipid oxidation. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Metal accumulation and oxidative stress biomarkers in octopus (Octopus vulgaris) from Northwest Atlantic.

    PubMed

    Semedo, Miguel; Reis-Henriques, Maria Armanda; Rey-Salgueiro, Ledicia; Oliveira, Marta; Delerue-Matos, Cristina; Morais, Simone; Ferreira, Marta

    2012-09-01

    Metals are ubiquitous in the environment and accumulate in aquatic organisms and are known for their ability to enhance the production of reactive oxygen species (ROS). In aquatic species, oxidative stress mechanisms have been studied by measuring antioxidant enzyme activities and oxidative damages in tissues. The aim of this study was to apply and validate a set of oxidative stress biomarkers and correlate responses with metal contents in tissues of common octopus (Octopus vulgaris). Antioxidant enzyme activity (catalase--CAT, superoxide dismutase--SOD and glutathione S-transferases--GST), oxidative damages (lipid peroxidation--LPO and protein carbonyl content--PCO) and metal content (Cu, Zn, Pb, Cd and As) in the digestive gland and arm of octopus, collected in the NW Portuguese coast in different periods, were assessed after capture and after 14 days in captivity. CAT and SOD activities were highly responsive to fluctuations in metal concentrations and able to reduce oxidative damage, LPO and PCO in the digestive gland. CAT activity was also positively correlated with SOD and GST activities, which emphasizes that the three enzymes respond in a coordinated way to metal induced oxidative stress. Our results validate the use of oxidative stress biomarkers to assess metal pollution effects in this ecological and commercial relevant species. Moreover, octopus seems to have the ability to control oxidative damage by triggering an antioxidant enzyme coordinated response in the digestive gland. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Potential role of punicalagin against oxidative stress induced testicular damage.

    PubMed

    Rao, Faiza; Tian, Hui; Li, Wenqing; Hung, Helong; Sun, Fei

    2016-01-01

    Punicalagin is isolated from pomegranate and widely used for the treatment of different diseases in Chinese traditional medicine. This study aimed to evaluate the effect of Punicalagin (purity ≥98%) on oxidative stress induced testicular damage and its effect on fertility. We detected the antioxidant potential of punicalagin in lipopolysaccharide (LPS) induced oxidative stress damage in testes, also tried to uncover the boosting fertility effect of Punicalagin (PU) against oxidative stress-induced infertility. Results demonstrated that 9 mg kg-1 for 7 days treatment significantly decreases LPS induced oxidative damage in testes and nitric oxide production. The administration of oxidative stress resulted in a significant reduction in testes antioxidants GSH, T-SOD, and CAT raised LPO, but treatment with punicalagin for 7 days increased antioxidant defense GSH, T-SOD, and CAT by the end of the experiment and reduced LPO level as well. PU also significantly activates Nrf2, which is involved in regulation of antioxidant defense systems. Hence, the present research categorically elucidates the protective effect of punicalagin against LPS induced oxidative stress induced perturbation in the process of spermatogenesis and significantly increased sperm health and number. Moreover, fertility success significantly decreased in LPS-injected mice compared to controls. Mice injected with LPS had fertility indices of 12.5%, while others treated with a combination of PU + LPS exhibited 75% indices. By promoting fertility and eliminating oxidative stress and inflammation, PU may be a useful nutrient for the treatment of infertility.

  17. Potential role of punicalagin against oxidative stress induced testicular damage

    PubMed Central

    Rao, Faiza; Tian, Hui; Li, Wenqing; Hung, Helong; Sun, Fei

    2016-01-01

    Punicalagin is isolated from pomegranate and widely used for the treatment of different diseases in Chinese traditional medicine. This study aimed to evaluate the effect of Punicalagin (purity ≥98%) on oxidative stress induced testicular damage and its effect on fertility. We detected the antioxidant potential of punicalagin in lipopolysaccharide (LPS) induced oxidative stress damage in testes, also tried to uncover the boosting fertility effect of Punicalagin (PU) against oxidative stress-induced infertility. Results demonstrated that 9 mg kg−1 for 7 days treatment significantly decreases LPS induced oxidative damage in testes and nitric oxide production. The administration of oxidative stress resulted in a significant reduction in testes antioxidants GSH, T-SOD, and CAT raised LPO, but treatment with punicalagin for 7 days increased antioxidant defense GSH, T-SOD, and CAT by the end of the experiment and reduced LPO level as well. PU also significantly activates Nrf2, which is involved in regulation of antioxidant defense systems. Hence, the present research categorically elucidates the protective effect of punicalagin against LPS induced oxidative stress induced perturbation in the process of spermatogenesis and significantly increased sperm health and number. Moreover, fertility success significantly decreased in LPS-injected mice compared to controls. Mice injected with LPS had fertility indices of 12.5%, while others treated with a combination of PU + LPS exhibited 75% indices. By promoting fertility and eliminating oxidative stress and inflammation, PU may be a useful nutrient for the treatment of infertility. PMID:26763544

  18. One-pot synthesis of reduced graphene oxide@boron nitride nanosheet hybrids with enhanced oxidation-resistant properties

    NASA Astrophysics Data System (ADS)

    Sun, Guoxun; Bi, Jianqiang; Wang, Weili; Zhang, Jingde

    2017-12-01

    Reduced graphene oxide@boron nitride nanosheet (RGO@BNNS) hybrids were prepared for the first time using template-assisted autoclave pyrolysis technique at the temperature as low as 600 °C. The developed method can be scaled into gram-scale synthesis of the material. The BNNSs combine with RGO through van der Waals interplanar interaction without damaging the structures of RGO. Such ultrathin BNNSs on the surface of RGO can serve as high-performance oxidation-resistant coatings in oxidizing atmospheres at high temperatures. The RGO@BNNS hybrids can sustain up to 800 °C over a relatively long period of time.

  19. Gastric damage and granulocyte infiltration induced by indomethacin in tumour necrosis factor receptor 1 (TNF-R1) or inducible nitric oxide synthase (iNOS) deficient mice

    PubMed Central

    Souza, M H L P; Lemos, H. Paula; Oliveira, R B; Cunha, F Q

    2004-01-01

    Background: Tumour necrosis factor α (TNF-α) is involved in non-steroidal anti-inflammatory drug induced gastropathy. Nitric oxide (NO) is a mediator of gastrointestinal mucosal defence but, paradoxically, it also contributes to mucosal damage. Aims: We optimised the C57BL/6 mouse model of indomethacin induced gastropathy to evaluate the role of TNF-α and inducible nitric oxide synthase (iNOS) generated NO in gastric damage and granulocyte infiltration using tumour necrosis factor receptor 1 (TNF-R1−/−) or iNOS (iNOS−/−) deficient mice. Methods: Different doses of indomethacin (2.5, 5, 10, 20 mg/kg) were administered and animals were assessed 6, 12, or 24 hours later. Gastric damage was measured by the sum of all erosions in the gastric mucosa, and gastric granulocyte infiltration was determined by myeloperoxidase (MPO) activity. Other groups of wild-type mice received thalidomide, dexamethasone, fucoidin, l-NAME, or 1400W, and then indomethacin was administered. Additionally, indomethacin was administered to TNF-R1−/− or iNOS−/−. Gastric damage and MPO activity were evaluated 12 hours later. Results: Indomethacin induced dose and time dependent gastric damage and increase in MPO activity in wild-type mice, with the greatest effect at a dose of 10 mg/kg and after 12 hours. Treatment with thalidomide, dexamethasone, or fucoidin reduced gastric damage and MPO activity induced by indomethacin. After indomethacin administration, TNF-R1−/− had less gastric damage and MPO activity than controls. Genetic (knockout mice) or pharmacological (1400W and l-NAME) inhibition of iNOS activity reduced indomethacin induced gastric damage, despite no reduction in MPO activity. Conclusion: TNF-α, acting via TNF-R1, is involved in indomethacin induced gastric damage and granulocyte infiltration. Furthermore, iNOS generated NO is involved in gastric damage induced by indomethacin. PMID:15138204

  20. Possible GABAergic modulation in the protective effect of zolpidem in acute hypoxic stress-induced behavior alterations and oxidative damage.

    PubMed

    Kumar, Anil; Goyal, Richa

    2008-03-01

    Hypoxia is an environmental stressor that is known to elicit alterations in both the autonomic nervous system and endocrine functions. The free radical or oxidative stress theory holds that oxidative reactions are mainly underlying neurodegenerative disorders. In fact among complex metabolic reactions occurring during hypoxia, many could be related to the formation of oxygen derived free radicals, causing a wide spectrum of cell damage. In present study, we investigated possible involvement of GABAergic mechanism in the protective effect of zolpidem against acute hypoxia-induced behavioral modification and biochemical alterations in mice. Mice were subjected to acute hypoxic stress for a period of 2 h. Acute hypoxic stress for 2 h caused significant impairment in locomotor activity, anxiety-like behavior, and antinocioceptive effect in mice. Biochemical analysis revealed a significant increased malondialdehyde, nitrite concentrations and depleted reduced glutathione and catalase levels. Pretreatment with zolpidem (5 and 10 mg/kg, i.p.) significantly improved locomotor activity, anti-anxiety effect, reduced tail flick latency and attenuated oxidative damage (reduced malondialdehyde, nitrite concentration, and restoration of reduced glutathione and catalase levels) as compared to stressed control (hypoxia) (P < 0.05). Besides, protective effect of zolpidem (5 mg/kg) was blocked significantly by picrotoxin (1.0 mg/kg) or flumazenil (2 mg/kg) and potentiated by muscimol (0.05 mg/kg) in hypoxic animals (P < 0.05). These effects were significant as compared to zolpidem (5 mg/kg) per se (P < 0.05). Present study suggest that the possible involvement of GABAergic modulation in the protective effect of zolpidem against hypoxic stress.

  1. Oxidative Stress and Proinflammatory Cytokines Contribute to Demyelination and Axonal Damage in a Cerebellar Culture Model of Neuroinflammation

    PubMed Central

    di Penta, Alessandra; Moreno, Beatriz; Reix, Stephanie; Fernandez-Diez, Begoña; Villanueva, Maite; Errea, Oihana; Escala, Nagore; Vandenbroeck, Koen; Comella, Joan X.; Villoslada, Pablo

    2013-01-01

    Background Demyelination and axonal damage are critical processes in the pathogenesis of multiple sclerosis (MS). Oxidative stress and pro-inflammatory cytokines elicited by inflammation mediates tissue damage. Methods/Principal Findings To monitor the demyelination and axonal injury associated with microglia activation we employed a model using cerebellar organotypic cultures stimulated with lipopolysaccharide (LPS). Microglia activated by LPS released pro-inflammatory cytokines (IL-1β, IL-6 and TNFα), and increased the expression of inducible nitric oxide synthase (iNOS) and production of reactive oxygen species (ROS). This activation was associated with demyelination and axonal damage in cerebellar cultures. Axonal damage, as revealed by the presence of non-phosphorylated neurofilaments, mitochondrial accumulation in axonal spheroids, and axonal transection, was associated with stronger iNOS expression and concomitant increases in ROS. Moreover, we analyzed the contribution of pro-inflammatory cytokines and oxidative stress in demyelination and axonal degeneration using the iNOS inhibitor ethyl pyruvate, a free-scavenger and xanthine oxidase inhibitor allopurinol, as well as via blockage of pro-inflammatory cytokines using a Fc-TNFR1 construct. We found that blocking microglia activation with ethyl pyruvate or allopurinol significantly decreased axonal damage, and to a lesser extent, demyelination. Blocking TNFα significantly decreased demyelination but did not prevented axonal damage. Moreover, the most common therapy for MS, interferon-beta, was used as an example of an immunomodulator compound that can be tested in this model. In vitro, interferon-beta treatment decreased oxidative stress (iNOS and ROS levels) and the release of pro-inflammatory cytokines after LPS stimulation, reducing axonal damage. Conclusion The model of neuroinflammation using cerebellar culture stimulated with endotoxin mimicked myelin and axonal damage mediated by the combination of oxidative stress and pro-inflammatory cytokines. This model may both facilitate understanding of the events involved in neuroinflammation and aid in the development of neuroprotective therapies for the treatment of MS and other neurodegenerative diseases. PMID:23431360

  2. Arsenic transformation predisposes human skin keratinocytes to UV-induced DNA damage yet enhances their survival apparently by diminishing oxidant response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun Yang; Kojima, Chikara; Chignell, Colin

    2011-09-15

    Inorganic arsenic and UV, both human skin carcinogens, may act together as skin co-carcinogens. We find human skin keratinocytes (HaCaT cells) are malignantly transformed by low-level arsenite (100 nM, 30 weeks; termed As-TM cells) and with transformation concurrently undergo full adaptation to arsenic toxicity involving reduced apoptosis and oxidative stress response to high arsenite concentrations. Oxidative DNA damage (ODD) is a possible mechanism in arsenic carcinogenesis and a hallmark of UV-induced skin cancer. In the current work, inorganic arsenite exposure (100 nM) did not induce ODD during the 30 weeks required for malignant transformation. Although acute UV-treatment (UVA, 25 J/cm{supmore » 2}) increased ODD in passage-matched control cells, once transformed by arsenic to As-TM cells, acute UV actually further increased ODD (> 50%). Despite enhanced ODD, As-TM cells were resistant to UV-induced apoptosis. The response of apoptotic factors and oxidative stress genes was strongly mitigated in As-TM cells after UV exposure including increased Bcl2/Bax ratio and reduced Caspase-3, Nrf2, and Keap1 expression. Several Nrf2-related genes (HO-1, GCLs, SOD) showed diminished responses in As-TM cells after UV exposure consistent with reduced oxidant stress response. UV-exposed As-TM cells showed increased expression of cyclin D1 (proliferation gene) and decreased p16 (tumor suppressor). UV exposure enhanced the malignant phenotype of As-TM cells. Thus, the co-carcinogenicity between UV and arsenic in skin cancer might involve adaptation to chronic arsenic exposure generally mitigating the oxidative stress response, allowing apoptotic by-pass after UV and enhanced cell survival even in the face of increased UV-induced oxidative stress and increased ODD. - Highlights: > Arsenic transformation adapted to UV-induced apoptosis. > Arsenic transformation diminished oxidant response. > Arsenic transformation enhanced UV-induced DNA damage.« less

  3. Increased oxidative phosphorylation in response to acute and chronic DNA damage

    PubMed Central

    Brace, Lear E; Vose, Sarah C; Stanya, Kristopher; Gathungu, Rose M; Marur, Vasant R; Longchamp, Alban; Treviño-Villarreal, Humberto; Mejia, Pedro; Vargas, Dorathy; Inouye, Karen; Bronson, Roderick T; Lee, Chih-Hao; Neilan, Edward; Kristal, Bruce S; Mitchell, James R

    2016-01-01

    Accumulation of DNA damage is intricately linked to aging, aging-related diseases and progeroid syndromes such as Cockayne syndrome (CS). Free radicals from endogenous oxidative energy metabolism can damage DNA, however the potential of acute or chronic DNA damage to modulate cellular and/or organismal energy metabolism remains largely unexplored. We modeled chronic endogenous genotoxic stress using a DNA repair-deficient Csa−/−|Xpa−/− mouse model of CS. Exogenous genotoxic stress was modeled in mice in vivo and primary cells in vitro treated with different genotoxins giving rise to diverse spectrums of lesions, including ultraviolet radiation, intrastrand crosslinking agents and ionizing radiation. Both chronic endogenous and acute exogenous genotoxic stress increased mitochondrial fatty acid oxidation (FAO) on the organismal level, manifested by increased oxygen consumption, reduced respiratory exchange ratio, progressive adipose loss and increased FAO in tissues ex vivo. In multiple primary cell types, the metabolic response to different genotoxins manifested as a cell-autonomous increase in oxidative phosphorylation (OXPHOS) subsequent to a transient decline in steady-state NAD+ and ATP levels, and required the DNA damage sensor PARP-1 and energy-sensing kinase AMPK. We conclude that increased FAO/OXPHOS is a general, beneficial, adaptive response to DNA damage on cellular and organismal levels, illustrating a fundamental link between genotoxic stress and energy metabolism driven by the energetic cost of DNA damage. Our study points to therapeutic opportunities to mitigate detrimental effects of DNA damage on primary cells in the context of radio/chemotherapy or progeroid syndromes. PMID:28721274

  4. Antioxidant Potential of Spirulina platensis Mitigates Oxidative Stress and Reprotoxicity Induced by Sodium Arsenite in Male Rats

    PubMed Central

    Bashandy, Samir A. E.; El Awdan, Sally A.; Ebaid, Hossam; Alhazza, Ibrahim M.

    2016-01-01

    The present study aimed to examine the protective role of Spirulina platensis (S. platensis) against arsenic-induced testicular oxidative damage in rats. Arsenic (in the form of NaAsO2 at a dose of 6.3 mg/kg body weight for 8 weeks) caused a significant accumulation of arsenic in testicular tissues as well as a decrease in the levels of testicular superoxide dismutase (SOD), catalase (CAT), reduced glutathione, and zinc. Moreover, it significantly decreased plasma testosterone, luteinizing hormone (LH), triiodothyronine (T3), and thyroxine (T4) levels and reduced sperm motility and sperm count. Arsenic (AS) led to a significant increase in testicular malondialdehyde (MDA), tumour necrosis factor alpha (TNF-α), nitric oxide (NO), and sperm abnormalities. S. platensis at a dose of 300 mg/kg was found to attenuate As-induced oxidative stress, testicular damage, and sperm abnormalities by its potent antioxidant activity. S. platensis may represent a potential therapeutic option to protect the testicular tissue from arsenic intoxication. PMID:26881036

  5. Antioxidant Potential of Spirulina platensis Mitigates Oxidative Stress and Reprotoxicity Induced by Sodium Arsenite in Male Rats.

    PubMed

    Bashandy, Samir A E; El Awdan, Sally A; Ebaid, Hossam; Alhazza, Ibrahim M

    2016-01-01

    The present study aimed to examine the protective role of Spirulina platensis (S. platensis) against arsenic-induced testicular oxidative damage in rats. Arsenic (in the form of NaAsO2 at a dose of 6.3 mg/kg body weight for 8 weeks) caused a significant accumulation of arsenic in testicular tissues as well as a decrease in the levels of testicular superoxide dismutase (SOD), catalase (CAT), reduced glutathione, and zinc. Moreover, it significantly decreased plasma testosterone, luteinizing hormone (LH), triiodothyronine (T3), and thyroxine (T4) levels and reduced sperm motility and sperm count. Arsenic (AS) led to a significant increase in testicular malondialdehyde (MDA), tumour necrosis factor alpha (TNF-α), nitric oxide (NO), and sperm abnormalities. S. platensis at a dose of 300 mg/kg was found to attenuate As-induced oxidative stress, testicular damage, and sperm abnormalities by its potent antioxidant activity. S. platensis may represent a potential therapeutic option to protect the testicular tissue from arsenic intoxication.

  6. Differential Effects of Bifidobacterium pseudolongum Strain Patronus and Metronidazole in the Rat Gut▿

    PubMed Central

    Vasquez, Nadia; Suau, Antonia; Magne, Fabien; Pochart, Philippe; Pélissier, Marie-Agnès

    2009-01-01

    In the luminal contents of metronidazole-treated rats, there was a dominant Bifidobacterium species. A strain has been isolated, its 16S rRNA gene has been sequenced, and the strain has been named Bifidobacterium pseudolongum strain Patronus. In this study, using an experimental model of healthy rats, the effects of metronidazole treatment and B. pseudolongum strain Patronus administration on the luminal and mucosa-associated microbiota and on gut oxidation processes were investigated. Metronidazole treatment and the daily gavage of rats with B. pseudolongum strain Patronus increased the numbers of bifidobacteria in cecal contents and in cecal mucosa-associated microbiota compared with those in control rats. Metronidazole reduced the colonic oxidative damage to proteins. This is the first evidence that B. pseudolongum strain Patronus exerts an effect on a biomarker of oxidative damage by reducing the susceptibility to oxidation of proteins in the colon and the small bowel. Antioxidant effects of metronidazole could be linked to the bifidobacterial increase but also to other bacterial modifications. PMID:19028910

  7. Potential protective effect of Pistacia lentiscus oil against chlorpyrifos-induced hormonal changes and oxidative damage in ovaries and thyroid of female rats.

    PubMed

    Chebab, Samira; Mekircha, Fatiha; Leghouchi, Essaid

    2017-12-01

    The purpose of this study was to evaluate the protective effect of Pistacia lentiscus oil (PLO), known for its antioxidant properties, on chlorpyrifos (CPF)-induced alterations in the thyroid, reproductive hormone levels, and oxidative damage in the ovaries and thyroid of adult Wistar rats. The animals were treated with orally administered PLO (2 mL/kg), CPF (6.75 mg/kg), and a combination of CPF and PLO for 30 days. Serum levels of luteinizing hormone (LH), follicle-stimulating hormone (FSH), progesterone (Pg), estradiol (E 2 ), triiodothyronine (T3), thyroxine (T4), and thyroid-stimulating hormone (TSH) were assessed using chemiluminescence assay. Malondialdehyde (MDA), protein carbonyl (PC), and reduced glutathione (GSH) levels were examined in the ovaries and thyroid glands. The oil principal volatile compounds detected by gas chromatography analysis were: myrcene, α-pinene and limonene (26.21, 22.66 and 10.33%, respectively). No significant differences were observed between serum concentrations of TSH and FSH in the examined experimental groups. However, serum concentrations of LH, E 2 , Pg, T3, and T4 decreased significantly in CPF-treated rats in comparison with the controls. The body weight and relative weight of ovaries and thyroids in this group were also significantly reduced. The MDA and PC content increased significantly, while the GSH content was markedly depressed in the thyroid and ovaries of rats treated with CPF. Co-administration of PLO and CPF effectively ameliorated the adverse effects; the oxidative damage was reduced and the levels of thyroid and reproductive hormones restored to a normal range. In conclusion, it appears that PLO substantially alleviates the CPF-induced oxidative damage and hormonal alterations. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. Toxicity of nano- and micro-sized ZnO particles in human lung epithelial cells

    NASA Astrophysics Data System (ADS)

    Lin, Weisheng; Xu, Yi; Huang, Chuan-Chin; Ma, Yinfa; Shannon, Katie B.; Chen, Da-Ren; Huang, Yue-Wern

    2009-01-01

    This is the first comprehensive study to evaluate the cytotoxicity, biochemical mechanisms of toxicity, and oxidative DNA damage caused by exposing human bronchoalveolar carcinoma-derived cells (A549) to 70 and 420 nm ZnO particles. Particles of either size significantly reduced cell viability in a dose- and time-dependent manner within a rather narrow dosage range. Particle mass-based dosimetry and particle-specific surface area-based dosimetry yielded two distinct patterns of cytotoxicity in both 70 and 420 nm ZnO particles. Elevated levels of reactive oxygen species (ROS) resulted in intracellular oxidative stress, lipid peroxidation, cell membrane leakage, and oxidative DNA damage. The protective effect of N-acetylcysteine on ZnO-induced cytotoxicity further implicated oxidative stress in the cytotoxicity. Free Zn2+ and metal impurities were not major contributors of ROS induction as indicated by limited free Zn2+ cytotoxicity, extent of Zn2+ dissociation in the cell culture medium, and inductively-coupled plasma-mass spectrometry metal analysis. We conclude that (1) exposure to both sizes of ZnO particles leads to dose- and time-dependent cytotoxicity reflected in oxidative stress, lipid peroxidation, cell membrane damage, and oxidative DNA damage, (2) ZnO particles exhibit a much steeper dose-response pattern unseen in other metal oxides, and (3) neither free Zn2+ nor metal impurity in the ZnO particle samples is the cause of cytotoxicity.

  9. Rice protein improves oxidative stress by regulating glutathione metabolism and attenuating oxidative damage to lipids and proteins in rats.

    PubMed

    Yang, Lin; Chen, Jia-Hou; Xu, Tong; Zhou, Ai-Shen; Yang, Hong-Kun

    2012-10-05

    To evaluate the effects of rice protein (RP) on glutathione metabolism and oxidative damage. Seven-week-old male Wistar rats were fed diets containing casein and RP without cholesterol for 3weeks. Plasma and liver lipid levels, hepatic accumulation of total glutathione (T-GSH), oxidized glutathione (GSSG), reduced glutathione (GSH), malondialdehyde (MDA) and protein carbonyl (PCO) were measured. In the liver, the total antioxidative capacity (T-AOC), mRNA levels of glutamate cysteine ligase catalytic subunit (GCLC) and glutamate cysteine ligase modulatory subunit (GCLM), and the activities of hepatic catalase (CAT), total superoxide dismutase (T-SOD), γ-glutamylcysteine synthetase (γ-GCS), glutathione S-transferase (GST), glutathione reductase (GR) and glutathione peroxidase (GSHPx) were also measured. T-AOC, GCLC and GCLM mRNA levels, antioxidative enzyme activities (T-SOD and CAT) and glutathione metabolism related enzyme activities (γ-GCS, GST, GR and GSHPx) were effectively stimulated by RP feeding compared to casein, and RP significantly reduced the hepatic accumulation of MDA and PCO in rats. These results indicate that lipid-lowering activity was induced by RP feeding. The present study demonstrates that RP improves oxidative stress primarily through enzymatic and non-enzymatic antioxidative defense mechanisms, reflected by enhancing the antioxidative status and attenuating the oxidative damage to lipids and proteins. These results suggest that RP can prevent hyperlipidemia in part through modifying glutathione metabolism, and sulfur amino acids may be the main modulator of this antioxidative mechanism. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Effect of lemon verbena supplementation on muscular damage markers, proinflammatory cytokines release and neutrophils' oxidative stress in chronic exercise.

    PubMed

    Funes, Lorena; Carrera-Quintanar, Lucrecia; Cerdán-Calero, Manuela; Ferrer, Miguel D; Drobnic, Franchek; Pons, Antoni; Roche, Enrique; Micol, Vicente

    2011-04-01

    Intense exercise is directly related to muscular damage and oxidative stress due to excessive reactive oxygen species (ROS) in both, plasma and white blood cells. Nevertheless, exercise-derived ROS are essential to regulate cellular adaptation to exercise. Studies on antioxidant supplements have provided controversial results. The purpose of this study was to determine the effect of moderate antioxidant supplementation (lemon verbena extract) in healthy male volunteers that followed a 90-min running eccentric exercise protocol for 21 days. Antioxidant enzymes activities and oxidative stress markers were measured in neutrophils. Besides, inflammatory cytokines and muscular damage were determined in whole blood and serum samples, respectively. Intense running exercise for 21 days induced antioxidant response in neutrophils of trained male through the increase of the antioxidant enzymes catalase, glutathione peroxidase and glutathione reductase. Supplementation with moderate levels of an antioxidant lemon verbena extract did not block this cellular adaptive response and also reduced exercise-induced oxidative damage of proteins and lipids in neutrophils and decreased myeloperoxidase activity. Moreover, lemon verbena supplementation maintained or decreased the level of serum transaminases activity indicating a protection of muscular tissue. Exercise induced a decrease of interleukin-6 and interleukin-1β levels after 21 days measured in basal conditions, which was not inhibited by antioxidant supplementation. Therefore, moderate antioxidant supplementation with lemon verbena extract protects neutrophils against oxidative damage, decreases the signs of muscular damage in chronic running exercise without blocking the cellular adaptation to exercise.

  11. Amelioration of intracerebroventricular streptozotocin induced cognitive dysfunction and oxidative stress by vinpocetine -- a PDE1 inhibitor.

    PubMed

    Deshmukh, Rahul; Sharma, Vivek; Mehan, Sidharth; Sharma, Nidhi; Bedi, K L

    2009-10-12

    Enhancing cyclic nucleotides signaling by inhibition of phosphodiesterases (PDEs) is known to be beneficial in disorders associated with cognitive decline. The present study was designed to investigate the effect of vinpocetine (PDE1 inhibitor) on intracerebroventricular (i.c.v.) streptozotocin induced experimental sporadic dementia of Alzheimer's type. Infusion of streptozotocin impaired learning and memory, increased oxidative-nitritive stress and induced cholinergic hypofunction in rats. Chronic treatment with vinpocetine (5, 10 and 20 mg/kg i.p.) for 21 days following first i.c.v. streptozotocin infusion significantly improved learning and memory in Morris water maze and passive avoidance paradigms. Further, vinpocetine significantly reduced the oxidative-nitritive stress, as evidenced by decrease in malondialdehyde (MDA) and nitrite levels, and restored the reduced glutathione (GSH) levels. Significant increase in acetylcholinesterase activity and lactate dehydrogenase levels was observed in the present model indicating cholinergic hypofunction and increase in neuronal cell damage. Chronic treatment with vinpocetine also reduced significantly the increase in acetylcholinesterase activity and lactate dehydrogenase levels indicating restorative capacity of vinpocetine with respect to cholinergic functions and preventing the neuronal damage. The observed beneficial effects of vinpocetine on spatial memory may be due to its ability to favorably modulate cholinergic functions, prevent neuronal cell damage and possibly through its antioxidant mechanism also.

  12. Secrets of the lac operon. Glucose hysteresis as a mechanism in dietary restriction, aging and disease.

    PubMed

    Mobbs, Charles V; Mastaitis, Jason W; Zhang, Minhua; Isoda, Fumiko; Cheng, Hui; Yen, Kelvin

    2007-01-01

    Elevated blood glucose associated with diabetes produces progressive and apparently irreversible damage to many cell types. Conversely, reduction of glucose extends life span in yeast, and dietary restriction reduces blood glucose. Therefore it has been hypothesized that cumulative toxic effects of glucose drive at least some aspects of the aging process and, conversely, that protective effects of dietary restriction are mediated by a reduction in exposure to glucose. The mechanisms mediating cumulative toxic effects of glucose are suggested by two general principles of metabolic processes, illustrated by the lac operon but also observed with glucose-induced gene expression. First, metabolites induce the machinery of their own metabolism. Second, induction of gene expression by metabolites can entail a form of molecular memory called hysteresis. When applied to glucose-regulated gene expression, these two principles suggest a mechanism whereby repetitive exposure to postprandial excursions of glucose leads to an age-related increase in glycolytic capacity (and reduction in beta-oxidation of free fatty acids), which in turn leads to an increased generation of oxidative damage and a decreased capacity to respond to oxidative damage, independent of metabolic rate. According to this mechanism, dietary restriction increases life span and reduces pathology by reducing exposure to glucose and therefore delaying the development of glucose-induced glycolytic capacity.

  13. Prophylaxis with Bacopa monnieri attenuates acrylamide induced neurotoxicity and oxidative damage via elevated antioxidant function.

    PubMed

    Shinomol, George Kunnel; Raghunath, Narayanareddy; Bharath, Muchukunte Mukunda Srinivas; Muralidhara

    2013-03-01

    Acrylamide (ACR) is a water-soluble, vinyl monomer that has multiple chemical and industrial applications. Exposure to ACR causes neuropathy and associated neurological defects including gait abnormalities and skeletal muscle weakness, due to impaired neurotransmitter release and eventual neurodegeneration. Using in vivo and in vitro models, we examined whether oxidative events are involved in ACR-mediated neurotoxicity and whether these could be prevented by natural plant extracts. Administration (i.p.) of ACR in mice (40 mg/kg bw/ d for 5d) induced significant oxidative damage in the brain cortex and liver as evidenced by elevated lipid peroxidation, reactive oxygen species and protein carbonyls. This was associated with lowered antioxidant activities including antioxidant enzymes (catalase, glutathione-s-transferase) and reduced glutathione (GSH) compared to untreated controls. Similarly, exposure of N27 neuronal cells in culture to ACR (1-5 mM) caused dose-dependent neuronal death and lowered GSH. Interestingly, dietary supplementation with the leaf powder of Bacopa monnieri (BM) (which possesses neuroprotective properties and nootropic activity) in mice for 30 days offered significant protection against ACR toxicity and oxidative damage in vivo. Similarly, pretreatment with BM protected the N27 cells against ACR-induced cell death and associated oxidative damage. Co-treatment and pre-treatment of Drosophila melanogaster with BM extract protected against ACR-induced locomotor dysfunction and GSH depletion. We infer that BM displays prophylactic effects against ACR induced oxidative damage and neurotoxicity with potential therapeutic application in human pathology associated with neuropathy.

  14. The Mediterranean diet improves the systemic lipid and DNA oxidative damage in metabolic syndrome individuals. A randomized, controlled, trial.

    PubMed

    Mitjavila, Maria Teresa; Fandos, Marta; Salas-Salvadó, Jordi; Covas, María-Isabel; Borrego, Silvia; Estruch, Ramón; Lamuela-Raventós, Rosa; Corella, Dolores; Martínez-Gonzalez, Miguel Ángel; Sánchez, Julia M; Bulló, Mónica; Fitó, Montserrat; Tormos, Carmen; Cerdá, Concha; Casillas, Rosario; Moreno, Juan José; Iradi, Antonio; Zaragoza, Cristóbal; Chaves, Javier; Sáez, Guillermo T

    2013-04-01

    Metabolic syndrome (MetS), in which a non-classic feature is an increase in systemic oxidative biomarkers, presents a high risk of diabetes and cardiovascular disease (CVD). Adherence to the Mediterranean Diet (MedDiet) is associated with a reduced risk of MetS. However, the effect of the MedDiet on biomarkers for oxidative damage has not been assessed in MetS individuals. We have investigated the effect of the MedDiet on systemic oxidative biomarkers in MetS individuals. Randomized, controlled, parallel clinical trial in which 110 female with MetS, aged 55-80, were recruited into a large trial (PREDIMED Study) to test the efficacy of the traditional MedDiet on the primary prevention of CVD. Participants were assigned to a low-fat diet or two traditional MedDiets (MedDiet + virgin olive oil or MedDiet + nuts). Both MedDiet group participants received nutritional education and either free extra virgin olive oil for all the family (1 L/week), or free nuts (30 g/day). Diets were ad libitum. Changes in urine levels of F2-Isoprostane (F2-IP) and the DNA damage base 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG) were evaluated at 1-year trial. After 1-year urinary F2-IP decreased in all groups, the decrease in MedDiet groups reaching a borderline significance versus that of the Control group. Urinary 8-oxo-dG was also reduced in all groups, with a higher decrease in both MedDiet groups versus the Control one (P < 0.001). MedDiet reduces oxidative damage to lipids and DNA in MetS individuals. Data from this study provide evidence to recommend the traditional MedDiet as a useful tool in the MetS management. Copyright © 2012 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  15. Protective effect of metronidazole on uncoupling mitochondrial oxidative phosphorylation induced by NSAID: a new mechanism.

    PubMed

    Leite, A Z; Sipahi, A M; Damião, A O; Coelho, A M; Garcez, A T; Machado, M C; Buchpiguel, C A; Lopasso, F P; Lordello, M L; Agostinho, C L; Laudanna, A A

    2001-02-01

    The pathogenesis of non-steroidal anti-inflammatory drug (NSAID) enteropathy is complex. It involves uncoupling of mitochondrial oxidative phosphorylation which alters the intercellular junction and increases intestinal permeability with consequent intestinal damage. Metronidazole diminishes the inflammation induced by indomethacin but the mechanisms remain speculative. A direct effect on luminal bacteria has traditionally been thought to account for the protective effect of metronidazole. However, a protective effect of metronidazole on mitochondrial oxidative phosphorylation has never been tested. To assess the protective effect of metronidazole on mitochondrial uncoupling induced by indomethacin and also on the increased intestinal permeability and macroscopic damage. The protective effect of metronidazole was evaluated in rats given indomethacin; a macroscopic score was devised to quantify intestinal lesions, and intestinal permeability was measured by means of (51)Cr-ethylenediaminetetraacetic acid. The protective effect of metronidazole against mitochondrial uncoupling induced by indomethacin was assessed using isolated coupled rat liver mitochondria obtained from rats pretreated with metronidazole or saline. Metronidazole significantly reduced the macroscopic intestinal damage and increase in intestinal permeability induced by indomethacin; furthermore, at the mitochondrial level, it significantly reduced the increase in oxygen consumption in state 4 induced by indomethacin and caused less reduction of the respiratory control rate. Our study confirmed the beneficial effects of metronidazole on intestinal damage and intestinal permeability, and demonstrated, for the first time, a direct protective effect of metronidazole on uncoupling of mitochondrial oxidative phosphorylation caused by NSAIDs.

  16. Oral administration of vitamin C prevents alveolar bone resorption induced by high dietary cholesterol in rats.

    PubMed

    Sanbe, Toshihiro; Tomofuji, Takaaki; Ekuni, Daisuke; Azuma, Tetsuji; Tamaki, Naofumi; Yamamoto, Tatsuo

    2007-11-01

    A high-cholesterol diet stimulates alveolar bone resorption, which may be induced via tissue oxidative damage. Vitamin C reduces tissue oxidative damage by neutralizing free radicals and scavenging hydroxyl radicals, and its antioxidant effect may offer the clinical benefit of preventing alveolar bone resorption in cases of hyperlipidemia. We examined whether vitamin C could suppress alveolar bone resorption in rats fed a high-cholesterol diet. In this 12-week study, rats were divided into four groups: a control group (fed a regular diet) and three experimental groups (fed a high-cholesterol diet supplemented with 0, 1, or 2 g/l vitamin C). Vitamin C was provided by adding it to the drinking water. The bone mineral density of the alveolar bone was analyzed by microcomputerized tomography. As an index of tissue oxidative damage, the 8-hydroxydeoxyguanosine level in the periodontal tissue was determined using a competitive enzyme-linked immunosorbent assay. Hyperlipidemia, induced by a high-cholesterol diet, decreased rat alveolar bone density and increased the number of tartrate-resistant acid phosphatase-positive osteoclasts. The expression of 8-hydroxydeoxyguanosine was upregulated in the periodontal tissues. Intake of vitamin C reduced the effect of a high-cholesterol diet on alveolar bone density and osteoclast differentiation and decreased periodontal 8-hydroxydeoxyguanosine expression. In the rat model, vitamin C suppressed alveolar bone resorption, induced by high dietary cholesterol, by decreasing the oxidative damage of periodontal tissue.

  17. Oxidative damage mediated iNOS and UCP-2 upregulation in rat brain after sub-acute cyanide exposure: dose and time-dependent effects.

    PubMed

    Bhattacharya, Rahul; Singh, Poonam; John, Jebin Jacob; Gujar, Niranjan L

    2018-04-03

    Cyanide-induced chemical hypoxia is responsible for pronounced oxidative damage in the central nervous system. The disruption of mitochondrial oxidative metabolism has been associated with upregulation of uncoupling proteins (UCPs). The present study addresses the dose- and time-dependent effect of sub-acute cyanide exposure on various non-enzymatic and enzymatic oxidative stress markers and their correlation with inducible-nitric oxide synthase (iNOS) and uncoupling protein-2 (UCP-2) expression. Animals received (oral) triple distilled water (vehicle control), 0.25 LD50 potassium cyanide (KCN) or 0.50 LD50 KCN daily for 21 d. Animals were sacrificed on 7, 14 and 21 d post-exposure to measure serum cyanide and nitrite, and brain malondialdehyde (MDA), reduced glutathione (GSH), glutathione disulfide (GSSG), cytochrome c oxidase (CCO), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR) and catalase (CA) levels, together with iNOS and UCP-2 expression, and DNA damage. The study revealed that a dose- and time-dependent increase in cyanide concentration was accompanied by corresponding CCO inhibition and elevated MDA levels. Decrease in GSH levels was not followed by reciprocal change in GSSG levels. Diminution of SOD, GPx, GR and CA activity was congruent with elevated nitrite levels and upregulation of iNOS and UCP-2 expression, without any DNA damage. It was concluded that long-term cyanide exposure caused oxidative stress, accompanied by upregulation of iNOS. The upregulation of UCP-2 further sensitized the cells to cyanide and accentuated the oxidative stress, which was independent of DNA damage.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waldhoff, Stephanie T.; Anthoff, David; Rose, Steven K.

    We use FUND 3.8 to estimate the social cost of four greenhouse gases: carbon dioxide, methane, nitrous oxide, and sulphur hexafluoride emissions. The damage potential for each gas—the ratio of the social cost of the non-carbon dioxide greenhouse gas to the social cost of carbon dioxide—is also estimated. The damage potentials are compared to several metrics, focusing in particular on the global warming potentials, which are frequently used to measure the trade-off between gases in the form of carbon dioxide equivalents. We find that damage potentials could be significantly higher than global warming potentials. This finding implies that previous papersmore » have underestimated the relative importance of reducing non-carbon dioxide greenhouse gas emissions from an economic damage perspective. We show results for a range of sensitivity analyses: carbon dioxide fertilization on agriculture productivity, terrestrial feedbacks, climate sensitivity, discounting, equity weighting, and socioeconomic and emissions scenarios. The sensitivity of the results to carbon dioxide fertilization is a primary focus as it is an important element of climate change that has not been considered in much of the previous literature. We estimate that carbon dioxide fertilization has a large positive impact that reduces the social cost of carbon dioxide with a much smaller effect on the other greenhouse gases. As a result, our estimates of the damage potentials of methane and nitrous oxide are much higher compared to estimates that ignore carbon dioxide fertilization. As a result, our base estimates of the damage potential for methane and nitrous oxide that include carbon dioxide fertilization are twice their respective global warming potentials. Our base estimate of the damage potential of sulphur hexafluoride is similar to the one previous estimate, both almost three times the global warming potential.« less

  19. Direct participation of DNA in the formation of singlet oxygen and base damage under UVA irradiation.

    PubMed

    Yagura, Teiti; Schuch, André Passaglia; Garcia, Camila Carrião Machado; Rocha, Clarissa Ribeiro Reily; Moreno, Natália Cestari; Angeli, José Pedro Friedmann; Mendes, Davi; Severino, Divinomar; Bianchini Sanchez, Angelica; Di Mascio, Paolo; de Medeiros, Marisa Helena Gennari; Menck, Carlos Frederico Martins

    2017-07-01

    UVA light is hardly absorbed by the DNA molecule, but recent works point to a direct mechanism of DNA lesion by these wavelengths. UVA light also excite endogenous chromophores, which causes DNA damage through ROS. In this study, DNA samples were irradiated with UVA light in different conditions to investigate possible mechanisms involved in the induction of DNA damage. The different types of DNA lesions formed after irradiation were determined through the use of endonucleases, which recognize and cleave sites containing oxidized bases and cyclobutane pyrimidine dimers (CPDs), as well as through antibody recognition. The formation of 8-oxo-7,8-dihydro-2'-deoxyguanine (8-oxodG) was also studied in more detail using electrochemical detection. The results show that high NaCl concentration and concentrated DNA are capable of reducing the induction of CPDs. Moreover, concerning damage caused by oxidative stress, the presence of sodium azide and metal chelators reduce their induction, while deuterated water increases the amounts of oxidized bases, confirming the involvement of singlet oxygen in the generation of these lesions. Curiously, however, high concentrations of DNA also enhanced the formation of oxidized bases, in a reaction that paralleled the increase in the formation of singlet oxygen in the solution. This was interpreted as being due to an intrinsic photosensitization mechanism, depending directly on the DNA molecule to absorb UVA and generate singlet oxygen. Therefore, the DNA molecule itself may act as a chromophore for UVA light, locally producing a damaging agent, which may lead to even greater concerns about the deleterious impact of sunlight. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Improved methods of DNA extraction from human spermatozoa that mitigate experimentally-induced oxidative DNA damage.

    PubMed

    Xavier, Miguel J; Nixon, Brett; Roman, Shaun D; Aitken, Robert John

    2018-01-01

    Current approaches for DNA extraction and fragmentation from mammalian spermatozoa provide several challenges for the investigation of the oxidative stress burden carried in the genome of male gametes. Indeed, the potential introduction of oxidative DNA damage induced by reactive oxygen species, reducing agents (dithiothreitol or beta-mercaptoethanol), and DNA shearing techniques used in the preparation of samples for chromatin immunoprecipitation and next-generation sequencing serve to cofound the reliability and accuracy of the results obtained. Here we report optimised methodology that minimises, or completely eliminates, exposure to DNA damaging compounds during extraction and fragmentation procedures. Specifically, we show that Micrococcal nuclease (MNase) digestion prior to cellular lysis generates a greater DNA yield with minimal collateral oxidation while randomly fragmenting the entire paternal genome. This modified methodology represents a significant improvement over traditional fragmentation achieved via sonication in the preparation of genomic DNA from human spermatozoa for downstream applications, such as next-generation sequencing. We also present a redesigned bioinformatic pipeline framework adjusted to correctly analyse this form of data and detect statistically relevant targets of oxidation.

  1. Neuroprotection by Caffeine in Hyperoxia-Induced Neonatal Brain Injury

    PubMed Central

    Endesfelder, Stefanie; Weichelt, Ulrike; Strauß, Evelyn; Schlör, Anja; Sifringer, Marco; Scheuer, Till; Bührer, Christoph; Schmitz, Thomas

    2017-01-01

    Sequelae of prematurity triggered by oxidative stress and free radical-mediated tissue damage have coined the term “oxygen radical disease of prematurity”. Caffeine, a potent free radical scavenger and adenosine receptor antagonist, reduces rates of brain damage in preterm infants. In the present study, we investigated the effects of caffeine on oxidative stress markers, anti-oxidative response, inflammation, redox-sensitive transcription factors, apoptosis, and extracellular matrix following the induction of hyperoxia in neonatal rats. The brain of a rat pups at postnatal Day 6 (P6) corresponds to that of a human fetal brain at 28–32 weeks gestation and the neonatal rat is an ideal model in which to investigate effects of oxidative stress and neuroprotection of caffeine on the developing brain. Six-day-old Wistar rats were pre-treated with caffeine and exposed to 80% oxygen for 24 and 48 h. Caffeine reduced oxidative stress marker (heme oxygenase-1, lipid peroxidation, hydrogen peroxide, and glutamate-cysteine ligase catalytic subunit (GCLC)), promoted anti-oxidative response (superoxide dismutase, peroxiredoxin 1, and sulfiredoxin 1), down-regulated pro-inflammatory cytokines, modulated redox-sensitive transcription factor expression (Nrf2/Keap1, and NFκB), reduced pro-apoptotic effectors (poly (ADP-ribose) polymerase-1 (PARP-1), apoptosis inducing factor (AIF), and caspase-3), and diminished extracellular matrix degeneration (matrix metalloproteinases (MMP) 2, and inhibitor of metalloproteinase (TIMP) 1/2). Our study affirms that caffeine is a pleiotropic neuroprotective drug in the developing brain due to its anti-oxidant, anti-inflammatory, and anti-apoptotic properties. PMID:28106777

  2. Neuroprotection by Caffeine in Hyperoxia-Induced Neonatal Brain Injury.

    PubMed

    Endesfelder, Stefanie; Weichelt, Ulrike; Strauß, Evelyn; Schlör, Anja; Sifringer, Marco; Scheuer, Till; Bührer, Christoph; Schmitz, Thomas

    2017-01-18

    Sequelae of prematurity triggered by oxidative stress and free radical-mediated tissue damage have coined the term "oxygen radical disease of prematurity". Caffeine, a potent free radical scavenger and adenosine receptor antagonist, reduces rates of brain damage in preterm infants. In the present study, we investigated the effects of caffeine on oxidative stress markers, anti-oxidative response, inflammation, redox-sensitive transcription factors, apoptosis, and extracellular matrix following the induction of hyperoxia in neonatal rats. The brain of a rat pups at postnatal Day 6 (P6) corresponds to that of a human fetal brain at 28-32 weeks gestation and the neonatal rat is an ideal model in which to investigate effects of oxidative stress and neuroprotection of caffeine on the developing brain. Six-day-old Wistar rats were pre-treated with caffeine and exposed to 80% oxygen for 24 and 48 h. Caffeine reduced oxidative stress marker (heme oxygenase-1, lipid peroxidation, hydrogen peroxide, and glutamate-cysteine ligase catalytic subunit (GCLC)), promoted anti-oxidative response (superoxide dismutase, peroxiredoxin 1, and sulfiredoxin 1), down-regulated pro-inflammatory cytokines, modulated redox-sensitive transcription factor expression (Nrf2/Keap1, and NFκB), reduced pro-apoptotic effectors (poly (ADP-ribose) polymerase-1 (PARP-1), apoptosis inducing factor (AIF), and caspase-3), and diminished extracellular matrix degeneration (matrix metalloproteinases (MMP) 2, and inhibitor of metalloproteinase (TIMP) 1/2). Our study affirms that caffeine is a pleiotropic neuroprotective drug in the developing brain due to its anti-oxidant, anti-inflammatory, and anti-apoptotic properties.

  3. A single portion of blueberry (Vaccinium corymbosum L) improves protection against DNA damage but not vascular function in healthy male volunteers.

    PubMed

    Del Bó, Cristian; Riso, Patrizia; Campolo, Jonica; Møller, Peter; Loft, Steffen; Klimis-Zacas, Dorothy; Brambilla, Ada; Rizzolo, Anna; Porrini, Marisa

    2013-03-01

    It has been suggested that anthocyanin-rich foods may exert antioxidant effects and improve vascular function as demonstrated mainly in vitro and in the animal model. Blueberries are rich sources of anthocyanins and we hypothesized that their intake could improve cell protection against oxidative stress and affect endothelial function in humans. The aim of the study was to investigate the effect of one portion (300 g) of blueberries on selected markers of oxidative stress and antioxidant protection (endogenous and oxidatively induced DNA damage) and of vascular function (changes in peripheral arterial tone and plasma nitric oxide levels) in male subjects. In a randomized cross-over design, separated by a wash out period ten young volunteers received one portion of blueberries ground by blender or one portion of a control jelly. Before and after consumption (at 1, 2, and 24 hours), blood samples were collected and used to evaluate anthocyanin absorption (through mass spectrometry), endogenous and H(2)O(2)-induced DNA damage in blood mononuclear cells (through the comet assay), and plasma nitric oxide concentrations (through a fluorometric assay). Peripheral arterial function was assessed by means of Endo-PAT 2000. Blueberries significantly reduced (P < .01) H(2)O(2)-induced DNA damage (-18%) 1 hour after blueberry consumption compared to control. No significant differences were observed for endogenous DNA damage, peripheral arterial function and nitric oxide levels after blueberry intake. In conclusion, one portion of blueberries seems sufficient to improve cell antioxidant defense against DNA damage, but further studies are necessary to understand their role on vascular function. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Nitric Oxide Donors as Neuroprotective Agents after an Ischemic Stroke-Related Inflammatory Reaction

    PubMed Central

    Rojas-Mayorquín, Argelia E.; Ortuño-Sahagún, Daniel

    2013-01-01

    Cerebral ischemia initiates a cascade of detrimental events including glutamate-associated excitotoxicity, intracellular calcium accumulation, formation of Reactive oxygen species (ROS), membrane lipid degradation, and DNA damage, which lead to the disruption of cellular homeostasis and structural damage of ischemic brain tissue. Cerebral ischemia also triggers acute inflammation, which exacerbates primary brain damage. Therefore, reducing oxidative stress (OS) and downregulating the inflammatory response are options that merit consideration as potential therapeutic targets for ischemic stroke. Consequently, agents capable of modulating both elements will constitute promising therapeutic solutions because clinically effective neuroprotectants have not yet been discovered and no specific therapy for stroke is available to date. Because of their ability to modulate both oxidative stress and the inflammatory response, much attention has been focused on the role of nitric oxide donors (NOD) as neuroprotective agents in the pathophysiology of cerebral ischemia-reperfusion injury. Given their short therapeutic window, NOD appears to be appropriate for use during neurosurgical procedures involving transient arterial occlusions, or in very early treatment of acute ischemic stroke, and also possibly as complementary treatment for neurodegenerative diseases such as Parkinson or Alzheimer, where oxidative stress is an important promoter of damage. In the present paper, we focus on the role of NOD as possible neuroprotective therapeutic agents for ischemia/reperfusion treatment. PMID:23691263

  5. Potential of the homeopathic remedy, Arnica Montana 30C, to reduce DNA damage in Escherichia coli exposed to ultraviolet irradiation through up-regulation of nucleotide excision repair genes.

    PubMed

    Das, Sreemanti; Saha, Santu Kumar; De, Arnab; Das, Durba; Khuda-Bukhsh, Anisur Rahman

    2012-03-01

    To examine to what degree an ultra-highly diluted homeopathic remedy, Arnica Montana 30C (AM-30C), used in the treatment of shock and injury, can modulate the expression of nucleotide excision repair genes in Escherichia coli exposed to ultraviolet (UV) irradiation. E. coli were cultured to their log phase in a standard Luria-Bertani medium and then exposed to sublethal doses of UV irradiation at 25 and 50 J/m(2) for 22.5 and 45 s, respectively. The UV-exposed bacteria were then supplemented with either AM-30C (drug) or placebo (P-30C). The drug-treated and placebo-treated bacteria were subjected to assay for DNA damage and oxidative stress 90 min after UV exposure. Several protocols like comet assay, gel electrophoresis for DNA ladder and intracellular reactive oxygen species (ROS) generation, and biomarker measurement like superoxide dismutase (SOD), catalase (CAT) and reduced glutathione (GSH) were conducted. The mRNA expressions of the excision repair genes like ultraviolet repair uvrA, B and C genes (or also known as excision repair genes) were estimated by reverse transcription-polymerase chain reaction method. The UV-exposed bacteria showed DNA damage and oxidative stress, as revealed by an increase in ROS generation, and a decrease in SOD, CAT and GSH activities. As compared to placebo, the AM-30C-treated bacteria showed less DNA damage and oxidative stress as manifested by a decrease in ROS generation, and an increase in SOD, CAT and GSH activities. AM-30C also up-regulated the expression of repair genes as compared to the control. AM-30C helped repair the DNA damage through up-regulation of repair genes and also ameliorated the oxidative stress through the reduction of ROS generation and suitable modulation of anti-oxidative stress enzymes.

  6. Possible Involvement of Nitric Oxide Modulatory Mechanisms in the Neuroprotective Effect of Centella asiatica Against Sleep Deprivation Induced Anxiety Like Behaviour, Oxidative Damage and Neuroinflammation.

    PubMed

    Chanana, Priyanka; Kumar, Anil

    2016-04-01

    Sleep deprivation (SD) is an experience of inadequate or poor quality of sleep that may produce significant alterations in multiple neural systems. Centella asiatica (CA) is a psychoactive medicinal herb with immense therapeutic potential. The present study was designed to explore the possible nitric oxide (NO) modulatory mechanism in the neuroprotective effect of CA against SD induced anxiety like behaviour, oxidative damage and neuroinflammation. Male laca mice were sleep deprived for 72 h, and CA (150 and 300 mg/kg) was administered alone and in combination with NO modulators for 8 days, starting five days before 72-h SD exposure. Various behavioural (locomotor activity, elevated plus maze) and biochemical (lipid peroxidation, reduced glutathione, catalase, nitrite levels and superoxide dismutase activity), neuroinflammation marker (TNF-alpha) were assessed subsequently. CA (150 and 300 mg/kg) treatment for 8 days significantly improved locomotor activity, anti-anxiety like effect and attenuated oxidative damage and TNF α level as compared to sleep-deprived 72-h group. Also while the neuroprotective effect of CA was increased by NO antagonists, it was diminished by NO agonists. The present study suggests that NO modulatory mechanism could be involved in the protective effect of CA against SD-induced anxiety-like behaviour, oxidative damage and neuroinflammation in mice. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Nestling rearing is antioxidant demanding in female barn swallows ( Hirundo rustica)

    NASA Astrophysics Data System (ADS)

    Costantini, David; Bonisoli-Alquati, Andrea; Rubolini, Diego; Caprioli, Manuela; Ambrosini, Roberto; Romano, Maria; Saino, Nicola

    2014-07-01

    Reproduction is a demanding activity, since organisms must produce and, in some cases, protect and provision their progeny. Hence, a central tenet of life-history theory predicts that parents have to trade parental care against body maintenance. One physiological cost thought to be particularly important as a modulator of such trade-offs is oxidative stress. However, evidence in favour of the hypothesis of an oxidative cost of reproduction is contradictory. In this study, we manipulated the brood size of wild barn swallows Hirundo rustica soon after hatching of their nestlings to test whether an increase in nestling rearing effort translates into an increased oxidative damage and a decreased antioxidant protection at the end of the nestling rearing period. We found that, while plasma oxidative damage was unaffected by brood size enlargement, females rearing enlarged broods showed a decrease in plasma non-enzymatic antioxidants during the nestling rearing period. This was not the case among females rearing reduced broods and among males assigned to either treatment. Moreover, individuals with higher plasma oxidative damage soon after the brood size manipulation had lower plasma non-enzymatic antioxidants at the end of the nestling rearing period, suggesting that non-enzymatic antioxidants were depleted to buffer the negative effects of high oxidative damage. Our findings point to antioxidant depletion as a potential mechanism mediating the cost of reproduction among female birds.

  8. XPD localizes in mitochondria and protects the mitochondrial genome from oxidative DNA damage.

    PubMed

    Liu, Jing; Fang, Hongbo; Chi, Zhenfen; Wu, Zan; Wei, Di; Mo, Dongliang; Niu, Kaifeng; Balajee, Adayabalam S; Hei, Tom K; Nie, Linghu; Zhao, Yongliang

    2015-06-23

    Xeroderma pigmentosum group D (XPD/ERCC2) encodes an ATP-dependent helicase that plays essential roles in both transcription and nucleotide excision repair of nuclear DNA, however, whether or not XPD exerts similar functions in mitochondria remains elusive. In this study, we provide the first evidence that XPD is localized in the inner membrane of mitochondria, and cells under oxidative stress showed an enhanced recruitment of XPD into mitochondrial compartment. Furthermore, mitochondrial reactive oxygen species production and levels of oxidative stress-induced mitochondrial DNA (mtDNA) common deletion were significantly elevated, whereas capacity for oxidative damage repair of mtDNA was markedly reduced in both XPD-suppressed human osteosarcoma (U2OS) cells and XPD-deficient human fibroblasts. Immunoprecipitation-mass spectrometry analysis was used to identify interacting factor(s) with XPD and TUFM, a mitochondrial Tu translation elongation factor was detected to be physically interacted with XPD. Similar to the findings in XPD-deficient cells, mitochondrial common deletion and oxidative damage repair capacity in U2OS cells were found to be significantly altered after TUFM knock-down. Our findings clearly demonstrate that XPD plays crucial role(s) in protecting mitochondrial genome stability by facilitating an efficient repair of oxidative DNA damage in mitochondria. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Bilirubin treatment suppresses pulmonary inflammation in a rat model of smoke-induced emphysema.

    PubMed

    Wei, Jingjing; Zhao, Hui; Fan, Guoquan; Li, Jianqiang

    2015-09-18

    Cigarette smoking is a significant risk factor for emphysema, which is characterized by airway inflammation and oxidative damage. To assess the capacity of bilirubin to protect against smoke-induced emphysema. Smoking status and bilirubin levels were recorded in 58 patients with chronic obstructive pulmonary diseases (COPD) and 71 non-COPD participants. The impact of smoking on serum bilirubin levels and exogenous bilirubin (20 mg/kg/day) on pulmonary injury was assessed in a rat model of smoking-induced emphysema. At sacrifice lung histology, airway leukocyte accumulation and cytokine and chemokine levels in serum, bronchoalveolar lavage fluid (BALF) and lung were analyzed. Oxidative lipid damage and anti-oxidative components was assessed by measuring malondialdehyde, superoxide dismutase (SOD) activity and glutathione. Total serum bilirubin levels were lower in smokers with or without COPD than non-smoking patients without COPD (P < 0.05). Indirect serum bilirubin levels were lower in COPD patients than patients without COPD (P < 0.05). In rats, cigarette smoke reduced serum total and indirect bilirubin levels. Administration of bilirubin reduced mean linear intercept and mean alveoli area, increased mean alveoli number, reduced macrophage, neutrophil and TNF-α content of BALF, and increased BALF and serum IL-10 level, but lowered local and systemic CCL2, CXCL2, CXCL8 and IL-17 levels. Bilirubin suppressed the smoke-induced systemic and regional oxidative lipid damage associated with increased SOD activity. Bilirubin attenuated smoking-induced pulmonary injury by suppressing inflammatory cell recruitment and pro-inflammatory cytokine secretion, increasing anti-inflammatory cytokine levels, and anti-oxidant SOD activity in a rat model of smoke-induced emphysema. Copyright © 2015. Published by Elsevier Inc.

  10. Urinary biomarkers of oxidative damage in Maple syrup urine disease: the L-carnitine role.

    PubMed

    Guerreiro, Gilian; Mescka, Caroline Paula; Sitta, Angela; Donida, Bruna; Marchetti, Desirèe; Hammerschmidt, Tatiane; Faverzani, Jessica; Coelho, Daniella de Moura; Wajner, Moacir; Dutra-Filho, Carlos Severo; Vargas, Carmen Regla

    2015-05-01

    Maple syrup urine disease (MSUD) is a disorder of branched-chain amino acids (BCAA). The defect in the branched-chain α-keto acid dehydrogenase complex activity leads to an accumulation of these compounds and their corresponding α-keto-acids and α-hydroxy-acids. Studies have shown that oxidative stress may be involved in neuropathology of MSUD. L-carnitine (L-car), which has demonstrated an important role as antioxidant by reducing and scavenging free radicals formation and by enhancing the activity of antioxidant enzymes, have been used in the treatment of some metabolic rare disorders. This study evaluated the oxidative stress parameters, di-tyrosine, isoprostanes and antioxidant capacity, in urine of MSUD patients under protein-restricted diet supplemented or not with L-car capsules at a dose of 50 mg kg(-1) day(-1). It was also determined urinary α-keto isocaproic acid levels as well as blood free L-car concentrations in blood. It was found a deficiency of carnitine in patients before the L-car supplementation. Significant increases of di-tyrosine and isoprostanes, as well as reduced antioxidant capacity, were observed before the treatment with L-car. The L-car supplementation induced beneficial effects on these parameters reducing the di-tyrosine and isoprostanes levels and increasing the antioxidant capacity. It was also showed a significant increase in urinary of α-ketoisocaproic acid after 2 months of L-car treatment, compared to control group. In conclusion, our results suggest that L-car may have beneficial effects in the treatment of MSUD by preventing oxidative damage to the cells and that urine can be used to monitorize oxidative damage in patients affected by this disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Selenium Polysaccharide SPMP-2a from Pleurotus geesteranus Alleviates H2O2-Induced Oxidative Damage in HaCaT Cells

    PubMed Central

    Zhou, Cheng; Huang, Shoucheng

    2017-01-01

    Selenium- (Se-) enriched polysaccharide SPMP-2a was extracted and purified from Pleurotus geesteranus. SPMP-2a is a white flocculent polysaccharide and soluble in water, with a molecular weight of 3.32 × 104 Da. Fourier transform infrared spectroscopy spectral analysis indicated that it belongs to an acid Se polysaccharide with α-D-glucopyranoside bond. The effects of Se polysaccharide SPMP-2a in P. geesteranus against hydrogen peroxide- (H2O2-) induced oxidative damage in human keratinocytes (HaCaT) cells were evaluated further. Reduced cell viability and elevated apoptotic rates in H2O2-treated HaCaT cells were proven by MTT and flow cytometry assays. Hoechst 33342 staining revealed chromatin condensations in the nuclei of HaCaT cells. However, with the addition of SPMP-2a, cell viability improved, nuclear condensation declined, and cell apoptotic rates dropped significantly. Ultrastructural observation consistently revealed that treatments with SPMP-2a reduced the number of swollen and vacuolar mitochondria in the H2O2-treated cells compared with the controls. Furthermore, SPMP-2a increased the superoxide dismutase (SOD) and catalase (CAT) activities and reduced reactive oxygen species (ROS) content. Western blot analysis showed that SPMP-2a treatment effectively increased B-cell lymphoma 2 (Bcl-2) protein expression. Therefore, SPMP-2a could improve cellular antioxidant enzyme activities, reduce ROS levels, and increase Bcl-2 protein expression levels, thereby reducing cell apoptosis and protecting HaCaT cells from H2O2-induced oxidative damage. PMID:28293636

  12. Screening for oxidative damage by engineered nanomaterials: a comparative evaluation of FRAS and DCFH

    NASA Astrophysics Data System (ADS)

    Pal, Anoop K.; Hsieh, Shu-Feng; Khatri, Madhu; Isaacs, Jacqueline A.; Demokritou, Philip; Gaines, Peter; Schmidt, Daniel F.; Rogers, Eugene J.; Bello, Dhimiter

    2014-02-01

    Several acellular assays are routinely used to measure oxidative stress elicited by engineered nanomaterials (ENMs), yet little comparative evaluations of such methods exist. This study compares for the first time the performance of the dichlorofluorescein (DCFH) assay which measures reactive oxygen species (ROS) generation, to that of the ferric-reducing ability of serum (FRAS) assay, which measures biological oxidant damage in serum. A diverse set of 28 commercially important and extensively characterized ENMs were tested on both the assays. Intracellular oxidative stress was also assessed on a representative subset of seven ENMs in THP-1 (phorbol 12-myristate 13-acetate matured human monocytes) cells. Associations between assay responses and ENM physicochemical properties were assessed via correlation and regression analysis. DCFH correlated strongly with FRAS after dose normalization for mass ( R 2 = 0.78) and surface area ( R 2 = 0.68). Only 10/28 ENMs were positive in DCFH versus 21/28 in FRAS. Both assays were strongly associated with specific surface area and transition metal content. Qualitatively, a similar response ranking was observed for acellular FRAS and intracellular reduced:oxidized glutathione ratio (GSH:GSSG) in cells. Quantitatively, weak correlation was found between intracellular GSSG and FRAS or DCFH ( R 2 < 0.25) even after calculating effective dose to cells. The FRAS assay was more sensitive than DCFH, especially for ENMs with low to moderate oxidative damage potential, and may serve as a more biologically relevant substitute for acellular ROS measurements of ENMs. Further in vitro and in vivo validations of FRAS against other toxicological endpoints with larger datasets are recommended.

  13. Persistent damaged bases in DNA allow mutagenic break repair in Escherichia coli.

    PubMed

    Moore, Jessica M; Correa, Raul; Rosenberg, Susan M; Hastings, P J

    2017-07-01

    Bacteria, yeast and human cancer cells possess mechanisms of mutagenesis upregulated by stress responses. Stress-inducible mutagenesis potentially accelerates adaptation, and may provide important models for mutagenesis that drives cancers, host pathogen interactions, antibiotic resistance and possibly much of evolution generally. In Escherichia coli repair of double-strand breaks (DSBs) becomes mutagenic, using low-fidelity DNA polymerases under the control of the SOS DNA-damage response and RpoS general stress response, which upregulate and allow the action of error-prone DNA polymerases IV (DinB), II and V to make mutations during repair. Pol IV is implied to compete with and replace high-fidelity DNA polymerases at the DSB-repair replisome, causing mutagenesis. We report that up-regulated Pol IV is not sufficient for mutagenic break repair (MBR); damaged bases in the DNA are also required, and that in starvation-stressed cells, these are caused by reactive-oxygen species (ROS). First, MBR is reduced by either ROS-scavenging agents or constitutive activation of oxidative-damage responses, both of which reduce cellular ROS levels. The ROS promote MBR other than by causing DSBs, saturating mismatch repair, oxidizing proteins, or inducing the SOS response or the general stress response. We find that ROS drive MBR through oxidized guanines (8-oxo-dG) in DNA, in that overproduction of a glycosylase that removes 8-oxo-dG from DNA prevents MBR. Further, other damaged DNA bases can substitute for 8-oxo-dG because ROS-scavenged cells resume MBR if either DNA pyrimidine dimers or alkylated bases are induced. We hypothesize that damaged bases in DNA pause the replisome and allow the critical switch from high fidelity to error-prone DNA polymerases in the DSB-repair replisome, thus allowing MBR. The data imply that in addition to the indirect stress-response controlled switch to MBR, a direct cis-acting switch to MBR occurs independently of DNA breakage, caused by ROS oxidation of DNA potentially regulated by ROS regulators.

  14. Persistent damaged bases in DNA allow mutagenic break repair in Escherichia coli

    PubMed Central

    Moore, Jessica M.; Correa, Raul; Rosenberg, Susan M.

    2017-01-01

    Bacteria, yeast and human cancer cells possess mechanisms of mutagenesis upregulated by stress responses. Stress-inducible mutagenesis potentially accelerates adaptation, and may provide important models for mutagenesis that drives cancers, host pathogen interactions, antibiotic resistance and possibly much of evolution generally. In Escherichia coli repair of double-strand breaks (DSBs) becomes mutagenic, using low-fidelity DNA polymerases under the control of the SOS DNA-damage response and RpoS general stress response, which upregulate and allow the action of error-prone DNA polymerases IV (DinB), II and V to make mutations during repair. Pol IV is implied to compete with and replace high-fidelity DNA polymerases at the DSB-repair replisome, causing mutagenesis. We report that up-regulated Pol IV is not sufficient for mutagenic break repair (MBR); damaged bases in the DNA are also required, and that in starvation-stressed cells, these are caused by reactive-oxygen species (ROS). First, MBR is reduced by either ROS-scavenging agents or constitutive activation of oxidative-damage responses, both of which reduce cellular ROS levels. The ROS promote MBR other than by causing DSBs, saturating mismatch repair, oxidizing proteins, or inducing the SOS response or the general stress response. We find that ROS drive MBR through oxidized guanines (8-oxo-dG) in DNA, in that overproduction of a glycosylase that removes 8-oxo-dG from DNA prevents MBR. Further, other damaged DNA bases can substitute for 8-oxo-dG because ROS-scavenged cells resume MBR if either DNA pyrimidine dimers or alkylated bases are induced. We hypothesize that damaged bases in DNA pause the replisome and allow the critical switch from high fidelity to error-prone DNA polymerases in the DSB-repair replisome, thus allowing MBR. The data imply that in addition to the indirect stress-response controlled switch to MBR, a direct cis-acting switch to MBR occurs independently of DNA breakage, caused by ROS oxidation of DNA potentially regulated by ROS regulators. PMID:28727736

  15. Vascular Ageing and Exercise: Focus on Cellular Reparative Processes.

    PubMed

    Ross, Mark D; Malone, Eva; Florida-James, Geraint

    2016-01-01

    Ageing is associated with an increased risk of developing noncommunicable diseases (NCDs), such as diabetes and cardiovascular disease (CVD). The increased risk can be attributable to increased prolonged exposure to oxidative stress. Often, CVD is preceded by endothelial dysfunction, which carries with it a proatherothrombotic phenotype. Endothelial senescence and reduced production and release of nitric oxide (NO) are associated with "vascular ageing" and are often accompanied by a reduced ability for the body to repair vascular damage, termed "reendothelialization." Exercise has been repeatedly shown to confer protection against CVD and diabetes risk and incidence. Regular exercise promotes endothelial function and can prevent endothelial senescence, often through a reduction in oxidative stress. Recently, endothelial precursors, endothelial progenitor cells (EPC), have been shown to repair damaged endothelium, and reduced circulating number and/or function of these cells is associated with ageing. Exercise can modulate both number and function of these cells to promote endothelial homeostasis. In this review we look at the effects of advancing age on the endothelium and these endothelial precursors and how exercise appears to offset this "vascular ageing" process.

  16. Mesenchymal stem cells improves survival in LPS-induced acute lung injury acting through inhibition of NETs formation.

    PubMed

    Pedrazza, Leonardo; Cunha, Aline Andrea; Luft, Carolina; Nunes, Nailê Karine; Schimitz, Felipe; Gassen, Rodrigo Benedetti; Breda, Ricardo Vaz; Donadio, Marcio Vinícius Fagundes; de Souza Wyse, Angela Terezinha; Pitrez, Paulo Marcio Condessa; Rosa, Jose Luis; de Oliveira, Jarbas Rodrigues

    2017-12-01

    Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are syndromes of acute hypoxemic respiratory failure resulting from a variety of direct and indirect injuries to the gas exchange parenchyma of the lungs. During the ALI, we have an increase release of proinflammatory cytokines and high reactive oxygen species (ROS) formation. These factors are responsible for the release and activation of neutrophil-derived proteases and the formation of neutrophil extracellular traps (NETs). The excessive increase in the release of NETs cause damage to lung tissue. Recent studies have studies involving the administration of mesenchymal stem cells (MSCs) for the treatment of experimental ALI has shown promising results. In this way, the objective of our study is to evaluate the ability of MSCs, in a lipopolysaccharide (LPS)-induced ALI model, to reduce inflammation, oxidative damage, and consequently decrease the release of NETs. Mice were submitted lung injury induced by intratracheal instillation of LPS and subsequently treated or not with MSCs. Treatment with MSCs was able to modulate pulmonary inflammation, decrease oxidative damage, and reduce the release of NETs. These benefits from treatment are evident when we observe a significant increase in the survival curve in the treated animals. Our results demonstrate that MSCs treatment is effective for the treatment of ALI. For the first time, it is described that MSCs can reduce the formation of NETs and an experimental model of ALI. This finding is directly related to these cells modulate the inflammatory response and oxidative damage in the course of the pathology. © 2017 Wiley Periodicals, Inc.

  17. Therapeutic effects of date palm (Phoenix dactylifera L.) pollen extract on cadmium-induced testicular toxicity.

    PubMed

    El-Neweshy, M S; El-Maddawy, Z K; El-Sayed, Y S

    2013-12-01

    Cadmium (Cd) is a well-known testicular toxicant. This study was designed to explore the long-term effects of a single low dose of Cd on spermatogenesis, and testicular dysfunction and oxidative stress, and the therapeutic potential of date palm pollen extract (DPP) in averting such reproductive damage. Adult male Wistar rats received a single intraperitoneal injection of CdCl2 (0 or 1 mg kg(-1) ). Twenty-four hours later, they started receiving DPP (0 or 40 mg kg(-1) ) orally, once daily for 56 consecutive days. Cd exposure caused significant reproductive damage via reduced weight of the reproductive organs, which includes spermatological damage (decreased sperm count and motility and increased rates of sperm abnormalities), increased oxidative stress (increased malondialdehyde and decreased reduced glutathione levels), histological alterations (necrosis, inefficient to completely arrest spermatogenesis and a reduced Johnsen's score) and decreased serum testosterone level. DPP restored spermatogenesis and attenuated the toxic effects of Cd on the reproductive system to the levels observed in the control animals. These findings support the hypothesis that the testis is particularly sensitive to Cd, which can cause testicular damage and infertility. Treatment with DPP can ameliorate the deleterious effects of Cd, probably by activating testicular endocrine and antioxidant systems. © 2012 Blackwell Verlag GmbH.

