Sample records for reducing pressure drop

  1. An investigation of two phase flow pressure drops in a reduced acceleration environment

    NASA Astrophysics Data System (ADS)

    Wheeler, Montgomery W.; Best, Frederick R.; Reinarts, Thomas R.

    1993-01-01

    Thermal systems for space applications based on two phase flow have several advantages over single phase systems. Two phase thermal energy management and dynamic power conversion system advantages include the capability of achieving high specific power levels. Before two phase systems for space applications can be designed effectively, knowledge of the flow behavior in a reduced acceleration environment is necessary. To meet these needs, two phase flow experiments were conducted aboard the National Aeronautic and Space Administration's KC-135 using R12 as the working fluid. Annular flow two phase pressure drops were measured through 10.41-mm ID 1.251-m long glass tubing during periods with acceleration levels in the range ±0.05 G. The experiments were conducted with emphasis on achieving data with a high level of accuracy. The reduced acceleration annular flow pressure drops were compred with pressure drops measured in a 1-G environment for similar flow conditions. The reduced acceleration pressure drops were found to be 45% greater than the 1-G pressure drops. In addition, the reduced acceleration annular flow interfacial friction factors were compared with models for vertical up-flow in a 1-G environment. The reduced acceleration interfacial friction factor data was not predicted by the 1-G models.

  2. Filter aids influence on pressure drop across a filtration system

    NASA Astrophysics Data System (ADS)

    Hajar, S.; Rashid, M.; Nurnadia, A.; Ammar, M. R.; Hasfalina, C. M.

    2017-06-01

    Filter aids is commonly used to reduce pressure drop across air filtration system as it helps to increase the efficiency of filtration of accumulated filter cake. Filtration velocity is one of the main parameters that affect the performance of filter aids material. In this study, a formulated filter aids consisting of PreKot™ and activated carbon mixture (designated as PrekotAC) was tested on PTFE filter media under various filtration velocities of 5, 6, and 8 m/min at a constant material loading of 0.2 mg/mm2. Results showed that pressure drop is highly influenced by filtration velocity where higher filtration velocity leads to a higher pressure drop across the filter cake. It was found that PrekotAC performed better in terms of reducing the pressure drop across the filter cake even at the highest filtration velocity. The diversity in different particle size distribution of non-uniform particle size in the formulated PrekotAC mixture presents a higher permeability causes a lower pressure drop across the accumulated filter cake. The finding suggests that PrekotAC is a promising filter aids material that helps reducing the pressure drop across fabric filtration system.

  3. Method for reducing pressure drop through filters, and filter exhibiting reduced pressure drop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sappok, Alexander; Wong, Victor

    Methods for generating and applying coatings to filters with porous material in order to reduce large pressure drop increases as material accumulates in a filter, as well as the filter exhibiting reduced and/or more uniform pressure drop. The filter can be a diesel particulate trap for removing particulate matter such as soot from the exhaust of a diesel engine. Porous material such as ash is loaded on the surface of the substrate or filter walls, such as by coating, depositing, distributing or layering the porous material along the channel walls of the filter in an amount effective for minimizing ormore » preventing depth filtration during use of the filter. Efficient filtration at acceptable flow rates is achieved.« less

  4. 40 CFR Table 5 to Subpart Jjjjj of... - Continuous Compliance With Emission Limits and Operating Limits

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... kilns equipped with WS i. Collecting the scrubber pressure drop data according to § 63.8450(a); reducing the scrubber pressure drop data to 3-hour block averages according to § 63.8450(a); maintaining the average scrubber pressure drop for each 3-hour block period at or above the average pressure drop...

  5. Reducing cyclone pressure drop with evasés

    USDA-ARS?s Scientific Manuscript database

    Cyclones are widely used to separate particles from gas flows and as air emissions control devices. Their cost of operation is proportional to the fan energy required to overcome their pressure drop. Evasés or exit diffusers potentially could reduce exit pressure losses without affecting collection...

  6. COMPARISON OF PRESSURE DROP PRODUCED BY SPIRAL WRAPS, COOKIE CUTTERS AND OTHER ROD BUNDLE SPACERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noyes, R.C.

    The problem of predicting pressure drop due to various fuel bundle spacers is considered in some detail. Three sets of experimental data are reviewed and presented in reduced form. These data are compared to several semitheoretical approaches to pressure drop prediction and a best method is selected to make the required predictions. The comparison between predictions for the ASCR spiral wrap spacer and cookie cutter spacer shows that both types of spacers produce about the same pressure drop. Spacer pressure drop is shown to be strongly dependent on spacer frontal area and pitch. (auth)

  7. Investigation of powder injection moulded oblique fin heat sinks

    NASA Astrophysics Data System (ADS)

    Sai, Vadri Siva

    The present work attempts to study the fluid flow and heat transfer characteristics of PIM oblique finned microchannel heat sink both numerically and experimentally. Experimental results such as thermal resistance and pressure drop have been well validated with ANSYS FLUENT simulations. Hot spots are observed at the most downstream location of the channel is due to the effect of flow migration. Finally, a novel technique has been proposed to reduce the pressure drop on creating additional channels by removing some material at the middle portion of oblique fins. It is found that the creation of oblique cuts incurred a reduction in both pressure drop and Nuavg up to 31.36 % and 16.66 % respectively at a flow rate of 500 ml/min. Nevertheless, for all the flowrates considered in this analysis. % reduction in pressure drop is almost double as compared with % reduction in Nuavg. Therefore, this analysis is beneflcial in reducing the additional cost incurs due to pressure drop penalty.

  8. Drop impact on a solid surface at reduced air pressure

    NASA Astrophysics Data System (ADS)

    Langley, Kenneth; Li, E. Q.; Tian, Y. S.; Hicks, P. D.; Thoroddsen, S. T.

    2017-11-01

    When a drop approaches a solid surface at atmospheric pressure, the lubrication pressure within the air forms a dimple in the bottom of the drop resulting in the entrainment of an air disc upon impact. Reducing the ambient air pressure below atmospheric has been shown to suppress splashing and the compression of the intervening air could be significant on the air disc formation; however, to date there have been no experimental studies showing how the entrainment of the air disc is affected by reducing the ambient pressure. Using ultra-high-speed interferometry, at up to 5 Mfps, we investigate droplet impacts onto dry solid surfaces in reduced ambient air pressures with particular interest in what happens as rarified gas effects become important, i.e. when the thickness of the air layer is of the same magnitude as the mean free path of the air molecules. Experimental data will be presented showing novel phenomena and comparisons will be drawn with theoretical models from the literature.

  9. Automatic safety rod for reactors. [LMFBR

    DOEpatents

    Germer, J.H.

    1982-03-23

    An automatic safety rod for a nuclear reactor containing neutron absorbing material and designed to be inserted into a reactor core after a loss-of-flow. Actuation is based upon either a sudden decrease in core pressure drop or the pressure drop decreases below a predetermined minimum value. The automatic control rod includes a pressure regulating device whereby a controlled decrease in operating pressure due to reduced coolant flow does not cause the rod to drop into the core.

  10. Automatic safety rod for reactors

    DOEpatents

    Germer, John H.

    1988-01-01

    An automatic safety rod for a nuclear reactor containing neutron absorbing material and designed to be inserted into a reactor core after a loss-of-core flow. Actuation is based upon either a sudden decrease in core pressure drop or the pressure drop decreases below a predetermined minimum value. The automatic control rod includes a pressure regulating device whereby a controlled decrease in operating pressure due to reduced coolant flow does not cause the rod to drop into the core.

  11. Influence of fuel temperature on atomization performance of pressure-swirl atomizers

    NASA Astrophysics Data System (ADS)

    Wang, X. F.; Lefebvre, A. H.

    The influence of fuel temperature on mean drop size and drop-size distribution is examined for aviation gasoline and diesel oil, using three pressure-swirl simplex nozzles. Spray characteristics are measured over wide ranges of fuel injection pressure and ambient air pressure using a Malvern spray analyzer. Fuel temperatures are varied from -20 C to +50 C. Over this range of temperature, the overall effect of an increase in fuel temperature is to reduce the mean drop size and broaden the distribution of drop sizes in the spray. Generally, it is found that the influence of fuel temperature on mean drop size is far more pronounced for diesel oil than for gasoline. For both fuels the beneficial effect of higher fuel temperatures on atomization quality is sensibly independent of ambient air pressure.

  12. Comparison of High Aspect Ratio Cooling Channel Designs for a Rocket Combustion Chamber with Development of an Optimized Design

    NASA Technical Reports Server (NTRS)

    Wadel, Mary F.

    1998-01-01

    An analytical investigation on the effect of high aspect ratio (height/width) cooling channels, considering different coolant channel designs, on hot-gas-side wall temperature and coolant pressure drop for a liquid hydrogen cooled rocket combustion chamber, was performed. Coolant channel design elements considered were: length of combustion chamber in which high aspect ratio cooling was applied, number of coolant channels, and coolant channel shape. Seven coolant channel designs were investigated using a coupling of the Rocket Thermal Evaluation code and the Two-Dimensional Kinetics code. Initially, each coolant channel design was developed, without consideration for fabrication, to reduce the hot-gas-side wall temperature from a given conventional cooling channel baseline. These designs produced hot-gas-side wall temperature reductions up to 22 percent, with coolant pressure drop increases as low as 7.5 percent from the baseline. Fabrication constraints for milled channels were applied to the seven designs. These produced hot-gas-side wall temperature reductions of up to 20 percent, with coolant pressure drop increases as low as 2 percent. Using high aspect ratio cooling channels for the entire length of the combustion chamber had no additional benefit on hot-gas-side wall temperature over using high aspect ratio cooling channels only in the throat region, but increased coolant pressure drop 33 percent. Independent of coolant channel shape, high aspect ratio cooling was able to reduce the hot-gas-side wall temperature by at least 8 percent, with as low as a 2 percent increase in coolant pressure drop. ne design with the highest overall benefit to hot-gas-side wall temperature and minimal coolant pressure drop increase was the design which used bifurcated cooling channels and high aspect ratio cooling in the throat region. An optimized bifurcated high aspect ratio cooling channel design was developed which reduced the hot-gas-side wall temperature by 18 percent and reduced the coolant pressure drop by 4 percent. Reductions of coolant mass flow rate of up to 50 percent were possible before the hot-gas-side wall temperature reached that of the baseline. These mass flow rate reductions produced coolant pressure drops of up to 57 percent.

  13. Rotating diffuser for pressure recovery in a steam cooling circuit of a gas turbine

    DOEpatents

    Eldrid, Sacheverel Q.; Salamah, Samir A.; DeStefano, Thomas Daniel

    2002-01-01

    The buckets of a gas turbine are steam-cooled via a bore tube assembly having concentric supply and spent cooling steam return passages rotating with the rotor. A diffuser is provided in the return passage to reduce the pressure drop. In a combined cycle system, the spent return cooling steam with reduced pressure drop is combined with reheat steam from a heat recovery steam generator for flow to the intermediate pressure turbine. The exhaust steam from the high pressure turbine of the combined cycle unit supplies cooling steam to the supply conduit of the gas turbine.

  14. Pressure Reducer for Coal Gasifiers

    NASA Technical Reports Server (NTRS)

    Kendall, James M., Sr.

    1983-01-01

    Quasi-porous-plug pressure reducer is designed for gases containing abrasive particles. Gas used to generate high pressure steam to drive electric power generators. In giving up heat to steam, gas drops in temperature. Device used for coal gasification plants.

  15. Effects of phosphoric acid sprayed into an incinerator furnace on the flue gas pressure drop at fabric filters.

    PubMed

    Takahashi, Shigetoshi; Hwang, In-Hee; Matsuto, Toshihiko

    2016-06-01

    Fabric filters are widely used to remove dust from flue gas generated by waste incineration. However, a pressure drop occurs at the filters, caused by growth of a dust layer on the filter fabric despite regular cleaning by pulsed-jet air. The pressure drop at the fabric filters leads to energy consumption at induced draft fan to keep the incinerator on negative pressure, so that its proper control is important to operate incineration facility efficiently. The pressure drop at fabric filters decreased whenever phosphoric acid wastewater (PAW) was sprayed into an incinerator for treating industrial waste. Operational data obtained from the incineration facility were analyzed to determine the short- and long-term effects of PAW spraying on the pressure drop. For the short-term effect, it was confirmed that the pressure drop at the fabric filters always decreased to 0.3-1.2kPa within about 5h after spraying PAW. This effect was expected to be obtained by about one third of present PAW spraying amount. However, from the long-term perspective, the pressure drop showed an increase in the periods of PAW spraying compared with periods for which PAW spraying was not performed. The pressure drop increase was particularly noticeable after the initial PAW spraying, regardless of the age and type of fabric filters used. These results suggest that present PAW spraying causes a temporary pressure drop reduction, leading to short-term energy consumption savings; however, it also causes an increase of the pressure drop over the long-term, degrading the overall operating conditions. Thus, appropriate PAW spraying conditions are needed to make effective use of PAW to reduce the pressure drop at fabric filters from a short- and long-term point of view. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Visualization Measurement of Streaming Flows Associated with a Single-Acoustic Levitator

    NASA Astrophysics Data System (ADS)

    Hasegawa, Koji; Abe, Yutaka; Kaneko, Akiko; Yamamoto, Yuji; Aoki, Kazuyoshi

    2009-08-01

    The purpose of the study is to experimentally investigate flow fields generated by an acoustic levitator. This flow field has been observed using flow visualization, PIV method. In the absent of a drop, the flow field was strongly influenced by sound pressure level (SPL). In light of the interfacial stability of a levitated drop, SPL was set at 161-163 [dB] in our experiments. In the case of any levitated drop at a pressure node of a standing wave, the toroidal vortices were appeared around a drop and clearly observed the flow fields around the drop by PIV measurement. It is found that the toroidal vortices around a levitated drop were strongly affected by the viscosity of a drop. For more detailed research, experiments in the reduced gravity were conducted with aircraft parabolic flights. By comparison with experimental results in the earth and reduced gravity, it is also indicated that the configuration of the external flow field around a drop is most likely to be affected by a position of a drop as well.

  17. Heat transfer and pressure drop for air flow through enhanced passages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obot, N.T.; Esen, E.B.

    1992-06-01

    An extensive experimental investigation was carried out to determine the pressure drop and heat transfer characteristics for laminar, transitional and turbulent flow of air through a smooth passage and twenty-three enhanced passages. The internal surfaces of all enhanced passages had spirally shaped geometries; these included fluted, finned/ribbed and indented surfaces. The Reynolds number (Re) was varied between 400 and 50000. The effect of heat transfer (wall cooling or fluid heating) on pressure drop is most significant within the transition region; the recorded pressure drop with heat transfer is much higher than that without heat transfer. The magnitude of this effectmore » depends markedly on the average surface temperature and, to a lesser extent, on the geometric characteristics of the enhanced surfaces. When the pressure drop data are reduced as values of the Fanning friction factor(f), the results are about the same with and without heat transfer for turbulent flow, with moderate differences in the laminar and transition regions.« less

  18. Heat transfer and pressure drop for air flow through enhanced passages. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obot, N.T.; Esen, E.B.

    1992-06-01

    An extensive experimental investigation was carried out to determine the pressure drop and heat transfer characteristics for laminar, transitional and turbulent flow of air through a smooth passage and twenty-three enhanced passages. The internal surfaces of all enhanced passages had spirally shaped geometries; these included fluted, finned/ribbed and indented surfaces. The Reynolds number (Re) was varied between 400 and 50000. The effect of heat transfer (wall cooling or fluid heating) on pressure drop is most significant within the transition region; the recorded pressure drop with heat transfer is much higher than that without heat transfer. The magnitude of this effectmore » depends markedly on the average surface temperature and, to a lesser extent, on the geometric characteristics of the enhanced surfaces. When the pressure drop data are reduced as values of the Fanning friction factor(f), the results are about the same with and without heat transfer for turbulent flow, with moderate differences in the laminar and transition regions.« less

  19. Determination of pressure drop across activated carbon fiber respirator cartridges.

    PubMed

    Balanay, Jo Anne G; Lungu, Claudiu T

    2016-01-01

    Activated carbon fiber (ACF) is considered as an alternative adsorbent to granular activated carbon (GAC) for the development of thinner, lighter, and efficient respirators because of their larger surface area and adsorption capacities, thinner critical bed depth, lighter weight, and fabric form. This study aims to measure the pressure drop across different types of commercially available ACFs in respirator cartridges to determine the ACF composition and density that will result in acceptably breathable respirators. Seven ACF types in cloth (ACFC) and felt (ACFF) forms were tested. ACFs in cartridges were challenged with pre-conditioned constant air flow (43 LPM, 23°C, 50% RH) at different compositions (single- or combination-ACF type) in a test chamber. Pressure drop across ACF cartridges were obtained using a micromanometer, and compared among different cartridge configurations, to those of the GAC cartridge, and to the NIOSH breathing resistance requirements for respirator cartridges. Single-ACF type cartridges filled with any ACFF had pressure drop measurements (23.71-39.93 mmH2O) within the NIOSH inhalation resistance requirement of 40 mmH2O, while those of the ACFC cartridges (85.47±3.67 mmH2O) exceeded twice the limit due possibly to the denser weaving of ACFC fibers. All single ACFF-type cartridges had higher pressure drop compared to the GAC cartridge (23.13±1.14 mmH2O). Certain ACF combinations (2 ACFF or ACFC/ACFF types) resulted to pressure drop (26.39-32.81 mmH2O) below the NIOSH limit. All single-ACFF type and all combination-ACF type cartridges with acceptable pressure drop had much lower adsorbent weights than GAC (≤15.2% of GAC weight), showing potential for light-weight respirator cartridges. 100% ACFC in cartridges may result to respirators with high breathing resistance and, thus, is not recommended. The more dense ACFF and ACFC types may still be possibly used in respirators by combining them with less dense ACFF materials and/or by reducing cartridge bed depth to reduce pressure drop to acceptable levels. ACFF by itself may be more appropriate as adsorbent materials in ACF respirator cartridges in terms of acceptable breathing resistance.

  20. Observation of ice nucleation in acoustically levitated water drops

    NASA Astrophysics Data System (ADS)

    Lü, Y. J.; Xie, W. J.; Wei, B.

    2005-10-01

    The supercooling and nucleation of acoustically levitated water drops were investigated at two different sound pressure levels (SPL). These water drops were supercooled by 13to16K at the low SPL of 160.6dB, whereas their supercoolings varied from 5to11K at the high SPL of 164.4dB. The maximum supercooling obtained in the experiments is 32K. Statistical analyses based on the classical nucleation theory reveal that the occurrence of ice nucleation in water drops is mainly confined to the surface region under acoustic levitation conditions and the enlargement of drop surface area caused by the acoustic radiation pressure reduces water supercoolability remarkably. A comparison of the nucleation rates at the two SPLs indicates that the sound pressure can strengthen the surface-dominated nucleation of water drops. The acoustic stream around levitated water drops and the cavitation effect associated with ultrasonic field are the main factors that induce surface-dominated nucleation.

  1. Investigating performance of microchannel evaporators for automobile air conditioning with different port structures

    NASA Astrophysics Data System (ADS)

    Zhou, Guoliang; Su, Lin; Cheng, Qia; Wu, Longbing

    2017-08-01

    Microchannel evaporator has been widely applied in automobile air conditioning, while it faces the problem of refrigerant maldistribution which deteriorates the thermal performance of evaporator. In this study, the performances of microchannel evaporators with different port structures are experimentally investigated for purpose of reducing evaporator pressure drop. Four evaporator samples with different port number and hydraulic diameter are made for this study. The performances of the evaporator samples are tested on a psychometric calorimeter test bench with the refrigerant R-134A at a real automobile air conditioning. The results on the variations of the evaporator pressure drop and evaporator surface temperature distribution are presented and analyzed. By studying the performance of an evaporator, seeking proper port structure is an approach to reduce refrigerant pressure drop as well as improve refrigerant distribution.

  2. Numerical study of canister filters with alternatives filter cap configurations

    NASA Astrophysics Data System (ADS)

    Mohammed, A. N.; Daud, A. R.; Abdullah, K.; Seri, S. M.; Razali, M. A.; Hushim, M. F.; Khalid, A.

    2017-09-01

    Air filtration system and filter play an important role in getting a good quality air into turbo machinery such as gas turbine. The filtration system and filter has improved the quality of air and protect the gas turbine part from contaminants which could bring damage. During separation of contaminants from the air, pressure drop cannot be avoided but it can be minimized thus helps to reduce the intake losses of the engine [1]. This study is focused on the configuration of the filter in order to obtain the minimal pressure drop along the filter. The configuration used is the basic filter geometry provided by Salutary Avenue Manufacturing Sdn Bhd. and two modified canister filter cap which is designed based on the basic filter model. The geometries of the filter are generated by using SOLIDWORKS software and Computational Fluid Dynamics (CFD) software is used to analyse and simulates the flow through the filter. In this study, the parameters of the inlet velocity are 0.032 m/s, 0.063 m/s, 0.094 m/s and 0.126 m/s. The total pressure drop produce by basic, modified filter 1 and 2 is 292.3 Pa, 251.11 Pa and 274.7 Pa. The pressure drop reduction for the modified filter 1 is 41.19 Pa and 14.1% lower compared to basic filter and the pressure drop reduction for modified filter 2 is 17.6 Pa and 6.02% lower compared to the basic filter. The pressure drops for the basic filter are slightly different with the Salutary Avenue filter due to limited data and experiment details. CFD software are very reliable in running a simulation rather than produces the prototypes and conduct the experiment thus reducing overall time and cost in this study.

  3. Enantioseparation of omeprazole--effect of different packing particle size on productivity.

    PubMed

    Enmark, Martin; Samuelsson, Jörgen; Forssén, Patrik; Fornstedt, Torgny

    2012-06-01

    Enantiomeric separation of omeprazole has been extensively studied regarding both product analysis and preparation using several different chiral stationary phases. In this study, the preparative chiral separation of omeprazole is optimized for productivity using three different columns packed with amylose tris (3,5-dimethyl phenyl carbamate) coated macroporous silica (5, 10 and 25 μm) with a maximum allowed pressure drop ranging from 50 to 400 bar. This pressure range both covers low pressure process systems (50-100 bar) and investigates the potential for allowing higher pressure limits in preparative applications in a future. The process optimization clearly show that the larger 25 μm packing material show higher productivity at low pressure drops whereas with increasing pressure drops the smaller packing materials have substantially higher productivity. Interestingly, at all pressure drops, the smaller packing material result in lower solvent consumption (L solvent/kg product); the higher the accepted pressure drop, the larger the gain in reduced solvent consumption. The experimental adsorption isotherms were not identical for the different packing material sizes; therefore all calculations were recalculated and reevaluated assuming identical adsorption isotherms (with the 10 μm isotherm as reference) which confirmed the trends regarding productivity and solvent consumption. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Effects of Gravity on Cocurrent Two-Phase Gas-Liquid Flows Through Packed Columns

    NASA Technical Reports Server (NTRS)

    Motil, Brian J.; Balakotaiah, Vemuri; Kamotani, Yasuhiro

    2001-01-01

    This work presents the experimental results of research on the influence of gravity on flow pattern transitions, pressure drop and flow characteristics for cocurrent gas-liquid two-phase flow through packed columns. The flow pattern transition data indicates that the pulse flow regime exists over a wider range of gas and liquid flow rates under reduced gravity conditions compared to normal gravity cocurrent down-flow. This is illustrated by comparing the flow regime transitions found in reduced gravity with the transitions predicted by Talmor. Next, the effect of gravity on the total pressure drop in a packed column is shown to depend on the flow regime. The difference is roughly equivalent to the liquid static head for bubbly flow but begins to decrease at the onset of pulse flow. As the spray flow regime is approached by increasing the gas to liquid ratio, the effect of gravity on pressure drop becomes negligible. Finally, gravity tends to suppress the amplitude of each pressure pulse. An example of this phenomenon is presented.

  5. Carbonate formation on Mars: Latest experiments

    NASA Technical Reports Server (NTRS)

    Stephens, S. K.; Stevenson, D. J.; Rossman, G. R.; Keyser, L. F.

    1993-01-01

    Laboratory simulations of Martian CO2 storage address whether carbonate formation could have reduced CO2 pressure from a hypothetical greater than 1 bar to the present 7 mbar in less than or equal to 3 to 4 billion years. This problem is addressed with experiments and analysis designed to verify and improve previous kinetic measurements, reaction mechanisms, and product characterizations, with the goal of improving existing models of Martian CO2 history. A sensitive manometer monitored the pressure drop of CO2 due to uptake by powdered silicate for periods of 3 to 100+ days. Pressure drops for diopside 1 and basalt show rapid short-term (approximately one day) CO2 uptake and considerably slower long-term pressure drops. Curves for diopside 2, olivine 1, and olivine 2 are qualitatively similar to those for diopside 1, whereas quartz and plagioclase show near-zero short-term pressure drops and very slow long-term signals, indistinguishable from a leak (less than 10(exp 11) mol/sq m/s).

  6. Camphor-Crataegus berry extract combination dose-dependently reduces tilt induced fall in blood pressure in orthostatic hypotension.

    PubMed

    Belz, G G; Butzer, R; Gaus, W; Loew, D

    2002-10-01

    In order to test the efficacy of a combination of natural D-camphor and an extract of fresh crataegus berries (Korodin Herz-Kreislauf-Tropfen) on orthostatic hypotension, two similar, controlled, randomized studies were carried out in a balanced crossover design in 24 patients each with orthostatic dysregulation. The camphor-crataegus berry combination (CCC) was orally administered as a single regimen in 3 different dosages of 5 drops, 20 drops and 80 drops; a placebo with 20 drops of a 60% alcoholic solution served as control. Orthostatic hypotension was assessed with the tilt table test before and after medication. Source data of both studies were pooled and meta-analytically evaluated for all 48 patients. CCC drops decreased the orthostatic fall in blood pressure versus placebo, as almost uniformly established at all times by mean arterial pressure and diastolic blood pressure. Mean arterial pressure demonstrated the very fast onset of action by a clearly dose-dependent statistically significant effect even after 1-minute orthostasis. Increase of mean arterial pressure as compared to the orthostasis test before medication was on average 4.5 mmHg. CCC affected diastolic blood pressure after 1 minute of orthostasis in all dosages as compared to placebo. A statistically significant effect of the highest dose of 80 drops on diastolic blood pressure could be demonstrated after 1-, 3-, and 5-minute orthostasis. The hemodynamic findings of a stabilizing effect on arterial pressure in orthostasis corroborate the long-term medical experience with CCC and justify the indication orthostatic hypotension.

  7. A study of two-phase flow in a reduced gravity environment

    NASA Technical Reports Server (NTRS)

    Hill, D.; Downing, Robert S.

    1987-01-01

    A test loop was designed and fabricated for observing and measuring pressure drops of two-phase flow in reduced gravity. The portable flow test loop was then tested aboard the NASA-JSC KC135 reduced gravity aircraft. The test loop employed the Sundstrand Two-Phase Thermal Management System (TPTMS) concept which was specially fitted with a clear two-phase return line and condenser cover for flow observation. A two-phase (liquid/vapor) mixture was produced by pumping nearly saturated liquid through an evaporator and adding heat via electric heaters. The quality of the two-phase flow was varied by changing the evaporator heat load. The test loop was operated on the ground before and after the KC135 flight tests to create a one-gravity data base. The ground testing included all the test points run during the reduced gravity testing. Two days of reduced gravity tests aboard the KC135 were performed. During the flight tests, reduced-gravity, one-gravity, and nearly two-gravity accelerations were experienced. Data was taken during the entire flight which provided flow regime and pressure drop data for the three operating conditions. The test results show that two-phase pressure drops and flow regimes can be accurately predicted in zero-gravity.

  8. Boiling regimes of impacting drops on a heated substrate under reduced pressure

    NASA Astrophysics Data System (ADS)

    van Limbeek, Michiel A. J.; Hoefnagels, Paul B. J.; Shirota, Minori; Sun, Chao; Lohse, Detlef

    2018-05-01

    We experimentally investigate the boiling behavior of impacting ethanol drops on a heated smooth sapphire substrate at pressures ranging from P =0.13 bar to atmospheric pressure. We employ frustrated total internal reflection imaging to study the wetting dynamics of the contact between the drop and the substrate. The spreading drop can be in full contact (contact boiling), it can partially touch (transition boiling), or the drop can be fully levitated (Leidenfrost boiling). We show that the temperature of the boundary between contact and transition boiling shows at most a weak dependence on the impact velocity, but a significant decrease with decreasing ambient gas pressure. A striking correspondence is found between the temperature of this boundary and the static Leidenfrost temperature for all pressures. We therefore conclude that both phenomena share the same mechanism and are dominated by the dynamics taking place at the contact line. On the other hand, the boundary between transition boiling and Leidenfrost boiling, i.e., the dynamic Leidenfrost temperature, increases for increasing impact velocity for all ambient gas pressures. Moreover, the dynamic Leidenfrost temperature coincides for pressures between P =0.13 and 0.54 bar, whereas for atmospheric pressure the dynamic Leidenfrost temperature is slightly elevated. This indicates that the dynamic Leidenfrost temperature is at most weakly dependent on the enhanced evaporation by the lower saturation temperature of the liquid.

  9. Effect of airstream velocity on mean drop diameters of water sprays produced by pressure and air atomizing nozzles. [for combustion studies

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1977-01-01

    A scanning radiometer was used to determine the effect of airstream velocity on the mean drop diameter of water sprays produced by pressure atomizing and air atomizing fuel nozzles used in previous combustion studies. Increasing airstream velocity from 23 to 53.4 meters per second reduced the Sauter mean diameter by approximately 50 percent with both types of fuel nozzles. The use of a sonic cup attached to the tip of an air assist nozzle reduced the Sauter mean diameter by approximately 40 percent. Test conditions included airstream velocities of 23 to 53.4 meters per second at 293 K and atmospheric pressure.

  10. Effect of airstream velocity on mean drop diameters of water sprays produced by pressure and air atomizing nozzles

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1977-01-01

    A scanning radiometer was used to determine the effect of airstream velocity on the mean drop diameter of water sprays produced by pressure atomizing and air atomizing fuel nozzles used in previous combustion studies. Increasing airstream velocity from 23 to 53.4 meters per second reduced the Sauter mean diameter by approximately 50 percent with both types of fuel nozzles. The use of a sonic cup attached to the tip of an air assist nozzle reduced the Sauter mean diameter by approximately 40 percent. Test conditions included airstream velocities of 23 to 53.4 meters per second at 293 K and atmospheric pressure.

  11. The effect of passive mixing on pressure drop and oxygen mass fraction using opposing channel flow field design in a Proton Exchange Membrane Fuel Cell

    NASA Astrophysics Data System (ADS)

    Singh, Anant Bir

    This study investigates a flow field with opposing channel design. Previous studies on flow field designs have been focused on improving fuel utilization which often leads to increased pressure drop. This increased pressure drop is typical because standard designs employ either a single flow channel to clear blockages or dead end condition to force the flow through the gas diffusion layer. The disadvantage with these designs is the increased resistance to the flow which requires higher pressure, which becomes a parasitic loss that lowers the system efficiency. For this study the focus was to reduce the pressure drop by providing a less resistive path to the flow. To achieve a less resistive path, the inlet channel was split into two opposing channels. These channels are then recombined only to be split again for the next leg. Therefore, the split channel design should reduce the pressure drop which reduces the parasitic load and ultimately contributes to higher system efficiency. In addition the recombining of the streams at each leg should induce mixing. Having opposing channels should also increase cross flow under the lands to reduce mass transfer loses. The cathode side of the fuel cell is especially sensitive to the mass transport losses since air (oxygen mixed with nitrogen) is used for supplying oxygen unlike the anode side which uses pure hydrogen. To test the hypothesis of having benefits from an opposing channel design, both an experimental and analytical approach was taken. For the experiment, a serpentine flow field and opposing channel flow field plates were compared over several flow rates with compressed air. To test the hypothesis of increased mass transfer, the two flow fields were modeled using a CFD software package, COMSOL. It was found that the opposing channel configuration for high flow rate with multiple entry and exit conditions exhibited significant improvement over the single serpentine channel. Pressure drop was ⅓ less than the serpentine channel with similar conditions. Simulations for mass transfer show that recombining of the flow streams generate more uniform current density unlike the serpentine configuration where the current density was concentrated at the entrance of the flow stream. The background section provides a brief overview of the governing equations, the theory of flow field operation and previous bodies of work on flow field design. Recommendations are made for further verification of the design using a real working cell based on the results.

  12. A fault constitutive relation accounting for thermal pressurization of pore fluid

    USGS Publications Warehouse

    Andrews, D.J.

    2002-01-01

    The heat generated in a slip zone during an earthquake can raise fluid pressure and thereby reduce frictional resistance to slip. The amount of fluid pressure rise depends on the associated fluid flow. The heat generated at a given time produces fluid pressure that decreases inversely with the square root of hydraulic diffusivity times the elapsed time. If the slip velocity function is crack-like, there is a prompt fluid pressure rise at the onset of slip, followed by a slower increase. The stress drop associated with the prompt fluid pressure rise increases with rupture propagation distance. The threshold propagation distance at which thermally induced stress drop starts to dominate over frictionally induced stress drop is proportional to hydraulic diffusivity. If hydraulic diffusivity is 0.02 m2/s, estimated from borehole samples of fault zone material, the threshold propagation distance is 300 m. The stress wave in an earthquake will induce an unknown amount of dilatancy and will increase hydraulic diffusivity, both of which will lessen the fluid pressure effect. Nevertheless, if hydraulic diffusivity is no more than two orders of magnitude larger than the laboratory value, then stress drop is complete in large earthquakes.

  13. Flow and Thermal Performance of a Water-Cooled Periodic Transversal Elliptical Microchannel Heat Sink for Chip Cooling.

    PubMed

    Wei, Bo; Yang, Mo; Wang, Zhiyun; Xu, Hongtao; Zhang, Yuwen

    2015-04-01

    Flow and thermal performance of transversal elliptical microchannels were investigated as a passive scheme to enhance the heat transfer performance of laminar fluid flow. The periodic transversal elliptical micro-channel is designed and its pressure drop and heat transfer characteristics in laminar flow are numerically investigated. Based on the comparison with a conventional straight micro- channel having rectangular cross section, it is found that periodic transversal elliptical microchannel not only has great potential to reduce pressure drop but also dramatically enhances heat transfer performance. In addition, when the Reynolds number equals to 192, the pressure drop of the transversal elliptical channel is 36.5% lower than that of the straight channel, while the average Nusselt number is 72.8% higher; this indicates that the overall thermal performance of the periodic transversal elliptical microchannel is superior to the conventional straight microchannel. It is suggested that such transversal elliptical microchannel are attractive candidates for cooling future electronic chips effectively with much lower pressure drop.

  14. Characteristics of Evaporator with a Lipuid-Vapor Separator

    NASA Astrophysics Data System (ADS)

    Ikeguchi, Masaki; Tanaka, Naoki; Yumikura, Tsuneo

    Flow pattern of refrigerant in a heat exchanger tube changes depending on vapor quality, tube diameter, refrigerant flow rate and refrigerant properties. High flow rate causes mist flow where the quality is from 0.8 to 1.0. 1n this flow pattern, the liquid film detaches from the tube wall so that the heat flow is intervened. The heat transfer coefficient generally increases with the flow rate. But the pressure drop of refrigerant flow simultaneously increases and the region of the mist flow enlarges. In order to reduce the pressure drop and suppress the mist flow, we have developped a small liquid-vapor separator that removes the vapor from the evaporating refrigerant flow. This separator is equipped in the middle of the evaporator where the flow pattern is annular. The experiments to evaluate the effect of this separator were carried out and the following conclutions were obtained. (1) Average heat transfer coefficient increases by 30-60 %. (2) Pressure drop reduces by 20-30 %. (3) Cooling Capacity increases by 2-9 %.

  15. Experimental study of the effect of drag reducing agent on pressure drop and thermal efficiency of an air cooler

    NASA Astrophysics Data System (ADS)

    Peyghambarzadeh, S. M.; Hashemabadi, S. H.; Saffarian, H.; Shekari, F.

    2016-01-01

    Effect of polymeric drag reduction agents (DRAs) on pressure drop and heat transfer was studied. Aqueous solutions of carboxy methyl cellulose were used inside an air-finned heat exchanger. Despite the previous studies which indicated the importance of drag reduction just in turbulent flow, results of this study in laminar flow indicated that the addition of DRA increases drag reduction, and decreases the overall heat transfer coefficient.

  16. Effect of swirler-mounted mixing venturi on emissions of flame-tube combustor using jet A fuel

    NASA Technical Reports Server (NTRS)

    Ercegovic, D. B.

    1979-01-01

    Six headplate modules in a flame-tube combustor were evaluated. Unburned hydrocarbons, carbon monoxide, and oxides of nitrogen were measured for three types of fuel injectors both with and without a mixing venturi. Tests were conducted using jet A fuel at an inlet pressure of 0.69 megapascal, an inlet temperature of 478 K, and an isothermal static pressure drop of 3 percent. Oxides of nitrogen were reduced by over 50 percent with a mixing venturi with no performance penalties in either other gaseous emissions or pressure drop.

  17. Effect of Topical Calcium Channel Blockers on Intraocular Pressure in Steroid-induced Glaucoma.

    PubMed

    Ganekal, Sunil; Dorairaj, Syril; Jhanji, Vishal; Kudlu, Krishnaprasad

    2014-01-01

    To evaluate the effect of 0.125% verapamil and 0.5% diltiazem eye drops on intraocular pressure (IOP) in steroid-induced glaucoma in rabbit eyes. A total of 18 rabbits with steroid-induced glaucoma were divided into three groups (A, B and C; n = 6 each). Right eyes in groups A, B and C received 0.5% diltiazem, 0.125% verapamil and 0.5% timolol eye drops twice daily for 12 days, respectively; whereas, left eyes received distilled water. IOP was measured with Tono-pen XL at baseline, day 4, day 8, and day 12 of treatment. Both 0.5% diltiazem and 0.125% verapamil eye drops significantly reduced IOP compared to control eyes (p < 0.05). Reduction of IOP by 0.5% diltiazem, 0.125% verapamil eye drops were comparable to 0.5% timolol. No surface toxicity or systemic side effects were noted during the study period. Calcium channel blockers, verapamil, and diltia-zem significantly reduced IOP in rabbiteyes. This group of drugs may have a potential role in treatment of glaucoma How to cite this article: Ganekal S, Dorairaj S, Jhanji V, Kudlu K. Effect of Topical Calcium Channel Blockers on Intraocular Pressure in Steroid-induced Glaucoma. J Current Glau Prac 2014;8(1):15-19.

  18. Combining liquid inertia with pressure recovery from bubble expansion for enhanced flow boiling

    NASA Astrophysics Data System (ADS)

    Kalani, A.; Kandlikar, S. G.

    2015-11-01

    In this paper, we demonstrate using liquid inertia force in a taper gap microchannel geometry to provide a high level of heat dissipation capacity accompanied by a high heat transfer coefficient and low pressure drop during flow boiling. The high mass flux increases liquid inertia force and promotes vapor removal from the manifold, thereby increasing critical heat flux (CHF) and heat transfer coefficient. The tapered gap above the microchannels provides an increasing cross-sectional area in the flow direction. This gap allows bubbles to emerge from microchannels and expand within the gap along the flow direction. The bubble evaporation and expansion in tapered gap causes pressure recovery and reduces the total pressure drop. The pressure recovery increases with the increased evaporation rate at higher heat fluxes. Using a 6% taper and a moderately high inlet liquid flow Reynolds number of 1095, we have reached a CHF of 1.07 kW/cm2 with a heat transfer coefficient of 295 kW/m2 °C and a pressure drop of 30 kPa.

  19. Prediction of friction pressure drop for low pressure two-phase flows on the basis of approximate analytical models

    NASA Astrophysics Data System (ADS)

    Zubov, N. O.; Kaban'kov, O. N.; Yagov, V. V.; Sukomel, L. A.

    2017-12-01

    Wide use of natural circulation loops operating at low redused pressures generates the real need to develop reliable methods for predicting flow regimes and friction pressure drop for two-phase flows in this region of parameters. Although water-air flows at close-to-atmospheric pressures are the most widely studied subject in the field of two-phase hydrodynamics, the problem of reliably calculating friction pressure drop can hardly be regarded to have been fully solved. The specific volumes of liquid differ very much from those of steam (gas) under such conditions, due to which even a small change in flow quality may cause the flow pattern to alter very significantly. Frequently made attempts to use some or another universal approach to calculating friction pressure drop in a wide range of steam quality values do not seem to be justified and yield predicted values that are poorly consistent with experimentally measured data. The article analyzes the existing methods used to calculate friction pressure drop for two-phase flows at low pressures by comparing their results with the experimentally obtained data. The advisability of elaborating calculation procedures for determining the friction pressure drop and void fraction for two-phase flows taking their pattern (flow regime) into account is demonstrated. It is shown that, for flows characterized by low reduced pressures, satisfactory results are obtained from using a homogeneous model for quasi-homogeneous flows, whereas satisfactory results are obtained from using an annular flow model for flows characterized by high values of void fraction. Recommendations for making a shift from one model to another in carrying out engineering calculations are formulated and tested. By using the modified annular flow model, it is possible to obtain reliable predictions for not only the pressure gradient but also for the liquid film thickness; the consideration of droplet entrainment and deposition phenomena allows reasonable corrections to be introduced into calculations. To the best of the authors' knowledge, it is for the first time that the entrainment of droplets from the film surface is taken into consideration in the dispersed-annular flow model.

  20. Is MRI-based CFD able to improve clinical treatment of coarctations of aorta?

    PubMed

    Goubergrits, L; Riesenkampff, E; Yevtushenko, P; Schaller, J; Kertzscher, U; Berger, F; Kuehne, T

    2015-01-01

    Pressure drop associated with coarctation of the aorta (CoA) can be successfully treated surgically or by stent placement. However, a decreased life expectancy associated with altered aortic hemodynamics was found in long-term studies. Image-based computational fluid dynamics (CFD) is intended to support particular diagnoses, to help in choosing between treatment options, and to improve performance of treatment procedures. This study aimed to prove the ability of CFD to improve aortic hemodynamics in CoA patients. In 13 patients (6 males, 7 females; mean age 25 ± 14 years), we compared pre- and post-treatment peak systole hemodynamics [pressure drops and wall shear stress (WSS)] vs. virtual treatment as proposed by biomedical engineers. Anatomy and flow data for CFD were based on MRI and angiography. Segmentation, geometry reconstruction and virtual treatment geometry were performed using the software ZIBAmira, whereas peak systole flow conditions were simulated with the software ANSYS(®) Fluent(®). Virtual treatment significantly reduced pressure drop compared to post-treatment values by a mean of 2.8 ± 3.15 mmHg, which significantly reduced mean WSS by 3.8 Pa. Thus, CFD has the potential to improve post-treatment hemodynamics associated with poor long-term prognosis of patients with coarctation of the aorta. MRI-based CFD has a huge potential to allow the slight reduction of post-treatment pressure drop, which causes significant improvement (reduction) of the WSS at the stenosis segment.

  1. Pressure, temperature and density drops along supercritical fluid chromatography columns. I. Experimental results for neat carbon dioxide and columns packed with 3- and 5-micron particles.

    PubMed

    Poe, Donald P; Veit, Devon; Ranger, Megan; Kaczmarski, Krzysztof; Tarafder, Abhijit; Guiochon, Georges

    2012-08-10

    The pressure drop and temperature drop on columns packed with 3- and 5-micron particles were measured using neat CO(2) at a flow rate of 5 mL/min, at temperatures from 20°C to 100°C, and outlet pressures from 80 to 300 bar. The density drop was calculated based on the temperature and pressure at the column inlet and outlet. The columns were suspended in a circulating air bath either bare or covered with foam insulation. The results show that the pressure drop depends on the outlet pressure, the operating temperature, and the thermal environment. A temperature drop was observed for all conditions studied. The temperature drop was relatively small (less than 3°C) for combinations of low temperature and high pressure. Larger temperature drops and density drops occurred at higher temperatures and low to moderate pressures. Covering the column with thermal insulation resulted in larger temperature drops and corresponding smaller density drops. At 20°C the temperature drop was never more than a few degrees. The largest temperature drops occurred for both columns when insulated at 80°C and 80 bar, reaching a maximum value of 21°C for the 5-micron column, and 26°C for the 3-micron column. For an adiabatic column, the temperature drop depends on the pressure drop, the thermal expansion coefficient, and the density and the heat capacity of the mobile phase fluid, and can be described by a simple mathematical relationship. For a fixed operating temperature and outlet pressure, the temperature drop increases monotonically with the pressure drop. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Characterisation and optimisation of flexible transfer lines for liquid helium. Part II: Thermohydraulic modelling

    NASA Astrophysics Data System (ADS)

    Dittmar, N.; Haberstroh, Ch.; Hesse, U.; Krzyzowski, M.

    2016-10-01

    In part one of this publication experimental results for a single-channel transfer line used at liquid helium (LHe) decant stations are presented. The transfer of LHe into mobile dewars is an unavoidable process since the places of storage and usage are generally located apart from each other. The experimental results have shown that reasonable amounts of LHe evaporate due to heat leak and pressure drop. Thus, generated helium cold gas has to be collected and reliquefied, demanding a huge amount of electrical energy. Although this transfer process is common in cryogenic laboratories, no existing code could be found to model it. Therefore, a thermohydraulic model has been developed to model the LHe flow at operating conditions using published heat transfer and pressure drop correlations. This paper covers the basic equations used to calculate heat transfer and pressure drop, as well as the validation of the thermohydraulic code, and its application within the optimisation process. The final transfer line design features reduced heat leak and pressure drop values based on a combined measurement and modelling campaign in the range of 0.112 < pin < 0.148 MPa, 190 < G < 450 kg/(m2 s), and 0.04 < xout < 0.12.

  3. Ex-situ gas diffusion layer intrusion effect determination of polymer electrolyte membrane fuel cell flow fields

    NASA Astrophysics Data System (ADS)

    Haase, S.; Rauber, M.

    2015-09-01

    In automotive PEM fuel cell systems, one of the most important targets is to reduce the parasitic power of balance of plant components, e.g. the air supply. This can be achieved for example by decreasing air stoichiometry. However, this could lead to bad flow sharing in the fuel cell stack. Therefore the fluid distribution in the flow field has to be evaluated, understood and optimized. This work evaluates the effect of GDL intrusion on the pressure drop via ex-situ determination of GDL intrusion using CFD simulation. The intruded GDL geometries, evaluated by an optical microscope with 200 times enlargement, are transferred to pressure drop behaviors by a numerical CFD model. These results are compared to the results of the differential pressure method of mapping the pressure distribution, described in [43]. The intrusion of the GDL leads to homogeneous flow distribution up to clamping pressures of 2.5 MPa. The inhomogeneous intrusion, induced by cracked fibers that extend into the channel, dominates the flow at higher clamping pressures and leads to the exponential increase in pressure drop in the differential pressure method. For clamping pressures used in typical fuel cell applications, the results of both methods show homogeneous flow through the channels.

  4. Two Phase Flow Modeling: Summary of Flow Regimes and Pressure Drop Correlations in Reduced and Partial Gravity

    NASA Technical Reports Server (NTRS)

    Balasubramaniam, R.; Rame, E.; Kizito, J.; Kassemi, M.

    2006-01-01

    The purpose of this report is to provide a summary of state-of-the-art predictions for two-phase flows relevant to Advanced Life Support. We strive to pick out the most used and accepted models for pressure drop and flow regime predictions. The main focus is to identify gaps in predictive capabilities in partial gravity for Lunar and Martian applications. Following a summary of flow regimes and pressure drop correlations for terrestrial and zero gravity, we analyze the fully developed annular gas-liquid flow in a straight cylindrical tube. This flow is amenable to analytical closed form solutions for the flow field and heat transfer. These solutions, valid for partial gravity as well, may be used as baselines and guides to compare experimental measurements. The flow regimes likely to be encountered in the water recovery equipment currently under consideration for space applications are provided in an appendix.

  5. The long-term performance of electrically charged filters in a ventilation system.

    PubMed

    Raynor, Peter C; Chae, Soo Jae

    2004-07-01

    The efficiency and pressure drop of filters made from polyolefin fibers carrying electrical charges were compared with efficiency and pressure drop for filters made from uncharged glass fibers to determine if the efficiency of the charged filters changed with use. Thirty glass fiber filters and 30 polyolefin fiber filters were placed in different, but nearly identical, air-handling units that supplied outside air to a large building. Using two kinds of real-time aerosol counting and sizing instruments, the efficiency of both sets of filters was measured repeatedly for more than 19 weeks while the air-handling units operated almost continuously. Pressure drop was recorded by the ventilation system's computer control. Measurements showed that the efficiency of the glass fiber filters remained almost constant with time. However, the charged polyolefin fiber filters exhibited large efficiency reductions with time before the efficiency began to increase again toward the end of the test. For particles 0.6 microm in diameter, the efficiency of the polyolefin fiber filters declined from 85% to 45% after 11 weeks before recovering to 65% at the end of the test. The pressure drops of the glass fiber filters increased by about 0.40 in. H2O, whereas the pressure drop of the polyolefin fiber filters increased by only 0.28 in. H2O. The results indicate that dust loading reduces the effectiveness of electrical charges on filter fibers. Copyright 2004 JOEH, LLC

  6. ELECTROSTATIC ENHANCEMENT OF FABRIC FILTRATION OF FLY ASH AND SPRAY DRYER BY-PRODUCT

    EPA Science Inventory

    The paper describes small pilot-scale experiments, showing that the pressure drop increase during the fabric filtration of redispersed spray dryer by-product (chiefly calcium salts and fly ash) is significantly reduced by electrostatic enhancement of the filtration. The pressure ...

  7. Static, Drop, and Flight Tests on Musselman Type Airwheels

    NASA Technical Reports Server (NTRS)

    Peck, William C; Beard, Albert P

    1932-01-01

    The purpose of this investigation was to obtain quantitative information on the shock-reducing and energy-dissipating qualities of a set of 30 by 13-6 Musselman type airwheels. The investigation consisted of static, drop, and flight tests. The static tests were made with inflation pressures of approximately 0, 5, 10, 15, 20, and 25 pounds per square inch and loadings up to 9,600 pounds. The drop tests were with the inflation pressures approximately 5, 10, 15, 20, and 25 pounds per square inch and loadings of 1,840, 2,440, 3,050, and 3,585 pounds. The flight tests were made with VE-7 airplane weighing 2,153 pounds, with the tires inflated to 5, 10, and 15 pounds per square inch. The landing gears used in conjunction with airwheels were practically rigid structures. The results of the tests showed that the walls of the tires carried a considerable portion of the load, each tire supporting a load of 600 pounds with a depression of approximately 6 inches. The shock-reducing qualities, under severe tests, and the energy dissipating characteristics of the tires, under all tests, were poor. The latter was evidenced by the rebound present in all landings made. In the severe drop tests, the free rebound reached as much as 60 per cent of the free drop. The results indicate that a shock-reducing and energy-dissipating mechanism should be used in conjunction with airwheels.

  8. Development of a split-flow system for high precision variable sample introduction in supercritical fluid chromatography.

    PubMed

    Sakai, Miho; Hayakawa, Yoshihiro; Funada, Yasuhiro; Ando, Takashi; Fukusaki, Eiichiro; Bamba, Takeshi

    2017-09-15

    In this study, we propose a novel variable sample injection system based on full-loop injection, named the split-flow sample introduction system, for application in supercritical fluid chromatography (SFC). In this system, the mobile phase is split by the differential pressure between two back pressure regulators (BPRs) after full-loop injection suitable for SFC, and this differential pressure determines the introduction rate. Nine compounds with a wide range of characteristics were introduced with high reproducibility and universality, confirming that a robust variable sample injection system was achieved. We also investigated the control factors of our proposed system. Sample introduction was controlled by the ratio between the column-side pressure drops in splitless and split flow, ΔP columnsideinsplitless and ΔP columnsideinsplit , respectively, where ΔP columnsideinsplitless is related to the mobile phase flow rate and composition and the column resistance. When all other conditions are kept constant, increasing the make-up flow induces an additional pressure drop on the column side of the system, which leads to a reduced column-side flow rate, and hence decreased the amount of sample injected, even when the net pressure drop on the column side remains the same. Thus, sample introduction could be highly controlled at low sample introduction rate, regardless of the introduction conditions. This feature is advantageous because, as a control factor, the solvent in the make-up pump is independent of the column-side pressure drop. Copyright © 2017. Published by Elsevier B.V.

  9. Design of distributed JT (Joule-Thomson) effect heat exchanger for superfluid 2 K cooling device

    NASA Astrophysics Data System (ADS)

    Jeong, S.; Park, C.; Kim, K.

    2018-03-01

    Superfluid at 2 K or below is readily obtained from liquid helium at 4.2 K by reducing its vapour pressure. For better cooling performance, however, the cold energy of vaporized helium at 2 K chamber can be effectively utilized in a recuperator which is specially designed in this paper for accomplishing so-called the distributed Joule-Thomson (JT) expansion effect. This paper describes the design methodology of distributed JT effect heat exchanger for 2 K JT cooling device. The newly developed heat exchanger allows continuous significant pressure drop at high-pressure part of the recuperative heat exchanger by using a capillary tube. Being different from conventional recuperative heat exchangers, the efficient JT effect HX must consider the pressure drop effect as well as the heat transfer characteristic. The heat exchanger for the distributed JT effect actively utilizes continuous pressure loss at the hot stream of the heat exchanger by using an OD of 0.64 mm and an ID of 0.4 mm capillary tube. The analysis is performed by dividing the heat exchanger into the multiple sub-units of the heat exchange part and JT valve. For more accurate estimation of the pressure drop of spirally wound capillary tube, preliminary experiments are carried out to investigate the friction factor at high Reynolds number. By using the developed pressure drop correlation and the heat transfer correlation, the specification of the heat exchanger with distributed JT effect for 2 K JT refrigerator is determined.

  10. A CFD Study of Jet Mixing in Reduced Flow Areas for Lower Combustor Emissions

    NASA Technical Reports Server (NTRS)

    Smith, C. E.; Talpallikar, M. V.; Holdeman, J. D.

    1991-01-01

    The Rich-burn/Quick-mix/Lean-burn (RQL) combustor has the potential of significantly reducing NO(x) emissions in combustion chambers of High Speed Civil Transport aircraft. Previous work on RQL combustors for industrial applications suggested the benefit of necking down the mixing section. A 3-D numerical investigation was performed to study the effects of neckdown on NO(x) emissions and to develop a correlation for optimum mixing designs in terms of neckdown area ratio. The results of the study showed that jet mixing in reduced flow areas does not enhance mixing, but does decrease residence time at high flame temperatures, thus reducing NO(x) formation. By necking down the mixing flow area by 4, a potential NO(x) reduction of 16:1 is possible for annual combustors. However, there is a penalty that accompanies the mixing neckdown: reduced pressure drop across the combustor swirler. At conventional combustor loading parameters, the pressure drop penalty does not appear to be excessive.

  11. Study on Transfer Rules of Coal Reservoir Pressure Drop Based on Coalbed Methane Well Drainage Experiments

    NASA Astrophysics Data System (ADS)

    Yuhang, X.

    2017-12-01

    A pumping test was carried out to explore the transfer rules of pressure drop in coal reservoir during the drainage. The experiment was divided into three stages. In the first stage, the pump displacement of 3m3/h was used to reduce the bottom hole flowing pressure and stopped until the continuous gas phase was produced; Undertaking the first stage, in the second stage, when the gas phase was continuously produced, the pump was stopped immediately. As the bottom hole flowing pressure going up without gas phase, pumping started again for a week. In the third stage ,the well pumping was carried out at the bottom hole pressure drop rate of 30Kpa/d after two months' recovery. Combined with the data of regional geology and fractured well, taking the characteristics of macroscopic coal rocks, development of pore and fracture in coal and isothermal adsorption test as the background, the features of reservoir output in each stage of the experiment were analyzed and compared, and then the transfer rules of pressure drop contained in the differences of the output was studied further. In the first and third stage of the experiment, the output of liquid phase was much larger than the space volume of coal reservoir pore and fracture in the range of 100m2. In the second stage, the output of the continuous gas phase appeared around 0.7Mpa when the continuous gas phase appears below the critical desorption pressure of 0.25Mpa during the whole experiment. The results indicate that, the transfer of pressure drop in the coal reservoir of this well is mainly horizontal, and the liquid phase produced in the reservoir mainly comes from the recharge of the reservoir at the far end of the relative high pressure area; the adsorption space of coalbed methane in the coal matrix as well as the main migration channel of fluid in the reservoir doesn't belong to the same pressure system and there exists the communication barrier between them. In addition, the increasing of the effective stress has little influence on the communication between these two systems. The definition of transfer rules in coal reservoir pressure drop, also the understanding of the correlation between the rules and characteristics of the reservoir output has great guiding significance to the establishment of pressure drop system in coalbed methane well as well as the analysis of production problems.

  12. Novel cyclone empirical pressure drop and emissions with heterogeneous particulate

    USDA-ARS?s Scientific Manuscript database

    New cyclone designs equally effective at controlling emissions that have smaller pressure losses would reduce both the financial and the environmental cost of procuring electricity. Tests were conducted with novel and industry standard 30.5 cm diameter cyclones at inlet velocities from 8 to 18 m s-...

  13. Reduction of enhanced rabbit intraocular pressure by instillation of pyroglutamic acid eye drops.

    PubMed

    Ito, Yoshimasa; Nagai, Noriaki; Okamoto, Norio; Shimomura, Yoshikazu; Nakanishi, Kunio; Tanaka, Ryuichiro

    2013-01-01

    L-Pyroglutamic acid (PGA) is an endogenous molecule derived from l-glutamate. We demonstrate the effects of PGA on intraocular pressure (IOP) in experimentally induced ocular hypertension in rabbits. In the in vitro and in vivo transcorneal penetration studies, the PGA solution (PGA in saline) did not penetrate the rabbit cornea. On the other hand, the penetration of PGA was improved by the addition of zinc chloride and 2-hydroxypropyl-β-cyclodextrin (HPCD), and PGA penetration was enhanced with increasing HPCD concentration. Therefore, PGA solutions containing 0.5% zinc chloride and 5% or 10% HPCD (PGA/HPCD(5% or 10%) eye drops) were used to investigate the effects for IOP in this study. An elevation in IOP was induced by the rapid infusion of 5% glucose solution (15 mL/kg of body weight) through the marginal ear vein or maintaining under dark phase for 5 h. In the both models, the induced elevation in IOP was prevented by the instillation of PGA/HPCD eye drops, and the IOP-reducing effect enhanced with increasing HPCD concentration in the drops. Nitric oxide (NO) levels elevated in the aqueous humor following the infusion of 5% glucose solution, and this increase was also suppressed by the instillation of PGA/HPCD eye drops. In conclusion, the present study demonstrates that the instillation of PGA/HPCD eye drops has an IOP-reducing effect in rabbits with experimentally induced ocular hypertension, probably as a result of the suppression of NO production.

  14. Experimental Investigation of Oscillatory Flow Pressure and Pressure Drop Through Complex Geometries

    NASA Technical Reports Server (NTRS)

    Ibrahim, Mounir B.; Wang, Meng; Gedeon, David

    2005-01-01

    A series of experiments have been performed to investigate the oscillatory flow pressure and pressure drop through complex geometries. These experiments were conducted at the CSU-SLRE facility which is a horizontally opposed, two-piston, single-acting engine with a split crankshaft driving mechanism. Flow through a rectangular duct, with no insert (obstruction), was studied first. Then four different inserts were examined: Abrupt, Manifold, Diverging Short and Diverging Long. The inserts were mounted in the center of the rectangular duct to represent different type of geometries that could be encountered in Stirling machines. The pressure and pressure drop of the oscillating flow was studied for: 1) different inserts, 2) different phase angle between the two pistons of the engine (zero, 90 lead, 180, and 90 lag), and 3) for different piston frequencies (5, 10, 15, and 20 Hz). It was found that the pressure drop of the oscillatory flow increases with increasing Reynolds number. The pressure drop was shown to be mainly due to the gas inertia for the case of oscillatory flow through a rectangular duct with no insert. On the other hand, for the cases with different inserts into the rectangular duct, the pressure drop has three sources: inertia, friction, and local losses. The friction pressure drop is only a small fraction of the total pressure drop. It was also shown that the dimensionless pressure drop decreases with increasing kinetic Reynolds number.

  15. Optimization of UA of heat exchangers and BOG compressor exit pressure of LNG boil-off gas reliquefaction system using exergy analysis

    NASA Astrophysics Data System (ADS)

    Kochunni, Sarun Kumar; Ghosh, Parthasarathi; Chowdhury, Kanchan

    2015-12-01

    Boil-off gas (BOG) generation and its handling are important issues in Liquefied natural gas (LNG) value chain because of economic, environment and safety reasons. Several variants of reliquefaction systems of BOG have been proposed by researchers. Thermodynamic analyses help to configure them and size their components for improving performance. In this paper, exergy analysis of reliquefaction system based on nitrogen-driven reverse Brayton cycle is carried out through simulation using Aspen Hysys 8.6®, a process simulator and the effects of heat exchanger size with and without related pressure drop and BOG compressor exit pressure are evaluated. Nondimensionalization of parameters with respect to the BOG load allows one to scale up or down the design. The process heat exchanger (PHX) requires much higher surface area than that of BOG condenser and it helps to reduce the quantity of methane vented out to atmosphere. As pressure drop destroys exergy, optimum UA of PHX decreases for highest system performance if pressure drop is taken into account. Again, for fixed sizes of heat exchangers, as there is a range of discharge pressures of BOG compressor at which the loss of methane in vent minimizes, the designer should consider choosing the pressure at lower value.

  16. An optimized microstructure to minimizing in-plane and through-plane pressure drops of fibrous materials: Counter-intuitive reduction of gas diffusion layer permeability with porosity

    NASA Astrophysics Data System (ADS)

    Sadeghifar, Hamidreza

    2018-05-01

    The present study experimentally investigates the realistic functionality of in-plane and through-plane pressure drops of layered fibrous media with porosity, fiber diameter, fiber spacing, fiber-fiber angles and fiber-flow angles. The study also reveals that pressure drop may increase with porosity and fiber diameter under specific circumstances. This counter-intuitive point narrows down the validity range of widely-used permeability-porosity-diameter models or correlations. It is found that, for fibrous materials, the most important parameter that impacts the in-plane pressure drop is not their porosities but the number of fibers extended in the flow direction. It is also concluded that in-plane pressure drop is highly dependent upon the flow direction (fiber-flow angles), especially at lower porosities. Contrary to in-plane pressure drop, through-plane pressure drop is a weak function of fiber-fiber angles but is strongly impacted by fiber spacing, especially at lower porosities. At a given porosity, low through-plane pressure drops occur if fiber spacing does not change practically from one layer to another. Through-plane pressure drop also, insignificantly, increases with the intersecting angles between fibers. An optimized microstructure of fibrous media resulting in minimal in-plane and through-plane pressure drops is also offered for the first time in this work.

  17. Pre-sheath density drop induced by ion-neutral friction along plasma blobs and implications for blob velocities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furno, I.; Chabloz, V.; Fasoli, A.

    2014-01-15

    The pre-sheath density drop along the magnetic field in field-aligned, radially propagating plasma blobs is investigated in the TORPEX toroidal experiment [Fasoli et al., Plasma Phys. Controlled Fusion 52, 124020 (2010)]. Using Langmuir probes precisely aligned along the magnetic field, we measure the density n{sub se} at a poloidal limiter, where blobs are connected, and the upstream density n{sub 0} at a location half way to the other end of the blobs. The pre-sheath density drop n{sub se}/n{sub 0} is then computed and its dependence upon the neutral background gas pressure is studied. At low neutral gas pressures, the pre-sheathmore » density drop is ≈0.4, close to the value of 0.5 expected in the collisionless case. In qualitative agreement with a simple model, this value decreases with increasing gas pressure. No significant dependence of the density drop upon the radial distance into the limiter shadow is observed. The effect of reduced blob density near the limiter on the blob radial velocity is measured and compared with predictions from a blob speed-versus-size scaling law [Theiler et al., Phys. Rev. Lett. 103, 065001 (2009)].« less

  18. Comments on settling chamber design for quiet, blowdown wind tunnels

    NASA Technical Reports Server (NTRS)

    Beckwith, I. E.

    1981-01-01

    Transfer of an existing continous circuit supersonic wind tunnel to Langley and its operation there as a blowdown tunnel is planned. Flow disturbance requirements in the supply section and methods for reducing the high level broad band acoustic disturbances present in typical blowdown tunnels are reviewed. Based on recent data and the analysis of two blowdown facilities at Langley, methods for reducing the total turbulence levels in the settling chamber, including both acoustic and vorticity modes, to less than one percent are recommended. The pertinent design details of the damping screens and honeycomb and the recommended minimum pressure drop across the porous components providing the required two orders of magnitude attenuation of acoustic noise levels are given. A suggestion for the support structure of these high pressure drop porous components is offered.

  19. Characterisation and optimisation of flexible transfer lines for liquid helium. Part I: Experimental results

    NASA Astrophysics Data System (ADS)

    Dittmar, N.; Haberstroh, Ch.; Hesse, U.; Krzyzowski, M.

    2016-04-01

    The transfer of liquid helium (LHe) into mobile dewars or transport vessels is a common and unavoidable process at LHe decant stations. During this transfer reasonable amounts of LHe evaporate due to heat leak and pressure drop. Thus generated helium gas needs to be collected and reliquefied which requires a huge amount of electrical energy. Therefore, the design of transfer lines used at LHe decant stations has been optimised to establish a LHe transfer with minor evaporation losses which increases the overall efficiency and capacity of LHe decant stations. This paper presents the experimental results achieved during the thermohydraulic optimisation of a flexible LHe transfer line. An extensive measurement campaign with a set of dedicated transfer lines equipped with pressure and temperature sensors led to unique experimental data of this specific transfer process. The experimental results cover the heat leak, the pressure drop, the transfer rate, the outlet quality, and the cool-down and warm-up behaviour of the examined transfer lines. Based on the obtained results the design of the considered flexible transfer line has been optimised, featuring reduced heat leak and pressure drop.

  20. Comparison of different models for non-invasive FFR estimation

    NASA Astrophysics Data System (ADS)

    Mirramezani, Mehran; Shadden, Shawn

    2017-11-01

    Coronary artery disease is a leading cause of death worldwide. Fractional flow reserve (FFR), derived from invasively measuring the pressure drop across a stenosis, is considered the gold standard to diagnose disease severity and need for treatment. Non-invasive estimation of FFR has gained recent attention for its potential to reduce patient risk and procedural cost versus invasive FFR measurement. Non-invasive FFR can be obtained by using image-based computational fluid dynamics to simulate blood flow and pressure in a patient-specific coronary model. However, 3D simulations require extensive effort for model construction and numerical computation, which limits their routine use. In this study we compare (ordered by increasing computational cost/complexity): reduced-order algebraic models of pressure drop across a stenosis; 1D, 2D (multiring) and 3D CFD models; as well as 3D FSI for the computation of FFR in idealized and patient-specific stenosis geometries. We demonstrate the ability of an appropriate reduced order algebraic model to closely predict FFR when compared to FFR from a full 3D simulation. This work was supported by the NIH, Grant No. R01-HL103419.

  1. Earache

    MedlinePlus

    ... tube drains fluid that is made in the middle ear. If the eustachian tube becomes blocked, fluid can ... of lying down can reduce pressure in the middle ear. Over-the-counter ear drops can be used ...

  2. Perfusion pressure of a new cannulating fenestrated pedicle screw during cement augmentation.

    PubMed

    Wang, Zhirong; Zhang, Wen; Xu, Hao; Lu, Aiqing; Yang, Huilin; Luo, Zong-Ping

    2018-06-18

    Cannulating fenestrated pedicle screws are effective for fixating osteoporotic vertebrae. However, a major limitation is the excessive pressure required to inject a sufficient amount of cement into the vertebral body through the narrow hole of a pedicle screw. We have recently proposed a new cannulating fenestrated pedicle screw with a large hole diameter and a matched inner pin for screw-strength maintenance. Our purpose was to determine whether the new screw can significantly reduce bone-cement perfusion pressure during cement augmentation, METHODS: Two different methods were used to examine perfusion pressure. Hagen-Poisseuille's flow model in a tube was used to calculate pressure drop in the bone-cement channel. Experimentally, both Newtonian silicone oil and bone-cement (polymethyl methacrylate) were tested using a cement pusher through the cannulating screw at a constant rate of 2 ml/min. The internal hollow portion of the screw was the bottleneck of the perfusion, and the new design significantly reduced the perfusion pressure. Specifically, perfusion pressure dropped by 59% (P < 0.05) when diameter size was doubled. The new design effectively improved the application of bone-cement augmentation with the ease of bone-cement perfusion, thereby enhancing operational safety. Copyright © 2018. Published by Elsevier Ltd.

  3. Variable velocity in solar external receivers

    NASA Astrophysics Data System (ADS)

    Rodríguez-Sánchez, M. R.; Sánchez-González, A.; Acosta-Iborra, A.; Santana, D.

    2017-06-01

    One of the major problems in solar external receivers is tube overheating, which accelerates the risk of receiver failure. It can be solved implementing receivers with high number of panels. However, it exponentially increases the pressure drop in the receiver and the parasitic power consumption of the Solar Power Tower (SPT), reducing the global efficiency of the SPT. A new concept of solar external receiver, named variable velocity receiver, is able to adapt their configuration to the different flux density distributions. A set of valves allows splitting in several independent panels those panels in which the wall temperature is over the limit. It increases the velocity of the heat transfer fluid (HTF) and its cooling capacity. This receiver does not only reduce the wall temperature of the tubes, but also simplifies the control of the heliostat field and allows to employ more efficient aiming strategies. In this study, it has been shown that variable velocity receiver presents high advantages with respect to traditional receiver. Nevertheless, more than two divisions per panels are not recommendable, due to the increment of the pressure drop over 70 bars. In the design point (12 h of the Spring Equinox), the use of a variable number of panels between 18 and 36 (two divisions per panel), in a SPT similar to Gemasolar, improves the power capacity of the SPT in 5.7%, with a pressure drop increment of 10 bars. Off-design, when the flux distribution is high and not symmetric (e.g. 10-11 h), the power generated by the variable velocity receiver is 18% higher than the generated by the traditional receiver, at these hours the pressure drop increases almost 20 bars.

  4. Effects of Swirler Shape on Two-Phase Swirling Flow in a Steam Separator

    NASA Astrophysics Data System (ADS)

    Kataoka, Hironobu; Shinkai, Yusuke; Tomiyama, Akio

    Experiments on two-phase swirling flow in a separator are carried out using several swirlers having different vane angles, different hub diameters and different number of vanes to seek a way for improving steam separators of uprated boiling water reactors. Ratios of the separated liquid flow rate to the total liquid flow rate, flow patterns, liquid film thicknesses and pressure drops are measured to examine the effects of swirler shape on air-water two-phase swirling annular flows in a one-fifth scale model of the separator. As a result, the following conclusions are obtained for the tested swirlers: (1) swirler shape scarcely affects the pressure drop in the barrel of the separator, (2) decreasing the vane angle is an effective way for reducing the pressure drop in the diffuser of the separator, and (3) the film thickness at the inlet of the pick-off-ring of the separator is not sensitive to swirler shape, which explains the reason why the separator performance does not depend on swirler shape.

  5. Hanging drop crystal growth apparatus and method

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C. (Inventor); Smith, Robbie E. (Inventor)

    1989-01-01

    An apparatus (10) is constructed having a cylindrical enclosure (16) within which a disc-shaped wicking element (18) is positioned. A well or recess (22) is cut into an upper side (24) of this wicking element, and a glass cover plate or slip (28) having a protein drop disposed thereon is sealably positioned on the wicking element (18), with drop (12) being positioned over well or recess (22). A flow of control fluid is generated by a programmable gradient former (16), with this control fluid having a vapor pressure that is selectively variable. This flow of control fluid is coupled to the wicking element (18) where control fluid vapor diffusing from walls (26) of the recess (22) is exposed to the drop (12), forming a vapor pressure gradient between the drop (12) and the control fluid vapor. Initially, this gradient is adjusted to draw solvent from the drop (12) at a relatively high rate, and as the critical supersaturation point is approached (the point at which crystal nucleation occurs), the gradient is reduced to more slowly draw solvent from the drop (12). This allows discrete protein molecules more time to orient themselves into an ordered crystalline lattice, producing protein crystals which, when processed by X-ray crystallography, possess a high degree of resolution.

  6. Investigation of the required length for fully developed pipe flow with drag-reducing polymer solutions

    NASA Astrophysics Data System (ADS)

    Farsiani, Yasaman; Elbing, Brian

    2015-11-01

    Adding trace amounts of long chain polymers into a liquid flow is known to reduce skin friction drag by up to 80%. While polymer drag reduction (PDR) has been successfully implemented in internal flows, diffusion and degradation have limited its external flow applications. A weakness in many previous PDR studies is that there was no characterization of the polymer being injected into the turbulent boundary layer, which can be accomplished by testing a sample in a pressure-drop tube. An implicit assumption in polymer characterization is that the flow is fully developed at the differential pressure measurement. While available data in the literature shows that the entry length to achieve fully developed flow increases with polymeric solutions, it is unclear how long is required to achieve fully developed flow for non-Newtonian turbulent flows. In the present study, the pressure-drop is measured across a 1.05 meter length section of a 1.04 cm inner diameter pipe. Differential pressure is measured with a pressure transducer for different entry lengths, flow and polymer solution properties. This presentation will present preliminary data on the required entrance length as well as characterization of polymer solution an estimate of the mean molecular weight.