  18. Quercetin prevents chronic unpredictable stress induced behavioral dysfunction in mice by alleviating hippocampal oxidative and inflammatory stress.

    PubMed

    Mehta, Vineet; Parashar, Arun; Udayabanu, Malairaman

    2017-03-15

    It is now evident that chronic stress is associated with anxiety, depression and cognitive dysfunction and very few studies have focused on identifying possible methods to prevent these stress-induced disorders. Previously, we identified abundance of quercetin in Urtica dioica extract, which efficiently attenuated stress related complications. Therefore, current study was designed to investigate the effect of quercetin on chronic unpredicted stress (CUS) induced behavioral dysfunction, oxidative stress and neuroinflammation in the mouse hippocampus. Animals were subjected to unpredicted stress for 21days, during which 30mg/kg quercetin was orally administered to them. Effect of CUS and quercetin treatment on animal behavior was assessed between day 22-26. Afterward, the hippocampus was processed to evaluate neuronal damage, oxidative and inflammatory stress. Results revealed that stressed animals were highly anxious (Elevated Plus Maze and Open Field), showed depressive-like behavior (sucrose preference task), performed poorly in short-term and long-term associative memory task (passive avoidance step-through task) and displayed reduced locomotion (open field). Quercetin alleviated behavioral dysfunction in chronically stressed animals. Compared to CUS, quercetin treatment significantly reduced anxiety, attenuated depression, improved cognitive dysfunction and normalized locomotor activity. Further, CUS elevated the levels of oxidative stress markers (TBARS, nitric oxide), lowered antioxidants (total thiol, catalase), enhanced expression of pro-inflammatory cytokines (IL-6, TNF-α, IL-1β and COX-2) in the hippocampus and damaged hippocampal neurons. Quercetin treatment significantly lowered oxidative and inflammatory stress and prevented neural damage. In conclusion, quercetin can efficiently prevent stress induced neurological complications by rescuing brain from oxidative and inflammatory stress. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Resveratrol induces membrane and DNA disruption via pro-oxidant activity against Salmonella typhimurium.

    PubMed

    Lee, Wonjong; Lee, Dong Gun

    2017-07-22

    Resveratrol is a flavonoid found in various plants including grapes, which has been reported to be active against various pathogenic bacteria. However, antibacterial effects and mechanisms via pro-oxidant property of resveratrol remain unknown and speculative. This research investigated antibacterial mechanism of resveratrol against a food-borne human pathogen Salmonella typhimurium, and confirmed the cell death associated oxidative damage. Resveratrol increased outer membrane permeability and membrane depolarization. It also was observed DNA injury responses such as DNA fragmentation, increasing DNA contents and cell division inhibition. Intracellular ROS accumulation, GSH depletion and significant increased malondialdehyde levels were confirmed, which indicated pro-oxidant activity of resveratrol and oxidative stress. Furthermore, the observed lethal damages were reduced by antioxidant N-acetylcysteine treatment supported the view that resveratrol-induced oxidative stress stimulated S. typhimurium cell death. In conclusion, this study expands understanding on role of pro-oxidant property and insight into previously unrecognized oxygen-dependent anti-Salmonella mechanism on resveratrol. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Oxidative costs of reproduction in mouse strains selected for different levels of food intake and which differ in reproductive performance

    PubMed Central

    Jothery, Aqeel H. Al; Vaanholt, Lobke M.; Mody, Nimesh; Arnous, Anis; Lykkesfeldt, Jens; Bünger, Lutz; Hill, William G.; Mitchell, Sharon E.; Allison, David B.; Speakman, John R.

    2016-01-01

    Oxidative damage caused by reactive oxygen species has been hypothesised to underpin the trade-off between reproduction and somatic maintenance, i.e., the life-history-oxidative stress theory. Previous tests of this hypothesis have proved equivocal, and it has been suggested that the variation in responses may be related to the tissues measured. Here, we measured oxidative damage (protein carbonyls, 8-OHdG) and antioxidant protection (enzymatic antioxidant activity and serum antioxidant capacity) in multiple tissues of reproductive (R) and non-reproductive (N) mice from two mouse strains selectively bred for high (H) or low (L) food intake, which differ in their reproductive performance, i.e., H mice have increased milk energy output (MEO) and wean larger pups. Levels of oxidative damage were unchanged (liver) or reduced (brain and serum) in R versus N mice, and no differences in multiple measures of oxidative protection were found between H and L mice in liver (except for Glutathione Peroxidase), brain or mammary glands. Also, there were no associations between an individual’s energetic investment (e.g., MEO) and most of the oxidative stress measures detected in various tissues. These data are inconsistent with the oxidative stress theory, but were more supportive of, but not completely consistent, with the ‘oxidative shielding’ hypothesis. PMID:27841266

  1. The Role of Pyruvate in Protecting 661W Photoreceptor-Like Cells Against Light-Induced Cell Death.

    PubMed

    Natoli, Riccardo; Rutar, Matt; Lu, Yen-Zhen; Chu-Tan, Joshua A; Chen, Yuwei; Saxena, Kartik; Madigan, Michele; Valter, Krisztina; Provis, Jan M

    2016-11-01

    Light is a requirement for the function of photoreceptors in visual processing. However, prolonged light exposure can be toxic to photoreceptors, leading to increased reactive oxygen species (ROS), lipid peroxidation, and photoreceptor cell death. We used the 661W mouse cone photoreceptor-like cell line to study the effects of pyruvate in protecting these cells from light-induced toxicity. 661W cells were exposed to 15,000 lux continuous bright light for 5 hours and incubated in Dulbecco's modified eagle medium (DMEM) with various concentrations of pyruvate. Following light damage, cells were assessed for changes in morphology, cell toxicity, viability, and ROS production. Mitochondrial respiration and anaerobic glycolysis were also assessed using a Seahorse Xfe96 extracellular flux analyzer. We found that cell death caused by light damage in 661W cells was dramatically reduced in the presence of pyruvate. Cells with pyruvate-supplemented media also showed attenuation of oxidative stress and maintained normal levels of ATP. We also found that alterations in the concentrations of pyruvate had no effect on mitochondrial respiration or glycolysis in light-damaged cells. Taken together, the results show that pyruvate is protective against light damage but does not alter the metabolic output of the cells, indicating an alternative role for pyruvate in reducing oxidative stress. Thus, sodium pyruvate is a possible candidate for the treatment against the oxidative stress component of retinal degenerations.

  2. Fisetin Protects DNA Against Oxidative Damage and Its Possible Mechanism.

    PubMed

    Wang, Tingting; Lin, Huajuan; Tu, Qian; Liu, Jingjing; Li, Xican

    2016-06-01

    The paper tries to assess the protective effect of fisetin against •OH-induced DNA damage, then to investigate the possible mechanism. The protective effect was evaluated based on the content of malondialdehyde (MDA). The possible mechanism was analyzed using various antioxidant methods in vitro, including •OH scavenging (deoxyribose degradation), •O2 (-) scavenging (pyrogallol autoxidation), DPPH• scavenging, ABTS•(+) scavenging, and Cu(2+)-reducing power assays. Fisetin increased dose-dependently its protective percentages against •OH-induced DNA damage (IC50 value =1535.00±29.60 µM). It also increased its radical-scavenging percentages in a dose-dependent manner in various antioxidants assays. Its IC50 values in •OH scavenging, •O2(-) scavenging, DPPH• scavenging, ABTS•(+) scavenging, and Cu(2+)-reducing power assays, were 47.41±4.50 µM, 34.05±0.87 µM, 9.69±0.53 µM, 2.43±0.14 µM, and 1.49±0.16 µM, respectively. Fisetin can effectively protect DNA against •OH-induced oxidative damage possibly via reactive oxygen species (ROS) scavenging approach, which is assumed to be hydrogen atom (H•) and/or single electron (e) donation (HAT/SET) pathways. In the HAT pathway, the 3',4'-dihydroxyl moiety in B ring of fisetin is thought to play an important role, because it can be ultimately oxidized to a stable ortho-benzoquinone form.

  3. Oxidative stress-induced protein damage inhibits DNA repair and determines mutation risk and anticancer drug effectiveness

    PubMed Central

    McAdam, Elizabeth; Brem, Reto; Karran, Peter

    2016-01-01

    The relationship between sun exposure and non-melanoma skin cancer risk is well established. Solar ultraviolet radiation (UV; wavelengths 280-400 nm) is firmly implicated in skin cancer development. Nucleotide excision repair (NER) protects against cancer by removing potentially mutagenic DNA lesions induced by UVB (280-320 nm). How the 20-fold more abundant UVA (320-400 mn) component of solar UV radiation increases skin cancer risk is not understood. We demonstrate here that the contribution of UVA to the effects of UV radiation on cultured human cells is largely independent of its ability to damage DNA. Instead, the effects of UVA reflect the induction of oxidative stress that causes extensive protein oxidation. Because NER proteins are among those damaged, UVA irradiation inhibits NER and increases the cells’ susceptibility to mutation by UVB. NER inhibition is a common consequence of oxidative stress. Exposure to chemical oxidants, treatment with drugs that deplete cellular antioxidants, and interventions that interfere with glucose metabolism to disrupt the supply of cellular reducing power all inhibit NER. Tumor cells are often in a condition of oxidative stress and one effect of the NER inhibition that results from stress-induced protein oxidation is an increased sensitivity to the anticancer drug cisplatin. Statement of implication: Since NER is both a defence against cancer a significant determinant of cell survival after treatment with anticancer drugs, its attenuation by protein damage under conditions of oxidative-stress has implications for both cancer risk and for the effectiveness of anticancer therapy. PMID:27106867

  4. In vitro protective effect of a Jacquez grapes wine extract on UVB-induced skin damage.

    PubMed

    Tomaino, A; Cristani, M; Cimino, F; Speciale, A; Trombetta, D; Bonina, F; Saija, A

    2006-12-01

    Several studies have shown that UV radiation on the skin results in the formation of reactive oxygen species (ROS) that interact with proteins, lipids and DNA, thus altering cellular functions. The epidermis is composed mainly of keratinocytes, rich in ROS detoxifying enzymes and in low-molecular-mass antioxidant molecules. However, the increased generation of ROS can overwhelm the natural defences against oxidative stress. Therefore treatment of the skin with products containing plant-derived antioxidant ingredients may be a useful strategy for the prevention of UV-mediated cutaneous damage. In the present study we have investigated the in vitro capability of a Jacquez grapes wine extract (containing a significant level of proanthocyanidins, together with lower amounts of anthocyanins and hydroxycinnamic acids; JW-E), to protect skin against UVB-induced oxidative damage by using a three-dimensional tissue culture model of human epidermis. The endpoints of our experiments were cell viability, release of interleukin-1alpha and prostaglandin E(2) (well-known mediators of cutaneous inflammatory processes), accumulation in the epidermis of malondialdehyde/4-hydroxynonenal and protein carbonyl groups (derived by the oxidative damage respectively of lipids and proteins) and tissue redox balance (expressed by the levels of reduced glutathione, oxidized glutathione, glutathione peroxidase and glutathione reductase). Taken together, our findings demonstrate that the JW-E is an efficient botanical mixture able to prevent skin oxidative damage induced by UV-B exposure and may thus be a potential promising candidate as a skin photoprotective agent.

  5. Antioxidant Defence, Oxidative Stress and Oxidative Damage in Saliva, Plasma and Erythrocytes of Dementia Patients. Can Salivary AGE be a Marker of Dementia?

    PubMed Central

    Choromańska, Magdalena; Klimiuk, Anna; Kostecka-Sochoń, Paula; Wilczyńska, Karolina; Kwiatkowski, Mikołaj; Okuniewska, Natalia; Waszkiewicz, Napoleon; Zalewska, Anna

    2017-01-01

    Oxidative stress plays a crucial role in dementia pathogenesis; however, its impact on salivary secretion and salivary qualities is still unknown. This study included 80 patients with moderate dementia and 80 healthy age- and sex-matched individuals. Salivary flow, antioxidants (salivary peroxidase, catalase, superoxide dismutase, uric acid and total antioxidant capacity), and oxidative damage products (advanced oxidation protein products, advanced glycation end products (AGE), 8-isoprostanes, 8-hydroxy-2’-deoxyguanosine and total oxidant status) were estimated in non-stimulated and stimulated saliva, as well as in plasma and erythrocytes. We show that in dementia patients the concentration/activity of major salivary antioxidants changes, and the level of oxidative damage to DNA, proteins and lipids is increased compared to healthy controls. Non-stimulated and stimulated salivary secretions were significantly reduced in dementia patients. The deterioration in mini mental state examination (MMSE) score correlated with salivary AGE levels, which when considered with receiver operating characteristic (ROC) analysis, suggests their potential role in the non-invasive diagnosis of dementia. In conclusion, dementia is associated with disturbed salivary redox homeostasis and impaired secretory function of the salivary glands. Salivary AGE may be useful in the diagnosis of dementia. PMID:29053628

  6. Protective Role of Nuclear Factor E2-Related Factor 2 against Acute Oxidative Stress-Induced Pancreatic β-Cell Damage

    PubMed Central

    Fu, Jingqi; Zheng, Hongzhi; Wang, Huihui; Yang, Bei; Zhao, Rui; Lu, Chunwei; Liu, Zhiyuan; Hou, Yongyong; Xu, Yuanyuan; Zhang, Qiang; Qu, Weidong; Pi, Jingbo

    2015-01-01

    Oxidative stress is implicated in the pathogenesis of pancreatic β-cell dysfunction that occurs in both type 1 and type 2 diabetes. Nuclear factor E2-related factor 2 (NRF2) is a master regulator in the cellular adaptive response to oxidative stress. The present study found that MIN6 β-cells with stable knockdown of Nrf2 (Nrf2-KD) and islets isolated from Nrf2-knockout mice expressed substantially reduced levels of antioxidant enzymes in response to a variety of stressors. In scramble MIN6 cells or wild-type islets, acute exposure to oxidative stressors, including hydrogen peroxide (H2O2) and S-nitroso-N-acetylpenicillamine, resulted in cell damage as determined by decrease in cell viability, reduced ATP content, morphology changes of islets, and/or alterations of apoptotic biomarkers in a concentration- and/or time-dependent manner. In contrast, silencing of Nrf2 sensitized MIN6 cells or islets to the damage. In addition, pretreatment of MIN6 β-cells with NRF2 activators, including CDDO-Im, dimethyl fumarate (DMF), and tert-butylhydroquinone (tBHQ), protected the cells from high levels of H2O2-induced cell damage. Given that reactive oxygen species (ROS) are involved in regulating glucose-stimulated insulin secretion (GSIS) and persistent activation of NRF2 blunts glucose-triggered ROS signaling and GSIS, the present study highlights the distinct roles that NRF2 may play in pancreatic β-cell dysfunction that occurs in different stages of diabetes. PMID:25949772

  7. Tucum-Do-Cerrado (Bactris setosa Mart.) Consumption Modulates Iron Homeostasis and Prevents Iron-Induced Oxidative Stress in the Rat Liver

    PubMed Central

    Fustinoni-Reis, Adriana M.; Arruda, Sandra F.; Dourado, Lívia P. S.; da Cunha, Marcela S. B.; Siqueira, Egle M. A.

    2016-01-01

    This study investigated the effect of tucum-do-cerrado consumption in the oxidative status of iron-supplemented rats. Four groups of rats were treated: Control (AIN-93G), Tuc (AIN-93G added of tucum-do-cerrado), Fe (AIN-93G iron-enriched), or TucFe (AIN-93G with tucum-do-cerrado and iron-enriched) diet, for 30 days. Iron-enriched diet increased serum, liver, spleen, and intestine iron levels; transferrin saturation; liver lipid oxidation; mRNA levels of hepatic Hamp and Bmp6, and Nrf2 in the intestine. Tucum-do-cerrado consumption reduced spleen lipid and protein oxidation; mRNA levels of hepatic Hamp and Ftl, and increased serum antioxidant capacity and hepatic mRNA levels of Bmp6, Hmox1, Nqo1, and Nrf2. TucFe diet consumption abrogated the liver Hamp iron-induced up-regulation, prevented intestinal iron accumulation; hepatic lipid peroxidation; splenic protein damage, and the increase of catalase, glutathione reductase, and glutathione peroxidase activity in some tissues. These results suggest that tucum-do-cerrado protects tissues against oxidative damage, by reducing iron availability in liver and consequently inhibiting liver Hamp expression. PMID:26901220

  8. Melatonin attenuates oxidative stress, liver damage and hepatocyte apoptosis after bile-duct ligation in rats.

    PubMed

    Aktas, Cevat; Kanter, Mehmet; Erboga, Mustafa; Mete, Rafet; Oran, Mustafa

    2014-10-01

    The goal of this study was to evaluate the possible protective effects of melatonin against cholestatic oxidative stress, liver damage and hepatocyte apoptosis in the common rats with bile duct ligation (BDL). A total of 24 male Wistar albino rats were divided into three groups: control, BDL and BDL + received melatonin; each group contains eight animals. Melatonin-treated BDL rats received daily melatonin 100 mg/kg/day via intraperitoneal injection. The application of BDL clearly increased the malondialdehyde (MDA) levels and decreased the superoxide dismutase (SOD) and glutathione (GSH) activities. Melatonin treatment significantly decreased the elevated tissue MDA levels and increased the reduced SOD and GSH enzyme levels in the tissues. The changes demonstrate that the bile duct proliferation and fibrosis in expanded portal tracts include the extension of proliferated bile ducts into lobules, mononuclear cells and neutrophil infiltration into the widened portal areas as observed in the BDL group. The data indicate that melatonin attenuates BDL-induced cholestatic liver injury, bile duct proliferation and fibrosis. The α-smooth muscle actin (α-SMA) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells in the BDL were observed to be reduced with the melatonin treatment. These results suggest that administration of melatonin is a potentially beneficial agent to reduce liver damage in BDL by decreasing oxidative stress. © The Author(s) 2012.

  9. Protective effect of acetyl-L-carnitine on propofol-induced toxicity in embryonic neural stem cells.

    PubMed

    Liu, Fang; Rainosek, Shuo W; Sadovova, Natalya; Fogle, Charles M; Patterson, Tucker A; Hanig, Joseph P; Paule, Merle G; Slikker, William; Wang, Cheng

    2014-05-01

    Propofol is a widely used general anesthetic. A growing body of data suggests that perinatal exposure to general anesthetics can result in long-term deleterious effects on brain function. In the developing brain there is evidence that general anesthetics can cause cell death, synaptic remodeling, and altered brain cell morphology. Acetyl-L-carnitine (L-Ca), an anti-oxidant dietary supplement, has been reported to prevent neuronal damage from a variety of causes. To evaluate the ability of L-Ca to protect against propofol-induced neuronal toxicity, neural stem cells were isolated from gestational day 14 rat fetuses and on the eighth day in culture were exposed for 24h to propofol at 10, 50, 100, 300 and 600 μM, with or without L-Ca (10 μM). Markers of cellular proliferation, mitochondrial health, cell death/damage and oxidative damage were monitored to determine: (1) the effects of propofol on neural stem cell proliferation; (2) the nature of propofol-induced neurotoxicity; (3) the degree of protection afforded by L-Ca; and (4) to provide information regarding possible mechanisms underlying protection. After propofol exposure at a clinically relevant concentration (50 μM), the number of dividing cells was significantly decreased, oxidative DNA damage was increased and a significant dose-dependent reduction in mitochondrial function/health was observed. No significant effect on lactase dehydrogenase (LDH) release was observed at propofol concentrations up to 100 μM. The oxidative damage at 50 μM propofol was blocked by L-Ca. Thus, clinically relevant concentrations of propofol induce dose-dependent adverse effects on rat embryonic neural stem cells by slowing or stopping cell division/proliferation and causing cellular damage. Elevated levels of 8-oxoguanine suggest enhanced oxidative damage [reactive oxygen species (ROS) generation] and L-Ca effectively blocks at least some of the toxicity of propofol, presumably by scavenging oxidative species and/or reducing their production. Published by Elsevier B.V.

  10. Oxidative stress at different stages of two-step semen cryopreservation procedures in dogs.

    PubMed

    Lucio, C F; Regazzi, F M; Silva, L C G; Angrimani, D S R; Nichi, M; Vannucchi, C I

    2016-06-01

    Sperm cryopreservation generates sperm damage and reduced fertilization capacity as a consequence of reactive oxygen species formation. Identifying the critical points of the process will contribute to the development of strategies for oxidative stress prevention. Therefore, the aim of this experiment was to verify the occurrence of oxidative stress during the two-step cryopreservation process in dogs. Six healthy mature dogs were used and submitted to the two-step sperm cryopreservation protocol. The sperm analysis was done at three time points: after refrigeration, after glycerolization, and after thawing by sperm motility, measurement of spontaneous and induced oxidative stress, sperm mitochondrial activity, plasma membrane integrity, flow cytometric evaluation of plasma and acrosome membrane integrity, mitochondrial membrane potential, and sperm chromatin structure assay. There was an increase in free radical production after glycerolization (87.4 ± 15.5 ng/mL of spontaneous thiobarbituric acid reactive substances (TBARS) after refrigeration and 1226.3 ± 256.0 ng/mL after glycerolization; P < 0.05), in association with loss of sperm mitochondrial activity. However, frozen-thawed samples had lower sperm motility, lower resistance to oxidative stress (448.7 ± 23.6 ng/mL of induced TBARS after glycerolization and 609.4 ± 35.9 ng/mL after thawing; P < 0.05) and increased lipid peroxidation (4815.2 ± 335.4 ng/mL of spontaneous TBARS after thawing; P < 0.05) as well as increased damage to plasma and acrosomal membranes, compared with refrigeration and glycerolization. In conclusion, the production of free radicals by sperm cells begins during glycerolization. However, sperm oxidative damage intensifies after thawing. Despite intracellular ice formation during cryopreservation, the increased production of reactive oxygen species can be the explanation of the decrease in sperm motility, reduced mitochondrial activity, and sperm plasma membrane and acrosomal damage. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Antioxidants that protect mitochondria reduce interleukin-6 and oxidative stress, improve mitochondrial function, and reduce biochemical markers of organ dysfunction in a rat model of acute sepsis

    PubMed Central

    Lowes, D. A.; Webster, N. R.; Murphy, M. P.; Galley, H. F.

    2013-01-01

    Background Sepsis-induced organ failure is the major cause of death in critical care units, and is characterized by a massive dysregulated inflammatory response and oxidative stress. We investigated the effects of treatment with antioxidants that protect mitochondria (MitoQ, MitoE, or melatonin) in a rat model of lipopolysaccharide (LPS) plus peptidoglycan (PepG)-induced acute sepsis, characterized by inflammation, mitochondrial dysfunction and early organ damage. Methods Anaesthetized and ventilated rats received an i.v. bolus of LPS and PepG followed by an i.v. infusion of MitoQ, MitoE, melatonin, or saline for 5 h. Organs and blood were then removed for determination of mitochondrial and organ function, oxidative stress, and key cytokines. Results MitoQ, MitoE, or melatonin had broadly similar protective effects with improved mitochondrial respiration (P<0.002), reduced oxidative stress (P<0.02), and decreased interleukin-6 levels (P=0.0001). Compared with control rats, antioxidant-treated rats had lower levels of biochemical markers of organ dysfunction, including plasma alanine amino-transferase activity (P=0.02) and creatinine concentrations (P<0.0001). Conclusions Antioxidants that act preferentially in mitochondria reduce mitochondrial damage and organ dysfunction and decrease inflammatory responses in a rat model of acute sepsis. PMID:23381720

  12. Improved soldering iron tip

    NASA Technical Reports Server (NTRS)

    Vanasse, M. A.

    1976-01-01

    Nickel-plated device, with machined recesses matching the multipin pattern of particular circuit module, facilitates repairs to electronic systems and reduces chance of damage to adjacent components. Nickel-plating reduces oxidation and scaling. Recesses retain sufficient amount of molten solder to uniformly wet pins for simultaneous heating and extraction.

  13. Chemiluminescence analysis of antioxidant capacity for serum albumin isolated from healthy or uremic volunteers.

    PubMed

    Huang, Chih-Yang; Liou, Show-Yih; Kuo, Wei-Wen; Wu, Hsi-Chin; Chang, Yen-Lin; Chen, Tung-Sheng

    2016-12-01

    Regular hemodialysis treatment induces an elevation in oxidative stress in patients with end-stage renal failure, resulting in oxidative damage of the most abundant serum protein, albumin. Oxidation of serum albumin causes depletion of albumin reactive thiols, leading to oxidative modification of serum albumin. The aim of this study was to screen the antioxidant capacity of albumins isolated from uremic patients (HD-ALB) or healthy volunteers (N-ALB). From high-performance liquid chromatography spectra, we observed that one uremic solute binds to HD-ALB via the formation of disulfide bonds between HD-ALB and the uremic solute. Furthermore, we found using chemiluminescent analysis that the antioxidant capacities for N-ALB to scavenge reactive oxygen species including singlet oxygen, hypochlorite and hydrogen peroxide were higher than HD-ALB. Our results suggest that protein-bound uremic solute binds to albumin via formation of disulfide bonds, resulting in the depletion of albumin reactive thiols. The depletion of albumin reactive thiols leads to a reduced antioxidant capacity of HD-ALB, implying postmodification of albumin. This situation may reduce the antioxidant capacity of albumin and increase oxidative stress, resulting in increase in complications related to oxidative damage in uremic patients. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  14. N-acetylcysteine protects melanocytes against oxidative stress/damage and delays onset of UV-induced melanoma in mice

    PubMed Central

    Cotter, Murray A.; Thomas, Joshua; Cassidy, Pamela; Robinette, Kyle; Jenkins, Noah; Scott, R. Florell; Leachman, Sancy; Samlowski, Wolfram E.; Grossman, Douglas

    2008-01-01

    UV radiation is the major environmental risk factor for melanoma and a potent inducer of oxidative stress, which is implicated in the pathogenesis of several malignancies. We evaluated whether the thiol antioxidant N-acetylcysteine (NAC) could protect melanocytes from UV-induced oxidative stress/damage in vitro and from UV-induced melanoma in vivo. In melan-a cells, a mouse melanocyte line, NAC (1–10 mM) conferred protection from several UV-induced oxidative sequelae including production of intracellular peroxide, formation of the signature oxidative DNA lesion 8-oxoguanine (8-OG), and depletion of free reduced thiols (primarily glutathione). Mice transgenic for hepatocyte growth factor and Survivin, previously shown to develop melanoma following a single neonatal dose of UV irradiation, were administered NAC (7 mg/ml, mother’s drinking water) transplacentally and through nursing until two weeks after birth. Delivery of NAC in this manner reduced thiol depletion and blocked formation of 8-OG in skin following neonatal UV treatment. Mean onset of UV-induced melanocytic tumors was significantly delayed in NAC-treated compared to control mice (21 vs. 14 weeks, p=0.0003). Our data highlight the potential importance of oxidative stress in the pathogenesis of melanoma, and suggest that NAC may be useful as a chemopreventive agent. PMID:17908992

  15. Magnesium Supplementation Diminishes Peripheral Blood Lymphocyte DNA Oxidative Damage in Athletes and Sedentary Young Man

    PubMed Central

    Petrović, Jelena; Stanić, Dušanka; Dmitrašinović, Gordana; Plećaš-Solarović, Bosiljka; Ignjatović, Svetlana; Batinić, Bojan; Popović, Dejana

    2016-01-01

    Sedentary lifestyle is highly associated with increased risk of cardiovascular disease, obesity, and type 2 diabetes. It is known that regular physical activity has positive effects on health; however several studies have shown that acute and strenuous exercise can induce oxidative stress and lead to DNA damage. As magnesium is essential in maintaining DNA integrity, the aim of this study was to determine whether four-week-long magnesium supplementation in students with sedentary lifestyle and rugby players could prevent or diminish impairment of DNA. By using the comet assay, our study demonstrated that the number of peripheral blood lymphocytes (PBL) with basal endogenous DNA damage is significantly higher in rugby players compared to students with sedentary lifestyle. On the other hand, magnesium supplementation significantly decreased the number of cells with high DNA damage, in the presence of exogenous H2O2, in PBL from both students and rugby players, and markedly reduced the number of cells with medium DNA damage in rugby players compared to corresponding control nonsupplemented group. Accordingly, the results of our study suggest that four-week-long magnesium supplementation has marked effects in protecting the DNA from oxidative damage in both rugby players and in young men with sedentary lifestyle. Clinical trial is registered at ANZCTR Trial Id: ACTRN12615001237572. PMID:27042258

  16. The oxidative debt of fasting: evidence for short- to medium-term costs of advanced fasting in adult king penguins.

    PubMed

    Schull, Quentin; Viblanc, Vincent A; Stier, Antoine; Saadaoui, Hédi; Lefol, Emilie; Criscuolo, François; Bize, Pierre; Robin, Jean-Patrice

    2016-10-15

    In response to prolonged periods of fasting, animals have evolved metabolic adaptations helping to mobilize body reserves and/or reduce metabolic rate to ensure a longer usage of reserves. However, those metabolic changes can be associated with higher exposure to oxidative stress, raising the question of how species that naturally fast during their life cycle avoid an accumulation of oxidative damage over time. King penguins repeatedly cope with fasting periods of up to several weeks. Here, we investigated how adult male penguins deal with oxidative stress after an experimentally induced moderate fasting period (PII) or an advanced fasting period (PIII). After fasting in captivity, birds were released to forage at sea. We measured plasmatic oxidative stress on the same individuals at the start and end of the fasting period and when they returned from foraging at sea. We found an increase in activity of the antioxidant enzyme superoxide dismutase along with fasting. However, PIII individuals showed higher oxidative damage at the end of the fast compared with PII individuals. When they returned from re-feeding at sea, all birds had recovered their initial body mass and exhibited low levels of oxidative damage. Notably, levels of oxidative damage after the foraging trip were correlated to the rate of mass gain at sea in PIII individuals but not in PII individuals. Altogether, our results suggest that fasting induces a transitory exposure to oxidative stress and that effort to recover in body mass after an advanced fasting period may be a neglected carryover cost of fasting. © 2016. Published by The Company of Biologists Ltd.

  17. Lipid stability in meat and meat products.

    PubMed

    Morrissey, P A; Sheehy, P J; Galvin, K; Kerry, J P; Buckley, D J

    1998-01-01

    Lipid oxidation is one of the main factors limiting the quality and acceptability of meats and meat products. Oxidative damage to lipids occurs in the living animal because of an imbalance between the production of reactive oxygen species and the animal's defence mechanisms. This may be brought about by a high intake of oxidized lipids or poly-unsaturated fatty acids, or a low intake of nutrients involved in the antioxidant defence system. Damage to lipids may be accentuated in the immediate post-slaughter period and, in particular, during handling, processing, storage and cooking. In recent years, pressure to reduce artificial additive use in foods has led to attempts to increase meat stability by dietary strategies. These include supplementation of animal diets with vitamin E, ascorbic acid, or carotenoids, or withdrawal of trace mineral supplements. Dietary vitamin E supplementation reduces lipid and myoglobin oxidation, and, in certain situations, drip losses in meats. However, vitamin C supplementation appears to have little, if any, beneficial effects on meat stability. The effect of feeding higher levels of carotenoids on meat stability requires further study. Some studies have demonstrated that reducing the iron and copper content of feeds improves meat stability. Post-slaughter carnosine addition may be an effective means of improving lipid stability in processed meats, perhaps in combination with dietary vitamin E supplementation.

  18. Protective effects of the compounds isolated from the seed of Psoralea corylifolia on oxidative stress-induced retinal damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Kyung-A; Shim, Sang Hee; Ahn, Hong Ryul

    2013-06-01

    The mechanism underlying glaucoma remains controversial, but apoptosis caused by increased levels of reactive oxygen species (ROS) is thought to play a role in its pathogenesis. We investigated the effects of compounds isolated from Psoralea corylifolia on oxidative stress-induced cell death in vitro and in vivo. Transformed retinal ganglion cells (RGC-5) were treated with L-buthione-(S,R)-sulfoximine (BSO) and glutamate in the presence or with pre-treatment with compound 6, bakuchiol isolated from P. corylifolia. We observed reduced cell death in cells pre-treated with bakuchiol. Moreover, bakuchiol inhibited the oxidative stress-induced decrease of mitochondrial membrane potential (MMP, ΔΨm). Furthermore, while intracellular Ca{sup 2+}more » was high in RGC-5 cells after exposure to oxidative stress, bakuchiol reduced these levels. In an in vivo study, in which rat retinal damage was induced by intravitreal injection of N-methyl-D-aspartate (NMDA), bakuchiol markedly reduced translocation of AIF and release of cytochrome c, and inhibited up-regulation of cleaved caspase-3, cleaved caspase-9, and cleaved PARP. The survival rate of retinal ganglion cells (RGCs) 7 days after optic nerve crush (ONC) in mice was significantly decreased; however, bakuchiol attenuated the loss of RGCs. Moreover, bakuchiol attenuated ONC-induced up-regulation of apoptotic proteins, including cleaved PARP, cleaved caspase-3, and cleaved caspase-9. Bakuchiol also significantly inhibited translocation of mitochondrial AIF into the nuclear fraction and release of mitochondrial cytochrome c into the cytosol. These results demonstrate that bakuchiol isolated from P. corylifolia has protective effects against oxidative stress-induced retinal damage, and may be considered as an agent for treating or preventing retinal degeneration. - Highlights: • Psoralea corylifolia have neuroprotective effects in vitro and in vivo. • Bakuchiol attenuated the increase of apoptotic proteins induced by oxidative stress. • Bakuchiol restored the reduced mitochondrial membrane potential. • Bakuchiol attenuated the increase of intracellular Ca{sup 2+}. • Bakuchiol attenuated retinal degeneration in vivo.« less

  19. DNA Damage Observed in Unaffected Individuals with Family History of T2DM

    NASA Astrophysics Data System (ADS)

    Ramesh, Nikhila; Abilash, V. G.

    2017-11-01

    Diabetes has been documented to cause high levels of DNA fragmentation in some cases. As diabetes is inheritable and influenced by both genetic and environmental factors, an investigation into the genomic stability of individuals who are strongly at risk of inheriting diabetes was conducted by inducing oxidative stress, as DNA damage in unaffected individuals could be a sign of onset of the disease or the presence of genetic alterations that reduce cellular defences against reactive oxygen species. In this study, alkaline comet assay was performed on isolated human leukocytes to determine whether individuals with a family history of Type 2 Diabetes Mellitus (T2DM) are more prone to DNA damage under oxidative stress. Visual scoring of comets showed that these individuals have higher degree of DNA damage compared to a control individual with no family history of Type 2 Diabetes Mellitus. Further studies with large sample could determine the presence of disabled cellular defences against oxidative stress in unaffected individuals and intervention with antioxidants could prevent or manage Type 2 Diabetes Mellitus and its complications.

  20. Hydrogen-rich pure water prevents cigarette smoke-induced pulmonary emphysema in SMP30 knockout mice.

    PubMed

    Suzuki, Yohei; Sato, Tadashi; Sugimoto, Masataka; Baskoro, Hario; Karasutani, Keiko; Mitsui, Aki; Nurwidya, Fariz; Arano, Naoko; Kodama, Yuzo; Hirano, Shin-Ichi; Ishigami, Akihito; Seyama, Kuniaki; Takahashi, Kazuhisa

    2017-10-07

    Chronic obstructive pulmonary disease (COPD) is predominantly a cigarette smoke (CS)-triggered disease with features of chronic systemic inflammation. Oxidants derived from CS can induce DNA damage and stress-induced premature cellular senescence in the respiratory system, which play significant roles in COPD. Therefore, antioxidants should provide benefits for the treatment of COPD; however, their therapeutic potential remains limited owing to the complexity of this disease. Recently, molecular hydrogen (H 2 ) has been reported as a preventive and therapeutic antioxidant. Molecular H 2 can selectively reduce hydroxyl radical accumulation with no known side effects, showing potential applications in managing oxidative stress, inflammation, apoptosis, and lipid metabolism. However, there have been no reports on the efficacy of molecular H 2 in COPD patients. In the present study, we used a mouse model of COPD to investigate whether CS-induced histological damage in the lungs could be attenuated by administration of molecular H 2 . We administered H 2 -rich pure water to senescence marker protein 30 knockout (SMP30-KO) mice exposed to CS for 8 weeks. Administration of H 2 -rich water attenuated the CS-induced lung damage in the SMP30-KO mice and reduced the mean linear intercept and destructive index of the lungs. Moreover, H 2 -rich water significantly restored the static lung compliance in the CS-exposed mice compared with that in the CS-exposed H 2 -untreated mice. Moreover, treatment with H 2 -rich water decreased the levels of oxidative DNA damage markers such as phosphorylated histone H2AX and 8-hydroxy-2'-deoxyguanosine, and senescence markers such as cyclin-dependent kinase inhibitor 2A, cyclin-dependent kinase inhibitor 1, and β-galactosidase in the CS-exposed mice. These results demonstrated that H 2 -rich pure water attenuated CS-induced emphysema in SMP30-KO mice by reducing CS-induced oxidative DNA damage and premature cell senescence in the lungs. Our study suggests that administration of molecular H 2 may be a novel preventive and therapeutic strategy for COPD. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Noni juice reduces lipid peroxidation-derived DNA adducts in heavy smokers.

    PubMed

    Wang, Mian-Ying; Peng, Lin; Jensen, Claude J; Deng, Shixin; West, Brett J

    2013-03-01

    Food plants provide important phytochemicals which help improve or maintain health through various biological activities, including antioxidant effects. Cigarette smoke-induced oxidative stress leads to the formation of lipid hydroperoxides (LOOHs) and their decomposition product malondialdehyde (MDA), both of which cause oxidative damage to DNA. Two hundred forty-five heavy cigarette smokers completed a randomized, double-blind, placebo-controlled clinical trial designed to investigate the effect of noni juice on LOOH- and MDA-DNA adducts in peripheral blood lymphocytes (PBLs). Volunteers drank noni juice or a fruit juice placebo every day for 1 month. DNA adducts were measured by (32)P postlabeling analysis. Drinking 29.5-118 mL of noni juice significantly reduced adducts by 44.6-57.4%. The placebo, which was devoid of iridoid glycosides, did not significantly influence LOOH- and MDA-DNA adduct levels in current smokers. Noni juice was able to mitigate oxidative damage of DNA in current heavy smokers, an activity associated with the presence of iridoids.

  2. Noni juice reduces lipid peroxidation–derived DNA adducts in heavy smokers

    PubMed Central

    Wang, Mian-Ying; Peng, Lin; Jensen, Claude J; Deng, Shixin; West, Brett J

    2013-01-01

    Food plants provide important phytochemicals which help improve or maintain health through various biological activities, including antioxidant effects. Cigarette smoke–induced oxidative stress leads to the formation of lipid hydroperoxides (LOOHs) and their decomposition product malondialdehyde (MDA), both of which cause oxidative damage to DNA. Two hundred forty-five heavy cigarette smokers completed a randomized, double-blind, placebo-controlled clinical trial designed to investigate the effect of noni juice on LOOH- and MDA-DNA adducts in peripheral blood lymphocytes (PBLs). Volunteers drank noni juice or a fruit juice placebo every day for 1 month. DNA adducts were measured by 32P postlabeling analysis. Drinking 29.5–118 mL of noni juice significantly reduced adducts by 44.6–57.4%. The placebo, which was devoid of iridoid glycosides, did not significantly influence LOOH- and MDA-DNA adduct levels in current smokers. Noni juice was able to mitigate oxidative damage of DNA in current heavy smokers, an activity associated with the presence of iridoids. PMID:24804023

  3. Dysregulation of mitochondrial calcium signaling and superoxide flashes cause mitochondrial genomic DNA damage in Huntington disease.

    PubMed

    Wang, Jiu-Qiang; Chen, Qian; Wang, Xianhua; Wang, Qiao-Chu; Wang, Yun; Cheng, He-Ping; Guo, Caixia; Sun, Qinmiao; Chen, Quan; Tang, Tie-Shan

    2013-02-01

    Huntington disease (HD) is an inherited, fatal neurodegenerative disorder characterized by the progressive loss of striatal medium spiny neurons. Indications of oxidative stress are apparent in brain tissues from both HD patients and HD mouse models; however, the origin of this oxidant stress remains a mystery. Here, we used a yeast artificial chromosome transgenic mouse model of HD (YAC128) to investigate the potential connections between dysregulation of cytosolic Ca(2+) signaling and mitochondrial oxidative damage in HD cells. We found that YAC128 mouse embryonic fibroblasts exhibit a strikingly higher level of mitochondrial matrix Ca(2+) loading and elevated superoxide generation compared with WT cells, indicating that both mitochondrial Ca(2+) signaling and superoxide generation are dysregulated in HD cells. The excessive mitochondrial oxidant stress is critically dependent on mitochondrial Ca(2+) loading in HD cells, because blocking mitochondrial Ca(2+) uptake abolished elevated superoxide generation. Similar results were obtained using neurons from HD model mice and fibroblast cells from HD patients. More importantly, mitochondrial Ca(2+) loading in HD cells caused a 2-fold higher level of mitochondrial genomic DNA (mtDNA) damage due to the excessive oxidant generation. This study provides strong evidence to support a new causal link between dysregulated mitochondrial Ca(2+) signaling, elevated mitochondrial oxidant stress, and mtDNA damage in HD. Our results also indicate that reducing mitochondrial Ca(2+) uptake could be a therapeutic strategy for HD.

  4. The role of oxidative stress in the pathophysiology of hypertension.

    PubMed

    Rodrigo, Ramón; González, Jaime; Paoletto, Fabio

    2011-04-01

    Hypertension is considered to be the most important risk factor in the development of cardiovascular disease. An increasing body of evidence suggests that oxidative stress, which results in an excessive generation of reactive oxygen species (ROS), has a key role in the pathogenesis of hypertension. The modulation of the vasomotor system involves ROS as mediators of vasoconstriction induced by angiotensin II, endothelin-1 and urotensin-II, among others. The bioavailability of nitric oxide (NO), which is a major vasodilator, is highly dependent on the redox status. Under physiological conditions, low concentrations of intracellular ROS have an important role in the normal redox signaling maintaining vascular function and integrity. However, under pathophysiological conditions, increased levels of ROS contribute to vascular dysfunction and remodeling through oxidative damage. In human hypertension, an increase in the production of superoxide anions and hydrogen peroxide, a decrease in NO synthesis and a reduction in antioxidant bioavailability have been observed. In turn, antioxidants are reducing agents that can neutralize these oxidative and otherwise damaging biomolecules. The use of antioxidant vitamins, such as vitamins C and E, has gained considerable interest as protecting agents against vascular endothelial damage. Available data support the role of these vitamins as effective antioxidants that can counteract ROS effects. This review discusses the mechanisms involved in ROS generation, the role of oxidative stress in the pathogenesis of vascular damage in hypertension, and the possible therapeutic strategies that could prevent or treat this disorder.

  5. PARP-1 dependent recruitment of the amyotrophic lateral sclerosis-associated protein FUS/TLS to sites of oxidative DNA damage

    PubMed Central

    Rulten, Stuart L.; Rotheray, Amy; Green, Ryan L.; Grundy, Gabrielle J.; Moore, Duncan A. Q.; Gómez-Herreros, Fernando; Hafezparast, Majid; Caldecott, Keith W

    2014-01-01

    Amyotrophic lateral sclerosis (ALS) is associated with progressive degeneration of motor neurons. Several of the genes associated with this disease encode proteins involved in RNA processing, including fused-in-sarcoma/translocated-in-sarcoma (FUS/TLS). FUS is a member of the heterogeneous nuclear ribonucleoprotein (hnRNP) family of proteins that bind thousands of pre-mRNAs and can regulate their splicing. Here, we have examined the possibility that FUS is also a component of the cellular response to DNA damage. We show that both GFP-tagged and endogenous FUS re-localize to sites of oxidative DNA damage induced by UVA laser, and that FUS recruitment is greatly reduced or ablated by an inhibitor of poly (ADP-ribose) polymerase activity. Consistent with this, we show that recombinant FUS binds directly to poly (ADP-ribose) in vitro, and that both GFP-tagged and endogenous FUS fail to accumulate at sites of UVA laser induced damage in cells lacking poly (ADP-ribose) polymerase-1. Finally, we show that GFP-FUSR521G, harbouring a mutation that is associated with ALS, exhibits reduced ability to accumulate at sites of UVA laser-induced DNA damage. Together, these data suggest that FUS is a component of the cellular response to DNA damage, and that defects in this response may contribute to ALS. PMID:24049082

  6. Oligostilbenoids from Vatica Species and Bioactivities

    NASA Astrophysics Data System (ADS)

    Kamarozaman, A. S.; Rajab, N. F.; Latip, J.

    Reactive species (RS) which are generated from the pollution, deep fried and spicy foods, leakage of electrons from mitochondrial electron transport chains etc. may result in an oxidative damage in the body. The oxidative damage may lead to various diseases such as Alzheimer, atherosclerosis and cancer. In order to prevent such diseases, antioxidants play important roles in reducing the powerful oxidizing agents. Vatica species that belongs to the family of Dipterocarpaceae has been widely known to contain abundant source of oligostilbenoids which demonstrated interesting result in biological activities such as anticancer and antioxidant. This may lead to a development of drugs as well as natural antioxidants. In this chapter, we are highlighting the oligostilbenoids isolated from Vatica species from various researcher as well as the biological activities.

  7. SOD2 deficiency in hematopoietic cells in mice results in reduced red blood cell deformability and increased heme degradation

    PubMed Central

    Mohanty, Joy G.; Nagababu, Enika; Friedman, Jeffrey S.; Rifkind, Joseph M.

    2013-01-01

    Among the three types of super oxide dismutases (SODs) known, SOD2 deficiency is lethal in neonatal mice owing to cardiomyopathy caused by severe oxidative damage. SOD2 is found in red blood cell (RBC) precursors, but not in mature RBCs. To investigate the potential damage to mature RBCs resulting from SOD2 deficiency in precursor cells, we studied RBCs from mice in which fetal liver stem cells deficient in SOD2 were capable of efficiently rescuing lethally irradiated host animals. These transplanted animals lack SOD2 only in hematopoietically generated cells and live longer than SOD2 knockouts. In these mice, approximately 2.8% of their total RBCs in circulation are iron-laden reticulocytes, with numerous siderocytic granules and increased protein oxidation similar to that seen in sideroblastic anemia. We have studied the RBC deformability and oxidative stress in these animals and the control group by measuring them with a microfluidic ektacytometer and assaying fluorescent heme degradation products with a fluorimeter, respectively. In addition, the rate of hemoglobin oxidation in RBCs from these mice and the control group were measured spectrophotometrically. The results show that RBCs from these SOD2-deficient mice have reduced deformability, increased heme degradation products, and an increased rate of hemoglobin oxidation compared with control animals, indicative of increased RBC oxidative stress. PMID:23142655

  8. The Role of Free Radicals in the Aging Brain and Parkinson’s Disease: Convergence and Parallelism

    PubMed Central

    Kumar, Hemant; Lim, Hyung-Woo; More, Sandeep Vasant; Kim, Byung-Wook; Koppula, Sushruta; Kim, In Su; Choi, Dong-Kug

    2012-01-01

    Free radical production and their targeted action on biomolecules have roles in aging and age-related disorders such as Parkinson’s disease (PD). There is an age-associated increase in oxidative damage to the brain, and aging is considered a risk factor for PD. Dopaminergic neurons show linear fallout of 5–10% per decade with aging; however, the rate and intensity of neuronal loss in patients with PD is more marked than that of aging. Here, we enumerate the common link between aging and PD at the cellular level with special reference to oxidative damage caused by free radicals. Oxidative damage includes mitochondrial dysfunction, dopamine auto-oxidation, α-synuclein aggregation, glial cell activation, alterations in calcium signaling, and excess free iron. Moreover, neurons encounter more oxidative stress as a counteracting mechanism with advancing age does not function properly. Alterations in transcriptional activity of various pathways, including nuclear factor erythroid 2-related factor 2, glycogen synthase kinase 3β, mitogen activated protein kinase, nuclear factor kappa B, and reduced activity of superoxide dismutase, catalase and glutathione with aging might be correlated with the increased incidence of PD. PMID:22949875

  9. Cardioprotective potential of N-acetyl cysteine against hyperglycaemia-induced oxidative damage: a protocol for a systematic review.

    PubMed

    Dludla, Phiwayinkosi V; Nkambule, Bongani B; Dias, Stephanie C; Johnson, Rabia

    2017-05-12

    Hyperglycaemia-induced oxidative damage is a well-established factor implicated in the development of diabetic cardiomyopathy (DCM) in diabetic individuals. Some of the well-known characteristics of DCM include increased myocardial left ventricular wall thickness and remodelling that result in reduced cardiac efficiency. To prevent this, an increasing number of pharmacological compounds such as N-acetyl cysteine (NAC) are explored for their antioxidant properties. A few studies have shown that NAC can ameliorate hyperglycaemia-induced oxidative damage within the heart. Hence, the objective of this review is to synthesise the available evidence pertaining to the cardioprotective role of NAC against hyperglycaemia-induced oxidative damage and thus prevent DCM. This systematic review protocol will be reported in accordance with the Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P) 2015 statement. We will perform a comprehensive search on major databases such as EMBASE, Cochrane Library, PubMed and Google scholar for original research articles published from January 1960 to March 2017. We will only report on literature that is available in English. Two authors will independently screen for eligible studies using pre-defined criteria, and data extraction will be done in duplicate. All discrepancies will be resolved by consensus or consultation of a third reviewer. The quality of studies will be checked using Cochrane Risk of Bias Assessment Tool and The Joanna Briggs Institute (JBI) Critical Appraisal tools for non-randomised experimental studies. Heterogeneity across studies will be assessed using the Cochrane Q statistic and the inconsistency index (I 2 ). We will use the random effects model to calculate a pooled estimate. Although several studies have shown that NAC can ameliorate hyperglycaemia-induced oxidative damage within the heart, this systematic review will be the first pre-registered synthesis of data to identify the cardioprotective potential of NAC against hyperglycaemia-induced oxidative damage. This result will help guide future research evaluating the cardioprotective role of NAC against DCM and better identify possible mechanisms of action for NAC to prevent oxidative damage with a diabetic heart. PROSPERO CRD42017055851 .

  10. MnSOD deficiency results in elevated oxidative stress and decreased mitochondrial function but does not lead to muscle atrophy during aging.

    PubMed

    Lustgarten, Michael S; Jang, Youngmok C; Liu, Yuhong; Qi, Wenbo; Qin, Yuejuan; Dahia, Patricia L; Shi, Yun; Bhattacharya, Arunabh; Muller, Florian L; Shimizu, Takahiko; Shirasawa, Takuji; Richardson, Arlan; Van Remmen, Holly

    2011-06-01

    In a previous study, we reported that a deficiency in MnSOD activity (approximately 80% reduction) targeted to type IIB skeletal muscle fibers was sufficient to elevate oxidative stress and to reduce muscle function in young adult mice (TnIFastCreSod2(fl/fl) mice). In this study, we used TnIFastCreSod2(fl/fl) mice to examine the effect of elevated oxidative stress on mitochondrial function and to test the hypothesis that elevated oxidative stress and decreased mitochondrial function over the lifespan of the TnIFastCreSod2(fl/fl) mice would be sufficient to accelerate muscle atrophy associated with aging. We found that mitochondrial function is reduced in both young and old TnIFastCreSod2(fl/fl) mice, when compared with control mice. Complex II activity is reduced by 47% in young and by approximately 90% in old TnIFastCreSod2(fl/fl) mice, and was found to be associated with reduced levels of the catalytic subunits for complex II, SDHA and SDHB. Complex II-linked mitochondrial respiration is reduced by approximately 70% in young TnIFastCreSod2(fl/fl) mice. Complex II-linked mitochondrial Adenosine-Tri-Phosphate (ATP) production is reduced by 39% in young and was found to be almost completely absent in old TnIFastCreSod2(fl/fl) mice. Furthermore, in old TnIFastCreSod2(fl/fl) mice, aconitase activity is almost completely abolished; mitochondrial superoxide release remains > 2-fold elevated; and oxidative damage (measured as F(2) - isoprostanes) is increased by 30% relative to age-matched controls. These data show that despite elevated skeletal muscle-specific mitochondrial oxidative stress, oxidative damage, and complex II-linked mitochondrial dysfunction, age-related muscle atrophy was not accelerated in old TnIFastCreSod2(fl/fl) mice, suggesting mitochondrial oxidative stress may not be causal for age-related muscle atrophy. No claim to original US government works. Aging Cell © 2011 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland.

  11. Oxidative Stress and Heart Failure in Altered Thyroid States

    PubMed Central

    Mishra, Pallavi; Samanta, Luna

    2012-01-01

    Increased or reduced action of thyroid hormone on certain molecular pathways in the heart and vasculature causes relevant cardiovascular derangements. It is well established that hyperthyroidism induces a hyperdynamic cardiovascular state, which is associated with a faster heart rate, enhanced left ventricular systolic and diastolic function whereas hypothyroidism is characterized by the opposite changes. Hyperthyroidism and hypothyroidism represent opposite clinical conditions, albeit not mirror images. Recent experimental and clinical studies have suggested the involvement of ROS tissue damage under altered thyroid status. Altered-thyroid state-linked changes in heart modify their susceptibility to oxidants and the extent of the oxidative damage they suffer following oxidative challenge. Chronic increase in the cellular levels of ROS can lead to a catastrophic cycle of DNA damage, mitochondrial dysfunction, further ROS generation and cellular injury. Thus, these cellular events might play an important role in the development and progression of myocardial remodeling and heart failure in altered thyroid states (hypo- and hyper-thyroidism). The present review aims at elucidating the various signaling pathways mediated via ROS and their modulation under altered thyroid state and the possibility of antioxidant therapy. PMID:22649319

  12. Effects of dietary almond- and olive oil-based docosahexaenoic acid- and vitamin E-enriched beverage supplementation on athletic performance and oxidative stress markers.

    PubMed

    Capó, X; Martorell, M; Busquets-Cortés, C; Sureda, A; Riera, J; Drobnic, F; Tur, J A; Pons, A

    2016-12-07

    Functional beverages based on almonds and olive oil and enriched with α-tocopherol and docosahexaenoic acid (DHA) could be useful in modulating oxidative stress and enhancing physical performance in sportsmen. The aim of this work was to evaluate the effects of supplementation with functional beverages on physical performance, plasma and erythrocyte fatty acids' and polyphenol handling, oxidative and nitrative damage, and antioxidant and mitochondrial gene expression in young and senior athletes. Athletes performed maximal exercise tests before and after one month of dietary supplementation and blood samples were taken immediately before and one hour after each test. The beverages did not alter performance parameters during maximal exercise. Supplementation increased polyunsaturated and reduced saturated plasma fatty acids while increasing the DHA erythrocyte content; it maintained basal plasma and blood polyphenol levels, but increased the blood cell polyphenol concentration in senior athletes. Supplementation protects against oxidative damage although it enhances nitrative damage in young athletes. The beverages enhance the gene expression of antioxidant enzymes in peripheral blood mononuclear cells after exercise in young athletes.

  13. Honey Bee (Apis mellifera) Drones Survive Oxidative Stress due to Increased Tolerance instead of Avoidance or Repair of Oxidative Damage

    PubMed Central

    Li-Byarlay, Hongmei; Huang, Ming Hua; Simone-Finstrom, Michael; Strand, Micheline K.; Tarpy, David R.; Rueppell, Olav

    2016-01-01

    Oxidative stress can lead to premature aging symptoms and cause acute mortality at higher doses in a range of organisms. Oxidative stress resistance and longevity are mechanistically and phenotypically linked; considerable variation in oxidative stress resistance exists among and within species and typically covaries with life expectancy. However, it is unclear whether stress-resistant, long-lived individuals avoid, repair, or tolerate molecular damage to survive longer than others. The honey bee (Apis mellifera L.) is an emerging model system that is well-suited to address this question. Furthermore, this species is the most economically important pollinator, whose health may be compromised by pesticide exposure, including oxidative stressors. Here, we develop a protocol for inducing oxidative stress in honey bee males (drones) via Paraquat injection. After injection, individuals from different colony sources were kept in common social conditions to monitor their survival compared to saline-injected controls. Oxidative stress was measured in susceptible and resistant individuals. Paraquat drastically reduced survival but individuals varied in their resistance to treatment within and among colony sources. Longer-lived individuals exhibited higher levels of lipid peroxidation than individuals dying early. In contrast, the level of protein carbonylation was not significantly different between the two groups. This first study of oxidative stress in male honey bees suggests that survival of an acute oxidative stressor is due to tolerance, not prevention or repair, of oxidative damage to lipids. It also demonstrates colony differences in oxidative stress resistance that might be useful for breeding stress-resistant honey bees. PMID:27422326

  14. Honey bee (Apis mellifera) drones survive oxidative stress due to increased tolerance instead of avoidance or repair of oxidative damage.

    PubMed

    Li-Byarlay, Hongmei; Huang, Ming Hua; Simone-Finstrom, Michael; Strand, Micheline K; Tarpy, David R; Rueppell, Olav

    2016-10-01

    Oxidative stress can lead to premature aging symptoms and cause acute mortality at higher doses in a range of organisms. Oxidative stress resistance and longevity are mechanistically and phenotypically linked; considerable variation in oxidative stress resistance exists among and within species and typically covaries with life expectancy. However, it is unclear whether stress-resistant, long-lived individuals avoid, repair, or tolerate molecular damage to survive longer than others. The honey bee (Apis mellifera L.) is an emerging model system that is well-suited to address this question. Furthermore, this species is the most economically important pollinator, whose health may be compromised by pesticide exposure, including oxidative stressors. Here, we develop a protocol for inducing oxidative stress in honey bee males (drones) via Paraquat injection. After injection, individuals from different colony sources were kept in common social conditions to monitor their survival compared to saline-injected controls. Oxidative stress was measured in susceptible and resistant individuals. Paraquat drastically reduced survival but individuals varied in their resistance to treatment within and among colony sources. Longer-lived individuals exhibited higher levels of lipid peroxidation than individuals dying early. In contrast, the level of protein carbonylation was not significantly different between the two groups. This first study of oxidative stress in male honey bees suggests that survival of an acute oxidative stressor is due to tolerance, not prevention or repair, of oxidative damage to lipids. It also demonstrates colony differences in oxidative stress resistance that might be useful for breeding stress-resistant honey bees. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Magnolol protects against ischemic-reperfusion brain damage following oxygen-glucose deprivation and transient focal cerebral ischemia.

    PubMed

    Huang, Sheng-Yang; Tai, Shih-Huang; Chang, Che-Chao; Tu, Yi-Fang; Chang, Chih-Han; Lee, E-Jian

    2018-04-01

    In the present study, the neuroprotective potential of magnolol against ischemia-reperfusion brain injury was examined via in vivo and in vitro experiments. Magnolol exhibited strong radical scavenging and antioxidant activity, and significantly inhibited the production of interleukin‑6, tumor necrosis factor‑a and nitrite/nitrate (NOX) in lipopolysaccharide-stimulated BV2 and RAW 264.7 cells when applied at concentrations of 10 and 50 µM, respectively. Magnolol (100 µM) also significantly attenuated oxygen‑glucose deprivation‑induced damage in neonatal rat hippocampal slice cultures, when administered up to 4 h following the insult. In a rat model of stable ischemia, compared with a vehicle‑treated ischemic control, pretreatment with magnolol (0.01‑1 mg/kg, intravenously) significantly reduced brain infarction following ischemic stroke, and post‑treatment with magnolol (1 mg/kg) remained effective and significantly reduced infarction when administered 2 h following the onset of ischemia. Additionally, magnolol (0.3 and 1 mg/kg) significantly reduced the accumulation of superoxide anions at the border zones of infarction and reduced oxidative damage in the ischemic brain. This was assessed by measuring the levels of NOX, malondialdehyde and myeloperoxidase, the ratio of glutathione/oxidized glutathione and the immunoreactions of 8‑hydroxy‑2'‑deoxyguanosine and 4‑hydroxynonenal. Thus, magnolol was revealed to protect against ischemia‑reperfusion brain damage. This may be partly attributed to its antioxidant, radical scavenging and anti‑inflammatory effects.

  16. The oxidative mechanism of heparin interferes with radical production by glucose and reduces the degree of glycooxidative modifications on human serum albumin.

    PubMed

    Finotti, P; Pagetta, A; Ashton, T

    2001-04-01

    Among substances which may prove useful in preventing or reducing the progression of glycooxidative modifications of proteins, heparin plays a unique role. To elucidate the mechanism whereby heparin may favourably influence the protein structure during glycation, human serum albumin (HSA) was glycated with both 25 and 50 mM glucose in the absence and presence of 12 microg.mL(-1) low-molecular-mass heparin. Glycation caused: (a) modifications of fluorescence emission and excitation spectra consistent with the covalent attachment of glucose to protein; (b) a significant increase in the esterase activity of HSA on p-nitrophenyl acetate; (c) a reduced susceptibility to tryptic digestion and (d) enhanced formation of high-molecular mass aggregates of HSA. These alterations were accompanied by oxidative reactions, as the EPR spectra showed a clear-cut radical signal, dependent on glucose concentration, further confirmed by measurement of the carbonyl content of HSA, as an indirect proof of oxidative damage. In the presence of heparin all the above alterations, especially at 25 mM glucose, turned out to be antagonized. The effects of heparin were dependent on its specific binding to HSA, which triggered an oxidative mechanism strikingly different from that caused by glucose. In the presence of heparin, only the radical species catalyzed by heparin was detected across all samples of glycated HSA, irrespective of glucose concentration. In addition, at 25 mM glucose, enhancement of the oxidative capacity of heparin was also observed. The results demonstrate that the oxidative mechanism sustained by heparin mediates biological effects that may be beneficial in reducing the extent of glycooxidative damage on HSA.

  17. Technique for recovery of voice data from heat damaged magnetic tape

    NASA Technical Reports Server (NTRS)

    Melugin, J. F.; Obrien, D. E., III (Inventor)

    1974-01-01

    A method for conditioning, and thus enabling retrieval of intelligence from, magnetic tapes after damage from heat has caused the tape to wrinkle and curl severely thereby reducing tape width to less than one-half its original size. The damaged tape is superposed on a first piece of splicing tape with the oxide side of the magnetic tape in contact with the adhesive side of the splicing tape and then carefully smoothed by a special tool. A second piece of splicing tape is placed on the backing side of the magnetic tape then the resulting tape stack is trimmed to the original width of the magnetic tape. After the first piece of splicing tape is carefully removed from the oxide side of the damaged magnetic tape, the resulting magnetic tape is then ready to be placed into a recorder for playback.

  18. An analysis of pump cavitation damage. [Space Shuttle main engine high pressure oxidizer turbopump

    NASA Technical Reports Server (NTRS)

    Brophy, M. C.; Stinebring, D. R.; Billet, M. L.

    1985-01-01

    The cavitation assessment for the space shuttle main engine high pressure oxidizer turbopump is documented. A model of the flow through the pump was developed. Initially, a computational procedure was used to analyze the flow through the inlet casing including the prediction of wakes downstream of the casing vanes. From these flow calculations, cavitation patterns on the inducer blades were approximated and the damage rate estimated. The model correlates the heavy damage on the housing and over the inducer with unsteady blade surface cavitation. The unsteady blade surface cavitation is due to the large incidence changes caused by the wakes of the upstream vanes. Very high cavitation damage rates are associated with this type of cavitation. Design recommendations for reducing the unsteady cavitation include removing the set of vanes closest to the inducer and modifying the remaining vanes.

  19. A study of pump cavitation damage. [space shuttle main engine high pressure oxidizer turbopump

    NASA Technical Reports Server (NTRS)

    Brophy, M. C.; Stinebring, D. R.; Billet, M. L.

    1983-01-01

    The cavitation assessment for the space shuttle main engine high pressure oxidizer turbopump is documented. A model of the flow through the pump was developed. Initially, a computational procedure was used to analyze the flow through the inlet casing including the prediction of wakes downstream of the casing vanes. From these flow calculations, cavitation patterns on the inducer blades were approximated and the damage rate estimated. The model correlates the heavy damage on the housing and over the inducer with unsteady blade surface cavitation. The unsteady blade surface cavitation is due to the large incidence changes caused by the wakes of the upstream vanes. Very high cavitation damage rates are associated with this type of cavitation. Design recommendations for reducing the unsteady cavitation include removing the set of vanes closest to the inducer and modifying the remaining vanes.

  20. Effect of bacoside A on brain antioxidant status in cigarette smoke exposed rats.

    PubMed

    Anbarasi, K; Vani, G; Balakrishna, K; Devi, C S Shyamala

    2006-02-16

    Free radicals mediated oxidative stress has been implicated in the pathogenesis of smoking-related diseases and antioxidant nutrients are reported to prevent the oxidative damage induced by smoking. Therefore, the present study was conducted to evaluate the antioxidant role of bacoside A (triterpenoid saponin isolated from Bacopa monniera) against chronic cigarette smoking induced oxidative damage in rat brain. Adult male albino rats were exposed to cigarette smoke for a period of 12 weeks and simultaneously administered with bacoside A (10 mg/kg b.w./day, p.o.). Antioxidant status of the brain was assessed from the levels of reduced glutathione, vitamin C, vitamin E, and vitamin A and the activities of superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase. The levels of copper, iron, zinc and selenium in brain and serum ceruloplasmin activity were also measured. Oxidative stress was evident from the diminished levels of both enzymatic and non-enzymatic antioxidants. Alterations in the levels of trace elements with accumulation of copper and iron, and depletion of zinc and selenium were also observed. Bacoside A administration improved the antioxidant status and maintained the levels of trace elements. These results suggest that chronic cigarette smoke exposure enhances oxidative stress, thereby disturbing the tissue defense system and bacoside A protects the brain from the oxidative damage through its antioxidant potential.

  1. Beneficial effects of Korean red ginseng on lymphocyte DNA damage, antioxidant enzyme activity, and LDL oxidation in healthy participants: a randomized, double-blind, placebo-controlled trial.

    PubMed

    Kim, Ji Young; Park, Ju Yeon; Kang, Hee Jung; Kim, Oh Yoen; Lee, Jong Ho

    2012-07-17

    The reported health benefits of Korean red ginseng (KRG) include antioxidant, antitumor, antimutagenic, and immunomodulatory activities; however, the effects on oxidative stress have not yet been evaluated. Therefore, we assessed the effect of KRG on antioxidant enzymes and oxidative stress markers in humans. We conducted a randomized, double-blind, placebo-controlled study with three groups, including placebo, low-dose (3 g/day), and high-dose (6 g/day), which were randomly assigned to healthy subjects aged 20-65 years. Lymphocyte DNA damage, antioxidative enzyme activity, and lipid peroxidation were assessed before and after the 8-week supplementation. Fifty-seven subjects completed the protocol. Plasma superoxide dismutase (SOD) activity after the 8-week KRG supplementation was significantly higher in the low-and high-dose groups compared to baseline. Plasma glutathione peroxidase (GPx) and catalase activities were also increased after the high-dose supplementation. Furthermore, the DNA tail length and tail moment were significantly reduced after the supplementation (low-dose and high-dose), and plasma oxidized low-density lipoprotein (LDL) levels were reduced in low-dose and high-dose groups, but increased in the placebo group. The net changes in oxidized LDL after the supplementation differed significantly between both KRG supplementation groups and the placebo group. Net changes in GPx, SOD and catalase activities, and DNA tail length and tail moment were significantly different between the high-dose group and the placebo group. Additionally, the net changes in urinary 8-epi-PGF(2α) were significantly different between the KRG supplementation groups and the placebo group. KRG supplementation may attenuate lymphocyte DNA damage and LDL oxidation by upregulating antioxidant enzyme activity.

  2. Beneficial effects of Korean red ginseng on lymphocyte DNA damage, antioxidant enzyme activity, and LDL oxidation in healthy participants: a randomized, double-blind, placebo-controlled trial

    PubMed Central

    2012-01-01

    Background The reported health benefits of Korean red ginseng (KRG) include antioxidant, antitumor, antimutagenic, and immunomodulatory activities; however, the effects on oxidative stress have not yet been evaluated. Therefore, we assessed the effect of KRG on antioxidant enzymes and oxidative stress markers in humans. Methods We conducted a randomized, double-blind, placebo-controlled study with three groups, including placebo, low-dose (3 g/day), and high-dose (6 g/day), which were randomly assigned to healthy subjects aged 20–65 years. Lymphocyte DNA damage, antioxidative enzyme activity, and lipid peroxidation were assessed before and after the 8-week supplementation. Results Fifty-seven subjects completed the protocol. Plasma superoxide dismutase (SOD) activity after the 8-week KRG supplementation was significantly higher in the low-and high-dose groups compared to baseline. Plasma glutathione peroxidase (GPx) and catalase activities were also increased after the high-dose supplementation. Furthermore, the DNA tail length and tail moment were significantly reduced after the supplementation (low-dose and high-dose), and plasma oxidized low-density lipoprotein (LDL) levels were reduced in low-dose and high-dose groups, but increased in the placebo group. The net changes in oxidized LDL after the supplementation differed significantly between both KRG supplementation groups and the placebo group. Net changes in GPx, SOD and catalase activities, and DNA tail length and tail moment were significantly different between the high-dose group and the placebo group. Additionally, the net changes in urinary 8-epi-PGF2α were significantly different between the KRG supplementation groups and the placebo group. Conclusions KRG supplementation may attenuate lymphocyte DNA damage and LDL oxidation by upregulating antioxidant enzyme activity. PMID:22805313

  3. An ethanol extract derived from Bonnemaisonia hamifera scavenges ultraviolet B (UVB) radiation-induced reactive oxygen species and attenuates UVB-induced cell damage in human keratinocytes.

    PubMed

    Piao, Mei Jing; Hyun, Yu Jae; Cho, Suk Ju; Kang, Hee Kyoung; Yoo, Eun Sook; Koh, Young Sang; Lee, Nam Ho; Ko, Mi Hee; Hyun, Jin Won

    2012-12-14

    The present study investigated the photoprotective properties of an ethanol extract derived from the red alga Bonnemaisonia hamifera against ultraviolet B (UVB)-induced cell damage in human HaCaT keratinocytes. The Bonnemaisonia hamifera ethanol extract (BHE) scavenged the superoxide anion generated by the xanthine/xanthine oxidase system and the hydroxyl radical generated by the Fenton reaction (FeSO₄ + H₂O₂), both of which were detected by using electron spin resonance spectrometry. In addition, BHE exhibited scavenging activity against the 1,1-diphenyl-2-picrylhydrazyl radical and intracellular reactive oxygen species (ROS) that were induced by either hydrogen peroxide or UVB radiation. BHE reduced UVB-induced apoptosis, as shown by decreased apoptotic body formation and DNA fragmentation. BHE also attenuated DNA damage and the elevated levels of 8-isoprostane and protein carbonyls resulting from UVB-mediated oxidative stress. Furthermore, BHE absorbed electromagnetic radiation in the UVB range (280-320 nm). These results suggest that BHE protects human HaCaT keratinocytes against UVB-induced oxidative damage by scavenging ROS and absorbing UVB photons, thereby reducing injury to cellular components.

  4. Temperature experienced during incubation affects antioxidant capacity but not oxidative damage in hatchling red-eared slider turtles (Trachemys scripta elegans).

    PubMed

    Treidel, L A; Carter, A W; Bowden, R M

    2016-02-01

    Our understanding of how oxidative stress resistance phenotypes are affected by the developmental environment is limited. One component of the developmental environment, which is likely central to early life oxidative stress among ectothermic and oviparous species, is that of temperature. We investigated how incubation temperature manipulations affect oxidative damage and total antioxidant capacity (TAC) in red-eared slider turtle (Trachemys scripta elegans) hatchlings. First, to determine whether temperature fluctuations elicit oxidative stress, eggs from clutches were randomly assigned to either a constant (29.5 °C) or daily fluctuating temperature incubation (28.7 ± 3 °C) treatment. Second, to assess the effect of temperature fluctuation frequency on oxidative stress, eggs were incubated in one of three fluctuating incubation regimes: 28.7 ± 3 °C fluctuations every 12 h (hyper), 24 h (normal) or 48 h (hypo). Third, we tested the influence of average incubation temperature by incubating eggs in a daily fluctuating incubation temperature regime with a mean temperature of 26.5 °C (low), 27.1 °C (medium) or 27.7 °C (high). Although the accumulation of oxidative damage in hatchlings was unaffected by any thermal manipulation, TAC was affected by both temperature fluctuation frequency and average incubation temperature. Individuals incubated with a low frequency of temperature fluctuations had reduced TAC, while incubation at a lower average temperature was associated with enhanced TAC. These results indicate that although sufficient to prevent oxidative damage, TAC is influenced by developmental thermal environments, potentially because of temperature-mediated changes in metabolic rate. The observed differences in TAC may have important future consequences for hatchling fitness and overwinter survival. © 2016. Published by The Company of Biologists Ltd.

  5. Oxidative profiles of LDL and HDL isolated from women with preeclampsia.

    PubMed

    León-Reyes, G; Maida-Claros, R F; Urrutia-Medina, A X; Jorge-Galarza, E; Guzmán-Grenfell, A M; Fuentes-García, S; Medina-Navarro, R; Moreno-Eutimio, M A; Muñoz-Sánchez, J L; Hicks, J J; Torres-Ramos, Y D

    2017-05-16

    Oxidative stress causes biochemical changes in lipids and proteins; these changes can induce damage to the vascular endothelium and create maternal complications that are characteristic of preeclampsia. In this study, we evaluated the oxidative profile of lipoproteins isolated from women with preeclampsia. Thirty women diagnosed with preeclampsia and thirty women without preeclampsia were included in the study. Lipid-damage biomarkers, including conjugated dienes, lipohydroperoxides and malondialdehyde, were measured. The reduction of nitroblue tetrazolium, the formation of dityrosines, and the carbonylation of proteins were assessed as indicators of protein damage. The protective activity of HDL-c was evaluated by the paraoxonase-I activity present on the HDL-c particles. Serum lipid profiles were also quantified in both groups. Data were analysed using Student's t test and the Pearson correlation coefficient. Our results demonstrated in PE women evident oxidative changes in the lipids and proteins in HDL-c and LDL-c particles and the activity of the antioxidant enzyme PON-I decreased 59.9%. HDL-c exhibited self-defence, as demonstrated by the negative correlation between paraoxonase-I activity and the formation of lipohydroperoxides in HDL-c (r = -0.3755, p < 0.005). LDL-c and HDL-c isolated from women with preeclampsia show oxidative damage to lipids and proteins. We propose an oxidative profile based on the oxidation levels indicated by each of the markers used. We also found that paraoxonase-I is inactivated in the presence of lipohydroperoxides. Antioxidant support might be helpful to reduce oxidative stress in patients with preeclampsia. Further investigations are necessary to define the association between antioxidant activities and preeclampsia.

  6. Effect of heat stress and recovery on viability, oxidative damage, and heat shock protein expression in hepatic cells of grass carp (Ctenopharyngodon idellus).

    PubMed

    Cui, Yanting; Liu, Bo; Xie, Jun; Xu, Pao; Habte-Tsion, H-Michael; Zhang, Yuanyuan

    2014-06-01

    In this study, we investigated the effects of hyperthermia and recovery on cell viability, lactate dehydrogenase (LDH) activity, superoxide dismutase (SOD) activity, malondialdehyde (MDA), total antioxidant capacity (T-AOC), and heat shock protein (HSP60, 70, and 90) mRNA expression in the hepatic cells of the grass carp, Ctenopharyngodon idellus. Triplicate groups of cultured cells were exposed to 30, 32, or 34 °C for 0.5 h and then immediately incubated at 27 °C in 5 % CO2 for 6, 12, 24, or 48 h. Hyperthermia stress greatly reduced cell viability and increased LDH release. Cell damage declined after recovery. Hyperthermia stress increased the lipid peroxide levels and reduced the antioxidant capacity (e.g., reduced SOD and T-AOC) of the cells. However, oxidative damage declined as the recovery period increased, and the levels of MDA, SOD, and T-AOC were restored. After cells were exposed to 32 °C, the expression of HSP60 after recovery for 1, 2, and 4 h (P < 0.05), the expression of HSP70 after recovery for 0.5 and 1 h (P < 0.01), and the expression of HSP90 throughout recovery were significantly higher (P < 0.01) than the prestress levels. During the recovery period, the variations in HSP gene expression reflected the transition period from a state of cellular growth to one of the cellular repairs. In conclusion, hyperthermia depresses cell viability, induces oxidative damage, and increases HSP expression, which plays an important role during hyperthermic stress in grass carp hepatic cells.

  7. Effect of hypothermia on doxorubicin-induced cardiac myoblast signaling and cell death.

    PubMed

    L'Ecuyer, Thomas J; Aggarwal, Sanjeev; Zhang, Jiang Ping; Van der Heide, Richard S

    2012-01-01

    Anthracyclines (AC) are useful chemotherapeutic agents whose principal limitation is cardiac toxicity, which may progress to heart failure, transplantation or even death. We have shown that this toxicity involves oxidative stress-induced activation of the DNA damage pathway. Hypothermia has been shown to be protective against other diseases involving oxidative stress but has not been studied in models of AC toxicity. In the current experiments, H9C2 cardiac myoblasts were treated with varying concentrations of the AC doxorubicin (DOX) during normothermia (37°C) or mild hypothermia (35°C). Total cell death was assayed using trypan blue exclusion and apoptosis by terminal deoxynucleotidyl transferase-mediated deoxyuridine-biotin nick end labeling (TUNEL) staining. Oxidative stress was assayed using the fluorescent indicator 2'7'-dichlorofluorescein diacetate. DNA damage pathway activation was assayed by immunostaining for H2AX and p53. Mitochondrial membrane potential was assayed by JC-1 staining. At all concentrations of DOX examined (1, 2.5 and 5 μM), hypothermia reduced oxidative stress, activation of H2AX and p53, loss of mitochondrial membrane potential and total and apoptotic cell death (P=.001-.03 for each observation). The reduction of oxidative stress-induced activation of the DNA damage pathway and consequent cell death by mild hypothermia supports a possible protective role to reduce the clinical impact of DOX-induced cardiac toxicity. Such an approach may allow expanded use of these effective chemotherapeutic agents to increase cancer cure rates. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Anti-oxidative effects of curcumin on immobilization-induced oxidative stress in rat brain, liver and kidney.

    PubMed

    Samarghandian, Saeed; Azimi-Nezhad, Mohsen; Farkhondeh, Tahereh; Samini, Fariborz

    2017-03-01

    Restraint stress has been indicated to induce oxidative damage in tissues. Several investigations have reported that curcumin (CUR) may have a protective effect against oxidative stress. The present study was designed to investigate the protective effects of CUR on restraint stress induced oxidative stress damage in the brain, liver and kidneys. For chronic restraint stress, rats were kept in the restrainers for 1h every day, for 21 consecutive days. The animals received systemic administrations of CUR daily for 21days. In order to evaluate the changes of the oxidative stress parameters following restraint stress, the levels of malondialdehyde (MDA), reduced glutathione (GSH), as well as antioxidant enzyme activities superoxide dismutase (SOD) glutathione peroxidase (GPx), glutathione reductase (GR) and catalase (CAT) were measured in the brain, liver and kidney of rats after the end of restraint stress. The restraint stress significantly increased MDA level, but decreased the level of GSH and activists of SOD, GPx, GR, and CAT the brain, liver and kidney of rats in comparison to the normal rats (P<0.001). Intraperitoneal administration of CUR significantly attenuated oxidative stress and lipid peroxidation, prevented apoptosis, and increased antioxidant defense mechanism activity in the tissues versus the control group (P<0.05). This study shows that CUR can prevent restraint stress-induced oxidative damage in the brain, liver and kidney of rats and propose that CUR may be useful agents against oxidative stress in the tissues. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  9. Silicon (Si) alleviates cotton (Gossypium hirsutum L.) from zinc (Zn) toxicity stress by limiting Zn uptake and oxidative damage.

    PubMed

    Anwaar, Shad Ali; Ali, Shafaqat; Ali, Skhawat; Ishaque, Wajid; Farid, Mujahid; Farooq, Muhammad Ahsan; Najeeb, Ullah; Abbas, Farhat; Sharif, Muhammad

    2015-03-01

    Silicon (Si) is as an important fertilizer element, which has been found effective in enhancing plant tolerance to variety of biotic and a-biotic stresses. This study investigates the Si potential to alleviate zinc (Zn) toxicity stress in cotton (Gossypium hirsutum L.). Cotton plants were grown in hydroponics and exposed to different Zn concentration, 0, 25, and 50 μM, alone and/or in combination with 1 mM Si. Incremental Zn concentration in growth media instigated the cellular oxidative damage that was evident from elevated levels of hydrogen peroxide (H2O2), electrolyte leakage, and malondialdehyde (MDA) and consequently inhibited cotton growth, biomass, chlorophyll pigments, and photosynthetic process. Application of Si significantly suppressed Zn accumulation in various plant parts, i.e., roots, stems, and leaves and thus promoted biomass, photosynthetic, growth parameters, and antioxidant enzymes activity of Zn-stressed as well unstressed plants. In addition, Si reduced the MDA and H2O2 production and electrolyte leakage suggesting its role in protecting cotton plants from Zn toxicity-induced oxidative damage. Thus, the study indicated that exogenous Si application could improve growth and development of cotton crop experiencing Zn toxicity stress by limiting Zn bioavailability and oxidative damage.

  10. Milk thistle and olive extract: old substances with a new mission against sun-induced skin damage.

    PubMed

    DI Caprio, Roberta; Monfrecola, Giuseppe; Gasparri, Franco; Micillo, Raffaella; Balato, Anna; Lembo, Serena

    2017-11-30

    Natural antioxidants represent an effective option in the prevention and/or improvement of ultraviolet radiations (UVR)-induced/aggravated skin conditions. UVR cause DNA damage in keratinocytes, directly, in the form of cyclobutane pyrimidine dimers (CPDs), or indirectly, through oxidative stress production. Failure of the repair system can result in genetic mutations primarily responsible for the initiation of NMSCs. The aim of our study was to evaluate the in vitro protective effect of milk thistle and olive purified extracts on cultured keratinocytes after solar simulator irradiations (SSR). Immortalized keratinocytes were pre-incubated with different concentrations of milk thistle and olive purified extracts, and irradiated with increasing doses of SSR. Thereafter, CPDs and p53 expression were evaluated to assess DNA damage, whereas cellular antioxidants consumption and lipid membranes peroxidation were measured to analyse oxidative stress. The study substances were well tolerated by cells and displayed good cytoprotective and anti-oxidant activities, being milk thistle dry extract more effective in limiting the direct DNA damage, and olive extract particularly able to reduce lipid membrane peroxidation and to increase cellular antioxidants. Both study substances can be defined as safe compounds, showing differential cytoprotective and anti-oxidant activities and might represent interesting options for NMSCs chemoprevention.

  11. Lycium barbarum polysaccharide protects human keratinocytes against UVB-induced photo-damage.

    PubMed

    Li, Huaping; Li, Zhenjie; Peng, Liqian; Jiang, Na; Liu, Qing; Zhang, Erting; Liang, Bihua; Li, Runxiang; Zhu, Huilan

    2017-02-01

    Ultraviolet B (UVB) irradiation plays a key role in skin damage, which induces oxidative and inflammatory damages, thereby causing photoaging or photocarcinogenesis. Lycium barbarum polysaccharide (LBP), the most biologically active fraction of wolfberry, possesses significant antioxidative and anti-inflammatory effects on multiple tissues. In the present study, the photoprotective effects and potential underlying molecular mechanisms of LBP against UVB-induced photo-damage were investigated in immortalized human keratinocytes (HaCaT cells). The data indicated that pretreatment with LBP significantly attenuated UVB-induced decrease in cell viability, increase in ROS production and DNA damage. LBP also significantly suppressed UVB-induced p38 MAPK activation, and subsequently reversed caspase-3 activation and MMP-9 expression. Notably, LBP was found to induce Nrf2 nuclear translocation and increase the expression of Nrf2-dependent ARE target genes. Furthermore, the protective effects of LBP were abolished by siRNA-mediated Nrf2 silencing. These results showed that the antioxidant LBP could partially protect against UVB irradiation-induced photo-damage through activation of Nrf2/ARE pathway, thereby scavenging ROS and reducing DNA damage, and subsequently suppressing UVB-induced p38 MAP pathway. Thus, LBP can be potentially used for skincare against oxidative damage from environmental insults.

  12. Vitamin C mitigates oxidative/nitrosative stress and inflammation in doxorubicin-induced cardiomyopathy.

    PubMed

    Akolkar, Gauri; da Silva Dias, Danielle; Ayyappan, Prathapan; Bagchi, Ashim K; Jassal, Davinder S; Salemi, Vera Maria Cury; Irigoyen, Maria Claudia; De Angelis, Katia; Singal, Pawan K

    2017-10-01

    Increase in oxidative/nitrosative stress is one of the mechanisms associated with the development of cardiotoxicity due to doxorubicin (Dox), a potent chemotherapy drug. Previously, we reported mitigation of Dox-induced oxidative/nitrosative stress and apoptosis by vitamin C (Vit C) in isolated cardiomyocytes. In the present in vivo study in rats, we investigated the effect of prophylactic treatment with Vit C on Dox-induced apoptosis, inflammation, oxidative/nitrosative stress, cardiac dysfunction, and Vit C transporter proteins. Dox (cumulative dose: 15 mg/kg) in rats reduced systolic and diastolic cardiac function and caused structural damage. These changes were associated with a myocardial increase in reactive oxygen species, reduction in antioxidant enzyme activities, increased expression of apoptotic proteins, and inflammation. Dox also caused an increase in the expression of proapoptotic proteins Bax, Bnip-3, Bak, and caspase-3. An increase in oxidative/nitrosative stress attributable to Dox was indicated by an increase in superoxide, protein carbonyl formation, lipid peroxidation, nitric oxide (NO), NO synthase (NOS) activity, protein nitrosylation, and inducible NOS protein expression. Dox increased the levels of cardiac proinflammatory cytokines TNF-α, IL-1β, and IL-6, whereas the expression of Vit C transporter proteins (sodium-ascorbate cotransporter 2 and glucose transporter 4) was reduced. Prophylactic and concurrent treatment with Vit C prevented all these changes and improved survival in the Vit C + Dox group. Vit C also improved Dox-mediated systolic and diastolic dysfunctions and structural damage. These results suggest a cardioprotective role of Vit C in Dox-induced cardiomyopathy by reducing oxidative/nitrosative stress, inflammation, and apoptosis, as well as improving Vit C transporter proteins. NEW & NOTEWORTHY This in vivo study provides novel data that vitamin C improves cardiac structure and function in doxorubicin-induced cardiomyopathy by reducing oxidative/nitrosative stress, apoptosis, and inflammation along with upregulation of cardiac vitamin C transporter proteins. The latter may have a crucial role in improving antioxidant status in this cardiomyopathy. Copyright © 2017 the American Physiological Society.

  13. Glutathione-deficient Plasmodium berghei parasites exhibit growth delay and nuclear DNA damage.

    PubMed

    Padín-Irizarry, Vivian; Colón-Lorenzo, Emilee E; Vega-Rodríguez, Joel; Castro, María Del R; González-Méndez, Ricardo; Ayala-Peña, Sylvette; Serrano, Adelfa E

    2016-06-01

    Plasmodium parasites are exposed to endogenous and exogenous oxidative stress during their complex life cycle. To minimize oxidative damage, the parasites use glutathione (GSH) and thioredoxin (Trx) as primary antioxidants. We previously showed that disruption of the Plasmodium berghei gamma-glutamylcysteine synthetase (pbggcs-ko) or the glutathione reductase (pbgr-ko) genes resulted in a significant reduction of GSH in intraerythrocytic stages, and a defect in growth in the pbggcs-ko parasites. In this report, time course experiments of parasite intraerythrocytic development and morphological studies showed a growth delay during the ring to schizont progression. Morphological analysis shows a significant reduction in size (diameter) of trophozoites and schizonts with increased number of cytoplasmic vacuoles in the pbggcs-ko parasites in comparison to the wild type (WT). Furthermore, the pbggcs-ko mutants exhibited an impaired response to oxidative stress and increased levels of nuclear DNA (nDNA) damage. Reduced GSH levels did not result in mitochondrial DNA (mtDNA) damage or protein carbonylations in neither pbggcs-ko nor pbgr-ko parasites. In addition, the pbggcs-ko mutant parasites showed an increase in mRNA expression of genes involved in oxidative stress detoxification and DNA synthesis, suggesting a potential compensatory mechanism to allow for parasite proliferation. These results reveal that low GSH levels affect parasite development through the impairment of oxidative stress reduction systems and damage to the nDNA. Our studies provide new insights into the role of the GSH antioxidant system in the intraerythrocytic development of Plasmodium parasites, with potential translation into novel pharmacological interventions. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  14. The effect of brain death in rat steatotic and non-steatotic liver transplantation with previous ischemic preconditioning.

    PubMed

    Jiménez-Castro, Mónica B; Meroño, Noelia; Mendes-Braz, Mariana; Gracia-Sancho, Jordi; Martínez-Carreres, Laia; Cornide-Petronio, Maria Eugenia; Casillas-Ramirez, Araní; Rodés, Juan; Peralta, Carmen

    2015-01-01

    Most liver grafts undergoing transplantation derive from brain dead donors, which may also show hepatic steatosis, being both characteristic risk factors in liver transplantation. Ischemic preconditioning shows benefits when applied in non-brain dead clinical situations like hepatectomies, whereas it has been less promising in the transplantation from brain dead patients. This study examined how brain death affects preconditioned steatotic and non-steatotic liver grafts undergoing transplantation. Steatotic and non-steatotic grafts from non-brain dead and brain dead-donors were cold stored for 6h and then transplanted. After 2, 4, and 16 h of reperfusion, hepatic damage was analysed. In addition, two therapeutic strategies, ischemic preconditioning and/or acetylcholine pre-treatment, and their underlying mechanisms were characterized. Preconditioning benefits in non-brain dead donors were associated with nitric oxide and acetylcholine generation. In brain dead donors, preconditioning generated nitric oxide but did not promote acetylcholine upregulation, and this resulted in inflammation and damage. Acetylcholine treatment in brain dead donors, through PKC, increased antioxidants and reduced lipid peroxidation, nitrotyrosines and neutrophil accumulation, altogether protecting against damage. The combination of acetylcholine and preconditioning conferred stronger protection against damage, oxidative stress and neutrophil accumulation than acetylcholine treatment alone. These superior beneficial effects were due to a selective preconditioning-mediated generation of nitric oxide and regulation of PPAR and TLR4 pathways, which were not observed when acetylcholine was administered alone. Our findings propose the combination of acetylcholine+preconditioning as a feasible and highly protective strategy to reduce the adverse effects of brain death and to ultimately improve liver graft quality. Copyright © 2014 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  15. Diphenylmethyl selenocyanate attenuates malachite green induced oxidative injury through antioxidation & inhibition of DNA damage in mice

    PubMed Central

    Das, Jayanta Kumar; Sarkar, Sibani; Hossain, Sk Ugir; Chakraborty, Pramita; Das, Rajat Kumar; Bhattacharya, Sudin

    2013-01-01

    Background & objectives: Malachite green (MG), an environmentally hazardous material, is used as a non permitted food colouring agent, especially in India. Selenium (Se) is an essential nutritional trace element required for animals and humans to guard against oxidative stress induced by xenobiotic compounds of diverse nature. In the present study, the role of the selenium compound diphenylmethyl selenocyanate (DMSE) was assessed on the oxidative stress (OS) induced by a food colouring agent, malachite green (MG) in vivo in mice. Methods: Swiss albino mice (Mus musculus) were intraperitoneally injected with MG at a standardized dose of 100 μg/ mouse for 30 days. DMSE was given orally at an optimum dose of 3 mg/kg b.w. in pre (15 days) and concomitant treatment schedule throughout the experimental period. The parameters viz. ALT, AST, LPO, GSH, GST, SOD, CAT, GPx, TrxR, CA, MN, MI and DNA damage have been evaluated. Results: The DMSE showed its potential to protect against MG induced hepatotoxicity by controlling the serum alanine aminotransferase and aspartate amino transferase (ALT and AST) levels and also ameliorated oxidative stress by modulating hepatic lipid peroxidation and different detoxifying and antioxidative enzymes such as glutathione-S-transferase (GST), superoxide dismutase (SOD), catalase (CAT), and also the selenoenzymes such as glutathione peroxidase (GPx) and thioredoxin reductase (TrxR) and reduced glutathione level which in turn reduced DNA damage. Interpretation & conclusions: The organo-selenium compound DMSE showed significant protection against MG induced heptotoxicity and DNA damage in murine model. Better protection was observed in pretreatment group than in the concomitant group. Further studies need to be done to understand the mechanism of action. PMID:23852297

  16. Improvement in Depressive Symptoms Is Associated with Reduced Oxidative Damage and Inflammatory Response in Type 2 Diabetic Patients with Subsyndromal Depression: The Results of a Randomized Controlled Trial Comparing Psychoeducation, Physical Exercise, and Enhanced Treatment as Usual

    PubMed Central

    Vučić Lovrenčić, Marijana; Pibernik-Okanović, Mirjana; Šekerija, Mario; Prašek, Manja; Ajduković, Dea; Kos, Jadranka; Hermanns, Norbert

    2015-01-01

    Aims. To examine one-year changes in oxidative damage and inflammation level in type 2 diabetic patients undergoing behavioral treatment for subsyndromal depression. Materials and Methods. A randomized controlled comparison of psychoeducation (A), physical exercise (B), and enhanced treatment as usual (C) was performed in 209 eligible subjects in a tertiary diabetes care setting. Depressive symptoms (primary outcome) and selected biomarkers of oxidative damage and inflammation (secondary outcomes) were assessed at baseline and six- and twelve-month follow-up. Results. Out of the 74, 67, and 68 patients randomised into groups A, B, and C, respectively, 201 completed the interventions, and 179 were analysed. Participants in all three groups equally improved in depressive symptoms from baseline to one-year follow-up (repeated measures ANOVA; F = 12.51, p < 0.0001, η 2 = 0.07). Urinary 8-oxo-deoxyguanosine (u-8-oxodG) decreased (F = 10.66, p < 0.0001, η 2 = 0.06), as did sialic acid and leukocytes (F = 84.57, η 2 = 0.32 and F = 12.61, η 2 = 0.07, resp.; p < 0.0001), while uric acid increased (F = 12.53, p < 0.0001, η 2 = 0.07) in all subjects during one year. Improvement of depressive symptoms at 6 months significantly predicted one-year reduction in u-8-oxodG (β = 0.15, p = 0.044). Conclusion. Simple behavioral interventions are capable not only of alleviating depressive symptoms, but also of reducing the intensity of damaging oxidative/inflammatory processes in type 2 diabetic patients with subsyndromal depression. This trial is registered with ISRCTN05673017. PMID:26347775

  17. Relationship between oxidative damage and colon carcinogenesis in irradiated rats: influence of dietary countermeasures

    NASA Astrophysics Data System (ADS)

    Turner, Nancy; Sanders, Lisa; Wu, Guoyao; Davidson, Laurie; Ford, John; Braby, Leslie; Carroll, Raymond; Chapkin, Robert; Lupton, Joanne

    Galactic cosmic radiation not only kills colon epithelial cells, it also generates a cellular environment that can lead to oxidative DNA damage. We previously demonstrated that a diet containing fish oil and pectin protects against initiation of colon cancer by enhancing apoptotic removal of cells with oxidative DNA adducts (8-OHdG), and that apoptosis was highly correlated with colon cancer suppression. We hypothesized this diet combination will mitigate the oxidative damage occurring from radiation and thus reduce colon cancer. The experiment tested the effect of radiation (± 1 Gy, 1 GeV/n Fe ions) on redox balance, apoptosis, and 8-OHdG levels at initiation and colon tumor incidence. Diets contained fish oil or corn oil, and cellulose or pectin (2x2 factorial design). Rats received the diets 3 wk before irradiation (half of the rats), followed by azoxymethane (AOM) injections 10 and 17 d later (all rats). Just prior to AOM injection, irradiated fish oil/pectin rats had a more reduced redox state in colonocytes (lower GSSG, P < 0.05; higher GSH/GSSG ratio), which was not observed in irradiated corn oil/cellulose rats. A shift to a more oxidative state (lower GSH and GSH/GSSG ratio, P < 0.05) occurred between 6 and 12 h after AOM in the fish oil/pectin irradiated rats. Changes in redox balance likely contributed to lower 8-OHdG levels in colonocytes from rats consuming the fish oil diets. Dietary pectin enhanced (P < 0.04) apoptosis induction 12 h after AOM injection in irradiated rats. Similar to the 8-OHdG results, colon tumor incidence was 42% higher (P < 0.05) in rats fed corn oil vs fish oil diets. In summary, fish oil/pectin diets created a more reduced colon environment in irradiated rats that was evident 10 d after irradiation. The ensuing oxidative shift in those rats after AOM injection may have enhanced apoptosis; effectively eliminating more DNA damaged cells. Thus, inclusion of fish oil and pectin in diets for long-duration space flights should help suppress the elevation in colon cancer risk caused by galactic cosmic radiation. Funded by NSBRI (NASA NCC 9-58), NIH CA90301, NIEHS P-30-ES09106.

  18. Flavonoids Derived from Abelmoschus esculentus Attenuates UV-B Induced Cell Damage in Human Dermal Fibroblasts Through Nrf2-ARE Pathway.

    PubMed

    Patwardhan, Juilee; Bhatt, Purvi

    2016-05-01

    Ultraviolet-B (UV-B) radiation is a smaller fraction of the total radiation reaching the Earth but leads to extensive damage to the deoxyribonucleic acid (DNA) and other biomolecules through formation of free radicals altering redox homeostasis of the cell. Abelmoschus esculentus (okra) has been known in Ayurveda as antidiabetic, hypolipidemic, demulscent, antispasmodic, diuretic, purgative, etc. The aim of this study is to evaluate the protective effect of flavonoids from A. esculentus against UV-B-induced cell damage in human dermal fibroblasts. UV-B protective activity of ethyl acetate (EA) fraction of okra was studied against UV-B-induced cytotoxicity, antioxidant regulation, oxidative DNA damage, intracellular reactive oxygen species (ROS) generation, apoptotic morphological changes, and regulation of heme oxygenase-1 (HO-1) gene through nuclear factor E2-related factor 2-antioxidant response element (Nrf2-ARE) pathway. Flavonoid-rich EA fraction depicted a significant antioxidant potential also showing presence of rutin. Pretreatment of cells with EA fraction (10-30 μg/ml) prevented UV-B-induced cytotoxicity, depletion of endogenous enzymatic antioxidants, oxidative DNA damage, intracellular ROS production, apoptotic changes, and overexpression of Nrf2 and HO-1. Our study demonstrated for the 1(st) time that EA fraction of okra may reduce oxidative stress through Nrf2-ARE pathway as well as through endogenous enzymatic antioxidant system. These results suggested that flavonoids from okra may be considered as potential UV-B protective agents and may also be formulated into herbal sunscreen for topical application. Flavonoid-enriched ethyl acetate (EA) fraction from A. esculentus protected against ultraviolet-B (UV-B)-induced oxidative DNA damageEA fraction prevented UV-B-induced cytotoxicity, depletion of endogenous enzymatic antioxidants, and intracellular reactive oxygen species productionEA fraction could reduce oxidative stress through the Nrf2-ARE PathwayEA fraction was found to be nongenotoxic and prevented apoptotic changes. Flavonoids from Abelmoschus esculentus protected from ultraviolet-B-induced damageThey were capable of reducing oxidative stress through Nrf2-ARE PathwayThey are nongenotoxic and do not possess mutagenic potentialFlavonoids from A. esculentus can be studied and explored further for its topical application as sunscreen. Abbreviations used: ABTS: 2,2'-azino-bis-(3-ethylbenzothiazoline -6-sulphonic acid), AO: Acridine orange, Analysis of variance, ARE: Antioxidant response elements, BSA: Bovine serum albumin, CAPE: Caffeic acid phenethyl ester, CAT: Catalase, DCFH-DA: 2',7'-dichlorofluorescein diacetate, DMEM: Dulbecco's modified eagle's medium, DMSO: dimethyl sulfoxide, DNA: Deoxyribonucleic acid, DPBS: Dulbecco's phosphate-buffered saline, DPPH: 2,2-diphenyl-1-picryl hydrazyl, ECL: Enhanced chemiluminescence, EDTA: Ethylenediaminetetraacetic acid, ELISA: Enzyme-linked immunosorbent assay, EtBr: Ethidium bromide, FBS: Fetal bovine serum, FE Fraction: Flavonoid-enriched fraction, FRAP: Ferric reducing antioxidant power, GPx: Glutathione peroxidase, GR: Glutathione reductase, GST: Glutathione-S-transferase, GSH: Reduced glutathione, GSSG: Oxidized glutathione, HDF: Human dermal fibroblast adult cells, HEPES: 4-(2-hydroxyethyl)-1-piperazineethanesulphonic acid, HRP: Horseradish peroxidase, HO-1: Heme oxygenase-1, HPTLC: High-performance thin layer chromatography, Keap-1: Kelch-like ECH-associated protein-1, MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, NaCl: sodium chloride, NFDM: nonfat dry milk, Nrf2: Nuclear factor E2-related factor 2, NQO1: NAD (P) H: Quinine oxidoreductase 1, OH: Hydroxyl ions, PBST: Phosphate-buffered saline with 0.1% tween 20, PCR: Polymerase chain reaction, PMSF: Phenylmethanesulfonyl fluoride, Rf: Retention factor, ROS: Reactive oxygen species, rRNA: Ribosomal ribonucleic acid, SDS: Sodium dodecyl sulfate, SOD: Superoxide dismutase, TLC: Thin layer chromatography, TLC-DPPH: Thin layer chromatography-2,2-diphenyl-1-picryl hydrazyl, UV: Ultraviolet, UV-A: Ultraviolet-A, UV-B: Ultraviolet-B, UV-C: Ultraviolet-C, qPCR: Quantitative polymerase chain reaction.

  19. The effect of endurance exercise on both skeletal muscle and systemic oxidative stress in previously sedentary obese men

    PubMed Central

    Samjoo, I A; Safdar, A; Hamadeh, M J; Raha, S; Tarnopolsky, M A

    2013-01-01

    Background: Obesity is associated with low-grade systemic inflammation, in part because of secretion of proinflammatory cytokines, resulting into peripheral insulin resistance (IR). Increased oxidative stress is proposed to link adiposity and chronic inflammation. The effects of endurance exercise in modulating these outcomes in insulin-resistant obese adults remain unclear. We investigated the effect of endurance exercise on markers of oxidative damage (4-hydroxy-2-nonenal (4-HNE), protein carbonyls (PCs)) and antioxidant enzymes (superoxide dismutase (SOD), catalase) in skeletal muscle; urinary markers of oxidative stress (8-hydroxy-2-deoxyguanosine (8-OHdG), 8-isoprostane); and plasma cytokines (C-reactive protein (CRP), interleukin-6 (IL-6), leptin, adiponectin). Methods: Age- and fitness-matched sedentary obese and lean men (n=9 per group) underwent 3 months of moderate-intensity endurance cycling training with a vastus lateralis biopsy, 24-h urine sample and venous blood samples taken before and after the intervention. Results: Obese subjects had increased levels of oxidative damage: 4-HNE (+37% P⩽0.03) and PC (+63% P⩽0.02); evidence of increased adaptive response to oxidative stress because of elevated levels of copper/zinc SOD (Cu/ZnSOD) protein content (+84% P⩽0.01); increased markers of inflammation: CRP (+737% P⩽0.0001) and IL-6 (+85% P⩽0.03), and these correlated with increased markers of obesity; and increased leptin (+262% P⩽0.0001) with lower adiponectin (−27% P⩽0.01) levels vs lean controls. Training reduced 4-HNE (−10% P⩽0.04), PC (−21% P⩽0.05), 8-isoprostane (−26% P⩽0.02) and leptin levels (−33% P⩽0.01); had a tendency to decrease IL-6 levels (−21% P=0.07) and IR (−17% P=0.10); and increased manganese SOD (MnSOD) levels (+47% P⩽0.01). Conclusion: Endurance exercise reduced skeletal muscle-specific and systemic oxidative damage while improving IR and cytokine profile associated with obesity, independent of weight loss. Hence, exercise is a useful therapeutic modality to reduce risk factors associated with the pathogenesis of IR in obesity. PMID:24042701

  20. Oxidative Injury and Iron Redistribution Are Pathological Hallmarks of Marmoset Experimental Autoimmune Encephalomyelitis.

    PubMed

    Dunham, Jordon; Bauer, Jan; Campbell, Graham R; Mahad, Don J; van Driel, Nikki; van der Pol, Susanne M A; 't Hart, Bert A; Lassmann, Hans; Laman, Jon D; van Horssen, Jack; Kap, Yolanda S

    2017-06-01

    Oxidative damage and iron redistribution are associated with the pathogenesis and progression of multiple sclerosis (MS), but these aspects are not entirely replicated in rodent experimental autoimmune encephalomyelitis (EAE) models. Here, we report that oxidative burst and injury as well as redistribution of iron are hallmarks of the MS-like pathology in the EAE model in the common marmoset. Active lesions in the marmoset EAE brain display increased expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (p22phox, p47phox, and gp91phox) and inducible nitric oxide synthase immunoreactivity within lesions with active inflammation and demyelination, coinciding with enhanced expression of mitochondrial heat-shock protein 70 and superoxide dismutase 1 and 2. The EAE lesion-associated liberation of iron (due to loss of iron-containing myelin) was associated with altered expression of the iron metabolic markers FtH1, lactoferrin, hephaestin, and ceruloplasmin. The enhanced expression of oxidative damage markers in inflammatory lesions indicates that the enhanced antioxidant enzyme expression could not counteract reactive oxygen and nitrogen species-induced cellular damage, as is also observed in MS brains. This study demonstrates that oxidative injury and aberrant iron distribution are prominent pathological hallmarks of marmoset EAE thus making this model suitable for therapeutic intervention studies aimed at reducing oxidative stress and associated iron dysmetabolism. © 2017 American Association of Neuropathologists, Inc. All rights reserved.

  1. CYP2E1 induction leads to oxidative stress and cytotoxicity in glutathione-depleted cerebellar granule neurons.

    PubMed

    Valencia-Olvera, Ana Carolina; Morán, Julio; Camacho-Carranza, Rafael; Prospéro-García, Oscar; Espinosa-Aguirre, Jesús Javier

    2014-10-01

    Increasing evidence suggests that brain cytochrome P450 (CYP) can contribute to the in situ metabolism of xenobiotics. In the liver, some xenobiotics can be metabolized by CYPs into more reactive products that can damage hepatocytes and induce cell death. In addition, normal CYP activity may produce reactive oxygen species (ROS) that contribute to cell damage through oxidative mechanisms. CYP2E1 is a CYP isoform that can generate ROS leading to cytotoxicity in multiple tissue types. The aim of this study was to determine whether CYP2E1 induction may lead to significant brain cell impairment. Immunological analysis revealed that exposure of primary cerebellar granule neuronal cultures to the CYP inducer isoniazid, increased CYP2E1 expression. In the presence of buthionine sulfoximine, an agent that reduces glutathione levels, isoniazid treatment also resulted in reactive oxygen species (ROS) production, DNA oxidation and cell death. These effects were attenuated by simultaneous exposure to diallyl sulfide, a CYP2E1 inhibitor, or to a mimetic of superoxide dismutase/catalase, (Euka). These results suggest that in cases of reduced antioxidant levels, the induction of brain CYP2E1 could represent a risk of in situ neuronal damage. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Anti-Inflammatory and Antioxidative Stress Effects of Oryzanol in Glaucomatous Rabbits.

    PubMed

    Panchal, Shital S; Patidar, Rajesh K; Jha, Abhishek B; Allam, Ahmed A; Ajarem, Jamaan; Butani, Shital B

    2017-01-01

    Purpose . γ -Oryzanol works by anti-inflammatory and radical scavenging activity as a neuroprotective, anticancer, antiulcer, and immunosuppressive agent. The present study was conducted to investigate effect of oryzanol in acute and chronic experimental glaucoma in rabbits. Methods . Effect of oryzanol was evaluated in 5% dextrose induced acute model of ocular hypertension in rabbit eye. Chronic model of glaucoma was induced with subconjunctival injection of 5% of 0.3 ml phenol. Treatment with oryzanol was given for next two weeks after induction of glaucoma. From anterior chamber of rabbit eye aqueous humor was collected to assess various oxidative stress parameters like malondialdehyde, superoxide dismutase, glutathione peroxidase, catalase, nitric oxide, and inflammatory parameters like TNF- α and IL-6. Structural damage in eye was examined by histopathological studies. Results . In acute model of ocular hypertension oryzanol did not alter raised intraocular pressure. In chronic model of glaucoma oryzanol exhibited significant reduction in oxidative stress followed by reduction in intraocular pressure. Oryzanol treatment reduced level of TNF- α and IL-6. Histopathological studies revealed decreased structural damage of trabecular meshwork, lamina cribrosa, and retina with oryzanol treatment. Conclusions . Oryzanol showed protective effect against glaucoma by its antioxidative stress and anti-inflammatory property. Treatment with oryzanol can reduce optic nerve damage.

  3. Pre-stimulation of the kallikrein system in cisplatin-induced acute renal injury: An approach to renoprotection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aburto, Andrés; Barría, Agustín; Cárdenas, Areli

    Antineoplastic treatment with cisplatin is frequently complicated by nephrotoxicity. Although oxidative stress may be involved, the pathogenic mechanisms responsible for renal damage have not been completely clarified. In order to investigate the role of the renal kinin system in this condition, a group of rats was submitted to high potassium diet to stimulate the synthesis and excretion of tissue kallikrein 1 (rKLK1) previous to an intraperitoneal injection of 7 mg/kg cisplatin. A significant reduction in lipoperoxidation, evidenced by urinary excretion of malondialdehyde and renal immunostaining of hidroxy-nonenal, was accompanied by a decline in apoptosis. Coincident with these findings we observedmore » a reduction in the expression of renal KIM-1 suggesting that renoprotection may be occurring. Stimulation or indemnity of the renal kinin system deserves to be evaluated as a complementary pharmacological measure to diminish cisplatin nephrotoxicity. - Highlights: • Mechanisms of cisplatin-induced-renal damage have not been completely clarified. • Cisplatin induces oxidative stress and apoptosis. • The renal kallikrein-kinin system is protective in experimental acute renal damage. • Kallikrein stimulation reduces oxidative stress and apoptosis induced by cisplatin. • Protection of the kallikrein-kinin system may reduce cisplatin toxicity.« less

  4. Protective effect of Mangifera indica L. extract (Vimang) on the injury associated with hepatic ischaemia reperfusion.

    PubMed

    Sánchez, Gregorio Martínez; Rodríguez H, María A; Giuliani, Attilia; Núñez Sellés, Alberto J; Rodríguez, Niurka Pons; León Fernández, Olga Sonia; Re, L

    2003-03-01

    The effect of Mangifera indica L. extract (Vimang) on treatment of injury associated with hepatic ischaemia/reperfusion was tested. Vimang protects from the oxidative damage induced by oxygen-based free radicals as shown in several in vitro test systems conducted. The ability of Vimang to reduce liver damage was investigated in rats undergoing right-lobe blood fl ow occlusion for 45 min followed by 45 min of reperfusion. The ischaemia/reperfusion model leads to an increase of transaminase (ALT and AST), membrane lipid peroxidation, tissue neutrophil in filtration, DNA fragmentation, loss of protein -SH groups, cytosolic Ca2+ overload and a decrease of catalase activity. Oral administration of Vimang (50, 110 and 250 mg/kg, b.w.) 7 days before reperfusion, reduced transaminase levels and DNA fragmentation in a dose dependent manner (p < 0.05). Vimang also restored the cytosolic Ca2+ levels and inhibited polymorphonuclear migration at a dose of 250 mg/kg b.w., improved the oxidation of total and non protein sulfhydryl groups and prevented modification in catalase activity, uric acid and lipid peroxidation markers (p < 0.05). These data suggest that Vimang could be a useful new natural drug for preventing oxidative damage during hepatic injury associated with free radical generation. Copyright 2003 John Wiley & Sons, Ltd.

  5. Fisetin Protects DNA Against Oxidative Damage and Its Possible Mechanism

    PubMed Central

    Wang, Tingting; Lin, Huajuan; Tu, Qian; Liu, Jingjing; Li, Xican

    2016-01-01

    Purpose: The paper tries to assess the protective effect of fisetin against •OH-induced DNA damage, then to investigate the possible mechanism. Methods: The protective effect was evaluated based on the content of malondialdehyde (MDA). The possible mechanism was analyzed using various antioxidant methods in vitro, including •OH scavenging (deoxyribose degradation), •O2- scavenging (pyrogallol autoxidation), DPPH• scavenging, ABTS•+ scavenging, and Cu2+-reducing power assays. Results: Fisetin increased dose-dependently its protective percentages against •OH-induced DNA damage (IC50 value =1535.00±29.60 µM). It also increased its radical-scavenging percentages in a dose-dependent manner in various antioxidants assays. Its IC50 values in •OH scavenging, •O2- scavenging, DPPH• scavenging, ABTS•+ scavenging, and Cu2+-reducing power assays, were 47.41±4.50 µM, 34.05±0.87 µM, 9.69±0.53 µM, 2.43±0.14 µM, and 1.49±0.16 µM, respectively. Conclusion: Fisetin can effectively protect DNA against •OH-induced oxidative damage possibly via reactive oxygen species (ROS) scavenging approach, which is assumed to be hydrogen atom (H•) and/or single electron (e) donation (HAT/SET) pathways. In the HAT pathway, the 3’,4’-dihydroxyl moiety in B ring of fisetin is thought to play an important role, because it can be ultimately oxidized to a stable ortho-benzoquinone form. PMID:27478791

  6. MutY-Homolog (MYH) inhibition reduces pancreatic cancer cell growth and increases chemosensitivity.

    PubMed

    Sharbeen, George; Youkhana, Janet; Mawson, Amanda; McCarroll, Joshua; Nunez, Andrea; Biankin, Andrew; Johns, Amber; Goldstein, David; Phillips, Phoebe

    2017-02-07

    Patients with pancreatic ductal adenocarcinoma (PC) have a poor prognosis due to metastases and chemoresistance. PC is characterized by extensive fibrosis, which creates a hypoxic microenvironment, and leads to increased chemoresistance and intracellular oxidative stress. Thus, proteins that protect against oxidative stress are potential therapeutic targets for PC. A key protein that maintains genomic integrity against oxidative damage is MutY-Homolog (MYH). No prior studies have investigated the function of MYH in PC cells. Using siRNA, we showed that knockdown of MYH in PC cells 1) reduced PC cell proliferation and increased apoptosis; 2) further decreased PC cell growth in the presence of oxidative stress and chemotherapy agents (gemcitabine, paclitaxel and vincristine); 3) reduced PC cell metastatic potential; and 4) decreased PC tumor growth in a subcutaneous mouse model in vivo. The results from this study suggest MYH may be a novel therapeutic target for PC that could potentially improve patient outcome by reducing PC cell survival, increasing the efficacy of existing drugs and reducing metastatic spread.

  7. Olive oil-induced reduction of oxidative damage and inflammation promotes wound healing of pressure ulcers in mice.

    PubMed

    Donato-Trancoso, Aline; Monte-Alto-Costa, Andréa; Romana-Souza, Bruna

    2016-07-01

    The overproduction of reactive oxygen species (ROS) and exacerbated inflammatory response are the main events that impair healing of pressure ulcers. Therefore, olive oil may be a good alternative to improve the healing of these chronic lesions due to its anti-inflammatory and antioxidant properties. This study investigated the effect of olive oil administration on wound healing of pressure ulcers in mice. Male Swiss mice were daily treated with olive oil or water until euthanasia. One day after the beginning of treatment, two cycles of ischemia-reperfusion by external application of two magnetic plates were performed in skin to induced pressure ulcer formation. The olive oil administration accelerated ROS and nitric oxide (NO) synthesis and reduced oxidative damage in proteins and lipids when compared to water group. The inflammatory cell infiltration, gene tumor necrosis factor-α (TNF-α) expression and protein neutrophil elastase expression were reduced by olive oil administration when compared to water group. The re-epithelialization and blood vessel number were higher in the olive oil group than in the water group. The olive oil administration accelerated protein expression of TNF-α, active transforming growth factor-β1 and vascular endothelial growth factor-A when compared to water group. The collagen deposition, myofibroblastic differentiation and wound contraction were accelerated by olive oil administration when compared to water group. Olive oil administration improves cutaneous wound healing of pressure ulcers in mice through the acceleration of the ROS and NO synthesis, which reduces oxidative damage and inflammation and promotes dermal reconstruction and wound closure. Copyright © 2016 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  8. THE EFFECT OF GREEN TEA ON OXIDATIVE DAMAGE AND TUMOUR FORMATION IN LOBUND-WISTAR RATS

    PubMed Central

    O'Sullivan, Jacintha; Sheridan, Juliette; Mulcahy, Hugh; Tenniswood, Martin; Morrissey, Colm

    2014-01-01

    A number of epidemiological studies suggest that the consumption of green tea reduces the incidence of prostate cancer. Since the major catechins present in green tea are potent anti-oxidants, we hypothesized that genetic and cellular damage induced by oxygen free radicals could be significantly reduced by potent anti-oxidants in green tea, thus reducing the cumulative genetic and cellular damage with age, and slowing or preventing tumour formation. Long-term administration of a decaffeinated green tea extract to Lobund-Wistar rats for periods up to 26 months almost halved the incidence of primary tumours in the genitourinary tract when compared to an aged-matched cohort receiving just water. We observed no inhibition of DNA adduct formation or lipid peroxidation in animals consuming green tea compared to animals consuming de-ionized water. The decrease in tumour formation was associated with an increase in 8-hydroxy-2’deoxyguanosine (8-OH-dG) and 4-hydroxynonenal (4-HNE) content (markers of DNA adduct formation and lipid peroxidation respectively) in the epithelium of the ventral prostate in aging animals. There was also an increase in 8-OH-dG expression, but no change in 4-HNE expression in the seminal vesicles of older animals. There was an age associated increase in expression of the anti-oxidant enzymes MnSOD and catalase in the epithelium of the ventral prostate of aging animals. There was also an increase in MnSOD expression, but no change in catalase expression in the seminal vesicles of older animals. These data demonstrate that consumption of green tea decreases the incidence of genitourinary tract tumours in the Lobund-Wistar rat, but has no effect on age associated DNA adduct formation and lipid peroxidation in the aging rat ventral prostate and seminal vesicles. PMID:18941371

  9. Protective Effect of Thymoquinone against Cyclophosphamide-Induced Hemorrhagic Cystitis through Inhibiting DNA Damage and Upregulation of Nrf2 Expression.

    PubMed

    Gore, Prashant R; Prajapati, Chaitali P; Mahajan, Umesh B; Goyal, Sameer N; Belemkar, Sateesh; Ojha, Shreesh; Patil, Chandragouda R

    2016-01-01

    Cyclophosphamide (CYP) induced hemorrhagic cystitis is a dose-limiting side effect involving increased oxidative stress, inflammatory cytokines and suppressed activity of nuclear factor related erythroid 2-related factor (Nrf2). Thymoquinone (TQ), an active constituent of Nigella sativa seeds, is reported to increase the expression of Nrf2, exert antioxidant action, and anti-inflammatory effects in the experimental animals. The present study was designed to explore the effects of TQ on CYP-induced hemorrhagic cystitis in Balb/c mice. Cystitis was induced by a single intraperitoneal injection of CYP (200 mg/kg). TQ was administered intraperitoneally at 5, 10 and 20 mg/kg doses twice a day, for three days before and three days after the CYP administration. The efficacy of TQ was determined in terms of the protection against the CYP-induced histological perturbations in the bladder tissue, reduction in the oxidative stress, and inhibition of the DNA fragmentation. Immunohistochemistry was performed to examine the expression of Nrf2. TQ protected against CYP-induced oxidative stress was evident from significant reduction in the lipid peroxidation, restoration of the levels of reduced glutathione, catalase and superoxide dismutase activities. TQ treatment significantly reduced the DNA damage evident as reduced DNA fragmentation. A significant decrease in the cellular infiltration, edema, epithelial denudation and hemorrhage were observed in the histological observations. There was restoration and rise in the Nrf2 expression in the bladder tissues of mice treated with TQ. These results confirm that, TQ ameliorates the CYP-induced hemorrhagic cystitis in mice through reduction in the oxidative stress, inhibition of the DNA damage and through increased expression of Nrf2 in the bladder tissues.

  10. Neuroprotective effect of ginger in the brain of streptozotocin-induced diabetic rats.

    PubMed

    El-Akabawy, Gehan; El-Kholy, Wael

    2014-05-01

    Diabetes mellitus results in neuronal damage caused by increased intracellular glucose leading to oxidative stress. Recent evidence revealed the potential of ginger for reducing diabetes-induced oxidative stress markers. The aim of this study is to investigate, for the first time, whether the antioxidant properties of ginger has beneficial effects on the structural brain damage associated with diabetes. We investigated the observable neurodegenerative changes in the frontal cortex, dentate gyrus, and cerebellum after 4, 6, and 8 weeks of streptozotocin (STZ)-induced diabetes in rats and the effect(s) of ginger (500 mg/kg/day). Sections of frontal cortex, dentate gyrus, and cerebellum were stained with hematoxylin and eosin and examined using light microscopy. In addition, quantitative immunohistochemical assessments of the expression of inducible NO synthase (iNOS), tumor necrosis factor (TNF)-α, caspase-3, glial fibrillary acidic protein (GFAP), acetylcholinesterase (AChE), and Ki67 were performed. Our results revealed a protective role of ginger on the diabetic brain via reducing oxidative stress, apoptosis, and inflammation. In addition, this study revealed that the beneficial effect of ginger was also mediated by modulating the astroglial response to the injury, reducing AChE expression, and improving neurogenesis. These results represent a new insight into the beneficial effects of ginger on the structural alterations of diabetic brain and suggest that ginger might be a potential therapeutic strategy for the treatment of diabetic-induced damage in brain. Copyright © 2014 Elsevier GmbH. All rights reserved.

  11. Transition between Acute and Chronic Hepatotoxicity in Mice Is Associated with Impaired Energy Metabolism and Induction of Mitochondrial Heme Oxygenase-1

    PubMed Central

    Nikam, Aniket; Patankar, Jay V.; Lackner, Carolin; Schöck, Elisabeth; Kratky, Dagmar; Zatloukal, Kurt; Abuja, Peter M.

    2013-01-01

    The formation of protein inclusions is frequently associated with chronic metabolic diseases. In mice, short-term intoxication with 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) leads to hepatocellular damage indicated by elevated serum liver enzyme activities, whereas only minor morphological changes are observed. Conversely, chronic administration of DDC for several weeks results in severe morphological damage, characterized by hepatocellular ballooning, disruption of the intermediate filament cytoskeleton, and formation of Mallory-Denk bodies consisting predominantly of misfolded keratins, Sqstm1/p62, and heat shock proteins. To evaluate the mechanistic underpinnings for this dichotomy we dissected the time-course of DDC intoxication for up to 10 weeks. We determined body weight change, serum liver enzyme activities, morphologic alterations, induction of antioxidant response (heme oxygenase-1, HO-1), oxidative damage and ATP content in livers as well as respiration, oxidative damage and the presence and activity of HO-1 in endoplasmic reticulum and mitochondria (mtHO-1). Elevated serum liver enzyme activity and oxidative liver damage were already present at early intoxication stages without further subsequent increase. After 2 weeks of intoxication, mice had transiently lost 9% of their body weight, liver ATP-content was reduced to 58% of controls, succinate-driven respiration was uncoupled from ATP-production and antioxidant response was associated with the appearance of catalytically active mtHO-1. Oxidative damage was associated with both acute and chronic DDC toxicity whereas the onset of chronic intoxication was specifically associated with mitochondrial dysfunction which was maximal after 2 weeks of intoxication. At this transition stage, adaptive responses involving mtHO-1 were induced, indirectly leading to improved respiration and preventing further drop of ATP levels. Our observations clearly demonstrate principally different mechanisms for acute and chronic toxic damage. PMID:23762471

  12. Effects of reactive oxygen species and interplay of antioxidants during physical exercise in skeletal muscles.

    PubMed

    Thirupathi, Anand; Pinho, Ricardo A

    2018-05-01

    A large number of researches have led to a substantial growth of knowledge about exercise and oxidative stress. Initial investigations reported that physical exercise generates free radical-mediated damages to cells; however, in recent years, studies have shown that regular exercise can upregulate endogenous antioxidants and reduce oxidative damage. Yet, strenuous exercise perturbs the antioxidant system by increasing the reactive oxygen species (ROS) content. These alterations in the cellular environment seem to occur in an exercise type-dependent manner. The source of ROS generation during exercise is debatable, but now it is well established that both contracting and relaxing skeletal muscles generate reactive oxygen species and reactive nitrogen species. In particular, exercises of higher intensity and longer duration can cause oxidative damage to lipids, proteins, and nucleotides in myocytes. In this review, we summarize the ROS effects and interplay of antioxidants in skeletal muscle during physical exercise. Additionally, we discuss how ROS-mediated signaling influences physical exercise in antioxidant system.

  13. Mitigation in Multiple Effects of Graphene Oxide Toxicity in Zebrafish Embryogenesis Driven by Humic Acid.

    PubMed

    Chen, Yuming; Ren, Chaoxiu; Ouyang, Shaohu; Hu, Xiangang; Zhou, Qixing

    2015-08-18

    Graphene oxide (GO) is a widely used carbonaceous nanomaterial. To date, the influence of natural organic matter (NOM) on GO toxicity in aquatic vertebrates has not been reported. During zebrafish embryogenesis, GO induced a significant hatching delay and cardiac edema. The intensive interactions of GO with the chorion induces damage to chorion protuberances, excessive generation of (•)OH, and changes in protein secondary structure. In contrast, humic acid (HA), a ubiquitous form of NOM, significantly relieved the above adverse effects. HA reduced the interactions between GO and the chorion and mitigated chorion damage by regulating the morphology, structures, and surface negative charges of GO. HA also altered the uptake and deposition of GO and decreased the aggregation of GO in embryonic yolk cells and deep layer cells. Furthermore, HA mitigated the mitochondrial damage and oxidative stress induced by GO. This work reveals a feasible antidotal mechanism for GO in the presence of NOM and avoids overestimating the risks of GO in the natural environment.

  14. Diphenyl diselenide attenuates oxidative stress and inflammatory parameters in ulcerative colitis: A comparison with ebselen.

    PubMed

    Petronilho, Fabricia; Michels, Monique; Danielski, Lucinéia G; Goldim, Mariana Pereira; Florentino, Drielly; Vieira, Andriele; Mendonça, Mariana G; Tournier, Moema; Piacentini, Bárbara; Giustina, Amanda Della; Leffa, Daniela D; Pereira, Gregório W; Pereira, Volnei D; Rocha, João Batista Teixeira Da

    2016-09-01

    The aim of this study was to evaluate the effects of diphenyl diselenide (PhSe)2 and ebselen (EB) in ulcerative colitis (UC) induced by dextran sulfate sodium (DSS) in rats. The effects of (PhSe)2 and EB in rats submitted to DSS-induced colitis were determined by measurement of oxidative stress parameters, inflammatory response and bowel histopathological alterations. Animals developed moderate to severe neutrophil infiltration in histopathology assay in DSS rats and (PhSe)2 improved this response. Moreover, the treatment with (PhSe)2 decreased the oxidative damage in lipids and proteins, as well as reversed the superoxide dismutase (SOD) and catalase (CAT) levels in rats treated with DSS. EB was able only to reverse damage in lipids and the low levels of SOD in this animal model. The organoselenium compounds tested demonstrated an anti-inflammatory and antioxidant activity reducing the colon damage, being (PhSe)2 more effective than EB. Copyright © 2016 Elsevier GmbH. All rights reserved.

  15. Studies on possibility for alleviation of lifestyle diseases by low-dose irradiation or radon inhalation.

    PubMed

    Kataoka, Takahiro; Sakoda, Akihiro; Yoshimoto, Masaaki; Nakagawa, Shinya; Toyota, Teruaki; Nishiyama, Yuichi; Yamato, Keiko; Ishimori, Yuu; Kawabe, Atsushi; Hanamoto, Katsumi; Taguchi, Takehito; Yamaoka, Kiyonori

    2011-07-01

    Our previous studies showed the possibility that activation of the antioxidative function alleviates various oxidative damages, which are related to lifestyle diseases. Results showed that, low-dose X-ray irradiation activated superoxide dismutase and inhibits oedema following ischaemia-reperfusion. To alleviate ischaemia-reperfusion injury with transplantation, the changes of the antioxidative function in liver graft using low-dose X-ray irradiation immediately after exenteration were examined. Results showed that liver grafts activate the antioxidative function as a result of irradiation. In addition, radon inhalation enhances the antioxidative function in some organs, and alleviates alcohol-induced oxidative damage of mouse liver. Moreover, in order to determine the most effective condition of radon inhalation, mice inhaled radon before or after carbon tetrachloride (CCl(4)) administration. Results showed that radon inhalation alleviates CCl(4)-induced hepatopathy, especially prior inhalation. It is highly possible that adequate activation of antioxidative functions induced by low-dose irradiation can contribute to preventing or reducing oxidative damages, which are related to lifestyle diseases.

  16. Ubiad1 Is an Antioxidant Enzyme that Regulates eNOS Activity by CoQ10 Synthesis

    PubMed Central

    Mugoni, Vera; Postel, Ruben; Catanzaro, Valeria; De Luca, Elisa; Turco, Emilia; Digilio, Giuseppe; Silengo, Lorenzo; Murphy, Michael P.; Medana, Claudio; Stainier, Didier Y.R.; Bakkers, Jeroen; Santoro, Massimo M.

    2013-01-01

    Summary Protection against oxidative damage caused by excessive reactive oxygen species (ROS) by an antioxidant network is essential for the health of tissues, especially in the cardiovascular system. Here, we identified a gene with important antioxidant features by analyzing a null allele of zebrafish ubiad1, called barolo (bar). bar mutants show specific cardiovascular failure due to oxidative stress and ROS-mediated cellular damage. Human UBIAD1 is a nonmitochondrial prenyltransferase that synthesizes CoQ10 in the Golgi membrane compartment. Loss of UBIAD1 reduces the cytosolic pool of the antioxidant CoQ10 and leads to ROS-mediated lipid peroxidation in vascular cells. Surprisingly, inhibition of eNOS prevents Ubiad1-dependent cardiovascular oxidative damage, suggesting a crucial role for this enzyme and nonmitochondrial CoQ10 in NO signaling. These findings identify UBIAD1 as a nonmitochondrial CoQ10-forming enzyme with specific cardiovascular protective function via the modulation of eNOS activity. PMID:23374346

  17. Protective Effect of Bacoside-A against Morphine-Induced Oxidative Stress in Rats

    PubMed Central

    Sumathi, T.; Nathiya, V. C.; Sakthikumar, M.

    2011-01-01

    In the present study, we investigated the protective effect of bacoside-A the active principle isolated from the plant Bacopa monniera against oxidative damage induced by morphine in rat brain. Morphine intoxicated rats received 10-160 mg/kg b.w. of morphine hydrochloride intraperitoneally for 21 days. Bacoside-A pretreated rats were administered with bacoside-A (10 mg/kg b.w/day) orally, 2 h before the injection of morphine for 21 days. Pretreatment with bacoside-A has shown to possess a significant protective role against morphine induced brain oxidative damage in the antioxidant status (total reduced glutathione, superoxide dismutase, catalase, glutathione peroxidase and lipid peroxidation) and membrane bound ATP-ases(Na+/K+ATPase. Ca2+ and Mg2+ ATPases) activities in rat. The results of the present study indicate that bacoside-A protects the brain from oxidative stress induced by morphine. PMID:22707825

  18. Protective Effect of Bacoside-A against Morphine-Induced Oxidative Stress in Rats.

    PubMed

    Sumathi, T; Nathiya, V C; Sakthikumar, M

    2011-07-01

    In the present study, we investigated the protective effect of bacoside-A the active principle isolated from the plant Bacopa monniera against oxidative damage induced by morphine in rat brain. Morphine intoxicated rats received 10-160 mg/kg b.w. of morphine hydrochloride intraperitoneally for 21 days. Bacoside-A pretreated rats were administered with bacoside-A (10 mg/kg b.w/day) orally, 2 h before the injection of morphine for 21 days. Pretreatment with bacoside-A has shown to possess a significant protective role against morphine induced brain oxidative damage in the antioxidant status (total reduced glutathione, superoxide dismutase, catalase, glutathione peroxidase and lipid peroxidation) and membrane bound ATP-ases(Na(+)/K(+)ATPase. Ca(2+) and Mg(2+) ATPases) activities in rat. The results of the present study indicate that bacoside-A protects the brain from oxidative stress induced by morphine.

  19. [Definition of parameters of the condition of oxidizing stress in smooth muscle cells under influence of exogenous nitroso-glutatyon in vitro].

    PubMed

    Kapilevich, L V; Nosarev, A V; D'iakova, E Iu; Andrushkevich, V V; Nasedkina, A K; Nosareva, O L; Davlet'iarova, K V; Ogorodova, L M; Kovalev, I V; Baskakov, M B; Medvedev, M A

    2007-08-01

    Influence of exogenous nitroso-glutatyon on intensity of oxidizing processes in smooth muscles of colon and bronchial tubes in intact and atopic sensitised porpoises (guinea pigs) was studied. In sensitised porpoises, antioxidant protection has been initially reduced against the background of increased maintenance of products of oxidizing that reflects a picture of oxidizing damage and can be associated with an inflammatory process. In incubation with nitroso-glutatyon, a decrease in activities of syperoxiddismutase and catalase is marked and, in sensitised animals, this effect has been expressed to a lesser degree. Syperoxiddismutase and catalase are antioxidant for the enzymes participating in protection of cells from free-radical damage. A dose-dependence decrease in activity catalase and syperoxiddismutase is defined by a parity of the enzymes participating in disintegration of nitrosoglutatyon and the enzymes which have kept antioxidant activity.

  20. Oxidative stress in severe pulmonary trauma in critical ill patients. Antioxidant therapy in patients with multiple trauma--a review.

    PubMed

    Bedreag, Ovidiu Horea; Rogobete, Alexandru Florin; Sarandan, Mirela; Cradigati, Alina Carmen; Papurica, Marius; Dumbuleu, Maria Corina; Chira, Alexandru Mihai; Rosu, Oana Maria; Sandesc, Dorel

    2015-01-01

    Multiple trauma patients require extremely good management and thus, the trauma team needs to be prepared and to be up to date with the new standards of intensive therapy. Oxidative stress and free radicals represent an extremely aggressive factor to cells, having a direct consequence upon the severity of lung inflammation. Pulmonary tissue is damaged by oxidative stress, leading to biosynthesis of mediators that exacerbate inflammation modulators. The subsequent inflammation spreads throughout the body, leading most of the time to multiple organ dysfunction and death. In this paper, we briefly present an update of biochemical effects of oxidative stress and free radical damage to the pulmonary tissue in patients in critical condition in the intensive care unit. Also, we would like to present a series of active substances that substantially reduce the aggressiveness of free radicals, increasing the chances of survival.

  1. The chemoprotection of a blueberry anthocyanin extract against the acrylamide-induced oxidative stress in mitochondria: unequivocal evidence in mice liver.

    PubMed

    Zhao, Mengyao; Wang, Pengpu; Zhu, Yuchen; Liu, Xin; Hu, Xiaosong; Chen, Fang

    2015-09-01

    Acrylamide (AA) is one of the most important contaminants occurring in heated food products. Accumulating evidence indicates that AA-induced toxicity is associated with oxidative stress and long-term exposure to AA induced mitochondria collapse and finally leads to apoptosis. Whereas anthocyanins are natural antioxidants and have a strong ability to reduce oxidative damage in vivo. This study investigates the protection of a blueberry anthocyanin extract (BAE) against AA-induced mitochondrial oxidative stress in mice models. The activities of electron transport chain complexes, oxidative status, and the structure and function of mitochondria were measured. Results showed that pretreatment with BAE markedly inhibited reactive oxygen species (ROS) formation, and prevented the successive events associated with the mitochondrial damage and dysfunction, including recovered activities of electron transport chain, ATPase and superoxide dismutase, ameliorated depolarization of mitochondrial membrane potential and membrane lipid peroxidation, reduced release of cytochrome c and protection of mitochondria against swelling. In a word, mitochondria are a key target at the organelle level for the protective effect of BAE against AA toxicity. These results will be helpful to provide new clues for a better understanding of the AA toxicity intervention mechanism and for exploring effective dietary constituents for intervention of AA toxicity.

  2. The antioxidant master glutathione and periodontal health

    PubMed Central

    Bains, Vivek Kumar; Bains, Rhythm

    2015-01-01

    Glutathione, considered to be the master antioxidant (AO), is the most-important redox regulator that controls inflammatory processes, and thus damage to the periodontium. Periodontitis patients have reduced total AO capacity in whole saliva, and lower concentrations of reduced glutathione (GSH) in serum and gingival crevicular fluid, and periodontal therapy restores the redox balance. Therapeutic considerations for the adjunctive use of glutathione in management of periodontitis, in limiting the tissue damage associated with oxidative stress, and enhancing wound healing cannot be underestimated, but need to be evaluated further through multi-centered randomized controlled trials. PMID:26604952

  3. Nanomaterial induction of oxidative stress in lung epithelial cells and macrophages

    NASA Astrophysics Data System (ADS)

    Wang, Lin; Pal, Anoop K.; Isaacs, Jacqueline A.; Bello, Dhimiter; Carrier, Rebecca L.

    2014-09-01

    Oxidative stress in the lung epithelial A549 cells and macrophages J774A.1 due to contact with commercially important nanomaterials [i.e., nano-silver (nAg), nano-alumina (nAl2O3), single-wall carbon nanotubes (CNT), and nano-titanium oxide anatase (nTiO2)] was evaluated. Nanomaterial-induced intracellular oxidative stress was analyzed by both H2DCFDA fluorescein probe and GSH depletion, extracellular oxidative stress was assessed by H2HFF fluorescein probes, and the secretion of chemokine IL-8 by A549 cells due to elevation of cellular oxidative stress was also monitored, in order to provide a comprehensive in vitro study on nanomaterial-induced oxidative stress in lung. In addition, results from this study were also compared with an acellular "ferric reducing ability of serum" (FRAS) assay and a prokaryotic cell-based assay in evaluating oxidative damage caused by the same set of nanomaterials, for comparison purposes. In general, it was found that nanomaterial-induced oxidative stress is highly cell-type dependent. In A549 lung epithelial cells, nAg appeared to induce highest level of oxidative stress and cell death followed by CNT, nTiO2, and nAl2O3. Different biological oxidative damage (BOD) assays' (i.e., H2DCFA, GSH, and IL-8 release) results generally agreed with each other, and the same trends of nanomaterial-induced BOD were also observed in acellular FRAS and prokaryotic E. coli K12-based assay. In macrophage J774A.1 cells, nAl2O3 and nTiO2 appeared to induce highest levels of oxidative stress. These results suggest that epithelial and macrophage cell models may provide complimentary information when conducting cell-based assays to evaluate nanomaterial-induced oxidative damage in lung.

  4. Trichloroethylene Metabolism in the Rat Ovary Reduces Oocyte Fertilizability

    PubMed Central

    Wu, Katherine Lily; Berger, Trish

    2007-01-01

    Exposure to trichloroethylene (TCE, an environmental toxicant) reduced oocyte fertilizability in the rat. In vivo, TCE may be metabolized by cytochrome P450 dependent oxidation or glutathione conjugation in the liver or kidneys, respectively. Cytochrome P450 dependent oxidation is the higher affinity pathway. The primary isoform of cytochrome P450 to metabolize TCE in the liver, cytochrome P450 2E1, is present in the rodent ovary. Ovarian metabolism of TCE by the oxidative pathway and the production of reactive oxygen species may occur given the presence of the metabolizing enzyme. The objectives of this study were to define the sensitive interval of oocyte growth to TCE exposure, and to determine if TCE exposure resulted in the formation of ovarian protein carbonyls, an indicator of oxidative damage. Rats were exposed to TCE in drinking water (0.45% TCE (v/v) in 3% Tween) or 3% Tween (vehicle-control) during three 4–5 day intervals of oocyte development preceding ovulation. Oocytes from TCE-exposed females were less fertilizable compared with vehicle-control oocytes. Immunohistochemical labeling of ovaries and Western blotting of ovarian proteins demonstrated TCE treatment induced a greater incidence of protein carbonyls compared with vehicle controls. Protein carbonyl formation in the ovary is consistent with TCE metabolism by the cytochrome P450 pathway. Oxidative damage following ovarian TCE metabolism or the presence of TCE metabolites may contribute to reduced oocyte fertilizability. In summary, these results indicate maturing oocytes are susceptible to very short in vivo exposures to TCE. PMID:17673192

  5. Novel neuroprotective and hepatoprotective effects of citric acid in acute malathion intoxication.

    PubMed

    Abdel-Salam, Omar M E; Youness, Eman R; Mohammed, Nadia A; Yassen, Noha N; Khadrawy, Yasser A; El-Toukhy, Safinaz Ebrahim; Sleem, Amany A

    2016-12-01

    To study the effect of citric acid given alone or combined with atropine on brain oxidative stress, neuronal injury, liver damage, and DNA damage of peripheral blood lymphocytes induced in the rat by acute malathion exposure. Rats were received intraperitoneal (i.p.) injection of malathion 150 mg/kg along with citric acid (200 or 400 mg/kg, orally), atropine (1 mg/kg, i.p.) or citric acid 200 mg/kg + atropine 1 mg/kg and euthanized 4 h later. Malathion resulted in increased lipid peroxidation (malondialdehyde) and nitric oxide concentrations accompanied with a decrease in brain reduced glutathione, glutathione peroxidase (GPx) activity, total antioxidant capacity (TAC) and glucose concentrations. Paraoxonase-1, acetylcholinesterase (AChE) and butyrylcholinesterase activities decreased in brain as well. Liver aspartate aminotransferase and alanine aminotransferase activities were raised. The comet assay showed increased DNA damage of peripheral blood lymphocytes. Histological damage and increased expression of inducible nitric oxide synthase (iNOS) were observed in brain and liver. Citric acid resulted in decreased brain lipid peroxidation and nitric oxide. Meanwhile, glutathione, GPx activity, TAC capacity and brain glucose level increased. Brain AChE increased but PON1 and butyrylcholinesterase activities decreased by citric acid. Liver enzymes, the percentage of damaged blood lymphocytes, histopathological alterations and iNOS expression in brain and liver was decreased by citric acid. Meanwhile, rats treated with atropine showed decreased brain MDA, nitrite but increased GPx activity, TAC, AChE and glucose. The drug also decreased DNA damage of peripheral blood lymphocytes, histopathological alterations and iNOS expression in brain and liver. The study demonstrates a beneficial effect for citric acid upon brain oxidative stress, neuronal injury, liver and DNA damage due to acute malathion exposure. Copyright © 2016 Hainan Medical University. Production and hosting by Elsevier B.V. All rights reserved.

  6. Ghrelin Pre-treatment Attenuates Local Oxidative Stress and End Organ Damage During Cardiopulmonary Bypass in Anesthetized Rats

    PubMed Central

    Sukumaran, Vijayakumar; Tsuchimochi, Hirotsugu; Fujii, Yutaka; Hosoda, Hiroshi; Kangawa, Kenji; Akiyama, Tsuyoshi; Shirai, Mikiyasu; Tatsumi, Eisuke; Pearson, James T.

    2018-01-01

    Cardiopulmonary bypass (CPB) induced systemic inflammation significantly contributes to the development of postoperative complications, including respiratory failure, myocardial, renal and neurological dysfunction and ultimately can lead to failure of multiple organs. Ghrelin is a small endogenous peptide with wide ranging physiological effects on metabolism and cardiovascular regulation. Herein, we investigated the protective effects of ghrelin against CPB-induced inflammatory reactions, oxidative stress and acute organ damage. Adult male Sprague Dawley rats randomly received vehicle (n = 5) or a bolus of ghrelin (150 μg/kg, sc, n = 5) and were subjected to CPB for 4 h (protocol 1). In separate rats, ghrelin pre-treatment (protocol 2) was compared to two doses of ghrelin (protocol 3) before and after CPB for 2 h followed by recovery for 2 h. Blood samples were taken prior to CPB, and following CPB at 2 h and 4 h. Organ nitrosative stress (3-nitrotyrosine) was measured by Western blotting. CPB induced leukocytosis with increased plasma levels of tumor necrosis factor-α and interleukin-6 indicating a potent inflammatory response. Ghrelin treatment significantly reduced plasma organ damage markers (lactate dehydrogenase, aspartate aminotransferase, alanine aminotransferase) and protein levels of 3-nitrotyrosine, particularly in the brain, lung and liver, but only partly suppressed inflammatory cell invasion and did not reduce proinflammatory cytokine production. Ghrelin partially attenuated the CPB-induced elevation of epinephrine and to a lesser extent norepinephrine when compared to the CPB saline group, while dopamine levels were completely suppressed. Ghrelin treatment sustained plasma levels of reduced glutathione and decreased glutathione disulphide when compared to CPB saline rats. These results suggest that even though ghrelin only partially inhibited the large CPB induced increase in catecholamines and organ macrophage infiltration, it reduced oxidative stress and subsequent cell damage. Pre-treatment with ghrelin might provide an effective adjunct therapy for preventing widespread CPB induced organ injury. PMID:29593559

  7. Inhibition of interaction between epigallocatechin-3-gallate and myofibrillar protein by cyclodextrin derivatives improves gel quality under oxidative stress.

    PubMed

    Zhang, Yumeng; Chen, Lin; Lv, Yuanqi; Wang, Shuangxi; Suo, Zhiyao; Cheng, Xingguang; Xu, Xinglian; Zhou, Guanghong; Li, Zhixi; Feng, Xianchao

    2018-06-01

    High levels of polyphenols can interact with myofibrillar proteins (MPs), causing damage to a MP emulsion gel. In this study, β-cyclodextrins were used to reduce covalent and non-covalent interaction between epigallocatechin-3-gallate (EGCG) and MPs under oxidative stress. The loss of both thiol and free amine groups and the unfolding of MPs caused by EGCG (80 μM/g protein) were significantly prevented by β-cyclodextrins, and the structural stability and solubility were improved. MP emulsion gel treated with EGCG (80 μM/g protein) had the highest cooking loss (68.64%) and gel strength (0.51 N). Addition of β-cyclodextrins significantly reduced cooking loss (26.24-58.20%) and improved gel strength (0.31-0.41 N) of MP emulsion gel jeopardized by EGCG under oxidative stress. Damage to the emulsifying properties of MPs caused by EGCG was significantly prevented by addition of β-cyclodextrins. β-cyclodextrins reduced interaction between EGCG and MPs in the order Methyl-β-cyclodextrin > (2-Hydroxypropyl)-β-cyclodextrin > β-cyclodextrin. In absence of EGCG, addition of β-cyclodextrins partly protected MPs from oxidative attack and improved its solubility. It is concluded that β-cyclodextrins does not markedly reduce the antioxidant ability of EGCG according to carbonyl analysis, and can effectively increase EGCG loading to potentially provide more durable antioxidant effect for meat products during processing, transportation and storage. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Increased total DNA damage and oxidative stress in brain are associated with decreased longevity in high sucrose diet fed WNIN/Gr-Ob obese rats.