  7. Effect of boattail geometry on the acoustics of parallel baffles in ducts

    NASA Technical Reports Server (NTRS)

    Soderman, P. T.; Unnever, G.; Dudley, M. R.

    1984-01-01

    Sound attenuation and total pressure drop of parallel duct baffles incorporating certain boattail geometries were measured in the NASA Ames Research Center 7- by 10-Foot Wind Tunnel. The baseline baffles were 1.56 m long and 20 cm thick, on 45-cm center-to-center spacings, and spanned the test section from floor to ceiling. Four different boattails were evaluated: a short, smooth (nonacoustic) boattail; a longer, smooth boattail; and two boattails with perforated surfaces and sound-absorbent filler. Acoustic measurements showed the acoustic boattails improved the sound attenuation of the baffles at approximately half the rate to be expected from constant-thickness sections of the same length; that is, 1.5 dB/n, where n is the ratio of acoustic treatment length to duct passage width between baffles. The aerodynamic total pressure loss was somewhat sensitive to tail geometry. Lengthening the tails to reduce the diffusion half-angle from 11 to 5 degrees reduced the total pressure loss approximately 9%. Perforating the boattails, which increased the surface roughness, did not have a large effect on the total pressure loss. Aerodynamic results are compared with a published empirical method for predicting baffle total pressure drop.

  8. The effect of geometry and operation conditions on the performance of a gas-liquid cylindrical cyclone separator with new structure

    NASA Astrophysics Data System (ADS)

    Han, Qing; Zhang, Chi; Xu, Bo; Chen, Jiangping

    2013-07-01

    The hydrodynamic flow behavior, effects of geometry and working conditions of a gas-liquid cylindrical cyclone separator with a new structure are investigated by computational fluid dynamic and experiment. Gas liquid cylindrical cyclone separator is widely used in oil industry, refrigeration system because of its simple structure, high separating efficiency, little maintenance and no moving parts nor internal devices. In this work, a gas liquid cylindrical cyclone separator with new structure used before evaporator in refrigeration system can remove the vapor from the mixture and make evaporator compact by improving its heat exchange efficiency with the lower inlet quality. It also decreases evaporator pressure drop and reduces compressor work. The two pipes are placed symmetrically which makes each of them can be treated as inlet. It means when the fluids flow reverse, the separator performance will not be influence. Four samples with different geometry parameters are tested by experiment with different inlet quality (0.18-0.33), inlet mass flow rate (65-100kg/h). Compared with the experimental data, CFD simulation results show a good agreement. Eulerian multiphase model and Reynolds Stress Turbulence model are applied in the CFD simulation and obtained the inner flow field such as phase path lines, tangential velocity profiles and pressure and volume of fraction distribution contours. The separator body diameter (24, 36, 48mm) and inlet diameter (3.84, 4.8, 5.76mm) decide the maximum tangential velocity which results in the centrifugal force. The tangential velocity profiles are simulated and compared among different models. The higher tangential velocity makes higher quality of gas outlet but high pressure drop at the same time. Decreasing the inlet diameter increases quality of gas outlet pipe and pressure drop. High gas outlet quality is cost at high pressure drop. Increasing of separator diameter makes gas outlet quality increase first and then decrease but the pressure drop decreases all the way. The offset (0, 2.4, 3.6mm) of gas outlet is an insensitive factor which influences the quality and pressure drop little.

  9. Correction of Pressure Drop in Steam and Water System in Performance Test of Boiler

    NASA Astrophysics Data System (ADS)

    Liu, Jinglong; Zhao, Xianqiao; Hou, Fanjun; Wu, Xiaowu; Wang, Feng; Hu, Zhihong; Yang, Xinsen

    2018-01-01

    Steam and water pressure drop is one of the most important characteristics in the boiler performance test. As the measuring points are not in the guaranteed position and the test condition fluctuation exsits, the pressure drop test of steam and water system has the deviation of measuring point position and the deviation of test running parameter. In order to get accurate pressure drop of steam and water system, the corresponding correction should be carried out. This paper introduces the correction method of steam and water pressure drop in boiler performance test.

  10. The motion of a train of vesicles in channel flow

    NASA Astrophysics Data System (ADS)

    Barakat, Joseph; Shaqfeh, Eric

    2017-11-01

    The inertialess motion of a train of lipid-bilayer vesicles flowing through a channel is simulated using a 3D boundary integral equation method. Steady-state results are reported for vesicles positioned concentrically inside cylindrical channels of circular, square, and rectangular cross sections. The vesicle translational velocity U and excess channel pressure drop Δp+ depend strongly on the ratio of the vesicle radius to the hydraulic radius λ and the vesicle reduced volume υ. ``Deflated vesicles'' of lower reduced volume υ are more streamlined and translate with greater velocity U relative to the mean flow velocity V. Increasing the vesicle size (λ) increases the wall friction force and extra pressure drop Δp+, which in turn reduces the vesicle velocity U. Hydrodynamic interactions between vesicles in a periodic train are largely screened by the channel walls, in accordance with previous results for spheres and drops. The hydraulic resistance is compared across different cross sections, and a simple correction factor is proposed to unify the results. Nonlinear effects are observed when β - the ratio of membrane bending elasticity to viscous traction - is changed. The simulation results show excellent agreement with available experimental measurements as well as a previously reported ``small-gap theory'' valid for large values of λ. NSF CBET 1066263/1066334.

  11. Single Channel Testing for Characterization of the Direct Gas Cooled Reactor and the SAFE-100 Heat Exchanger

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bragg-Sitton, S.M.; Propulsion Research Center, NASA Marshall Space Flight Center, Huntsville, AL 35812; Kapernick, R.

    2004-02-04

    Experiments have been designed to characterize the coolant gas flow in two space reactor concepts that are currently under investigation by NASA Marshall Space Flight Center and Los Alamos National Laboratory: the direct-drive gas-cooled reactor (DDG) and the SAFE-100 heatpipe-cooled reactor (HPR). For the DDG concept, initial tests have been completed to measure pressure drop versus flow rate for a prototypic core flow channel, with gas exiting to atmospheric pressure conditions. The experimental results of the completed DDG tests presented in this paper validate the predicted results to within a reasonable margin of error. These tests have resulted in amore » re-design of the flow annulus to reduce the pressure drop. Subsequent tests will be conducted with the re-designed flow channel and with the outlet pressure held at 150 psi (1 MPa). Design of a similar test for a nominal flow channel in the HPR heat exchanger (HPR-HX) has been completed and hardware is currently being assembled for testing this channel at 150 psi. When completed, these test programs will provide the data necessary to validate calculated flow performance for these reactor concepts (pressure drop and film temperature rise)« less

  12. Gas Pressure-Drop Experiment

    ERIC Educational Resources Information Center

    Luyben, William L.; Tuzla, Kemal

    2010-01-01

    Most chemical engineering undergraduate laboratories have fluid mechanics experiments in which pressure drops through pipes are measured over a range of Reynolds numbers. The standard fluid is liquid water, which is essentially incompressible. Since density is constant, pressure drop does not depend on the pressure in the pipe. In addition, flow…

  13. Fixed Packed Bed Reactors in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Motil, Brian J.; Balakotaiah, Vemuri; Kamotani, Yasuhiro; McCready, Mark J.

    2004-01-01

    We present experimental data on flow pattern transitions, pressure drop and flow characteristics for cocurrent gas-liquid flow through packed columns in microgravity. The flow pattern transition data indicates that the pulse flow regime exists over a wider range of gas and liquid flow rates under microgravity conditions compared to 1-g and the widely used Talmor map in 1-g is not applicable for predicting the transition boundaries. A new transition criterion between bubble and pulse flow in microgravity is proposed and tested using the data. Since there is no static head in microgravity, the pressure drop measured is the true frictional pressure drop. The pressure drop data, which has much smaller scatter than most reported 1-g data clearly shows that capillary effects can enhance the pressure drop (especially in the bubble flow regime) as much as 200% compared to that predicted by the single phase Ergun equation. The pressure drop data are correlated in terms of a two-phase friction factor and its dependence on the gas and liquid Reynolds numbers and the Suratman number. The influence of gravity on the pulse amplitude and frequency is also discussed and compared to that under normal gravity conditions. Experimental work is planned to determine the gas-liquid and liquid-solid mass transfer coefficients. Because of enhanced interfacial effects, we expect the gas-liquid transfer coefficients kLa and kGa (where a is the gas-liquid interfacial area) to be higher in microgravity than in normal gravity at the same flow conditions. This will be verified by gas absorption experiments, with and without reaction in the liquid phase, using oxygen, carbon dioxide, water and dilute aqueous amine solutions. The liquid-solid mass transfer coefficient will also be determined in the bubble as well as the pulse flow regimes using solid benzoic acid particles in the packing and measuring their rate of dissolution. The mass transfer coefficients in microgravity will be compared to those in normal gravity cocurrent flow to determine the mass transfer enhancement and propose new mass transfer correlations for two-phase gas-liquid flows through packed beds in microgravity.

  14. Fixed Packed Bed Reactors in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Motil, Brian J.; Balakotaiah, Vemuri; Kamotani, Yasuhiro; McCready, Mark J.

    2004-01-01

    We present experimental data on flow pattern transitions, pressure drop and flow characteristics for cocurrent gas-liquid flow through packed columns in microgravity. The flow pattern transition data indicates that the pulse flow regime exists over a wider range of gas and liquid flow rates under microgravity conditions compared to 1-g and the widely used Talmor map in 1-g is not applicable for predicting the transition boundaries. A new transition criterion between bubble and pulse flow in microgravity is proposed and tested using the data. Since there is no static head in microgravity, the pressure drop measured is the true frictional pressure drop. The pressure drop data, which has much smaller scatter than most reported 1-g data clearly shows that capillary effects can enhance the pressure drop (especially in the bubble flow regime) as much as 200% compared to that predicted by the single phase Ergun equation. The pressure drop data are correlated in terms of a two-phase friction factor and its dependence on the gas and liquid Reynolds numbers and the Suratman number. The influence of gravity on the pulse amplitude and frequency is also discussed and compared to that under normal gravity conditions. Experimental work is planned to determine the gas-liquid mass transfer coefficients. Because of enhanced interfacial effects, we expect the gas-liquid transfer coefficients k(L)a and k(G)a (where a is the gas-liquid interfacial area) to be higher in microgravity than in normal gravity at the same flow conditions. This will be verified by gas absorption experiments, with and without reaction in the liquid phase, using oxygen, carbon dioxide, water and dilute aqueous amine solutions. The liquid-solid mass transfer coefficient will also be determined in the bubble as well as the pulse flow regimes using solid benzoic acid particles in the packing and measuring their rate of dissolution. The mass transfer coefficients in microgravity will be compared to those in normal gravity cocurrent flow to determine the mass transfer enhancement and propose new mass transfer correlations for two-phase gas-liquid flows through packed beds in microgravity.

  15. Low central venous pressure versus acute normovolemic hemodilution versus conventional fluid management for reducing blood loss in radical retropubic prostatectomy: a randomized controlled trial.

    PubMed

    Habib, Ashraf S; Moul, Judd W; Polascik, Thomas J; Robertson, Cary N; Roche, Anthony M; White, William D; Hill, Stephen E; Nosnick, Israel; Gan, Tong J

    2014-05-01

    To compare acute normovolemic hemodilution versus low central venous pressure strategy versus conventional fluid management in reducing intraoperative estimated blood loss, hematocrit drop and need for blood transfusion in patients undergoing radical retropubic prostatectomy under general anesthesia. Patients undergoing radical retropubic prostatectomy under general anesthesia were randomized to conventional fluid management, acute normovolemic hemodilution or low central venous pressure (≤5 mmHg). Treatment effects on estimated blood loss and hematocrit change were tested in multivariable regression models accounting for surgeon, prostate size, and all two-way interactions. Ninety-two patients completed the study. Estimated blood loss (mean ± SD) was significantly lower with low central venous pressure (706 ± 362 ml) compared to acute normovolemic hemodilution (1103 ± 635 ml) and conventional (1051 ± 714 ml) groups (p = 0.0134). There was no difference between the groups in need for blood transfusion, or hematocrit drop from preoperative values. The multivariate model predicting estimated blood loss showed a significant effect of treatment (p = 0.0028) and prostate size (p = 0.0323), accounting for surgeon (p = 0.0013). In the model predicting hematocrit change, accounting for surgeon difference (p = 0.0037), the treatment effect depended on prostate size (p = 0.0007) with the slope of low central venous pressure differing from the other two groups. Hematocrit was predicted to drop more with increased prostate size in acute normovolemic hemodilution and conventional groups but not with low central venous pressure. Limitations include the inability to blind providers to group assignment, possible variability between providers in estimation of blood loss, and the relatively small sample size that was not powered to detect differences between the groups in need for blood transfusion. Maintaining low central venous pressure reduced estimated blood loss compared to conventional fluid management and acute normovolemic hemodilution in patients undergoing radical retropubic prostatectomy but there was no difference in allogeneic blood transfusion between the groups.

  16. 40 CFR Table 8 to Subpart Sssss of... - Continuous Compliance with Operating Limits

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... subpart; andii. Reducing the scrubber pressure drop data to 1-hour and 3-hour block averages; and iii.... Reducing the scrubber liquid pH data to 1-hour and 3-hour block averages; and iii. Maintaining the 3-hour... subpart; andii. Reducing the scrubber liquid flow rate data to 1-hour and 3-hour block averages; and iii...

  17. Intraocular pressure control of a novel glaucoma drainage device - in vitro and in vivo studies

    PubMed Central

    Cui, Li-Jun; Li, Di-Chen; Liu, Jian; Zhang, Lei; Xing, Yao

    2017-01-01

    AIM To evaluate the intraocular pressure (IOP) control of an artificial trabeculum drainage system (ATDS), a newly designed glaucoma drainage device, and postoperative complications in normal rabbit eyes. METHODS Pressure drops in air and fluid of 30 ATDS were measured after being connected to a closed manometric system. Twenty of them were then chosen and implanted randomly into the eyes of 20 rabbits. Postoperative slit-lamp, gonioscopic examination and IOP measurements were recorded periodically. Ultrasound biomicroscopy and B-scan ultrasonography were also used to observe the complications. Eyes were enucleated on day 60. RESULTS Pressure drops of 4.6-9.4 mm Hg were obtained at physiological aqueous flow rates in the tests in vitro. The average postoperative IOP of the experimental eyes (11.6-12.8 mm Hg) was lower than the controls significantly (P<0.05) at each time point. Complications of hemorrhage (n=1), cellulosic exudation (two cases) and local iris congestion (two cases) were observed. The lumina of the devices were devoid of obstructions in all specimens examined and a thin fibrous capsule was found around the endplate. CONCLUSION ATDS reduce IOP effectively. However, further studies on the structure are needed to reduce complications. PMID:28944192

  18. Bed mixing and leachate recycling strategies to overcome pressure drop buildup in the biofiltration of hydrogen sulfide.

    PubMed

    Roshani, Babak; Torkian, Ayoob; Aslani, Hasan; Dehghanzadeh, Reza

    2012-04-01

    The effects of leachate recycling and bed mixing on the removal rate of H(2)S from waste gas stream were investigated. The experimental setup consisted of an epoxy-coated three-section biofilter with an ID of 8 cm and effective bed height of 120 cm. Bed material consisted of municipal solid waste compost and PVC bits with an overall porosity of 54% and dry bulk density of 0.456 g cm(-3). Leachate recycling had a positive effect of increasing elimination capacity (EC) up to 21 g S m(-3) bed h(-1) at recycling rates of 75 ml d(-1), but in the bed mixing period EC declined to 8 g S m(-3) bed h(-1). Pressure drop had a range of zero to 18 mm H(2)O m(-1) in the course of leachate recycling. Accumulation of sulfur reduced removal efficiency and increased pressure drop up to 110 mm H(2)O m(-1) filter during the bed mixing stage. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Exergy analysis of large-scale helium liquefiers: Evaluating design trade-offs

    NASA Astrophysics Data System (ADS)

    Thomas, Rijo Jacob; Ghosh, Parthasarathi; Chowdhury, Kanchan

    2014-01-01

    It is known that higher heat exchanger area, more number of expanders with higher efficiency and more involved configuration with multi-pressure compression system increase the plant efficiency of a helium liquefier. However, they involve higher capital investment and larger size. Using simulation software Aspen Hysys v 7.0 and exergy analysis as the tool of analysis, authors have attempted to identify various trade-offs while selecting the number of stages, the pressure levels in compressor, the cold-end configuration, the heat exchanger surface area, the maximum allowable pressure drop in heat exchangers, the efficiency of expanders, the parallel/series connection of expanders etc. Use of more efficient cold ends reduces the number of refrigeration stages and the size of the plant. For achieving reliability along with performance, a configuration with a combination of expander and Joule-Thomson valve is found to be a better choice for cold end. Use of multi-pressure system is relevant only when the number of refrigeration stages is more than 5. Arrangement of expanders in series reduces the number of expanders as well as the heat exchanger size with slight expense of plant efficiency. Superior heat exchanger (having less pressure drop per unit heat transfer area) results in only 5% increase of plant performance even when it has 100% higher heat exchanger surface area.

  20. Estimating the irreversible pressure drop across a stenosis by quantifying turbulence production using 4D Flow MRI

    PubMed Central

    Ha, Hojin; Lantz, Jonas; Ziegler, Magnus; Casas, Belen; Karlsson, Matts; Dyverfeldt, Petter; Ebbers, Tino

    2017-01-01

    The pressure drop across a stenotic vessel is an important parameter in medicine, providing a commonly used and intuitive metric for evaluating the severity of the stenosis. However, non-invasive estimation of the pressure drop under pathological conditions has remained difficult. This study demonstrates a novel method to quantify the irreversible pressure drop across a stenosis using 4D Flow MRI by calculating the total turbulence production of the flow. Simulation MRI acquisitions showed that the energy lost to turbulence production can be accurately quantified with 4D Flow MRI within a range of practical spatial resolutions (1–3 mm; regression slope = 0.91, R2 = 0.96). The quantification of the turbulence production was not substantially influenced by the signal-to-noise ratio (SNR), resulting in less than 2% mean bias at SNR > 10. Pressure drop estimation based on turbulence production robustly predicted the irreversible pressure drop, regardless of the stenosis severity and post-stenosis dilatation (regression slope = 0.956, R2 = 0.96). In vitro validation of the technique in a 75% stenosis channel confirmed that pressure drop prediction based on the turbulence production agreed with the measured pressure drop (regression slope = 1.15, R2 = 0.999, Bland-Altman agreement = 0.75 ± 3.93 mmHg). PMID:28425452

  1. Fluidization quality analyzer for fluidized beds

    DOEpatents

    Daw, C. Stuart; Hawk, James A.

    1995-01-01

    A control loop and fluidization quality analyzer for a fluidized bed utilizes time varying pressure drop measurements. A fast-response pressure transducer measures the overall bed pressure drop, or over some segment of the bed, and the pressure drop signal is processed to produce an output voltage which changes with the degree of fluidization turbulence.

  2. Fluidization quality analyzer for fluidized beds

    DOEpatents

    Daw, C.S.; Hawk, J.A.

    1995-07-25

    A control loop and fluidization quality analyzer for a fluidized bed utilizes time varying pressure drop measurements. A fast-response pressure transducer measures the overall bed pressure drop, or over some segment of the bed, and the pressure drop signal is processed to produce an output voltage which changes with the degree of fluidization turbulence. 9 figs.

  3. The transition from frictional sliding to shear melting in laboratory experiments and the implications for scale dependent earthquake source properties

    NASA Astrophysics Data System (ADS)

    Beeler, N. M.; Lockner, D. A.; Kilgore, B. D.; Moore, D. E.

    2011-12-01

    Localized slip during earthquakes, e.g., at 1 m/s for a few seconds, should produce enough thermal energy to melt rock or pressurize pore fluid and drastically reduce fault strength (Sibson, Nature Phys. Sci., 1973. Sibson, Geophys. J. R. Astr. Soc., 1975). Expected changes in earthquake source properties for events with large enough temperature change to induce melting or fluid pressurization include an increase in stress drop, a possible increase in low frequency content of the radiated energy and an increase in the ratio of radiated energy to seismic moment. Such changes with increasing moment, while expected, are not observed seismologically and the role of thermal weakening during large earthquakes remains unknown. To investigate the effect of the onset of thermal weakening on earthquake source properties such as stress drop, slip velocity, weakening distance, and apparent stress, we have conducted stick-slip experiments at confining pressures between 50 and 400 MPa on initially bare rock surfaces of Westerly granite (Lockner et al., Eos Trans. Am. Geophys. Un. T23A-2245, 2010). These conditions span a transition from frictional sliding, producing dry comminuted fault gouge and fractional stress drops at lower confining pressure, to shear induced melting with complete stress drop at the highest pressures. The confining pressure, axial stress and displacement, are measured as in standard faulting tests. Temperature is monitored with a thermocouple ~2.5 mm from the fault. Rapid motions of the fault are inferred from independent recordings of the acceleration and velocity of the loading piston using an accelerometer and a laser Doppler vibrometer. Slip velocity, and event duration increase with stress drop. Stress drops vary from less than 10 to greater than 400 MPa. Durations are between 0.1 and 0.5 ms and average sliding velocities range from <1 to > 10 m/s. Total stress drop is associated with slip and shear stress sufficient to increase the entire shear zone temperature to the melting point of feldspar, but melt is also found in samples subjected to smaller stress drops, suggesting heating to somewhat lower temperature. Stress and slip constrain the total energy; the temperature measurements constrain the energy associated with frictional heating and the heat of fusion, while the velocity measurements allow an estimate of the radiated energy. Using these constraints and models of shear-induced melting we examine changes in event source properties across the transition to shear melting.

  4. Effect of drop volume and surface statistics on the superhydrophobicity of randomly rough substrates

    NASA Astrophysics Data System (ADS)

    Afferrante, L.; Carbone, G.

    2018-01-01

    In this paper, a simple theoretical approach is developed with the aim of evaluating shape, interfacial pressure, apparent contact angle and contact area of liquid drops gently deposed on randomly rough surfaces. This method can be useful to characterize the superhydrophobic properties of rough substrates, and to investigate the contact behavior of impacting drops. We assume that (i) the size of the apparent liquid-solid contact area is much larger than the micromorphology of the substrate, and (ii) a composite interface is always formed at the microscale. Results show apparent contact angle and liquid-solid area fraction are slightly influenced by the drop volume only at relatively high values of the root mean square roughness h rms, whereas the effect of volume is practically negligible at small h rms. The main statistical quantity affecting the superhydrophobic properties is found to be the Wenzel roughness parameter r W, which depends on the average slope of the surface heights. Moreover, transition from the Cassie-Baxter state to the Wenzel one is observed when r W reduces below a certain critical value, and theoretical predictions are found to be in good agreement with experimental data. Finally, the present method can be conveniently exploited to evaluate the occurrence of pinning phenomena in the case of impacting drops, as the Wenzel critical pressure for liquid penetration gives an estimation of the maximum impact pressure tolerated by the surface without pinning occurring.

  5. Experimental investigation of air pressure affecting filtration performance of fibrous filter sheet.

    PubMed

    Xu, Bin; Yu, Xiao; Wu, Ya; Lin, Zhongping

    2017-03-01

    Understanding the effect of air pressure on their filtration performance is important for assessing the effectiveness of fibrous filters under different practical circumstances. The effectiveness of three classes of air filter sheets were investigated in laboratory-based measurements at a wide range of air pressures (60-130 KPa). The filtration efficiency was found most sensitive to the air pressure change at smaller particle sizes. As the air pressure increased from 60 to 130 KPa, significant decrease in filtration efficiency (up to 15%) and increase in pressure drop (up to 90 Pa) were observed. The filtration efficiency of the filter sheet with largest fiber diameter and smallest solid volume fraction was affected most, while the pressure drop of the filter sheet with smallest fiber diameter and largest solid volume fraction was affected most. The effect of air pressure on the filtration efficiency was slightly larger at greater filter face air velocity. However, the effect of air pressure on the pressure drop was negligible. The filtration efficiency and pressure drop were explicitly expressed as functions of the air pressure. Two coefficients were empirically derived and successfully accounted for the effects of air pressure on filtration efficiency and pressure drop.

  6. Effect of flow rate and temperature on transmembrane blood pressure drop in an extracorporeal artificial lung.

    PubMed

    Park, M; Costa, E L V; Maciel, A T; Barbosa, E V S; Hirota, A S; Schettino, G de P; Azevedo, L C P

    2014-11-01

    Transmembrane pressure drop reflects the resistance of an artificial lung system to blood transit. Decreased resistance (low transmembrane pressure drop) enhances blood flow through the oxygenator, thereby, enhancing gas exchange efficiency. This study is part of a previous one where we observed the behaviour and the modulation of blood pressure drop during the passage of blood through artificial lung membranes. Before and after the induction of multi-organ dysfunction, the animals were instrumented and analysed for venous-venous extracorporeal membrane oxygenation, using a pre-defined sequence of blood flows. Blood flow and revolutions per minute (RPM) of the centrifugal pump varied in a linear fashion. At a blood flow of 5.5 L/min, pre- and post-pump blood pressures reached -120 and 450 mmHg, respectively. Transmembrane pressures showed a significant spread, particularly at blood flows above 2 L/min; over the entire range of blood flow rates, there was a positive association of pressure drop with blood flow (0.005 mmHg/mL/minute of blood flow) and a negative association of pressure drop with temperature (-4.828 mmHg/(°Celsius). These associations were similar when blood flows of below and above 2000 mL/minute were examined. During its passage through the extracorporeal system, blood is exposed to pressure variations from -120 to 450 mmHg. At high blood flows (above 2 L/min), the drop in transmembrane pressure becomes unpredictable and highly variable. Over the entire range of blood flows investigated (0-5500 mL/min), the drop in transmembrane pressure was positively associated with blood flow and negatively associated with body temperature. © The Author(s) 2014.

  7. A MODEL OF THE HELIOSPHERE WITH JETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drake, J. F.; Swisdak, M.; Opher, M., E-mail: drake@umd.edu, E-mail: swisdak@umd.edu, E-mail: mopher@bu.edu

    2015-08-01

    An analytic model of the heliosheath (HS) between the termination shock (TS) and the heliopause (HP) is developed in the limit in which the interstellar flow and magnetic field are neglected. The heliosphere in this limit is axisymmetric and the overall structure of the HS and HP is controlled by the solar magnetic field even in the limit in which the ratio of the plasma to magnetic field pressure, β = 8πP/B{sup 2}, in the HS is large. The tension of the solar magnetic field produces a drop in the total pressure between the TS and the HP. This samemore » pressure drop accelerates the plasma flow downstream of the TS into the north and south directions to form two collimated jets. The radii of these jets are controlled by the flow through the TS and the acceleration of this flow by the magnetic field—a stronger solar magnetic field boosts the velocity of the jets and reduces the radii of the jets and the HP. MHD simulations of the global heliosphere embedded in a stationary interstellar medium match well with the analytic model. The results suggest that mechanisms that reduce the HS plasma pressure downstream of the TS can enhance the jet outflow velocity and reduce the HP radius to values more consistent with the Voyager 1 observations than in current global models.« less

  8. Cyclone energy: impact of inlet velocity and outlet évasé designs

    USDA-ARS?s Scientific Manuscript database

    Because electricity generation produces emissions, reducing cyclone pressure drop has the potential to benefit the environment. Enhanced 1D3D cyclones common in the cotton ginning industry were tested with various évasés, over a range of inlet velocities. With évasés it was possible to reduce the ...

  9. Airfoil-shaped micro-mixers for reducing fouling on membrane surfaces

    DOEpatents

    Ho, Clifford K; Altman, Susan J; Clem, Paul G; Hibbs, Michael; Cook, Adam W

    2012-10-23

    An array of airfoil-shaped micro-mixers that enhances fluid mixing within permeable membrane channels, such as used in reverse-osmosis filtration units, while minimizing additional pressure drop. The enhanced mixing reduces fouling of the membrane surfaces. The airfoil-shaped micro-mixer can also be coated with or comprised of biofouling-resistant (biocidal/germicidal) ingredients.

  10. Pressure, temperature and density drops along supercritical fluid chromatography columns in different thermal environments. III. Mixtures of carbon dioxide and methanol as the mobile phase.

    PubMed

    Poe, Donald P; Veit, Devon; Ranger, Megan; Kaczmarski, Krzysztof; Tarafder, Abhijit; Guiochon, Georges

    2014-01-03

    The pressure, temperature and density drops along SFC columns eluted with a CO2/methanol mobile phase were measured and compared with theoretical values. For columns packed with 3- and 5-μm particles the pressure and temperature drops were measured using a mobile phase of 95% CO2 and 5% methanol at a flow rate of 5mL/min, at temperatures from 20 to 100°C, and outlet pressures from 80 to 300bar. The density drop was calculated based on the temperature and pressure at the column inlet and outlet. The columns were suspended in a circulating air bath, either bare or covered with foam insulation. The experimental measurements were compared to theoretical results obtained by numerical simulation. For the convective air condition at outlet pressures above 100bar the average difference between the experimental and calculated temperature drops and pressure drops were 0.1°C and 0.7% for the bare 3-μm column, respectively, and were 0.6°C and 4.1% for the insulated column. The observed temperature drops for the insulated columns are consistent with those predicted by the Joule-Thomson coefficients for isenthalpic expansion. The dependence of the temperature and the pressure drops on the Joule-Thomson coefficient and kinematic viscosity are described for carbon dioxide mobile phases containing up to 20% methanol. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Vasovagal Syncope

    MedlinePlus

    ... Combined, the drop in blood pressure and slowed heart rate quickly reduce blood flow to your brain, and you faint. Sometimes there is no classical vasovagal syncope trigger, but common triggers include: Standing for long periods of time Heat exposure Seeing blood Having blood drawn Fear of ...

  12. Modeling pressure relationships of inspired air into the human lung bifurcations through simulations

    NASA Astrophysics Data System (ADS)

    Aghasafari, Parya; Ibrahim, Israr B. M.; Pidaparti, Ramana

    2018-03-01

    Applied pressure on human lung wall has great importance on setting up protective ventilatory strategies, therefore, estimating pressure relationships in terms of specific parameters would provide invaluable information specifically during mechanical ventilation (MV). A three-dimensional model from a healthy human lung MRI is analyzed by computational fluid dynamic (CFD), and results for pressure are curve fitted to estimate relationships that associate pressure to breathing time, cross section and generation numbers of intended locations. Among all possible functions, it is observed that exponential and polynomial pressure functions present most accurate results for normal breathing (NB) and MV, respectively. For validation, pressure-location curves from CFD and results from this study are compared and good correlations are found. Also, estimated pressure values are used to calculate pressure drop and airway resistance to the induced air into the lung bifurcations. It is concluded that maximum pressure drop appeared in generation number 2 and medium sized airways show higher resistance to air flow and that resistance decreased as cross sectional area increased through the model. Results from this study are in good agreement with previous studies and provide potentials for further studies on influence of air pressure on human lung tissue and reducing lung injuries during MV.

  13. A method for improving the drop test performance of a MEMS microphone

    NASA Astrophysics Data System (ADS)

    Winter, Matthias; Ben Aoun, Seifeddine; Feiertag, Gregor; Leidl, Anton; Scheele, Patrick; Seidel, Helmut

    2009-05-01

    Most micro electro mechanical system (MEMS) microphones are designed as capacitive microphones where a thin conductive membrane is located in front of a rigid counter electrode. The membrane is exposed to the environment to convert sound into vibrations of the membrane. The movement of the membrane causes a change in the capacitance between the membrane and the counter electrode. The resonance frequency of the membrane is designed to occur above the acoustic spectrum to achieve a linear frequency response. To obtain a good sensitivity the thickness of the membrane must be as small as possible, typically below 0.5 μm. These fragile membranes may be damaged by rapid pressure changes. For cell phones, drop tests are among the most relevant reliability tests. The extremely high acceleration during the drop impact leads to fast pressure changes in the microphone which could result in a rupture of the membrane. To overcome this problem a stable protection layer can be placed at a small distance to the membrane. The protective layer has small holes to form a low pass filter for air pressure. The low pass filter reduces pressure changes at high frequencies so that damage to the membrane by excitation in resonance will be prevented.

  14. Effects of pressure drop and superficial velocity on the bubbling fluidized bed incinerator.

    PubMed

    Wang, Feng-Jehng; Chen, Suming; Lei, Perng-Kwei; Wu, Chung-Hsing

    2007-12-01

    Since performance and operational conditions, such as superficial velocity, pressure drop, particles viodage, and terminal velocity, are difficult to measure on an incinerator, this study used computational fluid dynamics (CFD) to determine numerical solutions. The effects of pressure drop and superficial velocity on a bubbling fluidized bed incinerator (BFBI) were evaluated. Analytical results indicated that simulation models were able to effectively predict the relationship between superficial velocity and pressure drop over bed height in the BFBI. Second, the models in BFBI were simplified to simulate scale-up beds without excessive computation time. Moreover, simulation and experimental results showed that minimum fluidization velocity of the BFBI must be controlled in at 0.188-3.684 m/s and pressure drop was mainly caused by bed particles.

  15. Convective heat transfer and pressure drop of aqua based TiO2 nanofluids at different diameters of nanoparticles: Data analysis and modeling with artificial neural network

    NASA Astrophysics Data System (ADS)

    Hemmat Esfe, Mohammad; Nadooshan, Afshin Ahmadi; Arshi, Ali; Alirezaie, Ali

    2018-03-01

    In this study, experimental data related to the Nusselt number and pressure drop of aqueous nanofluids of Titania is modeled and estimated by using ANN with 2 hidden layers and 8 neurons in each layer. Also in this study the effect of various effective variables in the Nusselt number and pressure drop is surveyed. This study indicated that the neural network modeling has been able to model experimental data with great accuracy. The modeling regression coefficient for the data of Nusselt number and relative pressure drop is 99.94% and 99.97% respectively. Besides, it represented that the increment of the Reynolds number and concentration made the increment of Nusselt number and pressure drop of aqueous nanofluid.

  16. Subchronic JP-8 Jet Fuel Exposure Enhances Vulnerability to Noise-Induced Hearing Loss in Rats

    DTIC Science & Technology

    2012-01-01

    square inch (psi) pressure was attached to the side arm of the Sonomist. At this pressure the spray nozzle developed an air flow of approximately 20...L/min (lpm) through the nebulizer. This air flow coupled with the nebulizer nozzle design created an ultrasonic whistle that aerosolized the droplets...pipe contained the spray pattern. The pipe was reduced in size to accept an orifice plate, which was used to measure flow rate by the pressure drop

  17. Effect of External Pressure Drop on Loop Heat Pipe Operating Temperature

    NASA Technical Reports Server (NTRS)

    Jentung, Ku; Ottenstein, Laura; Rogers, Paul; Cheung, Kwok; Obenschain, Arthur F. (Technical Monitor)

    2002-01-01

    This paper discusses the effect of the pressure drop on the operating temperature in a loop heat pipe (LHP). Because the evaporator and the compensation chamber (CC) both contain two-phase fluid, a thermodynamic constraint exists between the temperature difference and the pressure drop for these two components. As the pressure drop increases, so will the temperature difference. The temperature difference in turn causes an increase of the heat leak from the evaporator to the CC, resulting in a higher CC temperature. Furthermore, the heat leak strongly depends on the vapor void fraction inside the evaporator core. Tests were conducted by installing a valve on the vapor line so as to vary the pressure drop, and by charging the LHP with various amounts of fluid. Test results verify that the LHP operating temperature increases with an increasing differential pressure, and the temperature increase is a strong function of the fluid inventory in the loop.

  18. CPV cells cooling system based on submerged jet impingement: CFD modeling and experimental validation

    NASA Astrophysics Data System (ADS)

    Montorfano, Davide; Gaetano, Antonio; Barbato, Maurizio C.; Ambrosetti, Gianluca; Pedretti, Andrea

    2014-09-01

    Concentrating photovoltaic (CPV) cells offer higher efficiencies with regard to the PV ones and allow to strongly reduce the overall solar cell area. However, to operate correctly and exploit their advantages, their temperature has to be kept low and as uniform as possible and the cooling circuit pressure drops need to be limited. In this work an impingement water jet cooling system specifically designed for an industrial HCPV receiver is studied. Through the literature and by means of accurate computational fluid dynamics (CFD) simulations, the nozzle to plate distance, the number of jets and the nozzle pitch, i.e. the distance between adjacent jets, were optimized. Afterwards, extensive experimental tests were performed to validate pressure drops and cooling power simulation results.

  19. Air Entrapment for Liquid Drops Impacting a Solid Substrate

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Tan, Peng; Xu, Lei

    2012-11-01

    Using high-speed photography coupled with optical interference, we experimentally study the air entrapment during a liquid drop impacting a solid substrate. We observe the formation of a compressed air film before the liquid touches the substrate, with internal pressure considerably higher than the atmospheric value. The degree of compression highly depends on the impact velocity, as explained by balancing the liquid deceleration with the large pressure of compressed air. After contact, the air film expands vertically at the edge, reducing its pressure within a few tens of microseconds and producing a thick rim on the perimeter. This thick-rimmed air film subsequently contracts into an air bubble, governed by the complex interaction between surface tension, inertia and viscous drag. Such a process is universally observed for impacts above a few centimeters high. Hong Kong GRF grant CUHK404211 and direct grant 2060418.

  20. The Influence of Scleral Flap Thickness, Shape, and Sutures on Intraocular Pressure (IOP) and Aqueous Humor Flow Direction in a Trabeculectomy Model.

    PubMed

    Samsudin, Amir; Eames, Ian; Brocchini, Steve; Khaw, Peng Tee

    2016-07-01

    Intraocular pressure and aqueous humor flow direction determined by the scleral flap immediately after trabeculectomy are critical determinants of the surgical outcome. We used a large-scale model to objectively measure the influence of flap thickness and shape, and suture number and position on pressure difference across the flap and flow of fluid underneath it. The model exploits the principle of dynamic and geometric similarity, so while dimensions were up to 30× greater than actual, the flow had similar properties. Scleral flaps were represented by transparent 0.8- and 1.6-mm-thick silicone sheets on an acrylic plate. Dyed 98% glycerin, representing the aqueous humor was pumped between the sheet and plate, and the equilibrium pressure measured with a pressure transducer. Image analysis based on the principle of dye dilution was performed using MATLAB software. The pressure drop across the flap was larger with thinner flaps, due to reduced rigidity and resistance. Doubling the surface area of flaps and reducing the number of sutures from 5 to 3 or 2 also resulted in larger pressure drops. Flow direction was affected mainly by suture number and position, it was less toward the sutures and more toward the nearest free edge of the flap. Posterior flow of aqueous humor was promoted by placing sutures along the sides while leaving the posterior edge free. We demonstrate a new physical model which shows how changes in scleral flap thickness and shape, and suture number and position affect pressure and flow in a trabeculectomy.

  1. Role of regression analysis and variation of rheological data in calculation of pressure drop for sludge pipelines.

    PubMed

    Farno, E; Coventry, K; Slatter, P; Eshtiaghi, N

    2018-06-15

    Sludge pumps in wastewater treatment plants are often oversized due to uncertainty in calculation of pressure drop. This issue costs millions of dollars for industry to purchase and operate the oversized pumps. Besides costs, higher electricity consumption is associated with extra CO 2 emission which creates huge environmental impacts. Calculation of pressure drop via current pipe flow theory requires model estimation of flow curve data which depends on regression analysis and also varies with natural variation of rheological data. This study investigates impact of variation of rheological data and regression analysis on variation of pressure drop calculated via current pipe flow theories. Results compare the variation of calculated pressure drop between different models and regression methods and suggest on the suitability of each method. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Experimental flow studies in glaucoma drainage device development.

    PubMed

    2001-10-01

    (I) To examine whether small holes produced by 248 nm excimer laser ablation in a polymer substrate could consistently produce a pressure drop in the desired target range (5-15 mm Hg) at physiological aqueous flow rates for use as an internal flow restrictor in a glaucoma drainage device, and (ii) to investigate whether external leakage could be reduced in comparison with conventional tube and plate glaucoma drainage devices by redesigning the exterior cross sectional shape of the portion contained within the sclerocorneal tunnel. Single holes with target diameters of 10 microm, 15 microm, 20 microm, and 25 microm were drilled using a 248 nm excimer laser in sample discs (n=6 at each diameter) punched from a 75 microm thick polyimide sheet. Sample discs were tested in a flow rig designed to measure the pressure drop across the discs. Using filtered, degassed water at a flow rate of 1.4 microl/min repeated flow measurements were taken (n=6) for each disc. After flow testing, all discs were imaged using a scanning electron microscope and the dimensions of each hole were derived using image analysis software. In the external leakage study, corneoscleral buttons (n=13) were prepared from cadaver pig eyes and mounted on an artificial anterior chamber infused with Tyrode solution. After the pressure had stabilised, standard occluded silicone tube implants were inserted through 23 gauge needle stab incisions at the limbus. These were compared against prototype PMMA implants with a novel shape profile inserted through 1.15 mm width microvitreoretinal (MVR) stab incisions at the limbus. The infusion rate was maintained and a second pressure measurement was taken when the pressure had stabilised. The difference between the first and second pressure measurement was then compared, as an index of external leakage. Ablated tubes were found to have a near perfect circular outline on both the entry and exit side. The observed pressure drops across the ablated sample discs at each target diameter were as follows: 10 microm, mean 25.66 (SD 4.9) mm Hg; 15 microm, 6.7 (1.15); 20 microm, 1.66 (1.07); and 25 microm, <0.1 mm Hg. A strong correlation was observed between observed pressure drops and those predicted by Poiseuille's formula (R(2) =0.996). Target ablations of 15 microm diameter produced tubes that consistently achieved a pressure drop within the desired range (5-15 mm Hg). In the external leakage study, preinsertion pressures (mm Hg; mean (SD)) were 19.00 (4.3) (conventional method) and 20.00 (3.9) (new technique with PMMA prototypes). Post-insertion pressures were significantly reduced (10.40 (7.7); p<0.01) for the conventional technique and were essentially unchanged for the new technique (18.80 (4.9); p>0.1). It was shown that it is possible, in principle, to control the dimensions of a manufactured tubular lumen in a glaucoma drainage device accurately enough to provide consistent protection from hypotony in the early period after glaucoma filtration surgery. By redesigning the external profile of glaucoma drainage device and incision technique, it was also shown that it is possible to eliminate uncontrolled external leakage.

  3. Flow rate-pressure drop relation for deformable shallow microfluidic channels

    NASA Astrophysics Data System (ADS)

    Christov, Ivan C.; Cognet, Vincent; Shidhore, Tanmay C.; Stone, Howard A.

    2018-04-01

    Laminar flow in devices fabricated from soft materials causes deformation of the passage geometry, which affects the flow rate--pressure drop relation. For a given pressure drop, in channels with narrow rectangular cross-section, the flow rate varies as the cube of the channel height, so deformation can produce significant quantitative effects, including nonlinear dependence on the pressure drop [{Gervais, T., El-Ali, J., G\\"unther, A. \\& Jensen, K.\\ F.}\\ 2006 Flow-induced deformation of shallow microfluidic channels.\\ \\textit{Lab Chip} \\textbf{6}, 500--507]. Gervais et. al. proposed a successful model of the deformation-induced change in the flow rate by heuristically coupling a Hookean elastic response with the lubrication approximation for Stokes flow. However, their model contains a fitting parameter that must be found for each channel shape by performing an experiment. We present a perturbation approach for the flow rate--pressure drop relation in a shallow deformable microchannel using the theory of isotropic quasi-static plate bending and the Stokes equations under a lubrication approximation (specifically, the ratio of the channel's height to its width and of the channel's height to its length are both assumed small). Our result contains no free parameters and confirms Gervais et. al.'s observation that the flow rate is a quartic polynomial of the pressure drop. The derived flow rate--pressure drop relation compares favorably with experimental measurements.

  4. First steps towards a constructal Microbial Fuel Cell.

    PubMed

    Lepage, Guillaume; Perrier, Gérard; Ramousse, Julien; Merlin, Gérard

    2014-06-01

    In order to reach real operating conditions with consequent organic charge flow, a multi-channel reactor for Microbial Fuel Cells is designed. The feed-through double chamber reactor is a two-dimensional system with four parallel channels and Reticulated Vitreous Carbon as electrodes. Based on thermodynamical calculations, the constructal-inspired distributor is optimized with the aim to reduce entropy generation along the distributing path. In the case of negligible singular pressure drops, the Hess-Murray law links the lengths and the hydraulic diameters of the successive reducing ducts leading to one given working channel. The determination of generated entropy in the channels of our constructal MFC is based on the global hydraulic resistance caused by both regular and singular pressure drops. Polarization, power and Electrochemical Impedance Spectroscopy show the robustness and the efficiency of the cell, and therefore the potential of the constructal approach. Routes towards improvements are suggested in terms of design evolutions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Pressure driven flow of superfluid 4He through a nanopipe

    NASA Astrophysics Data System (ADS)

    Botimer, Jeffrey; Taborek, Peter

    2016-09-01

    Pressure driven flow of superfluid helium through single high-aspect-ratio glass nanopipes into a vacuum has been studied for a wide range of pressure drop (0-30 bars), reservoir temperature (0.8-2.5 K), pipe lengths (1-30 mm), and pipe radii (131 and 230 nm). As a function of pressure drop we observe two distinct flow regimes above and below a critical pressure drop Pc. For P

  6. A systematic search of sudden pressure drops on Gale crater during two Martian years derived from MSL/REMS data

    NASA Astrophysics Data System (ADS)

    Ordonez-Etxeberria, Iñaki; Hueso, Ricardo; Sánchez-Lavega, Agustín

    2018-01-01

    The Mars Science Laboratory (MSL) rover carries a suite of meteorological detectors that constitute the Rover Environmental Monitoring Station (REMS) instrument. REMS investigates the meteorological conditions at Gale crater by obtaining high-frequency data of pressure, air and ground temperature, relative humidity, UV flux at the surface and wind intensity and direction with some limitations in the wind data. We have run a search of atmospheric pressure drops of short duration (< 25 s) and we present a statistical study of the frequency of these events in the REMS pressure data during its first 1417 sols (more than two Martian years). The identified daytime pressure drops could be caused by the close passages of warm vortices and dust devils. Previous systematic searches of warm vortices from REMS pressure data (Kahanpää et al., 2016; Steakley and Murphy, 2016) cover about one Martian year. We show that sudden pressure drops are twice more abundant in the second Martian year [sols 671-1339] than in the first one analyzed in previous works. The higher number of detections could be linked to a combination of different topography, higher altitudes (120 m above the landing site) and true inter-annual meteorological variability. We found 1129 events with a pressure drop larger than 0.5 Pa. Of these, 635 occurred during the local daytime (∼56%) and 494 were nocturnal. The most intense pressure drop (4.2 Pa) occurred at daytime on sol 1417 (areocentric solar longitude Ls = 195°) and was accompanied by a simultaneous decrease in the UV signal of 7.1%, pointing to a true dust devil. We also discuss similar but less intense simultaneous pressure and UV radiation drops that constitute 0.7% of all daytime events. Most of the intense daytime pressure drops with variations larger than 1.0 Pa occur when the difference between air and ground temperature is larger than 15 K. Statistically, the frequency of daytime pressure drops peaks close to noon (12:00-13:00 Local True Solar Time or LTST) with more events in spring and summer (Ls from 180° to 360°). The nocturnal sudden pressure drops concentrate in the 20:00-23:00 LTST time interval and they only occur in spring and summer. We interpret these nocturnal events as a consequence of local mechanically forced turbulence. This interpretation is consistent with published results from simulations with the MRAMS model (Rafkin et al., 2016) that predict a competition between local orographic circulation and global Hadley cell circulation at Gale crater at summer night-time that can enhance forced turbulence at the surface. Bursts of pressure drops appear on particular sols, especially at night-time. Most of the vortex bursts occurred when MSL was in the region called Pahrump Hills characterized by a complex terrain. A comparison of the daytime pressure drops from REMS data with published results from the Pathfinder and Phoenix missions shows that the frequency of daytime events at Gale crater in spring and summer is similar to the one previously found at other locations. Finally, we present possible correlations between MSL activity and some daytime pressure drops. If such an instrumental effect is present in the REMS data its impact in this analysis is small and would only affect about 7% of our detections.

  7. 46 CFR 39.30-1 - Operational requirements-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... oxygen content of each area of that tank formed by each partial bulkhead must be measured at a point one... the requirements of this part. (b) The pressure drop through the vapor collection system from the most... rate versus the pressure drop. (c) If a vessel carries vapor hoses, the pressure drop through the hoses...

  8. A novel generation of 3D SAR-based passive micromixer: efficient mixing and low pressure drop at a low Reynolds number

    NASA Astrophysics Data System (ADS)

    Viktorov, Vladimir; Nimafar, Mohammad

    2013-05-01

    This study introduces a novel generation of 3D splitting and recombination (SAR) passive micromixer with microstructures placed on the top and bottom floors of microchannels called a ‘chain mixer’. Both experimental verification and numerical analysis of the flow structure of this type of passive micromixer have been performed to evaluate the mixing performance and pressure drop of the microchannel, respectively. We propose here two types of chain mixer—chain 1 and chain 2—and compare their mixing performance and pressure drop with other micromixers, T-, o- and tear-drop micromixers. Experimental tests carried out in the laminar flow regime with a low Reynolds number range, 0.083 ≤ Re ≤ 4.166, and image-based techniques are used to evaluate the mixing efficiency. Also, the computational fluid dynamics code, ANSYS FLUENT-13.0 has been used to analyze the flow and pressure drop in the microchannel. Experimental results show that the chain and tear-drop mixer's efficiency is very high because of the SAR process: specifically, an efficiency of up to 98% can be achieved at the tested Reynolds number. The results also show that chain mixers have a lower required pressure drop in comparison with a tear-drop micromixer.

  9. Sound field inside acoustically levitated spherical drop

    NASA Astrophysics Data System (ADS)

    Xie, W. J.; Wei, B.

    2007-05-01

    The sound field inside an acoustically levitated small spherical water drop (radius of 1mm) is studied under different incident sound pressures (amplitude p0=2735-5643Pa). The transmitted pressure ptr in the drop shows a plane standing wave, which varies mainly in the vertical direction, and distributes almost uniformly in the horizontal direction. The maximum of ptr is always located at the lowermost point of the levitated drop. Whereas the secondary maximum appears at the uppermost point if the incident pressure amplitude p0 is higher than an intermediate value (3044Pa), in which there exists a pressure nodal surface in the drop interior. The value of the maximum ptr lies in a narrow range of 2489-3173Pa, which has a lower limit of 2489Pa when p0=3044Pa. The secondary maximum of ptr is rather small and only remarkable at high incident pressures.

  10. Pressure drop in tubing in aircraft instrument installations

    NASA Technical Reports Server (NTRS)

    Wildhack, W A

    1937-01-01

    The theoretical basis of calculation of pressure drop in tubing is reviewed briefly. The effect of pressure drop in connecting tubing upon the operation and indication of aircraft instruments is discussed. Approximate equations are developed, and charts and tables based upon them are presented for use in designing installations of altimeters, air-speed indicators, rate-of-climb indicators, and air-driven gyroscopic instruments.

  11. Pneumatic Conveying of Seed Cotton: Minimum Velocity and Pressure Drop

    USDA-ARS?s Scientific Manuscript database

    Electricity is major cost for cotton gins, representing approximately 20% of the industry’s variable costs. Fans used for pneumatic conveying consume the majority of electricity at cotton gins. Development of control systems to reduce the air velocity used for conveying seed cotton could significant...

  12. Pneumatic Conveying of Seed Cotton: Minimum Velocity and Pressure Drop

    USDA-ARS?s Scientific Manuscript database

    Electricity is a major cost for cotton gins, representing approximately 20% of variable costs. Fans used for pneumatic conveying consume the majority of electricity at cotton gins. Development of control systems to reduce the air velocity used for conveying seed cotton could significantly decrease e...

  13. Method and means for producing solid evacuated microspheres of hydrogen

    DOEpatents

    Turnbull, Robert J.; Foster, Christopher A.; Hendricks, Charles D.

    1976-01-01

    A method is provided for producing solid, evacuated microspheres comprised of hydrogen. The spheres are produced by forming a jet of liquid hydrogen and exciting mechanical waves on the jet of appropriate frequency so that the jet breaks up into drops with a bubble formed in each drop by cavitation. The drops are exposed to a pressure less than the vapor pressure of the liquid hydrogen so that the bubble which is formed within each drop expands. The drops which contain bubbles are exposed to an environment having a pressure just below the triple point of liquid hydrogen and they thereby freeze giving solid, evacuated spheres of hydrogen.

  14. Solid evacuated microspheres of hydrogen

    DOEpatents

    Turnbull, Robert J.; Foster, Christopher A.; Hendricks, Charles D.

    1982-01-01

    A method is provided for producing solid, evacuated microspheres comprised of hydrogen. The spheres are produced by forming a jet of liquid hydrogen and exciting mechanical waves on the jet of appropriate frequency so that the jet breaks up into drops with a bubble formed in each drop by cavitation. The drops are exposed to a pressure less than the vapor pressure of the liquid hydrogen so that the bubble which is formed within each drop expands. The drops which contain bubbles are exposed to an environment having a pressure just below the triple point of liquid hydrogen and they thereby freeze giving solid, evacuated spheres of hydrogen.

  15. Development of Radio Frequency Diesel Particulate Filter Sensor and Controls for Advanced Low Pressure Drop Systems to Reduce Engine Fuel Consumption (06B)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sappok, Alexander; Ragaller, Paul; Bromberg, Leslie

    This project developed a radio frequencybased sensor for accurate measurement of diesel particulate filter (DPF) loading with advanced low pressuredrop aftertreatment systems. The resulting technology demonstrated engine efficiency improvements through optimization of the combined engineaftertreatment system while reducing emissions, system cost, and complexity to meet the DOE program objectives.

  16. Heat loss and drag of spherical drop tube samples

    NASA Technical Reports Server (NTRS)

    Wallace, D. B.

    1982-01-01

    Analysis techniques for three aspects of the performance of the NASA/MSFC 32 meter drop tube are considered. Heat loss through the support wire in a pendant drop sample, temperature history of a drop falling through the drop tube when the tube is filled with helium gas at various pressures, and drag and resulting g-levels experienced by a drop falling through the tube when the tube is filled with helium gas at various pressures are addressed. The developed methods apply to systems with sufficiently small Knudsen numbers for which continuum theory may be applied. Sample results are presented, using niobium drops, to indicate the magnitudes of the effects. Helium gas at one atmosphere pressure can approximately double the amount of possible undercooling but it results in an apparent gravity levels of up to 0.1 g.

  17. Air filtration in the free molecular flow regime: a review of high-efficiency particulate air filters based on carbon nanotubes.

    PubMed

    Li, Peng; Wang, Chunya; Zhang, Yingying; Wei, Fei

    2014-11-01

    Air filtration in the free molecular flow (FMF) regime is important and challenging because a higher filtration efficiency and lower pressure drop are obtained when the fiber diameter is smaller than the gas mean free path in the FMF regime. In previous studies, FMF conditions have been obtained by increasing the gas mean free path through reducing the pressure and increasing the temperature. In the case of carbon nanotubes (CNTs) with nanoscale diameters, it is possible to filtrate in the FMF regime under normal conditions. This paper reviews recent progress in theoretical and experimental studies of air filtration in the FMF regime. Typical structure models of high-efficiency particulate (HEPA) air filters based on CNTs are introduced. The pressure drop in air filters operated in the FMF regime is less than that predicted by the conventional air filtration theory. The thinnest HEPA filters fabricated from single-walled CNT films have an extremely low pressure drop. CNT air filters with a gradient nanostructure are shown to give a much better filtration performance in dynamic filtration. CNT air filters with a hierarchical structure and an agglomerated CNT fluidized bed air filter are also introduced. Finally, the challenges and opportunities for the application of CNTs in air filtration are discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Sustained reduction of intraocular pressure by supraciliary delivery of brimonidine-loaded poly(lactic acid) microspheres for the treatment of glaucoma

    PubMed Central

    Chiang, B.; Kim, Y.C.; Doty, A.C.; Grossniklaus, H.E.; Schwendeman, S.P.; Prausnitz, M.R.

    2016-01-01

    Although effective drugs that lower intraocular pressure (IOP) in the management of glaucoma exist, their efficacy is limited by poor patient adherence to the prescribed eye drop regimen. To replace the need for eye drops, in this study we tested the hypothesis that IOP can be reduced for one month after a single targeted injection using a microneedle for administration of a glaucoma medication (i.e., brimonidine) formulated for sustained release in the supraciliary space of the eye adjacent to the drug’s site of action at the ciliary body. To test this hypothesis, brimonidine-loaded microspheres were formulated using poly(lactic acid) (PLA) to release brimonidine at a constant rate for 35 days and microneedles were designed to penetrate through the sclera, without penetrating into the choroid/retina, in order to target injection into the supraciliary space. A single administration of these microspheres using a hollow microneedle was performed in the eye of New Zealand White rabbits and was found to reduce IOP initially by 6 mm Hg and then by progressively smaller amounts for more than one month. All administrations were well tolerated without significant adverse events, although histological examination showed a foreign-body reaction to the microspheres. This study demonstrates, for the first time, that the highly-targeted delivery of brimonidine-loaded microspheres into the supraciliary space using a microneedle is able to reduce IOP for one month as an alternative to daily eye drops. PMID:26930266

  19. Combining spray nozzle simulators with meshes: characterization of rainfall intensity and drop properties

    NASA Astrophysics Data System (ADS)

    Carvalho, Sílvia C. P.; de Lima, João L. M. P.; de Lima, M. Isabel P.

    2013-04-01

    Rainfall simulators can be a powerful tool to increase our understanding of hydrological and geomorphological processes. Nevertheless, rainfall simulators' design and operation might be rather demanding, for achieving specific rainfall intensity distributions and drop characteristics. The pressurized simulators have some advantages over the non-pressurized simulators: drops do not rely on gravity to reach terminal velocity, but are sprayed out under pressure; pressurized simulators also yield a broad range of drop sizes in comparison with drop-formers simulators. The main purpose of this study was to explore in the laboratory the potential of combining spray nozzle simulators with meshes in order to change rainfall characteristics (rainfall intensity and diameters and fall speed of drops). Different types of spray nozzles were tested, such as single full-cone and multiple full-cone nozzles. The impact of the meshes on the simulated rain was studied by testing different materials (i.e. plastic and steel meshes), square apertures and wire thicknesses, and different vertical distances between the nozzle and the meshes underneath. The diameter and fall speed of the rain drops were measured using a Laser Precipitation Monitor (Thies Clima). The rainfall intensity range and coefficients of uniformity of the sprays and the drop size distribution, fall speed and kinetic energy were analysed. Results show that when meshes intercept drop trajectories the spatial distribution of rainfall intensity and the drop size distribution are affected. As the spray nozzles generate typically small drop sizes and narrow drop size distributions, meshes can be used to promote the formation of bigger drops and random their landing positions.

  20. Decrease in corneal damage due to benzalkonium chloride by the addition of sericin into timolol maleate eye drops.

    PubMed

    Nagai, Noriaki; Ito, Yoshimasa; Okamoto, Norio; Shimomura, Yoshikazu

    2013-01-01

    We investigated the protective effects of sericin on corneal damage due to benzalkonium chloride (BAC) used as a preservative in commercially available timolol maleate eye drops using rat debrided corneal epithelium and a human cornea epithelial cell line (HCE-T). Corneal wounds were monitored using a fundus camera TRC-50X equipped with a digital camera; eye drops were instilled into the rat eyes five times a day after corneal epithelial abrasion. The viability of HCE-T cells was calculated by TetraColor One; and Escherichia coli (ATCC 8739) were used to measure antimicrobial activity. The reducing effects on transcorneal penetration and intraocular pressure (IOP) of the eye drops were determined using rabbits. The corneal wound healing rate and rate constants (kH) as well as cell viability were higher following treatment with 0.005% BAC solution containing 0.1% sericin than in the case of treatment with BAC solution alone; the antimicrobial activity was approximately the same for BAC solutions with and without sericin. In addition, the kH for rat eyes instilled with commercially available timolol maleate eye drops containing 0.1% sericin was significantly higher than that of eyes instilled with timolol maleate eye drops without sericin, and the addition of sericin did not affect the corneal penetration or IOP reducing effect of commercially available timolol maleate eye drops. A preservative system comprising BAC and sericin may provide effective therapy for glaucoma patients requiring long-term anti-glaucoma agents.

  1. System for Manipulating Drops and Bubbles Using Acoustic Radiation Pressure

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C. (Inventor)

    1999-01-01

    The manipulation and control of drops of liquid and gas bubbles is achieved using high intensity acoustics in the form of and/or acoustic radiation pressure and acoustic streaming. generated by a controlled wave emission from a transducer. Acoustic radiation pressure is used to deploy or dispense drops into a liquid or a gas or bubbles into a liquid at zero or near zero velocity from the discharge end of a needle such as a syringe needle. Acoustic streaming is useful in manipulating the drop or bubble during or after deployment. Deployment and discharge is achieved by focusing the acoustic radiation pressure on the discharge end of the needle, and passing the acoustic waves through the fluid in the needle. through the needle will itself, or coaxially through the fluid medium surrounding the needle. Alternatively, the acoustic waves can be counter-deployed by focusing on the discharge end of the needle from a transducer axially aligned with the needle, but at a position opposite the needle, to prevent premature deployment of the drop or bubble. The acoustic radiation pressure can also be used for detecting the presence or absence of a drop or a bubble at the tip of a needle or for sensing various physical characteristics of the drop or bubble such as size or density.

  2. Passively actuated valve

    DOEpatents

    Modro, S. Michael; Ougouag, Abderrafi M.

    2005-09-20

    A passively actuated valve for isolating a high pressure zone from a low pressure zone and discontinuing the isolation when the pressure in the high pressure zone drops below a preset threshold. If the pressure in the high pressure zone drops below the preset threshold, the valve opens and allows flow from the high pressure zone to the low pressure zone. The valve remains open allowing pressure equalization and back-flow should a pressure inversion between the two pressure zone occur.

  3. Experimental investigation into vortex structure and pressure drop across microcavities in 3D integrated electronics

    NASA Astrophysics Data System (ADS)

    Renfer, Adrian; Tiwari, Manish K.; Brunschwiler, Thomas; Michel, Bruno; Poulikakos, Dimos

    2011-09-01

    Hydrodynamics in microcavities with cylindrical micropin fin arrays simulating a single layer of a water-cooled electronic chip stack is investigated experimentally. Both inline and staggered pin arrangements are investigated using pressure drop and microparticle image velocimetry (μPIV) measurements. The pressure drop across the cavity shows a flow transition at pin diameter-based Reynolds numbers ( Re d ) ~200. Instantaneous μPIV, performed using a pH-controlled high seeding density of tracer microspheres, helps visualize vortex structure unreported till date in microscale geometries. The post-transition flow field shows vortex shedding and flow impingement onto the pins explaining the pressure drop increase. The flow fluctuations start at the chip outlet and shift upstream with increasing Re d . No fluctuations are observed for a cavity with pin height-to-diameter ratio h/ d = 1 up to Re d ~330; however, its pressure drop was higher than for a cavity with h/d = 2 due to pronounced influence of cavity walls.

  4. Beyond Bernoulli

    PubMed Central

    Donati, Fabrizio; Myerson, Saul; Bissell, Malenka M.; Smith, Nicolas P.; Neubauer, Stefan; Monaghan, Mark J.; Nordsletten, David A.

    2017-01-01

    Background— Transvalvular peak pressure drops are routinely assessed noninvasively by echocardiography using the Bernoulli principle. However, the Bernoulli principle relies on several approximations that may not be appropriate, including that the majority of the pressure drop is because of the spatial acceleration of the blood flow, and the ejection jet is a single streamline (single peak velocity value). Methods and Results— We assessed the accuracy of the Bernoulli principle to estimate the peak pressure drop at the aortic valve using 3-dimensional cardiovascular magnetic resonance flow data in 32 subjects. Reference pressure drops were computed from the flow field, accounting for the principles of physics (ie, the Navier–Stokes equations). Analysis of the pressure components confirmed that the spatial acceleration of the blood jet through the valve is most significant (accounting for 99% of the total drop in stenotic subjects). However, the Bernoulli formulation demonstrated a consistent overestimation of the transvalvular pressure (average of 54%, range 5%–136%) resulting from the use of a single peak velocity value, which neglects the velocity distribution across the aortic valve plane. This assumption was a source of uncontrolled variability. Conclusions— The application of the Bernoulli formulation results in a clinically significant overestimation of peak pressure drops because of approximation of blood flow as a single streamline. A corrected formulation that accounts for the cross-sectional profile of the blood flow is proposed and adapted to both cardiovascular magnetic resonance and echocardiographic data. PMID:28093412

  5. Biomass plug development and propagation in porous media.

    PubMed

    Stewart, T L; Fogler, H S

    2001-02-05

    Exopolymer-producing bacteria can be used to modify soil profiles for enhanced oil recovery or bioremediation. Understanding the mechanisms associated with biomass plug development and propagation is needed for successful application of this technology. These mechanisms were determined from packed-bed and micromodel experiments that simulate plugging in porous media. Leuconostoc mesenteroides was used, because production of dextran, a water-insoluble exopolymer, can be controlled by using different carbon sources. As dextran was produced, the pressure drop across the porous media increased and began to oscillate. Three pressure phases were identified under exopolymer-producing conditions: the exopolymer-induction phase, the plugging phase, and the plug-propagation phase. The exopolymer-induction phase extended from the time that exopolymer-producing conditions were induced until there was a measurable increase in pressure drop across the porous media. The plugging phase extended from the first increase in pressure drop until a maximum pressure drop was reached. Changes in pressure drop in these two phases were directly related to biomass distribution. Specifically, flow channels within the porous media filled with biomass creating a plugged region where convective flow occurred only in water channels within the biofilm. These water channels were more restrictive to flow causing the pressure drop to increase. At a maximum pressure drop across the porous media, the biomass yielded much like a Bingham plastic, and a flow channel was formed. This behavior marked the onset of the plug-propagation phase which was characterized by sequential development and breakthrough of biomass plugs. This development and breakthrough propagated the biomass plug in the direction of nutrient flow. The dominant mechanism associated with all three phases of plugging in porous media was exopolymer production; yield stress is an additional mechanism in the plug-propagation phase. Copyright 2001 John Wiley & Sons, Inc.

  6. Estimation of methacrylate monolith binding capacity from pressure drop data.

    PubMed

    Podgornik, Aleš; Smrekar, Vida; Krajnc, Peter; Strancar, Aleš

    2013-01-11

    Convective chromatographic media comprising of membranes and monoliths represent an important group of chromatographic supports due to their flow-unaffected chromatographic properties and consequently fast separation and purification even of large biological macromolecules. Consisting of a single piece of material, common characterization procedures based on analysis of a small sample assuming to be representative for the entire batch, cannot be applied. Because of that, non-invasive characterization methods are preferred. In this work pressure drop was investigated for an estimation of dynamic binding capacity (DBC) of proteins and plasmid DNA for monoliths with different pore sizes. It was demonstrated that methacrylate monolith surface area is reciprocally proportional to pore diameter and that pressure drop on monolith is reciprocally proportional to square pore size demonstrating that methacrylate monolith microstructure is preserved by changing pore size. Based on these facts mathematical formalism has been derived predicting that DBC is in linear correlation with the square root of pressure drop. This was experimentally confirmed for ion-exchange and hydrophobic interactions for proteins and plasmid DNA. Furthermore, pressure drop was also applied for an estimation of DBC in grafted layers of different thicknesses as estimated from the pressure drop data. It was demonstrated that the capacity is proportional to the estimated grafted layer thickness. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Triple-layer configuration for stable high-speed lubricated pipeline transport

    NASA Astrophysics Data System (ADS)

    Sarmadi, Parisa; Hormozi, Sarah; Frigaard, Ian A.

    2017-04-01

    Lubricated transport of heavy viscous oils is a popular technology in the pipelining industry, where pumping pressures can be reduced significantly by concentrating the strain rate in a lubricating layer. However, the interface between the lubricating layer and heavy oil is vulnerable to any perturbations in the system as well as transients due to start up, shut down, temperature change, etc. We present a method in which we purposefully position an unyielded skin of a viscoplastic fluid between the oil and the lubricating fluid. The objective is to reduce the frictional pressure gradient while avoiding interfacial instability. We study this methodology in both concentric and eccentric configurations and show its feasibility for a wide range of geometric and flow parameters found in oil pipelining. The eccentric configuration benefits the transport process via generating lift forces to balance the density differences among the layers. We use classical lubrication theory to estimate the leading order pressure distribution in the lubricating layer and calculate the net force on the skin. We explore the effects of skin shape, viscosity ratio, and geometry on the pressure drop, the flow rates of skin and lubricant fluids, and the net force on the skin. We show that the viscosity ratio and the radius of the core fluid are the main parameters that control the pressure drop and consumptions of outer fluids, respectively. The shape of the skin and the eccentricity mainly affect the lubrication pressure. These predictions are essential in designing a stable transport process. Finally, we estimate the yield stress required in order that the skin remain unyielded and ensure interfacial stability.

  8. Comparison Between Bandage Contact Lenses and Pressure Patching on the Erosion Area and Pain Scale in Patients With Corneal Erosion.

    PubMed

    Triharpini, Ni Nyoman; Gede Jayanegara, I Wayan; Handayani, Ariesanti Tri; Widiana, I Gde Raka

    2015-01-01

    Corneal erosion is common in eye emergency cases. Extensive corneal erosions result in severe pain and prolonged healing time. This study aimed to compare bandage contact lenses with pressure patching in terms of reducing the size of the erosion area, pain scale in patients with corneal erosion and its complications. A randomized open-label clinical trial was conducted. Subjects with mechanical corneal erosion were selected to use either bandage contact lenses or pressure patching. All subjects received antibiotic eye drops and 0.5% tropicamide eye drops. Evaluations were done 24 and 72 hours after treatment. The size of the corneal erosion area, pain scale, and complications were assessed. A total of 32 eyes (16 eyes in each group) were studied. The change in the size of the corneal erosion area was greater in the bandage contact lens group than in the pressure patching group, although there was no significant difference. In the bandage contact lens group, 56.25% of the eyes were healed at 24 hours and 43.75% were healed at 72 hours. In the pressure patching group, 62.50% were healed at 24 hours and 12.50% were healed at 72 hours. The change in pain scale was significantly greater in the bandage contact lens group than in the pressure patching group. No complications were found in both groups. Bandage contact lenses are an effective alternative to treating mechanical corneal erosion because of their effect in reducing pain without causing any complications.

  9. Resonances, radiation pressure and optical scattering phenomena of drops and bubbles

    NASA Technical Reports Server (NTRS)

    Marston, P. L.; Goosby, S. G.; Langley, D. S.; Loporto-Arione, S. E.

    1982-01-01

    Acoustic levitation and the response of fluid spheres to spherical harmonic projections of the radiation pressure are described. Simplified discussions of the projections are given. A relationship between the tangential radiation stress and the Konstantinov effect is introduced and fundamental streaming patterns for drops are predicted. Experiments on the forced shape oscillation of drops are described and photographs of drop fission are displayed. Photographs of critical angle and glory scattering by bubbles and rainbow scattering by drops are displayed.

  10. Two-phase pressure drop in a helical coil flow boiling system

    NASA Astrophysics Data System (ADS)

    Hardik, B. K.; Prabhu, S. V.

    2018-05-01

    The objective of the present work is to study the two-phase pressure drop in helical coils. Literature on the two-phase pressure drop in a helical coil suggests the complexity in flow boiling inside a helical coil due to secondary flow. Most of correlations reported in the literature on the two-phase pressure drop in a helical coil are limited to a specific operating range. No general correlation is available for a helical coil which is applicable for all fluids. In the present study, an experimental databank collected containing a total of 832 data points includes the data from the present study and from the literature. The data includes diabatic pressure drop of two fluids namely water and R123. Data covers a range of parameters namely a mass flux of 120-2058 kg/m2 s, a heat flux of 18-2831 kW/m2, an exit quality of 0.03-1, a density ratio of 32-1404 and a coil to tube diameter ratio of 14-58. The databank is compared with eighteen empirical correlations which include well referred correlations of straight tubes and the available correlations of helical coils. The straight tube correlations are not working well for the present data set. The helical coil correlations work reasonably well for the present databank. A correlation is suggested to predict the two-phase pressure drop in helical coils. The present study suggests that the influence of a helical coil is completely included in the single phase pressure drop correlation for helical coils.

  11. [Pressure-reducing effect of latanoprost 0.005%].

    PubMed

    Albach, C; Wachsmuth, E D; Velte, K; Dekker, P; Robert, Y

    1998-05-01

    Earlier studies in monkeys have shown that latanoprost 0.005% lowers the IOP by improving the uveoscleral Outflow. We wanted to know if this is also the case in the human eye. We used our new aqueous humor outflow test with 2-nitrophenyl-acetate in 9 healthy human volunteers, mean age 32 +/- 8.3 years. They were measured before and 12 h after receiving one drop of latanoprost 0.005% in one eye, randomly chosen. The ocular Photometer was used to quantify the disappearance of the dye out of the anterior chamber. The half-life time of the dye is shortened after latanoprost 0.005%. It is significantly correlated to the pressure lowering effect of latanoprost 0.005% (r2 = 0.5968). The dye-dilution technique proves that latanoprost 0.005% influences the outflow of the human eye. The better the outflow, the greater the pressure drop in the eye. The experiment nicely shows that photometric quantification of 2-nitrophenyl-acetate is a simple, reliable test for the knowledge of the aqueous humor outflow.

  12. A study of nonlinear dynamics of single- and two-phase flow oscillations

    NASA Astrophysics Data System (ADS)

    Mawasha, Phetolo Ruby

    The dynamics of single- and two-phase flows in channels can be contingent on nonlinearities which are not clearly understood. These nonlinearities could be interfacial forces between the flowing fluid and its walls, variations in fluid properties, growth of voids, etc. The understanding of nonlinear dynamics of fluid flow is critical in physical systems which can undergo undesirable system operating scenarios such an oscillatory behavior which may lead to component failure. A nonlinear lumped mathematical model of a surge tank with a constant inlet flow into the tank and an outlet flow through a channel is derived from first principles. The model is used to demonstrate that surge tanks with inlet and outlet flows contribute to oscillatory behavior in laminar, turbulent, single-phase, and two-phase flow systems. Some oscillations are underdamped while others are self-sustaining. The mechanisms that are active in single-phase oscillations with no heating are presented using specific cases of simplified models. Also, it is demonstrated how an external mechanism such as boiling contributes to the oscillations observed in two-phase flow and gives rise to sustained oscillations (or pressure drop oscillations). A description of the pressure drop oscillation mechanism is presented using the steady state pressure drop versus mass flow rate characteristic curve of the heated channel, available steady state pressure drop versus mass flow rate from the surge tank, and the transient pressure drop versus mass flow rate limit cycle. Parametric studies are used to verify the theoretical pressure drop oscillations model using experimental data by Yuncu's (1990). The following contributions are unique: (1) comparisons of nonlinear pressure drop oscillation models with and without the effect of the wall thermal heat capacity and (2) comparisons of linearized pressure drop oscillation models with and without the effect of the wall thermal heat capacity to identify stability boundaries.

  13. Automated single cell sorting and deposition in submicroliter drops

    NASA Astrophysics Data System (ADS)

    Salánki, Rita; Gerecsei, Tamás; Orgovan, Norbert; Sándor, Noémi; Péter, Beatrix; Bajtay, Zsuzsa; Erdei, Anna; Horvath, Robert; Szabó, Bálint

    2014-08-01

    Automated manipulation and sorting of single cells are challenging, when intact cells are needed for further investigations, e.g., RNA or DNA sequencing. We applied a computer controlled micropipette on a microscope admitting 80 PCR (Polymerase Chain Reaction) tubes to be filled with single cells in a cycle. Due to the Laplace pressure, fluid starts to flow out from the micropipette only above a critical pressure preventing the precise control of drop volume in the submicroliter range. We found an anomalous pressure additive to the Laplace pressure that we attribute to the evaporation of the drop. We have overcome the problem of the critical dropping pressure with sequentially operated fast fluidic valves timed with a millisecond precision. Minimum drop volume was 0.4-0.7 μl with a sorting speed of 15-20 s per cell. After picking NE-4C neuroectodermal mouse stem cells and human primary monocytes from a standard plastic Petri dish we could gently deposit single cells inside tiny drops. 94 ± 3% and 54 ± 7% of the deposited drops contained single cells for NE-4C and monocytes, respectively. 7.5 ± 4% of the drops contained multiple cells in case of monocytes. Remaining drops were empty. Number of cells deposited in a drop could be documented by imaging the Petri dish before and after sorting. We tuned the adhesion force of cells to make the manipulation successful without the application of microstructures for trapping cells on the surface. We propose that our straightforward and flexible setup opens an avenue for single cell isolation, critically needed for the rapidly growing field of single cell biology.

  14. On the collapse pressure of armored bubbles and drops.

    PubMed

    Pitois, O; Buisson, M; Chateau, X

    2015-05-01

    Drops and bubbles wrapped in dense monolayers of hydrophobic particles are known to sustain a significant decrease of their internal pressure. Through dedicated experiments we investigate the collapse behavior of such armored water drops as a function of the particle-to-drop size ratio in the range 0.02-0.2. We show that this parameter controls the behavior of the armor during the deflation: at small size ratios the drop shrinkage proceeds through the soft crumpling of the monolayer, at intermediate ratios the drop becomes faceted, and for the largest studied ratios the armor behaves like a granular arch. The results show that each of the three morphological regimes is characterized by an increasing magnitude of the collapse pressure. This increase is qualitatively modeled thanks to a mechanism involving out-of-plane deformations and particle disentanglement in the armor.

  15. Remotely operated high pressure valve protects test personnel

    NASA Technical Reports Server (NTRS)

    Howland, B. T.

    1967-01-01

    High pressure valve used in testing certain spacecraft systems is safely opened and closed by a remotely stationed operator. The valve is self-regulating in that if the incoming pressure drops below a desired value the valve will automatically close, warning the operator that the testing pressure has dropped to an undesired level.

  16. Study of Critical Heat Flux and Two-Phase Pressure Drop Under Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Abdollahian, Davood; Quintal, Joseph; Barez, Fred; Zahm, Jennifer; Lohr, Victor

    1996-01-01

    The design of the two-phase flow systems which are anticipated to be utilized in future spacecraft thermal management systems requires a knowledge of two-phase flow and heat transfer phenomena in reduced gravities. This program was funded by NASA headquarters in response to NRA-91-OSSA-17 and was managed by Lewis Research Center. The main objective of this program was to design and construct a two-phase test loop, and perform a series of normal gravity and aircraft trajectory experiments to study the effect of gravity on the Critical Heat Flux (CHF) and onset of instability. The test loop was packaged on two aircraft racks and was also instrumented to generate data for two-phase pressure drop. The normal gravity tests were performed with vertical up and downflow configurations to bound the effect of gravity on the test parameters. One set of aircraft trajectory tests was performed aboard the NASA DC-9 aircraft. These tests were mainly intended to evaluate the test loop and its operational performance under actual reduced gravity conditions, and to produce preliminary data for the test parameters. The test results were used to demonstrate the applicability of the normal gravity models for prediction of the two-phase friction pressure drop. It was shown that the two-phase friction multipliers for vertical upflow and reduced gravity conditions can be successfully predicted by the appropriate normal gravity models. Limited critical heat flux data showed that the measured CHF under reduced gravities are of the same order of magnitude as the test results with vertical upflow configuration. A simplified correlation was only successful in predicting the measured CHF for low flow rates. Instability tests with vertical upflow showed that flow becomes unstable and critical heat flux occurs at smaller powers when a parallel flow path exists. However, downflow tests and a single reduced gravity instability experiment indicated that the system actually became more stable with a parallel single-phase flow path. Several design modifications have been identified which will improve the system performance for generating reduced gravity data. The modified test loop can provide two-phase flow data for a range of operating conditions and can serve as a test bed for component evaluation.

  17. Free-surface flow of liquid oxygen under non-uniform magnetic field

    NASA Astrophysics Data System (ADS)

    Bao, Shi-Ran; Zhang, Rui-Ping; Wang, Kai; Zhi, Xiao-Qin; Qiu, Li-Min

    2017-01-01

    The paramagnetic property of oxygen makes it possible to control the two-phase flow at cryogenic temperatures by non-uniform magnetic fields. The free-surface flow of vapor-liquid oxygen in a rectangular channel was numerically studied using the two-dimensional phase field method. The effects of magnetic flux density and inlet velocity on the interface deformation, flow pattern and pressure drop were systematically revealed. The liquid level near the high-magnetic channel center was lifted upward by the inhomogeneous magnetic field. The interface height difference increased almost linearly with the magnetic force. For all inlet velocities, pressure drop under 0.25 T was reduced by 7-9% due to the expanded local cross-sectional area, compared to that without magnetic field. This work demonstrates the effectiveness of employing non-uniform magnetic field to control the free-surface flow of liquid oxygen. This non-contact method may be used for promoting the interface renewal, reducing the flow resistance, and improving the flow uniformity in the cryogenic distillation column, which may provide a potential for enhancing the operating efficiency of cryogenic air separation.

  18. Investigation of pressure drop in capillary tube for mixed refrigerant Joule-Thomson cryocooler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ardhapurkar, P. M.; Sridharan, Arunkumar; Atrey, M. D.

    2014-01-29

    A capillary tube is commonly used in small capacity refrigeration and air-conditioning systems. It is also a preferred expansion device in mixed refrigerant Joule-Thomson (MR J-T) cryocoolers, since it is inexpensive and simple in configuration. However, the flow inside a capillary tube is complex, since flashing process that occurs in case of refrigeration and air-conditioning systems is metastable. A mixture of refrigerants such as nitrogen, methane, ethane, propane and iso-butane expands below its inversion temperature in the capillary tube of MR J-T cryocooler and reaches cryogenic temperature. The mass flow rate of refrigerant mixture circulating through capillary tube depends onmore » the pressure difference across it. There are many empirical correlations which predict pressure drop across the capillary tube. However, they have not been tested for refrigerant mixtures and for operating conditions of the cryocooler. The present paper assesses the existing empirical correlations for predicting overall pressure drop across the capillary tube for the MR J-T cryocooler. The empirical correlations refer to homogeneous as well as separated flow models. Experiments are carried out to measure the overall pressure drop across the capillary tube for the cooler. Three different compositions of refrigerant mixture are used to study the pressure drop variations. The predicted overall pressure drop across the capillary tube is compared with the experimentally obtained value. The predictions obtained using homogeneous model show better match with the experimental results compared to separated flow models.« less

  19. Sound Wave Energy Resulting from the Impact of Water Drops on the Soil Surface

    PubMed Central

    Ryżak, Magdalena; Bieganowski, Andrzej; Korbiel, Tomasz

    2016-01-01

    The splashing of water drops on a soil surface is the first step of water erosion. There have been many investigations into splashing–most are based on recording and analysing images taken with high-speed cameras, or measuring the mass of the soil moved by splashing. Here, we present a new aspect of the splash phenomenon’s characterization the measurement of the sound pressure level and the sound energy of the wave that propagates in the air. The measurements were carried out for 10 consecutive water drop impacts on the soil surface. Three soils were tested (Endogleyic Umbrisol, Fluvic Endogleyic Cambisol and Haplic Chernozem) with four initial moisture levels (pressure heads: 0.1 kPa, 1 kPa, 3.16 kPa and 16 kPa). We found that the values of the sound pressure and sound wave energy were dependent on the particle size distribution of the soil, less dependent on the initial pressure head, and practically the same for subsequent water drops (from the first to the tenth drop). The highest sound pressure level (and the greatest variability) was for Endogleyic Umbrisol, which had the highest sand fraction content. The sound pressure for this soil increased from 29 dB to 42 dB with the next incidence of drops falling on the sample The smallest (and the lowest variability) was for Fluvic Endogleyic Cambisol which had the highest clay fraction. For all experiments the sound pressure level ranged from ~27 to ~42 dB and the energy emitted in the form of sound waves was within the range of 0.14 μJ to 5.26 μJ. This was from 0.03 to 1.07% of the energy of the incident drops. PMID:27388276

  20. Sound Wave Energy Resulting from the Impact of Water Drops on the Soil Surface.

    PubMed

    Ryżak, Magdalena; Bieganowski, Andrzej; Korbiel, Tomasz

    2016-01-01

    The splashing of water drops on a soil surface is the first step of water erosion. There have been many investigations into splashing-most are based on recording and analysing images taken with high-speed cameras, or measuring the mass of the soil moved by splashing. Here, we present a new aspect of the splash phenomenon's characterization the measurement of the sound pressure level and the sound energy of the wave that propagates in the air. The measurements were carried out for 10 consecutive water drop impacts on the soil surface. Three soils were tested (Endogleyic Umbrisol, Fluvic Endogleyic Cambisol and Haplic Chernozem) with four initial moisture levels (pressure heads: 0.1 kPa, 1 kPa, 3.16 kPa and 16 kPa). We found that the values of the sound pressure and sound wave energy were dependent on the particle size distribution of the soil, less dependent on the initial pressure head, and practically the same for subsequent water drops (from the first to the tenth drop). The highest sound pressure level (and the greatest variability) was for Endogleyic Umbrisol, which had the highest sand fraction content. The sound pressure for this soil increased from 29 dB to 42 dB with the next incidence of drops falling on the sample The smallest (and the lowest variability) was for Fluvic Endogleyic Cambisol which had the highest clay fraction. For all experiments the sound pressure level ranged from ~27 to ~42 dB and the energy emitted in the form of sound waves was within the range of 0.14 μJ to 5.26 μJ. This was from 0.03 to 1.07% of the energy of the incident drops.

  1. Heat Transfer Enhancement Through Self-Sustained Oscillating Flow in Microchannels

    DTIC Science & Technology

    2006-05-01

    Qu and Mudawar [30]. The numerical results for Nusselt number and pressure drop are in good agreement with the experimental Contract Number: FA8650...500 1000 1500 0 0.2 0.4 0.6 0.8 1 Experiment, Qu and Mudawar (2002) Numerical study, present Figure 28. Comparison of pressure drop between numerical...Mass Transfer, 48, 1688-1704, 2005. [30]. Weilin Qu, Issam Mudawar , Experimental and numerical study of pressure drop and heat transfer in a single

  2. O the Electrohydrodynamics of Drop Extraction from a Conductive Liquid Meniscus

    NASA Astrophysics Data System (ADS)

    Wright, Graham Scott

    This thesis is concerned with the use of an electric field in the extraction of liquid drops from a capillary orifice or nozzle. The motivating application is ink jet printing. Current drop-on-demand ink jets use pressure pulses to eject drops. Literature on electrostatic spraying suggests that by using an electric field, drops could be produced with a wider range of sizes and speeds than is possible with pressure ejection. Previous efforts to apply electric spraying to printing or similar selective coating tasks have taken an experimental approach based on steady or periodic spraying phenomena, without attempting cycle -by-cycle drop control. The centerpiece of this thesis is a simulation tool developed to explore such possibilities. A simplified analytic model is developed as a preliminary step, yielding formulas for force and time scales that provide an appropriate basis for nondimensionalization of the governing differential equations; important dimensionless parameters are identified. The complete self-consistent model permits simulation of meniscus behavior under time -varying applied voltage or pressure, with the electric field solution continually updated as the surface changes shape. The model uses a quasi-one-dimensional hydrodynamic formulation and a two-dimensional axisymmetric boundary element solution for the electric field. The simulation is checked against experimental results for meniscus stability, resonant modes, and drop emission under electric field. The simulation faithfully captures important qualitative aspects of meniscus behavior and gives reasonable quantitative agreement within the limitations of the model. Insights gained in simulation point the way to a successful laboratory demonstration of drop extraction using a shaped voltage pulse. Drop size control is pursued in simulation using pressure and voltage pulses both alone and in combination, for both light and viscous liquids. Combining pressure and field pulses is shown to be synergistic; drop volumes over a range of 175 to 1 were obtained, while maintaining good drop velocity. The differing strategies for obtaining large and small drops are described. Drop extraction using only the electric field is more difficult, but promising approaches remain open.

  3. Heat transfer and pressure drop of condensation of hydrocarbons in tubes

    NASA Astrophysics Data System (ADS)

    Fries, Simon; Skusa, Severin; Luke, Andrea

    2018-03-01

    The heat transfer coefficient and pressure drop are investigated for propane. Two different mild steel plain tubes and saturation pressures are considered for varying mass flux and vapour quality. The pressure drop is compared to the Friedel-Correlation with two different approaches to determine the friction factor. The first is calculation as proposed by Friedel and the second is through single phase pressure drop investigations. For lower vapour qualities the experimental results are in better agreement with the approach of the calculated friction factor. For higher vapour qualities the experimental friction factor is more precise. The pressure drop increases for a decreasing tube diameter and saturation pressure. The circumferential temperature profile and heat transfer coefficients are shown for a constant vapour quality at varying mass fluxes. The subcooling is highest for the bottom of the tube and lowest for the top. The average subcooling as well as the circumferential deviation decreases for rising mass fluxes. The averaged heat transfer coefficients are compared to the model proposed by Thome and Cavallini. The experimental results are in good agreement with both correlations, however the trend is better described with the correlation from Thome. The experimental heat transfer coefficients are under predicted by Thome and over predicted by Cavallini.

  4. Negative pressures and spallation in water drops subjected to nanosecond shock waves

    DOE PAGES

    Stan, Claudiu A.; Willmott, Philip R.; Stone, Howard A.; ...

    2016-05-16

    Most experimental studies of cavitation in liquid water at negative pressures reported cavitation at tensions significantly smaller than those expected for homogeneous nucleation, suggesting that achievable tensions are limited by heterogeneous cavitation. We generated tension pulses with nanosecond rise times in water by reflecting cylindrical shock waves, produced by X-ray laser pulses, at the internal surface of drops of water. Depending on the X-ray pulse energy, a range of cavitation phenomena occurred, including the rupture and detachment, or spallation, of thin liquid layers at the surface of the drop. When spallation occurred, we evaluated that negative pressures below –100 MPamore » were reached in the drops. As a result, we model the negative pressures from shock reflection experiments using a nucleation-and-growth model that explains how rapid decompression could outrun heterogeneous cavitation in water, and enable the study of stretched water close to homogeneous cavitation pressures.« less

  5. Analysis on Experimental Investigation and Mathematical Modeling of Incompressible Flow Through Ceramic Foam Filters

    NASA Astrophysics Data System (ADS)

    Akbarnejad, Shahin; Jonsson, Lage Tord Ingemar; Kennedy, Mark William; Aune, Ragnhild Elizabeth; Jönsson, Pӓr Göran

    2016-08-01

    This paper presents experimental results of pressure drop measurements on 30, 50, and 80 pores per inch (PPI) commercial alumina ceramic foam filters (CFF) and compares the obtained pressure drop profiles to numerically modeled values. In addition, it is aimed at investigating the adequacy of the mathematical correlations used in the analytical and the computational fluid dynamics (CFD) simulations. It is shown that the widely used correlations for predicting pressure drop in porous media continuously under-predict the experimentally obtained pressure drop profiles. For analytical predictions, the negative deviations from the experimentally obtained pressure drop using the unmodified Ergun and Dietrich equations could be as high as 95 and 74 pct, respectively. For the CFD predictions, the deviation to experimental results is in the range of 84.3 to 88.5 pct depending on filter PPI. Better results can be achieved by applying the Forchheimer second-order drag term instead of the Brinkman-Forchheimer drag term. Thus, the final deviation of the CFD model estimates lie in the range of 0.3 to 5.5 pct compared to the measured values.

  6. Observed source parameters for dynamic rupture with non-uniform initial stressand relatively high fracture energy

    USGS Publications Warehouse

    Beeler, Nicholas M.; Kilgore, Brian D.; McGarr, Arthur F.; Fletcher, Jon Peter B.; Evans, John R.; Steven R. Baker,

    2012-01-01

    We have conducted dynamic rupture propagation experiments to establish the relations between in-source stress drop, fracture energy and the resulting particle velocity during slip of an unconfined 2 m long laboratory fault at normal stresses between 4 and 8 MPa. To produce high fracture energy in the source we use a rough fault that has a large slip weakening distance. An artifact of the high fracture energy is that the nucleation zone is large such that precursory slip reduces fault strength over a large fraction of the total fault length prior to dynamic rupture, making the initial stress non-uniform. Shear stress, particle velocity, fault slip and acceleration were recorded coseismically at multiple locations along strike and at small fault-normal distances. Stress drop increases weakly with normal stress. Average slip rate depends linearly on the fault strength loss and on static stress drop, both with a nonzero intercept. A minimum fracture energy of 1.8 J/m2 and a linear slip weakening distance of 33 μm are inferred from the intercept. The large slip weakening distance also affects the average slip rate which is reduced by in-source energy dissipation from on-fault fracture energy.Because of the low normal stress and small per event slip (∼86 μm), no thermal weakening such as melting or pore fluid pressurization occurs in these experiments. Despite the relatively high fracture energy, and the very low heat production, energy partitioning during these laboratory earthquakes is very similar to typical earthquake source properties. The product of fracture energy and fault area is larger than the radiated energy. Seismic efficiency is low at ∼2%. The ratio of apparent stress to static stress drop is ∼27%, consistent with measured overshoot. The fracture efficiency is ∼33%. The static and dynamic stress drops when extrapolated to crustal stresses are 2–7.3 MPa and in the range of typical earthquake stress drops. As the relatively high fracture energy reduces the slip velocities in these experiments, the extrapolated average particle velocities for crustal stresses are 0.18–0.6 m/s. That these experiments are consistent with typical earthquake source properties suggests, albeit indirectly, that thermal weakening mechanisms such as thermal pressurization and melting which lead to near complete stress drops, dominate earthquake source properties only for exceptional events unless crustal stresses are low.

  7. Pressure Profiles in a Loop Heat Pipe Under Gravity Influence

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2015-01-01

    During the operation of a loop heat pipe (LHP), the viscous flow induces pressure drops in various elements of the loop. The total pressure drop is equal to the sum of pressure drops in vapor grooves, vapor line, condenser, liquid line and primary wick, and is sustained by menisci at liquid and vapor interfaces on the outer surface of the primary wick in the evaporator. The menisci will curve naturally so that the resulting capillary pressure matches the total pressure drop. In ground testing, an additional gravitational pressure head may be present and must be included in the total pressure drop when LHP components are placed in a non-planar configuration. Under gravity-neutral and anti-gravity conditions, the fluid circulation in the LHP is driven solely by the capillary force. With gravity assist, however, the flow circulation can be driven by the combination of capillary and gravitational forces, or by the gravitational force alone. For a gravity-assist LHP at a given elevation between the horizontal condenser and evaporator, there exists a threshold heat load below which the LHP operation is gravity driven and above which the LHP operation is capillary force and gravity co-driven. The gravitational pressure head can have profound effects on the LHP operation, and such effects depend on the elevation, evaporator heat load, and condenser sink temperature. This paper presents a theoretical study on LHP operations under gravity neutral, anti-gravity, and gravity-assist modes using pressure diagrams to help understand the underlying physical processes. Effects of the condenser configuration on the gravitational pressure head and LHP operation are also discussed.

  8. Pressure Profiles in a Loop Heat Pipe under Gravity Influence

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2015-01-01

    During the operation of a loop heat pipe (LHP), the viscous flow induces pressure drops in various elements of the loop. The total pressure drop is equal to the sum of pressure drops in vapor grooves, vapor line, condenser, liquid line and primary wick, and is sustained by menisci at liquid and vapor interfaces on the outer surface of the primary wick in the evaporator. The menisci will curve naturally so that the resulting capillary pressure matches the total pressure drop. In ground testing, an additional gravitational pressure head may be present and must be included in the total pressure drop when LHP components are placed in a non-planar configuration. Under gravity-neutral and anti-gravity conditions, the fluid circulation in the LHP is driven solely by the capillary force. With gravity assist, however, the flow circulation can be driven by the combination of capillary and gravitational forces, or by the gravitational force alone. For a gravity-assist LHP at a given elevation between the horizontal condenser and evaporator, there exists a threshold heat load below which the LHP operation is gravity driven and above which the LHP operation is capillary force and gravity co-driven. The gravitational pressure head can have profound effects on the LHP operation, and such effects depend on the elevation, evaporator heat load, and condenser sink temperature. This paper presents a theoretical study on LHP operations under gravity-neutral, anti-gravity, and gravity-assist modes using pressure diagrams to help understand the underlying physical processes. Effects of the condenser configuration on the gravitational pressure head and LHP operation are also discussed.

  9. Aerodynamic effect of combustor inlet-air pressure on fuel jet atomization

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1984-01-01

    Mean drop diameters were measured with a recently developed scanning radiometer in a study of the atomization of liquid jets injected cross stream in high velocity and high pressure airflows. At constant inlet air pressure, reciprocal mean drop diameter, was correlated with airflow mass velocity. Over a combustor inlet-air pressure range of 1 to 21 atmospheres, the ratio of orifice to mean drop diameter, D(O)/D(M), was correlated with the product of Weber and Reynolds number, WeRe, and with the molecular scale momentum transfer ratio of gravitational to inertial forces.

  10. Characterization of solids deposited on the modular caustic-side solvent extraction unit (MCU) coalescer media removed in October 2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fondeur, F.

    2016-03-01

    In February 2015, Savannah River National Laboratory (SRNL) received a Strip Effluent (SE) coalescer (FLT-304) from MCU. That coalescer was first installed at MCU in July 2014 and removed in October 2014. While processing approximately 31,400 gallons of strip solution, the pressure drop steadily increased from 1 psi to beyond the administrative limit of 20 psi. The physical and chemical analysis was conducted on this coalescer to determine the mechanism that led to the plugging of this coalescer. Characterization of this coalescer revealed the adsorption of organic containing amines as well as MCU modifier. The amines are probably from themore » decomposition of the suppressor (TiDG) as well as from bacteria. This adsorption may have changed the surface energetics (characteristics) of the coalescer fibers and therefore, their wetting behavior. A very small amount of inorganic solids were found to have deposited on this coalescer (possibly an artifact of cleaning the coalescer with Boric acid. However, we believe that inorganic precipitation, as has been seen in the past, did not play a role in the high pressure drop rise of this coalescer. With regards to the current practice of reducing the radioactive content of the SE coalescer, it is recommended that future SE coalescer should be flushed with 10 mM boric acid which is currently used at MCU. Plugging of the SE coalescer was most likely due to the formation and accumulation of a water-in-oil emulsion that reduced the overall porosity of the coalescer. There is also evidence that a bimodal oil particle distribution may have entered and deposited in the coalescer and caused the initial increase in pressure drop.« less

  11. Computational fluid dynamic evaluation of the side-to-side anastomosis for arteriovenous fistula.

    PubMed

    Hull, Jeffrey E; Balakin, Boris V; Kellerman, Brad M; Wrolstad, David K

    2013-07-01

    The goal of this research was to compare side-to-side (STS) and end-to-side (ETS) anastomoses in a computer model of the arteriovenous fistula with computational fluid dynamic analysis. A matrix of 17 computer arteriovenous fistula models (SolidWorks, Dassault Systèmes, France) of artery-vein pairs (3-mm-diameter artery + 3-mm-diameter vein and 4-mm-diameter artery +6-mm-diameter vein elliptical anastomoses) in STS, 45° ETS, and 90° ETS configurations with cross-sectional areas (CSAs) of 3.5 to 18.8 mm(2) were evaluated with computational fluid dynamic software (STAR-CCM+; CD-adapco, Melville, NY) in simulations at defined flow rates from 600 to 1200 mL/min and mean arterial pressures of 50 to 140 mm Hg. Models and configurations were evaluated for pressure drop across the anastomosis, arterial inflow, venous outflow, arterial outflow, velocity vector, and wall shear stress (WSS) profile. Pressure drop across the anastomosis was inversely proportional to anastomotic CSA and to venous outflow and was proportional to arterial inflow. Pressure drop was greater in 3 + 3 models than in 4 + 6 STS models; 90° ETS configurations had the lowest pressure drops and were nearly identical, whereas 45° ETS configurations had the highest pressure drops. Venous outflow in the 4 + 6 model in STS configurations, evaluated at 100 mm Hg arterial inflow pressure, was 390, 592, 610, and 886 mL/min in anastomotic CSAs of 3.5, 5.3, 7.1, and 18.8 mm(2), respectively, and was similar in 90° ETS (609 and 908 mL/min) and lower in 45° ETS (534 and 562 mL/min) configurations at CSAs of 5.3 and 18.8 mm(2). The mean increase in venous outflow was 69 mL/min (range, -59 to 134) between 3 + 3 and 4 + 6 models at 100 mm Hg arterial inflow. The most uniform WSS profile occurs in STS anastomoses followed by 45° ETS and then 90° ETS anastomoses. The STS and 90° ETS anastomoses have high venous outflow and a tendency toward reversed arterial outflow. The 45° ETS anastomosis has reduced venous outflow but resists reversed arterial outflow. The STS anastomosis has more uniform WSS characteristics compared with the 45° and 90° ETS anastomoses. Copyright © 2013 Society for Vascular Surgery. Published by Mosby, Inc. All rights reserved.

  12. Increasing efficacy and reducing systemic absorption of brimonidine tartrate ophthalmic gels in rabbits.

    PubMed

    Pang, Xiaochen; Li, Jiawei; Pi, Jiaxin; Qi, Dongli; Guo, Pan; Li, Nan; Wu, Yumei; Liu, Zhidong

    2018-03-01

    Systemic absorption of ocularly administered Brimonidine Tartrate has been reported to give rise to several side-effects. Hence, it has become crucial to develop a delivery system that could increase efficacy and reduce systemic absorption. Therefore, the present work aims to develop Brimonidine Tartrate gels with different concentrations (0.05%, 0.1%, and 0.2% w/v, respectively) using Carbopol 974 P and HPMC E4M, and compare the therapeutic efficacy and systemic absorption with that of eye drop (0.2%, w/v) by UPLC-MS/MS. The result of histological analysis did not show any morphological or structural changes after the administration of formulations. In vitro residence time studies demonstrated that the gels exhibited a better precorneal residence time as compared with the eye drop. The gels with lower concentrations of the drug (0.05% and 0.1%, w/v) could significantly decrease intraocular pressure (IOP) in both normal and water-loaded rabbits as compared to the eye drop. Finally, the values of the ratio of AUC (0→∞) in comparison to eye drop showed the gels with lower concentrations of Brimonidine Tartrate could decrease the systemic absorption. From the result, it can be concluded the 0.1% ophthalmic gel has a potential to improve therapeutic efficacy and reduce the potential toxicity caused by systemic absorption.

  13. Drop dynamics in space and interference with acoustic field (M-15)

    NASA Technical Reports Server (NTRS)

    Yamanaka, Tatsuo

    1993-01-01

    The objective of the experiment is to study contactless positioning of liquid drops, excitation of capillary waves on the surface of acoustically levitated liquid drops, and deformation of liquid drops by means of acoustic radiation pressure. Contactless positioning technologies are very important in space materials processing because the melt is processed without contacting the wall of a crucible which can easily contaminate the melt specifically for high melting temperatures and chemically reactive materials. Among the contactless positioning technologies, an acoustic technology is especially important for materials unsusceptible to electromagnetic fields such as glasses and ceramics. The shape of a levitated liquid drop in the weightless condition is determined by its surface tension and the internal and external pressure distribution. If the surface temperature is constant and there exist neither internal nor external pressure perturbations, the levitated liquid drop forms a shape of perfect sphere. If temperature gradients on the surface and internal or external pressure perturbations exist, the liquid drop forms various modes of shapes with proper vibrations. A rotating liquid drop was specifically studied not only as a classical problem of theoretical mechanics to describe the shapes of the planets of the solar system, as well as their arrangement, but it is also more a contemporary problem of modern non-linear mechanics. In the experiment, we are expecting to observe various shapes of a liquid drop such as cocoon, tri-lobed, tetropod, multi-lobed, and doughnut.

  14. Study of nitrogen two-phase flow pressure drop in horizontal and vertical orientation

    NASA Astrophysics Data System (ADS)

    Koettig, T.; Kirsch, H.; Santandrea, D.; Bremer, J.

    2017-12-01

    The large-scale liquid argon Short Baseline Neutrino Far-detector located at Fermilab is designed to detect neutrinos allowing research in the field of neutrino oscillations. It will be filled with liquid argon and operate at almost ambient pressure. Consequently, its operation temperature is determined at about 87 K. The detector will be surrounded by a thermal shield, which is actively cooled with boiling nitrogen at a pressure of about 2.8 bar absolute, the respective saturation pressure of nitrogen. Due to strict temperature gradient constraints, it is important to study the two-phase flow pressure drop of nitrogen along the cooling circuit of the thermal shield in different orientations of the flow with respect to gravity. An experimental setup has been built in order to determine the two-phase flow pressure drop in nitrogen in horizontal, vertical upward and vertical downward direction. The measurements have been conducted under quasi-adiabatic conditions and at a saturation pressure of 2.8 bar absolute. The mass velocity has been varied in the range of 20 kg·m-2·s-1 to 70 kg·m-2·s-1 and the pressure drop data has been recorded scanning the two-phase region from vapor qualities close to zero up to 0.7. The experimental data will be compared with several established predictions of pressure drop e.g. Mueller-Steinhagen and Heck by using the void fraction correlation of Rouhani.

  15. Experimental and Computational Study of the Hydrodynamics of Trickle Bed Flow Reactor Operating Under Different Pressure Conditions

    NASA Astrophysics Data System (ADS)

    Rabbani, S.; Ben Salem, I.; Nadeem, H.; Kurnia, J. C.; Shamim, T.; Sassi, M.

    2014-12-01

    Pressure drop estimation and prediction of liquid holdup play a crucial role in design and operation of trickle bed reactors. Experiments are performed for Light Gas Oil (LGO)-nitrogen system in ambient temperature conditions in an industrial pilot plant with reactor height 0.79 m and diameter of 0.0183 m and pressure ranging from atmospheric to 10 bars. It was found that pressure drop increased with increase in system pressure, superficial gas velocity and superficial liquid velocity. It was demonstrated in the experiments that liquid holdup of the system increases with the increase in superficial liquid velocity and tends to decrease with increase in superficial gas velocity which is in good agreement with existing literature. Similar conditions were also simulated using CFD-software FLUENT. The Volume of Fluid (VoF) technique was employed in combination with "discrete particle approach" and results were compared with that of experiments. The overall pressure drop results were compared with the different available models and a new comprehensive model was proposed to predict the pressure drop in Trickle Bed Flow Reactor.

  16. Heat transfer and pressure drop measurements in prototypic heat exchanges for the supercritical carbon dioxide Brayton power cycles

    NASA Astrophysics Data System (ADS)

    Kruizenga, Alan Michael

    An experimental facility was built to perform heat transfer and pressure drop measurements in supercritical carbon dioxide. Inlet temperatures ranged from 30--125 °C with mass velocities ranging from 118--1050 kg/m2s and system pressures of 7.5--10.2 MPa. Tests were performed in horizontal, upward, and downward flow conditions to test the influence of buoyancy forces on the heat transfer. Horizontal tests showed that for system pressures of 8.1 MPa and up standard Nusselt correlations predicted the heat transfer behavior with good agreement. Tests performed at 7.5 MPa were not well predicted by existing correlations, due to large property variations. The data collected in this work can be used to better understand heat transfer near the critical point. The CFD package FLUENT was found to yield adequate prediction for the heat transfer behavior for low pressure cases, where standard correlations were inaccurate, however it was necessary to have fine mesh spacing (y+˜1) in order to capture the observed behavior. Vertical tests found, under the test conditions considered, that flow orientation had little or no effect on the heat transfer behavior, even in flow regions where buoyancy forces should result in a difference between up and down flow heat transfer. CFD results found that for a given set of boundary conditions a large increase in the gravitational acceleration could cause noticeable heat transfer deterioration. Studies performed with CFD further led to the hypothesis that typical buoyancy induced heat transfer deterioration exhibited in supercritical flows were mitigated through a complex interaction with the inertial force, which is caused by bulk cooling of the flow. This hypothesis to explain the observed data requires further investigation. Prototypic heat exchangers channels (i.e. zig-zag) proved that the heat transfer coefficient was consistently three to four times higher as compared to straight channel geometry. However, the form pressure loss due to the presence of the corners within the channels caused an increase in pressure drop by four to five times the pressure drop measured in the straight channel. Based on the results, more innovative geometries were recommended for future testing to reduce form losses found in the typical prototypic geometries.

  17. Investigation of Critical Burning of Fuel Droplets. [of liquid rocket propellant

    NASA Technical Reports Server (NTRS)

    Chanin, S. P.; Shearer, A. J.; Faeth, G. M.

    1976-01-01

    An earlier analysis for the combustion response of a liquid monopropellant strand (hydrazine) was extended to consider individual droplets and sprays. While small drops gave low or negative response, large droplets provided response near unity at low frequencies, with the response declining at frequencies greater than the characteristic liquid phase frequency. Temperature gradients in the liquid phase resulted in response peaks greater than unity. A second response peak was found for large drops which corresponded to gas phase transient effects. Spray response was generally reduced from the response of the largest injected droplet, however, even a small percentage of large droplets can yield appreciable response. An apparatus was designed and fabricated to allow observation of bipropellant fuel spray combustion at elevated pressures. A locally homogeneous model was developed to describe this combustion process which allows for high pressure phenomena associated with the thermodynamic critical point.

  18. Physicochemical and pharmacological investigation of water/oil microemulsion of non-selective beta blocker for treatment of glaucoma.

    PubMed

    Hegde, Rahul Rama; Bhattacharya, Shiv Sankar; Verma, Anurag; Ghosh, Amitava

    2014-02-01

    Ocular drug delivery system always remained associated with lots of difficulties and faced issues of poor drug absorption and poor bioavailability. Timolol maleate is a nonspecific beta blocker used for reduction of elevated intraocular pressure in glaucoma. Timolol maleate is absorbed systemically and is contraindicated in asthmatic patients. This study is focused to deliver Timolol maleate by a water/oil microemulsion to extend the time of reduced intraocular pressure of glaucomatous rabbit's eye measured by using a Schoetz tonometer. The microemulsion is prepared by mixing the oily components with two nonionic surfactants, drug and water, and evaluated for the physicochemical, in vitro and in vivo parameters. The colloidal system demonstrates monodisperse distribution behavior and exhibits a uniform size distribution of finite width. In vitro drug release from microemulsion was found to follow Higuchi's pattern followed by a zero-order drug release by the emulsion. Ex vivo permeation through goat cornea revealed delayed release of Timolol maleate from microemulsion as compared with its aqueous solution. A reduction in intraocular pressure is seen lasting for 12 h compared to aqueous eye drop that lasted for only 5 h. CONCLUSION. In vivo reduction of intraocular pressure revealed a similar efficacy for once daily dosed 0.3% Timolol maleate in microemulsion formulation compared to 0.5% concentration in both microemulsion as well as aqueous formulation. The possible outcome of dose reduction will reduce the cardiovascular side effects generally reported with Timolol maleate eye drops.

  19. 40 CFR 63.1657 - Monitoring requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... pressure drop across each baghouse cell, or across the baghouse if it is not possible to monitor each cell individually, to ensure the pressure drop is within the normal operating range identified in the baghouse... detection system if the furnace primary and/or tapping emissions are ducted to a negative pressure baghouse...

  20. Heat transfer and pressure drop performance of a finned-tube heat exchanger proposed for use in the NASA Lewis Altitude Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Vanfossen, G. J.

    1985-01-01

    A segment of the heat exchanger proposed for use in the NASA Lewis Altitude Wind Tunnel (AWT) facility has been tested under dry and icing conditions. The heat exchanger has the largest pressure drop of any component in the AWT loop. It is therefore critical that its performance be known at all conditions before the final design of the AWT is complete. The heat exchanger segment is tested in the NASA Lewis Icing Research Tunnel (IRT) in order to provide an icing cloud environment similar to what will be encountered in the AWT. Dry heat transfer and pressure drop data are obtained and compared to correlations available in the literature. The effects of icing sprays on heat transfer and pressure drop are also investigated.

  1. Variability among electronic cigarettes in the pressure drop, airflow rate, and aerosol production.

    PubMed

    Williams, Monique; Talbot, Prue

    2011-12-01

    This study investigated the performance of electronic cigarettes (e-cigarettes), compared different models within a brand, compared identical copies of the same model within a brand, and examined performance using different protocols. Airflow rate required to generate aerosol, pressure drop across e-cigarettes, and aerosol density were examined using three different protocols. First 10 puff protocol: The airflow rate required to produce aerosol and aerosol density varied among brands, while pressure drop varied among brands and between the same model within a brand. Total air hole area correlated with pressure drop for some brands. Smoke-out protocol: E-cigarettes within a brand generally performed similarly when puffed to exhaustion; however, there was considerable variation between brands in pressure drop, airflow rate required to produce aerosol, and the total number of puffs produced. With this protocol, aerosol density varied significantly between puffs and gradually declined. CONSECUTIVE TRIAL PROTOCOL: Two copies of one model were subjected to 11 puffs in three consecutive trials with breaks between trials. One copy performed similarly in each trial, while the second copy of the same model produced little aerosol during the third trial. The different performance properties of the two units were attributed to the atomizers. There was significant variability between and within brands in the airflow rate required to produce aerosol, pressure drop, length of time cartridges lasted, and production of aerosol. Variation in performance properties within brands suggests a need for better quality control during e-cigarette manufacture.

  2. Experimental investigation of ice slurry flow pressure drop in horizontal tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grozdek, Marino; Khodabandeh, Rahmatollah; Lundqvist, Per

    2009-01-15

    Pressure drop behaviour of ice slurry based on ethanol-water mixture in circular horizontal tubes has been experimentally investigated. The secondary fluid was prepared by mixing ethyl alcohol and water to obtain initial alcohol concentration of 10.3% (initial freezing temperature -4.4 C). The pressure drop tests were conducted to cover laminar and slightly turbulent flow with ice mass fraction varying from 0% to 30% depending on test conditions. Results from flow tests reveal much higher pressure drop for higher ice concentrations and higher velocities in comparison to the single phase flow. However for ice concentrations of 15% and higher, certain velocitymore » exists at which ice slurry pressure drop is same or even lower than for single phase flow. It seems that higher ice concentration delay flow pattern transition moment (from laminar to turbulent) toward higher velocities. In addition experimental results for pressure drop were compared to the analytical results, based on Poiseulle and Buckingham-Reiner models for laminar flow, Blasius, Darby and Melson, Dodge and Metzner, Steffe and Tomita for turbulent region and general correlation of Kitanovski which is valid for both flow regimes. For laminar flow and low buoyancy numbers Buckingham-Reiner method gives good agreement with experimental results while for turbulent flow best fit is provided with Dodge-Metzner and Tomita methods. Furthermore, for transport purposes it has been shown that ice mass fraction of 20% offers best ratio of ice slurry transport capability and required pumping power. (author)« less

  3. Enhanced flow boiling in microchannels through integrating multiple micro-nozzles and reentry microcavities

    NASA Astrophysics Data System (ADS)

    Li, Wenming; Qu, Xiaopeng; Alam, Tamanna; Yang, Fanghao; Chang, Wei; Khan, Jamil; Li, Chen

    2017-01-01

    In a microchannel system, a higher mass velocity can lead to enhanced flow boiling performances, but at a cost of two-phase pressure drop. It is highly desirable to achieve a high heat transfer rate and critical heat flux (CHF) exceeding 1 kW/cm2 without elevating the pressure drop, particularly, at a reduced mass velocity. In this study, we developed a microchannel configuration that enables more efficient utilization of the coolant through integrating multiple microscale nozzles connected to auxiliary channels as well as microscale reentry cavities on sidewalls of main microchannels. We achieved a CHF of 1016 W/cm2 with a 50% less mass velocity, i.e., 680 kg/m2s, compared to the two-nozzle configuration developed in our previous studies. Two primary enhancement mechanisms are: (a) the enhanced global liquid supply by four evenly distributed micronozzles, particularly near the outlet region and (b) the effective management of local dryout by the capillary flow-induced sustainable thin liquid film resulting from an array of microscale cavities. A significantly improved heat transfer coefficient of 131 kW/m2 K at a mass velocity of 680 kg/m2s is attributed to the enhanced nucleate boiling, the established capillary/thin film evaporation, and the induced advection from the present microchannel configuration. All these significant enhancements have been achieved with a ˜55% lower two-phase pressure drop.

  4. Experimental Investigation of Two-Phase Oil (D130)-Water Flow in 4″ Pipe for Different Inclination Angles

    NASA Astrophysics Data System (ADS)

    Shaahid, S. M.; Basha, Mehaboob; Al-Hems, Luai M.

    2018-03-01

    Oil and water are often produced and transported together in pipelines that have various degrees of inclination from the horizontal. The flow of two immiscible liquids oil and water in pipes has been a research topic since several decades. In oil and chemical industries, knowledge of the frictional pressure loss in oil-water flows in pipes is necessary to specify the size of the pump required to pump the emulsions. An experimental investigation has been carried out for measurement of pressure drop of oil (D130)-water two-phase flows in 4 inch diameter inclined stainless steel pipe at different flow conditions. Experiments were conducted for different inclination angles including; 0°, 15°, 30° (for water cuts “WC” 0 - 100%). The flow rates at the inlet were varied from 4000 to 8000 barrels-per-day (BPD). For a given flow rate the frictional pressure drop has been found to increase (for all angles) from WC = 0 - 60%, and thereafter friction pressure drop decreases, this could be due phase inversion. For a given WC 40%, the frictional pressure drop has been found to increase with angle and flow rate. It has been noticed that inclination angle has appreciable effect on frictional pressure drop.

  5. Air injection test on a Kaplan turbine: prototype - model comparison

    NASA Astrophysics Data System (ADS)

    Angulo, M.; Rivetti, A.; Díaz, L.; Liscia, S.

    2016-11-01

    Air injection is a very well-known resource to reduce pressure pulsation magnitude in turbines, especially on Francis type. In the case of large Kaplan designs, even when not so usual, it could be a solution to mitigate vibrations arising when tip vortex cavitation phenomenon becomes erosive and induces structural vibrations. In order to study this alternative, aeration tests were performed on a Kaplan turbine at model and prototype scales. The research was focused on efficiency of different air flow rates injected in reducing vibrations, especially at the draft tube and the discharge ring and also in the efficiency drop magnitude. It was found that results on both scales presents the same trend in particular for vibration levels at the discharge ring. The efficiency drop was overestimated on model tests while on prototype were less than 0.2 % for all power output. On prototype, air has a beneficial effect in reducing pressure fluctuations up to 0.2 ‰ of air flow rate. On model high speed image computing helped to quantify the volume of tip vortex cavitation that is strongly correlated with the vibration level. The hydrophone measurements did not capture the cavitation intensity when air is injected, however on prototype, it was detected by a sonometer installed at the draft tube access gallery.

  6. Aerodynamic effect of combustor inlet-air pressure on fuel jet atomization

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1984-01-01

    Mean drop diameters were measured with a recently developed scanning radiometer in a study of the atomization of liquid jets injected cross stream in high velocity and high pressure airflows. At constant inlet air pressure, reciprocal mean drop diameter was correlated with airflow mass velocity. Over a combustor inlet-air pressure range of 1 to 21 atmospheres, the ratio of orifice to mean drop diameter, D(O)/D(M), was correlated with the product of Weber and Reynolds number, WeRe, and with the molecular scale momentum transfer ratio of gravitational to inertial forces. Previously announced in STAR as N84-22910

  7. The respective effect of under-rib convection and pressure drop of flow fields on the performance of PEM fuel cells.

    PubMed

    Wang, Chao; Zhang, Qinglei; Shen, Shuiyun; Yan, Xiaohui; Zhu, Fengjuan; Cheng, Xiaojing; Zhang, Junliang

    2017-03-02

    The flow field configuration plays an important role on the performance of proton exchange membrane fuel cells (PEMFCs). For instance, channel/rib width and total channel cross-sectional area determine the under-rib convection and pressure drop respectively, both of which directly influence the water removal, in turn affecting the oxygen supply and cathodic oxygen reduction reaction. In this study, effects of under-rib convection and pressure drop on cell performance are investigated experimentally and numerically by adjusting the channel/rib width and channel cross-sectional area of flow fields. The results show that the performance differences with various flow field configurations mainly derive from the oxygen transport resistance which is determined by the water accumulation degree, and the cell performance would benefit from the narrower channels and smaller cross sections. It reveals that at low current densities when water starts to accumulate in GDL at under-rib regions, the under-rib convection plays a more important role in water removal than pressure drop does; in contrast, at high current densities when water starts to accumulate in channels, the pressure drop dominates the water removal to facilitate the oxygen transport to the catalyst layer.

  8. The respective effect of under-rib convection and pressure drop of flow fields on the performance of PEM fuel cells

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Zhang, Qinglei; Shen, Shuiyun; Yan, Xiaohui; Zhu, Fengjuan; Cheng, Xiaojing; Zhang, Junliang

    2017-03-01

    The flow field configuration plays an important role on the performance of proton exchange membrane fuel cells (PEMFCs). For instance, channel/rib width and total channel cross-sectional area determine the under-rib convection and pressure drop respectively, both of which directly influence the water removal, in turn affecting the oxygen supply and cathodic oxygen reduction reaction. In this study, effects of under-rib convection and pressure drop on cell performance are investigated experimentally and numerically by adjusting the channel/rib width and channel cross-sectional area of flow fields. The results show that the performance differences with various flow field configurations mainly derive from the oxygen transport resistance which is determined by the water accumulation degree, and the cell performance would benefit from the narrower channels and smaller cross sections. It reveals that at low current densities when water starts to accumulate in GDL at under-rib regions, the under-rib convection plays a more important role in water removal than pressure drop does; in contrast, at high current densities when water starts to accumulate in channels, the pressure drop dominates the water removal to facilitate the oxygen transport to the catalyst layer.

  9. Development of a primary standard for dynamic pressure based on drop weight method covering a range of 10 MPa-400 MPa

    NASA Astrophysics Data System (ADS)

    Salminen, J.; Högström, R.; Saxholm, S.; Lakka, A.; Riski, K.; Heinonen, M.

    2018-04-01

    In this paper we present the development of a primary standard for dynamic pressures that is based on the drop weight method. At the moment dynamic pressure transducers are typically calibrated using reference transducers, which are calibrated against static pressure standards. Because dynamic and static characteristics of pressure transducers may significantly differ from each other, it is important that these transducers are calibrated against dynamic pressure standards. In a method developed in VTT Technical Research Centre of Finland Ltd, Centre for Metrology MIKES, a pressure pulse is generated by impact between a dropping weight and a piston of a liquid-filled piston-cylinder assembly. The traceability to SI-units is realized through interferometric measurement of the acceleration of the dropping weight during impact, the effective area of the piston-cylinder assembly and the mass of the weight. Based on experimental validation and an uncertainty evaluation, the developed primary standard provides traceability for peak pressures in the range from 10 MPa to 400 MPa with a few millisecond pulse width and a typical relative expanded uncertainty (k  =  2) of 1.5%. The performance of the primary standard is demonstrated by test calibrations of two dynamic pressure transducers.

  10. Influence of ambient air pressure on effervescent atomization

    NASA Technical Reports Server (NTRS)

    Chen, S. K.; Lefebvre, A. H.; Rollbuhler, J.

    1993-01-01

    The influence of ambient air pressure on the drop-size distributions produced in effervescent atomization is examined in this article. Also investigated are the effects on spray characteristics of variations in air/liquid mass ratio, liquid-injection pressure, and atomizer discharge-orifice diameter at different levels of ambient air pressure. It is found that continuous increase in air pressure above the normal atmospheric value causes the mean drop-size to first increase up to a maximum value and then decline. An explanation for this characteristic is provided in terms of the various contributing factors to the overall atomization process. It is also observed that changes in atomizer geometry and operating conditions have little effect on the distribution of drop-sizes in the spray.

  11. Magnetorheological valve based actuator for improvement of passively controlled turbocharger system

    NASA Astrophysics Data System (ADS)

    Bahiuddin, I.; Mazlan, S. A.; Imaduddin, F.; Ubaidillah, Ichwan, B.

    2016-03-01

    Variable geometry turbochargers have been widely researched to fulfil the current engine stringent regulations. The passively controlled turbocharger (PCT) concept has been proposed to reduce energy consumption by utilizing the emission energy to move the actuator. However, it only covered a small range operating condition. Therefore, a magnetorheological(MR) Valve device, as typical smart material devices to enhance a passive device, is proposed to improve the PCT. Even though the benefits have been considered for the compactness and easiness to connect to an electrical system, the number of publications regarding the MR application within engine system is hard to be found. Therefore, this paper introduces a design of an MR Valve in a turbocharger. The main challenge is to make sure its capability to produce a sufficient total pressure drop. To overcome the challenge, its material properties, shape and pressure drop calculation has been analyzed to fulfil the requirement. Finally, to get a more understanding of actuator performance, the actuator response was simulated by treating the exhaust gas pressure as an input. It shows that the new MR actuator has a potential dynamic to improve the PCT controllability.

  12. Effects of processing parameters on immersion vacuum cooling time and physico-chemical properties of pork hams.

    PubMed

    Feng, Chao-Hui; Drummond, Liana; Zhang, Zhi-Hang; Sun, Da-Wen

    2013-10-01

    The effects of agitation (1002 rpm), different pressure reduction rates (60 and 100 mbar/min), as well as employing cold water with different initial temperatures (IWT: 7 and 20°C) on immersion vacuum cooling (IVC) of cooked pork hams were experimentally investigated. Final pork ham core temperature, cooling time, cooling loss, texture properties, colour and chemical composition were evaluated. The application for the first time of agitation during IVC substantially reduced the cooling time (47.39%) to 4.6°C, compared to IVC without agitation. For the different pressure drop rates, there was a trend that shorter IVC cooling times were achieved with lower cooling rate, although results were not statistically significant (P>0.05). For both IWTs tested, the same trend was observed: shorter cooling time and lower cooling loss were obtained under lower linear pressure drop rate of 60 mbar/min (not statistically significant, P>0.05). Compared to the reference cooling method (air blast cooling), IVC achieved higher cooling rates and better meat quality. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Investigation of Capillary Limit in a Loop Heat Pipe

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Ottenstein, Laura; Rogers, Paul; Cheung, Kwok; Obenschain, Arthur F. (Technical Monitor)

    2001-01-01

    This paper presets an experimental study on the capillary limit of a loop heat pipe (LHP) at low powers. The slow thermal response of the loop at low powers made it possible to observe interactions among various components after the capillary limit was exceeded. The capillary limit at low powers was achieved by imposing additional pressure drops on the vapor line through the use of a metering valve. A differential pressure transducer was also used to measure the pressure drop across the evaporator and the compensation chamber (CC). Test results show that when the capillary limit is exceeded, vapor will penetrate the primary wick, resulting in a partial dry-out of the evaporator and a rapid increase of the CC temperature. Because the evaporator can tolerate vapor bubbles, the LHP will continue to function and may reach a new steady state at the higher temperature. Thus, the LHP will exhibit a graceful degradation in performance rather than a complete failure. Moreover, the loop can recover from a partial dry-out by reducing the heat load without a re-start.

  14. Behaviour of levee on softsoil caused by rapid drawdown

    NASA Astrophysics Data System (ADS)

    Upomo, Togani Cahyadi; Effendi, Mahmud Kori; Kusumawardani, Rini

    2018-03-01

    Rapid Drawdown is a condition where the water elevation that has reached the peak suddenly drops. As the water level reaches the peak, hydrostatic pressure helps in the stability of the slope. When water elevation decreases there will be two effects. First, reduced hydrostatic pressure and second, modification of pore water pressure. Rapid draw down usually comon in hydraulic structure such as dam and levee. This study will discuss behaviour of levee on softsoil caused by rapid drawdown. The analysis based on method which developed by US Army Corps Engineer and modified method which developed by Duncan, Wright, dan Wong. Results of analysis show that in drawdown condition, at 1 m drop of water, safety factor obtained based on US Army Corps Engineer method was 1.16 and 0.976 while based on Duncan, Wright, and Wong methods were 1.244 and 1.117. At 0.5 m water level, safety factor based on US Army Corps Engineer method was 1.287 and 1.09 while Duncan, Wright, and Wong were 1.357 and 1.194.

  15. Microseismicity Induced by Fluid Pressure Drop (Laboratory Study)

    NASA Astrophysics Data System (ADS)

    Turuntaev, Sergey; Zenchenko, Evgeny; Melchaeva, Olga

    2013-04-01

    Pore pressure change in saturated porous rocks may result in its fracturing (Maury et Fourmaintraux, 1993) and corresponding microseismic event occurrences. Microseismicity due to fluid injection is considered in numerous papers (Maxwell, 2010, Shapiro et al., 2005). Another type of the porous medium fracturing is related with rapid pore pressure drop at some boundary. The mechanism of such fracturing was considered by (Khristianovich, 1985) as a model of sudden coal blowing and by (Alidibirov, Panov, 1998) as a model of volcano eruptions. If the porous saturated medium has a boundary where it directly contacted with fluid under the high pressure (in a hydraulic fracture or in a borehole), and the pressure at that boundary is dropped, the conditions for tensile cracks can be achieved at some distance from the boundary. In the paper, the results of experimental study of saturated porous sample fracturing due to pore pressure rapid drop are discussed. The samples (82 mm high, ∅60 mm) were made of quartz sand, which was cemented by "liquid glass" glue with mass fraction 1%. The sample (porosity 35%, uniaxial unconfined compression strength 2.5 MPa) was placed in a mould and saturated by oil. The upper end of the sample contacted with the mould upper lid, the lower end contacted with fluid. The fluid pressure was increased to 10 MPa and then discharged through the bottom nipple. The pressure increases/drops were repeated 30-50 times. Pore pressure and acoustic emission (AE) were registered by transducers mounted into upper and bottom lids of the mould. It was found, that AE sources (corresponded to microfracturing) were spreading from the open end to the closed end of the sample, and that maximal number of AE events was registered at some distance from the opened end. The number of AE pulses increased with every next pressure drop, meanwhile the number of pulses with high amplitudes diminished. It was found that AE maximal rate corresponded to the fluid pressure gradient maximal values. The model of AE relation with the pore pressure gradient was considered based on the following assumptions: AE event occurred when the pore pressure gradient reaches some critical value; the critical value varies and can be described by Weibull distribution. Permeability variation during the fluid pressure drop was estimated by means of fluid pressure data and pore-elastic equation solution for small time intervals (0.01 sec). The study showed possibility to solve both a direct problem of microseismicity variation relation with fluid pressure changes and an inverse problem of defining permeability by registering microseismic activity variation in particular volume of porous medium alongside with pore pressure measurements at some point.

  16. Could some aviation deep vein thrombosis be a form of decompression sickness?

    PubMed

    Buzzacott, Peter; Mollerlokken, Andreas

    2016-10-01

    Aviation deep vein thrombosis is a challenge poorly understood in modern aviation. The aim of the present project was to determine if cabin decompression might favor formation of vascular bubbles in commercial air travelers. Thirty commercial flights were taken. Cabin pressure was noted at take-off and at every minute following, until the pressure stabilized. These time-pressure profiles were imported into the statistics program R and analyzed using the package SCUBA. Greatest pressure differentials between tissues and cabin pressures were estimated for 20, 40, 60, 80 and 120 min half-time compartments. Time to decompress ranged from 11 to 47 min. The greatest drop in cabin pressure was from 1022 to 776 mBar, equivalent to a saturated diver ascending from 2.46 msw depth. Mean pressure drop in flights >2 h duration was 193 mBar, while mean pressure drop in flights <2 h was 165 mBar. The greatest drop in pressure over 1 min was 28 mBar. Over 30 commercial flights it was found that the drop in cabin pressure was commensurate with that found to cause bubbles in man. Both the US Navy and the Royal Navy mandate far slower decompression from states of saturation, being 1.7 and 1.9 mBar/min respectively. The median overall rate of decompression found in this study was 8.5 mBar/min, five times the rate prescribed for USN saturation divers. The tissues associated with hypobaric bubble formation are likely slower than those associated with bounce diving, with 60 min a potentially useful index.

  17. Alterations of Blood Flow Through Arteries Following Atherectomy and the Impact on Pressure Variation and Velocity.

    PubMed

    Plourde, Brian D; Vallez, Lauren J; Sun, Biyuan; Nelson-Cheeseman, Brittany B; Abraham, John P; Staniloae, Cezar S

    2016-09-01

    Simulations were made of the pressure and velocity fields throughout an artery before and after removal of plaque using orbital atherectomy plus adjunctive balloon angioplasty or stenting. The calculations were carried out with an unsteady computational fluid dynamic solver that allows the fluid to naturally transition to turbulence. The results of the atherectomy procedure leads to an increased flow through the stenotic zone with a coincident decrease in pressure drop across the stenosis. The measured effect of atherectomy and adjunctive treatment showed decrease the systolic pressure drop by a factor of 2.3. Waveforms obtained from a measurements were input into a numerical simulation of blood flow through geometry obtained from medical imaging. From the numerical simulations, a detailed investigation of the sources of pressure loss was obtained. It is found that the major sources of pressure drop are related to the acceleration of blood through heavily occluded cross sections and the imperfect flow recovery downstream. This finding suggests that targeting only the most occluded parts of a stenosis would benefit the hemodynamics. The calculated change in systolic pressure drop through the lesion was a factor of 2.4, in excellent agreement with the measured improvement. The systolic and cardiac-cycle-average pressure results were compared with measurements made in a multi-patient study treated with orbital atherectomy and adjunctive treatment. The agreements between the measured and calculated systolic pressure drop before and after the treatment were within 3%. This excellent agreement adds further confidence to the results. This research demonstrates the use of orbital atherectomy to facilitate balloon expansion to restore blood flow and how pressure measurements can be utilized to optimize revascularization of occluded peripheral vessels.

  18. Soft Listeria: actin-based propulsion of liquid drops.

    PubMed

    Boukellal, Hakim; Campás, Otger; Joanny, Jean-François; Prost, Jacques; Sykes, Cécile

    2004-06-01

    We study the motion of oil drops propelled by actin polymerization in cell extracts. Drops deform and acquire a pearlike shape under the action of the elastic stresses exerted by the actin comet, a tail of cross-linked actin filaments. We solve this free boundary problem and calculate the drop shape taking into account the elasticity of the actin gel and the variation of the polymerization velocity with normal stress. The pressure balance on the liquid drop imposes a zero propulsive force if gradients in surface tension or internal pressure are not taken into account. Quantitative parameters of actin polymerization are obtained by fitting theory to experiment.

  19. Heat Transfer and Pressure Drop in Concentric Annular Flows of Binary Inert Gas Mixtures

    NASA Technical Reports Server (NTRS)

    Reid, R. S.; Martin, J. J.; Yocum, D. J.; Stewart, E. T.

    2007-01-01

    Studies of heat transfer and pressure drop of binary inert gas mixtures flowing through smooth concentric circular annuli, tubes with fully developed velocity profiles, and constant heating rate are described. There is a general lack of agreement among the constant property heat transfer correlations for such mixtures. No inert gas mixture data exist for annular channels. The intent of this study was to develop highly accurate and benchmarked pressure drop and heat transfer correlations that can be used to size heat exchangers and cores for direct gas Brayton nuclear power plants. The inside surface of the annular channel is heated while the outer surface of the channel is insulated. Annulus ratios range 0.5 < r* < 0.83. These smooth tube data may serve as a reference to the heat transfer and pressure drop performance in annuli, tubes, and channels having helixes or spacer ribs, or other surfaces.

  20. Pumping power considerations in the designs of NASA-Redox flow cells

    NASA Technical Reports Server (NTRS)

    Hoberecht, M. A.

    1981-01-01

    Pressure drop data for six different cell geometries of various flow port, manifold, and cavity dimensions are presented. The redox/energy/storage system uses two fully soluble redox couples as anode and cathode fluids. Both fluids are pumped through a redox cell, or stack of cells, where the electrochemical reactions take place at porous carbon felt electrodes. Pressure drop losses are therefore associated with this system due to the continuous flow of reactant solutions. The exact pressure drop within a redox flow cell is directly dependent on the flow rate as well as the various cell dimensions. Pumping power requirements for a specific set of cell operating conditions are found for various cell geometries once the flow rate and pressure drop are determined. These pumping power requirements contribute to the overall system parasitic energy losses which must be minimized, the choice of cell geometry becomes critical.

  1. The critical pressure drop for the purge process in the anode of a fuel cell

    NASA Astrophysics Data System (ADS)

    Yu, Xiao; Pingwen, Ming; Ming, Hou; Baolian, Yi; Shao, Zhi-Gang

    Purge operation is an effective way to remove the accumulated liquid water in the anode of proton exchange membrane fuel cells (PEMFCs). This paper studies the phenomenon of the two-phase flow as well as the pressure drop fluctuation inside the flow field of a single cell during the purge process. The flow patterns are identified as intermittent purge and annular purge, and the two purge processes are contrastively analyzed and discussed. The intermittent purge greatly affects the fuel cell performance and thus it is not suitable for the in situ application. The annular purge process requires a higher pressure drop, and the critical pressure drop is calculated from the annular purge model. Furthermore, this value is quantitatively analyzed and validated by experiments. The results show that the annular purge is appropriate for removing liquid water out of the anode in the fuel cell.

  2. Effect of superficial velocity on vaporization pressure drop with propane in horizontal circular tube

    NASA Astrophysics Data System (ADS)

    Novianto, S.; Pamitran, A. S.; Nasruddin, Alhamid, M. I.

    2016-06-01

    Due to its friendly effect on the environment, natural refrigerants could be the best alternative refrigerant to replace conventional refrigerants. The present study was devoted to the effect of superficial velocity on vaporization pressure drop with propane in a horizontal circular tube with an inner diameter of 7.6 mm. The experiments were conditioned with 4 to 10 °C for saturation temperature, 9 to 20 kW/m2 for heat flux, and 250 to 380 kg/m2s for mass flux. It is shown here that increased heat flux may result in increasing vapor superficial velocity, and then increasing pressure drop. The present experimental results were evaluated with some existing correlations of pressure drop. The best prediction was evaluated by Lockhart-Martinelli (1949) with MARD 25.7%. In order to observe the experimental flow pattern, the present results were also mapped on the Wang flow pattern map.

  3. Ozone and hydrogen peroxide as strategies to control biomass in a trickling filter to treat methanol and hydrogen sulfide under acidic conditions.

    PubMed

    García-Pérez, Teresa; Le Borgne, Sylvie; Revah, Sergio

    2016-12-01

    The operation and performance of a biotrickling filter for methanol (MeOH) and hydrogen sulfide (H 2 S) removal at acid pH was studied. Excess biomass in the filter bed, causing performance loss and high pressure drop, was controlled by intermittent addition, of ozone (O 3 ) and hydrogen peroxide (H 2 O 2 ). The results showed that after adaptation to acid pH, the maximum elimination capacity (EC) reached for MeOH was 565 g m -3  h -1 (97 % RE). High MeOH loads resulted in increased biomass concentration within the support, triggering reductions in the removal efficiency (RE) for both compounds close to 50 %, and high pressure drop. At this stage, an inlet load of 150.2 ± 16.7 g m -3  h -1 of O 3 was fed by 38 days favoring biomass detachment, and EC recovery and lower pressure dropped with a maximum elimination capacity of 587 g m -3  h -1 (81 % RE) and 15.8 g m -3  h -1 (97 % RE) for MeOH and H 2 S, respectively. After O 3 addition, a rapid increase in biomass content and higher fluctuations in pressure drop were observed reducing the system performance. A second treatment with oxidants was implemented feeding a O 3 load of 4.8 ± 0.1 g m -3  h -1 for 7 days, followed by H 2 O 2 addition for 23 days, registering 607.5 g biomass  L -1 packing before and 367.5 g biomass  L -1 packing after the oxidant addition. PCR-DGGE analysis of different operating stages showed a clear change in the bacterial populations when O 3 was present while the fungal population was less affected.

  4. Left Ventricular Trabeculations Decrease the Wall Shear Stress and Increase the Intra-Ventricular Pressure Drop in CFD Simulations

    PubMed Central

    Sacco, Federica; Paun, Bruno; Lehmkuhl, Oriol; Iles, Tinen L.; Iaizzo, Paul A.; Houzeaux, Guillaume; Vázquez, Mariano; Butakoff, Constantine; Aguado-Sierra, Jazmin

    2018-01-01

    The aim of the present study is to characterize the hemodynamics of left ventricular (LV) geometries to examine the impact of trabeculae and papillary muscles (PMs) on blood flow using high performance computing (HPC). Five pairs of detailed and smoothed LV endocardium models were reconstructed from high-resolution magnetic resonance images (MRI) of ex-vivo human hearts. The detailed model of one LV pair is characterized only by the PMs and few big trabeculae, to represent state of art level of endocardial detail. The other four detailed models obtained include instead endocardial structures measuring ≥1 mm2 in cross-sectional area. The geometrical characterizations were done using computational fluid dynamics (CFD) simulations with rigid walls and both constant and transient flow inputs on the detailed and smoothed models for comparison. These simulations do not represent a clinical or physiological scenario, but a characterization of the interaction of endocardial structures with blood flow. Steady flow simulations were employed to quantify the pressure drop between the inlet and the outlet of the LVs and the wall shear stress (WSS). Coherent structures were analyzed using the Q-criterion for both constant and transient flow inputs. Our results show that trabeculae and PMs increase the intra-ventricular pressure drop, reduce the WSS and disrupt the dominant single vortex, usually present in the smoothed-endocardium models, generating secondary small vortices. Given that obtaining high resolution anatomical detail is challenging in-vivo, we propose that the effect of trabeculations can be incorporated into smoothed ventricular geometries by adding a porous layer along the LV endocardial wall. Results show that a porous layer of a thickness of 1.2·10−2 m with a porosity of 20 kg/m2 on the smoothed-endocardium ventricle models approximates the pressure drops, vorticities and WSS observed in the detailed models. PMID:29760665

  5. Pressure at the ground in a large tornado

    NASA Astrophysics Data System (ADS)

    Winn, W. P.; Hunyady, S. J.; Aulich, G. D.

    1999-09-01

    A number of instruments were placed on the ground across the path of a large tornado that passed west of the town of Allison, Texas, on June 8, 1995. The center of the tornado came within 660 m of the closest instrument, which recorded a pressure drop of 55 mbar and a subsequent pressure rise of 60 mbar. During the lowest recorded pressures (near r = 660 m), there were large and rapid pressure fluctuations; the largest fluctuation was a 10-mbar spike lasting 2 s. A second instrument on the opposite side of the tornado recorded a pressure drop of 26 mbar. From the pressure variations with time P(t) at the two instruments, the variation of pressure with distance p(r) from the center of the tornado has been deduced for r>660 m. As r decreases, the measured pressure function p(r) drops more abruptly than would be expected from conservation of angular momentum of air spiraling inward near the ground level.

  6. Controlling Vapor Pressure In Hanging-Drop Crystallization

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C.; Smith, Robbie

    1988-01-01

    Rate of evaporation adjusted to produce larger crystals. Device helps to control vapor pressure of water and other solvents in vicinity of hanging drop of solution containing dissolved enzyme protein. Well of porous frit (sintered glass) holds solution in proximity to drop of solution containing protein or enzyme. Vapor from solution in frit controls evaporation of solvent from drop to control precipitation of protein or enzyme. With device, rate of nucleation limited to decrease number and increase size (and perhaps quality) of crystals - large crystals of higher quality needed for x-ray diffraction studies of macromolecules.

  7. Pressure Drop Across Woven Screens Under Uniform and Nonuniform Flow Conditions. [flow characteristics of water through Dutch twill and square weave fabrics

    NASA Technical Reports Server (NTRS)

    Ludewig, M.; Omori, S.; Rao, G. L.

    1974-01-01

    Tests were conducted to determine the experimental pressure drop and velocity data for water flowing through woven screens. The types of materials used are dutch twill and square weave fabrics. Pressure drop measures were made at four locations in a rectangular channel. The data are presented as change in pressure compared with the average entry velocity and the numerical relationship is determined by dividing the volumetric flow rate by the screen area open to flow. The equations of continuity and momentum are presented. A computer program listing an extension of a theoretical model and data from that computer program are included.

  8. 40 CFR 63.9920 - What are my continuous monitoring requirements?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... scrubber subject to the operating limits for pressure drop and scrubber water flow rates in § 63.9890(b), you must at all times monitor the hourly average pressure drop and liquid flow rate using a CPMS...

  9. 40 CFR 63.9920 - What are my continuous monitoring requirements?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... scrubber subject to the operating limits for pressure drop and scrubber water flow rates in § 63.9890(b), you must at all times monitor the hourly average pressure drop and liquid flow rate using a CPMS...

  10. 40 CFR 63.9920 - What are my continuous monitoring requirements?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... scrubber subject to the operating limits for pressure drop and scrubber water flow rates in § 63.9890(b), you must at all times monitor the hourly average pressure drop and liquid flow rate using a CPMS...

  11. Discovery of riblets in a bird beak (Rynchops) for low fluid drag

    PubMed Central

    2016-01-01

    Riblet structures found on fast-swimming shark scales, such as those found on a mako shark, have been shown to reduce fluid drag. In previous experimental and modelling studies, riblets have been shown to provide drag reduction by lifting vortices formed in turbulent flow, decreasing overall shear stresses. Skimmer birds (Rynchops) are the only birds to catch fish in flight by flying just above the water surface with a submerged beak to fish for food. Because they need to quickly catch prey, reducing drag on their beak is advantageous. For the first time, riblet structures found on the beak of the skimmer bird have been studied experimentally and computationally for low fluid drag properties. In this study, skimmer replicas were studied for drag reduction through pressure drop in closed-channel, turbulent water flow. Pressure drop measurements are compared for black and yellow skimmer beaks in two configurations, and mako shark skin. In addition, two configurations of skimmer beak were modelled to compare drag properties and vortex structures. Results are discussed, and a conceptual model is presented to explain a possible drag reduction mechanism in skimmers. This article is part of the themed issue ‘Bioinspired hierarchically structured surfaces for green science’. PMID:27354734

  12. A steady state pressure drop model for screen channel liquid acquisition devices

    NASA Astrophysics Data System (ADS)

    Hartwig, J. W.; Darr, S. R.; McQuillen, J. B.; Rame, E.; Chato, D. J.