    PubMed

    Potukuchi, Aruna; Addepally, Uma; Sindhu, Kirankumar; Manchala, Raghunath

    2017-06-01

    Obesity and Type 2 Diabetes (T2D) are chronic nutrient-related disorders that occur together and pose a grave burden to society. They are among the most common causes of ageing and death. Obesity and T2D per se accelerate ageing albeit the underlying mechanisms are unclear yet. Also, it is not clear whether or not superimposing T2D on obesity accelerates ageing. Present study validated the hypothesis, 'super-imposing T2D on obesity accelerates ageing' in WNIN/Gr-Ob, the impaired glucose tolerant, obese rat as the model and evaluated probable underlying mechanisms. To estimate the survival analysis of WNIN/Gr-Ob rats induced with T2D. To determine the extent of DNA damage and oxidative stress in the brain, the master controller of the body, in WNIN/Gr-Ob rats with/without high sucrose induced T2D/aggravation of insulin resistance (IR) after 3 and 6 months of feeding. T2D was induced/IR was aggravated by feeding high sucrose diet (HSD) to 9-10 weeks old, male WNIN/Gr-Ob rats. Survival percentage was determined statistically by Kaplan-Meier estimator. Neuronal DNA damage was quantified by the Comet assay while the oxidative stress and antioxidant status were evaluated from the levels of malonaldialdehyde, reduced glutathione, and superoxide dismutase (SOD) activity. HSD feeding decreased longevity of WNIN/Gr-Ob rats and was associated with significantly higher total neuronal DNA damage after three months of feeding but not later. In line with this was the increased neuronal oxidative stress (lipid peroxidation) and decreased antioxidant status (reduced glutathione and SOD activity) in HSD than Starch-based diet (SBD) fed rats. The results suggest that HSD feeding decreased the longevity of WNIN/Gr-Ob obese rats probably by increasing oxidative stress and aggravating IR, a condition that precedes T2D.

  9. Protective effect of Lagerstroemia speciosa against dextran sulfate sodium induced ulcerative colitis in C57BL/6 mice.

    PubMed

    Chaudhary, Ghanshyam; Mahajan, Umesh B; Goyal, Sameer N; Ojha, Shreesh; Patil, Chandragouda R; Subramanya, Sandeep B

    2017-01-01

    The protective effect of methanolic extract of Lagerstroemia speciosaleaves (LS) was evaluated against dextran sulfate sodium (DSS) induced ulcerative colitis in C57BL/6 mice. The administration of DSS (2.5% in drinking water ad libitum) in C57BL/6 mice induced ulcerative colitis in 7 days. The LS was orally administered for 7 days at daily doses of 100 and 200 mg/kg. At the end of 7 days of treatment the animals were sacrificed, colonic tissues were removed and processed for further analysis of oxidative stress, and histopathology. In DSS treated mice the oxidative stress markers were elevated compared to controls. There was also significant reduction in the anti-oxidant defense levels marked by reduced cellular glutathione, catalase, and superoxide dismutase. The DSS-induced damage to the colon epithelium was evident from a significant increase in the lipid peroxidation. The histology of colon sections revealed inflammatory changes and marked impairment in the integrity of the mucosal lining with inflammatory changes. Both the doses of LS significantly prevented DSS-induced inflammatory and ulcerative damages of the colon, reduced lipid peroxidation and also restored the levels of innate antioxidants in the colon tissue. These findings indicate the protective effects of LS against the DSS-induced inflammatory and oxidative damage in the mouse colon. Further investigation involving bioactivity guided fractionation of the LS can yield potent constituent which may have a significant role in the treatment of inflammatory bowel disease and ulcerative colitis.

  10. Allopurinol attenuates rhabdomyolysis-associated acute kidney injury: Renal and muscular protection.

    PubMed

    Gois, Pedro H F; Canale, Daniele; Volpini, Rildo A; Ferreira, Daniela; Veras, Mariana M; Andrade-Oliveira, Vinicius; Câmara, Niels O S; Shimizu, Maria H M; Seguro, Antonio C

    2016-12-01

    Acute kidney injury (AKI) is the most severe complication of rhabdomyolysis. Allopurinol (Allo), a xanthine oxidase inhibitor, has been in the spotlight in the last decade due to new therapeutic applications related to its potent antioxidant effect. The aim of this study was to evaluate the efficacy of Allo in the prevention and treatment of rhabdomyolysis-associated AKI. Male Wistar rats were divided into five groups: saline control group; prophylactic Allo (300mg/L of drinking water, 7 days); glycerol (50%, 5ml/kg, IM); prophylactic Allo + glycerol; and therapeutic Allo (50mg/Kg, IV, 30min after glycerol injection) + glycerol. Glycerol-injected rats showed markedly reduced glomerular filtration rate associated with renal vasoconstriction, renal tubular damage, increased oxidative stress, apoptosis and inflammation. Allo ameliorated all these alterations. We found 8-isoprostane-PGF 2a (F2-IsoP) as a main factor involved in the oxidative stress-mediated renal vasoconstriction following rhabdomyolysis. Allo reduced F2-IsoP renal expression and restored renal blood flow. Allo also reduced oxidative stress in the damaged muscle, attenuated muscle lesion/inflammation and accelerated muscular recovery. Moreover, we showed new insights into the pathogenesis of rhabdomyolysis-associated AKI, whereas Allo treatment reduced renal inflammation by decreasing renal tissue uric acid levels and consequently inhibiting the inflammasome cascade. Allo treatment attenuates renal dysfunction in a model of rhabdomyolysis-associated AKI by reducing oxidative stress (systemic, renal and muscular), apoptosis and inflammation. This may represent a new therapeutic approach for rhabdomyolysis-associated AKI - a new use for an old and widely available medication. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Maternal dietary omega-3 fatty acid supplementation reduces placental oxidative stress and increases fetal and placental growth in the rat.

    PubMed

    Jones, Megan L; Mark, Peter J; Mori, Trevor A; Keelan, Jeffrey A; Waddell, Brendan J

    2013-02-01

    Placental oxidative stress plays a key role in the pathophysiology of several placenta-related disorders including intrauterine growth restriction. Oxidative stress occurs when accumulation of reactive oxygen species damages DNA, proteins, and lipids, an outcome normally limited by antioxidant defenses. Dietary supplementation with omega-3 polyunsaturated fatty acids (n-3 PUFAs) may limit oxidative stress by increasing antioxidant capacity, but n-3 PUFAs are also highly susceptible to lipid peroxidation; so n-3 PUFA supplementation is potentially harmful. Here we examined the effect of n-3 PUFAs on placental oxidative stress and on placental and fetal growth in the rat. We also investigated whether diet-induced changes in maternal plasma fatty acid profiles are associated with comparable changes in placental and fetal tissues. Rats were fed either standard or high n-3 PUFA diets from Day 1 of pregnancy, and tissues were collected on Day 17 or 22 (term = Day 23). Dietary supplementation with n-3 PUFAs increased fetal (6%) and placental (12%) weights at Day 22, the latter attributable primarily to growth of the labyrinth zone (LZ). Increased LZ weight was accompanied by reduced LZ F(2)-isoprostanes (by 31% and 11% at Days 17 and 22, respectively), a marker of oxidative damage. Maternal plasma PUFA profiles were altered by dietary fatty acid intake and were strongly predictive of corresponding profiles in placental and fetal tissues. Our data indicate that n-3 PUFA supplementation reduces placental oxidative stress and enhances placental and fetal growth. Moreover, fatty acid profiles in the mother, placenta, and fetus are highly dependent on dietary fatty acid intake.

  12. Improving Asthma during Pregnancy with Dietary Antioxidants: The Current Evidence

    PubMed Central

    Grieger, Jessica A.; Wood, Lisa G.; Clifton, Vicki L.

    2013-01-01

    The complication of asthma during pregnancy is associated with a number of poor outcomes for the mother and fetus. This may be partially driven by increased oxidative stress induced by the combination of asthma and pregnancy. Asthma is a chronic inflammatory disease of the airways associated with systemic inflammation and oxidative stress, which contributes to worsening asthma symptoms. Pregnancy alone also intensifies oxidative stress through the systemic generation of excess reactive oxidative species (ROS). Antioxidants combat the damaging effects of ROS; yet antioxidant defenses are reduced in asthma. Diet and nutrition have been postulated as potential factors to combat the damaging effects of asthma. In particular, dietary antioxidants may play a role in alleviating the heightened oxidative stress in asthma. Although there are some observational and interventional studies that have shown protective effects of antioxidants in asthma, assessment of antioxidants in pregnancy are limited and there are no antioxidant intervention studies in asthmatic pregnancies on asthma outcomes. The aims of this paper are to (i) review the relationships between oxidative stress and dietary antioxidants in adults with asthma and asthma during pregnancy, and (ii) provide the rationale for which dietary management strategies, specifically increased dietary antioxidants, might positively impact maternal asthma outcomes. Improving asthma control through a holistic antioxidant dietary approach might be valuable in reducing asthma exacerbations and improving asthma management during pregnancy, subsequently impacting perinatal health. PMID:23948757

  13. [Role of green tea in oxidative stress prevention].

    PubMed

    Metro, D; Muraca, U; Manasseri, L

    2006-01-01

    Oxidative stress is a condition caused by an increase of Reactive Oxygen Species (ROS) or by a shortage of the mechanisms of cellular protection and antioxidant defence. ROS have a potential oxidative effect towards various cellular macromolecules: proteins, nucleic acids, proteoglycans, lipids, with consequent damages in several cellular districts and promotion of the ageing process of the organism. However, some substances are able to prevent and/or reduce the damages caused by ROS; therefore, they are defined antioxidant. The present research studied, in a group of subjects, the antioxidant effects of the green tea, that was administered with fruit and vegetables in a strictly controlled diet. 50 subjects were selected and requested to daily consume 2-3 fruit portions (especially pineapple), 3-5 portions of vegetables (especially tomato) and 2-3 glasses of green tea for about 2 months to integrate the controlled basic diet. Some indicators of the oxidative stress were measured in the plasma before and after the integration period. The integration of a basic diet with supplements of fruit, vegetables and green tea turned out to be able in increasing both plasmatic total antioxidant capacity and endogenous antioxidant levels and to reduce the lipid peroxidation of the membranes, suggesting a reduction of the oxidative stress. These data suggest that an adequate supplement of antioxidants can prevent oxidative stress and correlated pathologies.

  14. Oxidative stress, aging, and central nervous system disease in the canine model of human brain aging.

    PubMed

    Head, Elizabeth; Rofina, Jaime; Zicker, Steven

    2008-01-01

    Decline in cognitive functions that accompany aging in dogs may have a biologic basis, and many of the disorders associated with aging in dogs may be mitigated through dietary modifications that incorporate specific nutraceuticals. Based on previous research and the results of laboratory and clinical studies, antioxidants may be one class of nutraceutical that provides benefits to aged dogs. Brains of aged dogs accumulate oxidative damage to proteins and lipids, which may lead to dysfunction of neuronal cells. The production of free radicals and lack of increase in compensatory antioxidant enzymes may lead to detrimental modifications to important macromolecules within neurons. Reducing oxidative damage through food ingredients rich in a broad spectrum of antioxidants significantly improves, or slows the decline of, learning and memory in aged dogs.

  15. Low-Damage Sputter Deposition on Graphene

    NASA Astrophysics Data System (ADS)

    Chen, Ching-Tzu; Casu, Emanuele; Gajek, Marcin; Raoux, Simone

    2013-03-01

    Despite its versatility and prevalence in the microelectronics industry, sputter deposition has seen very limited applications for graphene-based electronics. We have systematically investigated the sputtering induced graphene defects and identified the reflected high-energy neutrals of the sputtering gas as the primary cause of damage. In this talk, we introduce a novel sputtering technique that is shown to dramatically reduce bombardment of the fast neutrals and improve the structural integrity of the underlying graphene layer. We also demonstrate that sputter deposition and in-situ oxidation of 1 nm Al film at elevated temperatures yields homogeneous, fully covered oxide films with r.m.s. roughness much less than 1 monolayer, which shows the potential of using such technique for gate oxides, tunnel barriers, and multilayer fabrication in a wide range of graphene devices.

  16. GSTP1 Loss results in accumulation of oxidative DNA base damage and promotes prostate cancer cell survival following exposure to protracted oxidative stress.

    PubMed

    Mian, Omar Y; Khattab, Mohamed H; Hedayati, Mohammad; Coulter, Jonathan; Abubaker-Sharif, Budri; Schwaninger, Julie M; Veeraswamy, Ravi K; Brooks, James D; Hopkins, Lisa; Shinohara, Debika Biswal; Cornblatt, Brian; Nelson, William G; Yegnasubramanian, Srinivasan; DeWeese, Theodore L

    2016-02-01

    Epigenetic silencing of glutathione S-transferase π (GSTP1) is a hallmark of transformation from normal prostatic epithelium to adenocarcinoma of the prostate. The functional significance of this loss is incompletely understood. The present study explores the effects of restored GSTP1 expression on glutathione levels, accumulation of oxidative DNA damage, and prostate cancer cell survival following oxidative stress induced by protracted, low dose rate ionizing radiation (LDR). GSTP1 protein expression was stably restored in LNCaP prostate cancer cells. The effect of GSTP1 restoration on protracted LDR-induced oxidative DNA damage was measured by GC-MS quantitation of modified bases. Reduced and oxidized glutathione levels were measured in control and GSTP1 expressing populations. Clonogenic survival studies of GSTP1- transfected LNCaP cells after exposure to protracted LDR were performed. Global gene expression profiling and pathway analysis were performed. GSTP1 expressing cells accumulated less oxidized DNA base damage and exhibited decreased survival compared to control LNCaP-Neo cells following oxidative injury induced by protracted LDR. Restoration of GSTP1 expression resulted in changes in modified glutathione levels that correlated with GSTP1 protein levels in response to protracted LDR-induced oxidative stress. Survival differences were not attributable to depletion of cellular glutathione stores. Gene expression profiling and pathway analysis following GSTP1 restoration suggests this protein plays a key role in regulating prostate cancer cell survival. The ubiquitous epigenetic silencing of GSTP1 in prostate cancer results in enhanced survival and accumulation of potentially promutagenic DNA adducts following exposure of cells to protracted oxidative injury suggesting a protective, anti-neoplastic function of GSTP1. The present work provides mechanistic backing to the tumor suppressor function of GSTP1 and its role in prostate carcinogenesis. © 2015 Wiley Periodicals, Inc.

  17. GSTP1 Loss Results in Accumulation of Oxidative DNA Base Damage and Promotes Prostate Cancer Cell Survival Following Exposure to Protracted Oxidative Stress

    PubMed Central

    Mian, Omar Y.; Khattab, Mohamed H.; Hedayati, Mohammad; Coulter, Jonathan; Abubaker-Sharif, Budri; Schwaninger, Julie M.; Veeraswamy, Ravi K.; Brooks, James D.; Hopkins, Lisa; Shinohara, Debika Biswal; Cornblatt, Brian; Nelson, William G.; Yegnasubramanian, Srinivasan; DeWeese, Theodore L.

    2016-01-01

    BACKGROUND Epigenetic silencing of glutathione S-transferase π (GSTP1) is a hallmark of transformation from normal prostatic epithelium to adenocarcinoma of the prostate. The functional significance of this loss is incompletely understood. The present study explores the effects of restored GSTP1 expression on glutathione levels, accumulation of oxidative DNA damage, and prostate cancer cell survival following oxidative stress induced by protracted, low dose rate ionizing radiation (LDR). METHODS GSTP1 protein expression was stably restored in LNCaP prostate cancer cells. The effect of GSTP1 restoration on protracted LDR-induced oxidative DNA damage was measured by GC-MS quantitation of modified bases. Reduced and oxidized glutathione levels were measured in control and GSTP1 expressing populations. Clonogenic survival studies of GSTP1-transfected LNCaP cells after exposure to protracted LDR were performed. Global gene expression profiling and pathway analysis were performed. RESULTS GSTP1 expressing cells accumulated less oxidized DNA base damage and exhibited decreased survival compared to control LNCaP-Neo cells following oxidative injury induced by protracted LDR. Restoration of GSTP1 expression resulted in changes in modified glutathione levels that correlated with GSTP1 protein levels in response to protracted LDR-induced oxidative stress. Survival differences were not attributable to depletion of cellular glutathione stores. Gene expression profiling and pathway analysis following GSTP1 restoration suggests this protein plays a key role in regulating prostate cancer cell survival. CONCLUSIONS The ubiquitous epigenetic silencing of GSTP1 in prostate cancer results in enhanced survival and accumulation of potentially promutagenic DNA adducts following exposure of cells to protracted oxidative injury suggesting a protective, anti-neoplastic function of GSTP1. The present work provides mechanistic backing to the tumor suppressor function of GSTP1 and its role in prostate carcinogenesis. PMID:26447830

  18. S-Glutathionylation Regulates Inflammatory Activities of S100A9*

    PubMed Central

    Lim, Su Yin; Raftery, Mark J.; Goyette, Jesse; Geczy, Carolyn L.

    2010-01-01

    Reactive oxygen species generated by activated neutrophils can cause oxidative stress and tissue damage. S100A8 (A8) and S100A9 (A9), abundant in neutrophil cytoplasm, are exquisitely sensitive to oxidation, which may alter their functions. Murine A8 is a neutrophil chemoattractant, but it suppresses leukocyte transmigration in the microcirculation when S-nitrosylated. Glutathione (GSH) modulates intracellular redox, and S-glutathionylation can protect susceptible proteins from oxidative damage and regulate function. We characterized S-glutathionylation of A9; GSSG and GSNO generated S-glutathionylated A8 (A8-SSG) and A9 (A9-SSG) in vitro, whereas only A9-SSG was detected in cytosol of neutrophils activated with phorbol myristate acetate (PMA) but not with fMLP or opsonized zymosan. S-Glutathionylation exposed more hydrophobic regions in Zn2+-bound A9 but did not alter Zn2+ binding affinity. A9-SSG had reduced capacity to form heterocomplexes with A8, but the arachidonic acid binding capacities of A8/A9 and A8/A9-SSG were similar. A9 and A8/A9 bind endothelial cells; S-glutathionylation reduced binding. We found little effect of A9 or A9-SSG on neutrophil CD11b/CD18 expression or neutrophil adhesion to endothelial cells. However, A9, A9-SSG and A8/A9 promoted neutrophil adhesion to fibronectin but, in the presence of A8, A9-mediated adhesion was abrogated by glutathionylation. S-Glutathionylation of A9 may protect its oxidation to higher oligomers and reduce neutrophil binding to the extracellular matrix. This may regulate the magnitude of neutrophil migration in the extravasculature, and together with the functional changes we reported for S-nitrosylated A8, particular oxidative modifications of these proteins may limit tissue damage in acute inflammation. PMID:20223829

  19. Gender and chronological age affect erythrocyte membrane oxidative indices in citrate phosphate dextrose adenine-formula 1 (CPDA-1) blood bank storage condition.

    PubMed

    Erman, Hayriye; Aksu, Uğur; Belce, Ahmet; Atukeren, Pınar; Uzun, Duygu; Cebe, Tamer; Kansu, Ahmet D; Gelişgen, Remisa; Uslu, Ezel; Aydın, Seval; Çakatay, Ufuk

    2016-07-01

    It is well known that in vitro storage lesions lead to membrane dysfunction and decreased number of functional erythrocytes. As erythrocytes get older, in storage media as well as in peripheral circulation, they undergo a variety of biochemical changes. In our study, the erythrocytes with different age groups in citrate phosphate dextrose adenine-formula 1 (CPDA-1) storage solution were used in order to investigate the possible effect of gender factor on oxidative damage. Oxidative damage biomarkers in erythrocyte membranes such as ferric reducing antioxidant power, pro-oxidant-antioxidant balance, protein-bound advance glycation end products, and sialic acid were analyzed. Current study reveals that change in membrane redox status during blood-bank storage condition also depends on both gender depended homeostatic factors and the presence of CPDA-1. During the storage period in CPDA-1, erythrocytes from the male donors are mostly affected by free radical-mediated oxidative stress but erythrocytes obtained from females are severely affected by glyoxidative stress.

  20. Effects of 17beta-estradiol, and its metabolite, 4-hydroxyestradiol on fertilization, embryo development and oxidative DNA damage in sand dollar (Dendraster excentricus) sperm.

    PubMed

    Rempel, Mary Ann; Hester, Brian; Deharo, Hector; Hong, Haizheng; Wang, Yinsheng; Schlenk, Daniel

    2009-03-15

    Oxidative compounds have been demonstrated to decrease the fertilization capability and viability of offspring of treated spermatozoa. As estrogen and its hydroxylated metabolites readily undergo redox cycling, this study was undertaken to determine if estrogens and other oxidants could damage DNA and impair sperm function. Sperm was preexposed to either 17beta-estradiol (E2), 4-hydroxyestradiol (4OHE2) or the oxidant t-butyl hydroperoxide (t-BOOH), and allowed to fertilize untreated eggs. The fertilization rates and development of the larvae were assessed, as well as the amount of 8-oxodeoxyguanosine (8-oxodG) as an indication of oxidative DNA damage. All compounds caused significant decreases in fertilization and increases in pathological abnormalities in offspring, with 4OHE2 being the most toxic. Treatment with 4OHE2 caused a significant increase of 8-oxodG, but E2 failed to show any effect. Pathological abnormalities were significantly correlated (r(2)=0.44, p< or =0.05) with 8-oxodG levels in sperm treated with t-BOOH and 4OHE2, but not E2. 8-OxodG levels also were somewhat weakly correlated with impaired fertilization in 4OHE2-treated sperm (r(2)=0.33, p< or =0.05). The results indicate that biotransformation of E2 to 4OHE2 enhances oxidative damage of DNA in sperm, which can reduce fertilization and impair embryonic development, but other mechanisms of action may also contribute to these effects.

  1. Effects of 17β-estradiol, and its metabolite, 4-hydroxyestradiol on fertilization, embryo development and oxidative DNA damage in sand dollar (Dendraster excentricus) sperm

    PubMed Central

    Rempel, Mary Ann; Hester, Brian; DeHaro, Hector; Hong, Haizheng; Wang, Yinsheng; Schlenk, Daniel

    2011-01-01

    Oxidative compounds have been demonstrated to decrease the fertilization capability and viability of offspring of treated spermatozoa. As estrogen and its hydroxylated metabolites readily undergo redox cycling, this study was undertaken to determine if estrogens and other oxidants could damage DNA and impair sperm function. Sperm was preexposed to either 17β-estradiol (E2), 4-hydroxyestradiol (4OHE2) or the oxidant t-butyl hydroperoxide (t-BOOH), and allowed to fertilize untreated eggs. The fertilization rates and development of the larvae were assessed, as well as the amount of 8-oxodeoxyguanosine (8-oxodG) as an indication of oxidative DNA damage. All compounds caused significant decreases in fertilization and increases in pathological abnormalities in offspring, with 4OHE2 being the most toxic. Treatment with 4OHE2 caused a significant increase of 8-oxodG, but E2 failed to show any effect. Pathological abnormalities were significantly correlated (r2 = 0.44, p ≤ 0.05) with 8-oxodG levels in sperm treated with t-BOOH and 4OHE2, but not E2. 8-OxodG levels also were somewhat weakly correlated with impaired fertilization in 4OHE2-treated sperm (r2 = 0.33, p ≤ 0.05). The results indicate that biotransformation of E2 to 4OHE2 enhances oxidative damage of DNA in sperm, which can reduce fertilization and impair embryonic development, but other mechanisms of action may also contribute to these effects. PMID:19171371

  2. Effects of Cannabidiol and Hypothermia on Short-Term Brain Damage in New-Born Piglets after Acute Hypoxia-Ischemia

    PubMed Central

    Lafuente, Hector; Pazos, Maria R.; Alvarez, Antonia; Mohammed, Nagat; Santos, Martín; Arizti, Maialen; Alvarez, Francisco J.; Martinez-Orgado, Jose A.

    2016-01-01

    Hypothermia is a standard treatment for neonatal encephalopathy, but nearly 50% of treated infants have adverse outcomes. Pharmacological therapies can act through complementary mechanisms with hypothermia improving neuroprotection. Cannabidiol could be a good candidate. Our aim was to test whether immediate treatment with cannabidiol and hypothermia act through complementary brain pathways in hypoxic-ischemic newborn piglets. Hypoxic-ischemic animals were randomly divided into four groups receiving 30 min after the insult: (1) normothermia and vehicle administration; (2) normothermia and cannabidiol administration; (3) hypothermia and vehicle administration; and (4) hypothermia and cannabidiol administration. Six hours after treatment, brains were processed to quantify the number of damaged neurons by Nissl staining. Proton nuclear magnetic resonance spectra were obtained and analyzed for lactate, N-acetyl-aspartate and glutamate. Metabolite ratios were calculated to assess neuronal damage (lactate/N-acetyl-aspartate) and excitotoxicity (glutamate/Nacetyl-aspartate). Western blot studies were performed to quantify protein nitrosylation (oxidative stress), content of caspase-3 (apoptosis) and TNFα (inflammation). Individually, the hypothermia and the cannabidiol treatments reduced the glutamate/Nacetyl-aspartate ratio, as well as TNFα and oxidized protein levels in newborn piglets subjected to hypoxic-ischemic insult. Also, both therapies reduced the number of necrotic neurons and prevented an increase in lactate/N-acetyl-aspartate ratio. The combined effect of hypothermia and cannabidiol on excitotoxicity, inflammation and oxidative stress, and on cell damage, was greater than either hypothermia or cannabidiol alone. The present study demonstrated that cannabidiol and hypothermia act complementarily and show additive effects on the main factors leading to hypoxic-ischemic brain damage if applied shortly after the insult. PMID:27462203

  3. Antioxidant properties of MitoTEMPOL and its hydroxylamine.

    PubMed

    Trnka, Jan; Blaikie, Frances H; Logan, Angela; Smith, Robin A J; Murphy, Michael P

    2009-01-01

    Piperidine nitroxides such as TEMPOL have been widely used as antioxidants in vitro and in vivo. MitoTEMPOL is a mitochondria-targeted derivative of TEMPOL designed to protect mitochondria from the oxidative damage that they accumulate, but once there is rapidly reduced to its hydroxylamine, MitoTEMPOL-H. As little is known about the antioxidant efficacy of hydroxylamines, this study has assessed the antioxidant activity of both MitoTEMPOL and MitoTEMPOL-H. The hydroxylamine was more effective at preventing lipid-peroxidation than MitoTEMPOL and decreased oxidative damage to mitochondrial DNA caused by menadione. In contrast to MitoTEMPOL, MitoTEMPOL-H has no superoxide dismutase activity and its antioxidant actions are likely to be mediated by hydrogen atom donation. Therefore, even though MitoTEMPOL is rapidly reduced to MitoTEMPOL-H in cells, it remains an effective antioxidant. Furthermore, as TEMPOL is also reduced to a hydroxylamine in vivo, many of its antioxidant effects may also be mediated by its hydroxylamine.

  4. Methotrexate Reduces DNA Integrity in Sperm From Men With Inflammatory Bowel Disease.

    PubMed

    Ley, Dana; Jones, Jeffrey; Parrish, John; Salih, Sana; Caldera, Freddy; Tirado, Edna; Leader, Benjamin; Saha, Sumona

    2018-06-01

    There are few data on the effects of methotrexate on reproductive capacity in men with inflammatory bowel diseases (IBDs). We performed a case-control study to determine the effects of methotrexate on sperm quality and genetic integrity. We compared sperm samples from 7 men with IBD who had been exposed to methotrexate for at least 3 months with sperm samples collected from 1912 age-matched men at fertility centers (controls) where sperm parameters would be expected to be worse than those of the general population. Sperm were evaluated by basic semen analysis and advanced sperm integrity testing. In samples from men with IBD, all basic semen analysis parameters were within normal limits. However, these samples had reduced sperm integrity, based on significant increases in levels of DNA fragmentation and damage from oxidative stress compared with controls. Our findings indicate that methotrexate can reduce DNA integrity in sperm and cause damage via oxidative stress. Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.

  5. Fusion of acid oxides for potentially radiation-resistant waste forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrick, C.C.; Penneman, R.A.

    1983-02-01

    Skull melting of groups VA and VB acid oxides with alkali metal oxides and urania leads to compounds with a good ability to retain radionuclides and establishes immunity to radiation damage. Substitution of neptunium and plutonium for uranium should not diminish these desirable properties. For hexavalent transplutonic elements, even at high oxygen fugacities and oxide activities, acid character losses and the reducing nature of radiation suggest the lower valences (III and IV) will be the stable states. Plutonium becomes the pivotal radionuclide when valence stability in a radiation field is considered.

  6. Cytosolic NADP(+)-dependent isocitrate dehydrogenase status modulates oxidative damage to cells.

    PubMed

    Lee, Su Min; Koh, Ho-Jin; Park, Dong-Chan; Song, Byoung J; Huh, Tae-Lin; Park, Jeen-Woo

    2002-06-01

    NADPH is an important cofactor in many biosynthesis pathways and the regeneration of reduced glutathione, critically important in cellular defense against oxidative damage. It is mainly produced by glucose 6-phosphate dehydrogenase (G6PD), malic enzyme, and the cytosolic form of NADP(+)-dependent isocitrate dehydrogenase (IDPc). Little information is available about the role of IDPc in antioxidant defense. In this study we investigated the role of IDPc against cytotoxicity induced by oxidative stress by comparing the relative degree of cellular responses in three different NIH3T3 cells with stable transfection with the cDNA for mouse IDPc in sense and antisense orientations, where IDPc activities were 3-4-fold higher and 35% lower, respectively, than that in the parental cells carrying the vector alone. Although the activities of other antioxidant enzymes, such as superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase, and G6PD, were comparable in all transformed cells, the ratio of GSSG to total glutathione was significantly higher in the cells expressing the lower level of IDPc. This finding indicates that IDPc is essential for the efficient glutathione recycling. Upon transient exposure to increasing concentrations of H(2)O(2) or menadione, an intracellular source of free radicals and reactive oxygen species, the cells with low levels of IDPc became more sensitive to oxidative damage by H(2)O(2) or menadione. Lipid peroxidation, oxidative DNA damage, and intracellular peroxide generation were higher in the cell-line expressing the lower level of IDPc. However, the cells with the highly over-expressed IDPc exhibited enhanced resistance against oxidative stress, compared to the control cells. This study provides direct evidence correlating the activities of IDPc and the maintenance of the cellular redox state, suggesting that IDPc plays an important role in cellular defense against oxidative stress.

  7. JNK1 ablation in mice confers long-term metabolic protection from diet-induced obesity at the cost of moderate skin oxidative damage.

    PubMed

    Becattini, Barbara; Zani, Fabio; Breasson, Ludovic; Sardi, Claudia; D'Agostino, Vito Giuseppe; Choo, Min-Kyung; Provenzani, Alessandro; Park, Jin Mo; Solinas, Giovanni

    2016-09-01

    Obesity and insulin resistance are associated with oxidative stress, which may be implicated in the progression of obesity-related diseases. The kinase JNK1 has emerged as a promising drug target for the treatment of obesity and type 2 diabetes. JNK1 is also a key mediator of the oxidative stress response, which can promote cell death or survival, depending on the magnitude and context of its activation. In this article, we describe a study in which the long-term effects of JNK1 inactivation on glucose homeostasis and oxidative stress in obese mice were investigated for the first time. Mice lacking JNK1 (JNK1(-/-)) were fed an obesogenic high-fat diet (HFD) for a long period. JNK1(-/-) mice fed an HFD for the long term had reduced expression of antioxidant genes in their skin, more skin oxidative damage, and increased epidermal thickness and inflammation compared with the effects in control wild-type mice. However, we also observed that the protection from obesity, adipose tissue inflammation, steatosis, and insulin resistance, conferred by JNK1 ablation, was sustained over a long period and was paralleled by decreased oxidative damage in fat and liver. We conclude that compounds targeting JNK1 activity in brain and adipose tissue, which do not accumulate in the skin, may be safer and most effective.-Becattini, B., Zani, F., Breasson, L., Sardi, C., D'Agostino, V. G., Choo, M.-K., Provenzani, A., Park, J. M., Solinas, G. JNK1 ablation in mice confers long-term metabolic protection from diet-induced obesity at the cost of moderate skin oxidative damage. © FASEB.

  8. ROS-induced oxidative stress and apoptosis-like event directly affect the cell viability of cryopreserved embryogenic callus in Agapanthus praecox.

    PubMed

    Zhang, Di; Ren, Li; Chen, Guan-Qun; Zhang, Jie; Reed, Barbara M; Shen, Xiao-Hui

    2015-09-01

    Oxidative stress and apoptosis-like programmed cell death, induced in part by H 2 O 2 , are two key factors that damage cells during plant cryopreservation. Their inhibition can improve cell viability. We hypothesized that oxidative stress and apoptosis-like event induced by ROS seriously impact plant cell viability during cryopreservation. This study documented changes in cell morphology and ultrastructure, and detected dynamic changes in ROS components (O 2 (·-) , H2O2 and OH·), antioxidant systems, and programmed cell death (PCD) events during embryonic callus cryopreservation of Agapanthus praecox. Plasmolysis, organelle ultrastructure changes, and increases in malondialdehyde (a membrane lipid peroxidation product) suggested that oxidative damage and PCD events occurred at several early cryopreservation steps. PCD events including autophagy, apoptosis-like, and necrosis also occurred at later stages of cryopreservation, and most were apoptosis. H2O2 is the most important ROS molecule mediating oxidative damage and affecting cell viability, and catalase and AsA-GSH cycle are involved in scavenging the intracellular H2O2 and protecting the cells against stress damage in the whole process. Gene expression studies verified changes of antioxidant system and PCD-related genes at the main steps of the cryopreservation process that correlated with improved cell viability. Reducing oxidative stress or inhibition of apoptosis-like event by deactivating proteases improved cryopreserved cell viability from 49.14 to 86.85 % and 89.91 %, respectively. These results verify our model of ROS-induced oxidative stress and apoptosis-like event in plant cryopreservation. This study provided a novel insight into cell stress response mechanisms in cryopreservation.

  9. Azilsartan improves glycemic status and reduces kidney damage in zucker diabetic fatty rats.

    PubMed

    Hye Khan, Md Abdul; Neckář, Jan; Haines, Jasmine; Imig, John D

    2014-08-01

    Azilsartan medoxomil (AZL-M), an angiotensin II receptor blocker, demonstrates antihypertensive and organ protective effects in hypertension. We investigated the efficacy of AZL-M to ameliorate metabolic syndrome and kidney damage associated with type 2 diabetes using Zucker diabetic fatty (ZDF) rats. ZDF rats were treated with vehicle or AZL-M for 8 weeks. Zucker diabetic lean (ZDL) rats were used as controls. Urine and plasma samples were collected for biochemical analysis, and kidney tissues were used for histopathological and immunohistopathological examination at the end of the 8-week protocol. ZDF rats were diabetic with hyperglycemia and impaired glucose tolerance, and AZL-M ameliorated the diabetic phenotype. ZDF rats were hypertensive compared with ZDL rats (181±6 vs. 129±7mm Hg), and AZL-M decreased blood pressure in ZDF rats (116±7mm Hg). In ZDF rats, there was marked renal damage with elevated proteinuria, albuminuria, nephrinuria, 2-4-fold higher tubular cast formation, and glomerular injury compared with ZDL rats. AZL-M treatment reduced renal damage in ZDF rats. ZDF rats demonstrated renal inflammation and oxidative stress with elevated urinary monocyte chemoattractant protein 1 excretion, renal infiltration of macrophages, and elevated kidney malondialdehyde levels. AZL-M reduced oxidative stress and inflammation in ZDF rats. Overall, we demonstrate that AZL-M attenuates kidney damage in type 2 diabetes. We further demonstrate that anti-inflammatory and antioxidative activities of AZL-M contribute to its kidney protective action. © American Journal of Hypertension, Ltd 2014. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Vinpocetine reduces diclofenac-induced acute kidney injury through inhibition of oxidative stress, apoptosis, cytokine production, and NF-κB activation in mice.

    PubMed

    Fattori, Victor; Borghi, Sergio M; Guazelli, Carla F S; Giroldo, Andressa C; Crespigio, Jefferson; Bussmann, Allan J C; Coelho-Silva, Letícia; Ludwig, Natasha G; Mazzuco, Tânia L; Casagrande, Rubia; Verri, Waldiceu A

    2017-06-01

    Acute kidney injury (AKI) represents a complex clinical condition associated with significant morbidity and mortality. Approximately, 19-33% AKI episodes in hospitalized patients are related to drug-induced nephrotoxicity. Although, considered safe, non-steroidal anti-inflammatory drugs such as diclofenac have received special attention in the past years due to the potential risk of renal damage. Vinpocetine is a nootropic drug known to have anti-inflammatory properties. In this study, we investigated the effect and mechanisms of vinpocetine in a model of diclofenac-induced AKI. We observed that diclofenac increased proteinuria and blood urea, creatinine, and oxidative stress levels 24h after its administration. In renal tissue, diclofenac also increased oxidative stress and induced morphological changes consistent with renal damage. Moreover, diclofenac induced kidney cells apoptosis, up-regulated proinflammatory cytokines, and induced the activation of NF-κB in renal tissue. On the other hand, vinpocetine reduced diclofenac-induced blood urea and creatinine. In the kidneys, vinpocetine inhibited diclofenac-induced oxidative stress, morphological changes, apoptosis, cytokine production, and NF-κB activation. To our knowledge, this is the first study demonstrating that diclofenac-induced AKI increases NF-κB activation, and that vinpocetine reduces the nephrotoxic effects of diclofenac. Therefore, vinpocetine is a promising molecule for the treatment of diclofenac-induced AKI. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. The effects of graded levels of calorie restriction: II. Impact of short term calorie and protein restriction on circulating hormone levels, glucose homeostasis and oxidative stress in male C57BL/6 mice

    PubMed Central

    Mitchell, Sharon E.; Delville, Camille; Konstantopedos, Penelope; Hurst, Jane; Derous, Davina; Green, Cara; Chen, Luonan; Han, Jackie J.D.; Wang, Yingchun; Promislow, Daniel E.L.; Lusseau, David; Douglas, Alex; Speakman, John R.

    2015-01-01

    Limiting food intake attenuates many of the deleterious effects of aging, impacting upon healthspan and leading to an increased lifespan. Whether it is the overall restriction of calories (calorie restriction: CR) or the incidental reduction in macronutrients such as protein (protein restriction: PR) that mediate these effects is unclear. The impact of 3 month CR or PR, (10 to 40%), on C57BL/6 mice was compared to controls fed ad libitum. Reductions in circulating leptin, tumor necrosis factor-α and insulin-like growth factor-1 (IGF-1) were relative to the level of CR and individually associated with morphological changes but remained unchanged following PR. Glucose tolerance and insulin sensitivity were improved following CR but not affected by PR. There was no indication that CR had an effect on oxidative damage, however CR lowered antioxidant activity. No biomarkers of oxidative stress were altered by PR. CR significantly reduced levels of major urinary proteins suggesting lowered investment in reproduction. Results here support the idea that reduced adipokine levels, improved insulin/IGF-1 signaling and reduced reproductive investment play important roles in the beneficial effects of CR while, in the short-term, attenuation of oxidative damage is not applicable. None of the positive effects were replicated with PR. PMID:26061745

  12. Synergistic antibacterial effects of localized heat and oxidative stress caused by hydroxyl radicals mediated by graphene/iron oxide-based nanocomposites.

    PubMed

    Pan, Wen-Yu; Huang, Chieh-Cheng; Lin, Tzu-Tsen; Hu, Hsin-Yi; Lin, Wei-Chih; Li, Meng-Ju; Sung, Hsing-Wen

    2016-02-01

    This work develops a composite system of reduced graphene oxide (rGO)-iron oxide nanoparticles (rGO-IONP) that can synergistically induce physical and chemical damage to methicillin-resistant Staphylococcus aureus (MRSA) that are present in subcutaneous abscesses. rGO-IONP was synthesized by the chemical deposition of Fe(2+)/Fe(3+) ions on nanosheets of rGO in aqueous ammonia. The antibacterial efficacy of the as-prepared rGO-IONP was evaluated in a mouse model with MRSA-infected subcutaneous abscesses. Upon exposure to a near-infrared laser in vitro, rGO-IONP synergistically generated localized heat and large amounts of hydroxyl radicals, which inactivated MRSA. The in vivo results reveal that combined treatment with localized heat and oxidative stress that is caused by hydroxyl radicals accelerated the healing of wounds associated with MRSA-infected abscesses. The above results demonstrate that an rGO-IONP nanocomposite system that can effectively inactivate multiple-drug-resistant bacteria in subcutaneous infections was successfully developed. The emergence of methicillin-resistant S. aureus (MRSA) has posed a significant problem in the clinical setting. Thus, it is imperative to develop new treatment strategies against this. In this study, the authors described the use of reduced graphene oxide (rGO)-iron oxide nanoparticles (rGO-IONP) to induce heat and chemical damage to MRSA. This approach may provide a platform the design of other treatment modalities against multiple-drug-resistant bacteria. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. 5-s-Cysteinyl-conjugates of catecholamines induce cell damage, extensive DNA base modification and increases in caspase-3 activity in neurons.

    PubMed

    Spencer, Jeremy P E; Whiteman, Matthew; Jenner, Peter; Halliwell, Barry

    2002-04-01

    A decrease in reduced glutathione levels in dopamine containing nigral cells in Parkinson's disease may result from the formation of cysteinyl-adducts of catecholamines, which in turn exert toxicity on nigral cells. We show that exposure of neurons (CSM 14.1) to 5-S-cysteinyl conjugates of dopamine, L-DOPA, DOPAC or DHMA causes neuronal damage, increases in oxidative DNA base modification and an elevation of caspase-3 activity in cells. Damage to neurons was apparent 12-48 h of post-exposure and there were increases in caspase-3 activity in neurons after 6 h. These changes were paralleled by large increases in pyrimidine and purine base oxidation products, such as 8-OH-guanine suggesting that 5-S-cysteinyl conjugates of catecholamines are capable of diffusing into cells and stimulating the formation of reactive oxygen species (ROS), which may then lead to a mechanism of cell damage involving caspase-3. Indeed, intracellular ROS were observed to rise sharply on exposure to the conjugates. These results suggest one mechanism by which oxidative stress may occur in the substantia nigra in Parkinson's disease.

  14. Effect of Creep and Oxidation on Reduced Creep-Fatigue life of Ni-based Alloy 617 at 850 C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xiang; Yang, Zhiqing; Sokolov, Mikhail A

    Low cycle fatigue (LCF) and creep fatigue testing of Ni-based alloy 617 was carried out at 850 C. Compared with its LCF life, the material s creep fatigue life decreases to different extents depending on test conditions. To elucidate the microstructure-fatigue property relationship for alloy 617 and the effect of creep and oxidation on its fatigue life, systematic microstructural investigations were carried out using scanning electron microscopy, energy-dispersive X-ray spectroscopy, and electron backscatter diffraction (EBSD). In LCF tests, as the total strain range increased, deformations concentrated near high angle grain boundaries (HAGBs). The strain hold period in the creep fatiguemore » tests introduced additional creep damage to the material, which revealed the detrimental effect of the strain hold time on the material fatigue life in two ways. First, the strain hold time enhanced the localized deformation near HAGBs, resulting in the promotion of intergranular cracking of alloy 617. Second, the strain hold time encouraged grain boundary sliding, which resulted in interior intergranular cracking of the material. Oxidation accelerated the initiation of intergranular cracking in alloy 617. In the crack propagation stage, if oxidation was promoted and the cyclic oxidation damage was greater than the fatigue damage, oxidation-assisted intergranular crack growth resulted in a significant reduction in the material s fatigue life.« less

  15. Effects of isoquinoline alkaloid berberine on lipid peroxidation, antioxidant defense system, and liver damage induced by lead acetate in rats.

    PubMed

    Hasanein, Parisa; Ghafari-Vahed, Masumeh; Khodadadi, Iraj

    2017-01-01

    Liver is considered a target organ affected by lead toxicity. Oxidative stress is among the mechanisms involved in liver damage. Here we investigated the effects of the natural alkaloid berberine on oxidative stress and hepatotoxicity induced by lead in rats. Animals received an aqueous solution of lead acetate (500 mg Pb/l in the drinking water) and/or daily oral gavage of berberine (50 mg/kg) for 8 weeks. Rats were then weighed and used for the biochemical, molecular, and histological evaluations. Lead-induced oxidative stress, shown by increasing lipid peroxidation along with a concomitant decrease in hepatic levels of thiol groups, total antioxidant capacity, the activities of superoxide dismutase, catalase, glutathione peroxidase, and glutathione-S-transferase, and reduced versus oxidized glutathione ratio. Berberine corrected all the disturbances in oxidative stress markers induced by lead administration. Berberine also prevented the elevated levels of enzymes (alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase) and the decrease in body weight and albumin. The protective effects of berberine were comparable with silymarin. Furthermore, berberine attenuated liver damage, shown by decreased necrosis and inflammatory cell infiltration. Berberine represents a potential therapeutic option against lead-induced hepatotoxicity through inhibiting lipid peroxidation and enhancing antioxidant defenses. Berberine exerted protective effects on lead-induced oxidative stress and hepatotoxicity in rats.

  16. Mechanism of metformin action in MCF-7 and MDA-MB-231 human breast cancer cells involves oxidative stress generation, DNA damage, and transforming growth factor β1 induction.

    PubMed

    Marinello, Poliana Camila; da Silva, Thamara Nishida Xavier; Panis, Carolina; Neves, Amanda Fouto; Machado, Kaliana Larissa; Borges, Fernando Henrique; Guarnier, Flávia Alessandra; Bernardes, Sara Santos; de-Freitas-Junior, Júlio Cesar Madureira; Morgado-Díaz, José Andrés; Luiz, Rodrigo Cabral; Cecchini, Rubens; Cecchini, Alessandra Lourenço

    2016-04-01

    The participation of oxidative stress in the mechanism of metformin action in breast cancer remains unclear. We investigated the effects of clinical (6 and 30 μM) and experimental concentrations of metformin (1000 and 5000 μM) in MCF-7 and in MDA-MB-231 cells, verifying cytotoxicity, oxidative stress, DNA damage, and intracellular pathways related to cell growth and survival after 24 h of drug exposure. Clinical concentrations of metformin decreased metabolic activity of MCF-7 cells in the MTT assay, which showed increased oxidative stress and DNA damage, although cell death and impairment in the proliferative capacity were observed only at higher concentrations. The reduction in metabolic activity and proliferation in MDA-MB-231 cells was present only at experimental concentrations after 24 h of drug exposition. Oxidative stress and DNA damage were induced in this cell line at experimental concentrations. The drug decreased cytoplasmic extracellular signal-regulated kinases 1 and 2 (ERK1/2) and AKT and increased nuclear p53 and cytoplasmic transforming growth factor β1 (TGF-β1) in both cell lines. These findings suggest that metformin reduces cell survival by increasing reactive oxygen species, which induce DNA damage and apoptosis. A relationship between the increase in TGF-β1 and p53 levels and the decrease in ERK1/2 and AKT was also observed. These findings suggest the mechanism of action of metformin in both breast cancer cell lineages, whereas cell line specific undergoes redox changes in the cells in which proliferation and survival signaling are modified. Taken together, these results highlight the potential clinical utility of metformin as an adjuvant during the treatment of luminal and triple-negative breast cancer.

  17. Metal chelator combined with permeability enhancer ameliorates oxidative stress-associated neurodegeneration in rat eyes with elevated intraocular pressure

    PubMed Central

    Liu, P.; Zhang, M.; Shoeb, M.; Hogan, D.; Tang, Luosheng; Syed, M. F.; Wang, C. Z.; Campbell, G.A.; Ansari, N.H.

    2014-01-01

    Since as many as half of glaucoma patients on intraocular pressure (IOP)-lowering therapy continue to experience optic nerve toxicity, it is imperative to find other effective therapies. Iron and calcium ions play key roles in oxidative stress, a hallmark of glaucoma. Therefore, we tested metal chelation by means of ethylenediaminetetraacetic acid (EDTA) combined with the permeability enhancer methyl sulfonyl methane (MSM) applied topically on the eye to determine if this non-invasive treatment is neuroprotective in rat optic nerve and retinal ganglion cells exposed to oxidative stress induced by elevated IOP. Hyaluronic acid (HA) was injected in the anterior chamber of the rat eye to elevate the IOP. EDTA-MSM was applied topically to the eye for 3 months. Eyeballs and optic nerves were processed for histological assessment of cytoarchitecture. Protein-lipid aldehyde adducts, and cyclooxygnease-2 (COX-2) were detected immunohistochemically. HA administration increased IOP and associated oxidative stress and inflammation. Elevated IOP was not affected by EDTA-MSM treatment. However oxidative damage and inflammation were ameliorated as reflected by decrease in formation of protein-lipid aldehyde adducts and COX-2 expression, respectively. Furthermore, EDTA-MSM treatment increased retinal ganglion cell survival and decreased demyelinization of optic nerve compared with untreated eyes. Chelation treatment with EDTA-MSM ameliorates sequelae of IOP-induced toxicity without affecting IOP. Since most current therapies aim at reducing IOP and damage occurs even in the absence of elevated IOP, EDTA-MSM has the potential to work in conjunction with pressure-reducing therapies to alleviate damage to the optic nerve and retinal ganglion cells. PMID:24509160

  18. Guanosine prevents behavioral alterations in the forced swimming test and hippocampal oxidative damage induced by acute restraint stress.

    PubMed

    Bettio, Luis E B; Freitas, Andiara E; Neis, Vivian B; Santos, Danúbia B; Ribeiro, Camille M; Rosa, Priscila B; Farina, Marcelo; Rodrigues, Ana Lúcia S

    2014-12-01

    Guanosine is a guanine-based purine that modulates glutamate uptake and exerts neurotrophic and neuroprotective effects. In a previous study, our group demonstrated that this endogenous nucleoside displays antidepressant-like properties in a predictive animal model. Based on the role of oxidative stress in modulating depressive disorders as well as on the association between the neuroprotective and antioxidant properties of guanosine, here we investigated if its antidepressant-like effect is accompanied by a modulation of hippocampal oxidant/antioxidant parameters. Adult Swiss mice were submitted to an acute restraint stress protocol, which is known to cause behavioral changes that are associated with neuronal oxidative damage. Animals submitted to ARS exhibited an increased immobility time in the forced swimming test (FST) and the administration of guanosine (5mg/kg, p.o.) or fluoxetine (10mg/kg, p.o., positive control) before the exposure to stressor prevented this alteration. Moreover, the significantly increased levels of hippocampal malondialdehyde (MDA; an indicator of lipid peroxidation), induced by ARS were not observed in stressed mice treated with guanosine. Although no changes were found in the hippocampal levels of reduced glutathione (GSH), the group submitted to ARS procedure presented enhanced glutathione peroxidase (GPx), glutathione reductase (GR), superoxide dismutase (SOD) activities and reduced catalase (CAT) activity in the hippocampus. Guanosine was able to prevent the alterations in GPx, GR, CAT activities, and in SOD/CAT activity ratio, but potentiated the increase in SOD activity elicited by ARS. Altogether, the present findings indicate that the observed antidepressant-like effects of guanosine might be related, at least in part, to its capability of modulating antioxidant defenses and mitigating hippocampal oxidative damage induced by ARS. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Protective effect of ketamine against hemorrhagic cystitis in rats receiving ifosfamide

    PubMed Central

    Ozguven, Ali A.; Yılmaz, Omer; Taneli, Fatma; Ulman, Cevval; Vatansever, Seda; Onag, Ali

    2014-01-01

    Objective: To investigate the possible protective effect of a single dose of ketamine and the synergistic effect between ketamine and 2-mercaptoethane sulfonate (mesna) against ifosfamide-induced hemorrhagic cystitis. Materials and Methods: 35 adult female wistar rats were divided into five groups and pretreated with ketamine at 10 mg/kg and/or mesna 400 mg/kg 30 minutes before intraperitoneal injection of IFS (400 mg/kg) or with saline (control group). Hemorrhagic cystitis was evaluated 24 hours after IFS injection according to bladder wet weight (BWW), and microscopic changes, i.e. edema, hemorrhage, cellular infiltration, and urothelial desquamation. The markers of oxidative damage including nitric oxide (NO) and malondialdehyde (MDA) levels and the expressions of tumor necrosis factor alpha (TNF-α), interleukin 1-beta (IL-1β), inducible nitric oxide synthase (i-NOS) and endothelial nitric oxide synthase (e-NOS) were also assayed in the bladder tissues. Results: Pretreatment with ketamine alone or ketamine in combination with mesna reduced the IFS-induced increase of BWW (58,47% and 63,33%, respectively, P < 0.05). IFS- induced microscopic alterations were also prevented by ketamine with or without mesna (P < 0.05). In addition, also statistically insignificant, the bladder tissue expressions of IL-1β were lower in ketamine and/or mesna-receiving groups (P > 0,05). The parameters of oxidative stress, the NO and the MDA contents of the bladder tissues of the study groups were not different. Conclusion: The results of the present study suggest that a single dose of ketamine pretreatment attenuates experimental IFS-induced bladder damage. It is therefore necessary to investigate ketamine locally and systematically with various dosing schedulesin order to reduce the bladder damage secondary to oxazaphosphorine-alkylating agents and these results may widen the spectrum of ketamine. PMID:24741183

  20. Drosophila TDP1 Ortholog Important for Longevity and Nervous System Maintenance | Center for Cancer Research

    Cancer.gov

    As the molecule responsible for encoding a cell’s hereditary information, DNA must maintain its integrity. However, nucleic acids are vulnerable to damage by a number of endogenous and exogenous insults, such as reactive oxygen species or enzymes that react with DNA. Thus, other enzymes are tasked with repairing damaged DNA, including tyrosyl-DNA phosphodiesterase 1 (TDP1), which frees the 3’ ends of DNA that are blocked by proteins and oxidized bases to allow the ligation of strand breaks. Yeast, mice, and humans that express mutants of TDP1 have a reduced capacity to repair oxidative or topoisomerase-induced damage. A Drosophila TDP1 ortholog, glaikit (gkt), has been reported, but its function in DNA repair has not been evaluated because, surprisingly, gkt knockout flies were not viable.

  1. Effects of the essential metals copper and zinc in two freshwater detritivores species: Biochemical approach.

    PubMed

    Quintaneiro, C; Ranville, J; Nogueira, A J A

    2015-08-01

    The input of metals into freshwater ecosystems from natural and anthropogenic sources impairs water quality and can lead to biological alterations in organisms and plants, compromising the structure and the function of these ecosystems. Biochemical biomarkers may provide early detection of exposure to contaminants and indicate potential effects at higher levels of biological organisation. The effects of 48h exposures to copper and zinc on Atyaephyra desmarestii and Echinogammarus meridionalis were evaluated with a battery of biomarkers of oxidative stress and the determination of ingestion rates. The results showed different responses of biomarkers between species and each metal. Copper inhibited the enzymatic defence system of both species without signs of oxidative damage. Zinc induced the defence system in E. meriodionalis with no evidence of oxidative damage. However, in A. desmarestii exposed to zinc was observed oxidative damage. In addition, only zinc had significantly reduced the ingestion rate and just for E. meridionalis. The value of the integrated biomarkers response increased with concentration of both metals, which indicates that might be a valuable tool to interpretation of data as a whole, as different parameters have different weight according to type of exposure. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Neuroprotective and antioxidant effects of curcumin in a ketamine-induced model of mania in rats.

    PubMed

    Gazal, Marta; Valente, Matheus R; Acosta, Bruna A; Kaufmann, Fernanda N; Braganhol, Elizandra; Lencina, Claiton L; Stefanello, Francieli M; Ghisleni, Gabriele; Kaster, Manuella P

    2014-02-05

    Bipolar disorder (BD) is a chronic and debilitating illness characterized by recurrent manic and depressive episodes. Our research investigates the protective effects of curcumin, the main curcuminoid of the Indian spice turmeric, in a model of mania induced by ketamine administration in rats. Our results indicated that ketamine treatment (25 mg/kg, for 8 days) induced hyperlocomotion in the open-field test and oxidative damage in prefrontal cortex (PFC) and hippocampus (HP), evaluated by increased lipid peroxidation and decreased total thiol content. Moreover, ketamine treatment reduced the activity of the antioxidant enzymes superoxide dismutase and catalase in the HP. Pretreatment of rats with curcumin (20 and 50 mg/kg, for 14 days) or with lithium chloride (45 mg/kg, positive control) prevented behavioral and pro-oxidant effects induced by ketamine. These findings suggest that curcumin might be a good compound for preventive intervention in BD, reducing the episode relapse and the oxidative damage associated with the manic phase of this disorder. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Ceruloplasmin copper induces oxidant damage by a redox process utilizing cell-derived superoxide as reductant

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, C. K.; Fox, P. L.

    1998-01-01

    Oxidative damage by transition metals bound to proteins may be an important pathogenic mechanism. Ceruloplasmin (Cp) is a Cu-containing plasma protein thought to be involved in oxidative modification of lipoproteins. We have previously shown that Cp increased cell-mediated low-density lipoprotein (LDL) oxidation by a process requiring cell-derived superoxide, but the underlying chemical mechanism(s) is (are) unknown. We now show that superoxide reduction of Cp Cu is a critical reaction in cellular LDL oxidation. By bathocuproine disulfonate (BCS) binding and by superoxide utilization, we showed that exogenous superoxide reduces a single Cp Cu atom, the same Cu required for LDL oxidation. The Cu atom remained bound to Cp during the redox cycle. Three avenues of evidence showed that vascular cells reduce Cp Cu by a superoxide-dependent process. The 2-fold higher rate of Cp Cu reduction by smooth muscle cells (SMC) compared to endothelial cells (EC) was consistent with their relative rates of superoxide release. Furthermore, Cp Cu reduction by cells was blocked by Cu,Zn superoxide dismutase (SOD1). Finally, the level of superoxide produced by EC and SMC was sufficient to cause the amount of Cu reduction observed. An important role of Cp Cu reduction in LDL oxidation was suggested by results showing that SOD1 inhibited Cp Cu reduction and LDL oxidation by SMC with equal potency, while tumor necrosis factor-alpha stimulated both processes. In summary, these results show that superoxide is a critical cellular reductant of divalent transition metals involved in oxidation, and that protein-bound Cu is a substrate for this reaction. The role of these mechanisms in oxidative processes in vivo has yet to be defined.

  4. Protective effect of 4-coumaric acid from UVB ray damage in the rabbit eye.

    PubMed

    Lodovici, Maura; Caldini, Silvia; Morbidelli, Lucia; Akpan, Victor; Ziche, Marina; Dolara, Piero

    2009-01-08

    UV-induced oxidation damage seems to play a major role in a number of specific pathological conditions of intraocular tissues, such as cataract formation and retinal degeneration. Therefore, antioxidant and/or scavenger compounds might protect the eyes from UV-induced cellular damage. We previously reported that 4-coumaric acid (4-CA) is able to protect rabbit corneal-derived cells (SIRC) from UVB-induced oxidation damage. In this study we evaluated the protective effect of 4-CA against UVB-induced cell damage in rabbit cornea in vivo. Twelve male New Zealand albino rabbits were used; four rabbits were used as a control and received vehicle in one eye and 4-CA acid in the contralateral eye; eight rabbits were exposed to UVB rays (79.2mJ/cm(2)) and three days before to UV exposure each animal received 1 drop/day of vehicle in one eye and 1 drop/day of vehicle containing 4-CA (164ng) in the contralateral eye. Corneal and sclera tissues were removed and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) levels were measured. Superoxide dismutase (SOD) and xanthine oxidase (XO) activities were determined in aqueous humour. UVB-induced vessel hyper-reactivity was strongly reduced at 4 and 24h after UVB exposure after local treatment with 4-CA, 8-oxodGuo levels, a marker of oxidative DNA damage, were significantly increased (P<0.05) in sclera and cornea by UVB irradiation, but when 4-CA was administered to the conjunctiva in a buffered solution once a day for 3d before and 6d after UVB exposure, levels of 8-oxodGuo were similar to controls and significantly reduced (P<0.05) compared to UVB-treated corneas. XO activity in the aqueous humour was significantly increased. The administration of 4-CA for 3d before and 6d after UVB irradiation induced a small but significant (P<0.05) reduction of XO compared with control eyes. Our results indicate that the administration of 4-CA protects eye tissues, thus reducing the harmful effect of UVB radiation at low concentration, probably through its free radical scavenging and antioxidant properties. Therefore, 4-CA may be useful in protecting the eye from free radical damage following UVB exposure from sunlight, UV lamps and welding torches.

  5. The Effects of Aging on Pulmonary Oxidative Damage, Protein Nitration and Extracellular Superoxide Dismutase Down-Regulation During Systemic Inflammation

    PubMed Central

    Starr, Marlene E; Ueda, Junji; Yamamoto, Shoji; Evers, B. Mark; Saito, Hiroshi

    2011-01-01

    Systemic inflammatory response syndrome (SIRS), a serious clinical condition characterized by whole body inflammation, is particularly threatening for elderly patients who suffer much higher mortality rates than the young. A major pathological consequence of SIRS is acute lung injury caused by neutrophil-mediated oxidative damage. Previously, we reported an increase in protein tyrosine nitration (a marker of oxidative/nitrosative damage), and a decrease in antioxidant enzyme, extra-cellular superoxide dismutase (EC-SOD), in the lungs of young mice during endotoxemia-induced SIRS. Here we demonstrate that during endotoxemia, down-regulation of EC-SOD is significantly more profound and prolonged, while up-regulation of iNOS is augmented in aged compared to young mice. Aged mice also showed 2.5-fold higher protein nitration levels, compared to young mice, with particularly strong nitration in the pulmonary vascular endothelium during SIRS. Additionally, by 2-dimensional gel electrophoresis, Western blotting and mass spectrometry, we identified proteins which show increased tyrosine nitration in age- and SIRS-dependent manners; these proteins (profilin-1, transgelin-2, LASP 1, tropomyosin and myosin) include components of the actin cytoskeleton responsible for maintaining pulmonary vascular permeability. Reduced EC-SOD in combination with increased oxidative/nitrosative damage and altered cytoskeletal protein function due to tyrosine nitration may contribute to augmented lung injury in the aged with SIRS. PMID:21092756

  6. The effects and mechanisms of mitochondrial nutrient alpha-lipoic acid on improving age-associated mitochondrial and cognitive dysfunction: an overview.

    PubMed

    Liu, Jiankang

    2008-01-01

    We have identified a group of nutrients that can directly or indirectly protect mitochondria from oxidative damage and improve mitochondrial function and named them "mitochondrial nutrients". The direct protection includes preventing the generation of oxidants, scavenging free radicals or inhibiting oxidant reactivity, and elevating cofactors of defective mitochondrial enzymes with increased Michaelis-Menten constant to stimulate enzyme activity, and also protect enzymes from further oxidation, and the indirect protection includes repairing oxidative damage by enhancing antioxidant defense systems either through activation of phase 2 enzymes or through increase in mitochondrial biogenesis. In this review, we take alpha-lipoic acid (LA) as an example of mitochondrial nutrients by summarizing the protective effects and possible mechanisms of LA and its derivatives on age-associated cognitive and mitochondrial dysfunction of the brain. LA and its derivatives improve the age-associated decline of memory, improve mitochondrial structure and function, inhibit the age-associated increase of oxidative damage, elevate the levels of antioxidants, and restore the activity of key enzymes. In addition, co-administration of LA with other mitochondrial nutrients, such as acetyl-L: -carnitine and coenzyme Q10, appears more effective in improving cognitive dysfunction and reducing oxidative mitochondrial dysfunction. Therefore, administrating mitochondrial nutrients, such as LA and its derivatives in combination with other mitochondrial nutrients to aged people and patients suffering from neurodegenerative diseases, may be an effective strategy for improving mitochondrial and cognitive dysfunction.

  7. Comparative cytotoxicity and genotoxicity of cobalt (II, III) oxide, iron (III) oxide, silicon dioxide, and aluminum oxide nanoparticles on human lymphocytes in vitro.

    PubMed

    Rajiv, S; Jerobin, J; Saranya, V; Nainawat, M; Sharma, A; Makwana, P; Gayathri, C; Bharath, L; Singh, M; Kumar, M; Mukherjee, A; Chandrasekaran, N

    2016-02-01

    Despite the extensive use of nanoparticles (NPs) in various fields, adequate knowledge of human health risk and potential toxicity is still lacking. The human lymphocytes play a major role in the immune system, and it can alter the antioxidant level when exposed to NPs. Identification of the hazardous NPs was done using in vitro toxicity tests and this study mainly focuses on the comparative in vitro cytotoxicity and genotoxicity of four different NPs including cobalt (II, III) oxide (Co3O4), iron (III) oxide (Fe2O3), silicon dioxide (SiO2), and aluminum oxide (Al2O3) on human lymphocytes. The Co3O4 NPs showed decrease in cellular viability and increase in cell membrane damage followed by Fe2O3, SiO2, and Al2O3 NPs in a dose-dependent manner after 24 h of exposure to human lymphocytes. The oxidative stress was evidenced in human lymphocytes by the induction of reactive oxygen species, lipid peroxidation, and depletion of catalase, reduced glutathione, and superoxide dismutase. The Al2O3 NPs showed the least DNA damage when compared with all the other NPs. Chromosomal aberration was observed at 100 µg/ml when exposed to Co3O4 NPs and Fe2O3 NPs. The alteration in the level of antioxidant caused DNA damage and chromosomal aberration in human lymphocytes. © The Author(s) 2015.

  8. Protective Effect of Baccharis trimera Extract on Acute Hepatic Injury in a Model of Inflammation Induced by Acetaminophen

    PubMed Central

    Pádua, Bruno da Cruz; Rossoni Júnior, Joamyr Victor; de Brito Magalhães, Cíntia Lopes; Chaves, Míriam Martins; Silva, Marcelo Eustáquio; Pedrosa, Maria Lucia; de Souza, Gustavo Henrique Bianco; Brandão, Geraldo Célio; Rodrigues, Ivanildes Vasconcelos; Lima, Wanderson Geraldo; Costa, Daniela Caldeira

    2014-01-01

    Background. Acetaminophen (APAP) is a commonly used analgesic and antipyretic. When administered in high doses, APAP is a clinical problem in the US and Europe, often resulting in severe liver injury and potentially acute liver failure. Studies have demonstrated that antioxidants and anti-inflammatory agents effectively protect against the acute hepatotoxicity induced by APAP overdose. Methods. The present study attempted to investigate the protective effect of B. trimera against APAP-induced hepatic damage in rats. The liver-function markers ALT and AST, biomarkers of oxidative stress, antioxidant parameters, and histopathological changes were examined. Results. The pretreatment with B. trimera attenuated serum activities of ALT and AST that were enhanced by administration of APAP. Furthermore, pretreatment with the extract decreases the activity of the enzyme SOD and increases the activity of catalase and the concentration of total glutathione. Histopathological analysis confirmed the alleviation of liver damage and reduced lesions caused by APAP. Conclusions. The hepatoprotective action of B. trimera extract may rely on its effect on reducing the oxidative stress caused by APAP-induced hepatic damage in a rat model. General Significance. These results make the extract of B. trimera a potential candidate drug capable of protecting the liver against damage caused by APAP overdose. PMID:25435714

  9. Blueberry extracts protect testis from hypobaric hypoxia induced oxidative stress in rats.

    PubMed

    Zepeda, Andrea; Aguayo, Luis G; Fuentealba, Jorge; Figueroa, Carolina; Acevedo, Alejandro; Salgado, Perla; Calaf, Gloria M; Farías, Jorge

    2012-01-01

    Exposure to hypobaric hypoxia causes oxidative damage to male rat reproductive function. The aim of this study was to evaluate the protective effect of a blueberry extract (BB-4) in testis of rats exposed to hypobaric hypoxia. Morphometric analysis, cellular DNA fragmentation, glutathione reductase (GR), and superoxide dismutase (SOD) activities were evaluated. Our results showed that supplementation of BB-4 reduced lipid peroxidation, decreased apoptosis, and increased GR and SOD activities in rat testis under hypobaric hypoxia conditions (P < 0.05). Therefore, this study demonstrates that blueberry extract significantly reduced the harmful effects of oxidative stress caused by hypobaric hypoxia in rat testis by affecting glutathione reductase and superoxide dismutase activities.

  10. DNA damage and glutathione level in children with asthma bronchiale: effect of antiasthmatic therapy.

    PubMed

    Hasbal, Canan; Aksu, Bagdagul Y; Himmetoglu, Solen; Dincer, Yildiz; Koc, Eylem E; Hatipoglu, Sami; Akcay, Tulay

    2010-06-01

    When the production of reactive oxygen species (ROS) exceeds the capacity of antioxidant defences, a condition known as oxidative stress occurs and it has been implicated in many pathological conditions including asthma. Interaction of ROS with DNA may result in mutagenic oxidative base modifications such as 8-hydroxydeoxyguanosine (8-oxo-dGuo) and DNA strand breaks. Reduced glutathione (GSH) serves as a powerful antioxidant against harmful effects of ROS. The aim of this study was to describe DNA damage as level of DNA strand breaks and formamidopyrimidine DNA glycosylase (Fpg)-sensitive sites, which reflects oxidative DNA damage and GSH level in children with mild-to-moderate persistent asthma; and to examine the effect of antiasthmatic therapy on these DNA damage parameters and GSH level. Before and after 8 wk of antiasthmatic therapy blood samples were taken, DNA strand breaks and Fpg-sensitive sites in peripheral leukocytes were determined by comet assay, GSH level of whole blood was measured by spectrophotometric method. DNA strand breaks and Fpg-sensitive sites in the asthma group were found to be increased as compared with control group. GSH level in the asthma group was not significantly different from those in the control group. Levels of strand breaks, Fpg-sensitive sites and GSH were found to be decreased in the asthma group after the treatment. In conclusion, oxidative DNA damage (strand breaks and Fpg-sensitive sites) is at a high level in children with asthma. DNA damage parameters and GSH level were found to be decreased after therapy. Our findings imply that antiasthmatic therapy including glucocorticosteroids not only controls asthma but also decreases mutation risk in children with asthma bronchiale.

  11. The effect of predator exposure and reproduction on oxidative stress parameters in the Catarina scallop Argopecten ventricosus.

    PubMed

    Guerra, C; Zenteno-Savín, T; Maeda-Martínez, A N; Abele, D; Philipp, E E R

    2013-05-01

    Predation is known to impact growth and reproduction, and the physiological state of the prey, including its susceptibility to oxidative stress. In this study, we investigated how prolonged exposure to predators modulates tissue specific antioxidant defense and oxidative damage in the short-lived epibenthic scallop Argopecten ventricosus (2years maximum lifespan). Scallops that were experimentally exposed to predators had not only lower antioxidant capacities (superoxide dismutase and catalase), but also lower oxidative damage (protein carbonyls and TBARS=thiobarbituric acid reactive substances including lipid peroxides) in gills and mantle compared to individuals not exposed to predators. In contrast, oxidative damage in the swimming muscle was higher in predator-exposed scallops. When predator-exposed scallops were on the verge of spawning, levels of oxidative damage increased in gills and mantle in spite of a parallel increase in antioxidant defense in both tissues. Levels of oxidative damage increased also in the swimming muscle whereas muscle antioxidant capacities decreased. Interestingly, post-spawned scallops restored antioxidant capacities and oxidative damage to immature levels, suggesting they can recover from spawning-related oxidative stress. Our results show that predator exposure and gametogenesis modulate oxidative damage in a tissue specific manner and that high antioxidant capacities do not necessarily coincide with low oxidative damage. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Mitochondrial dependent oxidative stress in cell culture induced by laser radiation at 1265 nm.

    PubMed

    Saenko, Yury V; Glushchenko, Eugenia S; Zolotovskii, Igor O; Sholokhov, Evgeny; Kurkov, Andrey

    2016-04-01

    Photodynamic therapy is the main technique applied for surface carcinoma treatment. This technique employs singlet oxygen generated via a laser excited photosensitizer as a main damaging agent. However, prolonged sensitivity to intensive light, relatively low tissue penetration by activating light the cost of photosensitizer (PS) administration can limit photodynamic therapy applications. Early was reported singlet oxygen generation without photosensitizer induced by a laser irradiation at the wavelength of 1250-1270 nm. Here, we study the dynamics of oxidative stress, DNA damage, changes of mitochondrial potential, and mitochondrial mass induced by a laser at 1265 nm have been studied in HCT-116 and CHO-K cells. Laser irradiation of HCT-116 and CHO-K cells has induced a dose-dependent cell death via increasing intracellular reactive oxygen species (ROS) concentration, increase of DNA damage, decrease of mitochondrial potential, and reduced glutathione. It has been shown that, along with singlet oxygen generation, the increase of the intracellular ROS concentration induced by mitochondrial damage contributes to the damaging effect of the laser irradiation at 1265 nm.

  13. Assessment of the Antioxidant Activity of Silybum marianum Seed Extract and Its Protective Effect against DNA Oxidation, Protein Damage and Lipid Peroxidation

    PubMed Central

    Serçe, Aynur; Toptancı, Bircan Çeken; Tanrıkut, Sevil Emen; Altaş, Sevcan; Kızıl, Göksel; Kızıl, Süleyman

    2016-01-01

    Summary Antioxidant properties of ethanol extract of Silybum marianum (milk thistle) seeds was investigated. We have also investigated the protein damage activated by oxidative Fenton reaction and its prevention by Silybum marianum seed extract. Antioxidant potential of Silybum marianum seed ethanol extract was measured using different in vitro methods, such as lipid peroxidation, 1,1–diphenyl–2–picrylhydrazyl (DPPH) and ferric reducing power assays. The extract significantly decreased DNA damage caused by hydroxyl radicals. Protein damage induced by hydroxyl radicals was also efficiently inhibited, which was confirmed by the presence of protein damage markers, such as protein carbonyl formation and by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS–PAGE). The present study shows that milk thistle seeds have good DPPH free radical scavenging activity and can prevent lipid peroxidation. Therefore, Silybum marianum can be used as potentially rich source of antioxidants and food preservatives. The results suggest that the seeds may have potential beneficial health effects providing opportunities to develop value-added products. PMID:28115903

  14. Assessment of the Antioxidant Activity of Silybum marianum Seed Extract and Its Protective Effect against DNA Oxidation, Protein Damage and Lipid Peroxidation.

    PubMed

    Serçe, Aynur; Toptancı, Bircan Çeken; Tanrıkut, Sevil Emen; Altaş, Sevcan; Kızıl, Göksel; Kızıl, Süleyman; Kızıl, Murat

    2016-12-01

    Antioxidant properties of ethanol extract of Silybum marianum (milk thistle) seeds was investigated. We have also investigated the protein damage activated by oxidative Fenton reaction and its prevention by Silybum marianum seed extract. Antioxidant potential of Silybum marianum seed ethanol extract was measured using different in vitro methods, such as lipid peroxidation, 1,1-diphenyl-2-picrylhydrazyl (DPPH) and ferric reducing power assays. The extract significantly decreased DNA damage caused by hydroxyl radicals. Protein damage induced by hydroxyl radicals was also efficiently inhibited, which was confirmed by the presence of protein damage markers, such as protein carbonyl formation and by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The present study shows that milk thistle seeds have good DPPH free radical scavenging activity and can prevent lipid peroxidation. Therefore, Silybum marianum can be used as potentially rich source of antioxidants and food preservatives. The results suggest that the seeds may have potential beneficial health effects providing opportunities to develop value-added products.