    2014-11-01

    This paper presents the derivation of a simplified one dimensional (1D) steady state pressure drop model for flow through a porous liquid acquisition device (LAD) inside a cryogenic propellant tank. Experimental data is also presented from cryogenic LAD tests in liquid hydrogen (LH2) and liquid oxygen (LOX) to compare against the simplified model and to validate the model at cryogenic temperatures. The purpose of the experiments was to identify the various pressure drop contributions in the analytical model which govern LAD channel behavior during dynamic, steady state outflow. LH2 pipe flow of LAD screen samples measured the second order flow-through-screen (FTS) pressure drop, horizontal LOX LAD outflow tests determined the relative magnitude of the third order frictional and dynamic losses within the channel, while LH2 inverted vertical outflow tests determined the magnitude of the first order hydrostatic pressure loss and validity of the full 1D model. When compared to room temperature predictions, the FTS pressure drop is shown to be temperature dependent, with a significant increase in flow resistance at LH2 temperatures. Model predictions of frictional and dynamic losses down the channel compare qualitatively with LOX LADs data. Meanwhile, the 1D model predicted breakdown points track the trends in the LH2 inverted outflow experimental results, with discrepancies being due to a non-uniform injection velocity across the LAD screen not accounted for in the model.

  13. Effect of Water Cut on Pressure Drop of Oil (D130) -Water Flow in 4″Horizontal Pipe

    NASA Astrophysics Data System (ADS)

    Basha, Mehaboob; Shaahid, S. M.; Al-Hems, Luai M.

    2018-03-01

    The oil-water flow in pipes is a challenging subject that is rich in physics and practical applications. It is often encountered in many oil and chemical industries. The pressure gradient of two phase flow is still subject of immense research. The present study reports pressure measurements of oil (D130)-water flow in a horizontal 4″ diameter stainless steel pipe at different flow conditions. Experiments were carried out for different water cuts (WC); 0-100%. Inlet oil-water flow rates were varied from 4000 to 8000 barrels-per-day in steps of 2000. It has been found that the frictional pressure drop decreases for WC = 0 - 40 %. With further increase in WC, friction pressure drop increases, this could be due to phase inversion.

  14. The Human Sympathetic Nervous System Response to Spaceflight

    NASA Technical Reports Server (NTRS)

    Ertl, Andrew C.; Diedrich, Andre; Paranjape, Sachin Y.; Biaggioni, Italo; Robertson, Rose Marie; Lane, Lynda D.; Shiavi, Richard; Robertson, David

    2003-01-01

    The sympathetic nervous system is an important part of the autonomic (or automatic) nervous system. When an individual stands up, the sympathetic nervous system speeds the heart and constricts blood vessels to prevent a drop in blood pressure. A significant number of astronauts experience a drop in blood pressure when standing for prolonged periods after they return from spaceflight. Difficulty maintaining blood pressure with standing is also a daily problem for many patients. Indirect evidence available before the Neurolab mission suggested the problem in astronauts while in space might be due partially to reduced sympathetic nervous system activity. The purpose of this experiment was to identify whether sympathetic activity was reduced during spaceflight. Sympathetic nervous system activity can be determined in part by measuring heart rate, nerve activity going to blood vessels, and the release of the hormone norepinephrine into the blood. Norepinephrine is a neurotransmitter discharged from active sympathetic nerve terminals, so its rate of release can serve as a marker of sympathetic nervous system action. In addition to standard cardiovascular measurements (heart rate, blood pressure), we determined sympathetic nerve activity as well as norepinephrine release and clearance on four crewmembers on the Neurolab mission. Contrary to our expectation, the results demonstrated that the astronauts had mildly elevated resting sympathetic nervous system activity in space. Sympathetic nervous system responses to stresses that simulated the cardiovascular effects of standing (lower body negative pressure) were brisk both during and after spaceflight. We concluded that, in the astronauts tested, the activity and response of the sympathetic nervous system to cardiovascular stresses appeared intact and mildly elevated both during and after spaceflight. These changes returned to normal within a few days.

  15. Validation of High Aspect Ratio Cooling in a 89 kN (20,000 lb(sub f)) Thrust Combustion Chamber

    NASA Technical Reports Server (NTRS)

    Wadel, Mary F.; Meyer, Michael L.

    1996-01-01

    In order to validate the benefits of high aspect ratio cooling channels in a large scale rocket combustion chamber, a high pressure, 89 kN (20,000 lbf) thrust, contoured combustion chamber was tested in the NASA Lewis Research Center Rocket Engine Test Facility. The combustion chamber was tested at chamber pressures from 5.5 to 11.0 MPa (800-1600 psia). The propellants were gaseous hydrogen and liquid oxygen at a nominal mixture ratio of six, and liquid hydrogen was used as the coolant. The combustion chamber was extensively instrumented with 30 backside skin thermocouples, 9 coolant channel rib thermocouples, and 10 coolant channel pressure taps. A total of 29 thermal cycles, each with one second of steady state combustion, were completed on the chamber. For 25 thermal cycles, the coolant mass flow rate was equal to the fuel mass flow rate. During the remaining four thermal cycles, the coolant mass flow rate was progressively reduced by 5, 6, 11, and 20 percent. Computer analysis agreed with coolant channel rib thermocouples within an average of 9 percent and with coolant channel pressure drops within an average of 20 percent. Hot-gas-side wall temperatures of the chamber showed up to 25 percent reduction, in the throat region, over that of a conventionally cooled combustion chamber. Reducing coolant mass flow yielded a reduction of up to 27 percent of the coolant pressure drop from that of a full flow case, while still maintaining up to a 13 percent reduction in a hot-gas-side wall temperature from that of a conventionally cooled combustion chamber.

  16. Numerical simulation on the powder propellant pickup characteristics of feeding system at high pressure

    NASA Astrophysics Data System (ADS)

    Sun, Haijun; Hu, Chunbo; Zhu, Xiaofei

    2017-10-01

    A numerical study of powder propellant pickup progress at high pressure was presented in this paper by using two-fluid model with kinetic theory of granular flow in the computational fluid dynamics software package ANSYS/Fluent. Simulations were conducted to evaluate the effects of initial pressure, initial powder packing rate and mean particle diameter on the flow characteristics in terms of velocity vector distribution, granular temperature, pressure drop, particle velocity and volume. The numerical results of pressure drop were also compared with experiments to verify the TFM model. The simulated results show that the pressure drop value increases as the initial pressure increases, and the granular temperature under the conditions of different initial pressures and packing rates is almost the same in the area of throttling orifice plate. While there is an appropriate value for particle size and packing rate to form a ;core-annulus; structure in powder box, and the time-averaged velocity vector distribution of solid phase is inordinate.

  17. Hydrodynamic shrinkage of liquid CO2 Taylor drops in a straight microchannel

    NASA Astrophysics Data System (ADS)

    Qin, Ning; Wen, John Z.; Ren, Carolyn L.

    2018-03-01

    Hydrodynamic shrinkage of liquid CO2 drops in water under a Taylor flow regime is studied using a straight microchannel (length/width ~100). A general form of a mathematical model of the solvent-side mass transfer coefficient (k s) is developed first. Based on formulations of the surface area (A) and the volume (V) of a general Taylor drop in a rectangular microchannel, a specific form of k s is derived. Drop length and speed are experimentally measured at three specified positions of the straight channel, namely, immediately after drop generation (position 1), the midpoint of the channel (position 2) and the end of the channel (position 3). The reductions of drop length (L x , x  =  1, 2, 3) from position 1 to 2 and down to 3 are used to quantify the drop shrinkage. Using the specific model, k s is calculated mainly based on L x and drop flowing time (t). Results show that smaller CO2 drops produced by lower flow rate ratios ({{Q}LC{{O2}}}/{{Q}{{H2}O}} ) are generally characterized by higher (nearly three times) k s and Sherwood numbers than those produced by higher {{Q}LC{{O2}}}/{{Q}{{H2}O}} , which is essentially attributed to the larger effective portion of the smaller drop contributing in the mass transfer under same levels of the flowing time and the surface-to-volume ratio (~104 m-1) of all drops. Based on calculated pressure drops of the segmented flow in microchannel, the Peng-Robinson equation of state and initial pressures of drops at the T-junction in experiments, overall pressure drop (ΔP t) in the straight channel as well as the resulted drop volume change are quantified. ΔP t from position 1-3 is by average 3.175 kPa with a ~1.6% standard error, which only leads to relative drop volume changes of 0.3‰ to 0.52‰.

  18. Study on atomization features of a plain injector in high speed transverse air stream

    NASA Astrophysics Data System (ADS)

    Wan, Jian; Gu, Shanjian; Yang, Maolin; Xiao, Weihui

    1990-04-01

    The atomization features of a plain injector in high-speed transverse air stream were investigated by Malvern. In this investigation, air velocity ranged from 50-150m/s, pressure drop of fuel injector, (1.1 - 4.2) x 10 to the 6th Pa, diameter of orifice, 0.5 - 0.9 mm, axial distance between the injector and the survey plane, 50 - 250 mm. Aviation kerosene was used in all experiments. It was found that the atomization features in high pressure drop of fuel injector were greatly differed from the low pressure drop of fuel injector.

  19. The respective effect of under-rib convection and pressure drop of flow fields on the performance of PEM fuel cells

    PubMed Central

    Wang, Chao; Zhang, Qinglei; Shen, Shuiyun; Yan, Xiaohui; Zhu, Fengjuan; Cheng, Xiaojing; Zhang, Junliang

    2017-01-01

    The flow field configuration plays an important role on the performance of proton exchange membrane fuel cells (PEMFCs). For instance, channel/rib width and total channel cross-sectional area determine the under-rib convection and pressure drop respectively, both of which directly influence the water removal, in turn affecting the oxygen supply and cathodic oxygen reduction reaction. In this study, effects of under-rib convection and pressure drop on cell performance are investigated experimentally and numerically by adjusting the channel/rib width and channel cross-sectional area of flow fields. The results show that the performance differences with various flow field configurations mainly derive from the oxygen transport resistance which is determined by the water accumulation degree, and the cell performance would benefit from the narrower channels and smaller cross sections. It reveals that at low current densities when water starts to accumulate in GDL at under-rib regions, the under-rib convection plays a more important role in water removal than pressure drop does; in contrast, at high current densities when water starts to accumulate in channels, the pressure drop dominates the water removal to facilitate the oxygen transport to the catalyst layer. PMID:28251983

  20. High-Pressure Transport Properties Of Fluids: Theory And Data From Levitated Drops At Combustion-Relevant Temperatures

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Harstad, Kenneth; Ohsaka, Kenichi

    2003-01-01

    Although the high pressure multicomponent fluid conservation equations have already been derived and approximately validated for binary mixtures by this PI, the validation of the multicomponent theory is hampered by the lack of existing mixing rules for property calculations. Classical gas dynamics theory can provide property mixing-rules at low pressures exclusively. While thermal conductivity and viscosity high-pressure mixing rules have been documented in the literature, there is no such equivalent for the diffusion coefficients and the thermal diffusion factors. The primary goal of this investigation is to extend the low pressure mixing rule theory to high pressures and validate the new theory with experimental data from levitated single drops. The two properties that will be addressed are the diffusion coefficients and the thermal diffusion factors. To validate/determine the property calculations, ground-based experiments from levitated drops are being conducted.

  1. In situ studies of microbial inactivation during high pressure processing

    NASA Astrophysics Data System (ADS)

    Maldonado, Jose Antonio; Schaffner, Donald W.; Cuitiño, Alberto M.; Karwe, Mukund V.

    2016-01-01

    High pressure processing (HPP) has been shown to reduce microbial concentration in foods. The mechanisms of microbial inactivation by HPP have been associated with damage to cell membranes. The real-time response of bacteria to HPP was measured to elucidate the mechanisms of inactivation, which can aid in designing more effective processes. Different pressure cycling conditions were used to expose Enterobacter aerogenes cells to HPP. Propidium iodide (PI) was used as a probe, which fluoresces after penetrating cells with damaged membranes and binding with nucleic acids. A HPP vessel with sapphire windows was used for measuring fluorescence in situ. Membrane damage was detected during pressurization and hold time, but not during depressurization. The drop in fluorescence was larger than expected after pressure cycles at higher pressure and longer times. This indicated possible reversible disassociation of ribosomes resulting in additional binding of PI to exposed RNA under pressure and its release after depressurization.

  2. Study of two-phase flow in helical and spiral coils

    NASA Technical Reports Server (NTRS)

    Keshock, Edward G.; Yan, AN; Omrani, Adel

    1990-01-01

    The principal purposes of the present study were to: (1) observe and develop a fundamental understanding of the flow regimes and their transitions occurring in helical and spiral coils; and (2) obtain pressure drop measurements of such flows, and, if possible, develop a method for predicting pressure drop in these flow geometries. Elaborating upon the above, the general intent is to develop criteria (preferably generalized) for establishing the nature of the flow dynamics (e.g. flow patterns) and the magnitude of the pressure drop in such configurations over a range of flow rates and fluid properties. Additionally, the visualization and identification of flow patterns were a fundamental objective of the study. From a practical standpoint, the conditions under which an annular flow pattern exists is of particular practical importance. In the possible practical applications which would implement these geometries, the working fluids are likely to be refrigerant fluids. In the present study the working fluids were an air-water mixture, and refrigerant 113 (R-113). In order to obtain records of flow patterns and their transitions, video photography was employed extensively. Pressure drop measurements were made using pressure differential transducers connected across pressure taps in lines immediately preceding and following the various test sections.

  3. Effects of vascular structures on the pressure drop in stenotic coronary arteries

    NASA Astrophysics Data System (ADS)

    Kim, Jaerim; Choi, Haecheon; Kweon, Jihoon; Kim, Young-Hak; Yang, Dong Hyun; Kim, Namkug

    2016-11-01

    A stenosis, which is a narrowing of a blood vessel, of the coronary arteries restricts the flow to the heart and it may lead to sudden cardiac death. Therefore, the accurate determination of the severity of a stenosis is a critical issue. Due to the convenience of visual assessments, geometric parameters such as the diameter stenosis and area stenosis have been used, but the decision based on them sometimes under- or overestimates the functional severity of a stenosis, i.e., pressure drop. In this study, patient-specific models that have similar area stenosis but different pressure drops are considered, and their geometries are reconstructed from the coronary computed tomography angiography (CCTA). Both steady and pulsatile inflows are considered for the simulations. Comparison between two models that have a bifurcation right after a stenosis shows that the parent to daughter vessel angle results in different secondary flow patterns and wall shear stress distributions which affect the pressure downstream. Thus, the structural features of the lower and upper parts of a stenosis significantly affect the pressure drop. Supported by 20152020105600.

  4. Gas-Liquid Packed Bed Reactors in Microgravity

    NASA Technical Reports Server (NTRS)

    Balakotaiah, Vemuri; Motil, Brian J.; McCready, Mark J.; Kamotani, Yasuhiro

    2004-01-01

    Flow regime and pressure drop data was obtained and analyzed. Pulse flow exists at lower liquid flow rates in 0-g compared to 1-g. 1-g flow regime maps do not apply in microgravity. Pressure drop is higher in microgravity (enhanced interfacial effects).

  5. The Supraglottic Effect of a Reduction in Expiratory Mask Pressure During Continuous Positive Airway Pressure

    PubMed Central

    Masdeu, Maria J.; Patel, Amit V.; Seelall, Vijay; Rapoport, David M.; Ayappa, Indu

    2012-01-01

    Study Objectives: Patients with obstructive sleep apnea may have difficulty exhaling against positive pressure, hence limiting their acceptance of continuous positive airway pressure (CPAP). C-Flex is designed to improve comfort by reducing pressure in the mask during expiration proportionally to expiratory airflow (3 settings correspond to increasing pressure changes). When patients use CPAP, nasal resistance determines how much higher supraglottic pressure is than mask pressure. We hypothesized that increased nasal resistance results in increased expiratory supraglottic pressure swings that could be mitigated by the effects of C-Flex on mask pressure. Design: Cohort study. Setting: Sleep center. Participants: Seventeen patients with obstructive sleep apnea/hypopnea syndrome and a mechanical model of the upper airway. Interventions: In patients on fixed CPAP, CPAP with different C-Flex levels was applied multiple times during the night. In the model, 2 different respiratory patterns and resistances were tested. Measurements and Results: Airflow, expiratory mask, and supraglottic pressures were measured on CPAP and on C-Flex. Swings in pressure during expiration were determined. On CPAP, higher nasal resistance produced greater expiratory pressure swings in the supraglottis in the patients and in the model, as expected. C-Flex 3 produced expiratory drops in mask pressure (range −0.03 to −2.49 cm H2O) but mitigated the expira-tory pressure rise in the supraglottis only during a sinusoidal respiratory pattern in the model. Conclusions: Expiratory changes in mask pressure induced by C-Flex did not uniformly transmit to the supraglottis in either patients with obstructive sleep apnea on CPAP or in a mechanical model of the upper airway with fixed resistance. Data suggest that the observed lack of expiratory drop in supraglottic pressure swings is related to dynamics of the C-Flex algorithm. Citation: Masdeu MJ; Patel AV; Seelall V; Rapoport DM; Ayappa I. The supraglottic effect of a reduction in expiratory mask pressure during continuous positive airway pressure. SLEEP 2012;35(2):263-272. PMID:22294817

  6. Rectangular Drop Vehicle in the Zero Gravity Research Facility

    NASA Image and Video Library

    1969-03-21

    A rectangular drop test vehicle perched above 450-foot shaft at the Zero Gravity Research Facility at NASA Lewis Research Center. The drop tower was designed to provide five seconds of microgravity during a normal drop, but had a pneumatic gun that could quickly propel the vehicle to the top of the shaft prior to its drop, thus providing ten seconds of microgravity. The shaft contained a steel-lined vacuum chamber 20 feet in diameter and 469 feet deep. The package was stopped at the bottom of the pit by a 15-foot deep deceleration cart filled with polystyrene pellets. During normal operations, a cylindrical 3-foot diameter and 11-foot long vehicle was used to house the experiments, instrumentation, and high speed cameras. The 4.5-foot long and 1.5-foot wide rectangular vehicle, seen in this photograph, was used less frequently. A 3-foot diameter orb was used for the ten second drops. After the test vehicle was prepared it was suspended above the shaft from the top of the chamber. A lid was used to seal the top of the chamber. The vacuum system reduced the pressure levels inside the chamber. The bolt holding the vehicle was then sheared and the vehicle plummeted into the deceleration cart.

  7. Synthetic Vortex Generator Jets Used to Control Separation on Low-Pressure Turbine Airfoils

    NASA Technical Reports Server (NTRS)

    Ashpis, David E.; Volino, Ralph J.

    2005-01-01

    Low-pressure turbine (LPT) airfoils are subject to increasingly stronger pressure gradients as designers impose higher loading in an effort to improve efficiency and lower cost by reducing the number of airfoils in an engine. When the adverse pressure gradient on the suction side of these airfoils becomes strong enough, the boundary layer will separate. Separation bubbles, particularly those that fail to reattach, can result in a significant loss of lift and a subsequent degradation of engine efficiency. The problem is particularly relevant in aircraft engines. Airfoils optimized to produce maximum power under takeoff conditions may still experience boundary layer separation at cruise conditions because of the thinner air and lower Reynolds numbers at altitude. Component efficiency can drop significantly between takeoff and cruise conditions. The decrease is about 2 percent in large commercial transport engines, and it could be as large as 7 percent in smaller engines operating at higher altitudes. Therefore, it is very beneficial to eliminate, or at least reduce, the separation bubble.

  8. Evaluation of Open Cell Foam Heat Transfer Enhancement for Liquid Rocket Engine

    NASA Technical Reports Server (NTRS)

    Chung, J. N.; Tully, Landon; Kim, Jung Hwan; Jones, Gregg W.; Watkins, William

    2006-01-01

    As NASA pursues the exploration mission, advanced propulsion for the next generation of spacecraft will be needed. These new propulsion systems will require higher performance and increased durability, despite current limitations on materials. A break-through technology is needed in the thrust chamber. In this paper the idea of using a porous metallic foam is examined for its potential cooling enhancement capabilities. The goal is to increase the chamber wall cooling without creating an additional pressure drop penalty. A feasibility study based on experiments at laboratory-scale conditions was performed and analysis at rocket conditions is underway. In the experiment, heat transfer and pressure drop data were collected using air as the coolant in a copper or nickel foam filled annular channel. The foam-channel performance was evaluated based on comparison with conventional microchannel cooling passages under equal pressure drop conditions. The heat transfer enhancement of the foam channel over the microchannel ranges from 130% to 172%. The enhancement is relatively independent of the pressure drop and increases with decreasing pore size. A direct numerical simulation model of the foam heat exchange has been built. The model is based on the actual metal foam microstructure of thin ligaments (0.2- 0.3 mm in diameter) that form a network of interconnected open-cells. The cell dimension is around 2 mm. The numerical model was built using the FLUENT CFD code. Comparison of the pressure drop results predicted by the current model with those experimental data of Leong and Jin [8] shows favorable comparisons. Pressure drop predictions have been made using hydrogen as a coolant at typical rocket conditions. Conjugate heat transfer analysis using the foam filled channel is planned for the future.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barleon, L.; Buehler, L.; Molokov, S.

    Magnetohydrodynamic (MHD) flow through a 90{degrees} bend, in which the flow is turned from the direction perpendicular to magnetic field lines into a direction aligned with the field, is characterized by strong three-dimensional effects leading to additional pressure drop and large deformations in the velocity distribution. Since such bends are basic elements of a fusion reactor blanket, the question whether the additional pressure drop exceeds unacceptable limits or whether the change in flow distribution may lead to unfavorable heat transfer conditions as to be answered. To investigate MHD flows in a right angle bend, several experiments have been performed inmore » a wide range of the relevant parameters. In the lower range of the interaction parameter N (N {much_lt} 10{sup 4}) the total pressure drop over the whole bend shows a pronounced N-dependence but only a weak dependence on the Hartmann number M. Both effects can be combined to a pressure drop correlation. At higher values of N and M the experimental results for pressure drop and potential distribution agree rather well with theoretical ones obtained on the basis of an asymptotic approach for high N and M. It can be shown theoretically and confirmed by the experiment that, even at high N and M the additional pressure drop in a right angle bend is not excessively high. For the investigated bend with conducting channel walls the predicted flow distribution does not show any stagnant zone at the high heat flux walls in the perfectly aligned part of the duct. This result, however, could not be checked experimentally because there is still no reliable velocity measurement technique available for field-aligned flows.« less

  10. Pressure drop reduction and heat transfer deterioration of slush nitrogen in triangular and circular pipe flows

    NASA Astrophysics Data System (ADS)

    Ohira, Katsuhide; Kurose, Kizuku; Okuyama, Jun; Saito, Yutaro; Takahashi, Koichi

    2017-01-01

    Slush fluids such as slush hydrogen and slush nitrogen are characterized by superior properties as functional thermal fluids due to their density and heat of fusion. In addition to allowing efficient hydrogen transport and storage, slush hydrogen can serve as a refrigerant for high-temperature superconducting (HTS) equipment using MgB2, with the potential for synergistic effects. In this study, pressure drop reduction and heat transfer deterioration experiments were performed on slush nitrogen flowing in a horizontal triangular pipe with sides of 20 mm under the conditions of three different cross-sectional orientations. Experimental conditions consisted of flow velocity (0.3-4.2 m/s), solid fraction (0-25 wt.%), and heat flux (0, 10, and 20 kW/m2). Pressure drop reduction became apparent at flow velocities exceeding about 1.3-1.8 m/s, representing a maximum amount of reduction of 16-19% in comparison with liquid nitrogen, regardless of heating. Heat transfer deterioration was seen at flow velocities of over 1.2-1.8 m/s, for a maximum amount of deterioration of 13-16%. The authors of the current study compared the results for pressure drop reduction and heat transfer deterioration in triangular pipe with those obtained previously for circular and square pipes, clarifying differences in flow and heat transfer properties. Also, a correlation equation was obtained between the slush Reynolds number and the pipe friction factor, which is important in the estimation of pressure drop in unheated triangular pipe. Furthermore, a second correlation equation was derived between the modified slush Reynolds number and the pipe friction factor, enabling the integrated prediction of pressure drop in both unheated triangular and circular pipes.

  11. High-Pressure-High-Temperature Processing Reduces Maillard Reaction and Viscosity in Whey Protein-Sugar Solutions.

    PubMed

    Avila Ruiz, Geraldine; Xi, Bingyan; Minor, Marcel; Sala, Guido; van Boekel, Martinus; Fogliano, Vincenzo; Stieger, Markus

    2016-09-28

    The aim of the study was to determine the influence of pressure in high-pressure-high-temperature (HPHT) processing on Maillard reactions and protein aggregation of whey protein-sugar solutions. Solutions of whey protein isolate containing either glucose or trehalose at pH 6, 7, and 9 were treated by HPHT processing or conventional high-temperature (HT) treatments. Browning was reduced, and early and advanced Maillard reactions were retarded under HPHT processing at all pH values compared to HT treatment. HPHT induced a larger pH drop than HT treatments, especially at pH 9, which was not associated with Maillard reactions. After HPHT processing at pH 7, protein aggregation and viscosity of whey protein isolate-glucose/trehalose solutions remained unchanged. It was concluded that HPHT processing can potentially improve the quality of protein-sugar-containing foods, for which browning and high viscosities are undesired, such as high-protein beverages.

  12. Two-phase heat transfer and pressure drop of LNG during saturated flow boiling in a horizontal tube

    NASA Astrophysics Data System (ADS)

    Chen, Dongsheng; Shi, Yumei

    2013-12-01

    Two-phase heat transfer and pressure drop of LNG (liquefied natural gas) have been measured in a horizontal smooth tube with an inner diameter of 8 mm. The experiments were conducted at inlet pressures from 0.3 to 0.7 MPa with a heat flux of 8-36 kW m-2, and mass flux of 49.2-201.8 kg m-2 s-1. The effect of vapor quality, inlet pressure, heat flux and mass flux on the heat transfer characteristic are discussed. The comparisons of the experimental data with the predicted value by existing correlations are analyzed. Zou et al. (2010) correlation shows the best accuracy with 24.1% RMS deviation among them. Moreover four frictional pressure drop methods are also chosen to compare with the experimental database.

  13. Contact angle hysteresis and oil film lubrication in electrowetting with two immiscible liquids

    NASA Astrophysics Data System (ADS)

    Gao, J.; Mendel, N.; Dey, R.; Baratian, D.; Mugele, F.

    2018-05-01

    Electrowetting (EW) of water drops in ambient oil has found a wide range of applications including lab-on-a-chip devices, display screens, and variable focus lenses. The efficacy of all these applications is dependent on the contact angle hysteresis (CAH), which is generally reduced in the presence of ambient oil due to thin lubrication layers. While it is well-known that AC voltage reduces the effective contact angle hysteresis (CAH) for EW in ambient air, we demonstrate here that CAH for EW in ambient oil increases with increasing AC and DC voltage. Taking into account the disjoining pressure of the fluoropolymer-oil-water system, short range chemical interactions, viscous oil entrainment, and electrostatic stresses, we find that this observation can be explained by progressive thinning of the oil layer underneath the drop with increasing voltage. This exposes the droplet to the roughness of the underlying solid and thereby increases hysteresis.

  14. Spacecraft compartment venting

    NASA Astrophysics Data System (ADS)

    Scialdone, John J.

    1998-10-01

    At various times, concerns have been expressed that rapid decompressions of compartments of gas pockets and thermal blankets during spacecraft launches may have caused pressure differentials across their walls sufficient to cause minor structural failures, separations of adhesively-joined parts, ballooning, and flapping of blankets. This paper presents a close form equation expressing the expected pressure differentials across the walls of a compartment as a function of the external to the volume pressure drops, the pressure at which the rates occur and the vent capability of the compartment. The pressure profiles measured inside the shrouds of several spacecraft propelled by several vehicles and some profiles obtained from ground vacuum systems have been included. The equation can be used to design the appropriate vent, which will preclude excessive pressure differentials. Precautions and needed approaches for the evaluations of the expected pressures have been indicated. Methods to make a rapid assessment of the response of the compartment to rapid external pressure drops have been discussed. These are based on the evaluation of the compartment vent flow conductance, the volume and the length of time during which the rapid pressure drop occurs.

  15. Spacecraft Compartment Venting

    NASA Technical Reports Server (NTRS)

    Scialdone, John J.

    1998-01-01

    At various time concerns have been expressed that rapid decompressions of compartments of gas pockets and thermal blankets during spacecraft launches may have caused pressure differentials across their walls sufficient to cause minor structural failures, separations of adhesively-joined parts, ballooning, and flapping of blankets. This paper presents a close form equation expressing the expected pressure differentials across the walls of a compartment as a function of the external to the volume pressure drops, the pressure at which the rates occur and the vent capability of the compartment. The pressure profiles measured inside the shrouds of several spacecraft propelled by several vehicles and some profiles obtained from ground vacuum systems have been included. The equation can be used to design the appropriate vent, which will preclude excessive pressure differentials. Precautions and needed approaches for the evaluations of the expected pressures have been indicated. Methods to make a rapid assessment of the response of the compartment to rapid external pressure drops have been discussed. These are based on the evaluation of the compartment vent flow conductance, the volume and the length of time during which the rapid pressure drop occurs.

  16. Influence of bronchial diameter change on the airflow dynamics based on a pressure-controlled ventilation system.

    PubMed

    Ren, Shuai; Cai, Maolin; Shi, Yan; Xu, Weiqing; Zhang, Xiaohua Douglas

    2018-03-01

    Bronchial diameter is a key parameter that affects the respiratory treatment of mechanically ventilated patients. In this paper, to reveal the influence of bronchial diameter on the airflow dynamics of pressure-controlled mechanically ventilated patients, a new respiratory system model is presented that combines multigeneration airways with lungs. Furthermore, experiments and simulation studies to verify the model are performed. Finally, through the simulation study, it can be determined that in airway generations 2 to 7, when the diameter is reduced to half of the original value, the maximum air pressure (maximum air pressure in lungs) decreases by nearly 16%, the maximum flow decreases by nearly 30%, and the total airway pressure loss (sum of each generation pressure drop) is more than 5 times the original value. Moreover, in airway generations 8 to 16, with increasing diameter, the maximum air pressure, maximum flow, and total airway pressure loss remain almost constant. When the diameter is reduced to half of the original value, the maximum air pressure decreases by 3%, the maximum flow decreases by nearly 5%, and the total airway pressure loss increases by 200%. The study creates a foundation for improvement in respiratory disease diagnosis and treatment. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Acoustic forcing of a liquid drop

    NASA Technical Reports Server (NTRS)

    Lyell, M. J.

    1992-01-01

    The development of systems such as acoustic levitation chambers will allow for the positioning and manipulation of material samples (drops) in a microgravity environment. This provides the capability for fundamental studies in droplet dynamics as well as containerless processing work. Such systems use acoustic radiation pressure forces to position or to further manipulate (e.g., oscillate) the sample. The primary objective was to determine the effect of a viscous acoustic field/tangential radiation pressure forcing on drop oscillations. To this end, the viscous acoustic field is determined. Modified (forced) hydrodynamic field equations which result from a consistent perturbation expansion scheme are solved. This is done in the separate cases of an unmodulated and a modulated acoustic field. The effect of the tangential radiation stress on the hydrodynamic field (drop oscillations) is found to manifest as a correction to the velocity field in a sublayer region near the drop/host interface. Moreover, the forcing due to the radiation pressure vector at the interface is modified by inclusion of tangential stresses.

  18. Implications of Sub-Hydrostatic Pressures in the Bravo Dome Natural CO2 Reservoir for the Long-Term Security of Geological Carbon Dioxide Storage

    NASA Astrophysics Data System (ADS)

    Akhbari, D.; Hesse, M. A.; Larson, T.

    2014-12-01

    The Bravo Dome field in northeast New Mexico is one of the largest gas accumulations worldwide and the largest natural CO2 accumulation in North America. The field is only 580-900 m deep and located in the Permian Tubb sandstone that unconformably overlies the granitic basement. Sathaye et al. (2014) estimated that 1.3 Gt of CO2 is stored at the reservoir. A major increase in the pore pressure relative to the hydrostatic pressure is expected due to the large amount of CO2 injected into the reservoir. However, the pre-production gas pressures indicate that most parts of the reservoir are approximately 5 MPa below hydrostatic pressure. Three processes could explain the under pressure in the Bravo Dome reservoir; 1) erosional unloading, 2) CO2 dissolution into the ambient brine, 3) cooling of CO2after injection. Analytical solutions suggest that an erosion rate of 180 m/Ma is required to reduce the pore pressures to the values observed at Bravo Dome. Given that the current erosion rate is only 5 m/Ma (Nereson et al. 2013); the sub-hydrostatic pressures at Bravo Dome are likely due to CO2dissolution and cooling. To investigate the impact of CO2 dissolution on the pore pressure we have developed new analytical solutions and conducted laboratory experiments. We assume that gaseous CO2 was confined to sandstones during emplacement due to the high entry pressure of the siltstones. After emplacement the CO2 dissolves in to the brine contained in the siltstones and the pressure in the sandstones declines. Assuming the sandstone-siltstone system is closed, the pressure decline due to CO2 dissolution is controlled by a single dimensionless number, η = KHRTVw /Vg. Herein, KH is Henry's constant, R is ideal gas constant, T is temperature, Vw is water volume, and Vg is CO2 volume. The pressure drop is controlled by the ratio of water volume to CO2 volume and η varies between 0.1 to 8 at Bravo Dome. This corresponds to pressure drops between 0.8-7.5 MPa and can therefore account for the observed 5 MPa drop in pore pressures at Bravo Dome. This is consistent with geochemical observation suggesting significant dissolution of CO2 at Bravo Dome (Gilfillan 2009). The observation of sub-hydrostatic pressures in CO2 reservoirs is important because they illustrate that CO2 dissolution may mitigate problems due to injection induced overpressure in the long-term.

  19. Heat transfer and pressure drop measurements in an air/molten salt direct-contact heat exchanger

    NASA Astrophysics Data System (ADS)

    Bohn, Mark S.

    1988-11-01

    This paper presents a comparison of experimental data with a recently published model of heat exchange in irrigated packed beds. Heat transfer and pressure drop were measured in a 150 mm (ID) column with a 610 mm bed of metal Pall rings. Molten nitrate salt and preheated air were the working fluids with a salt inlet temperature of approximately 440 C and air inlet temperatures of approximately 230 C. A comparison between the experimental data and the heat transfer model is made on the basis of heat transfer from the salt. For the range of air and salt flow rates tested, 0.3 to 1.2 kg/sq m/s air flow and 6 to 18 kg/sq m/s salt flow, the data agree with the model within 22 percent standard deviation. In addition, a model for the column pressure drop was validated, agreeing with the experimental data within 18 percent standard deviation over the range of column pressure drop from 40 to 1250 Pa/m.

  20. Operational durability of a giant ER valve for Braille display

    NASA Astrophysics Data System (ADS)

    Luning, Xu; Han, Li; Yufei, Li; Shen, Rong; Kunquan, Lu

    2017-05-01

    The compact configuration of giant ER (electrorheological) valves provides the possibility of realizing a full-page Braille display. The operational durability of ER valves is a key issue in fulfilling a Braille display. A giant ER valve was used to investigate the variations in pressure drops and critical pressure drops of the valves over a long period under some typical operational parameters. The results indicate that neither the pressure drops nor critical pressure drops of giant ER valves show apparent deterioration over a long period. Without ER fluid exchange, a blockage appears in the channel of the valve because the ER structures induced by an external electric field cannot be broken by the Brownian motion of hydraulic oil molecules when the external electric field is removed. Forcing ER fluid flow is an effective and necessary method to keep the channel of the valve unblocked. Thus the operational durability of the valve using giant ER fluids is able to meet the demands of Braille display.

  1. Condensation heat transfer and pressure drop of R-410A in a 7.0 mm O.D. microfin tube at low mass fluxes

    NASA Astrophysics Data System (ADS)

    Kim, Nae-Hyun

    2016-12-01

    R-410A condensation heat transfer and pressure drop data are provided for a 7.0 mm O.D. microfin tube at low mass fluxes (50-250 kg/m2 s). The heat transfer coefficient of the microfin tube shows a minimum behavior with the mass flux. At a low mass flux, where flow pattern is stratified, condensation induced by surface tension by microfins overwhelms condensation induced by shear, and the heat transfer coefficient decreases as mass flux increases. At a high mass flux, where flow pattern is annular, condensation induced by shear governs the heat transfer, and the heat transfer coefficient increases as mass flux increases. The pressure drop of the microfin tube is larger than that of the smooth tube at the annular flow regime. On the contrary, the pressure drop of the smooth tube is larger than that of the microfin tube at the stratified flow regime.

  2. 40 CFR Table 2b to Subpart Zzzz of... - Operating Limitations for New and Reconstructed 2SLB and Compression Ignition Stationary RICE...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... stationary RICE complying with the requirement to reduce CO emissions and using an oxidation catalyst; or... concentration of formaldehyde in the stationary RICE exhaust and using an oxidation catalyst; or 4SLB stationary... stationary RICE exhaust and using an oxidation catalyst a. maintain your catalyst so that the pressure drop...

  3. A study of pressure losses in residential air distribution systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abushakra, Bass; Walker, Iain S.; Sherman, Max H.

    2002-07-01

    An experimental study was conducted to evaluate the pressure drop characteristics of residential duct system components that are either not available or not thoroughly (sometimes incorrectly) described in existing duct design literature. The tests were designed to imitate cases normally found in typical residential and light commercial installations. The study included three different sizes of flexible ducts, under different compression configurations, splitter boxes, supply boots, and a fresh air intake hood. The experimental tests conformed to ASHRAE Standard 120P--''Methods of Testing to Determine Flow Resistance of HVAC Air Ducts and Fittings''. The flexible duct study covered compressibility and bending effectsmore » on the total pressure drop, and the results showed that the available published references tend to underestimate the effects of compression in flexible ducts that can increase pressure drops by up to a factor of nine. The supply boots were tested under different configurations including a setup where a flexible duct elbow connection was considered as an integral part of the supply boot. The supply boots results showed that diffusers can increase the pressure drop by up to a factor of two in exit fittings, and the installation configuration can increase the pressure drop by up to a factor of five. The results showed that it is crucial for designers and contractors to be aware of the compressibility effects of the flexible duct, and the installation of supply boots and diffusers.« less

  4. Passive control of base pressure on an axisymmetric blunt body using a perimetric slit

    NASA Astrophysics Data System (ADS)

    García de la Cruz, Juan Marcos; Oxlade, Anthony R.; Morrison, Jonathan F.

    2017-04-01

    The effect on the base pressure of a thin slit located at the base edge of a blunt axisymmetric body, communicating an internal cavity with the external flow, is investigated. A parametric study is performed of the effect on base pressure of changes in slit size and cavity depth. The base pressure increases initially with increasing cavity depth, but saturates at a depth which depends on the slit size. The base pressure increases monotonically up to 5 % with increasing slit size for the geometries tested. An upper limit of base pressure recovery of 20 % is extrapolated from the data. It is observed that the main effect of the slit is to reduce the instantaneous pressure asymmetry, which is linked to the total base pressure in a similar fashion for all the slit sizes. As a second-order effect, for highly asymmetric pressure distributions, the slit produces a base pressure increase not associated with the base pressure asymmetry. The results suggest a global effect of the slit on the wake due to a diametrical flow within the cavity driven by the pressure differences across the slit and regulated by the largest of the pressure drops between the slit and cavity. The slit also reduces the periodic base pressure fluctuations, corresponding mainly to the vortex shedding, and increases the rotational speed of the wake.

  5. 40 CFR 63.9921 - What are the installation, operation and maintenance requirements for my monitors?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... operating limits in § 63.9890(b) for pressure drop and scrubber water flow rate, you must install, operate...) For the pressure drop CPMS, you must: (i) Locate the pressure sensor(s) in or as close to a position... sensitivity of 0.5 inch of water or a transducer with a minimum measurement sensitivity of 1 percent of the...

  6. Development of Ocular Delivery System for Glaucoma Therapy Using Natural Hydrogel as Film Forming Agent and Release Modifier.

    PubMed

    Kulkarni, Giriraj T; Sethi, Nitin; Awasthi, Rajendra; Pawar, Vivek Kumar; Pahuja, Vineet

    2016-01-01

    Glaucoma is characterized by increased intraocular pressure, which results in damage to the optic nerve. The existing therapy with conventional eye drops is inefficient due to nasolachrymal drainage, resulting in a reduced corneal residence of the drug. The objective was to develop controlled-release ocular films of timolol maleate using natural hydrogel from Tamarindus indica seeds as a sustaining and film-forming agent, to overcome the problems associated with eye drops. The hydrogel was isolated using hot aqueous extraction followed by precipitation with ethanol. Six batches of ocular films were prepared and evaluated for drug content, weight variation, thickness, diameter and in vitro release profile. The ideal batch of the films was subjected to stability, pharmacodynamic and ocular safety studies. The yield of the hydrogel was 58.29%. The thickness of the ocular films was in the range of 0.17 to 0.25 mm and the weight of the films was found to increase with the increase in polymer content. The drug release from the films was found to be controlled over a period of 8 h. The films were found to be stable and were able to reduce the intraocular pressure for 24 h in a more efficient manner than the eye drops. The films were found to be practically non-irritating to the eye. It can be concluded that the hydrogel from tamarind seeds can be used as a film-forming and release-controlling agent for the development of an ocular drug delivery system for the effective therapy of glaucoma.

  7. A Validated All-Pressure Fluid Drop Model and Lewis Number Effects for a Binary Mixture

    NASA Technical Reports Server (NTRS)

    Harstad, K.; Bellan, J.

    1999-01-01

    The differences between subcritical liquid drop and supercritical fluid drop behavior are discussed. Under subcritical, evaporative high emission rate conditions, a film layer is present in the inner part of the drop surface which contributes to the unique determination of the boundary conditions; it is this film layer which contributes to the solution's convective-diffusive character. In contrast, under supercritical condition as the boundary conditions contain a degree of arbitrariness due to the absence of a surface, and the solution has then a purely diffusive character. Results from simulations of a free fluid drop under no-gravity conditions are compared to microgravity experimental data from suspended, large drop experiments at high, low and intermediary temperatures and in a range of pressures encompassing the sub-and supercritical regime. Despite the difference between the conditions of the simulations and experiments (suspension vs. free floating), the time rate of variation of the drop diameter square is remarkably well predicted in the linear curve regime. The drop diameter is determined in the simulations from the location of the maximum density gradient, and agrees well with the data. It is also shown that the classical calculation of the Lewis number gives qualitatively erroneous results at supercritical conditions, but that an effective Lewis number previously defined gives qualitatively correct estimates of the length scales for heat and mass transfer at all pressures.

  8. Predicting pressure drop in venturi scrubbers with artificial neural networks.

    PubMed

    Nasseh, S; Mohebbi, A; Jeirani, Z; Sarrafi, A

    2007-05-08

    In this study a new approach based on artificial neural networks (ANNs) has been used to predict pressure drop in venturi scrubbers. The main parameters affecting the pressure drop are mainly the gas velocity in the throat of venturi scrubber (V(g)(th)), liquid to gas flow rate ratio (L/G), and axial distance of the venturi scrubber (z). Three sets of experimental data from five different venturi scrubbers have been applied to design three independent ANNs. Comparing the results of these ANNs and the calculated results from available models shows that the results of ANNs have a better agreement with experimental data.

  9. Development of a constant surface pressure penetration langmuir balance based on axisymmetric drop shape analysis.

    PubMed

    Wege, H A; Holgado-Terriza, J A; Cabrerizo-Vílchez, M A

    2002-05-15

    A new constant pressure pendant-drop penetration surface balance has been developed combining a pendant-drop surface balance, a rapid-subphase-exchange technique, and a fuzzy logic control algorithm. Beside the determination of insoluble monolayer compression-expansion isotherms, it allows performance of noninvasive kinetic studies of the adsorption of surfactants added to the new subphase onto the free surface and of the adsorption/penetration/reaction of the former onto/into/with surface layers, respectively. The interfacial pressure pi is a fundamental parameter in these studies: by working at constant pi one controls the height of the energy barrier to adsorption/penetration and can select different regimes and steps of the adsorption/penetration process. In our device a solution drop is formed at the tip of a coaxial double capillary, connected to a double microinjector. Drop profiles are extracted from digital drop micrographs and fitted to the equation of capillarity, yielding pi, the drop volume V, and the interfacial area A. pi is varied changing V (and hence A) with the microinjector. Control is based on a case-adaptable modulated fuzzy-logic PID algorithm able to maintain constant pi (or A) under a wide range of experimental conditions. The drop subphase liquid can be exchanged quantitatively by the coaxial capillaries. The adsorption/penetration/reaction kinetics at constant pi are then studied monitoring A(t), i.e., determining the relative area change necessary at each instant to compensate the pressure variation due to the interaction of the surfactant in the subsurface with the surface layer. A fully Windows-integrated program manages the whole setup. Examples of experimental protein adsorption and monolayer penetration kinetics are presented.

  10. Technical Requirements for On-Site Thermal Desorption of Solid Media Contaminated with Hazardous Chlorinated Organics

    DTIC Science & Technology

    1997-09-18

    scrubbers , detectable dioxin/furans may occur, since dioxin/furans are much more soluble in organics than in water. Carbon adsorption is frequently...air pollution control device is required. Acid gases may be controlled by using a wet or dry scrubber or by using a coated baghouse. Operating...unit: 1. exit treated waste temperature; 2. baghouse pressure drop, venturi pressure drop, or drop in liquid/gas ratio; 3. waste feed rate; 4

  11. Mechanisms of Exhaust Pollutants and Plume Formation in Continuous Combustion.

    DTIC Science & Technology

    1984-11-30

    drop swirler. A swirled air inlet decreased flame length . Two modes of operation were observed. At higher fuel loadings, reaction could be initiated...and maintained in the recirculation zone in the shadow of the step. The net result was a shorter overall flame length . The low-pressure drop swirler...yielded a shorter flame length relative to the higher pressure drop devices. - • u mmm m -m~amkn Jm• ml AM mmmmm TABLE OF CONTENTS Section Title Page

  12. 40 CFR 63.1659 - Reporting requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... followed and the corrective actions taken. (2) Venturi scrubbers. In addition to the information required... identify the periods when the average hourly pressure drop of venturi scrubbers used to control particulate... of the scrubber pressure drop limit per paragraph (b)(2) of this section. These reports are to be...

  13. Significant improvement in Mn2O3 transition metal oxide electrical conductivity via high pressure

    PubMed Central

    Hong, Fang; Yue, Binbin; Hirao, Naohisa; Liu, Zhenxian; Chen, Bin

    2017-01-01

    Highly efficient energy storage is in high demand for next-generation clean energy applications. As a promising energy storage material, the application of Mn2O3 is limited due to its poor electrical conductivity. Here, high-pressure techniques enhanced the electrical conductivity of Mn2O3 significantly. In situ synchrotron micro X-Ray diffraction, Raman spectroscopy and resistivity measurement revealed that resistivity decreased with pressure and dramatically dropped near the phase transition. At the highest pressure, resistivity reduced by five orders of magnitude and the sample showed metal-like behavior. More importantly, resistivity remained much lower than its original value, even when the pressure was fully released. This work provides a new method to enhance the electronic properties of Mn2O3 using high-pressure treatment, benefiting its applications in energy-related fields. PMID:28276479

  14. The engineered biofiltration system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pisotti, D.A.

    1997-12-31

    For years, biofiltration has meant compost, peat, bark, leave mulch, or any combination of these as the substrate to house microorganisms. This has lead to a number of operational and maintenance problems, including: compaction, channeling, anaerobic zones, dry spots, pressure drop, and media degradation. All of these cause reduced efficiency and increased maintenance and increased operational costs. For these reasons inert media, including plastic beads and low grade carbons have been added to the media for buffering capacity, resists compaction, channeling and to increase efficiency. This has led to search for a more reliable and sturdy media. The media themore » authors chose was activated carbon. Pelletized activated carbon was the ideal candidate due to its uniform size and shape, its inherent hardness, adsorptive capacity, and its ability to withstand microbial degradation. The pressure drop of the system will remain constant after microbial growth occurs, due to the ability to wash the media bed. Carbon allows for the removal of excess biomass which can not be performed on organic media, this is one of the problems leading to media degradation, too many microbes and not enough food (i.e. VOCs). Carbon also allows for spike or increased loads to be treated without performance suffering. Carbon also has tremendous surface area, which allows more microorganisms to be present in a smaller volume, therefore reducing the overall size of the biofilter vessel. This paper will discuss further the findings of a pilot test that was performed using activated carbon as the media for microbial growth. This paper will show the performance of the carbon based biofilter system with respect to pressure drop, residence time, removal efficiency, microbial populations, temperature, moisture, and water requirements. The pilot unit is 350 acfm and operated for 4 months on an air stream in which the contaminant concentrations varied greatly every few minutes.« less

  15. Dustiness behaviour of loose and compacted Bentonite and organoclay powders: What is the difference in exposure risk?

    NASA Astrophysics Data System (ADS)

    Jensen, Keld Alstrup; Koponen, Ismo Kalevi; Clausen, Per Axel; Schneider, Thomas

    2009-01-01

    Single-drop and rotating drum dustiness testing was used to investigate the dustiness of loose and compacted montmorillonite (Bentonite) and an organoclay (Nanofil®5), which had been modified from montmorillonite-rich Bentonite. The dustiness was analysed based on filter measurements as well as particle size distributions, the particle generation rate, and the total number of generated particles. Particle monitoring was completed using a TSI Fast Mobility Particle Sizer (FMPS) and a TSI Aerosol Particle Sizer (APS) at 1 s resolution. Low-pressure uniaxial powder compaction of the starting materials showed a logarithmic compaction curve and samples subjected to 3.5 kg/cm2 were used for dustiness testing to evaluate the role of powder compaction, which could occur in powders from large shipments or high-volume storage facilities. The dustiness tests showed intermediate dustiness indices (1,077-2,077 mg/kg powder) in tests of Nanofil®5, Bentonite, and compacted Bentonite, while a high-level dustiness index was found for compacted Nanofil®5 (3,487 mg/kg powder). All powders produced multimodal particle size-distributions in the dust cloud with one mode around 300 nm (Bentonite) or 400 nm (Nanofil®5) as well as one (Nanofil®5) or two modes (Bentonite) with peaks between 1 and 2.5 μm. The dust release was found to occur either as a burst (loose Bentonite and Nanofil®5), constant rate (compacted Nanofil®5), or slowly increasing rate (compacted Bentonite). In rotating drum experiments, the number of particles generated in the FMPS and APS size-ranges were in general agreement with the mass-based dustiness index, but the same order was not observed in the single-drop tests. Compaction of Bentonite reduced the number of generated particles with app. 70 and 40% during single-drop and rotating drum dustiness tests, respectively. Compaction of Nanofil®5 reduced the dustiness in the single-drop test, but it was more than doubled in the rotating drum test. Physically relevant low-pressure compaction may reduce the risk of particle exposure if powders are handled in operations with few agitations such as pouring or tapping. Repeated agitation, e.g., mixing, of these compacted powders, would result in reduced (app. 20% for Bentonite) or highly increased (app. 225% for Nanofil®5) dustiness and thereby alter the exposure risk significantly.

  16. Further theoretical studies of modified cyclone separator as a diesel soot particulate emission arrester.

    PubMed

    Mukhopadhyay, N; Bose, P K

    2009-10-01

    Soot particulate emission reduction from diesel engine is one of the most emerging problems associated with the exhaust pollution. Diesel particulate filters (DPF) hold out the prospects of substantially reducing regulated particulate emissions but the question of the reliable regeneration of filters still remains a difficult hurdle to overcome. Many of the solutions proposed to date suffer from design complexity, cost, regeneration problem and energy demands. This study presents a computer aided theoretical analysis for controlling diesel soot particulate emission by cyclone separator--a non contact type particulate removal system considering outer vortex flow, inner vortex flow and packed ceramic fiber filter at the end of vortex finder tube. Cyclone separator with low initial cost, simple construction produces low back pressure and reasonably high collection efficiencies with reduced regeneration problems. Cyclone separator is modified by placing a continuous ceramic packed fiber filter placed at the end of the vortex finder tube. In this work, the grade efficiency model of diesel soot particulate emission is proposed considering outer vortex, inner vortex and the continuous ceramic packed fiber filter. Pressure drop model is also proposed considering the effect of the ceramic fiber filter. Proposed model gives reasonably good collection efficiency with permissible pressure drop limit of diesel engine operation. Theoretical approach is predicted for calculating the cut size diameter considering the effect of Cunningham molecular slip correction factor. The result shows good agreements with existing cyclone and DPF flow characteristics.

  17. Cut your losses: self-amputation of injured limbs increases survival.

    PubMed

    Emberts, Zachary; Miller, Christine W; Kiehl, Daniel; St Mary, Colette M

    2017-01-01

    Autotomy, self-induced limb loss, is an extreme trait observed throughout the animal kingdom; lizards drop their tails, crickets release their legs, and crabs drop their claws. These repeated evolutionary origins suggest that autotomy is adaptive. Yet, we do not have a firm understanding of the selective pressures that promote and maintain this extreme trait. Although multiple adaptive hypotheses exist, research has generally focused on autotomy's adaptive value as a form of predator escape. However, autotomy could also be selected to reduce the cost of an injured limb, which we investigate here. Previously, this alternative hypothesis has been challenging to directly test because when an injury occurs on an autotomizable limb, that limb is almost always dropped (i.e., autotomy is behaviorally fixed within populations). Recently, however, we have identified a species, Narnia femorata (Insecta: Hemiptera: Coreidae), where some individuals autotomize limbs in response to injury, but some do not. This natural variation allowed us to investigate both the survival costs of retaining an injured limb and the benefits of autotomizing it. In this study, we find a positive association between autotomizing injured limbs and survival, thereby quantifying a new and likely widespread benefit of autotomy-reducing the cost of injury.

  18. Cut your losses: self-amputation of injured limbs increases survival

    PubMed Central

    Miller, Christine W; Kiehl, Daniel; St. Mary, Colette M

    2017-01-01

    Abstract Autotomy, self-induced limb loss, is an extreme trait observed throughout the animal kingdom; lizards drop their tails, crickets release their legs, and crabs drop their claws. These repeated evolutionary origins suggest that autotomy is adaptive. Yet, we do not have a firm understanding of the selective pressures that promote and maintain this extreme trait. Although multiple adaptive hypotheses exist, research has generally focused on autotomy’s adaptive value as a form of predator escape. However, autotomy could also be selected to reduce the cost of an injured limb, which we investigate here. Previously, this alternative hypothesis has been challenging to directly test because when an injury occurs on an autotomizable limb, that limb is almost always dropped (i.e., autotomy is behaviorally fixed within populations). Recently, however, we have identified a species, Narnia femorata (Insecta: Hemiptera: Coreidae), where some individuals autotomize limbs in response to injury, but some do not. This natural variation allowed us to investigate both the survival costs of retaining an injured limb and the benefits of autotomizing it. In this study, we find a positive association between autotomizing injured limbs and survival, thereby quantifying a new and likely widespread benefit of autotomy—reducing the cost of injury. PMID:29622925

  19. Postprandial hypotension among older residents of a nursing home in Korea.

    PubMed

    Son, Jung Tae; Lee, Eunjoo

    2012-12-01

    The purpose of this study was to identify changes in blood pressure and pulse rate after a meal for elders living in a nursing home. Postprandial hypotension is a major health issue for older persons, because it has been shown to cause increased incidence of falls, syncope, coronary disease, strokes and deterioration in the quality of life. However, there has been little systematic investigation into blood pressure changes after meals in older people. A descriptive, cross-sectional design was used to identify postprandial blood pressure and pulse rate changes in residents of a nursing home. Blood pressure and pulse rates of 121 people aged 65 and above were measured before and after a meal and at 15-minute intervals for six more measurements. Data were analysed with descriptive statistics, repeated measures anova and paired t-tests using SPSS (SPSS Inc., Chicago, IL, USA). There were significant differences in systolic and diastolic pressure by time. The biggest drop in systolic and diastolic blood pressure occurred at 45 minutes after the meal. There was no significant change in pulse rates except for immediately after the meal. To prevent complications from drops in postprandial blood pressure, nurses should carefully monitor blood pressure of elders at least from 30-90 minutes after meals. Further study of drops in postprandial blood pressure should be conducted for various types and times of meals. Nurses caring for older persons can identify drops in the postprandial blood pressure to manage the incidence of falls, syncope and stroke more effectively, especially in nursing homes. © 2012 Blackwell Publishing Ltd.

  20. Calculation of pressure drop in the developmental stages of the medaka fish heart and microvasculature

    NASA Astrophysics Data System (ADS)

    Chakraborty, Sreyashi; Vlachos, Pavlos

    2016-11-01

    Peristaltic contraction of the developing medaka fish heart produces temporally and spatially varying pressure drop across the atrioventricular (AV) canal. Blood flowing through the tail vessels experience a slug flow across the developmental stages. We have performed a series of live imaging experiments over 14 days post fertilization (dpf) of the medaka fish egg and cross-correlated the red blood cell (RBC) pattern intensities to obtain the two-dimensional velocity fields. Subsequently we have calculated the pressure field by integrating the pressure gradient in the momentum equation. Our calculations show that the pressure drop across the AV canal increases from 0.8mm Hg during 3dpf to 2.8 mm Hg during 14dpf. We have calculated the time-varying wall shear stress for the blood vessels by assuming a spatially constant velocity magnitude in each vessel. The calculated wall shear stress matches the wall shear stress sensed by human endothelial cells (10-12 dyne/sq. cm). The pressure drop per unit length of the vessel is obtained by doing a control volume analysis of flow in the caudal arteries and veins. The current results can be extended to investigate the effect of the fluid dynamic parameters on the vascular and cardiac morphogenesis.

  1. Effect of mistletoe combined with carboxymethyl cellulose on dry eye in postmenopausal women

    PubMed Central

    Jiang, Nan; Ye, Lin-Hong; Ye, Lei; Yu, Jing; Yang, Qi-Chen; Yuan, Qing; Zhu, Pei-Wen; Shao, Yi

    2017-01-01

    AIM To investigate the protective effect of mistletoe combined with carboxymethyl cellulose eye drops on dry eye in postmenopausal women. METHODS Sixty postmenopause female patients diagnosed of dry eye were assigned randomly to mistletoe combined with carboxymethyl cellulose eye drops treatment group (n=30) and control group treated with normal saline eye drops (n=30). The subjective symptoms of ocular surface, Ocular Surface Disease Index (OSDI), tear film function tests, tear protein and corneal morphology by confocal scanning microscopy were analyzed before treatment and at 1, 2, 4 and 8wk after treatment respectively. To ensure the safety of the trial, all patients were examined with systolic pressure, diastolic pressure, glutamic-pyruvic transaminase, glutamic oxaloacetic transaminase, urine creatinine, and blood urea nitrogen at 8wk after treatment. RESULTS There were no obvious differences between two groups before the treatment (P>0.05). In two months after the treatment, the symptoms of ocular surface, OSDI, tear protein, and tear film function were only slightly changed in normal saline eye drops group. However, all indices were improved after the treatment of mistletoe combined with carboxymethyl cellulose eye drops group (P<0.05). In addition, the average amount of corneal epithelium basal cells and inflammatory cells of mistletoe treated group were 3174±379 and 38±25 cells/mm2, significantly decreased as compared to the control group with 4309±612 and 158± 61 cells/mm2, respectively. In the control group, although nerves still maintained straight under corneal epithelium, the number of nerves were significantly decreased, as compared with normal female. In the mistletoe treated group, the number of nerves was only slightly reduced, compared with normal female. CONCLUSION Mistletoe combined with carboxymethyl cellulose eye drops can alleviate the symptoms and signs of dry eye symptoms. PMID:29181309

  2. Intraocular pressure and cerebral oxygenation during prolonged headward acceleration.

    PubMed

    Eiken, Ola; Keramidas, Michail E; Taylor, Nigel A S; Grönkvist, Mikael

    2017-01-01

    Supra-tolerance head-to-foot directed gravitoinertial load (+Gz) typically induces a sequence of symptoms/signs, including loss of: peripheral vision-central vision-consciousness. The risk of unconsciousness is greater when anti-G-garment failure occurs after prolonged rather than brief exposures, presumably because, in the former condition, mental signs are not consistently preceded by impaired vision. The aims were to investigate if prolonged exposure to moderately elevated +Gz reduces intraocular pressure (IOP; i.e., improves provisions for retinal perfusion), or the cerebral anoxia reserve. Subjects were exposed to 4-min +Gz plateaux either at 2 and 3 G (n = 10), or at 4 and 5 G (n = 12). Measurements included eye-level mean arterial pressure (MAP), oxygenation of the cerebral frontal cortex, and at 2 and 3 G, IOP. IOP was similar at 1 (14.1 ± 1.6 mmHg), 2 (14.0 ± 1.6 mmHg), and 3 G (14.0 ± 1.6 mmHg). During the G exposures, MAP exhibited an initial prompt drop followed by a partial recovery, end-exposure values being reduced by ≤30 mmHg. Cerebral oxygenation showed a similar initial drop, but without recovery, and was followed by either a plateau or a further slight decrement to a minimum of about -14 μM. Gz loading did not affect IOP. That cerebral oxygenation remained suppressed throughout these G exposures, despite a concomitant partial recovery of MAP, suggests that the increased risk of unconsciousness upon G-garment failure after prolonged +Gz exposure is due to reduced cerebral anoxia reserve.

  3. Evaluation of different diameter arterial tubing and arterial cannulae in simulated neonatal/pediatric cardiopulmonary bypass circuits.

    PubMed

    Wang, Shigang; Rosenthal, Tami; Kunselman, Allen R; Ündar, Akif

    2015-01-01

    The objective of this study is to evaluate three different diameters of arterial tubing and three diameters of arterial cannulae in terms of pressure drop, and hemodynamic energy delivery in simulated neonatal/pediatric cardiopulmonary bypass (CPB) circuits. The CPB circuit consisted of a Terumo Capiox Baby FX05 oxygenator (Terumo Corporation, Tokyo, Japan), arterial tubing (1/4 in, 3/16 in, or 1/8 in × 150 cm), and a Medtronic Bio-Medicus arterial cannula (8, 10, or 12 Fr; Medtronic, Inc., Minneapolis, MN, USA). The pseudo patient's pressure was maintained at 50 mm Hg. The circuit was primed using lactated Ringer's solution and heparinized packed human red blood cells (hematocrit 30%). Trials were conducted at different flow rates and temperatures (35 and 28°C). Flow and pressure data were collected using a custom-based data acquisition system. Using 8 Fr arterial cannula at 500 mL/min, small diameter arterial tubing generated higher circuit pressure (294.6 ± 0.1 mm Hg [1/8 in], 213.5 ± 0.5 mm Hg [3/16 in], 208.4 ± 0.4 mm Hg [1/4 in] at 35°C) and arterial line pressure drop (158.3 ± 0.1 mm Hg [1/8 in], 79.6 ± 0.1 mm Hg [3/16 in], 62.1 ± 0.1 mm Hg [1/4 in] at 35°C). Using 10 Fr arterial cannula at 1000 mL/min, pre-oxygenator pressures were 266.8 ± 0.2 mm Hg (3/16 in) and 248.0 ± 0.3 mm Hg (1/4 in); arterial line pressure drops were 111.6 ± 0.0 mm Hg (3/16 in) and 74.0 ± 0.1 mm Hg (1/4 in) at 35°C. When using 12 Fr arterial cannula at 1500 mL/min, preoxygenator pressures reached 324.4 ± 0.3 mm Hg (3/16 in) and 302.5 ± 0.4 mm Hg (1/4 in); arterial line pressure drops were 154.0 ± 0.1 mm Hg (3/16 in) and 92.0 ± 0.2 mm Hg (1/4 in) at 35°C. Pressure drops across arterial line tubing were main CPB circuit pressure drops. High flow rate, hypothermia, small diameter arterial tubing. and arterial cannula created more hemodynamic energy at the preoxygenator site, but energy loss across CPB circuit also increased. Although small diameter (<1/4 in ID) arterial tubing may decrease total CPB priming volume, it also led to significantly higher circuit pressure, higher pressure drop, and more hemodynamic energy loss across CPB circuit. Larger diameter arterial cannula had less pressure drop and allowed more hemodynamic energy delivery to the patient. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  4. Brush seal leakage performance with gaseous working fluids at static and low rotor speed conditions

    NASA Astrophysics Data System (ADS)

    Carlile, Julie A.; Hendricks, Robert C.; Yoder, Dennis A.

    1992-06-01

    The leakage performance of a brush seal with gaseous working fluids at static and low rotor speed conditions was studied. The leakage results included for air, helium, and carbon dioxide at several bristle/rotor interferences. Also, the effects of packing a lubricant into the bristles and also of reversing the pressure drop across the seal were studied. Results were compared to that of an annular seal at similar operating conditions. In order to generalize the results, they were correlated using corresponding state theory. The brush seal tested had a bore diameter of 3.792 cm (1.4930 in.), a fence height of 0.0635 cm (0.025 in.), and 1800 bristles/cm circumference (4500 bristles/in. circumference). Various bristle/rotor radial interferences were achieved by using a tapered rotor. The brush seal reduced the leakage in comparison to the annular seal, up to 9.5 times. Reversing the pressure drop across the brush seal produced leakage rates approximately the same as that of the annular seal. Addition of a lubricant reduced the leakage by 2.5 times. The air and carbon dioxide data were successfully correlated using corresponding state theory. However, the helium data followed a different curve than the air and carbon dioxide data.

  5. Brush seal leakage performance with gaseous working fluids at static and low rotor speed conditions

    NASA Technical Reports Server (NTRS)

    Carlile, Julie A.; Hendricks, Robert C.; Yoder, Dennis A.

    1992-01-01

    The leakage performance of a brush seal with gaseous working fluids at static and low rotor speed conditions was studied. The leakage results included for air, helium, and carbon dioxide at several bristle/rotor interferences. Also, the effects of packing a lubricant into the bristles and also of reversing the pressure drop across the seal were studied. Results were compared to that of an annular seal at similar operating conditions. In order to generalize the results, they were correlated using corresponding state theory. The brush seal tested had a bore diameter of 3.792 cm (1.4930 in.), a fence height of 0.0635 cm (0.025 in.), and 1800 bristles/cm circumference (4500 bristles/in. circumference). Various bristle/rotor radial interferences were achieved by using a tapered rotor. The brush seal reduced the leakage in comparison to the annular seal, up to 9.5 times. Reversing the pressure drop across the brush seal produced leakage rates approximately the same as that of the annular seal. Addition of a lubricant reduced the leakage by 2.5 times. The air and carbon dioxide data were successfully correlated using corresponding state theory. However, the helium data followed a different curve than the air and carbon dioxide data.

  6. Brush seal leakage performance with gaseous working fluids at static and low rotor speed conditions

    NASA Technical Reports Server (NTRS)

    Carlile, Julie A.; Hendricks, Robert C.; Yoder, Dennis A.

    1992-01-01

    The leakage performance of a brush seal with gaseous working fluids at static and low rotor speed conditions was studied. The leakage results are included for air, helium, and carbon dioxide at several bristle/rotor interferences. Also, the effects of packing a lubricant into the bristles and also of reversing the pressure drop across the seal were studied. Results were compared to that of an annular seal at similar operating conditions. In order to generalize the results, they were correlated using corresponding state theory. The brush seal tested had a bore diameter of 3.792 cm (1.4930 in), a fence height of 0.0635 cm (0.025 in), and 1800 bristles/cm circumference (4500 bristles/in circumference). Various bristle/rotor radial interferences were achieved by using a tapered rotor. The brush seal reduced the leakage in comparison to the annular seal, up to 9.5 times. Reversing the pressure drop across the brush seal produced leakage rates approx. the same as that of the annular seal. Addition of a lubricant reduced the leakage by 2.5 times. The air and carbon dioxide data were successfully correlated using corresponding state theory. However, the helium data followed a different curve than the air and carbon dioxide data.

  7. Discovery of riblets in a bird beak (Rynchops) for low fluid drag.

    PubMed

    Martin, Samuel; Bhushan, Bharat

    2016-08-06

    Riblet structures found on fast-swimming shark scales, such as those found on a mako shark, have been shown to reduce fluid drag. In previous experimental and modelling studies, riblets have been shown to provide drag reduction by lifting vortices formed in turbulent flow, decreasing overall shear stresses. Skimmer birds (Rynchops) are the only birds to catch fish in flight by flying just above the water surface with a submerged beak to fish for food. Because they need to quickly catch prey, reducing drag on their beak is advantageous. For the first time, riblet structures found on the beak of the skimmer bird have been studied experimentally and computationally for low fluid drag properties. In this study, skimmer replicas were studied for drag reduction through pressure drop in closed-channel, turbulent water flow. Pressure drop measurements are compared for black and yellow skimmer beaks in two configurations, and mako shark skin. In addition, two configurations of skimmer beak were modelled to compare drag properties and vortex structures. Results are discussed, and a conceptual model is presented to explain a possible drag reduction mechanism in skimmers.This article is part of the themed issue 'Bioinspired hierarchically structured surfaces for green science'. © 2016 The Author(s).

  8. Fundamental study of transpiration cooling. [pressure drop and heat transfer data from porous metals

    NASA Technical Reports Server (NTRS)

    Koh, J. C. Y.; Dutton, J. L.; Benson, B. A.

    1973-01-01

    Isothermal and non-isothermal pressure drop data and heat transfer data generated on porous 304L stainless steel wire forms, sintered spherical stainless steel powder, and sintered spherical OFHC copper powder are reported and correlated. Pressure drop data was collected over a temperature range from 500 R to 2000 R and heat transfer data collected over a heat flux range from 5 to 15 BTU/in2/sec. It was found that flow data could be correlated independently of transpirant temperature and type (i.e., H2, N2). It was also found that no simple relation between heat transfer coefficient and specimen porosity was obtainable.

  9. Orbiter thermal pressure drop characteristics for shuttle orbiter thermal protection system components: High density tile, low density tile, densified low density tile, and strain isolation pad

    NASA Technical Reports Server (NTRS)

    Lawing, P. L.; Nystrom, D. M.

    1980-01-01

    Pressure drop tests were conducted on available samples of low and high density tile, densified low density tile, and strain isolation pads. The results are presented in terms of pressure drop, material thickness and volume flow rate. Although the test apparatus was only capable of a small part of the range of conditions to be encountered in a Shuttle Orbiter flight, the data serve to determine the type of flow characteristics to be expected for each material type tested; the measured quantities also should serve as input for initial venting and flow through analysis.

  10. Condensation of nano-refrigerant inside a horizontal tube

    NASA Astrophysics Data System (ADS)

    Darzi, Milad; Sadoughi, M. K.; Sheikholeslami, M.

    2018-05-01

    In this paper, condensing pressure drop of refrigerant-based nanofluid inside a tube is studied. Isobutene was selected as the base fluid while CuO nanoparticles were utilized to prepare nano-refrigerant. However, for the feasibility of nanoparticle dispersion into the refrigerant, Polyester oil (POE) was utilized as lubricant oil and added to the pure refrigerant by 1% mass fraction. Various values of mass flux, vapor quality, concentration of nanoparticle are investigated. Results indicate that adding nanoparticles leads to enhance frictional pressure drop. Nanoparticles caused larger pressure drop penalty at relatively lower vapor qualities which may be attributed to the existing condensation flow pattern such that annular flow is less influenced by nanoparticles compared to intermittent flow regime.

  11. Flowrate testing of the bag filter LANCS-BOP 6CPVC-1.5-2SPVC (LANCS Industries) at 1 psig

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Murray E.; Currie, Karissa Lyn; Berg, Charlotte Katherine

    2016-09-13

    The air flowrate through a flexible HEPA grade filter (Part LANCS-BOP 6CPVC-1.5-2SPVC www.lancsindustries.com) was measured at 48 ALPM for a differential pressure drop of 1.0 psig (28 inWC, 7.0 kPa). These filters are rated by the manufacturer to have a flowrate of 3 ALPM at a differential pressure drop of 1 inWC (0.25 kPa). The Los Alamos National Laboratory Aerosol Engineering Facility used one of their test rigs (originally developed to measure the pressure drop in capsule HEPA filters) to measure the airflow through the LANCS bag filter.