  15. The Effect of Fatty Acids to Protect Forward Osmosis Membranes from Damage

    NASA Technical Reports Server (NTRS)

    Romero Mangado, Jaione; Parodi, Jurek; Stefanson, Ofir; Lathrop, Cooper; Lewis, Madeleine; Ferrara, Alessandro; Tatum, Simone; Flynn, Michael

    2017-01-01

    NASA has conducted research and development on forward osmosis (FO) membranes for wastewater reclamation in space since 1993. The lessons learned during operation of the International Space Station and FO based technologies on the ground taught us that reliability is a key limitation. Membranes are susceptible to organic fouling, oxidation and calcium scaling, and these factors tend to damage the membrane reducing their operating life and performance. The development of a Synthetic Biological Membrane (SBM), a membrane that mimics naturally occurring biological processes, will mitigate membrane damage and improve reliability. The SBM is a lipid-based membrane with a protective fatty acid layer configured for use in a FO water purification system. In this configuration, the protective layer on the surface of the lipid membrane is composed of fatty acids (FA). The FA interact with the chemicals found in the wastewater feed, and protect the membrane from damage. In this study, we conducted preliminary experiments to determine the feasibility of using fatty acids to alleviate damage from calcium scaling, oxidation and organic fouling.

  16. Effects of fosinopril and losartan on renal Klotho expression and oxidative stress in spontaneously hypertensive rats.

    PubMed

    Tang, Rong; Zhou, Qiaoling; Liu, Zhichun; Xiao, Zhou; Pouranan, Veeraragoo

    2011-01-01

    To explore effects of fosinopril and losartan on renal Klotho expression and oxidative stress in spontaneously hypertensive rats (SHR) and the mechanisms underlying the protection against renal damage. Fifteen male SHRs (22 weeks old) were randomly divided into 3 groups (n=5 in each group): a SHR group, a fosinopril group [10 mg/(kg.d)], and a losartan group [50 mg/(kg.d)]. Age-matched Wistar-Kyoto (WKY) rats were chosen for a control group. Eight weeks later, tail arterial pressure, 24 hours urinary protein (Upro),urinary N-acetyl-β-D-glucosaminidase (NAGase) were measured. Renal pathological changes were examined under light microscopy by HE staining. The renal mRNA and protein expression of Klotho were determined by RT-PCR, immunohistochemical staining or Western blot. The levels of total antioxidant capacity (TAOC), malondialdehyde (MDA), Cu/Zn superoxide dismutase (Cu/Zn-SOD), Mn superoxide dismutase (Mn-SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) were determined. The typical pathological characteristics of hypertensive renal damage were observed in the kidney of the SHR group.Compared with the SHR group, the systolic pressure, Upro, and urinary NAGase, the content of MDA and renal pathological damage was reduced while the renal Klotho expression and activities of TAOC, Cu/Zn-SOD, CAT, and GSH-Px were increased (P<0.05 or P<0.01) in the fosinopril or losartan group. There was no significant difference in renal Mn-SOD level among the 4 groups (P>0.05). Fosinopril and losartan can exert protection against hypertensive renal damage through upregulating Klotho expression as well as reducing oxidative stress.

  17. In vitro antioxidant properties, DNA damage protective activity, and xanthine oxidase inhibitory effect of cajaninstilbene acid, a stilbene compound derived from pigeon pea [Cajanus cajan (L.) Millsp.] leaves.

    PubMed

    Wu, Nan; Kong, Yu; Fu, Yujie; Zu, Yuangang; Yang, Zhiwei; Yang, Mei; Peng, Xiao; Efferth, Thomas

    2011-01-12

    The antioxidant properties, DNA damage protective activities, and xanthine oxidase (XOD) inhibitory effect of cajaninstilbene acid (CSA) derived from pigeon pea leaves were studied in the present work. Compared with resveratrol, CSA showed stronger antioxidant properties, DNA damage protective activity, and XOD inhibition activity. The IC(50) values of CSA for superoxide radical scavenging, hydroxyl radical scavenging, nitric oxide scavenging, reducing power, lipid peroxidation, and XOD inhibition were 19.03, 6.36, 39.65, 20.41, 20.58, and 3.62 μM, respectively. CSA possessed good protective activity from oxidative DNA damage. Furthermore, molecular docking indicated that CSA was more potent than resveratrol or allopurinol to interact with the active site of XOD (calculated free binding energy: -229.71 kcal mol(-1)). On the basis of the results, we conclude that CSA represents a valuable natural antioxidant source and may potentially be applicable in health food industry.

  18. High activity antioxidant enzymes protect flying-fox haemoglobin against damage: an evolutionary adaptation for flight?

    PubMed

    Reinke, N B; O'Brien, G M

    2006-11-01

    Flying-foxes are better able to defend haemoglobin against autoxidation than non-volant mammals such as sheep. When challenged with the common physiological oxidant, hydrogen peroxide, haemolysates of flying-fox red blood cells (RBC) were far less susceptible to methaemoglobin formation than sheep. Challenge with 1-acetyl-2-phenylhydrazine (APH) caused only half as much methaemoglobin formation in flying-fox as in ovine haemolysates. When intact cells were challenged with phenazine methosulfate (PMS), flying-fox RBC partially reversed the oxidant damage, and reduced methaemoglobin from 40 to 20% over 2 h incubation, while ovine methaemoglobin remained at 40%. This reflected flying-fox cells' capacity to replenish GSH fast enough that it did not deplete beyond 50%, while ovine RBC GSH was depleted to around 20%. The greater capacity of flying-foxes to defend haemoglobin against oxidant damage may be explained in part by antioxidant enzymes catalase, superoxide dismutase and cytochrome-b ( 5 ) reductase having two- to four-fold higher activity than in sheep (P < 0.001). Further, their capacity to limit GSH depletion to 50% and reduce methaemoglobin (in the presence of glucose), despite ongoing exposure to PMS may result from having ten-fold higher activity of G6PD and 6PGD than sheep (P < 0.001), indicating the presence of a very efficient pentose phosphate pathway in flying-foxes.

  19. Genotoxic effect of 6-gingerol on human hepatoma G2 cells.

    PubMed

    Yang, Guang; Zhong, Laifu; Jiang, Liping; Geng, Chengyan; Cao, Jun; Sun, Xiance; Ma, Yufang

    2010-04-15

    6-gingerol, a major component of ginger, has antioxidant, anti-apoptotic, and anti-inflammatory activities. However, some dietary phytochemicals possess pro-oxidant effects as well, and the risk of adverse effects is increased by raising the use of doses. The aim of this study was to assess the genotoxic effects of 6-gingerol and to clarify the mechanisms, using human hepatoma G2 (HepG2) cells. Exposure of the cells to 6-gingerol caused significant increase of DNA migration in comet assay, increase of micronuclei frequencies at high concentrations at 20-80 and 20-40 microM, respectively. These results indicate that 6-gingerol caused DNA strand breaks and chromosome damage. To further elucidate the underlying mechanisms, we tested lysosomal membrane stability, mitochondrial membrane potential, the intracellular generation of reactive oxygen species (ROS) and reduced glutathione (GSH). In addition, the level of oxidative DNA damage was evaluated by immunocytochemical analysis on 8-hydroxydeoxyguanosine (8-OHdG). Results showed that lysosomal membrane stability was reduced after treatment by 6-gingerol (20-80 microM) for 40 min, mitochondrial membrane potential decreased after treatment for 50 min, GSH and ROS levels were significantly increased after treatment for 60 min. These suggest 6-gingerol induces genotoxicity probably by oxidative stress; lysosomal and mitochondrial damage were observed in 6-gingerol-induced toxicity. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  20. MTH1 deficiency selectively increases non-cytotoxic oxidative DNA damage in lung cancer cells: more bad news than good?

    PubMed

    Abbas, Hussein H K; Alhamoudi, Kheloud M H; Evans, Mark D; Jones, George D D; Foster, Steven S

    2018-04-16

    Targeted therapies are based on exploiting cancer-cell-specific genetic features or phenotypic traits to selectively kill cancer cells while leaving normal cells unaffected. Oxidative stress is a cancer hallmark phenotype. Given that free nucleotide pools are particularly vulnerable to oxidation, the nucleotide pool sanitising enzyme, MTH1, is potentially conditionally essential in cancer cells. However, findings from previous MTH1 studies have been contradictory, meaning the relevance of MTH1 in cancer is still to be determined. Here we ascertained the role of MTH1 specifically in lung cancer cell maintenance, and the potential of MTH1 inhibition as a targeted therapy strategy to improve lung cancer treatments. Using siRNA-mediated knockdown or small-molecule inhibition, we tested the genotoxic and cytotoxic effects of MTH1 deficiency on H23 (p53-mutated), H522 (p53-mutated) and A549 (wildtype p53) non-small cell lung cancer cell lines relative to normal MRC-5 lung fibroblasts. We also assessed if MTH1 inhibition augments current therapies. MTH1 knockdown increased levels of oxidatively damaged DNA and DNA damage signaling alterations in all lung cancer cell lines but not normal fibroblasts, despite no detectable differences in reactive oxygen species levels between any cell lines. Furthermore, MTH1 knockdown reduced H23 cell proliferation. However, unexpectedly, it did not induce apoptosis in any cell line or enhance the effects of gemcitabine, cisplatin or radiation in combination treatments. Contrastingly, TH287 and TH588 MTH1 inhibitors induced apoptosis in H23 and H522 cells, but only increased oxidative DNA damage levels in H23, indicating that they kill cells independently of DNA oxidation and seemingly via MTH1-distinct mechanisms. MTH1 has a NSCLC-specific p53-independent role for suppressing DNA oxidation and genomic instability, though surprisingly the basis of this may not be reactive-oxygen-species-associated oxidative stress. Despite this, overall our cell viability data indicates that targeting MTH1 will likely not be an across-the-board effective NSCLC therapeutic strategy; rather it induces non-cytotoxic DNA damage that could promote cancer heterogeneity and evolution.

  1. Microbial Oxidation of Fe2+ and Pyrite Exposed to Flux of Micromolar H2O2 in Acidic Media

    PubMed Central

    Ma, Yingqun; Lin, Chuxia

    2013-01-01

    At an initial pH of 2, while abiotic oxidation of aqueous Fe2+ was enhanced by a flux of H2O2 at micromolar concentrations, bio-oxidation of aqueous Fe2+ could be impeded due to oxidative stress/damage in Acidithiobacillus ferrooxidans caused by Fenton reaction-derived hydroxyl radical, particularly when the molar ratio of Fe2+ to H2O2 was low. When pyrite cubes were intermittently exposed to fluxes of micromolar H2O2, the reduced Fe2+-Fe3+ conversion rate in the solution (due to reduced microbial activity) weakened the Fe3+-catalyzed oxidation of cubic pyrite and added to relative importance of H2O2-driven oxidation in the corrosion of mineral surfaces for the treatments with high H2O2 doses. This had effects on reducing the build-up of a passivating coating layer on the mineral surfaces. Cell attachment to the mineral surfaces was only observed at the later stage of the experiment after the solutions became less favorable for the growth of planktonic bacteria. PMID:23760258

  2. Microbial Oxidation of Fe2+ and Pyrite Exposed to Flux of Micromolar H2O2 in Acidic Media

    NASA Astrophysics Data System (ADS)

    Ma, Yingqun; Lin, Chuxia

    2013-06-01

    At an initial pH of 2, while abiotic oxidation of aqueous Fe2+ was enhanced by a flux of H2O2 at micromolar concentrations, bio-oxidation of aqueous Fe2+ could be impeded due to oxidative stress/damage in Acidithiobacillus ferrooxidans caused by Fenton reaction-derived hydroxyl radical, particularly when the molar ratio of Fe2+ to H2O2 was low. When pyrite cubes were intermittently exposed to fluxes of micromolar H2O2, the reduced Fe2+-Fe3+ conversion rate in the solution (due to reduced microbial activity) weakened the Fe3+-catalyzed oxidation of cubic pyrite and added to relative importance of H2O2-driven oxidation in the corrosion of mineral surfaces for the treatments with high H2O2 doses. This had effects on reducing the build-up of a passivating coating layer on the mineral surfaces. Cell attachment to the mineral surfaces was only observed at the later stage of the experiment after the solutions became less favorable for the growth of planktonic bacteria.

  3. Microbial oxidation of Fe²⁺ and pyrite exposed to flux of micromolar H₂O₂ in acidic media.

    PubMed

    Ma, Yingqun; Lin, Chuxia

    2013-01-01

    At an initial pH of 2, while abiotic oxidation of aqueous Fe(2+) was enhanced by a flux of H2O2 at micromolar concentrations, bio-oxidation of aqueous Fe(2+) could be impeded due to oxidative stress/damage in Acidithiobacillus ferrooxidans caused by Fenton reaction-derived hydroxyl radical, particularly when the molar ratio of Fe(2+) to H2O2 was low. When pyrite cubes were intermittently exposed to fluxes of micromolar H2O2, the reduced Fe(2+)-Fe(3+) conversion rate in the solution (due to reduced microbial activity) weakened the Fe(3+)-catalyzed oxidation of cubic pyrite and added to relative importance of H2O2-driven oxidation in the corrosion of mineral surfaces for the treatments with high H2O2 doses. This had effects on reducing the build-up of a passivating coating layer on the mineral surfaces. Cell attachment to the mineral surfaces was only observed at the later stage of the experiment after the solutions became less favorable for the growth of planktonic bacteria.

  4. Could a vegetarian diet reduce exercise-induced oxidative stress? A review of the literature.

    PubMed

    Trapp, Denise; Knez, Wade; Sinclair, Wade

    2010-10-01

    Oxidative stress is a natural physiological process that describes an imbalance between free radical production and the ability of the antioxidant defence system of the body to neutralize free radicals. Free radicals can be beneficial as they may promote wound healing and contribute to a healthy immune response. However, free radicals can have a detrimental impact when they interfere with the regulation of apoptosis and thus play a role in the promotion of some cancers and conditions such as cardiovascular disease. Antioxidants are molecules that reduce the damage associated with oxidative stress by counteracting free radicals. Regular exercise is a vital component of a healthy lifestyle, although it can increase oxidative stress. As a typical vegetarian diet comprises a wide range of antioxidant-rich foods, it is plausible that the consumption of these foods will result in an enhanced antioxidant system capable of reducing exercise-induced oxidative stress. In addition, a relationship between a vegetarian diet and lower risks of cardiovascular disease and some cancers has been established. This review explores the current available evidence linking exercise, vegetarians, antioxidants, and oxidative stress.

  5. Ultraviolet Radiation-Induced Skin Aging: The Role of DNA Damage and Oxidative Stress in Epidermal Stem Cell Damage Mediated Skin Aging

    PubMed Central

    Panich, Uraiwan; Sittithumcharee, Gunya; Rathviboon, Natwarath

    2016-01-01

    Skin is the largest human organ. Skin continually reconstructs itself to ensure its viability, integrity, and ability to provide protection for the body. Some areas of skin are continuously exposed to a variety of environmental stressors that can inflict direct and indirect damage to skin cell DNA. Skin homeostasis is maintained by mesenchymal stem cells in inner layer dermis and epidermal stem cells (ESCs) in the outer layer epidermis. Reduction of skin stem cell number and function has been linked to impaired skin homeostasis (e.g., skin premature aging and skin cancers). Skin stem cells, with self-renewal capability and multipotency, are frequently affected by environment. Ultraviolet radiation (UVR), a major cause of stem cell DNA damage, can contribute to depletion of stem cells (ESCs and mesenchymal stem cells) and damage of stem cell niche, eventually leading to photoinduced skin aging. In this review, we discuss the role of UV-induced DNA damage and oxidative stress in the skin stem cell aging in order to gain insights into the pathogenesis and develop a way to reduce photoaging of skin cells. PMID:27148370

  6. A new therapeutic effect of simvastatin revealed by functional improvement in muscular dystrophy.

    PubMed

    Whitehead, Nicholas P; Kim, Min Jeong; Bible, Kenneth L; Adams, Marvin E; Froehner, Stanley C

    2015-10-13

    Duchenne muscular dystrophy (DMD) is a lethal, degenerative muscle disease with no effective treatment. DMD muscle pathogenesis is characterized by chronic inflammation, oxidative stress, and fibrosis. Statins, cholesterol-lowering drugs, inhibit these deleterious processes in ischemic diseases affecting skeletal muscle, and therefore have potential to improve DMD. However, statins have not been considered for DMD, or other muscular dystrophies, principally because skeletal-muscle-related symptoms are rare, but widely publicized, side effects of these drugs. Here we show positive effects of statins in dystrophic skeletal muscle. Simvastatin dramatically reduced damage and enhanced muscle function in dystrophic (mdx) mice. Long-term simvastatin treatment vastly improved overall muscle health in mdx mice, reducing plasma creatine kinase activity, an established measure of muscle damage, to near-normal levels. This reduction was accompanied by reduced inflammation, more oxidative muscle fibers, and improved strength of the weak diaphragm muscle. Shorter-term treatment protected against muscle fatigue and increased mdx hindlimb muscle force by 40%, a value comparable to current dystrophin gene-based therapies. Increased force correlated with reduced NADPH Oxidase 2 protein expression, the major source of oxidative stress in dystrophic muscle. Finally, in old mdx mice with severe muscle degeneration, simvastatin enhanced diaphragm force and halved fibrosis, a major cause of functional decline in DMD. These improvements were accompanied by autophagy activation, a recent therapeutic target for DMD, and less oxidative stress. Together, our findings highlight that simvastatin substantially improves the overall health and function of dystrophic skeletal muscles and may provide an unexpected, novel therapy for DMD and related neuromuscular diseases.

  7. A new therapeutic effect of simvastatin revealed by functional improvement in muscular dystrophy

    PubMed Central

    Whitehead, Nicholas P.; Kim, Min Jeong; Bible, Kenneth L.; Adams, Marvin E.; Froehner, Stanley C.

    2015-01-01

    Duchenne muscular dystrophy (DMD) is a lethal, degenerative muscle disease with no effective treatment. DMD muscle pathogenesis is characterized by chronic inflammation, oxidative stress, and fibrosis. Statins, cholesterol-lowering drugs, inhibit these deleterious processes in ischemic diseases affecting skeletal muscle, and therefore have potential to improve DMD. However, statins have not been considered for DMD, or other muscular dystrophies, principally because skeletal-muscle-related symptoms are rare, but widely publicized, side effects of these drugs. Here we show positive effects of statins in dystrophic skeletal muscle. Simvastatin dramatically reduced damage and enhanced muscle function in dystrophic (mdx) mice. Long-term simvastatin treatment vastly improved overall muscle health in mdx mice, reducing plasma creatine kinase activity, an established measure of muscle damage, to near-normal levels. This reduction was accompanied by reduced inflammation, more oxidative muscle fibers, and improved strength of the weak diaphragm muscle. Shorter-term treatment protected against muscle fatigue and increased mdx hindlimb muscle force by 40%, a value comparable to current dystrophin gene-based therapies. Increased force correlated with reduced NADPH Oxidase 2 protein expression, the major source of oxidative stress in dystrophic muscle. Finally, in old mdx mice with severe muscle degeneration, simvastatin enhanced diaphragm force and halved fibrosis, a major cause of functional decline in DMD. These improvements were accompanied by autophagy activation, a recent therapeutic target for DMD, and less oxidative stress. Together, our findings highlight that simvastatin substantially improves the overall health and function of dystrophic skeletal muscles and may provide an unexpected, novel therapy for DMD and related neuromuscular diseases. PMID:26417069

  8. Protective effect of mitochondrial-targeted antioxidant MitoQ against iron ion 56Fe radiation induced brain injury in mice.

    PubMed

    Gan, Lu; Wang, Zhenhua; Si, Jing; Zhou, Rong; Sun, Chao; Liu, Yang; Ye, Yancheng; Zhang, Yanshan; Liu, Zhiyuan; Zhang, Hong

    2018-02-15

    Exposure to iron ion 56 Fe radiation (IR) during space missions poses a significant risk to the central nervous system and radiation exposure is intimately linked to the production of reactive oxygen species (ROS). MitoQ is a mitochondria-targeted antioxidant that has been shown to decrease oxidative damage and lower mitochondrial ROS in a number of animal models. Therefore, the present study aimed to investigate role of the mitochondrial targeted antioxidant MitoQ against 56 Fe particle irradiation-induced oxidative damage and mitochondria dysfunction in the mouse brains. Increased ROS levels were observed in mouse brains after IR compared with the control group. Enhanced ROS production leads to disruption of cellular antioxidant defense systems, mitochondrial respiration dysfunction, altered mitochondria dynamics and increased release of cytochrome c (cyto c) from mitochondria into cytosol resulting in apoptotic cell death. MitoQ reduced IR-induced oxidative stress (decreased ROS production and increased SOD, CAT activities) with decreased lipid peroxidation as well as reduced protein and DNA oxidation. MitoQ also protected mitochondrial respiration after IR. In addition, MitoQ increased the expression of mitofusin2 (Mfn2) and optic atrophy gene1 (OPA1), and decreased the expression of dynamic-like protein (Drp1). MitoQ also suppressed mitochondrial DNA damage, cyto c release, and caspase-3 activity in IR-treated mice compared to the control group. These results demonstrate that MitoQ may protect against IR-induced brain injury. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. MutY-Homolog (MYH) inhibition reduces pancreatic cancer cell growth and increases chemosensitivity

    PubMed Central

    Sharbeen, George; Youkhana, Janet; Mawson, Amanda; McCarroll, Joshua; Nunez, Andrea; Biankin, Andrew; Johns, Amber; Goldstein, David; Phillips, Phoebe

    2017-01-01

    Patients with pancreatic ductal adenocarcinoma (PC) have a poor prognosis due to metastases and chemoresistance. PC is characterized by extensive fibrosis, which creates a hypoxic microenvironment, and leads to increased chemoresistance and intracellular oxidative stress. Thus, proteins that protect against oxidative stress are potential therapeutic targets for PC. A key protein that maintains genomic integrity against oxidative damage is MutY-Homolog (MYH). No prior studies have investigated the function of MYH in PC cells. Using siRNA, we showed that knockdown of MYH in PC cells 1) reduced PC cell proliferation and increased apoptosis; 2) further decreased PC cell growth in the presence of oxidative stress and chemotherapy agents (gemcitabine, paclitaxel and vincristine); 3) reduced PC cell metastatic potential; and 4) decreased PC tumor growth in a subcutaneous mouse model in vivo. The results from this study suggest MYH may be a novel therapeutic target for PC that could potentially improve patient outcome by reducing PC cell survival, increasing the efficacy of existing drugs and reducing metastatic spread. PMID:27999205

  10. Changes in oxidative stress parameters in relation to age, growth and reproduction in the short-lived catarina scallop Argopecten ventricosus reared in its natural environment.

    PubMed

    Guerra, C; Zenteno-Savín, T; Maeda-Martínez, A N; Philipp, E E R; Abele, D

    2012-08-01

    Increase in oxidative damage and decrease in cellular maintenance is often associated with aging, but, in marine ectotherms, both processes are also strongly influenced by somatic growth, maturation and reproduction. In this study, we used a single cohort of the short-lived catarina scallop Argopecten ventricosus, to investigate the effects of somatic growth, reproduction and aging on oxidative damage parameters (protein carbonyls, TBARS and lipofuscin) and cellular maintenance mechanisms (antioxidant activity and apoptosis) in scallops, caged in their natural environment. The concentrations of protein carbonyls and TBARS increased steeply during the early period of fast growth and during reproduction in one-year-old scallops. However, oxidative damage was transient, and apoptotic cell death played a pivotal role in eliminating damage in gill, mantle and muscle tissues of young scallops. Animals were able to reproduce again in the second year, but the reduced intensity of apoptosis impaired subsequent removal of damaged cells. In late survivors low antioxidant capacity and apoptotic activity together with a fast accumulation of the age pigment lipofuscin was observed. Rates of oxygen consumption and oxidative stress markers were strongly dependent on somatic growth and reproductive state but not on temperature. Compared to longer-lived bivalves, A. ventricosus seems more susceptible to oxidative stress with higher tissue-specific protein carbonyl levels and fast accumulation of lipofuscin in animals surviving the second spawning. Superoxide dismutase activity and apoptotic cell death intensity were however higher in this short-lived scallop than in longer-lived bivalves. The life strategy of this short-lived and intensely predated scallop supports rapid somatic growth and fitness as well as early maturation at young age at the cost of fast cellular degradation in second year scallops. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Effect of Thai banana (Musa AA group) in reducing accumulation of oxidation end products in UVB-irradiated mouse skin.

    PubMed

    Leerach, Nontaphat; Yakaew, Swanya; Phimnuan, Preeyawass; Soimee, Wichuda; Nakyai, Wongnapa; Luangbudnark, Witoo; Viyoch, Jarupa

    2017-03-01

    Chronic UVB exposure causes skin disorders and cancer through DNA strand breaks and oxidation of numerous functional groups of proteins and lipids in the skin. In this study, we investigated the effects of Thai banana (Musa AA group, "Khai," and Musa ABB group, "Namwa") on the prevention of UVB-induced skin damage when fed to male ICR mice. Mice were orally fed banana (Khai or Namwa) fruit pulps at dose of 1mg/g body weight/day for 12weeks. The shaved backs of the mice were irradiated with UVB for 12weeks. The intensity dose of UVB-exposure was increased from 54mJ/cm 2 /exposure at week 1 to 126mJ/cm 2 /exposure at week 12. A significant increase in skin thickness, lipid peroxidation, protein oxidation end products, and expression of MMP-1 was observed in UVB-irradiated mouse skin. A reduction in the accumulation of oxidation end products was found in the skin of UVB-irradiated mice receiving Khai. This occurred in conjunction with a reduction in MMP-1 expression, inhibition of epidermal thickening, and induction of γ-GCS expression. The dietary intake of Khai prevented skin damage from chronic UVB exposure by increased γ-GCS expression and reduced oxidation end products included carbonyls, malondialdehyde and 4-hydroxynonenal. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Trichosanthes tricuspidata modulates oxidative toxicity in brain hippocampus against pilocarpine induced status epilepticus in mice.

    PubMed

    Smilin Bell Aseervatham, G; Sivasudha, Thilagar; Suganya, Mohan; Rameshkumar, Angappan; Jeyadevi, Ramachandran

    2013-08-01

    Epilepsy prevails to be a neurological disorder in anticipation of safer drugs with enhanced anticonvulsant efficacy as presently available drugs fails to offer adequate control of epileptic seizures in about one-third of patients. The objective of this study was to evaluate the effect of Trichosanthes tricuspidata methanolic extract (TTME) against epilepsy mediated oxidative stress in pilocarpine induced mice. Intraperitonial administration of pilocarpine (85 mg/kg) induced seizure in mice was assessed by behavior observations, which is significantly (p < 0.05) reduced by TTME (100 and 200 mg/kg; i.p) in a dose dependant manner, similar to diazepam. Seizure was accompanied by significant increase in lipid peroxidation and the hippocampal nitrite content in pilocarpine group when compared with control. Moreover, the antioxidant enzymes superoxide dismutase, catalase and glutathione levels were decreased in pilocarpine administered groups. TTME administration attenuated oxidative damage as evident by decreased lipid oxidative damage and nitrite-nitrate content and restored the level of enzymatic antioxidant defenses in hippocampus. Involvement of free radicals during epilepsy is further confirmed by histopathological analysis which showed the loss of neuronal cells in hippocampus CA1 and CA3 pyramidal region. Our findings strongly support the hypothesis that TTME has anticonvulsant activity accompanied with the strong antioxidant potential plays a crucial role in reducing the oxidative stress produced by seizure.

  13. The effects of S-nitrosoglutathione on intestinal ischemia reperfusion injury and acute lung injury in rats: Roles of oxidative stress and NF-κB.

    PubMed

    Turan, Inci; Sayan Ozacmak, Hale; Ozacmak, V Haktan; Barut, Figen; Ozacmak, I Diler

    2018-06-01

    Intestinal ischemia and reperfusion (I/R) induces oxidative stress, inflammatory response, and acute lung injury. S-nitrosoglutathione (GSNO), a nitric oxide donor, has been documented to have protective effects on experimental ischemia models. The aim of this study was to examine the effect of GSNO on I/R-induced intestine and lung damage and detect the potential mechanisms emphasizing the protective role of GSNO. Intestinal I/R was induced by occluding the superior mesenteric artery for 30 min followed by reperfusion for 180 min. GSNO was administered intravenously before reperfusion period (0.25 mg/kg). The levels of lipid peroxidation, reduced glutathione, and myeloperoxidase (MPO), histopathological evaluation and immunohistochemical expressions of both nuclear factor KappaB (NF-κB) and inducible nitric oxide (iNOS) in intestine and lung tissues were assessed. Histolopathologic evaluation demonstrated that intestinal I/R induced severe damages in the intestine and the lung tissues. Histopathological scores decreased with GSNO treatment. GSNO treatment reduced lipid peroxidation and MPO levels and inhibited expression of NF-κB and iNOS in the intestine. Our results suggest that GSNO treatment may ameliorate the intestinal and lung injury in rats, at least in part, by inhibiting inflammatory response and oxidative stress. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Resveratrol protects against arsenic trioxide-induced oxidative damage through maintenance of glutathione homeostasis and inhibition of apoptotic progression

    PubMed Central

    Chen, Chengzhi; Jiang, Xuejun; Lai, Yanhao; Liu, Yuan; Zhang, Zunzhen

    2014-01-01

    Arsenic trioxide (As2O3) is commonly used to treat acute promyelocytic leukemia and solid tumors. However, the clinical application of the agent is limited by its cyto- and genotoxic effects on normal cells. Thus, relief of As2O3 toxicity in normal cells is essentially necessary for improvement of As2O3-mediated chemotherapy. In this study, we have identified a series of protective effects of resveratrol against As2O3-induced oxidative damage in normal human bronchial epithelial (HBE) cells. We showed that treatment of HBE cells with resveratrol significantly reduced cellular levels of DNA damage, chromosomal breakage and apoptosis induced by As2O3. The effect of resveratrol against DNA damage was associated with a decreased level of reactive oxygen species and lipid peroxidation in cells treated by As2O3, suggesting that resveratrol protects against As2O3 toxicity via a cellular anti-oxidative stress pathway. Further analysis of the roles of resveratrol demonstrated that it modulated biosynthesis, recycling and consumption of glutathione (GSH), thereby promoting GSH homeostasis in HBE cells treated by As2O3. This was further supported by results showing that resveratrol prevented an increase in the activities and levels of caspases, Fas, Fas-L and cytochrome c proteins induced by As2O3. Our study indicates that resveratrol relieves As2O3-induced oxidative damage in normal human lung cells via maintenance of GSH homeostasis and suppression of apoptosis. PMID:25339131

  15. Decreased photosynthetic rate under high temperature in wheat is due to lipid desaturation, oxidation, acylation, and damage of organelles.

    PubMed

    Djanaguiraman, M; Boyle, D L; Welti, R; Jagadish, S V K; Prasad, P V V

    2018-04-05

    High temperature is a major abiotic stress that limits wheat (Triticum aestivum L.) productivity. Variation in levels of a wide range of lipids, including stress-related molecular species, oxidative damage, cellular organization and ultrastructural changes were analyzed to provide an integrated view of the factors that underlie decreased photosynthetic rate under high temperature stress. Wheat plants of cultivar Chinese Spring were grown at optimum temperatures (25/15 °C, maximum/minimum) until the onset of the booting stage. Thereafter, plants were exposed to high temperature (35/25 °C) for 16 d. Compared with optimum temperature, a lower photosynthetic rate was observed at high temperature which is an interplay between thylakoid membrane damage, thylakoid membrane lipid composition, oxidative damage of cell organelle, and stomatal and non-stomatal limitations. Triacylglycerol levels were higher under high temperature stress. Polar lipid fatty acyl unsaturation was lower at high temperature, while triacylglycerol unsaturation was the same at high temperature and optimum temperature. The changes in lipid species indicates increases in activities of desaturating, oxidizing, glycosylating and acylating enzymes under high temperature stress. Cumulative effect of high temperature stress led to generation of reactive oxygen species, cell organelle and membrane damage, and reduced antioxidant enzyme activity, and imbalance between reactive oxygen species and antioxidant defense system. Taken together with recent findings demonstrating that reactive oxygen species are formed from and are removed by thylakoid lipids, the data suggest that reactive oxygen species production, reactive oxygen species removal, and changes in lipid metabolism contribute to decreased photosynthetic rate under high temperature stress.

  16. The oxidative damage and disbalance of calcium homeostasis in brain of chicken induced by selenium deficiency.

    PubMed

    Xu, Shi-Wen; Yao, Hai-Dong; Zhang, Jian; Zhang, Zi-Wei; Wang, Jin-Tao; Zhang, Jiu-Li; Jiang, Zhi-Hui

    2013-02-01

    Dietary selenium (Se) deficiency can influence the function of the brain. Our objective was to investigate the effects of Se deficiency on oxidative damage and calcium (Ca) homeostasis in brain of chicken. In the present study, 1-day-old chickens were fed either a commercial diet (as control group) with 0.15 mg/kg Se or a Se-deficient diet (as L group) with 0.033 mg/kg Se for 75 days. Then, brain injury biomarkers were examined, including histological analysis, ultrastructure assay, and apoptosis assay. We also examined the effect of Se deficiency on the Se-containing antioxidative enzyme glutathione peroxidase (GSH-Px), the level of glutathione (GSH), and the Ca homeostasis in brain of chicken. The results showed that the levels of Se and GSH and activity of GSH-Px are seriously reduced by 33.8-96 % (P < 0.001), 24.51-27.84 % (P < 0.001), and 20.70-64.24 % (P < 0.01), respectively. In the present study, we also perform histological analysis and ultrastructure assay and find that Se deficiency caused disorganized histological structure, damage to the mitochondria, fusion of nuclear membrane and nucleus shrinkage, higher apoptosis rate (P < 0.001), and increase of Ca homeostasis (P < 0.05 or P < 0.01 or P < 0.001) in the brain of chicken. In conclusion, the results demonstrated that Se deficiency induced oxidative damage and disbalance of Ca homeostasis in the brain of chicken. Similar to mammals, chickens brain is also extremely susceptible to oxidative damage and selenium deficiency.

  17. Hepatoprotective and Antioxidant Activity of Dunaliella salina in Paracetamol-induced Acute Toxicity in Rats

    PubMed Central

    Madkour, Fedekar F.; Abdel-Daim, M. M.

    2013-01-01

    Paracetamol has a reasonable safety profile when taken in therapeutic doses. However, it could induce hepatotoxicity and even more severe fatal acute hepatic damage when taken in an overdose. The green alga, Dunaliella salina was investigated for hepatoprotective and antioxidant activity against paracetamol-induced liver damage in rats. Male albino Wistar rats overdosed with paracetamol showed liver damage and oxidative stress as indicated by significantly (P<0.05) increased serum levels of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, total and direct bilirubin, malondialdehyde, cholesterol and nitric oxide. At the same time, there were decreased activities of serum superoxide dismutase and total antioxidant capacity compared with the control group. Treatment with D. salina methanol extract at doses of 500 and 1000 mg/kg body weight or silymarin could significantly (P<0.05) decrease the liver damage marker enzymes, total and direct bilirubin, malondialdehyde, cholesterol and nitric oxide levels and increase the activities of superoxide dismutase and total antioxidant capacity in serum when compared with paracetamol intoxicated group. Liver histopathology also showed that D. salina reduced the centrilobular necrosis, congestion and inflammatory cell infiltration evoked by paracetamol overdose. These results suggest that D. salina exhibits a potent hepatoprotective effect on paracetamol-induced liver damage in rats, which may be due to both the increase of antioxidant enzymes activity and inhibition of lipid peroxidation. PMID:24591738

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Joon No; Dutta, Raghbendra Kumar; Kim, Seul-Gi

    Highlights: •A fasting–refeeding high fat diet (HDF) model mimics irregular eating habit. •A fasting–refeeding HFD induces liver ballooning injury. •A fasting–refeeding HDF process elicits hepatic triglyceride accumulation. •Fenofibrate, PPARα ligand, prevents liver damage induced by refeeding HFD. -- Abstract: Fenofibrate, a peroxisome proliferator-activated receptor α (PPARα) agonist, is an anti-hyperlipidemic agent that has been widely used in the treatment of dyslipidemia. In this study, we examined the effect of fenofibrate on liver damage caused by refeeding a high-fat diet (HFD) in mice after 24 h fasting. Here, we showed that refeeding HFD after fasting causes liver damage in mice determinedmore » by liver morphology and liver cell death. A detailed analysis revealed that hepatic lipid droplet formation is enhanced and triglyceride levels in liver are increased by refeeding HFD after starvation for 24 h. Also, NF-κB is activated and consequently induces the expression of TNF-α, IL1-β, COX-2, and NOS2. However, treating with fenofibrate attenuates the liver damage and triglyceride accumulation caused by the fasting–refeeding HFD process. Fenofibrate reduces the expression of NF-κB target genes but induces genes for peroxisomal fatty acid oxidation, peroxisome biogenesis and mitochondrial fatty acid oxidation. These results strongly suggest that the treatment of fenofibrate ameliorates the liver damage induced by fasting–refeeding HFD, possibly through the activation of fatty acid oxidation.« less

  19. Effects of Weather Conditions on Oxidative Stress, Oxidative Damage, and Antioxidant Capacity in a Wild-Living Mammal, the European Badger (Meles meles).

    PubMed

    Bilham, Kirstin; Newman, Chris; Buesching, Christina D; Noonan, Michael J; Boyd, Amy; Smith, Adrian L; Macdonald, David W

    Wild-living animals are subject to weather variability that may cause the generation of reactive oxygen species, resulting in oxidative stress and tissue damage, potentially driving demographic responses. Our 3-yr field study investigated the effects of seasonal weather conditions on biomarkers for oxidative stress, oxidative damage, and antioxidant defense in the European badger (Meles meles). We found age class effects: cubs were more susceptible to oxidative stress and oxidative damage than adults, especially very young cubs in the spring, when they also exhibited lower antioxidant biomarkers than adults. Although previous studies have found that intermediate spring and summer rainfall and warmer temperatures favor cub survival, counterintuitively these conditions were associated with more severe oxidative damage. Oxidative damage was high in cubs even when antioxidant biomarkers were high. In contrast, adult responses accorded with previous survival analyses. Wetter spring and summer conditions were associated with higher oxidative damage, but they were also associated with higher antioxidant biomarkers. Autumnal weather did not vary substantially from normative values, and thus effects were muted. Winter carryover effects were partially evident, with drier and milder conditions associated with greater oxidative damage in the following spring but also with higher antioxidant capacity. Plausibly, warmer conditions promoted more badger activity, with associated metabolic costs at a time of year when food supply is limited. Modeling biomarkers against projected climate change scenarios predicted greater future risks of oxidative damage, although not necessarily exceeding antioxidant capacity. This interdisciplinary approach demonstrates that individual adaptive physiological responses are associated with variation in natural environmental conditions.

  20. Virgin coconut oil supplementation attenuates acute chemotherapy hepatotoxicity induced by anticancer drug methotrexate via inhibition of oxidative stress in rats.

    PubMed

    Famurewa, Ademola C; Ufebe, Odomero G; Egedigwe, Chima A; Nwankwo, Onyebuchi E; Obaje, Godwin S

    2017-03-01

    The emerging health benefit of virgin coconut oil (VCO) has been associated with its potent natural antioxidants; however, the antioxidant and hepatoprotective effect of VCO against methotrexate-induced liver damage and oxidative stress remains unexplored. The study explored the antioxidant and hepatoprotective effects of VCO against oxidative stress and liver damage induced by anticancer drug methotrexate (MTX) in rats. Liver damage was induced in Wistar rats pretreated with dietary supplementation of VCO (5% and 15%) by intraperitoneal administration of MTX (20mg/kg bw) on day 10 only. After 12days of treatment, assays for serum liver biomarkers (aminotransferases), alkaline phosphatase, albumin and total protein as well as hepatic content of malondialdehyde, reduced glutathione and antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase) were carried out. Liver was used to examine histopathological changes. MTX administration induced significant increase in serum liver enzymes along with marked decrease in albumin and total protein compared to control group. Hepatic activities of antioxidant enzymes were significantly decreased, while malondialdehyde increased significantly. Treatment with VCO supplemented diet prior to MTX administration attenuated MTX-induced liver injury and oxidative stress evidenced by significant improvements in serum liver markers, hepatic antioxidant enzymes and malondialdehyde comparable to control group. Histopathological alterations were prevented and correlated well with the biochemical indices. The study suggests antioxidant and hepatoprotective effects of VCO supplementation against hepatotoxicity and oxidative damage via improving antioxidant defense system in rats. Our findings may have beneficial application in the management of hepatotoxicity associated with MTX cancer chemotherapy. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  1. Nitric oxide alleviates oxidative damage induced by enhanced ultraviolet-B radiation in cyanobacterium.

    PubMed

    Xue, Lingui; Li, Shiweng; Sheng, Hongmei; Feng, Huyuan; Xu, Shijian; An, Lizhe

    2007-10-01

    To study the role of nitric oxide (NO) on enhanced ultraviolet-B (UV-B) radiation (280-320 nm)-induced damage of Cyanobacterium, the growth, pigment content, and antioxidative activity of Spirulina platensis-794 cells were investigated under enhanced UV-B radiation and under different chemical treatments with or without UV-B radiation for 6 h. The changes in chlorophyll-a, malondialdehyde content, and biomass confirmed that 0.5 mM: sodium nitroprusside (SNP), a donor of nitric oxide (NO), could markedly alleviate the damage caused by enhanced UV-B. Specifically, the biomass and the chlorophyll-a content in S. platensis-794 cells decreased 40% and 42%, respectively under enhanced UV-B stress alone, but they only decreased 10% and 18% in the cells treated with UV-B irradiation and 0.5 mM: SNP. Further experiments suggested that NO treatment significantly increased the activities of superoxide dismutase (SOD) and catalase (CAT), and decreased the accumulation of O (2)(-) in enhanced UV-B-irradiated cells. SOD and CAT activity increased 0.95- and 6.73-fold, respectively. The accumulation of reduced glutathione (GSH) increased during treatment with 0.5 mM: SNP in normal S. platensis cells, but SNP treatment could inhibit the increase of GSH in enhanced UV-B-stressed S. platensis cells. Thus, these results suggest that NO can strongly alleviate oxidative damage caused by UV-B stress by increasing the activities of SOD, peroxidase, CAT, and the accumulation of GSH, and by eliminating O (2)(-) in S. platensis-794 cells. In addition, the difference of NO origin between plants and cyanobacteria are discussed.

  2. Reactive oxygen species are key mediators of the nitric oxide apoptotic pathway in anterior pituitary cells.

    PubMed

    Machiavelli, Leticia I; Poliandri, Ariel H; Quinteros, Fernanda A; Cabilla, Jimena P; Duvilanski, Beatriz H

    2007-03-01

    We previously showed that long-term exposure of anterior pituitary cells to nitric oxide (NO) induces apoptosis. The intracellular signals underlying this effect remained unclear. In this study, we searched for possible mechanisms involved in the early stages of the NO apoptotic cascade. Caspase 3 was activated by NO with no apparent disruption of mitochondrial membrane potential. NO caused a rapid increase of reactive oxygen species (ROS), and this increase seems to be dependent of mitochondrial electron transport chain. The antioxidant N-acetyl-cysteine avoided ROS increase, prevented the NO-induced caspase 3 activation, and reduced the NO apoptotic effect. Catalase was inactivated by NO, while glutathione peroxidase (GPx) activity and reduced glutathione (GSH) were not modified at first, but increased at later times of NO exposure. The increase of GSH level is important for the scavenging of the NO-induced ROS overproduction. Our results indicate that ROS have an essential role as a trigger of the NO apoptotic cascade in anterior pituitary cells. The permanent inhibition of catalase may strengthen the oxidative damage induced by NO. GPx activity and GSH level augment in response to the oxidative damage, though this increase seems not to be enough to rescue the cells from the NO effect.

  3. Effects of lipoic Acid on acrylamide induced testicular damage.

    PubMed

    Lebda, Mohamed; Gad, Shereen; Gaafar, Hossam

    2014-06-01

    Acrylamide is very toxic to various organs and associated with significant increase of oxidative stress and depletion of antioxidants. Alpha-lipoic acid enhances cellular antioxidant defense capacity, thereby protecting cells from oxidative stress. This study aimed to evaluate the protective role of alpha-lipoic acid on the oxidative damage induced by acrylamide in testicular and epididymal tissues. Forty adult male rats were divided into four groups (10 rats each). Control group; acrylamide treated group administered acrylamide 0.05% (w/v) in drinking water for 21 days; alpha-lipoic acid group received basal diet supplemented with 1% alpha-lipoic acid and forth group was exposed to acrylamide and treated with alpha-lipoic acid at the same doses and treatment regimen mentioned before. The administration of acrylamide resulted in significant elevation in testicular and epididymal malondialdehyde level (MDA) and significant reduction in the level of reduced glutathione (GSH) and the activities of glutathione-S-transferase (GST), glutathione peroxidase (GPX) and glutathione reductase (GR). Also, acrylamide significantly reduced serum total testosterone and progesterone but increased estradiol (E2) levels. Treatment with alpha-lipoic acid prior to acrylamide induced protective effects and attenuated these biochemical changes. Alpha-lipoic acid has been shown to possess antioxidant properties offering promising efficacy against oxidative stress induced by acrylamide administration.

  4. ROLE OF CENTRAL NERVOUS SYSTEM INSULIN RESISTANCE IN FETAL ALCOHOL SPECTRUM DISORDERS

    PubMed Central

    de la Monte, Suzanne M; Wands, Jack R

    2011-01-01

    Fetal alcohol spectrum disorder (FASD) is the most common preventable cause of mental retardation in the USA. Ethanol impairs neuronal survival and function by two major mechanisms: 1) it inhibits insulin signaling required for viability, metabolism, synapse formation, and acetylcholine production; and 2) it functions as a neurotoxicant, causing oxidative stress, DNA damage and mitochondrial dysfunction. Ethanol inhibition of insulin signaling is mediated at the insulin receptor (IR) level and caused by both impaired receptor binding and increased activation of phosphatases that reverse IR tyrosine kinase activity. As a result, insulin activation of PI3K-Akt, which mediates neuronal survival, motility, energy metabolism, and plasticity, is impaired. The neurotoxicant effects of ethanol promote DNA damage, which could contribute to mitochondrial dysfunction and oxidative stress. Therefore, chronic in utero ethanol exposure produces a dual state of CNS insulin resistance and oxidative stress, which we postulate plays a major role in ethanol neurobehavioral teratogenesis. We propose that many of the prominent adverse effects of chronic prenatal exposure to ethanol on CNS development and function may be prevented or reduced by treatment with peroxisome-proliferated activated receptor (PPAR) agonists which enhance insulin sensitivity by increasing expression and function of insulin-responsive genes, and reducing cellular oxidative stress. PMID:21063035

  5. Insight into the structure and mechanism of nickel-containing superoxide dismutase derived from peptide-based mimics.

    PubMed

    Shearer, Jason

    2014-08-19

    Nickel superoxide dismutase (NiSOD) is a nickel-containing metalloenzyme that catalyzes the disproportionation of superoxide through a ping-pong mechanism that relies on accessing reduced Ni(II) and oxidized Ni(III) oxidation states. NiSOD is the most recently discovered SOD. Unlike the other known SODs (MnSOD, FeSOD, and (CuZn)SOD), which utilize "typical" biological nitrogen and oxygen donors, NiSOD utilizes a rather unexpected ligand set. In the reduced Ni(II) oxidation state, NiSOD utilizes nitrogen ligands derived from the N-terminal amine and an amidate along with two cysteinates sulfur donors. These are unusual biological ligands, especially for an SOD: amine and amidate donors are underrepresented as biological ligands, whereas cysteinates are highly susceptible to oxidative damage. An axial histidine imidazole binds to nickel upon oxidation to Ni(III). This bond is long (2.3-2.6 Å) owing to a tight hydrogen-bonding network. All of the ligating residues to Ni(II) and Ni(III) are found within the first 6 residues from the NiSOD N-terminus. Thus, small nickel-containing metallopeptides derived from the first 6-12 residues of the NiSOD sequence can reproduce many of the properties of NiSOD itself. Using these nickel-containing metallopeptide-based NiSOD mimics, we have shown that the minimal sequence needed for nickel binding and reproduction of the structural, spectroscopic, and functional properties of NiSOD is H2N-HCXXPC. Insight into how NiSOD avoids oxidative damage has also been gained. Using small NiN2S2 complexes and metallopeptide-based mimics, it was shown that the unusual nitrogen donor atoms protect the cysteinates from oxidative damage (both one-electron oxidation and oxygen atom insertion reactions) by fine-tuning the electronic structure of the nickel center. Changing the nitrogen donor set to a bis-amidate or bis-amine nitrogen donor led to catalytically nonviable species owing to nickel-cysteinate bond oxidative damage. Only the amine/amidate nitrogen donor atoms within the NiSOD ligand set produce a catalytically viable species. These metallopeptide-based mimics have also hinted at the detailed mechanism of SOD catalysis by NiSOD. One such aspect is that the axial imidazole likely remains ligated to the Ni center under rapid catalytic conditions (i.e., high superoxide loads). This reduces the degree of structural rearrangement about the nickel center, leading to higher catalytic rates. Metallopeptide-based mimics have also shown that, although an axial ligand to Ni(III) is required for catalysis, the rates are highest when this is a weak interaction, suggesting a reason for the long axial His-Ni(III) bond found in NiSOD. These mimics have also suggested a surprising mechanistic insight: O2(-) reduction via a "H(•)" tunneling event from a R-S(H(+))-Ni(II) moiety to O2(-) is possible. The importance of this mechanism in NiSOD has not been verified.

  6. Oxidant damage during and after spaceflight

    NASA Technical Reports Server (NTRS)

    Stein, T. P.; Leskiw, M. J.

    2000-01-01

    The objectives of this study were to assess oxidant damage during and after spaceflight and to compare the results against bed rest with 6 degrees head-down tilt. We measured the urinary excretion of the F(2) isoprostane, 8-iso-prostaglandin (PG) F(2alpha), and 8-oxo-7,8-dihydro-2 deoxyguanosine (8-OH DG) before, during, and after long-duration spaceflight (4-9 mo) on the Russian space station MIR, short-duration spaceflight on the shuttle, and 17 days of bed rest. Sample collections on MIR were obtained between 88 and 186 days in orbit. 8-iso-PGF(2alpha) and 8-OH DG are markers for oxidative damage to membrane lipids and DNA, respectively. Data are mean +/- SE. On MIR, isoprostane levels were decreased inflight (96. 9 +/- 11.6 vs. 76.7 +/- 14.9 ng. kg(-1). day(-1), P < 0.05, n = 6) due to decreased dietary intake secondary to impaired thermoregulation. Isoprostane excretion was increased postflight (245.7 +/- 55.8 ng. kg(-1). day(-1), P < 0.01). 8-OH DG excretion was unchanged with spaceflight and increased postflight (269 +/- 84 vs 442 +/- 180 ng. kg(-1). day(-1), P < 0.05). On the shuttle, 8-OH DG excretion was unchanged in- and postflight, but 8-iso-PGF(2alpha) excretion was decreased inflight (15.6 +/- 4.3 vs 8.0 +/- 2.7 ng. kg(-1). day(-1), P < 0.05). No changes were found with bed rest, but 8-iso-PGF(2alpha) was increased during the recovery phase (48.9 +/- 23.0 vs 65.4 +/- 28.3 ng. kg(-1). day(-1), P < 0.05). The changes in isoprostane production were attributed to decreased production of oxygen radicals from the electron transport chain due to the reduced energy intake inflight. The postflight increases in the excretion of the products of oxidative damage were attributed to a combination of an increase in metabolic activity and the loss of some host antioxidant defenses inflight. We conclude that 1) oxidative damage was decreased inflight, and 2) oxidative damage was increased postflight.

  7. In vitro and in vivo models of colorectal cancer: antigenotoxic activity of berries.

    PubMed

    Brown, Emma M; Latimer, Cheryl; Allsopp, Philip; Ternan, Nigel G; McMullan, Geoffery; McDougall, Gordon J; Stewart, Derek; Crozier, Alan; Rowland, Ian; Gill, Chris I R

    2014-05-07

    The etiology of colorectal cancer (CRC), a common cause of cancer-related mortality globally, has strong associations with diet. There is considerable epidemiological evidence that fruits and vegetables are associated with reduced risk of CRC. This paper reviews the extensive evidence, both from in vitro studies and animal models, that components of berry fruits can modulate biomarkers of DNA damage and that these effects may be potentially chemoprotective, given the likely role that oxidative damage plays in mutation rate and cancer risk. Human intervention trials with berries are generally consistent in indicating a capacity to significantly decrease oxidative damage to DNA, but represent limited evidence for anticarcinogenicity, relying as they do on surrogate risk markers. To understand the effects of berry consumption on colorectal cancer risk, future studies will need to be well controlled, with defined berry extracts, using suitable and clinically relevant end points and considering the importance of the gut microbiota.

  8. Assessment of benzene induced oxidative impairment in rat isolated pancreatic islets and effect on insulin secretion.

    PubMed

    Bahadar, Haji; Maqbool, Faheem; Mostafalou, Sara; Baeeri, Maryam; Rahimifard, Mahban; Navaei-Nigjeh, Mona; Abdollahi, Mohammad

    2015-05-01

    Benzene (C6H6) is an organic compound used in petrochemicals and numerous other industries. It is abundantly released to our environment as a chemical pollutant causing widespread human exposure. This study mainly focused on benzene induced toxicity on rat pancreatic islets with respect to oxidative damage, insulin secretion and glucokinase (GK) activity. Benzene was dissolved in corn oil and administered orally at doses 200, 400 and 800mg/kg/day, for 4 weeks. In rats, benzene significantly raised the concentration of plasma insulin. Also the effect of benzene on the release of glucose-induced insulin was pronounced in isolated islets. Benzene caused oxidative DNA damage and lipid peroxidation, and also reduced the cell viability and total thiols groups, in the islets of exposed rats. In conclusion, the current study revealed that pancreatic glucose metabolism is susceptible to benzene toxicity and the resultant oxidative stress could lead to functional abnormalities in the pancreas. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Assessment of the toxic potential of engineered metal oxide nanomaterials using an acellular model: citrated rat blood plasma.

    PubMed

    Gormley, Patrick Thomas; Callaghan, Neal Ingraham; MacCormack, Tyson James; Dieni, Christopher Anthony

    2016-10-01

    Citrated Sprague-Dawley rat blood plasma was used as a biologically relevant exposure medium to assess the acellular toxic potential of two metal oxide engineered nanomaterials (ENMs), zinc oxide (nZnO), and cerium oxide (nCeO 2 ). Plasma was incubated at 37 °C for up to 48 h with ENM concentrations ranging between 0 and 200 mg/L. The degree of ENM-induced oxidation was assessed by assaying for reactive oxygen species (ROS) levels using dichlorofluorescein (DCF), pH, ferric reducing ability of plasma (FRAP), lipase activity, malondialdehyde (MDA), and protein carbonyls (PC). Whereas previous in vitro studies showed linear-positive correlations between ENM concentration and oxidative damage, our results suggested that low concentrations were generally pro-oxidant and higher concentrations appeared antioxidant or protective, as indicated by DCF fluorescence trends. nZnO and nCeO 2 also affected pH in a manner dependent on concentration and elemental composition; higher nZnO concentrations maintained a more alkaline pH, while nCeO 2 tended to decrease pH. No other biomarkers of oxidative damage (FRAP, MDA, PC, lipase activity) showed changes at any ENM concentration or time-point tested. Differential dissolution of the two ENMs was also observed, where as much as ∼31.3% of nZnO was instantaneously dissolved to Zn 2+  and only negligible nCeO 2 was degraded. The results suggest that the direct oxidative potential of nZnO and nCeO 2 in citrated rat blood plasma is low, and that a physiological or immune response is needed to generate appreciable damage biomarkers. The data also highlight the need for careful consideration when selecting a model for assessing ENM toxicity.

  10. Preservative effect of electrolyzed reduced water on pancreatic beta-cell mass in diabetic db/db mice.

    PubMed

    Kim, Mi-Ja; Jung, Kyung Hee; Uhm, Yoon Kyung; Leem, Kang-Hyun; Kim, Hye Kyung

    2007-02-01

    Oxidative stress is produced under diabetic conditions and involved in progression of pancreatic beta-cell dysfunction. Both an increase in reactive oxygen free radical species (ROS) and a decrease in the antioxidant defense mechanism lead to the increase in oxidative stress in diabetes. Electrolyzed reduced water (ERW) with ROS scavenging ability may have a potential effect on diabetic animals, a model for high oxidative stress. Therefore, the present study examined the possible anti-diabetic effect of ERW in genetically diabetic mouse strain C57BL/6J-db/db (db/db). ERW with ROS scavenging ability reduced the blood glucose concentration, increased blood insulin level, improved glucose tolerance and preserved beta-cell mass in db/db mice. The present data suggest that ERW may protects beta-cell damage and would be useful for antidiabetic agent.

  11. Pristanic acid provokes lipid, protein, and DNA oxidative damage and reduces the antioxidant defenses in cerebellum of young rats.

    PubMed

    Busanello, Estela Natacha Brandt; Lobato, Vannessa Gonçalves Araujo; Zanatta, Ângela; Borges, Clarissa Günther; Tonin, Anelise Miotti; Viegas, Carolina Maso; Manfredini, Vanusa; Ribeiro, César Augusto João; Vargas, Carmen Regla; de Souza, Diogo Onofre Gomes; Wajner, Moacir

    2014-12-01

    Zellweger syndrome (ZS) and some peroxisomal diseases are severe inherited disorders mainly characterized by neurological symptoms and cerebellum abnormalities, whose pathogenesis is poorly understood. Biochemically, these diseases are mainly characterized by accumulation of pristanic acid (Prist) and other fatty acids in the brain and other tissues. In this work, we evaluated the in vitro influence of Prist on redox homeostasis by measuring lipid, protein, and DNA damage, as well as the antioxidant defenses and the activities of aconitase and α-ketoglutarate dehydrogenase in cerebellum of 30-day-old rats. The effect of Prist on DNA damage was also evaluated in blood of these animals. Some parameters were also evaluated in cerebellum from neonatal rats and in cerebellum neuronal cultures. Prist significantly increased malondialdehyde (MDA) levels and carbonyl formation and reduced sulfhydryl content and glutathione (GSH) concentrations in cerebellum of young rats. It also caused DNA strand damage in cerebellum and induced a high micronuclei frequency in blood. On the other hand, this fatty acid significantly reduced α-ketoglutarate dehydrogenase and aconitase activities in rat cerebellum. We also verified that Prist-induced increase of MDA levels was totally prevented by melatonin and attenuated by α-tocopherol but not by the nitric oxide synthase inhibitor N(ω)-nitro-L-arginine methyl ester, indicating the involvement of reactive oxygen species in this effect. Cerebellum from neonate rats also showed marked alterations of redox homeostasis, including an increase of MDA levels and a decrease of sulfhydryl content and GSH concentrations elicited by Prist. Finally, Prist provoked an increase of dichlorofluorescein (DCFH) oxidation in cerebellum-cultivated neurons. Our present data indicate that Prist compromises redox homeostasis in rat cerebellum and blood and inhibits critical enzymes of the citric acid cycle that are susceptible to free radical attack. The present findings may contribute to clarify the pathogenesis of the cerebellar alterations observed in patients affected by ZS and some peroxisomal disorders in which Prist is accumulated.

  12. Menadione reduction by pharmacological doses of ascorbate induces an oxidative stress that kills breast cancer cells.

    PubMed

    Beck, Raphaël; Verrax, Julien; Dejeans, Nicolas; Taper, Henryk; Calderon, Pedro Buc

    2009-01-01

    Oxidative stress generated by ascorbate-driven menadione redox cycling kills MCF7 cells by a concerted mechanism including glycolysis inhibition, loss of calcium homeostasis, DNA damage and changes in mitogen activated protein kinases (MAPK) activities. Cell death is mediated by necrosis rather than apoptosis or macroautophagy. Neither 3-methyladenine nor Z-VAD affects cytotoxicity by ascorbate/menadione (Asc/Men). BAPTA-AM, by restoring cellular capacity to reduce MTT, underlines the role of calcium in the necrotic process. Oxidative stress-mediated cell death is shown by the opposite effects of N-acetylcysteine and 3-aminotriazole. Moreover, oxidative stress induces DNA damage (protein poly-ADP-ribosylation and gamma-H2AX phosphorylation) and inhibits glycolysis. Asc/Men deactivates extracellular signal-regulated kinase (ERK) while activating p38, suggesting an additional mechanism to kill MCF7 cells. Since ascorbate is taken up by cancer cells and, due to their antioxidant enzyme deficiency, oxidative stress should affect cancer cells to a greater extent than normal cells. This differential sensitivity may have clinical applications.

  13. Pistacia lentiscus fruit oil reduces oxidative stress in human skin explants caused by hydrogen peroxide.

    PubMed

    Ben Khedir, S; Moalla, D; Jardak, N; Mzid, M; Sahnoun, Z; Rebai, T

    2016-10-01

    We investigated the efficacy of Pistacia lentiscus fruit oil (PLFO) for protecting human skin from damage due to oxidative stress. PLFO contains natural antioxidants including polyphenols, sterols and tocopherols. We compared the antioxidant potential of PLFO with extra virgin olive oil (EVOO). Explants of healthy adult human skin were grown in culture with either PLFO or EVOO before adding hydrogen peroxide (H 2 O 2 ). We also used cultured skin explants to investigate the effects of PLFO on lipid oxidation and depletion of endogenous antioxidant defense enzymes including glutathione peroxidase (GPx), superoxide dismutase (SOD) and catalase (CAT) one day after 2 h exposure to H 2 O 2 . We found that PLFO scavenged radicals and protected skin against oxidative injury. PLFO exhibited greater antioxidant and free radical scavenging activity than EVOO. Skin explants treated with PLFO inhibited H 2 O 2 induced MDA formation by inhibition of lipid oxidation. In addition, the oil inhibited H 2 O 2 induced depletion of antioxidant defense enzymes including GPx, SOD and CAT. We found that treatment with PLFO repaired skin damage owing to its antioxidant properties.

  14. Evaluation of whole cigarette smoke induced oxidative stress in A549 and BEAS-2B cells.

    PubMed

    Zhang, Shimin; Li, Xiang; Xie, Fuwei; Liu, Kejian; Liu, Huimin; Xie, Jianping

    2017-09-01

    Cigarette smoke is a complex and oxidative aerosol. Previous researches on the hazards of cigarette smoke mainly focused on the adverse bioeffects induced by its condensates or gas vapor phase, which ignored the dynamic processes of smoking and the cigarette smoke aging. To overcome these disadvantages, we performed air-liquid interface exposure of whole smoke, which used native and unmodified smoke and ensured the exposure similar to physiological inhalation. Our results indicated that whole cigarette smoke induced lung epithelial cells (A549) and bronchial epithelial cells (BEAS-2B) damages in cytotoxicity assays (methyl thiazoly tetrazolium and neutral red uptake assays). In addition, A549 and BEAS-2B cells showed oxidative damages in whole smoke exposure, with concentration change of several biomarkers (reduced and oxidized glutathione, malondialdehyde, 4-hydroxyhydroxy-2-nonenal, extracellular superoxide dismutase, and 8-hydroxyl deoxyguanosine). These results indicate that whole smoke-induced oxidative stress occurs in two different kinds of cells at air-liquid interface. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Interspecific correlation between red blood cell mitochondrial ROS production, cardiolipin content and longevity in birds.

    PubMed

    Delhaye, Jessica; Salamin, Nicolas; Roulin, Alexandre; Criscuolo, François; Bize, Pierre; Christe, Philippe

    2016-12-01

    Mitochondrial respiration releases reactive oxygen species (ROS) as by-products that can damage the soma and may in turn accelerate ageing. Hence, according to "the oxidative stress theory of ageing", longer-lived organisms may have evolved mechanisms that improve mitochondrial function, reduce ROS production and/or increase cell resistance to oxidative damage. Cardiolipin, an important mitochondrial inner-membrane phospholipid, has these properties by binding and stabilizing mitochondrial inner-membrane proteins. Here, we investigated whether ROS production, cardiolipin content and cell membrane resistance to oxidative attack in freshly collected red blood cells (RBCs) are associated with longevity (range 5-35 years) in 21 bird species belonging to seven Orders. After controlling for phylogeny, body size and oxygen consumption, variation in maximum longevity was significantly explained by mitochondrial ROS production and cardiolipin content, but not by membrane resistance to oxidative attack. RBCs of longer-lived species produced less ROS and contained more cardiolipin than RBCs of shorter-lived species did. These results support the oxidative stress theory of ageing and shed light on mitochondrial cardiolipin as an important factor linking ROS production to longevity.

  16. Protective Effect of Boric Acid on Oxidative DNA Damage In Chinese Hamster Lung Fibroblast V79 Cell Lines

    PubMed Central

    Yılmaz, Sezen; Ustundag, Aylin; Cemiloglu Ulker, Ozge; Duydu, Yalcın

    2016-01-01

    Objective Many studies have been published on the antioxidative effects of boric acid (BA) and sodium borates in in vitro studies. However, the boron (B) concentrations tested in these in vitro studies have not been selected by taking into account the realistic blood B concentrations in humans due to the lack of comprehensive epidemiological studies. The recently published epidemiological studies on B exposure conducted in China and Turkey provided blood B concentrations for both humans in daily life and workers under extreme exposure conditions in occupational setting. The results of these studies have made it possible to test antioxidative effects of BA in in vitro studies within the concentra- tion range relevant to humans. The aim of this study was to investigate the protective ef- fects of BA against oxidative DNA damage in V79 (Chinese hamster lung fibroblast) cells. The concentrations of BA tested for its protective effect was selected by taking the blood B concentrations into account reported in previously published epidemiological studies. Therefore, the concentrations of BA tested in this study represent the exposure levels for humans in both daily life and occupational settings. Materials and Methods In this experimental study, comet assay and neutral red uptake (NRU) assay methods were used to determinacy to toxicity and genotoxicity of BA and hydrogen peroxide (H2O2). Results The results of the NRU assay showed that BA was not cytotoxic within the tested concentrations (3, 10, 30, 100 and 200 µM). These non-cytotoxic concentrations were used for comet assay. BA pre-treatment significantly reduced (P<0.05, one-way ANOVA) the DNA damaging capacity of H2O2 at each tested BA concentrations in V79 cells. Conclusion Consequently, pre-incubation of V79 cells with BA has significantly reduced the H2O2-induced oxidative DNA damage in V79 cells. The protective effect of BA against oxidative DNA damage in V79 cells at 5, 10, 50, 100 and 200 μM (54, 108, 540, 1080, and 2161 ng/ml B equivalents) concentrations was proved in this in vitro study. PMID:26862534

  17. Protective Effect of Boric Acid on Oxidative DNA Damage In Chinese Hamster Lung Fibroblast V79 Cell Lines.

    PubMed

    Yılmaz, Sezen; Ustundag, Aylin; Cemiloglu Ulker, Ozge; Duydu, Yalcın

    2016-01-01

    Many studies have been published on the antioxidative effects of boric acid (BA) and sodium borates in in vitro studies. However, the boron (B) concentrations tested in these in vitro studies have not been selected by taking into account the realistic blood B concentrations in humans due to the lack of comprehensive epidemiological studies. The recently published epidemiological studies on B exposure conducted in China and Turkey provided blood B concentrations for both humans in daily life and workers under extreme exposure conditions in occupational setting. The results of these studies have made it possible to test antioxidative effects of BA in in vitro studies within the concentra- tion range relevant to humans. The aim of this study was to investigate the protective ef- fects of BA against oxidative DNA damage in V79 (Chinese hamster lung fibroblast) cells. The concentrations of BA tested for its protective effect was selected by taking the blood B concentrations into account reported in previously published epidemiological studies. Therefore, the concentrations of BA tested in this study represent the exposure levels for humans in both daily life and occupational settings. In this experimental study, comet assay and neutral red uptake (NRU) assay methods were used to determinacy to toxicity and genotoxicity of BA and hydrogen peroxide (H2O2). The results of the NRU assay showed that BA was not cytotoxic within the tested concentrations (3, 10, 30, 100 and 200 µM). These non-cytotoxic concentrations were used for comet assay. BA pre-treatment significantly reduced (P<0.05, one-way ANOVA) the DNA damaging capacity of H2O2 at each tested BA concentrations in V79 cells. Consequently, pre-incubation of V79 cells with BA has significantly reduced the H2O2-induced oxidative DNA damage in V79 cells. The protective effect of BA against oxidative DNA damage in V79 cells at 5, 10, 50, 100 and 200 μM (54, 108, 540, 1080, and 2161 ng/ml B equivalents) concentrations was proved in this in vitro study.

  18. Early metabolic responses to lithium/pilocarpine-induced status epilepticus in rat brain.

    PubMed

    Imran, Imran; Hillert, Markus H; Klein, Jochen

    2015-12-01

    The lithium-pilocarpine model of status epilepticus is a well-known animal model of temporal lobe epilepsy. We combined this model with in vivo microdialysis to investigate energy metabolites and acute cellular membrane damage during seizure development. Rats were implanted with dialysis probes and pretreated with lithium chloride (127 mg/kg i.p.). Twenty-four hours later, they received pilocarpine (30 mg/kg s.c.) which initiated seizures within 30 min. In the dialysate from rat hippocampus, we observed a transient increase in glucose and a prominent, five-fold increase in lactate during seizures. Lactate release was because of neuronal activation as it was strongly reduced by infusion of tetrodotoxin, administration of atropine or when seizures were terminated by diazepam or ketamine. In ex vivo assays, mitochondrial function as measured by respirometry was not affected by 90 min of seizures. Extracellular levels of choline, however, increased two-fold and glycerol levels 10-fold, which indicate cellular phospholipid breakdown during seizures. Within 60 min of pilocarpine administration, hydroxylation of salicylate increased two-fold and formation of isoprostanes 20-fold, revealing significant oxidative stress in hippocampal tissue. Increases in lactate, glycerol and isoprostanes were abrogated, and increases in choline were completely prevented, when hippocampal probes were perfused with calcium-free solution. Similarly, administration of pregabalin (100 mg/kg i.p.), a calcium channel ligand, 15 min prior to pilocarpine strongly attenuated parameters of membrane damage and oxidative stress. We conclude that seizure development in a rat model of status epilepticus is accompanied by increases in extracellular lactate, choline and glycerol, and by oxidative stress, while mitochondrial function remains intact for at least 90 min. Membrane damage depends on calcium influx and can be prevented by treatment with pregabalin. Status epilepticus (SE) was induced in rats by lithium-pilocarpine ('Pilo') administration, and extracellular metabolites were measured by microdialysis. Seizures caused several-fold increases in lactate levels which were attenuated by diazepam ('Diaz'), ketamine, atropine and tetrodotoxin (TTX). Indicators of oxidative stress and membrane damage were also increased during seizures. Omission of calcium and pregabalin, a calcium channel blocker, reduced cellular damage induced by SE. © 2015 International Society for Neurochemistry.

  19. Amplification of proinflammatory phenotype, damage, and weakness by oxidative stress in the diaphragm muscle of mdx mice.

    PubMed

    Kim, Jong-Hee; Lawler, John M

    2012-05-01

    Duchenne muscular dystrophy (DMD) is a common and devastating type of childhood-onset muscular dystrophy, attributed to an X-linked defect in the gene that encodes dystrophin. Myopathy with DMD is most pronounced in the diaphragm muscle and fast-twitch limb muscles and is dependent upon susceptibility to damage, inflammatory cell infiltration, and proinflammatory signaling (nuclear factor-κB; NF-κB). Although recent papers have reawakened the notion that oxidative stress links inflammatory signaling with pathology in DMD in limb muscle, the importance of redox mechanisms had been clouded by inconsistent results from indirect scavenger approaches, including in the diaphragm muscle. Therefore, we used a novel catalytic mimetic of superoxide dismutase and catalase (EUK-134) as a direct scavenger of oxidative stress in myopathy in the diaphragm of the mdx mouse model. EUK-134 reduced 4-hydroxynonenal and total hydroperoxides, markers of oxidative stress in the mdx diaphragm. EUK-134 also attenuated positive staining of macrophages and T-cells as well as activation of NF-κB and p65 protein abundance. Moreover, EUK-134 ameliorated markers of muscle damage including internalized nuclei, variability of cross-sectional area, and type IIc fibers. Finally, impairment of contractile force was partially rescued by EUK-134 in the diaphragm of mdx mice. We conclude that oxidative stress amplifies DMD pathology in the diaphragm muscle. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Impact of iron and vitamin C-containing supplements on preterm human milk: in vitro.

    PubMed

    Friel, James K; Diehl-Jones, William L; Suh, Miyoung; Tsopmo, Apollinaire; Shirwadkar, Vaibhav P

    2007-05-15

    Stress due to reactive oxygen species (ROS) may lead to neonatal diseases, such as necrotizing enterocolitis and respiratory distress. Enteral supplements for premature infants (PREM) added to human milk (HM) to increase nutrient content may induce lipid oxidation due to free radical formation via Fenton chemistry. We hypothesized that ferrous iron and vitamin C-containing supplements added to HM in vitro cause oxidation of milk fats, affect intracellular redox balance, and induce DNA damage. Lipid peroxidation in HM was measured by FOX-2 and TBARS assays; fatty acid composition of supplemented HM was measured by gas chromatography. Two cell culture bioassays were used for assessing either intracellular oxidative stress or DNA damage: the former involved Caco-2BBe cells, a secondary differentiated cell line, and the latter utilized FHS-74 Int cells, a primary fetal small intestinal culture. Lipid oxidation products of HM increased after the addition of iron alone, iron and vitamin C, or iron and a vitamin C-containing supplement (Trivisol, TVS). A reduced content of mono and polyunsaturated fatty acids in HM was also observed. Iron, not iron+vitamin C, but iron+TVS induced significant intracellular oxidative stress in FHS-74 Int cells. In contrast, iron, either alone or in combination with TVS or vitamin C, increased DNA damage in Caco-2BBE cells. Iron supplementation may increase oxidative stress in PREM infants and should be given separately from vitamin C-containing supplements.