  12. Effects of sudden air pressure changes on hospital admissions for cardiovascular diseases in Prague, 1994-2009

    NASA Astrophysics Data System (ADS)

    Plavcová, Eva; Kyselý, Jan

    2014-08-01

    Sudden weather changes have long been thought to be associated with negative impacts on human health, but relatively few studies have attempted to quantify these relationships. We use large 6-h changes in atmospheric pressure as a proxy for sudden weather changes and evaluate their association with hospital admissions for cardiovascular diseases (CVD). Winter and summer seasons and positive and negative pressure changes are analysed separately, using data for the city of Prague (population 1.2 million) over a 16-year period (1994-2009). We found that sudden pressure drops in winter are associated with significant rise in hospital admissions. Increased CVD morbidity was observed neither for pressure drops in summer nor pressure increases in any season. Analysis of synoptic weather maps shows that large pressure drops in winter are associated with strong zonal flow and rapidly moving low-pressure systems with centres over northern Europe and atmospheric fronts affecting western and central Europe. Analysis of links between passages of strong atmospheric fronts and hospital admissions, however, shows that the links disappear if weather changes are characterised by frontal passages. Sudden pressure drops in winter are associated also with significant excess CVD mortality. As climate models project strengthening of zonal circulation in winter and increased frequency of windstorms, the negative effects of such weather phenomena and their possible changes in a warmer climate of the twenty-first century need to be better understood, particularly as their importance in inducing excess morbidity and mortality in winter may increase compared to cold spells.

  13. 40 CFR 63.11567 - Who implements and enforces this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Processing and Asphalt Roofing Manufacturing Other Requirements and Information § 63.11567 Who implements and...). 2. A high-efficiency air filter or fiber bed filter a. Inlet gas temperature b, andb. Pressure drop... the inlet gas temperature and pressure drop, you can use a leak detection system that identifies when...

  14. 40 CFR Table 4 of Subpart Aaaaaaa... - Operating Limits

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Roofing Manufacturing Other Requirements and Information Who implements and enforces this subpart? Pt. 63... filter or fiber bed filter a. Inlet gas temperature b, andb. Pressure drop across device b The 3-hour... temperature and pressure drop, you can use a leak detection system that identifies when the filter media has...

  15. 40 CFR Table 4 of Subpart Aaaaaaa... - Operating Limits

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Roofing Manufacturing Other Requirements and Information Who implements and enforces this subpart? Pt. 63... filter or fiber bed filter a. Inlet gas temperature b, andb. Pressure drop across device b The 3-hour... temperature and pressure drop, you can use a leak detection system that identifies when the filter media has...

  16. 40 CFR Table 2 to Subpart Kkkkk of... - Operating Limits

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... Maintain the average scrubber pressure drop for each 3-hour block period at or above the average pressure drop established during the performance test; andb. Maintain the average scrubber liquid pH for each 3-hour block period at or above the average scrubber liquid pH established during the performance test...

  17. Heat transfer and pressure drop in rectangular channels with crossing fins (a Review)

    NASA Astrophysics Data System (ADS)

    Sokolov, N. P.; Polishchuk, V. G.; Andreev, K. D.; Rassokhin, V. A.; Zabelin, N. A.

    2015-06-01

    Channels with crossing finning find wide use in the cooling paths of high-temperature gas turbine blade systems. At different times, different institutions carried out experimental investigations of heat transfer and pressure drop in channels with coplanar finning of opposite walls for obtaining semiempirical dependences of Nusselt criteria (dimensionless heat-transfer coefficients) and pressure drop coefficients on the operating Reynolds number and relative geometrical parameters (or their complexes). The shape of experimental channels, the conditions of experiments, and the used variables were selected so that they would be most suited for solving particular practical tasks. Therefore, the results obtained in processing the experimental data have large scatter and limited use. This article considers the results from experimental investigations of different authors. In comparing the results, additional calculations were carried out for bringing the mathematical correlations to the form of dependences from the same variables. Generalization of the results is carried out. In the final analysis, universal correlations are obtained for determining the pressure drop coefficients and Nusselt number values for the flow of working medium in channels with coplanar finning.

  18. PATHFINDER ATOMIC POWER PLANT. FILTRATION OF ALUMINUM CORROSION PRODUCTS PRODUCED IN HIGH-TEMPERATURE, HIGH PURITY WATER SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noble, J.H.; Davie, R.L.

    1961-05-01

    Filter tests were conducted to determine the most suitable filter for removing large quantities of aluminum corrosion product (boehmite) from reactor water. Filters tested included the following: wire-wound, sintered filter elements, sintered ceramic fllter elements, cotton stringwound filter elements, felted-cotton filter elements, cation resin, adsorption resin, diatomaceous earth precoat filter, and a wood-cellulose precoat filter. Parameters measured were flow rate, filter-influent and -effluent boehmite concentration, pressure drop, and final filter load. The pressure drop and efficiency of the filters was correlated with boehmite load. Boehmite deposits on filters as a nonporous gelatinous cake, and causes a rapidly increasing pressure drop.more » Tests indicate that the optimum load with filter elements and precoat filters is achieved at a pressure drop of 25 psi. Very little additional load can be obtained by operating to a higher pressure drop. Of the filters tested, the precoat filter snd 40 to 60 mesh cation resin were the more effective in removing boehmite. The efficiency of the precoat filter was in excess of 99%, and the efficiency of the cation resin was for the most part in excess of 95%. For various reasons, the other filters were eliminated from final consideration. The test program and available literature indicated that an element type precoat filter using wood cellulose as the precoat media would be most suitable for the proposed application. (auth)« less

  19. Distribution and observed associations of orthostatic blood pressure changes in elderly general medicine outpatients

    NASA Technical Reports Server (NTRS)

    Robertson, D.; DesJardin, J. A.; Lichtenstein, M. J.

    1998-01-01

    Factors associated with orthostatic blood pressure change in elderly outpatients were determined by surveying 398 medical clinical outpatients aged 65 years and older. Blood pressure was measured with random-zero sphygmomanometers after patients were 5 minutes in a supine and 5 minutes in a standing position. Orthostatic blood pressure changes were at normally distributed levels with systolic and diastolic pressures dropping an average of 4 mm Hg (standard deviation [SD]=15 mm Hg) and 2 mm Hg (SD=11 mm Hg), respectively. Orthostatic blood pressure changes were unassociated with age, race, sex, body mass, time since eating, symptoms, or other factors. According to multiple linear regression analysis, supine systolic pressure, chronic obstructive pulmonary disease (COPD), and diabetes mellitus were associated with a decrease in systolic pressure on standing. Hypertension, antiarthritic drugs, and abnormal heartbeat were associated with an increase in systolic pressure on standing. For orthostatic diastolic pressure changes, supine diastolic pressure and COPD were associated with a decrease in diastolic pressure on standing. Congestive heart failure was associated with an increase in standing diastolic pressure. Using logistic regression analysis, only supine systolic pressure was associated with a greater than 20-mm Hg drop in systolic pressure (n=53, prevalence=13%). Supine diastolic pressure and COPD were the only variables associated with a greater than 20-mm Hg drop in diastolic pressure (n=16, prevalence=4%). These factors may help physicians in identifying older persons at risk for having orthostatic hypotension.

  20. Flow structure, heat transfer and pressure drop in varying aspect ratio two-pass rectangular smooth channels

    NASA Astrophysics Data System (ADS)

    Siddique, Waseem; El-Gabry, Lamyaa; Shevchuk, Igor V.; Hushmandi, Narmin B.; Fransson, Torsten H.

    2012-05-01

    Two-pass channels are used for internal cooling in a number of engineering systems e.g., gas turbines. Fluid travelling through the curved path, experiences pressure and centrifugal forces, that result in pressure driven secondary motion. This motion helps in moving the cold high momentum fluid from the channel core to the side walls and plays a significant role in the heat transfer in the channel bend and outlet pass. The present study investigates using Computational Fluid Dynamics (CFD), the flow structure, heat transfer enhancement and pressure drop in a smooth channel with varying aspect ratio channel at different divider-to-tip wall distances. Numerical simulations are performed in two-pass smooth channel with aspect ratio Win/H = 1:3 at inlet pass and Wout/H = 1:1 at outlet pass for a variety of divider-to-tip wall distances. The results show that with a decrease in aspect ratio of inlet pass of the channel, pressure loss decreases. The divider-to-tip wall distance (Wel) not only influences the pressure drop, but also the heat transfer enhancement at the bend and outlet pass. With an increase in the divider-to-tip wall distance, the areas of enhanced heat transfer shifts from side walls of outlet pass towards the inlet pass. To compromise between heat transfer and pressure drop in the channel, Wel/H = 0.88 is found to be optimum for the channel under study.

  1. Gas-Liquid Flows and Phase Separation

    NASA Technical Reports Server (NTRS)

    McQuillen, John

    2004-01-01

    Common issues for space system designers include:Ability to Verify Performance in Normal Gravity prior to Deployment; System Stability; Phase Accumulation & Shedding; Phase Separation; Flow Distribution through Tees & Manifolds Boiling Crisis; Heat Transfer Coefficient; and Pressure Drop.The report concludes:Guidance similar to "A design that operates in a single phase is less complex than a design that has two-phase flow" is not always true considering the amount of effort spent on pressurizing, subcooling and phase separators to ensure single phase operation. While there is still much to learn about two-phase flow in reduced gravity, we have a good start. Focus now needs to be directed more towards system level problems .

  2. Fuel cell flooding detection and correction

    DOEpatents

    DiPierno Bosco, Andrew; Fronk, Matthew Howard

    2000-08-15

    Method and apparatus for monitoring an H.sub.2 -O.sub.2 PEM fuel cells to detect and correct flooding. The pressure drop across a given H.sub.2 or O.sub.2 flow field is monitored and compared to predetermined thresholds of unacceptability. If the pressure drop exists a threshold of unacceptability corrective measures are automatically initiated.

  3. 40 CFR Table 3 to Subpart Dddd of... - Model Rule-Operating Limits for Wet Scrubbers

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Scrubbers 3 Table 3 to Subpart DDDD of Part 60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...—Model Rule—Operating Limits for Wet Scrubbers For these operating parameters You must establish these... intermittent units) a Pressure drop across the wet scrubber or amperage to wet scrubber Minimum pressure drop...

  4. 40 CFR Table 3 to Subpart Dddd of... - Model Rule-Operating Limits for Wet Scrubbers

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Scrubbers 3 Table 3 to Subpart DDDD of Part 60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...—Model Rule—Operating Limits for Wet Scrubbers For these operating parameters You must establish these... intermittent units) a Pressure drop across the wet scrubber or amperage to wet scrubber Minimum pressure drop...

  5. Effect of cathode cooling efficiency and oxygen plasma gas pressure on the hafnium cathode wall temperature

    NASA Astrophysics Data System (ADS)

    Ashtekar, Koustubh; Diehl, Gregory; Hamer, John

    2012-10-01

    The hafnium cathode is widely used in DC plasma arc cutting (PAC) under an oxygen gas environment to cut iron and iron alloys. The hafnium erosion is always a concern which is controlled by the surface temperature. In this study, the effect of cathode cooling efficiency and oxygen gas pressure on the hafnium surface temperature are quantified. The two layer cathode sheath model is applied on the refractive hafnium surface while oxygen species (O2, O, O+, O++, e-) are considered within the thermal dis-equilibrium regime. The system of non-linear equations comprising of current density balance, heat flux balance at both the cathode surface and the sheath-ionization layer is coupled with the plasma gas composition solver. Using cooling heat flux, gas pressure and current density as inputs; the cathode wall temperature, electron temperature, and sheath voltage drop are calculated. Additionally, contribution of emitted electron current (Je) and ions current (Ji) to the total current flux are estimated. Higher gas pressure usually reduces Ji and increases Je that reduces the surface temperature by thermionic cooling.

  6. Sound wave energy emitted by water drop during the splash on the soil surface

    NASA Astrophysics Data System (ADS)

    Bieganowski, Andrzej; Ryżak, Magdalena; Korbiel, Tomasz

    2017-04-01

    A drop of rain falling on the surface of bare soil not only moisturizes but also can cause splash or compaction, depending on the energy of incident drops and the condition of the surface on which it falls. The splash phenomenon can be characterized by the weight of detached soil material (using splash cups) as well as the number and trajectory of splashed particles (using high-speed cameras). The study presents a new aspect of the analysis of the splash phenomenon by measurement of the sound pressure level and the sound energy of the wave that propagates in the air. The measurements were carried out in an anechoic chamber. Three soils (Endogleyic Umbrisol, Fluvic Endogleyic Cambisol, and Haplic Chernozem) with four initial moisture levels (pressure heads: 0.1 kPa, 1 kPa, 3.16 kPa, and 16 kPa) were tested. Drops of 4.2 mm diameter were falling from a height of 1.5m. The sound pressure level was recorded after 10 consecutive water drop impacts using a special set of microphones. In all measuring conditions with 1m distance, the sound pressure level ranged from 27 to 42dB. The impact of water drops on the ground created sound pulses, which were recalculated to the energy emitted in the form of sound waves. For all soil samples, the sound wave energy was within the range of 0.14 μJ to 5.26 μJ, which corresponds to 0.03-1.07% of the energy of the incident drops (Ryżak et al., 2016). This work was partly financed from the National Science Centre, Poland; project no. 2014/14/E/ST10/00851. References Ryżak M., Bieganowski A., Korbiel T.: Sound wave Energy resulting from the impact of water drops on the soil surface. PLoS One 11(7):e0158472. doi:10.1371/journal.pone.0158472, 2016

  7. Development of a test facility and preliminary testing of flow boiling heat transfer of R410A refrigerant with Al2O3 nanolubricants

    NASA Astrophysics Data System (ADS)

    Wong, Thiam

    In vapor compression cycles, a small portion of the oil circulates with the refrigerant throughout the system components, while most of the oil stays in the compressors. In heat exchangers, the lubricant in excess penalizes the heat transfer and increases the pressure losses: both effects are highly undesired but yet unavoidable. Nanoparticles dispersed in the excess lubricant are expected to provide enhancements in heat transfer. While solubility and miscibility of refrigerants in polyolesters (POE) lubricant are well established knowledge, there is a lack of information regarding if and how nanoparticles dispersed in the lubricant affect these properties. This thesis presents experimental data of solubility of two types of Al2O3 nanolubricants with refrigerant R-410A. The nanoparticles were dispersed in POE lubricant by using different surfactants and dispersion methods. The nanolubricants appeared to have slightly lower solubility than that of R-410A but actually the solid nanoparticles did not really interfere with the POE oil solubility characteristics. A test facility and experimental methodology was developed for the investigation of heat transfer coefficient and pressure drop. The pressure drop of the refrigerant lubricant mixtures during flow boiling depended on the mass flux of the refrigerant. Greater augmentation was seen in the pressure drop results with decreasing mass flow rate. Pure refrigerant R410A showed the lowest pressure drop, addition of nanolubricants to the refrigerant showed a slightly higher pressure drop and POE-refrigerant mixture showed the highest pressure drop in the tests conducted. Enhancement or degradation in heat transfer coefficient during flow boiling depended on the nanoparticle concentration in the lubricant as well as the lubricant concentration in refrigerant. R410A showed the highest heat transfer coefficient for all conditions tested. For a concentration of 1% nanolubricant in refrigerant, the heat transfer coefficient showed more enhancement with increase in nanoparticle concentration compared to POE refrigerant mixtures. For a concentration of 3% nanolubricant in refrigerant mixtures there was little to no enhancement for tests conducted.

  8. Pressure-Drop Considerations in the Characterization of Dew-Point Transfer Standards at High Temperatures

    NASA Astrophysics Data System (ADS)

    Mitter, H.; Böse, N.; Benyon, R.; Vicente, T.

    2012-09-01

    During calibration of precision optical dew-point hygrometers (DPHs), it is usually necessary to take into account the pressure drop induced by the gas flow between the "point of reference" and the "point of use" (mirror or measuring head of the DPH) either as a correction of the reference dew-point temperature or as part of the uncertainty estimation. At dew-point temperatures in the range of ambient temperature and below, it is sufficient to determine the pressure drop for the required gas flow, and to keep the volumetric flow constant during the measurements. In this case, it is feasible to keep the dry-gas flow into the dew-point generator constant or to measure the flow downstream the DPH at ambient temperature. In normal operation, at least one DPH in addition to the monitoring DPH are used, and this operation has to be applied to each instrument. The situation is different at high dew-point temperatures up to 95 °C, the currently achievable upper limit reported in this paper. With increasing dew-point temperatures, the reference gas contains increasing amounts of water vapour and a constant dry-gas flow will lead to a significant enhanced volume flow at the conditions at the point of use, and therefore, to a significantly varying pressure drop depending on the applied dew-point temperature. At dew-point temperatures above ambient temperature, it is also necessary to heat the reference gas and the mirror head of the DPH sufficiently to avoid condensation which will additionally increase the volume flow and the pressure drop. In this paper, a method is provided to calculate the dry-gas flow rate needed to maintain a known wet-gas flow rate through a chilled mirror for a range of temperature and pressures.

  9. Axisymmetric oscillation modes of a double droplet system

    DOE PAGES

    Ramalingam, Santhosh K.; Basaran, Osman A.

    2010-11-15

    A double droplet system (DDS) consists of a sessile and a pendant drop that are coupled through a liquid filled cylindrical hole in a plate of thickness d. For a small hole radius R, equilibrium shapes of both drops are sections of spheres. While DDSs have a number of applications in microfluidics, a DDS oscillating about its equilibrium state can be used as a fast focusing liquid lens. Here, a DDS consisting of an isothermal, incompressible Newtonian fluid of constant density p and constant viscosity u that is surrounded by a gas is excited by oscillating in time (a) themore » pressure in the gas surrounding either drop (pressure excitation), (b) the plate perpendicular to its plane (axial excitation), and (c) the hole radius (radial excitation). In contrast to previous works that assumed transient drop shapes are spherical, they are determined here by simulation and used to identify the natural modes of axisymmetric oscillations from resonances observed during frequency sweeps with DDSs for which the combined volume V of the two drops is less than (4/3)πR 3. Pressure and axial excitations are found to have identical responses but axial and radial excitations are shown to excite different modes. These modes are compared to those exhibited by single pendant (sessile) drop systems. Specifically, while a single pendant (sessile) drop has one additional oscillation mode compared to a free drop, a DDS is found to exhibit roughly twice as many oscillation modes as a pendant (sessile) drop. The effects of dimensionless volume V/R 3, dimensionless plate thickness d/R, and Ohnesorge number Oh =μ/√ρRσ , where σ is the surface tension of the DDS-gas interface, on the resonance frequencies are also investigated.« less

  10. Fast and highly efficient SO2 capture by TMG immobilized on hierarchical micro-meso-macroporous AlPO-5/cordierite honeycomb ceramic materials.

    PubMed

    Xu, Jin; Zha, Xiaoling; Wu, Yumei; Ke, Qingping; Yu, Weifang

    2016-05-11

    SO2 capacity of the obtained TMG-AlPO-5/cordierite honeycomb ceramic (CHC) adsorbent was measured to be 1.13 mol per mol TMG. More importantly, compared with literature reported supported ionic liquids, it is featured by a significantly improved adsorption rate (t0.9 reduced from >30 min to ∼0.1 min) and negligible pressure drop.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stan, Claudiu A.; Willmott, Philip R.; Stone, Howard A.

    Most experimental studies of cavitation in liquid water at negative pressures reported cavitation at tensions significantly smaller than those expected for homogeneous nucleation, suggesting that achievable tensions are limited by heterogeneous cavitation. We generated tension pulses with nanosecond rise times in water by reflecting cylindrical shock waves, produced by X-ray laser pulses, at the internal surface of drops of water. Depending on the X-ray pulse energy, a range of cavitation phenomena occurred, including the rupture and detachment, or spallation, of thin liquid layers at the surface of the drop. When spallation occurred, we evaluated that negative pressures below –100 MPamore » were reached in the drops. As a result, we model the negative pressures from shock reflection experiments using a nucleation-and-growth model that explains how rapid decompression could outrun heterogeneous cavitation in water, and enable the study of stretched water close to homogeneous cavitation pressures.« less

  12. Intercooler cooling-air weight flow and pressure drop for minimum drag loss

    NASA Technical Reports Server (NTRS)

    Reuter, J George; Valerino, Michael F

    1944-01-01

    An analysis has been made of the drag losses in airplane flight of cross-flow plate and tubular intercoolers to determine the cooling-air weight flow and pressure drop that give a minimum drag loss for any given cooling effectiveness and, thus, a maximum power-plant net gain due to charge-air cooling. The drag losses considered in this analysis are those due to (1) the extra drag imposed on the airplane by the weight of the intercooler, its duct, and its supports and (2) the drag sustained by the cooling air in flowing through the intercooler and its duct. The investigation covers a range of conditions of altitude, airspeed, lift-drag ratio, supercharger-pressure ratio, and supercharger adiabatic efficiency. The optimum values of cooling air pressure drop and weight flow ratio are tabulated. Curves are presented to illustrate the results of the analysis.

  13. Resistance to forced airflow through layers of composting organic material.

    PubMed

    Teixeira, Denis Leocádio; de Matos, Antonio Teixeira; Melo, Evandro de Castro

    2015-02-01

    The objective of this study was to adjust equations to estimate the static pressure gradient of airflow through layers of organic residues submitted to two stages of biochemical degradation, and to evaluate the static pressure drop of airflow thought the material layer. Measurements of static pressure drop in the layers of sugarcane bagasse and coffee husks mixed with poultry litter on day 0 and after 30 days of composting were performed using a prototype with specific airflow rates ranging from 0.02 to 0.13 m(3) s(-1) m(-2). Static pressure gradient and specific airflow rate data were properly fit to the Shedd, Hukill & Ives and Ergun models, which may be used to predict the static pressure gradient of air to be blown through the organic residue layers. However, the Shedd model was that which best represented the phenomenon studied. The static pressure drop of airflow increased as a power of the material layer thickness and showed tendency for decreasing with the biochemical degradation time of the organic material. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Regenerator filled with a matrix of polycrystalline iron whiskers

    NASA Astrophysics Data System (ADS)

    Eder, F. X.; Appel, H.

    1982-08-01

    In thermal regenerators, parameters were optimized: convection coefficient, surface of heat accumulating matrix, matrix density and heat capacity, and frequency of cycle inversions. The variation of heat capacity with working temperature was also computed. Polycrystalline iron whiskers prove a good compromise as matrix for heat regenerators at working temperatures ranging from 300 to 80 K. They were compared with wire mesh screens and microspheres of bronze and stainless steel. For theses structures and materials, thermal conductivity, pressure drop, heat transfer and yield were calculated and related to the experimental values. As transport heat gas, helium, argon, and dry nitrogen were applied at pressures up to 20 bar. Experimental and theoretical studies result in a set of formulas for calculating pressure drop, heat capacity, and heat transfer rate for a given thermal regenerator in function of mass flow. It is proved that a whisker matrix has an efficiency that depends strongly on gas pressure and composition. Iron whiskers make a good matrix with heat capacities of kW/cu cm per K, but their relative high pressure drop may, at low pressures, be a limitation. A regenerator expansion machine is described.

  15. The behavior of a liquid drop levitated and drastically flattened by an intense sound field

    NASA Technical Reports Server (NTRS)

    Lee, C. P.; Anilkumar, A. V.; Wang, Taylor G.

    1992-01-01

    The deformation and break-up are studied of a liquid drop in levitation through the radiation pressure. Using high-speed photography ripples are observed on the central membrane of the drop, atomization of the membrane by emission of satellite drops from its unstable ripples, and shattering of the drop after upward buckling like an umbrella, or after horizontal expansion like a sheet. These effects are captured on video. The ripples are theorized to be capillary waves generated by the Faraday instability excited by the sound vibration. Atomization occurs whenever the membrane becomes so thin that the vibration is sufficiently intense. The vibration leads to a destabilizing Bernoulli correction in the static pressure. Buckling occurs when an existent equilibrium is unstable to a radial (i.e., tangential) motion of the membrane because of the Bernoulli effect. Besides, the radiation stress at the rim of the drop is a suction stress which can make equilibrium impossible, leading to the horizontal expansion and the subsequent break-up.

  16. Does vascular stapling improve compliance of vascular anastomoses?

    PubMed

    Stansby, G; Knez, P; Berwanger, C S; Nelson, K; Reichert, V; Schmitz-Rixen, T

    2001-01-01

    Elastic properties of vessel walls are altered by vascular anastomoses. Such alterations may lead to neointimal hyperplasia, which is a common cause of reocclusion following vascular surgery. The severity of paraanastomotic hypercompliant zones and anastomotic compliance drop depend on suturing material and on elastic properties of the anastomotic vessel segments. This study compares paraanastomotic hypercompliance and anastomotic compliance drop when using a new vascular closure system (VCS) and a conventional, continuous suture line in the preparation of end-to-end anastomoses. Compliance of artery-artery, vein-artery, and polytetrafluoroethylene-artery anastomoses was measured in an artificial circulation system at mean pressures of 60, 90, and 120 mm Hg, comparing conventional suturing and the VCS. When using the VCS for vein-artery anastomoses, significantly less postanastomotic hypercompliance was achieved at mean pressures of 60 mm Hg (14.2 +/-3.8% above remote postanastomotic area), compared to suture (55.1 +/-14.8%, p<0.05). At 90 mm Hg, respective values were 11.0 +/-2.3% for VCS and 54.7 +/-10.1% for suture, p<0.01. At 120 mm Hg, in polytetrafluoroethylene-artery anastomoses, the anastomotic compliance drop was significantly less when using the continuous suture line (93.9 +/-1.1% below remote postanastomotic compliance), compared to VCS (97.2 +/-0.2%, p<0.05). Compared to conventional suturing, use of the VCS reduced postanastomotic hypercompliance in vein-artery anastomoses.

  17. Snake constriction rapidly induces circulatory arrest in rats.

    PubMed

    Boback, Scott M; McCann, Katelyn J; Wood, Kevin A; McNeal, Patrick M; Blankenship, Emmett L; Zwemer, Charles F

    2015-07-01

    As legless predators, snakes are unique in their ability to immobilize and kill their prey through the process of constriction, and yet how this pressure incapacitates and ultimately kills the prey remains unknown. In this study, we examined the cardiovascular function of anesthetized rats before, during and after being constricted by boas (Boa constrictor) to examine the effect of constriction on the prey's circulatory function. The results demonstrate that within 6 s of being constricted, peripheral arterial blood pressure (PBP) at the femoral artery dropped to 1/2 of baseline values while central venous pressure (CVP) increased 6-fold from baseline during the same time. Electrocardiographic recordings from the anesthetized rat's heart revealed profound bradycardia as heart rate (fH) dropped to nearly half of baseline within 60 s of being constricted, and QRS duration nearly doubled over the same time period. By the end of constriction (mean 6.5±1 min), rat PBP dropped 2.9-fold, fH dropped 3.9-fold, systemic perfusion pressure (SPP=PBP-CVP) dropped 5.7-fold, and 91% of rats (10 of 11) had evidence of cardiac electrical dysfunction. Blood drawn immediately after constriction revealed that, relative to baseline, rats were hyperkalemic (serum potassium levels nearly doubled) and acidotic (blood pH dropped from 7.4 to 7.0). These results are the first to document the physiological response of prey to constriction and support the hypothesis that snake constriction induces rapid prey death due to circulatory arrest. © 2015. Published by The Company of Biologists Ltd.

  18. Pressure sores and hip fractures.

    PubMed

    Haleem, S; Heinert, G; Parker, M J

    2008-02-01

    Development of pressure sores during hospital admission causes morbidity and distress to the patient, increases strain on nursing resources, delaying discharge and possibly increasing mortality. A hip fracture in elderly patients is a known high-risk factor for development of pressure sores. We aimed to determine the current incidence of pressure sores and identify those factors which were associated with an increased risk of pressure sores. We retrospectively analysed prospectively collected data of 4654 consecutive patients admitted to a single unit. One hundred and seventy-eight (3.8%) of our patients developed pressure sores. Patient factors that increased the risk of pressure sores were increased age, diabetes mellitus, a lower mental test score, a lower mobility score, a higher ASA score, lower admission haemoglobin and an intra-operative drop in blood pressure. The risk was higher in patients with an extracapsular neck of femur fracture and patients with an increased time interval between admission to hospital and surgery. Our studies indicate that while co-morbidities constitute a substantial risk in an elderly population, the increase in incidence of pressure sores can be reduced by minimising delays to surgery.

  19. [Filtering facepieces: effect of oily aerosol load on penetration through the filtering material].

    PubMed

    Plebani, Carmela; Listrani, S; Di Luigi, M

    2010-01-01

    Electrostatic filters are widely used in applications requiring high filtration efficiency and low pressure drop. However various studies showed that the penetration through electrostatic filters increases during exposure to an aerosol flow. This study investigates the effects of prolonged exposure to an oily aerosol on the penetration through filtering facepieces available on the market. Some samples of FFP1, FFP2 and FFP3 filtering facepieces were exposed for 8 hours consecutively to a paraffin oil polydisperse aerosol. At the end of the exposure about 830 mg of paraffin oil were deposited in the facepiece. All the examined facepieces showed penetration values that increased with paraffin oil load while pressure drop values were substantially the same before and after exposure. The measured maximum penetration values did not exceed the maximum penetration values allowed by the European technical standards, except in one case. According to the literature, 830 mg of oil load in a facepiece is not feasible in workplaces over an eight- hour shift. However, the trend of the penetration versus exposure mass suggests that if the load increases, the penetration may exceed the maximum allowed values. For comparison a mechanical filter was also studied. This showed an initial pressure drop higher than FFP2 filtering facepieces characterized by comparable penetration values. During exposure the pressure drop virtually doubled while penetration did not change. The increase in penetration with no increase in pressure drop in the analyzed facepieces indicates that it is necessary to comply with the information supplied by the manufacturer that restricts their use to a single shift.

  20. A fluid--structure interaction finite element analysis of pulsatile blood flow through a compliant stenotic artery

    NASA Technical Reports Server (NTRS)

    Bathe, M.; Kamm, R. D.

    1999-01-01

    A new model is used to analyze the fully coupled problem of pulsatile blood flow through a compliant, axisymmetric stenotic artery using the finite element method. The model uses large displacement and large strain theory for the solid, and the full Navier-Stokes equations for the fluid. The effect of increasing area reduction on fluid dynamic and structural stresses is presented. Results show that pressure drop, peak wall shear stress, and maximum principal stress in the lesion all increase dramatically as the area reduction in the stenosis is increased from 51 to 89 percent. Further reductions in stenosis cross-sectional area, however, produce relatively little additional change in these parameters due to a concomitant reduction in flow rate caused by the losses in the constriction. Inner wall hoop stretch amplitude just distal to the stenosis also increases with increasing stenosis severity, as downstream pressures are reduced to a physiological minimum. The contraction of the artery distal to the stenosis generates a significant compressive stress on the downstream shoulder of the lesion. Dynamic narrowing of the stenosis is also seen, further augmenting area constriction at times of peak flow. Pressure drop results are found to compare well to an experimentally based theoretical curve, despite the assumption of laminar flow.

  1. 40 CFR Table 3 to Subpart Jjjjjj... - Operating Limits for Boilers With Emission Limits

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... system alarm does not sound more than 5 percent of the operating time during each 6-month period. 2... the pressure drop at or above the lowest 1-hour average pressure drop across the wet scrubber and the... recent performance stack test. 8. Continuous Oxygen Monitor Maintain the oxygen level at or above the...

  2. 40 CFR 63.9917 - How do I demonstrate initial compliance with the emission limitations and work practice standards...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... subpart; and (2) For each wet scrubber subject to the operating limits for pressure drop and scrubber water flow rate in § 63.9890(b), you have established appropriate site-specific operating limits and have a record of the pressure drop and scrubber water flow rate measured during the performance test in...

  3. 40 CFR 63.9923 - How do I demonstrate continuous compliance with the emission limitations and work practice...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to this subpart. (b) For each wet scrubber subject to the operating limits for pressure drop and scrubber water flow rate in § 63.9890(b), you must demonstrate continuous compliance according to the... according to § 63.9921(b); and (2) Maintaining the hourly average pressure drop and scrubber water flow rate...

  4. 40 CFR 63.9917 - How do I demonstrate initial compliance with the emission limitations and work practice standards...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... subpart; and (2) For each wet scrubber subject to the operating limits for pressure drop and scrubber water flow rate in § 63.9890(b), you have established appropriate site-specific operating limits and have a record of the pressure drop and scrubber water flow rate measured during the performance test in...

  5. 40 CFR 63.9923 - How do I demonstrate continuous compliance with the emission limitations and work practice...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to this subpart. (b) For each wet scrubber subject to the operating limits for pressure drop and scrubber water flow rate in § 63.9890(b), you must demonstrate continuous compliance according to the... according to § 63.9921(b); and (2) Maintaining the hourly average pressure drop and scrubber water flow rate...

  6. 40 CFR 63.9917 - How do I demonstrate initial compliance with the emission limitations and work practice standards...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... subpart; and (2) For each wet scrubber subject to the operating limits for pressure drop and scrubber water flow rate in § 63.9890(b), you have established appropriate site-specific operating limits and have a record of the pressure drop and scrubber water flow rate measured during the performance test in...

  7. 40 CFR 63.9923 - How do I demonstrate continuous compliance with the emission limitations and work practice...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... to this subpart. (b) For each wet scrubber subject to the operating limits for pressure drop and scrubber water flow rate in § 63.9890(b), you must demonstrate continuous compliance according to the... according to § 63.9921(b); and (2) Maintaining the hourly average pressure drop and scrubber water flow rate...

  8. 40 CFR 63.9917 - How do I demonstrate initial compliance with the emission limitations and work practice standards...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... subpart; and (2) For each wet scrubber subject to the operating limits for pressure drop and scrubber water flow rate in § 63.9890(b), you have established appropriate site-specific operating limits and have a record of the pressure drop and scrubber water flow rate measured during the performance test in...

  9. 40 CFR 63.9923 - How do I demonstrate continuous compliance with the emission limitations and work practice...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... to this subpart. (b) For each wet scrubber subject to the operating limits for pressure drop and scrubber water flow rate in § 63.9890(b), you must demonstrate continuous compliance according to the... according to § 63.9921(b); and (2) Maintaining the hourly average pressure drop and scrubber water flow rate...

  10. 40 CFR 63.9917 - How do I demonstrate initial compliance with the emission limitations and work practice standards...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... subpart; and (2) For each wet scrubber subject to the operating limits for pressure drop and scrubber water flow rate in § 63.9890(b), you have established appropriate site-specific operating limits and have a record of the pressure drop and scrubber water flow rate measured during the performance test in...

  11. 40 CFR 63.9923 - How do I demonstrate continuous compliance with the emission limitations and work practice...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... to this subpart. (b) For each wet scrubber subject to the operating limits for pressure drop and scrubber water flow rate in § 63.9890(b), you must demonstrate continuous compliance according to the... according to § 63.9921(b); and (2) Maintaining the hourly average pressure drop and scrubber water flow rate...

  12. 40 CFR Table 3 to Subpart Ffff of... - Model Rule-Operating Limits for Incinerators and Wet Scrubbers

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Incinerators and Wet Scrubbers 3 Table 3 to Subpart FFFF of Part 60 Protection of Environment ENVIRONMENTAL...—Model Rule—Operating Limits for Incinerators and Wet Scrubbers As stated in § 60.3023, you must comply... units. a 2. Pressure drop across the wet scrubber or amperage to wet scrubber Minimum pressure drop or...

  13. 40 CFR Table 3 to Subpart Ffff of... - Model Rule-Operating Limits for Incinerators and Wet Scrubbers

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Incinerators and Wet Scrubbers 3 Table 3 to Subpart FFFF of Part 60 Protection of Environment ENVIRONMENTAL...—Model Rule—Operating Limits for Incinerators and Wet Scrubbers As stated in § 60.3023, you must comply... units. a 2. Pressure drop across the wet scrubber or amperage to wet scrubber Minimum pressure drop or...

  14. Antimisting kerosene: Low temperature degradation and blending

    NASA Technical Reports Server (NTRS)

    Yavrouian, A.; Parikh, P.; Sarohia, V.

    1988-01-01

    The inline filtration characteristics of freshly blended and degraded antimisting fuels (AMK) at low temperature are examined. A needle valve degrader was modified to include partial recirculation of degraded fuel and heat addition in the bypass loop. A pressure drop across the needle valve of up to 4,000 psi was used. The pressure drop across a 325 mesh filter screen placed inline with the degrader and directly downstream of the needle valve was measured as a function of time for different values of pressure drop across the needle valve. A volume flux of 1 gpm/sq in was employed based on the frontal area of the screen. It was found that, at ambient temperatures, freshly blended AMK fuel could be degraded using a single pass degradation at 4,000 psi pressure drop across the needle valve to give acceptable filterability performance. At fuel temperatures below -20 C, degradation becomes increasingly difficult and a single pass technique results in unacceptable filtration performance. Recirculation of a fraction of the degraded fuel and heat addition in the bypass loop improved low temperature degradation performance. The problem is addressed of blending the AMK additive with Jet A at various base fuel temperatures.

  15. Evaluation of cooling performance of impinging jet array over various dimpled surfaces

    NASA Astrophysics Data System (ADS)

    Kim, Sun-Min; Kim, Kwang-Yong

    2016-04-01

    Various configurations of an impinging jet-dimple array cooling system were evaluated in terms of their heat transfer and pressure drop performances. The steady incompressible laminar flow and heat transfer in the cooling system were analyzed using three-dimensional Navier-Stokes equations. The obtained numerical results were validated by a comparison with experimental data for the local Nusselt number distribution. The area-averaged Nusselt number on the projected area and the pressure drop through the system were selected as the performance parameters. Among the four tested configurations—inline concave, staggered concave, inline convex, and staggered convex—the staggered convex impinging jet-dimple array showed the best heat transfer performance whereas the staggered-concave configuration showed the lowest pressure drop. A parametric study with two geometric variables, i.e., the height of dimple and the diameter of dimple, was also conducted for the staggered-convex impinging jet-dimple array. As a result, the best heat transfer and pressure drop performances were achieved when the ratio of the height of dimple to the diameter of jet was 0.8. And, the increase in the ratio of the diameter of dimple to the diameter of jet yielded monotonous increase in the heat transfer performance.

  16. [Acupuncture combined with medication for morning blood pressure of essential hypertension].

    PubMed

    Zhang, Yi; Du, Yuzheng

    2018-04-12

    Based on the western medication, to evaluate the advantages in the morning blood pressure treated with acupuncture at Fengchi (GB 20) and Neck-Jiaji (EX-B 2) combined with acupuncture technique for activating blood circulation, eliminating wind and regulating the liver and spleen in the patients with essential hypertension. A total of 90 patients of essential hypertension of the mild and moderate degrees were randomized into a medication group (30 cases, 3 dropping), No.1 acupuncture group (30 cases, 2 dropping) and No.2 acupuncture group (30 cases, 1 dropping). In the medication group, adalat was prescribed for oral administration, 30 mg at 7 am every day, continuously for 6 weeks. In the No.1 acupuncture group, on the basis of the treatment as the medication group, the acupuncture technique for activating blood circulation, eliminating wind and regulating the liver and spleen was applied and the acupoints were Renying (ST 9), Hegu (LI 4), Taichong (LR 3), Quchi (LI 11) and Zusanli (ST 36). In the No.2 acupuncture group, on the basis of the treatment as the No.1 acupuncture group, Fengchi (GB 20) and Neck-Jiaji (EX-B 2) were added in acupuncture. Acupuncture was given in the time zone from 8 am through 10 am every day, once a day, 5 times a week, totally for 6 weeks. Separately, before treatment and in 2, 4 and 6 weeks of treatment, the morning blood pressure, the control rate and the symptom score were observed in the patients of the three groups. The morning blood pressure was followed up in 3 and 6 months separately. Compared with those before treatment, in 2, 4 and 6 weeks of treatment, the levels of blood pressure reduced in the patients of the three groups ( P <0.05, P <0.01). After 2-week treatment, the differences were not significant in the morning blood pressure and its control rate in the patients of the three groups (all P >0.05). In 4 and 6 weeks of treatment, the levels of the morning blood pressure in the No.2 acupuncture group were lower than those in the No.1 acupuncture group, and the results in the No.1 and No.2 acupuncture groups were all lower than those in the medication group (all P <0.05). In the follow-up visit for 3 and 6 months separately, the differences were not significant in the morning blood pressure among the three groups (all P >0.05). In 2, 4 and 6 weeks of treatment, the symptom scores reduced as compared with those before treatment in the three groups (all P <0.05). The symptom scores in the No.1 and No.2 acupuncture groups were all lower than those in the medication group (all P <0.05). The differences were not significant between the No.1 acupuncture group and the No.2 acupuncture group (all P >0.05). The comprehensive treatment of acupuncture at Fengchi (GB 20) and Neck-Jiaji (EX-B 2) combined with acupuncture technique for activating blood circulation, eliminating wind and regulating the liver and spleen achieve the effects of reducing the morning blood pressure in the patients with essential hypertension, relieving the symptoms of hypertension such as headache, vertigo and tinnitus and the effects are better than those of the acupuncture technique for activating blood circulation, eliminating wind and regulating the liver and spleen.

  17. Application of Pulsed Electrical Fields for Advanced Cooling and Water Recovery in Coal-Fired Power Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young Cho; Alexander Fridman

    2009-04-02

    The overall objective of the present work was to develop technologies to reduce freshwater consumption in a cooling tower of coal-based power plant so that one could significantly reduce the need of make-up water. The specific goal was to develop a scale prevention technology based an integrated system of physical water treatment (PWT) and a novel filtration method so that one could reduce the need for the water blowdown, which accounts approximately 30% of water loss in a cooling tower. The present study investigated if a pulsed spark discharge in water could be used to remove deposits from the filtermore » membrane. The test setup included a circulating water loop and a pulsed power system. The present experiments used artificially hardened water with hardness of 1,000 mg/L of CaCO{sub 3} made from a mixture of calcium chloride (CaCl{sub 2}) and sodium carbonate (Na{sub 2}CO{sub 3}) in order to produce calcium carbonate deposits on the filter membrane. Spark discharge in water was found to produce strong shockwaves in water, and the efficiency of the spark discharge in cleaning filter surface was evaluated by measuring the pressure drop across the filter over time. Results showed that the pressure drop could be reduced to the value corresponding to the initial clean state and after that the filter could be maintained at the initial state almost indefinitely, confirming the validity of the present concept of pulsed spark discharge in water to clean dirty filter. The present study also investigated the effect of a plasma-assisted self-cleaning filter on the performance of physical water treatment (PWT) solenoid coil for the mitigation of mineral fouling in a concentric counterflow heat exchanger. The self-cleaning filter utilized shockwaves produced by pulse-spark discharges in water to continuously remove scale deposits from the surface of the filter, thus keeping the pressure drop across the filter at a relatively low value. Artificial hard water was used in the present fouling experiments for three different cases: no treatment, PWT coil only, and PWT coil plus self-cleaning filter. Fouling resistances decreased by 59-72% for the combined case of PWT coil plus filter compared with the values for no-treatment cases. SEM photographs showed much smaller particle sizes for the combined case of PWT coil plus filter as larger particles were continuously removed from circulating water by the filter. The x-ray diffraction data showed calcite crystal structures for all three cases.« less

  18. Overall heat transfer coefficient and pressure drop in a typical tubular exchanger employing alumina nano-fluid as the tube side hot fluid

    NASA Astrophysics Data System (ADS)

    Kabeel, A. E.; Abdelgaied, Mohamed

    2016-08-01

    Nano-fluids are used to improve the heat transfer rates in heat exchangers, especially; the shell-and-tube heat exchanger that is considered one of the most important types of heat exchangers. In the present study, an experimental loop is constructed to study the thermal characteristics of the shell-and-tube heat exchanger; at different concentrations of Al2O3 nonmetallic particles (0.0, 2, 4, and 6 %). This material concentrations is by volume concentrations in pure water as a base fluid. The effects of nano-fluid concentrations on the performance of shell and tube heat exchanger have been conducted based on the overall heat transfer coefficient, the friction factor, the pressure drop in tube side, and the entropy generation rate. The experimental results show that; the highest heat transfer coefficient is obtained at a nano-fluid concentration of 4 % of the shell side. In shell side the maximum percentage increase in the overall heat transfer coefficient has reached 29.8 % for a nano-fluid concentration of 4 %, relative to the case of the base fluid (water) at the same tube side Reynolds number. However; in the tube side the maximum relative increase in pressure drop has recorded the values of 12, 28 and 48 % for a nano-material concentration of 2, 4 and 6 %, respectively, relative to the case without nano-fluid, at an approximate value of 56,000 for Reynolds number. The entropy generation reduces with increasing the nonmetallic particle volume fraction of the same flow rates. For increase the nonmetallic particle volume fraction from 0.0 to 6 % the rate of entropy generation decrease by 10 %.

  19. Hydrodynamic and Longitudinal Impedance Analysis of Cerebrospinal Fluid Dynamics at the Craniovertebral Junction in Type I Chiari Malformation

    PubMed Central

    Martin, Bryn A.; Kalata, Wojciech; Shaffer, Nicholas; Fischer, Paul; Luciano, Mark; Loth, Francis

    2013-01-01

    Elevated or reduced velocity of cerebrospinal fluid (CSF) at the craniovertebral junction (CVJ) has been associated with type I Chiari malformation (CMI). Thus, quantification of hydrodynamic parameters that describe the CSF dynamics could help assess disease severity and surgical outcome. In this study, we describe the methodology to quantify CSF hydrodynamic parameters near the CVJ and upper cervical spine utilizing subject-specific computational fluid dynamics (CFD) simulations based on in vivo MRI measurements of flow and geometry. Hydrodynamic parameters were computed for a healthy subject and two CMI patients both pre- and post-decompression surgery to determine the differences between cases. For the first time, we present the methods to quantify longitudinal impedance (LI) to CSF motion, a subject-specific hydrodynamic parameter that may have value to help quantify the CSF flow blockage severity in CMI. In addition, the following hydrodynamic parameters were quantified for each case: maximum velocity in systole and diastole, Reynolds and Womersley number, and peak pressure drop during the CSF cardiac flow cycle. The following geometric parameters were quantified: cross-sectional area and hydraulic diameter of the spinal subarachnoid space (SAS). The mean values of the geometric parameters increased post-surgically for the CMI models, but remained smaller than the healthy volunteer. All hydrodynamic parameters, except pressure drop, decreased post-surgically for the CMI patients, but remained greater than in the healthy case. Peak pressure drop alterations were mixed. To our knowledge this study represents the first subject-specific CFD simulation of CMI decompression surgery and quantification of LI in the CSF space. Further study in a larger patient and control group is needed to determine if the presented geometric and/or hydrodynamic parameters are helpful for surgical planning. PMID:24130704

  20. The numerical modeling of water/FMWCNT nanofluid flow and heat transfer in a backward-facing contracting channel

    NASA Astrophysics Data System (ADS)

    Alrashed, Abdullah A. A. A.; Akbari, Omid Ali; Heydari, Ali; Toghraie, Davood; Zarringhalam, Majid; Shabani, Gholamreza Ahmadi Sheikh; Seifi, Ali Reza; Goodarzi, Marjan

    2018-05-01

    In recent years, the study of rheological behavior and heat transfer of nanofluids in the industrial equipment has become widespread among the researchers and their results have led to great advancements in this field. In present study, the laminar flow and heat transfer of water/functional multi-walled carbon nanotube nanofluid have been numerically investigated in weight percentages of 0.00, 0.12 and 0.25 and Reynolds numbers of 1-150 by using finite volume method (FVM). The analyzed geometry is a two-dimensional backward-facing contracting channel and the effects of various weight percentages and Reynolds numbers have been studied in the supposed geometry. The results have been interpreted as the figures of Nusselt number, friction coefficient, pressure drop, velocity contours and static temperature. The results of this research indicate that, the enhancement of Reynolds number or weight percentage of nanoparticles causes the reduction of surface temperature and the enhancement of heat transfer coefficient. By increasing Reynolds number, the axial velocity enhances, causing the enhancement of momentum. By increasing fluid momentum at the beginning of channel, especially in areas close to the upper wall, the axial velocity reduces and the possibility of vortex generation increases. The mentioned behavior causes a great enhancement in velocity gradients and pressure drop at the inlet of channel. Also, in these areas, Nusselt number and local friction coefficient figures have a relative decline, which is due to the sudden reduction of velocity. In general, by increasing the mass fraction of solid nanoparticles, the average Nusselt number increases and in Reynolds number of 150, the enhancement of pumping power and pressure drop does not cause any significant changes. This behavior is an important advantage of choosing nanofluid which causes the enhancement of thermal efficiency.

  1. Comparison of pressure drop and filtration efficiency of particulate respirators using welding fumes and sodium chloride.

    PubMed

    Cho, Hyun-Woo; Yoon, Chung-Sik; Lee, Jin-Ho; Lee, Seung-Joo; Viner, Andrew; Johnson, Erik W

    2011-07-01

    Respirators are used to help reduce exposure to a variety of contaminants in workplaces. Test aerosols used for certification of particulate respirators (PRs) include sodium chloride (NaCl), dioctyl phthalate, and paraffin oil. These aerosols are generally assumed to be worst case surrogates for aerosols found in the workplace. No data have been published to date on the performance of PRs with welding fumes, a hazardous aerosol that exists in real workplace settings. The aim of this study was to compare the performance of respirators and filters against a NaCl aerosol and a welding fume aerosol and determine whether or not a correlation between the two could be made. Fifteen commercial PRs and filters (seven filtering facepiece, two replaceable single-type filters, and six replaceable dual-type filters) were chosen for investigation. Four of the filtering facepiece respirators, one of the single-type filters, and all of the dual-type filters contained carbon to help reduce exposure to ozone and other vapors generated during the welding process. For the NaCl test, a modified National Institute for Occupational Safety and Health protocol was adopted for use with the TSI Model 8130 automated filter tester. For the welding fume test, welding fumes from mild steel flux-cored arcs were generated and measured with a SIBATA filter tester (AP-634A, Japan) and a manometer in the upstream and downstream sections of the test chamber. Size distributions of the two aerosols were measured using a scanning mobility particle sizer. Penetration and pressure drop were measured over a period of aerosol loading onto the respirator or filter. Photos and scanning electron microscope images of clean and exposed respirators were taken. The count median diameter (CMD) and mass median diameter (MMD) for the NaCl aerosol were smaller than the welding fumes (CMD: 74 versus 216 nm; MMD: 198 versus 528 nm, respectively). Initial penetration and peak penetration were higher with the NaCl aerosol. However, pressure drop increased much more rapidly in the welding fume test than the NaCl aerosol test. The data and images clearly show differences in performance trends between respirator models. Therefore, general correlations between NaCl and weld fume data could not be made. These findings suggest that respirators certified with a surrogate test aerosol such as NaCl are appropriate for filtering welding fume (based on penetration). However, some respirators may have a more rapid increase in pressure drop from the welding fume accumulating on the filter. Therefore, welders will need to choose which models are easier to breathe through for the duration of their use and replace respirators or filters according to the user instructions and local regulations.

  2. Low blood pressure

    MedlinePlus

    Hypotension; Blood pressure - low; Postprandial hypotension; Orthostatic hypotension; Neurally mediated hypotension; NMH ... Blood pressure varies from one person to another. A drop as little as 20 mmHg, can cause ...

  3. A postscript to Circulation of the blood: men and ideas.

    PubMed

    Riley, R L

    1982-10-01

    Since 1964, when Fishman and Richards published Circulation of the Blood: Men and Ideas, Guyton's model of the circulation, in which mean circulatory pressure serves as the upstream pressure for venous return, has been extended, and the concept of vascular smooth muscle tone acting like the pressure surrounding a Starling resistor has been postulated. According to this scheme, the positive zero flow intercepts of rapidly determined arterial pressure-flow curves are the effective downstream pressures for arterial flow to different tissues. The arterioles, like Starling resistors, determine the downstream pressures and are followed by abrupt pressure drops, or "waterfalls." Capillary pressures are closely linked to those of the venules into which they flow. Capillary-venular pressures are the upstream pressures for venous return. In exercising muscles, reduced arteriolar tone lowers arteriolar pressure and increases arterial flow. This, in turn, raises capillary-venular pressure and increases venous flow. The arteriolar-capillary waterfall is decreased or eliminated. Total blood flow is increased by diversion of blood from tissues with slow venous drainage to muscles with fast venous drainage (low resistance X compliance). The heart pumps away the increased venous return by shifting to a new ventricular function curve.

  4. Custom Unit Pump Development for the EVA PLSS

    NASA Technical Reports Server (NTRS)

    Schuller, Michael; Kurwitz, Cable; Little, Frank; Oinuma, Ryoji; Larsen, Ben; Goldman, Jeff; Reinis, Filip; Trevino, Luis

    2010-01-01

    This paper describes the effort by the Texas Engineering Experiment Station (TEES) and Honeywell for NASA to design and test a pre-flight prototype pump for use in the Extra-vehicular activity (EVA) portable life support subsystem (PLSS). Major design decisions were driven by the need to reduce the pump s mass, power, and volume compared to the existing PLSS pump. In addition, the pump must accommodate a much wider range of abnormal conditions than the existing pump, including vapor/gas bubbles and increased pressure drop when employed to cool two suits simultaneously. A positive displacement, external gear type pump was selected because it offers the most compact and highest efficiency solution over the required range of flow rates and pressure drops. An additional benefit of selecting a gear pump design is that it is self priming and capable of ingesting non-condensable gas without becoming air locked. The chosen pump design consists of a 28 V DC, brushless, seal-less, permanent magnet motor driven, external gear pump that utilizes a Honeywell development that eliminates the need for magnetic coupling. The pump design was based on existing Honeywell designs, but incorporated features specifically for the PLSS application, including all of the key features of the flight pump. Testing at TEES verified that the pump meets the design requirements for range of flow rates, pressure drop, power consumption, working fluid temperature, operating time, gas ingestion, and restart capability under both ambient and vacuum conditions. The pump operated at 40 to 240 lbm/hr flow rate, 35 to 100 oF pump temperature, and 5 to 10 psid pressure rise. Power consumption of the pump controller at the nominal operating point in both ambient and vacuum conditions was 9.5 W, which was less than the 12 W predicted. Gas ingestion capabilities were tested by injecting 100 cc of air into the fluid line; the pump operated normally throughout this test.

  5. Critical processes and parameters in the development of accident tolerant fuels drop-in capsule irradiation tests

    DOE PAGES

    Barrett, K. E.; Ellis, K. D.; Glass, C. R.; ...

    2015-12-01

    The goal of the Accident Tolerant Fuel (ATF) program is to develop the next generation of Light Water Reactor (LWR) fuels with improved performance, reliability, and safety characteristics during normal operations and accident conditions and with reduced waste generation. An irradiation test series has been defined to assess the performance of proposed ATF concepts under normal LWR operating conditions. The Phase I ATF irradiation test series is planned to be performed as a series of drop-in capsule tests to be irradiated in the Advanced Test Reactor (ATR) operated by the Idaho National Laboratory (INL). Design, analysis, and fabrication processes formore » ATR drop-in capsule experiment preparation are presented in this paper to demonstrate the importance of special design considerations, parameter sensitivity analysis, and precise fabrication and inspection techniques for figure innovative materials used in ATF experiment assemblies. A Taylor Series Method sensitivity analysis approach was used to identify the most critical variables in cladding and rodlet stress, temperature, and pressure calculations for design analyses. The results showed that internal rodlet pressure calculations are most sensitive to the fission gas release rate uncertainty while temperature calculations are most sensitive to cladding I.D. and O.D. dimensional uncertainty. The analysis showed that stress calculations are most sensitive to rodlet internal pressure uncertainties, however the results also indicated that the inside radius, outside radius, and internal pressure were all magnified as they propagate through the stress equation. This study demonstrates the importance for ATF concept development teams to provide the fabricators as much information as possible about the material properties and behavior observed in prototype testing, mock-up fabrication and assembly, and chemical and mechanical testing of the materials that may have been performed in the concept development phase. Special handling, machining, welding, and inspection of materials, if known, should also be communicated to the experiment fabrication and inspection team.« less

  6. Usability of prostaglandin monotherapy eye droppers.

    PubMed

    Drew, Tom; Wolffsohn, James S

    2015-09-01

    To determine the force needed to extract a drop from a range of current prostaglandin monotherapy eye droppers and how this related to the comfortable and maximum pressure subjects could exert. The comfortable and maximum pressure subjects could apply to an eye dropper constructed around a set of cantilevered pressure sensors and mounted above their eye was assessed in 102 subjects (mean 51.2±18.7 years), repeated three times. A load cell amplifier, mounted on a stepper motor controlled linear slide, was constructed and calibrated to test the force required to extract the first three drops from 13 multidose or unidose latanoprost medication eye droppers. The pressure that could be exerted on a dropper comfortably (25.9±17.7 Newtons, range 1.2-87.4) could be exceeded with effort (to 64.8±27.1 Newtons, range 19.9-157.8; F=19.045, p<0.001), and did not differ between repeats (F=0.609, p=0.545). Comfortable and maximum pressures exerted were correlated (r=0.618, p<0.001), neither were influenced strongly by age (r=0.138, p=0.168; r=-0.118, p=0237, respectively), but were lower in women than in men (F=12.757, p=0.001). The force required to expel a drop differed between dropper designs (F=22.528, p<0.001), ranging from 6.4 Newtons to 23.4 Newtons. The force needed to exert successive drops increased (F=36.373, p<0.001) and storing droppers in the fridge further increased the force required (F=7.987, p=0.009). Prostaglandin monotherapy droppers for glaucoma treatment vary in their resistance to extract a drop and with some a drop could not be comfortably achieved by half the population, which may affect compliance and efficacy. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  7. Experimental investigation of the two-phase flow regimes and pressure drop in horizontal mini-size rectangular test section

    NASA Astrophysics Data System (ADS)

    Elazhary, Amr Mohamed; Soliman, Hassan M.

    2012-10-01

    An experimental study was conducted in order to investigate two-phase flow regimes and fully developed pressure drop in a mini-size, horizontal rectangular channel. The test section was machined in the form of an impacting tee junction in an acrylic block (in order to facilitate visualization) with a rectangular cross-section of 1.87-mm height on 20-mm width on the inlet and outlet sides. Pressure drop measurement and flow regime identification were performed on all three sides of the junction. Air-water mixtures at 200 kPa (abs) and room temperature were used as the test fluids. Four flow regimes were identified visually: bubbly, plug, churn, and annular over the ranges of gas and liquid superficial velocities of 0.04 ≤ JG ≤ 10 m/s and 0.02 ≤ JL ≤ 0.7 m/s, respectively, and a flow regime map was developed. Accuracy of the pressure-measurement technique was validated with single-phase, laminar and turbulent, fully developed data. Two-phase experiments were conducted for eight different inlet conditions and various mass splits at the junction. Comparisons were conducted between the present data and former correlations for the fully developed two-phase pressure drop in rectangular channels with similar sizes. Wide deviations were found among these correlations, and the correlations that agreed best with the present data were identified.

  8. 40 CFR 63.7825 - How do I demonstrate initial compliance with the emission limitations that apply to me?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... accordance with § 63.7824(a)(1); and (3) For each venturi scrubber subject to the operating limits for pressure drop and scrubber water flow rate in § 63.7790(b)(2), you have established appropriate site-specific operating limits and have a record of the pressure drop and scrubber water flow rate measured...

  9. Prediction of pressure drop in fluid tuned mounts using analytical and computational techniques

    NASA Technical Reports Server (NTRS)

    Lasher, William C.; Khalilollahi, Amir; Mischler, John; Uhric, Tom

    1993-01-01

    A simplified model for predicting pressure drop in fluid tuned isolator mounts was developed. The model is based on an exact solution to the Navier-Stokes equations and was made more general through the use of empirical coefficients. The values of these coefficients were determined by numerical simulation of the flow using the commercial computational fluid dynamics (CFD) package FIDAP.

  10. 40 CFR 63.9916 - What test methods and other procedures must I use to establish and demonstrate initial compliance...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... compliance with the operating limits? For a wet scrubber subject to operating limits for pressure drop and scrubber water flow rate in § 63.9890(b), you must establish site-specific operating limits according to... monitoring system (CPMS) required in § 63.9920, measure and record the pressure drop and scrubber water flow...

  11. 40 CFR 63.9916 - What test methods and other procedures must I use to establish and demonstrate initial compliance...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... compliance with the operating limits? For a wet scrubber subject to operating limits for pressure drop and scrubber water flow rate in § 63.9890(b), you must establish site-specific operating limits according to... monitoring system (CPMS) required in § 63.9920, measure and record the pressure drop and scrubber water flow...

  12. 40 CFR 63.9916 - What test methods and other procedures must I use to establish and demonstrate initial compliance...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... compliance with the operating limits? For a wet scrubber subject to operating limits for pressure drop and scrubber water flow rate in § 63.9890(b), you must establish site-specific operating limits according to... monitoring system (CPMS) required in § 63.9920, measure and record the pressure drop and scrubber water flow...

  13. 40 CFR Table 2 to Subpart Zzzzz of... - Procedures for Establishing Operating Limits for New Affected Sources Classified as Large Foundries

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... using the procedures in the following table: For . . . You must . . . 1. Each wet scrubber subject to the operating limits in § 63.10895(d)(1) for pressure drop and scrubber water flow rate. Using the CPMS required in § 63.10897(b), measure and record the pressure drop and scrubber water flow rate in...

  14. 40 CFR 63.9916 - What test methods and other procedures must I use to establish and demonstrate initial compliance...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... compliance with the operating limits? For a wet scrubber subject to operating limits for pressure drop and scrubber water flow rate in § 63.9890(b), you must establish site-specific operating limits according to... monitoring system (CPMS) required in § 63.9920, measure and record the pressure drop and scrubber water flow...

  15. 40 CFR 63.9916 - What test methods and other procedures must I use to establish and demonstrate initial compliance...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... compliance with the operating limits? For a wet scrubber subject to operating limits for pressure drop and scrubber water flow rate in § 63.9890(b), you must establish site-specific operating limits according to... monitoring system (CPMS) required in § 63.9920, measure and record the pressure drop and scrubber water flow...

  16. 40 CFR 63.7825 - How do I demonstrate initial compliance with the emission limitations that apply to me?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... accordance with § 63.7824(a)(1); and (3) For each venturi scrubber subject to the operating limits for pressure drop and scrubber water flow rate in § 63.7790(b)(2), you have established appropriate site-specific operating limits and have a record of the pressure drop and scrubber water flow rate measured...

  17. 40 CFR Table 2 to Subpart Zzzzz of... - Procedures for Establishing Operating Limits for New Affected Sources Classified as Large Foundries

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... using the procedures in the following table: For . . . You must . . . 1. Each wet scrubber subject to the operating limits in § 63.10895(d)(1) for pressure drop and scrubber water flow rate. Using the CPMS required in § 63.10897(b), measure and record the pressure drop and scrubber water flow rate in...

  18. 40 CFR Table 2 to Subpart Zzzzz of... - Procedures for Establishing Operating Limits for New Affected Sources Classified as Large Foundries

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... using the procedures in the following table: For . . . You must . . . 1. Each wet scrubber subject to the operating limits in § 63.10895(d)(1) for pressure drop and scrubber water flow rate. Using the CPMS required in § 63.10897(b), measure and record the pressure drop and scrubber water flow rate in...

  19. Source Mechanism of Vulcanian Degassing at Popocatépetl Volcano, Mexico, Determined From Moment-Tensor Inversion of Very-long-period Seismic Waveforms

    NASA Astrophysics Data System (ADS)

    Chouet, B.; Dawson, P.; Arciniega, A.

    2004-12-01

    The source mechanism of very-long-period (VLP) signals accompanying degassing exhalations at Popocatépetl is analyzed in the 15-70~s band by minimizing the residual error between data and synthetics calculated for a point source embedded in a homogeneous medium. The waveforms of two events (04/23/00, 05/23/00) representative of mild Vulcanian eruptions are well reproduced by our inversion, which takes into account volcano topography. The source centroid is positioned 1500~m below the western perimeter of the summit crater, and the modeled source is composed of a shallow-dipping crack (sill with easterly dip of 10° ) intersecting a steeply-dipping crack (northeast striking dike with northwest dip of 83° ), whose surface trace bisects the vent. Both cracks undergo a similar sequence of inflation, deflation, and reinflation --- reflecting a cycle of pressurization, depressurization, and repressurization within a time interval of 3-5~min. The largest moment release occurs in the sill, showing a maximum volume change of 500-1000\\:m3, pressure drop of 3-5~MPa, and amplitude of recovered pressure equal to 1.2 times the amplitude of the pressure drop. In contrast, the maximum volume change in the dike is 200-300\\:m3, with a corresponding pressure drop of 1-2~MPa and pressure recovery equal to the pressure drop. Accompanying these volumetric sources is a single force with magnitude of 5 × 108~N, consistent with melt advection in response to the pressure transients. The source-time history of the three components of this force confirms that significant mass movement starts in the sill and triggers a mass movement response in the dike within ˜ 5~s. Such source behavior is consistent with the opening of an escape pathway for accumulated gases from slow pressurization of the sill driven by magma crystallization. The opening of a pathway for pent-up gases in the sill and rapid evacuation of this separated gas phase induces the pressure drop. Pressure recovery in the magma filling the sill is driven by diffusion of gases from the resulting supersaturated melt into bubbles. Assuming a penny-shaped crack at ambient pressure of 40~MPa, the observed pressure and volume variations can be modeled with the following attributes: crack radius, (100~m), crack aperture, (5~m), bubble number density, (1010 - 1012\\:m-3), initial bubble radius, (10-6\\:m), final bubble radius, ( ˜ 10-5\\:m), and net decrease of gas concentration in the melt, (0.01~wt%).

  20. Source mechanism of Vulcanian degassing at Popocatépetl Volcano, Mexico, determined from waveform inversions of very long period signals

    NASA Astrophysics Data System (ADS)

    Chouet, Bernard; Dawson, Phillip; Arciniega-Ceballos, Alejandra

    2005-07-01

    The source mechanism of very long period (VLP) signals accompanying volcanic degassing bursts at Popocatépetl is analyzed in the 15-70 s band by minimizing the residual error between data and synthetics calculated for a point source embedded in a homogeneous medium. The waveforms of two eruptions (23 April and 23 May 2000) representative of mild Vulcanian activity are well reproduced by our inversion, which takes into account volcano topography. The source centroid is positioned 1500 m below the western perimeter of the summit crater, and the modeled source is composed of a shallow dipping crack (sill with easterly dip of 10°) intersecting a steeply dipping crack (northeast striking dike dipping 83° northwest), whose surface extension bisects the vent. Both cracks undergo a similar sequence of inflation, deflation, and reinflation, reflecting a cycle of pressurization, depressurization, and repressurization within a time interval of 3-5 min. The largest moment release occurs in the sill, showing a maximum volume change of 500-1000 m3, pressure drop of 3-5 MPa, and amplitude of recovered pressure equal to 1.2 times the amplitude of the pressure drop. In contrast, the maximum volume change in the dike is less (200-300 m3), with a corresponding pressure drop of 1-2 MPa and pressure recovery equal to the pressure drop. Accompanying these volumetric sources are single-force components with magnitudes of 108 N, consistent with melt advection in response to pressure transients. The source time histories of the volumetric components of the source indicate that significant mass movement starts within the sill and triggers a mass movement response in the dike within a few seconds. Such source behavior is consistent with the opening of a pathway for escape of pent-up gases from slow pressurization of the sill driven by magma crystallization. The opening of this pathway and associated rapid evacuation of volcanic gases induces the pressure drop. Pressure recovery in the magma filling the sill is driven by diffusion of gases from the resulting supersaturated melt into bubbles. Assuming a penny-shaped crack at ambient pressure of 40 MPa, the observed pressure and volume variations can be modeled with the following attributes: crack radius (100 m), crack aperture (5 m), bubble number density (1010-1012 m-3), initial bubble radius (10-6 m), final bubble radius (˜10-5 m), and net decrease of gas concentration in the melt (0.01 wt %).

  1. Source mechanism of Vulcanian degassing at Popocatépetl Volcano, Mexico, determined from waveform inversions of very long period signals

    USGS Publications Warehouse

    Chouet, Bernard A.; Dawson, Phillip B.; Arciniega-Ceballos, Alejandra

    2005-01-01

    The source mechanism of very long period (VLP) signals accompanying volcanic degassing bursts at Popocatépetl is analyzed in the 15–70 s band by minimizing the residual error between data and synthetics calculated for a point source embedded in a homogeneous medium. The waveforms of two eruptions (23 April and 23 May 2000) representative of mild Vulcanian activity are well reproduced by our inversion, which takes into account volcano topography. The source centroid is positioned 1500 m below the western perimeter of the summit crater, and the modeled source is composed of a shallow dipping crack (sill with easterly dip of 10°) intersecting a steeply dipping crack (northeast striking dike dipping 83° northwest), whose surface extension bisects the vent. Both cracks undergo a similar sequence of inflation, deflation, and reinflation, reflecting a cycle of pressurization, depressurization, and repressurization within a time interval of 3–5 min. The largest moment release occurs in the sill, showing a maximum volume change of 500–1000 m3, pressure drop of 3–5 MPa, and amplitude of recovered pressure equal to 1.2 times the amplitude of the pressure drop. In contrast, the maximum volume change in the dike is less (200–300 m3), with a corresponding pressure drop of 1–2 MPa and pressure recovery equal to the pressure drop. Accompanying these volumetric sources are single-force components with magnitudes of 108 N, consistent with melt advection in response to pressure transients. The source time histories of the volumetric components of the source indicate that significant mass movement starts within the sill and triggers a mass movement response in the dike within a few seconds. Such source behavior is consistent with the opening of a pathway for escape of pent-up gases from slow pressurization of the sill driven by magma crystallization. The opening of this pathway and associated rapid evacuation of volcanic gases induces the pressure drop. Pressure recovery in the magma filling the sill is driven by diffusion of gases from the resulting supersaturated melt into bubbles. Assuming a penny-shaped crack at ambient pressure of 40 MPa, the observed pressure and volume variations can be modeled with the following attributes: crack radius (100 m), crack aperture (5 m), bubble number density (1010–1012 m−3), initial bubble radius (10−6 m), final bubble radius (∼10−5 m), and net decrease of gas concentration in the melt (0.01 wt %).

  2. Nonlinear Bubble Interactions in Acoustic Pressure Fields

    NASA Technical Reports Server (NTRS)

    Barbat, Tiberiu; Ashgriz, Nasser; Liu, Ching-Shi

    1996-01-01

    The systems consisting of a two-phase mixture, as clouds of bubbles or drops, have shown many common features in their responses to different external force fields. One of particular interest is the effect of an unsteady pressure field applied to these systems, case in which the coupling of the vibrations induced in two neighboring components (two drops or two bubbles) may result in an interaction force between them. This behavior was explained by Bjerknes by postulating that every body that is moving in an accelerating fluid is subjected to a 'kinetic buoyancy' equal with the product of the acceleration of the fluid multiplied by the mass of the fluid displaced by the body. The external sound wave applied to a system of drops/bubbles triggers secondary sound waves from each component of the system. These secondary pressure fields integrated over the surface of the neighboring drop/bubble may result in a force additional to the effect of the primary sound wave on each component of the system. In certain conditions, the magnitude of these secondary forces may result in significant changes in the dynamics of each component, thus in the behavior of the entire system. In a system containing bubbles, the sound wave radiated by one bubble at the location of a neighboring one is dominated by the volume oscillation mode and its effects can be important for a large range of frequencies. The interaction forces in a system consisting of drops are much smaller than those consisting of bubbles. Therefore, as a first step towards the understanding of the drop-drop interaction subject to external pressure fluctuations, it is more convenient to study the bubble interactions. This paper presents experimental results and theoretical predictions concerning the interaction and the motion of two levitated air bubbles in water in the presence of an acoustic field at high frequencies (22-23 KHz).

  3. Simulation and experimental validation of droplet dynamics in microchannels of PEM fuel cells

    NASA Astrophysics Data System (ADS)

    Ashrafi, Moosa; Shams, Mehrzad; Bozorgnezhad, Ali; Ahmadi, Goodarz

    2016-12-01

    In this study, dynamics of droplets in the channels of proton exchange membrane fuel cells with straight and serpentine flow-fields was investigated. Tapered and filleted channels were suggested for the straight and serpentine flow-fields respectively in order to improve water removal in channels. Surface tension and wall adhesion forces were applied by using the volume of fluid method. The hydrophilic walls and hydrophobic gas diffusion layer were considered. The mechanism of droplets movement with different diameters was studied by using the Weber and capillary numbers in simple and tapered straight channels. It was illustrated that the flooding was reduced in tapered channel due to increase of water removal rate, and available reaction sites improved subsequently. In addition, film flow was formed in the tapered channel more than the simple channel, so pressure fluctuation was decreased in the tapered channel. Moreover, the water coverage ratio of hydrophilic tapered surface was more than the simple channel, which enhanced water removal from the channel. The filleted serpentine channel was introduced to improve water removal from the simple serpentine channel. It was shown by observation of the unsteady and time-averaged two-phase pressure drop that in the filleted serpentine channels, the two-phase pressure drop was far less than the simple serpentine channel, and also the accumulation of water droplets in the elbows was less leading to lower pressure fluctuation. The numerical simulation results were validated by experiments.

  4. Isometric handgrip training reduces arterial pressure at rest without changes in sympathetic nerve activity

    NASA Technical Reports Server (NTRS)

    Ray, C. A.; Carrasco, D. I.