  1. DNA Damage Protecting Activity and Antioxidant Potential of Launaea taraxacifolia Leaves Extract.

    PubMed

    Adinortey, Michael Buenor; Ansah, Charles; Weremfo, Alexander; Adinortey, Cynthia Ayefoumi; Adukpo, Genevieve Etornam; Ameyaw, Elvis Ofori; Nyarko, Alexander Kwadwo

    2018-01-01

    The leaf extract of Launaea taraxacifolia commonly known as African Lettuce is used locally to treat dyslipidemia and liver diseases, which are associated with oxidative stress. Methanol extract from L. taraxacifolia leaves was tested for its antioxidant activity and its ability to protect DNA from oxidative damage. In vitro antioxidant potential of the leaf extract was evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH), nitric oxide (NO), and hydroxyl (OH) radical scavenging assays. Ferric reducing power, total antioxidant capacity (TAC), metal chelating, and anti-lipid peroxidation ability of the extract were also examined using gallic acid, ascorbic acid, citric acid, and ethylenediaminetetraacetic acid as standards. L. taraxacifolia leaves extract showed antioxidant activity with IC 50 values of 16.18 μg/ml (DPPH), 123.3 μg/ml (NO), 128.2 μg/ml (OH radical), 97.94 μg/ml (metal chelating), 80.28 μg/ml (TAC), and 23 μg/ml (anti-lipid peroxidation activity). L. taraxacifolia leaves extract exhibited a strong capability for DNA damage protection at 20 mg/ml concentration. These findings suggest that the methanolic leaf extract of L. taraxacifolia could be used as a natural antioxidant and also as a preventive therapy against diseases such as arteriosclerosis associated with DNA damage.

  2. Repair of Oxidative DNA Damage in Saccharomyces cerevisiae.

    PubMed

    Chalissery, Jisha; Jalal, Deena; Al-Natour, Zeina; Hassan, Ahmed H

    2017-03-01

    Malfunction of enzymes that detoxify reactive oxygen species leads to oxidative attack on biomolecules including DNA and consequently activates various DNA repair pathways. The nature of DNA damage and the cell cycle stage at which DNA damage occurs determine the appropriate repair pathway to rectify the damage. Oxidized DNA bases are primarily repaired by base excision repair and nucleotide incision repair. Nucleotide excision repair acts on lesions that distort DNA helix, mismatch repair on mispaired bases, and homologous recombination and non-homologous end joining on double stranded breaks. Post-replication repair that overcomes replication blocks caused by DNA damage also plays a crucial role in protecting the cell from the deleterious effects of oxidative DNA damage. Mitochondrial DNA is also prone to oxidative damage and is efficiently repaired by the cellular DNA repair machinery. In this review, we discuss the DNA repair pathways in relation to the nature of oxidative DNA damage in Saccharomyces cerevisiae. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Hormetic response triggers multifaceted anti-oxidant strategies in immature king penguins (Aptenodytes patagonicus).

    PubMed

    Rey, Benjamin; Dégletagne, Cyril; Bodennec, Jacques; Monternier, Pierre-Axel; Mortz, Mathieu; Roussel, Damien; Romestaing, Caroline; Rouanet, Jean-Louis; Tornos, Jeremy; Duchamp, Claude

    2016-08-01

    Repeated deep dives are highly pro-oxidative events for air-breathing aquatic foragers such as penguins. At fledging, the transition from a strictly terrestrial to a marine lifestyle may therefore trigger a complex set of anti-oxidant responses to prevent chronic oxidative stress in immature penguins but these processes are still undefined. By combining in vivo and in vitro approaches with transcriptome analysis, we investigated the adaptive responses of sea-acclimatized (SA) immature king penguins (Aptenodytes patagonicus) compared with pre-fledging never-immersed (NI) birds. In vivo, experimental immersion into cold water stimulated a higher thermogenic response in SA penguins than in NI birds, but both groups exhibited hypothermia, a condition favouring oxidative stress. In vitro, the pectoralis muscles of SA birds displayed increased oxidative capacity and mitochondrial protein abundance but unchanged reactive oxygen species (ROS) generation per g tissue because ROS production per mitochondria was reduced. The genes encoding oxidant-generating proteins were down-regulated in SA birds while mRNA abundance and activity of the main antioxidant enzymes were up-regulated. Genes encoding proteins involved in repair mechanisms of oxidized DNA or proteins and in degradation processes were also up-regulated in SA birds. Sea life also increased the degree of fatty acid unsaturation in muscle mitochondrial membranes resulting in higher intrinsic susceptibility to ROS. Oxidative damages to protein or DNA were reduced in SA birds. Repeated experimental immersions of NI penguins in cold-water partially mimicked the effects of acclimatization to marine life, modified the expression of fewer genes related to oxidative stress but in a similar way as in SA birds and increased oxidative damages to DNA. It is concluded that the multifaceted plasticity observed after marine life may be crucial to maintain redox homeostasis in active tissues subjected to high pro-oxidative pressure in diving birds. Initial immersions in cold-water may initiate an hormetic response triggering essential changes in the adaptive antioxidant response to marine life. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Intraperitoneal Administration of Silymarin Protects End Organs from Multivisceral Ischemia/Reperfusion Injury in a Rat Model.

    PubMed

    Koçarslan, Aydemir; Koçarslan, Sezen; Aydin, Mehmet Salih; Gunay, Şamil; Karahan, Mahmut Alp; Taşkın, Abdullah; Üstunel, Murat; Aksoy, Nurten

    2016-01-01

    To determine whether intraperitoneal silymarin administration has favorable effects on the heart, lungs, kidney, and liver and on oxidative stress in a rat model of supraceliac aorta ischemia/reperfusion injury. Thirty male Wistar albino rats were divided equally into three groups: sham, control, and silymarin. The control and silymarin groups underwent supraceliac aortic occlusion for 45 min, followed by a 60 min period of reperfusion under terminal anesthesia. In the silymarin group, silymarin was administered intraperitoneally during ischemia at a dose of 200 mg/kg. Rats were euthanized using terminal anesthesia, and blood was collected from the inferior vena cava for total antioxidant capacity, total oxidative status, and oxidative stress index measurement. Lungs, heart, liver and kidney tissues were histologically examined. Ischemia/reperfusion injury significantly increased histopathological damage as well as the total oxidative status and oxidative stress index levels in the blood samples. The silymarin group incurred significantly lesser damage to the lungs, liver and kidneys than the control group, while no differences were observed in the myocardium. Furthermore, the silymarin group had significantly lower total oxidative status and oxidative stress index levels than the control group. Intraperitoneal administration of silymarin reduces oxidative stress and protects the liver, kidney, and lungs from acute supraceliac abdominal aorta ischemia/reperfusion injury in the rat model.

  5. Mitoprotective antioxidant EUK-134 stimulates fatty acid oxidation and prevents hypertrophy in H9C2 cells.

    PubMed

    Purushothaman, Sreeja; Nair, R Renuka

    2016-09-01

    Oxidative stress is an important contributory factor for the development of cardiovascular diseases like hypertension-induced hypertrophy. Mitochondrion is the major source of reactive oxygen species. Hence, protecting mitochondria from oxidative damage can be an effective therapeutic strategy for the prevention of hypertensive heart disease. Conventional antioxidants are not likely to be cardioprotective, as they cannot protect mitochondria from oxidative damage. EUK-134 is a salen-manganese complex with superoxide dismutase and catalase activity. The possible role of EUK-134, a mitoprotective antioxidant, in the prevention of hypertrophy of H9C2 cells was examined. The cells were stimulated with phenylephrine (50 μM), and hypertrophy was assessed based on cell volume and expression of brain natriuretic peptide and calcineurin. Enhanced myocardial lipid peroxidation and protein carbonyl content, accompanied by nuclear factor-kappa B gene expression, confirmed the presence of oxidative stress in hypertrophic cells. Metabolic shift was evident from reduction in the expression of medium-chain acyl-CoA dehydrogenase. Mitochondrial oxidative stress was confirmed by the reduced expression of mitochondria-specific antioxidant peroxiredoxin-3 and enhanced mitochondrial superoxide production. Compromised mitochondrial function was apparent from reduced mitochondrial membrane potential. Pretreatment with EUK-134 (10 μM) was effective in the prevention of hypertrophic changes in H9C2 cells, reduction of oxidative stress, and prevention of metabolic shift. EUK-134 treatment improved the oxidative status of mitochondria and reversed hypertrophy-induced reduction of mitochondrial membrane potential. Supplementation with EUK-134 is therefore identified as a novel approach to attenuate cardiac hypertrophy and lends scope for the development of EUK-134 as a therapeutic agent in the management of human cardiovascular disease.

  6. The Quinone Based Antitumor Agent Sepantronium Bromide (YM155) Causes Oxygen Independent Redox Activated Oxidative DNA Damage.

    PubMed

    Wani, Tasaduq Hussain; Surendran, Sreeraj; Jana, Anal; Chakrabarty, Anindita; Chowdhury, Goutam

    2018-06-13

    Sepantronium bromide (YM155) is a small molecule antitumor agent currently in phase II clinical trials. Although developed as survivin suppressor, YM155's primary mode of action has recently been found to be DNA damage. However, the mechanism of DNA damage by YM155 is still unknown. Knowing the mechanism of action of an anticancer drug is necessary to formulate a rational drug combination and select a cancer type for achieving maximum clinical efficacy. Using cell-based assays we showed that YM155 cause extensive DNA cleavage and reactive oxygen species generation. DNA cleavage by YM155 was found to be inhibited by radical scavengers and desferal. The reducing agent DTT and the cellular reducing system xanthine/xanthine oxidase were found to reductively activate YM155 and cause DNA cleavage. Unlike quinones, DNA cleavage by YM155 occurs in the presence of catalase and under hypoxic conditions indicating that hydrogen peroxide and oxygen is not necessary. Although YM155 is a quinone, it does not follow a typical quinone mechanism. Consistent with these observations a mechanism has been proposed that suggests that YM155 can cause oxidative DNA cleavage upon two electron reductive activation.

  7. Measuring sunscreen protection against solar-simulated radiation-induced structural radical damage to skin using ESR/spin trapping: development of an ex vivo test method.

    PubMed

    Haywood, Rachel; Volkov, Arsen; Andrady, Carima; Sayer, Robert

    2012-03-01

    The in vitro star system used for sunscreen UVA-testing is not an absolute measure of skin protection being a ratio of the total integrated UVA/UVB absorption. The in vivo persistent-pigment-darkening method requires human volunteers. We investigated the use of the ESR-detectable DMPO protein radical-adduct in solar-simulator-irradiated skin substitutes for sunscreen testing. Sunscreens SPF rated 20+ with UVA protection, reduced this adduct by 40-65% when applied at 2 mg/cm(2). SPF 15 Organic UVA-UVB (BMDBM-OMC) and TiO(2)-UVB filters and a novel UVA-TiO(2) filter reduced it by 21, 31 and 70% respectively. Conventional broad-spectrum sunscreens do not fully protect against protein radical-damage in skin due to possible visible-light contributions to damage or UVA-filter degradation. Anisotropic spectra of DMPO-trapped oxygen-centred radicals, proposed intermediates of lipid-oxidation, were detected in irradiated sunscreen and DMPO. Sunscreen protection might be improved by the consideration of visible-light protection and the design of filters to minimise radical leakage and lipid-oxidation.

  8. Defining the Relationship Between Biomarkers of Oxidative and Inflammatory Stress and the Risk for Atherosclerosis in Astronauts During and After Long-Duration Spaceflight

    NASA Technical Reports Server (NTRS)

    Lee, S. M. C.; Martin, D. S.; Smith, S. M.; Zwart, S. R.; Laurie, S. S; Ribeiro, L. C.; Stenger, M. B.

    2017-01-01

    Current human space travel consists primarily of long-duration missions onboard the International Space Station (ISS), but in the future may include exploration-class missions to nearby asteroids, Mars, or its moons. These missions will expose astronauts to increased risk of oxidative and inflammatory damage from a variety of sources, including radiation, psychological stress, reduced physical activity, diminished nutritional status, and hyperoxic exposure during extravehicular activity. Evidence exists that increased oxidative stress and inflammation can accelerate the development of atherosclerosis.

  9. Alterations in proton leak, oxidative status and uncoupling protein 3 content in skeletal muscle subsarcolemmal and intermyofibrillar mitochondria in old rats

    PubMed Central

    2014-01-01

    Background We considered of interest to evaluate how aging affects mitochondrial function in skeletal muscle. Methods We measured mitochondrial oxidative capacity and proton leak, together with lipid oxidative damage, superoxide dismutase specific activity and uncoupling protein 3 content, in subsarcolemmal and intermyofibrillar mitochondria from adult (six months) and old (two years) rats. Body composition, resting metabolic rate and plasma non esterified fatty acid levels were also assessed. Results Old rats displayed significantly higher body energy and lipids, while body proteins were significantly lower, compared to adult rats. In addition, plasma non esterified fatty acid levels were significantly higher, while resting metabolic rates were found to be significantly lower, in old rats compared to adult ones. Significantly lower oxidative capacities in whole tissue homogenates and in intermyofibrillar and subsarcolemmal mitochondria were found in old rats compared to adult ones. Subsarcolemmal and intermyofibrillar mitochondria from old rats exhibited a significantly lower proton leak rate, while oxidative damage was found to be significantly higher only in subsarcolemmal mitochondria. Mitochondrial superoxide dismutase specific activity was not significantly affected in old rats, while significantly higher content of uncoupling protein 3 was found in both mitochondrial populations from old rats compared to adult ones, although the magnitude of the increase was lower in subsarcolemmal than in intermyofibrillar mitochondria. Conclusions The decrease in oxidative capacity and proton leak in intermyofibrillar and subsarcolemmal mitochondria could induce a decline in energy expenditure and thus contribute to the reduced resting metabolic rate found in old rats, while oxidative damage is present only in subsarcolemmal mitochondria. PMID:24950599

  10. Caffeic acid and quercetin protect erythrocytes against the oxidative stress and the genotoxic effects of lambda-cyhalothrin in vitro.

    PubMed

    Abdallah, Fatma Ben; Fetoui, H; Fakhfakh, F; Keskes, L

    2012-01-01

    Lambda-cyhalothrin (LTC) is a synthetic pyrethroid with a broad spectrum of insecticidal and acaricidal activities used to control wide range of insect pests in a variety of applications. The aim of this study was to examine (i) the potency of LTC to induce oxidative stress response in rat erythrocytes in vitro and (ii) the role of caffeic acid (20 μM) and/or quercetin (10 μM) in preventing the cytotoxic effects. Erythrocytes were divided into four portions. The erythrocytes of the first portion were incubated for 4 h at 37°C with different concentrations (0, 50 and 100 μM) of LTC. The others portions were pretreated with caffeic acid and/or quercetin for 30 min prior to LTC incubation. Lipid peroxidation, protein oxidation, antioxidant enzyme activities and DNA damage were examined. LTC at different concentrations causes increased levels of lipid peroxidation, protein oxidation, DNA damage and decreased antioxidant enzyme activities. Combined caffeic acid and quercetin pretreatments significantly reduced the levels of lipid peroxidation markers, that is thiobarbituric acid reactive substance (TBARS), protein carbonyls (PCO) and decreased DNA damage in LTC portion. Further, combined caffeic acid and quercetin pretreatment maintain antioxidant enzyme activities and glutathione content near to normal values. These results suggest that LTC exerts its toxic effect by increasing lipid peroxidation, altering the antioxidant enzyme activities and DNA damage. Caffeic acid and quercetin pretreatments prevent the toxic effects of LTC, suggesting their role as a potential antioxidant.

  11. Lycopene and male infertility

    PubMed Central

    Durairajanayagam, Damayanthi; Agarwal, Ashok; Ong, Chloe; Prashast, Pallavi

    2014-01-01

    Excessive amounts of reactive oxygen species (ROS) cause a state of oxidative stress, which result in sperm membrane lipid peroxidation, DNA damage and apoptosis, leading to decreased sperm viability and motility. Elevated levels of ROS are a major cause of idiopathic male factor infertility, which is an increasingly common problem today. Lycopene, the most potent singlet oxygen quencher of all carotenoids, is a possible treatment option for male infertility because of its antioxidant properties. By reacting with and neutralizing free radicals, lycopene could reduce the incidence of oxidative stress and thus, lessen the damage that would otherwise be inflicted on spermatozoa. It is postulated that lycopene may have other beneficial effects via nonoxidative mechanisms in the testis, such as gap junction communication, modulation of gene expression, regulation of the cell cycle and immunoenhancement. Various lycopene supplementation studies conducted on both humans and animals have shown promising results in alleviating male infertility—lipid peroxidation and DNA damage were decreased, while sperm count and viability, and general immunity were increased. Improvement of these parameters indicates a reduction in oxidative stress, and thus the spermatozoa is less vulnerable to oxidative damage, which increases the chances of a normal sperm fertilizing the egg. Human trials have reported improvement in sperm parameters and pregnancy rates with supplementation of 4–8 mg of lycopene daily for 3–12 months. However, further detailed and extensive research is still required to determine the dosage and the usefulness of lycopene as a treatment for male infertility. PMID:24675655

  12. Cerium oxide nanoparticles, combining antioxidant and UV shielding properties, prevent UV-induced cell damage and mutagenesis

    NASA Astrophysics Data System (ADS)

    Caputo, Fanny; de Nicola, Milena; Sienkiewicz, Andrzej; Giovanetti, Anna; Bejarano, Ignacio; Licoccia, Silvia; Traversa, Enrico; Ghibelli, Lina

    2015-09-01

    Efficient inorganic UV shields, mostly based on refracting TiO2 particles, have dramatically changed the sun exposure habits. Unfortunately, health concerns have emerged from the pro-oxidant photocatalytic effect of UV-irradiated TiO2, which mediates toxic effects on cells. Therefore, improvements in cosmetic solar shield technology are a strong priority. CeO2 nanoparticles are not only UV refractors but also potent biological antioxidants due to the surface 3+/4+ valency switch, which confers anti-inflammatory, anti-ageing and therapeutic properties. Herein, UV irradiation protocols were set up, allowing selective study of the extra-shielding effects of CeO2vs. TiO2 nanoparticles on reporter cells. TiO2 irradiated with UV (especially UVA) exerted strong photocatalytic effects, superimposing their pro-oxidant, cell-damaging and mutagenic action when induced by UV, thereby worsening the UV toxicity. On the contrary, irradiated CeO2 nanoparticles, via their Ce3+/Ce4+ redox couple, exerted impressive protection on UV-treated cells, by buffering oxidation, preserving viability and proliferation, reducing DNA damage and accelerating repair; strikingly, they almost eliminated mutagenesis, thus acting as an important tool to prevent skin cancer. Interestingly, CeO2 nanoparticles also protect cells from the damage induced by irradiated TiO2, suggesting that these two particles may also complement their effects in solar lotions. CeO2 nanoparticles, which intrinsically couple UV shielding with biological and genetic protection, appear to be ideal candidates for next-generation sun shields.

  13. Protective Role for Antioxidants in Acute Kidney Disease

    PubMed Central

    Dennis, Joanne M.; Witting, Paul K.

    2017-01-01

    Acute kidney injury causes significant morbidity and mortality in the community and clinic. Various pathologies, including renal and cardiovascular disease, traumatic injury/rhabdomyolysis, sepsis, and nephrotoxicity, that cause acute kidney injury (AKI), induce general or regional decreases in renal blood flow. The ensuing renal hypoxia and ischemia promotes the formation of reactive oxygen species (ROS) such as superoxide radical anions, peroxides, and hydroxyl radicals, that can oxidatively damage biomolecules and membranes, and affect organelle function and induce renal tubule cell injury, inflammation, and vascular dysfunction. Acute kidney injury is associated with increased oxidative damage, and various endogenous and synthetic antioxidants that mitigate source and derived oxidants are beneficial in cell-based and animal studies. However, the benefit of synthetic antioxidant supplementation in human acute kidney injury and renal disease remains to be realized. The endogenous low-molecular weight, non-proteinaceous antioxidant, ascorbate (vitamin C), is a promising therapeutic in human renal injury in critical illness and nephrotoxicity. Ascorbate may exert significant protection by reducing reactive oxygen species and renal oxidative damage via its antioxidant activity, and/or by its non-antioxidant functions in maintaining hydroxylase and monooxygenase enzymes, and endothelium and vascular function. Ascorbate supplementation may be particularly important in renal injury patients with low vitamin C status. PMID:28686196

  14. Catching-up but telomere loss: half-opening the black box of growth and ageing trade-off in wild king penguin chicks.

    PubMed

    Geiger, Sylvie; Le Vaillant, Maryline; Lebard, Thomas; Reichert, Sophie; Stier, Antoine; LE Maho, Yvon; Criscuolo, Francois

    2012-03-01

    One of the reasons for animals not to grow as fast as they potentially could is that fast growth has been shown to be associated with reduced lifespan. However, we are still lacking a clear description of the reality of growth-dependent modulation of ageing mechanisms in wild animals. Using the particular growth trajectory of small king penguin chicks naturally exhibiting higher-than-normal growth rate to compensate for the winter break, we tested whether oxidative stress and telomere shortening are related to growth trajectories. Plasma antioxidant defences, oxidative damage levels and telomere length were measured at the beginning and at the end of the post-winter growth period in three groups of chicks (small chicks, which either passed away or survived the growth period, and large chicks). Small chicks that died early during the growth period had the highest level of oxidative damage and the shortest telomere lengths prior to death. Here, we show that small chicks that grew faster did it at the detriment of body maintenance mechanisms as shown by (i) higher oxidative damage and (ii) accelerated telomere loss. Our study provides the first evidence for a mechanistic link between growth and ageing rates under natural conditions. © 2011 Blackwell Publishing Ltd.

  15. ROS signaling, oxidative stress and Nrf2 in pancreatic beta-cell function

    PubMed Central

    Pi, Jingbo; Zhang, Qiang; Fu, Jingqi; Woods, Courtney G.; Hou, Yongyong; Corkey, Barbara E; Collins, Sheila; Andersen, Melvin E.

    2009-01-01

    This review focuses on the emerging evidence that reactive oxygen species (ROS) derived from glucose metabolism, such as H2O2, act as metabolic signaling molecules for glucose-stimulated insulin secretion (GSIS) in pancreatic beta-cells. Particular emphasis is placed on the potential inhibitory role of endogenous antioxidants, which rise in response to oxidative stress, in glucose-triggered ROS and GSIS. We propose that cellular adaptive response to oxidative stress challenge, such as nuclear factor E2-related factor 2 (Nrf2)-mediated antioxidant induction, plays paradoxical roles in pancreatic beta-cell function. On the one hand, induction of antioxidant enzymes protects beta-cells from oxidative damage and possible cell death, thus minimizing oxidative damage-related impairment of insulin secretion. On the other hand, the induction of antioxidant enzymes by Nrf2 activation blunts glucose-triggered ROS signaling, thus resulting in reduced GSIS. These two premises are potentially relevant to impairment of beta-cells occurring in the late and early stage of Type 2 diabetes, respectively. In addition, we summarized our recent findings that persistent oxidative stress due to absence of uncoupling protein 2 activates cellular adaptive response which is associated with impaired pancreatic beta-cell function. PMID:19501608

  16. Sodium thioglycollate enhances pollen germeination and pollen tube elongation in cruciferous species

    EPA Science Inventory

    Sodium thioglycollate is a reducing agent used in microbiological growth media to enhance the growth of anerobic, microaerophilic, and facultative organisms, and in eukaryotic tissue extraction buffers to inhibit damaging oxidative reactions. Sodium thioglycollate was added to a ...

  17. Renal transplantation induces mitochondrial uncoupling, increased kidney oxygen consumption, and decreased kidney oxygen tension.

    PubMed

    Papazova, Diana A; Friederich-Persson, Malou; Joles, Jaap A; Verhaar, Marianne C

    2015-01-01

    Hypoxia is an acknowledged pathway to renal injury and ischemia-reperfusion (I/R) and is known to reduce renal oxygen tension (Po2). We hypothesized that renal I/R increases oxidative damage and induces mitochondrial uncoupling, resulting in increased oxygen consumption and hence kidney hypoxia. Lewis rats underwent syngenic renal transplantation (TX) and contralateral nephrectomy. Controls were uninephrectomized (1K-CON) or left untreated (2K-CON). After 7 days, urinary excretion of protein and thiobarbituric acid-reactive substances were measured, and after 14 days glomerular filtration rate (GFR), renal blood flow, whole kidney Qo2, cortical Po2, kidney cortex mitochondrial uncoupling, renal oxidative damage, and tubulointerstitial injury were assessed. TX, compared with 1K-CON, resulted in mitochondrial uncoupling mediated via uncoupling protein-2 (16 ± 3.3 vs. 0.9 ± 0.4 pmol O2 · s(-1)· mg protein(-1), P < 0.05) and increased whole kidney Qo2 (55 ± 16 vs. 33 ± 10 μmol O2/min, P < 0.05). Corticomedullary Po2 was lower in TX compared with 1K-CON (30 ± 13 vs. 47 ± 4 μM, P < 0.05) whereas no significant difference was observed between 2K-CON and 1K-CON rats. Proteinuria, oxidative damage, and the tubulointerstitial injury score were not significantly different in 1K-CON and TX. Treatment of donors for 5 days with mito-TEMPO reduced mitochondrial uncoupling but did not affect renal hemodynamics, Qo2, Po2, or injury. Collectively, our results demonstrate increased mitochondrial uncoupling as an early event after experimental renal transplantation associated with increased oxygen consumption and kidney hypoxia in the absence of increases in markers of damage. Copyright © 2015 the American Physiological Society.

  18. Advanced hair damage model from ultra-violet radiation in the presence of copper.

    PubMed

    Marsh, J M; Davis, M G; Flagler, M J; Sun, Y; Chaudhary, T; Mamak, M; McComb, D W; Williams, R E A; Greis, K D; Rubio, L; Coderch, L

    2015-10-01

    Damage to hair from UV exposure has been well reported in the literature and is known to be a highly complex process involving initiation via absorption of UV light followed by formation and propagation of reactive oxygen species (ROS). The objective of this work was to understand these mechanisms, explain the role of copper in accelerating the formation of ROS and identify strategies to reduce the hair damage caused by these reactive species. The location of copper in hair was measured by Transmission electron microscopy-(TEM) X-ray energy dispersive spectroscopy (XEDS) and levels measured by ICP-OES. Protein changes were measured as total protein loss via the Lowry assay, and MALDI ToF was used to identify the biomarker protein fragments. TBARS assay was used to measure lipid peroxide formation. Sensory methods and dry combing friction were used to measure hair damage due to copper and UV exposure and to demonstrate the efficacy of N,N' ethylenediamine disuccinic acid (EDDS) and histidine chelants to reduce this damage. In this work, a biomarker protein fragment formed during UV exposure is identified using mass spectrometry. This fragment originates from the calcium-binding protein S100A3. Also shown is the accelerated formation of this peptide fragment in hair containing low levels of copper absorbed from hair during washing with tap water containing copper ions. Transmission electron microscopy (TEM) X-ray energy dispersive spectroscopy (XEDS) studies indicate copper is located in the sulphur-poor endo-cuticle region, a region where the S100A3 protein is concentrated. A mechanism for formation of this peptide fragment is proposed in addition to the possible role of lipids in UV oxidation. A shampoo and conditioner containing chelants (EDDS in shampoo and histidine in conditioner) is shown to reduce copper uptake from tap water and reduce protein loss and formation of S100A3 protein fragment. In addition, the long-term consequences of UV oxidation and additional damage induced by copper are illustrated in a four-month wear study where hair was treated with a consumer relevant protocol of hair colouring treatments, UV exposure and regular shampoo and conditioning. The role of copper in accelerating UV damage to hair has been demonstrated as well as the ability of chelants such as EDDS and histidine in shampoo and conditioner products to reduce this damage. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  19. Effects of Oxygen Availability on Acetic Acid Tolerance and Intracellular pH in Dekkera bruxellensis.

    PubMed

    Capusoni, Claudia; Arioli, Stefania; Zambelli, Paolo; Moktaduzzaman, M; Mora, Diego; Compagno, Concetta

    2016-08-01

    The yeast Dekkera bruxellensis, associated with wine and beer production, has recently received attention, because its high ethanol and acid tolerance enables it to compete with Saccharomyces cerevisiae in distilleries that produce fuel ethanol. We investigated how different cultivation conditions affect the acetic acid tolerance of D. bruxellensis We analyzed the ability of two strains (CBS 98 and CBS 4482) exhibiting different degrees of tolerance to grow in the presence of acetic acid under aerobic and oxygen-limited conditions. We found that the concomitant presence of acetic acid and oxygen had a negative effect on D. bruxellensis growth. In contrast, incubation under oxygen-limited conditions resulted in reproducible growth kinetics that exhibited a shorter adaptive phase and higher growth rates than those with cultivation under aerobic conditions. This positive effect was more pronounced in CBS 98, the more-sensitive strain. Cultivation of CBS 98 cells under oxygen-limited conditions improved their ability to restore their intracellular pH upon acetic acid exposure and to reduce the oxidative damage to intracellular macromolecules caused by the presence of acetic acid. This study reveals an important role of oxidative stress in acetic acid tolerance in D. bruxellensis, indicating that reduced oxygen availability can protect against the damage caused by the presence of acetic acid. This aspect is important for optimizing industrial processes performed in the presence of acetic acid. This study reveals an important role of oxidative stress in acetic acid tolerance in D. bruxellensis, indicating that reduced oxygen availability can have a protective role against the damage caused by the presence of acetic acid. This aspect is important for the optimization of industrial processes performed in the presence of acetic acid. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  20. Thymoquinone Attenuates Myocardial Ischemia/Reperfusion Injury Through Activation of SIRT1 Signaling.

    PubMed

    Lu, Yunyang; Feng, Yingda; Liu, Dan; Zhang, Zhiran; Gao, Kai; Zhang, Wei; Tang, Haifeng

    2018-06-15

    Myocardial ischemia/reperfusion (MI/R) injury is a leading factor responsible for damage in myocardial infarction, resulting in additional injury to cardiac tissues involved in oxidative stress, inflammation, and apoptosis. Thymoquinone (TQ), the main constituent of Nigella sativa L. seeds, has been reported to possess various biological activities. However, few reports regarding myocardial protection are available at present. Therefore, this study was conducted aiming to investigate the protective effect of TQ against MI/R injury and to clarify its potential mechanism. MI/R injury models of isolated rat hearts and neonatal rat cardiomyocytes were established. The Langendorff isolated perfused heart system, triphenyltetrazolium chloride staining, gene transfection, TransLaser scanning confocal microscopy, and western blotting were employed to evaluate the cardioprotection effect of TQ against MI/R injury. Compared with the MI/R group, TQ treatment could remarkably improve left ventricular function, decrease myocardial infarct size and production of lactate dehydrogenase (LDH), and attenuate mitochondrial oxidative damage by elevating superoxide dismutase (SOD) activity and reducing production of hydrogen peroxide (H2O2) and malonaldehyde (MDA). Moreover, the cardioprotective effect of TQ was accompanied by up-regulated expression of SIRT1 and inhibition of p53 acetylation. Additionally, TQ treatment could also enhance mitochondrial function and reduce the number of apoptotic cardiomyocytes. Nonetheless, the cardioprotective effect of TQ could be mitigated by SIRT1 inhibitor sirtinol and SIRT1 siRNA, respectively, which was achieved through inhibition of the SIRT1 signaling pathway. The findings in this study demonstrate that TQ is efficient in attenuating MI/R injury through activation of the SIRT1 signaling pathway, which can thus reduce mitochondrial oxidative stress damage and cardiomyocyte apoptosis. © 2018 The Author(s). Published by S. Karger AG, Basel.

  1. Effects of Oxygen Availability on Acetic Acid Tolerance and Intracellular pH in Dekkera bruxellensis

    PubMed Central

    Capusoni, Claudia; Arioli, Stefania; Zambelli, Paolo; Moktaduzzaman, M.; Mora, Diego

    2016-01-01

    ABSTRACT The yeast Dekkera bruxellensis, associated with wine and beer production, has recently received attention, because its high ethanol and acid tolerance enables it to compete with Saccharomyces cerevisiae in distilleries that produce fuel ethanol. We investigated how different cultivation conditions affect the acetic acid tolerance of D. bruxellensis. We analyzed the ability of two strains (CBS 98 and CBS 4482) exhibiting different degrees of tolerance to grow in the presence of acetic acid under aerobic and oxygen-limited conditions. We found that the concomitant presence of acetic acid and oxygen had a negative effect on D. bruxellensis growth. In contrast, incubation under oxygen-limited conditions resulted in reproducible growth kinetics that exhibited a shorter adaptive phase and higher growth rates than those with cultivation under aerobic conditions. This positive effect was more pronounced in CBS 98, the more-sensitive strain. Cultivation of CBS 98 cells under oxygen-limited conditions improved their ability to restore their intracellular pH upon acetic acid exposure and to reduce the oxidative damage to intracellular macromolecules caused by the presence of acetic acid. This study reveals an important role of oxidative stress in acetic acid tolerance in D. bruxellensis, indicating that reduced oxygen availability can protect against the damage caused by the presence of acetic acid. This aspect is important for optimizing industrial processes performed in the presence of acetic acid. IMPORTANCE This study reveals an important role of oxidative stress in acetic acid tolerance in D. bruxellensis, indicating that reduced oxygen availability can have a protective role against the damage caused by the presence of acetic acid. This aspect is important for the optimization of industrial processes performed in the presence of acetic acid. PMID:27235432

  2. Deletion of p66Shc in mice increases the frequency of size-change mutations in the lacZ transgene.

    PubMed

    Beltrami, Elena; Ruggiero, Antonella; Busuttil, Rita; Migliaccio, Enrica; Pelicci, Pier Giuseppe; Vijg, Jan; Giorgio, Marco

    2013-04-01

    Upon oxidative challenge the genome accumulates adducts and breaks that activate the DNA damage response to repair, arrest, or eliminate the damaged cell. Thus, reactive oxygen species (ROS) generated by endogenous oxygen metabolism are thought to affect mutation frequency. However, few studies determined the mutation frequency when oxidative stress is reduced. To test whether in vivo spontaneous mutation frequency is altered in mice with reduced oxidative stress and cell death rate, we crossed p66Shc knockout (p66KO) mice, characterized by reduced intracellular concentration of ROS and by impaired apoptosis, with a transgenic line harboring multiple copies of the lacZ mutation reporter gene as part of a plasmid that can be recovered from organs into Escherichia coli to measure mutation rate. Liver and small intestine from 2- to 24-month-old, lacZ (p66Shc+/+) and lacZp66KO mice, were investigated revealing no difference in overall mutation frequency but a significant increase in the frequency of size-change mutations in the intestine of lacZp66KO mice. This difference was further increased upon irradiation of mice with X-ray. In addition, we found that knocking down cyclophilin D, a gene that facilitates mitochondrial apoptosis acting downstream of p66Shc, increased the size-change mutation frequency in small intestine. Size-change mutations also accumulated in death-resistant embryonic fibroblasts from lacZp66KO mice treated with H2 O2 . These results indicate that p66Shc plays a role in the accumulation of DNA rearrangements and suggest that p66Shc functions to clear damaged cells rather than affect DNA metabolism. © 2012 The Authors Aging Cell © 2012 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland.

  3. Blackberry extract inhibits UVB-induced oxidative damage and inflammation through MAP kinases and NF-κB signaling pathways in SKH-1 mice skin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Divya, Sasidharan Padmaja; Wang, Xin; Pratheeshkumar, Poyil

    Extensive exposure of solar ultraviolet-B (UVB) radiation to skin induces oxidative stress and inflammation that play a crucial role in the induction of skin cancer. Photochemoprevention with natural products represents a simple but very effective strategy for the management of cutaneous neoplasia. In this study, we investigated whether blackberry extract (BBE) reduces chronic inflammatory responses induced by UVB irradiation in SKH-1 hairless mice skin. Mice were exposed to UVB radiation (100 mJ/cm{sup 2}) on alternate days for 10 weeks, and BBE (10% and 20%) was applied topically a day before UVB exposure. Our results show that BBE suppressed UVB-induced hyperplasiamore » and reduced infiltration of inflammatory cells in the SKH-1 hairless mice skin. BBE treatment reduced glutathione (GSH) depletion, lipid peroxidation (LPO), and myeloperoxidase (MPO) in mouse skin by chronic UVB exposure. BBE significantly decreased the level of pro-inflammatory cytokines IL-6 and TNF-α in UVB-exposed skin. Likewise, UVB-induced inflammatory responses were diminished by BBE as observed by a remarkable reduction in the levels of phosphorylated MAP Kinases, Erk1/2, p38, JNK1/2 and MKK4. Furthermore, BBE also reduced inflammatory mediators such as cyclooxygenase-2 (COX-2), prostaglandin E{sub 2} (PGE{sub 2}), and inducible nitric oxide synthase (iNOS) levels in UVB-exposed skin. Treatment with BBE inhibited UVB-induced nuclear translocation of NF-κB and degradation of IκBα in mouse skin. Immunohistochemistry analysis revealed that topical application of BBE inhibited the expression of 8-oxo-7, 8-dihydro-2′-deoxyguanosine (8-oxodG), cyclobutane pyrimidine dimers (CPD), proliferating cell nuclear antigen (PCNA), and cyclin D1 in UVB-exposed skin. Collectively, these data indicate that BBE protects from UVB-induced oxidative damage and inflammation by modulating MAP kinase and NF-κB signaling pathways. - Highlights: • Blackberry extract inhibits UVB-induced glutathione depletion. • Blackberry extract inhibits UVB-induced lipid peroxidation. • Blackberry extract inhibits UVB-induced myeloperoxidase activity. • Blackberry extract diminishes UVB-induced inflammatory responses. • Blackberry extract prevents skin from oxidative damage and inflammation by UVB.« less

  4. The protective role of quercetin and arginine on gold nanoparticles induced hepatotoxicity in rats.

    PubMed

    Abdelhalim, Mohamed Anwar K; Moussa, Sherif A Abdelmottaleb; Qaid, Huda Abdo Yahya

    2018-01-01

    The aim of the study was to confirm the hepatotoxicity induced by small-sized gold nanoparticles (GNPs) and evaluate the role of quercetin (Qur) and arginine (Arg) against hepatotoxicity caused by GNPs. Twenty-five healthy male Wistar-Kyoto rats were used. GNPs were administered intraperitoneally to these rats at the dose of 50 μL for seven consecutive days. The role of Qur and Arg antioxidants against toxicity induced by GNPs was detected through the measurement of serum liver function and oxidative stress biomarkers in the liver tissues. Coadministration of Qur and Arg along with GNPs significantly induced dramatic alterations in the biochemical parameters. Levels of malondialdehyde, gamma-glutamyl transferase, alanine aminotransferase, alkaline phosphatase, and total protein increased significantly in the GNPs injected group than in the control group, while reduced glutathione was greatly reduced in the GNPs group than in the control group. It also significantly decreased liver enzymes and the oxidative stress, therefore improving the liver damage and hepatotoxicity induced by GNPs. This study demonstrated that Qur and Arg antioxidants effectively improved the hepatic oxidative damage induced by GNPs. It also substantiates the application of Qur and Arg as protecting stand-in against GNPs' hepatotoxicity.

  5. Charge Yield at Low Electric Fields: Considerations for Bipolar Integrated Circuits

    NASA Technical Reports Server (NTRS)

    Johnston, A. H.; Swimm, R. T.; Thorbourn, D. O.

    2013-01-01

    A significant reduction in total dose damage is observed when bipolar integrated circuits are irradiated at low temperature. This can be partially explained by the Onsager theory of recombination, which predicts a strong temperature dependence for charge yield under low-field conditions. Reduced damage occurs for biased as well as unbiased devices because the weak fringing field in thick bipolar oxides only affects charge yield near the Si/SiO2 interface, a relatively small fraction of the total oxide thickness. Lowering the temperature of bipolar ICs - either continuously, or for time periods when they are exposed to high radiation levels - provides an additional degree of freedom to improve total dose performance of bipolar circuits, particularly in space applications.

  6. Lemon balm extract (Melissa officinalis, L.) promotes melanogenesis and prevents UVB-induced oxidative stress and DNA damage in a skin cell model.

    PubMed

    Pérez-Sánchez, Almudena; Barrajón-Catalán, Enrique; Herranz-López, María; Castillo, Julián; Micol, Vicente

    2016-11-01

    Solar ultraviolet (UV) radiation is one of the main causes of a variety of cutaneous disorders, including photoaging and skin cancer. Its UVB component (280-315nm) leads to oxidative stress and causes inflammation, DNA damage, p53 induction and lipid and protein oxidation. Recently, an increase in the use of plant polyphenols with antioxidant and anti-inflammatory properties has emerged to protect human skin against the deleterious effects of sunlight. This study evaluates the protective effects of lemon balm extract (LBE) (Melissa Officinalis, L) and its main phenolic compound rosmarinic acid (RA) against UVB-induced damage in human keratinocytes. The LBE composition was determined by HPLC analysis coupled to photodiode array detector and ion trap mass spectrometry with electrospray ionization (HPLC-DAD-ESI-IT-MS/MS). Cell survival, ROS generation and DNA damage were determined upon UVB irradiation in the presence of LBE. The melanogenic capacity of LBE was also determined. RA and salvianolic acid derivatives were the major compounds, but caffeic acid and luteolin glucuronide were also found in LBE. LBE and RA significantly increased the survival of human keratinocytes upon UVB radiation, but LBE showed a stronger effect. LBE significantly decreased UVB-induced intracellular ROS production. Moreover, LBE reduced UV-induced DNA damage and the DNA damage response (DDR), which were measured as DNA strand breaks in the comet assay and histone H2AX activation, respectively. Finally, LBE promoted melanogenesis in the cell model. These results suggest that LBE may be considered as a candidate for the development of oral/topical photoprotective ingredients against UVB-induced skin damage. Copyright © 2016 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  7. Protective effects of grape stem extract against UVB-induced damage in C57BL mice skin.

    PubMed

    Che, Denis Nchang; Xie, Guang Hua; Cho, Byoung Ok; Shin, Jae Young; Kang, Hyun Ju; Jang, Seon Il

    2017-08-01

    Humans have become exposed to another form of a trait which is ultraviolet B (UVB) radiation reaching the earth's surface. This has become a major source of oxidative stress that ultimately leads to inflammation, DNA damage, photoaging and pigmentation disorders etc. Although several studies have shown the photo-protective role of different grape parts like the fruits and seeds, little or no data demonstrating the in vivo photo-protective role of grape stem, which is the most discarded part of the grape are available. We evaluated the protective influence of grape stem extract against UVB-induced oxidative damage in C57BL mice characterized by epidermal hyperplasia, pigmentation, collagen degradation and inflammation. Grape stem extract was administered topically 1week before UVB irradiation (120mJ/cm 2 ) and continued until the termination of the experiment. A group of non-irradiated mice and a group of irradiated mice topically administered with propylene were used as a negative and positive control. Epidermal thickness, pigmentation, erythema, mast cell and neutrophil infiltration, collagen degradation and COX-2, Nrf2, and HO-1 expressions were evaluated. Grape stem extract markedly recovered skin damage induced by the UVB radiation through the prevention of epidermal hyperplasia, pigmentation, erythema, mast cell and neutrophil infiltrations, collagen degradation and COX-2, Nrf2, and HO-1 expressions. Our study demonstrated for the first time in C57BL mice that grape stem extract reduces UVB-induced oxidative damage and hence can play a protective role in skin photo-damage. Copyright © 2017. Published by Elsevier B.V.

  8. Sulfur mustard analog, 2-chloroethyl ethyl sulfide-induced skin injury involves DNA damage and induction of inflammatory mediators, in part via oxidative stress, in SKH-1 hairless mouse skin

    PubMed Central

    Jain, Anil K.; Tewari-Singh, Neera; Gu, Mallikarjuna; Inturi, Swetha; White, Carl W.; Agarwal, Rajesh

    2011-01-01

    Bifunctional alkyalating agent, Sulfur mustard (SM)-caused cutaneous injury is characterized by inflammation and delayed blistering. Our recent studies demonstrated that 2-chloroethyl ethyl sulfide (CEES), a monofunctional analog of SM that can be used in laboratory settings, induces oxidative stress. This could be the major cause of the activation of Akt/MAP kinase and AP1/NF-κB pathways that are linked to the inflammation and microvesication, and histopathological alterations in SKH-1 hairless mouse skin. To further establish a link between CEES-induced DNA damage and signaling pathways and inflammatory responses, skin samples from mice exposed to 2 or 4 mg CEES for 9–48 h were subjected to molecular analysis. Our results show a strong CEES-induced phosphorylation of H2A.X and an increase in COX-2, iNOS, and MMP-9 levels, indicating the involvement of DNA damage and inflammation in CEES-caused skin injury in male and female mice. Since, our recent studies showed reduction in CEES-induced inflammatory responses by glutathione (GSH), we further assessed the role of oxidative stress in CEES-caused DNA damage and the induction of inflammatory molecules. Oral GSH (300mg/kg) administration 1 h before CEES exposure attenuated the increase in both CEES-induced H2A.X phosphorylation (59%) as well as expression of COX-2 (68%), iNOS (53%) and MMP-9 (54%). Collectively, our results indicate that CEES-induced skin injuries involve DNA damage and an induction of inflammatory mediators, at least in part via oxidative stress. This study could help in identifying countermeasures that alone or in combination, can target the unveiled pathways for reducing skin injuries in humans by SM. PMID:21722719

  9. Viewing oxidative stress through the lens of oxidative signalling rather than damage

    PubMed Central

    Ruban, Alexander V.; Noctor, Graham

    2017-01-01

    Concepts of the roles of reactive oxygen species (ROS) in plants and animals have shifted in recent years from focusing on oxidative damage effects to the current view of ROS as universal signalling metabolites. Rather than having two opposing activities, i.e. damage and signalling, the emerging concept is that all types of oxidative modification/damage are involved in signalling, not least in the induction of repair processes. Examining the multifaceted roles of ROS as crucial cellular signals, we highlight as an example the loss of photosystem II function called photoinhibition, where photoprotection has classically been conflated with oxidative damage. PMID:28270560

  10. Destructive behavior of iron oxide in projectile impact

    NASA Astrophysics Data System (ADS)

    Shang, Wang; Xiaochen, Wang; Quan, Yang; Zhongde, Shan

    2017-12-01

    The damage strain values of Q235-A surface oxide scale were obtained by scanning electron microscopy (SEM/EDS) and universal tensile testing machine. The finite element simulation was carried out to study the destruction effects of oxidation at different impact rates. The results show that the damage value of the oxide strain is 0.08%. With the increase of the projectile velocity, the damage area of the oxide scale is increased, and the damage area is composed of the direct destruction area and the indirect failure area. The indirect damage area is caused by the stress/strain to the surrounding expansion after the impact of the steel body.

  11. Attenuation of gentamycin-induced nephrotoxicity in rats by dietary inclusion of ginger (Zingiber officinale) and turmeric (Curcuma longa) rhizomes.

    PubMed

    Ademiluyi, Adedayo O; Oboh, Ganiyu; Ogunsuyi, Opeyemi B; Akinyemi, Ayodele J

    2012-10-01

    This study sought to investigate the modulatory effects of dietary inclusion of ginger (Zingiber officinale) and turmeric (Curcuma longa) rhizomes on antioxidant status and renal damage induced by gentamycin in rats. Renal damage was induced in albino rats pretreated with dietary inclusion of ginger and turmeric (2% and 4%) by intraperitoneal (i.p.) administration of gentamycin (100 mg/kg body weight) for three days. Assays for renal damage biomarkers (plasma creatinine, plasma urea, blood urea nitrogen and plasma uric acid), malondialdehyde (MDA) content and reduced glutathione (GSH) content as well as renal antioxidant enzymes (catalase, glutathione-S-transferase (GST), glutathione peroxidase (GPx) and superoxide dismutase (SOD)) were carried out. The study revealed significant (p < 0.05) increases in renal damage biomarkers following gentamycin administration with severe alteration in kidney antioxidant status. However, pretreatment with ginger and turmeric rhizome (2% and 4%) prior to gentamycin administration significantly (p < 0.05) protected the kidney and attenuated oxidative stress by modulating renal damage and antioxidant indices. This finding therefore suggests that dietary inclusion of ginger and turmeric rhizomes may protect against gentamycin-induced nephrotoxicity and oxidative stress.

  12. Long Term Running Biphasically Improves Methylglyoxal-Related Metabolism, Redox Homeostasis and Neurotrophic Support within Adult Mouse Brain Cortex

    PubMed Central

    Falone, Stefano; D'Alessandro, Antonella; Mirabilio, Alessandro; Petruccelli, Giacomo; Cacchio, Marisa; Di Ilio, Carmine; Di Loreto, Silvia; Amicarelli, Fernanda

    2012-01-01

    Oxidative stress and neurotrophic support decline seem to be crucially involved in brain aging. Emerging evidences indicate the pro-oxidant methylglyoxal (MG) as a key player in the age-related dicarbonyl stress and molecular damage within the central nervous system. Although exercise promotes the overproduction of reactive oxygen species, habitual exercise may retard cellular aging and reduce the age-dependent cognitive decline through hormetic adaptations, yet molecular mechanisms underlying beneficial effects of exercise are still largely unclear. In particular, whereas adaptive responses induced by exercise initiated in youth have been broadly investigated, the effects of chronic and moderate exercise begun in adult age on biochemical hallmarks of very early senescence in mammal brains have not been extensively studied. This research investigated whether a long-term, forced and moderate running initiated in adult age may affect the interplay between the redox-related profile and the oxidative-/MG-dependent molecular damage patterns in CD1 female mice cortices; as well, we investigated possible exercise-induced effects on the activity of the brain derived neurotrophic factor (BDNF)-dependent pathway. Our findings suggested that after a transient imbalance in almost all parameters investigated, the lately-initiated exercise regimen strongly reduced molecular damage profiles in brains of adult mice, by enhancing activities of the main ROS- and MG-targeting scavenging systems, as well as by preserving the BDNF-dependent signaling through the transition from adult to middle age. PMID:22347470

  13. Dietary unsaponifiable fraction of extra virgin olive oil supplementation attenuates lung injury and DNA damage of rats co-exposed to aluminum and acrylamide.

    PubMed

    Ghorbel, Imen; Chaâbane, Mariem; Boudawara, Ons; Kamoun, Naziha Grati; Boudawara, Tahia; Zeghal, Najiba

    2016-10-01

    Aluminum chloride (AlCl3) and acrylamide (ACR) are well known as environmental pollutants inducing oxidative stress. Our study investigated the effects of these contaminants and if the hydrophilic fraction of extra virgin olive oil was able to prevent lung oxidative stress and DNA damage. Animals were divided into four groups of six each: group 1, serving as controls, received distilled water; group 2 received in drinking water aluminum chloride (50 mg/ kg body weight) and by gavage acrylamide (20 mg/kg body weight); group 3 received both aluminum and acrylamide in the same way and the same dose as group 2 and hydrophilic fraction from olive oil (OOHF) (1 ml) by gavage; group 4 received only OOHF by gavage. Exposure of rats to both aluminum and acrylamide provoked oxidative stress in lung tissue based on biochemical parameters and histopathological alterations. In fact, we have observed an increase in malondialdehyde (MDA), H2O2, and advanced oxidation protein product (AOPP) and a decrease in reduced glutathione (GSH), non-protein thiols (NPSH), and vitamin C levels. Activities of catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD) were also decreased. Histopathological changes in lung tissue were noted like emphysema, vascular congestion, and infiltration of inflammatory cells. A random DNA degradation was observed on agarose gel in the lung of AlCl3 and acrylamide (ACR)-treated rats. Co-administration of OOHF to treated rats improved biochemical parameters to near control values and lung histoarchitecture. The smear formation of genomic DNA was reduced. The hydrophilic fraction of extra virgin olive oil might provide a basis for developing a new dietary supplementation strategy in order to prevent lung tissue damage.

  14. Anti-oxidative cellular protection effect of fasting-induced autophagy as a mechanism for hormesis.

    PubMed

    Moore, Michael N; Shaw, Jennifer P; Ferrar Adams, Dawn R; Viarengo, Aldo

    2015-06-01

    The aim of this investigation was to test the hypothesis that fasting-induced augmented lysosomal autophagic turnover of cellular proteins and organelles will reduce potentially harmful lipofuscin (age-pigment) formation in cells by more effectively removing oxidatively damaged proteins. An animal model (marine snail--common periwinkle, Littorina littorea) was used to experimentally test this hypothesis. Snails were deprived of algal food for 7 days to induce an augmented autophagic response in their hepatopancreatic digestive cells (hepatocyte analogues). This treatment resulted in a 25% reduction in the cellular content of lipofuscin in the digestive cells of the fasting animals in comparison with snails fed ad libitum on green alga (Ulva lactuca). Similar findings have previously been observed in the digestive cells of marine mussels subjected to copper-induced oxidative stress. Additional measurements showed that fasting significantly increased cellular health based on lysosomal membrane stability, and reduced lipid peroxidation and lysosomal/cellular triglyceride. These findings support the hypothesis that fasting-induced augmented autophagic turnover of cellular proteins has an anti-oxidative cytoprotective effect by more effectively removing damaged proteins, resulting in a reduction in the formation of potentially harmful proteinaceous aggregates such as lipofuscin. The inference from this study is that autophagy is important in mediating hormesis. An increase was demonstrated in physiological complexity with fasting, using graph theory in a directed cell physiology network (digraph) model to integrate the various biomarkers. This was commensurate with increased health status, and supportive of the hormesis hypothesis. The potential role of enhanced autophagic lysosomal removal of damaged proteins in the evolutionary acquisition of stress tolerance in intertidal molluscs is discussed and parallels are drawn with the growing evidence for the involvement of autophagy in hormesis and anti-ageing processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. The phytochemical, EGCG, extends lifespan by reducing liver and kidney function damage and improving age-associated inflammation and oxidative stress in healthy rats.

    PubMed

    Niu, Yucun; Na, Lixin; Feng, Rennan; Gong, Liya; Zhao, Yue; Li, Qiang; Li, Ying; Sun, Changhao

    2013-12-01

    It is known that phytochemicals have many potential health benefits in humans. The aim of this study was to investigate the effects of long-term consumption of the phytochemical, epigallocatechin gallate (EGCG), on body growth, disease protection, and lifespan in healthy rats. 68 male weaning Wistar rats were randomly divided into the control and EGCG groups. Variables influencing lifespan such as blood pressure, serum glucose and lipids, inflammation, and oxidative stress were dynamically determined from weaning to death. The median lifespan of controls was 92.5 weeks. EGCG increased median lifespan to 105.0 weeks and delayed death by approximately 8-12 weeks. Blood pressure and serum glucose and lipids significantly increased with age in both groups compared with the levels at 0 week. However, there were no differences in these variables between the two groups during the whole lifespan. Inflammation and oxidative stress significantly increased with age in both groups compared with 0 week and were significantly lower in serum and liver and kidney tissues in the EGCG group. Damage to liver and kidney function was significantly alleviated in the EGCG group. In addition, EGCG decreased the mRNA and protein expressions of transcription factor NF-κB and increased the upstream protein expressions of silent mating type information regulation two homolog one (SIRT1) and forkhead box class O 3a (FOXO3a). In conclusion, EGCG extends lifespan in healthy rats by reducing liver and kidney damage and improving age-associated inflammation and oxidative stress through the inhibition of NF-κB signaling by activating the longevity factors FoxO3a and SIRT1. © 2013 the Anatomical Society and John Wiley & Sons Ltd.

  16. Modulatory role of Pterocarpus santalinus against alcohol-induced liver oxidative/nitrosative damage in rats.

    PubMed

    Bulle, Saradamma; Reddy, Vaddi Damodara; Padmavathi, Pannuru; Maturu, Paramahamsa; N Ch, Varadacharyulu

    2016-10-01

    Pterocarpus santalinus, a traditional medicinal plant has shown protective mechanisms against various complications. The aim of the present study is to evaluate therapeutic efficacy of P. santalinus heartwood methanolic extract (PSE) against alcohol-induced oxidative/nitrosative stress leading to hepatotoxicity. In-vitro studies revealed that PSE possess strong DPPH (1,1-diphenyl-2-picryl hydrazyl) and nitric oxide radical scavenging activity. For in vivo studies male albino Wistar rats were treated with 20% alcohol (5g/kg b.wt/day) and PSE (250mg/kg b.wt/day) for 60days. Results showed that alcohol administration significantly altered plasma lipid profile with marked increase in the levels of plasma transaminases (ALT and AST), alkaline phosphatase (ALP), lactate dehydrogenase (LDH) and gamma glutamyl transferase (γGT). Moreover, lipid peroxides, nitric oxide (NOx) levels in plasma and liver were increased with increased iNOS protein expression in liver was noticed in alcohol administered rats and these levels were significantly brought back close to normal level by PSE administration except iNOS protein expression. Alcohol administration also decreased the content of reduced glutathione (GSH) and activities of glutathione peroxidase (GPx), glutathione-s transferase (GST), glutathione reductase (GR), superoxide dismutase (SOD) and catalase (CAT) in liver, which were significantly enhanced by administration of PSE. The active compounds pterostilbene, lignan and lupeols present in PSE might have shown protection against alcohol-induced hepatic damage by possibly reducing the rate of lipid peroxidation, NOx levels and increasing the antioxidant defence mechanism in alcohol administered rats. Both biochemical and histopathological results in the alcohol-induced liver damage model emphasize beneficial action of PSE as a hepatoprotective agent. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. Effect of 4-Week Ingestion of Tomato-Based Carotenoids on Exercise-Induced Inflammation, Muscle Damage, and Oxidative Stress in Endurance Runners.

    PubMed

    Nieman, David C; Capps, Courtney L; Capps, Christopher R; Shue, Zack L; McBride, Jennifer E

    2018-05-03

    This double-blind, randomized, placebo-controlled crossover trial determined if ingestion of a supplement containing a tomato complex with lycopene, phytoene, and phytofluene (T-LPP) and other compounds for 4 weeks would attenuate inflammation, muscle damage, and oxidative stress postexercise and during recovery from a 2-hr running bout that included 30 min of -10% downhill running. Study participants ingested the T-LPP supplement or placebo with the evening meal for 4 weeks prior to running 2 hr at high intensity. Blood samples and delayed onset muscle soreness ratings were taken pre- and post-4-week supplementation, and immediately following the 2-hr run, and then 1-hr, 24-hr, and 48-hr postrun. After a 2-week washout period, participants crossed over to the opposite treatment and repeated all procedures. Plasma lycopene, phytoene, and phytofluene increased significantly in T-LPP compared with placebo (p < .001 for each). Significant time effects were shown for serum creatine kinase, delayed onset muscle soreness, C-reactive protein, myoglobin, 9- and 13-hydroxyoctadecadienoic acids, ferric reducing ability of plasma, and six plasma cytokines (p < .001 for each). The pattern of increase for serum myoglobin differed between T-LPP and placebo (interaction effect, p = .016, with lower levels in T-LPP), but not for creatine kinase, delayed onset muscle soreness, C-reactive protein, the six cytokines, 9- and 13-hydroxyoctadecadienoic acids, and ferric reducing ability of plasma. No significant time or interaction effects were measured for plasma-oxidized low-density lipoprotein or serum 8-hydroxy-2'-deoxyguanosine. In summary, supplementation with T-LPP over a 4-week period increased plasma carotenoid levels 73% and attenuated postexercise increases in the muscle damage biomarker myoglobin, but not inflammation and oxidative stress.

  18. Effects of surfactant/budesonide therapy on oxidative modifications in the lung in experimental meconium-induced lung injury.

    PubMed

    Mikolka, P; Kopincova, J; Tomcikova Mikusiakova, L; Kosutova, P; Antosova, M; Calkovska, A; Mokra, D

    2016-02-01

    Meconium aspiration syndrome (MAS) is a serious condition, which can be treated with exogenous surfactant and mechanical ventilation. However, meconium-induced inflammation, lung edema and oxidative damage may inactivate delivered surfactant and thereby reduce effectiveness of the therapy. As we presumed that addition of anti-inflammatory agent into the surfactant may alleviate inflammation and enhance efficiency of the therapy, this study was performed to evaluate effects of surfactant therapy enriched with budesonide versus surfactant-only therapy on markers of oxidative stress in experimental model of MAS. Meconium suspension (25 mg/ml, 4 ml/kg) was instilled into the trachea of young rabbits, whereas one group of animals received saline instead of meconium (C group, n = 6). In meconium-instilled animals, respiratory failure developed within 30 min. Then, meconium-instilled animals were divided into 3 groups according to therapy (n = 6 each): with surfactant therapy (M + S group), with surfactant + budesonide therapy (M + S + B), and without therapy (M group). Surfactant therapy consisted of two bronchoalveolar lavages (BAL) with diluted surfactant (Curosurf, 5 mg phospholipids/ml, 10 ml/kg) followed by undiluted surfactant (100 mg phospholipids/kg), which was in M + S + B group enriched with budesonide (Pulmicort, 0.5 mg/ml). Animals were oxygen-ventilated for additional 5 hours. At the end of experiment, blood sample was taken for differential white blood cell (WBC) count. After euthanizing animals, left lung was saline-lavaged and cell differential in BAL was determined. Oxidative damage, i.e. oxidation of lipids (thiobarbituric acid reactive substance (TBARS) and conjugated dienes) and proteins (dityrosine and lysine-lipoperoxidation products) was estimated in lung homogenate and isolated mitochondria. Total antioxidant capacity was evaluated in lung homogenate and plasma. Meconium instillation increased transmigration of neutrophils and production of free radicals compared to controls (P < 0.05). Surfactant therapy, but particularly combined surfactant + budesonide therapy reduced markers of oxidative stress versus untreated animals (P < 0.05). In conclusion, budesonide added into surfactant enhanced effect of therapy on oxidative damage of the lung.

  19. Oxidative stress damages rRNA inside the ribosome and differentially affects the catalytic center

    PubMed Central

    Willi, Jessica; Küpfer, Pascal; Evéquoz, Damien; Fernandez, Guillermo; Polacek, Norbert

    2018-01-01

    Abstract Intracellular levels of reactive oxygen species (ROS) increase as a consequence of oxidative stress and represent a major source of damage to biomolecules. Due to its high cellular abundance RNA is more frequently the target for oxidative damage than DNA. Nevertheless the functional consequences of damage on stable RNA are poorly understood. Using a genome-wide approach, based on 8-oxo-guanosine immunoprecipitation, we present evidence that the most abundant non-coding RNA in a cell, the ribosomal RNA (rRNA), is target for oxidative nucleobase damage by ROS. Subjecting ribosomes to oxidative stress, we demonstrate that oxidized 23S rRNA inhibits the ribosome during protein biosynthesis. Placing single oxidized nucleobases at specific position within the ribosome's catalytic center by atomic mutagenesis resulted in markedly different functional outcomes. While some active site nucleobases tolerated oxidative damage well, oxidation at others had detrimental effects on protein synthesis by inhibiting different sub-steps of the ribosomal elongation cycle. Our data provide molecular insight into the biological consequences of RNA oxidation in one of the most central cellular enzymes and reveal mechanistic insight on the role of individual active site nucleobases during translation. PMID:29309687

  20. Protective effects of dexpanthenol in an experimental model of necrotizing enterocolitis.

    PubMed

    Karadag, Ahmet; Ozdemir, Ramazan; Kurt, Ahmet; Parlakpinar, Hakan; Polat, Alaadin; Vardi, Nigar; Taslidere, Elif; Karaman, Abdurrahman

    2015-07-01

    In pathogenesis of necrotizing enterocolitis (NEC), both oxidative stress and inflammation are considerable risk factors. The study was designed to evaluate whether administration of dexpanthenol (Dxp) is able to attenuate intestinal injury through the antioxidant and antiinflammatory mechanisms in a neonatal rat model of NEC. Forty newborn pups divided into four groups were included in the study: control, control+Dxp, NEC, and NEC+Dxp. NEC was induced by hyperosmolar formula and additionally the pups were exposed to hypoxia/hyperoxia and cold stress. They were sacrificed on postnatal day four, and their intestinal tissues were analyzed biochemically and histopathologically. Dxp caused a significant decrease in intestinal damage as determined by the histological score, villus height and number of goblet cells in NEC groups (p<0.0001). Tissue malondialdehyde, total oxidant status, and oxidative stress indexes levels were higher in the NEC group than in the control and control+Dxp groups (p<0.001). These values were reduced in the pups treated with Dxp (p≤0.004). Superoxide dismutase, glutathione peroxidase, and reduced glutathione activities were significantly reduced in the NEC group compared to the others (p<0.005). Treatment with Dxp significantly reduced elevations in tissue homogenate levels of tumor necrosis factor-α and interleukin-1β in the NEC+Dxp group (p=0.002 and p=0.01, respectively). Dexpanthenol seems to have antiinflammatory and antioxidant properties. Prophylaxis with Dxp has a potential to reduce the severity of intestinal damage in NEC in the animals. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Hawthorn extract reduces infarct volume and improves neurological score by reducing oxidative stress in rat brain following middle cerebral artery occlusion.

    PubMed

    Elango, Chinnasamy; Jayachandaran, Kasevan Sawaminathan; Niranjali Devaraj, S

    2009-12-01

    In our present investigation the neuroprotective effect of alcoholic extract of Hawthorn (Crataegus oxycantha) was evaluated against middle cerebral artery occlusion induced ischemia/reperfusion injury in rats. Male Sprague-Dawley rats were pretreated with 100 mg/kg body weight of the extract by oral gavage for 15 days. The middle cerebral artery was then occluded for 75 min followed by 24 h of reperfusion. The pretreated rats showed significantly improved neurological behavior with reduced brain infarct when compared to vehicle control rats. The glutathione level in brain was found to be significantly (p<0.05) low in vehicle control rats after 24 h of reperfusion when compared to sham operated animals. However, in Hawthorn extract pretreated rats the levels were found to be close to that of sham. Malondialdehyde levels in brain of sham and pretreated group were found to be significantly lower than the non-treated vehicle group (p<0.05). The nitric oxide levels in brain were measured and found to be significantly (p<0.05) higher in vehicle than in sham or extract treated rats. Our results suggest that Hawthorn extract which is a well known prophylactic for cardiac conditions may very well protect the brain against ischemia-reperfusion. The reduced brain damage and improved neurological behavior after 24 h of reperfusion in Hawthorn extract pretreated group may be attributed to its antioxidant property which restores glutathione levels, circumvents the increase in lipid peroxidation and nitric oxide levels thereby reducing peroxynitrite formation and free radical induced brain damage.

  2. Genotoxicity of Advanced Glycation End Products: Involvement of Oxidative Stress and of Angiotensin II Type 1 Receptors

    NASA Astrophysics Data System (ADS)

    Schupp, Nicole; Schinzel, Reinhard; Heidland, August; Stopper, Helga

    2005-06-01

    In patients with chronic renal failure, cancer incidence is increased. This may be related to an elevated level of genomic damage, which has been demonstrated by micronuclei formation as well as by comet assay analysis. Advanced glycation end products (AGEs) are markedly elevated in renal failure. In the comet assay, the model AGEs methylglyoxal- and carboxy(methyl)lysine-modified bovine serum albumin (BSA) induced significant DNA damage in colon, kidney, and liver cells. The addition of antioxidants prevented AGE-induced DNA damage, suggesting enhanced formation of reactive oxygen species (ROS). The coincubation with dimethylfumarate (DMF), an inhibitor of NF-κB translocation, reduced the genotoxic effect, thereby underscoring the key role of NF-κB in this process. One of the genes induced by NF-κB is angiotensinogen. The ensuing proteolytic activity yields angiotensin II, which evokes oxidative stress as well as proinflammatory responses. A modulator of the renin-angiotensin system (RAS), the angiotensin II (Ang II) receptor 1 antagonist, candesartan, yielded a reduction of the AGE-induced DNA damage, connecting the two signal pathways, RAS and AGE signaling. We were able to identify important participants in AGE-induced DNA damage: ROS, NF-κB, and Ang II, as well as modulators to prevent this DNA damage: antioxidants, DMF, and AT1 antagonists.

  3. BDNF and exercise enhance neuronal DNA repair by stimulating CREB-mediated production of apurinic/apyrimidinic endonuclease 1.

    PubMed

    Yang, Jenq-Lin; Lin, Yu-Ting; Chuang, Pei-Chin; Bohr, Vilhelm A; Mattson, Mark P

    2014-03-01

    Brain-derived neurotrophic factor (BDNF) promotes the survival and growth of neurons during brain development and mediates activity-dependent synaptic plasticity and associated learning and memory in the adult. BDNF levels are reduced in brain regions affected in Alzheimer's, Parkinson's, and Huntington's diseases, and elevation of BDNF levels can ameliorate neuronal dysfunction and degeneration in experimental models of these diseases. Because neurons accumulate oxidative lesions in their DNA during normal activity and in neurodegenerative disorders, we determined whether and how BDNF affects the ability of neurons to cope with oxidative DNA damage. We found that BDNF protects cerebral cortical neurons against oxidative DNA damage-induced death by a mechanism involving enhanced DNA repair. BDNF stimulates DNA repair by activating cyclic AMP response element-binding protein (CREB), which, in turn, induces the expression of apurinic/apyrimidinic endonuclease 1 (APE1), a key enzyme in the base excision DNA repair pathway. Suppression of either APE1 or TrkB by RNA interference abolishes the ability of BDNF to protect neurons against oxidized DNA damage-induced death. The ability of BDNF to activate CREB and upregulate APE1 expression is abolished by shRNA of TrkB as well as inhibitors of TrkB, PI3 kinase, and Akt kinase. Voluntary running wheel exercise significantly increases levels of BDNF, activates CREB, and upregulates APE1 in the cerebral cortex and hippocampus of mice, suggesting a novel mechanism whereby exercise may protect neurons from oxidative DNA damage. Our findings reveal a previously unknown ability of BDNF to enhance DNA repair by inducing the expression of the DNA repair enzyme APE1.

  4. Sea ice protects the embryos of the Antarctic sea urchin Sterechinus neumayeri from oxidative damage due to naturally enhanced levels of UV-B radiation.

    PubMed

    Lister, Kathryn N; Lamare, Miles D; Burritt, David J

    2010-06-01

    The 'ozone hole' has caused an increase in ultraviolet B radiation (UV-B, 280-320 nm) penetrating Antarctic coastal marine ecosystems, however the direct effect of this enhanced UV-B on pelagic organisms remains unclear. Oxidative stress, the in vivo production of reactive oxygen species to levels high enough to overcome anti-oxidant defences, is a key outcome of exposure to solar radiation, yet to date few studies have examined this physiological response in Antarctic marine species in situ or in direct relation to the ozone hole. To assess the biological effects of UV-B, in situ experiments were conducted at Cape Armitage in McMurdo Sound, Antarctica (77.06 degrees S, 164.42 degrees E) on the common Antarctic sea urchin Sterechinus neumayeri Meissner (Echinoidea) over two consecutive 4-day periods in the spring of 2008 (26-30 October and 1-5 November). The presence of the ozone hole, and a corresponding increase in UV-B exposure, resulted in unequivocal increases in oxidative damage to lipids and proteins, and developmental abnormality in embryos of S. neumayeri growing in open waters. Results also indicate that embryos have only a limited capacity to increase the activities of protective antioxidant enzymes, but not to levels sufficient to prevent severe oxidative damage from occurring. Importantly, results show that the effect of the ozone hole is largely mitigated by sea ice coverage. The present findings suggest that the coincidence of reduced stratospheric ozone and a reduction in sea ice coverage may produce a situation in which significant damage to Antarctic marine ecosystems may occur.

  5. Effects of tadalafil administration on plasma markers of exercise-induced muscle damage, IL6 and antioxidant status capacity.

    PubMed

    Ceci, Roberta; Duranti, Guglielmo; Sgrò, Paolo; Sansone, Massimiliano; Guidetti, Laura; Baldari, Carlo; Sabatini, Stefania; Di Luigi, Luigi

    2015-03-01

    Physical exercise is associated with enhanced production of reactive oxygen species, which if uncontrolled can result in tissue injury. Phosphodiesterase type 5 inhibitors (PDE5i) exhibit protective effect against oxidative stress, both in animals and healthy/unhealthy humans. However, the effect of a chronic administration of PDE5i, particularly combined with physical exercise, has never been investigated. The present study was designed to evaluate the effect of the long-acting PDE5i tadalafil on oxidative status and muscle damage after exhaustive exercise in healthy males included in a double-blind crossover trial. Tadalafil, having a putative antioxidant activity, may reduce oxidative damage after strenuous exercise. Each volunteer randomly received two tablets of placebo or tadalafil (20 mg/day) with 36 h of interval before performing exhaustive exercise. After 2 weeks of washout, the volunteers were crossed over. Blood samples were collected immediately before exercise, immediately after, and during recovery (15, 30, 60 min). Plasma total antioxidant status, glutathione homeostasis (GSH/GSSG), malondialdehyde (MDA), protein carbonyls, creatine kinase (CK), lactate dehydrogenase (LDH) and the inflammatory cytokine interleukin 6 were assessed. Tadalafil administration per se affected redox homeostasis (GSH/GSSG -36%; p < 0.05), cellular (CK +75% and LDH +36%; p < 0.05) and oxidative damage (MDA +41% and protein carbonyls +50%; p < 0.05) markers. The exhaustive exercise increased all the above-reported biochemical parameters, with subjects from the tadalafil group showing significantly higher values with respect to the placebo group. A prolonged exposure to tadalafil decreases antioxidant capacity at resting condition, therefore making subjects more susceptible to the oxidative stress induced by an exhaustive bout of exercise.

  6. Effects of supplemental vitamin D and calcium on oxidative DNA damage marker in normal colorectal mucosa: a randomized clinical trial.