    2000-01-01

    The purpose of this study was to determine whether isometric handgrip (IHG) training reduces arterial pressure and whether reductions in muscle sympathetic nerve activity (MSNA) mediate this drop in arterial pressure. Normotensive subjects were assigned to training (n = 9), sham training (n = 7), or control (n = 8) groups. The training protocol consisted of four 3-min bouts of IHG exercise at 30% of maximal voluntary contraction (MVC) separated by 5-min rest periods. Training was performed four times per week for 5 wk. Subjects' resting arterial pressure and heart rate were measured three times on 3 consecutive days before and after training, with resting MSNA (peroneal nerve) recorded on the third day. Additionally, subjects performed IHG exercise at 30% of MVC to fatigue followed by muscle ischemia. In the trained group, resting diastolic (67 +/- 1 to 62 +/- 1 mmHg) and mean arterial pressure (86 +/- 1 to 82 +/- 1 mmHg) significantly decreased, whereas systolic arterial pressure (116 +/- 3 to 113 +/- 2 mmHg), heart rate (67 +/- 4 to 66 +/- 4 beats/min), and MSNA (14 +/- 2 to 15 +/- 2 bursts/min) did not significantly change following training. MSNA and cardiovascular responses to exercise and postexercise muscle ischemia were unchanged by training. There were no significant changes in any variables for the sham training and control groups. The results indicate that IHG training is an effective nonpharmacological intervention in lowering arterial pressure.

  5. Testing of a 4 K to 2 K heat exchanger with an intermediate pressure drop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knudsen, Peter N.; Ganni, Venkatarao

    2015-12-01

    Most large sub-atmospheric helium refrigeration systems incorporate a heat exchanger at the load, or in the distribution system, to counter-flow the sub-atmospheric return with the super-critical or liquid supply. A significant process improvement is theoretically obtainable by handling the exergy loss across the Joule-Thompson throttling valve supplying the flow to the load in a simple but different manner. As briefly outlined in previous publications, the exergy loss can be minimized by allowing the supply flow pressure to decrease to a sub-atmospheric pressure concurrent with heat exchange flow from the load. One practical implementation is to sub-divide the supply flow pressuremore » drop between two heat exchanger sections, incorporating an intermediate pressure drop. Such a test is being performed at Jefferson Lab's Cryogenic Test Facility (CTF). This paper will briefly discuss the theory, practical implementation and test results and analysis obtained to date.« less

  6. Materials Approach to Fuel Efficient Tires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Votruba-Drzal, Peter; Kornish, Brian

    2015-06-30

    The objective of this project was to design, develop, and demonstrate fuel efficient and safety regulation compliant tire filler and barrier coating technologies that will improve overall fuel efficiency by at least 2%. The program developed and validated two complementary approaches to improving fuel efficiency through tire improvements. The first technology was a modified silica-based product that is 15% lower in cost and/or enables a 10% improvement in tread wear while maintaining the already demonstrated minimum of 2% improvement in average fuel efficiency. The second technology was a barrier coating with reduced oxygen transmission rate compared to the state-of-the-art halobutylmore » rubber inner liners that will provide extended placarded tire pressure retention at significantly reduced material usage. A lower-permeance, thinner inner liner coating which retains tire pressure was expected to deliver the additional 2% reduction in fleet fuel consumption. From the 2006 Transportation Research Board Report1, a 10 percent reduction in rolling resistance can reduce consumer fuel expenditures by 1 to 2 percent for typical vehicles. This savings is equivalent to 6 to 12 gallons per year. A 1 psi drop in inflation pressure increases the tire's rolling resistance by about 1.4 percent.« less

  7. Optimized Design of Spacer in Electrodialyzer Using CFD Simulation Method

    NASA Astrophysics Data System (ADS)

    Jia, Yuxiang; Yan, Chunsheng; Chen, Lijun; Hu, Yangdong

    2018-06-01

    In this study, the effects of length-width ratio and diversion trench of the spacer on the fluid flow behavior in an electrodialyzer have been investigated through CFD simulation method. The relevant information, including the pressure drop, velocity vector distribution and shear stress distribution, demonstrates the importance of optimized design of the spacer in an electrodialysis process. The results show width of the diversion trench has a great effect on the fluid flow compared with length. Increase of the diversion trench width could strength the fluid flow, but also increase the pressure drop. Secondly, the dead zone of the fluid flow decreases with increase of length-width ratio of the spacer, but the pressure drop increases with the increase of length-width ratio of the spacer. So the appropriate length-width ratio of the space should be moderate.

  8. Value-added products from chicken feather fiber and protein

    NASA Astrophysics Data System (ADS)

    Fan, Xiuling

    Worldwide poultry consumption has generated a huge amount of feather "waste" annually. Currently, the feather has a low value-being used for animal feed in the world. The quality of fibrous air filters depend on their main component, fibers. The main physical structure of chicken feathers is barbs which can be used directly as fibers. They have small diameter, which makes them a good choice for air filtration. The main chemical structure of chicken feathers is structural fibrous protein, keratin. Therefore, chicken feathers could potentially be used for protein fiber production. To obtain chicken feather fibers, barbs were stripped from the quills by a stripping device and separated with a blender. Some feather fibers were entangled with polyester staple fibers, and needlepunched to form a nonwoven fabric. Some feather fibers were blended with CelBond(TM) bi-component polyester as binder fibers, and pressed between two hot plates to produce thermobonded nonwovens. Whole chicken feathers were ground into powder and their keratin was reduced in water. The reduced keratin was salt precipitated, dried and dissolved in ionic liquid with/without bleach cotton. The reduced chicken feather keratin ionic liquid solutions were spun into regenerated fibers through dry-jet wet spinning. The needlepunched and thermobonded nonwovens were tested for filtration and other properties. With an increase of areal density and feather fiber composition, the air permeability of the needlepunched nonwovens decreased, and their filtration efficiency and pressure drop both increased. The case can be made that feather fibers gave fabrics better filtration at the same fabric weight, but at the expense of air permeability and pressure drop. The scrim and needlepunching process improved the filtration efficiency. Their strength depended on scrim. The hot-press process was very simple. The thermobonded nonwovens had very high air permeability. In them, there was also an inverse relation between air permeability and either pressure drop or filtration efficiency. From these kinds of nonwovens, it is realized that feather fibers' fineness and the tree/fan-like structure of the feather does not offer a high level of performance advantages over conventional fibers. The use of feather fiber in air filtration applications must rely primarily on a favorable cost and weight differential in favor of the feather fiber. Only after chicken feather keratin was reduced, could it dissolve well in ionic liquid. 100% chicken feather keratin did not produce high tenacity fibers. Reduced chicken feather keratin and cellulose produced blend fibers with mechanical properties close to silk, cotton, and polyester fibers. Chemically reforming crosslinks might improve mechanical properties and the stability of the fibers to water and make them suitable for most fibrous applications. From this, it can be proposed that using chicken feathers for fiber production may be a good way to add value to chicken feather "waste".

  9. Observation of the pressure effect in simulations of droplets splashing on a dry surface

    NASA Astrophysics Data System (ADS)

    Boelens, A. M. P.; Latka, A.; de Pablo, J. J.

    2018-06-01

    At atmospheric pressure, a drop of ethanol impacting on a solid surface produces a splash. Reducing the ambient pressure below its atmospheric value suppresses this splash. The origin of this so-called pressure effect is not well understood, and this study presents an in-depth comparison between various theoretical models that aim to predict splashing and simulations. In this paper, the pressure effect is explored numerically by resolving the Navier-Stokes equations at a 3-nm resolution. In addition to reproducing numerous experimental observations, it is found that different models all provide elements of what is observed in the simulations. The skating droplet model correctly predicts the existence and scaling of a gas film under the droplet, the lamella formation theory is able to correctly predict the scaling of the lamella ejection velocity as a function of the impact velocity for liquids with different viscosity, and lastly, the dewetting theory's hypothesis of a lift force acting on the liquid sheet after ejection is consistent with our results.

  10. NASA Glenn Icing Research Tunnel: 2014 Cloud Calibration Procedure and Results

    NASA Technical Reports Server (NTRS)

    Van Zante, Judith F.; Ide, Robert F.; Steen, Laura E.; Acosta, Waldo J.

    2014-01-01

    The results of the December 2013 to February 2014 Icing Research Tunnel full icing cloud calibration are presented. The calibration steps included establishing a uniform cloud and conducting drop size and liquid water content calibrations. The goal of the calibration was to develop a uniform cloud, and to generate a transfer function from the inputs of air speed, spray bar atomizing air pressure and water pressure to the outputs of median volumetric drop diameter and liquid water content. This was done for both 14 CFR Parts 25 and 29, Appendix C ('typical' icing) and soon-to-be released Appendix O (supercooled large drop) conditions.

  11. Mixing-induced fluid destratification and ullage condensation

    NASA Technical Reports Server (NTRS)

    Meserole, Jere S.; Jones, Ogden S.; Fortini, Anthony F.

    1987-01-01

    In many applications, on-orbit storage and transfer of cryogens will require forced mixing to control tank pressure without direct venting to space. During a no-vent transfer or during operation of a thermodynamic vent system in a cryogen storage tank, pressure control is achieved by circulating cool liquid to the liquid-vapor interface to condense some of the ullage vapor. To measure the pressure and temperature response rates in mixing-induced condensation, an experiment has been developed using Freon 11 to simulate the two-phase behavior of a cryogen. A thin layer at the liquid surface is heated to raise the tank pressure, and then a jet mixer is turned on to circulate the liquid, cool the surface, and reduce the pressure. Many nozzle configurations and flow rates are used. Tank pressure and the temperature profiles in the ullage and the liquid are measured. Initial data from this ground test are shown correlated with normal-gravity and drop-tower dye-mixing data. Pressure collapse times are comparable to the dye-mixing times, whereas the times needed for complete thermal mixing are much longer than the dye-mixing times.

  12. Influence of Peer Pressure on Secondary School Students Drop out in Rongo Sub-County, Migori County, Kenya

    ERIC Educational Resources Information Center

    Omollo, Atieno Evaline; Yambo, Onyango J. M.

    2017-01-01

    The purpose of this study was to establish the influence of peer pressure on secondary school students' drop out in Rongo Sub-County, Migori County, Kenya. The statement of the problem showed that the sub-county had a dropout rate of 43 percent as compared to the neighboring sub counties like Uriri, Awendo, Nyatike, Kuria and Migori which had 25,…

  13. Nanoengineered Surfaces for High Flux Thin Film Evaporation

    DTIC Science & Technology

    2013-07-15

    for a variety of heat transfer and resource conserving applications. References 1. Mudawar , I., Assessment of high-heat-flux thermal...M.B. and I. Mudawar , High-flux boiling in low-flow rate, low-pressure drop mini- channel and microchannel heat sinks. International Journal of Heat...pressure drop elements and fabricated nucleation sites. Journal of Heat Transfer, 2006. 128(4): p. 389-396. 7. Qu, W. and I. Mudawar , Measurement and

  14. Apparatus for providing directional permeability measurements in subterranean earth formations

    DOEpatents

    Shuck, Lowell Z.

    1977-01-01

    Directional permeability measurements are provided in a subterranean earth formation by injecting a high-pressure gas from a wellbore into the earth formation in various azimuthal directions with the direction having the largest pressure drop being indicative of the maximum permeability direction. These measurements are provided by employing an inflatable boot containing a plurality of conduits in registry with a like plurality of apertures penetrating the housing at circumferentially spaced-apart locations. These conduits are, in turn, coupled through a valved manifold to a source of pressurized gas so that the high-pressure gas may be selectively directed through any conduit into the earth formation defining the bore with the resulting difference in the pressure drop through the various conduits providing the permeability measurements.

  15. Two-phase adiabatic pressure drop experiments and modeling under micro-gravity conditions

    NASA Astrophysics Data System (ADS)

    Longeot, Matthieu J.; Best, Frederick R.

    1995-01-01

    Thermal systems for space applications based on two phase flow have several advantages over single phase systems. Two phase thermal energy management and dynamic power conversion systems have the capability of achieving high specific power levels. However, before two phase systems for space applications can be designed effectively, knowledge of the flow behavior in a ``0-g'' acceleration environment is necessary. To meet this need, two phase flow experiments were conducted by the Interphase Transport Phenomena Laboratory Group (ITP) aboard the National Aeronautics and Space Administration's (NASA) KC-135, using R12 as the working fluid. The present work is concerned with modeling of two-phase pressure drop under 0-g conditions, for bubbly and slug flow regimes. The set of data from the ITP group includes 3 bubbly points, 9 bubbly/slug points and 6 slug points. These two phase pressure drop data were collected in 1991 and 1992. A methodology to correct and validate the data was developed to achieve high levels of confidence. A homogeneous model was developed to predict the pressure drop for particular flow conditions. This model, which uses the Blasius Correlation, was found to be accurate for bubbly and bubbly/slug flows, with errors not larger than 28%. For slug flows, however, the errors are greater, attaining values up to 66%.

  16. Hydrological response to earthquakes in the Haibara well, central Japan - II. Possible mechanism inferred from time-varying hydraulic properties

    USGS Publications Warehouse

    Matsumoto, N.; Roeloffs, E.A.

    2003-01-01

    28 coseismic groundwater level decreases have been observed at the Haibara well, Shizuoka prefecture, central Japan, from 1981 to 1997. These groundwater level changes cannot be explained as the poroelastic response to coseismic static strain. We use the atmospheric pressure and tidal responses of the well, rock properties measured on core samples from the same formation and pumping test results to characterize the hydraulic and mechanical properties of the aquifer. The responses of the Haibara well to the M2 Earth tide constituent and to atmospheric pressure have varied over time. In particular, increasing amplitude and decreasing phase lags were observed after the 1993 pumping test, as well as after earthquakes that caused coseismic water level changes. The tidal response, together with the surface load efficiency derived from the atmospheric pressure response, is used to estimate the mechanical properties of the aquifer. The largest amplitude of the M2 constituent, 2.2 mm, is small enough to imply that pore fluid in this system is approximately twice as compressible as water, possibly due to the presence of a small amount of exsolved gas. Diffusion of a coseismic pressure drop near the well could account for the observed time histories of the water level changes. The time histories of the water level drops are well matched by the decay of a coseismic pressure drop at least 80 m away from the well. Removal of a small amount of gas from the formation in that location might in turn explain the coseismic pressure drops.

  17. Investigation on heat transfer characteristics and flow performance of Methane at supercritical pressures

    NASA Astrophysics Data System (ADS)

    Xian, Hong Wei; Oumer, A. N.; Basrawi, F.; Mamat, Rizalman; Abdullah, A. A.

    2018-04-01

    The aim of this study is to investigate the heat transfer and flow characteristic of cryogenic methane in regenerative cooling system at supercritical pressures. The thermo-physical properties of supercritical methane were obtained from the National institute of Standards and Technology (NIST) webbook. The numerical model was developed based on the assumptions of steady, turbulent and Newtonian flow. For mesh independence test and model validation, the simulation results were compared with published experimental results. The effect of four different performance parameter ranges namely inlet pressure (5 to 8 MPa), inlet temperature (120 to 150 K), heat flux (2 to 5 MW/m2) and mass flux (7000 to 15000 kg/m2s) on heat transfer and flow performances were investigated. It was found that the simulation results showed good agreement with experimental data with maximum deviation of 10 % which indicates the validity of the developed model. At low inlet temperature, the change of specific heat capacity at near-wall region along the tube length was not significant while the pressure drop registered was high. However, significant variation was observed for the case of higher inlet temperature. It was also observed that the heat transfer performance and pressure drop penalty increased when the mass flux was increased. Regarding the effect of inlet pressure, the heat transfer performance and pressure drop results decreased when the inlet pressure is increased.

  18. Abandoned coal mine stores gas for Colorado peak-day demands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, L.W.

    1978-09-01

    Since 1961, the Leyden Mine, from which 6 million tons of coal had been removed to leave a 150 million cu ft void, has been used for gas storage at 250 psig max pressure, after the hoisting and ventilation shafts had been sealed with concrete, rock, sand, and mud. Following several withdrawal expansions, a design for maximum delivery of 230 million cu ft/day for five days with a pressure drop in the cavern down to 100 psig was developed to satisfy customer requirements for peak shaving. This required redesigning the gathering system by looping large existing lines, eliminating inefficient ones,more » and drilling additional wells; installing three lightweight 3500-hp Centaur turbine/compressor units from Solar Turbines International to provide the minimum 200 psig compressor discharge pressure needed for gas distribution on peak usage days; and installing Donaldson Co. engine air-inlet silencers on the turbine inlets to reduce noise levels below the public code requirement. In the 1977-78 heating season, the Leyden facility produced 196 million cu ft/day of gas; with continued load growth and well drilling to reduce pressure loss, the maximum design flow rate will be attained.« less

  19. Evaluation of Preduster in Cement Industry Based on Computational Fluid Dynamic

    NASA Astrophysics Data System (ADS)

    Septiani, E. L.; Widiyastuti, W.; Djafaar, A.; Ghozali, I.; Pribadi, H. M.

    2017-10-01

    Ash-laden hot air from clinker in cement industry is being used to reduce water contain in coal, however it may contain large amount of ash even though it was treated by a preduster. This study investigated preduster performance as a cyclone separator in the cement industry by Computational Fluid Dynamic method. In general, the best performance of cyclone is it have relatively high efficiency with the low pressure drop. The most accurate and simple turbulence model, Reynold Average Navier Stokes (RANS), standard k-ε, and combination with Lagrangian model as particles tracking model were used to solve the problem. The measurement in simulation result are flow pattern in the cyclone, pressure outlet and collection efficiency of preduster. The applied model well predicted by comparing with the most accurate empirical model and pressure outlet in experimental measurement.

  20. Low Blood Pressure (Hypotension)

    MedlinePlus

    ... Low blood pressure on standing up (orthostatic, or postural, hypotension). This is a sudden drop in blood ... progressive damage to the autonomic nervous system, which controls involuntary functions such as blood pressure, heart rate, ...

  1. Two types of Cassie-to-Wenzel wetting transitions on superhydrophobic surfaces during drop impact.

    PubMed

    Lee, Choongyeop; Nam, Youngsuk; Lastakowski, Henri; Hur, Janet I; Shin, Seungwon; Biance, Anne-Laure; Pirat, Christophe; Kim, Chang-Jin C J; Ybert, Christophe

    2015-06-21

    Despite the fact that superhydrophobic surfaces possess useful and unique properties, their practical application has remained limited by durability issues. Among those, the wetting transition, whereby a surface gets impregnated by the liquid and permanently loses its superhydrophobicity, certainly constitutes the most limiting aspect under many realistic conditions. In this study, we revisit this so-called Cassie-to-Wenzel transition (CWT) under the broadly encountered situation of liquid drop impact. Using model hydrophobic micropillar surfaces of various geometrical characteristics and high speed imaging, we identify that CWT can occur through different mechanisms, and at different impact stages. At early impact stages, right after contact, CWT occurs through the well established dynamic pressure scenario of which we provide here a fully quantitative description. Comparing the critical wetting pressure of surfaces and the theoretical pressure distribution inside the liquid drop, we provide not only the CWT threshold but also the hardly reported wetted area which directly affects the surface spoiling. At a later stage, we report for the first time to our knowledge, a new CWT which occurs during the drop recoil toward bouncing. With the help of numerical simulations, we discuss the mechanism underlying this new transition and provide a simple model based on impulse conservation which successfully captures the transition threshold. By shedding light on the complex interaction between impacting water drops and surface structures, the present study will facilitate designing superhydrophobic surfaces with a desirable wetting state during drop impact.

  2. Nonlinear oscillations of inviscid free drops

    NASA Technical Reports Server (NTRS)

    Patzek, T. W.; Benner, R. E., Jr.; Basaran, O. A.; Scriven, L. E.

    1991-01-01

    The present analysis of free liquid drops' inviscid oscillations proceeds through solution of Bernoulli's equation to obtain the free surface shape and of Laplace's equation for the velocity potential field. Results thus obtained encompass drop-shape sequences, pressure distributions, particle paths, and the temporal evolution of kinetic and surface energies; accuracy is verified by the near-constant drop volume and total energy, as well as the diminutiveness of mass and momentum fluxes across drop surfaces. Further insight into the nature of oscillations is provided by Fourier power spectrum analyses of mode interactions and frequency shifts.

  3. Parametric resonance in acoustically levitated water drops

    NASA Astrophysics Data System (ADS)

    Shen, C. L.; Xie, W. J.; Wei, B.

    2010-05-01

    Liquid drops can be suspended in air with acoustic levitation method. When the sound pressure is periodically modulated, the levitated drop is usually forced into an axisymmetric oscillation. However, a transition from axisymmetric oscillation into sectorial oscillation occurs when the modulation frequency approaches some specific values. The frequency of the sectorial oscillation is almost exactly half of the modulation frequency. It is demonstrated that this transition is induced by the parametric resonance of levitated drop. The natural frequency of sectorial oscillation is found to decrease with the increase of drop distortion extent.

  4. Measurement and modelling of forced convective heat transfer coefficient and pressure drop of Al2O3- and SiO2-water nanofluids

    NASA Astrophysics Data System (ADS)

    Julia, J. E.; Hernández, L.; Martínez-Cuenca, R.; Hibiki, T.; Mondragón, R.; Segarra, C.; Jarque, J. C.

    2012-11-01

    Forced convective heat transfer coefficient and pressure drop of SiO2- and Al2O3-water nanofluids were characterized. The experimental facility was composed of thermal-hydraulic loop with a tank with an immersed heater, a centrifugal pump, a bypass with a globe valve, an electromagnetic flow-meter, a 18 kW in-line pre-heater, a test section with band heaters, a differential pressure transducer and a heat exchanger. The test section consists of a 1000 mm long aluminium pipe with an inner diameter of 31.2 mm. Eighteen band heaters were placed all along the test section in order to provide a uniform heat flux. Heat transfer coefficient was calculated measuring fluid temperature using immersed thermocouples (Pt100) placed at both ends of the test section and surface thermocouples in 10 axial locations along the test section (Pt1000). The measurements have been performed for different nanoparticles (Al2O3 and SiO2 with primary size of 11 nm and 12 nm, respectively), volume concentrations (1% v., 5% v.), and flow rates (3 103Re<105). Maximum heat transfer coefficient enhancement (300%) and pressure drop penalty (1000%) is obtained with 5% v. SiO2 nanofluid. Existing correlations can predict, at least in a first approximation, the heat transfer coefficient and pressure drop of nanofluids if thermal conductivity, viscosity and specific heat were properly modelled.

  5. Potential of a renin inhibitory peptide from the red seaweed Palmaria palmata as a functional food ingredient following confirmation and characterization of a hypotensive effect in spontaneously hypertensive rats.

    PubMed

    Fitzgerald, Ciaran; Aluko, Rotimi E; Hossain, Mohammad; Rai, Dilip K; Hayes, Maria

    2014-08-20

    This work examined the resistance of the renin inhibitory, tridecapeptide IRLIIVLMPILMA derived previously from a Palmaria palmata papain hydrolysate, during gastrointestinal (GI) transit. Following simulated GI digestion, breakdown products were identified using mass spectrometry analysis and the known renin and angiotensin I converting enzyme inhibitory dipeptide IR was identified. In vivo animal studies using spontaneously hypertensive rats (SHRs) were used to confirm the antihypertensive effects of both the tridecapeptide IRLIIVLMPILMA and the seaweed protein hydrolysate from which this peptide was isolated. After 24 h, the SHR group fed the P. palmata protein hydrolysate recorded a drop of 34 mm Hg in systolic blood pressure (SBP) from 187 (±0.25) to 153 (± 0.64) mm Hg SBP, while the group fed the tridecapeptide IRLIIVLMPLIMA presented a drop of 33 mm Hg in blood pressure from 187 (±0.95) to 154 (±0.94) mm Hg SBP compared to the SBP recorded at time zero. The results of this study indicate that the seaweed protein derived hydrolysate has potential for use as antihypertensive agents and that the tridecapeptide is cleaved and activated to the dipeptide IR when it travels through the GI tract. Both the hydrolysate and peptide reduced SHR blood pressure when administered orally over a 24 h period.

  6. Modified friction factor correlation for CICC's based on a porous media analogy

    NASA Astrophysics Data System (ADS)

    Lewandowska, Monika; Bagnasco, Maurizio

    2011-09-01

    A modified correlation for the bundle friction factor in CICC's based on a porous media analogy is presented. The correlation is obtained by the analysis of the collected pressure drop data measured for 23 CICC's. The friction factors predicted by the proposed correlation are compared with those resulting from the pressure drop data for two CICC's measured recently using cryogenic helium in the SULTAN test facility at EPFL-CRPP.

  7. Fluid mechanics relevant to flow through pretreatment of cellulosic biomass.

    PubMed

    Archambault-Léger, Véronique; Lynd, Lee R

    2014-04-01

    The present study investigates fluid mechanical properties of cellulosic feedstocks relevant to flow through (FT) pretreatment for biological conversion of cellulosic biomass. The results inform identifying conditions for which FT pretreatment can be implemented in a practical context. Measurements of pressure drop across packed beds, viscous compaction and water absorption are reported for milled and not milled sugarcane bagasse, switchgrass and poplar, and important factors impacting viscous flow are deduced. Using biomass knife-milled to pass through a 2mm sieve, the observed pressure drop was highest for bagasse, intermediate for switchgrass and lowest for poplar. The highest pressure drop was associated with the presence of more fine particles, greater viscous compaction and the degree of water absorption. Using bagasse without particle size reduction, the instability of the reactor during pretreatment above 140kg/m(3) sets an upper bound on the allowable concentration for continuous stable flow. Copyright © 2014. Published by Elsevier Ltd.

  8. Effect of electrode intrusion on pressure drop and electrochemical performance of an all-vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Jayanti, S.

    2017-08-01

    In this paper, we present a study of the effect of electrode intrusion into the flow channel in an all-vanadium redox flow battery. Permeability, pressure drop and electrochemical performance have been measured in a cell with active area 100 cm2and 414 cm2 fitted with a carbon felt electrode of thickness of 3, 6 or 9 mm compressed to 1.5, 2.5 or 4 mm, respectively, during assembly. Results show that the pressure drop is significantly higher than what can be expected in the thick electrode case while its electrochemical performance is lower. Detailed flow analysis using computational fluid dynamics simulations in two different flow fields shows that both these results can be attributed to electrode intrusion into the flow channel leading to increased resistance to electrolyte flow through the electrode. A correlation is proposed to evaluate electrode intrusion depth as a function of compression.

  9. Architecture for improved mass transport and system performance in redox flow batteries

    NASA Astrophysics Data System (ADS)

    Houser, Jacob; Pezeshki, Alan; Clement, Jason T.; Aaron, Douglas; Mench, Matthew M.

    2017-05-01

    In this work, electrochemical performance and parasitic losses are combined in an overall system-level efficiency metric for a high performance, all-vanadium redox flow battery. It was found that pressure drop and parasitic pumping losses are relatively negligible for high performance cells, i.e., those capable of operating at a high current density while at a low flow rate. Through this finding, the Equal Path Length (EPL) flow field architecture was proposed and evaluated. This design has superior mass transport characteristics in comparison with the standard serpentine and interdigitated designs at the expense of increased pressure drop. An Aspect Ratio (AR) design is discussed and evaluated, which demonstrates decreased pressure drop compared to the EPL design, while maintaining similar electrochemical performance under most conditions. This AR design is capable of leading to improved system energy efficiency for flow batteries of all chemistries.

  10. Thermal design, rating and second law analysis of shell and tube condensers based on Taguchi optimization for waste heat recovery based thermal desalination plants

    NASA Astrophysics Data System (ADS)

    Chandrakanth, Balaji; Venkatesan, G; Prakash Kumar, L. S. S; Jalihal, Purnima; Iniyan, S

    2018-03-01

    The present work discusses the design and selection of a shell and tube condenser used in Low Temperature Thermal Desalination (LTTD). To optimize the key geometrical and process parameters of the condenser with multiple parameters and levels, a design of an experiment approach using Taguchi method was chosen. An orthogonal array (OA) of 25 designs was selected for this study. The condenser was designed, analysed using HTRI software and the heat transfer area with respective tube side pressure drop were computed using the same, as these two objective functions determine the capital and running cost of the condenser. There was a complex trade off between the heat transfer area and pressure drop in the analysis, however second law analysis was worked out for determining the optimal heat transfer area vs pressure drop for condensing the required heat load.

  11. Selective laser melting in heat exchanger development - experimental investigation of heat transfer and pressure drop characteristics of wavy fins

    NASA Astrophysics Data System (ADS)

    Kuehndel, J.; Kerler, B.; Karcher, C.

    2018-04-01

    To improve performance of heat exchangers for vehicle applications, it is necessary to increase the air side heat transfer. Selective laser melting gives rise to be applied for fin development due to: i) independency of conventional tooling ii) a fast way to conduct essential experimental studies iii) high dimensional accuracy iv) degrees of freedom in design. Therefore, heat exchanger elements with wavy fins were examined in an experimental study. Experiments were conducted for air side Reynolds number range of 1400-7400, varying wavy amplitude and wave length of the fins at a constant water flow rate of 9.0 m3/h. Heat transfer and pressure drop characteristics were evaluated with Nusselt Number Nu and Darcy friction factor ψ as functions of Reynolds number. Heat transfer and pressure drop correlations were derived from measurement data obtained by regression analysis.

  12. Effect of Exit-Slot Position and Opening on the Available Cooling Pressure for NACA Nose-Slot Cowlings

    NASA Technical Reports Server (NTRS)

    Stickle, George W; Naiman, Irven; Crigler, John L

    1940-01-01

    Report presents the results of an investigation of full-scale nose-slot cowlings conducted in the NACA 20-foot wind tunnel to furnish information on the pressure drop available for cooling. Engine conductances from 0 to 0.12 and exit-slot conductances from 0 to 0.30 were covered. Two basic nose shapes were tested to determine the effect of the radius of curvature of the nose contour; the nose shape with the smaller radius of curvature gave the higher pressure drop across the engine. The best axial location of the slot for low-speed operation was found to be in the region of maximum negative pressure for the basic shape for the particular operating condition. The effect of the pressure operating condition on the available cooling pressure is shown.

  13. Role of Marangoni stress during breakup of surfactant-covered liquid threads: Reduced rates of thinning and microthread cascades

    NASA Astrophysics Data System (ADS)

    Kamat, Pritish M.; Wagoner, Brayden W.; Thete, Sumeet S.; Basaran, Osman A.

    2018-04-01

    Adsorption onto and lowering of surface tension σ of fluid interfaces by surfactants is exploited in drop formation (e.g., inkjet printing) where a thinning liquid thread (radius h ) connects an about-to-form drop to the liquid that remains hanging from the nozzle when the former falls from it. Surfactants can affect thread pinch-off in two ways: first, by lowering σ , they lower capillary pressure (σ /h ), and second, as surfactant concentration along the interface can be nonuniform, they cause the interface to be subjected to a surface tension gradient or Marangoni stress. Recent studies show that the location where the thread breaks is devoid of surfactant, and others assert that the influence of Marangoni stress on pinch-off is negligible. We demonstrate by simulations and experiments that surfactants play a major role in drop formation and that Marangoni stresses acting near but not at the pinch point give rise to reduced rates of thread thinning and formation of multiple microthreads that distinguish pinch-off of surfactant-covered threads from surfactant-free ones. Thinning at finite Reynolds and Peclet numbers, Re and Pe, is shown to exhibit intermediate scaling regimes that have heretofore only been observed during pinch-off of threads undergoing creeping flow (Re=0 ) while convection of surfactant is weak compared to its diffusion (Pe<1 ).

  14. Flow Straightener for a Rotating-Drum Liquid Separator

    NASA Technical Reports Server (NTRS)

    O'Coin, James R.; Converse, David G.; Rethke, Donald W.

    2004-01-01

    A flow straightener has been incorporated into a rotary liquid separator that originally comprised an inlet tube, a shroud plate, an impeller, an inner drum, an outer drum, a housing, a pitot tube, and a hollow shaft motor. As a consequence of the original geometry of the impeller, shroud, inner drum, and hollow shaft, swirl was created in the airflow inside the hollow shaft during operation. The swirl speed was large enough to cause a significant pressure drop. The flow straightener consists of vanes on the back side of the shroud plate. These vanes compartmentalize the inside of the inner drum in such a way as to break up the flow path and thereby stop the air from swirling; as a result, the air enters the hollow shaft with a predominantly axial velocity instead of a swirl. Tests of the rotary liquid separator at an airflow rate of 10 cu ft/min (0.0047 cu m/s) revealed that the dynamic pressure drop was 8 in. of water (approx.=2 kPa) in the absence of the flow straightener and was reduced to 1 in. of water (approx.=0.25 kPa) in the presence of the flow straightener.

  15. Airborne rotary air separator study

    NASA Technical Reports Server (NTRS)

    Acharya, A.; Gottzmann, C. F.; Nowobilski, J. J.

    1990-01-01

    Several air breathing propulsion concepts for future earth-to-orbit transport vehicles utilize air collection and enrichment, and subsequent storage of liquid oxygen for later use in the vehicle emission. Work performed during the 1960's established the feasibility of substantially reducing weight and volume of a distillation type air separator system by operating the distillation elements in high 'g' fields obtained by rotating the separator assembly. This contract studied the capability test and hydraulic behavior of a novel structured or ordered distillation packing in a rotating device using air and water. Pressure drop and flood points were measured for different air and water flow rates in gravitational fields of up to 700 g. Behavior of the packing follows the correlations previously derived from tests at normal gravity. The novel ordered packing can take the place of trays in a rotating air separation column with the promise of substantial reduction in pressure drop, volume, and system weight. The results obtained in the program are used to predict design and performance of rotary separators for air collection and enrichment systems of interest for past and present concepts of air breathing propulsion (single or two-stage to orbit) systems.

  16. Feasibility Studies on Pipeline Disposal of Concentrated Copper Tailings Slurry for Waste Minimization

    NASA Astrophysics Data System (ADS)

    Senapati, Pradipta Kumar; Mishra, Barada Kanta

    2017-06-01

    The conventional lean phase copper tailings slurry disposal systems create pollution all around the disposal area through seepage and flooding of waste slurry water. In order to reduce water consumption and minimize pollution, the pipeline disposal of these waste slurries at high solids concentrations may be considered as a viable option. The paper presents the rheological and pipeline flow characteristics of copper tailings samples in the solids concentration range of 65-72 % by weight. The tailings slurry indicated non-Newtonian behaviour at these solids concentrations and the rheological data were best fitted by Bingham plastic model. The influence of solids concentration on yield stress and plastic viscosity for the copper tailings samples were discussed. Using a high concentration test loop, pipeline experiments were conducted in a 50 mm nominal bore (NB) pipe by varying the pipe flow velocity from 1.5 to 3.5 m/s. A non-Newtonian Bingham plastic pressure drop model predicted the experimental data reasonably well for the concentrated tailings slurry. The pressure drop model was used for higher size pipes and the operating conditions for pipeline disposal of concentrated copper tailings slurry in a 200 mm NB pipe with respect to specific power consumption were discussed.

  17. Gas Cavities inside Dust Cavities in Disks Inferred from ALMA Observations

    NASA Astrophysics Data System (ADS)

    van der Marel, Nienke; van Dishoeck, Ewine F.; Bruderer, Simon; Pinilla, Paola; van Kempen, Tim; Perez, Laura; Isella, Andrea

    2016-01-01

    Protoplanetary disks with cavities in their dust distribution, also named transitional disks, are expected to be in the middle of active evolution and possibly planet formation. In recent years, millimeter-dust rings observed by ALMA have been suggested to have their origin in dust traps, caused by pressure bumps. One of the ways to generate these is by the presence of planets, which lower the gas density along their orbit and create pressure bumps at the edge. We present spatially resolved ALMA Cycle 0 and Cycle 1 observations of CO and CO isotopologues of several famous transitional disks. Gas is found to be present inside the dust cavities, but at a reduced level compared with the gas surface density profile of the outer disk. The dust and gas emission are quantified using the physical-chemical modeling code DALI. In the majority of these disks we find clear evidence for a drop in gas density of at least a factor of 10 inside the cavity, whereas the dust density drops by at least a factor 1000. The CO isotopologue observations reveal that the gas cavities are significantly smaller than the dust cavities. These gas structures suggest clearing by one or more planetary-mass companions.

  18. Personality traits and circadian blood pressure patterns: A seven year prospective study

    PubMed Central

    Terracciano, Antonio; Strait, James; Scuteri, Angelo; Meirelles, Osorio; Sutin, Angelina R.; Tarasov, Kirill; Ding, Jun; Marongiu, Michele; Orru, Marco; Pilia, Maria Grazia; Cucca, Francesco; Lakatta, Edward; Schlessinger, David

    2014-01-01

    Objective A nighttime dip in blood pressure is associated with decreased risk of cardiovascular morbidity and mortality. We examined whether personality traits predict nighttime dipping blood pressure. Methods A community-based sample of 2,848 adults from Sardinia (Italy) completed the Revised NEO Personality Inventory and 7.34-years later (SD=0.87) were examined with 24-hour ambulatory blood pressure monitoring. The primary analyses examined the associations of personality traits with continuous and categorical measures of mean arterial, systolic and diastolic blood pressure nighttime dipping. Results Agreeableness and conscientiousness were associated with more nocturnal blood pressure dipping (β = .05, p=.025 and β = .07, p<.001, respectively) and lower systolic blood pressure at night (β = -.045, p=.018 and β = -.032; p=.072, respectively). Non-dippers were particularly more impulsive (p=.009), less trusting (p=.004), and less self-disciplined (p=.001), but there was no significant association between nocturnal dipping blood pressure and trait anxiety (p=.78) or depression (p=.59). The associations were stronger when comparing extreme dippers (nighttime drop ≥ 20%) to reverse dippers (nighttime increase in blood pressure). Indeed, scoring 1 SD higher on conscientiousness was associated with about 40% reduced risk of reverse dipping (OR = 1.43, CI = 1.08-1.91). Conclusions We found evidence that reduced nighttime blood pressure dipping is associated with antagonism and impulsivity related traits but not with measures of emotional vulnerability. The strongest associations were found with conscientiousness, a trait that may have broad impact on cardiovascular health. PMID:24608035

  19. RECENT DEVELOPMENTS IN SRF CAVITY SCIENCE AND PERFORMANCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gianluigi Ciovati

    A recipe based on centrifugal barrel polishing (CBP) and electropolishing (EP), applied on newly designed single-cells, led to the achievement of B{sub p} values close to the thermodynamic critical field of Nb and to new records in terms of accelerating gradients The fabrication of cavities made of large-grain Nb is emerging as a viable option to reduce the material cost without sacrificing the performance. The Q-drop is not caused exclusively by losses at grain boundaries in Nb. Baking is the only known remedy against the Q-drop and its effect seems to be related to a change of the properties ofmore » the Nb up to a depth of about 20 nm. 120 C is the optimum temperature and the baking time can be reduced to 12 h. Cleaning techniques such as high-pressure rinse (HPR) are being studied in detail in order to be optimized for mass-production. Dry-ice cleaning may become a complementary cleaning method. Work is being done to better understand and to improve the EP process.« less

  20. Experimental investigation of MHD pressure losses in a mock-up of a liquid metal blanket

    NASA Astrophysics Data System (ADS)

    Mistrangelo, C.; Bühler, L.; Brinkmann, H.-J.

    2018-03-01

    Experiments have been performed to investigate the influence of a magnetic field on liquid metal flows in a scaled mock-up of a helium cooled lead lithium (HCLL) blanket. During the experiments pressure differences between points on the mock-up have been recorded for various values of flow rate and magnitude of the imposed magnetic field. The main contributions to the total pressure drop in the test-section have been identified as a function of characteristic flow parameters. For sufficiently strong magnetic fields the non-dimensional pressure losses are practically independent on the flow rate, namely inertia forces become negligible. Previous experiments on MHD flows in a simplified test-section for a HCLL blanket showed that the main contributions to the total pressure drop in a blanket module originate from the flow in the distributing and collecting manifolds. The new experiments confirm that the largest pressure drops occur along manifolds and near the first wall of the blanket module, where the liquid metal passes through small openings in the stiffening plates separating two breeder units. Moreover, the experimental data shows that with the present manifold design the flow does not distribute homogeneously among the 8 stacked boxes that form the breeding zone.

  1. An Assessment of Combustion Dynamics in a Low-Nox, Second-Generation Swirl-Venturi Lean Direct Injection Combustion Concept

    NASA Technical Reports Server (NTRS)

    Tacina, K. M.; Chang, C. T.; Lee, P.; Mongia, H.; Podboy, D. P.; Dam, B.

    2015-01-01

    Dynamic pressure measurements were taken during flame-tube emissions testing of three second-generation swirl-venturi lean direct injection (SV-LDI) combustor configurations. These measurements show that combustion dynamics were typically small. However, a small number of points showed high combustion dynamics, with peak-to-peak dynamic pressure fluctuations above 0.5 psi. High combustion dynamics occurred at low inlet temperatures in all three SV-LDI configurations, so combustion dynamics were explored further at low temperature conditions. A point with greater than 1.5 psi peak-to-peak dynamic pressure fluctuations was identified at an inlet temperature of 450!F, a pressure of 100 psia, an air pressure drop of 3%, and an overall equivalence ratio of 0.35. This is an off design condition: the temperature and pressure are typical of 7% power conditions, but the equivalence ratio is high. At this condition, the combustion dynamics depended strongly on the fuel staging. Combustion dynamics could be reduced significantly without changing the overall equivalence ratio by shifting the fuel distribution between stages. Shifting the fuel distribution also decreased NOx emissions.

  2. Liquid jet response to internal modulated ultrasonic radiation pressure and stimulated drop production.

    PubMed

    Lonzaga, Joel B; Osterhoudt, Curtis F; Thiessen, David B; Marston, Philip L

    2007-06-01

    Experimental evidence shows that a liquid jet in air is an acoustic waveguide having a cutoff frequency inversely proportional to the jet diameter. Ultrasound applied to the jet supply liquid can propagate within the jet when the acoustic frequency is near to or above the cutoff frequency. Modulated radiation pressure is used to stimulate large amplitude deformations and the breakup of the jet into drops. The jet response to the modulated internal ultrasonic radiation pressure was monitored along the jet using (a) an optical extinction method and (b) images captured by a video camera. The jet profile oscillates at the frequency of the radiation pressure modulation and where the response is small, the amplitude was found to increase in proportion to the square of the acoustic pressure amplitude as previously demonstrated for oscillating drops [P.L. Marston and R.E. Apfel, J. Acoust. Soc. Am. 67, 27-37 (1980)]. Small amplitude deformations initially grow approximately exponentially with axial distance along the jet. Though aspects of the perturbation growth can be approximated from Rayleigh's analysis of the capillary instability, some detailed features of the observed jet response to modulated ultrasound are unexplained neglecting the effects of gravity.

  3. The impact of wall shear stress and pressure drop on the stability of the atherosclerotic plaque.

    PubMed

    Li, Zhi-Yong; Taviani, Valentina; Gillard, Jonathan H

    2008-01-01

    Rupture of vulnerable atheromatous plaque in the carotid and coronary arteries often leads to stroke and heart attack respectively. The mechanism of blood flow and plaque rupture in stenotic arteries is still not fully understood. A three dimensional rigid wall model was solved under steady state conditions and unsteady conditions by assuming a time-varying inlet velocity profile to investigate the relative importance of axial forces and pressure drops in arteries with asymmetric stenosis. Flow-structure interactions were investigated for the same geometry and the results were compared with those retrieved with the corresponding 2D cross-section structural models. The Navier-Stokes equations were used as the governing equations for the fluid. The tube wall was assumed hyperelastic, homogeneous, isotropic and incompressible. The analysis showed that the three dimensional behavior of velocity, pressure and wall shear stress is in general very different from that predicted by cross-section models. Pressure drop across the stenosis was found to be much higher than shear stress. Therefore, pressure may be the more important mechanical trigger for plaque rupture other than shear stress, although shear stress is closely related to plaque formation and progression.

  4. Correlation of current drop, filling gas pressure, and ion beam emission in a low energy Mather-type plasma focus device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behbahani, R. A.; Aghamir, F. M.

    The behavior of current drop and its correlation with ion beam emission during the radial phase of a high inductance low energy Mather type plasma focus device have been studied. The study includes two ranges of filling gas pressure, namely the low range of 0.2-0.8 mbar and the high range of 0.8-1.5 mbar. Two different current simulation processes were performed to aid the interpretation of the experimental results. Within the low range of operating pressure, an acceptable match between the computed and experimental current signals was achieved when the effects of anomalous resistances were contemplated. While in the high rangemore » of pressure, the computed and experimental current traces were in line even without considering the effects of anomalous resistances. The analysis shows that by decreasing the filling gas pressure the effects of instabilities are intensified. The computed and experimental current traces, along with ion beam signals gathered from a faraday cup, show that there is a strong correlation between the intensity of ion beam and its duration with the current drop during the radial phase.« less

  5. Experimental Investigation on Design Enhancement of Axial Fan Using Fixed Guide Vane

    NASA Astrophysics Data System (ADS)

    Munisamy, K. M.; Govindasamy, R.; Thangaraju, S. K.

    2015-09-01

    Airflow passes through the rotating blade in an axial flow fan will experience a helical flow pattern. This swirling effect leads the system to experience swirl energy losses or pressure drop yet reducing the total efficiency of the fan system. A robust tool to encounter this air spin past the blade is by introducing guide vane to the system. Owing to its importance, a new approach in designing outlet guide vane design for a commercial usage 1250mm diameter axial fan with a 30° pitch angle impeller has been introduced in this paper. A single line metal of proper curvature guide vane design technique has been adopted for this study. By choosing fan total efficiency as a target variable to be improved, the total and static pressure on the design point were set to be constraints. Therefore, the guide vane design was done based on the improvement target on the static pressure in system. The research shows that, with the improvement in static pressure by 29.63% through guide vane installation, the total fan efficiency is increased by 5.12%, thus reduces the fan power by 5.32%. Good agreement were found, that when the fan total efficiency increases, the power consumption of the fan is reduced. Therefore, this new approach of guide vane design can be applied to improve axial fan performance.

  6. Micro-explosion of compound drops

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Kuei; Lin, Ta-Hui

    2014-08-01

    Introducing water into spray combustion systems, by either water-in-oil emulsification or supplementary water injection, is one of the major techniques for combustion improvement and NOx reduction. Plentiful researches are available on combustion of water-in-oil emulsion fuel drops. The emulsified liquid is a heterogeneous mixture of immiscible liquids. One component forms the continuous phase and the other component forms the discrete phase. The discrete phase consists of globules of the one fluid that are suspended in the continuous phase fluid. Water-in-oil emulsions are commonly considered for combustion applications because emulsions can result in micro-explosion, thereby reducing the average drop diameter to enhance liquid vaporization, and suppressing the formation of soot and NOx. However, the water addition generally does not exceed about 20% for smooth engine operations[!, 21. The combustion characteristics and micro-explosion of emulsion drop were studied by many researchers. The micro-explosion of water in fuel emulsion drops was caused by very fast growth of superheated water vapor bubbles, its superheat limits must be lower than the boiling point temperature of the fuel. These bubbles were primarily governed by the pressure difference between the superheated vapor and the liquid, and by the inertia imparted to the liquid by the motion of the bubble surface[3 6 In this study, we used a coaxial nozzle to generation the multi-component drop. The different type of water-in-oil fuel drops called the compound drops. Unlike an emulsion drop, a compound drop consists of a water core and a fuel shell, which can originate from the phase separation of emulsion[7, 81 or a water drop colliding with a fuel drop[9, 101 Burning and micro-explosion of compound drops have been found to be distinct from those of emulsion drops[9-111 Wang et al.[9 , 101 studied the combustion characteristics of collision merged alkane-water drops. The merged drops appeared in adhesive and inserted manners. The drop ignition delay time increased with increasing water content. The average burning rate of alkane-water drops decreased with increasing water content. In the burning process, hexadecane-water drops exhibited flash vaporization or flame extinction. Heterogeneous explosion was occasionally observed in drops with trapped air bubbles. The air bubbles were assumed to be the nucleation points of the heterogeneous explosions. Chen and Lin[11 studied the characteristics of water-in-dodecane compound drop with different water content, diameter of drop and environmental oxygen concentration. The vaporization rate increased with increasing environmental oxygen concentration. The compound drops micro-exploded during the burning process in a random way. The number of micro-explosions was majorly influenced by drop diameter, followed by environmental oxygen concentration. Water content had a weaker effect on micro-explosion. As available literature and research results of compound drop burning are scarce, their combustion and micro-explosion behaviors are still poorly understood. In this regard, we changed the drop nature as compound drops to study their combustion characteristics and micro-explosion phenomena.

  7. Evolution of Abnormally Low Pressure at Bravo Dome and its Implications for Carbon Capture and Storage (CCS)

    NASA Astrophysics Data System (ADS)

    Akhbari, D.; Hesse, M. A.

    2015-12-01

    Carbon capture and storage allows reductions of the rapidly rising CO2 from fossil fuel-based power generation, if large storage rates and capacities can be achieved. The injection of large fluid volumes at high rates leads to a build-up of pore-pressure in the storage formation that may induce seismicity and compromise the storage security. Many natural CO2 fields in midcontinent US, in contrast, are under-pressured rather than over-pressured suggesting that natural processes reduce initial over-pressures and generate significant under-pressures. The question is therefore to understand the sequence of process(es) that allow the initial over-pressure to be eliminated and the under-pressure to be maintained over geological periods of time. We therefore look into pressure evolution in Bravo Dome, one of the largest natural CO2 accumulations in North America, which stores 1.3 Gt of CO2. Bravo Dome is only 580-900 m deep and is divided into several compartments with near gas-static pressure (see Figure). The pre-production gas pressures in the two main compartments that account for 70% of the mass of CO2 stored at Bravo Dome are more than 6 MPa below hydrostatic pressure. Here we show that the under-pressure in the Bravo Dome CO2 reservoir is maintained by hydrological compartmentalization over millennial timescales and generated by a combination of processes including cooling, erosional unloading, limited leakage into overlying formations, and CO2 dissolution into brine. Herein, we introduce CO2 dissolution into brine as a new process that reduce gas pressure in a compartmentalized reservoir and our results suggest that it may contribute significantly to reduce the initial pressure build-up due to injection. Bravo Dome is the first documented case of pressure drop due to CO2 dissolution. To have an accurate prediction of pressure evolution in Bravo Dome, our models must include geomechanics and thermodynamics for the reservoir while they account for the pressure changes due to the CO2 dissolution.

  8. Prediction of orthostatic hypotension in multiple system atrophy and Parkinson disease

    PubMed Central

    Sun, Zhanfang; Jia, Dandan; Shi, Yuting; Hou, Xuan; Yang, Xiaosu; Guo, Jifeng; Li, Nan; Wang, Junling; Sun, Qiying; Zhang, Hainan; Lei, Lifang; Shen, Lu; Yan, Xinxiang; Xia, Kun; Jiang, Hong; Tang, Beisha

    2016-01-01

    Orthostatic hypotension (OH) is common in multiple system atrophy (MSA) and Parkinson disease (PD), generally assessed through a lying-to-standing orthostatic test. However, standing blood pressure may not be available due to orthostatic intolerance or immobilization for such patients. Systolic blood pressure (SBP) and diastolic blood pressure (DBP) were successively measured in supine, sitting, and standing positions in patients with MSA and PD. Receiver operating characteristic analysis was used to evaluate diagnostic performance of the drops of sitting SBP or DBP. OH and severe OH were respectively regarded as “gold standard”. The drops of SBP in standing position were associated with increased disease severity for MSA and correlated with age for PD. In MSA group, drops in sitting SBP ≥ 14 mmHg or DBP ≥ 6 mmHg had highest validity for prediction of OH, and drops in sitting SBP ≥ 18 mmHg or DBP ≥ 8 mmHg for severe OH. In PD group, drops in sitting SBP ≥ 10 mmHg or DBP ≥ 6 mmHg had highest validity for prediction of OH. The lying-to-sitting orthostatic test is an alternative method for detection of OH in MSA and PD, especially when standing BP could not be validly measured due to various reasons. PMID:26867507

  9. Efficacy and tolerability of preservative-free eye drops containing a fixed combination of dorzolamide and timolol in glaucoma patients.

    PubMed

    Renieri, Giulia; Führer, Katrin; Scheithe, Karl; Lorenz, Katrin; Pfeiffer, Norbert; Thieme, Hagen

    2010-12-01

    To evaluate the efficacy and tolerability of preservative-free eye drops (dorzolamide/timolol) in routine management of preservative-sensitive glaucoma patients. Data from 2,298 glaucoma patients requiring intraocular pressure (IOP) reduction and suffering from intolerance to benzalkonium chloride or active agents of previously used eye drops were valid for baseline and safety analysis in this prospective, open, noncomparative, multicenter, noninterventional study. Patients were treated with preservative-free dorzolamide/timolol eye drops for 12 weeks. Main efficacy endpoint was IOP reduction after 12 weeks of treatment. Two thousand forty-nine patients were considered for efficacy analysis. Tolerability was assessed by evaluating adverse drug reactions. Mean baseline IOP was 20.8 mmHg. Baseline IOP was reduced to 16.7 mmHg after 12 weeks of treatment corresponding to a mean absolute (percent) change of -4.1 mmHg (-17.3%). The proportion of patients with IOP ≤21 mmHg increased from 59.9% at baseline to 94.6% after 12 weeks. The most frequently reported ocular adverse drug reactions were burning eyes (2.4%) and hyperemia (0.9%). Local tolerability improved in 79.3% of patients compared to their previous glaucoma therapy. This observational study confirms the IOP lowering effect of preservative-free eye drops containing the fixed combination of dorzolamide/timolol in a large patient's population. The drug was well tolerated and improved the local tolerability in the vast majority of patients.

  10. Under Pressure: The Utility of Spacers in Univalved Fiberglass Casts.

    PubMed

    Kleis, Kevin; Schlechter, John A; Doan, Joshua D; Farnsworth, Christine L; Edmonds, Eric W

    2017-02-24

    Univalving fiberglass casts after fracture manipulation or extremity surgery reduces the risk of developing compartment syndrome (CS). Previous experiments have demonstrated that univalving decreases intracompartmental pressures (ICPs), but increases the risk for loss of fracture reduction due to altering the mechanical properties of the cast. The purpose of this study was to correlate cast valve width within a univalved cast model to decreasing ICP. Saline bags (1 L) were covered with stockinette, Webril, and fiberglass tape then connected to an arterial pressure line monitor. Resting pressure was recorded. A water column was added to simulate 2 groups (n=5 each) of clinical CS: low pressure CS (LPCS range, 28 to 31 mm Hg) and high pressure CS (HPCS, range, 64 to 68 mm Hg). After the designated pressure was reached, the fiberglass was cut (stockinette and Webril remained intact). Cast spacers were inserted into each univalve and secured with varying widths: position #1 (3 mm wide), #2 (6 mm), #3 (9 mm), and #4 (12 mm). Pressure was recorded after cutting the fiberglass and following each spacer placement. In LPCS and HPCS groups, after univalve and placement of spacer position #1, pressure dropped by a mean of 52% and 58%, respectively. Spacer #2, decreased the pressure by a mean of 78% and 80%, respectively. Both spacer sizes significantly decreased the underlying pressure in both groups. Spacer #3 and #4 progressively reduced pressure within the cast, but not statistically significantly more than the previous spacer widths. This experimental model replicates the iatrogenic elevation in interstitial compartment pressure due to rigid cast application, not necessarily a self-sustained true CS. Increasing the univalved cast spread by ≥9 mm of the initial cast diameter will reduce pressure to a pre-CS level; however, a spread of only 6 mm can effectively reduce the pressure to <30 mm Hg depending on the initial elevated ICP. Cutting the Webril and stockinette in our model yielded a pressure decrease of 91% and 94% from the starting experimental pressure in the LPCS and the HPCS groups, respectively. Although the utility of splitting fiberglass casts has been previously demonstrated, we present evidence highlighting the benefit of spacing the split by at least 6 to 9 mm.

  11. Altitude Cooling Investigation of the R-2800-21 Engine in the P-47G Airplane. IV - Engine Cooling-Air Pressure Distribution

    NASA Technical Reports Server (NTRS)

    Kaufman, Samuel J.; Staudt, Robert C.; Valerino, Michael F.

    1947-01-01

    A study of the data obtained in a flight investigation of an R-2800-21 engine in a P-47G airplane was made to determine the effect of the flight variables on the engine cooling-air pressure distribution. The investigation consisted of level flights at altitudes from 5000 to 35,000 feet for the normal range of engine and airplane operation. The data showed that the average engine front pressures ranged from 0.73 to 0.82 of the impact pressure (velocity head). The average engine rear pressures ranged from 0.50 to 0.55 of the impact pressure for closed cowl flaps and from 0.10 to 0.20 for full-open cowl flaps. In general, the highest front pressures were obtained at the bottom of the engine. The rear pressures for the rear-row cylinders were .lower and the pressure drops correspondingly higher than for the front-row cylinders. The rear-pressure distribution was materially affected by cowl-flap position in that the differences between the rear pressures of the front-row and rear-row cylinders markedly increased as the cowl flaps were opened. For full-open cowl flaps, the pressure drops across the rear-row cylinders were in the order of 0.2 of the impact pressure greater than across the front-row cylinders. Propeller speed and altitude had little effect on the -coolingair pressure distribution, Increase in angle of inclination of the thrust axis decreased the front ?pressures for the cylinders at the top of the engine and increased them for the cylinders at the bottom of the engine. As more auxiliary air was taken from the engine cowling, the front pressures and, to a lesser extent, the rear pressures for the cylinders at the bottom of the engine decreased. No correlation existed between the cooling-air pressure-drop distribution and the cylinder-temperature distribution.

  12. Theoretical and experimental evaluation of the effects of an argon gas mixture on the pressure drop through adult tracheobronchial airway replicas.

    PubMed

    Litwin, Patrick D; Reis Dib, Anna Luisa; Chen, John; Noga, Michelle; Finlay, Warren H; Martin, Andrew R

    2017-06-14

    Argon has the potential to be a novel inhaled therapeutic agent, owing to the neuroprotective and organoprotective properties demonstrated in preclinical studies. Before human trials are performed, an understanding of varying gas properties on airway resistance during inhalation is essential. This study predicts the effect of an 80% argon/20% oxygen gas mixture on the pressure drop through conducting airways, and by extension the airway resistance, and then verifies these predictions experimentally using 3-D printed adult tracheobronchial airway replicas. The predicted pressure drop was calculated using established analytical models of airway resistance, incorporating the change in viscosity and density of the 80% argon/20% oxygen mixture versus that of air. Predicted pressure drop for the argon mixture increased by approximately 29% compared to that for air. The experimental results were consistent with this prediction for inspiratory flows ranging from 15 to 90slpm. These results indicate that established analytical models may be used to predict increases in conducting airway resistance for argon/oxygen mixtures, compared with air. Such predictions are valuable in predicting average patient response to breathing argon/oxygen mixtures, and in selecting or designing delivery systems for use in administration of argon/oxygen mixtures to critically ill or injured patients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Static shape of an acoustically levitated drop with wave-drop interaction

    NASA Astrophysics Data System (ADS)

    Lee, C. P.; Anilkumar, A. V.; Wang, T. G.

    1994-11-01

    The static shape of a drop levitated and flattened by an acoustic standing wave field in air is calculated, requiring self-consistency between the drop shape and the wave. The wave is calculated for a given shape using the boundary integral method. From the resulting radiation stress on the drop surface, the shape is determined by solving the Young-Laplace equation, completing an iteration cycle. The iteration is continued until both the shape and the wave converge. Of particular interest are the shapes of large drops that sustain equilibrium, beyond a certain degree of flattening, by becoming more flattened at a decreasing sound pressure level. The predictions for flattening versus acoustic radiation stress, for drops of different sizes, compare favorably with experimental data.

  14. Optimal design of wavy microchannel and comparison of heat transfer characteristics with zigzag and straight geometries

    NASA Astrophysics Data System (ADS)

    Parlak, Zekeriya

    2018-05-01

    Design concept of microchannel heat exchangers is going to plan with new flow microchannel configuration to reduce the pressure drop and improve heat transfer performance. The study aims to find optimum microchannel design providing the best performance of flow and heat transfer characterization in a heat sink. Therefore, three different types of microchannels in which water is used, straight, wavy and zigzag have been studied. The optimization operation has been performed to find optimum geometry with ANSYS's Response Surface Optimization Tool. Primarily, CFD analysis has been performed by parameterizing a wavy microchannel geometry. Optimum wavy microchannel design has been obtained by the response surface created for the range of velocity from 0.5 to 5, the range of amplitude from 0.06 to 0.3, the range of microchannel height from 0.1 to 0.2, the range of microchannel width from 0.1 to 0.2 and range of sinusoidal wave length from 0.25 to 2.0. All simulations have been performed in the laminar regime for Reynolds number ranging from 100 to 900. Results showed that the Reynolds number range corresponding to the industrial pressure drop limits is between 100 and 400. Nu values obtained in this range for optimum wavy geometry were found at a rate of 10% higher than those of the zigzag channel and 40% higher than those of the straight channels. In addition, when the pressure values of the straight channel did not exceed 10 kPa, the inlet pressure data calculated for zigzag and wavy channel data almost coincided with each other.

  15. Heterogeneous Nucleation Induced by Capillary Wave During Acoustic Levitation

    NASA Astrophysics Data System (ADS)

    Lü, Yong-Jun; Xie, Wen-Jun; Wei, Bing-Bo

    2003-08-01

    The rapid solidification of acoustically levitated drops of Pb-61.9 wt.%Sn eutectic alloy is accomplished. A surface morphology of spreading ripples is observed on a sample undercooled by 15 K. The ripples originate from the centre of sample surface, which is also the heterogeneous nucleation site for eutectic growth. The Faraday instability excited by forced surface vibration has brought about these ripples. They are retained in the solidified sample if the sound pressure level exceeds the threshold pressure required for the appearance of capillary waves. Theoretical calculations indicate that both the pressure and displacement maxima exist in the central part of a levitated drop. The pressure near the sample centre can promote heterogeneous nucleation, which is in agreement qualitatively with the experimental results.

  16. New results of the post-spinel transition pressure in Mg2SiO4 by means of in-situ X-ray diffraction in a multi-anvil press: complete agreement with the 660-km discontinuity depth

    NASA Astrophysics Data System (ADS)

    Ishii, T.; Huang, R.; Fei, H.; Koemets, I.; Liu, Z.; Maeda, F.; Yuan, L.; Wang, L.; Druzhbin, D.; Yamamoto, T.; Bhat, S.; Farla, R. J.; Kawazoe, T.; Tsujino, N.; Kulik, E.; Higo, Y.; Tange, Y.; Katsura, T.

    2017-12-01

    It has been accepted that the 660-km discontinuity (D660) is caused by the post-spinel (Psp) transition, which is decomposition of ringwoodite (Rw) to bridgmanite (Brg) + ferropericlase. Nevertheless, all of in-situ X-ray diffraction studies with multi-anvil presses (MAP) gave distinctively lower transition pressures than that of the D660 (23.4 GPa). Although Fei et al. (2004) claimed that their Psp transition pressure explains the D660, it is still 0.5 GPa lower by considering the geotherm. If these results were accepted, the Psp would not account for the D660. In this study, we re-investigated the Psp transition pressure in Mg2SiO4 by in-situ X-ray diffraction using a MAP. A fine-grained mixture of forsterite, enstatite and periclase (Pc) and an MgO pressure marker were placed at the center of a furnace. The sample was compressed to 6-7 MN and heated to 1100 K to synthesize a mixture of Rw, akimotoite and Pc. After that, more press load was applied to obtain sample pressures of ca. 23 GPa, and the sample was then heated to 1700 K, keeping this temperature for 1-2 hours. During keeping the temperature, the press load was first rapidly, and then gradually increased to prevent pressure drop. Phase identification and pressure determination were conducted with alternatively accumulated diffraction patterns of the sample and pressure maker. We bracketed the transition pressures by 23.7 and 24.0 GPa at 1700 K based on the third-order Birch-Murnaghan and Vinet EOSs of MgO given by Tange et al. (2009), respectively. The transition pressure at 2000 K is estimated to be 23.2-23.5 GPa by applying the Psp transition slope based on Fei et al. (2004). Thus, the present transition pressure completely agrees with the D660 depth. The reason for the lower transition pressures by the previous studies is pressure drop during heating. Although the transition completes at the beginning of target temperature, pressure significantly drops during or even before accumulating a diffraction pattern for 3-5 minutes. We obtained the correct transition pressure by preventing the pressure drop by pumping. This problem should be omnipresent in high P-T in-situ X-ray diffraction experiments to determine a phase boundary.

  17. Dropping macadamia nuts-in-shell reduces kernel roasting quality.

    PubMed

    Walton, David A; Wallace, Helen M

    2010-10-01

    Macadamia nuts ('nuts-in-shell') are subjected to many impacts from dropping during postharvest handling, resulting in damage to the raw kernel. The effect of dropping on roasted kernel quality is unknown. Macadamia nuts-in-shell were dropped in various combinations of moisture content, number of drops and receiving surface in three experiments. After dropping, samples from each treatment and undropped controls were dry oven-roasted for 20 min at 130 °C, and kernels were assessed for colour, mottled colour and surface damage. Dropping nuts-in-shell onto a bed of nuts-in-shell at 3% moisture content or 20% moisture content increased the percentage of dark roasted kernels. Kernels from nuts dropped first at 20%, then 10% moisture content, onto a metal plate had increased mottled colour. Dropping nuts-in-shell at 3% moisture content onto nuts-in-shell significantly increased surface damage. Similarly, surface damage increased for kernels dropped onto a metal plate at 20%, then at 10% moisture content. Postharvest dropping of macadamia nuts-in-shell causes concealed cellular damage to kernels, the effects not evident until roasting. This damage provides the reagents needed for non-enzymatic browning reactions. Improvements in handling, such as reducing the number of drops and improving handling equipment, will reduce cellular damage and after-roast darkening. Copyright © 2010 Society of Chemical Industry.

  18. Effect of wave action on near-well zone cleaning

    NASA Astrophysics Data System (ADS)

    Pen'kovskii, V. I.; Korsakova, N. K.

    2017-10-01

    Drilling filtrate invasion into the producing formation and native water accumulating of the near-well zone in well operation reduce the well productivity. As a result of that, depending on characteristic capillary pressure scale and differential pressure drawdown, oil production rate may become lower than expected one. In this paper, it is considered the hysteresis effects of capillary pressure after reversion of displacement. As applied to laboratory experiment conditions, the solution of problem of oil flow in formation model with a pressure drop on the model sides harmonically varied with time is presented. It was estimated a range of fluid vibration effective action on the near-well zone cleaning from capillary locking water. The plant simulating extraction of oil from formation using widely practised sucker-rod pump has been created. Formation model is presented as a slot filled with broken glass between two plates. In the process, natural oil and sodium chloride solution were used as working fluids. The experiments qualitatively confirm a positive effect of jack pumps on the near-well zone cleaning.

  19. Method to produce large, uniform hollow spherical shells

    DOEpatents

    Hendricks, C.D.

    1983-09-26

    The invention is a method to produce large uniform hollow spherical shells by (1) forming uniform size drops of heat decomposable or vaporizable material, (2) evaporating the drops to form dried particles, (3) coating the dried particles with a layer of shell forming material and (4) heating the composite particles to melt the outer layer and to decompose or vaporize the inner particle to form an expanding inner gas bubble. The expanding gas bubble forms the molten outer layer into a shell of relatively large diameter. By cycling the temperature and pressure on the molten shell, nonuniformities in wall thickness can be reduced. The method of the invention is utilized to produce large uniform spherical shells, in the millimeter to centimeter diameter size range, from a variety of materials and of high quality, including sphericity, concentricity and surface smoothness, for use as laser fusion or other inertial confinement fusion targets as well as other applications.

  20. Nerve Fiber Layer Thickness and Characteristics Associated with Glaucoma in Community Living Older Adults: Prelude to a Screening Trial?

    PubMed

    Klein, Barbara E K; Johnson, Chris A; Meuer, Stacy M; Lee, Kyungmoo; Wahle, Andreas; Lee, Kristine E; Kulkarni, Amruta; Sonka, Milan; Abràmoff, Michael D; Klein, Ronald

    2017-04-01

    To examine the associations of nerve fiber layer (NFL) thickness with other ocular characteristics in older adults. Participants in the Beaver Dam Eye Study (2008-2010) underwent spectral domain optical coherence tomography (SD-OCT) scans of the optic nerve head, imaging of optic discs, frequency doubling technology (FDT) perimetry, measurement of intraocular pressure (IOP), and an interview concerning their history of glaucoma and use of drops to lower eye pressure. Self-reported histories of glaucoma and the use of drops to lower eye pressure were obtained at follow-up examinations (2014-2016). NFL thickness measured on OCTs varied by location around the optic nerve. Age was associated with mean NFL thickness. Mean NFL was thinnest in eyes with larger cup/disc (C/D) ratios. Horizontal hemifield defects or other optic nerve-field defects were associated with thinner NFL. NFL in persons who reported taking eye drops for high intraocular pressure was thinner compared to those not taking drops. After accounting for the presence of high intraocular pressure, large C/D ratios or hemifield defects, eyes with thinner NFL in the arcades were more likely (OR = 2.3 for 30 micron thinner NFL, p = 0.04) to have incident glaucoma at examination 5 years later. Retinal NFL thickness was associated with a new history of self-reported glaucoma 5 years later. A trial testing the usefulness of NFL as part of a screening battery for predicting glaucoma in those previously undiagnosed might lead to improved case finding and, ultimately, to diminishing the risk of visual field loss.

  1. Numerical study on self-cleaning canister filter with modified filter cap

    NASA Astrophysics Data System (ADS)

    Mohammed, Akmal Nizam; Zolkhaely, Mohd Hafiz; Sahrudin, Mohd Sahrizan; Razali, Mohd Azahari; Sapit, Azwan; Hushim, Mohd Faisal

    2017-04-01

    Air filtration system plays an important role in getting good quality air into turbo machinery such as gas turbine. The filtration system and filters improve the quality of air and protect the gas turbine parts from contaminants which could bring damage. This paper is focused on the configuration of the self-cleaning canister filter in order to obtain the minimal pressure drop along the filter. The configuration includes a modified canister filter cap that is based on the basic geometry that conforms to industry standard. This paper describes the use of CFD to simulate and analyze the flow through the filter. This tool is also used to monitor variables such as pressure and velocity along the filter and to visualize them in the form of contours, vectors and streamlines. In this study, the main parameter varied is the inlet velocity set in the boundary condition during simulations, which are 0.032, 0.063, 0.094 and 0.126 m/s respectively. The data obtained from simulations are then validated with reference data sourced from the industry, and comparisons have subsequently been made for these two filters. As a result, the improvement of the pressure drop for the modified filter is found to be 11.47% to 14.82% compared to the basic filter at the inlet velocity from 0.032 to 0.126 m/s. the total pressure drop produced is 292.3 Pa by the basic filter and 251.11 Pa for modified filter. The pressure drop reduction is 41.19 Pa, which is 14.1% from the basic filter.

  2. Oxygen and carbon dioxide transport in time-dependent blood flow past fiber rectangular arrays

    NASA Astrophysics Data System (ADS)

    Zierenberg, Jennifer R.; Fujioka, Hideki; Hirschl, Ronald B.; Bartlett, Robert H.; Grotberg, James B.

    2009-03-01

    The influence of time-dependent flows on oxygen and carbon dioxide transport for blood flow past fiber arrays arranged in in-line and staggered configurations was computationally investigated as a model for an artificial lung. Both a pulsatile flow, which mimics the flow leaving the right heart and passing through a compliance chamber before entering the artificial lung, and a right ventricular flow, which mimics flow leaving the right heart and directly entering the artificial lung, were considered in addition to a steady flow. The pulsatile flow was modeled as a sinusoidal perturbation superimposed on a steady flow while the right ventricular flow was modeled to accurately depict the period of flow acceleration (increasing flow) and deceleration (decreasing flow) during systole followed by zero flow during diastole. It was observed that the pulsatile flow yielded similar gas transport as compared to the steady flow, while the right ventricular flow resulted in smaller gas transport, with the decrease increasing with Re. The pressure drop across the fiber array (a measure of the resistance), work (an indicator of the work required of the right heart), and shear stress (a measure of potential blood cell activation and damage) are lowest for steady flow, followed by pulsatile flow, and then right ventricular flow. The pressure drop, work, shear stress, and Sherwood numbers (a measure of the gas transport efficiency) decrease with increasing porosity and are smaller for AR <1 as compared to AR >1 (AR is the distance between fibers in the flow direction/distance between fibers in direction perpendicular to flow), although for small porosities the Sherwood numbers are of similar magnitude. In general, for any fiber array geometry, high pressure drop, work, and shear stresses correlate with high Sherwood numbers, and low pressure drop, work, and shear stresses correlate with low Sherwood numbers creating a need for a compromise between pressure drop/work/shear stresses and gas transport.