    PubMed

    Fedirko, Veronika; Bostick, Roberd M; Long, Qi; Flanders, W Dana; McCullough, Marjorie L; Sidelnikov, Eduard; Daniel, Carrie R; Rutherford, Robin E; Shaukat, Aasma

    2010-01-01

    The exact antineoplastic effects of calcium and vitamin D(3) in the human colon are unclear. Animal and in vitro studies show that these two agents reduce oxidative stress; however, these findings have never been investigated in humans. To address this, we conducted a pilot, randomized, double-blind, placebo-controlled, 2 x 2 factorial clinical trial to test the effects of calcium and vitamin D(3) on a marker of oxidative DNA damage, 8-hydroxy-2'-deoxyguanosine (8-OH-dG), in the normal colorectal mucosa. Patients (N = 92) with at least one pathology-confirmed colorectal adenoma were treated with 2 g/d calcium and/or 800 IU/d vitamin D(3) versus placebo over 6 months. Overall labeling and colorectal crypt distribution of 8-OH-dG in biopsies of normal-appearing rectal mucosa were detected by standardized automated immunohistochemistry and quantified by image analysis. After 6 months of treatment, 8-OH-dG labeling along the full lengths of colorectal crypts decreased by 22% (P = 0.15) and 25% (P = 0.10) in the calcium and vitamin D(3) groups, respectively, but not in the calcium plus vitamin D(3) group. The estimated treatment effects were strongest among participants with higher baseline colon crypt vitamin D receptor expression (P = 0.05). Overall, these preliminary results indicate that calcium and vitamin D(3) may decrease oxidative DNA damage in the normal human colorectal mucosa, support the hypothesis that 8-OH-dG labeling in colorectal crypts is a treatable oxidative DNA damage biomarker of risk for colorectal neoplasms, and provide support for further investigation of calcium and vitamin D(3) as chemopreventive agents against colorectal neoplasms.

  7. Oxidative DNA damage is instrumental in hyperreplication stress-induced inviability of Escherichia coli

    PubMed Central

    Charbon, Godefroid; Bjørn, Louise; Mendoza-Chamizo, Belén; Frimodt-Møller, Jakob; Løbner-Olesen, Anders

    2014-01-01

    In Escherichia coli, an increase in the ATP bound form of the DnaA initiator protein results in hyperinitiation and inviability. Here, we show that such replication stress is tolerated during anaerobic growth. In hyperinitiating cells, a shift from anaerobic to aerobic growth resulted in appearance of fragmented chromosomes and a decrease in terminus concentration, leading to a dramatic increase in ori/ter ratio and cessation of cell growth. Aerobic viability was restored by reducing the level of reactive oxygen species (ROS) or by deleting mutM (Fpg glycosylase). The double-strand breaks observed in hyperinitiating cells therefore results from replication forks encountering single-stranded DNA lesions generated while removing oxidized bases, primarily 8-oxoG, from the DNA. We conclude that there is a delicate balance between chromosome replication and ROS inflicted DNA damage so the number of replication forks can only increase when ROS formation is reduced or when the pertinent repair is compromised. PMID:25389264

  8. Antioxidant protective effect of glibenclamide and metformin in combination with honey in pancreas of streptozotocin-induced diabetic rats.

    PubMed

    Erejuwa, Omotayo Owomofoyon; Sulaiman, Siti Amrah; Wahab, Mohd Suhaimi Abdul; Salam, Sirajudeen Kuttulebbai Nainamohammed; Salleh, Md Salzihan Md; Gurtu, Sunil

    2010-05-05

    Hyperglycemia exerts toxic effects on the pancreatic beta-cells. This study investigated the hypothesis that the common antidiabetic drugs glibenclamide and metformin, in combination with tualang honey, offer additional protection for the pancreas of streptozotocin (STZ)-induced diabetic rats against oxidative stress and damage. Diabetes was induced in male Sprague Dawley rats by a single dose of STZ (60 mg/kg; ip). Diabetic rats had significantly elevated levels of lipid peroxidation (TBARS), up-regulated activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx) while catalase (CAT) activity was significantly reduced. Glibenclamide and metformin produced no significant effects on TBARS and antioxidant enzymes except GPx in diabetic rats. In contrast, the combination of glibenclamide, metformin and honey significantly up-regulated CAT activity and down-regulated GPx activity while TBARS levels were significantly reduced. These findings suggest that tualang honey potentiates the effect of glibenclamide and metformin to protect diabetic rat pancreas against oxidative stress and damage.

  9. H2S protects against methionine-induced oxidative stress in brain endothelial cells.

    PubMed

    Tyagi, Neetu; Moshal, Karni S; Sen, Utpal; Vacek, Thomas P; Kumar, Munish; Hughes, William M; Kundu, Soumi; Tyagi, Suresh C

    2009-01-01

    Homocysteine (Hcy) causes cerebrovascular dysfunction by inducing oxidative stress. However, to date, there are no strategies to prevent Hcy-induced oxidative damage. Hcy is an H2S precursor formed from methionine (Met) metabolism. We aimed to investigate whether H2S ameliorated Met-induced oxidative stress in mouse brain endothelial cells (bEnd3). The bEnd3 cells were exposed to Met treatment in the presence or absence of NaHS (donor of H2S). Met-induced cell toxicity increased the levels of free radicals in a concentration-dependent manner. Met increased NADPH-oxidase-4 (NOX-4) expression and mitigated thioredxion-1(Trx-1) expression. Pretreatment of bEnd3 with NaHS (0.05 mM) attenuated the production of free radicals in the presence of Met and protected the cells from oxidative damage. Furthermore, NaHS enhanced inhibitory effects of apocynin, N-acetyl-l-cysteine (NAC), reduced glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), Nomega-nitro-l-arginine methyl ester (L-NAME) on ROS production and redox enzymes levels induced by Met. In conclusion, the administration of H2S protected the cells from oxidative stress induced by hyperhomocysteinemia (HHcy), which suggested that NaHS/H2S may have therapeutic potential against Met-induced oxidative stress.

  10. Multiple protective effect of peptides released from Olea europaea and Prunus persica seeds against oxidative damage and cancer cell proliferation.

    PubMed

    Hernández-Corroto, Ester; Marina, María Luisa; García, María Concepción

    2018-04-01

    The long exposition to reactive species results in oxidative stress which has been related with the development of cancer and other serious diseases. Olea europaea and Prunus persica seeds present a high protein content and preliminary results demonstrated their high potency to obtain bioactive peptides. The protective effect against oxidative damage exerted by peptides released from Olea europaea and Prunus persica seeds has been evaluated in this work. Seed hydrolysates showed protection against oxidation through four different mechanisms: inhibition of the formation of hydroxyl radicals, scavenging of free radicals, reduction of oxidizing compounds, and inhibition of lipid peroxidation. Moreover, seed hydrolysates also reduced the oxidative stress induced by an oxidizing agent on human cancer cells. Despite protection evaluated by individual mechanisms seemed to be significantly affected by the seed genotype, overall protection of seed hydrolysates was not so different. Seeds hydrolysates were not cytotoxic on normal cells but they demonstrated antiproliferative effect on human cancer cells (HeLa, PC-3, and HT-29). Peptides in all seed hydrolysates were sequenced by RP-HPLC-ESI-Q-TOF. Eighteen common peptides were observed among olive seed hydrolysates while a wider variability was observed among Prunus seed hydrolysates. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Haloperidol-loaded lipid-core polymeric nanocapsules reduce DNA damage in blood and oxidative stress in liver and kidneys of rats

    NASA Astrophysics Data System (ADS)

    Roversi, Katiane; Benvegnú, Dalila M.; Roversi, Karine; Trevizol, Fabíola; Vey, Luciana T.; Elias, Fabiana; Fracasso, Rafael; Motta, Mariana H.; Ribeiro, Roseane F.; dos S. Hausen, Bruna; Moresco, Rafael N.; Garcia, Solange C.; da Silva, Cristiane B.; Burger, Marilise E.

    2015-04-01

    Haloperidol (HP) nanoencapsulation improves therapeutic efficacy, prolongs the drug action time, and reduces its motor side effects. However, in a view of HP toxicity in organs like liver and kidneys in addition to the lack of knowledge regarding the toxicity of polymeric nanocapsules, our aim was to verify the influence of HP-nanoformulation on toxicity and oxidative stress markers in the liver and kidneys of rats, also observing the damage caused in the blood. For such, 28 adult male Wistar rats were designated in four experimental groups ( n = 7) and treated with vehicle (C group), free haloperidol suspension (FH group), blank nanocapsules suspension (B-Nc group), and haloperidol-loaded lipid-core nanocapsules suspension (H-Nc group). The nanocapsules formulation presented the size of approximately 250 nm. All suspensions were administered to the animals (0.5 mg/kg/day-i.p.) for a period of 28 days. Our results showed that FH caused damage in the liver, evidenced by increased lipid peroxidation, plasma levels of aspartate aminotransferase, and alanine aminotransferase, as well as decreased cellular integrity and vitamin C levels. In kidneys, FH treatment caused damage to a lesser extent, observed by decreased activity of δ-aminolevulinate dehydratase (ALA-D) and levels of VIT C. In addition, FH treatment was also related to a higher DNA damage index in blood. On the other hand, animals treated with H-Nc and B-Nc did not show damage in liver, kidneys, and DNA. Our study indicates that the nanoencapsulation of haloperidol was able to prevent the sub-chronic toxicity commonly observed in liver, kidneys, and DNA, thus reflecting a pharmacological superiority in relation to free drug.

  12. Short-term ubiquinol supplementation reduces oxidative stress associated with strenuous exercise in healthy adults: A randomized trial.

    PubMed

    Sarmiento, Alvaro; Diaz-Castro, Javier; Pulido-Moran, Mario; Moreno-Fernandez, Jorge; Kajarabille, Naroa; Chirosa, Ignacio; Guisado, Isabel M; Javier Chirosa, Luis; Guisado, Rafael; Ochoa, Julio J

    2016-11-12

    Studies about Coenzyme Q 10 (CoQ 10 ) supplementation on strenuous exercise are scarce, especially those related with oxidative stress associated with physical activity and virtually nonexistent with the reduced form, Ubiquinol. The objective of this study was to determine, for the first time, whether a short-term supplementation with Ubiquinol can prevent oxidative stress associated to strenuous exercise. The participants (n = 100 healthy and well trained, but not on an elite level) were classified in two groups: Ubiquinol (experimental group), and placebo group (control). The protocol consisted of conducting two identical strenuous exercise tests with a rest period between tests of 24 h. Blood and urine samples were collected from the participants before supplementation (basal value) (T1), after supplementation (2 weeks) (T2), after first physical exercise test (T3), after 24 h of rest (T4), and after second physical exercise test (T5).The increase observed in the lactate, isoprostanes, DNA damage, and hydroperoxide levels reveals the severity of the oxidative damage induced by the exercise. There was a reduction in the isoprostanes, 8-OHdG, oxidized LDL, and hydroperoxydes in the supplemented Ubiquinol group, an increase in total antioxidant status, fat soluble antioxidant (both plasma and membrane), and CAT activity. Also, NO in the Ubiquinol-supplemented group was maintained within a narrow range. Oxidative stress induced by strenuous exercise is accumulative and increases transiently in subsequent sessions of physical activity. A short-term supplementation (2 weeks) with Ubiquinol (200 mg/day) before strenuous exercise, decreases oxidative stress and increases plasma NO, fact that could improve endothelial function, energetic substrate supply, and muscle recovery after strenuous exercise. © 2016 BioFactors, 42(6):612-622, 2016. © 2016 International Union of Biochemistry and Molecular Biology.

  13. Analysis of reactive oxygen metabolites (ROMs) after cardiovascular surgery as a marker of oxidative stress.

    PubMed

    Kanaoka, Yuji; Inagaki, Ei-ichirou; Hamanaka, Souhei; Masaki, Hisao; Tanemoto, Kazuo

    2010-10-01

    The transient systemic low perfusion that occurs during cardiovascular surgery leads to oxidative stress and the production of free radicals. A systemic increase of various markers of oxidative stress has been shown to occur during cardiopulmonary bypass (CPB). However, these markers have not been adequately evaluated because they seem to be reactive and short-lived. Here, oxidative stress was measured using the free radical analytical system (FRAS 4) assessing the derivatives of reactive oxygen metabolites (d-ROMs) and biological antioxidant potential (BAP). Blood samples were taken from 21 patients undergoing elective cardiovascular surgery. CPB was used in 15 patients, and abdominal aortic aneurysm (AAA) surgery without CPB was performed in 6. Measurements of d-ROMs and BAP were taken before surgery, 1 day, 1 week, and 2 weeks after surgery, and oxidative stress was evaluated. The d-ROM level increased gradually after cardiovascular surgery up to 2 weeks. Over time, the d-ROM level after surgery involving CPB became higher than that after AAA surgery. This difference reached statistical significance at 1 week and lasted to 2 weeks. The prolongation of CPB was prone to elevate the d-ROM level whereas the duration of the aortic clamp in AAA surgery had no relation to the d-ROM level. The BAP was also elevated after surgery, and was positively correlated with the level of d-ROMs. In this study, patients who underwent cardiovascular surgery involving CPB had significant oxidative damage. The production of ROMs was shown to depend on the duration of CPB. Damage can be reduced if CPB is avoided. When CPB must be used, shortening the CPB time may be effective in reducing oxidative stress.

  14. Vitamin E isoform γ-tocotrienol protects against emphysema in cigarette smoke-induced COPD.

    PubMed

    Peh, Hong Yong; Tan, W S Daniel; Chan, Tze Khee; Pow, Chen Wei; Foster, Paul S; Wong, W S Fred

    2017-09-01

    Inflammation and oxidative stress contribute to emphysema in COPD. Although corticosteroids are the standard of care for COPD, they do not reduce oxidative stress, and a subset of patients is steroid-resistant. Vitamin E isoform γ-tocotrienol possesses both anti-inflammatory and anti-oxidative properties that may protect against emphysema. We aimed to establish the therapeutic potential of γ-tocotrienol in cigarette smoke-induced COPD models in comparison with prednisolone. BALB/c mice were exposed to cigarette smoke for 2 weeks or 2 months. γ-Tocotrienol and prednisolone were given orally. Bronchoalveolar lavage (BAL) fluid and lung tissues were assessed for inflammation, oxidative damage, and regulation of transcription factor activities. Emphysema and lung function were also evaluated. γ-Tocotrienol dose-dependently reduced cigarette smoke-induced BAL fluid neutrophil counts and levels of cytokines, chemokines and oxidative damage biomarkers, and pulmonary pro-inflammatory and pro-oxidant gene expression, but restored lung endogenous antioxidant activities. γ-Tocotrienol acted by inhibiting nuclear translocation of STAT3 and NF-κB, and up-regulating Nrf2 activation in the lungs. In mice exposed to 2-month cigarette smoke, γ-tocotrienol ameliorated bronchial epithelium thickening and destruction of alveolar sacs in lungs, and improved lung functions. In comparison with prednisolone, γ-tocotrienol demonstrated better anti-oxidative efficacy, and protection against emphysema and lung function in COPD. We revealed for the first time the anti-inflammatory and antioxidant efficacies of γ-tocotrienol in cigarette smoke-induced COPD models. In addition, γ-tocotrienol was able to attenuate emphysematous lesions and improve lung function in COPD. γ-Tocotrienol may have therapeutic potential for the treatment of COPD. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Vitamin E Supplementation Ameliorates Newcastle Disease Virus-Induced Oxidative Stress and Alleviates Tissue Damage in the Brains of Chickens

    PubMed Central

    Rehman, Zaib Ur; Qiu, Xusheng; Sun, Yingjie; Liao, Ying; Tan, Lei; Song, Cuiping; Yu, Shengqing; Ding, Zhuang; Nair, Venugopal; Meng, Chunchun; Ding, Chan

    2018-01-01

    Newcastle disease (ND), characterized by visceral, respiratory, and neurological pathologies, causes heavy economic loss in the poultry industry around the globe. While significant advances have been made in effective diagnosis and vaccine development, molecular mechanisms of ND virus (NDV)-induced neuropathologies remain elusive. In this study, we report the magnitude of oxidative stress and histopathological changes induced by the virulent NDV (ZJ1 strain) and assess the impact of vitamin E in alleviating these pathologies. Comparative profiling of plasma and brains from mock and NDV-infected chicken demonstrated alterations in several oxidative stress makers such as nitric oxide, glutathione, malondialdehyde, total antioxidant capacity, glutathione S-transferase, superoxide dismutase, and catalases. While decreased levels of glutathione and total antioxidant capacity and increased concentrations of malondialdehyde and nitric oxide were observed in NDV-challenged birds at all time points, these alterations were eminent at latter time points (5 days post infection). Additionally, significant decreases in the activities of glutathione S-transferase, superoxide dismutase, and catalase were observed in the plasma and brains collected from NDV-infected chickens. Intriguingly, we observed that supplementation of vitamin E can significantly reduce the alteration of oxidative stress parameters. Under NDV infection, extensive histopathological alterations were observed in chicken brain including neural inflammation, capillary hyperemia, necrosis, and loss of prominent axons, which were reduced with the treatment of vitamin E. Taken together, our findings highlight that neurotropic NDV induces extensive tissue damage in the brain and alters plasma oxidative stress profiles. These findings also demonstrate that supplementing vitamin E ameliorates these pathologies in chickens and proposes its supplementation for NDV-induced stresses. PMID:29614025

  16. Topical Formulation Containing Naringenin: Efficacy against Ultraviolet B Irradiation-Induced Skin Inflammation and Oxidative Stress in Mice

    PubMed Central

    Martinez, Renata M.; Pinho-Ribeiro, Felipe A.; Steffen, Vinicius S.; Silva, Thais C. C.; Caviglione, Carla V.; Bottura, Carolina; Fonseca, Maria J. V.; Vicentini, Fabiana T. M. C.; Vignoli, Josiane A.; Baracat, Marcela M.; Georgetti, Sandra R.; Verri, Waldiceu A.; Casagrande, Rubia

    2016-01-01

    Naringenin (NGN) exhibits anti-inflammatory and antioxidant activities, but it remains undetermined its topical actions against ultraviolet B (UVB)-induced inflammation and oxidative stress in vivo. The purpose of this study was to evaluate the physicochemical and functional antioxidant stability of NGN containing formulations, and the effects of selected NGN containing formulation on UVB irradiation-induced skin inflammation and oxidative damage in hairless mice. NGN presented ferric reducing power, ability to scavenge 2,2′-azinobis (3-ethylbenzothiazoline- 6-sulfonic acid) (ABTS) and hydroxyl radical, and inhibited iron-independent and dependent lipid peroxidation. Among the three formulations containing NGN, only the F3 kept its physicochemical and functional stability over 180 days. Topical application of F3 in mice protected from UVB-induced skin damage by inhibiting edema and cytokine production (TNF-α, IL-1β, IL-6, and IL-10). Furthermore, F3 inhibited superoxide anion and lipid hydroperoxides production and maintained ferric reducing and ABTS scavenging abilities, catalase activity, and reduced glutathione levels. In addition, F3 maintained mRNA expression of cellular antioxidants glutathione peroxidase 1, glutathione reductase and transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2), and induced mRNA expression of heme oxygenase-1. In conclusion, a formulation containing NGN may be a promising approach to protecting the skin from the deleterious effects of UVB irradiation. PMID:26741806

  17. Lycopene inhibits regulator of calcineurin 1-mediated apoptosis by reducing oxidative stress and down-regulating Nucling in neuronal cells.

    PubMed

    Lim, Seiyoung; Hwang, Sinwoo; Yu, Ji Hoon; Lim, Joo Weon; Kim, Hyeyoung

    2017-05-01

    Regulator of calcineurin 1 (RCAN1) is located on the Down syndrome critical region (DSCR) locus in human chromosome 21. Oxidative stress and overexpression of RCAN1 are implicated in neuronal impairment in Down's syndrome (DS) and Alzheimer's disease (AD). Serum level of lycopene, an antioxidant pigment, is low in DS and AD patients, which may be related to neuronal damage. The present study is to investigate whether lycopene inhibits apoptosis by reducing ROS levels, NF-κB activation, expression of the apoptosis regulator Nucling, cell viability, and indices of apoptosis (cytochrome c release, caspase-3 activation) in RCAN1-overexpressing neuronal cells. Cells transfected with either pcDNA or RCAN1 were treated with or without lycopene. Lycopene decreased intracellular and mitochondrial ROS levels, NF-κB activity, and Nucling expression while it reversed decrease in mitochondrial membrane potential, mitochondrial respiration, and glycolytic function in RCAN1-overexpressing cells. Lycopene inhibited cell death, DNA fragmentation, caspase-3 activation, and cytochrome c release in RCAN1-overexpressing cells. Lycopene inhibits RCAN1-mediated apoptosis by reducing ROS levels and by inhibiting NF-κB activation, Nucling induction, and the increase in apoptotic indices in neuronal cells. Consumption of lycopene-rich foods may prevent oxidative stress-associated neuronal damage in some pathologic conditions such as DS or AD. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Neuroprotective effect of astaxanthin against rat retinal ganglion cell death under various stresses that induce apoptosis and necrosis.

    PubMed

    Yamagishi, Reiko; Aihara, Makoto

    2014-01-01

    Astaxanthin is a type of carotenoid known to have strong antioxidant effects. The purpose of this study was to investigate whether astaxanthin confers a neuroprotective effect against glutamate stress, oxidative stress, and hypoxia-induced apoptotic or necrotic cell death in primary cultures of rat retinal ganglion cells (RGCs). Purified rat RGCs were exposed to three kinds of stressors induced by 25 μM glutamate for 72 h, B27 medium without an antioxidant for 4 h, and a reduced oxygen level of 5% for 12 h. Each assay was repeated 12 times, with or without 1 nM, 10 nM, and 100 nM astaxanthin. The number of live RGCs was then counted using a cell viability assay. RGC viability in each condition was evaluated and compared with controls. In addition, we measured apoptosis and DNA damage. We found that under glutamate stress, RGC viability was reduced to 58%. Cultures with 1 nM, 10 nM, and 100 nM astaxanthin showed an increase in RGC viability of 63%, 74%, and 84%, respectively. Under oxidative stress, RGC viability was reduced to 40%, and astaxanthin administration resulted in increased viability of 43%, 50%, and 67%, respectively. Under hypoxia, RGC viability was reduced to 66%, and astaxanthin administration resulted in a significant increase in viability to 67%, 77%, and 93%, respectively. These results indicate that 100 nM astaxanthin leads to a statistically significant increase in RGC viability under the three kinds of stressors tested, compared to controls (Dunnett's test, p<0.05). The apoptotic activity of RGCs under glutamate stress increased to 32%, but was reduced to 15% with 100 nM astaxanthin administration. Glutamate stress led to a 58% increase in DNA damage, which was reduced to 43% when cultured with 100 nM astaxanthin. Thus, 100 nM astaxanthin showed a statistically significant reduction in apoptosis and DNA damage in RGCs (Wilcoxon rank-sum test, p<0.05). Our results suggest that astaxanthin has a neuroprotective effect against RGC death induced by glutamate stress, oxidative stress, and hypoxia, which induce apoptotic and necrotic cell death.

  19. Root Damage under Alkaline Stress Is Associated with Reactive Oxygen Species Accumulation in Rice (Oryza sativa L.)

    PubMed Central

    Zhang, Hui; Liu, Xiao-Long; Zhang, Rui-Xue; Yuan, Hai-Yan; Wang, Ming-Ming; Yang, Hao-Yu; Ma, Hong-Yuan; Liu, Duo; Jiang, Chang-Jie; Liang, Zheng-Wei

    2017-01-01

    Alkaline stress (high pH) severely damages root cells, and consequently, inhibits rice (Oryza sativa L.) seedling growth. In this study, we demonstrate the accumulation of reactive oxygen species (ROS) in root cells under alkaline stress. Seedlings of two rice cultivars with different alkaline tolerances, ‘Dongdao-4’ (moderately alkaline-tolerant) and ‘Jiudao-51’ (alkaline-sensitive), were subjected to alkaline stress simulated by 15 mM sodium carbonate (Na2CO3). Alkaline stress greatly reduced seedling survival rate, shoot and root growth, and root vigor. Moreover, severe root cell damage was observed under alkaline stress, as shown by increased membrane injury, malondialdehyde accumulation, and Evan’s Blue staining. The expression of the cell death-related genes OsKOD1, OsHsr203j, OsCP1, and OsNAC4 was consistently upregulated, while that of a cell death-suppressor gene, OsBI1, was downregulated. Analysis of the ROS contents revealed that alkaline stress induced a marked accumulation of superoxide anions (O2•-) and hydrogen peroxide (H2O2) in rice roots. The application of procyanidins (a potent antioxidant) to rice seedlings 24 h prior to alkaline treatment significantly alleviated alkalinity-induced root damage and promoted seedling growth inhibition, which were concomitant with reduced ROS accumulation. These results suggest that root cell damage, and consequently growth inhibition, of rice seedlings under alkaline stress is closely associated with ROS accumulation. The antioxidant activity of superoxide dismutase, catalase, peroxidase, and ascorbate peroxidase increased under alkaline stress in the roots, probably in response to the cellular damage induced by oxidative stress. However, this response mechanism may be overwhelmed by the excess ROS accumulation observed under stress, resulting in oxidative damage to root cells. Our findings provide physiological insights into the molecular mechanisms of alkalinity-induced damage to root cells, and will contribute to the improvement of alkaline stress tolerance in rice plants. PMID:28943882

  20. Root Damage under Alkaline Stress Is Associated with Reactive Oxygen Species Accumulation in Rice (Oryza sativa L.).

    PubMed

    Zhang, Hui; Liu, Xiao-Long; Zhang, Rui-Xue; Yuan, Hai-Yan; Wang, Ming-Ming; Yang, Hao-Yu; Ma, Hong-Yuan; Liu, Duo; Jiang, Chang-Jie; Liang, Zheng-Wei

    2017-01-01

    Alkaline stress (high pH) severely damages root cells, and consequently, inhibits rice ( Oryza sativa L.) seedling growth. In this study, we demonstrate the accumulation of reactive oxygen species (ROS) in root cells under alkaline stress. Seedlings of two rice cultivars with different alkaline tolerances, 'Dongdao-4' (moderately alkaline-tolerant) and 'Jiudao-51' (alkaline-sensitive), were subjected to alkaline stress simulated by 15 mM sodium carbonate (Na 2 CO 3 ). Alkaline stress greatly reduced seedling survival rate, shoot and root growth, and root vigor. Moreover, severe root cell damage was observed under alkaline stress, as shown by increased membrane injury, malondialdehyde accumulation, and Evan's Blue staining. The expression of the cell death-related genes OsKOD1 , OsHsr203j , OsCP1 , and OsNAC4 was consistently upregulated, while that of a cell death-suppressor gene, OsBI1 , was downregulated. Analysis of the ROS contents revealed that alkaline stress induced a marked accumulation of superoxide anions ([Formula: see text]) and hydrogen peroxide (H 2 O 2 ) in rice roots. The application of procyanidins (a potent antioxidant) to rice seedlings 24 h prior to alkaline treatment significantly alleviated alkalinity-induced root damage and promoted seedling growth inhibition, which were concomitant with reduced ROS accumulation. These results suggest that root cell damage, and consequently growth inhibition, of rice seedlings under alkaline stress is closely associated with ROS accumulation. The antioxidant activity of superoxide dismutase, catalase, peroxidase, and ascorbate peroxidase increased under alkaline stress in the roots, probably in response to the cellular damage induced by oxidative stress. However, this response mechanism may be overwhelmed by the excess ROS accumulation observed under stress, resulting in oxidative damage to root cells. Our findings provide physiological insights into the molecular mechanisms of alkalinity-induced damage to root cells, and will contribute to the improvement of alkaline stress tolerance in rice plants.

  1. Effects of rutin on the redox reactions of hemoglobin.

    PubMed

    Lu, Naihao; Ding, Yun; Yang, Zhen; Gao, Pingzhang

    2016-08-01

    Flavonoids are widely used to attenuate oxidative damage in vitro and in vivo. In this study, we investigated the influence of rutin (quercetin-3-rhamnosylglucoside) on hemoglobin (Hb)- dependent redox reactions, i.e. oxidative stability of Hb and its cytotoxic ferryl intermediate. It was found that rutin induced generation of H2O2, which in turn oxidized Hb rapidly. Meanwhile, rutin exhibited anti-oxidant effect by effectively reducing ferryl intermediate back to ferric Hb at physiological pH. In comparison with quercetin, rutin had stronger capability on reducing ferryl species while lesser pro-oxidant effect on H2O2 generation, thus it exhibited more protective effect on H2O2-induced Hb oxidation. Circular dichroism spectrum showed no significant change in the secondary structure of Hb after flavonoid addition, while molecular docking revealed different binding modes of quercetin and rutin with Hb. These results might provide new insights into the potential nutritional and physiological implications of rutin and quercetin with redox active heme proteins regarding their ani- and pro-oxidant effects. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Bacopa monnieri as an Antioxidant Therapy to Reduce Oxidative Stress in the Aging Brain

    PubMed Central

    Simpson, Tamara; Pase, Matthew; Stough, Con

    2015-01-01

    The detrimental effect of neuronal cell death due to oxidative stress and mitochondrial dysfunction has been implicated in age-related cognitive decline and neurodegenerative disorders such as Alzheimer's disease. The Indian herb Bacopa monnieri is a dietary antioxidant, with animal and in vitro studies indicating several modes of action that may protect the brain against oxidative damage. In parallel, several studies using the CDRI08 extract have shown that extracts of Bacopa monnieri improve cognitive function in humans. The biological mechanisms of this cognitive enhancement are unknown. In this review we discuss the animal studies and in vivo evidence for Bacopa monnieri as a potential therapeutic antioxidant to reduce oxidative stress and improve cognitive function. We suggest that future studies incorporate neuroimaging particularly magnetic resonance spectroscopy into their randomized controlled trials to better understand whether changes in antioxidant status in vivo cause improvements in cognitive function. PMID:26413126

  3. Metallothionein blocks oxidative DNA damage induced by acute inorganic arsenic exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qu, Wei, E-mail: qu@niehs.nih.gov; Waalkes, Michael P.

    We studied how protein metallothionein (MT) impacts arsenic-induced oxidative DNA damage (ODD) using cells that poorly express MT (MT-I/II double knockout embryonic cells; called MT-null cells) and wild-type (WT) MT competent cells. Arsenic (as NaAsO{sub 2}) was less cytolethal over 24 h in WT cells (LC{sub 50} = 11.0 ± 1.3 μM; mean ± SEM) than in MT-null cells (LC{sub 50} = 5.6 ± 1.2 μM). ODD was measured by the immuno-spin trapping method. Arsenic (1 or 5 μM; 24 h) induced much less ODD in WT cells (121% and 141% of control, respectively) than in MT-null cells (202% andmore » 260%). In WT cells arsenic caused concentration-dependent increases in MT expression (transcript and protein), and in the metal-responsive transcription factor-1 (MTF-1), which is required to induce the MT gene. In contrast, basal MT levels were not detectable in MT-null cells and unaltered by arsenic exposure. Transfection of MT-I gene into the MT-null cells markedly reduced arsenic-induced ODD levels. The transport genes, Abcc1 and Abcc2 were increased by arsenic in WT cells but either showed no or very limited increases in MT-null cells. Arsenic caused increases in oxidant stress defense genes HO-1 and GSTα2 in both WT and MT-null cells, but to much higher levels in WT cells. WT cells appear more adept at activating metal transport systems and oxidant response genes, although the role of MT in these responses is unclear. Overall, MT protects against arsenic-induced ODD in MT competent cells by potential sequestration of scavenging oxidant radicals and/or arsenic. - Highlights: • Metallothionein blocks arsenic toxicity. • Metallothionein reduces arsenic-induced DNA damage. • Metallothionein may bind arsenic or radicals produced by arsenic.« less

  4. Role of Oxidative Damage in Radiation-Induced Bone Loss

    NASA Technical Reports Server (NTRS)

    Schreurs, Ann-Sofie; Alwood, Joshua S.; Limoli, Charles L.; Globus, Ruth K.

    2014-01-01

    During prolonged spaceflight, astronauts are exposed to both microgravity and space radiation, and are at risk for increased skeletal fragility due to bone loss. Evidence from rodent experiments demonstrates that both microgravity and ionizing radiation can cause bone loss due to increased bone-resorbing osteoclasts and decreased bone-forming osteoblasts, although the underlying molecular mechanisms for these changes are not fully understood. We hypothesized that excess reactive oxidative species (ROS), produced by conditions that simulate spaceflight, alter the tight balance between osteoclast and osteoblast activities, leading to accelerated skeletal remodeling and culminating in bone loss. To test this, we used the MCAT mouse model; these transgenic mice over-express the human catalase gene targeted to mitochondria, the major organelle contributing free radicals. Catalase is an anti-oxidant that converts reactive species, hydrogen peroxide into water and oxygen. This animal model was selected as it displays extended lifespan, reduced cardiovascular disease and reduced central nervous system radio-sensitivity, consistent with elevated anti-oxidant activity conferred by the transgene. We reasoned that mice overexpressing catalase in mitochondria of osteoblast and osteoclast lineage cells would be protected from the bone loss caused by simulated spaceflight. Over-expression of human catalase localized to mitochondria caused various skeletal phenotypic changes compared to WT mice; this includes greater bone length, decreased cortical bone area and moment of inertia, and indications of altered microarchitecture. These findings indicate mitochondrial ROS are important for normal bone-remodeling and skeletal integrity. Catalase over-expression did not fully protect skeletal tissue from structural decrements caused by simulated spaceflight; however there was significant protection in terms of cellular oxidative damage (MDA levels) to the skeletal tissue. Furthermore, we used an array of countermeasures (Antioxidant diets and injections) to prevent the radiation-induced bone loss, although these did not prevent bone loss, analysis is ongoing to determine if these countermeasure protected radiation-induced damage to other tissues.

  5. Protective effects of Mangifera indica L. extract, mangiferin and selected antioxidants against TPA-induced biomolecules oxidation and peritoneal macrophage activation in mice.

    PubMed

    Sánchez, G M; Re, L; Giuliani, A; Núñez-Sellés, A J; Davison, G P; León-Fernández, O S

    2000-12-01

    We compared the protective abilities of Mangifera indica L. stem bark extract (Vimang) 50-250 mgkg(-1), mangiferin 50 mgkg(-1), vitamin C 100 mgkg(-1), vitamin E 100 mgkg(-1)and beta -carotene 50 mgkg(-1)against the 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced oxidative damage in serum, liver, brain as well as in the hyper-production of reactive oxygen species (ROS) by peritoneal macrophages. The treatment of mice with Vimang, vitamin E and mangiferin reduced the TPA-induced production of ROS by the peritoneal macrophages by 70, 17 and 44%, respectively. Similarly, the H(2)O(2)levels were reduced by 55-73, 37 and 40%, respectively, when compared to the control group. The TPA-induced sulfhydryl group loss in liver homogenates was attenuated by all the tested antioxidants. Vimang, mangiferin, vitamin C plus E and beta -carotene decreased TPA-induced DNA fragmentation by 46-52, 35, 42 and 17%, respectively, in hepatic tissues, and by 29-34, 22, 41 and 17%, in brain tissues. Similar results were observed in respect to lipid peroxidation in serum, in hepatic mitochondria and microsomes, and in brain homogenate supernatants. Vimang exhibited a dose-dependent inhibition of TPA-induced biomolecule oxidation and of H(2)O(2)production by peritoneal macrophages. Even if Vimang, as well as other antioxidants, provided significant protection against TPA-induced oxidative damage, the former lead to better protection when compared with the other antioxidants at the used doses. Furthermore, the results indicated that Vimang is bioavailable for some vital target organs, including liver and brain tissues, peritoneal exudate cells and serum. Therefore, we conclude that Vimang could be useful to prevent the production of ROS and the oxidative tissue damages in vivo. Copyright 2000 Academic Press.

  6. Hepatoprotective effect of 10% ethanolic extract from Curdrania tricuspidata leaves against ethanol-induced oxidative stress through suppression of CYP2E1.

    PubMed

    You, Yanghee; Min, Seoyoung; Lee, Yoo-Hyun; Hwang, Kwontack; Jun, Woojin

    2017-10-01

    The hepatoprotective effect of 10% ethanolic extract of Curdrania tricuspidata (CTE) was investigated in HepG2/2E1 cells and C57BL/6 J mice. When compared ethanol-only treated HepG2/2E1 cells, pretreatment of CTE prevented increased intra-cellular reactive oxygen species levels and decreased antioxidant activities by ethanol-induced oxidative stress. In C57BL/6 J mice, CTE at a dose of 250 mg/kg/day was administered for 10 days, with ethanol (5 g/kg/day) administered for the final 3 days. Pretreatment with CTE prevented the elevated activities of serum aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase caused by ethanol-induced hepatic damage. CTE-treated mice displayed a reduced level of malondialdehyde and increased antioxidant activities of catalase, glutathione S-transferase, glutathione peroxidase, and superoxide dismutase, as well as a reduced level of glutathione as compared with ethanol-only-treated mice. CTE-treated mice exhibited significant inhibition of CYP2E1 activities and expression. These results suggest that CTE could be a useful agent for the prevention of ethanol-induced oxidative damage in the liver, elevating antioxidative potentials and alleviating oxidative stress by suppressing CYP2El. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Blocking RhoA/ROCK inhibits the pathogenesis of pemphigus vulgaris by suppressing oxidative stress and apoptosis through TAK1/NOD2-mediated NF-κB pathway.

    PubMed

    Liang, Junqin; Zeng, Xuewen; Halifu, Yilinuer; Chen, Wenjing; Hu, Fengxia; Wang, Peng; Zhang, Huan; Kang, Xiaojing

    2017-12-01

    Oxidative stress and apoptosis play critical roles in pemphigus vulgaris (PV). The main aim of the present study was to investigate the effects of RhoA/ROCK signaling on UVB-induced oxidative damage, and to delineate the molecular mechanisms involved in the UVB-mediated inflammatory and apoptotic response. In HaCaT cells, we observed that blockage of RhoA/ROCK signaling with the inhibitor CT04 or Y27632 greatly inhibited the UVB-mediated increase in intracellular reactive oxygen species (ROS). Additionally, inhibition of RhoA/ROCK signaling reduced UVB-induced apoptosis, as exemplified by a reduction in DNA fragmentation, and also elevated anti-apoptotic Bcl-2 protein, concomitant with reduced levels of pro-apoptotic protein Bax, caspase-3 cleavage and decreased PARP-1 protein. The release of inflammatory mediators TNF-α, IL-1β, and IL-6 was also attenuated. Mechanically, we observed that blockage of RhoA/ROCK repressed the TAK1/NOD2-mediated NF-κB pathway in HaCaT cells exposed to UVB. Taken together, these data reveal that RhoA/ROCK signaling is one of the regulators contributing to oxidative damage and apoptosis in human keratinocytes, suggesting that RhoA/ROCK signaling has strong potential to be used as a useful therapeutic target in skin diseases including PV.

  8. Studies on the protective effect of dietary fish oil on uranyl-nitrate-induced nephrotoxicity and oxidative damage in rat kidney.

    PubMed

    Priyamvada, Shubha; Khan, Sara A; Khan, Md Wasim; Khan, Sheeba; Farooq, Neelam; Khan, Farah; Yusufi, A N K

    2010-01-01

    Human and animal exposure demonstrates that uranium is nephrotoxic. However, attempts to reduce it were not found suitable for clinical use. Dietary fish oil (FO) enriched in omega-3 fatty acids reduces the severity of cardiovascular and renal diseases. Present study investigates the protective effect of FO on uranyl nitrate (UN)-induced renal damage. Rats prefed with experimental diets for 15 days, given single nephrotoxic dose of UN (0.5mg/kg body weight) intraperitoneally. After 5d of UN treatment, serum/urine parameters, enzymes of carbohydrate metabolism, brush border membrane (BBM), oxidative stress and phosphate transport were analyzed in rat kidney. UN nephrotoxicity was characterized by increased serum creatinine and blood urea nitrogen. UN increased the activity of lactate dehydrogenase and NADP-malic enzyme whereas decreased malate, isocitrate and glucose-6-phophate dehydrogenases; glucose-6-phophatase, fructose-1, 6-bisphosphatase and BBM enzyme activities. UN caused oxidant/antioxidant imbalances as reflected by increased lipid peroxidation, activities of superoxide dismutase, glutathione peroxidase and decreased catalase activity. Feeding FO alone increased activities of enzymes of glucose metabolism, BBM, oxidative stress and Pi transport. UN-elicited alterations were prevented by FO feeding. However, corn oil had no such effects and was not similarly effective. In conclusion, FO appears to protect against UN-induced nephrotoxicity by improving energy metabolism and antioxidant defense mechanism. Copyright 2009 Elsevier Ltd. All rights reserved.

  9. Oxidative Inactivation of Liver Mitochondria in High Fructose Diet-Induced Metabolic Syndrome in Rats: Effect of Glycyrrhizin Treatment.

    PubMed

    Sil, Rajarshi; Chakraborti, Abhay Sankar

    2016-09-01

    Metabolic syndrome is a serious health problem in the present world. Glycyrrhizin, a triterpenoid saponin of licorice (Glycyrrhiza glabra) root, has been reported to ameliorate the primary complications and hepatocellular damage in rats with the syndrome. In this study, we have explored metabolic syndrome-induced changes in liver mitochondrial function and effect of glycyrrhizin against the changes. Metabolic syndrome was induced in rats by high fructose (60%) diet for 6 weeks. The rats were then treated with glycyrrhizin (50 mg/kg body weight) by single intra-peritoneal injection. After 2 weeks of the treatment, the rats were sacrificed to collect liver tissue. Elevated mitochondrial ROS, lipid peroxidation and protein carbonyl, and decreased reduced glutathione content indicated oxidative stress in metabolic syndrome. Loss of mitochondrial inner membrane cardiolipin was observed. Mitochondrial complex I activity did not change but complex IV activity decreased significantly. Mitochondrial MTT reduction ability, membrane potential, phosphate utilisation and oxygen consumption decreased in metabolic syndrome. Reduced mitochondrial aconitase activity and increased aconitase carbonyl content suggested oxidative damage of the enzyme. Elevated Fe(2+) ion level in mitochondria might be associated with increased ROS generation in metabolic syndrome. Glycyrrhizin effectively attenuated mitochondrial oxidative stress and aconitase degradation, and improved electron transport chain activity. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Neuroprotection by Curcumin in Ischemic Brain Injury Involves the Akt/Nrf2 Pathway

    PubMed Central

    Wu, Jingxian; Li, Qiong; Wang, Xiaoyan; Yu, Shanshan; Li, Lan; Wu, Xuemei; Chen, Yanlin; Zhao, Jing; Zhao, Yong

    2013-01-01

    Oxidative damage plays a critical role in many diseases of the central nervous system. This study was conducted to determine the molecular mechanisms involved in the putative anti-oxidative effects of curcumin against experimental stroke. Oxygen and glucose deprivation/reoxygenation (OGD/R) was used to mimic ischemic insult in primary cultured cortical neurons. A rapid increase in the intracellular expression of NAD(P)H: quinone oxidoreductase1 (NQO1) induced by OGD was counteracted by curcumin post-treatment, which paralleled attenuated cell injury. The reduction of phosphorylation Akt induced by OGD was restored by curcumin. Consequently, NQO1 expression and the binding activity of nuclear factor-erythroid 2-related factor 2 (Nrf2) to antioxidant response element (ARE) were increased. LY294002 blocked the increase in phospho-Akt evoked by curcumin and abolished the associated protective effect. Adult male Sprague-Dawley rats were subjected to transient middle cerebral artery occlusion for 60 minutes. Curcumin administration significantly reduced infarct size. Curcumin also markedly reduced oxidative stress levels in middle cerebral artery occlusion (MCAO) rats; hence, these effects were all suppressed by LY294002. Taken together, these findings provide evidence that curcumin protects neurons against ischemic injury, and this neuroprotective effect involves the Akt/Nrf2 pathway. In addition, Nrf2 is involved in the neuroprotective effects of curcumin against oxidative damage. PMID:23555802

  11. DNA damage, DNA susceptibility to oxidation and glutathione redox status in patients with Alzheimer's disease treated with and without memantine.

    PubMed

    Akkaya, Çağlayan; Yavuzer, Serap Sahin; Yavuzer, Hakan; Erkol, Gökhan; Bozluolcay, Melda; Dinçer, Yıldız

    2017-07-15

    The aim of the current study was to compare oxidative DNA damage, DNA susceptibility to oxidation, and ratio of GSH/GSSG in patients with Alzheimer's disease (AD) treated with acetylcholinesterase inhibitor (AChEI) and combined AChEI+memantine. The study included 67 patients with AD and 42 volunteers as control. DNA damage parameters (strand breaks, oxidized purines, H 2 O 2 -induced DNA damage) in lymphocyte DNA and GSH/GSSG ratio in erythrocytes were determined by the comet assay and spectrophotometric assay, respectively. DNA damage was found to be higher, GSH/GSSG ratio was found to be lower in the AD group than those in the control group. DNA strand breaks and H 2 O 2 -induced DNA damage were lower in the patients taking AChEI+memantine than those in the patients taking AChEI but no significant difference was determined between the groups for oxidized purines and GSH/GSSG ratio. In conclusion, increased systemic oxidative DNA damage and DNA susceptibility to oxidation may be resulted from diminished GSH/GSSG ratio in AD patients. Although DNA strand breaks and H 2 O 2 -induced DNA damage are lower in the AD patients treated with combined AChEI and memantine, this may not indicate protective effect of memantine against DNA oxidation due to similar levels of oxidized purines in the patients treated with AChEI and AChEI+memantine. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Cadmium-induced oxidative stress and histological damage in the myocardium. Effects of a soy-based diet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferramola, Mariana L.; Pérez Díaz, Matías F.F.; Honoré, Stella M.

    Cd exposure has been associated to an augmented risk for cardiovascular disease. We investigated the effects of 15 and 100 ppm of Cd on redox status as well as histological changes in the rat heart and the putative protective effect of a soy-based diet. Male Wistar rats were separated into 6 groups and treated during 60 days as follows: groups (1), (2) and (3) were fed a casein-based diet; groups (4), (5) and (6), a soy-based diet; (1) and (4) were given tap water; (2) and (5) tap water containing 15 ppm of Cd{sup 2+}; and (3) and (6) tapmore » water containing 100 ppm of Cd{sup 2+}. Serum lipid peroxides increased and PON-1 activity decreased in group (3). Lipoperoxidation also increased in the heart of all intoxicated groups; however protein oxidation only augmented in (3) and reduced glutathione levels diminished in (2) and (3). Catalase activity increased in groups (3) and (6) while superoxide dismutase activity increased only in (6). Glutathione peroxidase activity decreased in groups (3) and (6). Nrf2 expression was higher in groups (3) and (6), and MTI expression augmented in (3). Histological examination of the heart tissue showed the development of hypertrophic and fusion of cardiomyocytes along with foci of myocardial fiber necrosis. The transmission electron microscopy analysis showed profound ultra-structural damages. No protection against tissue degeneration was observed in animals fed the soy-based diet. Our findings indicate that even though the intake of a soy-based diet is capable of ameliorating Cd induced oxidative stress, it failed in preventing cardiac damage. -- Highlights: ► Cd intoxication produces extracellular and ultrastructural damage in the myocardium. ► The intake of a soy-based diet ameliorated Cd-induced oxidative stress. ► Cd-induced myocardial damage wasn't prevented by the intake of a soy-based diet. ► Cd-induced myocardial degeneration may not be caused by oxidative stress generation. ► Histology evaluation is needed to establish the extent of Cd-induced cardiac damage.« less

  13. Impact of Plasma Electron Flux on Plasma Damage-Free Sputtering of Ultrathin Tin-Doped Indium Oxide Contact Layer on p-GaN for InGaN/GaN Light-Emitting Diodes.

    PubMed

    Son, Kwang Jeong; Kim, Tae Kyoung; Cha, Yu-Jung; Oh, Seung Kyu; You, Shin-Jae; Ryou, Jae-Hyun; Kwak, Joon Seop

    2018-02-01

    The origin of plasma-induced damage on a p -type wide-bandgap layer during the sputtering of tin-doped indium oxide (ITO) contact layers by using radiofrequency-superimposed direct current (DC) sputtering and its effects on the forward voltage and light output power (LOP) of light-emitting diodes (LEDs) with sputtered ITO transparent conductive electrodes (TCE) is systematically studied. Changing the DC power voltage from negative to positive bias reduces the forward voltages and enhances the LOP of the LEDs. The positive DC power drastically decreases the electron flux in the plasma obtained by plasma diagnostics using a cutoff probe and a Langmuir probe, suggesting that the repulsion of plasma electrons from the p -GaN surface can reduce plasma-induced damage to the p -GaN. Furthermore, electron-beam irradiation on p -GaN prior to ITO deposition significantly increases the forward voltages, showing that the plasma electrons play an important role in plasma-induced damage to the p -GaN. The plasma electrons can increase the effective barrier height at the ITO/deep-level defect (DLD) band of p -GaN by compensating DLDs, resulting in the deterioration of the forward voltage and LOP. Finally, the plasma damage-free sputtered-ITO TCE enhances the LOP of the LEDs by 20% with a low forward voltage of 2.9 V at 20 mA compared to LEDs with conventional e-beam-evaporated ITO TCE.

  14. Isotope exchange in oxide-containing catalyst

    NASA Technical Reports Server (NTRS)

    Brown, Kenneth G. (Inventor); Upchurch, Billy T. (Inventor); Hess, Robert V. (Inventor); Miller, Irvin M. (Inventor); Schryer, David R. (Inventor); Sidney, Barry D. (Inventor); Wood, George M. (Inventor); Hoyt, Ronald F. (Inventor)

    1989-01-01

    A method of exchanging rare-isotope oxygen for common-isotope oxygen in the top several layers of an oxide-containing catalyst is disclosed. A sample of an oxide-containing catalyst is exposed to a flowing stream of reducing gas in an inert carrier gas at a temperature suitable for the removal of the reactive common-isotope oxygen atoms from the surface layer or layers of the catalyst without damaging the catalyst structure. The reduction temperature must be higher than any at which the catalyst will subsequently operate. Sufficient reducing gas is used to allow removal of all the reactive common-isotope oxygen atoms in the top several layers of the catalyst. The catalyst is then reoxidized with the desired rare-isotope oxygen in sufficient quantity to replace all of the common-isotope oxygen that was removed.

  15. Pharmacological activities of an eye drop containing Matricaria chamomilla and Euphrasia officinalis extracts in UVB-induced oxidative stress and inflammation of human corneal cells.

    PubMed

    Bigagli, Elisabetta; Cinci, Lorenzo; D'Ambrosio, Mario; Luceri, Cristina

    2017-08-01

    Ultraviolet B (UVB) exposure is a risk factor for corneal damage resulting in oxidative stress, inflammation and cell death. The aim of this study was to investigate the potential protective effects of a commercial eye drop (Dacriovis™) containing Matricaria chamomilla and Euphrasia officinalis extracts on human corneal epithelial cells (HCEC-12) against UVB radiation-induced oxidative stress and inflammation as well as the underlying mechanisms. The antioxidant potential of the eye drops was evaluated by measuring the ferric reducing antioxidant power and the total phenolic content by Folin-Ciocalteu reagent. HCEC-12 cells were exposed to UVB radiation and treated with the eye drops at various concentrations. Cell viability, wound healing assay, reactive oxygen species (ROS) levels, protein and lipid oxidative damage and COX-2, IL-1β, iNOS, SOD-2, HO-1 and GSS gene expression, were assessed. Eye drops were able to protect corneal epithelial cells from UVB-induced cell death and ameliorated the wound healing; the eye drops exhibited a strong antioxidant activity, decreasing ROS levels and protein and lipid oxidative damage. Eye drops also exerted anti-inflammatory activities by decreasing COX-2, IL-1β, iNOS expression, counteracted UVB-induced GSS and SOD-2 expression and restored HO-1 expression to control levels. These findings suggest that an eye drop containing Matricaria chamomilla and Euphrasia officinalis extracts exerts positive effects against UVB induced oxidative stress and inflammation and may be useful in protecting corneal epithelial cells from UVB exposure. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Aldehyde dehydrogenase 2 protects human umbilical vein endothelial cells against oxidative damage and increases endothelial nitric oxide production to reverse nitroglycerin tolerance.

    PubMed

    Hu, X Y; Fang, Q; Ma, D; Jiang, L; Yang, Y; Sun, J; Yang, C; Wang, J S

    2016-06-10

    Medical nitroglycerin (glyceryl trinitrate, GTN) use is limited principally by tolerance typified by a decrease in nitric oxide (NO) produced by biotransformation. Such tolerance may lead to endothelial dysfunction by inducing oxidative stress. In vivo studies have demonstrated that aldehyde dehydrogenase 2 (ALDH2) plays important roles in GTN biotransformation and tolerance. Thus, modification of ALDH2 expression represents a potentially effective strategy to prevent and reverse GTN tolerance and endothelial dysfunction. In this study, a eukaryotic expression vector containing the ALDH2 gene was introduced into human umbilical vein endothelial cells (HUVECs) by liposome-mediated transfection. An indirect immunofluorescence assay showed that ALDH2 expression increased 24 h after transfection. Moreover, real-time polymerase chain reaction and western blotting revealed significantly higher ALDH2 mRNA and protein expression in the gene-transfected group than in the two control groups. GTN tolerance was induced by treating HUVECs with 10 mM GTN for 16 h + 10 min, which significantly decreased NO levels in control cells, but not in those transfected with ALDH2. Overexpression of ALDH2 increased cell survival against GTN-induced cytotoxicity and conferred protection from oxidative damage resulting from nitrate tolerance, accompanied by decreased production of intracellular reactive oxygen species and reduced expression of heme oxygenase 1. Furthermore, ALDH2 overexpression promoted Akt phosphorylation under GTN tolerance conditions. ALDH2 gene transfection can reverse and prevent tolerance to GTN through its bioactivation and protect against oxidative damage, preventing the development of endothelial dysfunction.

  17. Protection against oxidative DNA damage and stress in human prostate by glutathione S-transferase P1

    PubMed Central

    Kanwal, Rajnee; Pandey, Mitali; Bhaskaran, Natarajan; MacLennan, Gregory T; Fu, Pingfu; Ponsky, Lee E; Gupta, Sanjay

    2014-01-01

    The pi-class glutathione S-transferase (GSTP1) actively protect cells from carcinogens and electrophilic compounds. Loss of GSTP1 expression via promoter hypermethylation is the most common epigenetic alteration observed in human prostate cancer. Silencing of GSTP1 can increase generation of reactive oxygen species (ROS) and DNA damage in cells. In this study we investigated whether loss of GSTP1 contributes to increased DNA damage that may predispose men to a higher risk of prostate cancer. We found significantly elevated (103%; P<0.0001) levels of 8-oxo-2′-deoxogunosine (8-OHdG), an oxidative DNA damage marker, in adenocarcinomas, compared to benign counterparts, which positively correlated (r=0.2) with loss of GSTP1 activity (34%; P<0.0001). Silencing of GSTP1 using siRNA approach in normal human prostate epithelial RWPE1 cells caused increased intracellular production of ROS and higher susceptibility of cells to H2O2-mediated oxidative stress. Additionally, human prostate carcinoma LNCaP cells, which contain a silenced GSTP1 gene, were genetically modified to constitutively express high levels of GSTP1. Induction of GSTP1 activity lowered endogenous ROS levels in LNCaP-pLPCX-GSTP1 cells, and when exposed to H2O2, these cells exhibited significantly reduced production of ROS and 8-OHdG levels, compared to vector control LNCaP-pLPCX cells. Furthermore, exposure of LNCaP cells to green tea polyphenols caused re-expression of GSTP1, which protected the cells from H2O2-mediated DNA damage through decreased ROS production compared to non-exposed cells. These results suggest that loss of GSTP1 expression in human prostate cells, a process that increases their susceptibility to oxidative stress-induced DNA damage, may be an important target for primary prevention of prostate cancer. PMID:22833520

  18. Protection of MOS capacitors during anodic bonding

    NASA Astrophysics Data System (ADS)

    Schjølberg-Henriksen, K.; Plaza, J. A.; Rafí, J. M.; Esteve, J.; Campabadal, F.; Santander, J.; Jensen, G. U.; Hanneborg, A.

    2002-07-01

    We have investigated the electrical damage by anodic bonding on CMOS-quality gate oxide and methods to prevent this damage. n-type and p-type MOS capacitors were characterized by quasi-static and high-frequency CV-curves before and after anodic bonding. Capacitors that were bonded to a Pyrex wafer with 10 μm deep cavities enclosing the capacitors exhibited increased leakage current and interface trap density after bonding. Two different methods were successful in protecting the capacitors from such damage. Our first approach was to increase the cavity depth from 10 μm to 50 μm, thus reducing the electric field across the gate oxide during bonding from approximately 2 × 105 V cm-1 to 4 × 104 V cm-1. The second protection method was to coat the inside of a 10 μm deep Pyrex glass cavity with aluminium, forming a Faraday cage that removed the electric field across the cavity during anodic bonding. Both methods resulted in capacitors with decreased interface trap density and unchanged leakage current after bonding. No change in effective oxide charge or mobile ion contamination was observed on any of the capacitors in the study.

  19. Synergistic effects of melatonin and deprenyl against MPTP-induced mitochondrial damage and DA depletion.

    PubMed

    Khaldy, Hoda; Escames, Germaine; León, Josefa; Bikjdaouene, Leila; Acuña-Castroviejo, Darío

    2003-01-01

    Previous studies showed a synergistic effect of melatonin and deprenyl against dopamine (DA) autoxidation in vitro. Since oxidative stress is implicated in Parkinson's disease (PD), we explored the effects of melatonin plus deprenyl administration in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD in C57/Bl6 mice. Melatonin, but not deprenyl prevents the inhibition of mitochondrial complex I and the oxidative damage in nigrostriatal neurons induced by MPTP. With the dose used deprenyl recovers 50% DA levels and tyrosine hydroxylase activity depressed by the neurotoxin, normalizing locomotor activity of mice. Melatonin, which was unable to counteract MPTP-induced DA depletion and inhibition of tyrosine hydroxylase activity, potentiates the effect of deprenyl on catecholamine turnover and mice ambulatory activity. These results suggest a dissociation of complex I inhibition from DA depletion in this model of Parkinson's disease. The data also support that a combination of melatonin, which improves mitochondrial electron transport chain and reduces oxidative damage, and deprenyl, which promotes the specific function of the rescued neurons, i.e. DA turnover, may be a promising strategy for the treatment of PD.

  20. Effects of melatonin on spinal cord injury-induced oxidative damage in mice testis.

    PubMed

    Yuan, X-C; Wang, P; Li, H-W; Wu, Q-B; Zhang, X-Y; Li, B-W; Xiu, R-J

    2017-09-01

    This study evaluated the effects of melatonin on spinal cord injury (SCI)-induced oxidative damage in testes. Adult male C57BL/6 mice were randomly divided into sham-, SCI- or melatonin (10 mg/kg, i.p.)-treated SCI groups. To induce SCI, a standard weight-drop method that induced a contusion injury at T10 was used. After 1 week, testicular blood flow velocity was measured using the Laser Doppler Line Scanner. Malondialdehyde (MDA), glutathione (GSH), oxidised glutathione (GSSG) and myeloperoxidase (MPO) were measured in testis homogenates. Microvascular permeability of the testes to Evan's Blue was examined by spectrophotometric and fluorescence microscopic quantitation. The tight junction protein zonula occludens-1 (ZO-1) and occludin in testes were assessed by immunoblot analysis. Melatonin increased the reduced blood flow and decreased SCI-induced permeability of capillaries. MDA levels and MPO activity were elevated in the SCI group compared with shams, which was reversed by melatonin. In contrast, SCI-induced reductions in GSH/GSSG ratio were restored by melatonin. Decreased expression of ZO-1 and occludin was observed, which was attenuated by melatonin. Overall, melatonin treatment protects the testes against oxidative stress damage caused by SCI. © 2016 Blackwell Verlag GmbH.

  1. Low-Temperature-Annealed Reduced Graphene Oxide-Polyaniline Nanocomposites for Supercapacitor Applications

    NASA Astrophysics Data System (ADS)

    Liao, Chen-Yu; Chien, Hung-Hua; Hao, Yu-Chuan; Chen, Chieh-Wen; Yu, Ing-Song; Chen, Jian-Zhang

    2018-04-01

    Screen-printed reduced graphene oxide (rGO)-polyaniline (PANI) nanocomposites with/without post-annealing were used as the electrode of a supercapacitor with a polyvinyl alcohol/H2SO4 quasi-solid-state gel electrolyte. Annealing can remove part of the ineffective organic binders and thus enhance the supercapacitive performance. However, too high an annealing temperature may damage PANI, thus reducing the pseudocapacitance. Annealing at 100°C for 10 min results in the best achieved areal capacitance of 102.73 mF/cm2, as evaluated by cyclic voltammetry (CV) under a potential scan rate of 2 mV/s. The capacitance retention rate is 88% after 1000 CV cycles under bending with a bending radius of 0.55 cm.

  2. Assessment of hepatoprotective and nephroprotective potential of withaferin A on bromobenzene-induced injury in Swiss albino mice: possible involvement of mitochondrial dysfunction and inflammation.

    PubMed

    Vedi, Mahima; Sabina, Evan Prince

    2016-10-01

    Bromobenzene is a well-known environmental toxin which causes liver and kidney damage through CYP450-mediated bio-activation to generate reactive metabolites and, consequently, oxidative stress. The present study aimed to evaluate the possible protective role of withaferin A against bromobenzene-induced liver and kidney damage in mice. Withaferin A (10 mg/kg) was administered orally to the mice for 8 days before intragastric intubation of bromobenzene (10 mmol/kg). As results of this experiment, the levels of liver and kidney functional markers, lipid peroxidation, and cytokines (TNF-α and IL-1β) presented an increase and there was a decrease in anti-oxidant activity in the bromobenzene-treated group of mice. Pre-treatment with withaferin A not only significantly decreased the levels of liver and kidney functional markers and cytokines but also reduced oxidative stress, as evidenced by improved anti-oxidant status. In addition, the mitochondrial dysfunction shown through the decrease in the activities of mitochondrial enzymes and imbalance in the Bax/Bcl-2 expression in the livers and kidneys of bromobenzene-treated mice was effectively prevented by pre-administration of withaferin A. These results validated our conviction that bromobenzene caused liver and kidney damage via mitochondrial pathway and withaferin A provided significant protection against it. Thus, withaferin A may have possible usage in clinical liver and kidney diseases in which oxidative stress and mitochondrial dysfunction may be existent.

  3. Protein Oxidation in Aging: Does It Play a Role in Aging Progression?

    PubMed Central

    Reeg, Sandra

    2015-01-01

    Abstract Significance: A constant accumulation of oxidized proteins takes place during aging. Oxidation of proteins leads to a partial unfolding and, therefore, to aggregation. Protein aggregates impair the activity of cellular proteolytic systems (proteasomes, lysosomes), resulting in further accumulation of oxidized proteins. In addition, the accumulation of highly crosslinked protein aggregates leads to further oxidant formation, damage to macromolecules, and, finally, to apoptotic cell death. Furthermore, protein oxidation seems to play a role in the development of various age-related diseases, for example, neurodegenerative diseases. Recent Advances: The highly oxidized lipofuscin accumulates during aging. Lipofuscin formation might cause impaired lysosomal and proteasomal degradation, metal ion accumulation, increased reactive oxygen species formation, and apoptosis. Critical Issues: It is still unclear to which extent protein oxidation is involved in the progression of aging and in the development of some age-related diseases. Future Directions: An extensive knowledge of the effects of protein oxidation on the aging process and its contribution to the development of age-related diseases could enable further strategies to reduce age-related impairments. Strategies aimed at lowering aggregate formation might be a straightforward intervention to reduce age-related malfunctions of organs. Antioxid. Redox Signal. 23, 239–255. PMID:25178482

  4. Prolonged lifespan with enhanced exploratory behavior in mice overexpressing the oxidized nucleoside triphosphatase hMTH1.

    PubMed

    De Luca, Gabriele; Ventura, Ilenia; Sanghez, Valentina; Russo, Maria Teresa; Ajmone-Cat, Maria Antonietta; Cacci, Emanuele; Martire, Alberto; Popoli, Patrizia; Falcone, Germana; Michelini, Flavia; Crescenzi, Marco; Degan, Paolo; Minghetti, Luisa; Bignami, Margherita; Calamandrei, Gemma

    2013-08-01

    The contribution that oxidative damage to DNA and/or RNA makes to the aging process remains undefined. In this study, we used the hMTH1-Tg mouse model to investigate how oxidative damage to nucleic acids affects aging. hMTH1-Tg mice express high levels of the hMTH1 hydrolase that degrades 8-oxodGTP and 8-oxoGTP and excludes 8-oxoguanine from both DNA and RNA. Compared to wild-type animals, hMTH1-overexpressing mice have significantly lower steady-state levels of 8-oxoguanine in both nuclear and mitochondrial DNA of several organs, including the brain. hMTH1 overexpression prevents the age-dependent accumulation of DNA 8-oxoguanine that occurs in wild-type mice. These lower levels of oxidized guanines are associated with increased longevity and hMTH1-Tg animals live significantly longer than their wild-type littermates. Neither lipid oxidation nor overall antioxidant status is significantly affected by hMTH1 overexpression. At the cellular level, neurospheres derived from adult hMTH1-Tg neural progenitor cells display increased proliferative capacity and primary fibroblasts from hMTH1-Tg embryos do not undergo overt senescence in vitro. The significantly lower levels of oxidized DNA/RNA in transgenic animals are associated with behavioral changes. These mice show reduced anxiety and enhanced investigation of environmental and social cues. Longevity conferred by overexpression of a single nucleotide hydrolase in hMTH1-Tg animals is an example of lifespan extension associated with healthy aging. It provides a link between aging and oxidative damage to nucleic acids. © 2013 John Wiley & Sons Ltd and the Anatomical Society.

  5. Possible involvement of GABAergic mechanism in protective effect of melatonin against sleep deprivation-induced behaviour modification and oxidative damage in mice.

    PubMed

    Kumar, Anil; Singh, Anant

    2009-08-01

    Sleep is an important physiological process responsible for the maintenance of physical, mental and emotional health of a living being. Sleep deprivation is considered risky for several pathological diseases such as anxiety and motor and cognitive dysfunctions. Sleep deprivation has recently been reported to cause oxidative damage. This study has been designed to explore the possible involvement of the GABAergic mechanism in protective effects of melatonin against 72-h sleep deprivation-induced behaviour modification and oxidative damage in mice. Mice were sleep-deprived for a period of 72 h using the grid over water suspended method. Animals were divided into groups of 6-8 animals each. Melatonin (5 and 10 mg/kg), flumazenil (0.5 mg/kg), picrotoxin (0.5 mg/kg) and muscimol (0.05 mg/kg) were administered for 5 days starting 2 days before 72-h sleep deprivation. Various behavioural tests (plus maze, zero maze, mirror chamber, actophotometer) and body weight assessment followed by oxidative stress parameters (malondialdehyde level, glutathione, catalase, nitrite and protein) were carried out. The 72-h sleep deprivation caused significant anxiety-like behaviour, weight loss, impaired locomotor activity and oxidative damage as compared with naïve (without sleep deprivation). Treatment with melatonin (5 mg/kg and 10 mg/kg, ip) significantly improved locomotor activity, weight loss and antianxiety effect as compared with control (sleep-deprived). Biochemically, melatonin treatment significantly restored reduced glutathione, catalase activity, attenuated lipid peroxidation and nitrite level as compared with control animals (72-h sleep-deprived). Flumazenil (0.5 mg/kg) and picrotoxin (0.5 mg/kg) pretreatments with a lower dose of melatonin (5 mg/kg) significantly antagonized the protective effect of melatonin. However, muscimol (0.05 mg/kg) pretreatment with melatonin (5 mg/kg, ip) potentiated the protective effect of melatonin which was significant as compared with their effect per se. This study suggests that GABAergic modulation is involved in the protective action of melatonin against sleep deprivation-induced anxiety-like behaviour and associated oxidative damage.

  6. Synergetic antibacterial activity of reduced graphene oxide and boron doped diamond anode in three dimensional electrochemical oxidation system

    PubMed Central

    Qi, Xiujuan; Wang, Ting; Long, Yujiao; Ni, Jinren

    2015-01-01

    A 100% increment of antibacterial ability has been achieved due to significant synergic effects of boron-doped diamond (BDD) anode and reduced graphene oxide (rGO) coupled in a three dimensional electrochemical oxidation system. The rGO, greatly enhanced by BDD driven electric field, demonstrated strong antibacterial ability and even sustained its excellent performance during a reasonable period after complete power cut in the BDD-rGO system. Cell damage experiments and TEM observation confirmed much stronger membrane stress in the BDD-rGO system, due to the faster bacterial migration and charge transfer by the expanded electro field and current-carrying efficiency by quantum tunnel. Reciprocally the hydroxyl-radical production was eminently promoted with expanded area of electrodes and delayed recombination of the electron–hole pairs in presence of the rGO in the system. This implied a huge potential for practical disinfection with integration of the promising rGO and the advanced electrochemical oxidation systems. PMID:25994309

  7. Health Effects of Dietary Oxidized Tyrosine and Dityrosine Administration in Mice with Nutrimetabolomic Strategies.

    PubMed

    Yang, Yuhui; Zhang, Hui; Yan, Biao; Zhang, Tianyu; Gao, Ying; Shi, Yonghui; Le, Guowei

    2017-08-16

    This study aims to investigate the health effects of long-term dietary oxidized tyrosine (O-Tyr) and its main product (dityrosine) administration on mice metabolism. Mice received daily intragastric administration of either O-Tyr (320 μg/kg body weight), dityrosine (Dityr, 320 μg/kg body weight), or saline for consecutive 6 weeks. Urine and plasma samples were analyzed by NMR-based metabolomics strategies. Body weight, clinical chemistry, oxidative damage indexes, and histopathological data were obtained as complementary information. O-Tyr and Dityr exposure changed many systemic metabolic processes, including reduced choline bioavailability, led to fat accumulation in liver, induced hepatic injury, and renal dysfunction, resulted in changes in gut microbiota functions, elevated risk factor for cardiovascular disease, altered amino acid metabolism, induced oxidative stress responses, and inhibited energy metabolism. These findings implied that it is absolutely essential to reduce the generation of oxidation protein products in food system through improving modern food processing methods.

  8. Intraperitoneal Administration of Silymarin Protects End Organs from Multivisceral Ischemia/Reperfusion Injury in a Rat Model

    PubMed Central

    Koçarslan, Aydemir; Koçarslan, Sezen; Aydin, Mehmet Salih; Gunay, Şamil; Karahan, Mahmut Alp; Taşkın, Abdullah; Üstunel, Murat; Aksoy, Nurten

    2016-01-01

    Objective To determine whether intraperitoneal silymarin administration has favorable effects on the heart, lungs, kidney, and liver and on oxidative stress in a rat model of supraceliac aorta ischemia/reperfusion injury. Methods Thirty male Wistar albino rats were divided equally into three groups: sham, control, and silymarin. The control and silymarin groups underwent supraceliac aortic occlusion for 45 min, followed by a 60 min period of reperfusion under terminal anesthesia. In the silymarin group, silymarin was administered intraperitoneally during ischemia at a dose of 200 mg/kg. Rats were euthanized using terminal anesthesia, and blood was collected from the inferior vena cava for total antioxidant capacity, total oxidative status, and oxidative stress index measurement. Lungs, heart, liver and kidney tissues were histologically examined. Results Ischemia/reperfusion injury significantly increased histopathological damage as well as the total oxidative status and oxidative stress index levels in the blood samples. The silymarin group incurred significantly lesser damage to the lungs, liver and kidneys than the control group, while no differences were observed in the myocardium. Furthermore, the silymarin group had significantly lower total oxidative status and oxidative stress index levels than the control group. Conclusion Intraperitoneal administration of silymarin reduces oxidative stress and protects the liver, kidney, and lungs from acute supraceliac abdominal aorta ischemia/reperfusion injury in the rat model. PMID:28076620

  9. Effects of oxidative stress-induced changes in the actin cytoskeletal structure on myoblast damage under compressive stress: confocal-based cell-specific finite element analysis.

    PubMed

    Yao, Yifei; Lacroix, Damien; Mak, Arthur F T

    2016-12-01

    Muscle cells are frequently subjected to both mechanical and oxidative stresses in various physiological and pathological situations. To explore the mechanical mechanism of muscle cell damage under loading and oxidative stresses, we experimentally studied the effects of extrinsic hydrogen peroxides on the actin cytoskeletal structure in C2C12 myoblasts and presented a finite element (FE) analysis of how such changes in the actin cytoskeletal structure affected a myoblast's capability to resist damage under compression. A confocal-based cell-specific FE model was built to parametrically study the effects of stress fiber density, fiber cross-sectional area, fiber tensile prestrain, as well as the elastic moduli of the stress fibers, actin cortex, nucleus and cytoplasm. The results showed that a decrease in the elastic moduli of both the stress fibers and actin cortex could increase the average tensile strain on the actin cortex-membrane structure and reduce the apparent cell elastic modulus. Assuming the cell would die when a certain percentage of membrane elements were strained beyond a threshold, a lower elastic modulus of actin cytoskeleton would compromise the compressive resistance of a myoblast and lead to cell death more readily. This model was used with a Weibull distribution function to successfully describe the extent of myoblasts damaged in a monolayer under compression.

  10. Nephro-protective action of P. santalinus against alcohol-induced biochemical alterations and oxidative damage in rats.

    PubMed

    Bulle, Saradamma; Reddy, Vaddi Damodara; Hebbani, Ananda Vardhan; Padmavathi, Pannuru; Challa, Chandrasekhar; Puvvada, Pavan Kumar; Repalle, Elisha; Nayakanti, Devanna; Aluganti Narasimhulu, Chandrakala; Nallanchakravarthula, Varadacharyulu

    2016-12-01

    The present study investigated the antioxidant potential of P. santalinus heartwood methanolic extract (PSE) against alcohol-induced nephro-toxicity. The results indicated an increase in the concentration of kidney damage plasma markers, urea and creatinine with a concomitant decrease in the concentration of uric acid in alcohol-administered rats. A significant decrease in plasma electrolytes and mineral levels with increased kidney thiobarbituric acid reactive substances (TBARS) and nitric oxide (NOx) levels was also observed. PSE treatment to alcohol-administered rats effectively prevented the elevation in TBARS and NOx levels. Decreased activity of Na + /K + -ATPase in alcohol administered rats was brought to near normal levels with treatment of PSE. Chronic alcohol consumption affects antioxidant enzymatic activity and reabsorption function of the kidney which is evident from the decreased level of GSH as well as the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione s-transferase (GST). However, treatment with PSE to alcohol-administered rats significantly enhanced these enzymatic activities and reduced glutathione (GSH) content close to normal level. Alcohol-induced organ damage was evident from morphological changes in the kidney. Nevertheless, administration of PSE effectively restored these morphological changes to normal. The flavonoid and tannoid compounds might have protective activity against alcohol-induced oxidative/nitrosative stress mediated kidney damage. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. Betanin attenuates paraquat-induced liver toxicity through a mitochondrial pathway.