  3. Heat Transfer Enhancement for Finned-Tube Heat Exchangers with Vortex Generators: Experimental and Numerical Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Brien, James Edward; Sohal, Manohar Singh; Huff, George Albert

    2002-08-01

    A combined experimental and numerical investigation is under way to investigate heat transfer enhancement techniques that may be applicable to large-scale air-cooled condensers such as those used in geothermal power applications. The research is focused on whether air-side heat transfer can be improved through the use of finsurface vortex generators (winglets,) while maintaining low heat exchanger pressure drop. A transient heat transfer visualization and measurement technique has been employed in order to obtain detailed distributions of local heat transfer coefficients on model fin surfaces. Pressure drop measurements have also been acquired in a separate multiple-tube row apparatus. In addition, numericalmore » modeling techniques have been developed to allow prediction of local and average heat transfer for these low-Reynolds-number flows with and without winglets. Representative experimental and numerical results presented in this paper reveal quantitative details of local fin-surface heat transfer in the vicinity of a circular tube with a single delta winglet pair downstream of the cylinder. The winglets were triangular (delta) with a 1:2 height/length aspect ratio and a height equal to 90% of the channel height. Overall mean fin-surface Nusselt-number results indicate a significant level of heat transfer enhancement (average enhancement ratio 35%) associated with the deployment of the winglets with oval tubes. Pressure drop measurements have also been obtained for a variety of tube and winglet configurations using a single-channel flow apparatus that includes four tube rows in a staggered array. Comparisons of heat transfer and pressure drop results for the elliptical tube versus a circular tube with and without winglets are provided. Heat transfer and pressure-drop results have been obtained for flow Reynolds numbers based on channel height and mean flow velocity ranging from 700 to 6500.« less

  4. Shape oscillations of microparticles on an optical microscope stage.

    PubMed

    Zhu, Z M; Apfel, R E

    1985-11-01

    A modulated acoustic radiation pressure technique to produce quadrupole shape oscillations of drops ranging in diameter from 50-220 micron has been used by us. These drops have been suspended by acoustic levitation in a small chamber mounted on a stage of an optical microscope, which allowed easy viewing. The fission of drops and the deformation of sea urchin eggs were also observed.

  5. EFFECTS OF RAMADAN FASTING ON BLOOD PRESSURE IN NORMOTENSIVE MALES.

    PubMed

    Samad, Fatima; Qazi, Fahd; Pervaiz, Mohammad B; Kella, Danesh K; Mansoor, Maryah; Osmani, Bushra Z; Mir, Fazia; Kadir, Muhammad Masood

    2015-01-01

    Research has been done to investigate the effect of intermittent complete fasting on human physiological parameters but the effect of fasting on blood pressure remains relatively unexplored. Research in animal models suggests a hypotensive effect with an undetermined mechanism. Muslims worldwide fast daily from dawn to dusk throughout the Islamic month of Ramadan. This study was to investigate the proposed hypotensive effect of Ramadan fasting in males over A period of 20 days and to study the relationship of the pattern of blood pressure variation with body mass index change. A repeated measures observational study design was implemented with convenient sampling. Study group included 40 normotensive, non-smoker males with no known comorbidities between the ages of 18-40 who fasted daily in the month of Ramadan. One set of BP readings, each, was taken one week before the start of Ramadan and on the 7th, 14th and 21st day of Ramadan which included pre and post Iftar measurements along with other variables. Data was analysed by repeated measures ANOVA using SPSS. The differences were compared with critical values generated by Tukey's Method. There was a significant drop in systolic BP of 7.61 mmHg before Iftar, 2.72 mm-Hg after Iftar (p<0.005). There was a significant effect of Ramadan on diastolic BP (p<0.005), the drop being 3.19 mmHg. The drop in body mass index was significant only before Iftar at 0.3 kg/m2 (p<0.005). Pulse rate showed a significant drop of 7.79 bpm before Iftar and a significant rise of 3.96 bpm (p<0.005). Intermittent fasting causes a drop in both systolic and diastolic blood pressure in normotensive males.

  6. Modeling of drop breakup in the bag breakup regime

    NASA Astrophysics Data System (ADS)

    Wang, C.; Chang, S.; Wu, H.; Xu, J.

    2014-04-01

    Several analytic models for predicting the drop deformation and breakup have been developed over the last three decades, but modeling drop breakup in the bag-type regime is less reported. In this Letter, a breakup model has been proposed to predict the drop deformation length and breakup time in the bag-type breakup regime in a more accurate manner. In the present model, the drop deformation which is approximately as the displacement of the centre of mass (c. m.) along the axis located at the centre of the drop, and the movement of c. m. is obtained by solving the pressure balance equation. The effects of the drop deformation on the drop external aerodynamic force are considered in this model. Drop breakup occurs when the deformation length reaches the maximum value and the maximum deformation length is a function of Weber number. The performance and applicability of the proposed breakup model are tested against the published experimental data.

  7. 2D Simulations of Earthquake Cycles at a Subduction Zone Based on a Rate and State Friction Law -Effects of Pore Fluid Pressure Changes-

    NASA Astrophysics Data System (ADS)

    Mitsui, Y.; Hirahara, K.

    2006-12-01

    There have been a lot of studies that simulate large earthquakes occurring quasi-periodically at a subduction zone, based on the laboratory-derived rate-and-state friction law [eg. Kato and Hirasawa (1997), Hirose and Hirahara (2002)]. All of them assume that pore fluid pressure in the fault zone is constant. However, in the fault zone, pore fluid pressure changes suddenly, due to coseismic pore dilatation [Marone (1990)] and thermal pressurization [Mase and Smith (1987)]. If pore fluid pressure drops and effective normal stress rises, fault slip is decelerated. Inversely, if pore fluid pressure rises and effective normal stress drops, fault slip is accelerated. The effect of pore fluid may cause slow slip events and low-frequency tremor [Kodaira et al. (2004), Shelly et al. (2006)]. For a simple spring model, how pore dilatation affects slip instability was investigated [Segall and Rice (1995), Sleep (1995)]. When the rate of the slip becomes high, pore dilatation occurs and pore pressure drops, and the rate of the slip is restrained. Then the inflow of pore fluid recovers the pore pressure. We execute 2D earthquake cycle simulations at a subduction zone, taking into account such changes of pore fluid pressure following Segall and Rice (1995), in addition to the numerical scheme in Kato and Hirasawa (1997). We do not adopt hydrostatic pore pressure but excess pore pressure for initial condition, because upflow of dehydrated water seems to exist at a subduction zone. In our model, pore fluid is confined to the fault damage zone and flows along the plate interface. The smaller the flow rate is, the later pore pressure recovers. Since effective normal stress keeps larger, the fault slip is decelerated and stress drop becomes smaller. Therefore the smaller flow rate along the fault zone leads to the shorter earthquake recurrence time. Thus, not only the frictional parameters and the subduction rate but also the fault zone permeability affects the recurrence time of earthquake cycle. Further, the existence of heterogeneity in the permeability along the plate interface can bring about other slip behaviors, such as slow slip events. Our simulations indicate that, in addition to the frictional parameters, the permeability within the fault damage zone is one of essential parameters, which controls the whole earthquake cycle.

  8. Fuel thermal stability effects on spray characteristics

    NASA Technical Reports Server (NTRS)

    Lefebvre, A. H.; Nickolaus, D.

    1987-01-01

    The propensity of a heated hydrocarbon fuel toward solids deposition within a fuel injector is investigated experimentally. Fuel is arranged to flow through the injector at constant temperature, pressure, and flow rate and the pressure drop across the nozzle is monitored to provide an indication of the amount of deposition. After deposits have formed, the nozzle is removed from the test rig and its spray performance is compared with its performance before deposition. The spray characteristics measured include mean drop size, drop-size distribution, and radial and circumferential fuel distribution. It is found that small amounts of deposition can produce severe distortion of the fuel spray pattern. More extensive deposition restores spray uniformity, but the nozzle flow rate is seriously curtailed.

  9. An Assessment of Helium Evolution from Helium-Saturated Propellant Depressurization in Space

    NASA Technical Reports Server (NTRS)

    Nguyen, Bich N.; Best, Frederick; Wong, Tony; Kurwitz, Cable; McConnaughey, H. (Technical Monitor)

    2001-01-01

    Helium evolution from the transfer of helium-saturated propellant in space is quantified to assess its impacts from creating two-phase gas/liquid flow from the supply tank, gas injection into the receiving tank, and liquid discharge from the receiving tank. Propellant transfer takes place between two similar tanks whose maximum storage capacity is approximately 2.55 cubic meters each. The maximum on-orbit propellants transfer capability is 9000 lbm (fuel and oxidizer). The transfer line is approximately 1.27 cm in diameter and 6096 cm in length and comprised of the fluid interconnect system (FICS), the orbiter propellant transfer system (OPTS), and the International Space Station (ISS) propulsion module (ISSPM). The propellant transfer rate begins at approximately 11 liter per minute (lpm) and subsequently drops to approximately 0.5 lpm. The tank nominal operating pressure is approximately 1827 kPa (absolute). The line pressure drops for Monomethy1hydrazine (MMH) and Nitrogen tetroxide (NTO) at 11.3 lpm are approximately 202 kPa and 302 kPa, respectively. The pressure-drop results are based on a single-phase flow. The receiving tank is required to vent from approximately 1827 kPa to a lower pressure to affect propellant transfer. These pressure-drop scenarios cause the helium-saturated propellants to release excess helium. For tank ullage venting, the maximum volumes of helium evolved at tank pressure are approximately 0.5 ft3 for MMH and 2 ft3 for NTO. In microgravity environment, due to lack of body force, the helium evolution from a liquid body acts to propel it, which influences its fluid dynamics. For propellant transfer, the volume fractions of helium evolved at line pressure are 0.1% by volume for MMH and 0.6 % by volume for NTO at 11.3 lpm. The void fraction of helium evolved varies as an approximate second order power function of flow rate.

  10. Dynamics of diffusive bubble growth and pressure recovery in a bubbly rhyolitic melt embedded in an elastic solid

    USGS Publications Warehouse

    Chouet, Bernard A.; Dawson, Phillip B.; Nakano, Masaru

    2006-01-01

    We present a model of gas exsolution and bubble expansion in a melt supersaturated in response to a sudden pressure drop. In our model, the melt contains a suspension of gas bubbles of identical sizes and is encased in a penny-shaped crack embedded in an elastic solid. The suspension is modeled as a three-dimensional lattice of spherical cells with slight overlap, where each elementary cell consists of a gas bubble surrounded by a shell of volatile-rich melt. The melt is then subjected to a step drop in pressure, which induces gas exsolution and bubble expansion, resulting in the compression of the melt and volumetric expansion of the crack. The dynamics of diffusion-driven bubble growth and volumetric crack expansion span 9 decades in time. The model demonstrates that the speed of the crack response depends strongly on volatile diffusivity in the melt and bubble number density and is markedly sensitive to the ratio of crack thickness to crack radius and initial bubble radius but is relatively insensitive to melt viscosity. The net drop in gas concentration in the melt after pressure recovery represents only a small fraction of the initial concentration prior to the drop, suggesting the melt may undergo numerous pressure transients before becoming significantly depleted of gases. The magnitude of pressure and volume recovery in the crack depends sensitively on the size of the input-pressure transient, becoming relatively larger for smaller-size transients in a melt containing bubbles with initial radii less than 10-5 m. Amplification of the input transient may be large enough to disrupt the crack wall and induce brittle failure in the rock matrix surrounding the crack. Our results provide additional basis for the interpretation of volume changes in the magma conduit under Popocatépetl Volcano during Vulcanian degassing bursts in its eruptive activity in April–May 2000.

  11. Further development and testing of the metabolic gas analyzer

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Continued development of a metabolic monitor utilizing a mass spectrometer and digital computer to perform measurements and data reduction, is reported. The device prints-out breath-by-breath values for 02 consumption, C02 production, minute volume and tidal volume. The flow is measured by introduction of a tracer gas to the expired gas stream. Design modifications to reduce pressure drop in the flow splitter to one inch of water at 600 liters/min flow and to extend the range of linear flow measurement to 1000 liters/min are discussed.

  12. Proceedings: Demilitarization and Disposal Technology Conference (2nd) Held at Salt Lake City, Utah on April 24, 25, 26, 1979,

    DTIC Science & Technology

    1979-04-01

    AAP contains a wet scrubber system. The scrubber is a combination spray chamber/ venturi / marble bed unit capable of attaining a 21" WG pressure drop...requirements until the feed rates are reduced considerably. Water quality data from the scrubber show that the heavy metals and low pH to be the major water...demilitarized using this method. The process water, scrubber water, and all clean-up water are treated by a water treatment system. This treatment

  13. [Nimodipine in ischemic cerebropathy].

    PubMed

    Di Lascio, G; Salvini, S

    1993-02-01

    Fifty patients of either sex with acute and chronic cerebrovascular disorders were submitted to an observation protocol and treated with oral nimodipine (tablets or drops) at a daily dosage of 90 mg for 1 to 3 months. Nimodipine proved useful both from the therapeutic point of view and for its easy handling in acute pathology (TIA, RIND, minor stroke, complete stroke) as well as chronic cerebral ischemia. The drug was well tolerated both locally and systemically; in patients with concomitant arterial hypertension, nimodipine reduced blood pressure with a tendency towards stabilization at near-normal levels.

  14. Stack developments in a kW class all vanadium mixed acid redox flow battery at the Pacific Northwest National Laboratory

    DOE PAGES

    Reed, David M.; Thomsen, Edwin C.; Li, Bin; ...

    2015-11-21

    Over the past several years, efforts have been focused on improving the performance of kW class stacks with increasing current density. The influence of the Nafion membrane resistance, an interdigitated design to reduce the pressure drop in the electrolyte circuit, the temperature of the electrolyte, and the electrode structure will be discussed and correlated to the electrical performance. Furthermore, improvements to the stack energy efficiency and how those translate to the overall system efficiency will also be discussed.

  15. Combination pipe-rupture mitigator and in-vessel core catcher. [LMFBR

    DOEpatents

    Tilbrook, R.W.; Markowski, F.J.

    1982-03-09

    A device is described which mitigates against the effects of a failed coolant loop in a nuclear reactor by restricting the outflow of coolant from the reactor through the failed loop and by retaining any particulated debris from a molten core which may result from coolant loss or other cause. The device reduces the reverse pressure drop through the failed loop by limiting the access of coolant in the reactor to the inlet of the failed loop. The device also spreads any particulated core debris over a large area to promote cooling.

  16. Combination pipe rupture mitigator and in-vessel core catcher

    DOEpatents

    Tilbrook, Roger W.; Markowski, Franz J.

    1983-01-01

    A device which mitigates against the effects of a failed coolant loop in a nuclear reactor by restricting the outflow of coolant from the reactor through the failed loop and by retaining any particulated debris from a molten core which may result from coolant loss or other cause. The device reduces the reverse pressure drop through the failed loop by limiting the access of coolant in the reactor to the inlet of the failed loop. The device also spreads any particulated core debris over a large area to promote cooling.

  17. Investigation of the effect of pressure increasing in condensing heat-exchanger

    NASA Astrophysics Data System (ADS)

    Murmanskii, I. B.; Aronson, K. E.; Brodov, Yu M.; Galperin, L. G.; Ryabchikov, A. Yu.; Brezgin, D. V.

    2017-11-01

    The effect of pressure increase was observed in steam condensation in the intermediate coolers of multistage steam ejector. Steam pressure increase for ejector cooler amounts up to 1.5 kPa in the first ejector stage, 5 kPa in the second and 7 kPa in the third one. Pressure ratios are equal to 2.0, 1.3 and 1.1 respectively. As a rule steam velocities at the cooler inlets do not exceed 40…100 m/s and are subsonic in all regimes. The report presents a computational model that describes the effect of pressure increase in the cooler. The steam entering the heat exchanger tears the drops from the condensate film flowing down vertical tubes. At the inlet of heat exchanger the steam flow capturing condensate droplets forms a steam-water mixture in which the sound velocity is significantly reduced. If the flow rate of steam-water mixture in heat exchanger is greater than the sound velocity, there occurs a pressure shock in the wet steam. On the basis of the equations of mass, momentum and energy conservation the authors derived the expressions for calculation of steam flow dryness degree before and after the shock. The model assumes that droplet velocity is close to the velocity of the steam phase (slipping is absent); drops do not come into thermal interaction with the steam phase; liquid phase specific volume compared to the volume of steam is neglected; pressure shock is calculated taking into account the gas-dynamic flow resistance of the tube bundle. It is also assumed that the temperature of steam after the shock is equal to the saturation temperature. The calculations have shown that the rise of steam pressure and temperature in the shock results in dryness degree increase. For calculated flow parameters the velocity value before the shock is greater than the sound velocity. Thus, on the basis of generally accepted physics knowledge the computational model has been formulated for the effect of steam pressure rise in the condensing heat exchanger.

  18. Charged drop dynamics experiment using an electrostatic-acoustic hybrid system

    NASA Technical Reports Server (NTRS)

    Rhim, W. K.; Chung, S. K.; Trinh, E. H.; Elleman, D. D.

    1987-01-01

    The design and the performance of an electrostatic-acoustic hybrid system and its application to a charge drop rotation experiment are presented. This system can levitate a charged drop electrostatically and induce drop rotation or oscillation by imposing an acoustic torque or an oscillating acoustic pressure. Using this system, the equilibrium shapes and stability of a rotating charged drop were experimentally investigated. A 3 mm size water drop was rotated as a rigid body and its gyrostatic equilibrium shapes were observed. Families of axisymmetric shapes, two-lobed shapes, and eventual fissioning have been observed. With the assumption of 'effective surface tension' in which the surface charge simply modified the surface tension of neutral liquid, the results agree exceptionally well with the Brown and Scriven's (1980) prediction for uncharged drops.

  19. Star-shaped oscillations of Leidenfrost drops

    NASA Astrophysics Data System (ADS)

    Ma, Xiaolei; Liétor-Santos, Juan-José; Burton, Justin C.

    2017-03-01

    We experimentally investigate the self-sustained, star-shaped oscillations of Leidenfrost drops. The drops levitate on a cushion of evaporated vapor over a heated, curved surface. We observe modes with n =2 -13 lobes around the drop periphery. We find that the wavelength of the oscillations depends only on the capillary length of the liquid and is independent of the drop radius and substrate temperature. However, the number of observed modes depends sensitively on the liquid viscosity. The dominant frequency of pressure variations in the vapor layer is approximately twice the drop oscillation frequency, consistent with a parametric forcing mechanism. Our results show that the star-shaped oscillations are driven by capillary waves of a characteristic wavelength beneath the drop and that the waves are generated by a large shear stress at the liquid-vapor interface.

  20. Visualization and flow boiling heat transfer of hydrocarbons in a horizontal tube

    NASA Astrophysics Data System (ADS)

    Yang, Zhuqiang; Bi, Qincheng; Guo, Yong; Liu, Zhaohui; Yan, Jianguo

    2013-07-01

    Visualizations of a specific hydrocarbon fuel in a horizontal tube with 2.0 mm inside diameter were investigated. The experiments were conducted at mass velocity of 213.4, 426.5 and 640.2 kg/ (m2ṡs), diabatic lengths of 140, 240 and 420 mm under the pressure from 2.0-2.7 MPa. In the sub-pressure conditions, bubbly, intermittent, stratified-wave, churn and annular flow patterns were observed. The frictional pressure drops were also measured to distinguish the patterns. The development of flow patterns and frictional pressure drop were positively related to the mass velocity and the heat flux. However, the diabatic length of the tube takes an important part in the process. The residence time of the fluid does not only affect the transition of the patterns but influence the composition of the fuel manifested by the fuel color and carbon deposit. The special observational phenomenon was obtained for the supercritical pressure fluid. The flow in the tube became fuzzier and pressure drop changed sharply near the pseudocritical point. The flow boiling heat transfer characteristics of the hydrocarbons were also discussed respectively. The curve of critical heat flux about onset of nucleate boiling was plotted with different mass velocities and diabatic tube lengths. And heat transfer characteristics of supercritical fuel were proved to be better than that in subcritical conditions.

  1. Fluid-cooled heat sink with improved fin areas and efficiencies for use in cooling various devices

    DOEpatents

    Bharathan, Desikan; Bennion, Kevin; Kelly, Kenneth; Narumanchi, Sreekant

    2015-04-21

    The disclosure provides a fluid-cooled heat sink having a heat transfer base and a plurality of heat transfer fins in thermal communication with the heat transfer base, where the heat transfer base and the heat transfer fins form a central fluid channel through which a forced or free cooling fluid may flow. The heat transfer pins are arranged around the central fluid channel with a flow space provided between adjacent pins, allowing for some portion of the central fluid channel flow to divert through the flow space. The arrangement reduces the pressure drop of the flow through the fins, optimizes average heat transfer coefficients, reduces contact and fin-pin resistances, and reduces the physical footprint of the heat sink in an operating environment.

  2. Novel drug delivery systems for glaucoma

    PubMed Central

    Lavik, E; Kuehn, M H; Kwon, Y H

    2011-01-01

    Reduction of intraocular pressure (IOP) by pharmaceutical or surgical means has long been the standard treatment for glaucoma. A number of excellent drugs are available that are effective in reducing IOP. These drugs are typically applied as eye drops. However, patient adherence can be poor, thus reducing the clinical efficacy of the drugs. Several novel delivery systems designed to address the issue of adherence and to ensure consistent reduction of IOP are currently under development. These delivery systems include contact lenses-releasing glaucoma medications, injectables such as biodegradable micro- and nanoparticles, and surgically implanted systems. These new technologies are aimed at increasing clinical efficacy by offering multiple delivery options and are capable of managing IOP for several months. There is also a desire to have complementary neuroprotective approaches for those who continue to show progression, despite IOP reduction. Many potential neuroprotective agents are not suitable for traditional oral or drop formulations. Their potential is dependent on developing suitable delivery systems that can provide the drugs in a sustained, local manner to the retina and optic nerve. Drug delivery systems have the potential to improve patient adherence, reduce side effects, increase efficacy, and ultimately, preserve sight for glaucoma patients. In this review, we discuss benefits and limitations of the current systems of delivery and application, as well as those on the horizon. PMID:21475311

  3. Prehospital Nitroglycerin in Tachycardic Chest Pain Patients: A Risk for Hypotension or Not?

    PubMed

    Proulx, Marie-Hélène; de Montigny, Luc; Ross, Dave; Vacon, Charlene; Juste, Louis Enock; Segal, Eli

    2017-01-01

    The American Heart Association guidelines (AHA) guidelines list tachycardia as a contraindication for the administration of nitroglycerin (NTG), despite limited evidence of adverse events. We sought to determine whether NTG administered for chest pain was a predictor of hypotension (systolic blood pressure <90 mmHg) in patients with tachycardia, compared to patients without tachycardia (50≥ heart rate ≤100). We performed a retrospective cohort study using patient care reports completed by basic life support (BLS) providers in a large urban Canadian EMS system for the period 2010-2012. We used logistic regression to test the association between post-NTG hypotension and tachycardia, independent of pre-NTG blood pressure, age, sex, and comorbidities. Using identical models, we tested four secondary outcomes (drop in blood pressure, reduced consciousness, bradycardia, and cardiac arrest). The cohort included 10,308 patients who were administered NTG by BLS in the prehospital setting; 2,057 (20%) of patients were tachycardic before NTG administration. Hypotension occurred in 320 of all patients (3.1%): 239 without tachycardia (2.9%) and 81 with tachycardia (3.9%). Compared to non-tachycardic patients, tachycardic patients showed increased adjusted odds of hypotension (AOR: 1.60; 95% CI: 1.23-2.08) or of a drop in blood pressure of 30mm Hg or greater (AOR: 1.11; CI: 1.00-1.24). Tachycardia was associated with decreased odds of bradycardia (OR: 0.33; CI: 0.17-0.64). We did not find a significant association between tachycardia and either post-NTG reduced level of consciousness or cardiac arrest. We did find a strong, significant association between pre-NTG blood pressure and post-NTG hypotension (AOR for units of 10mmHg: 0.64; CI: 0.61-0.69). Hypotension following prehospital administration of NTG was infrequent in patients with chest pain. However, while the absolute risk of NTG-induced hypotension was low, patients with pre-NTG tachycardia had a significant increase in the relative risk of hypotension. In addition, hypotension occurred most frequently in patients presenting with a lower pre-NTG blood pressure, which may prove to be a more discriminating basis for future guidelines. EMS medical directors should review BLS chest pain protocols to weigh the benefits of NTG administration against its risks.

  4. Structural Affects on the Slamming Pressures of High-Speed Planing Craft

    NASA Astrophysics Data System (ADS)

    Ikeda, Christine; Taravella, Brandon; Judge, Carolyn

    2015-11-01

    High-speed planing craft are subjected to repeated slamming events in waves that can be very extreme depending on the wave topography, impact angle of the ship, forward speed of the ship, encounter angle, and height out of the water. The current work examines this fluid-structure interaction problem through the use of wedge drop experiments and a CFD code. In the first set of experiments, a rigid 20-degree deadrise angle wedge was dropped from a range of heights (0 <= H <= 0 . 6 m) and while pressures and accelerations of the slam even were measured. The second set of experiments involved a flexible-bottom 15-degree deadrise angle wedge that was dropped from from the same range of heights. In these second experiments, the pressures, accelerations, and strain field were measured. Both experiments are compared with a non-linear boundary value flat cylinder theory code in order to compare the pressure loading. The code assumes a rigid structure, therefore, the results between the code and the first experiment are in good agreement. The second experiment shows pressure magnitudes that are lower than the predictions due to the energy required to deform the structure. Funding from University of New Orleans Office of Research and Sponsored Programs and the Office of Naval Research.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burkholder, Michael B.; Litster, Shawn, E-mail: litster@andrew.cmu.edu

    In this study, we analyze the stability of two-phase flow regimes and their transitions using chaotic and fractal statistics, and we report new measurements of dynamic two-phase pressure drop hysteresis that is related to flow regime stability and channel water content. Two-phase flow dynamics are relevant to a variety of real-world systems, and quantifying transient two-phase flow phenomena is important for efficient design. We recorded two-phase (air and water) pressure drops and flow images in a microchannel under both steady and transient conditions. Using Lyapunov exponents and Hurst exponents to characterize the steady-state pressure fluctuations, we develop a new, measurablemore » regime identification criteria based on the dynamic stability of the two-phase pressure signal. We also applied a new experimental technique by continuously cycling the air flow rate to study dynamic hysteresis in two-phase pressure drops, which is separate from steady-state hysteresis and can be used to understand two-phase flow development time scales. Using recorded images of the two-phase flow, we show that the capacitive dynamic hysteresis is related to channel water content and flow regime stability. The mixed-wettability microchannel and in-channel water introduction used in this study simulate a polymer electrolyte fuel cell cathode air flow channel.« less

  6. Feasibility of granular bed filtration of an aerosol of ultrafine metallic particles including a pressure drop regeneration system.

    PubMed

    Bémer, D; Wingert, L; Morele, Y; Subra, I

    2015-09-01

    A process for filtering an aerosol of ultrafine metallic particles (UFP) has been designed and tested, based on the principle of a multistage granular bed. The filtration system comprised a succession of granular beds of varying thickness composed of glass beads of different diameters. This system allows the pressure drop to be regenerated during filtration ("on-line" mode) using a vibrating probe. Tests monitoring the pressure drop were conducted on a "10-L/min" low airflow rate device and on a "100-m(3)/hr" prototype. Granular bed unclogging is automated on the latter. The cyclic operation and filtration performances are similar to that of filter medium-based industrial dust collectors. Filtration of ultrafine metallic particles generated by different industrial processes such as arc welding, metal cutting, or spraying constitutes a difficult problem due to the high filter clogging properties of these particles and to the high temperatures generally encountered. Granular beds represent an advantageous means of filtering these aerosols with difficult properties.

  7. Micro-structured heat exchanger for cryogenic mixed refrigerant cycles

    NASA Astrophysics Data System (ADS)

    Gomse, D.; Reiner, A.; Rabsch, G.; Gietzelt, T.; Brandner, J. J.; Grohmann, S.

    2017-12-01

    Mixed refrigerant cycles (MRCs) offer a cost- and energy-efficient cooling method for the temperature range between 80 and 200 K. The performance of MRCs is strongly influenced by entropy production in the main heat exchanger. High efficiencies thus require small temperature gradients among the fluid streams, as well as limited pressure drop and axial conduction. As temperature gradients scale with heat flux, large heat transfer areas are necessary. This is best achieved with micro-structured heat exchangers, where high volumetric heat transfer areas can be realized. The reliable design of MRC heat exchangers is challenging, since two-phase heat transfer and pressure drop in both fluid streams have to be considered simultaneously. Furthermore, only few data on the convective boiling and condensation kinetics of zeotropic mixtures is available in literature. This paper presents a micro-structured heat exchanger designed with a newly developed numerical model, followed by experimental results on the single-phase pressure drop and their implications on the hydraulic diameter.

  8. The effect of nanocrystalline cellulose on flow properties of fiber crop aqueous suspension.

    PubMed

    Gharehkhani, Samira; Seyed Shirazi, Seyed Farid; Yarmand, Hooman; Montazer, Elham; Kazi, Salim Newaz; Ibrahim, Rushdan; Ashjaei, Mehdi; Zulkifli, Nurin Wahidah Binti Mohd; Rahmati, Sadegh

    2018-03-15

    Nanocrystalline cellulose (NCC) a nature-based material, has gained significant attentions for its unique properties. The present study aims to investigate the flow behavior of cellulosic suspension containing non-wood pulp fibers and NCC, by means of rheological and pressure drop measurements. The NCC sample was prepared by sulfuric acid hydrolysis from Acacia mangium fibers. The rheological properties of kenaf/NCC suspensions were studied using viscosity and yield stress measurements. The pressure drop properties of the suspension flow were studied with respect to variation in flow velocity (0.4 m/s-3.6 m/s) and the NCC concentration (70 mg/l and 150 mg/l). The pressure drop results showed that the pulp suspension containing 150 mg/l NCC had higher drag reduction than kenaf suspension alone. The present insights into the flow of pulp/NCC suspension provide a new data and promote the application of NCC in industries. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Design study of an advanced gas generator. [which can be ignited during start-up period of turbine engines

    NASA Technical Reports Server (NTRS)

    Kim, S.; Trinh, H. P.

    1993-01-01

    A gas generator which can be ignited reliably during the initial start-up period and offers fairly uniform gas temperature at the exit was studied numerically. Various sizes and shapes of the mixing enhancement devices and their positions were examined to evaluate the uniformity of the exit gas temperature and the change of internal pressure drop incurred by introducing the mixing enhancement devices. By introducing a turbulence ring and a splash plate with an appropriate size and position, it was possible to obtain fairly uniform gas temperature distributions and a maximum gas temperature that is within the design limit temperature of 1600 R at the generator exit. However, with the geometry studied, the pressure drop across the generator was great, approximately 1150 psi, to satisfy the assigned design limit temperature. If the design limit temperature is increased to 1650 R, the pressure drop across the generator could be lowered by as much as 350 psi.

  10. Optimization of the Heat Exchangers of a Thermoelectric Generation System

    NASA Astrophysics Data System (ADS)

    Martínez, A.; Vián, J. G.; Astrain, D.; Rodríguez, A.; Berrio, I.

    2010-09-01

    The thermal resistances of the heat exchangers have a strong influence on the electric power produced by a thermoelectric generator. In this work, the heat exchangers of a thermoelectric generator have been optimized in order to maximize the electric power generated. This thermoelectric generator harnesses heat from the exhaust gas of a domestic gas boiler. Statistical design of experiments was used to assess the influence of five factors on both the electric power generated and the pressure drop in the chimney: height of the generator, number of modules per meter of generator height, length of the fins of the hot-side heat exchanger (HSHE), length of the gap between fins of the HSHE, and base thickness of the HSHE. The electric power has been calculated using a computational model, whereas Fluent computational fluid dynamics (CFD) has been used to obtain the thermal resistances of the heat exchangers and the pressure drop. Finally, the thermoelectric generator has been optimized, taking into account the restrictions on the pressure drop.

  11. Quantifying the influence of flow asymmetries on glottal sound sources in speech

    NASA Astrophysics Data System (ADS)

    Erath, Byron; Plesniak, Michael

    2008-11-01

    Human speech is made possible by the air flow interaction with the vocal folds. During phonation, asymmetries in the glottal flow field may arise from flow phenomena (e.g. the Coanda effect) as well as from pathological vocal fold motion (e.g. unilateral paralysis). In this study, the effects of flow asymmetries on glottal sound sources were investigated. Dynamically-programmable 7.5 times life-size vocal fold models with 2 degrees-of-freedom (linear and rotational) were constructed to provide a first-order approximation of vocal fold motion. Important parameters (Reynolds, Strouhal, and Euler numbers) were scaled to physiological values. Normal and abnormal vocal fold motions were synthesized, and the velocity field and instantaneous transglottal pressure drop were measured. Variability in the glottal jet trajectory necessitated sorting of the data according to the resulting flow configuration. The dipole sound source is related to the transglottal pressure drop via acoustic analogies. Variations in the transglottal pressure drop (and subsequently the dipole sound source) arising from flow asymmetries are discussed.

  12. Pressure drop and He II flow through fine mesh screens

    NASA Astrophysics Data System (ADS)

    Maddocks, J. R.; van Sciver, S. W.

    1989-05-01

    Fluid acquisition systems for He II transfer devices will utilize gallery arms to ensure that the fluid encounters the pump inlet. In near term experiments such as Superfluid Helium on Orbit Transfer (SHOOT), the preferred configuration consists of several rectangular channels which have one side made from a Dutch weave stainless steel screen having 325 x 2300 wires per inch. The effective pore diameter for this screen is about 5 microns. The present paper reports on measurements of pressure drop across a screen when it is subjected to a flow of liquid helium. The experiment measures the time rate of change of the level in two different helium reservoirs connected by a screen-blocked channel. Results with normal helium are compared with predictions based on the Armour-Cannon (1968) equations. The He II data show considerable deviation from the classical result. A discussion of the He II pressure drop results in terms of two fluid hydrodynamics is included.

  13. Condensation heat transfer and pressure drop of R-410A in flat aluminum multi-port tubes

    NASA Astrophysics Data System (ADS)

    Kim, Nae-Hyun

    2018-02-01

    Brazed heat exchangers with aluminum flat multi-port tubes are being used as condensers of residential air-conditioners. In this study, R-410A condensation tests were conducted in four multi-port tubes having a range of hydraulic diameter (0.78 ≤ Dh ≤ 0.95 mm). The test range covered the mass flux from 100 to 400 kg/m2 s and the heat flux at 3 kW/m2, which are typical operating conditions of residential air conditioners. Results showed that both the heat transfer coefficient and the pressure drop increased as the hydraulic diameter decreased. The effect of hydraulic diameter on condensation heat transfer was much larger than the predictions of existing correlations for the range of investigation. Comparison of the data with the correlations showed that some macro-channel tube correlations and mini-channel tube correlations reasonably predicted the heat transfer coefficient. However, macro-channel correlations highly overpredicted the pressure drop data.

  14. Bubble and Slug Flow at Microgravity Conditions: State of Knowledge and Open Questions

    NASA Technical Reports Server (NTRS)

    Colin, C.; Fabre, J.; McQuillen, J.

    1996-01-01

    Based on the experiments carried out over the past decade at microgravity conditions, an overview of our current knowledge of bubbly and slug flows is presented. The transition from bubble to slug flow, the void fraction and the pressure drop are discussed from the data collected in the literature. The transition from bubble to slug flow may be predicted by introducing a critical void fraction that depends on the fluid properties and the pipe diameter; however, the role of coalescence which controls this transition is not clearly understood. The void fraction may be accurately calculated using a drift-flux model. It is shown from local measurements that the drift of the gas with respect to the mixture is due to non-uniform radial distribution of void fraction. The pressure drop happens to be controlled by the liquid flow for bubbly flow whereas for slug flow the experimental results show that pressure drops is larger than expected. From this study, the guidelines for future research in microgravity are given.

  15. Design and performance prediction of solar adsorption cooling for mobile vaccine refrigerator

    NASA Astrophysics Data System (ADS)

    Djubaedah, Euis; Taufan, Andi; Ratnasari, Nadhira; Fahrizal, Adjie; Hamidi, Qayyum; Nasruddin

    2017-03-01

    Adsorption cooling is a process that uses a drop-in pressure caused by the adsorption of adsorbate by adsorbent. Adsorption process creates a pressure drop which can bring down the temperature to the intended condition. This approach can be used in vaccine transportation as the vaccines need to be stored at low temperatures (2°C to 8°C for preserving vaccines). The pressure decrease can be obtained by adsorption water in zeolites and can also produce the temperature drop in the main chamber. The adsorption process of water will decrease until reaching saturation condition. Heat is needed to keep the system continuous as it starts a desorption process. From the simulation using MATLAB, it is found that the mobile vaccine refrigerator can reach the temperature of 2°C in 180 seconds with the amount of cooling power generated is up to 1530 W. The insulation can hold the allowable temperature range inside the vaccine cabin for 15.6795 hours.

  16. Pressure drop and He II flow through fine mesh screens

    NASA Technical Reports Server (NTRS)

    Maddocks, J. R.; Van Sciver, S. W.

    1989-01-01

    Fluid acquisition systems for He II transfer devices will utilize gallery arms to ensure that the fluid encounters the pump inlet. In near term experiments such as Superfluid Helium on Orbit Transfer (SHOOT), the preferred configuration consists of several rectangular channels which have one side made from a Dutch weave stainless steel screen having 325 x 2300 wires per inch. The effective pore diameter for this screen is about 5 microns. The present paper reports on measurements of pressure drop across a screen when it is subjected to a flow of liquid helium. The experiment measures the time rate of change of the level in two different helium reservoirs connected by a screen-blocked channel. Results with normal helium are compared with predictions based on the Armour-Cannon (1968) equations. The He II data show considerable deviation from the classical result. A discussion of the He II pressure drop results in terms of two fluid hydrodynamics is included.

  17. Air Flow and Pressure Drop Measurements Across Porous Oxides

    NASA Technical Reports Server (NTRS)

    Fox, Dennis S.; Cuy, Michael D.; Werner, Roger A.

    2008-01-01

    This report summarizes the results of air flow tests across eight porous, open cell ceramic oxide samples. During ceramic specimen processing, the porosity was formed using the sacrificial template technique, with two different sizes of polystyrene beads used for the template. The samples were initially supplied with thicknesses ranging from 0.14 to 0.20 in. (0.35 to 0.50 cm) and nonuniform backside morphology (some areas dense, some porous). Samples were therefore ground to a thickness of 0.12 to 0.14 in. (0.30 to 0.35 cm) using dry 120 grit SiC paper. Pressure drop versus air flow is reported. Comparisons of samples with thickness variations are made, as are pressure drop estimates. As the density of the ceramic material increases the maximum corrected flow decreases rapidly. Future sample sets should be supplied with samples of similar thickness and having uniform surface morphology. This would allow a more consistent determination of air flow versus processing parameters and the resulting porosity size and distribution.

  18. Effects of geometric modulation and surface potential heterogeneity on electrokinetic flow and solute transport in a microchannel

    NASA Astrophysics Data System (ADS)

    Bera, Subrata; Bhattacharyya, S.

    2017-12-01

    A numerical investigation is performed on the electroosmotic flow (EOF) in a surface-modulated microchannel to induce enhanced solute mixing. The channel wall is modulated by placing surface-mounted obstacles of trigonometric shape along which the surface potential is considered to be different from the surface potential of the homogeneous part of the wall. The characteristics of the electrokinetic flow are governed by the Laplace equation for the distribution of external electric potential; the Poisson equation for the distribution of induced electric potential; the Nernst-Planck equations for the distribution of ions; and the Navier-Stokes equations for fluid flow simultaneously. These nonlinear coupled set of governing equations are solved numerically by a control volume method over the staggered system. The influence of the geometric modulation of the surface, surface potential heterogeneity and the bulk ionic concentration on the EOF is analyzed. Vortical flow develops near a surface modulation, and it becomes stronger when the surface potential of the modulated region is in opposite sign to the surface potential of the homogeneous part of the channel walls. Vortical flow also depends on the Debye length when the Debye length is in the order of the channel height. Pressure drop along the channel length is higher for a ribbed wall channel compared to the grooved wall case. The pressure drop decreases with the increase in the amplitude for a grooved channel, but increases for a ribbed channel. The mixing index is quantified through the standard deviation of the solute distribution. Our results show that mixing index is higher for the ribbed channel compared to the grooved channel with heterogeneous surface potential. The increase in potential heterogeneity in the modulated region also increases the mixing index in both grooved and ribbed channels. However, the mixing performance, which is the ratio of the mixing index to pressure drop, reduces with the rise in the surface potential heterogeneity.

  19. Effects of geometric modulation and surface potential heterogeneity on electrokinetic flow and solute transport in a microchannel

    NASA Astrophysics Data System (ADS)

    Bera, Subrata; Bhattacharyya, S.

    2018-04-01

    A numerical investigation is performed on the electroosmotic flow (EOF) in a surface-modulated microchannel to induce enhanced solute mixing. The channel wall is modulated by placing surface-mounted obstacles of trigonometric shape along which the surface potential is considered to be different from the surface potential of the homogeneous part of the wall. The characteristics of the electrokinetic flow are governed by the Laplace equation for the distribution of external electric potential; the Poisson equation for the distribution of induced electric potential; the Nernst-Planck equations for the distribution of ions; and the Navier-Stokes equations for fluid flow simultaneously. These nonlinear coupled set of governing equations are solved numerically by a control volume method over the staggered system. The influence of the geometric modulation of the surface, surface potential heterogeneity and the bulk ionic concentration on the EOF is analyzed. Vortical flow develops near a surface modulation, and it becomes stronger when the surface potential of the modulated region is in opposite sign to the surface potential of the homogeneous part of the channel walls. Vortical flow also depends on the Debye length when the Debye length is in the order of the channel height. Pressure drop along the channel length is higher for a ribbed wall channel compared to the grooved wall case. The pressure drop decreases with the increase in the amplitude for a grooved channel, but increases for a ribbed channel. The mixing index is quantified through the standard deviation of the solute distribution. Our results show that mixing index is higher for the ribbed channel compared to the grooved channel with heterogeneous surface potential. The increase in potential heterogeneity in the modulated region also increases the mixing index in both grooved and ribbed channels. However, the mixing performance, which is the ratio of the mixing index to pressure drop, reduces with the rise in the surface potential heterogeneity.

  20. Hybrid Filter Membrane

    NASA Technical Reports Server (NTRS)

    Laicer, Castro; Rasimick, Brian; Green, Zachary

    2012-01-01

    Cabin environmental control is an important issue for a successful Moon mission. Due to the unique environment of the Moon, lunar dust control is one of the main problems that significantly diminishes the air quality inside spacecraft cabins. Therefore, this innovation was motivated by NASA s need to minimize the negative health impact that air-suspended lunar dust particles have on astronauts in spacecraft cabins. It is based on fabrication of a hybrid filter comprising nanofiber nonwoven layers coated on porous polymer membranes with uniform cylindrical pores. This design results in a high-efficiency gas particulate filter with low pressure drop and the ability to be easily regenerated to restore filtration performance. A hybrid filter was developed consisting of a porous membrane with uniform, micron-sized, cylindrical pore channels coated with a thin nanofiber layer. Compared to conventional filter media such as a high-efficiency particulate air (HEPA) filter, this filter is designed to provide high particle efficiency, low pressure drop, and the ability to be regenerated. These membranes have well-defined micron-sized pores and can be used independently as air filters with discreet particle size cut-off, or coated with nanofiber layers for filtration of ultrafine nanoscale particles. The filter consists of a thin design intended to facilitate filter regeneration by localized air pulsing. The two main features of this invention are the concept of combining a micro-engineered straight-pore membrane with nanofibers. The micro-engineered straight pore membrane can be prepared with extremely high precision. Because the resulting membrane pores are straight and not tortuous like those found in conventional filters, the pressure drop across the filter is significantly reduced. The nanofiber layer is applied as a very thin coating to enhance filtration efficiency for fine nanoscale particles. Additionally, the thin nanofiber coating is designed to promote capture of dust particles on the filter surface and to facilitate dust removal with pulse or back airflow.

  1. Predicting the impact of feed spacer modification on biofouling by hydraulic characterization and biofouling studies in membrane fouling simulators.

    PubMed

    Siddiqui, A; Lehmann, S; Bucs, Sz S; Fresquet, M; Fel, L; Prest, E I E C; Ogier, J; Schellenberg, C; van Loosdrecht, M C M; Kruithof, J C; Vrouwenvelder, J S

    2017-03-01

    Feed spacers are an essential part of spiral-wound reverse osmosis (RO) and nanofiltration (NF) membrane modules. Geometric modification of feed spacers is a potential option to reduce the impact of biofouling on the performance of membrane systems. The objective of this study was to evaluate the biofouling potential of two commercially available reference feed spacers and four modified feed spacers. The spacers were compared on hydraulic characterization and in biofouling studies with membrane fouling simulators (MFSs). The virgin feed spacer was characterized hydraulically by their resistance, measured in terms of feed channel pressure drop, performed by operating MFSs at varying feed water flow rates. Short-term (9 days) biofouling studies were carried out with nutrient dosage to the MFS feed water to accelerate the biofouling rate. Long-term (96 days) biofouling studies were done without nutrient dosage to the MFS feed water. Feed channel pressure drop was monitored and accumulation of active biomass was quantified by adenosine tri phosphate (ATP) determination. The six feed spacers were ranked on pressure drop (hydraulic characterization) and on biofouling impact (biofouling studies). Significantly different trends in hydraulic resistance and biofouling impact for the six feed spacers were observed. The same ranking for biofouling impact on the feed spacers was found for the (i) short-term biofouling study with nutrient dosage and the (ii) long-term biofouling study without nutrient dosage. The ranking for hydraulic resistance for six virgin feed spacers differed significantly from the ranking of the biofouling impact, indicating that hydraulic resistance of clean feed spacers does not predict the hydraulic resistance of biofouled feed spacers. Better geometric design of feed spacers can be a suitable approach to minimize impact of biofouling in spiral wound membrane systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Methane biofiltration in the presence of ethanol vapor under steady and transient state conditions: an experimental study.

    PubMed

    Ferdowsi, Milad; Ramirez, Antonio Avalos; Jones, Joseph Peter; Heitz, Michèle

    2017-09-01

    Methane (CH 4 ) removal in the presence of ethanol vapors was performed by a stone-based bed and a hybrid packing biofilter in parallel. In the absence of ethanol, a methane removal efficiency of 55 ± 1% was obtained for both biofilters under similar CH 4 inlet load (IL) of 13 ± 0.5 g CH4  m -3  h -1 and an empty bed residence time (EBRT) of 6 min. The results proved the key role of the bottom section in both biofilters for simultaneous removal of CH 4 and ethanol. Ethanol vapor was completely eliminated in the bottom sections for an ethanol IL variation between 1 and 11 g ethanol  m -3  h -1 . Ethanol absorption and accumulation in the biofilm phase as well as ethanol conversion to CO 2 contributed to ethanol removal efficiency of 100%. In the presence of ethanol vapor, CO 2 productions in the bottom section increased almost fourfold in both biofilters. The ethanol concentration in the leachate of the biofilter exceeding 2200 g ethanol  m -3 leachate in both biofilters demonstrated the excess accumulation of ethanol in the biofilm phase. The biofilters responded quickly to an ethanol shock load followed by a starvation with 20% decrease of their performance. The return to normal operations in both biofilters after the transient conditions took less than 5 days. Unlike the hybrid packing biofilter, excess pressure drop (up to 1.9 cmH 2 O m -1 ) was an important concern for the stone bed biofilter. The biomass accumulation in the bottom section of the stone bed biofilter contributed to 80% of the total pressure drop. However, the 14-day starvation reduced the pressure drop to 0.25 cmH 2 O m -1 .

  3. Short Duration Reduced Gravity Drop Tower Design and Development

    NASA Astrophysics Data System (ADS)

    Osborne, B.; Welch, C.

    The industrial and commercial development of space-related activities is intimately linked to the ability to conduct reduced gravity research. Reduced gravity experimentation is important to many diverse fields of research in the understanding of fundamental and applied aspects of physical phenomena. Both terrestrial and extra-terrestrial experimental facilities are currently available to allow researchers access to reduced gravity environments. This paper discusses two drop tower designs, a 2.0 second facility built in Australia and a proposed 2.2 second facility in the United Kingdom. Both drop towers utilise a drag shield for isolating the falling experiment from the drag forces of the air during the test. The design and development of The University of Queensland's (Australia) 2.0 second drop tower, including its specifications and operational procedures is discussed first. Sensitive aspects of the design process are examined. Future plans are then presented for a new short duration (2.2 sec) ground-based reduced gravity drop tower. The new drop tower has been designed for Kingston University (United Kingdom) to support teaching and research in the field of reduced gravity physics. The design has been informed by the previous UQ drop tower design process and utilises a catapult mechanism to increase test time and also incorporates features to allow participants for a variety of backgrounds (from high school students through to university researchers) to learn and experiment in reduced gravity. Operational performance expectations for this new facility are also discussed.

  4. Validation of an All-Pressure Fluid Drop Model: Heptane Fluid Drops in Nitrogen

    NASA Technical Reports Server (NTRS)

    Harstad, K.; Bellan, J.; Bulzan, Daniel L. (Technical Monitor)

    2000-01-01

    Despite the fact that supercritical fluids occur both in nature and in industrial situations, the fundamentals of their behavior is poorly understood because supercritical fluids combine the characteristics of both liquids and gases, and therefore their behavior is not intuitive. There are several specific reasons for the lack of understanding: First, data from (mostly optical) measurements can be very misleading because regions of high density thus observed are frequently identified with liquids. A common misconception is that if in an experiment one can optically identify "drops" and "ligaments", the observed fluid must be in a liquid state. This inference is incorrect because in fact optical measurements detect any large change (i.e. gradients) in density. Thus, the density ratio may be well below Omicron(10(exp 3)) that characterizes its liquid/gas value, but the measurement will still identify a change in the index of refraction providing that the change is sudden (steep gradients). As shown by simulations of supercritical fluids, under certain conditions the density gradients may remain large during the supercritical binary fluids mixing, thus making them optically identifiable. Therefore, there is no inconsistency between the optical observation of high density regions and the fluids being in a supercritical state. A second misconception is that because a fluid has a liquid-like density, it is appropriate to model it as a liquid. However, such fluids may have liquid-like densities while their transport properties differ from those of a liquid. Considering that the critical pressure of most fuel hydrocarbons used in Diesel and gas turbine engines is in the range of 1.5 - 3 MPa, and the fact that the maximum pressure attained in these engines is about 6 Mps, it is clear that the fuel in the combustion chamber will experience both subcritical and supercritical conditions. Studies of drop behavior over a wide range of pressures were performed in the past, however none of these studies identified the crucial differences between the subcritical and supercritical behavior. In fact, in two of these studies, it was found that the subcritical and supercritical behavior is similar as the drop diameter decreased according to the classical d(exp 2)-law over a wide range of pressures and drop diameters. The present study is devoted to the exploration of differences in fluid-behavior characteristics under subcritical and supercritical conditions in the particular case of heptane fluid drops in nitrogen; these substances were selected because of the availability of experimental observations for model validation.

  5. Forward osmosis membrane modular configurations for osmotic dilution of seawater by forward osmosis and reverse osmosis hybrid system.

    PubMed

    Kim, Jung Eun; Phuntsho, Sherub; Ali, Syed Muztuza; Choi, Joon Young; Shon, Ho Kyong

    2018-01-01

    This study evaluates various options for full-scale modular configuration of forward osmosis (FO) process for osmotic dilution of seawater using wastewater for simultaneous desalination and water reuse through FO-reverse osmosis (RO) hybrid system. Empirical relationship obtained from one FO membrane element operation was used to simulate the operational performances of different FO module configurations. The main limiting criteria for module operation is to always maintain the feed pressure higher than the draw pressure throughout the housing module for safe operation without affecting membrane integrity. Experimental studies under the conditions tested in this study show that a single membrane housing cannot accommodate more than four elements as the draw pressure exceeds the feed pressure. This then indicates that a single stage housing with eight elements is not likely to be practical for safe FO operation. Hence, six different FO modular configurations were proposed and simulated. A two-stage FO configuration with multiple housings (in parallel) in the second stage using same or larger spacer thickness reduces draw pressure build-up as the draw flow rates are reduced to half in the second stage thereby allowing more than four elements in the second stage housing. The loss of feed pressure (pressure drop) and osmotic driving force in the second stage are compensated by operating under the pressure assisted osmosis (PAO) mode, which helps enhance permeate flux and maintains positive pressure differences between the feed and draw chamber. The PAO energy penalty is compensated by enhanced permeate throughput, reduced membrane area, and plant footprint. The contribution of FO/PAO to total energy consumption was not significant compared to post RO desalination (90%) indicating that the proposed two-stage FO modular configuration is one way of making the FO full-scale operation practical for FO-RO hybrid system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Active cooling-based surface confinement system for thermal soil treatment

    DOEpatents

    Aines, R.D.; Newmark, R.L.

    1997-10-28

    A thermal barrier is disclosed for surface confinement with active cooling to control subsurface pressures during thermal remediation of shallow (5-20 feet) underground contaminants. If steam injection is used for underground heating, the actively cooled thermal barrier allows the steam to be injected into soil at pressures much higher (20-60 psi) than the confining strength of the soil, while preventing steam breakthrough. The rising steam is condensed to liquid water at the thermal barrier-ground surface interface. The rapid temperature drop forced by the thermal barrier drops the subsurface pressure to below atmospheric pressure. The steam and contaminant vapors are contained by the thermal blanket, which can be made of a variety of materials such as steel plates, concrete slabs, membranes, fabric bags, or rubber bladders. 1 fig.

  7. Active cooling-based surface confinement system for thermal soil treatment

    DOEpatents

    Aines, Roger D.; Newmark, Robin L.

    1997-01-01

    A thermal barrier is disclosed for surface confinement with active cooling to control subsurface pressures during thermal remediation of shallow (5-20 feet) underground contaminants. If steam injection is used for underground heating, the actively cooled thermal barrier allows the steam to be injected into soil at pressures much higher (20-60 psi) than the confining strength of the soil, while preventing steam breakthrough. The rising steam is condensed to liquid water at the thermal barrier-ground surface interface. The rapid temperature drop forced by the thermal barrier drops the subsurface pressure to below atmospheric pressure. The steam and contaminant vapors are contained by the thermal blanket, which can be made of a variety of materials such as steel plates, concrete slabs, membranes, fabric bags, or rubber bladders.

  8. Contact Line Instability Caused by Air Rim Formation under Nonsplashing Droplets.

    PubMed

    Pack, Min; Kaneelil, Paul; Kim, Hyoungsoo; Sun, Ying

    2018-05-01

    Drop impact is fundamental to various natural and industrial processes such as rain-induced soil erosion and spray-coating technologies. The recent discovery of the role of air entrainment between the droplet and the impacting surface has produced numerous works, uncovering the unique physics that correlates the air film dynamics with the drop impact outcomes. In this study, we focus on the post-failure air entrainment dynamics for We numbers well below the splash threshold under different ambient pressures and elucidate the interfacial instabilities formed by air entrainment at the wetting front of impacting droplets on perfectly smooth, viscous films of constant thickness. A high-speed total internal reflection microscopy technique accounting for the Fresnel reflection at the drop-air interface allows for in situ measurements of an entrained air rim at the wetting front. The presence of an air rim is found to be a prerequisite to the interfacial instability which is formed when the capillary pressure in the vicinity of the contact line can no longer balance the increasing gas pressure near the wetting front. A critical capillary number for the air rim formation is experimentally identified above which the wetting front becomes unstable where this critical capillary number inversely scales with the ambient pressure. The contact line instabilities at relatively low We numbers ( We ∼ O(10)) observed in this study provide insight into the conventional understanding of hydrodynamic instabilities under drop impact which usually require We ≫ 10.

  9. Experimental analysis for heat transfer of nanofluid with wire coil turbulators in a concentric tube heat exchanger

    NASA Astrophysics Data System (ADS)

    Akyürek, Eda Feyza; Geliş, Kadir; Şahin, Bayram; Manay, Eyüphan

    2018-06-01

    Nanofluids are a novel class of heat transfer suspensions of metallic or nonmetallic nanopowders with a size of less than 100 nm in base fluids and they can increase heat transfer potential of the base fluids in various applications. In the last decade, nanofluids have become an intensive research topic because of their improved thermal properties and possible heat transfer applications. For comparison, an experiment using water as the working fluid in the heat exchanger without wire coils was also performed. Turbulent forced convection heat transfer and pressure drop characteristics of Al2O3-water nanofluids in a concentric tube heat exchanger with and without wire coil turbulators were experimentally investigated in this research. Experiments effected particle volume concentrations of 0.4-0.8 to 1.2-1.6 vol% in the Reynolds number range from 4000 to 20,000. Two turbulators with the pitches of 25 mm and 39 mm were used. The average Nusselt number increased with increasing the Reynolds number and particle concentrations. Moreover, the pressure drop of the Al2O3-water nanofluid showed nearly equal to that of pure water at the same Reynolds number range. As a result, nanofluids with lower particle concentrations did not show an important influence on pressure drop change. Nonetheless, when the wire coils used in the heat exchanger, it increased pressure drop as well as the heat transfer coefficient.

  10. Strategic obstacle placement reduces drop breakup probability in concentrated emulsion flowing into a constriction

    NASA Astrophysics Data System (ADS)

    Khor, Jian Wei; Hua, Yu; Bick, Alison; Tang, Sindy

    2017-11-01

    In this study, we investigate the effect of an obstacle on the breakup probability of droplets within a concentrated emulsion flowing into a constriction. We introduce a concentrated emulsion as a 2D monolayer through a tapered channel into a narrow constriction. This geometry is commonly used for the serial interrogation of droplet content in droplet microfluidics applications. We found that certain drop-drop interactions near the constriction entrance lead to the breakup of these drops at a high flow rates. Such breakup sets the upper limit for the droplet interrogation throughput. Incidentally, previous findings have shown that strategic placement of a circular post near a narrow exit can reduce the conflict from the interactions among living organisms (humans, ants, and sheep) or a cluster of particles when entering a narrow exit. Inspired by these results, we modify the tapered channel by placing a circular post in a strategic location near the constriction entrance in order to reduce catastrophic drop-drop interactions and to avoid breakup. Preliminary work shows that the circular posts can reduce the breakup fraction of drops by up to 17%. The optimization of the location and size of the obstacle is expected to further reduce the breakup fraction.

  11. Coalescence of viscous drops translating through a capillary tube

    NASA Astrophysics Data System (ADS)

    AlMatroushi, Eisa; Borhan, Ali

    2014-03-01

    An experimental study of the interaction and coalescence of viscous drops moving through a cylindrical capillary tube under low Reynolds number conditions is presented. The combined pressure- and buoyancy-driven motion of drops in a Newtonian continuous phase is examined. The interaction between two drops is quantified using image analysis, and measurements of the coalescence time are reported for various drop size ratios, Bond numbers, and viscosity ratios. The time scale for coalescence in the non-axisymmetric configuration is found to be substantially larger than that for coalescence in the axisymmetric configuration. Measurements of the radius of the liquid film formed between the two drops at the instant of apparent contact are used in conjunction with a planar film drainage model to predict the dependence of the coalescence time on drop size ratio for coalescence of low viscosity-ratio drops in the axisymmetric configuration.

  12. Continuous microcellular foaming of polylactic acid/natural fiber composites

    NASA Astrophysics Data System (ADS)

    Diaz-Acosta, Carlos A.

    Poly(lactic acid) (PLA), a biodegradable thermoplastic derived from renewable resources, stands out as a substitute to petroleum-based plastics. In spite of its excellent properties, commercial applications are limited because PLA is more expensive and more brittle than traditional petroleum-based resins. PLA can be blended with cellulosic fibers to reduce material cost. However, the lowered cost comes at the expense of flexibility and impact strength, which can be enhanced through the production of microcellular structures in the composite. Microcellular foaming uses inert gases (e.g., carbon dioxide) as physical blowing agents to make cellular structures with bubble sizes of less than 10 microm and cell-population densities (number of bubbles per unit volume) greater than 109 cells/cm³. These unique characteristics result in a significant increase in toughness and elongation at break (ductility) compared with unfoamed parts because the presence of small bubbles can blunt the crack-tips increasing the energy needed to propagate the crack. Microcellular foams have been produced through a two step batch process. First, large amounts of gas are dissolved in the solid plastic under high pressure (sorption process) to form a single-phase solution. Second, a thermodynamic instability (sudden drop in solubility) triggers cell nucleation and growth as the gas diffuses out of the plastic. Batch production of microcellular PLA has addressed some of the drawbacks of PLA. Unfortunately, the batch foaming process is not likely to be implemented in the industrial production of foams because it is not cost-effective. This study investigated the continuous microcellular foaming process of PLA and PLA/wood-fiber composites. The effects of the processing temperature and material compositions on the melt viscosity, pressure drop rate, and cell-population density were examined in order to understand the nucleation mechanisms in neat and filled PLA foams. The results indicated that the processing temperature had a strong effect of the rheology of the melt and cell morphology. Processing at a lower temperature significantly increased the cell nucleation rate of neat PLA (amorphous and semi-crystalline) because of the fact that a high melt viscosity induced a high pressure drop rate in the polymer/gas solution. The presence of nanoclay did not affect the homogeneous nucleation but increased the heterogeneous nucleation, allowing both nucleation mechanisms to occur during the foaming process. The effect of wood-flour (0-30 wt.%) and rheology modifier contents on the melt viscosity and cell morphology of microcellular foamed composites was investigated. The viscosity of the melt increased with wood-flour content and decreased with rheology modifier content, affecting the processing conditions (i.e., pressure drop and pressure drop rate) and foamability of the composites. Matching the viscosity of the composites with that of neat PLA resulted in the best cell morphologies. Physico-mechanical characterization of microcellular foamed PLA as a function of cell morphology was performed to establish process-morphology-property relationships. The processing variables, i.e., amount of gas injected, flow rate, and processing temperature affected the development of the cellular structure and mechanical properties of the foams.

  13. Generation and characterization of surface layers on acoustically levitated drops.

    PubMed

    Tuckermann, Rudolf; Bauerecker, Sigurd; Cammenga, Heiko K

    2007-06-15

    Surface layers of natural and technical amphiphiles, e.g., octadecanol, stearic acid and related compounds as well as perfluorinated fatty alcohols (PFA), have been investigated on the surface of acoustically levitated drops. In contrast to Langmuir troughs, traditionally used in the research of surface layers at the air-water interface, acoustic levitation offers the advantages of a minimized and contact-less technique. Although the film pressure cannot be directly adjusted on acoustically levitated drops, it runs through a wide pressure range due to the shrinking surface of an evaporating drop. During this process, different states of the generated surface layer have been identified, in particular the phase transition from the gaseous or liquid-expanded to the liquid-condensed state of surface layers of octadecanol and other related amphiphiles. Characteristic parameters, such as the relative permeation resistance and the area per molecule in a condensed surface layer, have been quantified and were found comparable to results obtained from surface layers generated on Langmuir troughs.

  14. Protein vs electrolytes and all of the Starling forces.

    PubMed

    Peters, R M; Hargens, A R

    1981-10-01

    Hemodilution-induced reductions of the intravascular protein concentration in patients and experimental animals with intact capillaries do not lead to pulmonary edema, despite significant increases in the amount of extravascular water in the systemic interstitial space. The protective factors are a drop in the extravascular concentration of protein, a rise in interstitial tissue pressure, and an increase in lymph flow. If the capillary endothelium is damaged, protein leaks into the extravascular space, and protein infusion has a diminished effect on fluid exchange across the capillary. Whether capillaries are intact or injured, prevention of increases in capillary hydrostatic pressure is the most important factor in preventing pulmonary edema. Administration of hypertonic fluids may provide a useful method of limiting total fluid infusion and reducing cell swelling after blood loss.

  15. Structure and characteristics of heterogeneous detonation

    NASA Astrophysics Data System (ADS)

    Nicholls, J. A.; Sichel, M.; Kauffman, C. W.

    1983-09-01

    The emphasis of this research program centered around the structure of heterogeneous detonation waves, inasmuch as this had been found to be very important to the detonation characteristics of heterogeneous mixtures. On the experimental side, a vertical detonation tube was used wherein liquid fuel drops, all of one size, were generated at the top of the tube and allowed to fall vertically into the desired gaseous mixture. A strong blast wave was transmitted into the mixture through use of an auxiliary shock tube. The propagation of the resultant wave was monitored by pressure switches, pressure transducers, and photography. The low vapor pressure liquid fuel, decane (400 micrometer drop size) was used for most of the experiments. Attention was given to wave structure, wave velocity, and initiation energy. Three atmospheres (100% O2; 40% O2/60% N2; and air) and a number of equivalence ratios were investigated. Holographic pictures and streak photography were employed to study the drop shattering process and the structure of the front. Other experiments investigated the addition of the sensitizer, normal propyl nitrate (NPN), to the decane. The important aspect of vapor pressure was studied by heating the entire tube to various elevated temperatures and then noting the effect on detonability.

  16. Preliminary endurance tests of water vaporizers for resistojet applications

    NASA Technical Reports Server (NTRS)

    Morren, W. Earl; Macrae, Gregory S.

    1993-01-01

    Three water vaporizers designed for resistojet applications were built and tested for periods up to 500 h and 250 thermal cycles. Two of the vaporizers were not sensitive to orientation with respect to gravity, an indication of likely compatibility with low-gravity environments. Some temperatures and pressures in the third were impacted by orientation, although operation was always stable. The pressure drop across the sand-filled version increased by 147 percent in 38 h and 19 thermal cycles. Bonding of the sand granules in the downstream end of the heat exchanger was the suspected cause of failure of this vaporizer. Pressure drops across the two sintered stainless steel-filled versions were more gradual. One, with a pore size of 60 microns, showed an 80 percent increase in 500 h and 250 thermal cycles and another, with a 10 microns poresize, showed a 29 percent increase in 350 h and 175 thermal cycles. Testing of the latter metal-filled vaporizer was ongoing as of this writing. Oxidation of the porous metal packing materials in these vaporizers, with subsequent deposition of oxide particles within the pores, was believed to have caused the observed increases in pressure drops.

  17. Role of vortices in growth of microbubbles at mitral mechanical heart valve closure.

    PubMed

    Rambod, Edmond; Beizai, Masoud; Sahn, David J; Gharib, Morteza

    2007-07-01

    This study is aimed at refining our understanding of the role of vortex formation at mitral mechanical heart valve (MHV) closure and its association with the high intensity transient signals (HITS) seen in echocardiographic studies with MHV recipients. Previously reported numerical results described a twofold process leading to formation of gas-filled microbubbles in-vitro: (1) nucleation and (2) growth of micron size bubbles. The growth itself consists of two processes: (a) diffusion and (b) sudden pressure drop due to valve closure. The role of diffusion has already been shown to govern the initial growth of nuclei. Pressure drop at mitral MHV closure may be attributed to other phenomena such as squeezed flow, water hammer and primarily, vortex cavitation. Mathematical analysis of vortex formation at mitral MHV closure revealed that a closing velocity of approximately 12 m/s can induce a strong regurgitant vortex which in return can instigate a local pressure drop of about 0.9 atm. A 2D experimental model of regurgitant flows was used to substantiate the impact of vortices. At simulated flow and pressure conditions, a regurgitant vortex was observed to drastically enlarge micron size hydrogen bubbles at its core.

  18. Phoenix Mars Lander: Vortices and Dust Devils at the Landing Site

    NASA Astrophysics Data System (ADS)

    Ellehoj, M. D.; Taylor, P. A.; Gunnlaugsson, H. P.; Gheynani, B. T.; Drube, L.; von Holstein-Rathlou, C.; Whiteway, J.; Lemmon, M.; Madsen, M. B.; Fisher, D.; Volpe, R.; Smith, P.

    2008-12-01

    Near continuous measurements of temperatures and pressure on the Phoenix Mars Lander are used to identify the passage of vertically oriented vortex structures at the Phoenix landing site (126W, 68N) on Mars. Observations: During the Phoenix mission the pressure and temperature sensors frequently detected features passing over or close to the lander. Short duration (order 20 s) pressure drops of order 1-2 Pa, and often less, were observed relatively frequently, accompanied by increases in temperature. Similar features were observed from the Pathfinder mission, although in that case the reported pressure drops were often larger [1]. Statistics of the pressure drop features over the first 102 sols of the Phoenix mission shows that most of the events occur between noon and 15:00 LMST - the hottest part of the sol. Dust Raising: By assuming the concept of a vortex in cyclostrophic flow as well as various assumptions about the atmosphere, we obtain a pressure drop of 1.9 - 3.2 Pa if dust is to be raised. We only saw few pressure drops this large in Sols 0-102. However, the features do not need to pass directly over the lander and the pressures could be lower than the minima we measure. Furthermore, the response time of the pressure sensor is of order 3-5 s so it may not capture peak pressure perturbations. Thus, more dust devils may have occurred near the Phoenix site, but most of our detected vortices would be ghostly, dustless devils. Modelling: Using a Large Eddy Simulation model, we can simulate highly convective boundary layers on Mars [2]. The typical vortex has a diameter of 150 m, and extends up to 1 km. Further calculations give an incidence of 11 vortex events per day that could be compatible with the LES simulations. Deeper investigation of this is planned -but the numbers are roughly compatible. If the significant pressure signatures are limited to the center of the vortex then 5 per sol might be appropriate. The Phoenix mission has collected a unique set of in situ meteorological data from the Arctic regions on Mars. Modelling work shows that vertically oriented vortices with low pressure, warm cores, can develop on internal boundaries, such as those associated with cellular convection, and this is supported by observations. Simple cyclostrophic estimates of vortex wind speeds suggest that dust devils will form, but that most vortices will not be capable of lifting dust from the surface. So, at least in the first 102 sols, most of the Phoenix devils are dustless. References [1] F Ferri, PH Smith, M Lemmon, NO Renno; (2003) Dust devils as observed by Mars Pathfinder. JGR,108, NO. E12, 5133, doi:10.1029/2000JE001421. [2] Gheynani, B.T. and Taylor, P.A., (2008), Large Eddy Simulation of vertical vortices in highly convective Martian boundary layer, Paper 10 B.6, 18th Symposium on Boundary Layers and Turbulence, June 2008, Stockholm, Sweden

  19. Effect of Running Parameters on Flow Boiling Instabilities in Microchannels.

    PubMed

    Zong, Lu-Xiang; Xu, Jin-Liang; Liu, Guo-Hua

    2015-04-01

    Flow boiling instability (FBI) in microchannels is undesirable because they can induce the mechanical vibrations and disturb the heat transfer characteristics. In this study, the synchronous optical visualization experimental system was set up. The pure acetone liquid was used as the working fluid, and the parallel triangle silicon microchannel heat sink was designed as the experimental section. With the heat flux ranging from 0-450 kW/m2 the microchannel demand average pressure drop-heater length (Δp(ave)L) curve for constant low mass flux, and the demand pressure drop-mass flux (Δp(ave)G) curve for constant length on main heater surface were obtained and studied. The effect of heat flux (q = 188.28, 256.00, and 299.87 kW/m2), length of main heater surface (L = 4.5, 6.25, and 8.00 mm), and mass flux (G = 188.97, 283.45, and 377.94 kg/m2s) on pressure drops (Ap) and temperatures at the central point of the main heater surface (Twc) were experimentally studied. The results showed that, heat flux, length of the main heater surface, and mass flux were identified as the important parameters to the boiling instability process. The boiling incipience (TBI) and critical heat flux (CHF) were early induced for the lower mass flux or the main heater surface with longer length. With heat flux increasing, the pressure drops were linearly and slightly decreased in the single liquid region but increased sharply in the two phase flow region, in which the flow boiling instabilities with apparent amplitude and long period were more easily triggered at high heat flux. Moreover, the system pressure was increased with the increase of the heat flux.

  20. Numerical and experimental analysis of the transitional flow across a real stenosis.

    PubMed

    Agujetas, R; Ferrera, C; Marcos, A C; Alejo, J P; Montanero, J M

    2017-08-01

    In this paper, we present a numerical study of the pulsatile transitional flow crossing a severe real stenosis located right in front of the bifurcation between the right subclavian and right common carotid arteries. The simulation allows one to determine relevant features of this subject-specific flow, such as the pressure waves in the right subclavian and right common carotid arteries. We explain the subclavian steal syndrome suffered by the patient in terms of the drastic pressure drop in the right subclavian artery. This pressure drop is caused by both the diverging part of the analyzed stenosis and the reverse flow in the bifurcation induced by another stenosis in the right internal carotid artery.

  1. Effects of sudden air pressure changes on hospital admissions for cardiovascular diseases in Prague

    NASA Astrophysics Data System (ADS)

    Kysely, Jan; Plavcova, Eva

    2013-04-01

    Sudden weather changes have long been supposed to be associated with negative impacts on human health. However, relatively few studies attempted to quantify these relationships. In this study, we use large 6-hour changes of atmospheric sea level pressure as proxy for sudden weather changes, and evaluate their association with hospital admissions for cardiovascular diseases. Winter and summer seasons and positive and negative pressure changes are analyzed separately, using data for the city of Prague (population of 1.2 million) over 16-year period (1994-2009). We find that sudden pressure drops in winter are associated with significant increases in the number of hospital admissions. Increases in morbidity are not observed for pressure drops in summer, nor pressure increases in any season. Analysis of synoptic weather maps shows that the large pressure drops in winter are associated with strong zonal (westerly) flow and rapidly moving low pressure systems with centres over Northern Europe and atmospheric fronts affecting the area of Western and Central Europe. Several of the largest pressure decreases were associated with infamous winter storms (such as Lothar on December 25, 1999 and Kyrill on January 18, 2007). Analysis of links between passages of strong atmospheric fronts and hospital admissions shows that the links are much weaker if weather changes are characterized by frontal passages. Since climate models project strengthening of the zonal circulation in winter and increased frequency of winter storms, the negative effects of such weather phenomena and their possible changes in a warmer climate of the 21st century need to be better understood, particularly as their importance in inducing excess morbidity and mortality in winter may increase compared to cold spells.