    PubMed

    Han, Junyan; Zhang, Zongju; Yang, Shaobin; Wang, Jun; Yang, Xuelian; Tan, Dehong

    2014-08-01

    We attempted to determine whether betanin (from natural pigments) that has anti-oxidant properties would be protective against paraquat-induced liver injury in Sprague-Dawley rats. Paraquat was injected intraperitoneally into rats to induce liver toxicity. The rats were randomly divided into four groups: a control group, a paraquat group, and two groups that received betanin at doses of 25 and 100mg/kg/day three days before and two days after they were administered paraquat. We evaluated liver histopathology, serum liver enzymatic activities, oxidative stress, cytochrome P450 (CYP) 3A2 mRNA expression, and mitochondrial damage. The rats that were injected with paraquat incurred liver injury, evidenced by histological changes and elevated serum aspartate aminotransferase and alanine aminotransferase levels; paraquat also led to oxidative stress, an increase of cytochrome P450 3A2 mRNA expression, and mitochondrial damage, indicated by mitochondrial membrane swelling, reduced mitochondrial cytochrome C, and apoptosis-inducing factor protein levels. Pathological damage and all of the above mentioned markers were lesser in the animals treated with betanin than in those who received paraquat alone. Betanin had a protective effect against paraquat-induced liver damage in rats. The mechanism of the protection appears to be the inhibition of CYP 3A2 expression and protection of mitochondria. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Triple-mixture of Zn, Mn, and Fe increases bioaccumulation and causes oxidative stress in freshwater neotropical fish.

    PubMed

    de Oliveira, Luciana Fernandes; Santos, Caroline; Risso, Wagner Ezequiel; Dos Reis Martinez, Claudia Bueno

    2018-06-01

    Metal bioaccumulation and oxidative stress biomarkers were determined in Prochilodus lineatus to understand the effects of short-term exposure to a triple-mixture of Zn, Mn, and Fe. Three independent tests were carried out, in which fish were exposed to 3 concentrations of Zn (0.18, 1.0, and 5.0 mg L -1 ), Mn (0.1, 0.5, and 5.0 mg L -1 ), and in the mix test to Fe (5.0 mg L -1 ) and a mixture of Zn (1.0 mg L -1 ) + Mn (0.5 mg L -1 ), with and without Fe. After exposure for 96 h, tissues were removed for metal bioaccumulation analysis and oxidative stress biomarkers were determined in liver, along with DNA damage in blood cells. Our results revealed that Zn and Mn were bioaccumulated in fish tissues after exposure to 5.0 mg L -1 , whereas Fe only bioaccumulated in muscle and gills after mixture exposure. Results indicated that 1 metal interfered with the other's bioaccumulation. In P. lineatus, 5 mg L -1 of both Mn and Fe were toxic, because damage was observed (lipid peroxidation [LPO] in liver and DNA damage in blood cells), whereas Zn induced liver responses (metallothionein [MT] and reduced glutathione [GSH] increases) to prevent damage. In terms of bioaccumulation and alterations of oxidative stress biomarkers, we showed that Zn, Mn, and Fe triple-mixture enhances individual metal toxicity in Neotropical fish P. lineatus. Environ Toxicol Chem 2018;37:1749-1756. © 2018 SETAC. © 2018 SETAC.

  13. Resveratrol Rescues Kidney Mitochondrial Function Following Hemorrhagic Shock

    PubMed Central

    Wang, Hao; Guan, Yuxia; Karamercan, Mehmet Akif; Ye, Lan; Bhatti, Tricia; Becker, Lance B.; Baur, Joseph A.; Sims, Carrie A.

    2015-01-01

    Objective Hemorrhagic shock may contribute to acute kidney injury by profoundly altering renal mitochondrial function. Resveratrol (RSV), a naturally occurring sirtuin-1 (SIRT1) activator, has been shown to promote mitochondrial function and reduce oxidative damage in a variety of aging-related disease states. We hypothesized that RSV treatment during resuscitation would ameliorate kidney mitochondrial dysfunction and decrease oxidative damage following hemorrhagic shock. Method Using a decompensated hemorrhagic shock model, male Long-Evans rats (n=6 per group) were sacrificed prior to hemorrhage (Sham), at severe shock, and following either lactated Ringer’s (LR) Resuscitation or LR+RSV Resuscitation (RSV: 30mg/kg). At each time point, blood samples were assayed for arterial blood gases, lactate, blood urea nitrogen (BUN) and serum creatinine. Mitochondria were also isolated from kidney samples in order to assess individual electron transport complexes (CI, CII, and CIV) using high-resolution respirometry. Total mitochondria reactive oxygen species (ROS) were measured using fluorometry and lipid peroxidation was assessed by measuring 4-hydroxynonenal by Western blot. qPCR was used quantify mRNA from PGC1-α, SIRT1, and proteins known to mitigate oxidative damage and promote mitochondrial biogenesis. Results RSV supplementation during resuscitation restored mitochondrial respiratory capacity, decreased mitochondrial ROS and lipid peroxidation. Compared to standard LR resuscitation, RSV treatment significantly increased SIRT1 and PGC1-α expression and significantly increased both SOD2 and catalase expression. Although RSV was associated with decreased lactate production, pH, BUN and serum creatinine values did not differ between resuscitation strategies. Conclusions Resuscitation with RSV significantly restored renal mitochondrial function and decreased oxidative damage following hemorrhagic shock. PMID:25895148

  14. α-Lipoic Acid Promotes Neurological Recovery After Ischemic Stroke by Activating the Nrf2/HO-1 Pathway to Attenuate Oxidative Damage.

    PubMed

    Lv, Chengmei; Maharjan, Surendra; Wang, Qingqing; Sun, Yongxin; Han, Xu; Wang, Shan; Mao, Zhengchun; Xin, Yanming; Zhang, Bing

    2017-01-01

    Alpha-lipoic acid (α-LA) has been demonstrated to be protective against cerebral ischemia injury. Herein, we investigate the neuroprotective effect and underlying mechanisms of α-LA. In vivo study, α-LA was administered intravenously upon reperfusion of transient middle cerebral artery occlusion. Garcia score was used to evaluate neurologic recovery. Infarct volume was examined by TTC staining, and oxidative damage was evaluated by ELISA assay. In an in vitro study, neurons were pretreated with α-LA at different doses and then subjected to OGD. Lentiviral vectors were applied to knockdown nuclear factor-erythroid 2-related factor-2 (Nrf2) or heme oxygenase-1 (HO-1). Cell viability was measured using CCK8. Protein expression was evaluated using western blot, and immunofluorescence staining was assessed. α-LA significantly reduced the infarct volume, brain edema, and oxidative damage and promoted neurologic recovery in rats. Pretreatment of α-LA caused an obvious increase in cell viability and a decrease in intracellular reactive oxygen species. Western blot analyses and immunofluorescence staining demonstrated a distinct increase in Nrf2 and HO-1 protein expression. Conversely, knockdown of Nrf2 or HO-1 resulted in the down-regulation of HO-1 protein and inhibited the neuroprotective effect of α-LA. α-LA treatment is neuroprotective and promotes functional recovery after ischemic stroke by attenuating oxidative damage, which is partially mediated by the Nrf2/HO-1 pathway. © 2017 The Author(s). Published by S. Karger AG, Basel.

  15. Time course of oxidative stress, inflammation and muscle damage markers for five days after a soccer match: effects of sex and playing position.

    PubMed

    Souglis, Athanasios; Bogdanis, Gregory C; Chryssanthopoulos, Costas; Apostolidis, Nikolaos; Geladas, Nikos D

    2018-01-03

    This study examined the influence of sex and playing position on the time-course of selected oxidative stress, inflammation and muscle damage markers following an official soccer match. Sixty professional soccer players (30 male and 30 female) were divided into three groups, according to their playing position: defenders, midfielders and attackers. Each group consisted of 10 male and 10 female players. Sixty healthy volunteers (30 males and 30 females) served as control. Blood samples were taken before and after the match and daily for five days after the match. Analysis of variance revealed different responses over time between sex and playing positions, as shown by the 3-way interaction, for creatine kinase (CK), protein carbonyls (PC), catalase, fibrinogen (FIB), uric acid (UA), lactate dehydrogenase (LDH), reduced glutathione, C-reactive protein and interleukin-6 (IL-6) (p < 0.01).Male players had higher values compared with females of the same playing position, for all oxidative, inflammatory and muscle damage indices (p<0.01). Also, in both sexes, midfielders had higher peaks in all indices compared with defenders (p < 0.05). Five days after the game CK and UA concentrations had not returned to pre-game levels in any exercise group, whereas PC were still elevated in male midfielders and attackers (p < 0.05).These results show that sex and playing position influence the time-course of selected oxidative stress, inflammation and muscle damage markers following an official soccer game. This information should be taken into account by practitioners for the design of training programs following match play.

  16. Bioactive components, antioxidant and DNA damage inhibitory activities of honeys from arid regions.

    PubMed

    Habib, Hosam M; Al Meqbali, Fatima T; Kamal, Hina; Souka, Usama D; Ibrahim, Wissam H

    2014-06-15

    Honey serves as a good source of natural antioxidants, which are effective in reducing the risk of occurrence of several diseases. This study was undertaken to address the limited knowledge regarding the polyphenolic content, antioxidant and DNA damage inhibitory activities of honeys produced in arid regions and compare them with well-recognized honeys from non-arid regions. Different types of honey were assessed for their contents of total phenolics, total flavonoids, and certain types of phenolic compounds. The antioxidant capacity of honey was evaluated by ferric-reducing/antioxidant power assay (FRAP), free radical-scavenging activity (DPPH), nitric oxide (NO) radical-scavenging assay, total antioxidant activity, and DNA damage. Results clearly showed significant differences among honeys with all the evaluated parameters. Results also showed that one or more types of honey from arid regions contained higher levels of phenolic compounds, free radical-scavenging activities, or DNA damage inhibitory activities compared with the evaluated honeys from non-arid regions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Lipoxin A4 inhibits UV radiation-induced skin inflammation and oxidative stress in mice.

    PubMed

    Martinez, R M; Fattori, V; Saito, P; Melo, C B P; Borghi, S M; Pinto, I C; Bussmann, A J C; Baracat, M M; Georgetti, S R; Verri, W A; Casagrande, R

    2018-04-27

    Lipoxin A4 (LXA 4 ) is a metabolic product of arachidonic acid. Despite potent anti-inflammatory and pro-resolution activities, it remains to be determined if LXA 4 has effect on ultraviolet (UV) radiation-induced skin inflammation. To investigate the effects of systemic administration with LXA 4 on UV radiation-induced inflammation and oxidative damage in the skin of mice. Varied parameters of inflammation and oxidative stress in the skin of mice were evaluated after UV radiation (4.14 J/cm 2 ). Pretreatment with LXA 4 significantly inhibited UV radiation-induced skin edema and myeloperoxidase activity. LXA 4 efficacy was enhanced by increasing the time of pre-treatment to up to 72 h. LXA 4 reduced UV radiation-induced skin edema, neutrophil recruitment (myeloperoxidase activity and LysM-eGFP + cells), MMP-9 activity, deposition of collagen fibers, epidermal thickness, sunburn cell counts, and production of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6 and IL-33). Depending on the time point, LXA 4 increased the levels of anti-inflammatory cytokines (TGF-β and IL-10). LXA 4 significantly attenuated UV radiation-induced oxidative damage returning the oxidative status to baseline levels in parameters such as ferric reducing ability, scavenging of free radicals, GSH levels, catalase activity and superoxide anion production. LXA 4 also reduced UV radiation-induced gp91 phox [nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2) subunit] mRNA expression and enhanced nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream target enzyme nicotinamide adenine dinucleotide (phosphate) quinone oxidoreductase (Nqo1) mRNA expression. LXA 4 inhibited UV radiation-induced skin inflammation by diminishing pro-inflammatory cytokine production and oxidative stress as well as inducing anti-inflammatory cytokines and Nrf2. Copyright © 2018. Published by Elsevier B.V.

  18. Hippocampal neurodegeneration in experimental autoimmune encephalomyelitis (EAE): potential role of inflammation activated myeloperoxidase.

    PubMed

    Sajad, Mir; Zargan, Jamil; Chawla, Raman; Umar, Sadiq; Sadaqat, Mir; Khan, Haider A

    2009-08-01

    Experimental Autoimmune Encephalomyelitis (EAE) is a well-established animal model of human multiple sclerosis (MS). The effect of this inflammatory disease on hippocampus has not been addressed. Keeping in view the above consideration an attempt was made to delineate the effect of EAE on the hippocampus of Wistar rats. The assessment of the damage to the hippocampus was done 16 days post induction by the immunolocalization of ChAT (choline acetyl transferase). ChAT decreased remarkably after induction that revealed cholinergic neuronal degeneration in the hippocampus. Subsequently, many biochemical parameters were assessed to ascertain inflammatory activation of nitric oxide and associated oxidative damage as a putative mechanism of the cholinergic degeneration. Nitric oxide metabolites increased significantly (P < 0.05) with enhancement of MPO (Myeloperoxidase activity) (P < 0.001) in the MOG (myelin oligodendrocyte protein) group as compared to the controls. Peroxidation of biomembranes increased (P < 0.001), while reduced glutathione depleted (P < 0.001) with parallel decrease in catalase (P < 0.01) and superoxide dismutase enzyme activity (P < 0.001) in the MOG group. Our results show a strong role of peroxidase dependent oxidation of nitrite and oxidative stress in cholinergic degeneration in EAE.

  19. Flavonoid Fraction of Orange and Bergamot Juices Protect Human Lung Epithelial Cells from Hydrogen Peroxide-Induced Oxidative Stress

    PubMed Central

    Ferlazzo, Nadia; Visalli, Giuseppa; Smeriglio, Antonella; Cirmi, Santa; Lombardo, Giovanni Enrico; Campiglia, Pietro; Di Pietro, Angela

    2015-01-01

    It has been reported that oxidant/antioxidant imbalance triggers cell damage that in turn causes a number of lung diseases. Flavonoids are known for their health benefits, and Citrus fruits juices are one of the main food sources of these secondary plant metabolites. The present study was designed to evaluate the effect of the flavonoid fraction of bergamot and orange juices, on H2O2-induced oxidative stress in human lung epithelial A549 cells. First we tested the antioxidant properties of both extracts in cell-free experimental models and then we assayed their capability to prevent the cytotoxic effects induced by H2O2. Our results demonstrated that both Citrus juice extracts reduce the generation of reactive oxygen species and membrane lipid peroxidation, improve mitochondrial functionality, and prevent DNA-oxidative damage in A549 cells incubated with H2O2. Our data indicate that the mix of flavonoids present in both bergamot and orange juices may be of use in preventing oxidative cell injury and pave the way for further research into a novel healthy approach to avoid lung disorders. PMID:26221182

  20. Flavonoid Fraction of Orange and Bergamot Juices Protect Human Lung Epithelial Cells from Hydrogen Peroxide-Induced Oxidative Stress.

    PubMed

    Ferlazzo, Nadia; Visalli, Giuseppa; Smeriglio, Antonella; Cirmi, Santa; Lombardo, Giovanni Enrico; Campiglia, Pietro; Di Pietro, Angela; Navarra, Michele

    2015-01-01

    It has been reported that oxidant/antioxidant imbalance triggers cell damage that in turn causes a number of lung diseases. Flavonoids are known for their health benefits, and Citrus fruits juices are one of the main food sources of these secondary plant metabolites. The present study was designed to evaluate the effect of the flavonoid fraction of bergamot and orange juices, on H2O2-induced oxidative stress in human lung epithelial A549 cells. First we tested the antioxidant properties of both extracts in cell-free experimental models and then we assayed their capability to prevent the cytotoxic effects induced by H2O2. Our results demonstrated that both Citrus juice extracts reduce the generation of reactive oxygen species and membrane lipid peroxidation, improve mitochondrial functionality, and prevent DNA-oxidative damage in A549 cells incubated with H2O2. Our data indicate that the mix of flavonoids present in both bergamot and orange juices may be of use in preventing oxidative cell injury and pave the way for further research into a novel healthy approach to avoid lung disorders.

  1. Protection of Clitoria ternatea flower petal extract against free radical-induced hemolysis and oxidative damage in canine erythrocytes.

    PubMed

    Phrueksanan, Wathuwan; Yibchok-anun, Sirinthorn; Adisakwattana, Sirichai

    2014-10-01

    The present study assessed the antioxidant activity and protective ability of Clitoria ternatea flower petal extract (CTE) against in vitro 2,2'-azobis-2-methyl-propanimidamide dihydrochloride (AAPH)-induced hemolysis and oxidative damage of canine erythrocytes. From the phytochemical analysis, CTE contained phenolic compounds, flavonoids, and anthocyanins. In addition, CTE showed antioxidant activity as measured by oxygen radical absorbance capacity (ORAC) method and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. CTE (400 µg/ml) remarkably protected erythrocytes against AAPH-induced hemolysis at 4 h of incubation. Moreover, CTE (400 µg/ml) reduced membrane lipid peroxidation and protein carbonyl group formation and prevented the reduction of glutathione concentration in AAPH-induced oxidation of erythrocytes. The AAPH-induced morphological alteration of erythrocytes from a smooth discoid to an echinocytic form was effectively protected by CTE. The present results contribute important insights that CTE may have the potential to act as a natural antioxidant to prevent free radical-induced hemolysis, protein oxidation and lipid peroxidation in erythrocytes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Oxidative Stress and Autophagy in Cardiovascular Homeostasis

    PubMed Central

    Morales, Cyndi R.; Pedrozo, Zully; Lavandero, Sergio

    2014-01-01

    Abstract Significance: Autophagy is an evolutionarily ancient process of intracellular protein and organelle recycling required to maintain cellular homeostasis in the face of a wide variety of stresses. Dysregulation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) leads to oxidative damage. Both autophagy and ROS/RNS serve pathological or adaptive roles within cardiomyocytes, depending on the context. Recent Advances: ROS/RNS and autophagy communicate with each other via both transcriptional and post-translational events. This cross talk, in turn, regulates the structural integrity of cardiomyocytes, promotes proteostasis, and reduces inflammation, events critical to disease pathogenesis. Critical Issues: Dysregulation of either autophagy or redox state has been implicated in many cardiovascular diseases. Cardiomyocytes are rich in mitochondria, which make them particularly sensitive to oxidative damage. Maintenance of mitochondrial homeostasis and elimination of defective mitochondria are each critical to the maintenance of redox homeostasis. Future Directions: The complex interplay between autophagy and oxidative stress underlies a wide range of physiological and pathological events and its elucidation holds promise of potential clinical applicability. Antioxid. Redox Signal. 20, 507–518. PMID:23641894

  3. Oxygen Supplementation Improves Protein Milieu Supportive of Protein Synthesis and Antioxidant Function in the Cortex of Alzheimer's Disease Model Mice-a Quantitative Proteomic Study.

    PubMed

    Wang, Hao; Hong, Xiaoyu; Li, Shuiming; Wang, Yong

    2017-10-01

    Protein synthesis has been reported to be impaired in early-stage Alzheimer's disease (AD). Previously, we found that oxygen supplementation improved cognitive function and reduced mitochondrial damage in AD model mice. In the present study, we examined the effects of supplemental oxygen treatment on protein synthesis and oxidative damage. The synthesis of numerous proteins involved in mRNA splicing, transcription regulation, and translation was found to be significantly upregulated in cortex tissues of AD model mice given a supplemental oxygen treatment (OT group), relative to those of non-treated control AD model mice (Ctrl group), suggesting that impairment in protein synthesis may be alleviated by increased oxygen inhalation. Methionine oxidation and oxidation levels in general were similar between the OT and Ctrl groups, indicating that the oxygen supplementation treatment did not cause increases in peptide oxidation levels. On the contrary, the OT group exhibited upregulation of several proteins associated with antioxidant defense. These results support further exploration into the development of supplementary oxygen treatment as a potential therapy for AD.

  4. Lymphocyte DNA damage and oxidative stress in patients with iron deficiency anemia.

    PubMed

    Aslan, Mehmet; Horoz, Mehmet; Kocyigit, Abdurrahim; Ozgonül, Saadet; Celik, Hakim; Celik, Metin; Erel, Ozcan

    2006-10-10

    Oxidant stress has been shown to play an important role in the pathogenesis of iron deficiency anemia. The aim of this study was to investigate the association between lymphocyte DNA damage, total antioxidant capacity and the degree of anemia in patients with iron deficiency anemia. Twenty-two female with iron deficiency anemia and 22 healthy females were enrolled in the study. Peripheral DNA damage was assessed using alkaline comet assay and plasma total antioxidant capacity was determined using an automated measurement method. Lymphocyte DNA damage of patients with iron deficiency anemia was significantly higher than controls (p<0.05), while total antioxidant capacity was significantly lower (p<0.001). While there was a positive correlation between total antioxidant capacity and hemoglobin levels (r=0.706, p<0.001), both total antioxidant capacity and hemoglobin levels were negatively correlated with DNA damage (r=-0.330, p<0.05 and r=-0.323, p<0.05, respectively). In conclusion, both oxidative stress and DNA damage are increased in IDA patients. Increased oxidative stress seems as an important factor that inducing DNA damage in those IDA patients. The relationships of oxidative stress and DNA damage with the severity of anemia suggest that both oxidative stress and DNA damage may, in part, have a role in the pathogenesis of IDA.

  5. HPV16 E6 and E7 proteins induce a chronic oxidative stress response via NOX2 that causes genomic instability and increased susceptibility to DNA damage in head and neck cancer cells

    PubMed Central

    Marullo, Rossella; Werner, Erica; Zhang, Hongzheng; Chen, Georgia Z.; Shin, Dong M.; Doetsch, Paul W.

    2015-01-01

    Human papillomavirus (HPV) is the causative agent of a subgroup of head and neck cancer characterized by an intrinsic radiosensitivity. HPV initiates cellular transformation through the activity of E6 and E7 proteins. E6 and E7 expression is necessary but not sufficient to transform the host cell, as genomic instability is required to acquire the malignant phenotype in HPV-initiated cells. This study reveals a key role played by oxidative stress in promoting genomic instability and radiosensitivity in HPV-positive head and neck cancer. By employing an isogenic human cell model, we observed that expression of E6 and E7 is sufficient to induce reactive oxygen species (ROS) generation in head and neck cancer cells. E6/E7-induced oxidative stress is mediated by nicotinamide adenine dinucleotide phosphate oxidases (NOXs) and causes DNA damage and chromosomal aberrations. This mechanism for genomic instability distinguishes HPV-positive from HPV-negative tumors, as we observed NOX-induced oxidative stress in HPV-positive but not HPV-negative head and neck cancer cells. We identified NOX2 as the source of HPV-induced oxidative stress as NOX2 silencing significantly reduced ROS generation, DNA damage and chromosomal aberrations in HPV-positive cells. Due to their state of chronic oxidative stress, HPV-positive cells are more susceptible to DNA damage induced by ROS and ionizing radiation (IR). Furthermore, exposure to IR results in the formation of complex lesions in HPV-positive cells as indicated by the higher amount of chromosomal breakage observed in this group of cells. These results reveal a novel mechanism for sustaining genomic instability in HPV-positive head and neck tumors and elucidate its contribution to their intrinsic radiosensitivity. PMID:26354779

  6. Curcumin protects against cytotoxic and inflammatory effects of quartz particles but causes oxidative DNA damage in a rat lung epithelial cell line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Hui; Berlo, Damien van; Shi Tingming

    2008-02-15

    Chronic inhalation of high concentrations of respirable quartz particles has been implicated in various lung diseases including lung fibrosis and cancer. Generation of reactive oxygen species (ROS) and oxidative stress is considered a major mechanism of quartz toxicity. Curcumin, a yellow pigment from Curcuma longa, has been considered as nutraceutical because of its strong anti-inflammatory, antitumour and antioxidant properties. The aim of our present study was to investigate whether curcumin can protect lung epithelial cells from the cytotoxic, genotoxic and inflammatory effects associated with quartz (DQ12) exposure. Electron paramagnetic resonance (EPR) measurements using the spin-trap DMPO demonstrated that curcumin reducesmore » hydrogen peroxide-dependent hydroxyl-radical formation by quartz. Curcumin was also found to reduce quartz-induced cytotoxicity and cyclooxygenase 2 (COX-2) mRNA expression in RLE-6TN rat lung epithelial cells (RLE). Curcumin also inhibited the release of macrophage inflammatory protein-2 (MIP-2) from RLE cells as observed upon treatment with interleukin-1 beta (IL-1{beta}) and tumour necrosis factor-alpha (TNF{alpha}). However, curcumin failed to protect the RLE cells from oxidative DNA damage induced by quartz, as shown by formamidopyrimidine glycosylase (FPG)-modified comet assay and by immunocytochemistry for 8-hydroxydeoxyguanosine. In contrast, curcumin was found to be a strong inducer of oxidative DNA damage itself at non-cytotoxic and anti-inflammatory concentrations. In line with this, curcumin also enhanced the mRNA expression of the oxidative stress response gene heme oxygenase-1 (ho-1). Curcumin also caused oxidative DNA damage in NR8383 rat alveolar macrophages and A549 human lung epithelial cells. Taken together, these observations indicate that one should be cautious in considering the potential use of curcumin in the prevention or treatment of lung diseases associated with quartz exposure.« less

  7. Protective role of integrin-linked kinase against oxidative stress and in maintenance of genomic integrity

    PubMed Central

    Im, Michelle; Dagnino, Lina

    2018-01-01

    The balance between the production of reactive oxygen species and activation of antioxidant pathways is essential to maintain a normal redox state in all tissues. Oxidative stress caused by excessive oxidant species generation can cause damage to DNA and other macromolecules, affecting cell function and viability. Here we show that integrin-linked kinase (ILK) plays a key role in eliciting a protective response to oxidative damage in epidermal cells. Inactivation of the Ilk gene causes elevated levels of intracellular oxidant species (IOS) and DNA damage in the absence of exogenous oxidative insults. In ILK-deficient cells, excessive IOS production can be prevented through inhibition of NADPH oxidase activity, with a concomitant reduction in DNA damage. Additionally, ILK is necessary for DNA repair processes following UVB-induced damage, as ILK-deficient cells show a significantly impaired ability to remove cyclobutane pyrimidine dimers following irradiation. Thus, ILK is essential to maintain cellular redox balance and, in its absence, epidermal cells become more susceptible to oxidative damage through mechanisms that involve IOS production by NADPH oxidase activity. PMID:29568383

  8. Protective role of integrin-linked kinase against oxidative stress and in maintenance of genomic integrity.

    PubMed

    Im, Michelle; Dagnino, Lina

    2018-03-02

    The balance between the production of reactive oxygen species and activation of antioxidant pathways is essential to maintain a normal redox state in all tissues. Oxidative stress caused by excessive oxidant species generation can cause damage to DNA and other macromolecules, affecting cell function and viability. Here we show that integrin-linked kinase (ILK) plays a key role in eliciting a protective response to oxidative damage in epidermal cells. Inactivation of the Ilk gene causes elevated levels of intracellular oxidant species (IOS) and DNA damage in the absence of exogenous oxidative insults. In ILK-deficient cells, excessive IOS production can be prevented through inhibition of NADPH oxidase activity, with a concomitant reduction in DNA damage. Additionally, ILK is necessary for DNA repair processes following UVB-induced damage, as ILK-deficient cells show a significantly impaired ability to remove cyclobutane pyrimidine dimers following irradiation. Thus, ILK is essential to maintain cellular redox balance and, in its absence, epidermal cells become more susceptible to oxidative damage through mechanisms that involve IOS production by NADPH oxidase activity.

  9. Duplex Interrogation by a Direct DNA Repair Protein in Search of Base Damage

    PubMed Central

    Yi, Chengqi; Chen, Baoen; Qi, Bo; Zhang, Wen; Jia, Guifang; Zhang, Liang; Li, Charles J.; Dinner, Aaron R.; Yang, Cai-Guang; He, Chuan

    2012-01-01

    ALKBH2 is a direct DNA repair dioxygenase guarding mammalian genome against N1-methyladenine, N3-methylcytosine, and 1,N6-ethenoadenine damage. A prerequisite for repair is to identify these lesions in the genome. Here we present crystal structures of ALKBH2 bound to different duplex DNAs. Together with computational and biochemical analyses, our results suggest that DNA interrogation by ALKBH2 displays two novel features: i) ALKBH2 probes base-pair stability and detects base pairs with reduced stability; ii) ALKBH2 does not have nor need a “damage-checking site”, which is critical for preventing spurious base-cleavage for several glycosylases. The demethylation mechanism of ALKBH2 insures that only cognate lesions are oxidized and reversed to normal bases, and that a flipped, non-substrate base remains intact in the active site. Overall, the combination of duplex interrogation and oxidation chemistry allows ALKBH2 to detect and process diverse lesions efficiently and correctly. PMID:22659876

  10. Nickel-Refining Fumes Induced DNA Damage and Apoptosis of NIH/3T3 Cells via Oxidative Stress

    PubMed Central

    Wang, Yue; Wang, Sheng-Yuan; Jia, Li; Zhang, Lin; Ba, Jing-Chong; Han, Dan; Yu, Cui-Ping; Wu, Yong-Hui

    2016-01-01

    Although there have been numerous studies examining the toxicity and carcinogenicity of nickel compounds in humans and animals, its molecular mechanisms of action are not fully elucidated. In our research, NIH/3T3 cells were exposed to nickel-refining fumes at the concentrations of 0, 6.25, 12.50, 25, 50 and 100 μg/mL for 24 h. Cell viability, cell apoptosis, reactive oxygen species (ROS) level, lactate dehydrogenase (LDH) assay, the level of glutathione (GSH), activities of superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA) level were detected. The exposure of NIH/3T3 cells to nickel-refining fumes significantly reduced cell viability and induced cell apoptotic death in a dose-dependent manner. Nickel-refining fumes significantly increased ROS levels and induced DNA damage. Nickel-refining fumes may induce the changes in the state of ROS, which may eventually initiate oxidative stress, DNA damage and apoptosis of NIH/3T3 cells. PMID:27347984

  11. The role of oxidative stress in the metabolic syndrome.

    PubMed

    Whaley-Connell, Adam; McCullough, Peter A; Sowers, James R

    2011-01-01

    Loss of reduction-oxidation (redox) homeostasis and generation of excess free oxygen radicals play an important role in the pathogenesis of diabetes, hypertension, and consequent cardiovascular disease. Reactive oxygen species are integral in routine in physiologic mechanisms. However, loss of redox homeostasis contributes to proinflammatory and profibrotic pathways that promote impairments in insulin metabolic signaling, reduced endothelial-mediated vasorelaxation, and associated cardiovascular and renal structural and functional abnormalities. Redox control of metabolic function is a dynamic process with reversible pro- and anti-free radical processes. Labile iron is necessary for the catalysis of superoxide anion, hydrogen peroxide, and the generation of the damaging hydroxyl radical. Acute hypoxia and cellular damage in cardiovascular tissue liberate larger amounts of cytosolic and extracellular iron that is poorly liganded; thus, large increases in the generation of oxygen free radicals are possible, causing tissue damage. The understanding of iron and the imbalance of redox homeostasis within the vasculature is integral in hypertension and progression of metabolic dysregulation that contributes to insulin resistance, endothelial dysfunction, and cardiovascular and kidney disease.

  12. Reduction of Fe(III), Cr(VI), U(VI), and Tc(VII) by Deinococcus radiodurans R1

    PubMed Central

    Fredrickson, J. K.; Kostandarithes, H. M.; Li, S. W.; Plymale, A. E.; Daly, M. J.

    2000-01-01

    Deinococcus radiodurans is an exceptionally radiation-resistant microorganism capable of surviving acute exposures to ionizing radiation doses of 15,000 Gy and previously described as having a strictly aerobic respiratory metabolism. Under strict anaerobic conditions, D. radiodurans R1 reduced Fe(III)-nitrilotriacetic acid coupled to the oxidation of lactate to CO2 and acetate but was unable to link this process to growth. D. radiodurans reduced the humic acid analog anthraquinone-2,6-disulfonate (AQDS) to its dihydroquinone form, AH2DS, which subsequently transferred electrons to the Fe(III) oxides hydrous ferric oxide and goethite via a previously described electron shuttle mechanism. D. radiodurans reduced the solid-phase Fe(III) oxides in the presence of either 0.1 mM AQDS or leonardite humic acids (2 mg ml−1) but not in their absence. D. radiodurans also reduced U(VI) and Tc(VII) in the presence of AQDS. In contrast, Cr(VI) was directly reduced in anaerobic cultures with lactate although the rate of reduction was higher in the presence of AQDS. The results are the first evidence that D. radiodurans can reduce Fe(III) coupled to the oxidation of lactate or other organic compounds. Also, D. radiodurans, in combination with humic acids or synthetic electron shuttle agents, can reduce U and Tc and thus has potential applications for remediation of metal- and radionuclide-contaminated sites where ionizing radiation or other DNA-damaging agents may restrict the activity of more sensitive organisms. PMID:10788374

  13. Sulfur dioxide: foe or friend for life?

    PubMed

    Wang, Xin-Bao; Cui, Hong; Liu, Xiaohong; Du, Jun-Bao

    2017-12-01

    Sulfur dioxide (SO₂) is a toxic gas and air pollutant. The toxic effects of SO₂ have been extensively studied. Oxidative damage due to SO₂ can occur in multiple organs. Inhaled SO₂ can also cause chromosomal aberrations, DNA damage and gene mutations in mammals. However, SO₂ can also be generated from the sulfur-containing amino acid, L-cysteine. Recent studies have shown that SO₂ has a vasorelaxant effect, and ameliorates pulmonary hypertension and vascular remodeling. SO₂ can also reduce lung injury and myocardial injury in rats. In addition, SO₂ reduces myocardial ischemia-reperfusion injury and atherosclerotic lesions. Therefore, SO₂ exerts both detrimental and protective effects in mammals. Is SO₂ a foe or friend for life?.

  14. Radioprotective potential of histamine on rat small intestine and uterus

    PubMed Central

    Carabajal, E.; Massari, N.; Croci, M.; Martinel Lamas, D.; Prestifilippo, J.P.; Ciraolo, P.; Bergoc, R.M.; Rivera, E.S.; Medina, V.A.

    2012-01-01

    The aim of this study was to improve knowledge about histamine radioprotective potential investigating its effect on reducing ionising radiation-induced injury and genotoxic damage on the rat small intestine and uterus. Forty 10-week-old male and 40 female Sprague-Dawley rats were divided into 4 groups. Histamine and histamine-5Gy groups received a daily subcutaneous histamine injection (0.1 mg/kg) starting 24 h before irradiation. Histamine-5Gy and untreated-5Gy groups were irradiated with a dose of whole-body Cesium-137 irradiation. Three days after irradiation animals were sacrificed and tissues were removed, fixed, and stained with haematoxylin and eosin, and histological characteristics were evaluated. Proliferation, apoptosis and oxidative DNA markers were studied by immunohistochemistry, while micronucleus assay was performed to evaluate chromosomal damage. Histamine treatment reduced radiation-induced mucosal atrophy, oedema and vascular damage produced by ionising radiation, increasing the number of crypts per circumference (239±12 vs 160±10; P<0.01). This effect was associated with a reduction of radiation-induced intestinal crypts apoptosis. Additionally, histamine decreased the frequency of micronuclei formation and also significantly attenuated 8-OHdG immunoreactivity, a marker of DNA oxidative damage. Furthermore, radiation induced flattening of the endometrial surface, depletion of deep glands and reduced mitosis, effects that were completely blocked by histamine treatment. The expression of a proliferation marker in uterine luminal and glandular cells was markedly stimulated in histamine treated and irradiated rats. The obtained evidences indicate that histamine is a potential candidate as a safe radio-protective agent that might increase the therapeutic index of radiotherapy for intra-abdominal and pelvic cancers. However, its efficacy needs to be carefully investigated in prospective clinical trials. PMID:23361244

  15. Individual and combined effects of Fusarium toxins on apoptosis in PK15 cells and the protective role of N-acetylcysteine.

    PubMed

    Zhang, Wei; Zhang, Shihua; Zhang, Meiling; Yang, Lige; Cheng, Baojing; Li, Jianping; Shan, Anshan

    2018-01-01

    Deoxynivalenol (DON), zearalenone (ZEN) and fumonisin B 1 (FB 1 ) are among the most toxicologically important Fusarium toxins commonly found in nature that lead to nephrotoxicity in animals. The present study investigated that the individual and combined effects of subcytotoxic DON (0.25 μM), ZEN (20 μM) and FB 1 (10 μM) on oxidative stress and apoptosis in porcine kidney cells (PK15). In addition, the protective effect of N-acetylcysteine (NAC) against the toxicity of Fusarium toxins was also evaluated. Our results showed that the activities of glutathione reductase (GR) and total superoxide dismutase (SOD) were affected by DON, ZEN and FB 1 , and this change in activity induced reactive oxygen species (ROS) and malondialdehyde (MDA) production, increased apoptosis and regulated the mRNA expression of Bax, Bcl-2, caspase-3, caspase-9, cytochrome c (cyto c) and P53. This study demonstrated the complexity of combined mycotoxin infection since the combination of toxins exhibited more profound defects in the oxidative stress responses and apoptosis. Moreover, NAC reduced the oxidative damage and inhibited the apoptosis induced by Fusarium toxins. It was concluded that oxidative damage and apoptosis through the mitochondria-dependent channel were the mechanisms of Fusarium toxin mediated toxicity, and NAC reversed these damages to some extent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Heme oxygenase-1 upregulated by Ginkgo biloba extract: potential protection against ethanol-induced oxidative liver damage.

    PubMed

    Yao, Ping; Li, Ke; Song, Fangfang; Zhou, Shaoliang; Sun, Xiufa; Zhang, Xiping; Nüssler, Andreas K; Liu, Liegang

    2007-08-01

    Oxidative stress plays a pivotal role in the pathogenesis and progression of alcoholic liver disease (ALD) and HO-1 induction is suggested to protect hepatocytes from ethanol hepatotoxicity. Here, we present the data to explore the hepatoprotective effect and underlying mechanism(s) of Ginkgo biloba extract (EGB), a naturally occurring HO-1 inducer, against ethanol-induced oxidative damage. Ethanol-fed (2.4 g/kg) male rats were pretreated by EGB (48 or 96 mg/kg) for 90 days. Liver damage was evaluated by histopathology and serum aminotransferase assay. Hepatic redox parameters were measured by spectrophotometry. Heme oxygenase-1 (HO-1) expression was determined by RT-PCR and flow cytometry on mRNA and protein level, respectively. Our results showed that EGB, especially at high dose, ameliorated ethanol-induced macrovesicular steatosis and parenchymatous degeneration in hepatocytes, and decreased serum aminotransferases level. Furthermore, EGB reduced ethanol-derived glutathione depletion and lipid peroxidation, and inhibited the inactivation of superoxide dismutase, glutathione peroxidase and catalase, although EGB itself had no influence on such parameters. Importantly, EGB induced hepatic microsomal HO-1 on mRNA, protein expression and enzymatic activity, which is paralleled to the EGB-derived hepatoprotective effect. Hence, HO-1 upregulation by EGB may enhance the antioxidative capacity against the ethanol-induced oxidative stress and maintain the cellular redox balance.

  17. Possible role of Arthrospira platensis in reversing oxidative stress-mediated liver damage in rats exposed to lead.

    PubMed

    Khalil, Samah R; Elhady, Walaa M; Elewa, Yaser H A; Abd El-Hameed, Noura E; Ali, Sozan A

    2018-01-01

    Environmental pollutants, particularly metallic elements, mobilized and released into the environment, eventually accumulate in the food chain and thus pose a serious threat to human and animal health. In the present study, the role of Arthrospira (Spirulina platensis; SP) as a protector against oxidative stress-mediated liver damage induced by an exposure to lead acetate (LA; as a metallic pollutant) was assessed. To achieve this aim, rats were orally administered with 300 mg/kg bw SP for 15 days, before and concurrently with an intraperitoneal injection of 50 mg/kg bw LA (6 injections throughout 15 days). As a result, co-administration of SP with LA reduced the amount of lead that accumulated in both blood and liver tissue of the exposed rats and minimized the increased levels of lipid peroxidation, protein oxidation, DNA oxidative damage, and liver enzyme endpoints. In addition, because of SP administration, the levels of depleted biomarkers of antioxidant status and total antioxidant capacity in LA-exposed rats improved. Moreover, SP protected the liver tissue against the changes caused by LA exposure and also decreased the reactivity of HSP70 in the cytoplasm of hepatocytes. Collectively, our data suggest that SP has a potential use as a food supplement in the regions highly polluted with heavy metals such as lead. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. Eckol protects V79-4 lung fibroblast cells against gamma-ray radiation-induced apoptosis via the scavenging of reactive oxygen species and inhibiting of the c-Jun NH(2)-terminal kinase pathway.

    PubMed

    Zhang, Rui; Kang, Kyoung Ah; Piao, Mei Jing; Ko, Dong Ok; Wang, Zhi Hong; Lee, In Kyung; Kim, Bum Joon; Jeong, Il Yun; Shin, Taekyun; Park, Jae Woo; Lee, Nam Ho; Hyun, Jin Won

    2008-09-04

    The radioprotective effect of eckol against gamma-ray radiation-induced oxidative stress and its possible protective mechanisms were investigated. Eckol was found to reduce the intracellular reactive oxygen species generated by gamma-ray radiation. Moreover, eckol also protected against radiation-induced cellular DNA damage and membrane lipid peroxidation, which are the main targets of radiation-induced damage. In addition, eckol recovered the cell viability damaged by radiation via the inhibition of apoptosis. Irradiated cells with eckol treatment reduced the expression of bax, the activation of caspase 9 and caspase 3, which were induced by radiation. However, irradiated cells with eckol recovered the expression of bcl-2 and mitochondrial cytochrome c which were decreased by radiation. The anti-apoptotic effect of eckol exerted via the inhibition of mitogen-activated protein kinase kinase-4 (MKK4/SEK1)-c-Jun NH(2)-terminal kinase (JNK)-activator protein 1 (AP-1) cascades induced by radiation. In summary, the results suggest that eckol protects cells against the oxidative stress induced by radiation via the reduction of reactive oxygen species and the attenuation of activation in SEK1-JNK-AP-1 pathway.

  19. SIRT1/3 Activation by Resveratrol Attenuates Acute Kidney Injury in a Septic Rat Model.

    PubMed

    Xu, Siqi; Gao, Youguang; Zhang, Qin; Wei, Siwei; Chen, Zhongqing; Dai, Xingui; Zeng, Zhenhua; Zhao, Ke-Seng

    2016-01-01

    Sepsis often results in damage to multiple organ systems, possibly due to severe mitochondrial dysfunction. Two members of the sirtuin family, SIRT1 and SIRT3, have been implicated in the reversal of mitochondrial damage. The aim of this study was to determine the role of SIRT1/3 in acute kidney injury (AKI) following sepsis in a septic rat model. After drug pretreatment and cecal ligation and puncture (CLP) model reproduction in the rats, we performed survival time evaluation and kidney tissue extraction and renal tubular epithelial cell (RTEC) isolation. We observed reduced SIRT1/3 activity, elevated acetylated SOD2 (ac-SOD2) levels and oxidative stress, and damaged mitochondria in RTECs following sepsis. Treatment with resveratrol (RSV), a chemical SIRT1 activator, effectively restored SIRT1/3 activity, reduced acetylated SOD2 levels, ameliorated oxidative stress and mitochondrial function of RTECs, and prolonged survival time. However, the beneficial effects of RSV were greatly abrogated by Ex527, a selective inhibitor of SIRT1. These results suggest a therapeutic role for SIRT1 in the reversal of AKI in septic rat, which may rely on SIRT3-mediated deacetylation of SOD2. SIRT1/3 activation could therefore be a promising therapeutic strategy to treat sepsis-associated AKI.

  20. Dietary antioxidants and human cancer.

    PubMed

    Borek, Carmia

    2004-12-01

    Epidemiological studies show that a high intake of anti-oxidant-rich foods is inversely related to cancer risk. While animal and cell cultures confirm the anticancer effects of antioxidants, intervention trials to determine their ability to reduce cancer risk have been inconclusive, although selenium and vitamin E reduced the risk of some forms of cancer, including prostate and colon cancer, and carotenoids have been shown to help reduce breast cancer risk. Cancer treatment by radiation and anticancer drugs reduces inherent antioxidants and induces oxidative stress, which increases with disease progression. Vitamins E and C have been shown to ameliorate adverse side effects associated with free radical damage to normal cells in cancer therapy, such as mucositis and fibrosis, and to reduce the recurrence of breast cancer. While clinical studies on the effect of anti-oxidants in modulating cancer treatment are limited in number and size, experimental studies show that antioxidant vitamins and some phytochemicals selectively induce apoptosis in cancer cells but not in normal cells and prevent angiogenesis and metastatic spread, suggesting a potential role for antioxidants as adjuvants in cancer therapy.

  1. Walnut diet reduces accumulation of polyubiquitinated proteins and inflammation in the brain of aged rats

    USDA-ARS?s Scientific Manuscript database

    An increase in the aggregation of misfolded/damaged polyubiquitinated proteins has been the hallmark of many age-related neurodegenerative diseases. The accumulation of these potentially toxic proteins in brain increases with age, in part due to increased oxidative and inflammatory stresses. Walnuts...

  2. Microcarbon-based facial creams activate aerial oxygen under light to reactive oxygen species damaging cell

    NASA Astrophysics Data System (ADS)

    Maity, Sheli; Pakhira, Bholanath; Ghosh, Subrata; Saha, Royina; Sarkar, Ripon; Barui, Ananya; Sarkar, Sabyasachi

    2017-11-01

    Nanosized reduced graphene oxide (rGO) is found in active microcarbon used in popular face cream from the manufacturers like Ponds, Nevia, and Garnier which, under visible light exposure, gets activated by aerial oxygen to generate reactive oxygen species (ROS) harmful to skin.

  3. Mitochondrial dysfunction due to oxidative mitochondrial DNA damage is reduced through cooperative actions of diverse proteins.

    PubMed

    O'Rourke, Thomas W; Doudican, Nicole A; Mackereth, Melinda D; Doetsch, Paul W; Shadel, Gerald S

    2002-06-01

    The mitochondrial genome is a significant target of exogenous and endogenous genotoxic agents; however, the determinants that govern this susceptibility and the pathways available to resist mitochondrial DNA (mtDNA) damage are not well characterized. Here we report that oxidative mtDNA damage is elevated in strains lacking Ntg1p, providing the first direct functional evidence that this mitochondrion-localized, base excision repair enzyme functions to protect mtDNA. However, ntg1 null strains did not exhibit a mitochondrial respiration-deficient (petite) phenotype, suggesting that mtDNA damage is negotiated by the cooperative actions of multiple damage resistance pathways. Null mutations in ABF2 or PIF1, two genes implicated in mtDNA maintenance and recombination, exhibit a synthetic-petite phenotype in combination with ntg1 null mutations that is accompanied by enhanced mtDNA point mutagenesis in the corresponding double-mutant strains. This phenotype was partially rescued by malonic acid, indicating that reactive oxygen species generated by the electron transport chain contribute to mitochondrial dysfunction in abf2 Delta strains. In contrast, when two other genes involved in mtDNA recombination, CCE1 and NUC1, were inactivated a strong synthetic-petite phenotype was not observed, suggesting that the effects mediated by Abf2p and Pif1p are due to novel activities of these proteins other than recombination. These results document the existence of recombination-independent mechanisms in addition to base excision repair to cope with oxidative mtDNA damage in Saccharomyces cerevisiae. Such systems are likely relevant to those operating in human cells where mtDNA recombination is less prevalent, validating yeast as a model system in which to study these important issues.

  4. An immunohistochemical panel to assess ultraviolet radiation-associated oxidative skin injury.

    PubMed

    Mamalis, A; Fiadorchanka, N; Adams, L; Serravallo, M; Heilman, E; Siegel, D; Brody, N; Jagdeo, J

    2014-05-01

    Ultraviolet (UV) radiation results in a significant loss in years of healthy life, approximately 1.5 million disability-adjusted life years (DALYs), and is associated with greater than 60,000 deaths annually worldwide that are attributed to melanoma and other skin cancers. Currently, there are no standardized biomarkers or assay panels to assess oxidative stress skin injury patterns in human skin exposed to ionizing radiation. Using biopsy specimens from chronic solar UV-exposed and UV-protected skin, we demonstrate that UV radiation-induced oxidative skin injury can be evaluated by an immunohistochemical panel that stains 8-hydroxydeoxyguanosine (8-OH-dG) to assess DNA adducts, 4-hydroxy-2-nonenal (HNE) to assess lipid peroxidation, and advanced glycation end products (AGEs) to assess protein damage. We believe this panel contains the necessary cellular biomarkers to evaluate topical agents, such as sunscreens and anti-oxidants that are designed to prevent oxidative skin damage and may reduce UV-associated skin aging, carcinogenesis, and inflammatory skin diseases. We envision that this panel will become an important tool for researchers developing topical agents to protect against UV radiation and other oxidants and ultimately lead to reductions in lost years of healthy life, DALYs, and annual deaths associated with UV radiation.

  5. Role of phenolics from Spondias pinnata bark in amelioration of iron overload induced hepatic damage in Swiss albino mice.

    PubMed

    Chaudhuri, Dipankar; Ghate, Nikhil Baban; Panja, Sourav; Mandal, Nripendranath

    2016-07-26

    Crude Spondias pinnata bark extract was previously assessed for its antioxidant, anticancer and iron chelating potentials. The isolated compounds gallic acid (GA) and methyl gallate (MG) were evaluated for their curative potential against iron overload-induced liver fibrosis and hepatocellular damage. In vitro iron chelation property and in vivo ameliorating potential from iron overload induced liver toxicity of GA and MG was assessed by different biochemical assays and histopathological studies. MG and GA demonstrated excellent reducing power activities but iron chelation potential of MG is better than GA. Oral MG treatment in mice displayed excellent efficacy (better than GA) to significantly restore the levels of liver antioxidants, serum markers and cellular reactive oxygen species in a dose-dependent fashion. Apart from these, MG exceptionally prevented lipid peroxidation and protein oxidation whereas GA demonstrated better activity to reduce collagen content, thereby strengthening its position as an efficient drug against hepatic damage/fibrosis, which was further supported by histopathological studies. Alongside, MG efficiently eliminated the cause of liver damage, i.e., excess iron, by chelating free iron and reducing the ferritin-bound iron. The present study confirmed the curative effect of GA and MG against iron overload hepatic damage via their potent antioxidant and iron-chelating potential.

  6. Ghrelin protects against depleted uranium-induced apoptosis of MC3T3-E1 cells through oxidative stress-mediated p38-mitogen-activated protein kinase pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Yuhui; Liu, Cong; Huang, Jiawei

    Depleted uranium (DU) mainly accumulates in the bone over the long term. Osteoblast cells are responsible for the formation of bone, and they are sensitive to DU damage. However, studies investigating methods of reducing DU damage in osteoblasts are rarely reported. Ghrelin is a stomach hormone that stimulates growth hormones released from the hypothalamic–pituitary axis, and it is believed to play an important physiological role in bone metabolism. This study evaluates the impact of ghrelin on DU-induced apoptosis of the osteoblast MC3T3-E1 and investigates its underlying mechanisms. The results show that ghrelin relieved the intracellular oxidative stress induced by DU,more » eliminated reactive oxygen species (ROS) and reduced lipid peroxidation by increasing intracellular GSH levels; in addition, ghrelin effectively suppressed apoptosis, enhanced mitochondrial membrane potential, and inhibited cytochrome c release and caspase-3 activation after DU exposure. Moreover, ghrelin significantly reduced the expression of DU-induced phosphorylated p38-mitogen-activated protein kinase (MAPK). A specific inhibitor (SB203580) or specific siRNA of p38-MAPK could significantly suppress DU-induced apoptosis and related signals, whereas ROS production was not affected. In addition, ghrelin receptor inhibition could reduce the anti-apoptosis effect of ghrelin on DU and reverse the effect of ghrelin on intracellular ROS and p38-MAPK after DU exposure. These results suggest that ghrelin can suppress DU-induced apoptosis of MC3T3-E1 cells, reduce DU-induced oxidative stress by interacting with its receptor, and inhibit downstream p38-MAPK activation, thereby suppressing the mitochondrial-dependent apoptosis pathway. - Highlights: • Ghrelin suppressed DU-induced apoptosis of MC3T3-E1 cells. • Ghrelin inhibited DU-induced oxidative stress and further p38-MAPK activation. • Ghrelin further suppressed mitochondrial-dependent apoptosis pathway. • The anti-oxidation effect of ghrelin was regulated through its receptor. • Ghrelin has the potential for use in drug therapies for DU poisoning.« less

  7. Detection of DNA damage by using hairpin molecular beacon probes and graphene oxide.

    PubMed

    Zhou, Jie; Lu, Qian; Tong, Ying; Wei, Wei; Liu, Songqin

    2012-09-15

    A hairpin molecular beacon tagged with carboxyfluorescein in combination with graphene oxide as a quencher reagent was used to detect the DNA damage by chemical reagents. The fluorescence of molecular beacon was quenched sharply by graphene oxide; while in the presence of its complementary DNA the quenching efficiency decreased because their hybridization prevented the strong adsorbability of molecular beacon on graphene oxide. If the complementary DNA was damaged by a chemical reagent and could not form intact duplex structure with molecular beacon, more molecular beacon would adsorb on graphene oxide increasing the quenching efficiency. Thus, damaged DNA could be detected based on different quenching efficiencies afforded by damaged and intact complementary DNA. The damage effects of chlorpyrifos-methyl and three metabolites of styrene such as mandelieaeids, phenylglyoxylieaeids and epoxystyrene on DNA were studied as models. The method for detection of DNA damage was reliable, rapid and simple compared to the biological methods. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Oxidative stress and mitochondrial damage in coronary artery bypass graft surgery: effects of antioxidant treatments.

    PubMed

    Milei, J; Ferreira, R; Grana, D R; Boveris, A

    2001-01-01

    We examined antioxidant actions in 73 patients undergoing coronary artery surgery by assessing mitochondrial damage and oxidative stress in ventricular biopsies obtained at preischemia and postreperfusion. Those patients who received antioxidant therapy benefited by less oxidative stress and mitochondrial damage.

  9. Serum biomarkers of oxidative stress in dogs with idiopathic inflammatory bowel disease.

    PubMed

    Rubio, C P; Martínez-Subiela, S; Hernández-Ruiz, J; Tvarijonaviciute, A; Cerón, J J; Allenspach, K

    2017-03-01

    The objective of this work was to study and compare a panel of various serum biomarkers evaluating both the antioxidant response and oxidative damage in dogs with idiopathic inflammatory bowel disease (IBD). Eighteen dogs with IBD and 20 healthy dogs were enrolled in the study. Trolox equivalent antioxidant capacity (TEAC), cupric reducing antioxidant capacity (CUPRAC), ferric reducing ability of the plasma (FRAP), total thiol concentrations, and paraoxonase 1 (PON1) activity were evaluated in serum to determine antioxidant response. To evaluate oxidative status, ferrous oxidation-xylenol orange (FOX), thiobarbituric acid reactive substances (TBARS) and reactive oxygen species production (ROS) concentrations in serum were determined. Mean concentrations of all antioxidant biomarkers analyzed, with exception of FRAP, were significantly lower (P < 0.0001) in the sera of dogs with IBD than in healthy dogs. The oxidant markers studied were significantly higher (P < 0.0001) in sera of dogs with IBD than in healthy dogs. These findings support the hypothesis that oxidative stress could play an important role in the pathogenesis of canine IBD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Oxidative shielding and the cost of reproduction.

    PubMed

    Blount, Jonathan D; Vitikainen, Emma I K; Stott, Iain; Cant, Michael A

    2016-05-01

    Life-history theory assumes that reproduction and lifespan are constrained by trade-offs which prevent their simultaneous increase. Recently, there has been considerable interest in the possibility that this cost of reproduction is mediated by oxidative stress. However, empirical tests of this theory have yielded equivocal support. We carried out a meta-analysis to examine associations between reproduction and oxidative damage across markers and tissues. We show that oxidative damage is positively associated with reproductive effort across females of various species. Yet paradoxically, categorical comparisons of breeders versus non-breeders reveal that transition to the reproductive state is associated with a step-change reduction in oxidative damage in certain tissues and markers. Developing offspring may be particularly sensitive to harm caused by oxidative damage in mothers. Therefore, such reductions could potentially function to shield reproducing mothers, gametes and developing offspring from oxidative insults that inevitably increase as a consequence of reproductive effort. According to this perspective, we hypothesise that the cost of reproduction is mediated by dual impacts of maternally-derived oxidative damage on mothers and offspring, and that mothers may be selected to diminish such damage. Such oxidative shielding may explain why many existing studies have concluded that reproduction has little or no oxidative cost. Future advance in life-history theory therefore needs to take account of potential transgenerational impacts of the mechanisms underlying life-history trade-offs. © 2015 Cambridge Philosophical Society.

  11. Mimosa (Mimosa caesalpiniifolia) prevents oxidative DNA damage induced by cadmium exposure in Wistar rats.

    PubMed

    Silva, Marcelo Jose Dias; Vilegas, Wagner; da Silva, Marcelo Aparecido; de Moura, Carolina Foot Gomes; Ribeiro, Flávia Andressa Pidone; da Silva, Victor Hugo Pereira; Ribeiro, Daniel Araki

    2014-12-01

    The Mimosa (Mimosa caesalpiniifolia) is a plant native from South America; it is used in the traditional medicine systems for treating bacterial, fungal, parasitic and inflammatory conditions. The aim of this study was to evaluate the antigenotoxic and antioxidant activities induced by mimosa (M. caesalpiniifolia) in multiple rodent organs subjected to intoxication with cadmium chloride. A total of 40 Wistar rats (8 weeks old, 250 g) were distributed into eight groups (n = 5), as follows: Control group (non-treated group, CTRL); Cadmium exposed group (Cd); cadmium exposure and treated with extract at 62.5 mg/kg/day; cadmium exposure and treated with extract at 125 mg/kg/day; cadmium exposure and treated with extract at 250 mg/kg/day; cadmium exposure and treated with ethyl acetate fraction at 62.5 mg/kg/day. For evaluating the toxicogenetic potential of mimosa, two groups were included in the study being treated with extract at 250 mg/kg/day and acetate fraction of mimosa at 62 mg/kg/day, only. Extract of mimosa at concentrations of 62.5 and 125 mg decreased DNA damage in animals intoxicated with cadmium when compared to cadmium group. In a similar manner, treatment with ethyl acetate fraction of mimosa at 62.5 mg concentration in animals previously exposed to cadmium reduced genetic damage in peripheral blood cells. In a similar manner, the treatment with ethyl acetate fraction reduced DNA damage in liver cells. Oxidative DNA damage was reduced to animals exposed to cadmium and treated with 125 mg of extract as well as those intoxicated to cadmium and treated with 62.5 of acetate fraction of mimosa. Taken together, our results indicate that mimosa prevents genotoxicity induced by cadmium exposure in liver and peripheral blood cells of rats as a result of antioxidant activity.

  12. Boldine Improves Kidney Damage in the Goldblatt 2K1C Model Avoiding the Increase in TGF-β.

    PubMed

    Gómez, Gonzalo I; Velarde, Victoria

    2018-06-25

    Boldine, a major aporphine alkaloid found in the Chilean boldo tree, is a potent antioxidant. Oxidative stress plays a detrimental role in the pathogenesis of kidney damage in renovascular hypertension (RVH). The activation of the renin-angiotensin system (RAS) is crucial to the development and progression of hypertensive renal damage and TGF-β is closely associated with the activation of RAS. In the present study, we assessed the effect of boldine on the progression of kidney disease using the 2K1C hypertension model and identifying mediators in the RAS, such as TGF-β, that could be modulated by this alkaloid. Toward this hypothesis, rats ( n = 5/group) were treated with boldine (50 mg/kg/day, gavage) for six weeks after 2K1C surgery (pressure ≥ 180 mmHg). Kidney function was evaluated by measuring of proteinuria/creatininuria ratio (U prot/U Crea), oxidative stress (OS) by measuring thiobarbituric acid reactive substances (TBARS). The evolution of systolic blood pressure (SBP) was followed weekly. Alpha-smooth muscle actin (α-SMA) and Col III were used as markers of kidney damage; ED-1 and osteopontin (OPN) were used as markers of inflammation. We also explored the effect in RAS mediators, such as ACE-1 and TGF-β. Boldine treatment reduced the UProt/UCrea ratio, plasma TBARS, and slightly reduced SBP in 2K1C hypertensive rats, producing no effect in control animals. In 2K1C rats treated with boldine the levels of α-SMA, Col III, ED-1, and OPN were lower when compared to 2K1C rats. Boldine prevented the increase in ACE-1 and TGF-β in 2K1C rats, suggesting that boldine reduces kidney damage. These results suggest that boldine could potentially be used as a nutraceutic.

  13. Oxidative DNA damage in prostate cancer patients consuming tomato sauce-based entrees as a whole-food intervention.

    PubMed

    Chen, L; Stacewicz-Sapuntzakis, M; Duncan, C; Sharifi, R; Ghosh, L; van Breemen, R; Ashton, D; Bowen, P E

    2001-12-19

    Human prostate tissues are vulnerable to oxidative DNA damage. The risk of prostate cancer is lower in men reporting higher consumption of tomato products, which contain high levels of the antioxidant lycopene. We examined the effects of consumption of tomato sauce-based pasta dishes on lycopene uptake, oxidative DNA damage, and prostate-specific antigen (PSA) levels in patients already diagnosed with prostate cancer. Thirty-two patients with localized prostate adenocarcinoma consumed tomato sauce-based pasta dishes for the 3 weeks (30 mg of lycopene per day) preceding their scheduled radical prostatectomy. Serum and prostate lycopene concentrations, serum PSA levels, and leukocyte DNA oxidative damage (ratio of 8-hydroxy-2'-deoxyguanosine [8-OHdG] to 2'-deoxyguanosine [dG]) were assessed before and after the dietary intervention. DNA oxidative damage was assessed in resected prostate tissue from study participants and from seven randomly selected prostate cancer patients. All statistical tests were two-sided. After the dietary intervention, serum and prostate lycopene concentrations were statistically significantly increased, from 638 nM (95% confidence interval [CI] = 512 to 764 nM) to 1258 nM (95% CI = 1061 to 1455 nM) (P<.001) and from 0.28 nmol/g (95% CI = 0.18 to 0.37 nmol/g) to 0.82 nmol/g (95% CI = 0.57 to 1.11 nmol/g) (P <.001), respectively. Compared with preintervention levels, leukocyte oxidative DNA damage was statistically significantly reduced after the intervention, from 0.61 8-OHdG/10(5) dG (95% CI = 0.45 to 0.77 8-OHdG/10(5) dG) to 0.48 8-OHdG/ 10(5) dG (95% CI = 0.41 to 0.56 8-OHdG/10(5) dG) (P =.005). Furthermore, prostate tissue oxidative DNA damage was also statistically significantly lower in men who had the intervention (0.76 8-OHdG/10(5) dG [95% CI = 0.55 to 0.96 8-OHdG/10(5) dG]) than in the randomly selected patients (1.06 8-OHdG/10(5) dG [95% CI = 0.62 to 1.51 8-OHdG/10(5) dG]; P =.03). Serum PSA levels decreased after the intervention, from 10.9 ng/mL (95% CI = 8.7 to 13.2 ng/mL) to 8.7 ng/mL (95% CI = 6.8 to 10.6 ng/mL) (P<.001). These data indicate a possible role for a tomato sauce constituent, possibly lycopene, in the treatment of prostate cancer and warrant further testing with a larger sample of patients, including a control group.

  14. Effect of broccoli extract enriched diet on liver cholesterol oxidation in rats subjected to exhaustive exercise.

    PubMed

    Cardenia, Vladimiro; Rodriguez-Estrada, Maria Teresa; Lorenzini, Antonello; Bandini, Erika; Angeloni, Cristina; Hrelia, Silvana; Malaguti, Marco

    2017-05-01

    The effect of broccoli extract (BE)-enriched diet was studied in order to evaluate its ability to counteract liver cholesterol oxidation products (COPs) induced by acute strenuous exercise in rats. Thirty-two female Wistar rats were randomly divided into four groups: control diet without exercise (C), BE-enriched diet without exercise (B), control diet with acute exhaustive exercise (S) and BE-enriched diet with acute exhaustive exercise (BS). The study lasted 45days and on the last day, rats of S and BS groups were forced to run until exhaustion on a treadmill. Glutathione-S-transferase (GST), glutathione reductase (GR), glutathione peroxidase (GPx), catalase (CAT) and cholesterol oxidation products (COPs) were determined in liver. Exhaustive exercise was clearly responsible for tissue damage, as evidenced by the increase of lactate dehydrogenase (LDH) plasma activity in the S group. Moreover, the exercise protocol reduced CAT activity in liver, while it did not affect GST, GR and GPx. BE-enriched diet raised GST, GR and CAT activities in rats of BS group. The main COPs found were 7α-hydroxycholesterol, 7β-hydroxycholesterol, 7-ketocholesterol, cholestanetriol, 24-hydroxycholesterol and 27-hydroxycholesterol. The BE-enriched diet led to reduced cholesterol oxidation following exhaustive exercise; the highest level of COPs was found in the S group, whereas the BS rats showed the lowest amount. This study indicates that the BE-enriched diet increases antioxidant enzyme activities and exerts an antioxidant effect towards cholesterol oxidation in rat liver, suggesting the use of phytochemicals in the prevention of oxidative damage and in the modulation of the redox environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Antioxidant Effect of Ukrain Versus N-Acetylcysteine Against Acute Biliary Pancreatitis in An Experimental Rat Model.

    PubMed

    Zeren, Sezgin; Bayhan, Zulfu; Koçak, Cengiz; Koçak, Fatma Emel; Metineren, Mehmet Huseyin; Savran, Bircan; Kocak, Havva; Algin, Mustafa Cem; Kahraman, Cuneyt; Kocak, Ahmet; Cosgun, Suleyman

    2017-04-01

    Purpose/Aim: Oxidative stress plays an important role in the pathogenesis of acute pancreatitis (AP). We compared the therapeutic effects of Ukrain (NSC 631570) and N-acetylcysteine (NAC) in rats with AP. Forty male Sprague Dawley rats were divided into four groups: controls; AP; AP with NAC; and AP with Ukrain. AP was induced via the ligation of the bile-pancreatic duct; drugs were administered intraperitoneally (i.p.) 30 min and 12 h after AP induction. Twenty-four hours after AP induction, animals were sacrificed and the pancreas was excised. Levels of malondialdehyde (MDA) and nitric oxide (NO), and activity levels of tumor necrosis factor (TNF)-α, and myeloperoxidase (MPO) were measured in tissue samples. Total oxidant status (TOS), total antioxidant status (TAS), and total bilirubin, as well as activity levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), amylase and lipase were measured in serum samples. Pancreatic tissue histopathology was also evaluated. Test drugs reduced levels of MDA, NO, TNF-α, total bilirubin, AST, ALT, TOS and MPO, amylase and lipase activities (P < 0.001), and increased TAS (P < 0.001). Rats treated with test drugs attenuated AP-induced morphologic changes and decreased pancreatic damage scores compared with the AP group (P < 0.05). Both test drugs attenuated pancreatic damage, but the therapeutic effect was more pronounced in rats that received Ukrain than in those receiving NAC. These results suggest that treatment with Ukrain or NAC can reduce pancreatic damage via anti-inflammatory and antioxidant effects.

  16. Polyamines contribute to salinity tolerance in the symbiosis Medicago truncatula-Sinorhizobium meliloti by preventing oxidative damage.

    PubMed

    López-Gómez, Miguel; Hidalgo-Castellanos, Javier; Muñoz-Sánchez, J Rubén; Marín-Peña, Agustín J; Lluch, Carmen; Herrera-Cervera, José A

    2017-07-01

    Polyamines (PAs) such as spermidine (Spd) and spermine (Spm) are small ubiquitous polycationic compounds that contribute to plant adaptation to salt stress. The positive effect of PAs has been associated to a cross-talk with other anti-stress hormones such as brassinosteroids (BRs). In this work we have studied the effects of exogenous Spd and Spm pre-treatments in the response to salt stress of the symbiotic interaction between Medicago truncatula and Sinorhizobium meliloti by analyzing parameters related to nitrogen fixation, oxidative damage and cross-talk with BRs in the response to salinity. Exogenous PAs treatments incremented the foliar and nodular Spd and Spm content which correlated with an increment of the nodule biomass and nitrogenase activity. Exogenous Spm treatment partially prevented proline accumulation which suggests that this polyamine could replace the role of this amino acid in the salt stress response. Additionally, Spd and Spm pre-treatments reduced the levels of H 2 O 2 and lipid peroxidation under salt stress. PAs induced the expression of genes involved in BRs biosynthesis which support a cross-talk between PAs and BRs in the salt stress response of M. truncatula-S. meliloti symbiosis. In conclusion, exogenous PAs improved the response to salinity of the M. truncatula-S. meliloti symbiosis by reducing the oxidative damage induced under salt stress conditions. In addition, in this work we provide evidences of the cross-talk between PAs and BRs in the adaptive responses to salinity. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Oxidative Stress, Aging and CNS disease in the Canine Model of Human Brain Aging

    PubMed Central

    Head, Elizabeth; Rofina, Jaime; Zicker, Steven

    2008-01-01

    SYNOPSIS Decline in cognitive functions that accompany aging in dogs may have a biological basis, and many of the disorders associated with aging in canines may be mitigated through dietary modifications that incorporate specific nutraceuticals. Based on previous research and the results of both laboratory and clinical studies – antioxidants may be one class of nutraceutical that provides benefits to aged dogs. Brains of aged dogs accumulate oxidative damage to proteins and lipids, which may lead to dysfunction of neuronal cells. The production of free radicals and lack of increase in compensatory antioxidant enzymes may lead to detrimental modifications to important macromolecules within neurons. Reducing oxidative damage through food ingredients rich in a broad spectrum of antioxidants significantly improves, or slows the decline of, learning and memory in aged dogs. However, determining all effective compounds and combinations, dosage ranges, as well as when to initiate intervention and long term effects constitute gaps in our current knowledge. PMID:18249248

  18. Chamomile confers protection against hydrogen peroxide-induced toxicity through activation of Nrf2-mediated defense response.

    PubMed

    Bhaskaran, Natarajan; Srivastava, Janmejai K; Shukla, Sanjeev; Gupta, Sanjay

    2013-01-01

    Oxidative stress plays an important role in the development of various human diseases. Aqueous chamomile extract is used as herbal medicine, in the form of tea, demonstrated to possess antiinflammatory and antioxidant properties. We demonstrate the cytoprotective effects of chamomile on hydrogen peroxide (H₂O₂)-induced cellular damage in macrophage RAW 264.7 cells. Pretreatment of cells with chamomile markedly attenuated H₂O₂-induced cell viability loss in a dose-dependent manner. The mechanisms by which chamomile-protected macrophages from oxidative stress was through the induction of several antioxidant enzymes including NAD(P)H:quinone oxidoreductase, superoxide dismutase, and catalase and increase nuclear accumulation of the transcription factor Nrf2 and its binding to antioxidant response elements. Furthermore, chamomile dose-dependently reduced H₂O₂-mediated increase in the intracellular levels of reactive oxygen species. Our results, for the first time, demonstrate that chamomile has protective effects against oxidative stress and might be beneficial to provide defense against cellular damage. Copyright © 2012 John Wiley & Sons, Ltd.

  19. Chamomile Confers Protection against Hydrogen Peroxide-Induced Toxicity through Activation of Nrf2-Mediated Defense Response

    PubMed Central

    Bhaskaran, Natarajan; Srivastava, Janmejai K.; Shukla, Sanjeev; Gupta, Sanjay

    2014-01-01

    Oxidative stress plays an important role in the development of various human diseases. Aqueous chamomile extract is used as herbal medicine, in the form of tea, demonstrated to possess antiinflammatory and antioxidant properties. We demonstrate the cytoprotective effects of chamomile on hydrogen peroxide (H2O2)-induced cellular damage in macrophage RAW 264.7 cells. Pretreatment of cells with chamomile markedly attenuated H2O2-induced cell viability loss in a dose-dependent manner. The mechanisms by which chamomile-protected macrophages from oxidative stress was through the induction of several antioxidant enzymes including NAD (P)H:quinone oxidoreductase, superoxide dismutase, and catalase and increase nuclear accumulation of the transcription factor Nrf2 and its binding to antioxidant response elements. Furthermore, chamomile dose-dependently reduced H2O2-mediated increase in the intracellular levels of reactive oxygen species. Our results, for the first time, demonstrate that chamomile has protective effects against oxidative stress and might be beneficial to provide defense against cellular damage. PMID:22511316

  20. Oxidative stress and anxiety-like symptoms related to withdrawal of passive cigarette smoke in mice: beneficial effects of pecan nut shells extract, a by-product of the nut industry.

    PubMed

    Reckziegel, P; Boufleur, N; Barcelos, R C S; Benvegnú, D M; Pase, C S; Muller, L G; Teixeira, A M; Zanella, R; Prado, A C P; Fett, R; Block, J M; Burger, M E

    2011-09-01

    The present study evaluated the role of pecan nut (Carya illinoensis) shells aqueous extract (AE) against oxidative damage induced by cigarette smoke exposure (CSE) and behavioral parameters of smoking withdrawal. Mice were passively exposed to cigarette smoke for 3 weeks (6, 10, and 14 cigarettes/day) and orally treated with AE (25 g/L). CSE induced lipid peroxidation in brain and red blood cells (RBC), increased catalase (CAT) activity in RBC, and decreased plasma ascorbic acid levels. AE prevented oxidative damage and increased antioxidant defenses of mice exposed to cigarette smoke. In addition, AE reduced the locomotor activity and anxiety symptoms induced by smoking withdrawal, and these behavioral parameters showed a positive correlation with RBC lipid peroxidation. Our results showed the beneficial effects of this by-product of the pecan industry, indicating its usefulness in smoking cessation. Copyright © 2011 Elsevier Inc. All rights reserved.

Top