  2. 40 CFR 63.9921 - What are the installation, operation and maintenance requirements for my monitors?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) For the pressure drop CPMS, you must: (i) Locate the pressure sensor(s) in or as close to a position... calibration quarterly and transducer calibration monthly. (v) Conduct calibration checks any time the sensor exceeds the manufacturer's specified maximum operating pressure range, or install a new pressure sensor...

  3. 40 CFR 63.9921 - What are the installation, operation and maintenance requirements for my monitors?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) For the pressure drop CPMS, you must: (i) Locate the pressure sensor(s) in or as close to a position... calibration quarterly and transducer calibration monthly. (v) Conduct calibration checks any time the sensor exceeds the manufacturer's specified maximum operating pressure range, or install a new pressure sensor...

  4. 40 CFR 63.9921 - What are the installation, operation and maintenance requirements for my monitors?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) For the pressure drop CPMS, you must: (i) Locate the pressure sensor(s) in or as close to a position... calibration quarterly and transducer calibration monthly. (v) Conduct calibration checks any time the sensor exceeds the manufacturer's specified maximum operating pressure range, or install a new pressure sensor...

  5. 40 CFR 63.9921 - What are the installation, operation and maintenance requirements for my monitors?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) For the pressure drop CPMS, you must: (i) Locate the pressure sensor(s) in or as close to a position... calibration quarterly and transducer calibration monthly. (v) Conduct calibration checks any time the sensor exceeds the manufacturer's specified maximum operating pressure range, or install a new pressure sensor...

  6. Early climate on earth-reduced gas models and early climate on Mars-reduced gas and obliquity models

    NASA Technical Reports Server (NTRS)

    Toon, O. B.; Sagan, C.

    1978-01-01

    At high obliquity, Martian polar ground temperatures could exceed the melting point of ice for considerable periods of time (approximately 90 Earth days). Under special conditions ice itself might melt. Carbon dioxide adsorbed on the Martian regolith is not expected to buffer the seasonal pressure wave except in the unlikely event that the soil pore size is very large (50 micron). For a basaltic soil composition the maximum CO2 that could be desorbed over obliquity time scales due to thermal forces is a few millibars. At low obliquities the atmospheric pressures may drop, desorbing the soil. The only means to achieve higher CO2 pressures is to have much higher planet-wide temperatures due to some greenhouse effect, or to be at an epoch before the regolith or carbonates formed. The water ice budget between north and south polar caps was considered and summer sublimation rates imply that the ice could be exchanged between the poles during obliquity cycles. A critical factor in the polar cap water budget is the interaction of water and dust. The origin of the Martian polar laminae is probably due to variations in this interaction.

  7. Shape oscillations of acoustically levitated drops in water: Early research with Bob Apfel on modulated radiation pressure

    NASA Astrophysics Data System (ADS)

    Marston, Philip L.

    2004-05-01

    In 1976, research in collaboration with Bob Apfel demonstrated that low-frequency shape oscillations of hydrocarbon drops levitated in water could be driven using modulated radiation pressure. While that response to modulated ultrasound was subsequently extended to a range of systems, the emphasis here is to recall the initial stages of development in Bob Apfel's laboratory leading to some publications [P. L. Marston and R. E. Apfel, J. Colloid Interface Sci. 68, 280-286 (1979); J. Acoust. Soc. Am. 67, 27-37 (1980)]. The levitation technology used at that time was such that it was helpful to develop a sensitive method for detecting weak oscillations using the interference pattern in laser light scattered by levitated drops. The initial experiments to verify this scattering method used shape oscillations induced by modulated electric fields within the acoustic levitator. Light scattering was subsequently used to detect shape oscillations induced by amplitude modulating a carrier having a high frequency (around 680 kHz) at a resonance of the transducer. Methods were also developed for quantitative measurements of the drop's response and with improved acoustic coupling drop fission was observed. The connection with research currently supported by NASA will also be noted.

  8. Intracranial pressure and cerebral perfusion pressure in patients developing brain death.

    PubMed

    Salih, Farid; Holtkamp, Martin; Brandt, Stephan A; Hoffmann, Olaf; Masuhr, Florian; Schreiber, Stephan; Weissinger, Florian; Vajkoczy, Peter; Wolf, Stefan

    2016-08-01

    We investigated whether a critical rise of intracranial pressure (ICP) leading to a loss of cerebral perfusion pressure (CPP) could serve as a surrogate marker of brain death (BD). We retrospectively analyzed ICP and CPP of patients in whom BD was diagnosed (n = 32, 16-79 years). Intracranial pressure and CPP were recorded using parenchymal (n = 27) and ventricular probes (n = 5). Data were analyzed from admission until BD was diagnosed. Intracranial pressure was severely elevated (mean ± SD, 95.5 ± 9.8 mm Hg) in all patients when BD was diagnosed. In 28 patients, CPP was negative at the time of diagnosis (-8.2 ± 6.5 mm Hg). In 4 patients (12.5%), CPP was reduced but not negative. In these patients, minimal CPP was 4 to 18 mm Hg. In 1 patient, loss of CPP occurred 4 hours before apnea completed the BD syndrome. Brain death was universally preceded by a severe reduction of CPP, supporting loss of cerebral perfusion as a critical step in BD development. Our data show that a negative CPP is neither sufficient nor a prerequisite to diagnose BD. In BD cases with positive CPP, we speculate that arterial blood pressure dropped below a critical closing pressure, thereby causing cessation of cerebral blood flow. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. On angled bounce-off impact of a drop impinging on a flowing soap film

    NASA Astrophysics Data System (ADS)

    Basu, Saikat; Yawar, Ali; Concha, Andres; Bandi, M. M.

    2017-12-01

    Small drops impinging obliquely on thin flowing soap films frequently demonstrate the rare emergence of bulk elastic effects working in-tandem with the more commonplace hydrodynamic interactions. Three collision regimes are observable: (a) drop piercing through the film, (b) it coalescing with the flow, and (c) it bouncing off the film surface. During impact, the drop deforms along with a bulk elastic deformation of the film. For impacts that are close-to-tangential, the bounce-off regime predominates. We outline a reduced order analytical framework assuming a deformable drop and a deformable three-dimensional film, and the idealization invokes a phase-based parametric study. Angular inclination of the film and the ratio of post and pre-impact drop sizes entail the phase parameters. We also perform experiments with vertically descending droplets (constituted from deionized water) impacting against an inclined soap film, flowing under constant pressure head. Model-predicted phase domain for bounce-off compares well to our experimental findings. Additionally, the experiments exhibit momentum transfer to the film in the form of shed vortex dipoles, along with propagation of free surface waves. On consulting prior published work, we note that for locomotion of water-walking insects using an impulsive action, the momentum distribution to the shed vortices and waves are both significant, taking up respectively 2/3 and 1/3 of the imparted streamwise momentum. Considering the visually similar impulse actions, this theory, despite its assumption of a quiescent liquid bath of infinite depth, is applied to the drop bounce-off experiments, and the resultant shed vortex dipole momenta are compared to the momenta of the coherent vortex structures computed from particle imaging velocimetry data. The magnitudes reveal identical order (10-7 N s), suggesting that notwithstanding the disparities, the bounce-off regime may be tapped as a toy analog for impulse-based interfacial biolocomotion.

  10. MGBX - PS Crouch with experiment module

    NASA Image and Video Library

    2016-08-12

    STS083-346-024 (4-8 April 1997) --- Payload specialist Roger K. Crouch performs the activation for the Mid Deck Glove Box (MGBX). Made to accommodate a variety of hardware and materials testing, the facility offers physical isolation and a negative air pressure environment so that items that are not suitable for handling in the open Spacelab can be protected. One experiment that was performed on STS-83 is the Internal Flows in a Free Drop (IFFD), an experiment that investigates rotation and position control of drops by varying acoustic pressures.

  11. Validation of CTF Droplet Entrainment and Annular/Mist Closure Models using Riso Steam/Water Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wysocki, Aaron J.; Salko, Robert K.

    This report summarizes the work done to validate the droplet entrainment and de-entrainment models as well as two-phase closure models in the CTF code by comparison with experimental data obtained at Riso National Laboratory. The Riso data included a series of over 250 steam/water experiments that were performed in both tube and annulus geometries over a range of various pressures and outlet qualities. Experimental conditions were set so that the majority of cases were in the annular/mist ow regime. Measurements included liquid lm ow rate, droplet ow rate, lm thickness, and two-phase pressure drop. CTF was used to model 180more » of the tubular geometry cases, matching experimental geometry, outlet pressure, and outlet ow quality to experimental values. CTF results were compared to the experimental data at the outlet of the test section in terms of vapor and entrained liquid ow fractions, pressure drop per unit length, and liquid lm thickness. The entire process of generating CTF input decks, running cases, extracting data, and generating comparison plots was scripted using Python and Matplotlib for a completely automated validation process. All test cases and scripting tools have been committed to the COBRA-TF master repository and selected cases have been added to the continuous testing system to serve as regression tests. The dierences between the CTF- and experimentally-calculated ow fraction values were con- sistent with previous calculations by Wurtz, who applied the same entrainment correlation to the same data. It has been found that CTF's entrainment/de-entrainment predictive capability in the annular/mist ow regime for this particular facility is comparable to the licensed industry code, COBRAG. While lm and droplet predictions are generally good, it has been found that accuracy is diminished at lower ow qualities. This nding is consistent with the noted deciencies in the Wurtz entrainment model employed by CTF. The CTF predicted two-phase pressure drop in the annular/mist ow regime has been found to be highly inaccurate, exhibiting a clear bias with respect to the experimental data. This inaccuracy led to an investigation that revealed deciencies in the implementation of the annular/mist interfacial friction model, which should be investigated further in the future. Looking to published COBRAG results for this same facility reveal it exhibits no bias with regard to experimental pressure drop results. In addition to the problems with pressure drop prediction, the lm thickness was also signicantly under-predicted by CTF compared to both experimental data and Wurtz's analytical calculations. Film thickness is calculated using a simple geometric relationship and lm void fraction in CTF, which is dependent on slip ratio and interfacial friction. It is possible that the issues aecting the pressure drop and lm void prediction are related.« less

  12. Globe stability during simulated vitrectomy with valved and non-valved trocar cannulas

    PubMed Central

    Abulon, Dina Joy; Charles, Martin; Charles, Daniel E

    2015-01-01

    Purpose To compare the effects of valved and non-valved cannulas on intraocular pressure (IOP), fluid leakage, and vitreous incarceration during simulated vitrectomy. Methods Three-port pars plana incisions were generated in six rubber eyes using 23-, 25-, and 27-gauge valved and non-valved trocar cannulas. The models were filled with air and IOP was measured. Similar procedures were followed for 36 acrylic eyes filled with saline solution. Vitreous incarceration was analyzed in eleven rabbit and twelve porcine cadaver eyes. Results In the air-filled model, IOP loss was 89%–94% when two non-valved cannulas were unoccupied versus 1%–5% when two valved cannulas were unoccupied. In the fluid-filled model, with non-valved cannulas, IOP dropped while fluid leaked from the open ports. With two open ports, the IOP dropped to 20%–30% of set infusion pressure, regardless of infusion pressure and IOP compensation. The IOP was maintained in valved cannulas when one or two ports were left open, regardless of IOP compensation settings. There was no or minimal fluid leakage through open ports at any infusion pressure. Direct microscopic analysis of rabbit eyes showed that vitreous incarceration was significantly greater with 23-gauge non-valved than valved cannulas (P<0.005), and endoscopy of porcine eyes showed that vitreous incarceration was significantly greater with 23-gauge (P<0.05) and 27-gauge (P<0.05) non-valved cannulas. External observation of rabbit eyes showed vitreous prolapse through non-valved, but not valved, cannulas. Conclusion Valved cannulas surpassed non-valved cannulas in maintaining IOP, preventing fluid leakage, and reducing vitreous incarceration during simulated vitrectomy. PMID:26445520

  13. Combination of aquifer thermal energy storage and enhanced bioremediation: Biological and chemical clogging.

    PubMed

    Ni, Zhuobiao; van Gaans, Pauline; Rijnaarts, Huub; Grotenhuis, Tim

    2018-02-01

    Interest in the combination concept of aquifer thermal energy storage (ATES) and enhanced bioremediation has recently risen due to the demand for both renewable energy technology and sustainable groundwater management in urban areas. However, the impact of enhanced bioremediation on ATES is not yet clear. Of main concern is the potential for biological clogging which might be enhanced and hamper the proper functioning of ATES. On the other hand, more reduced conditions in the subsurface by enhanced bioremediation might lower the chance of chemical clogging, which is normally caused by Fe(III) precipitate. To investigate the possible effects of enhanced bioremediation on clogging with ATES, we conducted two recirculating column experiments with differing flow rates (10 and 50mL/min), where enhanced biological activity and chemically promoted Fe(III) precipitation were studied by addition of lactate and nitrate respectively. The pressure drop between the influent and effluent side of the column was used as a measure of the (change in) hydraulic conductivity, as indication of clogging in these model ATES systems. The results showed no increase in upstream pressure during the period of enhanced biological activity (after lactate addition) under both flow rates, while the addition of nitrate lead to significant buildup of the pressure drop. However, at the flow rate of 10mL/min, high pressure buildup caused by nitrate addition could be alleviated by lactate addition. This indicates that the risk of biological clogging is relatively small in the investigated areas of the mimicked ATES system that combines enhanced bioremediation with lactate as substrate, and furthermore that lactate may counter chemical clogging. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Pulsed free jet expansion system for high-resolution fluorescence spectroscopy of capillary gas chromatographic effluents

    NASA Astrophysics Data System (ADS)

    Pepich, Barry V.; Callis, James B.; Danielson, J. D. Sheldon; Gouterman, Martin

    1986-05-01

    A method for detection of capillary gas chromatographic (C-GC) effluent using supersonic jet spectroscopy is described. A novel concept is introduced which overcomes four major obstacles: (i) high temperature of the GC; (ii) low GC flow rate; (iii) low dead volume requirement; and (iv) duty factor mismatch to a pulsed laser. The effluent from the C-GC flows into a low dead volume antechamber into which a pulsed valve, operating at 5 Hz, discharges high-pressure inert gas for 600 μs. The antechamber feeds through a small orifice into a high-vacuum chamber; here an isentropic expansion takes place which causes marked cooling of the GC effluent. The fluorescence of the effluent is then excited by a synchronously pulsed dye laser. With iodine vapor in helium (2 ml/min) modeling the GC effluent, the fluorescence of the cooled molecules is monitored with different delay times between opening of the pulsed valve and firing of the laser. With a glass wool plug inserted in the antechamber to promote mixing between the high-pressure pulse gas and the iodine, the observed pressure variation with time follows a simple gas-dynamic model. Operating in this pulsed mode it is found that the effluent concentration increases by a factor of 7 while the rotational temperature drops from 373 to 7 K. The overall fluorescence intensity actually increases nearly 30-fold because the temperature drop narrows the absorption bands. Tests on acenaphthene chromatographed on a 15-m capillary column show that the antechamber does not degrade resolution and that the high-pressure pulses act to reduce C-GC retention times, presumably through a Venturi effect. The antechamber can be operated with GC effluent temperatures above 200 °C without adversely affecting the pulsed valve.

  15. Reduction technique of drop voltage and power losses to improve power quality using ETAP Power Station simulation model

    NASA Astrophysics Data System (ADS)

    Satrio, Reza Indra; Subiyanto

    2018-03-01

    The effect of electric loads growth emerged direct impact in power systems distribution. Drop voltage and power losses one of the important things in power systems distribution. This paper presents modelling approach used to restructrure electrical network configuration, reduce drop voltage, reduce power losses and add new distribution transformer to enhance reliability of power systems distribution. Restructrure electrical network was aimed to analyse and investigate electric loads of a distribution transformer. Measurement of real voltage and real current were finished two times for each consumer, that were morning period and night period or when peak load. Design and simulation were conduct by using ETAP Power Station Software. Based on result of simulation and real measurement precentage of drop voltage and total power losses were mismatch with SPLN (Standard PLN) 72:1987. After added a new distribution transformer and restructrured electricity network configuration, the result of simulation could reduce drop voltage from 1.3 % - 31.3 % to 8.1 % - 9.6 % and power losses from 646.7 watt to 233.29 watt. Result showed, restructrure electricity network configuration and added new distribution transformer can be applied as an effective method to reduce drop voltage and reduce power losses.

  16. Numerical investigation of cavitation flow inside spool valve with large pressure drop

    NASA Astrophysics Data System (ADS)

    Deng, Jian; Pan, Dingyi; Xie, Fangfang; Shao, Xueming

    2015-12-01

    Spool valves play an important role in fluid power system. Cavitation phenomena happen frequently inside the spool valves, which cause structure damages, noise and lower down hydrodynamic performance. A numerical tools incorporating the cavitation model, are developed to predict the flow structure and cavitation pattern in the spool valve. Two major flow states in the spool valve chamber, i.e. flow-in and flow-out, are studies. The pressure distributions along the spool wall are first investigated, and the results agree well with the experimental data. For the flow-in cases, the local pressure at the throttling area drops much deeper than the pressure in flow-out cases. Meanwhile, the bubbles are more stable in flow-in cases than those in flow-out cases, which are ruptured and shed into the downstream.

  17. A Hybrid Windkessel Model of Blood Flow in Arterial Tree Using Velocity Profile Method

    NASA Astrophysics Data System (ADS)

    Aboelkassem, Yasser; Virag, Zdravko

    2016-11-01

    For the study of pulsatile blood flow in the arterial system, we derived a coupled Windkessel-Womersley mathematical model. Initially, a 6-elements Windkessel model is proposed to describe the hemodynamics transport in terms of constant resistance, inductance and capacitance. This model can be seen as a two compartment model, in which the compartments are connected by a rigid pipe, modeled by one inductor and resistor. The first viscoelastic compartment models proximal part of the aorta, the second elastic compartment represents the rest of the arterial tree and aorta can be seen as the connection pipe. Although the proposed 6-elements lumped model was able to accurately reconstruct the aortic pressure, it can't be used to predict the axial velocity distribution in the aorta and the wall shear stress and consequently, proper time varying pressure drop. We then modified this lumped model by replacing the connection pipe circuit elements with a vessel having a radius R and a length L. The pulsatile flow motions in the vessel are resolved instantaneously along with the Windkessel like model enable not only accurate prediction of the aortic pressure but also wall shear stress and frictional pressure drop. The proposed hybrid model has been validated using several in-vivo aortic pressure and flow rate data acquired from different species such as, humans, dogs and pigs. The method accurately predicts the time variation of wall shear stress and frictional pressure drop. Institute for Computational Medicine, Dept. Biomedical Engineering.

  18. 40 CFR Table 7 to Subpart Ddddd of... - Establishing Operating Limits

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... Particulate matter, mercury, or total selected metals a. Wet scrubber operating parameters i. Establish a site... drop and liquid flow rate monitors and the particulate matter, mercury, or total selected metals... from the pressure drop and liquid flow rate monitors and the particulate matter, mercury, or total...

  19. Barriers Keep Drops Of Water Out Of Infrared Gas Sensors

    NASA Technical Reports Server (NTRS)

    Murray, Sean K.

    1996-01-01

    Infrared-sensor cells used for measuring partial pressures of CO(2) and other breathable gases modified to prevent entry of liquid water into sensory optical paths of cells. Hydrophobic membrane prevents drops of water entrained in flow from entering optical path from lamp to infrared detectors.

  20. Drop transfer between superhydrophobic wells using air logic control.

    PubMed

    Vuong, Thach; Cheong, Brandon Huey-Ping; Huynh, So Hung; Muradoglu, Murat; Liew, Oi Wah; Ng, Tuck Wah

    2015-02-21

    Superhydrophobic surfaces aid biochemical analysis by limiting sample loss. A system based on wells here tolerated tilting up to 20° and allowed air logic transfer with evidence of mixing. Conditions for intact transfer on 15 to 60 μL drops using compressed air pressure operation were also mapped.

  1. Characterizing pressure issues due to turbulent flow in tubing, in ultra-fast chiral supercritical fluid chromatography at up to 580bar.

    PubMed

    Berger, Terry A

    2016-12-02

    It has been widely suggested that the outlet pressure be changed to maintain constant density ("isopycnic" conditions) when comparing the kinetic performance of different columns in supercritical fluid chromatography (SFC). However, at high flow rates, flow in the tubing is turbulent, causing large extra-column pressure drops that limit options for changing outlet pressure. Some of these pressure drops occur before and some after the column, obscuring the actual column inlet and outlet pressures. In this work, a 4.6×100mm, 1.8μm R,R-Whelk-O1 column was used with low dispersion LD (120μm) plumbing to generate sub-1min chiral separations. However, the optimum, or near optimum, flow rate was 5mL-min -1 , producing a system pressure of 580bar (with 40% methanol, outlet pressure 120bar). Both the flow rate and pump pressure required were near the limits of the instrument, and significantly exceeded the capability of many other SFC's. Extra-column pressure drops (ΔP ec ) were as high as 200bar, caused mostly by turbulent flow in the tubing. The ΔP ec increased by more than the square of the flow rate. Reynolds Numbers (Re) were calculated for tubing as a function of flow rate between 100 and 400bar and 5-20% methanol in CO 2 , and 40°-60°C. This represents the most extensive analysis of turbulence in tubing in the SFC literature. Flow in 120μm ID tubing was calculated to be laminar below 1.0mL-min -1 , mostly transitional up to 2.5mL-min -1 and virtually always turbulent at 3mL-min -1 and higher. Flow in 170μm tubing is turbulent at lower flows but generates half the ΔP ec due to the lower mobile phase linear velocity. The results suggest that, while sub-minute chromatograms are easily generated, 4.6mm columns are not very user friendly for use with sub-2μm packings. The high flow rates required just to reach optimum result in high ΔP ec generated by the tubing, causing uncertainty in the true column inlet, outlet, and average column pressure/density. When comparing kinetic performance of columns with different dimensions, the pressure drops in the tubing must be considered. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Are the Stress Drops of Small Earthquakes Good Predictors of the Stress Drops of Larger Earthquakes?

    NASA Astrophysics Data System (ADS)

    Hardebeck, J.

    2017-12-01

    Uncertainty in PSHA could be reduced through better estimates of stress drop for possible future large earthquakes. Studies of small earthquakes find spatial variability in stress drop; if large earthquakes have similar spatial patterns, their stress drops may be better predicted using the stress drops of small local events. This regionalization implies the variance with respect to the local mean stress drop may be smaller than the variance with respect to the global mean. I test this idea using the Shearer et al. (2006) stress drop catalog for M1.5-3.1 events in southern California. I apply quality control (Hauksson, 2015) and remove near-field aftershocks (Wooddell & Abrahamson, 2014). The standard deviation of the distribution of the log10 stress drop is reduced from 0.45 (factor of 3) to 0.31 (factor of 2) by normalizing each event's stress drop by the local mean. I explore whether a similar variance reduction is possible when using the Shearer catalog to predict stress drops of larger southern California events. For catalogs of moderate-sized events (e.g. Kanamori, 1993; Mayeda & Walter, 1996; Boyd, 2017), normalizing by the Shearer catalog's local mean stress drop does not reduce the standard deviation compared to the unmodified stress drops. I compile stress drops of larger events from the literature, and identify 15 M5.5-7.5 earthquakes with at least three estimates. Because of the wide range of stress drop estimates for each event, and the different techniques and assumptions, it is difficult to assign a single stress drop value to each event. Instead, I compare the distributions of stress drop estimates for pairs of events, and test whether the means of the distributions are statistically significantly different. The events divide into 3 categories: low, medium, and high stress drop, with significant differences in mean stress drop between events in the low and the high stress drop categories. I test whether the spatial patterns of the Shearer catalog stress drops can predict the categories of the 15 events. I find that they cannot, rather the large event stress drops are uncorrelated with the local mean stress drop from the Shearer catalog. These results imply that the regionalization of stress drops of small events does not extend to the larger events, at least with current standard techniques of stress drop estimation.

  3. Water Pump Development for the EVA PLSS

    NASA Technical Reports Server (NTRS)

    Schuller, Michael; Kurwitz, Cable; Goldman, Jeff; Morris, Kim; Trevino, Luis

    2009-01-01

    This paper describes the effort by the Texas Engineering Experiment Station (TEES) and Honeywell for NASA to design, fabricate, and test a preflight prototype pump for use in the Extravehicular activity (EVA) portable life support subsystem (PLSS). Major design decisions were driven by the need to reduce the pump s mass, power, and volume compared to the existing PLSS pump. In addition, the pump will accommodate a much wider range of abnormal conditions than the existing pump, including vapor/gas bubbles and increased pressure drop when employed to cool two suits simultaneously. A positive displacement, external gear type pump was selected because it offers the most compact and highest efficiency solution over the required range of flow rates and pressure drops. An additional benefit of selecting a gear pump design is that it is self priming and capable of ingesting noncondensable gas without becoming "air locked." The chosen pump design consists of a 28 V DC, brushless, sealless, permanent magnet motor driven, external gear pump that utilizes a Honeywell development that eliminates the need for magnetic coupling. Although the planned flight unit will use a sensorless motor with custom designed controller, the preflight prototype to be provided for this project incorporates Hall effect sensors, allowing an interface with a readily available commercial motor controller. This design approach reduced the cost of this project and gives NASA more flexibility in future PLSS laboratory testing. The pump design was based on existing Honeywell designs, but incorporated features specifically for the PLSS application, including all of the key features of the flight pump. Testing at TEES will simulate the vacuum environment in which the flight pump will operate. Testing will verify that the pump meets design requirements for range of flow rates, pressure rise, power consumption, working fluid temperature, operating time, and restart capability. Pump testing is currently scheduled for March, 2009, after which the pump will be delivered to NASA for further testing.

  4. Sensitivity Analysis and Accuracy of a CFD-TFM Approach to Bubbling Bed Using Pressure Drop Fluctuations

    PubMed Central

    Tricomi, Leonardo; Melchiori, Tommaso; Chiaramonti, David; Boulet, Micaël; Lavoie, Jean Michel

    2017-01-01

    Based upon the two fluid model (TFM) theory, a CFD model was implemented to investigate a cold multiphase-fluidized bubbling bed reactor. The key variable used to characterize the fluid dynamic of the experimental system, and compare it to model predictions, was the time-pressure drop induced by the bubble motion across the bed. This time signal was then processed to obtain the power spectral density (PSD) distribution of pressure fluctuations. As an important aspect of this work, the effect of the sampling time scale on the empirical power spectral density (PSD) was investigated. A time scale of 40 s was found to be a good compromise ensuring both simulation performance and numerical validation consistency. The CFD model was first numerically verified by mesh refinement process, after what it was used to investigate the sensitivity with regards to minimum fluidization velocity (as a calibration point for drag law), restitution coefficient, and solid pressure term while assessing his accuracy in matching the empirical PSD. The 2D model provided a fair match with the empirical time-averaged pressure drop, the relating fluctuations amplitude, and the signal’s energy computed as integral of the PSD. A 3D version of the TFM was also used and it improved the match with the empirical PSD in the very first part of the frequency spectrum. PMID:28695119

  5. Sensitivity Analysis and Accuracy of a CFD-TFM Approach to Bubbling Bed Using Pressure Drop Fluctuations.

    PubMed

    Tricomi, Leonardo; Melchiori, Tommaso; Chiaramonti, David; Boulet, Micaël; Lavoie, Jean Michel

    2017-01-01

    Based upon the two fluid model (TFM) theory, a CFD model was implemented to investigate a cold multiphase-fluidized bubbling bed reactor. The key variable used to characterize the fluid dynamic of the experimental system, and compare it to model predictions, was the time-pressure drop induced by the bubble motion across the bed. This time signal was then processed to obtain the power spectral density (PSD) distribution of pressure fluctuations. As an important aspect of this work, the effect of the sampling time scale on the empirical power spectral density (PSD) was investigated. A time scale of 40 s was found to be a good compromise ensuring both simulation performance and numerical validation consistency. The CFD model was first numerically verified by mesh refinement process, after what it was used to investigate the sensitivity with regards to minimum fluidization velocity (as a calibration point for drag law), restitution coefficient, and solid pressure term while assessing his accuracy in matching the empirical PSD. The 2D model provided a fair match with the empirical time-averaged pressure drop, the relating fluctuations amplitude, and the signal's energy computed as integral of the PSD. A 3D version of the TFM was also used and it improved the match with the empirical PSD in the very first part of the frequency spectrum.

  6. Metering System for Compressible Fluids.

    DTIC Science & Technology

    1995-04-10

    pressure switch and a low pass pressure switch are included in 5 line with the compressible fluid cylinder; consequently, the density of the...Once the pressure in first container 30 reaches the preset pressure for pressure switch 58, inlet valves 20 and 24 are closed and outlet valves 36...is allowed to drop to the preset pressure for pressure switch 60, at which time outlet valves 36 and 40 are closed, inlet valves 20 and 24 are

  7. Variability of computational fluid dynamics solutions for pressure and flow in a giant aneurysm: the ASME 2012 Summer Bioengineering Conference CFD Challenge.

    PubMed

    Steinman, David A; Hoi, Yiemeng; Fahy, Paul; Morris, Liam; Walsh, Michael T; Aristokleous, Nicolas; Anayiotos, Andreas S; Papaharilaou, Yannis; Arzani, Amirhossein; Shadden, Shawn C; Berg, Philipp; Janiga, Gábor; Bols, Joris; Segers, Patrick; Bressloff, Neil W; Cibis, Merih; Gijsen, Frank H; Cito, Salvatore; Pallarés, Jordi; Browne, Leonard D; Costelloe, Jennifer A; Lynch, Adrian G; Degroote, Joris; Vierendeels, Jan; Fu, Wenyu; Qiao, Aike; Hodis, Simona; Kallmes, David F; Kalsi, Hardeep; Long, Quan; Kheyfets, Vitaly O; Finol, Ender A; Kono, Kenichi; Malek, Adel M; Lauric, Alexandra; Menon, Prahlad G; Pekkan, Kerem; Esmaily Moghadam, Mahdi; Marsden, Alison L; Oshima, Marie; Katagiri, Kengo; Peiffer, Véronique; Mohamied, Yumnah; Sherwin, Spencer J; Schaller, Jens; Goubergrits, Leonid; Usera, Gabriel; Mendina, Mariana; Valen-Sendstad, Kristian; Habets, Damiaan F; Xiang, Jianping; Meng, Hui; Yu, Yue; Karniadakis, George E; Shaffer, Nicholas; Loth, Francis

    2013-02-01

    Stimulated by a recent controversy regarding pressure drops predicted in a giant aneurysm with a proximal stenosis, the present study sought to assess variability in the prediction of pressures and flow by a wide variety of research groups. In phase I, lumen geometry, flow rates, and fluid properties were specified, leaving each research group to choose their solver, discretization, and solution strategies. Variability was assessed by having each group interpolate their results onto a standardized mesh and centerline. For phase II, a physical model of the geometry was constructed, from which pressure and flow rates were measured. Groups repeated their simulations using a geometry reconstructed from a micro-computed tomography (CT) scan of the physical model with the measured flow rates and fluid properties. Phase I results from 25 groups demonstrated remarkable consistency in the pressure patterns, with the majority predicting peak systolic pressure drops within 8% of each other. Aneurysm sac flow patterns were more variable with only a few groups reporting peak systolic flow instabilities owing to their use of high temporal resolutions. Variability for phase II was comparable, and the median predicted pressure drops were within a few millimeters of mercury of the measured values but only after accounting for submillimeter errors in the reconstruction of the life-sized flow model from micro-CT. In summary, pressure can be predicted with consistency by CFD across a wide range of solvers and solution strategies, but this may not hold true for specific flow patterns or derived quantities. Future challenges are needed and should focus on hemodynamic quantities thought to be of clinical interest.

  8. Roughness-Dominated Hydraulic Fracture Propagation

    NASA Astrophysics Data System (ADS)

    Garagash, D.

    2015-12-01

    Current understanding suggests that the energy to propagate a hydraulic fracture is defined by the viscous fluid pressure drop along the fracture channel, while the energy dissipation in the immediate vicinity of the fracture front (i.e. fracture toughness) is negligible. This status quo relies on the assumption of Poiseuille flow in the fracture, which transmissivity varies as cube of the aperture. We re-evaluate this assumption in the vicinity of the fracture tip, where the aperture roughness and/or branching of the fracture path may lead to very significant deviations from the cubic law. Existing relationships suggest rough fracture transmissivity power laws ~ wr with 4.5 ≤ r ≤ 6, when aperture w is smaller than the roughness. Solving for the tip region of a steadily propagating hydraulic fracture with the "rough fracture" transmissivity, we are able to show (a) larger energy dissipation than predicted by the Poiseuille flow model; (b) localization of the fluid pressure drop into the low-transmissivity, rough tip region; and (c) emergence of potentially preeminent "toughness-dominated" fracture propagation regime where most of the energy is dissipated at the tip and can be described in the context of classical fracture mechanics by invoking the effective fracture toughness dependent upon the details of the pressure drop in the rough tip. We establish that the ratio of the roughness scale wc to the viscous aperture scale wμ = μVE / σ02, controls the pressure drop localization. (Here V - propagation speed, μ - fluid viscosity, E - rock modulus, and σ0 - in-situ stress). For a range of industrial fracturing fluids (from slick-water to linear gels) and treatment conditions, wc/wμ is large, suggesting a fully-localized pressure drop and energy dissipation. The latter is adequately described by the effective toughness - a function of the propagation velocity, confining stress and material parameters, which estimated values are much larger than the "dry" rock fracture toughness measured in the lab. Using the effective, velocity-dependent fracture toughness to predict the evolution of a penny-shape fracture, we are able to show how/when the classical viscosity-dominated and toughness-dominated solutions based upon the Poiseuille law and the "dry", laboratory fracture toughness values, respectively, may become inadequate.

  9. Constant-Pressure Hydraulic Pump

    NASA Technical Reports Server (NTRS)

    Galloway, C. W.

    1982-01-01

    Constant output pressure in gas-driven hydraulic pump would be assured in new design for gas-to-hydraulic power converter. With a force-multiplying ring attached to gas piston, expanding gas would apply constant force on hydraulic piston even though gas pressure drops. As a result, pressure of hydraulic fluid remains steady, and power output of the pump does not vary.

  10. Fluid-cooled heat sink for use in cooling various devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bharathan, Desikan; Bennion, Kevin; Kelly, Kenneth

    The disclosure provides a fluid-cooled heat sink having a heat transfer base, a shroud, and a plurality of heat transfer fins in thermal communication with the heat transfer base and the shroud, where the heat transfer base, heat transfer fins, and the shroud form a central fluid channel through which a forced or free cooling fluid may flow. The heat transfer pins are arranged around the central fluid channel with a flow space provided between adjacent pins, allowing for some portion of the central fluid channel flow to divert through the flow space. The arrangement reduces the pressure drop ofmore » the flow through the fins, optimizes average heat transfer coefficients, reduces contact and fin-pin resistances, and reduces the physical footprint of the heat sink in an operating environment.« less

  11. Microfluidic pressure sensing using trapped air compression.

    PubMed

    Srivastava, Nimisha; Burns, Mark A

    2007-05-01

    We have developed a microfluidic method for measuring the fluid pressure head experienced at any location inside a microchannel. The principal component is a microfabricated sealed chamber with a single inlet and no exit; the entrance to the single inlet is positioned at the location where pressure is to be measured. The pressure measurement is then based on monitoring the movement of a liquid-air interface as it compresses air trapped inside the microfabricated sealed chamber and calculating the pressure using the ideal gas law. The method has been used to measure the pressure of the air stream and continuous liquid flow inside microfluidic channels (d approximately 50 microm). Further, a pressure drop has also been measured using multiple microfabricated sealed chambers. For air pressure, a resolution of 700 Pa within a full-scale range of 700-100 kPa was obtained. For liquids, pressure drops as low as 70 Pa were obtained in an operating range from 70 Pa to 10 kPa. Since the method primarily uses a microfluidic sealed chamber, it does not require additional fabrication steps and may easily be incorporated in several lab-on-a-chip fluidic applications for laminar as well as turbulent flow conditions.

  12. Investigating the effects of rock porosity and permeability on the performance of nitrogen injection into a southern Iranian oil reservoirs through neural network

    NASA Astrophysics Data System (ADS)

    Gheshmi, M. S.; Fatahiyan, S. M.; Khanesary, N. T.; Sia, C. W.; Momeni, M. S.

    2018-03-01

    In this work, a comprehensive model for Nitrogen injection into an oil reservoir (southern Iranian oil fields) was developed and used to investigate the effects of rock porosity and permeability on the oil production rate and the reservoir pressure decline. The model was simulated and developed by using ECLIPSE300 software, which involved two scenarios as porosity change and permeability changes in the horizontal direction. We found that the maximum pressure loss occurs at a porosity value of 0.07, which later on, goes to pressure buildup due to reservoir saturation with the gas. Also we found that minimum pressure loss is encountered at porosity 0.46. Increases in both pressure and permeability in the horizontal direction result in corresponding increase in the production rate, and the pressure drop speeds up at the beginning of production as it increases. However, afterwards, this pressure drop results in an increase in pressure because of reservoir saturation. Besides, we determined the regression values, R, for the correlation between pressure and total production, as well as for the correlation between permeability and the total production, using neural network discipline.

  13. Microfluidic pressure sensing using trapped air compression

    PubMed Central

    Srivastava, Nimisha; Burns, Mark A.

    2010-01-01

    We have developed a microfluidic method for measuring the fluid pressure head experienced at any location inside a microchannel. The principal component is a microfabricated sealed chamber with a single inlet and no exit; the entrance to the single inlet is positioned at the location where pressure is to be measured. The pressure measurement is then based on monitoring the movement of a liquid–air interface as it compresses air trapped inside the microfabricated sealed chamber and calculating the pressure using the ideal gas law. The method has been used to measure the pressure of the air stream and continuous liquid flow inside microfluidic channels (d ~ 50 μm). Further, a pressure drop has also been measured using multiple microfabricated sealed chambers. For air pressure, a resolution of 700 Pa within a full-scale range of 700–100 kPa was obtained. For liquids, pressure drops as low as 70 Pa were obtained in an operating range from 70 Pa to 10 kPa. Since the method primarily uses a microfluidic sealed chamber, it does not require additional fabrication steps and may easily be incorporated in several lab-on-a-chip fluidic applications for laminar as well as turbulent flow conditions. PMID:17476384

  14. Numerical studies on heat transfer and pressure drop characteristics of flat finned tube bundles with various fin materials

    NASA Astrophysics Data System (ADS)

    Peng, Y.; Zhang, S. J.; Shen, F.; Wang, X. B.; Yang, X. R.; Yang, L. J.

    2017-11-01

    The air-cooled heat exchanger plays an important role in the field of industry like for example in thermal power plants. On the other hand, it can be used to remove core decay heat out of containment passively in case of a severe accident circumstance. Thus, research on the performance of fins in air-cooled heat exchangers can benefit the optimal design and operation of cooling systems in nuclear power plants. In this study, a CFD (Computational Fluid Dynamic) method is implemented to investigate the effects of inlet velocity, fin spacing and tube pitch on the flow and the heat transfer characteristics of flat fins constructed of various materials (316L stainless steel, copper-nickel alloy and aluminium). A three dimensional geometric model of flat finned tube bundles with fixed longitudinal tube pitch and transverse tube pitch is established. Results for the variation of the average convective heat transfer coefficient with respect to cooling air inlet velocity, fin spacing, tube pitch and fin material are obtained, as well as for the pressure drop of the cooling air passing through finned tube. It is shown that the increase of cooling air inlet velocity results in enhanced average convective heat transfer coefficient and decreasing pressure drop. Both fin spacing and tube pitch engender positive effects on pressure drop and have negative effects on heat transfer characteristics. Concerning the fin material, the heat transfer performance of copper-nickel alloy is superior to 316L stainless steel and inferior to aluminium.

  15. A critical review of forced convection heat transfer and pressure drop of Al2O3, TiO2 and CuO nanofluids

    NASA Astrophysics Data System (ADS)

    Khurana, Deepak; Choudhary, Rajesh; Subudhi, Sudhakar

    2017-01-01

    Nanofluid is the colloidal suspension of nanosized solid particles like metals or metal oxides in some conventional fluids like water and ethylene glycol. Due to its unique characteristics of enhanced heat transfer compared to conventional fluid, it has attracted the attention of research community. The forced convection heat transfer of nanofluid is investigated by numerous researchers. This paper critically reviews the papers published on experimental studies of forced convection heat transfer and pressure drop of Al2O3, TiO2 and CuO based nanofluids dispersed in water, ethylene glycol and water-ethylene glycol mixture. Most of the researchers have shown a little rise in pressure drop with the use of nanofluids in plain tube. Literature has reported that the pumping power is appreciably high, only at very high particle concentration i.e. more than 5 %. As nanofluids are able to enhance the heat transfer at low particle concentrations so most of the researchers have used less than 3 % volume concentration in their studies. Almost no disagreement is observed on pressure drop results of different researchers. But there is not a common agreement in magnitude and mechanism of heat transfer enhancement. Few studies have shown an anomalous enhancement in heat transfer even at low particle concentration. On the contrary, some researchers have shown little heat transfer enhancement at the same particle concentration. A large variation (2-3 times) in Nusselt number was observed for few studies under similar conditions.

  16. Comparing kinetic curves in liquid chromatography

    NASA Astrophysics Data System (ADS)

    Kurganov, A. A.; Kanat'eva, A. Yu.; Yakubenko, E. E.; Popova, T. P.; Shiryaeva, V. E.

    2017-01-01

    Five equations for kinetic curves which connect the number of theoretical plates N and time of analysis t 0 for five different versions of optimization, depending on the parameters being varied (e.g., mobile phase flow rate, pressure drop, sorbent grain size), are obtained by means of mathematical modeling. It is found that a method based on the optimization of a sorbent grain size at fixed pressure is most suitable for the optimization of rapid separations. It is noted that the advantages of the method are limited by an area of relatively low efficiency, and the advantage of optimization is transferred to a method based on the optimization of both the sorbent grain size and the drop in pressure across a column in the area of high efficiency.

  17. Levitation and locomotion on an air-table of plates with herringbone grooves

    NASA Astrophysics Data System (ADS)

    Hinch, John; de Maleprade, Helene

    2017-11-01

    Recent experiments in ESPCI in Paris and numerical simulations in Nano- and Microfluidics in Darmstadt have shown that plates with herringbone grooves in their base are accelerated on an air-table in the direction that the chevron grooves point. A simple two-dimensional model is constructed of the air flow down a channel with pressure controlled influx across the lower boundary. Limiting cases are considered of low and high Reynolds numbers, and of small and large pressure drop down the channel compared with the pressure drop across the porous plate. The levitation and locomotion forces are calculated. A prediction is made for the locomotive acceleration which avoids the complications of the shorter grooves which exit the front and back edges.

  18. Evaluation of Two Crew Module Boilerplate Tests Using Newly Developed Calibration Metrics

    NASA Technical Reports Server (NTRS)

    Horta, Lucas G.; Reaves, Mercedes C.

    2012-01-01

    The paper discusses a application of multi-dimensional calibration metrics to evaluate pressure data from water drop tests of the Max Launch Abort System (MLAS) crew module boilerplate. Specifically, three metrics are discussed: 1) a metric to assess the probability of enveloping the measured data with the model, 2) a multi-dimensional orthogonality metric to assess model adequacy between test and analysis, and 3) a prediction error metric to conduct sensor placement to minimize pressure prediction errors. Data from similar (nearly repeated) capsule drop tests shows significant variability in the measured pressure responses. When compared to expected variability using model predictions, it is demonstrated that the measured variability cannot be explained by the model under the current uncertainty assumptions.

  19. Performance of the SERI parallel-passage dehumidifer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlepp, D.; Barlow, R.

    1984-09-01

    The key component in improving the performance of solar desiccant cooling systems is the dehumidifier. A parallel-passage geometry for the desiccant dehumidifier has been identified as meeting key criteria of low pressure drop, high mass transfer efficiency, and compact size. An experimental program to build and test a small-scale prototype of this design was undertaken in FY 1982, and the results are presented in this report. Computer models to predict the adsorption/desorption behavior of desiccant dehumidifiers were updated to take into account the geometry of the bed and predict potential system performance using the new component design. The parallel-passage designmore » proved to have high mass transfer effectiveness and low pressure drop over a wide range of test conditions typical of desiccant cooling system operation. The prototype dehumidifier averaged 93% effectiveness at pressure drops of less than 50 Pa at design point conditions. Predictions of system performance using models validated with the experimental data indicate that system thermal coefficients of performance (COPs) of 1.0 to 1.2 and electrical COPs above 8.5 are possible using this design.« less

  20. Washable antimicrobial polyester/aluminum air filter with a high capture efficiency and low pressure drop.

    PubMed

    Choi, Dong Yun; Heo, Ki Joon; Kang, Juhee; An, Eun Jeong; Jung, Soo-Ho; Lee, Byung Uk; Lee, Hye Moon; Jung, Jae Hee

    2018-06-05

    Here, we introduce a reusable bifunctional polyester/aluminum (PET/Al) air filter for the high efficiency simultaneous capture and inactivation of airborne microorganisms. Both bacteria of Escherichia coli and Staphylococcus epidermidis were collected on the PET/Al filter with a high efficiency rate (∼99.99%) via the electrostatic interactions between the charged bacteria and fibers without sacrificing pressure drop. The PET/Al filter experienced a pressure drop approximately 10 times lower per thickness compared with a commercial high-efficiency particulate air filter. As the Al nanograins grew on the fibers, the antimicrobial activity against airborne E. coli and S. epidermidis improved to ∼94.8% and ∼96.9%, respectively, due to the reinforced hydrophobicity and surface roughness of the filter. Moreover, the capture and antimicrobial performances were stably maintained during a cyclic washing test of the PET/Al filter, indicative of its reusability. The PET/Al filter shows great potential for use in energy-efficient bioaerosol control systems suitable for indoor environments. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Continuous biological waste gas treatment in stirred trickle-bed reactor with discontinuous removal of biomass.

    PubMed

    Laurenzis, A; Heits, H; Wübker, S; Heinze, U; Friedrich, C; Werner, U

    1998-02-20

    A new reactor for biological waste gas treatment was developed to eliminate continuous solvents from waste gases. A trickle-bed reactor was chosen with discontinuous movement of the packed bed and intermittent percolation. The reactor was operated with toluene as the solvent and an optimum average biomass concentration of between 5 and 30 kg dry cell weight per cubic meter packed bed (m3pb). This biomass concentration resulted in a high volumetric degradation rate. Reduction of surplus biomass by stirring and trickling caused a prolonged service life and prevented clogging of the trickle bed and a pressure drop increase. The pressure drop after biomass reduction was almost identical to the theoretical pressure drop as calculated for the irregular packed bed without biomass. The reduction in biomass and intermittent percolation of mineral medium resulted in high volumetric degradation rates of about 100 g of toluene m-3pb h-1 at a load of 150 g of toluene m-3pb h-1. Such a removal rate with a trickle-bed reactor was not reported before. Copyright 1998 John Wiley & Sons, Inc.

  2. Comparison of Two-Phase Pipe Flow in OpenFOAM with a Mechanistic Model

    NASA Astrophysics Data System (ADS)

    Shuard, Adrian M.; Mahmud, Hisham B.; King, Andrew J.

    2016-03-01

    Two-phase pipe flow is a common occurrence in many industrial applications such as power generation and oil and gas transportation. Accurate prediction of liquid holdup and pressure drop is of vast importance to ensure effective design and operation of fluid transport systems. In this paper, a Computational Fluid Dynamics (CFD) study of a two-phase flow of air and water is performed using OpenFOAM. The two-phase solver, interFoam is used to identify flow patterns and generate values of liquid holdup and pressure drop, which are compared to results obtained from a two-phase mechanistic model developed by Petalas and Aziz (2002). A total of 60 simulations have been performed at three separate pipe inclinations of 0°, +10° and -10° respectively. A three dimensional, 0.052m diameter pipe of 4m length is used with the Shear Stress Transport (SST) k - ɷ turbulence model to solve the turbulent mixtures of air and water. Results show that the flow pattern behaviour and numerical values of liquid holdup and pressure drop compare reasonably well to the mechanistic model.

  3. Sickling of red blood cells through rapid oxygen exchange in microfluidic drops.

    PubMed

    Abbyad, Paul; Tharaux, Pierre-Louis; Martin, Jean-Louis; Baroud, Charles N; Alexandrou, Antigoni

    2010-10-07

    We have developed a microfluidic approach to study the sickling of red blood cells associated with sickle cell anemia by rapidly varying the oxygen partial pressure within flowing microdroplets. By using the perfluorinated carrier oil as a sink or source of oxygen, the oxygen level within the water droplets quickly equilibrates through exchange with the surrounding oil. This provides control over the oxygen partial pressure within an aqueous drop ranging from 1 kPa to ambient partial pressure, i.e. 21 kPa. The dynamics of the oxygen exchange is characterized through fluorescence lifetime measurements of a ruthenium compound dissolved in the aqueous phase. The gas exchange is shown to occur primarily during and directly after droplet formation, in 0.1 to 0.5 s depending on the droplet diameter and speed. The controlled deoxygenation is used to trigger the polymerization of hemoglobin within sickle red blood cells, encapsulated in drops. This process is observed using polarization microscopy, which yields a robust criterion to detect polymerization based on transmitted light intensity through crossed polarizers.

  4. Correlations of catalytic combustor performance parameters

    NASA Technical Reports Server (NTRS)

    Bulzan, D. L.

    1978-01-01

    Correlations for combustion efficiency percentage drop and the minimum required adiabatic reaction temperature necessary to meet emissions goals of 13.6 g CO/kg fuel and 1.64 g HC/kg fuel are presented. Combustion efficiency was found to be a function of the cell density, cell circumference, reactor length, reference velocity, and adiabatic reaction temperature. The percentage pressure drop at an adiabatic reaction temperature of 1450 K was found to be proportional to the reference velocity to the 1.5 power and to the reactor length. It is inversely proportional to the pressure, cell hydraulic diameter, and fractional open area. The minimum required adiabatic reaction temperature was found to increase with reference velocity and decrease with cell circumference, cell density and reactor length. A catalyst factor was introduced into the correlations to account for differences between catalysts. Combustion efficiency, the percentage pressure drop, and the minimum required adiabatic reaction temperature were found to be a function of the catalyst factor. The data was from a 12 cm-diameter test rig with noble metal reactors using propane fuel at an inlet temperature of 800 K.

  5. Three-Dimensional Numerical Simulation of Airflow in Nasopharynx.

    NASA Astrophysics Data System (ADS)

    Shome, Biswadip; Wang, Lian-Ping; Santare, Michael H.; Szeri, Andras Z.; Prasad, Ajay K.; Roberts, David

    1996-11-01

    A three-dimensional numerical simulation of airflow in nasopharynx (from the soft palate to the epiglottis) was conducted, using anatomically accurate model and finite element method, to study the influence of flow characteristics on obstructive sleep apnea (OSA). The results showed that the pressure drop in the nasopharynx is in the range 200-500 Pa. Ten different nasopharynx geometries resulting from three OSA treatment therapies (CPAP, mandibular repositioning devices, and surgery) were compared. The results confirmed that the airflow in the nasopharynx lies in the transitional flow regime and thus, a subtle change in the morphology caused by these treatment therapies has a large effect on the airflow. The onset of turbulence can cause as much as 40% of increase in pressure drop. For the transitional flow regime, the k-ɛ turbulence model was found to be the most appropriate model, when compared to the mixing length and the k-ω model, as it correctly reproduces the limiting laminar behavior. In addition, the pressure drop increased approximately as the square of the volumetric flow rate. Supported by NIH.

  6. Static response of deformable microchannels

    NASA Astrophysics Data System (ADS)

    Christov, Ivan C.; Sidhore, Tanmay C.

    2017-11-01

    Microfluidic channels manufactured from PDMS are a key component of lab-on-a-chip devices. Experimentally, rectangular microchannels are found to deform into a non-rectangular cross-section due to fluid-structure interactions. Deformation affects the flow profile, which results in a nonlinear relationship between the volumetric flow rate and the pressure drop. We develop a framework, within the lubrication approximation (l >> w >> h), to self-consistently derive flow rate-pressure drop relations. Emphasis is placed on handling different types of elastic response: from pure plate-bending, to half-space deformation, to membrane stretching. The ``simplest'' model (Stokes flow in a 3D rectangular channel capped with a linearly elastic Kirchhoff-Love plate) agrees well with recent experiments. We also simulate the static response of such microfluidic channels under laminar flow conditions using ANSYSWorkbench. Simulations are calibrated using experimental flow rate-pressure drop data from the literature. The simulations provide highly resolved deformation profiles, which are difficult to measure experimentally. By comparing simulations, experiments and our theoretical models, we show good agreement in many flow/deformation regimes, without any fitting parameters.

  7. Constitutive relationships and physical basis of fault strength due to flash heating

    USGS Publications Warehouse

    Beeler, N.M.; Tullis, T.E.; Goldsby, D.L.

    2008-01-01

    We develop a model of fault strength loss resulting from phase change at asperity contacts due to flash heating that considers a distribution of contact sizes and nonsteady state evolution of fault strength with displacement. Laboratory faulting experiments conducted at high sliding velocities, which show dramatic strength reduction below the threshold for bulk melting, are well fit by the model. The predicted slip speed for the onset of weakening is in the range of 0.05 to 2 m/s, qualitatively consistent with the limited published observations. For this model, earthquake stress drops and effective shear fracture energy should be linearly pressure-dependent, whereas the onset speed may be pressure-independent or weakly pressure-dependent. On the basis of the theory, flash weakening is expected to produce large dynamic stress drops, small effective shear fracture energy, and undershoot. Estimates of the threshold slip speed, stress drop, and fracture energy are uncertain due to poor knowledge of the average ontact dimension, shear zone thickness and gouge particle size at seismogenic depths. Copyright 2008 by the American Geophysical Union.

  8. R245fa Flow Boiling inside a 4.2 mm ID Microfin Tube

    NASA Astrophysics Data System (ADS)

    Longo, G. A.; Mancin, S.; Righetti, G.; Zilio, C.

    2017-11-01

    This paper presents the R245fa flow boiling heat transfer and pressure drop measurements inside a mini microfin tube with internal diameter at the fin tip of 4.2 mm, having 40 fins, 0.15 mm high with a helix angle of 18°. The tube was brazed inside a copper plate and electrically heated from the bottom. Sixteen T-type thermocouples are located in the copper plate to monitor the wall temperature. The experimental measurements were carried out at constant mean saturation temperature of 30 °C, by varying the refrigerant mass velocity between 100 kg m-2 s-1 and 300 kg m-2 s-1, the vapour quality from 0.15 to 0.95, at two different heat fluxes: 30 and 60 kW m-2. The experimental results are presented in terms of two-phase heat transfer coefficient, onset dryout vapour quality, and frictional pressure drop. Moreover, the experimental measurements are compared against the most updated models for boiling heat transfer coefficient and frictional pressure drop estimations available in the open literature for microfin tubes.

  9. A coolant flow simulation in fast reactor wire-wrapped assembly

    NASA Astrophysics Data System (ADS)

    Volkov, V. Yu.; Belova, O. V.; Krutikov, A. A.; Skibin, A. P.

    2013-06-01

    A CFD model of a 19-rod wire-wrapped fuel assembly is developed. The effect the size of computation mesh in the calculated region and the type of turbulence models have on the pressure drop between the inlet to and outlet from the calculated region is investigated. The possibility of shifting from low-Reynolds to high-Reynolds turbulence models is substantiated. Such a shift allows the mesh size in the calculated region to be reduced by approximately a factor of 18. The obtained results are in good agreement with the empirical dependences and international calculations.

  10. Microscale Regenerative Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Moran, Matthew E.; Stelter, Stephan; Stelter, Manfred

    2006-01-01

    The device described herein is designed primarily for use as a regenerative heat exchanger in a miniature Stirling engine or Stirling-cycle heat pump. A regenerative heat exchanger (sometimes called, simply, a "regenerator" in the Stirling-engine art) is basically a thermal capacitor: Its role in the Stirling cycle is to alternately accept heat from, then deliver heat to, an oscillating flow of a working fluid between compression and expansion volumes, without introducing an excessive pressure drop. These volumes are at different temperatures, and conduction of heat between these volumes is undesirable because it reduces the energy-conversion efficiency of the Stirling cycle.

  11. Bidirectional Brush Seals

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C.; Wilson, Jack; Wu, Tom; Flower, Ralph

    1997-01-01

    Presented is a study of the use of a set of I.D./O.D. bidirectional press seals to reduce the leakage losses in a wave rotor. Relative to the baseline configuration, data indicate the use of brush seals enhanced wave rotor efficiency from 36 to 45 percent at low leakages (small rotor endwall gap spacings) and from 15 to 33 percent at high leakages (larger endwall gap spacings). These brush seals are capable of sealing positive or negative pressure drops with respect to the axial direction. Surface tribology for these tests suggested little evidence of grooving although the bristles appeared polished.

  12. Probe Measures Fouling As In Heat Exchangers

    NASA Technical Reports Server (NTRS)

    Marner, Wilbur J.; Macdavid, Kenton S.

    1990-01-01

    Combustion deposits reduce transfer of heat. Instrument measures fouling like that on gas side of heat exchanger in direct-fired boiler or heat-recovery system. Heat-flux probe includes tube with embedded meter in outer shell. Combustion gases flow over probe, and fouling accumulates on it, just as fouling would on heat exchanger. Embedded heat-flow meter is sandwich structure in which thin Chromel layers and middle alloy form thermopile. Users determine when fouling approaches unacceptable levels so they schedule cleaning and avoid decreased transfer of heat and increased drop in pressure fouling causes. Avoids cost of premature, unnecessary maintenance.

  13. Experimental study of cake formation on heat treated and membrane coated needle felts in a pilot scale pulse jet bag filter using optical in-situ cake height measurement

    PubMed Central

    Saleem, Mahmood; Khan, Rafi Ullah; Tahir, M. Suleman; Krammer, Gernot

    2011-01-01

    Pulse-jet bag filters are frequently employed for particle removal from off gases. Separated solids form a layer on the permeable filter media called filter cake. The cake is responsible for increasing pressure drop. Therefore, the cake has to be detached at a predefined upper pressure drop limit or at predefined time intervals. Thus the process is intrinsically semi-continuous. The cake formation and cake detachment are interdependent and may influence the performance of the filter. Therefore, understanding formation and detachment of filter cake is important. In this regard, the filter media is the key component in the system. Needle felts are the most commonly used media in bag filters. Cake formation studies with heat treated and membrane coated needle felts in pilot scale pulse jet bag filter were carried out. The data is processed according to the procedures that were published already [Powder Technology, Volume 173, Issue 2, 19 April 2007, Pages 93–106]. Pressure drop evolution, cake height distribution evolution, cake patches area distribution and their characterization using fractal analysis on different needle felts are presented here. It is observed that concavity of pressure drop curve for membrane coated needle felt is principally caused by presence of inhomogeneous cake area load whereas it is inherent for heat treated media. Presence of residual cake enhances the concavity of pressure drop at the start of filtration cycle. Patchy cleaning is observed only when jet pulse pressure is too low and unable to provide the necessary force to detach the cake. The border line is very sharp. Based on experiments with limestone dust and three types of needle felts, for the jet pulse pressure above 4 bar and filtration velocity below 50 mm/s, cake is detached completely except a thin residual layer (100–200 μm). Uniformity and smoothness of residual cake depends on the surface characteristics of the filter media. Cake height distribution of residual cake and newly formed cake during filtration prevails. The patch size analysis and fractal analysis reveal that residual cake grow in size (latterly) following regeneration initially on the base with edges smearing out, however, the cake heights are not leveled off. Fractal dimension of cake patches boundary falls in the range of 1–1.4 and depends on vertical position as well as time of filtration. Cake height measurements with Polyimide (PI) needle felts were hampered on account of its photosensitive nature. PMID:24415801

  14. Membrane-Based Gas Traps for Ammonia, Freon-21, and Water Systems to Simplify Ground Processing

    NASA Technical Reports Server (NTRS)

    Ritchie, Stephen M. C.

    2003-01-01

    Gas traps are critical for the smooth operation of coolant loops because gas bubbles can cause loss of centrifugal pump prime, interference with sensor readings, inhibition of heat transfer, and blockage of passages to remote systems. Coolant loops are ubiquitous in space flight hardware, and thus there is a great need for this technology. Conventional gas traps will not function in micro-gravity due to the absence of buoyancy forces. Therefore, clever designs that make use of adhesion and momentum are required for adequate separation, preferable in a single pass. The gas traps currently used in water coolant loops on the International Space Station are composed of membrane tube sets in a shell. Each tube set is composed of a hydrophilic membrane (used for water transport and capture of bubbles) and a hydrophobic membrane (used for venting of air bubbles). For the hydrophilic membrane, there are two critical pressures, the pressure drop and the bubble pressure. The pressure drop is the decrease in system pressure across the gas trap. The bubble pressure is the pressure required for air bubbles to pass across the water filled membrane. A significant difference between these pressures is needed to ensure complete capture of air bubbles in a single pass. Bubbles trapped by the device adsorb on the hydrophobic membrane in the interior of the hydrophilic membrane tube. After adsorption, the air is vented due to a pressure drop of approximately 1 atmosphere across the membrane. For water systems, the air is vented to the ambient (cabin). Because water vapor can also transport across the hydrophobic membrane, it is critical that a minimum surface area is used to avoid excessive water loss (would like to have a closed loop for the coolant). The currently used gas traps only provide a difference in pressure drop and bubble pressure of 3-4 psid. This makes the gas traps susceptible to failure at high bubble loading and if gas venting is impaired. One mechanism for the latter is when particles adhere to the hydrophobic membrane, promoting formation of a water layer about it that can blind the membrane for gas transport (Figure 1). This mechanism is the most probable cause for observed failures with the existing design. The objective of this project was to devise a strategy for choosing new membrane materials (database development and procedure), redesign of the gas trap to mitigate blinding effects, and to develop a design that can be used in ammonia and Freon-21 coolant loops.

  15. Characterization of Single Phase and Two Phase Heat and Momentum Transport in a Spiraling Radial Inow Microchannel Heat Sink

    NASA Astrophysics Data System (ADS)

    Ruiz, Maritza

    Thermal management of systems under high heat fluxes on the order of hundreds of W/cm2 is important for the safety, performance and lifetime of devices, with innovative cooling technologies leading to improved performance of electronics or concentrating solar photovoltaics. A novel, spiraling radial inflow microchannel heat sink for high flux cooling applications, using a single phase or vaporizing coolant, has demonstrated enhanced heat transfer capabilities. The design of the heat sink provides an inward swirl flow between parallel, coaxial disks that form a microchannel of 1 cm radius and 300 micron channel height with a single inlet and a single outlet. The channel is heated on one side through a conducting copper surface, and is essentially adiabatic on the opposite side to simulate a heat sink scenario for electronics or concentrated photovoltaics cooling. Experimental results on the heat transfer and pressure drop characteristics in the heat sink, using single phase water as a working fluid, revealed heat transfer enhancements due to flow acceleration and induced secondary flows when compared to unidirectional laminar fully developed flow between parallel plates. Additionally, thermal gradients on the surface are small relative to the bulk fluid temperature gain, a beneficial feature for high heat flux cooling applications. Heat flux levels of 113 W/cm2 at a surface temperature of 77 deg C were reached with a ratio of pumping power to heat rate of 0.03%. Analytical models on single phase flow are used to explore the parametric trends of the flow rate and passage geometry on the streamlines and pressure drop through the device. Flow boiling heat transfer and pressure drop characteristics were obtained for this heat sink using water at near atmospheric pressure as the working fluid for inlet subcooling levels ranging from 20 to 80 deg C and mean mass flux levels ranging from 184-716 kg/m. 2s. Flow enhancements similar to singlephase flow were expected, as well as enhancements due to increased buoyant forces on vapor bubbles resulting from centripetal acceleration in the flow which will tend to draw the vapor towards the outlet. This can also aid in the reduction of vapor obstruction of the flow. The flow was identified as transitioning through three regimes as the heat rate was increased: partial subcooled flow boiling, oscillating boiling and fully developed flow boiling. During partial subcooled flow boiling, both forced convective and nucleate boiling effects are important. During oscillating boiling, the system fluctuated between partial subcooled flow boiling and fully developed nucleate boiling. Temperature and pressure oscillations were significant in this regime and are likely due to bubble constriction of flow in the microchannel. This regime of boiling is generally undesirable due to the large oscillations in temperatures and pressure and design constraints should be established to avoid large oscillations from occurring. During fully developed flow boiling, water vapor rapidly leaves the surface and the flow does not sustain large oscillations. Reducing inlet subcooling levels was found to reduce the magnitude of oscillations in the oscillating boiling regime. Additionally, reduced inlet subcooling levels reduced the average surface temperature at the highest heat flux levels tested when heat transfer was dominated by nucleate boiling, yet increased the average surface temperatures at low heat flux levels when heat transfer was dominated by forced convection. Experiments demonstrated heat fluxes up to 301 W/cm. 2at an average surface temperature of 134 deg C under partial subcooled flow boiling conditions. At this peak heat flux, the system required a pumping power to heat rate ratio of 0.01%. This heat flux is 2.4 times the typical values for critical heat flux in pool boiling under similar conditions.

  16. High Power Laser Beam Welding of Thick-walled Ferromagnetic Steels with Electromagnetic Weld Pool Support

    NASA Astrophysics Data System (ADS)

    Fritzsche, André; Avilov, Vjaceslav; Gumenyuk, Andrey; Hilgenberg, Kai; Rethmeier, Michael

    The development of modern high power laser systems allows single pass welding of thick-walled components with minimal distortion. Besides the high demands on the joint preparation, the hydrostatic pressure in the melt pool increases with higher plate thicknesses. Reaching or exceeding the Laplace pressure, drop-out or melt sagging are caused. A contactless electromagnetic weld support system was used for laser beam welding of thick ferromagnetic steel plates compensating these effects. An oscillating magnetic field induces eddy currents in the weld pool which generate Lorentz forces counteracting the gravity forces. Hysteresis effects of ferromagnetic steels are considered as well as the loss of magnetization in zones exceeding the Curie temperature. These phenomena reduce the effective Lorentz forces within the weld pool. The successful compensation of the hydrostatic pressure was demonstrated on up to 20 mm thick plates of duplex and mild steel by a variation of the electromagnetic power level and the oscillation frequency.

  17. Item Response Theory Applied to Factors Affecting the Patient Journey Towards Hearing Rehabilitation

    PubMed Central

    Chenault, Michelene; Berger, Martijn; Kremer, Bernd; Anteunis, Lucien

    2016-01-01

    To develop a tool for use in hearing screening and to evaluate the patient journey towards hearing rehabilitation, responses to the hearing aid rehabilitation questionnaire scales aid stigma, pressure, and aid unwanted addressing respectively hearing aid stigma, experienced pressure from others; perceived hearing aid benefit were evaluated with item response theory. The sample was comprised of 212 persons aged 55 years or more; 63 were hearing aid users, 64 with and 85 persons without hearing impairment according to guidelines for hearing aid reimbursement in the Netherlands. Bias was investigated relative to hearing aid use and hearing impairment within the differential test functioning framework. Items compromising model fit or demonstrating differential item functioning were dropped. The aid stigma scale was reduced from 6 to 4, the pressure scale from 7 to 4, and the aid unwanted scale from 5 to 4 items. This procedure resulted in bias-free scales ready for screening purposes and application to further understand the help-seeking process of the hearing impaired. PMID:28028428

  18. Implementation of pressurized air injection system in a Kaplan prototype for the reduction of vibration caused by tip vortex cavitation

    NASA Astrophysics Data System (ADS)

    Rivetti, A.; Angulo, M.; Lucino, C.; Hene, M.; Capezio, O.; Liscia, S.

    2016-11-01

    Blade tip cavitation is a well-known phenomenon that affects the performance of large-diameter Kaplan turbines and induces structural vibration. Injection of pressurized air has been found to yield promising results in reducing those damaging effects. In this work, the results of an experimental test of air injection on a 9.5-m-diameter Kaplan turbine are reported. Experiments were performed for several load conditions and for two different net heads. Accelerations, pressure pulsation and noise emission were monitored for every tested condition. Results show that, at the expense of a maximum efficiency drop of 0.2%, air injection induces a decrease on the level of vibration from 57% up to 84%, depending on the load condition. Such decrease is seen to be proportional to the air flow rate, in the range from 0.06 to 0.8‰ (respect to the discharge at the best efficiency point).

  19. Efficiency in supercritical fluid chromatography with different superficially porous and fully porous particles ODS bonded phases.

    PubMed

    Lesellier, E

    2012-03-09

    The chromatographic efficiency, in terms of plate number per second, was dramatically improved by the introduction of sub-two microns particles with ultra-high pressure liquid chromatography (UHPLC). On the other hand, the recent development of superficially porous particles, called core-shell or fused-core particles, appears to allow the achievement of the same efficiency performances at higher speed without high pressure drops. CO₂-based mobile phases exhibiting much lower viscosities than aqueous based mobile phases allow better theoretical efficiencies, even with 3-5 μm particles, but with relative low pressure drops. They also allow much higher flow rates or much longer columns while using conventional instruments capable to operate below 400 bar. Moreover, the use of superficially porous particles in SFC could enhance the chromatographic performances even more. The kinetic behavior of ODS phases bonded on these particles was studied, with varied flow rates, outlet (and obviously inlet) pressures, temperatures, by using a homologous series (alkylbenzenes) with 10% modifier (methanol or acetonitrile) in the carbon dioxide mobile phase. Results were also compared with classical fully porous particles, having different sizes, from 2.5 to 5 μm. Superior efficiency (N) and reduced h were obtained with these new ODS-bonded particles in regards to classical ones, showing their great interest for use in SFC. However, surprising behavior were noticed, i.e. the increase of the theoretical plate number vs. the increase of the chain length of the compounds. This behavior, opposite to the one classically reported vs. the retention factor, was not depending on the outlet pressure, but on the flow rate and the temperature changes. The lower radial trans-column diffusion on this particle types could explain these results. This diffusion reduction with these ODS-bonded superficially porous particles seems to decrease with the increase of the residence time of compounds. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Custom Unit Pump Design and Testing for the EVA PLSS

    NASA Technical Reports Server (NTRS)

    Schuller, Michael; Kurwitz, Cable; Goldman, Jeff; Morris, Kim; Trevino, Luis

    2009-01-01

    This paper describes the effort by the Texas Engineering Experiment Station (TEES) and Honeywell for NASA to design and test a pre-flight prototype pump for use in the Extra-vehicular activity (EVA) portable life support subsystem (PLSS). Major design decisions were driven by the need to reduce the pump s mass, power, and volume compared to the existing PLSS pump. In addition, the pump must accommodate a much wider range of abnormal conditions than the existing pump, including vapor/gas bubbles and increased pressure drop when employed to cool two suits simultaneously. A positive displacement, external gear type pump was selected because it offers the most compact and highest efficiency solution over the required range of flow rates and pressure drops. An additional benefit of selecting a gear pump design is that it is self priming and capable of ingesting non-condensable gas without becoming air locked. The chosen pump design consists of a 28 V DC, brushless, sealless, permanent magnet motor driven, external gear pump that utilizes a Honeywell development that eliminates the need for magnetic coupling. Although the planned flight unit will use a sensorless motor with custom designed controller, the pre-flight prototype to be provided for this project incorporates Hall effect sensors, allowing an interface with a readily available commercial motor controller. This design approach reduced the cost of this project and gives NASA more flexibility in future PLSS laboratory testing. The pump design was based on existing Honeywell designs, but incorporated features specifically for the PLSS application, including all of the key features of the flight pump. Testing at TEES verified that the pump meets the design requirements for range of flow rates, pressure drop, power consumption, working fluid temperature, operating time, gas ingestion , and restart capability under both ambient and vacuum conditions. The pump operated between 40 and 240 lbm/hr flowrate, 35 to 100 F pump temperature range, and 5 to 10 psid pressure rise. Power consumption of the pump controller at the nominal operating point in both ambient and vacuum conditions was 9.5 W, which was less than the 12 W predicted. Gas ingestion capabilities were tested by injecting 100 cc of air into the fluid line; the pump operated normally throughout this test. The test results contained a number of anomalies, specifically power increases and a few flow stoppages, that prompted TEES and Honeywell to disassemble and inspect the pump. Inspection indicated contamination in the pump and fit issues may have played roles in the observed anomalies. Testing following reassembly indicated that the performance of the pump 1) matched both the predicted performance values, 2) the performance values measured prior to disassembly, and 3) was free of the anomalies noted in the pre-disassembly testing.

Top